
OSF/1"'
Operating
System

Programmer's Reference

OSF/1 Programmer's Reference
Revision 1.0

Open Software Foundation

iii Prentice Hall, Englewood Cliffs, New Je<sey 07632

Cover design
and cover illustration: BETH FAGAN

This book was formatted with troff

Published by Prentice Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for any direct or indirect, incidental, special or
consequential damages in connection with the furnishing, performance, or use of this material.

Copyright© 1991, Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:
• ©Copyright 1987, 1988, 1989 Carnegie-Mellon University
• ©Copyright 1985, 1988, 1989, 1990 Encore Computer Corporation
• ©Copyright 1985, 1987, 1988, 1989 International Business Machine Corporation
• ©Copyright 1988, 1989, 1990 Mentat Inc.
• ©Copyright 1987, 1988, 1989, 1990 Secure Ware, Inc.
• This Software and documentation are based in part on the Fourth Berkeley Software Distribution under license from The Regents of the

University of California. We acknowledge the· following individuals and institutions for their role in its development: Kenneth C.R.C
Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz © Copyright 1980, 1981, 1982, 1983.
1985, 1986, 1987, Regents of the University of California.

All Rights Reserved
Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE

TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN

WITH OSF OR ITS LICENSORS.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS OOCUMENTATION ANDTHE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this c.omputer software, tbe rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software­
Restricted Rights clause.
RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Goverm~ent is subject to the restrictions as set fortti in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.
RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)
(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted
rights." Use, duplication or disclosure is subject to the restrictions as set forth iri NASA FAR SUP 18-52.227-79 (April 1985) ''Commercial
Colnputer Software - Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the
"Alternate III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.
This notice shall be marked on any reproduction of this data, in whole or in part.

Printed in the United States of America
10 9 8 7 6 5 4 3 2

ISBN 0-13-643610-2

Prentice-Hall International (UK)Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc.,. Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Open Software Foundation, OSF, the OSF logo, OSF/I, OSF/Motif, and Motif are trademarks of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the U.S. and other countries.
X/Open is a trademark of the X/Open Company Ltd. in the U.K. and other countries.
AT&T is a registered trademark of American Telephone & Telegraph Company in the U.S. and other countries.
BSD is a trademark of University of California, Berkeley.
DEC, DIGITAL. and VAX are registered trademarks of Digital Equipment Corporation
X Window System is a trademark of the Massachusetts Institute of Technology
MIPS is a trademark of Computer Systems, Inc.
Xerox is a registered trademark of Xerox Corporation
Sun Microsystems, Network File System, and NFS are trademarks of Sun Microsystems, Inc.
SMP, SMP+, and CMW+ are trademarks of SecureWare, Inc.
PostScript is a trademark of Adobe Systems, Inc.
Apple, the Apple Logo, Macintosh, AppleTalk, ImageWriter, and LaserWriter are registered trademarks of Apple Computer, Inc. A/UX is a
trademark of Apple Computer.

Contents

Preface xiii

Audience xiii

Applicability xiv

Purpose xiv

Document Usage xiv

Related Documents xiv

Typographic and Keying Conventions xv

Problem Reporting xvi

Permuted Index . xvii

Chapter 1 Functions 1-1

1.1 Organization of the Reference Pages 1-1

1.2 Error Numbers 1-2
abort 1-16
abs . 1-17
accept 1-19
access 1-21
acct . 1-23
adjtime 1-25
alarm 1-27
asinh 1-29
assert 1-30
async_daemon 1-32
atof . 1-33
atoi . 1-35
bcopy 1-39
bessel 1-41
bind • 1-43
brk . 1-45
bsearch 1-47
catclose 1-49

OSF/1 Programmer's Reference

ii

catgets •
catopen
cfgetispeed
cf getospeed
cfsetispeed
cfsetospeed
chdir
chmod .
chown .
chroot
clearenv
clearerr •
clock
close
connect
conv
ctermid •
ctime
ctype
curses
cuserid .
dbm .•
decode_mach_o_hdr
dn_comp
dn_expand •
dn_find • •
dn_skipname
drand48
ecvt • •
encode_mach_o_hdr •
endhostent • •
endnetent
endprotoent
endservent •
erf
exec
exec_ with_loader
exit . •
exp .
expacct •
fclose
fcntl
feof •
ferror
fileno
flock
ftockfile

1-51
1-53
1-55
1-56
1-57
1-58
1-59
1-61
1-65
1-68
1-70
1-71
1-72
1-73
1-75
1-78
1-81
1-83
1-89
1-92

1-107
1-109
1-111
1-113
1-115
1-117
1-119
1-121
1-125
1-128
1-130
1-131
1-132
1-133
1-134
1-136
1-142
1-145
1-148
1-151
1-152
1-155
1-161
1-162
1-163
1-164
1-167

floor
fop en
fork •
fread
frexp
fseek
fsync
ftok • •
ftw •
funlockfile
gamma ••
getaddressconf
getc • • .
getclock
getcwd • • •
getdirentries
getdiskbyname
getdtablesize
getenv •
getfh
getfsent
getfsstat
getgid
getgrent
getgroups
gethostbyaddr
gethostbyname
gethostent .
gethostid
gethostname
getitimer
getlogin
_getlong
getnetbyaddr
getnetbyname
getnetent
getopt
getpagesize
getpass . .
getpeername
getpid
getpriority •
getprotobyname
getprotobynumber
getprotoent
getpwent
getrlimit

Contents

1-168
1-171
1-176
1-179
1-181
1-184
1-188
1-190
1-192
1-195
1-196
1-198
1-201
1-203
1-205
1-207
1-209
1-210
1-211
1-212
1-214
1-216
1-218
1-219
1-222
1-224
1-226
1-228
1-230
1-231
1-232
1-235
1-237
1-239
1-241
1-243
1-244
1-246
1-247
1-249
1-251
1-252
1-254
1-256
1-258
1-259
1-262

iii

OSF/1 Programmer's Reference

iv

getrusage
gets • •
getservbyname
getservbyport .
getservent •
_getshort
getsockname
getsockopt .
gettimeofday
gettimer
getuid
getusershell
getutent
getwc
getwd
getws • . . •
hsearch
htonl
htons
hypot
inet_addr
inet_lnaof •
inet_makeaddr
inet_netof • •
inet_network
inet_ntoa
initgroups •
insque • • • •
ioctl
isnan • • • • •
jctype
kill .
ldr_entry .
ldr_inq_module
ldr_inq_region
ldr_install • • •
ldr_lookup_package •
ldr_next_module •
ldr_remove
ldr_xattach
ldr_xdetach
ldr_xentry •
ldr_xload • • •
ldr_xlookup_package
ldr_xunload
libPW • • .
link • • • • • •

1-265
1-267
1-269
1-271
1-273
1-275
1-277
1-279
1-283
1-285
1-287
1-288
1-289
1-292
1-293
1-294
1-295
1-297
1-298
1-299
1-301
1-302
1-303
1-304
1-305
1-306
1-307
1-309
1-310
1-312
1-313
1-315
1-317
1-318
1-320
1-322
1-324
1-326
1-328
1-329
1-331
1-333
1-335
1-338
1-340
1-342
1-345

listen
load
localeconv
lockf •
lsearch .
ls eek
mad vise
malloc •
mblen
mbstowcs • • • • •
mbtowc
memccpy
mkdir
mkfifo • •
mknod •
mktemp
mktimer
mmap
mount
mount
mp •
mprotect
msem_init .
msem_lock
msem_remove
msem_unlock
msgctl
msgget
msgrcv
msgsnd
msync . • • • .
munmap
mvalid
ndbm
neg •
nfssvc
nice •
nl_langinfo
ns_addr
ntohl
ntohs
open
opendir
pathconf
pause
pclose
perror

Contents

1-347
1-349
1-351
1-355
1-358
1-360
1-362
1-364
1-368
1-370
1-372
1-374
1-378
1-381
1-383
1-386
1-388
1-390
1-395
1-400
1-402
1-406
1-409
1-411
1-413
1-415
1-417
1-420
1-422
1-425
1-428
1-430
1-432
1-434
1-437
1-438
1-439
1-441
1-443
1-445
1-446
1-447
1-453
1-458
1-462
1-464
1-466

v

OSF/1 Programmer's Reference

vi

pipe
plock
poll • • • • •
popen
printf
profil
pthread_attr_create
pthread_attr_delete
pthread_attr_getstaeksize
pthread_attr_setstaeksize
pthread_eaneel
pthread_cleanup_pop
pthread_cleanup_push
pthread_eond_broadeast
pthread_eond_destroy
pthread_eond_init
pthread_eond_signal .
pthread_eond_timedwait
pthread_eond_ wait
pthread_eondattr_ereate
pthread_eondattr_delete
pthread_ereate • • • • • • •
pthread_detach . . • • • • • • • • •
pthread_equal • • . . • • •
pthread_exit • • • • • • •
pthread_getspeci fie • • • •
pthreadjoin
pthread_keyereate • . • • • • .
pthread_mutex_destroy .
pthread_mutex_init .
pthread_mutex_loek .
pthread_mutex_tryloek
pthread_mutex_unloek
pthread_mutexattr_ereate • • • •
pthread_mutexattr_delete
pthread_onee . • . • • • • •
pthread_self
pthread_setasyneeaneel •
pthread_seteaneel
pthread_setspeei fie
pthread_testeaneel
pthread_yield
ptraee
pute .
putenv •
putlong •
puts •

1-467
1-469
1-471
1-474
1-476
1-483
1-485
1-487
1-488
1-490
1-492
1-494
1-496
1-498
1-500
1-502
1-504
1-506
1-508
1-510
1-512
1-514
1-516
1-518
1-519
1-520
1-522
1-524
1-526
1-528
1-530
1-532
1-534
1-536
1-538
1-539
1-541
1-542
1-545
1-547
1-549
1-550
1-551
1-555
1-558
1-559
1-560

putshort
putwc
putws
qsort
quotactl
raise
rand . •
random .
rcmd
re_comp
read . .
readlink
reboot
recv .
recvfrom
recvmsg
regexp .
rel timer
remove .
rename .
res_init .
res_mkquery
res_send
rexec
rmdir
rmtimer
rresvport
ruserok
scandir
scanf
select
semctl
semget
semop
send
sendmsg
sendto .
setbuf
setclock
setgid
setgroups
sethostid
sethostname
setjmp .
setlocale
setnetent
setpgid •

Contents

1-562
1-564
1-566
1-568
1-570
1-573
1-574
1-577
1-580
1-582
1-584
1-588
1-590
1-593
1-595
1-598
1-601
1-606
1-608
1-610
1-613
1-615
1-618
1-620
1-623
1-625
1-626
1-628
1-630
1-632
1-638
1-642
1-646
1-649
1-653
1-655
1-657
1-660
1-662
1-664
1-666
1-668
1-669
1-670
1-672
1-676
1-677

vii

OSF/1 Programmer's Reference

viii

setprotoent
setquota
setregid
setreuid
setrgid • •
setruid •
setservent
setsid •
setsockopt
setuid
shmat
shmctl •
shmdt
shmget •
shutdown
sigaction
sigblock
sigemptyset
siginterrupt
siglongjmp
sigpause •
sigpending • •
sigprocmask
sigretum
sigset
sigsetjmp
sigstack
sigsuspend •
sigvec
sigwait •
sin
sinh •
sleep
socket
socketpair •
sqrt •
stat •
statfs
stime
strftime
string
swab
swapon •
symlink
sync
sysconf
syslog

1-679
1-680
1-682
1-683
1-684
1-686
1-688
1-689
1-690
1-694
1-696
1-699
1-701
1-702
1-705
1-706
1-710
1-711
1-714
1-716
1-718
1-720
1-721
1-724
1-726
1-729
1-730
1-732
1-734
1-737
1-739
1-742
1-744
1-745
1-748
1-750
1-752
1-754
1-756
1-757
1-760
1-767
1-768
1-770
1-773
1-774
1-776

system •
t_accept
t_alloc •
t_bind
t_close •
t_connect
t_error •
t_free
t_getinfo
t_getstate
t_listen
t_look
t_open
t_optmgmt
t_rcv
t_rcvconnect
t_rcvdis
t_rcvrel
t_rcvudata
t_rcvuderr
t_snd
t_snddis
t_sndrel
t_sndudata
t_sync •
t_unbind
tcdrain
tcftow
tcftush •
tcgetattr
tcgetpgrp
tcsendbreak
tcsetattr
tcsetpgrp
time •
times
tmpfile .
tmpnam
truncate
tsearch .
ttyname
ttyslot
ulimit
umask
umount
uname •
ungetc

Contents

1-780
1-782
1-786
1-790
1-795
1-797
1-803
1-805
1-808
1-812
1-814
1-818
1-822
1-827
1-831
1-834
1-838
1-842
1-844
1-848
1-851
1-855
1-858
1-860
1-863
1-866
1-868
1-870
1-872
1-874
1-876
1-878
1-880
1-882
1-884
1-885
1-887
1-888
1-890
1-893
1-896
1-898
1-899
1-901
1-902
1-904
1-906

ix

OSF/1 Programmer's Reference

unlink • . •
unload • . •
unlocked_getc
unlocked_putc
usleep • • • • • • .
utime
varargs
vprintf •
wait .
wcstombs •
wctomb
write
wsprintf
wsscanf
wstring

Chapter 2 Files . •

x

ar • • • • • • .
core
ctab
dir •
disklabel
disktab .
en
exports
fd
fs
group
icmp
idp
inet .
ip
lo
lvm
msqid_ds
netintro
ns
nsip . .
null • .
OSF/ROSE
passwd . •
protocols
pty . •
resolver
route •
semid_ds
services
shells

1-908
1-910
1-912
1-913
1-914
1-915
1-918
1-921
1-923
1-928
1-930
1-932
1-937
1-939
1-941

2-1
2-2
2-3
2-4
2-9

2-10
2-12
2-15
2-18
2-20
2-21
2-24
2-25
2-27
2-30
2-32
2-34
2-35
2-56
2-58
2-64
2-66
2-67
2-68
2-96
2-98
2-99

2-102
2-104
2-106
2-109
2-110

shmid_ds
signal • • • •
spp • •
stab . .
tar
tcp
terminfo
termios
tty.
udp . .

Chapter 3 Miscellaneous Functions
ascii • •
end . .
environ .
hier . .
hostname

Contents

2-111
2-113
2-118
2-120
2-123
2-125
2-127
2-139
2-151
2-165

3-1
3-2
3-4
3-5
3-7

3-11

xi

OSF/1 Programmer's Reference

List of Tables

Table 1-1. OSF/l Errnos 1-3

xii

Pref ace

The OSF/l Programmer's Reference contains reference pages for OSF/1 ™
system calls, library routines, file formats, and special files.

Audience

This book is for application programmers who want to use the application
programming interface provided with the OSF/1 operating system. The
book assumes that the reader is a programmer familiar with the C
programming language.

xiii

OSF/1 Programmer's Reference

Applicability

Purpose

This book applies to Release 1.0 of the OSF/1 operating system.

The purpose of this book is to provide a complete reference to all features of
the operating system's application programming interface.

Document Usage

This document is organized into three chapters.

• Chapter 1 is a reference to functions in OSF/l, both system and library
calls. It contains reference pages from both the man2 and man3
directories, sorted alphabetically.

• Chapter 2 is a reference to files in OSF/1. It contains reference pages
from both the man4 and man7 directories, sorted alphabetically.

• Chapter 3 is a reference to miscellaneous facilities, found in the man5
directory.

Related Documents

xiv

The following documents are also included with the OSF/1 documentation
set:

• OSF/l Applications Programmer's Guide

• OSF/l Security Features Programmer's Guide

• OSF/l System Programmer's Reference Volume 1

• OSF/l System Programmer's Reference Volume 2

• OSF/l Command Reference

Preface

• OSF/l System and Network Administrator's Reference

• OSF/l Network Applications Programmer's Guide

• Application Environment Specification
System/Programming Inteifaces Volume

Operating

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold

Italic

Constant width

[]

Bold words or characters represent system
elements that you must use literally, such as
commands, flags, and pathnames.

Italic words or characters represent variable
values that you must supply.

Examples and information that the system
displays appears in the constant width
typeface.

Brackets enclose optional items in format and
syntax descriptions.

A vertical bar separates items in a list of choices.

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times. A
vertical ellipsis indicates that you can repeat the
preceding line one or more times.

xv

OSF/1 Programmer's Reference

Problem Reporting

xvi

If you have any problems with the software or documentation, please
contact your software vendor's customer service department.

Permuted Index

/initstate, setstate: Generates "better" pseudo-random numbers•...•.•..•......• random(3)
order/ /Converts an unsigned short (16-bit) integer from host-byte htons(3)

/Converts an unsigned short (16-bit) integer from Internet/ ntohs(3)
htonl: Converts an unsigned long (32-bit) integer from host-byte/ htonl(3)
ntohl: Converts an unsigned long (32-bit) integer from Internet/ ntohl(3)

semaphore ID semget: Returns (and possibly creates) a ... semget(2)
a message queue msgget: Returns (and possibly creates) the ID for msgget(2)

a shared memory/ shmget: Returns (and possibly creates) the ID for shmget(2)
ar: Archive (library) file format .. ar(4)

/address integer into its host (local) address component inet_lnaof(3)
lvm: Logical Volume Manager (LYM) programming interface lvm(7)

isnan: Tests for NaN (Not a Number) .. isnan(3)
mbstowcs: Converts a multibyte (single-byte or double-byte)/ mbstowcs(3)

Xerox sequenced packet protocol (SPP) spp: .. spp(7)
Internet user datagram protocol (UDP) udp: ... udp(7)

endprotoent: Closes the /etc/protocols file .. endprotoent(3)
Gets protocol entry from the /etc/protocols file getprotoent: getprotoent(3)

Opens and rewinds the /etc/protocols file setprotoent: setprotoent(3)
endservent: Closes the /etc/services file entry .. endservent(3)

/integer from host-byte order to a 2-byte Internet network integer htons(3)
permit/ ldr_xattach : Attaches to another process to ldr_xattach(3)

termios file, which/ termios.h : Defines the structure of the termios(4)
database/ /putdvagnam, copydvagent :Manipulate device assignment getdvagent(3)

xvii

OSF/1 Programmer's Reference

exit, atexit, _exit: Terminates a process exit(2)
quantities from a byte stream _getlong: Retrieves long _getlong(3)
quantities from a byte stream _getshort: Retrieves short _getshort(3)

Translates/ toascii, tolower, _tolower, toupper, _toupper: conv(3)
/tolower, _tolower, toupper, _toupper: Translates characters conv(3)

signal to end the current/ abort: Generates a software abort(3)
absolute value and division of/ abs, div, labs, !div: Computes abs(3)

abs, div, labs, !div: Computes absolute value and division of/ abs(3)
Remainder and floating-point absolute value functions /Modulo floor(3)

distance function and complex absolute value /Euclidean hypot(3)
on a socket accept: Accepts a new connection accept(2)

if a password meets deduction/ acceptable_password: Determines acceptable_password(3)
t_accept: Accepts a connect request t_accept(3)

socket accept: Accepts a new connection on a accept(2)
utime, utimes: Sets file access and modification times utime(2)

record basis audit: Open and access audit session data on a audit(3)
labeling macilb: Mandatory access control and information macilb(4)

mandatory: Mandatory access control databases .. mandatory(4)
functions acl: Access control list conversion .••..•.••.•••.••••.••.......•. acl(3)

policy databases acl: Access control list discretionary acl(4)
chacl: Changes the access control list of a file chacl(3)

statacl: Retrieves the access control list of a file statacl(3)
/shm_chacl:Manipulates access control lists on/ ... ipc_acl(3)
setgroups: Sets the group access list .. setgroups(2)

chmod, fchmod: Changes file access permissions ... chmod(2)
mapping mprotect: Modifies access protections of memory mprotect(2)

Security independent disk inode access routines disk: .. disk(3)
eaccess: Determines effective access to a file .. eaccess(3)

accessibility of a file access: Determines the .. access(2)
/getgrnam, setgrent, endgrent: Accesses the basic group/ getgrent(3)

/putpwent, setpwent, endpwent: Accesses the basic user/ .. getpwent(3)
/setutent, endutent, utmpname: Accesses utmp file entries getutent(3)

access: Determines the accessibility of a file .. access(2)
expacct: Expands accounting record .. expacct(3)

Enables and disables process accounting acct: .. acct(2)
process accounting acct: Enables and disables •••••••••••••••••••••••••••.•.••••••• acct(2)

orderly release/ t_rcvrel: Acknowledges receipt of an t_rcvrel(3)
conversion functions acl: Access control list ... acl(3)

discretionary policy databases acl: Access control list ... acl(4)
sin, cos, tan, asin, acos, atan, atan2: Computes the/ sin(3)

hyperbolic functions asinh, acosh, atanh: Computes inverse asinh(3)
sigaction, signal: Specifies the action to take upon delivery of a/ sigaction(2)

additional security attributes added to i-nodes /Format of the inode(7)
existing file/ link: Creates an additional directory entry for an link(2)

added to/ Inode: Format of the additional security attributes inode(7)
Internet/ /Translates an Internet address and host addressinto an inet_makeaddr(3)

integer into its host (local) address component /address inet_lnaof(3)
address integer into its network address component /an Internet inet_netof(3)

ns_addr, ns_ntoa: Xerox NS address conversion routines ns_addr(3)
(local)/ /Translates an Internet address integer into its host inet_lnaof(3)

address/ /Translates an Internet address integer into its network inet_netof(3)

xviii

Permuted Index

address string to a network address integer /dot-formatted inet_network(3)
an Internet byte-ordered address integer /host addressinto inet_makeaddr(3)

address string to an Internet address integer /Internet network inet_addr(3)
{Translates an Internet integer address into a dot-formatted/ ••••.....•••.•••.•••••••••••••.• inet_ntoa(3)

ldr_lookup_package: Returns the address of a symbol name in a/ ldr_lookup_package(3)
ldr_xlookup_package: Returns the address of a symbolname within a/ ldr_xlookup_package(3)

/Gets information about system address space configuration getaddressconf(2)
of modulesin that process' address space /loading/unloading•..••••• ldr_xattach(3)
/an Internet dot-formatted address string to a network/•..•••••••.•.•• inet_network(3)

{Translates an Internet network address string to an Internet/ inet_addr(3)
t_bind: Binds an address to a transport endpoint t_bind(3)

Gets network host entry by address gethostbyaddr: ... gethostbyaddr(3)
Gets network entry by address getnetbyaddr: ... getnetbyaddr(3)

default domain name and Internet address res_init: Searches for a res_init(3)
a socket with a privileged address rresvport: Retrieves rresvport(3)

/an Internet address and host address into an Internet/ ... inet_makeaddr(3)
interleaved paging and/ swapon: Adds a swap device for .. swapon(2)

allow synchronization of the/ adjtime: Corrects the time to adjtime(2)
Regular-expression compile and/ advance, compile, step: ... regexp(3)

expected paging/ madvise: Advise the system of a process' madvise(2)
flock: Applies or removes an advisory lock on an open file flock(2)
the timeout of interval timers alarm, ualarm: Sets or changes alarm(3)

/calloc, mallopt, mallinfo, alloca: Provides a memory/ malloc(3)
t_alloc: Allocates a library structure t_alloc(3)

mktimer: Allocates a per-process timer mktimer(3)
alloca: Provides a memory allocator /mall opt, mallinfo, malloc(3)

adjtime: Corrects the time to allow synchronization of the/ adjtime(2)
remote host rexec: Allows command execution on a rexec(3)
remote host rcmd: Allows execution of commands on a rcmd(3)

clients ruserok: Allows servers to authenticate ruserok(3)
functions siginterrupt: Allows signals to interrupt siginterrupt(3)

another thread/ pthread_yield: Allows the scheduler to run pthread_yield(3)
with the/ cuserid: Gets the alphanumeric username associated cuserid(3)
directory contents scandir, alphasort: Scans or sorts .. scandir(3)

plock: Locks a process' text and/or data segments in memory plock(2)
process's sensitivity label andclearance /Gets the current•.....•..........•• getslabel(3)

lock on an open file flock: Applies or removes an advisory ..•......•.•.•••.....•.•..•. flock(2)
ar: Archive (library) file format ar(4)

ar: Archive (library) file format ar(4)
tar: Tape archive file format .. tar(4)

Gets flag letters from the argument vector getopt: .. getopt(3)
multiple precision integer arithmetic /sdiv, itom: Performs mp(3)

Octal, hexadecimal, and decimal ASCII character sets ascii: ascii(5)
decimal ASCII character sets ascii: Octal, hexadecimal, and ascii(5)

ctime_r, difilime, gmtime,/ asctime, asctime_r, ctime, ctime(3)
difilime, gmtime,/ asctime, asctime_r, ctime, ctime_r, ctime(3)

the trigonometric/ sin, cos, tan, asin, acos, atan, atan2: Computes sin(3)
inverse hyperbolic functions asinh, acosh, atanh: Computes asinh(3)

diagnostics assert: Inserts program ... assert(3)
/copydvagent :Manipulate device assignment database entry getdvagent(3)

/setvbuf, setbuffer, setlinebuf: Assigns buffering to a stream setbuf(3)

xix

OSF/1 Programmer's Reference

close: Closes the file associated with a file descriptor close(2)
/Gets the alphanumeric username associated with the current/ cuserid(3)

tcgetattr: Gets the parameters associated with the terminal tcgetattr(3)
tcsetattr: Sets the parameters associated with the terminal tcsetattr(3)

/privilege or authorization sets associated with this process getpriv(3)
asynchronous 1/0 server async_daemon: Creates a local NFS async_daemon(2)

calling/ /Enables or disables the asynchronous cancelability of the pthread_setasynccancel(3:
async_daemon: Creates a local NFS asynchronous 1/0 server .. async_daemon(2)

tcsendbreak: Sends a break on an asynchronous serial data line tcsendbreak(3)
sin, cos, tan, asin, acos, atan, atan2: Computes the/ sin(3)

sin, cos, tan, asin, acos, atan, atan2: Computes the trigonometric/ sin(3)
hyperbolic/ asinh, acosh, atanh: Computes inverse asinh(3)

process exit, atexit, _exit: Terminates a exit(2)
character string to a/ atof, strtod: Converts a .. atof(3)

Converts a character string to/ atoi, atol, strtol, strtoul: ... atoi(3)
character string to the/ atoi, atol, strtol, strtoul: Converts a atoi(3)

blocked signals and/ sigsuspend: Atomically changes the set of sigsuspend(2)
ldr_xdetach: Detaches from an attached process ... ldr_xdetach(3)

shmat: Attaches a shared memory region shmat(2)
permit/ ldr_xattach : Attaches to another process to ldr_xattach(3)

/the value of the stack size attribute of a thread attributes/ pthread_attr_getstacksize(
/Sets the value of the stack size attribute of a thread attributes/ pthread_attr_setstacksize(

/Format of the additional security attributes added to i-nodes inode(7)
/Creates a thread attributes object .. pthread_attr_create(3)
/Deletes a thread attributes object .. pthread_attr_delete(3)

/Creates a condition variable attributes object .. pthread_condattr_create(3
/Deletes a condition variable attributes object .. pthread_condattr_delete(3

/Creates a mutex attributes object .. pthread_mutexattr_create1
/Deletes a mutex attributes object .. pthread_mutexattr_delete1

stack size attribute of a thread attributes object /value of the pthread_attr_getstacksizel
stack size attribute of a thread attributes object /value of the pthread_attr_setstacksize(

events authaudit: Produces audit records for authentication authaudit(3)
basis audit: Open and access audit session data on a record audit(3)
session data on a record basis audit: Open and access audit audit(3)

for authentication events authaudit: Produces audit records authaudit(3)
authcap: Security databases authcap(7)

ruserok: Allows servers to authenticate clients ,, ruserok(3)
Produces audit records for authentication events authaudit: authaudit(3)

with/ getpriv: Gets privilege or authorization sets associated getpriv(3)
cmdauth: Command authorization support routines cmdauth(3)
setpriv: Sets kernel authorizations and privileges setpriv(3)

and/ cmdauth: Format of Command Authorizations Definition file cmdauth(7)
for an/ statpriv: Get kernel authorizations or privilege sets statpriv(3)

/socket connections and limits the backlog of incoming connections listen(2)
/setgrent, endgrent: Accesses the basic group information in the/ getgrent(3)

/setpwent, endpwent: Accesses the basic user information in the/ getpwent(3)
audit session data on a record basis audit: Open and access audit(3)

cfgetispeed: Gets input baud rate for a terminal ... cfgetispeed(3)
cfgetospeed: Gets output baud rate for a terminal ... cfgetospeed(3)

cfsetispeed: Sets input baud rate for a terminal ... cfsetispeed(3)
cfsetospeed: Sets output baud rate for a terminal ... cfsetospeed(3)

xx

Permuted Index

and byte string/ bcopy, bcmp, bzero, ffs: Performs bit bcopy(3)
bit and byte string operations bcopy, bcmp, bzero, Ifs: Performs bcopy(3)
of a process' expected paging behavior /Advise the system madvise(2)

jO,jl,jn, yO, yl, yn: Computes Bessel functions ... bessel(3)
tlind, tdelete, twalk: Manages binary search trees tsearch, tsearch(3)

bsearch: Performs a binary search .. bsearch(3)
bind: Binds a name to a socket bind(2)

bind: Binds a name to a socket bind(2)
a key pthread_setspecific: Binds a thread-specific value to pthread_setspecific(3)

endpoint t_bind: Binds an address to a transport t_bind(3)
bcopy, bcmp, bzero, ffs: Performs bit and byte string operations bcopy(3)

/Atomically changes the set of blocked signals and waits for a/ sigsuspend(2)
/Returns the value bound to a key .. pthread_getspecific(3)

privileges: Perform privilege bracketing ... privileges(3)
data line tcsendbreak: Sends a break on an asynchronous serial tcsendbreak(3)

size brk, sbrk: Changes data segment brk(2)
bsearch: Performs a binary search bsearch(3)

setbuffer, setlinebuf: Assigns buffering to a stream /setvbuf, setbuf(3)
stream putlong: Places long byte quantities into the byte putlong(3)

stream putshort: Places short byte quantities into the byte putshort(3)
Retrieves long quantities from a byte stream _getlong: .. _getlong(3)
Retrieves short quantities from a byte stream _getshort: ... _getshort(3)

long byte quantities into the byte stream putlong: Places putlong(3)
short byte quantities into the byte stream putshort: Places putshort(3)

bzero, ffs: Performs bit and byte string operations /bcmp, bcopy(3)
/and host addressinto an Internet byte-ordered address integer inet_makeaddr(3)
mblen: Determines the length in bytes of a multibyte character mblen(3)

swab: Swaps bytes .. swab(3)
string operations bcopy, bcmp, bzero, ffs: Performs bit and byte bcopy(3)

function and complex/ hypot, cabs: Computes Euclidean distance hypot(3)
/top of the cleanup stack of the calling thread and optionally/ pthread_cleanup_pop(3)

pthread_exit: Terminates the calling thread .. pthread_exit(3)
sigwait: Suspends a calling thread .. sigwait(3)

a cancellation point in the calling thread /Creates .. pthread_testcancel(3)
asynchronous cancelability of the calling thread /or disables the pthread_setasynccancel(3)

the general cancelability of the calling thread /or disables pthread_setcancel(3)
onto the cleanup stack of the calling thread /Pushes a routine pthread_cleanup_push(3)

Returns the ID of the calling thread pthread_self: pthread_self(3)
alloca:/ malloc, free, realloc, calloc, mallopt, mallinfo, malloc(3)

pthread_once: Calls an initialization routine pthread_once(3)
/or disables the asynchronous cancelability of the calling/ pthread_setasynccancel(3)

/Enables or disables the general cancelability of the calling/ pthread_setcancel(3)
pthread_testcancel: Creates a cancellation point in the calling/ pthread_testcancel(3)
from native, readable form to canonical form /file header encode_mach_o_hdr(3)

decode_mach_o_hdr: Converts the canonical header from an OSF/ROSE/ ••••.•..•...•.... decode_mach_o_hdr(3)
terminfo: Describes terminals by capability .. terminfo(4)
/Locale character classification, case conversion, and collating/ ctab(4)

Closes a specified message catalog catclose: .. catclose(3)
Retrieves a message from a catalog catgets: .. catgets(3)
Opens a specified message catalog catopen: .. catopen(3)

message catalog catclose: Closes a specified catclose(3)

xxi

OSF/1 Programmer's Reference

a catalog catgets: Retrieves a message from catgets(3)
message catalog catopen: Opens a specified catopen(3)

cube root functions sqrt, cbrt: Computes square root and sqrt(3)
floating-point numbers to/ floor, ceil, rint, fmod, fabs: Rounds floor(3)

for a terminal cfgetispeed: Gets input baud rate , cfgetispeed(3)
rate for a terminal cfgetospeed: Gets output baud , cfgetospeed(3)

for a terminal cfsetispeed: Sets input baud rate cfsetispeed(3)
rate for a terminal cfsetospeed: Sets output baud cfsetospeed(3)

list of a file chacl: Changes the access control chac1(3)
brk, sbrk: Changes data segment size , brk(2)

chmod, fchmod: Changes file access permissions chmod(2)
truncate, ftruncate: Changes file length .. truncate(2)

storage fsync: Writes changes in a file to permanent fsync(2)
entire current locale/ setlocale: Changes or queries the program's setlocale(3)

process nice: Changes scheduling priority of a nice(3)
of a file chacl: Changes the access control list chacl(3)

chdir, fchdir: Changes the current directory chdir(2)
directory chroot: Changes the effective root chroot(2)

a file chilabel: Changes the information label of chilabel(3)
of a file chown, fchown: Changes the owner and group IDs chown(2)

a file chslabel: Changes the sensitivity label of ., chslabel(3)
signals/ sigsuspend: Atomically changes the set of blocked sigsuspend(2)

timers alarm, ualarm: Sets or changes the timeout of interval alarm(3)
pipe: Creates an interprocess channel .. pipe(2)

ungetc, ungetwc: Pushes a character back into input stream ungetc(3)
conversion, and/ ctab: Locale character classification, case ctab(4)

/unlocked_getchar: Gets a character from an input stream unlocked_getc(3)
wctomb: Converts a wide character into a multibyte/ wctomb(3)

/putchar, fputc, putw: Writes a character or a word to a stream putc(3)
putwc, putwchar, fputwc: Writes a character or a word to a stream , putwc(3)

/fgetc, getchar, getw: Gets a character or word from an input/ getc(3)
getwc, fgetwc, getwchar: Gets a character or word from an input/ getwc(3)

hexadecimal, and decimal ASCII character sets ascii: Octal, ascii(5)
wcstombs: Converts a wide character string into a/ ... wcstombs(3)

/(single-byte or double-byte) character string to a wide/ mbstowcs(3)
atof, strtod: Converts a character string to a/ .. atof(3)

/atol, strtol, strtoul: Converts a character string to the specified/ atoi(3)
address into a dot-formatted character string /integer .. inet_ntoa(3)

character string to a wide character string /or double-byte) mbstowcs(3)
Performs operations on wide character strings /wstrtok: wstring(3)
/unlocked_putchar: Writes a character to a stream .. unlocked_putc(3)

mbtowc: Converts a multibyte character to a wide character mbtowc(3)
length in bytes of a multi byte character mblen: Determines the mblen(3)

a multibyte character to a wide character mbtowc: Converts mbtowc(3)
a wide character into a multibyte character wctomb: Converts wctomb(3)

Retrieves file implementation characteristics /fpathconf: pathconf(3)
isjspace, isjpunct: Classifies characters /isjxdigit, isjalnum, .; jctype(3)

iscntrl, isascii: Classifies characters /isprint, isgraph, ctype(3)
toupper, _toupper: Translates characters /tolower, _tolower, ., conv(3)

current directory chdir, fchdir: Changes the chdir(2)
tod: Check time-of-day locking tod(3)

xx ii

Permuted Index

mvalid: Checks memory region for validity mvalid(2)
multilevel ismultdir: Checks to see if a directory is ismultdir(3)

identity: Gets or checks user or group IDs identity(3)
label of a file chilabel: Changes the information chilabel(3)

times: Gets process and child process times ... times(3)
wait, waitpid, wait3: Waits for a child process to stop or/ ... wait(2)
ptrace: Traces the execution of a child process ... ptrace(2)

access permissions chmod, fchmod: Changes file chmod(2)
and group IDs of a file chown, fchown: Changes the owner chown(2)

chpriv: Sets file privileges chpriv(3)
root directory chroot: Changes the effective chroot(2)
label of a file chslabel: Changes the sensitivity chslabel(3)

and/ ctab: Locale character classification, case conversion, ctab(4)
isjalnum, isjspace, isjpunct: Classifies characters /isjxdigit, jctype(3)

isgraph, iscntrl, isascii: Classifies characters /isprint, ctype(3)
thread /Pushes a routine onto the cleanup stack of the calling pthread_cleanup_push(3)

/a routine from the top of the cleanup stack of the calling/ pthread_cleanup_pop(3)
clearance: Clearance functions ... clearance(3)

clearance: Clearance functions clearance(3)
environment clearenv: Clears the process clearenv(3)

stream clearerr: Clears indicators on a clearerr(3)
clearerr: Clears indicators on a stream clearerr(3)

clearenv: Clears the process environment clearenv(3)
Allows servers to authenticate clients ruserok: .. ruserok(3)
synchronization of the system clock /Corrects the time to allow adjtime(2)

Gets current value of system-wide clock getclock: .. getclock(3)
Sets value of system-wide clock setclock: ... setclock(3)

Sets the system-wide time-of-day clock stime: .. stime(3)
clock: Reports CPU time used clock(3)

with a file descriptor close: Closes the file associated close(2)
/telldir, seekdir, rewinddir, closedir: Performs operations on/ opendir(3)

the system log syslog, openlog, closelog, setlogmask: Controls syslog(3)
pclose: Closes a pipe to a process pclose(3)

catalog catclose: Closes a specified message catclose(3)
t_close: Closes a transport endpoint t_close(3)

fclose, ffiush: Closes or flushes a stream fclose(3)
endprotoent: Closes the /etc/protocols file endprotoent(3)

entry endservent: Closes the /etc/services file endservent(3)
file descriptor close: Closes the file associated with a close(2)

endnetent: Closes the networks file ... endnetent(3)
support routines cmdauth: Command authorization cmdauth(3)

Authorizations Definition file/ cmdauth: Format of Command cmdauth(7)
/case conversion, and collating input file .. ctab(4)

routines cmdauth: Command authorization support cmdauth(3)
file and/ cmdauth: Format of Command Authorizations Definition cmdauth(7)

host rexec: Allows command execution on a remote rexec(3)
system: Executes a shell command .. system(3)

rcmd: Allows execution of commands on a remote host rcmd(3)
socket: Creates an end point for communication and returns a/ socket(2)

Generates a standard interprocess communication key ftok: ftok(3)
/labels on interprocess communication objects .. ipc_ilabel(3)

xxiii

OSF/1 Programmer's Reference

xx iv

/labels on interprocess communication objects .. ipc_slabel(3)
control lists on interprocess communication objects /access ipc_ac1(3)

pthread_equal: Compares two thread identifiers pthread_equal(3)
sigprocmask/ sigblock: Provides a compatibility interface to the sigblock(2)

sigsuspend/ sigpause: Provides a compatibility interface to the sigpause(3)
sigaction()/ sigvec: Provides a compatibility interface to the •••••••.••••••••••.••••••••••••• sigvec(2)

/sighold, sigrelse, sigignore: Compatibility interfaces for/ sigset(3)
/Library: Provides functions for compatibility with existing/ ...•...•.....•..•....••........... libPW(3)

the terminal interface for POSIX compatibility /which provides termios(4)
/compile, step: Regular-expression compile and match routines regexp(3)

compile and match/ advance, compile, step: Regular-expression ..••••••••••••••••••••• regexp(3)
erf, erfc: Computes the error and complementary error functions •••••••••••••••••••••••••••.. erf(3)

tcdrain: Waits for output to complete ... tcdrain(3)
/Euclidean distance function and complex absolute value ... hypot(3)

into its host (local) address component /address integer inet_lnaof(3)
integer into its network address component /an Internet address inet_netof(3)

dn_expand: Expands a compressed domain name dn_expand(3)
dn_skipname: Skips over a compressed domain name dn_skipname(3)

dn_comp: Compresses a domain name ••.•.•••••••••.••.•..••••••••••••• dn_comp(3)
division/ abs, div, labs, !div: Computes absolute value and abs(3)

jO,jl,jn, yO, yl, yn: Computes Bessel functions bessel(3)
function and/ hypot, cabs: Computes Euclidean distance hypot(3)

and power/ exp, log, loglO, pow: Computes exponential, logarithm, exp(3)
sinh, cosh, tanh: Computes hyperbolic functions sinh(3)

functions asinh, acosh, atanh: Computes inverse hyperbolic asinh(3)
root functions sqrt, cbrt: Computes square root and cube sqrt(3)

complementary error/ erf, erfc: Computes the error and ... erf(3)
gamma function !gamma, gamma: Computes the logarithm of the gamma(3)

/to floating-point integers, or computes the Modulo Remainder and/ floor(3)
/tan, asin, acos, atan, atan2: Computes the trigonometric and/ sin(3)

initgroups: Initializes concurrent group set .. initgroups(3)
object /Creates a condition variable attributes .•..••.••.•.••••.•..•..••••.••••• pthread_condattr_create(3)
object /Deletes a condition variable attributes ..••••••..••••.•.....••••••.••••• pthread_condattr_delete(3)

specified period of/ /Waits on a condition variable for a ... pthread_cond_timedwait(3)
pthread_cond_destroy: Destroys a condition variable .. pthread_cond_destroy(3)

pthread_cond_init: Creates a condition variable .. pthread_cond_init(3)
pthread_cond_wait: Waits on a condition variable .. pthread_cond_wait(3)
all threads that are waiting on a condition variable /Wakes up pthread_cond_broadcast(3)
up a thread that is waiting on a condition variable /Wakes pthread_cond_signal(3)

descriptors poll: Monitors conditions on multiple file poll(2)
sysconf: Gets configurable system variables sysconf(3)

resolver: Resolver configuration file .. resolver(4)
about system address space configuration /Gets information getaddressconf(2)
t_rcvconnect: Receives the confirmation from a connect/ •••••.••.••••••••••••••••••••••• t_rcvconnect(3)

t_sndrel: Initiates an endpoint connect orderly release ...•.•••••.••••••••••••••••••••••••••••••• t_sndrel(3)
t_accept: Accepts a connect request .. t_accept(3)

t_listen: Listens for a connect request .. t_listen(3)
Receives the confirmation from a connect request t_rcvconnect: t_rcvconnect(3)

connect: Connects two sockets connect(2)
recv: Receives messages from connected sockets .. recv(2)

socketpair: Creates a pair of connected sockets .. socketpair(2)

Permuted Index

accept: Accepts a new connection on a socket .. accept(2)
user !_connect: Establishes a connection with another transport t_connect(3)

data or expedited data on a connection /Receives normal t_rcv(3)
data or expedited data over a connection t_snd: Sends normal t_snd(3)

listen: Listens for socket connections and limits the/ listen(2)
limits the backlog of incoming connections /connections and••.........••.••••••••••••• listen(2)

connect: Connects two sockets .. connect(2)
mktemp, mkstemp: Constructs a unique filename mktemp(3)

temporary file tmpnam, tempnam: Constructs the name for a tmpnam(3)
Controls maximum system resource consumption /setrlimit: ... getrlimit(2)

variables used by/ signal.h: Contains definitions and .. signal(4)
Scans or sorts directory contents scandir, alphasort: scandir(3)

restores the current execution context /longjmp: Saves and setjmp(3)
Sets and gets signal stack context sigstack: .. sigstack(2)

macilb: Mandatory access control and information labeling macilb(4)
/putprfinam: Manipulate file control database entry .. getprfient(3)

/putprlpnam: Manipulate printer control database entry .. getprlpent(3)
/putprtcnam: Manipulate terminal control database entry .. getprtcent(3)

mandatory: Mandatory access control databases .. mandatory(4)
tcftow: Performs flow control functions .. tcflow(3)

acl: Access control list conversion functions acl(3)
databases acl: Access control list discretionary policy acl(4)

chacl: Changes the access control list of a file ... chacl(3)
statacl: Retrieves the access control list of a file ... statac1(3)

/shm_chacl:Manipulates access control lists on interprocess/ ipc_ac1(3)
icmp: Internet Control Message Protocol icmp(7)

msgctl: Performs message control operations .. msgct1(2)
semctl: Performs semaphore control operations .. semct1(2)

shmctl: Performs shared memory control operations .. shmctl(2)
tcp: Internet transmission control protocol .. tcp(7)

Generates the pathname for the controlling terminal ctermid: ctermid(3)
windowing curses Library: Controls cursor movement and curses(3)

ioctl: Controls devices ... ioct1(2)
getrlimit, setrlimit: Controls maximum system resource/ getrlimit(2)

fcntl, dup, dup2: Controls open file descriptors fcnt1(2)
lockf: Controls open file descriptors lockf(3)

openlog, closelog, setlogmask: Controls the system log syslog, syslog(3)
en: Locale country convention tables ... en(4)

acl: Access control list conversion functions .. acl(3)
ns_ntoa: Xerox NS address conversion routines ns_addr, ns_addr(3)

/character classification, case conversion, and collating input/ ctab(4)
double-precision/ atof, strtod: Converts a character string to a atof(3)

the/ atoi, atol, strtol, strtoul: Converts a character string to atoi(3)
to a string ecvt, fcvt, gcvt: Converts a floating-point number ecvt(3)

or double-byte)/ mbstowcs: Converts a multibyte (single-byte mbstowcs(3)
a wide character mbtowc: Converts a multibyte character to •••.....•..•...•••••••••• mbtowc(3)
into a regular/ rmmultdir: Converts a multilevel directory rmmultdir(3)
a multilevel/ mkmultdir: Converts a regular directory into mkmultdir(3)

multibyte character wctomb: Converts a wide character into a ..•..••••••••••••••••••••• wctomb(3)
into a/ wcstombs: Converts a wide character string•.•••••••••.••••••••• wcstombs(3)

header from/ encode_mach_o_hdr: Converts an OSF/ROSE object file .•••••••••••••••••••••• encode_mach_o_hdr(3)

xxv

OSF/1 Programmer's Reference

(32-bit) integer from/ htonl: Converts an unsigned long htonl(3)
(32-bit) integer from/ ntohl: Converts an unsigned long ntohl(3)
(16-bit) integer from/ htons: Converts an unsigned short htons(3)
(16-bit) integer from/ ntohs: Converts an unsigned short ntohs(3)

strftime: Converts date and time to string strftime(3)
scanf, fscanf, sscanf: Converts formatted input scanf(3)

wsscanf: Converts formatted input wsscanf(3)
from an/ decode_mach_o_hdr: Converts the canonical header decode_mach_o_hdr(3)

localtime_r, mktime, tzset: Converts time units /localtime, ctime(3)
/enddvagent, putdvagnam, copydvagent :Manipulate device/ getdvagent(3)

memory image file core: Specifies the format of the core(4)
synchronization of the/ adjtime: Corrects the time to allow adjtime(2)

atan2: Computes the/ sin, cos, tan, asin, acos, atan, .. sin(3)
functions sinh, cosh, tanh: Computes hyperbolic sinh(3)

en: Locale country convention tables en(4)
clock: Reports CPU time used .. clock(3)

or writing open, creat: Opens a file for reading open(2)
the calling/ pthread_testcancel: Creates a cancellation point in pthread_testcancel(3)

pthread_cond_init: Creates a condition variable pthread_cond_init(3)
pthread_condattr_create: Creates a condition variable/ pthread_condattr_create(3)

mkdir: Creates a directory ... mkdir(2)
mkfifo: Creates a FIFO ... mkfifo(3)

pthread_keycreate: Creates a key to be used with/ pthread_keycreate(3)
I/0 server async_daemon: Creates a local NFS asynchronous async_daemon(2)
pthread_mutexattr_create: Creates a mutex attributes object pthread_mutexattr_create(:

pthread_mutex_init: Creates a mutex .. pthread_mutex_init(3)
fork, vfork: Creates a new process .. fork(2)

sockets socketpair: Creates a pair of connected socketpair(2)
nfssvc: Creates a remote NFS server nfssvc(2)

tmpfile: Creates a temporary file ... tmpfile(3)
object pthread_attr_create: Creates a thread attributes pthread_attr_create(3)

pthread_create: Creates a thread .. pthread_create(3)
entry for an existing file/ link: Creates an additional directory link(2)

communication and/ socket: Creates an end point for .. socket(2)
mknod: Creates an FIFO or special file mknod(2)

pipe: Creates an interprocess channel pipe(2)
masks /sigdelset, sigismember: Creates and manipulates signal sigemptyset(3)
semget: Returns (and possibly creates) a semaphore ID .. semget(2)
msgget: Returns (and possibly creates) the ID for a message/ msgget(2)
shmget: Returns (and possibly creates) the ID for a shared/ shmget(2)

and gets the value of the file creation mask umask: Sets umask(2)
classification, case conversion,/ ctab: Locale character ... ctab(4)

for the controlling terminal ctermid: Generates the pathname ctermid(3)
gmtime_r,/ asctime, asctime_r, clime, ctime_r, difftime, gmtime, ctime(3)

asctime, asctime_r, clime, ctime_r, difftime, gmtime,/ ctime(3)
cbrt: Computes square root and cube root functions sqrt, sqrt(3)

getwd: Gets current directory pathname getwd(3)
chdir, fchdir: Changes the current directory ... chdir(2)

getcwd: Gets the pathname of the current directory ... getcwd(3)
endpoint t_look: Looks at the current event on a transport t_look(3)

/longjmp: Saves and restores the current execution context setjmp(3)

xxvi

Permuted Index

sethostname: Sets the name of the current host ... sethostname(2)
Gets the unique identifier of the current host gethostid: .. gethostid(2)
Sets the unique identifier of the current host sethostid: ... sethostid(2)
/or queries the program's entire current locale or portions/ setlocale(3)

run another thread instead of the current one /the scheduler to pthread_yield(3)
supplementary group set of the current process /Gets the getgroups(2)

usemame associated with the current process /the alphanumeric cuserid(3)
a software signal to end the current process abort: Generates abort(3)

/Installs a module in the current process' private known/ ldr_install(3)
label getilabel: Gets the current process's information getilabel(3)
label setilabel: Sets the current process's information setilabel(3)

getslabel, getclmce: Gets the current process's sensitivity/ getslabel(3)
setslabel, setclmce: Sets the current process's sensitivity/ setslabel(3)

sigprocmask, sigsetmask: Sets the current signal mask .. sigprocmask(2)
provider t_getstate: Gets the current state of the transport t_getstate(3)
uname: Gets the name of the current system .. uname(2)

the slot in the utmp file for the current user ttyslot: Finds ttyslot(3)
clock getclock: Gets current value of system-wide getclock(3)

entry for an existing file on currentfile system /directory link(2)
movement and windowing curses Library: Controls cursor curses(3)

curses Library: Controls cursor movement and windowing curses(3)
usemame associated with the/ cuserid: Gets the alphanumeric cuserid(3)

t_rcvuderr: Receives a unit data error indication ... t_rcvuderr(3)
a break on an asynchronous serial data line tcsendbreak: Sends tcsendbreak(3)

Receives normal data or expedited data on a connection t_rcv: t_rcv(3)
Open and access audit session data on a record basis audit: audit(3)

t_rcv: Receives normal data or expedited data on a/ t_rcv(3)
connection t_snd: Sends normal data or expedited data over a t_snd(3)

/Flushes nontransmitted output data or nonread input data tcflush(3)
Sends normal data or expedited data over a connection t_snd: t_snd(3)

brk, sbrk: Changes data segment size ... brk(2)
Locks a process' text and/or data segments in memory plock: plock(2)

null: Data sink ... null(7)
string to the specified integer data type /Converts a character atoi(3)

t_rcvudata: Receives a data unit .. t_rcvudata(3)
t_sndudata: Sends a data unit .. , t_sndudata(3)

to be used with thread-specific data /Creates a key .. pthread_keycreate(3)
output data or nonread input data /Flushes nontransmitted tcflush(3)

:Manipulate device assignment database entry /copydvagent getdvagent(3)
Manipulate system default database entry /putprdfnam: getprdfent(3)

Manipulate fik control database entry /putprfinam: getprfient(3)
Manipulate printer control database entry /putprlpnam: getprlpent(3)

Manipulate protected password database entry /putprpwnam: getprpwent(3)
Manipulate terminal control database entry /putprtcnam: getprtcent(3)

spdbm: Security policy database management routines spdbm(3)
dbm_error, dbm_clearerr: Database subroutines /dbm_forder, ndbm(3)
firstkey, nextkey, forder: Database subroutines /delete, dbm(3)
protocols: Protocol name database .. protocols(4)

ROUTE: Kernel packet forwarding database .. route(?)
services: Service name database .. services(4)

shells: Shell database .. shells(4)

xxvii

OSF/1 Programmer's Reference

group information in the user database /Accesses the basic getgrent(3)
user information in the user database /Accesses the basic getpwent(3)

Definition file and database /Command Authorizations cmdauth(7)
authcap: Security databases ... authcap(7)

control list discretionary policy databases acl: Access .. acl(4)
Mandatory access control databases mandatory: .. mandatory(4)

udp: Internet user datagram protocol (UDP) udp(7)
idp: Xerox Internet Datagram Protocol ... idp(7)
strftime: Converts date and time to string ... strftime(3)

gettimer: Gets date and time .. gettimer(3)
ftime: Gets and sets date and time /settimeofday, gettimeofday(2)

/dbm_forder, dbm_error, dbm_clearerr: Database/ ndbm(3)
dbm_delete,/ dbm_open, dbm_close, dbm_fetch, dbm_store, ndbm(3)

/dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,/ ndbm(3)
/dbm_nextkey, dbm_forder, dbm_error, dbm_clearerr: Database/ ndbm(3)

dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete,/ ndbm(3)
/dbm_fetch, dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey,/ ndbm(3)

/dbm_firstkey, dbm_nextkey, dbm_forder, dbm_error,/ ndbm(3)
/dbm_delete, dbm_firstkey, dbm_nextkey, dbm_forder,/ ndbm(3)

dbm_store, dbm_delete,/ dbm_open, dbm_close, dbm_fetch, ndbm(3)
dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete,/ ndbm(3)

firstkey, nextkey, forder:/ dbminit, fetch, store, delete, dbm(3)
ascii: Octal, hexadecimal, and decimal ASCII character sets ascii(5)

canonical header from an/ decode_mach_o_hdr: Converts the decode_mach_o_hdr(3)
/Determines if a password meets deduction requirements ... acceptable_password(3)
/putprdfnam: Manipulate system default database entry .. getprdfent(3)
address res_init: Searches for a default domain name and Internet res_init(3)

msqid_ds: Defines a message queue msqid_ds(4)
semid_ds: Defines a semaphore set .. semid_ds(4)
shmid_ds: Defines a shared memory region shmid_ds(4)

NFS mount requests exports: Defines remote mount points for exports(4)
program end, etext, edata: Defines the last location of a end(5)

termios file, which/ termios.h: Defines the structure of the termios(4)
/Format of Command Authorizations Definition file and database cmdauth(7)

signal/ signal.h: Contains definitions and variables used by signal(4)
forder:/ dbminit, fetch, store, delete, firstkey, nextkey, .. dbm(3)

pthread_condattr_delete: Deletes a condition variable/ pthread_condattr_delete(3)
pthread_mutexattr_delete: Deletes a mutex attributes object pthread_mutexattr_delete(3

pthread_mutex_destroy: Deletes a mutex .. pthread_mutex_destroy(3)
object pthread_attr_delete: Deletes a thread attributes pthread_attr_delete(3)

Specifies the action to take upon delivery of a signal /signal: sigaction(2)
terminfo: Describes terminals by capability terminfo(4)

disktab: Disk description file .. disktab(4)
getdiskbyname: Gets disk description using a disk name getdiskbyname(3)

hostname: Hostname resolution description .. hostname(5)
getdtablesize: Gets the descriptor table size ... getdtablesize(2)

for communication and returns a descriptor /Creates an end point socket(2)
the file associated with a file descriptor close: Closes .. close(2)

Maps stream pointer to file descriptor fileno: ... fileno(3)
fd, stdin, stdout, stderr: File descriptors .. fd(7)

lockf: Controls open file descriptors .. lockf(3)

xxviii

Permuted Index

dup, dup2: Controls open file descriptors fcntl, .. fcntl(2)
conditions on multiple file descriptors poll: Monitors po11(2)

pthread_cond_destroy: Destroys a condition variable pthread_cond_destroy(3)
shmdt: Detaches a shared memory region shmdt(2)

pthread_detach: Detaches a thread ... pthread_detach(3)
ldr_xdetach: Detaches from an attached process ldr_xdetach(3)
file eaccess: Determines effective access to a eaccess(3)

deduction/ acceptable_password: Determines if a password met;ts acceptable_password(3)
length passlen: Determines minimum password passlen(3)

file access: Determines the accessibility of a access(2)
a mu!tibyte character mblen: Determines the length in bytes of mblen(3)

/copydvagent :Manipulate device assignment database entry getdvagent(3)
swapping swapon: Adds a swap device for interleaved paging and swapon(2)

ioctl: Controls devices .. ioctl(2)
assert: Inserts program diagnostics .. assert(3)

/asctime_r, ctime, ctime_r, difftime, gmtime, gmtime_r,/ ctime(3)
dir: Format of directories dir(4)

dir: Format of directories ... dir(4)
closedir: Performs operations on directories /seekdir, rewinddir, opendir(3)

alphasort: Scans or sorts directory contents scandir, scandir(3)
getdirentries: Gets directory entries in a/ ... getdirentries(2)

file/ link: Creates an additional directory entry for an existing link(2)
unlink: Removes a directory entry .. unlink(2)
rmdir: Removes a directory file ... rmdir(2)

rnkmultdir: Converts a regular directory into a multilevel/ mkmultdir(3)
rmmultdir: Converts a multilevel directory into a regular/ ... rmmultdir(3)

ismultdir: Checks to see if a directory is multilevel .. ismultdir(3)
system rename: Renames a directory or a file within a file rename(2)

getwd: Gets current directory pathname .. getwd(3)
mkdir: Creates a directory .. mkdir(2)

mid: Traverse multilevel directory .. mld(3)
directory into a regular directory /Converts a multilevel rmmultdir(3)

directory into a multilevel directory /Converts a regular mkmultdir(3)
fchdir: Changes the current directory chdir, .. chdir(2)

Changes the effective root directory chroot: .. chroot(2)
Gets the pathname of the current directory getcwd: .. getcwd(3)

t_unbind: Disables a transport endpoint t_unbind(3)
acct: Enables and disables process accounting acct(2)

setquota: Enables or disables quotas on a file system setquota(2)
cancelability of the/ /Enables or disables the asynchronous pthread_setasynccancel(3)

pthread_setcancel: Enables or disables the general/ .. pthread_setcancel(3)
t_rcvdis: Retrieves disconnect information .. t_rcvdis(3)

t_snddis: Sends user-initiated disconnect request .. t_snddis(3)
acl: Access control list discretionary policy databases acl(4)

disktab: Disk description file ... disktab(4)
name getdiskbyname: Gets disk description using a disk getdiskbyname(3)
disk: Security independent disk inode access routines disk(3)

Gets disk description using a disk name getdiskbyname: getdiskbyname(3)
disklabel: Disk pack label ... disklabel(4)

quotactl: Manipulates disk quotas .. quotactl(2)
inode access routines disk: Security independent disk disk(3)

xx ix

OSF/1 Programmer's Reference

disklabel: Disk pack label disklabel(4)
disktab: Disk description file disktab(4)

hypot, cabs: Computes Euclidean distance function and complex/ hypot(3)
/lcong48: Generates uniformly distributed pseudo-random number/ drand48(3)

absolute value and division/ abs, div, labs, !div: Computes abs(3)
!div: Computes absolute value and division of integers /div, labs, abs(3)

dn_comp: Compresses a domain name dn_comp(3)
domain name dn_expand: Expands a compressed dn_expand(3)
domain name dn_find: Searches for an expanded dn_find(3)

compressed domain name dn_skipname: Skips over a dn_skipname(3)
res_init: Searches for a default domain name and Internet address res_init(3)

dn_comp: Compresses a domain name .. dn_comp(3)
dn_expand: Expands a compressed domain name .. dn_expand(3)
dn_find: Searches for an expanded domain name .. dn_find(3)

Skips over a compressed domain name dn_skipname: dn_skipname(3)
network/ /Translates an Internet dot-formatted address string to a inet_network(3)

/Internet integer address into a dot-formatted character string inet_ntoa(3)
and returns the value of the double operand x neg: Negates neg(3)

a/ /a multibyte (single-byte or double-byte) character string to mbstowcs(3)
/Converts a character string to a double-precision floating-point/ atof(3)

nrand48, mrand48,jrand48,/ drand48, erand48, lrand48, drand48(3)
pty: Pseudo terminal driver ... pty(7)

descriptors fcntl, dup, dup2: Controls open file fcntl(2)
descriptors fcntl, dup, dup2: Controls open file .. fcntl(2)

access to a file eaccess: Determines effective ••••••••••••••••••••••••••••••• eaccess(3)
floating-point number to a/ ecvt, fcvt, gcvt: Converts a ecvt(3)

of a program end, etext, edata: Defines the last location end(S)
eaccess: Determines effective access to a file ... eaccess(3)

setregid: Sets the real and effective group ID .. setregid(2)
chroot: Changes the effective root directory .. chroot(2)

Gets the process' real or effective user ID /geteuid: getuid(2)
setreuid: Sets real and effective user ID's .. setreuid(2)

remque: Inserts or removes an element in a queue insque, insque(3)
tables en: Locale country convention en(4)

accounting acct: Enables and disables process acct(2)
file system setquota: Enables or disables quotas on a setquota(2)

cancelability/ pthread_setcancel: Enables or disables the general pthread_setcancel(3)
pthread_setasynccancel: Enables or disables the/ ... pthread_setasynccancel(3)

nsip: Software network interface encapsulating NS packets in IP/ nsip(7)
OSF/ROSE object file header from/ encode_mach_o_hdr: Converts an encode_mach_o_hdr(3)

returns a/ socket: Creates an end point for communication and socket(2)
Generates a software signal to end the current process abort: abort(3)

last location of a program end, etext, edata: Defines the end(5)
/g~tdvagnam, setdvagent, enddvagent, putdvagnam,/ getdvagent(3)

/getfsfile, getfstype, setfsent, endfsent: Gets information about/ getfsent(3)
/getgrgid, getgrnam, setgrent, endgrent: Accesses the basic/ getgrent(3)

network host entries endhostent: Ends retrieval of endhostent(3)
file endnetent: Closes the networks endnetent(3)

t_sndrel: Initiates an endpoint connect orderly release t_sndrel(3)
t_close: Closes a transport endpoint , t_close(3)

t_open: Establishes a transport endpoint .. t_open(3)

xxx

Permuted Index

t_unbind: Disables a transport endpoint .. t_unbind(3)
Binds an address to a transport endpoint t_bind: .. t_bind(3)
the current event on a transport endpoint t_look: Looks at t_look(3)
protocol options for a transport endpoint t_optmgmt: Manages t_optmgmt(3)

/getprdfnam, setprdfent, endprdfent, putprdfnam:/ getprdfent(3)
/getprfinam, setprfient, endprfient, putprfinam:/ ... getprfient(3)

/getprlpnam, setprlpent, endprlpent, putprlpnam:/ getprlpent(3)
/etc/protocols file endprotoent: Closes the ... endprotoent(3)

/getprpwnam, setprpwent, endprpwent, putprpwnam:/ getprpwent(3)
/getprtcnam, setprtcent, endprtcent, putprtcnam:/ getprtcent(3)

/getpwnam, putpwent, setpwent, endpwent: Accesses the basic user/ getpwent(3)
entries endhostent: Ends retrieval of network host endhostent(3)

/etc/services file entry endservent: Closes the ... endservent(3)
user/ getusershell, setusershell, endusershell: Gets names of legal getusershell(3)

/getutline, pututline, setutent, endutent, utmpname: Accesses utmp/ getutent(3)
/Changes or queries the program's entire current locale or portions/ setlocale(3)

getdirentries: Gets directory entries in a/ ... getdirentries(2)
utmpname: Accesses utmp file entries /setutent, endutent, getutent(3)
Ends retrieval of network host entries endhostent: .. endhostent(3)

gethostbyaddr: Gets network host entry by address ... gethostbyaddr(3)
getnetbyaddr: Gets network entry by address ... getnetbyaddr(3)

gethostbyname: Gets network host entry by name ... gethostbyname(3)
getnetbyname: Gets network entry by name ... getnetbyname(3)
getservbyname: Get service entry by name ... getservbyname(3)

getprotobynumber: Gets a protocol entry by number ... getprotobynumber(3)
getservbyport: Gets service entry by port ... getservbyport(3)

getprotobyname: Gets protocol entry by protocol name .. getprotobyname(3)
/Creates an additional directory entry for an existing file on/ link(2)
file getprotoent: Gets protocol entry from the /etc/protocols getprotoent(3)

ldr_entry: Returns the entry point for a loaded module ldr_entry(3)
in/ ldr_xentry: Returns the entry point for a module loaded ldr_xentry(3)

getnetent: Gets network entry .. getnetent(3)
getservent: Gets services file entry .. getservent(3)

setservent: Gets service file entry .. setservent(3)
unlink: Removes a directory entry .. unlink(2)
device assignment database entry /copydvagent :Manipulate getdvagent(3)

Manipulate file control database entry /endprfient, putprfinam: getprfient(3)
system default database entry /putprdfnam: Manipulate getprdfent(3)
printer control database entry /putprlpnam: Manipulate getprlpent(3)

protected password database entry /putprpwnam: Manipulate getprpwent(3)
terminal control database entry /putprtcnam: Manipulate getprtcent(3)

Closes the /etc/services file entry endservent: ... endservent(3)
execve, execlp, execvp: Executes/ environ, exec!, execv, execle, exec(2)

environ: User environment environ(5)
getenv: Returns the value of an environment variable ... getenv(3)

putenv: Sets an environment variable ... putenv(3)
clearenv: Clears the process environment .. clearenv(3)

environ: User environment .. environ(5)
feof: Tests EOF on a stream ... feof(3)

mrand48, jrand48,/ drand48, erand48, lrand48, nrand48, drand48(3)
complementary error functions erf, erfc: Computes the error and erf(3)

xxxi

OSF/1 Programmer's Reference

complementary error/ erf, erfc: Computes the error and erf(3)
erf, erfc: Computes the error and complementary error/ •••••••••••••.••••.•••••.•.• erf(3)

the error and complementary error functions /erfc: Computes erf(3)
t_rcvuderr: Receives a unit data error indication ... t_rcvuderr(3)

ferror: Tests the error indicator on a stream ferror(3)
t_error: Produces error message ... t_error(3)

a message explaining a function error perror: Writes ... perror(3)
another transport/ t_connect: Establishes a connection with ••••••••••••••••.••••.•••.••••• t_connect(3)

t_open: Establishes a transport endpoint t_open(3)
a per-process timer reltimer: Establishes timeout intervals of reltimer(3)

location of a program end, etext, edata: Defines the last end(5)
complex/ hypot, cabs: Computes Euclidean distance function and hypot(3)

t_look: Looks at the current event on a transport endpoint t_look(3)
audit records for authentication events authaudit: Produces authaudit(3)

sigpending: Examines pending signals sigpending(2)
with a loader exec_ with_loader: Executes a file exec_ with_loader(2)

execlp, execvp:/ environ, exec!, execv, execle, execve, exec(2)
Executes/ environ, exec!, execv, execle, execve, execlp, execvp: exec(2)

/exec!, execv, execle, execve, execlp, execvp: Executes a file exec(2)
exec_ with_loader: Executes a file with a loader •••.••.••••••••••••••.••••••••••• exec_ with_loader(2)

execle, execve, execlp, execvp: Executes a file /exec!, execv, exec(2)
system: Executes a shell command system(3)

the calling thread and optionally executes it /the cleanup stack of pthread_cleanup_pop(3)
raise: Sends a signal to the executing program ... raise(3)

Saves and restores the current execution context /longjmp: ••...•••..••.•.••..••...•••.•...• setjmp(3)
sleep: Suspends execution for an interval sleep(3)

ptrace: Traces the execution of a child process ptrace(2)
host rcmd: Allows execution of commands on a remote rcmd(3)

rexec: Allows command execution on a remote host rexec(3)
profil: Starts and stops execution profiling ... profil(2)

execvp: Executes/ environ, exec!, execv, execle, execve, execlp, exec(2)
a/ environ, exec!, execv, execle, execve, execlp, execvp: Executes exec(2)

execv, execle, execve, execlp, execvp: Executes a file /exec!, exec(2)
additional directory entry for an existing file on currentfile/ /an link(2)
functions for compatibility with existing programs /Provides libPW(3)

process exit, atexit, _exit: Terminates a exit(2)
exponential, logarithm, and/ exp, log, log!O, pow: Computes exp(3)

record expacct: Expands accounting expacct(3)
dn_find: Searches for an expanded domain name ... dn_find(3)

dn_expand: Expands a compressed domain name dn_expand(3)
expacct: Expands accounting record expacct(3)

I Advise the system of a process' expected paging behavior madvise(2)
t_rcv: Receives normal data or expedited data on a connection t_rcv(3)

t_snd: Sends normal data or expedited data over a connection t_snd(3)
perror: Writes a message explaining a function error perror(3)

exp, log, log IO, pow: Computes exponential, logarithm, and power/ exp(3)
points for NFS mount requests exports: Defines remote mount exports(4)

re_comp, re_exec: Handles regular expressions ... re_comp(3)
numbers/ floor, ceil, rint, fmod, fabs: Rounds floating-point floor(3)

Introduction to socket networking facilities networking: .. netintro(7)
inet: Internet Protocol family .. inet(7)

xxxii

Permuted Index

Xerox Network Systems protocol family ns: ... ns(7)
directory chdir, fchdir: Changes the current ••••••••••••••••••••••••••••••••••• chdir(2)

permissions chmod, fchmod: Changes file access ••••••••••••••••••••••••••••••••• chmod(2)
group IDs of a file chown, fchown: Changes the owner and chown(2)

a stream fclose, ffiush: Closes or flushes fclose(3)
file descriptors fcntl, dup, dup2: Controls open fcntl(2)

floating-point number to a/ ecvt, fcvt, gcvt: Converts a ... ecvt(3)
descriptors fd, stdin, stdout, stderr: File fd(7)

fopen, freopen, fdopen: Opens a stream ... fopen(3)
feof: Tests EOF on a stream feof(3)

on a stream ferror: Tests the error indicator ferror(3)
nextkey, forder:/ dbminit, fetch, store, delete, firstkey, dbm(3)

stream fclose, ffiush: Closes or flushes a fclose(3)
operations bcopy, bcmp, bzero, ffs: Performs bit and byte string bcopy(3)

character or word from an/ getc, fgetc, getchar, getw: Gets a getc(3)
file/ fseek, rewind, ftell, fgetpos, fsetpos: Repositions the fseek(3)

stream gets, fgets: Gets a string from a gets(3)
character or word from an/ getwc, fgetwc, getwchar: Gets a getwc(3)

stream getws, fgetws: Gets a string from a getws(3)
mknod: Creates an FIFO or special file .. mknod(2)

mkfifo: Creates a FIFO .. mkfifo(3)
times utime, utimes: Sets file access and modification utime(2)
chmod, fchmod: Changes file access permissions ... chmod(2)

Command Authorizations Definition file and database /Format of cmdauth(7)
descriptor close: Closes the file associated with a file close(2)

/putprfinam: Manipulate file control database entry getprfient(3)
Sets and gets the value of the file creation mask umask: umask(2)

fileno: Maps stream pointer to file descriptor .. fileno(3)
Closes the file associated with a file descriptor close: .. close(2)
fcntl, dup, dup2: Controls open file descriptors .. fcntl(2)

fd, stdin, stdout, stderr: File descriptors ... fd(7)
lockf: Controls open file descriptors .. Iockf(3)

Monitors conditions on multiple file descriptors poll: .. poll(2)
endutent, utmpname: Accesses utmp file entries /setutent, .. getutent(3)

getservent: Gets services file entry .. getservent(3)
setservent: Gets service file entry .. setservent(3)
Closes the /etc/services file entry endservent: ... endservent(3)

open, creat: Opens a file for reading or writing open(2)
/Finds the slot in the utmp file for the current user .. ttyslot(3)

translators OSF/ROSE: Object file format for output from OSF/1 OSF/ROSE(4)
ar: Archive (library) file format ... ar(4)

tar: Tape archive file format ... tar(4)
getfh: Gets a file handle ... getfh(2)

form/ /Converts an OSF/ROSE object file header from native, readable encode_mach_o_hdr(3)
pathconf, fpathconf: Retrieves file implementation/ ... pathconf(3)

/fstatilabel: Retrieve a file information label ... statilabel(3)
truncate, ftruncate: Changes file length .. truncate(2)

lseek: Moves read-write file offset ... Iseek(2)
/directory entry for an existing file on currentfile system Iink(2)

/a semaphore in a mapped file or shared memory region msem_init(3)
fgetpos, fsetpos: Repositions the file pointer of a stream /ftell, fseek(3)

xxxiii

OSF/1 Programmer's Reference

chpriv: Sets file privileges .. chpriv(3)
/fstatslabel: Retrieve a file sensitivity label .. statslabel(3)
memory mmap: Maps file system object into virtual mmap(2)

statfs, fstatfs, ustat: Gets file system statistics ... statfs(2)
Specifies the format of the file system volume fs, inode: fs(4)

mount: Mounts a file system ... mount(3)
umount: Unmounts a file system ... umount(3)

Gets information about a file system /setfsent, endfsent: getfsent(3)
Initializes a label mount of a file system !mount: .. lmount(3)

umount: Mounts or unmounts a file system mount, ... mount(2)
a directory or a file within a file system rename: Renames rename(2)

Enables or disables quotas on a file system setquota: .. setquota(2)
bier: Layout of file systems ... hier(S)

sync: Updates all file systems ... sync(2)
Gets list of all mounted file systems getfsstat: .. getfsstat(2)

fsync: Writes changes in a file to permanent storage fsync(2)
header from an OSF/ROSE object file to readable form /canonical decode_mach_o_hdr(3)

ftw: Walks a file tree .. ftw(3)
exec_with_loader: Executes a file with a loader .. exec_with_loader(2)

rename: Renames a directory or a file within a file system .. rename(2)
disktab: Disk description file ... disktab(4)

endnetent: Closes the networks file ... endnetent(3)
group: Group file ... group(4)

mknod: Creates an FIFO or special file ... mknod(2)
msync: Synchronizes a mapped file ... msync(2)

read, readv: Reads from a file ... read(2)
remove: Removes a file ... remove(3)

resolver: Resolver configuration file ... resolver(4)
rmdir: Removes a directory file ... rmdir(2)

tmpfile: Creates a temporary file ... tmpfile(3)
write, writev: Writes to a file ... write(2)

conversion, and collating input file /classification, case ... ctab(4)
execlp, execvp: Executes a file /execv, execle, execve, exec(2)

Determines the accessibility of a file access: .. access(2)
the access control list of a file chacl: Changes .. chacl(3)
the information label of a file chilabel: Changes .. chilabel(3)

the owner and group IDs of a file chown, fchown: Changes chown(2)
the sensitivity label of a file chslabel: Changes ... chslabel(3)

the format of the memory image file core: Specifies ... core(4)
Determines effective access to a file eaccess: .. eaccess(3)

Closes the /etc/protocols file endprotoent: .. endprotoent(3)
an advisory lock on an open file flock: Applies or removes flock(2)

sethostent: Opens network host file gethostent, ... gethostent(3)
entry from the /etc/protocols file getprotoent: Gets protocol getprotoent(3)

Opens and rewinds the networks file setnetent: ... setnetent(3)
and rewinds the /etc/protocols file setprotoent: Opens .. setprotoent(3)
Provides information about a file stat, fstat, !stat: .. stat(2)

the access control list of a file statacl: Retrieves ... statacl(3)
Stop further 1/0 to a special file stopio: .. stopio(3)
Makes a symbolic link to a file symlink: ... symlink(2)

the name for a temporary file tmpnam, tempnam: Constructs tmpnam(3)

xxxiv

Permuted Index

/the structure of the termios file, which provides the terminal/ termios(4)
/Gets directory entries in a file-systemindependent format getdirentries(2)

mkstemp: Constructs a unique filename mktemp, .. mktemp(3)
file descriptor fileno: Maps stream pointer to fileno(3)

passwd: Password files .. passwd(4)
for the current user ttyslot: Finds the slot in the utmp file ttyslot(3)

dbminit, fetch, store, delete, firstkey, nextkey, forder:/ dbm(3)
vector getopt: Gets flag letters from the argument getopt(3)

computes the Modulo Remainder and floating-point absolute value/ /or floor(3)
/Rounds floating-point numbers to floating-point integers, or/ floor(3)

ecvt, fcvt, gcvt: Converts a floating-point number to a/ ecvt(3)
ceil, rint, fmod, fabs: Rounds floating-point numbers to/ floor, floor(3)

frexp, ldexp, modf: Manipulates floating-point numbers .. frexp(3)
string to a double-precision floating-point value /a character atof(3)

advisory lock on an open file flock: Applies or removes an flock(2)
flockfile: Locks a stdio stream flockfile(3)

Rounds floating-point numbers to/ floor, ceil, rint, fmod, fabs: floor(3)
tcflow: Performs flow control functions .. tcflow(3)

fclose, ffiush: Closes or flushes a stream .. fclose(3)
data or nonread input/ tcflush: Flushes nontransmitted output tcflush(3)

/msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout,/ mp(3)
numbers to/ floor, ceil, rint, fmod, fabs: Rounds floating-point floor(3)

omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, itom:/ /min, mp(3)
stream fopen, freopen, fdopen: Opens a fopen(3)

/store, delete, firstkey, nextkey, forder: Database subroutines , dbm(3)
tcsetpgrp: Sets foreground process group ID tcsetpgrp(3)

process fork, vfork: Creates a new fork(2)
file header from native, readable form to canonical form /object encode_mach_o_hdr(3)

OSF/ROSE object file to readable form /canonical header from an decode_mach_o_hdr(3)
readable form to canonical form /file header from native, encode_mach_o_hdr(3)

OSF/ROSE: Object file format for output from OSF/11 OSF/ROSE(4)
Definition file and/ cmdauth: Format of Command Authorizations cmdauth(7)

dir: Format of directories ... dir(4)
attributes added to/ Inode: Format of the additional security inode(7)

fs, inode: Specifies the format of the file system volume fs(4)
core: Specifies the format of the memory image file core(4)

ar: Archive (library) file format .. ar(4)
tar: Tape archive file format ... , tar(4)

in a file-systemindependent format /Gets directory entries getdirentries(2)
for/ vprintf, vfprintf, vsprintf: Formats a varargs parameter list vprintf(3)
scanf, fscanf, sscanf: Converts formatted input ... scanf(3)

wsscanf: Converts formatted input ... wsscanf(3)
printf, fprintf, sprintf: Prints formatted output ... printf(3)

wsprintf: Prints formatted output ... wsprintf(3)
/Retrieves locale-dependent formatting parameters .. localeconv(3)

ROUTE: Kernel packet forwarding database ... route(?)
implementation/ pathconf, fpathconf: Retrieves file .. pathconf(3)

formatted output printf, fprintf, sprintf: Prints ... printf(3)
or a word to a/ putc, putchar, fputc, putw: Writes a character putc(3)

stream puts, fputs: Writes a string to a puts(3)
word to a/ putwc, putwchar, fputwc: Writes a character or a putwc(3)

xxxv

OSF/1 Programmer's Reference

stream putws, fputws: Writes a string to a putws(3)
input/output fread, fwrite: Performs ... fread(3)

mallinfo, alloca:/ malloc, free, realloc, calloc, mallopt, malloc(3)
t_free: Frees a library structure ... t_free(3)

rmtimer: Frees a per-process timer rmtimer(3)
fopen, freopen, fdopen: Opens a stream fopen(3)

floating-point numbers frexp, ldexp, modf: Manipulates frexp(3)
of the file system volume fs, inode: Specifies the format fs(4)

formatted input scanf, fscanf, sscanf: Converts ... scanf(3)
fsetpos: Repositions the file/ fseek, rewind, ftell, fgetpos, fseek(3)
fseek, rewind, ftell, fgetpos, fsetpos: Repositions the file/ , •• fseek(3)

information about a file stat, fstat, !stat: Provides .. stat(2)
statistics statfs, fstatfs, ustat: Gets file system •••.•.••••.••.•••••••••••••••••• statfs(2)

statilabel, lstatilabel, fstatilabel: Retrieve a file/ statilabel(3)
statslabel, lstatslabel, fstatslabel: Retrieve a file/ statslabel(3)
to permanent storage fsync: Writes changes in a file fsync(2)

Repositions the/ fseek, rewind, ftell, fgetpos, fsetpos: .. fseek(3)
time gettimeofday, settimeofday, ftime: Gets and sets date and gettimeofday(2)
interprocess communication key ftok: Generates a standard ftok(3)

truncate, ftruncate: Changes file length truncate(2)
ftw: Walks a file tree .. ftw(3)

/cabs: Computes Euclidean distance function and complex absolute/ hypot(3)
Writes a message explaining a function error perror: .. , ... perror(3)

interface to the sigprocmask function /a compatibility sigblock(2)
interface to the sigsuspend function /a compatibility sigpause(3)
interface to the sigaction() function /a compatibility sigvec(2)

the logarithm of the gamma function !gamma, gamma: Computes gamma(3)
/Workbench Library: Provides functions for compatibility with/ libPW(3)

clearance: Clearance functions ... clearance(3)
ilb: Information label functions ... ilb(3)

mand: Sensitivity label functions ... mand(3)
tcflow: Performs flow control functions ... tcflow(3)
and variables used by signal functions /Contains definitions signal(4)

and floating-point absolute value functions /the Modulo Remainder floor(3)
Access control list conversion functions acl: ... acl(3)
Computes inverse hyperbolic functions asinh, acosh, atanh: asinh(3)

the error and complementary error functions erf, erfc: Computes erf(3)
jn, yO, yl, yn: Computes Bessel functions jO,jl, .. bessel(3)

Allows signals to interrupt functions siginterrupt: ... siginterrupt(3)
cosh, tanh: Computes hyperbolic functions sinh, ... sinh0)

square root and cube root functions sqrt, cbrt: Computes sqrt(3)
exponential, logarithm, and power functions. /loglO, pow: Computes ••••••••••••••••••••..• exp(3)

and inverse trigonometric functions. /the trigonometric sin(3)
stream funlockfile: Unlocks a stdio .•.••••••••.•••••.•••••••••••••••• funlockfile(3)

stopio: Stop further 1/0 to a special file stopio(3)
fread, fwrite: Performs input/output •.••••••••• ,."" fread(3)

Computes the logarithm of the gamma function !gamma, gamma: gamma(3)
the gamma function !gamma, gamma: Computes the logarithm of gamma(3)
madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp,/ , mp(3)
number to a string ecvt, fcvt, gcvt: Converts a floating-point ecvt(3)

calling/ /Enables or disables the general cancelability of the pthread_setcancel(3)

xxxvi

Permuted Index

tty: General terminal interface ••••••••••••••••••••.••••••••••••••. tty(7)
randomword: Generate random passwords randomword(3)

srandom, initstate, setstate: Generates "better"/ random, random(3)
end the current process abort: Generates a software signal to abort(3)

communication key ftok: Generates a standard interprocess ftok(3)
rand, rand_r, srand: Generates pseudo-random numbers rand(3)

controlling terminal cterrnid: Generates the pathname for the ctermid(3)
/srand48, seed48, lcong48: Generates uniformly distributed/ drand48(3)

about system address space/ getaddressconf: Gets information getaddressconf(2)
a character or word from an/ getc, fgetc, getchar, getw: Gets getc(3)
or word from an/ getc, fgetc, getchar, getw: Gets a character getc(3)

system-wide clock getclock: Gets current value of getclock(3)
process's sensitivity/ getslabel, getclrnce: Gets the current getslabel(3)

current directory getcwd: Gets the pathname of the getcwd(3)
entries in a/ getdirentries: Gets directory getdirentries(2)

description using a disk name getdiskbyname: Gets disk getdiskbyname(3)
descriptor table size getdtablesize: Gets the ... getdtablesize(2)

setdvagent, enddvagent,/ getdvagent, getdvagnam, getdvagent(3)
enddvagent,/ getdvagent, getdvagnam, setdvagent, getdvagent(3)

IDs getgid, getegid: Gets the process group getgid(2)
environment variable getenv: Returns the value of an getenv(3)

or effective user ID getuid, geteuid: Gets the process' real getuid(2)
getfh: Gets a file handle ... getfh(2)

getfstype, setfsent, endfsent:/ getfsent, getfsspec, getfsfile, getfsent(3)
endfsent:/ getfsent, getfsspec, getfsfile, getfstype, setfsent, getfsent(3)

setfsent, endfsent:/ getfsent, getfsspec, getfsfile, getfstype, getfsent(3)
mounted file systems getfsstat: Gets list of all ... getfsstat(2)

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent:/ getfsent(3)
group IDs getgid, getegid: Gets the process getgid(2)

setgrent, endgreht: Accesses the/ getgrent, getgrgid, getgrnam, getgrent(3)
endgrent: Accesses the/ getgrent, getgrgid, getgrnam, setgrent, getgrent(3)
Accesses the/ getgrent, getgrgid, getgrnam, setgrent, endgrent: getgrent(3)

group set of the current process getgroups: Gets the supplementary getgroups(2)
entry by address gethostbyaddr: Gets network host gethostbyaddr(3)

entry by name gethostbyname: Gets network host gethostbyname(3)
network host file gethostent, sethostent: Opens gethostent(3)

identifier of the current host gethostid: Gets the unique gethostid(2)
local host gethostname: Gets the name of the gethostname(2)

process's information label getilabel: Gets the current getilabel(3)
value of interval/ setitimer, getitimer: Sets or returns the getitimer(2)

Gets and sets login name getlogin, getlogin_r, setlogin: getlogin(2)
sets login name getlogin, getlogin_r, setlogin: Gets and getlogin(2)

getluid: Gets login user ID getluid(3)
by address getnetbyaddr: Gets network entry getnetbyaddr(3)

by name getnetbyname: Gets network entry getnetbyname(3)
getnetent: Gets network entry getnetent(3)

the argument vector getopt: Gets flag letters from getopt(3)
size getpagesize: Gets the system page getpagesize(2)

getpass: Reads a password getpass(3)
peer socket getpeername: Gets the name of the getpeername(2)

process ID, process/ getpid, getpgrp, getppid: Gets the getpid(2)

xxxvii

OSF/1 Programmer's Reference

the process ID, process group/ getpid, getpgrp, getppid: Gets getpid(2)
process group/ getpid, getpgrp, getppid: Gets the process ID, getpid(2)

setprdfent, endprdfent,/ getprdfent, getprdfnam, ••••••••••.•••••••••••••••••••••••••••••• getprdfent(3)
endprdfent,/ getprdfent, getprdfnam, setprdfent, .. getprdfent(3)

setprfient, endprfient,/ getprfient, getprfinam, ... getprfient(3)
endprfient,/ getprfient, getprfinam, setprfient, .. getprfient(3)

sets process scheduling priority getpriority, setpriority: Gets or getpriority(2)
authorization sets associated/ getpriv: Gets privilege or getpriv(3)

setprlpent, endprlpent,/ getprlpent, getprlpnam, ; getprlpent(3)
endprlpent,/ getprlpent, getprlpnam, setprlpent, .. getprlpent(3)
entry by protocol name getprotobyname: Gets protocol getprotobyname(3)

entry by number getprotobynumber: Gets a protocol getprotobynumber(3)
from the /etc/protocols file getprotoent: Gets protocol entry getprotoent(3)
getprpwnam, setprpwent,/ getprpwent, getprpwuid, ; ••••••••.•••••••••••• getprpwent(3)

getprpwent, getprpwuid, getprpwnam, setprpwent,/ getprpwent(3)
setprpwent,/ getprpwent, getprpwuid, getprpwnam, getprpwent(3)

setprtcent, endprtcent,/ getprtcent, getprtcnam, .. getprtcent(3)
endprtcent,/ getprtcent, getprtcnam, setprtcent, .. getprtcent(3)

putpwent, setpwent, endpwent:/ getpwent, getpwuid, getpwnam, getpwent(3)
endpwent:/ getpwent, getpwuid, getpwnam, putpwent, setpwent, getpwent(3)
setpwent, endpwent:/ getpwent, getpwuid, getpwnam, putpwent, getpwent(3)

maximum system resource/ getrlimit, setrlimit: Controls getrlimit(2)
information about resource/ getrusage, vtimes: Gets ... getrusage(2)

unlocked_getc, unlocked_getchar: Gets a character from an input/ unlocked_getc(3)
input/ getwc, fgetwc, getwchar: Gets a character or word from an getwc(3)

getc, fgetc, getchar, getw: Gets a character or word from an/ getc(3)
getfh: Gets a file handle .. getfh(2)

getprotobynumber: Gets a protocol entry by number •••.•••••••••••.••.••••••• getprotobynumber(3)
gets, fgets: Gets a string from a stream gets(3)

getws, fgetws: Gets a string from a stream getws(3)
/settimeofday, ftime: Gets and sets date and time gettimeofday(2)

getlogin, getlogin_r, setlogin: Gets and sets login name getlogin(2)
variables sysconf: Gets configurable system sysconf(3)

getwd: Gets current directory pathname getwd(3)
clock getclock: Gets current value of system-wide getclock(3)

gettimer: Gets date and time ... gettimer(3)
getdirentries: Gets directory entries in a/ getdirentries(2)

disk name getdiskbyname: Gets disk description using a getdiskbyname(3)
statfs, fstatfs, ustat: Gets file system statistics statfs(2)

argument vector getopt: Gets flag letters from the getopt(3)
/getfstype, setfsent, endfsent: Gets information about a file/ getfsent(3)
utilization getrusage, vtimes: Gets information about resource getrusage(2)

address space/ getaddressconf: Gets information about system getaddressconf(2)
terminal cfgetispeed: Gets input baud rate for a cfgetispeed(3)

systems getfsstat: Gets list of all mounted file ; getfsstat(2)
getluid: Gets login user ID .. getluid(3)

/setusershell, endusershell: Gets names of legal user shells getusershell(3)
getnetbyaddr: Gets network entry by address getnetbyaddr(3)

getnetbyname: Gets network entry by name getnetbyname(3)
getnetent: Gets network entry ... getnetent(3)

gethostbyname: Gets network host entry by name gethostbyname(3)

xxxviii

Permuted Index

address gethostbyaddr: Gets network host entry by gethostbyaddr(3)
identity: Gets or checks user or group IDs identity(3)

getpriority, setpriority: Gets or sets process scheduling/ getpriority(2)
terminal cfgetospeed: Gets output baud rate for a cfgetospeed(3)

sets associated with/ getpriv: Gets privilege or authorization getpriv(3)
times times: Gets process and child process times(3)

name getprotobyname: Gets protocol entry by protocol getprotobyname(3)
/etc/protocols file getprotoent: Gets protocol entry from the getprotoent(3)

information t_getinfo: Gets protocol-specific .. t_getinfo(3)
getservbyport: Gets service entry by port getservbyport(3)

setservent: Gets service file entry .. setservent(3)
getservent: Gets services file entry .. getservent(3)

sigstack: Sets and gets signal stack context .. sigstack(2)
getsockopt: Gets socket options .. getsockopt(2)

associated with the/ cuserid: Gets the alphanumeric usemame cuserid(3)
information label getilabel: Gets the current process's getilabel(3)

getslabel, getclmce: Gets the current process's/ getslabel(3)
transport provider t_getstate: Gets the current state of the t_getstate(3)

getdtablesize: Gets the descriptor table size getdtablesize(2)
ttyname, isatty: Gets the name of a terminal ttyname(3)
system uname: Gets the name of the current uname(2)

gethostname: Gets the name of the local host gethostname(2)
getpeemame: Gets the name of the peer socket getpeemame(2)

with the terminal tcgetattr: Gets the parameters associated tcgetattr(3)
directory getcwd: Gets the pathname of the current getcwd(3)

getgid, getegid: Gets the process group IDs getgid(2)
group/ getpid, getpgrp, getppid: Gets the process ID, process getpid(2)

effective user/ getuid, geteuid: Gets the process' real or .. getuid(2)
getsockname: Gets the socket name ... getsockname(2)

of the current/ getgroups: Gets the supplementary group set, getgroups(2)
getpagesize: Gets the system page size getpagesize(2)

current host gethostid: Gets the unique identifier of the gethostid(2)
creation mask umask: Sets and gets the value of the file ... umask(2)

time: Gets time ... time(3)
ulimit: Sets and gets user limits ... ulimit(3)

stream gets, fgets: Gets a string from a gets(3)
by name getservbyname: Get service entry getservbyname(3)

by port getservbyport: Gets service entry getservbyport(3)
entry getservent: Gets services file getservent(3)

tcgetpgrp: Getsforeground process group ID tcgetpgrp(3)
current process's sensitivity/ getslabel, getclmce: Gets the getslabel(3)

getsockname: Gets the socket name getsockname(2)
getsockopt: Gets socket options getsockopt(2)

ftime: Gets and sets date and/ gettimeofday, settimeofday, gettimeofday(2)
gettimer: Gets date and time gettimer(3)

process' real or effective user/ getuid, geteuid: Gets the .. getuid(2)
endusershell: Gets names of/ getusershell, setusershell, getusershell(3)
pututline, setutent, endutent,/ getutent, getutid, getutline, getutent(3)
setutent, endutent,/ getutent, getutid, getutline, pututline, getutent(3)
endutent,/ getutent, getutid, getutline, pututline, setutent, getutent(3)

from an/ getc, fgetc, getchar, getw: Gets a character or word getc(3)

xxxix

OSF/1 Programmer's Reference

character or word from an input/ getwc, fgetwc, getwchar: Gets a getwc(3)
word from an/ getwc, fgetwc, getwchar: Gets a character or getwc(3)

pathname getwd: Gets current directory getwd(3)
a stream getws, fgetws: Gets a string from getws(3)

/ctime, ctime_r, diffiime, gmtime, gmtime_r, localtime,/ ctime(3)
/ctime, ctime_r, diffiime, gmtime, gmtime_r, localtime, localtime_r,/ ctime(3)

siglongjmp: Nonlocal goto with signal handling siglongjmp(3)
Sets jump point for a nonlocal goto sigsetjmp: .. sigsetjmp(3)

group/ /pw_idtoname, gr_nametoid, gr_idtoname: Map between userand pw_mapping(3)
pw_nametoid, pw_idtoname, gr_nametoid, gr_idtoname: Map/ pw_mapping(3)

setgroups: Sets the group access list ... setgroups(2)
group: Group file .. group(4)

setgid: Sets the group ID .. setgid(2)
setsid: Sets the process group ID .. setsid(2)

tcgetpgrp: Getsforeground process group ID .. tcgetpgrp(3)
setpgrp: Sets the process group ID setpgid, ... setpgid(2)

Sets the real and effective group ID setregid: ... setregid(2)
Sets foreground process group ID tcsetpgrp: ... tcsetpgrp(3)

/Gets the process ID, process group ID, parent process ID getpid(2)
fchown: Changes the owner and group IDs of a file chown, chown(2)
getgid, getegid: Gets the process group IDs .. getgid(2)

identity: Gets or checks user or group IDs .. identity(3)
setegid: Sets the process group IDs setrgid, .. setrgid(3)

/endgrent: Accesses the basic group information in the user/ getgrent(3)
gr_idtoname: Map between userand group names and IDs /gr_nametoid, pw_mapping(3)

a signal to a process or to a group of processes kill: Sends kill(2)
getgroups: Gets the supplementary group set of the current process getgroups(2)

Initializes concurrent group set initgroups: ... initgroups(3)
/Map a protected subsystem group to its name .. subsys_real_name(3)

group: Group file .. group(4)
reboot: Reboots system or halts processor .. reboot(2)

getfh: Gets a file handle .. getfh(2)
parameter list varargs: Handles a variable-length varargs(3)

re_comp, re_exec: Handles regular expressions re_comp(3)
Nonlocal goto with signal handling siglongjmp: .. siglongjmp(3)

hcreate, hdestroy: Manages hash tables hsearch, ... hsearch(3)
tables hsearch, hcreate, hdestroy: Manages hash hsearch(3)

hsearch, hcreate, hdestroy: Manages hash tables hsearch(3)
file to/ /Converts the canonical header from an OSF/ROSE object decode_mach_o_hdr(3)

/Converts an OSF/ROSE object file header from native, readable form/ encode_mach_o_hdr(3)
character sets ascii: Octal, hexadecimal, and decimal ASCII ascii(5)

hier: Layout of file systems hier(5)
/Internet address integer into its host (local) address component inet_lnaof(3)

/an Internet address and host addressinto an Internet/ inet_makeaddr(3)
Ends retrieval of network host entries endhostent: .. endhostent(3)

gethostbyaddr: Gets network host entry by address ... gethostbyaddr(3)
gethostbyname: Gets network host entry by name ... gethostbyname(3)

sethostent: Opens network host file gethostent, ... gethostent(3)
unique identifier of the current host gethostid: Gets the ... gethostid(2)

Gets the name of the local host gethostname: .. gethostname(2)
execution of commands on a remote host rcmd: Allows ... rcmd(3)

xi

Permuted Index

command execution on a remote host rexec: Allows ... rexec(3)
unique identifier of the current host sethostid: Sets the .. sethostid(2)

Sets the name of the current host sethostname: .. sethostname(2)
/short (16-bit) integer from host-byte order to a 2-byte/ htons(3)
/long (32-bit) integer from host-byte order to Internet/ htonl(3)

Internet network-byte order to host-byte order /integer from ntohl(3)
Internet network-byte order to host-byte order /integer from ntohs(3)

hostname: Hostname resolution description hostname(5)
description hostname: Hostname resolution hostname(5)

Manages hash tables hsearch, hcreate, hdestroy: hsearch(3)
(32-bit) integer from host-byte/ htonl: Converts an unsigned long htonl(3)

short (16-bit) integer from/ htons: Converts an unsigned htons(3)
sinh, cosh, tanh: Computes hyperbolic functions .. sinh(3)

acosh, atanh: Computes inverse hyperbolic functions asinh, asinh(3)
distance function and complex/ hypot, cabs: Computes Euclidean hypot(3)

security attributes added to i-nodes /Format of the additional inode(7)
select: Synchronous UO multiplexing ... select(2)

Creates a local NFS asynchronous UO server async_daemon: async_daemon(2)
stopio: Stop further I/O to a special file ... stopio(3)

Protocol icmp: Internet Control Message icmp(7)
(and possibly creates) the ID for a message queue /Returns msgget(2)
/Returns the next module ID for a process .. ldr_next_module(3)

/(and possibly creates) the ID for a shared memory region shmget(2)
pthread_self: Returns the ID of the calling thread .. pthread_self(3)

getluid: Gets login user ID .. getluid(3)
setgid: Sets the group ID .. setgid(2)

setluid: Sets login user ID .. setluid(3)
setsid: Sets the process group ID .. setsid(2)

setuid: Sets the user ID .. setuid(2)
process group ID, parent process ID /getppid: Gets the process ID, getpid(2)

process and returns the module ID /Loads a module in another ldr_xload(3)
process' real or effective user ID getuid, geteuid: Gets the getuid(2)

a module and returns the module ID load: Loads ... load(3)
possibly creates) a semaphore ID semget: Returns (and - semget(2)

setpgrp: Sets the process group ID setpgid, .. setpgid(2)
Sets the real and effective group ID setregid: .. setregid(2)

Getsforeground process group ID tcgetpgrp: .. tcgetpgrp(3)
Sets foreground process group ID tcsetpgrp: .. tcsetpgrp(3)

Sets real and effective user ID's setreuid: ... setreuid(2)
the process ID, process group ID, parent process ID /Gets getpid(2)

/getppid: Gets the process ID, process group ID, parent/ getpid(2)
gethostid: Gets the unique identifier of the current host gethostid(2)
sethostid: Sets the unique identifier of the current host sethostid(2)

Compares two thread identifiers pthread_equal: pthread_equal(3)
group IDs identity: Gets or checks user or identity(3)

Protocol idp: Xerox Internet Datagram idp(7)
Changes the owner and group IDs of a file chown, fchown: chown(2)

between userand group names and IDs /gr_idtoname: Map ... pw_mapping(3)
getegid: Gets the process group IDs getgid, .. getgid(2)

Gets or checks user or group IDs identity: ... identity(3)
setegid: Sets the process group IDs setrgid, ... setrgid(3)

xii

OSF/1 Programmer's Reference

seteuid: Sets the process user IDs setruid, .. setruid(3)
ilb: Information label functions ilb(3)

the format of the memory image file core: Specifies core(4)
/fpathconf: Retrieves file implementation characteristics pathconf(3)
and limits the backlog of incoming connections /connections listen(2)

routines disk: Security independent disk inode access disk(3)
receipt of an orderly release indication /Acknowledges t_rcvre1(3)

Receives a unit data error indication t_rcvuderr: '" t_rcvuderr(3)
ferror: Tests the error indicator on a stream ... ferror(3)

clearerr: Clears indicators on a stream .. clearerr(3)
inet: Internet Protocol family inet(7)

Internet network address string/ inet_addr: Translates an .. inet_addr(3)
Internet address integer into/ inet_lnaof: Translates an inet_lnaof(3)

Internet address and host/ inet_makeaddr: Translates an inet_makeaddr(3)
Internet address integer into/ inet_netof: Translates an inet_netof(3)

Internet dot-formatted address/ inet_network: Translates an inet_network(3)
Internet integer address into a/ inet_ntoa: Translates an .. inet_ntoa(3)

/setfsent, endfsent: Gets information about a file system getfsent(3)
stat, fstat, !stat: Provides information about a file ... stat(2)

ldr_inq_module: Returns information about a loaded module ldr_inq_module(3)
ldr_inq_region: Returns module information about a region in a/ Jdr_inq_region(3)

getrusage, vtimes: Gets information about resource/ getrusage(2)
space/ getaddressconf: Gets information about system address getaddressconf(2)

/Accesses the basic group information in the user database getgrent(3)
/endpwent: Accesses the basic user information in the user database getpwent(3)

ilb: Information label functions ilb(3)
chilabel: Changes the information label of a file chilabel(3)

fstatilabel: Retrieve a file information label /lstatilabel, statilabel(3)
Gets the current process's information label getilabel: getilabel(3)
Sets the current process's information label setilabel: setilabe1(3)

Mandatory access control and information labeling macilb: macilb(4)
/shm_chilabel:Manipulates information labels on/ .. ipc_ilabel(3)

nl_langinfo: Language information ... nl_langinfo(3)
t_getinfo: Gets protocol-specific information ... t_getinfo(3)

t_rcvdis: Retrieves disconnect information ... t_rcvdis(3)
concurrent group set initgroups: Initializes ... initgroups(3)

pthread_once: Calls an initialization routine .. pthread_once(3)
file system !mount: Initializes a label mount of a lmount(3)

mapped file or shared/ msem_init: Initializes a semaphore in a msem_init(3)
initgroups: Initializes concurrent group set initgroups(3)

popen: Initiates a pipe to a process popen(3)
orderly release t_sndrel: Initiates an endpoint connect t_sndrel(3)

pthread_cancel: Initiates termination of a thread pthread_cancel(3)
disk: Security independent disk in ode access routines ... disk(3)

security attributes added to/ !node: Format of the additional inode(7)
the file system volume fs, inode: Specifies the format of fs(4)

cfgetispeed: Gets input baud rate for a terminal cfgetispeed(3)
cfsetispeed: Sets input baud rate for a terminal cfsetispeed(3)

output data or nonread input data /non transmitted tcflush(3)
case conversion, and collating input file /classification, .. ctab(4)

Gets a character or word from an input stream /fgetwc, getwchar: getwc(3)

xiii

Permuted Index

Gets a character or word from an input stream /getchar, getw: getc(3)
Gets a character from an input stream /unlocked_getchar: unlocked_getc(3)

Pushes a character back into input stream ungetc, ungetwc: ungetc(3)
wsscanf: Converts formatted input .. wsscanf(3)

sscanf: Converts formatted input scanf, fscanf, .. scanf(3)
fread, fwrite: Performs input/output .. fread(3)

a queue insque, remque: Inserts or removes an element in insque(3)
assert: Inserts program diagnostics assert(3)

removes an element in a queue insque, remque: Inserts or insque(3)
known/ ldr_remove: Removes an installed module from the private ldr_remove(3)

process' private/ ldr_install: Installs a module in the current ldr_install(3)
scheduler to run another thread instead of the current one /the pthread_yield(3)

!Translates an Internet integer address into a/ .. inet_ntoa(3)
itom: Performs multiple precision integer arithmetic /m_out, sdiv, mp(3)

character string to the specified integer data type /Converts a atoi(3)
/an unsigned short (16-bit) integer from host-byte order to a/ htons(3)
/an unsigned long (32-bit) integer from host-byte order to/ htonl(3)
an unsigned long (32-bit) integer from Internet/ /Converts ntohl(3)
an unsigned short (16-bit) integer from Internet/ /Converts ..••••..•••....•••.•.•.... ntohs(3)

!Translates an Internet address integer into its host (local)/ inet_lnaof(3)
!Translates an Internet address integer into its network address/ inet_netof(3)

an Internet byte-ordered address integer /and host addressinto inet_makeaddr(3)
string to a network address integer /dot-formatted address inet_network(3)

to a 2-byte Internet network integer /fr()m host-byte order htons(3)
string to an Internet address integer /Interl!et network address inet_addr(3)

absolute value and division of integers /labs, !div: Computes abs(3)
/numbers to floating-point integers, or computes the Modulo/ floor(3)

packets/ nsip: Software network interface encapsulating NS nsip(7)
/file, which provides the terminal interface for POSIX compatibility termios(4)
sigvec: Provides a compatibility interface to the sigaction()/ sigvec(2)

/Provides a compatibility interface to the sigprocmask/ sigblock(2)
/Provides a compatibility interface to the sigsuspend/ sigpause(3)

lo: Software loopback network interface .. lo(7)
tty: General terminal interface .. tty(7)

Volume Manager (LVM) programming interface lvm: Logical ... lvm(7)
/sigignore: Compatibility interfaces for signal management sigset(3)

swapon: Adds a swap device for interleaved paging and swapping swapon(2)
inet_makeaddr: Translates an Internet address and host/ inet_makeaddr(3)
host/ inet_lnaof: Translates an Internet address integer into its inet_lnaof(3)

inet_netof: Translates an Internet address integer into its/ inet_netof(3)
/network address string to an Internet address integer ... inet_addr(3)

for a default domain name and Internet address /Searches res_init(3)
/address and host addressinto an Internet byte-ordered address/ inet_makeaddr(3)

icmp: Internet Control Message Protocol icmp(7)
idp: Xerox Internet Datagram Protocol idp(7)

inet_network: Translates an Internet dot-formatted address/ inet_network(3)
inet_ntoa: Translates an Internet integer address into a/ inet_ntoa(3)

to an/ inet_addr: Translates an Internet network address string inet_addr(3)
from host-byte order to a 2-byte Internet network integer /integer htons(3)

/long (32-bit) integer from Internet network-byte order to/ ntohl(3)
/short (16-bit) integer from Internet network-byte order to/ ntohs(3)

xii ii

OSF/1 Programmer's Reference

/integer from host-byte order to Internet network-byte order htonl(3)
inet: Internet Protocol family •••••.•••••.••••••••••.••••••••••••••••• inet(7)

ip: Internet Protocol .. ip(7)
protocol tcp: Internet transmission control tcp(7)
(UDP) udp: Internet user datagram protocol udp(7)

pipe: Creates an interprocess channel .. pipe(2)
ftok: Generates a standard interprocess communication key ftok(3)

objects /access control lists on interprocess communication ipc_acl(3)
objects /information labels on interprocess communication ipc_ilabel(3)

objects /sensitivity labels on interprocess communication ipc_slabel(3)
siginterrupt: Allows signals to interrupt functions .. siginterrupt(3)

Sets or returns the value of interval timers /getitimer: getitimer(2)
Sets or changes the timeout of interval timers alarm, ualarin: alarm(3)

sleep: Suspends execution for an interval .. sleep(3)
usleep: Suspendsexecution for an interval .. usleep(3)

reltimer: Establishes timeout intervals of a per-process timer reltimer(3)
facilities networking: Introduction to socket networking netintro(7)

asinh, acosh, atanh: Computes inverse hyperbolic functions asinh(3)
/Computes the trigonometric and inverse trigonometric functions sin(3)

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move,/ mp(3)
ioctl: Controls devices ... ioct1(2)

encapsulating NS packets in IP packets /network interface nsip(7)
ip: Internet Protocol ... ip(7)

/islower, isdigit, isxdigit, isalnum, isspace, ispunct,/ ctype(3)
isdigit, isxdigit, isalnum,/ isalpha, isupper, islower, ctype(3)

/isprint, isgraph, iscntrl, isascii: Classifies characters ctype(3)
terminal ttyname, isatty: Gets the name of a ttyname(3)

/ispunct, isprint, isgraph, iscntrl, isascii: Classifies/ ctype(3)
isalpha, isupper, islower, isdigit, isxdigit, isalnum,/ ctype(3)
/isspace, ispunct, isprint, isgraph, iscntrl, isascii:/ ... ctype(3)

isjalpha, isjdigit, isjxdigit, isjalnum, isjspace, isjpunct:/ jctype(3)
isjalnum, isjspace, isjpunct:/ isjalpha, isjdigit, isjxdigit, jctype(3)
isjspace, isjpunct:/ isjalpha, isjdigit, isjxdigit, isjalnum, jctype(3)
/isjxdigit, isjalnum, isjspace, isjpunct: Classifies characters jctype(3)
/isjdigit, isjxdigit, isjalnum, isjspace, isjpunct: Classifies/ jctype(3)
isjpunct:/ isjalpha, isjdigit, isjxdigit, isjalnum, isjspace, jctype(3)
isalnum,/ isalpha, isupper, islower, isdigit, isxdigit, .. ctype(3)

directory is multilevel ismultdir: Checks to see if a ismultdir(3)
Number) isnan: Tests for NaN (Not a isnan(3)

/isalnum, isspace, ispunct, isprint, isgr!iJ?h, iscntrl,/ ... ctype(3)
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph,/ ctype(3)
/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/ ctype(3)

isxdigit, isalnum,/ isalpha, is upper, islower, isdigit, .. ctype(3)
/isupper, islower, isdigit, isxdigit, isalnum, isspace,/ ctype(3)

/mout, omout, fmout, m_out, sdiv, itom: Petforms multiple precision/ mp(3)
Bessel functions jO,jl,jn, yO, yl, yn: Computes bessel(3)

Bessel functions jO, jl,jn, yO, yl, yn: Computes bessel(3)
functions jO,jl, jn, yO, yl, yn: Computes Bessel bessel(3)

/lrand48, nrand48, mrand48, jrand48, srand48, seed48,/ drand48(3)
sigsetjmp: Sets jump point for a nonlocal goto sigsetjmp(3)

privileges setpriv: Sets kernel authorizations and setpriv(3)

xliv

Permuted Index

privilege sets for/ statpriv: Get kernel authorizations or _ statpriv(3)
ROUTE: Kernel packet forwarding database ... _, route(?)

pthread_keycreate: Creates a key to be used with/ ·-·-·-··-···· pthread_keycreate(3)
interprocess communication key ftok: Generates a standard ftok(3)
Returns the value .bound to a key pthread_getspeci fie: , ___ .. , pthread_getspeci fic(3)

a thread-speci fie value to a key pthread_setspeci fie: Binds pthread_setspeci fic(3)
or to a group of processes kill: Sends a signal to a process _. .. kill(2)

installed module from the private known package table /Removes an ldr_remove(3)
in the current process' private known packagetable /a module ldr_install(3)

the current process's sensitivity label andclearance /Gets - - getslabel(3)
ilb: Information label functions - ,_ ilb(3)

mand: Sensitivity label functions - mand(3)
!mount: Initializes a label mount of a file system Jmount(3)

chilabel: Changes the information label of a file: - chilabel(3)
chslabel: Changes the sensitivity label of a file _ chslabel(3)

the current process's sensitivity label orcleatance /Sets .. setslabel(3)
disklabel: Disk pack label ... disklabel(4)

Retrieve a file information label /lstatilahel, fstatilabel: statilabel(3)
Retrieve a file sensitivity label /lstatslabel, fstatslabel: statslabel(3)

the current process's information label getilabel: Gets .. getilabel(3)
the current process's information label setilabel: Sets ... setilabel(3)

access control and information labeling macilb: Mandatory ; ••••••• macilb(4)
communication/ /information labels on interprocess .. ipc_ilabe1(3)

communication/ /sensitivity labels on interprocess .. ipc_siabel(3)
value and division of/ abs, div, labs, !div: Computes absolute •••••••••••••••••• ; abs(3)

nl_langinfo: Lahguage information ... nl_langinfo(3)
hier: Layout of file systems .. hier(5)

/jrand48, srand48, seed48, icong48: Generates uniformly/ drand48(3)
floating-point numbers frexp, ldexp, modf: Manipulates frexp(3)

division of/ abs, div, Jabs, !div: Computes absolute value and abs(3)
point for a loaded module ldr_entry: Returns the entry - ldr_entry(3)

information about a loaded/ ldr_inq_module: Returns .. , ldr_inq_module(3)
information about a region in a/ ldr_inq_region: Returns module Jdr_inq_region(3)

the current process' private/ ldr_install: Installs a module in ldr_install(3)
address of a symbol name in a/ ldr_lookup_package: Returns the ldr_lookup_package(3)

module ID for a process ldr_next_module: Returns the next Jdr_next_module(3)
module from the private known/ ldr_remove: Removes an installed ldr_remove(3)

process to permit/ ldr_xattach : Attaches to another - ldr_xattach(3)
attached process ldr_xdetach: Detaches from an ldr_xdetach(3)

point for a module loaded in/ ldr_xentry: Returns the entry ldr_xentry(3)
another process and returns the/ ldr_xload: Loads a module in ldr_xload(3)

address of a symbolname within a/ ldr_xlookup_package: Returns the ldr_xlookup_package(3)
previously loaded in another/ ldr_xunload: Unloads a module ldr_xunload(3)

endusershell: Gets names of legal user shells /setusershell, getusershell(3)
character mblen: Determines the length in bytes of a multibyte mblen(3)
truncate, ftruncate: Changes file length .. truncate(2)
Determines minimum password length passlen: ... passlen(3)

getopt: Gets flag letters from the argument vector getopt(3)
and update !search, !find: Performs a linear search lsearch(3)

loga.""ithm of the gamma function !gamma, gamma: Computes the gamma(3)
t_alloc: Allocates a library structure .. t_alloc(3)

xiv

OSF/1 Programmer's Reference

xlvi

t_free: Frees a
t_sync: Synchronizes transport

and windowing curses
Programmers Workbench

/for socket connections and
ulimit: Sets and gets user

on an asynchronous serial data
!search, !find: Performs a

symlink: Makes a symbolic
Reads the value of a symbolic
directory entry for an existing/

acl: Access control
databases acl: Access control

Formats a varargs parameter
chacl: Changes the access control

Retrieves the access control
getfsstat: Gets

setgroups: Sets the group access
a variable-length parameter
connections and limits the/

t_listen:
and limits the backlog/ listen:

communication/ /access control
of a file system

interface
the module ID

/the entry point for a module
/Unloads a module previously
unload: Unloads a previously

information about a region in a
Returns the entry point for a
Returns information about a

Executes a file with a
Ito another process to permit

module ID load:
and returns the/ ldr_xload:

gethostname: Gets the name of the
async_daemon: Creates a

case conversion, and/ ctab:
en:

/the program's entire current
/localeconv _r: Retrieves

Retrieves locale-dependent/
locale-dependent/ localeconv,

/difftime, gmtime, gmtime_r,
/gmtime, gmtime_r, localtime,

etext, edata: Defines the last
rrries once to

Applies or removes an advisory
descriptors

tod: Check time-of-day

library structure .. t_free(3)
library .. t_sync(3)
Library: Controls cursor movement curses(3)
Library: Provides functions for/ libPW(3)
limits the backlog of incoming/ , ••••• listen(2)
limits ... ulimit(3)
line tcsendbreak: Sends a break , tcsendbreak(3)
linear search and update .. lsearch(3)
link to a file ... symlink(2)
link readlink: ... readlink(2)
link: Creates an additional link(2)
list conversion functions ••••.••••••.••••••••••••••••••••••••••• acl(3)
list discretionary policy ... acl(4)
list for output /vsprintf: ... vprintf(3)
list of a file .. chacl(3)
list of a file statacl: .. statac1(3)
list of all mounted file systems getfsstat(2)
list .. setgroups(2)
list varargs: Handles .. varargs(3)
listen: Listens for socket .. listen(2)
Listens for a connect request t_listen(3)
Listens for socket connections m••········· listen(2)
lists on interprocess ; ipc_ac1(3)
!mount: Initializes a label mount lmount(3)
lo: Software loopback network lo(7)
load: Loads a module and returns load(3)
loaded in another process ; •••• ; ldr_xentry(3)
loaded in another process ldr_xunload(3)
loaded module .. unload(3)
loaded module /Returns module !dr_inq_region(3)
loaded module ldr_entry: ldr_entry(3)
loaded module ldr_inq_module: ldr_inq_module(3)
loader exec_with_loader: exec_with_loader(2)
loading/unloading of modulesin/ ldr_xattach(3)
Loads a module and returns the ; load(3)
Loads a module in another process ldr_xload(3)
local host ; .. gethostname(2)
local NFS asynchronous 1/0 server async_daemon(2)
Locale character classification, ctab(4)
Locale country convention tables ; en(4)
locale or portions thereof setlocale(3)

locale-dependent formatting/ ····················"····· .. ••• localeconv(3)
localeconv, localeconv _r: localeconv(3)
localeconv _r: Retrieves ... localeconv(3)
localtime, localtime_r, mktime,/ ; ctime(3)
localtime_r, mktime, tzset:/ ctime(3)
location of a program end, end(5)
lock a miltex "°; , pthread_mutex_trylock(3)I
lock on an open file flock: ftock(2)
lockf: Controls open file , lockf(3) '
locking .. tod(3)

Permuted Index

pthread_mutex_lock: Locks a mutex .. pthread_mutex_lock(3)
segments in memory plock: Locks a process' text and/or data plock(2)

msem_lock: Locks a semaphore ... msem_lock(3)
flockfile: Locks a stdio stream .. ftockfile(3)

setlogmask: Controls the system log syslog, openlog, closelog, syslog(3)
exponential, logarithm, and/ exp, log, loglO, pow: Computes exp(3)

logarithm, and power/ exp, log, loglO, pow: Computes exponential, exp(3)
!gamma, gamma: Computes the logarithm of the gamma function gamma(3)

/log I 0, pow: Computes exponential, logarithm, and power functions. exp(3)
programming interface lvm: Logical Volume Manager (LVM) lvm(7)

setlogin: Gets and sets login name getlogin, getlogin_r, getlogin(2)
getluid: Gets login user ID ... getluid(3)
setluid: Sets login user ID ... setluid(3)

current execution/ setjmp, longjmp: Saves and restores the setjmp(3)
transport endpoint t_look: Looks at the current event on a t_look(3)

lo: Software loopback network interface lo(7)
jrand48,/ drand48, erand48, lrand48, nrand48, mrand48, drand48(3)

search and update !search, lfind: Performs a linear lsearch(3)
offilet !seek: Moves read-write file lseek(2)

a file stat, fstat, lstat: Provides information about stat(2)
Retrieve a file/ statilabel, lstatilabel, fstatilabel: .. statilabel(3)
Retrieve a file/ statslabel, lstatslabel, fstatslabel: ... statslabel(3)

programming interface lvm: Logical Volume Manager (LVM) lvm(7)
/mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out,/ mp(3)

/fmin, m_in, mout, omout, fmout, m_out, sdiv, itom: Performs/ mp(3)
and information labeling macilb: Mandatory access control macilb(4)

invert, rpow, msqrt, mcmp, move,/ madd, msub, mult, mdiv, pow, gcd, mp(3)
process' expected paging/ madvise: Advise the system of a madvise(2)

symlink: Makes a symbolic link to a file symlink(2)
servers res_mkquery: Makes query messages for name res_mkquery(3)

/free, realloc, calloc, mall opt, mallinfo, alloca: Provides a/ malloc(3)
mallopt, mallinfo, alloca:/ malloc, free, realloc, calloc, malloc(3)

malloc, free, realloc, calloc, mall opt, mallinfo, alloca:/ malloc(3)
spdbm: Security policy database management routines ... spdbm(3)

interfaces for signal management /Compatibility sigset(3)
interface lvm: Logical Volume Manager (LVM) programming lvm(7)

!search, tfind, !delete, twalk: Manages binary search trees tsearch(3)
hsearch, hcreate, hdestroy: Manages hash tables .. hsearch(3)

transport endpoint t_optrngmt: Manages protocol options for a t_optrngmt(3)
mand: Sensitivity label functions mand(3)

information labeling macilb: Mandatory access control and macilb(4)
databases mandatory: Mandatory access control mandatory(4)

control databases mandatory: Mandatory access mandatory(4)
entry /endprfient, putprfinam: Manipulate file control database getprfient(3)

database/ /endprlpent, putprlpnam: Manipulate printer control getprlpent(3)
database/ /endprpwent, putprpwnam: Manipulate protected password getprpwent(3)

database/ /endprdfent, putprdfnam: Manipulate system default getprdfent(3)
database/ /endprtcent, putprtcnam: Manipulate terminal control getprtcent(3)

quotactl: Manipulates disk quotas .. quotactl(2)
numbers frexp, ldexp, modf: Manipulates floating-point frexp(3)

/sigismember: Creates and manipulates signal masks sigemptyset(3)

xlvii

OSF/1 Programmer's Reference

to its name subsys_real_name: Map a protected subsystem group subsys_real_name(3)
and/ /gr_nametoid, gr_idtoname: Map between userand group names •.•••.••••..••...•••• pw_mapping(3)

/Initializes a semaphore in a mapped file or shared memory/ msem_init(3)
msync: Synchronizes a mapped file_ .••••.••••••••.•••••••••••••••• msync(2)

munmap: Unmaps a mapped region .. munmap(2)
access protections of memory mapping mprotect: Modifies mprotect(2)

virtual memory mmap: Maps file system object into mmap(2)
descriptor fileno: Maps stream pointer to file fileno(3)

Sets the current signal mask sigprocmask, sigsetmask: sigprocmask(2)
the value of the file creation mask umask: Sets and gets umask(2)

Creates and manipulates signal masks /sigdelset, sigismember: sigemptyset(3)
Regular-expression compile and match routines /compile, step: regexp(3)

getrlimit, setrlimit: Controls maximum system resource/ getrlimit(2)
bytes of a multibyte character mblen: Determines the length in mblen(3)
(single-byte or double-byte)/ mbstowcs: Converts a multibyte mbstowcs(3)
character to a wide character mbtowc: Converts a multibyte mbtowc(3)

/pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin,/ mp(3)
msqrt, mcmp,/ madd, msub, mult, mdiv, pow, gcd, invert, rpow, mp(3)

/Determines if a password meets deduction requirements acceptable_password(3)
memset, memmove: Performs memory/ memccpy, memchr, memcmp, memcpy, memccpy(3)

memmove: Performs/ memccpy, memchr, memcmp, memcpy, memset, memccpy(3)
Performs memory/ memccpy, memchr, memcmp, memcpy, memset, memmove: memccpy(3)

memory/ memccpy, memchr, memcmp, memcpy, memset, memmove: Performs memccpy(3)
/memchr, memcmp, memcpy, memset, memmove: Performs memory/ memccpy(3)

mallinfo, alloca: Provides a memory allocator /mallopt, malloc(3)
shmctl: Performs shared memory control operations shmctl(2)

core: Specifies the format of the memory image file ... core(4)
Modifies access protections of memory mapping mprotect: mprotect(2)

memcpy, memset, memmove: Performs memory operations /memcmp, memccpy(3)
mvalid: Checks memory region for validity ••••••••••••••••••••••••••••••••••• mvalid(2)

shmat: Attaches a shared memory region ... shmat(2)
shmdt: Detaches a shared memory region ... shmdt(2)

shmid_ds: Defines a shared memory region ... shmid_ds(4)
creates) the ID for a shared memory region /(and possibly shmget(2)

in a mapped file or shared memory region /a semaphore msem_init(3)
file system object into virtual memory mmap: Maps ... mmap(2)
text and/or data segments in memory plock: Locks a process' plock(2)

memccpy, memchr, memcmp, memcpy, memset, memmove: Performs memory/ ••••••••••••••• memccpy(3)
catclose: Closes a specified message catalog ... catclose(3)
catopen: Opens a specified message catalog ... catopen(3)

msgctl: Performs message control operations msgctl(2)
error perror: Writes a message explaining a function perror(3)

catgets: Retrieves a message from a catalog ... catgets(3)
msgrcv: Receives a message from a message queue ••••••••••••••.••••••••••••• msgrcv(2)

message/ sendmsg: Sends a message from a socket using a sendmsg(2)
recvmsg: Receives a message from a socket ... recvmsg(2)

icmp: Internet Control Message Protocol ... icmp(7)
msgrcv: Receives a message from a message queue .. msgrcv(2)

msgsnd: Sends a message to a message queue .. msgsnd(2)
msqid_ds: Defines a message queue .. msqid_ds(4)

possibly creates) the ID for a message queue /Returns (and msgget(2)

xlviii

Permuted Index

a message from a socket using a message structure sendmsg: Sends sendmsg(2)
msgsnd: Sends a message to a message queue msgsnd(2)

t_error: Produces error message ... t_error(3)
res_mkquery: Makes query messages for name servers res_mkquery(3)

recv: Receives messages from connected sockets recv(2)
recvfrom: Receives messages from sockets ... recvfrom(2)

send: Sends messages on a socket ... send(2)
sendto: Sends messages through a socket sendto(2)

/invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout,/ mp(3)
passlen: Determines minimum password length passlen(3)

mkdir: Creates a directory mkdir(2)
mkfifo: Creates a FIFO .. mkfifo(3)

directory into a multilevel/ mkmultdir: Converts a regular mkmultdir(3)
file mknod: Creates an FIFO or special mknod(2)

filename mktemp, mkstemp: Constructs a unique mktemp(3)
unique filename mktemp, mkstemp: Constructs a mktemp(3)

/gmtime_r, localtime, localtime_r, mktime, tzset: Converts time/ ctime(3)
timer mktimer: Allocates a per-process mktimer(3)

directory mid: Traverse multilevel .. mld(3)
into virtual memory mmap: Maps file system object mmap(2)

numbers frexp, ldexp, modf: Manipulates floating-point frexp(3)
utimes: Sets file access and modification times utime, utime(2)

memory mapping mprotect: Modifies access protections of mprotect(2)
load: Loads a module and returns the module ID load(3)

ldr_remove: Removes an installed module from the private known/ ldr_remove(3)
ldr_next_module: Returns the next module ID for a process .. ldr_next_module(3)

another process and returns the module ID /Loads a module in ldr_xload(3)
Loads a module and returns the module ID load: ... load(3)
returns the/ ldr_xload: Loads a module in another process and ldr_xload(3)

private/ ldr_install: Installs a module in the current process' ldr_install(3)
in a/ ldr_inq_region: Returns module information about a region ldr_inq_region(3)
/Returns the entry point for a module loaded in another process ldr_xentry(3)

another/ ldr_xunload: Unloads a module previously loaded in ldr_xunload(3)
about a region in a loaded module /module information ldr_inq_region(3)

the entry point for a loaded module ldr_entry: Returns ldr_entry(3)
information about a loaded module ldr_inq_module: Returns ldr_inq_module(3)

Unloads a previously loaded module unload: .. unload(3)
/to permit loading/unloading of modulesin that process' address/ ldr_xattach(3)

/integers, or computes the Modulo Remainder and/ .. floor(3)
file descriptors poll: Monitors conditions on multiple poll(2)

!mount: Initializes a label mount of a file system .. lmount(3)
requests exports: Defines remote mount points for NFS mount exports(4)

remote mount points for NFS mount requests exports: Defines exports(4)
a file system mount, umount: Mounts or unmounts mount(2)

mount: Mounts a file system mount(3)
getfsstat: Gets list of all mounted file systems .. getfsstat(2)

mount: Mounts a file system .. mount(3)
mount, umount: Mounts or unmounts a file system mount(2)

/move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv,/ mp(3)
/gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in,/ mp(3)

curses Library: Controls cursor movement and windowing curses(3)

xlix

OSF/1 Programmer's Reference

!seek: Moves read-write file offset lseek(2)
protections of memory mapping mprotect: Modifies access mprotect(2)

/erand48, lrand48, nrand48, mrand48, jrand48, srand48,/ drand48(3)
semaphore in a mapped file or/ msem_init: Initializes a ... msem_init(3)

msem_lock: Locks a semaphore msem_lock(3)
msem_remove: Removes a semaphore msem_remove(3)
msem_unlock: Unlocks a semaphore msem_unlock(3)

sem_chacl,/ msg_statacl, msg_chacl, sem_statacl, .. ipc_acl(3)
msg_statilabel, msg_chilabel,/ .. ipc_ilabel(3)
msg_statslabel, msg_chslabel,/ .. ipc_slabel(3)

sem_statacl, sem_chacl,/ msg_statacl, msg_chacl, .. ipc_acl(3)
sem_statilabel,sem_chilabel,/ msg_statilabel, msg_chilabel, ipc_ilabel(3)
sem_statslabel,sem_chslabel,/ msg_statslabel, msg_chslabel, ipc_slabel(3)

operations msgctl: Performs message control msgctl(2)
creates) the ID for a message/ msgget: Returns (and possibly msgget(2)

message queue msgrcv: Receives a message from a msgrcv(2)
message queue msgsnd: Sends a message to a msgsnd(2)

msqid_ds: Defines a message queue msqid_ds(4)
/mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin,/ mp(3)

invert, rpow, msqrt, mcmp,/ madd, msub, mult, mdiv, pow, gcd, mp(3)
msync: Synchronizes a mapped file msync(2)

rpow, msqrt, mcmp,/ madd, msub, mult, mdiv, pow, gcd, invert, mp(3)
mbstowcs: Converts a multibyte (single-byte or/ mbstowcs(3)

character mbtowc: Converts a multibyte character to a wide mbtowc(3)
the length in bytes of a multi byte character /Determines mblen(3)

Converts a wide character into a multibyte character wctomb: wctomb(3)
/a wide character string into a multibytecharacter string wcstombs(3)

regular/ rmmultdir: Converts a multilevel directory into a rmmultdir(3)
mid: Traverse multilevel directory ... mld(3)

a regular directory into a multilevel directory /Converts mkrnultdir(3)
Checks to see if a directory is multilevel ismultdir: .. ismultdir(3)
poll: Monitors conditions on multiple file descriptors ... poll(2)
/m_out, sdiv, itom: Performs multiple precision integer/ mp(3)

select: Synchronous I/0 multiplexing ... select(2)
munmap: Unmaps a mapped region munmap(2)

/Creates a mutex attributes object .. pthread_mutexattr_create
/Deletes a mutex attributes object .. pthread_mutexattr_delet~

pthread_mutex_destroy: Deletes a mutex .. pthread_mutex_destroy(:
pthread_mutex_init: Creates a mutex .. pthread_mutex_init(3)
pthread_mutex_lock: Locks a mutex .. pthread_mutex_lock(3)

pthread_mutex_unlock: Unlocks a mutex .. pthread_mutex_unlock(~
Tries once to lock a mutex pthread_mutex_trylock: pthread_mutex_trylock(3

validity mvalid: Checks memory region for mvalid(2)
/Searches for a default domain name and Internet address res_init(3)

protocols: Protocol name database .. protocols(4)
services: Service name database .. services(4)

tmpnam, tempnam: Constructs the name for a temporary file tmpnam(3)
/Returns the address of a symbol name in a package .. ldr_lookup_package(3)

ttyname, isatty: Gets the name of a terminal ... ttyname(3)
sethostname: Sets the name of the current host .. sethostname(2)

uname: Gets the name of the current system uname(2)

Permuted Index

gethostname: Gets the name of the local host .. gethostname(2)
getpeemame: Gets the name of the peer socket ... getpeername(2)

res_send: Sends a query to a name server and retrieves a/ ••••.••••••••••••••.••••••••.••••• res_send(3)
Makes query messages for name servers res_mkquery: res_mkquery(3)

bind: Binds a name to a socket ... bind(2)
dn_comp: Compresses a domain name .. dn_comp(3)

getsockname: Gets the socket name .. getsockname(2)
Expands a compressed domain name dn_expand: .. dn_expand(3)

Searches for an expanded domain name dn_find: .. dn_find(3)
Skips over a compressed domain name dn_skipname: .. dn_skipname(3)

disk description using a disk name getdiskbyname: Gets getdiskbyname(3)
Gets network host entry by name gethostbyname: ... gethostbyname(3)

setlogin: Gets and sets login name getlogin, getlogin_r, .•.•.•.•...•••••••••••••••..•...•... getlogin(2)
Gets network entry by name getnetbyname: ... getnetbyname(3)

Gets protocol entry by protocol name getprotobyname: ... getprotobyname(3)
Get service entry by name getservbyname: ... getservbyname(3)

protected subsystem group to its name subsys_real_name: Map a .•••.•••••.••••••••••••••• subsys_real_name(3)
Map between userand group names and IDs /gr_idtoname: pw_mapping(3)

/setusershell, endusershell: Gets names of legal user shells getusershell(3)
isnan: Tests for NaN (Not a Number) ... isnan(3)

OSF/ROSE object file header from native, readable form to/ /an encode_mach_o_hdr(3)
value of the double operand x neg: Negates and returns the neg(3)

the double operand x neg: Negates and returns the value of neg(3)
Internet address integer into its network address component /an inet_netof(3)

dot-formatted address string to a network address integer /Internet inet_network(3)
Internet/ /Translates an Internet network address string to an inet_addr(3)

getnetbyaddr: Gets network entry by address getnetbyaddr(3)
getnetbyname: Gets network entry by name .. getnetbyname(3)

getnetent: Gets network entry ... getnetent(3)
endhostent: Ends retrieval of network host entries ... endhostent(3)

gethostbyaddr: Gets network host entry by address gethostbyaddr(3)
gethostbyname: Gets network host entry by name •.•.•••••.••.••••••.•••••••••••••• gethostbyname(3)

gethostent, sethostent: Opens network host file ... gethostent(3)
order to a 2-byte Internet network integer /from host-byte htons(3)

NS packets in IP/ nsip: Software network interface encapsulating nsip(7)
lo: Software loopback network interface ... lo(7)

ns: Xerox Network Systems protocol family ••••••••••••.••••••••••• ns(7)
/(32-bit) integer from Internet network-byte order to host-byte/ ntohl(3)
/(16-bit) integer from Internet network-byte order to host-byte/ ntohs(3)

from host-byte order to Internet network-byte order /integer htonl(3)
/Introduction to socket networking facilities .. netintro(7)

socket networking facilities networking: Introduction to netintro(7)
endnetent: Closes the networks file ... endnetent(3)

setnetent: Opens and rewinds the networks file ... setnetent(3)
ldr_next_module: Returns the next module ID for a process ldr_next_module(3)

/fetch, store, delete, firstkey, nextkey, forder: Database/ dbm(3)
async_daemon: Creates a local NFS asynchronous 1/0 server async_daemon(2)

Defines remote mount points for NFS mount requests exports: exports(4)
nfssvc: Creates a remote NFS server .. nfssvc(2)

server nfssvc: Creates a remote NFS nfssvc(2)
of a process nice: Changes scheduling priority nice(3)

Ii

OSF/1 Programmer's Reference

Iii

nl_lllllginfo: Language information nl_langinfo(3)
handling siglongjmp: Nonlocal goto with signal •••••••••••••• ; ; siglongjmp(3)

sigsetjmp: Sets jump point for a nonlocal goto .. sigsetjmp(3)
nontransmitted output data or nonread input data /Flushes tcflush(3)

nonread input/ tcflush: Flushes nontransmitted output data or tcflush(3)
a connection t_rcv: Receives normal data or expedited data on ••••••••.•••••.••••••••.•• t_rcv(3)

over a connection t_snd: Sends normal data or expedited data t_snd(3)
drand48, erand48, lrand48, nrand48, mrand48, jrarid48,/ drand48(3)

ns_addr, ns_ntoa:,Xerox NS address conversion routines ns_addr(3)
/network interface encapsulating NS packets in IP packets nsip(7)

protocol family ns: Xerox Network Systems ns(7)
address conversion routines ns_addr, ns_ntoa: Xerox NS ns_addr(3)

conversion routines ns_addr, ns_ntoa: Xerox NS address ns_addr(3)
encapsulating NS packets in IP/ nsip: Software network interface nsip(7)

(32-bit) integer from Internet/ ntohl: Converts an unsigned long •·•····················· ntohl(3)
short (16-bit) integer from/ ntohs: Converts an unsigned ntohs(3)

null: Data sink .. null(?)
distributed pseudo-random number sequences /uniformly drand48(3)

gcvt: Converts a floating-point number to a string ecvt, fcvt, ecvt(3)
Gets a protocol entry by number getprotobynumber: getprotobynumber(3)

isnan: Tests for NaN (Not a Number) .. isnan(3)
fmod, fabs: Rounds floating-point numbers to floating-point/ /rint, floor(3)
modf: Manipulates floating-point numbers frexp, ldexp, ... frexp(3)
srand: Generates pseudo-random numbers rand, rand_r, ... rand(3)

from OSF/1 translators OSF/ROSE: Objectfile format for output OSF/ROSE(4)
readable/ /Converts an OSF/ROSE object file header from native, encnde_mach_o_hdr(3)

canonical header from al1 OSF/ROSE object file to readable form /the •••••••••.••.•••.••••.••••• decode_mach_o_hdr(3)
mmap: Maps file system object into virtual memory ••••••••••••••••••.•..•.•...•.•••... mmap(2)

a condition variable attributes object /Creates , pthread_condattr_createC
a condition variable attributes object /Deletes ... pthread_condattr_delete(:

or privilege sets for an object /Get kernel authorizations statpriv(3)
attribute of a thread attributes object /value of the stack size •••••••••••.....•..•.••.•.•..• pthread_attr_getstacksize
attribute of a thread attributes object /value of the stack size pthread_attr_setstacksize~

Creates a thread attributes object pthread_attr_create: pthread_attr_create(3)
Deletes a thread attributes object pthread_attr_delete: pthread_attr_delete(3)
Creates a mutex attributes object pthread_mutexattr_create: pthread_mutexattr_create
Deletes a mutex attributes object pthread_mutexattr_delete: pthread_mutexattr_delete

on interprocess communication objects /access control lists ipc_acl(3)
on interprocess communication objects /information labels ipc_ilabel(3)
on interprocess communication objects /sensitivity labels ipc_slabel(3)

ASCII character sets ascii: Octal, hexadecimal, and decimal ••.••.••..••...•.••.•••.•• ascii(5)
!seek: Moves read-write file offset .. lseek(2)

/rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout,/ mp(3)
/min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, itom:/ mp(3)'
pthread_mutex_trylock: Tries once to lock a mutex .. pthread_mutex_trylock(~

calling thread /Pushes a routine onto the cleanup stack of the pthread_cleanup_push(3:
data on a record basis audit: Open and access audit session audit(3)

fcntl, dup, dup2: Controls open file descriptors ... fcntl(2)
lockf: Controls open file descriptors ... lockf(3)

or removes an advisory lock on an open file flock: Applies ... flock(2)
reading or writing open, creat: Opens a file for open(2)

Permuted Index

seekdir, rewinddir, closedir:/ opendir, readdir, telldir, ... opendir(3)
Controls the system log syslog, openlog, closelog, setlogmask: syslog(3)

writing open, creat: Opens a file for reading or open(2)
catopen: Opens a specified message catalog catopen(3)

fopen, freopen, fdopen: Opens a stream ... fopen(3)
file setnetent: Opens and rewinds the networks setnetent(3)

/etc/protocols file setprotoent: Opens and rewinds the ... setprotoent(3)
gethostent, sethostent: Opens network host file ... gethostent(3)

returns the value of the double operand x neg: Negates and neg(3)
/rewinddir, closedir: Performs operations on directories opendir(3)

strtok_r, strxfrm: Performs operations on strings /strtok, string(3)
/wstrspn, wstrtok: Performs operations on wide character/ wstring(3)

msgctl: Performs message control operations ... msgctl(2)
semop: Performs semaphore operations ... semop(2)

memset, memmove: Performs memory operations /memcmp, memcpy, memccpy(3)
ffs: Performs bit and byte string operations bcopy, hemp, bzero, bcopy(3)

Performs semaphore control operations semctl: ... semctl(2)
Performs shared memory control operations shmctl: ... shmctl(2)

down socket send and receive operations shutdown: Shuts shutdown(2)
stack of the calling thread and optionally executes it /cleanup pthread_cleanup_pop(3)
t_optmgmt: Manages protocol options for a transport endpoint t_optmgmt(3)

getsockopt: Gets socket options , ... getsockopt(2)
setsockopt: Sets socket options .. setsockopt(2)

process's sensitivity label orclearance /Sets the current setslabel(3)
(16-bit) integer from host-byte order to a 2-byte Internet/ /short htons(3)

from Internet network-byte order to host-byte order /integer ntohl(3)
from Internet network-byte order to host-byte order /integer ntohs(3)

/(32-bit) integer from host-byte order to Internet network-byte/ htonl(3)
order to Internet network-byte order /integer from host-byte htonl(3)

network-byte order to host-byte order /integer from Internet ntohl(3)
network-byte order to host-byte order /integer from Internet ntohs(3)

/Acknowledges receipt of an orderly release indication t_rcvrel(3)
Initiates an endpoint connect orderly release t_sndrel: t_sndrel(3)

file format for output from OSF/l translators /Object OSF/ROSE(4)
encode_mach_o_hdr: Converts an OSF/ROSE object file header from/ encode_mach_o_hdr(3)

/the canonical header from an OSF/ROSE object file to readable/ decode_mach_o_hdr(3)
output from OSF/l translators OSF/ROSE: Object file format for OSF/ROSE(4)

cfgetospeed: Gets output baud rate for a terminal cfgetospeed(3)
cfsetospeed: Sets output baud rate for a terminal cfsetospeed(3)

tcftush: Flushes nontransmitted output data or nonread input data tcftush(3)
OSF/ROSE: Object file format for output from OSF/l translators OSF/ROSE(4)

tcdrain: Waits for output to complete ... tcdrain(3)
wsprintf: Prints formatted output .. wsprintf(3)

a varargs parameter list for output /vsprintf: Formats vprintf(3)
sprintf: Prints formatted output printf, fprintf, ... printf(3)

chown, fchown: Changes the owner and group IDs of a file chown(2)
disklabel: Disk pack label .. disklabel(4)

a symbolname within a specified package in another process /of ldr_xlookup_package(3)
module from the private known package table /an installed ldr_remove(3)

the address of a symbol name in a package /Returns ... ldr_lookup_package(3)
current process' private known packagetable /a module in the ldr_insta11(3)

I iii

OSF/1 Programmer's Reference

ROUTE: Kernel packet forwarding database route(7)
spp: Xerox sequenced packet protocol (SPP) .. spp(7)

interface encapsulating NS packets in IP packets /network nsip(7)
encapsulating NS packets in IP packets /network interface nsip(7)

getpagesize: Gets the system page size ... getpagesize(2)
a swap device for interleaved paging and swapping swapon: Adds , swapon(2)

the system of a process' expected paging behavior madvise: Advise madvise(2)
socketpair: Creates a pair of connected sockets socketpair(2)

/vsprintf: Formats a varargs parameter list for output .. vprintf(3)
Handles a variable-length parameter list varargs: .. varargs(3)

terminal tcgetattr: Gets the parameters associated with the tcgetattr(3)
terminal tcsetattr: Sets the parameters associated with the tcsetattr(3)

locale-dependent formatting parameters /Retrieves ... localeconv(3)
the process ID, process group ID, parent process ID /getppid: Gets getpid(2)

password length passlen: Determines minimum passlen(3)
passwd: Password files .. passwd(4)

/putprpwnam: Manipulate protected password database entry .. getprpwent(3)
passwd: Password files ... passwd(4)

passlen: Determines minimum password length .. , passlen(3)
requirements /Determines if a password meets deduction acceptable_password(3)

getpass: Reads a password .. , •• getpass(3)
randomword: Generate random passwords ... randomword(3)

file implementation/ pathconf, fpathconf: Retrieves pathconf(3)
terminal ctermid: Generates the pathname for the controlling ctermid(3)

getcwd: Gets the pathname of the current directory getcwd(3)
getwd: Gets current directory pathname .. getwd(3)

signal is received pause: Suspends a process until a pause(3)
process pclose: Closes a pipe to a ... , pclose(3)

getpeemame: Gets the name of the peer socket .. ,, •••••••• getpeemame(2)
sigpending: Examines pending signals ... sigpending(2)
mktimer: Allocates a per-process timer .. mktimer(3)

rmtimer: Frees a per-process timer .. rmtimer(3)
timeout intervals of a per-process timer /Establishes reltimer(3)

privileges: Perform privilege bracketing privileges(3)
bsearch: Performs a binary search bsearch(3)

update !search, !find: Performs a linear search and lsearch(3)
bcopy, bcmp, bzero, ffs: Performs bit and byte string/ bcopy(3)

tcflow: Performs flow control functions tcflow(3)
fread, fwrite: Performs input/output .. fread(3)

/memcmp, memcpy, memset, memmove: Performs memory operations memccpy(3)
operations msgctl: Performs message control msgct1(2)

/omout, fmout, m_out, sdiv, itom: Performs multiple precision/ mp(3)
/strtok, strtok_r, strxfrm: Performs operations on strings string(3)

/wstrrchr, wstrspn, wstrtok: Performs operations on wide/ wstring(3)
seekdir, rewinddir, closedir: Performs operations on/ /telldir, opendir(3)

operations semctl: Performs semaphore control semctl(2)
semop: Performs semaphore operations , semop(2)

operations shmctl: Performs shared memory control shmctl(2)
variable for a specified period of time /on a condition pthread_cond_timedwait(

Writes changes in a file to permanent storage fsync: , fsync(2)
fchmod: Changes file access permissions chmod, , chmod(2)

liv

Permuted Index

/: Attaches to another process to permit loading/unloading of/ ldr_xattach(3)
explaining a function error perror: Writes a message perror(3)

pclose: Closes a pipe to a process ... pclose(3)
popen: Initiates a pipe to a process ... popen(3)

channel pipe: Creates an interprocess pipe(2)
qsort: Sorts a table in place .. qsort(3)

the byte stream putlong: Places long byte quantities into putlong(3)
the byte stream putshort: Places short byte quantities into putshort(3)

and/or data segments in memory plock: Locks a process' text plock(2)
ldr_entry: Returns the entry point for a loaded module ldr_entry(3)

ldr_xentry: Returns the entry point for a module loaded in/ ldr_xentry(3)
sigsetjmp: Sets jump point for a nonlocal goto sigsetjmp(3)

returns a/ socket: Creates an end point for communication and socket(2)
/Creates a cancellation point in the calling thread pthread_testcancel(3)

fsetpos: Repositions the file pointer of a stream /fgetpos, fseek(3)
fileno: Maps stream pointer to file descriptor .. fileno(3)

exports: Defines remote mount points for NFS mount requests exports(4)
routines spdbm: Security policy database management spdbm(3)

Access control list discretionary policy databases acl: ... acl(4)
multiple file descriptors poll: Monitors conditions on poll(2)

process popen: Initiates a pipe to a popen(3)
Gets service entry by port getservbyport: .. getservbyport(3)

entire current locale or portions thereof /the program's setlocale(3)
the terminal interface for POSIX compatibility /provides termios(4)

semget: Returns (and possibly creates) a semaphore ID semget(2)
message/ msgget: Returns (and possibly creates) the ID for a msgget(2)

shared/ shmget: Returns (and possibly creates) the ID for a shmget(2)
mcmp,/ madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mp(3)

logarithm, and/ exp, log, loglO, pow: Computes exponential, exp(3)
exponential, logarithm, and power functions. /pow: Computes exp(3)

/sdiv, itom: Performs multiple precision integer arithmetic mp(3)
ldr_xunload: Unloads a module previously loaded in another/ ldr_xunload(3)

unload: Unloads a previously loaded module unload(3)
/putprlpnam: Manipulate printer control database entry getprlpent(3)

formatted output printf, fprintf, sprintf: Prints printf(3)
printf, fprintf, sprintf: Prints formatted output .. printf(3)

wsprintf: Prints formatted output .. wsprintf(3)
nice: Changes scheduling priority of a process ... nice(3)

Gets or sets process scheduling priority /setpriority: ... getpriority(2)
/an installed module from the private known package table ldr_remove(3)

/a module in the current process' private known packagetable ldr_install(3)
privileges: Perform privilege bracketing ... privileges(3)

associated with/ getpriv: Gets privilege or authorization sets getpriv(3)
/Get kernel authorizations or privilege sets for an object statpriv(3)

Retrieves a socket with a privileged address rresvport: rresvport(3)
chpriv: Sets file privileges .. chpriv(3)

Sets kernel authorizations and privileges setpriv: .. setpriv(3)
bracketing privileges: Perform privilege privileges(3)

acct: Enables and disables process accounting ... acct(2)
times: Gets process and child process times times(3)

/Loads a module in another process and returns the module ID ldr_xload(3)

Iv

OSF/1 Programmer's Reference

clearenv: Clears the process environment .. clearenv(3)
setpgid, setpgrp: Sets the process group ID ••.•••••.•••..•••..••..•.•.••.••.••••.•••.••.•.•...• setpgid(2)

setsid: Sets th'~ process group ID .. setsid(2)
tcgetpgrp: Getsforeground process group ID .. tcgetpgrp(3)
tcsetpgrp: Sets foreground process group ID .. tcsetpgrp(3)

ID /getppid: Gets the process ID, process group ID, parent process getpid(2)
getgid, getegid: Gets the process group IDs .. getgid(2)
setrgid, setegid: Sets the process group IDs .. setrgid(3)

ID, process group ID, parent process ID /Gets the process getpid(2)
/getpgrp, getppid: Gets the process ID, process group ID,/ getpid(2)

kill: Sends a signal to a process or to a group of/ .. kill(2)
/setpriority: Gets or sets process scheduling priority getpriority(2)

times: Gets process and child process times .. times(3)
ldr_xattach : Attaches to another process to permit/ ... ldr_xattach(3)
/waitpid, wait3: Waits for a child process to stop or terminate wait(2)

received pause: Suspends a process until a signal is .. pause(3)
setruid, seteuid: Sets the process user IDs ... setruid(3)

exit, atexit, _exit: Terminates a process .. exit(2)
fork, vfork: Creates a new process .. fork(2)
pclose: Closes a pipe to a process .. pclose(3)

popen: Initiates a pipe to a process .. popen(3)
associated with the current process /alphanumeric username cuserid(3)

signal to end the current process /Generates a software abort(3)
group set of the current process /Gets the supplementary getgroups(2)

a specified package in another process /of a symbolname within ldr_xlookup_package(3)
sets associated with this process /or authorization getpriv(3)

for a module loaded in another process /Returns the entry point ldr_xentry(3)
previously loaded in another process /Unloads a module ldr_xunload(3)

Returns the next module ID for a process ldr_next_module: ldr_next_module(3)
Detaches from an attached process ldr_xdetach: ... ldr_xdetach(3)

Changes scheduling priority of a process nice: .. nice(3)
Traces the execution of a child process ptrace: ... ptrace(2)

/of modulesin that process' address space ... ldr_xattach(3)
madvise: Advise the system of a process' expected paging behavior madvise(2)
/Installs a module in the current process' private known/ ... ldr_insta11(3)

ID getuid, geteuid: Gets the process' real or effective user getuid(2)
segments in/ plock: Locks a process' text and/or data .. plock(2)

getilabel: Gets the current process's information label getilabel(3)
setilabel: Sets the current process's information label setilabel(3)

/getclrnce: Gets the current process's sensitivity label/ getslabel(3)
/setclrnce: Sets the current process's sensitivity label/ setslabel(3)

to a process or to a group of processes kill: Sends a signal ki11(2)
reboot: Reboots system or halts processor ... reboot(2)

authentication events authaudit: Produces audit records for authaudit(3)
t_error: Produces error message ... t_error(3)

execution profiling profil: Starts and stops ... profil(2)
Starts and stops execution profiling profil: .. profil(2)

assert: Inserts program diagnostics ... assert(3)
Defines the last location of a program end, etext, edata: end(S)

Sends a signal to the executing program raise: .. raise(3)
setlocale: Changes or queries the program's entire current locale/ setlocale(3)

lvi

Permuted Index

Provides functions for/ Programmers Workbench Library: libPW(3)
lvm: Logical Volume Manager (LVM) programming interface .. lvm(7)

for compatibility with existing programs /Provides functions libPW(3)
/putprpwnam: Manipulate protected password database entry ~ •••.• getprpwent(3)

name subsys_real_name: Map a protected subsystem group to its subsys_real_name(3)
mprotect: Modifies access protections of memory mapping mprotect(2)

spp: Xerox sequenced packet protocol (SPP) .. spp(7)
udp: Internet user datagram protocol (UDP) ... udp(7)

getprotobynumber: Gets a protocol entry by number getprotobynumber(3)
getprotobyname: Gets protocol entry by protocol name getprotobyname(3)

/etc/protocols/ getprotoent: Gets protocol entry from the .. getprotoent(3)
inet: Internet Protocol family ... inet(7)

ns: Xerox Network Systems protocol family ... ns(7)
protocols: Protocol name database ... protocols(4)

Gets protocol entry by protocol name getprotobyname: getprotobyname(3)
endpoint t_optmgmt: Manages protocol options for a transport t_optmgmt(3)
icmp: Internet Control Message Protocol ... icmp(7)

idp: Xerox Internet Datagram Protocol ... idp(7)
ip: Internet Protocol ... ip(7)

Internet transmission control protocol tcp: ... tcp(7)
t_getinfo: Gets protocol-specific information t_getinfo(3)

protocols: Protocol name database protocols(4)
current state of the transport provider t_getstate: Gets the t_getstate(3)

interface to the/ sigblock: Provides a compatibility .. sigblock(2)
interface to the/ sigpause: Provides a compatibility .. sigpause(3)

interface to the/ sigvec: Provides a compatibility .. sigvec(2)
/mall opt, mallinfo, alloca: Provides a memory allocator ..•...•...•••••••••••••••••••••.• malloc(3)

Programmers Workbench Library: Provides functions for/ .. libPW(3)
stat, fstat,]stat: Provides information about a file stat(2)

for/ /of the termios file, which provides the terminal interface termios(4)
pty: Pseudo terminal driver ... pty(7)

/Generates uniformly distributed pseudo-random number sequences drand48(3)
rand, rand_r, srand: Generates pseudo-random numbers rand(3)

thread attributes object pthread_attr_create: Creates a .•••••.••••.•••••••••••••••••• pthread_attr_create(3)
thread attributes object pthread_attr_delete: Deletes a pthread_attr_delete(3)

Returns the value of the stack/ pthread_attr_getstacksize: pthread_attr_getstacksize(3)
the value of the stack size/ pthread_attr_setstacksize: Sets pthread_attr_setstacksize(3)

termination of a thread pthread_cancel: Initiates pthread_cancel(3)
routine from the top of the/ pthread_cleanup_pop: Removes a pthread_cleanup_pop(3)

routine onto the cleanup stack/ pthread_cleanup_push: Pushes a pthread_cleanup_push(3)
all threads that are waiting on/ pthread_cond_broadcast: Wakes up pthread_cond_broadcast(3)

condition variable pthread_cond_destroy: Destroys a pthread_cond_destroy(3)
condition variable pthread_cond_init: Creates a pthread_cond_init(3)

thread that is waiting on a/ pthread_cond_signal: Wakes up a pthread_cond_signal(3)
a condition variable for a/ pthread_cond_timedwait: Waits on pthread_cond_timedwait(3)

condition variable pthread_cond_wait: Waits on a pthread_cond_wait(3)
a condition variable attributes/ pthread_condattr_create: Creates pthread_condattr_create(3)
a condition variable attributes/ pthread_condattr_delete: Deletes pthread_condattr_delete(3)

pthread_create: Creates a thread pthread_create(3)
pthread_detach: Detaches a thread pthread_detach(3)

thread identifiers pthread_equal: Compares two pthread_equal(3)

lvii

OSF/1 Programmer's Reference

calling thread pthread_exit: Terminates the pthread_exit(3}
value bound to a key pthread_getspecific: Returns the pthread_getspecific(3)

to terminate pthread_join: Waits for a thread pthread_join(3)
to be used with thread-specific/ pthread_keycreate: Creates a key pthread_keycreate(3)

mutex pthread_mutex_destroy: Deletes a pthread_mutex_destroy(3)
mutex pthread_mutex_init: Creates a pthread_mutex_init(3)

pthread_mutex_lock: Locks a mutex pthread_mutex_lock(3)
to Jock a mutex pthread_mutex_trylock: Tries once ••.••••••••••••.•••••• pthread_mutex_trylock(3)

mutex pthread_mutex_unlock: Unlocks a pthread_mutex_unlock(3)
a mutex attributes object pthread_mutexattr_create: Creates pthread_mutexattr_create(3
a mutex attributes object pthread_mutexattr_delete: Deletes pthread_mutexattr_delete(3

initialization routine pthread_once: Calls an .. pthread_once(3)
the calling thread pthread_self: Returns the ID of pthread_self(3)

or disables the asynchronous/ pthread_setasynccancel: Enables pthread_setasynccancel(3)
disables the general/ pthread_setcancel: Enables or pthread_setcancel(3)

thread-specific value to a key pthread_setspecific: Binds a pthread_setspecific(3)
cancellation point in the/ pthread_testcancel: Creates a pthread_testcancel(3)

scheduler to run another thread/ pthread_yield: Allows the pthread_yield(3)
child process ptrace: Traces the execution of a ptrace(2)

pty: Pseudo terminal driver pty(7)
input stream ungetc, ungetwc: Pushes a character back into ungetc(3)

stack of/ pthread_cleanup_push: Pushes a routine onto the cleanup pthread_cleanup_push(3)
Writes a character or a word to/ pule, putchar, fputc, putw: putc(3)
character or a word to a/ putc, putchar, fputc, putw: Writes a putc(3)

/setdvagent, enddvagent, putdvagnam, copydvagent/ getdvagent(3)
variable putenv: Sets an environment putenv(3)

quantities into the byte stream putlong: Places Jong byte putlong(3)
default/ /setprdfent, endprdfent, putprdfnam: Manipulate system getprdfent(3)

control/ /setprfient, endprfient, putprfinam: Manipulate file getprfient(3)
control/ /setprlpent, endprlpent, putprlpnam: Manipulate printer getprlpent(3)

password/ /setprpwent, endprpwent, putprpwnam: Manipulate protected getprpwent(3)
control/ /setprtcent, endprtcent, putprtcnam: Manipulate terminal getprtcent(3)
getpwent, getpwuid, getpwnam, putpwent, setpwent, endpwent:/ getpwent(3)

stream puts, fputs: Writes a string to a puts(3)
quantities into the byte stream putshort: Places short byte putshort(3)

getutent, getutid, getutline, pututline, setutent, endutent,/ getutent(3)
word to a/ putc, putchar, fputc, putw: Writes a character or a putc(3)
character or a word to a stream putwc, putwchar, fputwc: Writes a putwc(3)

character or a word to a/ putwc, putwchar, fputwc: Writes a putwc(3)
a stream putws, fputws: Writes a string to putws(3)

gr_idtoname: Map/ pw_nametoid, pw_idtoname, gr_nametoid, pw_mapping(3)
gr_nametoid, gr_idtoname: Map/ pw_nametoid, pw_idtoname, pw_mapping(3)

qsort: Sorts a table in place qsort(3)
_getlong: Retrieves long quantities from a byte stream , .. _getlong(3)

_getshort: Retrieves short quantities from a byte stream _getshort(3)
putlong: Places long byte quantities into the byte stream putlong(3)

putshort: Places short byte quantities into the byte stream putshort(3)
current/ setlocale: Changes or queries the program's entire setlocale(3)

res_mkquery: Makes query messages for name servers res_mkquery(3)
retrieves a/ res_send: Sends a query to a name server and res_send(3)
msqid_ds: Defines a message queue ... msqid_ds(4)

lviii

Permuted Index

creates) the ID for a message queue /Returns (and possibly msgget(2)
or removes an element in a queue insque, remque: Inserts insque(3)

Receives a message from a message queue msgrcv: .. msgrcv(2)
Sends a message to a message queue msgsnd: ... msgsnd(2)

quotactl: Manipulates disk quotas quotactl(2)
setquota: Enables or disables quotas on a file system ... setquota(2)

quotactl: Manipulates disk quotas .. quotactl(2)
executing program raise: Sends a signal to the raise(3)

pseudo-random numbers rand, rand_r, srand: Generates rand(3)
pseudo-random numbers rand, rand_r, srand: Generates .. rand(3)

randomword: Generate random passwords .. randomword(3)
passwords randomword: Generate random randomword(3)

cfgetispeed: Gets input baud rate for a terminal ... cfgetispeed(3)
cfgetospeed: Gets output baud rate for a terminal ... cfgetospeed(3)

cfsetispeed: Sets input baud rate for a terminal ... cfsetispeed(3)
cfsetospeed: Sets output baud rate for a terminal ... cfsetospeed(3)

commands on a remote host rcmd: Allows execution of rcmd(3)
expressions re_comp, re_exec: Handles regular re_comp(3)

expressions re_comp, re_exec: Handles regular re_comp(3)
read, readv: Reads from a file read(2)

!seek: Moves read-write file offset ... lseek(2)
/object file header from native, readable form to canonical form encode_mach_o_hdr(3)

from an OSF/ROSE object file to readable form /canonical header decode_mach_o_hdr(3)
rewinddir, closedir:/ opendir, readdir, telldir, seekdir, ... opendir(3)

open, creat: Opens a file for reading or writing .. open(2)
symbolic link readlink: Reads the value of a readlink(2)

getpass: Reads a password ... getpass(3)
read, readv: Reads from a file .. read(2)

link readlink: Reads the value of a symbolic readlink(2)
read, readv: Reads from a file ... read(2)

setregid: Sets the real and effective group ID setregid(2)
setreuid: Sets real and effective user ID's setreuid(2)

/geteuid: Gets the process' real or effective user ID ... getuid(2)
mallinfo, alloca:/ malloc, free, realloc, calloc, mall opt, ... malloc(3)

processor reboot: Reboots system or halts reboot(2)
reboot: Reboots system or halts processor reboot(2)

t_rcvrel: Acknowledges receipt of an orderly release/ t_rcvrel(3)
Shuts down socket send and receive operations shutdown: shutdown(2)

a process until a signal is received pause: Suspends pause(3)
t_rcvudata: Receives a data unit ... t_rcvudata(3)

queue msgrcv: Receives a message from a message msgrcv(2)
recvmsg: Receives a message from a socket recvmsg(2)

indication t_rcvuderr: Receives a unit data error t_rcvuderr(3)
sockets recv: Receives messages from connected ••.•••.•••••••••.•••• recv(2)

recvfrom: Receives messages from sockets ••••••.•••..••••••••.••.•• recvfrom(2)
data on a connection t_rcv: Receives normal data or expedited t_rcv(3)

connect request t_rcvconnect: Receives the confirmation from a t_rcvconnect(3)
access audit session data on a record basis audit: Open and audit(3)
expacct: Expands accounting record .. expacct(3)

authaudit: Produces audit records for authentication events authaudit(3)
connected sockets recv: Receives messages from recv(2)

lix

OSF/1 Programmer's Reference

Ix

sockets
a socket

mvalid: Checks memory
/module information about a
munmap: Unmaps a mapped

shmat: Attaches a shared memory
shmdt: Detaches a shared memory

shmid_ds: Defines a shared memory
the ID for a shared memory

in a mapped file or shared memory
multilevel/ mkmultdir: Converts a

a multilevel directory into a
re_comp, re_exec: Handles

match/ advance, compile, step:
receipt of an order! y

an endpoint connect order! y
intervals of a per-process timer

/integers, or computes the Modulo
Allows execution of commands on a

Allows command execution on a
requests exports: Defines

nfssvc: Creates a

unlink:
rmdir:

remove:
the cleanup/ pthread_cleanup_pop:

msem_remove:
open file flock: Applies or
insque, remque: Inserts or

the private known/ ldr_remove:
element in a queue insque,

file within a file system
within a file system rename:

clock:
/rewind, ftell, fgetpos, fsetpos:

t_accept: Accepts a connect
t_listen: Listens for a connect

the confirmation from a connect
Sends user-initiated discon~ect

remote mount points for NFS mount
if a password meets deduction

domain name and Internet address
for narne servers

server and retrieves a response
J:l.ostname: Hostname

resolver:
file

Controls maximum system
vtimes: Gets. information about
to a name server and retrieves a

recvfrom: Receives messages from recvfrom(2)
recvmsg: Receives a message from recvmsg(2)
region for validity .. mvalid(2)
region in a loaded module ldr_inq_region(3)
region .. munmap(2)
region , ... shmat(2)
region .. shmdt(2)
region m .. shmid_ds(4)
region /(and possibly creates) shmget(2)
region /Initializes a semaphore msem_init(3)
regular directory into a .. mkmultdir(3)
regular directory /Converts rmmultdir(3)
regular expressions .. re_comp(3)
Regular-expression compile and regexp(3)
release indication /Acknowledges t_rcvrel(3)
release t_sndrel: Initiates , t_sndrel(3)
reltimer: Establishes timeout , reltimer(3)
Remainder and floating-point/ floor(3)
remote host rcmd: , rcmd(3)
remote host rexec: , rexec(3)
remote mount points for NFS mount exports(4)
remote NFS server , nfssvc(2)
remove: Removes a file •••••••• ; remove(3)
Removes a directory entry , unlink(2)
Removes a directory file ••••.••••.••••.••••.••..••.•.•••.••••... rmdir(2)
Removes a file .. reli1ove(3)
Removes a routine from the top of pthread_cleanup_pop(3)
Removes a semaphore ... msem_remove(3)
removes an advisory lock on an f)ock(2)
removes an element in a queue insque(3)
Removes an installed module from ldr_remove(3)
remque: Ins~rts or removes an insque(3)
rename: Renames a directory or a rename(2)
Renames a directory or a file , rename(2)
R.eports CPU time used ... clock(3)
Repositions the file pointer ofa/ fseek(3)
request ... , ... t_accept(3)
request •.•. , .. ; t_listen(3)
request t_rcvconnect: Receives t_rcvconnect(3)
request t_snddis: ... , t_snddis(3)
~eqµests exports: Defines , exports(4)
requirements /Determines acceptable_password(3)
res_init: Searches for a default .•••••••••••••• , res_init(3)
res_mkquery: Makes query messages , •• res_mkquery(3)
res_send: Sends a query.to a name res_send(3)
resolution description .. hostname(5)
Resolver configur11tion file resolver(4)
resolver: Resolver configuration resolver(4)
resource consumption /setrlimit: getrlimit(2)
resource utilization getrusage, getrusage(2)
response recsend: Sends a query •••••••••••••••••••••••• res_send(3)

Permuted Index

setjmp, longjmp: Saves and restores the current execution/ setjmp(3)
endhostent: Ends retrieval of network host entries endhostent(3)

/lstatilabel, fstatilabel: Retrieve a file information label statilabel(3)
/lstatslabel, fstatslabel: Retrieve a file sensitivity label statslabel(3)

catalog catgets: Retrieves a message from a catgets(3)
a query to a name server and retrieves a response /Sends res_send(3)
privileged address rresvport: Retrieves a socket with a rresvport(3)

t_rcvdis: Retrieves disconnect information t_rcvdis(3)
pathconf, fpathconf: Retrieves file implementation/ pathconf(3)

localeconv, localeconv_r: Retrieves locale-dependent/ Iocaleconv(3)
byte stream _getlong: Retrieves long quantities from a _getlong(3)
byte stream _getshort: Retrieves short quantities from a _getshort(3)

of a file statacl: Retrieves the access control list statac1(3)
semaphore ID semget: Returns (and possibly creates) a semget(2)

the ID for a message/ msgget: Returns (and possibly creates) msgget(2)
the ID for a shared/ shmget: Returns (and possibly creates) shmget(2)

end point for communication and returns a descriptor /Creates an socket(2)
sigreturn: Returns from signal .. sigreturn(2)

loaded module ldr_inq_module: Returns information about a ldr_inq_module(3)
a region in a/ ldr_inq_region: Returns module information about ldr_inq_region(3)

name in a/ ldr_lookup_package: Returns the address of a symbol ldr_lookup_package(3)
symbolname/ ldr_xlookup_package: Returns the address of a ... ldr_xlookup_package(3)

loaded module ldr_entry: Returns the entry point for a ldr_entry(3)
module loaded in/ ldr_xentry: Returns the entry point for a Idr_xentry(3)

thread pthread_self: Returns the ID of the calling pthread_self(3)
load: Loads a module and returns the module ID .. Ioad(3)

a module in anotller process and returns the module ID /Loads ldr_xload(3)
process ldr_next_module: Returns the next module ID for a Idr_next_module(3)

pthread_getspecific: Returns the value bound to a key pthread_getspecific(3)
environment variable getenv: Returns the value of an .. getenv(3)

setitimer, getitimer: Sets or returns the value of interval/ getitimer(2)
operand x neg: Negates and returns the value of the double neg(3)

size/ pthread_attr_getstacksize: Returns the value of the stack pthread_attr_getstacksize(3)
Repositions the file/ fseek, rewind, ftell, fgetpos, fsetpos: fseek(3)

/readdir, telldir, seekdir, rewinddir, closedir: Performs/ opendir(3)
setprotoent: Opens and rewinds the /etc/protocols file setprotoent(3)

setnetent: Opens and rewind,s the networks file setnetent(3)
on a remote host rexec: 'Allows command execution rexec(3)

floating-point/ floor, ceil, rint, fmod, fabs: Rounds .. floor(3)
rmdir: Removes a directory file rmdir(2)

directory into a regular/ rrnmultdir: Converts a multilevel rrnmultdir(3)
timer rmtimer: Frees a per-process rmtimer(3)

sqrt, cbrt: Computes square root and cube root functions sqrt(3)
chroot: Changes the effective root directory .. chroot(2)

Computes square root and cube root functions sqrt, cbrt: .. sqrt(3)
floor, ceil, rint, fmod, fabs: Rounds floating-point numbers to/ floor(3)

database ROUTE: Kernel packet forwarding route(7)
pthread_cleanup_pop: Removes a routine from the top of the/ pthread_cleanup_pop(3)

pthread_cleanup_push: Pushes a routine onto the cleanup stack of/ pthread_cleanup_push(3)
Calls an initialization routine pthread_once: ... pthread_once(3)

compile and match routines /Regular-expression regexp(3)

lxi

OSF/1 Programmer's Reference

Command authorization support routines cmdauth: .. cmdauth(3)
independent disk inode access routines disk: Security •.•••••...•.....••.•.••••.••.••••.•••.•••• disk(3)
Xerox NS address conversion routines ns_addr, ns_ntoa: ns_addr(3)
policy database management routines spdbm: Security spdbm(3)
/mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min,/ mp(3)

with a privileged address rresvport: Retrieves a socket ••••••.•••.•••••.••.••••.•••••••• rresvport(3)
current/ I Allows the scheduler to run another thread instead of the ••• , pthread_yield(3)

authenticate clients ruserok: Allows servers to ruserok(3)
execution/ setjmp, long.imp: Saves and restores the current , setjmp(3)

brk, sbrk: Changes data segment size brk(2)
sorts directory contents scandir, alphasort: Scans or scandir(3)

formatted input scanf, fscanf, sscanf: Converts scanf(3)
scandir, alphasort: Scans or sorts directory contents scandir(3)

pthread_yield: Allows the scheduler to run another thread/ pthread_yield(3)
nice: Changes scheduling priority of a process nice(3)

setpriority: Gets or sets process scheduling priority getpriority, getpriority(2)
/m_in, mout, omout, fmout, m_out, sdiv, itom: Performs multiple/ mp(3)

!search, !find: Performs a linear search and update ... lsearch(3)
tdelete, twalk: Manages binary search trees !search, tfind, tsearch(3)

bsearch: Performs a binary search .. bsearch(3)
name and Internet/ res_init: Searches for a default domain res_init(3)

name dn_find: Searches for an expanded domain dn_find(3)
Inode: Format of the additional security attributes added to/ inode(7)

authcap: Security databases .. authcap(7)
access routines disk: Security independent disk inode , disk(3)

management routines spdbm: Security policy database .. spdbm(3)
/mrand48, jrand48, srand48, seed48, lcong48: Generates/ drand48(3)

opendir, readdir, telldir, seekdir, rewinddir, closedir:/ opendir(3)
brk, sbrk: Changes data segment size ... brk(2)

Locks a process' text and/or data segments in memory plock: , plock(2)
multiplexing select: Synchronous I/O .. select(2)

/msg_chacl, sem_statacl, sem_chacl, shm_statacl,/ ipc_acl(3)
msg_statacl, msg_chacl, sem_statacl, sem_chacl,/ ipc_acl(3)

msg_statilabel, msg_chilabel, sem_statilabel,sem_chilabel,/ ipc_ilabel(3)
msg_statslabel, msg_chslabel, sem_statslabel,sem_chslabel,/ ipc_slabel(3)

semctl: Performs semaphore control operations semctl(2)
Returns (and possibly creates) a semaphore ID semget: .. semget(2)
shared/ msem_init: Initializes a semaphore in a mapped file or , msem_init(3)

semop: Performs semaphore operations .. semop(2)
semid_ds: Defines a semaphore set ... semid_ds(4)
msem_lock: Locks a semaphore , msem_lock(3)

msem_remove: Removes a semaphore .. , •..••• msem_remove(3)
msem_unlock: Unlocks a semaphore ; .. msem_unlock(3)

control operations semctl: Performs semaphore semctl(2)
creates) a semaphore ID semget: Returns (and possibly semget(2)

semid_ds: Defines a semaphore set semid_ds(4)
operations semop: Performs semaphore semop(2)

shutdown: Shuts down socket send and receive operations shutdown(2)
send: Sends messages on a socket send(2)

socket using a message structure sendmsg: Sends a message from a •••••••••.•••.•.•••••••• sendmsg(2)
serial data line tcsendbrea)c Sends a break on an asynchronous tcsendbreak(3)

I xii

Permuted Index

t_sndudata: Sends a data unit .. t_sndudata(3)
using a message/ sendmsg: Sends a message from a socket sendmsg(2)

queue msgsnd: Sends a message to a message msgsnd(2)
and retrieves a/ res_send: Sends a query to a name server res_send(3)
a group of processes kill: Sends a signal to a process or to kill(2)

program raise: Sends a signal to the executing raise(3)
send: Sends messages on a socket send(2)

sendto: Sends messages through a socket sendto(2)
data over a connection t_snd: Sends normal data or expedited t_snd(3)

request t_snddis: Sends user-initiated disconnect t_snddis(3)
socket sendto: Sends messages through a sendto(2)

/Gets the current process's sensitivity label andclearance getslabel(3)
mand: Sensitivity label functions mand(3)

chslabel: Changes the sensitivity label of a file .. chslabel(3)
/Sets the current process's sensitivity label orclearance setslabel(3)
fstatslabel: Retrieve a file sensitivity label /lstatslabel, statslabel(3)

/shm_chslabel:Manipulates sensitivity labels on/ .. ipc_slabel(3)
spp: Xerox sequenced packet protocol (SPP) spp(7)

distributed pseudo-random number sequences /Generates uniformly ...•.......•.•.•..•••...•. drand48(3)
Sends a break on an asynchronous serial data line tcsendbreak: tcsendbreak(3)
res_send: Sends a query to a name server and retrieves a response res_send(3)

nfssvc: Creates a remote NFS server ... nfssvc(2)
a local NFS asynchronous 1/0 server async_daemon: Creates async_daemon(2)

ruserok: Allows servers to authenticate clients ruserok(3)
Makes query messages for name servers res_rnkquery: .. res_rnkquery(3)

getservbyname: Get service entry by name .. getservbyname(3)
getservbyport: Gets service entry by port .. getservbyport(3)

setservent: Gets service file entry ... setservent(3)
services: Service name database .. services(4)

getservent: Gets services file entry ... getservent(3)
services: Service name database services(4)

audit: Open and access audit session data on a record basis audit(3)
for a/ /Atomically changes the set of blocked signals and waits sigsuspend(2)
/Gets the supplementary group set of the current process getgroups(2)

semid_ds: Defines a semaphore set .. semid_ds(4)
Initializes concurrent group set initgroups: .. initgroups(3)

setlinebuf: Assigns buffering to/ setbuf, setvbuf, setbuffer, setbuf(3)
buffering to a/ setbuf, setvbuf, setbuffer, setlinebuf: Assigns setbuf(3)

system-wide clock setclock: Sets value of ... setclock(3)
process's sensitivity/ setslabel, setclrnce: Sets the current setslabel(3)

getdvagent, getdvagnam, setdvagent, enddvagent,/ getdvagent(3)
IDs setrgid, setegid: Sets the process group setrgid(3)
IDs setruid, seteuid: Sets the process user setruid(3)

/getfsspec, getfsfile, getfstype, setfsent, endfsent: Gets/ ... getfsent(3)
setgid: Sets the group ID setgid(2)

getgrent, getgrgid, getgrnam, setgrent, endgrent: Accesses the/ getgrent(3)
list setgroups: Sets the group access setgroups(2)

file gethostent, sethostent: Opens network host gethostent(3)
identifier of the current host sethostid: Sets the unique sethostid(2)

current host sethostname: Sets the name of the sethostname(2)
process's information label setilabel: Sets the current setilabel(3)

lxiii

OSF/1 Programmer's Reference

returns the value of interval/ setitimer, getitimer: Sets or getitimer(2)
restores the current execution/ setjmp, longjmp: Saves and .••••••..••...•••.•.•••••.•..•••... setjmp(3)

a/ setbuf, setvbuf, setbuffer, setlinebuf: Assigns buffering to setbuf(3)
program's entire current locale/ setlocale: Changes or queries the setlocale(3)

name getlogin, getlogin_r, setlogin: Gets and sets login getlogin(2)
log syslog, openlog, closelog, setlogmask: Controls the system syslog(3)

setluid: Sets login user ID setluid(3)
networks file setnetent: Opens and rewinds the setnetent(3)

process group ID setpgid, setpgrp: Sets the setpgid(2)
ID setpgid, setpgrp: Sets the process group setpgid(2)

getprdfent, getprdfnam, setprdfent, endprdfent,/ ... getprdfent(3)
getprfient, getprfinam, setprfient, endprfient,/ .. getprfient(3)

scheduling priority getpriority, setpriority: Gets or sets process getpriority(2)
authorizations and privileges setpriv: Sets kernel ... setpriv(3)

getprlpent, getprlpnam, setprlpent, endprlpent,/ .. getprlpent(3)
the /etc/protocols file setprotoent: Opens and rewinds setprotoent(3)

/getprpwuid, getprpwnam, setprpwent, endprpwent,/ getprpwent(3)
getprtcent, getprtcnam, setprtcent, endprtcent,/ .. getprtcent(3)

/getpwuid, getpwnam, putpwent, setpwent, endpwent: Accesses the/ getpwent(3)
quotas on a file system setquota: Enables or disables setquota(2)

effective group ID setregid: Sets the real and setregid(2)
user ID's setreuid: Sets real and effective setreuid(2)

process group IDs setrgid, setegid: Sets the .. setrgid(3)
system resource/ getrlimit, setrlimit: Controls maximum getrlimit(2)

process user IDs setruid, seteuid: Sets the .. setruid(3)
putenv: Sets an environment variable putenv(3)

context sigstack: Sets and gets signal stack sigstack(2)
file creation mask umask: Sets and gets the value of the umask(2)

ulimit: Sets and gets user limits .. ulimit(3)
/Gets privilege or authorization sets associated with this process getpriv(3)

settimeofday, ftime: Gets and sets date and time gettimeofday, gettimeofday(2)
times utime, utimes: Sets file access and modification utime(2)

chpriv: Sets file privileges .. chpriv(3)
authorizations or privilege sets for an object /Get kernel statpriv(3)

tcsetpgrp: Sets foreground process group ID tcsetpgrp(3)
terminal cfsetispeed: Sets input baud rate for a cfsetispeed(3)

goto sigsetjmp: Sets jump point for a nonlocal sigsetjmp(3)
privileges setpriv: Sets kernel authorizations and setpriv(3)

getlogin_r, setlogin: Gets and sets login name getlogin, getlogin(2)
setluid: Sets login user ID ... setluid(3)

interval timers alarm, ualarm: Sets or changes the timeout of alarm(3)
interval/ setitimer, getitimer: Sets or returns the value of .••...•.•.•...••..•.••..••..•....•.. getitimer(2)

terminal cfsetospeed: Sets output baud rate for a cfsetospeed(3)
getpriority, setpriority: Gets or sets process scheduling priority getpriority(2)

setreuid: Sets real and effective user ID's setreuid(2)
setsockopt: Sets socket options ... setsockopt(2)

information label setilabel: Sets the current process's setilabel(3)
setslabel, setclrnce: Sets the current process's/ setslabel(3)

sigprocmask, sigsetmask: Sets the current signal mask sigprocmask(2)
setgroups: Sets the group access list setgroups(2)

setgid: Sets the group ID ... setgid(2)

I xiv

Permuted Index

sethostname: Sets the name of the current host sethostname(2)
with the terminal tcsetattr: Sets the parameters associated tcsetattr(3)

setpgid, setpgrp: Sets the process group ID setpgid(2)
setsid: Sets the process group ID setsid(2)

setrgid, setegid: Sets the process group IDs setrgid(3)
setruid, seteuid: Sets the process user IDs setruid(3)

ID setregid: Sets the real and effective group setregid(2)
clock stime: Sets the system-wide time-of-day stime(3)

current host sethostid: Sets the unique identifier of the sethostid(2)
setuid: Sets the user ID .. setuid(2)

pthread_attr_setstacksize: Sets the value of the stack size/ pthread_attr_setstacksize(3)
setclock: Sets value of system-wide clock setclock(3)

and decimal ASCII character sets ascii: Octal, hexadecimal, ascii(S)
entry setservent: Gets service file setservent(3)

setsid: Sets the process group ID setsid(2)
current process's sensitivity/ setslabel, setclmce: Sets the setslabel(3)

setsockopt: Sets socket options setsockopt(2)
random, srandom, initstate, setstate: Generates "better"/ random(3)

sets date and time gettimeofday, settimeofday, ftime: Gets and gettimeofday(2)
setuid: Sets the user ID .. setuid(2)

names of legal/ getusershell, setusershell, endusershell: Gets getusershell(3)
/getutid, getutline, pututline, setutent, endutent, utmpname:/ getutent(3)

Assigns buffering to a/ setbuf, setvbuf, setbuffer, setlinebuf: setbuf(3)
shmctl: Performs shared memory control operations shmctl(2)

shmat: Attaches a shared memory region ... shmat(2)
shmdt: Detaches a shared memory region .••••••.•.•••••••••••••••••••••••••.••••••• shmdt(2)

shmid_ds: Defines a shared memory region ... shmid_ds(4)
possibly creates) the ID for a shared memory region /(and shmget(2)

a semaphore in a mapped file or shared memory region /Initializes msem_init(3)
system: Executes a shell command ... system(3)

shells: Shell database ... shells(4)
Gets names of legal user shells /endusershell: .. getusershell(3)

shells: Shell database ... shells(4)
control/ /sem_chacl, shm_statacl, shm_chacl:Manipulates access ipc_acl(3)

information/ /shm_statilabel, shm_chilabel:Manipulates ipc_ilabel(3)
sensitivity/ /shm_statslabel, shm_chslabel:Manipulates ••••...•••.....•.................... ipc_slabel(3)

sem_statacl, sem_chacl, shm_statacl,/ /msg_chacl, ipc_acl(3)
sem_statilabel,sem_chilabel, shm_statilabel,/ /msg_chilabel, ipc_ilabel(3)
sem_statslabel,sem_chslabel, shm_statslabel,/ /msg_chslabel, ipc_slabel(3)

region shmat: Attaches a shared memory shmat(2)
control operations shmctl: Performs shared memory shmctl(2)

region shmdt: Detaches a shared memory shmdt(2)
creates) the ID for a shared/ shmget: Returns (and possibly shmget(2)

region shmid_ds: Defines a shared memory shmid_ds(4)
htons: Converts an unsigned short (16-bit) integer from/ htons(3)
ntohs: Converts an unsigned short (16-bit) integer from/ ntohs(3)
byte stream putshort: Places short byte quantities into the putshort(3)
stream _getshort: Retrieves short quantities from a byte _getshort(3)

and receive operations shutdown: Shuts down socket send shutdown(2)
receive operations shutdown: Shuts down socket send and shutdown(2)

a compatibility interface to the sigaction() function /Provides sigvec(2)

lxv

OSF/1 Programmer's Reference

action to take upon delivery of/ sigaction, signal: Specifies the sigaction(2)
sigemptyset, sigfillset, sigaddset, sigdelset,/ .. sigemptyset(3)

compatibility interface to the/ sigblock: Provides a ... sigblock(2)
and/ /sigfillset, sigaddset, sigdelset, sigismember: Creates sigemptyset(3)

sigaddset, sigdelset,/ sigemptyset, sigfillset, ... sigemptyset(3)
sigismember:/ sigemptyset, sigfillset, sigaddset, sigdelset, sigemptyset(3)

Compatibility interfaces/ sigset, sighold, sigrelse, sigignore: sigset(3)
sigset, sighold, sigrelse, sigignore: Compatibility/ sigset(3)

interrupt functions siginterrupt: Allows signals to siginterrupt(3)
/sigfillset, sigaddset, sigdelset, sigismember: Creates and/ sigemptyset(3)

signal handling siglongjmp: Nonlocal goto with siglongjmp(3)
definitions and variables used by signal functions /Contains signal(4)
siglongjmp: Nonlocal goto with signal handling ... siglongjmp(3)

pause: Suspends a process until a signal is received .. pause(3)
Compatibility interfaces for signal management /sigignore: sigset(3)
sigsetmask: Sets the current signal mask sigprocmask, sigprocmask(2)

Creates and manipulates signal masks /sigismember: sigemptyset(3)
sigstack: Sets and gets signal stack context .. sigstack(2)

of processes kill: Sends a signal to a process or to a group kill(2)
abort: Generates a software signal to end the current process abort(3)

raise: Sends a signal to the executing program raise(3)
sigreturn: Returns from signal ... sigreturn(2)

blocked signals and waits for a signal /changes the set of sigsuspend(2)
action to take upon delivery of a signal /signal: Specifies the sigaction(2)

and variables used by signal/ signal.h: Contains definitions signal(4)
take upon delivery of/ sigaction, signal: Specifies the action to sigaction(2)

/changes the set of blocked signals and waits for a signal sigsuspend(2)
siginterrupt: Allows signals to interrupt functions siginterrupt(3)

sigpending: Examines pending signals ... sigpending(2)
compatibility interface to the/ sigpause: Provides a ... sigpause(3)

signals sigpending: Examines pending sigpending(2)
a compatibility interface to the sigprocmask function /Provides sigblock(2)

current signal mask sigprocmask, sigsetmask: Sets the sigprocmask(2)
Compatibility/ sigset, sighold, sigrelse, sigignore: ... sigset(3)

sigreturn: Returns from signal sigreturn(2)
sigignore: Compatibility/ sigset, sighold, sigrelse, ... sigset(3)

nonlocal goto sigsetjmp: Sets jump point for a sigsetjmp(3)
signal mask sigprocmask, sigsetmask: Sets the current sigprocmask(2)

stack context sigstack: Sets and gets signal sigstack(2)
a compatibility interface to the sigsuspend function /Provides sigpause(3)
the set of blocked signals and/ sigsuspend: Atomically changes sigsuspend(2)

interface to the sigaction()/ sigvec: Provides a compatibility sigvec(2)
thread sigwait: Suspends a calling sigwait(3)

atan2: Computes the/ sin, cos, tan, asin, acos, atan, sin(3)
hyperbolic functions sinh, cosh, tanh: Computes sinh(3)

null: Data sink .. null(7)
/Returns the value of the stack size attribute of a thread/ pthread_attr_getstacksize(3),

/Sets the value of the stack size attribute of a thread/ pthread_attr_setstacksize(3)'
brk, sbrk: Changes data segment size .. brk(2)

getpagesize: Gets the system page size .. getpagesize(2)
Gets the descriptor table size getdtablesize: ... getdtablesize(2)

I xvi

Permuted Index

name dn_skipname: Skips over a compressed domain •••••••.••••••••.••••••••• dn_skipname(3)
interval sleep: Suspends execution for an sleep(3)

current user ttys lot: Finds the slot in the utmp file for the ttyslot(3)
backlog of/ listen: Listens for socket connections and limits the listen(2)

getsockname: Gets the socket name .. getsockname(2)
networking: Introduction to socket networking facilities netintro(7)

getsockopt: Gets socket options ... getsockopt(2)
setsockopt: Sets socket options ... setsockopt(2)

operations shutdown: Shuts down socket send and receive ... shutdown(2)
sendmsg: Sends a message from a socket using a message structure sendmsg(2)

rresvport: Retrieves a socket with a privileged address rresvport(3)
bind: Binds a name to a socket .. bind(2)

send: Sends messages on a socket .. send(2)
sendto: Sends messages through a socket .. sendto(2)

Accepts a new connection on a socket accept: .. accept(2)
Gets the name of the peer socket getpeername: .. getpeername(2)

Receives a message from a socket recvmsg: ... recvmsg(2)
communication and returns a/ socket: Creates an end point for socket(2)

connected sockets socketpair: Creates a pair of socketpair(2)
connect: Connects two sockets .. connect(2)

recvfrom: Receives messages from sockets .. recvfrom(2)
Receives messages from connected sockets recv: .. recv(2)

Creates a pair of connected sockets socketpair: .. socketpair(2)
interface lo: Software loopback network lo(7)

encapsulating NS packets/ nsip: Software network interface nsip(7)
current/ abort: Generates a software signal to end the abort(3)

qsort: Sorts a table in place .. qsort(3)
scandir, alphasort: Scans or sorts directory contents .. scandir(3)

information about system address space configuration /Gets getaddressconf(2)
modulesin that process' address space /loading/unloading of ldr_xattach(3)

management routines spdbm: Security policy database spdbm(3)
mknod: Creates an FIFO or special file ... mknod(2)
stopio: Stop further 1/0 to a special file ... stopio(3)

/a character string to the specified integer data type atoi(3)
catclose: Closes a specified message catalog catclose(3)
catopen: Opens a specified message catalog catopen(3)

address of a symbolname within a specified package in another/ /the ldr_xlookup_package(3)
on a condition variable for a specified period of time /Waits pthread_cond_timedwait(3)

delivery of a/ sigaction, signal: Specifies the action to take upon sigaction(2)
system volume fs, inode: Specifies the format of the file fs(4)
memory image file core: Specifies the format of the core(4)

protocol (SPP) spp: Xerox sequenced packet spp(7)
printf, fprintf, sprintf: Prints formatted output printf(3)

and cube root functions sqrt, cbrt: Computes square root sqrt(3)
functions sqrt, cbrt: Computes square root and cube root sqrt(3)

/nrand48, mrand48, jrand48, srand48, seed48, lcong48:/ drand48(3)
numbers rand, rand_r, srand: Generates pseudo-random rand(3)

scanf, fscanf, sscanf: Converts formatted input scanf(3)
stab: Symbol table types .. stab(4)

sigstack: Sets and gets signal stack context ... sigstack(2)
/from the top of the cleanup stack of the calling thread and/ pthread_cleanup_pop(3)

lxvii

OSF/1 Programmer's Reference

/Pushes a routine onto the cleanup stack of the calling thread pthread_cleanup_push(3)
attributes/ /Sets the value of the stack size attribute of a thread pthread_attr_setstacksize(3;

/Returns the value of the stack size attribute of a thread/ pthread_attr_getstacksize(3
communication/ ftok: Generates a standard interprocess ... ftok(3)

profiling profil: Starts and stops execution profil(2)
information about a file stat, fstat, !stat: Provides .. stat(2)

control list of a file statacl: Retrieves the access statacl(3)
system statistics statfs, fstatfs, ustat: Gets file statfs(2)

fstatilabel: Retrieve a file/ statilabel, lstatilabel, .. statilabel(3)
fstatfs, ustat: Gets file system statistics statfs, ... statfs(2)

authorizations or privilege sets/ statpriv: Get kernel .. statpriv(3)
fstatslabel: Retrieve a file/ statslabel, lstatslabel, ... statslabel(3)

fd, stdin, stdout, stderr: File descriptors ... fd(7)
descriptors fd, stdin, stdout, stderr: File .. fd(7)

flockfile: Locks a stdio stream .. flockfile(3)
funlockfile: Unlocks a stdio stream .. funlockfile(3)

fd, stdin, stdout, stderr: File descriptors fd(7)
and match/ advance, compile, step: Regular-expression compile ••••••••.•••.••••.••.••• regexp(3)

time-of-day clock slime: Sets the system-wide stime(3)
file stopio: Stop further 1/0 to a special stopio(3)

Waits for a child process to stop or terminate /wait3: wait(2)
special file stopio: Stop further 1/0 to a stopio(3)

profil: Starts and stops execution profiling profil(2)
changes in a file to permanent storage fsync: Writes ... fsync(2)

forder: Database/ dbminit, fetch, store, delete, firstkey, nextkey, dbm(3)
strcpy, strcspn, strdup,/ strcat, strchr, strcmp, strcoll, string(3)
strcspn, strdup,/ strcat, strchr, strcmp, strcoll, strcpy, string(3)

strdup,/ strcat, strchr, strcmp, strcoll, strcpy, strcspn, •••••.••••••••••.•••.••••••••. string(3)
strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup,/ string(3)

strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup,/ .. string(3)
/strchr, strcmp, strcoll, strcpy, strcspn, strdup, strerror,/ .. string(3)

/strcmp, strcoll, strcpy, strcspn, strdup, strerror, strlen,/ .. string(3)
fileno: Maps stream pointer to file descriptor fileno(3)

clearerr: Clears indicators on a stream .. clearerr(3)
feof: Tests EOF on a stream .. feof(3)

flockfile: Locks a stdio stream .. flockfile(3)
fopen, freopen, fdopen: Opens a stream .. fopen(3)

funlockfile: Unlocks a stdio stream .. funlockfile(3)
gets, fgets: Gets a string from a stream .. gets(3)
puts, fputs: Writes a string to a stream .. puts(3)

a character or word from an input stream /fgetwc, getwchar: Gets getwc(3)
Repositions the file pointer of a stream /ftell, fgetpos, fsetpos: fseek(3)

a character or word from an input stream /getchar, getw: Gets getc(3)
Writes a character or a word to a stream /putchar, fputc, putw: putc(3)

Assigns buffering to a stream /setbuffer, setlinebuf: setbuf(3)
Gets a character from an input stream /unlocjced_getchar: unlocked_getc(3)

Writes a character to a stream /unlocked_putchar: unlocked_putc(3)
long quantities from a byte stream _getlong: Retrieves , _getlong(3)
short quantities from a byte stream _getshort: Retrieves _getshort(3)

fflush: Closes or flushes a stream fclose, ... fclose(3)
Tests the error indicator on a stream ferror: ... ferror(3)

lxviii

Permuted Index

fgetws: Gets a string from a stream getws, ... getws(3)
byte quantities into the byte stream putlong: Places long putlong(3)
byte quantities into the byte stream putshort: Places short putshort(3)

Writes a character or a word to a stream putwc, putwchar, fputwc: putwc(3)
fputws: Writes a string to a stream putws, ... putws(3)
a character back into input stream ungetc, ungetwc: Pushes ungetc(3)

/strcoll, strcpy, strcspn, strdup, strerror, strlen, strncat,/ .. string(3)
to string strftime: Converts date and time strftime(3)

gets, fgets: Gets a string from a stream ... gets(3)
getws, fgetws: Gets a string from a stream ... getws(3)

string /Converts a wide character string into a multibytecharacter wcstombs(3)
bzero, ffs: Performs bit and byte string operations bcopy, bcmp, bcopy(3)

/strtod: Converts a character string to a double-precision/ atof(3)
/an Internet dot-formatted address string to a network address/ inet_network(3)

puts, fputs: Writes a string to a stream .. puts(3)
putws, fputws: Writes a string to a stream .. putws(3)

/or double-byte) character string to a wide character string mbstowcs(3)
/an Internet network address string to an Internet address/ inet_addr(3)

/strtoul: Converts a character string to the specified integer/ •...••..••••.••••.•••..•.•....• atoi(3)
string into a multibytecharacter string /Converts a wide character wcstombs(3)

into a dot-formatted character string /Internet integer address inet_ntoa(3)
string to a wide character string /or double-byte) character mbstowcs(3)
Converts date and time to string strftime: ... strftime(3)

a floating-point number to a string /fcvt, gcvt: Converts ecvt(3)
strxfrm: Performs operations on strings /strtok, strtok_r, ... string(3)

operations on wide character strings /wstrtok: Performs wstring(3)
/strcspn, strdup, strerror, strlen, strncat, strncmp,/ .. string(3)

/strdup, strerror, strlen, strncat, strncmp, strncpy,/ string(3)
/strerror, strlen, strncat, strncmp, strncpy, strpbrk,/ string(3)

/strlen, strncat, strncmp, strncpy, strpbrk, strrchr,/ string(3)
/strncat, strncmp, strncpy, strpbrk, strrchr, strspn, strstr,/ string(3)
/strncmp, strncpy, strpbrk, strrchr, strspn, strstr, strtok,/ string(3)

/strncpy, strpbrk, strrchr, strspn, strstr, strtok, strtok_r,/ string(3)
/strpbrk, strrchr, strspn, strstr, strtok, strtok_r,/ .. string(3)

string to a/ atof, strtod: Converts a character atof(3)
/strpbrk, strrchr, strspn, strstr, strtok, strtok_r, strxfrm:/ string(3)

/strrchr, strspn, strstr, strtok, strtok_r, strxfrm: Performs/ string(3)
character string to/ atoi, atol, strtol, strtoul: Converts a atoi(3)

string to/ atoi, atol, strtol, strtoul: Converts a character atoi(3)
which/ termios.h : Defines the structure of the termios file, termios(4)

t_alloc: Allocates a library structure .. t_alloc(3)
t_free: Frees a library structure .. t_free(3)

from a socket using a message structure /Sends a message sendmsg(2)
/strspn, strstr, strtok, strtok_r, strxfrm: Performs operations on/ string(3)

dbm_error, dbtn_clearerr: Database subroutines /dbm_forder, ndbm(3)
nextkey, forder: Database subroutines /delete, firstkey, dbm(3)

subsystem group to its name subsys_real_name: Map a protected subsys_real_name(3)
subsys_real_name: Map a protected subsystem group to its name subsys_real_name(3)

current/ getgroups: Gets the supplementary group set of the getgroups(2)
cmdauth: Command authorization support routines .. cmdauth(3)

sigwait: Suspends a calling thread sigwait(3)

I xix

OSF/1 Programmer's Reference

is received pause: Suspends a process until a signal pause(3)
interval sleep: Suspends execution for an sleep(3)

usleep: Suspendsexecution for an interval usleep(3)
swab: Swaps bytes ... swab(3)

paging and/ swapon: Adds a swap device for interleaved swapon(2)
interleaved paging and swapping swapon: Adds a swap device for , ... swapon(2)
device for interleaved paging and swapping swapon: Adds a swap swapon(2)

swab: Swaps bytes .. swab(3)
/Returns the address of a symbol name in a package ldr_lookup_package(3)

stab: Symbol table types ... stab(4)
symlink: Makes a symbolic link to a file .. symlink(2)

readlink: Reads the value of a symbolic link .. readlink(2)
package/ /Returns the address of a symbolname within a specified ldr_xlookup_package(3)

a file symlink: Makes a symbolic link to symlink(2)
sync: Updates all file systems sync(2)

clock /Corrects the time to allow synchronization of the system adjtime(2)
msync: Synchronizes a mapped file msync(2)
t_sync: Synchronizes transport library t_sync(3)
select: Synchronous 1/0 multiplexing select(2)

variables sysconf: Gets configurable system sysconf(3)
setlogmask: Controls the system/ syslog, openlog, closelog, syslog(3)

/Gets information about system address space/ .. getaddressconf(2)
to allow synchronization of the system clock /Corrects the time adjtime(2)

/putprdfnam: Manipulate system default database entry getprdfent(3)
setlogmask: Controls the system log /openlog, closelog, syslog(3)

mmap: Maps file system object into virtual memory mmap(2)
paging/ madvise: Advise the system of a process' expected madvise(2)

reboot: Reboots system or halts processor reboot(2)
getpagesize: Gets the system page size ; getpagesize(2)

/setrlimit: Controls maximum system resource consumption getrlimit(2)
statfs, fstatfs, ustat: Gets file system statistics .. statfs(2)

sysconf: Gets configurable system variables ... sysconf(3)
Specifies the format of the file system volume fs, inode: fs(4)

mount: Mounts a file system ... mount(3)
umount: Unmounts a file system ... umount(3)

an existing file on currentfile system /directory entry for link(2)
Gets information about a file system /setfsent, endfsent: getfsent(3)

a label mount of a file system !mount: Initializes lmount(3)
umount: Mounts or unmounts a file system mount, .. mount(2)

directory or a file within a file system rename: Renames a rename(2)
or disables quotas on a file system setquota: Enables setquota(2)

Gets the name of the current system uname: ... uname(2)
getclock: Geis current value of system-wide clock ... getclock(3)

setclock: Sets value of system-wide clock ... setclock(3)
stime: Sets the system-wide time-of-day clock stime(3)

system: Executes a shell command system(3)
ns: Xerox Network Systems protocol family .. ns(7)
hier: Layout of file systems .. hier(5)

sync: Updates all file systems .. sync(2)
Gets list of all mounted file systems getfsstat: ... getfsstat(2)

request t_accept: Accepts a connect t_accept(3)

lxx

Permuted Index

structure t_alloc: Allocates a library t_alloc(3)
transport endpoint t_bind: Binds an address to a t_bind(3)

endpoint t_close: Closes a transport t_close(3)
connection with another/ t_connect: Establishes a .. t_connect(3)

t_error: Produces error message t_error(3)
t_free: Frees a library structure t_free(3)

information t_getinfo: Gets protocol-specific t_getinfo(3)
state of the transport provider t_getstate: Gets the current t_getstate(3)

request !_listen: Listens for a connect t_listen(3)
event on a transport endpoint !_look: Looks at the current t_look(3)

endpoint !_open: Establishes a transport t_open(3)
options for a transport endpoint t_optmgmt: Manages protocol t_optmgmt(3)
expedited data on a connection t_rcv: Receives normal data or t_rcv(3)

confirmation from a connect/ t_rcvconnect: Receives the t_rcvconnect(3)
information t_rcvdis: Retrieves disconnect t_rcvdis(3)

an orderly release indication t_rcvrel: Acknowledges receipt of t_rcvrel(3)
t_rcvudata: Receives a data unit t_rcvudata(3)

error indication t_rcvuderr: Receives a unit data t_rcvuderr(3)
expedited data over a connection t_snd: Sends normal data or t_snd(3)

disconnect request t_snddis: Sends user-initiated t_snddis(3)
connect orderly release t_sndrel: Initiates an endpoint t_sndrel(3)

t_sndudata: Sends a data unit t_sndudata(3)
library !_sync: Synchronizes transport t_sync(3)

endpoint t_unbind: Disables a transport t_unbind(3)
qsort: Sorts a table in place .. qsort(3)

Gets the descriptor table size getdtablesize: .. getdtablesize(2)
stab: Symbol table types ... stab(4)

from the private known package table /an installed module ldr_remove(3)
en: Locale country convention tables ... en(4)

hcreate, hdestroy: Manages hash tables hsearch, ... hsearch(3)
Computes the/ sin, cos, tan, asin, acos, atan, atan2: sin(3)

functions sinh, cosh, tanh: Computes hyperbolic sinh(3)
tar: Tape archive file format ... tar(4)

tar: Tape archive file format tar(4)
complete tcdrain: Waits for output to tcdrain(3)
functions tcflow: Performs flow control .•........•...•....•.•.......... tcflow(3)

output data or nonread input/ tcflush: Flushes nontransmitted tcflush(3)
associated with the terminal tcgetattr: Gets the parameters tcgetattr(3)

group ID tcgetpgrp: Getsforeground process tcgetpgrp(3)
control protocol tcp: Internet transmission tcp(7)

asynchronous serial data line tcsendbreak: Sends a break on an tcsendbreak(3)
associated with the terminal tcsetattr: Sets the parameters tcsetattr(3)

process group ID tcsetpgrp: Sets foreground tcsetpgrp(3)
search trees tsearch, tfind, tdelete, twalk: Manages binary tsearch(3)

closedir:/ opendir, readdir, telldir, seekdir, rewinddir, opendir(3)
a temporary file tmpnam, tempnam: Constructs the name for tmpnam(3)

tmpfile: Creates a temporary file ... tmpfile(3)
Constructs the name for a temporary file tmpnam, tempnam: tmpnam(3)
/putprtcnam: Manipulate terminal control database entry getprtcent(3)

pty: Pseudo terminal driver .. pty(7)
termios file, which provides the terminal interface for POSIX/ /the termios(4)

lxxi

OSF/1 Programmer's Reference

tty: General terminal interface ... tty(7)
Gets input baud rate for a terminal cfgetispeed: ... cfgetispeed(3)

Gets output baud rate for a terminal cfgetospeed: .. cfgetospeed(3)
Sets input baud rate for a terminal cfsetispeed: ... cfsetispeed(3)

Sets output baud rate for a terminal cfsetospeed: .•.••••••••••.•••••.••••••••••••••••.•••.••• cfsetospeed(3)
the pathname for the controlling terminal ctermid: Generates ctermid(3)

parameters associated with the terminal tcgetattr: Gets the ••••••.•••••••••••••••••••••••••••• tcgetattr(3)
parameters associated with the terminal tcsetattr: Sets the tcsetattr(3)

isatty: Gets the name of a terminal ttyname, .. ttyname(3)
terminfo: Describes terminals by capability .. terminfo(4)

for a child process to stop or terminate /waitpid, wait3: Waits •••••••.••••.••••••••••••. wait(2)
Waits for a thread to terminate pthreadjoin: ... pthreadjoin(3)

exit, atexit, _exit: Terminates a process .. exit(2)
pthread_exit: Terminates the calling thread pthread_exit(3)

pthread_cancel: Initiates termination of a thread .. pthread_cancel(3)
capability terminfo: Describes terminals by terminfo(4)

/: Defines the structure of the termios file, which provides the/ termios(4)
of the termios file, which/ termios.h : Defines the structure ••••••••.•••.•••••••••••••. termios(4)

feof: Tests EOF on a stream ... feof(3)
isnan: Tests for NaN (Not a Number) isnan(3)

stream ferror: Tests the error indicator on a ferror(3)
memory plock: Locks a process' text and/or data segments in plock(2)

binary search trees !search, tfind, tdelete, twalk: Manages tsearch(3)
entire current locale or portions thereof /or queries the program's setlocale(3)
/the cleanup stack of the calling thread and optionally executes it pthread_cleanup_pop(3)

pthread_attr_create: Creates a thread attributes object .. pthread_attr_create(3)
pthread_attr_delete: Deletes a thread attributes object .. pthread_attr_delete(3)
of the stack size attribute of a thread attributes object /value pthread_attr_getstacksize(3:
of the stack size attribute of a thread attributes object /value pthread_attr_setstacksize(3)
pthread_equal: Compares two thread identifiers .. pthread_equal(3)

/the scheduler to run another thread instead of the current one pthread_yield(3)
pthread_cond_signal: Wakes up a thread that is waiting on a/ pthread_cond_signal(3)

pthreadjoin: Waits for a thread to terminate ... pthreadjoin(3)
pthread_create: Creates a thread .. pthread_create(3)

pthread_detach: Detaches a thread .. pthread_detach(3)
sigwait: Suspends a calling thread .. sigwait(3)

cancellation point in the calling thread /Creates a .. pthread_testcancel(3)
cancelability of the calling thread /disables the asynchronous pthread_setasynccancel(3)
cancelability of the calling thread /or disables the general pthread_setcancel(3)

the cleanup stack of the calling thread /Pushes a routine onto pthread_cleanup_push(3)
Initiates termination of a thread pthread_cancel: .. pthread_cancel(3)

Terminates the calling thread pthread_exit: .. pthread_exit(3)
Returns the ID of the calling thread pthread_self: .. pthread_self(3)

/Creates a key to be used with thread-specific data .. pthread_keycreate(3)
pthread_setspecific: Binds a thread-specific value to a key pthread_setspecific(3)

condition variable /Wakes up all threads that are waiting on a pthread_cond_broadcast(3)
stime: Sets the system-wide time-of-day clock ... stime(3)

tod: Check time-of-day locking ... tod(3)
time: Gets time ... time(3)

reltimer: Establishes timeout intervals of a/ .. reltimer(3)
/ualarm: Sets or changes the timeout of interval timers alarm(3)

lxxii

Permuted Index

mktimer: Allocates a per-process timer .. mktimer(3)
rmtimer: Frees a per-process timer .. rmtimer(3)

intervals of a per-process timer /Establishes timeout reltimer(3)
or returns the value of interval timers /getitimer: Sets ... getitimer(2)

changes the timeout of interval timers alarm, ualarm: Sets or alarm(3)
Gets process and child process times times: .. times(3)

Sets file access and modification times utime, utimes: .. utime(2)
process times times: Gets process and child times(3)

tmpfile: Creates a temporary file tmpfile(3)
name for a temporary file tmpnam, tempnam: Constructs the tmpnam(3)

to upper, _to upper: Translates/ toascii, tolower, _tolower, conv(3)
tod: Check time-of-day locking .•••.••••.•••••••••••••••••• tod(3)

_toupper: Translates/ toascii, tolower, _tolower, toupper, ••••••••.••.••••.•••••••••••••••••• conv(3)
/Removes a routine from the top of the cleanup stack of the/ pthread_cleanup_pop(3)

toascii, tolower, _tolower, toupper, _toupper: Translates/ conv(3)
process ptrace: Traces the execution of a child ••••••••••••••••••••••••••••• ptrace(2)

integer into its/ inet_lnaof: Translates an Internet address inet_lnaof(3)
and host/ inet_makeaddr: Translates an Internet address inet_makeaddr(3)

integer into its/ inet_netof: Translates an Internet address •..••..•••..••......•..••..•••• inet_netof(3)
address into a/ inet_ntoa: Translates an Internet integer inet_ntoa(3)

address string to an/ inet_addr: Translates an Internet network inet_addr(3)
dot-formatted/ inet_network: Translates an Internet °" inet_network(3)
_tolower, toupper, _toupper: Translates characters /tolower, conv(3)

file format for output from OSF/l translators OSF/ROSE: Object OSF/ROSE(4)
tcp: Internet transmission control protocol tcp(7)

t_bind: Binds an address to a transport endpoint .. t_bind(3)
t_close: Closes a transport endpoint .. t_close(3)

t_open: Establishes a transport endpoint •••••••••••••••••••••••.••.••••••••••••••••••••... t_open(3)
t_unbind: Disables a transport endpoint .. t_unbind(3)

Looks at the current event on a transport endpoint t_look: t_look(3)
Manages protocol options for a transport endpoint t_optmgmt: t_optmgmt(3)

!_sync: Synchronizes transport library .. t_sync(3)
Gets the current state of the transport provider t_getstate: t_getstate(3)

a connection with another transport user /Establishes t_connect(3)
mid: Traverse multilevel directory mld(3)

ftw: Walks a file tree .. ftw(3)
twalk: Manages binary search trees tsearch, tfind, tdelete, tsearch(3)

pthread_mutex_trylock: Tries once to lock a mutex pthread_mutex_trylock(3)
acos, atan, atan2: Computes the trigonometric and inverse/ /asin, sin(3)

/the trigonometric and inverse trigonometric functions ... sin(3)
length truncate, ftruncate: Changes file truncate(2)

Manages binary search trees tsearch, tfind, tdelete, twalk: tsearch(3)
tty: General terminal interface tty(7)

a terminal ttyname, isatty: Gets the name of ttyname(3)
utmp file for the current user ttyslot: Finds the slot in the ttyslot(3)

trees tsearch, tfind, tdelete, !walk: Manages binary search tsearch(3)
to the specified integer data type /Converts a character string atoi(3)

stab: Symbol table types .. stab(4)
/localtime, localtime_r, mktime, tzset: Converts time units ctime(3)

timeout of interval/ alarm, ualarm: Sets or changes the alarm(3)
protocol (UDP) udp: Internet user datagram udp(7)

lxxiii

OSF/1 Programmer's Reference

ulimit: Sets and gets user limits ulimit(3)
the file creation mask umask: Sets and gets the value of umask(2)

system mount, umount: Mounts or unmounts a file mount(2)
umount: Unmounts a file system umount(3)

current system uname: Gets the name of the uname(2)
character back into input stream ungetc, ungetwc: Pushes a ungetc(3)

into input stream ungetc, ungetwc: Pushes a character back ungetc(3)
seed48, lcong48: Generates uniformly distributed/ /srand48, drand48(3)

mktemp, mkstemp: Constructs a unique filename .. mktemp(3)
host gethostid: Gets the unique identifier of the current gethostid(2)
host sethostid: Sets the unique identifier of the current - ... sethostid(2)
t_rcvuderr: Receives a unit data error indication t_rcvuderr(3)

t_rcvudata: Receives a data unit .. t_rcvudata(3)
t_sndudata: Sends a data unit .. t_sndudata(3)

mktime, tzset: Converts time units /localtime, localtime_r, ctime(3)
unlink: Removes a directory entry unlink(2)

loaded module unload: Unloads a previously unload(3)
loaded in another/ ldr_xunload: Unloads a module previously ldr_xunload(3)

module unload: Unloads a previously loaded unload(3)
Gets a character from an input/ unlocked_getc, unlocked_getchar: unlocked_getc(3)

character from an/ unlocked_getc, unlocked_getchar: Gets a unlocked_getc(3)
Writes a character to a stream unlocked_putc, unlocked_putchar: •••••••••••••••••••••• unlocked_putc(3)

character to a/ unlocked_putc, unlocked_putchar: Writes a unlocked_putc(3)
pthread_mutex_unlock: Unlocks a mutex .. pthread_mutex_unlock(3)

msem_unlock: Unlocks a semaphore ... msem_unlock(3)
funlockfile: Unlocks a stdio stream ... funlockfile(3)

munmap: Unmaps a mapped region munmap(2)
mount, umount: Mounts or unmounts a file system .. mount(2)

umount: Unmounts a file system .. umount(3)
from/ htonl: Converts an unsigned long (32-bit) integer htonl(3)
from/ ntohl: Converts an unsigned long (32-bit) integer ntohl(3)
from/ htons: Converts an unsigned short (16-bit) integer htons(3)
from/ ntohs: Converts an unsigned short (16-bit) integer ntohs(3)
pause: Suspends a process until a signal is received .. pause(3)

Performs a linear search and update !search, !find: ... lsearch(3)
sync: Updates all file systems ... sync(2)

/Specifies the action to take upon delivery of a signal sigaction(2)
basic group information in the user database /Accesses the getgrent(3)

the basic user information in the user database /endpwent: Accesses getpwent(3)
udp: Internet user datagram protocol (UDP) udp(7)

environ: User environment ... environ(5)
getluid: Gets login user ID .. getluid(3)
setluid: Sets login user ID .. setluid(3)

setuid: Sets the user ID .. setuid(2)
the process' real or effective user ID getuid, geteuid: Gets getuid(2)

setreuid: Sets real and effective user ID's .. setreuid(2)
seteuid: Sets the process user IDs setruid, ... setruid(3)

/endpwent: Accesses the basic user information in the user/ getpwent(3)
ulimit: Sets and gets user limits ... ulimit(3)

identity: Gets or checks user or group IDs .. identity(3)
endusershell: Gets names of legal user shells /setusershell, .. getusershell(3)

I xx iv

Permuted Index

connection with another transport user t_connect: Establishes a t_connect(3)
in the utmp file for the current user ttyslot: Finds the slot ttyslot(3)

t_snddis: Sends user-initiated disconnect request •••••••••••••••••••••••••. t_snddis(3)
/gr_idtoname: Map between userand group names and IDs pw_mapping(3)

cuserid: Gets the alphanumeric username associated with the/ cuserid(3)
Gets disk description using a disk name getdiskbyname: getdiskbyname(3)

/Sends a message from a socket using a message structure sendmsg(2)
interval usleep: Suspendsexecution for an usleep(3)

statistics statfs, fstatfs, ustat: Gets file system .. statfs(2)
Gets information about resource utilization getrusage, vtimes: getrusage(2)

and modification times utime, utimes: Sets file access utime(2)
modification times utime, utimes: Sets file access and utime(2)

endutent, utmpname: Accesses utmp file entries /setutent, getutent(3)
ttyslot: Finds the slot in the utmp file for the current user ttyslot(3)

/pututline, setutent, endutent, utmpname: Accesses utmp file/ getutent(3)
mvalid: Checks memory region for validity .. mvalid(2)

/labs, !div: Computes absolute value and division of integers abs(3)
pthread_getspeci fie: Returns the value bound to a key .. pthread_getspeci fic(3)

and floating-point absolute value functions /Modulo Remainder .••..•••...•.••..•. floor(3)
readlink: Reads the value of a symbolic link .. readlink(2)
getenv: Returns the value of an environment variable getenv(3)

/getitimer: Sets or returns the value of interval timers .. getitimer(2)
getclock: Gets current value of system-wide clock getclock(3)

setclock: Sets value of system-wide clock setclock(3)
neg: Negates and returns the value of the double operand x neg(3)

umask: Sets and gets the value of the file creation mask umask(2)
of a thread/ /Returns the value of the stack size attribute pthread_attr_getstacksize(3)

of a thread attributes/ /Sets the value of the stack size attribute pthread_attr_setstacksize(3)
/Binds a thread-specific value to a key ... pthread_setspecific(3)

a double-precision floating-point value /a character string to atof(3)
function and complex absolute value /Euclidean distance hypot(3)

/vfprintf, vsprintf: Formats a varargs parameter list for output vprintf(3)
variable-length parameter/ varargs: Handles a .. varargs(3)

/Creates a condition variable attributes object pthread_condattr_create(3)
/Deletes a condition variable attributes object pthread_condattr_delete(3)

of time /Waits on a condition variable for a specified period pthread_cond_timedwait(3)
putenv: Sets an environment variable ... putenv(3)
that is waiting on a condition variable /Wakes up a thread pthread_cond_signa1(3)

that are waiting on a condition variable /Wakes up all threads pthread_cond_broadcast(3)
the value of an environment variable getenv: Returns getenv(3)

Destroys a condition variable pthread_cond_destroy: pthread_cond_destroy(3)
Creates a condition variable pthread_cond_init: pthread_cond_init(3)

Waits on a condition variable pthread_cond_wait: pthread_cond_wait(3)
varargs: Handles a variable-length parameter list varargs(3)

/Contains definitions and variables used by signal/ signal(4)
sysconf: Gets configurable system variables .. sysconf(3)

flag letters from the argument vector getopt: Gets .. getopt(3)
fork, vfork: Creates a new process fork(2)

varargs parameter list/ vprintf, vfprintf, vsprintf: Formats a vprintf(3)
Maps file system object into virtual memory mmap: .. mmap(2)

interface lvm: Logical Volume Manager (LVM) programming lvm(7)

lxxv

OSF/1 Programmer's Reference

the format of the file system volume fs, inode: Specifies fs(4)
Formats a varargs parameter list/ vprintf, vfprintf, vsprintf: vprintf(3)

parameter/ vpriiltf, vfprintf, vsprintf: Formats a varargs vprintf(3)
resource utilization getrusage, vtimes: Gets information about getrusage(2)

child process to stop or/ wait, waitpid, wait3: Waits for a wait(2)
to stop or/ wait, waitpid, wait3: Waits for a child process wait(2)

/Wakes up all threads that are waiting on a condition variable pthread_cond_broadcast(3)
/Wakes up a thread that is waiting on a condition variable pthread_cond_signa1(3)

process to stop or/ wait, waitpid, wait3: Waits for a child wait(2)
or/ wait, waitpid, wait3: Waits for a child process to stop wait(2)

the set of blocked signals and waits for a signal /changes sigsuspend(2)
pthreadjoin: Waits for a thread to terminate pthreadjoin(3)

tcdrain: Waits for output to complete tcdrain(3)
a/ pthread_cond_timedwait: Waits on a condition variable for pthread_cond_timedwait(3)

pthread_cond_wait: Waits on a condition variable pthread_cond_wait(3)
on a/ pthread_cond_signal: Wakes up a thread that is waiting pthread_cond_signal(3)

waiting/ pthread_cond_broadcast: Wakes up all threads that are pthread_cond_broadcast(3)
ftw: Walks a file tree .. ftw(3)

character string into a/ wcstombs: Converts a wide wcstombs(3)
into a multibyte character wctomb: Converts a wide character wctomb(3)

character wctomb: Converts a wide character into a multibyte wctomb(3)
wcstombs: Converts a wide character string into a/ wcstombs(3)

/character string to a wide character string ... mbstowcs(3)
wstrtok: Performs operations on wide character strings /wstrspn, wstring(3)

a multibyte character to a wide character mbtowc: Converts mbtowc(3)
Controls cursor movement and windowing curses Library: curses(3)

Renames a directory or a file within a file system rename: rename(2)
/the address of a symbolname within a specified package in/ ldr_xlookup_package(3)

/getw: Gets a character or word from an input stream getc(3)
/getwchar: Gets a character or word from an input stream getwc(3)
putw: Writes a character or a word to a stream /putchar, fputc, putc(3)

fputwc: Writes a character or a word to a stream /putwchar, putwc(3)
functions for/ Programmers Workbench Library: Provides libPW(3)

write, writev: Writes to a file write(2)
stream putwc, putwchar, fputwc: Writes a character or a word to a putwc(3)

putc, putchar, fputc, putw: Writes a character or a word to a/ putc(3)
unlocked_putc, unlocked_putchar: Writes a character to a stream unlocked_putc(3)

function error perror: Writes a message explaining a perror(3)
puts, fputs: Writes a string to a stream puts(3)

putws, fputws: Writes a string to a stream putws(3)
permanent storage fsync: Writes changes in a file to fsync(2)

write, writev: Writes to a file .. write(2)
write, writev: Writes to a file ... write(2)

Opens a file for reading or writing open, creat: ... open(2)
wsprintf: Prints formatted output wsprintf(3)
wsscanf: Converts formatted input wsscanf(3)

wstrcpy, wstrcspn, wstrdup,/ wstrcat, wstrchr, wstrcmp, wstring(3)
wstrcspn, wstrdup,/ wstrcat, wstrchr, wstrcmp, wstrcpy, wstring(3)

wstrdup,/ wstrcat, wstrchr, wstrcmp, wstrcpy, wstrcspn, wstring(3)
wstrcat, wstrchr, wstrcmp, wstrcpy, wstrcspn, wstrdup,/ wstring(3)

/wstrchr, wstrcmp, wstrcpy, wstrcspn, wstrdup, wstrlen,/ wstring(3)

lxxvi

Permuted Index

/wstrcmp, Wstrcpy, wstrcspn, wstrdup, wstrlen, wstrncat,/ wstring(3)
/wstrcpy, wstrcspri, wstrdup, wstrlen, wstrncat, wstmcmp,/ wstring(3)
/wstrcspn, wstrdup, wstrlen, wstrncat, wstrncmp, wstrncpy,/ •••.•••••••••••.•••.•.•••••• wstring(3)
/wstrdup, wstrlen, wstrncat, wstrncmp, wstmcpy, wstrpbrk,/ wstring(3)

/wstrlen, wstrncat, wstmcmp, wstrncpy, wstrpbrk, wstrrchr,/ wstring(3)
/wstmcat, wstrncmp, wstmcpy, wstrpbrk, wstrrchr, wstrspn,/ _. ;i; wstring(3)
/wstmcmp, wstrncpy, wstrpbrk, wstrrchr, wstrspn, wstrtok:/ wstring(3)

/wstmcpy, wsttpbrk, wstrrchr, wstrspn, wstrtok: Performs/ wstring(3)
/wstrpbrk, wstrrchr, wstrspn, wstrtok: Performs operations on/ ; wstring(3)

the value of the double operand x neg: Negates and returns neg(3)
idp: Xerox Internet Datagram Protocol idp(7)

family ns: Xerox Network Systems protOcol ns(7)
routines ns_addr, ns_ntoa: Xerox NS address conversion ns_addr(3)

(SPP) spp! Xerox sequenced packet protocol spp(7)
functions jO,jl,jn, yO, yl, yn: Computes Bessel bessel(3)

jO, jl, jn, yO, yl, yn! Computes Bessel functions bessel(3)
jO,jl,jn, yO, yl, yn: Computes Bessel functions bessel(3)

setstate: Generates "better"/ random, srandom, initstate, random(3)
"better"/ random, srandom, initstate, setstate: Generates ••••••..•••.•.••••••••••••••••..•• random(3)

Generates "better"/ random, srandom, initstate, setstate: random(3)
"better" pseudo-random numbers /setstate: Generates random(3)

setstate: Generates "better" pseudo-random numbers /initstate, random(3)

lxxvii

Chapter 1

Functions

This chapter contains reference pages for OSF/l functions. The reference
pages from the man2 and man3 directories are sorted alphabetically in this
chapter.

1.1 Organization of the Ref ere nee Pages

The manual pages for functions in this volume use the following format:

Purpose

Synopsis

This section describes the general purpose of the programming
interface.

This section describes the appropriate syntax for using the
programming interface, including any headers, and the types
of all arguments.

1-1

OSF/1 Programmer's Reference

Description This section describes the behavior of the interface, including
the conditions or permissions required for its successful use,
the domain of legal values for all arguments, and the
interface's effects on the state of processes or files.

Return Value

Errors

This section specifies the return values for successful or
unsuccessful completion of the invoked function.

This section describes the error conditions under which the
invoked function will or may fail to complete successfully,
and the value of errno associated with each.

Related Information
This section provides cross-references to related interfaces and
headers described within this document.

1.2 Error Numbers

1-2

This section summarizes and describes the error codes ("errnos") returned by
functions. Some error codes represent more than one type of error. For
example, [E2BIG] can indicate that the specified argument size has
exceeded the system limit of ARG_MAX, or that the specified number of
sembuf structures has exceeded a predefined limit.

The error codes are listed in alphabetical order in Table 1-1.

Table 1-1. OSF/1 Errnos

Name

[E2BIG]

[EACCES]

[EADDRINUSE]

Description

Indicates that the specified
argument list exceeds the system
limit of ARG_MAX bytes, or the
number of bytes in the message
exceeds the predefined limit.

Indicates that the requested
operation did not have the proper
access permissions. This error may
also indicate one or more of the
following: that the named file is not
an ordinary file (acct()); the
operation would cause the parent
directory or process' information
level to float such that it would no
longer be dominated by the
directory or process' sensitivity
level; the requested file is not
available for read or write access;
the process is attempting to mount
on a multilevel child directory; the
value of the process ID argument
matches the process ID of a child
process of the calling process and
the child process has successfully
executed one of the exec functions
(setpgid()); the function is trying to
manipulate two files on two different
file systems (setquota()).

Indicates that the specified address
is already in use.

Functions

Value

7

13

48

1-3

OSF/1 Programmer's Reference

Name

[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EAGAIN]

[EBADF]

[EBUSY]

[ECHILD]

1-4

Description

Indicates that the specified address
is not available from the local
machine.

Indicates that the addresses in the
specified address family are not
supported by the protocol family.

Indicates that the requested
resource, such as a lock or a
process, is temporarily unavailable.
This error may also indicate one or
both of the following: if the
O_NONBLOCK flag is set for the
requested function, the process
would be delayed in a read or write
operation, or that the specified time
has elapsed
(pthread_cond_timedwait()).

Indicates that a socket or file
descriptor parameter is invalid.

Indicates that the requested
element is currently unavailable, or
the associated system limit was
exceeded.

Indicates either that the child
process does not exist, or that the
requested child process information
is unavailable.

Value

49

47

35

9

16

10

Name
[ECONNABORTED]

[ECONNREFUSED]

[EDEADLK]

[EDOM]

[EDQUOT]

[EEXIST]

[EFAULT]

Functions

Description Value
Indicates that the software caused a 53
connection abort because there is
no space on the socket's queue and
the socket cannot receive further
connections.

Indicates that the connection
request was refused.

Indicates either a probable deadlock
condition, or that the requested lock
is owned by someone else.

Indicates that x and/or y are either
Not a Number (NaN), or that they
are in some other way unacceptable
(for example, exceed system limits).

Indicates that the file system of the
requested directory has exceeded
the user's quota of disk blocks.

Indicates that the request element
(for example, file, semaphore, etc.)
already exists.

Indicates that the requested
address is in some way invalid, for
example, out of bounds.

61

11

33

69

17

14

1-5

OSF/1 Programmer's Reference

Name

[EFBIG]

[EIDRM]

[EINTR]

[EINVAL]

1-6

Description

Indicates either that the file size
exceeds the process' file size limit,
or that the requested semphore
number is invalid (0 or greater than
or equal to the specified number of
semaphores).

Indicates that the requested
semaphore or message queue ID
has been removed from the system.

Indicates that an interruptible
function's process was interrupted
by a signal, which it caught.

Indicates that an invalid argument
was passed to the function (such
as, the requested argument does
not exist or is out of bounds or is not
a regular file, or that the result
would be invalid). This error may
also indicate one or more of the
following: the requested socket is
not accepting connections
(accept()) or is already bound
(bind()); the specified super block
had a bad magic number or out of
range block size (mount()); the
requested parameter is a
lock/unlock parameter, but the
element to be locked is already
locked/unlocked (plock{)); the
kernel has not been compiled with
the QUOTA option (quota()); an
attempt was made to to ignore or
supply a handler for the SIGKILL,
SIGSTOP, and SIGCONT signals

Value

27

81

4

22

Name

[EIO]

[EISCONN]

[EISDIR]

[ELOOP]

[EM FILE]

Functions

Description Value
(sigaction()); the requested device
was not configured as a swap
device or does not allow paging
(swapon()); the requested device is
not mounted or local (mount()).

Indicates a read or write physical 5
1/0 error. These errors do not
always occur with the associated
function, but can occur with the
subsequent function. This error
may also indicate that the requested
parameter does not have an
appropriate value, or is invalid
(ptrace()).

Indicates that the socket is already
connected.

Indicates either that the request was
for a write access to a file but the
specified filename was actually a
directory, or that the function was
trying to rename a directory as a
file.

Indicates that too many links were
encountered in translating a
pathname.

Indicates one or more of the
following errors: too many file
descriptors are open (exceeding
OPEN_MAX); no space remains in
the mount table; the attempt to
attach a shared memory region

56

21

62

24

1-7

OSF/1 Programmer's Reference

Name

[EMLINK]

[EMSGSIZE]

[ENAMETOOLONG]

[ENETUNREACH]

[EN FILE]

[ENOBUFS]

[ENODEV]

1-8

Description
exceeded the maximum number of
attached regions allowed for any
one process.

Indicates that the number of links
would exceed LINK_MAX.

Indicates that the message is too
large to be sent all at once, as the
socket requires.

Indicates that the
argument exceeds
(currently 1024) or
component exceeds
(255).

pathname
PATH_MAX

a pathname
NAME_MAX

Indicates that no route to the
network or host exists.

Indicates either that the system file
table is full, or that there are too
many files currently open in the
system.

Indicates insufficient resources,
such as buffers, to complete the
call.

Indicates one or more of the
following errors: the file descriptor
refers to an object that cannot be
mapped; the requested block
special device file does not exist; a
file system is unmounted.

Value

31

40

63

51

23

55

19

Name

[ENO ENT]

[ENOEXEC]

[ENOLCK]

Description

Indicates one or more of the
following errors: the specified file
pathname or directory pathname
does not exist or points to an empty
string; the O_CREAT flag is set and
the named file or path prefix does
not exist (open()); a message
queue identifier does not exist for a
message key identifier and the
IPC_CREAT flag is not set for the
function (msgget()); a semaphore
ID does not exist for a semaphore
key identifier and the IPC_CREAT
flag is not set for the function
(semget()); a shared memory
region ID does not exist for a
shared memory region key identifier
and the IPC_CREAT flag is set for
the function (shmeget()).

Indicates that the specified file has
appropriate access permissions but
has an improper format, such as an
unrecognizable object file format.

Indicates that lock table is full
because too many regions are
already locked, or satisfying a
lock/unlock request wo_uld result in
the number of locked regions in the
system exceeding a system­
imposed limit.

Functions

Value

2

8

77

1-9

OSF/1 Programmer's Reference

Name

[ENOMEM]

[ENOMSG]

[ENOPKG]

[ENOPROTOOPT]

[ENOSPC]

1-10

Description

Indicates that insufficient memory is
available for the requested function.
This error may indicate one or more
of the following errors: mapped
region attribute was set and part of
the specified address range is
already allocated (mmap()); the
specified range is invalid for a
process' address space or the
range specifies one or more
unmapped pages (msync()); a new
semaphore could not be created
(msem_init()).

Indicates that a message of the
requested type does not exist and
the IPC_NOWAIT flag is set.

Indicates that the specified package
was not found.

Indicates that the requested socket
option is unknown and the protocol
is unavailable.

Indicates one or more of the
following errors: not enough space
to extend the file system or device
for file and/or directory writes; the
madvise() function tried to reserve
resources that were not available to
be reserved; the system-imposed
limit of the maximum number of
allowed message queue identifiers
has been exceeded (msgget()); an
attempt to create a semaphore ID
exceeded the system-wide limit on

Value

12

80

92

42

28

Name

[ENOSYM]

[ENOTBLK]

[ENOTCONN]

[ENOTDIR]

[ENOTSOCK]

Functions

Description Value
the semaphore table (semget()); an
attempt to create a new shared
memory region ID exceeded the
system-wide limit of maximum IDs
(shmget()); the system-defined limit
on the number of processes using
SEM_UNDO was exceeded
(semop()).

Indicates that the specified package 93
does not contain the named symbol.

Indicates that the specified 15
parameter is not or does not point to
a block device.

Indicates that the socket is not 57
connected.

Indicates that a component of the
path parameter is not a directory, or
an operation is being performed
from a directory to a nonexistent
directory.

Indicates that the specified socket
parameter refers to a file, not a
socket.

20

38

1-11

OSF/1 Programmer's Reference

Name
[ENOTTY]

[ENXIO]

[EOPNOTSUPP]

[EPERM]

1-12

Description Value
Indicates one or more of the 25
following errors: the file descriptor's
file is not a terminal; the calling
process does not have a controlling
terminal; the controlling terminal is
no longer associated with the calling
process session (tcsetpgrp()); the
specified open descriptor is not
associated with a character special
device or the specified request does
not apply to the kind of object that
the specified open descriptor
references (ioctl()).

Indicates one or more of the
following errors: the specified
address, major device number, or
channel is out of valid range; no
more channels are available
(open()); the named file is a
character or block special file and
the associated device does not exist
(open()); the O_NONBLOCK flag is
set, the named file is FIFO,
O_WRONLY is set, and no process
has the file open for reading
(open()).

Indicates either that the socket does
not support the requested
operation, or that the socket cannot
accept the connection.

Indicates that the function
attempted to perform an operation
for which it did not have appropriate
privileges (such as the privileges

6

45

1

Name

[EPIPE]

Functions

Description Value
allowed by the security options), or
the caller was not the owner of the
requested element or superuser.
This error may also indicate one or
both of the following: the calling
process was not in the same
session as the target process
(setpgid()); the calling process is
already the process group leader or
the process group ID of a process
other than the calling process
matches the process ID of the
calling process (setsid()).

Indicates that an attempt was made
to write to a pipe or FIFO that was
not open for reading by any
process.

32

[EPROTONOSUPPORT] Indicates that either the socket or 43
the protocol is not supported.

[ERANGE] Indicates one or more of the 34
following errors: the result would
exceed the system-defined limits or
cause an overflow (value too large)
or an underflow (value too small); a
specified parameter is greater than
O (zero) but smaller than the length
of the pathname+ 1 (getcwd()); the
symbol value cannot be
represented as an absolute value;
the magnitude of x is such that total
or partial loss of significance
resulted.

1-13

OSF/1 Programmer's Referenoe

Name
[EROFSl

[ESPIPE]

[ESRCH]

[EST ALE]

[ETIMEDOUT]

1-14

Description
Indicate~ one or more of the
following errors: the operation
request~d was to be performed on a
read-oqly file system; an attempt
was made to activate a paging file
on a read~only file system; the
named file resides on a read-only
file system and the file type requires
write access.

Indicates that an invalid seek
operation was requested for a pipe
(FIFO), socket, or multiplexed
special file.

Indicates one or more of the
following errors: the requested
process or child process ID is
invalid or not in use; no disk quota is
found for the specified user; the
specified thread ID does not refer to
an existing thread.

Indicates that the specified process'
root or current directory is located in
a virtual file system that has been
unmounted (stale NFS file handle).

Indicates that the requested attempt
at a connection timeo out before a
connection was established.

Value
30

29

3

70

60

Name

[ETXTBSY]

[EUSERS]

[EWOULDBLOCK]

[EX DEV]

Description

Indicates either that the requested
file is currently opened for writing by
another process, or that a write
access is requested by a pure
procedure (shared text) file that is
being executed.

Indicates that there are too many
users, as evidenced by a full quota
table.

Indicates one or more of the
following errors: the socket is
marked nonblocking and no
connections are waiting to be
accepted; the socket i§ marked
nonblocking and connection cannot
be immediately completed; the file is
locked and the function is instructed
not to block when locking; the
socket is marked as nonblocking
and no space is available for the
specified function.

lndjpates either that a hard link was
attempted between two file systems,
or that a filename to be renamed by
rename() is on a different file
system from the link to which it is to
pe renamed.

Functions

Value

26

68

35

18

1-15

OSF/1 Programmer's Reference

abort(3)

abort

Purpose Generates a software signal to end the current process

Library
Standard C Library (libc.a)

Synopsis #include <stdlib.h>

int abort (void);

Description

Notes

The abort() function sends a SIGABRT signal to the current process. This
terminates the process and produces a memory dump, unless the signal is caught
and the signal handler does not return.

If the SIG AB RT signal is neither caught nor ignored, and if the current directory is
writable, the system produces a memory dump in the core file in the current
directory and prints an error message.

If the call to the abort() function terminates the process, the abort() will have the
effect of the fclose() function on every open stream. The abort() function then
terminates the process with the same result as the _exit() function, except that the
status made available to the wait() or waitpid() function by abort() will be that of
a process terminated by the SIGABRT signal. If the call to abort() terminates the
process, all open message catalog descriptors will also be closed.

The abort() function is supported for multi-threaded applications.

AES Support Level: Full use

Related Information
,,

Functions: exit(2), kill(2), sigaction(2)

1-16

Functions
abs(3)

abs, div, labs, ldiv

Purpose

Library

Synopsis

Parameters

Description

Computes absolute value and division of integers

Standard C Library (Ube.a)

#include <stdlib.h>

int abs (
inti);

long labs (
long i);

struct div _t div (
int numerator ,
int denominator);

struct ldiv _t ldiv (
long numerator,
long denominator);

For abs(), specifies some integer.
For labs(), specifies some long integer.

numerator For div(), specifies some integer.
For ldiv(), specifies some long integer.

denominator
For div(), specifies some integer.
For ldiv(), specifies some long integer.

The abs() function returns the absolute value of its integer operand.

The div() function computes the quotient and remainder of the division of the
numerator numerator by the denominator denominator. If the division is inexact,
the sign of the resulting quotient is that of the algebraic quotient, and the
magnitude of the resulting quotient is the largest integer less than the magnitude of

1-17

OSF/1 Programmer's Reference

abs(3)

Notes

the algebraic quotient. If the result cannot be represented (for example, if the
denominator is 0), the behavior is undefined. The div() function returns a structure
of type div _t, comprising both the quotient and the remainder.

The labs() and ldiv() functions perform the same functions as abs() and div()
respectively, but accept long integers rather than integers as parameters. The
ldiv() function returns a structure of type ldiv _t, comprising both the quotient and
the remainder.

The abs(), labs(), div(), and ldiv() functions are supported for multi-threaded
applications.

A two's-complement integer can hold a negative number whose absolute value is
too large for the integer to hold. When given this largest negative value, the abs()
function returns the same value.

AES Support Level: Full use

Return Values

The abs() function and labs() function return the absolute value of their
arguments.

The div() function returns a structure of type div _t and the ldiv() function returns
a structure of type ldiv _t.

Related Information

Functions: floor(3)

1-18

accept

Purpose

Synopsis

Parameters

Description

Accepts a new connection on a socket

#include <sys/types.h>
#include <sys/socket.h>

int accept (

int socket,
struct sockaddr *address,
int *address_len);

Functions
accept(2)

socket Specifies a socket that was created with the socket() function, has
been bound to an address with the bind() function, and has issued a
successful call to the listen() function.

address Points to a sockaddr structure, the format of which is determined by
the domain and by the behavior requested for the socket. The
sockaddr structure is an overlay for a sockaddr_in, sockaddr_un,
or sockaddr_ns structure, depending on which of the supported
address families is active. If the compile-time option
_SOCKADDR_LEN is defined before the sys/socket.h header file is
included, the sockaddr structure takes 4.4BSD behavior, with a
field for specifying the length of the socket address. Otherwise, the
default 4.3BSD sockaddr structure is used, with the length of the
socket address assumed to be 14 bytes or less.

If _SOCKADDR_LEN is defined, the 4.3BSD sockaddr structure is
defined with the name osockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the
address parameter.

The accept() function extracts the first connection on the queue of pending
connections, creates a new socket with the same properties as the specified socket,
and allocates a new file descriptor for that socket.

If the listen() queue is empty of connection requests, the accept() function blocks
a calling socket of the blocking type until a connection is present, or returns an
[EWOULDBLOCK] for sockets marked nonblocking.

1-19

OSF/1 Programmer's Reference
accept(2}

The accepted socket cannot itself accept more connections. The original socket
remains open and can accept more connections.

Return Values

Errors

Upon successful completion, the accept() function returns the nonnegative socket
descriptor of the accepted socket, places the address of the peer in the sockaddr
structure pointed to by the address parameter, and sets the address_len parameter
to the length of address. If the accept() function fails, a value of -1 is returned and
errno is set to indicate the error.

If the accept() function fails, errno may be set to one of the following values:

[EINVAL] The socket is not accepting connections.

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EOPNOTSUPP]
The referenced socket can not accept connections.

[EFAULT] The address parameter is not in a writable part of the user address
space.

[EWOULDBLOCK]

[EMFILE]

The socket is marked nonblocking, and no connections are present
to be accepted.

There are too many open file descriptors.

Related Information

Functions: bind(2), connect(2), listen(2), socket(2)

1-20

access

Purpose

Synopsis

Parameters

Description

Notes

Determines the accessibility of a file

#include <unistd.h>

int access (
const char *path,
int access_mode) ;

Functions

access(2)

path Points to the file pathname. When the path parameter refers to a
symbolic link, the access() function returns information about the
file pointed to by the symbolic link.

Permission to access all components of the path parameter is
determined by using a real user ID instead of an effective user ID, a
group access list (including a real group ID) instead of an effective
group ID.

access_mode Specifies the type of access. The bit pattern contained in the
access_mode parameter is constructed by a logical OR of the
following values:

R_OK Checks read permission.
W _OK Checks write permission.
X_OK Checks execute (search) permission.
F _OK Checks to see if the file exists.

The access() function checks for accessibility of the file specified by a pathname.

Only access bits are checked. A directory may be indicated as writable by
access(), but an attempt to open it for writing will fail (although files may be
created there); a file's access bits may indicate that it is executable, but the
execve() function can fail if the file does not contain the proper format.

AES Support Level: Full use

1-21

OSF/1 Programmer's Reference

access(2)

Return Values

Errors

Upon successful completion, the access() function returns value of 0 (zero).
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

If the access() function fails, access to the file specified by the path parameter is
denied and ermo may be set to one of the following values:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENO ENT]

[EACCES]

[ELOOP]

[EROFS]

[ETXTBSY]

[EFAULT]

A component of a pathname exceeded P ATH_MAX characters, or
an entire pathname exceeded NAME_MAX characters.

The named file does not exist or is an empty string.

Permission bits of the file mode do not permit the requested access,
or search permission is denied on a component of the path prefix.
The owner of a file has permission checked with respect to the
"owner" read, write, and execute mode bits, members of the file's
group other than the owner have permission checked with respect to
the "group" mode bits, and all others have permissions checked
with respect to the "other" mode bits.

Too many symbolic links were encountered in translating the
pathname.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that
is being executed.

The path parameter points outside the process' allocated address
space.

[EIO] An 1/0 error occurred while reading from or writing to the file
system.

Related Information

Functions: chmod(2), stat(2)

1-22

acct

Purpose

Synopsis

Parameters

Description

Functions

acct(2)

Enables and disables process accounting

int acct (
char *path);

path Specifies a pointer to the pathname of the file, or specifies a null
pointer.

The acct() function enables and disables UNIX process accounting. When
enabled, process accounting produces an accounting record on behalf of each
terminating process. The path parameter specifies the pathname of the file to
which an accounting record is written. When the path parameter is 0 (zero) or a
null value, the acct() function disables the accounting routine.

If the path parameter refers to a symbolic link, the acct() function writes records to
the file pointed to by the symbolic link.

If Network File System is installed on your system, the accounting file can reside
on another node. To ensure accurate accounting, each node must have its own
accounting file, which can be located on any node in the network.

The calling process must have superuser privilege to enable or disable process
accounting.

Return Values

Errors

Upon successful completion, the acct() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the acct() function fails, errno may be set to one of the following values:

[EPERM] The calling process does not have appropriate system privilege.

[ENOENT] The file named by the path parameter does not exist.

1-23

OSF/1 Programmer's Reference

acct(2)

[EACCES] The file named by the path parameter is not an ordinary file.

[EACCES] Write permission is denied for the named accounting file.

[EROFS] The named file resides on a read-only file system.

Related Information

Functions: exit(2), sigaction(2), sigvec(2), expacct(3), raise(3)

1-24

adj time

Purpose

Synopsis

Parameters

Description

Corrects the time to allow synchronization of the system clock

#include <sys/time.h>

int adjtime (
struct timeval *delta,
struct timeval *old_delta);

Points to the amount of time to be altered.

Functions
adjtime(2)

delta

old_delta Points to the number of nanoseconds still to be corrected from an
earlier call.

The adjtime() function makes small adjustments to the system time (as returned by
the gettimer() function), advancing or decreasing it by the time specified by the
delta parameter of the timeval structure. If delta is negative, the clock is slowed
down by incrementing it more slowly than normal until the correction is complete.
If delta is positive, a larger increment than normal is used until the correction is
complete.

The skew used to perform the correction is generally a fraction of one percent.
Thus, the time is always a monotonically increasing function.

A time correction from an earlier call to adjtime() may not be finished when
adjtime() is called again. In this case, the delta remaining from the original call is
replaced by the delta of the current call. If the old_delta parameter is nonzero,
then when the adjtime() function returns, the structure pointed to will contain the
time remaining from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

The adjtime() function is restricted to users with superuser privilege.

1-25

OSF/1 Programmer's Reference

~djtime{2)

Notes

In BSD, system time is defined in units of seconds and microseconds, while in
POSIX real time extensions, the units are seconds and nanoseconds. However, the
adjtime() function is not specified by POSIX. Therefore, the existing BSD
interface is preserved.

Return Values

Errors

Upon successful completion, the adjtime() function returns a 0 (zero). If the
adjtime() function fails, a value of -1 is returned, and errno is set to indicate the
error.

If the adjtime() function fails, errno may be set to one of the following values:

[EFAULT] An argument address referenced invalid memory.

[EPERM] The process's effective user ID does not have appropriate system
privilege.

Related Information

Functions: gettimeofday(2), gettimer(3)

1-26

Functions
alarm(3)

alarm, ualarm

Purpose

Library

Synopsis

Parameters

Description

Notes

Sets or changes the timeout of interval timers

Standard C Library (Ube.a)

#include <sys/unistd.h>

unsigned int alarm(
unsigned int seconds);

unsigned int ualarm(
unsigned int mseconds,
unsigned int interval) ;

seconds

mseconds

interval

Specifies a number of real-time seconds.

Specifies a number of real-time microseconds.

Specifies the interval for repeating the timer.

The alarm() function is used to obtain notification of a timeout after the number of
real-time seconds specified by the seconds parameter has elapsed. At some time
after seconds seconds have elapsed, a signal is delivered to the process. Each call
resets the timer until the seconds parameter is set to 0 (zero). When the notification
signal is caught or ignored, no action takes place; otherwise the calling process is
terminated. The alarm() function uses the ITIMER_REAL interval timer.

The ualarm() function is used to obtain notification of a timeout after the number
of real-time microseconds specified by the mseconds parameter has elapsed. When
the interval parameter is nonzero, timeout notification occurs after the number of
microseconds specified by the interval parameter has been added to the mseconds
parameter. When the notification signal is caught or ingnored, no action takes
place; otherwise the calling process is terminated. The ualarm() function is the
simplified interface to the setitimer() function, and uses the ITIMER_REAL
interval timer.

The alarm() function is supported for multi-threaded applications. The ualarm()
function is not supported for multiple threads.

1-27

OSF/1 Programmer's Reference
alarm(3)

Although the alarm() function itself is reentrant, it should be noted that just as the
second of two calls from a single thread to alarm() resets the timer, this is also true
if two calls are made from different threads.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the value 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the alarm() function fails, errno may be set to the following value:

[EINVAL] The seconds parameter specifies a negative value or a value greater
than 100,000,000.

Related Information

Functions: gettimer(3)

1-28

asinh, acosh, atanh

Purpose Computes inverse hyperbolic functions

Library
Math Library (libm.a)

Synopsis #include <math.h>

double asinh (
double x);

double atanh (
double x);

double acosh (
double x);

Parameters

x Specifies some double value.

Description

Functions

asinh(3)

The asinh() function returns the hyperbolic arc sine of x, in the range -infinity to
+infinity. The acosh() function returns the hyperbolic arc cosine of x, in the range
1 to +infinity. The atanh() function returns the hyperbolic arc tangent of x, in the
range -infinity to +infinity.

Return Values

Upon successful completion, the asinh() , acosh() , and atanh() functions return
the hyperbolic arc sine, hyperbolic arc cosine, and hyperbolic arc tangent of x.
Otherwise, acosh() function returns a NaNQ if x < 1, and the atanh() function
returns a NaNQ if x > 1.

Related Information

Functions: exp(3), sinh(3)

1-29

OSF/1 Programmer's Reference

assert(3)

assert

Purpose

Library

Synopsis

Parameters

Description

Notes

1-30

Inserts program diagrfostics

Standard C Library (Ube.a)

#include <assert.ii>

void assert(
int expression) ;

expression Specifies an expression that is evaluated as TRUE or FALSE. This
expression is evaluated in the same manner as a C language if
control statement.

The assert() macro inserts diagnostics into programs. On execution, when the
expression parameter is false (returns FALSE), this macro writes information about
the particular call that failed, including the text of the argument, the name of the
source file, and the source-file line number (the latter two are respectively the
values of preprocessing macros __ FILE __ and __ LINE __) on stderr. The error
message is taken from the standard C library message catalog. Also, the abort()
function produces a software abort fault.

When you compile a program with the -DNDEBUG preprocessor option, or with
the #define NDEBUG preprocessor control statement before the #include
<assert.h> statement, calls to the assert() macro have no effect.

AES Support Level: Full use

Functions

assert(3)

Return Values
The assert() function returns no value.

Related Information

Functions: abort(3)

1-31

OSF/1 Programmer's Reference

async_daemon(2)

async_daemon

Purpose Creates a local NFS asynchronous 1/0 server

Synopsis async_daemon(void);

Description
The async_daemon() function starts an NFS compatible asynchronous 1/0 server.
Normally this function does not return unless the server is terminated by a signal.

Return Values

Errors

Upon successful completion, 0 (zero) is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

If the async_daemon() function fails, errno may be set to the following value:

[EBUSY] The system limit on asynchronous daemons has been exceeded.

Related Inf ormatioli

Functions: nfssvc(2)

1-32

Functions
atof(3)

atof, strtod

Purpose Converts a character string to a double-precision floating-point value

Library
Standard C Library (libc.a)

Synopsis #include <stdlib.h>

double atof(

Parameters

Description

const char *nptr) ;

double strtod(
const char *nptr,
char **endptr) ;

Points to the character string to convert. nptr

endptr Specifies either a null value, or a pointer to the character that ended
the scan or to a null value.

The atof() function converts the string pointed to by the nptr parameter up to the
first character that is inconsistent with the format of a floating-point number to a
double floating-point value. Leading white-space characters are ignored. A call to
this function is equivalent to a call to strtod(nptr, (char**) NULL), except for
error handling. When the value cannot be represented, the result is undefined.

The strtod() function converts the initial portion of the string pointed to by the
nptr parameter to double representation. First the input string is decomposed into
the following three parts:

• An initial, possibly empty, sequence of white-space characters (as specified by
the isspace() function).

• A subject sequence interpreted as a floating-point constant.

• A final string of one or more unrecognized characters, including the
terminating null character of the input string.

After decomposition of the string, the subject sequence is converted to a floating­
point number, and the resulting value is returned. A subject sequence is defined as

1-33

OSF/1 Programmer's Reference

atof(3)

Notes

the longest initial subsequence of the input string, starting with the first nonwhite­
space character, that is of the expected form. The expected form and order of the
subject sequence is:

• An optional plus (+) or minus (-) sign.

• A sequence of digits optionally containing a radix character.

• An optional exponent part. An exponent part consists of e or E, followed by
an optional sign, which is followed by one or more decimal digits.

When the input string is empty or consists entirely of white space, or when the first
nonwhite-space character is other than a sign, a digit, or a radix character, the
subject sequence contains no characters.

For the strtod() function, when the value of the endptr parameter is not (char**)
NULL, a pointer to the character that terminated the scan is stored at *endptr.

When a floating-point value cannot be formed, *endptr is set to nptr.

The setlocale() function may affect the radix character used in the conversion
result.

AES Support Level: Full use

Return Values

Errors

When the string is empty or begins with an unrecognized character, +0.0 is
returned as the floating-point value.

When a correct return value overflows, a properly signed HUGE_ VAL (INF) is
returned. On underflow, a properly signed 0 (zero) is returned.

Upon successful completion, either function returns the converted floating-point
value.

If the atof() or strtod() function fails, ermo may be set to the following value:

[ERANGE] The input string is out of range (that is, the subject sequence can not
be converted to a floating-point value without causing underflow or
overflow).

Related Information

Functions: atoi(3), scanf(3)

1-34

Functions

atoi(3)

atoi, atol, strtol, strtoul

Purpose Converts a character string to the specified integer data type

Library
Standard C Library (Jibe.a)

Synopsis #include <stdlib.h>

int atoi(

Parameters

Description

const char *nptr);

long atol(
const char *nptr)

long strtol(
const char *nptr,
char **endptr,
int base);

unsigned long int strtoul(
const char *nptr,
char **endptr,
int base);

Points to the character string to convert. nptr

endptr

base

Points to a character string that ends the scan or to a null pointer.

Specifies the radix to use for the conversion.

The atoi(), atol(), strtol(), and strtoul() functions are used to convert a character
string pointed to by the nptr parameter to an integer having a specified data type.

The atoi() function converts the character string pointed to by the nptr parameter
up to the first character inconsistent with the format of a decimal integer to an
integer data type. Leading white-space characters are ignored. A call to this
function is equivalent to a call to strtol(nptr, (char**) NULL, 10). The int value
of the input string is returned.

The atol() function converts the character string pointed to by the nptr parameter
up to the first character inconsistent with the format of a decimal integer to a long

1-35

OSF/1 Programmer's Reference

atoi{3)

1-36

integer data type. Leading white-space characters are ignored. A call to this
function is equivalent to a call to strtol(nptr, (char**) NULL, 10). The long int
value of the input string is returned.

The strtol() function converts the character string pointed to by the nptr parameter
up to the first character inconsistent with the format of a decimal integer to a long
integer data type. Leading white-space characters are ignored. First the input
string is decomposed into the following three parts:

• An initial, possibly empty, sequence of white-space characters (as specified by
the isspace() function).

• A subject sequence interpreted as an integer represented in some radix
determined by the value of the base parameter.

• A final string of one or more unrecognized characters, including the
terminating null character of the input string.

After decomposition of the string, the subject sequence is converted to a long
integer and the resulting value is returned. A subject sequence is defined as the
longest initial subsequence of the input string, starting with the first nonwhite-space
character that is of the expected form. The expected form and order of the subject
sequence depends on the value of the base parameter:

• When the value of the base parameter is 0 (zero), the expected form of the
subject sequence is that of an integer-constant optionally preceded by a +
(plus sign) or - (minus sign), but not including an integer suffix. The sequence
of characters starting with the first digit is interpreted as an integer constant.

• When the value of the base parameter is between 2 and 36, the expected form
of the subject sequence is a sequence of letters and digits representing an
integer with its radix specified by the value of the base parameter, optionally
preceded by a + (plus sign) or - (minus sign) and not including an integer
suffix.

Alphabetic characters from "a" or "A" through "z" or "Z" are assigned decimal
values 10 through 35, respectively. Only alphabetic characters with assigned
values less than that of the base parameter are converted. For example, when
the value of the base parameter is 20, only the following value assignments
are converted:

Char 0 1 2 3 4 5 6 7 8 9 A B c D E

Val o 1 2 3 4 5 6 7 8 9 1 o 11 12 13 14

Functions

atoi(3)

• When the value of the base is 16 (hexadecimal), the expected form of the
subject sequence is a string of alphanumeric characters optionally preceded
by characters "Ox" or "OX", which must follow an optional initial sign
character, when present.

• When the expected form of the subject seqeunce is preceded by a - (minus
sign), the converted integer value has a negative value.

When the input string is empty or does not have the expected form, conversion
does not take place. The value of the nptr parameter is stored in the object pointed
to by the endptr parameter, whenever this parameter is not a null pointer.

The strtoul() function is the same as the strtol() function, except that it does not
accept a leading sign character and it returns an unsigned long integer.

Return Values
For the strtol() and stroul() functions, when the value of the endptr parameter is
not (char**) NULL, a pointer to the character that terminated the scan is stored in
the location pointed to by the nptr parameter.

For the strtol() and stroul() functions, when an integer result cannot be formed,
the *nptr parameter is set to the value of endptr, and 0 (zero) is returned.

For the strtol() and stroul() functions, when the base parameter is positive but not
greater than 36, the value of base is used as the conversion radix. After an optional
leading sign, leading zeros are ignored. Whenever the base parameter is 16, "Ox" or
"OX" is ignored.

For the strtol() and stroul() functions, when the base parameter is 0 (zero), the
string pointed to by the nptr parameter determines the radix. Thus, after an optional
leading sign, a leading 0 (zero) indicates octal conversion, and a leading "Ox" or
"OX" indicates hexadecimal conversion. The default conversion is to decimal
values.

Upon successful completion, these functions return the proper data type and value
of the converted integer.

1-37

OSF/1 Programmer's Reference
ato1(3)

Errors
If any of these functions fail, errno may be set to one of the following values:

[ERANGE] The input string is out of range (that is, the subject sequence can not
be converted to the proper data type and value without causing
overflow).

[EINV AL] The radix value specified for the base parameter is not supported.

Related Information

Functions: atof(3), scanf(3)

1-38

Functions
bcopy{3)

bcopy, hclllp, bzero,ffs

Purpose Performs bit and byte string operations

Library

Standard C Library (lihc.a)

Synopsis void hcopy (

Parameters

Description

char *source,
char *destination,
int length);

int hemp (
char *string I,
char *string2,
int length);

void hzero (

int ffs (

char *string,
int length);

int index);

source Points to the original string for the hcopy() function.

destination Points to the destination string for the hcopy() function.

string 1 Specifies the byte string to be compared to the string2 parameter by
the hemp() function.

string2 Specifies the byte string to be compared to the string 1 parameter by
the hemp() function.

length Specifies the length (in bytes) of the string.

index Specifies the bit whose index should be returned.

The hcopy(), hemp(), and hzero() functions operate on variable length strings of
bytes. Unlike the string functions, they do not check for null bytes.

1-39

OSF/1 Programmer's Reference

bcopy(3)

Notes

The bcopy() function copies the value of the length parameter in bytes from the
string in the source parameter to the string in the destination parameter.

The hemp() function compares the byte string in the string 1 parameter against the
byte string of the string2 parameter, returning a 0 (zero) value if the two strings are
identical and a nonzero value otherwise.

The bzero() function nulls the string in the string parameter, for the value of the
length parameter in bytes.

The ft's() function finds the first bit set passed to it in the index parameter and
returns the index of that bit. Bits are numbered starting at 1. A return value of 0
(zero) indicates that the value passed is 0.

The bcopy() function takes parameters backwards from the strcpy() function.

Related Information

Functions: memccpy(3), string(3), swab(3)

1-40

Functions

bessel(3)

jO, j 1, jn, yO, yl, yn

Purpose Computes Bessel functions

Library
Math Library (libm.a)

Synopsis #include <math.h>

doublejO (

Parameters

Description

double x);

double yO (
double x);

doublejl (
double x);

double yl (
double x);

doublejn (
int n,
double x);

double yn (
int n,
double x);

x Specifies a double value. The value of x must be positive for the
yO(), yl(), and yn() functions.

n Specifies some integer value.

The jO(), jl(), jn(), yO(), yl(), and yn() functions are Bessel functions that are
used to compute wave variables, primarily in the field of communications.

1-41

OSF/1 Programmer's Reference

bessel(3)

Notes

AES Support Level: Trial use

Return Values

Errors

1-42

The jO() and jl() functions return Bessel functions of x of the first kind, of orders 0
(zero) and 1, respectively. The jn() function returns the Bessel function of x of the
first kind of order n.

If the x argument is too large in magnitude, the value 0 (zero) is returned. If xis
NaN, NaN is returned. Otherwise, either errno is set to indicate the error or NaN is
returned.

The yO() and yl() functions return the Bessel functions of x of the second kind, of
orders 0 (zero) and 1, respectively. The yn() function returns the Bessel function
of x of the second kind of order n.

If the x argument to the functions yO(), yl() or yn() is nonpositive, - HUGE_ VAL
or NaN is returned. Otherwise, NaN is returned and errno is set to indicate the
error.

If the jO(), jl(), or jn() function fails, errno may be set to one of the following
values:

[EDOM] The value of xis NaN.

[ERANGE] The value of x was too large in magnitude.

If the yO(), yl() or yn() function fails, errno may be set to one of the following
values:

[EDOM] The value of xis nonpositive or NaN.

[ERANGE] The value of x was too large in magnitude.

bind

Purpose

Synopsis

Parameters

Description

Binds a name to a socket

#include <sys/types.h>
#include <sys/socket.h>

int bind (

int socket,
struct sockaddr *address,
int address_len);

socket Specifies the socket descriptor of the socket to be bound.

Functions
bind{2)

address Points to a sockaddr structure, the format of which is determined by
the domain and by the behavior requested for the socket. The
sockaddr structure is an overlay for a sockaddr_in, sockaddr_un,
or sockaddr_ns structure, depending on which of the supported
address families is active. If the compile-time option
_SOCKADDR_LEN is defined before the sys/socket.h header file is
included, the sockaddr structure takes 4.4BSD behavior, with a
field for specifying the length of the socket address. Otherwise, the
default 4.3BSD sockaddr structure is used, with the length of the
socket address assumed to be 14 bytes or less.

If _SOCKADDR_LEN is defined, the 4.3BSD sockaddr structure is
defined with the name osockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the
address parameter.

The bind() function assigns an address to an unnamed socket. Sockets created
with the socket() function are unnamed; they are identified only by their address
family.

1-43

OSF/1 Programmer's Reference
bind(2)

An application program can retrieve the assigned socket name with the
getsockname() function.

Return Values

Errors

Upon successful completion, the bind() function returns a value of 0 (zero). If the
bind() function fails, a value of -1 is returned and errno is set to indicate the error.

If the bind() function fails, errno may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EADDRINUSE]
The specified address is already in use.

[EINVAL] The socket is already bound to an address.

[EACCES] The requested address is protected and the current user does not
have permission to access it.

[EFAULT] The address parameter is not in a readable part of the user address
space.

Related Information

Functions: connect(2), listen(2), socket(2), getsockname(2)

1-44

Functions
brk(2)

brk, sbrk

Purpose

Library

Synopsis

Parameters

Description

Notes

Changes data segment size

Standard C Library (Ube.a)

int brk(
char *addr);

int sbrk(
int incr);

addr Points to the effective address of the maximum available data.

incr Specifies the number of bytes to be added to the current break. The
value of incr may be positive or negative.

The brk() function sets the lowest data segment location not used by the program
(called the break) to addr, rounded up to the next multiple of the system's page
size.

In the alternate function sbrk(), incr more bytes are added to the program's data
space, and a pointer to the start of the new area is returned.

When a program begins execution with the execve() function, the break is set at
the highest location defined by the program and data storage areas. Therefore, only
programs with growing data areas should need to use sbrk().

The current value of the program break is reliably returned by "sbrk(O)". The
getrlimit() function may be used to determine the maximum permissible size of
the data segment. It is not possible to set the break beyond the value returned from
a call to the getrlimit() function.

If the data segment was locked at the time of the brk() function, additional
memory allocated to the data segment by brk() will also be locked.

Programmers should be aware that the concept of a current break is a historical
remnant of earlier UNIX systems. Many existing UNIX programs were designed
using this memory model, and these programs typically use the brk() or sbrk()

1-45

OSF/1 Programmer's Reference
brk(2)

functions to increase or decrease their available memory. OSF/l provides a more
flexible memory model and allows the use of discontiguous memory areas (see, for
example, the mmap() function). ThetMore, references to areas above the break
may be legitimate memory references which will not produce memory violations.

Return Values

Errors

UpoIJ s~ccessful completion, the brk() function returns a value of 0 (zero), and the
sbrk function returns. the old break value. If either call fails, a value of -1 is
returne~ and errno is set to indicate the error.

If the brk() or sbrk() function fails, no additional memory is allocated and errno
may be set to the following value:

[pNOMEM] The requested change would allocate more space than allowed by
the limit as returned by the getrlimit() function.

If the brk() function cannot alloc:ate the requested memory, the following message
is printed:

cmd: could not sbrk, return =n

Where cmd is the name of the command currently executing, and n is the internal
kernel error code returned from the memory allocation routine, VQI_allocate().
Note that this may occur if the requested break value would cause the data segment
to collide with previously allocated memory (for example, memory obtained via
the mmap() or vm_allocate() call). See the OSF/l System Programmer's
Reference Volume 1 for more information on vm_allocate().

Related Information
Functions: exec(2), getrlimit(2), malloc(3), plock(2), mmap(2)

1-46

Functions
bsearch(3)

bsearch

Purpose Performs a binary search

Library
Standard C Library (libc.a)

Synopsis #include <stdlib.h>

Parameters

Description

void *bsearch(

key

base

nmemb

size

compar

const void *key,
const void *base,
size_t nmemb,
size_t size,
int (*compar)() (const void*, const void*));

Points to an object that compares equal to the desired element.

Points to the initial object in the array.

Specifies the number of elements in the array.

Specifies the byte size of each element of the array.

Points to the comparison function, which is called with two
parameters that point to the key object and to an array member, in
that order.

The bsearch() function does a binary search and returns a pointer in an array that
indicates where an object is found. The array must have been previously sorted in
increasing order according to a provided comparison function, compar.

The compar comparison function is called with two parameters that point to objects
that are compared during the sort. This functf bp returns an integer less than, equal
to, or greater than 0 (zero) depending whether the object pointed to by the first
const void * parameter is to be considered less than, equal to, or greater than the
second const void * parameter.

1-47

OSF/1 Programmer's Reference

bsearch(3)

Notes

AES Support Level: Full use

Return Values
Upon successful completion, the bsearch() function returns a pointer to a
matching object in the array. A null pointer is returned when no match is found.
When two or more objects compare equally, the returned object is unspecified.

Related Information

Functions: hsearch(3), lsearch(3), qsort(3)

1-48

Functions
catclose (3)

catclose

Purpose Closes a specified message catalog

Library
Standard C Library (libc.a)

Synopsis #include <nl_types.h>

int catclose (

Parameters

Description

Notes

nl _ catd cat_ descriptor);

cat_ descriptor
Specifies an index into the message catalog that is returned from a
call to the catopen() function.

The catclose() function closes a message catalog specified by the cat_ descriptor
parameter. If a file descriptor is used to implement the type nl_catd, that file
descriptor will be closed.

If a program accesses several message catalogs, the NL_MAXOPEN number of
open catalogs can be reached. In this event, some message catalogs must be closed
before more can be opened.

Before exiting, programs should close any catalogs they have opened.

AES Support Level: Trial use

Return Values

Upon successful completion, 0 (zero) is returned. Otherwise, -1 is returned. The
catclose() function fails if the cat_ descriptor parameter value is not valid.

1-49

OSF/1 Programmer's Reference
catclose(3)

Related Information

Functions: catopen(3), catgets(3)

Commands: dspcat(l), dspmsg(l), gencat(l), mkcatdefs(l)

1-50

Functions
catgets{3)

cat gets

Purpose Retrieves a message from a catalog

Library
Standard C Library (libc.a)

Synopsis #include <nl_types>

Parameters

Description

Notes

char *catgets() (
nl_ catd cat_ descriptor,
int set_ number,
int message_ number,
char *string);

cat_ descriptor
Specifies a catalog description that is returned by the catopen()
function.

set number Specifies the set ID.

message_ number
Specifies the message ID. The set_ number and message_ number
parameters specify a particular message in the catalog to retrieve.

string Specifies the character string buffer.

The catgets() function retrieves a message from a catalog after a successful call to
the catopen() function. If the catgets() function finds the specified message, it
loads that message into a character string buffer, terminates the message string with
a null character, and returns a pointer to the buffer. The message in the buffer is
overwritten by the next call to the catgets() function.

AES Support Level: Trial use

1-51

OSF/1 Programmer's Reference
catgets{3)

Return Values

Errors

Upon successful completion, the catgets() function returns a pointer to an internal
buffer area containing the null terminated message string. Otherwise, string is
returned.

If the cat_ descriptor parameter is not a valid catalog descriptor, the catgets()
function returns a pointer to the user-supplied default message string specified by
the string parameter. If the catgets() function cannot find the specified message in
the catalog, it returns a pointer to a null string.

Related Information

Functions: catopen(3), catclose(3)

Commands: dspcat(l), dspmsg(l), gencat(l), mkcatdefs(l)

1-52

catopen

Purpose

Library

Synopsis

Parameters

Description

Opens a specified message catalog

Standard C Library (libc.a)

#include <limits.h>
#include <nl _ types.h>

nl _ catd catopen (
const char *name,
int ofiag);

name Specifies the catalog file to open.

Functions
catopen{3)

oflag Included for compatibility with X/Open. The ofiag parameter is
reserved for future use and should be set to zero.

The catopen() function opens a specified message catalog and returns a catalog
descriptor that is used to retrieve messages from the catalog.

The special nl _ catd data type is used for catalog descriptors. Since this data type is
defined in the nl_types.h header file, include this file in your application program.

The name parameter specifies the name of the message catalog to be opened. If
name contains a I (slash), then name specifies a full pathname for the message
catalog. Otherwise, the environment variable NLSPATH is used with name
substituted for %N. If NLSPATH does not exist in the environment, or if a
message catalog cannot be opened in any of the components specified by
NLSPATH , then an default message catalog is used. The variable %L will be
replaced by the value of the LANG environment variable.

If there is an open file descriptor associated with the catalog file, the
FD_CLOEXEC flag will be set.

1-53

OSF/1 Programmer's Reference

catopen(3}

Notes

The LANG environment variable is used to refer to message catalogs that are
separated into directories based on natural languages. For example, if the
catopen() function specifies a catalog with the name mycmd, and the environment
variables are set as follows:

NLSPATH= . .1%N:./%N:/system/nls/%L/%N:/system/nls/%N
LANG=Fr FR

then the application searches for the catalog in the following order:

. ./mycmd.
/mycmd
/system/nls/Fr FR/mycmd
/system/nls/mycmd

If you omit the variable % N in a directory specification within the environment
variable NLSPATH, the application assumes that the path defines a directory and
searches for the catalog in that directory before searching the next specified path.
The value /usr/lib/nls/msg/%L/%N:/etc/nls/%L/%N is the default path for
NLSPATH.

AES Support Level: Trial use

Return Values

The catopen() function returns a value of -1 if the number of catalogs already
open is equal to the NL_MAXOPEN limit defined in the mesg.h header file.

The catopen() function also returns a value of -1 if it cannot find the file.

Related Information

1-54

Functions: catgets(3), catclose(3)

Commands: dspcat(l), dspmsg(l), gencat(l)

Functions

cfgetispeed (3)

cf getispeed

Purpose

Library

Synopsis

Parameters

Description

Notes

Gets input baud rate for a terminal

Standard C Library (libc.a)

#include <termios.h>

speed_ t cfgetispeed (
struct termios *termios _y);

termios_y Points to a termios structure containing the input baud rate.

The cfgetispeed() function extracts the input baud rate from the termios structure
to which the termios _y parameter points.

If the value in the termios structure was not obtained from a successful call to the
tcgetattr() function, the behavior is undefined.

AES Support Level: Full use

Return Values
Upon successful completion, the cfgetispeed() function returns a value of type
speed_t representing the input baud rate.

Related Information

Functions: cfgetospeed(3), cfsetispeed(3), cfsetospeed(3), tcgetattr(3)

Files: termios(4)

1-55

OSF/1 Programmer's Reference
cfgetospeed (3)

cf getospeed

Purpose Gets output baud rate for a terminal

Library
Standard C Library (Ube.a)

Synopsis #include <termios.h>
speed_ t cfgetospeed (

Parameters

Description

Notes

struct termios *termios _p);

termios_p Points to a termios structure containing the output baud rate.

The cfgetospeed() function extracts the. output baud rate from the termios
structure to which the termios _p parameter points.

If the value in the termios structure was not obtained from a successful call to the
tcgetattr() function, the behavior is undefined.

AES Support Level: Full use

Return Values
Upon successful completion, the cfgetospeed() function returns a value of type
speed_t representing the output baud rate.

Related Information

1-56

Functions: cfgetispeed(3), cfsetispeed(3), cfsetospeed(3), tcgetattr(3)

Files: termios(4)

Functions

cfsetispeed (3)

cf setispeed

Purpose Sets input baud rate for a terminal

Library
Standard C Library (libc.a)

Synopsis #include <termios.h>

int cfsetispeed (

Parameters

Description

Notes

struct termios *termios _y,
speed_t speed);

termios_y

speed

Points to a termios structure containing the input baud rate.

Specifies the new input baud rate.

The cfsetispeed() function sets the input baud rate stored in the structure pointed
to by the termios _y parameter to the value specified by the speed parameter.

If the input baud rate is set to 0 (zero), the input baud rate will be specified by the
value of the output baud rate.

There is no effect on the baud rates set in the hardware until a subsequent
successful call to the tcsetattr() function on the same termios structure.

AES Support Level: Full use

Return Values
The cfsetispeed() function returns a value of 0 (zero).

Related Information

Functions: cfgetispeed(3), cfgetospeed(3), cfsetospeed(3), tcsetattr(3)

Files: termios(4)

1-57

OSF/1 Programmer's Reference
cfsetospeed (3)

cf setospeed

Purpose Sets output baud rate for a terminal

Library
Standard C Library (libc.a)

Synopsis #include <termios.h>

int cfsetospeed (

Parameters

Description

Notes

struct termios *termios _y,
speed_t speed);

termios_y

speed

Points to a termios structure containing the output baud rate.

Specifies the new output baud rate.

The cfsetospeed() function sets the output baud rate stored in the structure pointed
to by the termios _y parameter to the speed specified by the speed parameter.

The zero baud rate, BO, is used to terminate the connection. If BO is specified, the
modem control lines are no longer asserted. Normally, this disconnects the line.

There is no effect on the baud rates set in the hardware or on modem control lines
until a subsequent successful call to the tcsetattr() function on the same termios
structure.

AES Support Level: Full use

Return Values
The cfsetospeed() function returns 0 (zero).

Related Information

1-58

Functions: cfgetispeed(3), cfgetospeed(3), cfsetispeed(3), tcsetattr(3)

Files: termios(4)

Functions
chdir(2}

chdir, f chdir

Purpose

Synopsis

Parameters

Description

Notes

Changes the current directory

int chdir (
const char *path);

int fchdir (
intfiledes);

path

filedes

Points to the pathname of the directory.

Specifies the file descriptor of the directory.

The chdir() function changes the current directory to the directory indicated by
the path parameter.

The fchdir() function changes the current directory to the directory indicated by
the filedes parameter.

If the path parameter refers to a symbolic link, the chdir() function sets the current
directory to the directory pointed to by the symbolic link.

The current directory, also called the current working directory, is the starting
point of searches for pathnames that do not begin with a I (slash). In order for a
directory to become the current directory, the calling process must have search
access to the directory.

The current working directory is shared between all threads within the same
process. Therefore, one thread using the chdir() or fchdir() functions will affect
every other thread in that process.

AES Support Level: Full use chdir() only

1-59

OSF/1 Programmer's Reference
chdir(2)

Return Values

Errors

Upon successful completion, the chdir() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the chdir() function fails, the current directory remains unchanged and errno
may be set to one of the following values:

[EACCES] Search access is denied for any component of the pathname.

[ELOOP] Too many symbolic links were encountered in translating the
pathname.

[EFAULT] The path parameter points outside the process's allocated address
space.

[EIO] An 1/0 error occurred while reading from or writing to the file
system.

[ENOENT] The named directory does not exist, or is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]
The length of the path argument exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

If the fchdir() function fails, the current directory remains unchanged and errno
may be set to one of the following values:

[ENOTDIR] The file descriptor does not reference a directory.

[EBADF] The filedes parameter is not a valid open file descriptor.

Related Information

1-60

Functions: chroot(2)

Commands: cd(l)

Functions

chmod(2)

chmod, f chmod

Purpose Changes file access permissions

Synopsis #include <sys/mode.h>

#include <sys/types.h>

#include <sys/stat.h>

intchmod (

Parameters

Description

const char *path,
mode-'t mode);

int fchmod (
intfiledes,
ltlode_t mode);

path

filedes

mode

Specifies the full pathname of the file. If the path parameter refers
to a symbolic link, the chmod() function changes access
permissions on the file specified by the symbolic link.

Specifies the file descriptor of an open file.

Specifies the bit pattern which determines the access permissions.

The chmod() function sets the access permissions of the file specified by the path
parameter according to the bit pattern specified by the mode parameter.

The fchmod() function sets the access permissions of an open file pointed to by the
filedes parameter according to the bit pattern specified by the mode parameter.

To change file access permissions, the process must have the same effective user ID
as the owner of the file or the process must have superuser privilege.

Upon successful completion, the chmod() and fchmod() functions mark the
st_ ctime field of the file for update.

The mode parameter is constructed by logically ORing one or more of the
following values, which are defined in the sys/mode.h header file:

S_ISUID

S_ISGID

Sets the process' effective user ID to the file's owner on execution.

Sets the process' effective group ID to the file's group on execution.

1-61

OSF/1 Programmer's Reference

chmod(2)

1-62

S_ISVTX

S_IRWXU

S_IRUSR

S_IWUSR

S_IXUSR

S_IRWXG

S_IRGRP

S_IWGRP

S_IXGRP

S_IRWXO

S_IROTH

S_IWOTH

S_IXOTH

Saves text image after execution.

Permits the file's owner to read, write, and execute it (or to search
the directory).

Permits the file's owner to read it.

Permits the file's owner to write to it.

Permits the file's owner to execute it (or to search the directory).

Permits the file's group to read, write, and execute it (or to search
the directory).

Permits the file's group to read it.

Permits the file's group to write to it.

Permits the file's group to execute it (or to search the directory).

Permits others to read, write, and execute it (or to search the
directory).

Permits others to read the file.

Permits others to write to the file.

Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod() function, but not with
the chmod() function.

If the mode bit S_ISGID is set and the mode bit S_IXGRP is not set, mandatory file
record locking will exist on a regular file. This may affect subsequent calls to other
calls 011 the file, including open(), creat(), read(), write(), and truncate().

The S_ISGID bit of the file is cleared if:

• The file is a regular file.

• The effective user ID of the process does not have appropriate system
privilege.

• The effective group ID or one of the IDs in the group access list of the process
does not match the file's existing group ID.

AES Support Level: Full use (chmod())
Trial use (fchmod())

Functions
chmod(2)

Return Values

Errors

Upon successful completion, the chmod() and fchmod() functions return a value
of 0 (zero). If the chmod() or fchmod() function fails, a value of -1 is returned,
and errno is set to indicate the error.

If the chmod() function fails, the file permissions remain unchanged and errno
may be set to one of the following values:

[ENOTDIR] A component of the path parameter is not a directory.

[ENOENT] The named file does not exist or is an empty string.

[ENOENT] A symbolic link was named, but the file to which it refers does not
exist.

[EACCES] A component of the path parameter has search permission denied.

[EPERM] The effective user ID does not match the ID of the owner of the file
or the owner does not have appropriate system privilege.

[EROFS]

[EFAULT]

[ES TALE]

[BLOOP]

The named file resides on a read-only file system

The path parameter points to a location outside of the allocated
address space of the process.

The process' root or current directory is located in a virtual file
system that has been unmounted.

Too many symbolic links were encountered in translating the path
parameter.

[ENAMETOOLONG]

[EINTR]

The length of the path argument exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

A signal was caught during execution of the system call.

1-63

OSF/1 Programmer's Reference
chmod(2)

If the fchnfod() function fails, the file permissions remain unchanged and errno
may be set to one of the following values:

[EBADF] The file descriptor filedes is not valid.

[EROFS] The file referred to by filedes resides on a read-only file system.

[EPERM]

[EST ALE]

[EINTR]

The effective user ID does not match the ID of the owner of the file,
and the calling process does not have superuser privilege.

The process' root or current directory is located in a virtual file
system that has been unmounted.

A signal was caught during execution of the system call.

Related Information

1-64

Functions: chown(2), fcntl(2), getgroups(2), mknod(2), open(2), read(2)
setgroups(2) truncate(2) write(2)

Commands: chmod(l)

Functions
chown(2)

chown, f ch own

Purpose

Synopsis

Parameters

Description

Changes the owner and group IDs of a file

int chown(
const char *path,
uid_t owner,
gid_t group);

int fchown(

path

filedes

owner

group

int .filedes,
uid_t owner,
gid_t group);

Specifies the name of the file whose owner ID, group ID, or both are
to be changed. If the path parameter refers to a symbolic link, the
chown() function changes the ownership of the file pointed to by
the symbolic link.

Specifies a valid open file descriptor.

Specifies a numeric value representing the owner ID.

Specifies a numeric value representing the group ID.

The chown() and fchown() functions change the owner and group of a file.

A process can change the value of the owner ID of a file only if the process has
superuser privilege. A process can change the value of the file group ID if the
effective user ID of the process matches the owner ID of the file, or if the process
has superuser privilege. A process without superuser privilege can change the
group ID of a file only to the value of its effective group ID or to a value in its
supplementary group list.

If the value of the owner ID is changed and the process does not have superuser
privilege, the set-user ID attribute (the S_ISUID bit) of a regular file is cleared.

1-65

OSF/1 Programmer's Reference

chown(2)

The set-user ID attribute (S_ISUID bit) of a file is cleared upon successful return
if:

• The file is a regular file.

• The process does not have superuser privilege.

The set-group ID attribute (S_ISGID bit) of a file is cleared upon successful return
if:

• The file is a regular file.

• The process does not have superuser privilege.

If the owner or group parameter is specified as (uid_t)-1 or (gid_t)-t respectively,
the corresponding ID of the file is unchanged.

Upon successful completion, the chown() and fchown() functions mark the
st_ ctime field of the file for update.

AES Support Level: Full use (chown())
Trial use (fchown())

Return Values

Errors

1-66

Upon successful completion, the chown() and fchown() functions return a value
of 0 (zero). Otherwise, a value of -1 is returned, the owner and group of the file
remain unchanged, and errno is set to indicate the error.

If the chown() function fails, errno may be set to one of the following values:

[EACCES] Search permission is denied on a component of path.

[EFAULT] The path parameter is an invalid address.

[BLOOP] Too many links were encountered in translating path.

[ENAMETOOLONG]
The length of the path argument exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

[ENOTDIR] A compenent of path is not a directory.

[ENOENT] The path parameter does not exist or is an empty string.

[EPERM] The effective user ID does not match the ID of the owner of the file,
and the calling process does not have appropriate privilege.

[EROFS] The named file resides on a read-only file system.

Functions

chown{2)

If the fchown() function fails, errno may be set to one of the following values:

[EBADF]

[EROFS]

[EPERM]

Related Information

The file descriptor filedes is not valid.

The file referred to by filedes resides on a read-only file system.

The effective user ID does not match the ID of the owner of the file,
and the calling process does not have appropriate privilege.

Functions: chmod(2), chmod(2)

Commands: chown(l)

1-67

OSF/1 Programmer's Reference

chroot(2)

chroot

Purpose

Synopsis

Parameters

Description

Notes

Changes the effective root directory

int chroot (
const char *path);

path Points to the new effective root directory. If the path parameter
refers to a symbolic link, the chroot() function sets the effective
root directory to the directory pointed to by the symbolic link.

The chroot() function causes the directory named by the path parameter to
become the effective root directory.

The effective root directory is the starting point when searching for a file's
pathname that begins with a I (slash). The current working directory is not affected
by the chroot() function.

The calling process must have superuser privilege in order to change the effective
root directory. The calling process must also have search access to the new
effective root directory.

The .. (dot-dot) entry in the effective root directory is interpreted to mean the
effective root directory itself. Thus, .. (dot-dot) cannot be used to access files
outside the subtree rooted at the effective root directory.

AES Support Level: Trial use

Return Values

1-68

Upon successful completion, a value of 0 (zero) is returned. If the chroot()
function fails, a value of -1 is returned and errno is set to indicate the error.

Errors

Functions
chroot(2)

If the chroot() function fails, the effective root directory remains unchanged and
errno may be set to one of the following values:

[EACCES] Search permission is denied for any component of the pathname.

[EPERM] The process does not have appropriate privilege.

[EFAULT] The path param4tter points outside the process' allocated address
space.

[EIO] An 1/0 error occurred while reading from or writing to the file
system.

[ENOENT] The path parameter does not exist or points to an empty string.

[ENAMETOOLONG]
The length of the path argument exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

[ENOTDIR] A component of path is not a directory.

[ELOOP] More than MAXSYMLINKS symbolic links are encountered while
resolving path.

Related Information

Functions: chdir(2)

Commands: chdir(l)

1-69

OSF/1 Programmer's Reference

clearenv{3}

clearenv

Purpose Clears the process environment

Library
Standard C Library (libc.a)

Synopsis #include <stdlib.h>

int clearenv (void);

Description

Notes

The clearenv() function clears the process environment. No environment
variables are defined immediately after a call to clearenv(). The clearenv()
function sets the value of the external variable environ to NULL.

AES Support Level: Trial use

Return Values
Upon successful completion, the clearenv() function returns 0 (zero). Otherwise,
it returns -1.

If environ has been modified by anything other than the putenv() , getenv() , or
clearenv() functions, then clearenv() will return an error and the process
environment will remain unchanged.

Related Information

Functions: exec(2), getenv(3), putenv(3)

1-70

clearerr

Purpose Clears indicators on a stream

Library

Standard 1/0 Package (libc.a)

Synopsis #include <stdio.h:>.

void clearerr (
FILE *stream);

Parameters

stream Specifies the input or output stream to be cleared.

Description

Functions

clearerr(3)

The clearerr() function resets the error indicator and the EOF indicator for the
stream specified by the stream parameter.

Notes

The clearerr() function is supported for multi-threaded applications.

AES Support Level: Full use

Return Values

The clearerr() function returns no value.

Related Information

Functions: open(2), fopen(3), feof(3), fileno(3), ferror(3)

1-71

OSF/1 Programmer's Reference
clock(3)

clock

Purpose Reports CPU time used

Library
Standard C Library (libc.a)

Synopsis #include <time.h>

clock_t clock (void);

Description

Notes

The clock() function reports the amount of processor time used by the calling
process.

The clock() function is made obsolete by the getrusage() function; however, it is
included for compatibility with older BSD programs.

AES Support Level: Full use

Return Values

The clock() function returns the amount of processor time (in microseconds) used
since the first call to clock(). To determine the time in seconds, divide the value
returned by clock() by the value CLOCKS_PER_SEC. If the processor time used
is not available or its value cannot be represented, the clock() function returns
(clock_ t)-1.

Related Information

Functions: getrusage(2), times(3), wait(2)

1-72

Functions

close(2)

close

Purpose Closes the file associated with a file descriptor

Synopsis int close (

Parameters

Description

Notes

intfiledes);

filedes Specifies a valid open file descriptor.

The close() function closes the file associated with the filedes parameter.

All regions of a file specified by the filedes parameter that this process has
previously locked with the lockf() function are unlocked. This occurs even if the
process still has the file open by another file descriptor.

When all file descriptors associated with a pipe or FIFO special file have been
closed, any data remaining in the pipe or FIFO is discarded. When all file
descriptors associated with an open file descriptor are closed, the open file
descriptor is freed. If the link count of the file is 0 (zero) when all file descriptors
associated with the file have been closed, the space occupied by the file is freed
and the file is no longer accessible.

When the close() function needs to block, only the calling thread is suspended
rather than all threads in the calling process.

AES Support Level: Full use

Rei.urn \laiues

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1-73

OSF/1 Programmer's Reference

close{2)

Errors

If the close() function fails, errno may be set to one of the following values:

[EBADF]

[EINTR]

The filedes parameter is not a valid open file descriptor.

The close() function was interrupted by a signal which was caught.

Related Information

Functions: exec(2), fcntl(2), lockf(3), open(2), open(2), pipe(2), socket(2)

1-74

Functions

connect(2}

connect

Purpose Connects two sockets

Synopsis #include <sys/types.h>

#include <sys/socket.h>

int connect (

Parameters

socket

address

int socket,
struct sockaddr *address,
int address _!en);

Specifies the unique name of the socket.

Points to a sockaddr structure, the format of which is determined by
the domain and by the behavior requested for the socket. The
sockaddr structure is an overlay for a sockaddr _in, sockaddr _un,
or sockaddr _ ns structure, depending on which of the supported
address families is active. If the compile-time option
_SOCKADDR_LEN is defined before the sys/socket.h header file is
included, the sockaddr structure takes 4.4BSD behavior, with a
field for specifying the length of the socket address. Otherwise, the
default 4.3BSD sockaddr structure is used, with the length of the
socket address assumed to be 14 bytes or less.

If _SOCKADDR_LEN is defined, the 4.3BSD sockaddr structure is
defined with the name osockaddr.

address !en Specifies the length of the sockaddr structure pointed to by the
address parameter.

1-75

OSF/1 Programmer's Reference
connect(2)

Description
The connect() function requests a connection between two sockets. The kernel
sets up the communications links between the sockets; both sockets must use the
same address format and protocol.

The connect() function performs a different action for each of the following types
of initiating sockets:

• If the initiating socket is SOCK_DGRAM, then the connect() function
establishes the peer address. The peer address identifies the socket where all
datagrams are sent on subsequent send() functions. No connections are made
by this connect function.

• If the initiating socket is SOCK_STREAM, then the connect() function
attempts to make a connection to the socket specified by the address
parameter. Each communication space interprets the address parameter
differently.

Return Values

Errors

1-76

Upon successful completion, the connect() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the connect() function fails, errno may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The addresses in the specified address family cannot be used with
this socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT]
The establishment of a connection timed out before a connection
was made.

[ECONNREFUSED]
The attempt to connect was rejected.

Functions

connect(2)

[ENETUNREACH]
No route to the network or host is present.

[EADDRINUSE]
The specified address is already in use.

[EFAULT] The address parameter is not in a readable part of the user address
space.

[EWOULDBLOCK]

Related Information

The socket is marked nonblocking, so the connection cannot be
immediately completed. The application program can select the
socket for writing quring the connection process.

Functions: accept(2), bind(2), socket(2), getsockname(2), select(2), send(2)

1-77

OSF/1 Programmer's Reference
conv(3)

toascii, tolower, _tolower, toupper, _toupper

Purpose Translates characters

Library
Standard C Library (libc.a)

Synopsis #include <ctype.h>

int toascii(

Parameters

Description

1-78

int c) ;

int tolower(
int c) ;

int _ tolower(
int c) ;

int toupper(
int c) ;

int _toupper(
int c) ;

c Specifies the character to be converted.

The toascii(), tolower(), tolower(), toupper(), and toupper() functions
translate all characters, including extende~ ·characters, to th~ir specified character
values.

The toascii() function converts its input to a 7-bit ASCII character.

The tolower() function takes an int value that can be represented as an unsigned
char or the value of EOF (defined in the stdio.h header file) as its input.

When the input of the tolower() function expresses an uppercase letter, as defined
by character type information in the program locale (category LC~CTYPE), the
corresponding lowercase letter is returned. All other input values in the domain are
returned unchanged. The tolower() function has as its domain the range -1 through
255.

Notes

Functions

conv(3)

In the C locale, or in a locale where case-conversion information is not defined, the
tolower() function determines the case of characters according to the rules of the
ASCII-coded character set. Characters outside the ASCII range of characters are
returned unchanged.

The _tolower() macro is equivalent to the tolower() function, but executes faster.

The toupper() function takes an int value that can be represented as an unsigned
char or the value of EOF (defined in the stdio.h header file) as its input.

When the input of the toupper() function expresses a lowercase letter, as defined
by character type information in the program locale (category LC_CTYPE), the
corresponding uppercase letter is returned. All other input values in the domain are
returned unchanged. The toupper() function has as its domain the range -1
through 255.

In the C locale, or in a locale where case-conversion information is not defined, the
toupper() function determines the case of characters according to the rules of the
ASCII-coded character set. Characters outside the ASCII range of characters are
returned unchanged.

The _ toupper() macro is equivalent to the toupper() funcfion, but executes faster.

The setlocale() function affects all conversions. See the setlocale() function for
more information.

AES Support Level: Full use (tolower(), toupper())
Trial use (_ tolower(), _ toupper(), toascii())

Return Values
The toascii() function returns the logical AND of parameter c and the value OX7F.

When the c parameter is a character for which the isupper() function is TRUE,
there is a corresponding character for which the islower() function is also TRUE.
That lowercase character is returned by the tolower() function or by the
_tolower() macro. Otherwise the c parameter is returned.

1-79

OSF/1 Programmer's Reference
conv(3)

When the c parameter is a character for which the islower() function is TRUE,
there is a corresponding character for which the isupper() function is also TRUE.
That uppercase character is returned by the toupper() function or by the
_ toupper() macro. Otherwise, the c parameter is returned.

Related Information

Functions: ctype(3), setlocale(3)

1-80

ctermid

Purpose

Library

Synopsis

Parameters

Description

Notes

Functions

ctermid{3)

Generates the pathname for the controlling terminal

Standard 1/0 Package (libc.a)

#include <stdio.h>
char *ctermid (

char *s);

s If the s parameter is a null pointer, the string is stored in an internal
static area and the address is returned. The next call to the
ctermid() function overwrites the contents of the internal static
area.

If the s parameter is not a null pointer, it points to a character array
of at least L_ctermid bytes. L_ctermid is defined in the stdio.h
header file, and has a value greater than 0 (zero). The pathname is
placed in this array and the value of the s parameter is returned.

The ctermid() function generates the pathname of the controlling terminal for the
current process and stores it in a string.

The ctermid() function differs from the ttyname() function in that the ttyname()
function is supplied a file descriptor and returns the actual name of the terminal
associated with that file descriptor, while the ctermid() function returns a string
(/dev/tty) that refers to the terminal if used as a filename. Thus, the ttyname()
fnnr.tiol'! is nsefol ol'!ly if t.lie p!'ocess al!'eady has at !east one fi!e open to a te!TI!inal.

AES Support Level: Full use

1-81

OSF/1 Programmer's Reference
ctermid{3)

Return Values
Upon successful completion, the ctermid() function returns the address of the
generated pathname. Otherwise, an empty string is returned. Access to a
pathname returned by the ctermid() function is not guaranteed.

The ctermid _r() function, the reentrant version of the ctermid() function, always
returns null if the argument passed is null.

Related Information

Functions: ttyname(3)

1-82

Functions

ctime(3)

asctime, asctime_r, ctime, ctime_r, difftime, gmtime,
gmtime_r, localtime, localtime_r, mktime,
tzset

Purpose Converts time units

Library
Standard C Library (libc.a)

Synopsis #include <time.h>

char *asctime(
const struct tm *timeptr);

int asctime_r(
const struct tm *timeptr,
char *buffer,
intlen) ;

char *ctime(
const time_t *timer);

int ctime_r(
const time_ t *timer,
char *buffer,
int Zen);

double diffi:ime(
time _t time],
time_ t time2) ;

struct tm *gmtime(
const time_t *timer);

:_ __ ... :_.... _,
aua. e -.;;;_. \

struct tm *result,
const time_ t timer) ;

struct tm *localtime(
const time_t *timer);

int localtime _r(
struct tm *result,
const time_ t timer) ;

1-83

OSF/1 Programmer's Reference
ctime(3)

Parameters

Description

1-84

time_ t mktime(
struct tm *timeptr);

void tzset(void) ;
extern char *tzname[] ;
extern long timezone ;
extern int daylight ;

timeptr

time]

time2

timer

buffer

!en

Points to a type tm structure that defines space for broken-down
time.

Specifies a time value expressed in seconds.

Specifies a time value expressed in seconds.

Points to a variable that specifies a time value in seconds.

Points to a character array used to store the generated date and time
string.

Specifies an integer that defines the length of the character array.

The asctime(), asctime_r(), ctime(), diftlime(), gmtime(), gmtime_r(),
localtime(), localtime_r(), mktime(), and tzset() functions are used to convert
time units to strings, to store converted time units for subsequent processing, and to
convert stored time information to other time units. Time information used in these
functions is stored in a type tm structure, which is defined in the time.h include
file.

The asctime() function converts type tm structure broken-down time information
pointed to by the timeptr parameter to a date and time string with the following 5-
field format:

Sun Sep 16 01:03:521973

The asctime _r() function is the reentrant version of asctime() for use with
multiple threads.

The ctime() function converts the time in seconds since the Epoch, pointed to by
the timer parameter, to a character string. The Epoch is taken as 00:00:00 GMT 1
Jan 1970. The character string specifies local time in the same format as does the
asctime() function. Local time-zone information is set as though the tzset()
function were called. This function is equivalent to asctime (localtime (timer)).

The reentrant version of this function is identical, except that it stores the string in
the buffer parameter up to !en characters.

Functions

ctlme(3)

The difftime() function returns a signed time value in seconds that is the difference
between the values of the timel and time2 parameters, also expressed in seconds.

The gmtime() function converts the time in seconds since the Epoch, pointed to by
the timer parameter, into broken-down time, expressed as CUT (Coordinated
Universal Time). Broken-down time is stored in the type tm structure pointed to by
the return value of the gmtime() function.

The gmtime _r() function is the reentrant version of gmtime(). This information
is stored in the tm structure passed in the result parameter.

The localtime() function converts the time in seconds since the Epoch, pointed to
by the timer parameter, into broken-down time, expressed as local time. This
function corrects for the time-zone and any seasonal time adjustments. Broken­
down time is stored in the type tm structure pointed to by the return value of this
function. Local time-zone information is set as though the tzset() function were
called.

The localtime_r() function is the reentrant version of localtime() for use with
multiple threads.

The mktime() function converts the broken-down time, expressed as local time, in
the type tm structure pointed to by the timeptr parameter, into a time since the
Epoch in the same format as that of values returned by the time() function. The
original values of parameters timeptr->tm_wday and timeptr->tm_yday of the
structure are ignored, anci the original values of other members of the structure are
not restricted to the ranges defined in the time.h header file. The range [O, 61] for
structure member tm _sec allows for an occasional leap second or double leap
second.

A positive or 0 (zero) value for member tm _isdst tells the mktime() function
whether daylight saving time is in effect. A negative value for tm_isdst tells the
mktime() function to find out whether daylight saving time is in effect for the
specified time. Local time-zone information is set as though the tzset() function
were called.

On successful completion, values for the timeptr->tm_wday and timeptr­
>tm _yday members of the structure are set, and the other members are set to
specified times since the Epoch, but with their values forced to the ranges indicated
above; the final value of timeptr->tm _ mday is not set until the values of members
timeptr->tm_mon and timeptr->tm_year are determined.

The tzset() function uses the value of the environment variable TZ to set time
conversion information used by the localtime(), localtime_r(), ctime(),
ctime _r(), strftime(), and mktime() functions. When environment variable TZ
is absent, implementation-defined default time-zone information is used.

When the TZ environment variable is defined, the defined value overrides the
default time-zone value. The environment facility contains formatted time zone

1-85

OSF/1 Programmer's Reference
ctime(3)

1-86

information specified by TZ. Environment variable TZ is usually set when a
system is started with the value that is defined in either the /etc/environment or
/etc/profile files. However, TZ may also be set by a user as a regular environment
variable for converting to alternate time zones.

The tzset() function sets the external variable tzname as follows:

tzname[O] = std ;
tzname[l] = dst;

where std and dst are the strings designating standard and daylight saving time
zones, respectively, as described for the TZ environment variable.

The tzset() function also sets the external variable daylight to 0 (zero) when
daylight saving time conversions should never be applied for the time zone in use;
otherwise daylight is set to a nonzero value. The external variable timezone is set
to the difference, in seconds, between Coordinated Universal Time (CUT) and
local standard time. In the following table, entries in the TZ coli.imn are time-zone
environmental variables, and entries in the Timezone column are time units
expressed as UTC time.

TZ Timezone

EST 5*60*60
GMT 0*60*60
JST -9*60*60
MET -1 *60*60
MST 7*60*60
PST 8*60*60

External variable tzname specifies the name of the standard time zone
(tzname[O]) and of the time zone when daylight saving time is in effect
(tzname[l]). For example:

extern char *tzname[2] = {"EST","EDT"};

External variable timezone specifies the difference, in seconds, between GMT and
local standard time. For example, the value of timezone is 5 * 60 * 60 for U.S.
Eastern Standard Time.

External variable daylight is set nonzero when a daylight saving time conversion
should be applied. By default, this conversion follows standard U.S. time
conventions; other time conventions may be specified. The default conversion
algorithm adjusts for peculiarities of U.S. daylight saving time in 1974 and 1975.

Notes

Functions

ctime(3)

The asctime(), ctime(), gmtime(), and localtime() functions are not supported
for multi-threaded applications. Instead, their reentrant equivalents, asctime _r(),
ctime_r(), gmtime_r(), and localtime_r(), should be used with multiple threads.

The difftime(), mktime(), and tzset() functions are supported for multi-threaded
applications.

AES Support Level: Full use (asctime(), ctime(), difftime(), gmtime(),
localtime(), mktime(), tzset())

Return Values
When any of the asctime(), ctime(), gmtime(), or localtime() functions complete
successfully, the return value may point to static storage, which may be overwritten
by subsequent calls to these functions. On error, these functions return a null
pointer and errno is set to a value indicating the error.

Upon successful completion, the asctime() and ctime() functions return a pointer
to a character string that expresses the time in a fixed format.

Upon successful completion the difftime() function returns a value, expressed in
seconds, that is the difference between the values of parameters time] and time2.

Upon successful completion, the gmtime() and gmtime _r() functions return a
pointer to a type tm broken-down time structure, which contains converted GMT
time information. When UTC is not available, this function returns a null pointer.

Upon successful completion, the localtime() functions return a pointer to a type
tm broken-down time structure, which contains converted local time.

Upon successful completion, the mktime() function returns the specified time
since the Epoch written as a value of type time_ t . On error, or whenever the time
since the Epoch cannot be represented, this function returns the value (time_t)-1,
and sets errno to indicate the error. This function does not return a value.

Upon successful completion, the asctime_r(), ctime_r(), gmtime_r(), and
localtime _r(), functions return a value of 0 (zero). Otherwise, -1 is returned and

1-87

OSF/1 Programmer's Reference
ctime(3)

Errors
If any of these functions fails, errno may be set to the following value:

[EINVAL] The buffer or timer parameter is null, the fen parameter is 0 (zero),
or the specified broken-down time can not be represented as time
since the Epoch.

Related Information

Functions: getenv(3), strftime(3), time(3)

1-88

Functions

ctype(3)

isalpha,. isupper,
~sspa~e,
1sasc11

islower, isdigit, isxdigit, isalnum,
ispunct, ispnnt, isgraph, iscntrl,

Purpose Classifies characters

Library
Standard C Library (Jibe.a)

Synopsis #include <ctype.h>

int isalpha(
int c) ;

int isupper(
int c) ;

int islower(
int c) ;

int isdigit(
int c) ;

int isxdigit(
int c) ;

int isalnum(
int c) ;

int isspace
int c) ;

int ispunct(
int c) ;

int iimrint(---- --.-- ----,
int c) ;

int isgraph(
int c) ;

int iscntrl(
int c) ;

int isascii(
int c) ;

1-89

OSF/1 Programmer's Reference
ctype(3)

Parameters

Description

1-90

c Specifies the character to be tested. In all cases, this parameter is an
int data type, whose value must be representable as an unsigned
char or must equal the value of the macro EOF (defined in the
stdio.h include file). When this parameter has a value that can not
be represented as an unsigned char or EOF, the result is undefined.

The ctype functions classify character-coded integer values specified in a table.
Each of these functions returns a nonzero value for TRUE and 0 (zero) for FALSE.

The ctype functions, which are defined in the ctype.h include file, are defined as
subroutines in the sys/locale.h include file. These functions classify character­
coded integer values specified in a table. Each function returns a nonzero value for
TRUE and 0 (zero) for FALSE.

For international character support, these operations are implemented as functions.
To increase performance in a U.S. English-only environment, the ctype functions
are used. However, when the sys/locale.h include file is referenced, the assumption
is that international character support is desired, so subroutines are used in place
of macros.

The isascii() function is defined for all integer values. All other functions return a
meaningful value only when isascii() returns TRUE for the same c parameter
value or when c is EOF. (See Standard Input/Output Library for information about
the value EOF.)

Function Values

The following lists the set of values for which each function listed in the ctype.h
include file returns a nonzero (TRUE) value:

isalnum() When c is a letter or a digit.

isalpha

isupper

islower

When c is a letter.

When c is an uppercase letter.

When c is a lowercase letter.

isdigit When c is a digit in the range [0-9].

isxdigit() When c is a hexadecimal digit in the range [0-9], [A-F], or [a-f].

isspace() When c is a space, tab, carriage return, newline, vertical tab, or form
feed character.

ispunct() When c is a punctuation character (neither a control character nor an
alphanumeric character).

Notes

Functions

ctype(3)

isprint() When c is a printing character, ASCII space (040 or Ox20) through -
(0176 or Ox7E).

isgraph() When c is a printing character, like isprint(). Unlike isprint(),
isgraph() returns FALSE for the space character.

iscntrl() When c is an ASCII delete character (0177 or Ox7F), or an ordinary
control character (less than 040 or Ox20).

isascii() When c is an ASCII character whose value is in the range 0-0177 (O­
Ox7F), inclusive.

The setlocale() function affects all conversions. See the setlocale() function for
more information.

In the C locale, or in a locale where character-type information is not defined,
characters are classified according to the rules of the US-ASCII 7-bit coded
character set. For any character value greater than octal 177 (0177 in C-language
context) the value 0 (zero) is returned.

AES Support Level: Full use

Return Values
Upon successful completion of any function, a nonzero (TRUE) value is returned.
Otherwise, the value 0 (FALSE) is returned.

Related Information

Functions: ctype(3), setlocale(3)

1-91

OSF/1 Programmer's Reference
curses(3)

curses Library

Purpose

Library

Synopsis

Description

Controls cursor movement and windowing

Curses Library (libcurses.a)

#include <curses.h>
#include <term.h>

The curses library is a screen manipulation package.

The full curses interface allows you to manipulate structures called windows,
which can be thought of as two-dimensional arrays of characters representing all or
part of the screen. A default window (called stdscr) is supplied, and you can
create others using the newwin() function. Windows are referred to by variables
declared as type WINDOW *, defined in the curses.h header file. (The term.h
header file should be used only for using the terminfo level functions.)

Routine names beginning with "w" allow you to specify a window. Routine names
not beginning with a "w" affect only stdscr.

The minicurses package is a subset of curses that does not allow you to
manipulate more than one window. This subset is invoked with the
-DMINICURSES option to cc. This subset is smaller and faster than the full
curses interface.

If your program needs only one terminal, you can specify the -DSINGLE flag to
the C compiler. This results in static references instead of dynamic references to
capabilities. The result is more concise code, but only one terminal can be used at a
time for the program.

To initialize the functions which are described in the curses library, you must call
the initscr() function before using any other functions which affect windows and
screens, and the endwin() function before exiting.

Screen Dimensions

1-92

The screen is a matrix of character positions that can contain any character from
the terminal's character set. The actual dimensions of the matrix are different for
each type of terminal. These dimensions are defined when the initscr() function

Functions

curses(3)

calls the terminfo initialization function, setupterm(). The functions enforce the
following limits on the terminal:

• If the terminal specification defines less than 5 lines, the functions use a value
of 24 lines.

• If the terminal specification defines less than 5 columns, the functions use a
value of 80 columns.

Note that line values (y coordinates) are specified first to the library functions
which request line and column values.

To update the screen, the functions must know what the screen currently looks like
and what it should be changed to. The functions define the WINDOW data type to
hold this information. This data type is a structure that describes a window image
to the functions, including the starting position on the screen (the (line, col)
coordinates of the upper left comer) and size.

You can think of a window as an array of characters on which to make changes.
Using the window, a program builds and stores an image of a portion of the
terminal that it later transfers to the actual screen. When the window is complete,
use one of the following functions to transfer the window to the terminal:

refresh Transfers the contents of stdscr to the terminal.

wrefresh Transfers the contents of a named window (not stdscr) to the
terminal.

This two-step process maintains several different copies of a window in memory
and selects the proper one to display at any time. In addition, the program can
change the contents of the screen in any order. When it has made all of the
changes, the library functions update the terminal in an efficient manner.

The Curses Routines

The curses functions are summarized below:

int addch(chtype ch);

Add a character to stdscr, wrapping to the next line at the end of a
line (like putchar()). May be called with minicurses.

int waddch(WINDOW *win, chtype ch);

Add character ch to window win.

int mvwaddch(WINDOW *win, int y, int x, chtype ch);

Move to position (y, x), then add character ch to window win.

int addstr(char *str);

Call addch() with each character in string str. May be used with
minicurses.

1-93

OSF/1 Programmer's Reference
curses(3)

1-94

int mvaddstr(int y, int x, char *str);

Move to position (y, x), then add string str.

int waddstr(WINl)QW *win, char *str);

Add st~ng str to window win.

int mvwaddstr(WINDOW *win, int y, int x, char *str);

Move to position (y, x), then add string str to window win.

int attroff(chtype attrs);

Tum off attributes named in list attrs. May be used with
mini curses.

int attron(chtype attrs);

Turn on attributes named in list attrs. May be used with minicurses.

int attrset(chtype attrs);

Set current attributes to those specified in list attrs. May be used
with minicurses.

int baudrate (void);

Query current terminal speed. May be used with minicurses.

int beep (void);

Sound beep on terminal. May be used with minicurses.

int box(WINDOW *win, chtype vert, chtype hor);

Draw a box around edges of window win. The vert and hor
parameters are the characters to use for vertical and horizontal
edges of the box.

int cbreak (void);

Set cbreak() mode. May be used with minicurses.

int nocbreak (void);

Unset cbreak() mode. May be used with minicurses.

int clear (void);

Clear stdscr.

int clearok(WINDOW *win, bool boot _flag);

Clear screen before next redraw of window win if boot _flag is true.

int clrtobot (void);

Clear to bottom of stdscr.

int clrtoeol (void);

Clear to end of line on stdscr.

int delay_ output(int ms) ;

Functions

curses{3)

Insert pause of ms milliseconds m output. May be used with
mini curses.

int nodelay(WINDOW *win, boot bool._flag);

Enable nodelay() input mode through getch() on window win if
boo/ _flag is true.

int delch (void);

Delete a character.

int deleteln (void);

Delete a line.

int delwin(WINDOW *win);

Delete window win.

int doupdate (void);

Update screeri from all wnoutrefresh().

int echo (void);

Set echo mode. May be used with minicurses.

int noecho (void);

Unset echo mode. May be used with minicurses.

int endwin (void) ;

End window mode. May be used with minicurses.

int erase (void);

Erase stdscr.

char erasechar (void);

Return user's erase character.

int fixterm (void);

Restore terminal to "in curses" state.

int flash (void);

Flash screen or beep.

int flushinp (void);

Throw away any data in type-ahead. May be used with minicurses.

1-95

OSF/1 Programmer's Reference
curses(3)

1-96

int flushok (WINDOW *win, bool boo(flag);

Set the flush-on-refresh flag for window win to be bool_ftag.

int getch (void);

Get a character from stdscr. May be used with minicurses. The
following list contains the function keys that might be returned by
the getch() function if keypad() has been enabled. Due to lack of
definitions in terminfo, or due to the terminal not transmitting a
unique code when the key is pressed, not all of these keys are
supported.

KEY_BREAK
Break key (unreliable)

KEY _DOWN Down arrow key

KEY_UP Up arrow key

KEY _LEFT Left arrow key

KEY _RJGHT Right arrow key

KEY _HOME Home key

KEY _BACKSPACE
Backspace (unreliable)

l(EY_F(n) Function key Fn, where n is an integer from 0 to 63

KEY _DL Delete line

KEY _IL Insert line

KEY _DC Delete character

KEY _IC Insert character or enter insert mode

KEY _EiC Exit insert character mode

KEY_CLEAR
Clear screen

KEY _EOS Clear to end of screen

KEY _EOL Clear to end of line

KEY _SF Scroll one line forward

KEY_SR Scroll one line backwards (reverse)

KEY_NPAGE
Next page

KEY_PPAGE Previous page

KEY _STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB
Clear all tabs

KEY_ENTER Enter or send (unreliable)

KEY_SRESET
Soft (partial) reset (unreliable)

KEY _RESET Reset or hard reset (unreliable)

KEY _PRINT Print or copy

KEY _LL Home down or bottom (lower left)

KEY _Al Upper left key of keypad

KEY _A3 Upper right key of keypad

KEY _B2 Center key of keypad

KEY_Cl

KEY_C3

Lower left key of keypad

Lower right key of keypad

char *getcap (char *cap_ name);

Get terminal capability cap_ name.

int getstr(char *str);

Get the string through stdscr.

int gettmode (void);

Get current tty modes.

int getyx(WINDOW *win, int y, int x);

Get (y, x) coordinates from window win.

bool has_ic (void);

Has value of TRUE if terminal can insert character.

bool has_il (void);

Has value of TRUE if terminal can insert line.

int idlok(WINDOW *win, bool bool_flag);

Functions

curses(3)

Use terminal's insert/delete line on window win if boot _flag is true.
May be used with minicurses.

1-97

OSF/1 Programmer's Reference
curses(3)

1-98

chtype inch (void);

Get character at current (y, x) coordinates.

WINDOW *initscr (void);

Initialize screens. May be used with minicurses.

int insch(chtype ch);

Insert character ch.

int insertln (void);

Insert a line.

int intrflush(WINDOW *win, bool bool_flag);

Interrupt flush output on window win if boo/ _flag is true.

int keypad(WINDOW *win, bool bool_flag);

Enable keypad input on window win if boo/ _flag is true.

char killchar (void);

Return current user's kill() character.

int leaveok(WINDOW *win, bool bool_flag);

Permit cursor to be left anywhere after refresh for window win if
boo/ _flag is true; otherwise cursor must be left at current position.

char *longname (void);

Return verbose name of terminal.

char *longname(char *termbuf, char *name);

Set name to the full name of the terminal described by termbuf.
Used in programs that are compiled with the -DBSD option to
provide BSD compatibility.

char meta(WINDOW *win, bool bool_flag);

Allow metacharacters on input from window win if boo/ _flag is true.
May be used with minicurses.

int move(int y, int x);

Move to position (y, x) on stdscr. May be used with minicurses.

int mvaddch(int y, int x, chtype ch);

Move to position (y, x), then add character ch.

char mvcur(int yi, int xi, int y2, int x2);

Move cursor from current position (yi ,xi) to new position (y2,x2).

Functions

curses(3)

int mvdelch(int y, int x);

Move to position (y, x), then delete a character.

int mvgetch(int y, int x);

Move to position (y, x), then get a character from the terminal.

int mvgetstr(int y, int x, char *str);

Move to position (y, x), then get the str string from the terminal.

chtype mvinch(int y, int x);

Move to position (y, x) then get the character at current (y, x)
coordinates.

int mvinsch(int y, int x, chtype ch);

Move to position (y, x) then insert the character ch.

int mvprintw(int y, int x, char *fmt [, args]);

Move to position (y, x), then get print on stdscr.

int mvscanw(int y, int x, char *fmt [, args]);

Move to position (y, x), then scan through stdscr.

·int mvwdelch(WINDOW *win, int y, int x);

Move to position (y, x), then delete a character from win.

int mvwgetch(WINDOW *win, int y, int x);

Move to position (y, x), then get a character through win.

int mvwgetstr(WINDOW *win, int y, int x, char *str);

Move to position (y, x), then get a string through win.

int mvwin(WINDOW *win, int y, int x);

Move win so that the upper left comer is located at position (y, x).

chtype mvwinch(WINDOW *win, int y, int x);

Mnvp, tn nrn:itinn (" r) in win thp,n cri>t thP rh>1r>1rtp,r >It thP ""'"'
-- -- , - -- r --------- v' --~ --- ·· -"-' ------ o-- ---- --------- -- ---- --- ··

position.

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

Move to position (y, x), then insert the character ch into win.

int mvwprintw(WINDOW *win, int y, int x, char *fmt [, args]);

Move to position (y, x) then printf() on stdscr.

1-99

OSF/1 Programmer's Reference
curses(3)

1-100

int mvwscanw(WINDOW *win, int y, int x, char *fmt [, args]);

Move (y, x) then scanf() through stdscr.

WINDOW *newpad(int nlines, int ncols);

Create a new pad with given dimensions.

SCREEN *newterm(char *type, FILE outfd, FILE infd);

Set up new terminal of given type to output on outfd and input from
infd.

WINDOW *newwin(int lines, int cols, int begin_y, int begin_x);

Create a new window.

int nl (void);

Set new line mapping. May be used with minicurses.

int nonl (void);

Unset new line mapping. May be used with minicurses.

int overlay(WINDOW *winl, WINDOW *win2);

Overlay winl on win2. The overlaying window (winl) takes as its
origin the window being overlayed (win2).

int overwrite(WINDOW *winl, WINDOW *win2);

Overwrite winl on win2.

int printw(char *fmt [, argl, arg2, ...]);

Print on stdscr.

int raw (void);

Set raw mode. May be used with minicurses.

int refresh (void);

Make current screen look like stdscr. May be used with
minicurses.

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow, int smincol,
int smaxrow, int smaxcol);

Refresh from pad starting with given upper left comer of pad with
output to given portion of screen.

Functions

curses{3)

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol,
int sminrow,
int smincol, int smaxrow, int smaxcol);

Refresh like prefresh(), but with no output until doupdate() is
called.

int noraw (void);

Unset raw mode. May be used with minicurses.

int resetterm (void);

Set tty modes to "out of curses" state. May be used with
minicurses.

int resetty (void);

Reset tty flags to stored value. May be used with minicurses.

int saveterm (void);

Save current modes as "in curses" state. May be used with
minicurses.

int savetty (void);

Store current tty flags. May be used with minicurses.

int scanw(char *fmt [, argl, arg2, ...]);

Scanf through stdscr.

int scroll(WINDOW *win);

Scroll win one line.

int scrollok(WINDOW *win, bool bool_flag);

Allow terminal to scroll if boo/ _flag is true.

SCREEN *set_ term(SCREEN *new);

Enable talk to terminal new.

int setscrreg(int top, int bottom);

Set user scrolling region to lines top through bottom.

void setterm(char *type);

Establish terminal with a given type.

int standend (void);

Clear standout mode attribute. May be used with minicurses.

1-101

OSF/1 Programmer's Reference

curses(3)

1-102

int standout (void);

Set standout mode attribute. May be used with minicurses.

WINDOW *subwin(WINDOW *win, int lines, int cols, int begin_y, int begin _x);

Create· a subwindow.

int touchline(WINDOW *win, int y, intfirstcol, int numcol);

Mark numcol columns, starting at column firstcol, of line y as
changed.

int touchoverlap(WINDOW *winl, WINDOW *win2);

Mark overlap of winl on win2 as changed.

int touchwin(WINDOW *win);

Change all of win.

int traceoff (void);

Tum off debugging trace output.

int traceon (void);

Tum on debugging trace output.

int typeahead(FILE/d);

Check file descriptor f d to check type-ahead.

char *unctrl(chtype ch);

Use printable version of ch. May be used with minicurses.

int wattroff(WINDOW *win, int attrs);

Tum off attrs in win.

int wattron(WINDOW *win, int attrs);

Tum on attrs in win.

int wattrset(WINDOW *win, int attrs);

Set attributes in win to attrs.

int wclear(WINDOW *win);

Clear win.

int wclrtobot(WINDOW *win);

Clear to bottom of win.

int wclrtoeol(WINDOW *win);

Clear to end of line on win.

int wdelch(WINDOW *win);

Delete the current character from win.

int wdeleteln(WINDOW *win);

Delete line from win.

int werase(WINDOW *win);

Erase win.

int wgetch(WINDOW *win);

Get a character· through win.

int wgetstr(WINDOW *win, char *str);

Get the string str through win.

chtype winch(WINDOW *win);

Get the character at current (y, x) in win.

int winsch(WINDOW *win, chtype ch);

Insert the character ch into win.

int winsertln(WINDOW *win);

Insert line into win.

int wmove(WINDOW *win, int y, int x);

Set current (y, x) coordinates on win.

int wnoutrefresh(WINDOW *win);

Refresh but no screen output.

int wprintw(WINDOW *win, char *fmt [, argl, arg2, ...]);

printf() on win.

int wrefresh(WINDOW *win);

Make screen look like win.

int wscanw(WINDOW •win, char "'fmt [, argl, arg2,. ..]);

scanf() through win.

int wsetscrreg(WINDOW *win, int top, int bottom);

Set scrolling region of win.

Functions

curses(3)

1-103

OSF/1 Programmer's Reference
curses(3)

int wstandend(WINDOW *win);

Clear standout attribute in win.

int wstandout(WINDOW *win);

Set standout attribute in win.

Terminfo Level Functions

1-104

These functions should be called by programs that have to deal directly with the
terminfo database. Due to the low level of this interface, its use is discouraged.

To use the terminfo level functions of curses, include the curses.h and term.h
files, in that order, to get the definitions for these strings, numbers, and flags.
Programs should call the setupterm() function before using any of the other
terminfo functions. The setupterm() function defines the set of terminal­
dependent variables defined in the terminfo file.

All terminfo strings (including the output of the tparm() parameter) should be
printed using the tputs() or putp() function. Before exiting, your program should
call the reset_shell_mode() function to restore the tty modes. Programs desiring
shell escapes can call the reset_shell_mode() function before the shell is called,
and the reset_prog_mode() function after returning from the shell.

int delay_output (int ms);

Sets the output delay, in milliseconds.

int def_prog_mode(void);

Saves the current terminal mode as program mode, in cur_term­
>Nttyb.

int def_shell_mode(void);

Saves the shell mode as normal mode, in cur_term->Ottyb. The
def_shell_mode() function is called automatically by setupterm()
function.

int putp(char *str);

Calls tputs()(char *str, 1, putchar()).

int reset_prog_mode (void);

Puts the terminal into program mode.

int reset_shell_mode (void);

Puts the terminal into shell mode. All programs must call the
reset_shell_mode() function before they exit. The higher-level
function endwin() automatically does this. ·

Functions

curses(3)

int setupterm(char *term, intfd, int re);

Reads in the database. The term parameter is a character string that
specifies the terminal name. If term is 0 (zero), then the value of the
TERM environment variable is used. One of the following status
values is stored into the integer pointed to by the re parameter:

1 Successful completion.

0 No such terminal.

-1 An error occurred while locating the terminfo database.

If the re parameter is 0 (zero), then no status value is
returned, and an error causes the setupterm() function to
print an error message and exit, rather than return. The f d
parameter is the file descriptor of the terminal being used for
output. The setupterm() function calls the TIOCGWINSZ
ioctl function to determine the number of lines and columns
on the display. If termdef cannot supply this information,
then the setupterm() function uses the values in the
terminfo database. The simplest call is setupterm(0,1,0),
which uses all the defaults.

After the call to the setupterm() function, the global
variable cur_ term is set to point to the current structure of
terminal capabilities. It is possible for a program to use more
than one terminal at a time by calling the setupterm()
function for each terminal and saving and restoring
cur term.

The setupterm() function also initializes the global variable
ttytype as an array of characters to the value of the list of
names for the terminal. The list comes from the beginning of
the terminfo description.

char *tparm(char *format [, arg, ...]);

Instantiates the format string format, and one or more arguments of
varying type. The character string returned has the given
parameters applied.

void tputs(char *str, int affent, int (*pute) ();

Applies padding information to string str. The ajfent parameter is the
number of lines affected, or 1 if not applicable. The pute parameter
function is similar to putchar() to which the characters are passed
one at a time.

1-105

OSF/1 Programmer's Reference
curses(3)

Some strings are of a form similar to $<20>, which is an instruction
to pad for 20 milliseconds.

void vidputs(int *attrs, int (*putc) ();

Outputs the string to put terminal in video attribute mode attrs.
Characters are passed to the putc function. The attrs are defined in
curses.h. The previous mode is retained by this function.

void vidattr(int attrs);

Like vidputs(), but outputs through putchar().

Termcap Compatibility Functions

These functions are included for compatibility with programs that require
termcap. Their parameters are the same as for termcap, and they are emulated
using the terminfo database.

int tgetent(char *bp, char *name);

Looks up the termcap entry for name. Both bp and name are
strings. The name parameter is a terminal name; bp is ignored. Calls
the setupterm() function.

int tgetflag(char *id);

Returns the Boolean entry for id, which is a 2-character string that
contains a termcap identifier.

int tgetnum(char *id);

Returns the numeric entry for id, which is a 2-character string that
contains a termcap identifier.

char *tgetstr(char *id, char *area);

Returns the string entry for id, which is a 2-character string that
contains a termcap identifier. The area parameter is ignored.

char *tgoto(char *cap, int col, int row);

Applies parameters to the given cap. Calls the tparm() function.

void tputs(char *cap, int ajfcnt, int (*Jn) ();

Applies padding to cap calling Jn as putchar().

Related Information

Files: terminfo(4)

1-106

Functions

cuserid(3)

cuserid

Purpose Gets the alphanumeric username associated with the current process

Library
Standard 1/0 Package (libc.a)

Synopsis #include <stdio.h>

char *cuserid (
char *s);

Parameters

Description

Notes

s If the s parameter is a null pointer, the character string is stored into
an internal static area, the address of which is returned. This
internal static area is overwritten with the next call to cuserid().

If the s parameter is not a null pointer, the character string is stored
into the array pointed to by the s parameter. This array must contain
at least L_cuserid bytes. L_cuserid is a constant defined in the
stdio.h header file, and has a value greater than 0 (zero).

The cuserid() function generates a character string representing the username of
the owner of the current process.

AES Support Level: Full use

Return Vaiues
If the s parameter is not a null pointer, the cuserid() function returns s. If the s
parameter is not a null pointer and the username cannot be found, an empty string
is returned.

If the s parameter is a null pointer and the username cannot be found, the cuserid()
function returns a null pointer.

1-107

OSF/1 Programmer's Reference
cuserid(3)

The reentrant version of cuserid() always returns null if the argument passed is
null.

Related Information

Functions: getlogin(2), getpwent(3)

1-108

Functions

dbm(3)

dbminit, fetch, store, delete, firstkey, nextkey, forder

Purpose Database subroutines

Library
DBM Library (libdbm.a)

Synopsis #include <dbm.h>

typedef struct {
char *dptr;
int dsize;

Parameters

Description

} datum;

int dbminit(
char *file);

datum fetch(
datum key);

int store(
datum key,
datum content);

int delete(
datum key);

datum firstkey(void);

datum nextkey(
datum key);

long forder(
datum key);

file

key

content

Specifies the database file.

Specifies the key.

Specifies a value associated with the key parameter.

The dbminit(), fetch(), store(), delete(), firstkey(), nextkey(), and forder()
functions maintain key/content pairs in a database. They are obtained with the

1-109

OSF/1 Programmer's Reference
dbm(3)

-ldbm loader option. The dbm library is provided only for backwards
compatibility, having been obsoleted by the ndbm functions in libc. See the
manual page for ndbm for more information.

The dbminit(), fetch(), store(), delete(), firstkey(), nextkey(), and forder()
functions handle very large databases (up to a billion blocks) and access a keyed
item in o~e or two file system accesses. Arbitrary binary data, as well as normal
ASCil strings, are allowed.

The database is stored in two files. One file is a directory containing a bit map and
has .dir as its suffix. The second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by the dbminit() function.
At the time that dbminit() is called, the file .dir and file .pag files must exist. (An
empty database is created by creating zero-length .dir and .pag files.)

Once open, the data stored under a key is accessed by the fetch() function and data
is placed under a key by the store() function. A key (and its associated contents)
is deleted by the delete() function. A linear pass through all keys in a database
may be made by use of the firstkey() and nextkey() functions. The firstkey()
function returns the first key in the database. With any key, the nextkey() function
returns the next key in the database. The following code traverses the database:

for (key= firstkey(); key.dptr !=NULL; key= nextkey(key))

Return Values
Upon successful completion, the functions that return an int return 0 (zero).
Otherwise, a negative number is returned. The functions that return a datum
indicate errors with a null (0) dptr.

Related Information

Functions: ndbm(3)

1-110

Functions
decode_mach_o_hdr(3)

decode_Inach_o_hdr

Purpose

Library

Synopsis

Parameters

Description

Converts the canonical header from an OSF/ROSE object file to readable form

lib Id

#include <mach_o_header.h>
#include <sys/types.h>
int decode_mach_o_hdr(

in_bufp

void *in_bufp,
size_t in_bufsize,
unsigned long hdr _version,
mo_header_t *headerp);

Specifies the address of a buffer that contains the object file's header in
canonical form.

in_bufsize
Specifies the size of the input buffer in bytes. The number of bytes read
from the file into the buffer by the caller should not be less than
MO_SIZEOF _RAW _HDR, as defined in the mach_o_header.h file.

hdr _version
Specifies the version of the header that corresponds to the structure pointed
to by headerp.

headerp
Specifies the address of the header structure to receive the header translated
into natiVf\ n"acl::iblP. form

The decode_mach_o_hdr() function converts an OSF/ROSE object file header
from its canonical form in the object file to a form that can be read "naturally" in
the local environment. "Natural" means with fie1ds aligned to fit the mo_header_t
structure defined in the mach_o_header.h header file, as accessed by code
generated by the local C compiler. "Canonical" means with fields aligned for 32-
bit words and in network byte order, described for the local machine in the
mach_o_header_md_h header file.

1-111

OSF/1 Programmer's Reference

decode_mach_o_hdr(3)

Notes

Since object file headers can chimge only by growing, any header version that is
supported by decode_mach_o_hdr() can be given as input or output. The input
and output versions can be different.

The caller should make sure that it supports both the header version and object file
version returned. In general, callers should not have to check for version numbers
greater than those they recognize.

If an error is returned, the contents of the output structure are undefined.

Return Values
Upon successful completion, the decode_mach_o_hdr() function returns
MO_HDR_CONV _SUCCESS and stores the converted header in headerp.
Otherwise, one or more of the following errors is returned:

MO_ERROR_BAD_RAW _HDR_ VERS
The header version in the input buffer was not recognized.

MO_ERROR_BAD_HDR_ VERS
The header version specified for headerp was not recognized.

MO_ERROR_BUF2SML
The size of the input buffer was too small.

MO_ERROR_BAD_MAGIC
The input buffer did not contain the OSF/ROSE magic number in the
correct location.

MO_ERROR_UNSUPPORTED_ VERS
Either the version of the header in the object file or the version
specified for the output could not be converted, even though both
are legal according to the header files.

Related Information
Functions: encode_mach_o_hdr(3)

Files: osf_rose(4)

1-112

Functions

dn_comp(3)

dn_comp

Purpose

Library

Synopsis

Parameters

Description

Compresses a domain name

Standard C Library (libc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv .h>

int dn_comp (
u_char *expanded_name,
u_char *compressed_name,
int length,
u_char **name_ptrs,
u_char **end_ptr);

expanded_name
Points to a domain name.

compressed_name
Points to an array containing the compressed domain name.

length Specifies the size of the array pointed to by the compressed_name
parameter.

name_ptrs

end_ptr

Specifies a list of pointers to previously compressed names in the
current message.

Points to the end of the array pointed to by the compressed_name
parameter.

The dn_comp() (domain name compression) function compresses the domain
name pointed to by the expanded_name parameter and stores it in the area pointed
to by the compressed_name parameter.

1-113

OSF/1 Programmer's Reference

dn_comp(3)

The dn_comp() function inserts labels into the message as the name is
compressed. The dn_comp() function also maintains a list of pointers to the
message labels.

If the value of the name_ptrs parameter is null, the dn_comp() function does not
compress any names, but instead translates a domain name from ASCII to internal
format without removing suffixes (compressing). Otherwise, the name_ptrs
parameter is the address of pointers to previously compressed suffixes.

If the end_ptr parameter is null, the dn_comp() function does not update the list of
label pointers.

The dn_comp() function is one of a set of subroutines that form the resolver, a set
of functions that resolves domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The /include/resolv.h file
contains the _res data structure definition.

Return Values

Files

Upon successful completion, the dn_comp() function returns the size of the
compressed domain name. Otherwise, a value of -1 is returned.

/etc/resolv .conf
Defines name server and domain name structures, constants, and
values.

Related Information

1-114

Functions: res_init(3), res_mkquery(3), res_send(3), dn_expand(3), dn_find(3),
getshort(3), getlong(3), putshort(3), putlong(3), dn_skipname(3)

Commands: named(8)

Functions
dn_expand(3)

dn_expand

Purpose

Library

Synopsis

Parameters

Description

Expands a compressed domain name

Standard C Library (Jibe.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv .h>

int dn_expand (
u_char *message_ptr,
u_char *end_of_message,
u_char *compressed_name,
u_char *expanded_name,
int length);

message_ptr Specifies a pointer to the beginning of a message.

end_of_message
Points to the end of the original message that contains the
compressed domain name.

compressed_name
Specifies a pointer to a compressed domain name.

expanded_name

length

Specifies a pointer to a buffer that holds the resulting expanded
<lumain name.

Specifies the size of the buffer pointed to by the expanded_name
parameter.

The dn_expand() function expands a compressed domain name to a full domain
name, converting the expanded names to uppercase.

1-115

OSF/1 Programmer's Reference

dn_expand(3)

The dn_expand() function is one of a set of subroutines that form the resolver, a
set of functions that resolves domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The /include/resolv.h file
contains the _res structure definition.

Return Values

Files

Upon successful completion, the dn_expand() function returns the size of the
expanded domain name. Otherwise, a value of -1 is returned.

/etc/resolv .conf
Defines name server and domain name constants, structures, and
values.

Related Information

1-116

Functions: res_init(3), res_mkquery(3), res_send(3), dn_comp(3), dn_find(3),
getshort(3), getlong(3), putshort(3), putlong(3), dn_skipname(3)

dn_find

Purpose

Library

Synopsis

Parameters

Description

Searches for an expanded domain name

Standard C Library (Ube.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

dn_find()(
char *exp_domain_name,
char *message,
char **domain_names,
char **end_ptr);

exp _domain_name
Points to an expanded domain name.

Functions
dn_find(3)

message Points to the address of a domain name message that contains the
name sought by the dn_find() function.

domain_names
Specifies an array of pointers to previously compressed names in the
current message.

end_ptr Points to the end of an array of pointers. The array is indicated by
the domain_names parameter.

The dn_find() (domain name find) function searches for an expanded domain
name from a list of previously compressed names. An application program calls the
dn_find() function indirectly using the dn_comp() function. If an expanded
domain name is found, the dn_comp() function returns the offset from the message
parameter.

1-117

OSF/1 Programmer's Reference

dn_find(3)

The dn_find() function is one of a set of subroutines that form the resolver, a set of
functions that resolves domain names. Global information used by the resolver
functions resides in the _res data structure. The include/resolv.h file contains the
_res data structure definition.

Return Values

Files

Upon successful completion, the dn_find() function returns the offset from the
message parameter. Otherwise, the dn_find() function returns a value of -1.

/etc/resolv .conf
Defines name server and domain name structures and constants.

Related Information

1-118

Functions: res_init(3), res_mkquery(3),
dn_expand(3), getshort(3), getlong(3),
dn_skipname(3)

Commands: named(8)

res_send(3),
putshort(3),

dn_comp(3),
putlong(3),

Functions

dn_skipname(3)

dn_skipname

Purpose

Library

Synopsis

Parameters

Description

Skips over a compressed domain name

Standard C Library (libc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_skipname (
u_char *comp_domain_name,
u_char *end_of_message);

comp _domain_name
Specifies a pointer to a compressed domain name.

end_of_message
Specifies the end of the compressed domain name address.

The dn_skipname() function skips over a compressed domain name.

The dn_skipname() function is one of a set of subroutines that form the resolver, a
set of functions that resolve domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The include/resolv.h file
contains the _res structure definition.

Return Values

Upon successful completion, the dn_skipname() function returns the size of the
compressed domain name. If the dn_skipname() function fails, -1 is returned.

1-119

OSF/1 Programmer's Reference
dn_skipname(3)

Files

/etc/resolv .conf
Defines name server and domain name structures, values, and
constants.

Related Information

Functions: res_init(3), res_mkquery(3), res_send(3), dn_comp(3),
dn_expand(3), dn_find(3), getshort(3), getlong(3), putshort(3), putlong(3)

Commands: named(8)

1-120

Functions

drand48(3)

drand48, erand48, lrand48, nrand48, mrand48,
jrand48, srand48, seed48, lcong48

Purpose Generates uniformly distributed pseudo-random number sequences

Library
Standard C Library (Ube.a)

Synopsis #include <stdlib.h>

double drand48 (void);

double erand48 (

Parameters

unsigned short xsubi[3]);

long jrand48 (
unsigned short xsubi[3]);

void lcong48 (
unsigned short param[1]);

long lrand48 (void);

long mrand48 (void);

long nrand48 (
unsigned short xsubi[3]);

unsigned short *seed48 (
unsigned short seed_l6v[3]);

void srand48 (
long seed_val);

xsubi Specities an array ot three shorts, which, when concatenated
together, form a 48-bit integer.

seed_val Specifies the initialization value to begin randomization. Changing
this value changes the randomization pattern.

1-121

OSF/1 Programmer's Reference
drand48(3)

Description

1-122

seed_l6v Specifies another seed value; an array of three unsigned shorts that
form a 48-bit seed value.

pa ram Specifies an array specifying the initial Xi, the multiplier value a,
and the addend value c.

This family of functions generates pseudo-random numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

The drand48() and erand48() functions return nonnegative, double-precision,
floating-point values uniformly distributed over the range of y values such that 0 :S:
y < 1.0.

The lrand48() and nrand48() functions return nonnegative long integers
uniformly distributed over the range of y values such that 0 :S: y < 231 .

The mrand48() and jrand48() functions return signed ~~ng integers uniformly
distributed over the range of y values such that -231 :S: y < 2 .

The srand48(), seed48(), and lcong48() functions initialize the random-number
generator. Programs should invoke one of them before calling the drand48(),
lrand48(), or the mrand48() functions. (Although it is not recommended practice,
constant default initializer values are supplied automatically if the drand48(),
lrand48(), or mrand48() functions are called without first calling an initialization
function.) The erand48(), nrand48(), and jrand48() functions do not require that
an initialization function be called first.

All the functions work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+I = (aXn +c)modrn n~O

The parameter m equals 248 ; hence 48-bit integer arithmetic is performed. Unless
lcong48() has been invoked, the multiplier value a and the addend value c are
given by

a= 5DEECE66D16 = 273673163155 8

c = B 16 = 13s

The values returned by the drand48(), erand48(), lrand48(), nrand48(),
mrand48(), and jrand48() functions are computed by first generating the next
48-bit Xi in the sequence. Then the appropriate number of bits, according to the
type of data item to be returned, are copied from the high-order (most significant)
bits of Xi and transformed into the returned value.

Notes

Functions
drand48(3)

The drand48(), lrand48(), and mrand48() functions store the last 48-bit Xi
generated into an internal buffer, which is why they must be initialized prior to
being invoked.

The erand48(), nrand48(), and jrand48() functions require that the calling
program provide storage for the successive Xi values in the array pointed to by the
xsubi parameter. This is why these routines do not have to be initialized; the
calling program merely has to place the desired initial value of Xi into the array
and pass it as a parameter.

By using different parameters, the erand48(), nrand48(), and jrand48() functions
allow separate modules of a large program to generate several independent
sequences of pseudo-random numbers, that is, the sequence of numbers that one
module generates does not depend upon how many times the functions are called
by other modules.

The initializer function srand48() sets the high-order 32 bits of Xi to the
LONG_BIT bits contained in its parameter. The low order 16 bits of Xi are set to
the arbitrary value 330E16·

The initializer function seed48() sets the value of Xi to the 48-bit value specified in
the array pointed to by the seed_l6v parameter. In addition, seed48() returns a
pointer to a 48-bit internal buffer that contains the previous value of Xi that is used
only by seed48(). The returned pointer allows you to restart the pseudo-random
sequence at a given point. Use the pointer to copy the previous Xi value into a
temporary array. To resume where the original sequence left off, you can call
seed48() with a pointer to this array.

The lcong48() function specifies the initial Xi value, the multiplier value a, and the
addend value c. The param array elements param[0-2] specify Xi, param[3-5]
specify the multiplier a, and param[6] specifies the 16-bit addend c. After
lcong48() has been called, a subsequent call to either srand48() or seed48()
restores the standard a and c as specified previously.

AES Support Level: Trial use

1-123

OSF/1 Programmer's Reference

drand48(3)

Return Values
The drand48() and erand48() functions return nonnegative, double-precision,
floating-point values. The lrand48() and nrand48() functions return signed long
integers uniformly distributed over the range 0 ::;; y < 231 . The mrand48() and
jrand48H functig?s return signed long integers uniformly distributed over the
range -2 ::;; y < 2 .

The seed48() function returns a pointer to a 48-bit internal buffer.

The lcong48() and srand48() functions do not return a value.

Related Information

Functions: rand(3), rand(3), random(3)

1-124

Functions
ecvt(3)

ecvt, f cvt, gcvt

Purpose

Library

Synopsis

Parameters

Converts a floating-point number to a string

Standard C Library (Jibe.a)

#include <stdlib.h>

char *ecvt (
double value,
int num_digits,
int *decimal_ptr,
int *sign);

char *fcvt (
double value,
int num_digits,
int *decimal_ptr,
int *sign);

char *gcvt (
double value,
int num_digits,
char *buffer);

Specifies the double value to be converted.

Specifies the number of digits in the resulting string.

value

num_digits

decimal_ptr Holds the position of the decimal point relative to the beginning of
the string. A negative number means the decimal point is to the left
of the digits given in the string.

sign

buffer

Holds 0 (zero) if the value is positive or zero, and a nonzero value if
it is negative.

Specifies the character array for the resulting string.

1-125

OSF/1 Programmer's Reference

ecvt(3}

Description

Notes

1-126

The ecvt(), fcvt(), and gcvt() functions convert floating-point numbers to null­
terminated strings.

The ecvt() function converts the value specified by the value parameter to a null­
terminated string of length num_digits, and returns a pointer to it. The resulting
low-order digit is rounded according to the current rounding mode. The
decimal_ptr parameter is assigned to the position of the decimal point relative to
the position of the string. The sign parameter is assigned 0 (zero) if value is
positive or zero, and a nonzero value if value is negative. The decimal point and
sign are not included in the string.

,,
The fcvt() function is the same as the ecvt() function, except that it rounds to the
correct digit for outputting nutrl:_digits digits in C or FORTRAN F-format. In the
F-format, num_digits is taken as the number of digits desired after the decimal
point.

The gcvt() function converts the value specified by the value parameter to a null­
terminated string, stores it in the array pointed to by the buffer parameter, and then
returns buffer. The gcvt() function attempts to produce a string of num_digits
significant digits in FORTRAN F-format. If this is not possible, then E-format is
used. The string is ready for printing, complete with minus sign, decimal point, or
exponent, as appropriate. Trailing zeros are suppressed.

In the F-format, num_digits is the number of digits desired after the decimal point.
Very large numbers produce a very long string of digits before the decimal point,
and then num_digits digits after the decimal point. For large numbers, it is
preferable to use the gcvt() or ecvt() function so that the E-format will be used.

The ecvt(), fcvt(), and gcvt() functions represent the following special values that
are specified in ANSI/IEEE Std. 754-1985 for floating-point arithmetic:

Quiet NaN NaNQ
signalling NaN NaNS
+ Infinity

The sign associated with each of these values is stored into the sign parameter.
Note, also, that in IEEE Floating Point, a value of 0 (zero) can be positive or
negative, as set by the sign parameter.

Caution

Functions

ecvt(3)

All three functions store the strings in a static area of memory whose contents are
overwritten each time one of the functions is called.

Related Information

Functions: atof(3), printf(3), scanf(3)

1-127

OSF/1 Programmer's Reference

encode_J11ach_o_hdr(3)

encode_rnach_o_hdr

Purpose

Library

Converts an OSF/ROSE object file header from native, readable form to canonical
form

libld

Synopsis #include <mach_o_header.h>
#include <sys/types.h>
intencode_mach_o_hdr(

mo_header_t *headerp;
void *out_bufp;

Parameters

Description

1-128

size_t out_bufsize;

headerp Specifies the address of a structure containing an OSF/ROSE object
file header in native, readable form. The structure should be
completely filled in, including the header version number.

out_bufp Specifies the address of a buffer to receive the header translated into
canonical form.

out_bufsize Specifies the size of the output buffer in bytes. The size should be
MO_SIZEOF _RAW _HDR, which is defined in the
mach_o_header.h header file.

The encode_mach_o_hdr() function converts an OSF/ROSE object file header
from a form that can be read "naturally" in the local environment into its
corresponding canonical form. "Natural" means with fields aligned to fit the
mo_header_t structure defined in the lllach_o_header.h header file, as accessed
by code generated by the local C compiler. "Canonical" means with fields aligned
for 32-bit words and in network byte order, described for the local machine in the
mach_o_header_md_h header file.

Functions

encode_mach_o_hdr(3)

Notes

If an error is returned, the contents of the output buffer are undefined.

Return Values
Upon successful completion, the encode_mach_o_hdr() function returns
MO_HDR_CONV _SUCCESS and stores the converted header in out_bufp.
Otherwise, one or more of the following errors is returned:

MO_ERROR_BAD_HDR_ VERS
The header version in the input structure was not recognized.

MO_ERROR_BUF2SML
The size of the output buffer was too small.

MO_ERROR_BAD _MAGIC
The magic number in the input structure was not the OSF/ROSE
magic number.

MO_ERROR_OLD_RAW _HDR_FILE
The header version in the input structure did not have a
corresponding description in canonical form. In other words, the
header file for the canonical form does not describe as many fields
as the input structure does.

MO_ERROR_UNSUPPORTED_VERS

Related Information

The version of the header in the input structure could not be
converted, even though it is legal according to the header files. The
reason is that encode_mach_o_hdr() has not been updated to
support this version of the header.

Functions: decode_mach_o_hdr(3)

Files: osf_rose(4)

1-129

OSF/1 Programmer's Reference

endhostent(3)

endhostent

Purpose Ends retrieval of network host entries

Library
Standard C Library (libc.a)

Synopsis #include <netdb.h>

void endhostent (void);

Description

Notes

Files

The endhostent() function closes the /etc/hosts file, previously opened with the
gethostentbyaddr() or gethostentbyname() function.

If the most recent sethostent() function has been performed with a nonzero
parameter, then the endhostent() function will not close the /etc/hosts file. In this
instance, the /etc/hosts file is not closed until a call to the exit() function. A
second sethostent() function must be issued with a parameter equal to 0 (zero) in
order to ensure that a following endhostent() function will succeed.

/etc/hosts Contains the hostname database.

Related Information

Functions: gethostbyaddr(3), gethostbyname(3), gethostent(3)

1-130

Functions

endnetent(3)

endnetent

Purpose Closes the networks file

Library
Standard C Library (Jibe.a)

Synopsis #include <netdb.h>

void endnetent (void);

Description

Notes

Files

The endnetent() function closes the /etc/networks file, previously opened with
the getnetent(), getnetbyaddr(), setnetent() or getnetbyname() function.

If the most recent setnetent() function has been performed with a nonzero
parameter, then the endnetent() function will not close the /etc/networks file. In
this instance, the /etc/networks file is not closed until a call to the exit() function.
A second setnetent() function must be issued with a parameter equal to 0 (zero) in
order to ensure that a following endnetent() function will succeed.

/etc/networks
Contains official network names.

Related Information

Functions: getnetent(3), getnetbyaddr(3), getnetbyname(3), setnetent(3)

1-131

OSF/1 Programmer's Reference

endprotoent(3)

endprotoent

Purpose Closes the /etc/protocols file

Library
Standard C Library (Jibe.a)

Synopsis void endprotoent (void);

Description

Notes

Files

The endprotoent() function closes the /etc/protocols file, previously opened with
the getprotoent(), getprotobyname(), or getprotobynumber function.

If the most recent setprotent() function has been performed with a nonzero
parameter, then the endprotent() function will not close the /etc/protocols file. In
this instance, the /etc/protocols file is not closed until a call to the exit() function.
A second setprotent() call must be issued with a parameter equal to 0 (zero) in
order to ensure that a following endprotent() function will succeed.

/etc/protocols
Contains protocol names.

Related Information

Functions: getprotoent(3), getprotobynumber(3), getprotobyname(3),
setprotoent(3)

1-132

Functions

endservent(3)

endservent

Purpose Closes the /etc/services file entry

Library
Standard C Library (libc.a)

Synopsis #include <netdb.h>

void endservent (void);

Description

Notes

Files

The endservent() function closes the /etc/services file, previously opened with the
getservent(), getservbyname(), or getsrvbyport function.

If the most recent setservent() function has been performed with a nonzero
parameter, then the endservent() function will not close the /etc/services file. In
this instance, the /etc/services file is not closed until a call to the exit() function. A
second setservent() function must be issued with a parameter equal to 0 (zero) in
order to ensure that a following endservent() function will succeed.

/etc/services Contains service names.

Related Information

Functiorts: getservent(3), getservbyname(3), getservbyport(3), setservent(3),
getprotoent(3), getprotobynumber(3), getprotobyname(3), setprotoent(3),
endprotoent(3)

1-133

OSF/1 Programmer's Reference

erf(3)

erf, erfc

Purpose Computes the error and complementary error functions

Library
Math Library (libm.a)

Synopsis #include <math.h>

double erf (
double x);

Parameters

Description

Notes

1-134

double erfc (
double x);

x Specifies some double value.

The erf() function computes the error function of x, defined as:

2 x 2 --fe-t dt
sqrt 7t 0

The erfc() function computes 1.0 - erf(x).

The erfc() function is provided because of the significant loss of relative accuracy
if erf(x) is called for large values of x and the result is subtracted from 1.0. For
example, 12 decimal places are lost when calculating (1.0- erf(S)).

The erf() and erfc() functions are supported for multi-threaded applications.

AES Support Level: Trial use

Functions

erf(3)

Return Values

Errors

Upon successful completion, the erf() and erfc() functions return the value of the
error function and complementary error function, respectively. If xis NaN, NaN is
returned. Otherwise, errno is set to indicate the error or NaN is returned.

If the erf() or erfc() function fails, errno may be set to the following value:

[EDOM] The value of xis NaN.

Related Inf orm~tion

Functions: exp(3), isna~(3)

1-135

OSF/1 Programmer's Reference

exec(2)

environ, exec I, execv, exec le, execve, exec Ip, execvp

Purpose Executes a file

Library
Standard C Library (libc.a): execlp(), execvp()

Synopsis extern char **environ;

int execl (

Parameters

1-136

const char *path,
const char *arg, ...);

int execv (
const char *path,
char * const argv []);

int execle (
const char *path,
const char *arg,

char* const envp []);

int execve (
const char *path,
char * const argv[],
char* const envp[]);

int execlp (
const char *file,
const char *arg,
...);

int execvp (
const char *file,
char* const argv[]);

path Points to a pathname identifying the new process image file.

arg Specifies a character pointer to null-terminated strings.

argv Specifies an array of character pointers to null-terminated strings.

Description

Functions

exec(2)

envp Specifies an array of character pointers to null-terminated strings,
constituting the environment for the new process.

file Identifies the new process image file.

The exec functions replace the current process image with a new process image.
The new image is constructed from a regular executable file, called a new process
image file. A successful exec does not return, because the calling process image is
overlaid by the new process image.

When a program is executed as a result of an exec call, it is entered as a function
call as follows:

int main (
int argc,
char *argv[]);

Here, argc is the argument count and argv[] is an array of character pointers to the
arguments themselves. In addition, the following variable is initialized as a pointer
to an array of character pointers to the environment strings:

extern char **environ;

The argv and environ arrays are each terminated by a null pointer. The null pointer
terminating the argv array is not counted in argc.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the corresponding arguments to main().

The path argument points to a pathname that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file. If the file argument contains a slash character, the file argument is used
as the pathname for this file. Otherwise, the path prefix for this file is obtained by a
search of the directories passed as the PATH environment variable.

The new process image file is formatted as an executable text or binary file, in one
,e _ _c ___ ... ~ ------!--,.l .._ __ ... t.._ ----- £~ ___ ... ! __ _
VJ. LH~ 1V1111'U~ lt.:l\,,,U!;JHL.CU UJ LUC C::AC\; lUH~UUH~.

identified by a header line with the following syntax:

#! interpreter _name [optional_string]

The #! identifies the file as an executable text file. The new process image is
constructed from the process image file named by the interpreter _name string. The
arguments are modified as follows:

• argv[O] is set to the name of the interpreter.

• If the optional_string is present, argv[l] is set to the optional_string.

1-137

OSF/1 Programmer's Reference

exec(2)

1-138

• The next element of argv[] is set to the original value of path.

• The remaining elements of argv[] are set to the original elements of argv[],
starting at argv[l]. The original argv[O] is discarded.

An executable binary file can be loaded either directly by the exec function, or
indirectly by the program loader. The exec function chooses to use direct or
indirect loading based on the contents of the new process image file. For example,
indirect loading might be used if the new process image file has unresolved
symbols, requiring use of a shared library.

When indirect loading is used, the new process image is constructed from the
default program loader, /shin/loader, in the same manner as described for the
exec_ with_loader() function. The default program loader is then responsible for
completing the new program image by loading the new process image file and any
shared libraries on which it depends.

If the process image file is not a valid executable object, the execlp() and execvp()
functions use the contents of that file as standard input to a command interpreter
conforming to the system() function. In this case, the command interpreter
becomes the new process image.

The argv argument is an array of character pointers to null-terminated strings. The
last member of this array is a null pointer. These strings constitute the argument
list available to the new process image. The value in argv[O] should point to a
filename that is associated with the process being started by one of the exec
functions.

The const char *arg and subsequent ellipses in the execl(), execlp(), and execle()
functions can be thought of as argO, argl, .. ., argn. Together they describe a list of
one or more pointers to null-terminated character strings that represent the
argument list available to the new program. The first argument must point to a
filename that is associated with the process being started by one of the exec
functions, and the last argument must be a null pointer. For the execle() function,
the environment is provided by following the null pointer that will terminate the list
of arguments in the parameter list to execle() with an additional parameter as if it
were declared as:

char * const envp []

The envp argument to execve(), and the final argument to execle(), name an array
of character pointers to null-terminated strings. These strings constitute the
environment for the new process image. The environment array is terminated with
a null pointer.

For those forms not containing an envp pointer (execl(), execv(), execlp() and
execvp()) the environment for the new process image is taken from the external
variable environ in the calling process.

Functions

exec(2)

The number of bytes available for the new process' combined argument and
environment lists is ARG_MAX. ARG_MAX includes the null terminators on the
strings; it does not include the pointers.

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set (see the
fcntl() function). For those file descriptors that remain open, all attributes of the
open file description, including file locks, remain unchanged.

The state of directory streams and message catalog descriptors in the new process
image is undefined.

Each mapped file and shared memory region created with the mmap() function is
unmapped by a successful call to any of the exec functions, except those regions
mapped with the MAP _INHERIT option. Regions mapped with the
MAP _INHERIT option remain mapped in the new process image.

Signals set to the default action (SIG_DFL) in the calling process image are set to
the default action in the new process image. Signals set to be ignored (SIG_IGN)
by the calling process image are set to be ignored by the new process image.
Signals set to be caught by the calling process image are set to the default action in
the new process image (see the signal.h header file).

If the set user ID mode bit of the new process image file is set (see the chmod()
function), the effective user ID of the new process image is set to the owner ID of
the new process image file. Similarly, if the set group ID mode bit of the new
process image file is set, the effective group ID of the new process image is set to
the group ID of the new process image file. The real user ID, real group ID, and
supplementary group IDs of the new process image remain the same as those of the
calling process image. The effective user ID and effective group ID of the new
process image are saved (as the saved set user ID and the saved set group ID) for
use by the setuid() function.

The following attributes of the calling process image are unchanged after
successful completion of any of the exec functions:

• Process ID

• Process group ID

• Session membership

• Real user ID

• Real group ID

• Supplementary group IDs

• Time left until an alarm clock signal (see the alarm() function)

1-139

OSF/1 Programmer's Reference
exec(2)

Notes

• Current working directory

• Root directory

• File mode creation mask (see the umask() function)

• Process signal mask (see the sigprocmask() function)

• Pending signals (see the sigpending() function)

• The tms_utime, tms_stime, tms_cutime, and tms_cstime fields of the tms
structure.

• File size limit (see the ulimit() function)

• Nice value (see the nice() function)

Upon successful completion, the exec functions mark for update the st_atime field
of the file.

AES Support Level: Full use

Return Value

Errors

1-140

If one of the exec functions returns to the calling process image, an error has
occurred; the return value is -1, and errno is set to indicate the error.

If the exec functions fail, errno may be set to one of the following values:

[E2BIG] The number of bytes used by the new process image's argument list
and environment list is greater than the system-imposed limit of
ARG_MAX bytes.

[EACCES] Search permission is denied for a directory listed in the new process
image file's path prefix, or the new process image file denies
execution permission, or the new process image file is not a regular
file and the implementation does not support execution of files of its
type.

[ENAMETOOLONG]
The length of the path or file arguments, or an element of the
environment variable PATH prefixed to a file, exceeds
PATH_MAX, or a pathname component is longer than
NAME_MAX and _POSIX_NO_TRUNC is in effect for that file.

[ENOENT] One or more components of the new process image file's pathname
do not exist, or the path or file argument points to an empty string.

Functions

exec(2)

[ENOTDIR] A component of the new process image file's path prefix is not a
directory.

[EFAULT] The path argument is an invalid address.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[ENOMEM] Insufficient memory is available.

[ETXTBSY] The new process image file is currently open for writing by some
process.

If the execl(), execv(), execle(), or execve() function fails, errno may be set to
the following value:

[ENOEXEC] The new process image file has the appropriate access permission
but is not in the proper format.

Related Information

Functions: alarm(3), exit(2), fcntl(2), fork(2), getenv(3), nice(3), putenv(3),
sigaction(2), system(3), times(3), ulimit(3), umask(2), mmap(2),
exec_ with_loader(2)

1-141

OSF/1 Programmer's Reference

exec_with_loader(2)

exec_ with_loader

Purpose

Synopsis

Parameters

Description

1-142

Executes a file with a loader

int exec_ with_loader (
int flags,

flags

loader

file

argv

envp

const char *loader,
const char *file,
char * const argv[],
char * const envp[]);

Specifies flags to be passeq ~9 the loader.

Points to a pathname that identifies a regular, executable, process
image file that contains the loader.

Points to a pathname that identifies a regular, executable process
image file.

Specifies an array of character pointers to null-terminated strings.

Specifies an array of character pointers to null-terminated strings,
constituting the environment for the new process.

The exec_ with_loader() function replaces the current process image with a new
process image, in a manner similar to what the exec functions do. Both the loader
parameter and the file parameter point to pathnames that identify regular,
executable files called new process image files. Whereas the exec functions
construct the new process image from the file identified by the file parameter,
exec_ with_loader() instead constructs tqe new process image from the file
identified by the loader parameter. Thrq~ghout this manual page, the regular,
executable, process image file specified by' the loader parameter is referred to as
the program loader, and the regular, executable, process image file specified by the
file parameter is referred to as the file.

Functions

exec_with_loader(2)

Once the exec_with_loader() function successfully loads the program loader, it
transfers control to the program loader and effectively passes the file parameter on
to the loader. Under normal usage, the program loader will then load (that is,
merge) the file into the newly constructed process image, along with any object
files upon which the program (that is, the file) depends. The typical use of
exec_ with_loader() is to load programs that contain unresolved external
references, for example, programs that require the use of a shared library.

The exec_ with_loader() function implements and preserves all of the semantics of
the exec functions, with respect to the file. These include the handling of the argv
and envp parameters, command interpreters, close-on-exec processing, signals, set
user ID and set group ID processing, the process attributes and error returns.

The loader parameter may be null, in which case the exec_ with_loader() function
loads the default program loader, found in the /shin/loader file. The
exec_with_loader() function always loads the default program loader, even if the
loader parameter points to a valid loader file, if the set user ID mode bit of the file
is set (see the chmod() function) and the owner ID of the file is not equal to the
effective user ID of the process, or if the set group ID mode bit of the file is set and
the group ID of the file is not equal to the effective group ID of the process. The
setting of the set user ID or set group ID mode bits on the loader have no effect
whatsoever.

Return Values

Errors

If the exec_ with_loader() function returns to the calling process image, an error
has occurred; the return value is -1, and errno is set to indicate the error.

If the exec_ with_loader() function fails, errno may be set to one of the following
values:

[EACCES] Search permission is denied for a directory listed in either file's path
prefix, or either file denies execution permission, or either file is not
a regular file and the implementation does not support execution of
til~eo nf' 1tC' hrncr. l\.Tn.ta. th"lit tha. .ow-n.l'O u1.:+J.. 1n..ollo_.(\ +n...,,,..t~,,.
......... ...,.,. ""..._ "'J .t'""• ... ,."'""' 11-.1..u ... 11-, ".n.""'"- .,., • ., •• _.av u".a \ J .a.UJ.J.'-'1..J.VJ.J.

references two files, one specified by the loader parameter and one
specified by the file parameter.

[ENAMETOOLONG]
The length of the loader or file parameters exceeds PATH_MAX, or
a pathname component is longer than NAME_MAX and
_POSIX_NO_TRUNC is in effect for that file.

1-143

OSF/1 Programmer's Reference
exec_with_loader(2)

[ENOENT] One or more components of either file's pathname does not exist, or
the loader or file parameter points to an empty string. Note that the
exec_ with_loader() function references two files, one specified by
the loader parameter and one specified by the file parameter.

[ENOTDIR] A component of either file's path prefix is not a directory. Note that
the exec_ with_loader() function references two files, one specified
by the loader parameter and one specified by the file parameter.

[ENOEXEC] Tl:le file specified by the loader parameter has the appropriate access
permission but is not in the proper format.

[EFAULT] The loader or file parameter is an invalid address.

[ELOOP] Too many symbolic links were encountered in pathname resolution.

[ENOMEM] Insufficient memory is available.

[ETXTBSY] The file specified by the loader parameter is currently open for
writing by some process.

Related Information

Functions: exec(2)

1-144

Functions
exit(2)

exit, atexit, _exit

Purpose

Library

Synopsis

Parameters

Description

Terminates a process

Standard C Library (libc.a): atexit(), _exit()

#include <stdlib.h>

void exit (
int status);

void _exit (
int status);

int atexit (
void (*fanction) (void));

status Indicates the status of the process.

function Points to a function that is called at normal process termination for
cleanup processing. A push-down stack of functions is kept, such
that the last function registered is the first function called. Any
function which is registered more than once will be repeated. Up to
32 functions can be specified with atexit().

The atexit() function registers functions to be called at normal process termination
for cleanup processing.

The exit() function terminates the calling process after calling the Standard 110
Library _deanup() function w iiush any buffered output. Then it caiis any
functions registered previously for the process by the atexit() function, in the
reverse order to that in which they were registered. In addition, the exit() function
flushes all open output streams, closes all open streams, and removes all files
created by the tmpfile() function. Finally, it calls the _exit() function, which
completes process termination and does not return.

1-145

OSF/1 Programmer's Reference
exit(2)

1-146

The _exit() function terminates the calling process and causes the following to
occur:

• All of the file descriptors, directory streams, and message catalog descriptors
open in the calling process are closed. Since the exit() function terminates the
process, any errors encountered during these close operations go unreported.

• Terminating a process by exiting does not terminate its child processes.
Instead, the parent process ID of all of the calling process child processes and
zombie child processes is set to the process ID of init. The init process thus
inherits each of these processes, catches the SIGCHLD signals they generate,
and calls the wait() function for each of them.

• If the parent process of the calling process is running a wait() or waitpid()
function, it is notified of the termination of the calling process and the low­
order 8 bits (that is, bits 0377 or OxFF) of the status parameter are made
available to it.

• If the parent process is not running a wait() or waitpid() function when the
child process terminates, it may do so later on, and the child's status will be
returned to it at that time. Meanwhile, the child process is transformed into a
zombie process, and its parent process is sent a SIGCHLD signal to notify it of
the termination of a child process.

A zombie process is a process that occupies a slot in the process table, but has
no other space allocated to it either in user or kernel space. The process table
slot that it occupies is partially overlaid with time accounting information to
be used by the times() function. (See the sys/proc.h header file.)

A process remains a zombie until its parent issues one of the wait functions.
At this time, the zombie is laid to rest, and its process table entry is released.

• The parent process is sent a SIGCHLD signal when a child terminates;
however, since the default action for this signal is to ignore it, the signal
usually is not seen.

If an exiting child's parent is ignoring the SIGCHLD signal, the child's parent
process ID is changed to that of the initialization process, init, which will
catch the SIGCHLD signal and call the wait() function.

Notes

Functions

exit(2)

• If the process is a controlling process, a SIGHUP signal is sent to each process
in the foreground process group of the controlling terminal belonging to the
calling process. The controlling terminal is disassociated from the session,
allowing it to be acquired by a new controlling process.

• If the exit of a process causes a process group to become orphaned, and if any
member of the newly orphaned process group is stopped, then a SIGHUP
signal is sent to each newly orphaned process.

• Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

• For each semaphore for which the calling process has set a semadj value, that
semadj value is added to the semval of the specified semaphore. (The
semop() function provides information about semaphore operations.)

• If the process has a process lock, text lock, or data lock, an unlock is
performed. (See the plock() function.)

• An accounting record is written on the accounting file if the system
accounting routine is enabled. (The acct() function provides information
about enabling accounting routines.)

• Locks set by the fcntl(), flock(),and lockf() functions are removed.

If a thread calls the _exit() function, the entire process exits and all threads within
the process are terminated.

The system init process is used to assist cleanup of terminating processes. If the
code for the init process is replaced, the program must be prepared to accept
SIGCHLD signals and issue a wait() function for each.

AES Support Level: Full use

Return Values
Tl..,.., ...,._,,..:4-I \ .C~:,..._ ... _..,,..J --.- .. :4.f \ C •• --•!--- .l- __ .._ ___ .._____ 'T'IL __ ..._ ___ !A./\. .C-----"'-~---

.1. J..u, ... 't;A.IL\ J J.U11'-'UV11 auu _1;;'.AIL\' .lUU\...UVll UV UUl ICilUJH. .111~ i:IH:::AIL\) 1U1Jl,;l1Ull

returns 0 (zero) if successful, and a nonzero value if there has been an attempt to
register more exit() functions than can be held in the atexit() array.

Related Information

Functions: acct(2), sigaction(2), times(3), wait(2), sigvec(2)

1-147

OSF/1 Programmer's Reference
exp(3)

exp, log, log 10, pow

Purpose Computes exponential, logarithm, and power functions.

Library
Math Library (libm.a)

Synopsis #include <math.h>

double exp (
doublex);

Parameters

Description

1-148

double loglO (
doublex);

double log (
double x);

double pow (
doublex,
double y);

x

y

Specifies some double value.

Specifies some double value.

The exp() function computes the exponential function of x, defined as ex, where e
is the constant used as a base for natural logarithms.

The log() function computes the natural logarithm of x.

The loglO() function computes the base 10 logarithm of x.

The pow() function computes the value of x raised to the power of y (xY). If x is
negative, y must be an integral value. If xis 0 (zero), y must be nonnegative. The
pow(x,0.0) function call returns 1.0 for all x.

Notes

Functions

exp(3)

The exp(), loglO(), log(), and pow() functions are supported for multi-threaded
applications.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, exp() returns the value of the exponential function of
x. If the correct value would overflow, the exp() function returns HUGE_ VAL and
sets errno to [ERAN GE]. If the correct value would underflow, the exp() function
returns zero. If xis NaN, NaN is returned.

The log() function returns the natural logarithm of x. The value of x must be
positive. If xis NaN, NaN is returned. Otherwise, either -HUGE_ VAL or NaN is
returned and errno is set to indicate the error.

The loglO() function returns the base 10 logarithm of x. The value of x must be
positive. If x is NaN, NaN is returned and errno may be set to [EDOM].
Otherwise, either - HUGE_ VAL or NaN is returned and errno is set to indicate the
error.

The pow() function returns the value of x raised to the power of y (xY). If x is
negative and y is not an integer, NaN is returned. If xis 0 (zero) and y is negative,
-HUGE_ VAL is returned. If x or y is NaN, NaN is returned and errno is set to
[EDOM]. Otherwise, errno is set to indicate the error or [EDOM] is returned.

If the exp() function fails, errno may be set to one of the following values:

[ERANGE] The result would overflow.

[EDOM] The value of xis NaN.

[ERANGE] The result would underflow.

If the log() function fails, errno may be set to one of the following values:

[EDOM] The value of x is negative or zero.

[EDOM] The value of xis NaN.

[ERANGE] The logarithm of x cannot be represented, or the result would cause
overflow.

1-149

OSF/1 Programmer's Reference

exp(3)

If the loglO() function fails, errno may be set to one of the following values:

[EDOM] The value of x is negative or zero.

[EDOM] The value of xis NaN.

[ERANGE] The logarithm of x cannot be represented or the result would cause
overflow.

If the pow() function fails, errno may be set to one of the following values:

[EDOM]

[ERANGE]

[EDOM]

[ERAN GE]

The value ofx is negative and y is nonintegral.

The value to be returned would have caused overflow.

The value of x or y is NaN, or xis zero and y is negative.

The value to be returned would have caused underflow.

Related Information

Functions: hypot(3), sinh(3)

1-150

Functions

expacct(3)

exp acct

Purpose Expands accounting record

Synopsis #include <sys/acct.h>

double expacct (

Parameters

Description

Notes

record

comp_t record);

Specifies the compressed data type value obtained from any source
containing such information.

The expacct() function converts acct structure members that have been packed
into a pseudo floating-point format from the compressed data type comp_t to data
type double.

The algorithm for compressing kernel accounting data is system dependent.

Related Information

Functions: acct(2)

1-151

OSF/1 Programmer's Reference

fclose(3)

f close, fflush

Purpose Closes or flushes a stream

Library

Standard 1/0 package (Jibe.a)

Synopsis #include <stdio.h>

int fclose (

Parameters

Description

1-152

FILE *stream);

int ftlush (
FILE *stream);

stream Specifies the output or update stream.

The fclose() function writes buffered data to the stream specified by the stream
parameter, and then closes the stream. It is automatically called for all open files
when the exit() function is invoked. Any unwritten buffered data for the stream is
delivered to the host environment to be written to the file; any unread buffered data
is discarded. The stream is disassociated from the file. If the associated buffer was
automatically allocated, it is deallocated. Any further use of the stream specified
by the stream parameter causes undefined behavior.

The fclose() function performs close() on the file descriptor associated with the
stream parameter. If the stream was writable and buffered data was not yet written
to the file, it marks the st_ctime and st_mtime fields of the underlying file for
update. If the file is not already at EOF, and is capable of seeking, the file pointer
of the underlying open file description is adjusted so that the next operation on the
open file description deals with the byte after the last one read from or written to
the stream being closed.

The ftlush() function writes any buffered data for the stream specified by the
stream parameter and leaves the stream open. If stream is a null pointer, the
ftlush() function performs this flushing action on all streams for which the behavior
is defined above. The st_ctime and st_mtime fields of the underlying file are
marked for update. If the stream is open for reading, any unread data buffered in
the stream is discarded. If the file is not already at EOF, the stream is open for

Notes

Functions

fclose(3)

reading, and the file is capable of seeking, the file offset of the underlying open file
description is adjusted so that the next operation on the open file description deals
with the byte after the last one read from or written to the stream being flushed.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, both the fclose() and fflush() functions return a value
ofO (zero). Otherwise, EOF is returned and errno is set to indicate the error.

If the fclose() function fails, errno may be set to one of the following values:

[EBADF]

[EINTR]

[EA GAIN]

[EFBIG]

[EIO]

[ENOSPC]

[EPIPE]

The file descriptor underlying the stream parameter is not valid.

The fclose() function was interrupted by a signal which was caught.

The O_NONBLOCK flag is set for the file descriptor underlying the
stream parameter and the process would be delayed in the write
operation.

An attempt was made to write a file that exceeds the process' file
size limit or the maximum file size. See the ulimit() function.

The process is a member of a background process group attempting
to write to its controlling terminal, TOSTOP is set, the process is
neither ignoring nor blocking SIGTTOU and the process group of
the process is orphaned.

There was no free space remaining on the device containing the file.

An attempt was made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

If the ffiush() function fails, errno may be set to one of the following values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying the stream parameter is not valid.

[EFBIG] An attempt was made to write a file that exceeds the process' file
size limit or the maximum file size. See the ulimit() function.

[EINTR] The fflush() function was interrupted by a signal which was caught.

1-153

OSF/1 Programmer's Reference

fclose(3)

[EIO] The implementation supports job control, the process is a member of
a background process group attempting to write to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is
orphaned. This error may also be returned under implementation­
defined conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

Related Information

Functions: close(2), exit(2), fopen(3), setbuf(3)

1-154

Functions
fcntl(2)

f cntl, dup, dup2

Purpose Controls open file descriptors

Synopsis #include <fcntl.h>

#include <sys/types.h>

#include <unistd.h>

int fcntl (

Parameters

Description

int dup(

intfiledes,
int request [,
int argument I struct flock *argument]);

intfiledes);

int dup2(
int old,
int new);

file des

request

argument

old

new

Specifies an open file descriptor obtained from a successful open(),
fcntl(), or pipe() function.

Specifies the operation to be performed.

Specifies a variable that depends on the value of the request
parameter.

Specifies an open file descriptor.

Specifies an open file descriptor that is returned by the dup2()
function.

The fcntl() function performs controlling operations on the open file specified by
the filedes parameter.

When the fcntl(), dup() and dup2() functions need to block, only the calling
thread is suspended rather than all threads in the calling process.

1-155

OSF/1 Programmer's Reference

fcntl(2)

1-156

The following are values for the request parameter:

F _DUPFD Returns a new file descriptor as follows:

F_GETFD

F_SETFD

F_GETFL

F_SETFL

• Lowest numbered available file descriptor greater than or equal
to the argument parameter, taken as type int.

• Same object references as the original file.

• Same file pointer as the original file. (That is, both file
descriptors share one file pointer if the object is a file).

• Same access mode (read, write, or read-write).

• Same file status flags. (That is, both file descriptors share the
same file status flags).

• The close-on-exec flag (FD_CLOEXEC bit) associated with
the new file descriptor is cleared so that the file will remain
open across exec functions.

Gets the value of the close-on-exec flag associated with the file
descriptor filedes. File descriptor flags are associated with a single
file descriptor and do not affect other file descriptors that refer to the
same file. The argument parameter is ignored.

Sets the close-on-exec flag associated with the filedes parameter to
the value of the argument parameter, taken as type int. If the
argument parameter is 0 (zero), the file remains open across the
exec functions. If the argument parameter is FD_CLOEXEC, the
file is closed on successful execution of the next exec function.

Gets the file status flags and file access modes for the file referred to
by the filedes parameter. The file access modes can be extracted by
using the mask O_ACCMODE on the return value. File status flags
and file access modes are associated with the file description and do
not affect other file descriptors that refer to the same file with
different open file descriptions. The argument parameter is ignored.

Sets the file status flags to the argument parameter, taken as type
int, for the file to which the filedes parameter refers. The file access
mode is not changed.

Functions
fcntl(2)

F _GETOWN Gets the process ID or process group currently receiving SIGIO and
SIGURG signals. Process groups are returned as negative values.

F _SETOWN Sets the process or process group to receive SIGIO and SIGURG
signals. Process groups are specified by supplying the argument
parameter as negative; otherwise the argument parameter, taken as
type int, is interpreted as a process ID.

The following values for the request parameter are available for record locking:

F _GETLK Gets the first lock that blocks the lock description pointed to by the
argument parameter, taken as a pointer to type struct flock. The
information retrieved overwrites the information passed to the
fcntl() function in the flock structure. If no lock is found that
would prevent this lock from being created, then the structure is left
unchanged except for the lock type, which is set to F _UNLCK.

F_SETLK Sets or clears a file segment lock according to the lock description
pointed to by argument, taken as a pointer to type struct flock.
F _SETLK is used to establish shared locks (F _RDLCK), or
exclusive locks (F _ WRLCK), as well as remove either type of lock
(F _UNLCK). If a shared (read) or exclusive (write) lock cannot be
set, the fcntl() function returns immediately with a value of -1.

F _SETLKW Same as F _SETLK except that if a shared or exclusive lock is
blocked by other locks, the process will wait until it is unblocked. If
a signal is received while fcntl() is waiting for a region, the
function is interrupted, -1 is returned, and errno is set to [EINTR].

The O_NDELAY and O_NONBLOCK requests affect only operations against file
descriptors derived from the same open() function. In BSD, these apply to all file
descriptors that refer to the object.

When a shared lock is set on a segment of a file, other processes are able to set
shared locks on that segment or a portion of it. A shared lock prevents any other
process from setting an exclusive lock on any portion of the protected area. A
request for a shared lock fails if the file descriptor was not opened with read
access.

An exclusive lock prevents any other process from setting a shared lock or an
exclusive lock on any portion of the protected area. A request for an exclusive
lock fails if the file descriptor was not opened with write access.

The flock() structure describes the type (l_type), starting offset (l_whence),
relative offset (l_start), size (l_len) and process ID (l_pid) of the segment of the
file to be affected.

1-157

OSF/1 Programmer's Reference
fcntl(2)

Notes

1-158

The value of l_whence is set to SEEK_SET, SEEK_CUR or SEEK_END, to
indicate that the relative offset l_start bytes is measured from the start of the file,
from the current position, or from the end of the file, respectively. The value of
l_len l!l the number of consecutive bytes to be locked. The l_len value may be
negative (where the definition of off_t permits negative values of l_len). The l_pid
field is only used with F _GETLK to return the process ID of the process holding a
blocking lock. After a successful F _GETLK request, the value of)_whence
becomes SEEK_SET.

If l_len is positive, the area affected starts at)_start and ends at)_start + l_len - 1.
If l_len is negative, the area affected starts at l_start + l_len and ends at l_start - 1.
Locks may start and extend beyond the current end of a file, but may not be
negative relative to the beginning of the file. If l_len is set to 0 (zero), a lock may
be set to always extend to the largest possible value of the file offset for that file. If
such a loc~ also has l_start set to 0 (zero) and I_ whence is set to SEEK_SET, the
whole file is locked. Changing or unlocking a portion from the middle of a larger
locked segment leaves a smailer segment at either end. Locking a segment that is
already locked by the calling process causes the old lock type to be removed and
the new lock type to take effect. All locks associated with a file for a given process
are removed when a file descriptor for that file is closed by that process or the
process holding that file descriptor terminates. Locks are not inherited by a child
process in a fork() function.

If a regular file has enforced record locking enabled, record locks on the file will
affect calls to other calls, including creat(), open(), read(), write(), truncate(),
and ftruncate().

A potential for deadlock occurs if a process controlling a locked region is put to
sleep by attempting to lock another process' locked region. If the system detects
that sleeping until a locked region is unlocked would cause a deadlock, the fcntl()
function fails with an [EDEADLK] error.

The dup(filedes) function is equivalent to fnctl(filedes, F _DUPFD, 0).

The dup2(old.filedes, newfiledes) function has similar functionality to:
close(newfiledes)
fcntl(oldfiledes, F _DUPFD, new.filedes)

The file locks set by the fcntl() and lockf() functions do not interact in any way
with the file locks set by the flock()function. If a process sets an exclusive lock on
a file using the fcntl() or lockf() function, the lock will not affect any process that
is setting or clearing locks on the same file using the flock() function. It is

Functions

fcntl(2)

therefore possible for an inconsistency to arise if a file is locked by different
processes using flock() and fcntl(). (The fcntl() and lockf() functions use the
same mechanism for record locking.)

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the value returned depends on the value of the request
parameter as follows:

F _DUPFD Returns a new file descriptor.

F _GETFD Returns FD_CLOEXEC or 0 (zero).

F _SETFD Returns a value other than -1.

F _GETFL Returns the value of file status flags and access modes. (The return
value will not be negative.)

F _SETFL Returns a value other than -1.

F _GETOWN Returns the value of descriptor owner.

F _ GETLK Returns a value other than -1.

F_SETLK Returns a value other than -1.

F _SETLKW Returns a value other than -1.

If the fcntl() function fails, a value of -1 is returned and errno is set to indicate the
error.

If the fcntl() function fails, errno may be set to one of the following values:

[EBADF] Thefiledes parameter is not a valid open file descriptor.

[EBADF] The request parameter is F _SETLK or F _SETLKW, the type of lock
(l_type) is a shared lock (F _RDLCK), andfiledes is not a valid file
descriptor open for reading.

[EBADF] The type of lock (l_type) is an exclusive lock (F _ WRLCK), and
filedes is not a valid file descriptor open for writing.

[EMFILE] The request parameter is F _DUPFD and OPEN_MAX file
descriptors are currently open in the calling process, or no file
descriptors greater than or equal to argument are available.

[EINVAL] The request parameter is F _DUPFD and the argument parameter is
negative or greater than or equal to OPEN_MAX.

1-159

OSF/1 Programmer's Reference
fcntl(2)

[EINVAL] An illegal value was provided for the request parameter.

[EINVAL] The request parameter is F _GETLK, F _SETLK, or F _SETLKW and
the data pointed to by argument is invalid, or filedes refers to a file
that does not support locking.

[EFAULT] The argument parameter is an invalid address.

[ESRCH] The value of the request parameter is F _SETOWN and the process
ID given as argument is not in use.

[EAGAIN] The request parameter is F _SETLK, the type of lock (l_type) is a
shared (F _RDLCK) or exclusive (F _ WRLCK) lock, and the
segment of a file to be locked is already exclusive-locked by another
process.

[EAGAIN] The request parameter is F _SETLK, and the type is an exclusive
lock and some portion of the segment of a file to be locked is
already shared-locked or exclusive-locked by another process.

[EINTR] The request parameter is F _SETLKW and the fcntl() function was
interrupted by a signal which was caught.

[ENOLCK] The request parameter is F _SETLK or F _SETLKW and satisfying
the lock or unlock request would result in the number of locked
regions in the system exceeding a system-imposed limit.

[EDEADLK] The request parameter is F _SETLKW, the lock is blocked by some
lock from another process and putting the calling process to sleep,
and waiting for that lock to become free would cause a deadlock.

If the dup() or dup2() function fails, errno may be set to one of the following
values:

[EBADF]

[EMFILE]

[EINTR]

The filedes or old parameter is not a valid open file descriptor or the
new parameter file descriptor is negative or greater than
OPEN_MAX.

The number of file descriptors exceeds OPEN_MAX or there is no
file descriptor above the value of the new parameter.

The dup2() function was interrupted by a signal which was caught.

Related Information

Functions: close(2), exec(2), lockf(3), open(2), read(2), truncate(2), write(2)

1-160

Functions

feof(3)

feof

Purpose Tests EOF on a stream

Library

Standard 1/0 Package (Ube.a)

Synopsis #include <stdio.h>

int feof (
FILE *stream);

Parameters

stream Specifies the input stream.

Description

The feof() macro tests the EOF (End Of File) condition on the specified stream.

Notes

AES Support Level: Full use

Return Values

If EOF has previously been detected reading the input stream specified by the
stream parameter, a nonzero value is returned. Otherwise, a value of 0 (zero) is
returned.

Related Information

Functions: ferror(3), fileno(3), clearerr(3), fopen(3)

1-161

OSF/1 Programmer's Reference

ferror(3)

ferror

Purpose Tests the error indicator on a stream

Library

Standard 1/0 package (libc.a)

Synopsis #include <stdio.h>

int ferror (

Parameters

Description

Notes

FILE *stream);

stream Specifies the input or output stream.

The ferror() macro tests whether input/output errors have occurred on the
specified stream.

AES Support Level: Full use

Return Values
If an 1/0 error occurred when reading from or writing to the stream specified by the
stream parameter, a nonzero value is returned. Otherwise, a value of 0 (zero) is
returned.

Related Information

Functions: fopen(3), feof(3), fileno(3), clearerr(3)

1-162

fileno

Purpose Maps stream pointer to file descriptor

Library

Standard 1/0 Package (Jibe.a)

Synopsis #include <stdio.h>

int fileno (
FILE *stream);

Parameters

stream Specifies the input stream.

Description

The fileno() macro returns the file descriptor of a stream.

Notes

AES Support Level: Full use

Return Values

Functions

fileno(3)

The fileno() macro returns the file descriptor associated with the stream parameter.

Related Information

Functions: clearerr(3), feof(3), ferror(3), fopen(3), open(2)

1-163

OSF/1 Programmer's Reference

flock(2)

flock

Purpose Applies or removes an advisory lock on an open file

Synopsis #include <sys/file.h>

#define LOCK_SH
#define LOCK_EX
#define LOCK_NB
#define LOCK_UN

1
2
4
8

I* shared lock */
I* exclusive lock */
I* don't block when locking */
I* unlock*/

Parameters

Description

1-164

int ftock(
intfiledes,
int operation);

filedes

operation

Specifies a file descriptor returned by a successful open() or fcntl()
function, identifying the file to which the lock is to be applied or
removed.

Specifies one of the following constants for ftock(), defined in the
fcntl.h file:

LOCK_SH Apply a shared lock.

LOCK_EX Apply an exclusive lock.

LOCK_NB Do not block when locking. This value can be
logically ORed with either LOCK_SH or LOCK_EX.

LOCK_ UN Remove a lock.

The ftock() function applies or removes an advisory lock on the file associated
with the filedes file descriptor. Advisory locks allow cooperating processes to
perform consistent operations on files, but do not guarantee consistency (that is,
processes may still access files without using advisory locks, possibly resulting in
inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive
locks. At any time multiple shared locks may be applied to a file, but at no time are
multiple exclusive, or both shared and exclusive, locks allowed simultaneously on
a file.

Notes

Functions
flock(2)

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by
specifying the appropriate lock type. This results in the previous lock being
released and the new lock applied (possibly after other processes have gained and
released the lock).

Requesting a lock on an object that is already locked normally causes the caller to
be blocked until the lock may be acquired. If LOCK_NB is included in operation,
then this will not happen; instead, the call will fail and errno will be set to
[EWOULDBLOCK].

Locks are on files, not file descriptors. That is, file descriptors duplicated using the
dup() or fork() functions do not result in multiple instances of a lock, but rather
multiple references to a single lock. If a process holding a lock on a file forks and
the child explicitly unlocks the file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

The file locks set by the flock()function do not interact in any way with the file
locks set by the fcntl() and lockf() functions. If a process sets an exclusive lock
on a file using the flock() function, the lock will not affect any process that is
setting or clearing locks on the same file using the fcntl() or lockf() functions. It
is therefore possible for an inconsistency to arise if a file is locked by different
processes using flock() and fcntl(). (The fcntl() and lockf() functions use the
same mechanism for record locking.)

Return Values

Errors

Upon successful completion, 0 (zero) is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

If the flock() function fails, errno may be set to one of the following values:

[EWOULDBLOCK] The file is locked and the LOCK_NB option was
spc;;t:iiic;;u.

[EBADF]

[EINVAL]

The the filedes argument is not a valid open file descriptor.

The operator is not valid.

1-165

OSF/1 Programmer's Reference
flock{2)

[ENOLCK]

[EDEADLK]

Related Information

The lock table is full. Too many regions are already
locked.

The lock is blocked by some lock from another process.
Putting the calling process to sleep while waiting for that
lock to become free would cause a deadlock.

Functions: open(2), close(2), exec(2), fcntl(2), fork(2), lockf(3)

1-166

Functions
flockfile(3)

flockfile

Purpose Locks a stdio stream

Library
Locks Library (libc_r.a)

Synopsis #include <stdio.h>
void flockfile(

Parameters

Description

FILE *file);

file Specifies the stream to be locked.

The flockfile() function locks a stdio stream so that a thread can have exclusive
use of that stream for multiple 1/0 operations. Use the flockfile() function for a
thread that wishes to ensure that the output of several printf() functions, for
example, is not garbled by another thread also trying to use printf().

Matching flockfile() and funlockfile() calls can be nested.

The behavior of the flockfile() function is unspecified if the file parameter does not
point to a valid FILE structure.

Related Information

Functions: funl~ckfile(3), unlocked_getc(3), unlocked_putc(3)

1-167

OSF/1 Programmer's Reference
floor(3)

floor, ceil, rint, fmod, fabs

Purpose

Library

Rounds floating-point numbers to floating-point integers, or computes the Modulo
Remainder and floating-point absolute value functions

Math Library(libm.a)
Standard C Library (Jibe.a)

Synopsis #include <math.h>

Parameters

Description

1-168

double floor (
doublex);

double ceil (
doublex);

double fmod (
doublex,
double y);

double fabs (
doublex);

double rint (
double x);

x Specifies some double value.

y Specifies some double value.

The floor() function returns the largest floating-point integer not greater than the x
parameter.

The ceil() function returns the smallest floating-point integer not less than the x
parameter.

The rint() function returns one of the two nearest floating point integers to the x
parameter. Which integer is returned is determined by the current floating-point
rounding mode as described in the IEEE Standard for Binary Floating Point

Notes

Functions

floor{3)

Arithmetic. If the current rounding mode is round toward -infinity, then rint(x) is
identical to floor(x). If the current rounding mode is round toward +infinity, then
rint(x) is identical to ceil(x).

The fmod() function computes the modulo floating-point remainder of xly. The
fmod() function returns the value x -(i*y) for some i such that if y is nonzero, the
result has the same sign as x and magnitude less than the magnitude of y.

The fabs() function returns the absolute value of x, a floating-point number.

The default floating-point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.

AES Support Level: Full use (floor(), ceil(), fmod(), fabs())

Return Values

Errors

Upon successful completion, the floor() function returns the largest integral value
not greater than x. If xis NaN, NaN is returned and errno may be set to [EDOM].
Otherwise, - HUGE_ VAL is returned.

Upon successful completion, the ceil() function returns the smallest integral value
not less than x. If xis NaN, NaN is returned. Otherwise, either HUGE_ VAL or
NaN is returned.

Upon successful completion, the fmod() function returns the remainder of the
division of x by y. If x or y is NaN, NaN is returned. If y is 0 (zero), the fmod()
function returns NaN and sets errno to [EDOM].

Upon successful completion, the fabs() function returns the absolute value of x. If
xis NaN, NaN is returned. Otherwise, either errno is set to indicate the error or
NaN is returned.

Tf' tho ffn.n•{) f'nnnt1nn f'q·ilCt .o••nn. -m•·:n1).,,o Ct"3.t tn. nn,:r, n:f i-h.,:i. .fnllruu1nn- u~lno.r::-•
............... _.,..., .. ' ' LoL.L,., _, ""J, "" v .,, ···o •OM.,.

[ERANGE] The result would cause an overflow.

[EDOM] The value of xis NaN.

If the ceil() function fails, errno may be set to one of the following values:

[ERANGE] The result would cause an overflow.

[EDOM] The value of xis NaN.

1-169

OSF/1 Programmer's Reference

floor(3)

If the fmod() function fails, errno may be set to the following value:

[EDOM] They argument is zero or one of the arguments is NaN.

If the fabs() function fails, errno may be set to the following value:

[EDOM] The value of xis NaN.

Related Information

Functions: isnan(3)

1-170

Functions
fopen(3)

f open, freopen, f dopen

Purpose Opens a stream

Library

Standard C Library (libc.a)

Synopsis #include <stdio.h>

FILE *fopen (

Parameters

const char *path,
const char *type);

FILE *fdopen (
intfiledes,
const char *type);

FILE *freopen (
const char *path,
const char *type,
FILE *stream);

path Points to a character string that contains the name of the file to be
opened. If the final component of the path parameter specifies a
symbolic link, the link is traversed and pathname resolution
continues.

type Points to a character string that has one of the following values:

r Open text file for reading.

w Create a new text file for writing, or open and truncate to
----- 1 ____ .._1_ /!"yi1 __ .Cl_~- ____ .._,._ __________ .._ _ _] ____ _:1 ___ ..._, __ ,(,11..JI _____ .('\

£tau !Cll~Ul. \lllC lllC us llUL UUlll'i:lLCU UllUCI LUC •UUJ:lll:ll\'

function.)

a Append (open text file for writing at the end of the file, or
create for writing).

rb Open binary file for reading.

wb Create a binary file for writing, or open and truncate to zero
length.

ab Append (open binary file for update, writing at the end of the
file, or create for writing).

1-171

OSF/1 Programmer's Reference

fopen(3)

Description

1-172

r+ Open for update (reading and writing).

w+ Truncate or create for update. (The file is not truncated
under the fdopen() function.)

a+ Append (open text file for update, writing at End-of-File, or
create for writing).

r+b or rb+
Open binary file for update (reading and writing).

w+borwb+
Create binary file for update, or open and truncate to zero
length.

a+b or ab+
Append (open a binary file for update, writing at the end of
the file, or create for writing).

OSF/l does not distinguish between text and binary files.

stream Specifies the input stream.

filedes Specifies a valid open file descriptor.

The fopen() function opens the file named by the path parameter and associates a
stream with it, returning a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations
on the resulting stream. However, an output operation cannot be directly followed
by an input operation without an intervening Olush() function call or a file
positioning operation (fseek(), fsetpos(), or rewind function). Also, an input
operation cannot be directly followed by an output operation without an
intervening flush or file positioning operation, unless the input operation
encounters the end of the file.

When you open a file for append (that is, when the type parameter is a or a+), it is
impossible to overwrite information already in the file. You can use the fseek()
function to reposition the file pointer to any position in the file, but when output is
written to the file, the current file pointer is ignored. All output is written at the end
of the file and the file pointer is repositioned to the end of the output.

If two separate processes open the same file for append, each process can write
freely to the file without destroying the output being written by the other. The
output from the two processes is intermixed in the order in which it is written to the
file. Note that if the data is buffered, it is not actually written until it is flushed.

Notes

Functions
fopen(3)

When opened, a stream is fully buffered if and only if it can be determined not to
refer to an interactive device. The error and End-of-File indicators for the stream
are cleared.

If the type parameter is w, a, w+, or a+ and the file did not previously exist, upon
successful completion the fopen() function marks the st_atime, st_ctime and
st_mtime fields of the file and the st_ctime and st_mtime fields of the parent
directory for update. If the type parameter is w or w+ and the file did previously
exist, upon successful completion the fopen() function marks the st_ctime and
st_mtime fields of the file for update.

The freopen() function substitutes the named file in place of the open stream. The
original stream is closed regardless of whether the open() function succeeds with
the named file. The freopen() function returns a pointer to the FILE structure
associated with the stream parameter. The freopen() function is typically used to
attach the preopened streams associated with stdin, stdout, and stderr to other
files.

The fdopen() function associates a stream with a file descriptor obtained from an
open(), dup(), creat(), or pipe() function. These functions open files but do not
return pointers to FILE structures. Many of the standard 1/0 package functions
require pointers to FILE structures. Note that the type of stream specified must
agree with the mode of the open file.

AES Support Level: Full use

Return Values

Errors

If the fopen(), fdopen(), or freopen() function fails, a null pointer is returned and
errno may be set to indicate the error.

If the fopen() function fails, errno may be set to one of the following values:

[EACCES] Search permission is denied on a component of the path prefix, or
the file exists and the permissions specified by the type parameter
are denied, or the file does not exist and write permission is denied
for the parent directory of the file to be created.

[EINTR] The fopen() function was interrupted by a signal which was caught.

1-173

OSF/1 Programmer's Reference
fopen(3)

1-174

[EISDIR]

[EMFILE]

[ELOOP]

The named file is a directory and type requires write access.

OPEN_MAX file descriptors are currently open in the calling
process.

Too many links were encountered in translating path.

[ENAMETOOLONG]

[ENFILE]

[ENO ENT]

[ENOSPC]

The length of the path string exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

Too, many files are currently open in the system.

The named file does not exist or the path parameter points to an
empty string.

The directory or file system that would contain the new file cannot
be expanded,

[ENOTDIR] A comppnent of the path prefix is not a directory.

[ENXIO]

[EROFS]

The nameq file is a character special or block special file and the
device associated with this special file does not exist.

The named file resides on a read only file system and type requires
write access.

[ETXTBSY] The file is being executed and mode requires write access.

If the fdopen() function fails, ermo may be set to one of the following values:

[EBADF]

[EINVAL]

The .filedes parameter is not a valid file descriptor.

The type parameter is not a valid mode.

[ENOMEM] Insufficient space to allocate a buffer.

The freopen() function fails if the following is true:

[EACCES] Search permission is denied on a component of the path prefix, or
the file exists and the permissions specified by the type parameter
are denied, or the file does not exist and write permission is denied
for the parent directory of the file to be created.

[EINTR]

[EISDIR]

[EMFILE]

[ELOOP]

The freopen() function was interrupted by a signal which was
caught.

The named file is a directory and type requires write access.

OPEN_MAX file descriptors are currently open in the calling
process.

Too many links were encountered in translating path.

Functions
fopen(3)

[ENAMETOOLONG]
The length of the path string exceeds P ATH_MAX or a pathname
component is longer than NAME_MAX.

[ENFILE] Too many files are currently open in the system.

[ENOENT] The named file does not exist or the path parameter points to an
empty string.

[ENOSPC] The directory or file system that would contain the new file cannot
be expanded.

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] The named file is a character special or block special file, and the
device associated with this special file does not exist.

[EROFS] The named file resides on a read only file system and type requires
write access.

[EINVAL] The type parameter is not a valid type.

[ETXTBSY] The file is being executed and mode requires write access.

Related Information

Functions: open(2), fclose(3), fseek(3), setbuf(3)

1-175

OSF/1 Programmer's Reference
fork(2)

fork, vfork

Purpose

Synopsis

Description

1-176

Creates a new process

#include <sys/types.h>

pid_t fork (void);

pid_t vfork (void);

The fork() and vfork() functions cr~ate a new process (child process) that is
identical to the calling process (parent process).

The child process inherits the following attributes from the parent process:

• Environment

• Close-on-exec flags

• Signal handling settings

• Set user ID mode bit

• Set group ID mode bit

• Trusted state

• Profiling on/off status

• Nice value

• All attached shared libraries

• Process group ID

• tty group ID

• Current directory

• Root directory

• File mode creation mask

• File size limit

• Attached shared memory segments

• Attached mapped file segments

• All mapped regions with the same protection and sharing mode as in the
parent process

Notes

Functions

fork(2)

• Its own copy of the parent's open directory streams

The child process differs from the parent process in the following ways:

• The child process has a unique process ID and does not match any active
process group ID.

• The parent process ID of the child process matches the process ID of the
parent.

• The child process has its own copy of the parent process's file descriptors.
However, each of the child's file descriptors shares a common file pointer with
the corresponding file descriptor of the parent process.

• All semadj values are cleared.

• Process locks, text locks, and data locks are not inherited by the child process.

• The child process's utime(), stime(), cutime(), and cstime() are set to 0
(zero).

• Any pending alarms are cleared in the child process.

• Any interval timers enabled by the parent process are disabled in the child
process.

• Any signals pending for the parent process are disabled for the child process.

If a multithreaded process calls the fork() function, the new process contains a
replica of the calling thread and its entire address space, possibly including the
states of mutexes and other resources. Consequently, to avoid errors, the child
process should only execute operations it knows will not cause deadlock until one
of the exec functions is called.

The fork() function is supported for multi-threaded applications.

The vfork() function is supported as a compatibility interface for older BSD
system programs, and can be used by compiling with Berkeley Compatibility
Library (libbsd.a). The memory sharing semantics of the vfork() function are
synonymous with the t"ork() function.

AES Support Level: Full use (fork())

1-177

OSF/1 Programmer's Reference

fork(2)

Return Values

Errors

Upon successful completion, the fork() function returns a value of 0 (zero) to the
child process and returns the process ID of the child process to the parent process.
If the fork() function fails, a value of -1 is returned to the parent process, no child
process is created, and errno is set to indicate the error.

If the fork() function fails, errno may be set to one of the following values:

[EAGAIN] The system-imposed limit on the total number of processes
executing for a single user would be exceeded. This limit can be
exceeded by a process with superuser privilege.

[ENOMEM] There is not enough space left for this process.

Related Information

1-178

Functions: exec(2), exit(2), getpriority(2), getrusage(2), nice(3), plock(2),
ptrace(2), raise(3), semop(2), shmat(2), sigaction(2), sigvec(2), times(3),
ulimit(3), umask(2), wait(2)

Functions
fread(3)

fread, fwrite

Purpose

Library

Synopsis

Parameters

Description

Performs input/output

Standard 1/0 Package (libc.a)

#include <stdio.h>

size_t fread (
void *pointer,
size_t size,
size_t num_items,
FILE *stream);

size_t fwrite (
const void *pointer,
size_t size,
size_t num_items,
FILE *stream);

Points to an array. pointer

size Specifies the size of the variable type of the array pointed to by the
pointer parameter.

num_items

stream

Specifies the number of items of data.

Specifies the input or output stream.

The fread() function copies num_items items of data of length size from the input
stream into an array beginning at the location pointed to by the pointer parameter.

The fread() function stops copying bytes if an End-of-File or error condition is
encountered while reading from the input specified by the stream parameter, or
when the number of data items specified by the num_items parameter have been
copied. It leaves the file pointer of the stream parameter, if defined, pointing to the
byte following the last byte read, if there is one. The fread() function does not
change the contents of the stream parameter.

1-179

OSF/1 Programmer's Reference

fread(3)

Notes

The fwrite() function appends num_items items of data of length size from the
array pointed to by the pointer parameter to the output stream.

The fwrite() function stops writing bytes if an error condition is encountered on
the stream, or when the number of items of data specified by the num_items
parameter have been written. The fwrite() function does not change the contents
of the array pointed to by the pointer parameter.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the fread() and fwrite() functions return the number
of items actually transferred. If the num_items parameter is negative or 0 (zero), no
characters are transferred, and a value of 0 is returned. If a read or write error
occurs, the error indicator for the stream is set and errno is set to indicate the error.

Refer to the reference page for the fputc() function for error codes returned by
fread() and fwrite().

Related Information

1-180

Functions: fopen(3), getc(3), gets(3), printf(3), putc(3), puts(3), read(2),
scanf(3), write(2)

Functions
frexp(3}

frexp, ldexp, modf

Purpose

Library

Synopsis

Parameters

Description

Manipulates floating-point numbers

Standard C Library (libc.a)

#include <math.h>

double frexp (
double value,
int *exp);

double ldexp (
double mantissa,
int exp);

double modf (
double value,
double *int_pointer);

value Specifies some double value.

exp Specifies an integer pointer to store the exponent for frexp(); for
ldexp(), specifies some integer value.

mantissa Specifies some double value.

int_pointer Specifies a double pointer in which to store the signed integral part.

Every nonzero number can be written uniquely as x times 2 raised to the power n,
where the mantissa (fraction), x, is in the range 0.5 :::; lxl < 1.0, and the exponent, n,
is an integer.

The frexp() function breaks a floating-point number into a normalized fraction and
an integral power of 2. It stores the integer in the int object pointed to by the exp
parameter and returns the fraction part.

The ldexp() function multiplies a floating-point number by an integral power of 2.

1-181

OSF/1 Programmer's Reference

frexp(3)

Notes

The modf() function breaks the value parameter into an integral and fractional
part, each of which has the same sign as the value parameter. It stores the integral
part as a double in the location pointed to by the int_pointer parameter.

The frexp() and modf() functions are supported for multi-threaded applications.
The ldexp() function is not supported for multiple threads.

AES Support Level: Full use

Return Values

Errors

1-182

Upon successful completion, the frexp() function returns the value x such that x is
a double with magnitude in the interval 112 to 1, or 0 (zero), and value equals x
times 2 raised to the power of *exp. If value is 0, both parts of the result are 0. If
value is NaN, then the result is NaN and *exp is set to LONG_MIN. If value is
+infinity, then the result is +0.0 and *exp is set to +LONG_MAX.

Upon successful completion, the ldexp() function returns a double equal to value
times 2 to the power exp. If value is NaN, NaN is returned. If ldexp() would
cause overflow, ±HUGE_ VAL is returned (according to the sign of value) and
errno is set to [ERANGE]. If ldexp() would cause underflow, 0 (zero) is returned.
Otherwise, either errno is set to indicate the error or NaN is returned.

Upon successful completion, the modf() function returns the signed fractional part
of value and stores the signed integral part in the object pointed to by int_pointer.
If value is NaNQ or NaNS, then NaNQ is returned and NaNQ is stored in the
object pointed to by int_pointer. If value is +infinity, then a +0.0 is returned and
+infinity is stored in the object pointed to by int_pointer.

If the ldexp() function fails, errno may be set to one of the following values:

[ERANGE] The value to be returned would cause overflow or underflow.

[EDOM] The value parameter is NaN.

If the modf() function fails, errno may be set to one of the following values:

[EDOM] The value parameter is NaN.

Functions

frexp(3)

If the frexp() function fails, errno may be set to one of the following values:

[EDOM] The value parameter is NaN or infinity.

Related Information

Functions: isnan(3)

1-183

OSF/1 Programmer's Reference

fseek(3)

fseek, rewind, ftell, f getpos, fsetpos

Purpose Repositions the file pointer of a stream

Library

Standard 1/0 Package (Jibe.a)

Synopsis #include <stdio.h>

Parameters

Description

1-184

int fseek (
FILE *stream,
long int offset,
int whence);

void rewind (
FILE *stream);

long int ftell (
FILE *stream);

int fsetpos (
FILE *stream,
const fpos_t *position);

int fgetpos (

stream

offset

whence

position

FILE *stream,
fpos_t *position);

Specifies the 1/0 stream.

Determines the position of the next operation.

Determines the value for the file pointer associated with the stream
parameter.

Specifies the value of the file position indicator.

The fseek() function sets the position of the next input or output operation on the
1/0 stream specified by the stream parameter. The position of the next operation is
determined by the offset parameter, which can be either positive or negative.

Functions

fseek(3)

The fseek() function sets the file pointer associated with the specified stream as
follows:

• If the whence parameter is SEEK_SET(O), the pointer is set to the value of the
offset parameter.

• If the whence parameter is SEEK_SET(l), the pointer is set to its current
location plus the value of the offset parameter.

• If the whence parameter is SEEK_SET(2), the pointer is set to the size of the
file plus the value of the offset parameter.

The fseek() function fails if attempted on a file that was not opened with the
fopen() function. In particular, the fseek() function cannot be used on a terminal
or on a file opened with the popen() function.

A successful call to the fseek() function clears the End-of-File indicator for the
stream and undoes any effects of the ungetc() function on the same stream. After
a call to the fseek() function, the next operation on an update stream may be either
input or output.

If the stream is writable and buffered data was not written to the underlying file, the
fseek() function causes the unwritten data to be written to the file and marks the
st_ctime and st_mtime fields of the file for update.

The fseek() function allows the file-position indicator to be set beyond the end of
existing data in the file. If data is later written at this point, subsequent reads of
data in the gap will return bytes with the value 0 (zero) until data is actually written
into the gap. The fseek() function does not, by itself, extend the size of a file.

The rewind() function is equivalent to (void) fseek (stream, OL, SEEK_SET),
except that it also clears the error indicator.

The ftell() function obtains the current value of the file position indicator for the
specified stream.

The fgetpos() and fsetpos() functions are similar to the ftell() and fseek()
functions, respectively. The fgetpos() function stores the current value of the file
position indicator for the stream pointed to by the stream parameter in the object
pointed to by the position parameter. The fsetµos function sets the file position
indicator according to the value of the position parameter, returned by a prior call
to the fgetpos() function.

A successful call to the fsetpos() function clears the EOF indicator and undoes any
effects of the ungetc() function.

1-185

OSF/1 Programmer's Reference

fseek(3)

Notes

AES Support Level: Full use

Return Values

Errors

1-186

Upon successful completion, the fseek() function returns a value of 0 (zero). If the
fseek() function fails, a value of -1 is returned and errno is set to indicate the
error.

The rewind() function does not return a value.

Upon successful completion, the ftell() function returns the offset of the current
byte relative to the beginning of the file associated with the named stream.
Otherwise, -1 is returned and errno is set to indicate the error.

Upon successful completion, the fgetpos() and fsetpos() functions return 0 (zero).
If the fgetpos() or the fsetpos() function fails, a value of -1 is returned and errno
is set to [EINVAL].

The fseek() function fails if either the stream is unbuffered, or the stream's buffer
needed to be flushed and the call to fseek() caused an underlying lseek() or
write() function to be invoked. In addition, if the fseek() function fails, errno may
be set to one of the following values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying the
stream parameter and the process would be delayed in the write
operation.

[EBADF]

[EFBIG]

[EINTR]

[EIO]

The file descriptor underlying the stream parameter is not a valid
file descriptor open for writing.

An attempt was made to write to a file that exceeds the process' file
size limit or the maximum file size. See the ulimit() function.

The read operation was interrupted by a signal which was caught,
and no data was transferred.

The process is a member of a background process group attempting
to write to its controlling terminal, TOSTOP is set, the process is
neither ignoring nor blocking SIGTTOU, and the process group of
the process is orphaned.

Functions
fseek(3)

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

The rewind() and ftell() functions fail under the same conditions as the fseek()
function, with the exception of [EINVAL], which does not apply.

If the fgetpos() or fsetpos() function fails, errno may be set to the following
value:

[EINVAL] The stream parameter does not point to a valid FILE structure.

Related Information

Functions: lseek(2), fopen(3)

1-187

OSF/1 Programmer's Reference
fsync(2)

fsync

Purpose Writes changes in a file to pennanent storage

Synopsis int fsync (

Parameters

Description

Notes

intfiledes);

filedes Specifies a valid open file descriptor.

The fsync() function saves all modified data in the file open on the filedes
parameter to pennanent storage. On return from the fsync() function, all updates
have been saved on pennanent storage.

The file identified by the .filedes parameter must be open for writing when the
fsync() function is issued or the call fails. This restriction was not enforced in BSD
systems.

AES Support Level: Trial use

Return Values

Errors

1-188

Upon successful completion, the fsync() function returns a value of 0 (zero). If
fsync() fails, a value of -1 is returned and errno is set to indicate the error.

If the fsync() function fails, errno may be set to one of the following values:

[EIO]

[EBADF]

An 1/0 error occurred while reading from or writing to the file
system.

The filedes parameter is not a valid file descriptor open for writing.

Functions

fsync(2)

[EINVAL] Thefiledes parameter does not refer to a file on which this operation
is possible.

[EINTR] The fsync() function was interrupted by a signal which was caught.

Related Information

Functions: open(2), sync(2), write(2)

1-189

OSF/1 Programmer's Reference
ftok(3)

ftok

Purpose

Library

Synopsis

Parameters

Description

1-190

Generates a standard interprocess communication key

Standard C Library (Jibe.a)

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok (
char *path_name,
char project_id);

path_name Specifies the pathname of an existing file that is accessible to the
process.

project_id Specifies a character that uniquely identifies a project.

The ftok() function returns a key, based on the path_name and project_id
parameters, to be used to obtain interprocess communication identifiers. The ftok()
function returns the same key for linked files if called with the same project_id
parameter. Different keys are returned for the same file if different project_id
parameters are used.

Interprocess communication facilities require you to supply a key to the msgget(),
semget(), and shmget() functions in order to obtain interprocess communication
identifiers. The ftok() function provides one method of creating keys, but many
others are possible. For example, you can use the project ID as the most significant
byte of the key, and use the remaining portion as a sequence number.

Caution

Functions

ftok(3)

It is important for each installation to define standards for forming keys. If some
standard is not adhered to, it is possible for unrelated processes to interfere with
each other's operation.

Return Values

Upon successful completion, the ftok() function returns a key that can be passed to
the msgget(), semget(), or shmget() function. The ftok() function returns the
value (key _t)-1 if any of the following are true:

• The file named by the path_name parameter does not exist.

• The file named by the path_name parameter is not accessible to the process.

• The project_id parameter is 0 (zero) or the null string(").

If the path_name parameter of the ftok() function names a file that has been
removed while keys still refer to it, then the ftok() function returns an error. If that
file is then recreated, the ftok() function may return a different key than the
original one.

Related Information

Functions: msgget(2), semget(2), shmget(2)

1-191

OSF/1 Programmer's Reference
ftw(3)

ftw

Purpose Walks a file tree

Library

Standard C Library (Ube.a)

Synopsis #include <ftw.h>

Parameters

Description

1-192

int ftw (
const char *path,
int (*function)(const char*, const struct stat*, int),
int depth);

path

function

depth

Specifies the directory hierarchy to be searched.

Specifies the file type.

Specifies the maximum number of file descriptors to be used.

The ftw() function recursively searches the directory hierarchy that descends from
the directory specified by the path parameter.

For each file in the hierarchy, the ftw() function calls the function specified by the
function parameter, passes it a pointer to a null-terminated character string
containing the name of the file, a pointer to a stat structure containing information
about the file, and an integer. (See the stat() function for more information about
this structure.)

The integer passed to the function parameter identifies the file type, and it has one
of the following values:

FTW _F Regular file

FTW_D

FTW_DNR

FTW_SL

FTW_NS

Directory

Directory that cannot be read

Symbolic link

A file for which the lstat() function could not be executed
successfully

Notes

Functions

ftw(3)

If the integer is FTW _DNR, then the files and subdirectories contained in that
directory are not processed.

If the integer is FTW _NS, then the stat structure contents are meaningless. An
example of a file that causes FTW _NS to be passed to the function parameter is a
file in a directory for which you have read permission but not execute (search)
permission.

The ftw() function finishes processing a directory before processing any of its files
or subdirectories.

The ftw() function continues the search until the directory hierarchy specified by
the path parameter is completed, an invocation of the function specified by the
function parameter returns a nonzero value, or an error is detected within the ftw()
function, such as an 1/0 error.

Because the ftw() function is recursive, it is possible for it to terminate with a
memory fault due to stack overflow when applied to very deep file structures.

The ftw() function uses the malloc() function to allocate dynamic storage during
its operation. If the ftw() function is terminated prior to its completion, such as by
the longjmp() function being executed by the function specified by the function
parameter or by an interrupt routine, the ftw() function cannot free that storage.
The storage remains allocated. A safe way to handle interrupts is to store the fact
that an interrupt has occurred, and arrange to have the function specified by the
function parameter return a nonzero value the next time it is called.

The ftw() function traverses symbolic links encountered in the resolution of path,
including the final component. Symbolic links encountered while walking the
directory tree rooted at path will not be traversed.

AES Support Level: Trial use

Return Values
-1!----L--- 1_! _______ L __ 0 1_.._ __ 1 ,._1_ .. ,,,_ ___ /'\ -~- ._~ ,;._ 'f

H LUC UUC\.OLUlY UlCHU\.OllY 1~ \.OUUllJlCLCU, LUC UW\ J lUll\.OUUll lCLUlll~ '1 V<llUC Ul U

(zero). If the function specified by the function parameter returns a nonzero value,
the ftw() function stops its search and returns the value that was returned by the
function. If the ftw() function detects an error, a value of -1 is returned and ermo
is set to indicate the error.

1-1.93

OSF/1 Programmer's Reference
ftw(3)

Errors
If the ftw() function fails, errno may be set to one of the following values:

[EACCES] Search permission is denied for any component of the path
parameter or read permission is denied for the path parameter.

[ENAMETOOLONG]
The length of the path string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX.

[ENOENT] The path parameter points to the name of a file which does not exist
or points to an empty string.

[ENOTDIR] A component of the path parameter is not a directory.

[ENOMEM] There is insufficient memory for this operation.

In addition, if the function pointed to by the function parameter encounters an
error, errno may be set accordingly.

Related Information

Functions: malloc(3), setjmp(3), sigaction(2), stat(2)

1-194

Functions
funlockfile(3)

funlockfile

Purpose Unlocks a stdio stream

Library
Reentrant Library (libc_r.a)

Synopsis #include <stdio.h>

Parameters

Description

void funlockfile(
FILE* file);

file Specifies the stream to be unlocked.

The funlockfile() function unlocks a stdio stream, causing the thread that had been
holding the lock to relinquish exclusive use of the stream.

Matching flockfile() and funlockfile() calls can be nested. If the stream has been
locked recursively, then it will remain locked until the last matching funlockfile()
is called.

Behavior is unspecified if the file parameter is not pointer to a valid FILE
structure.

Related Information

Functions: flockfile(3), unlocked_getc(3), unlocked_putc(3)

1-195

OSF/1 Programmer's Reference

gamma{3)

lgarnrna,garnrna

Purpose Computes the logarithm of the gamma function

Library
Math Library (libm.a)

Synopsis #include <math.h>

double gamma (
double x);

Parameters

Description

1-196

double lgamma (
double x);

extern int signgam;

x Specifies some positive double value.

The gamma() and lgamma() functions return the logarithm of the absolute value
of the gamma of x, where the gamma of x is defined as: ..

J e-t tx-1 dt
0

The names lgamma() and gamma() are different names for the same function.

The sign of the gamma of x is stored in the external integer variable signgam. The
x parameter cannot be a nonpositive integer. The gamma of xis defined over the
reals, except the nonpositive integers.

Notes
Do not use the expression

g = signgarn *exp (lgarnrna (x))

to compute

g = gamma (x)

Instead, use the following sequence:

lg= lgarnrna (x);
g = signgarn *exp (lg);

Functions

gamma(3)

This is because the C language does not specify evaluation order, and signgam is
modified by the call to the lgamma() function.

AES Support Level: Trial use

Return Values

If the gamma() or lgamma() function fails, either INF or NaN is returned.

Related Information

Functions: exp(3)

1-197

OSF/1 Programmer's Reference

getaddressconf(2)

getaddressconf

Purpose Gets information about system address space configuration

Synopsis #include <sys/types.h>
#include <sys/addrconf.h>

Parameters

Description

1-198

int getaddressconf (

buffer

length

struct addressconf *buffer,
size_t length);

Points to an array of addressconf structures.

Specifies the size in bytes of the array pointed to by the buffer
parameter.

the getaddressconf() function fills in the array of structures pointed to by the
buffer parameter with information describing the configuration of process address
spaces· on this system. This information is intended to be used by programs such as
the program loader, which need to manage the contents of a process' address space
using the memory management primitives such as the mmap() function.

The buffer parameter points to an array of addressconf structures, occupying a
total of length bytes. Each element of the array describes a single area of the
process address space. The addressconf structure is defined in the sys/addrconf.h
header file, and it contains the following members:

caddr_t ac_base;
unsigned ac _flags;

ac bas The base virtual address of the area. For an upward-growing area, this
is the lowest virtual address in the area; for a downward-growing area,
this is the lowest virtual address above the area.

ac _flags The flags describe the area. They are also defined in the
sys/addrconf.h header file, and are described as follows:

AC_ UPWARD
The area grows towards higher addresses. The base
address specified is the lowest address in the area.

Functions
getaddressconf (2)

AC_DOWNWARD
The area grows towards lower addresses. The base
address specified is the lowest address above the area.

AC_FIXED The area always starts at the specified base address. For
example, on many machines the text area is a fixed area.

AC_FLOAT The area floats to the first available virtual address above
the specified base address. For example, on many
machines, the data area floats above the text area.

Each element in the array of addressconf structures describes a separate area of
the process' address space. These areas have been defined in the sys/addrconf.h
header file; other areas may be defined in the future or on other machine types.
The array elements are indexed with the following constants:

AC_TEXT The area that normally contains the text region of an absolute
executable program.

AC_DATA The area that normally contains the data region of an absolute
executable program.

AC_BSS The area that normally contains the bss region of an absolute
executable program.

AC_STACK The area that normally contains the process' user-mode stack.

AC_LDR_TEXT
The area reserved for the text region of the default program loader
see the exec_with_loader() function.

AC_LDR_DATA
The area reserved for the data region of the default program loader.

AC_LDR_BSS
The area reserved for the bss region of the default program loader.

AC_LDR_PRIV
The area that normally contains the default program loader's private
keep-on-exec data. See the mmap() function.

AC_LDR_GLB
The area that normally contains the default program loader's Global
Installed Package tables. See the libadmin administrative
command.

AC_LDR_PRELOAD
The area that normally contains the text, data, and bss regions of the
preloaded shared libraries.

1-199

OSF/1 Programmer's Reference
getaddressconf(2)

AC_MMAP_TEXT
The area that normally contains text regions of relocatable files
loaded by the program loader, or otherwise mapped using the
mmap() function.

AC_MMAP _DATA
The area that normally contains data regions of relocatable files
loaded by the program loader, or otherwise mapped using the
mmap() function.

AC_MMAP _BSS
The area that normally contains the bss regions of relocatable files
loaded by the program loader, or anonymous regions mapped using
the mmap() function.

The sys/addrconf.h header file also defines the AC_N_AREAS symbol to be the
number of distinct areas currently defined for this system. Normally, the buffer
parameter supplied· to the getaddressconf() function should be large enough to
hold information for AC_N_AREAS regions. If buffer is not large enough, the
remaining information is truncated. The getaddressconf() call fills in the first
AC_N_AREAS records in the user-supplied buffer with the address configuration
information for this system, as described above.

Return Values

Errors

Upon successful completion, the number of bytes actually written to the user's
buffer is returned. If an error occurs, -1 is returned, and errno is set to indicate the
error.

If the getaddressconf() function fails, errno may be set to the following value:

[EFAULT] The address specified for buffer is not valid.

Related Information

1-200

Functions: mmap(2), exec(2), exec_ with _loader(2), brk(2)

Commands: libadmin(8)

Functions

getc(3)

getc, fgetc, getchar, getw

Purpose Gets a character or word from an input stream

Library
Standard 1/0 Package (libc.a)

Synopsis #include <stdio.h>

int getc (

Parameters

Description

FILE *stream);

int fgetc (
FILE *stream);

int getchar (void) ;

int getw (
FILE *stream);

stream Points to the file structure of an open file.

The getc() macro returns the next byte from the input specified by the stream
parameter and moves the file pointer, if defined, ahead one byte in stream. The
getc() macro cannot be used where a function is necessary; for example, a
subroutine pointer cannot point to it.

Because it is implemented as a macro, getc() does not work correctly with a
stream parameter that has side effects. In particular, the following does not work:

getc(*f++)

In cases like this, use the fgetc() function instead.

The fgetc() function performs the same function as the getc() macro, but fgetc() is
a subroutine, not a macro.

The getchar() macro returns the next byte from stdio, the standard input stream.
Note that getchar() is also a macro.

The getw() function returns the next word (int) from the input specified by the
stream parameter and increments the associated file pointer, if defined, to point to
the next word. The size of a word varies from one machine architecture to another.

1-201

OSF/1 Programmer's Reference

getc(3)

Notes

The getw() function returns the constant EOF at the end of the file or when an
error occurs. Since EOF is a valid integer value, the feof() and ferror() functions
can be used to check the success of getw(). The getw() function assumes no
special alignment in the file.

Because of possible differences in word length and byte ordering from one machine
architecture to another, files written using the putw() subroutine are machine
dependent and may not be readable using getw() on a different type of processor.

The reentrant versions of these functions are all locked against multiple threads
calling them simultaneously. This will incur an overhead to ensure integrity of the
stream. The unlocked versions of these calls may be used safely, providing that the
stream is locked when the calls are used, using the flockfile() and funlockfile()
functions.

AES Support Level: Full use (getc(), fgetc(), getchar())
Trial use (getw())

Return Values

These functions and macros return the integer constant EOF at the end of the file or
upon an error.

Related Information

Functions: gets(3), getwc(3), putc(3), unlocked_getc(3), unlocked_getchar(3)

1-202

Functions

getclock(3)

getclock

Purpose Gets current value of system-wide clock

Library
Standard C Library (libc.a)

Synopsis #include <sys/timers.h>

int getclock(

Parameters

Description

int clktyp,
struct timespec *tp);

Identifies a system-wide clock. clktyp

tp Points to a timespec structure space where the current value of the
system-wide clock is stored.

The getclock() function sets the current value of the clock specified by clktyp into
the location pointed to by the tp parameter.

The clktyp parameter is given as a symbolic constant name, as defined in the
sys/timers.h include file. Only the TIMEOFDAY symbolic constant, which
specifies the normal time-of-day clock to access for system-wide time, is
supported.

For the clock specified by TIMEOFDAY, the value returned by this function is the
elapsed time since the epoch. The epoch is referenced to 00:00:00 CUT
(Coordinated Universal Time) 1Jan1970.

The 11Ptrlork() fnnrtinn rPh1rn~ i> timP<lnP<' ~trnr-tnrP "'hir-h •~ deft!!.ed !!!. !he - - o--------,,, ----------- -------- -· -------.--- ________ , ··------ --

sys/timers.h header file. It has the following members:

unsigned long tv sec
long tv nsec

Elapsed time in seconds since the epoch
Elapsed time as a fraction of a second since
the epoch (expressed in nanoseconds)

1-203

OSF/1 Programmer's Reference
getclock(3)

Notes

The time interval expressed by the members of this structure is ((tv_sec * 109) +
(tv_nsec)) nanoseconds.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the getclock() function returns a value of 0 (zero).
Otherwise, getclock() returns a value of -1 and sets errno to indicate the error.

If the getclock() function fails, errno may be set to one of the following values:

[EINVAL]

[BIO]

The clktyp parameter does not specify a known system-wide clock.

An error occurred when the system-wide clock specified by the
clktyp parameter was accessed.

Related Information

Functions: gettimer(3), setclock(3), time(3)

1-204

getcwd

Purpose

Library

Synopsis

Parameters

Description

Notes

Functions

getcwd(3)

Gets the pathname of the current directory

Standard C Library (libc.a)

char *getcwd (

buffer

size

char *buffer,
int size);

Points to a string space to hold the pathname. If the buffer parameter
is a null pointer, the getcwd() function, using the malloc() function,
obtains the number of bytes of free space as specified by the size
parameter. In this case, the pointer returned by the getcwd()
function can be used as the parameter in a subsequent call to the
free() function.

Specifies the length of the string space in bytes. The value of the
size parameter must be at least the length of the pathname to be
returned plus one byte for the terminating null.

The getcwd() function returns a pointer to a string containing the pathname of the
current directory. The getwd function is called to obtain the pathname.

The getcwd() function is supported for multi-threaded applications.

AES Support Level: Full use

Return Values

Upon successful completion, the buffer parameter is returned. Otherwise, a null
value is returned and errno is set to indicate the error.

1-205

OSF/1 Programmer's Reference
getcwd(3)

Errors
If the getcwd() fuqction fails, errno may be set to one of the following values:

[EINVAL] The size parameter is zero or negative.

[ERANG!3.] The size parameter is greater than zero, but is smaller than the
length of the pathname + 1.

[ENOMEM] The requested amount of memory could not be allocated.

Related Information

Fun9tions: malloc(3), getwd(3)

1-206

Functions
getdirentries(2}

getdirentries

Purpose Gets directory entries in a file-system independent format

Synopsis #include <dirent.h>

Parameters

Description

int getdirentries(
intfd,

f d

buf

nbytes

basep

char *buf,
int nbytes,
long *basep);

Specifies the file descriptor of a directory to be read.

Points to a buffer containing the directory entries as dirent
structures.

Specifies the maximum amount of data to be transferred, in bytes.

Points to the position of the block read.

The getdirentries() function reads directory entries from a directory into a buffer.
The entries are returned as dirent structures, a file-system independent format.

The nbytes parameter must be greater than or equal to the block size associated
with the file (see the stat() function). Some file systems may not support the
getdirentries() function with buffers smaller than this size.

The entries returned by the getdirentries() function into the location pointed to by
bufmay be separated by extra space.

The getdirentries() function writes the position of the block read into the location

be set and retrieved by lseek(). Tile current position pointer should only be set to a
value returned by lseek(), a value'ieturned in the location pointed to by basep, or 0
(zero).

1-207

OSF/1 Programmer's Reference
getdi rentries (2)

Upon successful completion, the actual number of bytes transferred is returned and
the current position pointer associated with the fd parameter is set to point to the
next block of entries. The file descriptor pointer may not advance by the same
number of bytes returned by the getdirentries() function. A value of 0 (zero) is
returned when the end of the directory has been reached.

Return Values

Errors

Upon successful completion, the actual number of bytes transferred is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

If the getdirentries() function fails, errno may be set to one of the following
values:

[EBADF]

[EFAULT]

[EINVAL]

[EIO]

The fd parameter is not a valid file descriptor open for reading.

Either the buf or basep parameter point outside the allocated address
space.

The fd parameter is not a valid file descriptor for a directory.

An 1/0 error occurred while reading from or writing to the file
system.

Related Information
Functions: open(2), lseek(2)

1-208

Functions

getdiskbyname(3)

getdiskbyname

Purpose Gets disk description using a disk name

Library
Standard C Library (Ube.a)

Synopsis #include <sys/disklabel.h>

Parameters

Description

struct disklabel *getdiskbyname(
char *name) ;

name Specifies a common name for the disk drive whose geometry and
partition characteristics are sought.

The getdiskbyname() function uses a disk (diskdrive) name to return a pointer to a
structure that describes the geometry and standard partition characteristics of the
named disk drive. Information obtained from the /etc/disktab database file is
written to the type disklabel structure space referenced by the returned pointer.

Return Values
Upon successful completion, a pointer to a type disklabel structure is returned.

Related Information

Files: disklabel(4), disktab(4)

Commands: disklabel(8)

1-209

OSF/1 Programmer's Reference
getdtablesize(2)

getdtablesize

Purpose Gets the descriptor table size

Synopsis int getdtablesize (void);

Description

The getdtablesize() function returns the total number of file descriptors in a
process' descriptor table. Each process has a fixed size descriptor table that is
guaranteed to have at least 64 slots. The entries in the descriptor table are
numbered with small integers starting at 0 (zero).

Return Values

The getdtablesize() function returns the size of the descriptor table, and is always
successful.

Related Information

Functions: close(2), open(2), select(2)

1-210

Functions

getenv(3)

getenv

Purpose Returns the value of an environment variable

Library
Standard C Library (libc.a)

Synopsis #include <stdlib.h>

char *getenv (

Parameters

Description

Notes

const char *name);

name Specifies the name of an environment variable.

The getenv() function searches the environment list for a string of the form
name=value, and returns a pointer to a string containing the corresponding value
for name.

AES Support Level: Full use

Return Values

The getenv() function returns a pointer to a string containing the value in the
current environment if such a string is present. If such a string is not present, a null
pointer is returned.

The returrled 3tring shculd net he rncdif..ed by the ~pplic~ticn, :l..~d ~~y be
overwritten or changed as a result of the putenv(), setenv(), or unsetenv()
functions.

Related Information

Functions: putenv(3), clearenv(3)

Commands: sh(l)

1-211

OSF/1 Programmer's Reference
getfh(2)

getfh

Purpose Gets a file handle

Synopsis #include <sys/types.h>
#include <sys/mount.h>

Parameters

Description

getfb(
char *path,
struct fbandle_t *fhp);

path Points to the file.

fhp Points to a fbandle_t structure.

The getfb() function returns a file handle for the specified file or directory in the
file handle pointed to by the fhp parameter. This function is restricted to the
superuser.

Return Values

Errors

1-212

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the getfb() function fails, errno may be set to one of the following values:

[ENOTDIR] A component of the path prefix of the path parameter is not a
directory.

[EINVAL] The path parameter contains a character with the high-order bit set.

[ENAMETOOLONG]
The length of a component of the pathname parameter exceeds
NAME_MAX characters, or the length of the path parameter
exceeds P ATH_MAX characters.

[ENOENT] The file referred to by the path parameter does not exist.

[EACCES] Search permission is denied for a component of the path prefix of
the path parameter.

[BLOOP]

[EFAULT]

[EIO]

[EPERM]

Functions

getfh(2)

Too many symbolic links were encountered in translating the path
parameter.

The fhp parameter points to an invalid address.

An 1/0 error occurred while reading from or writing to the file
system.

The calling process does not have appropriate privilege.

1-213

OSF/1 Programmer's Reference

getfsent(3)

getf sent, getf sspec, getf sfile, getf stype,
endfsent

setfsent,

Purpose Gets information about a file system

Library
Standard C Library (libc.a)

Synopsis #include <fstab.h>

Parameters

Description

1-214

struct fstab *getfsent(void);

struct fstab *getfsspec (
char *spec _file);

struct fstab *getfsfile(
char *fs _file);

struct fstab *getfstype(
char *fs _type);

void setfsent(void);

void endfsent(void) ;

spec..file

fsJile

fs_type

Specifies the special filename.

Specifies the file system filename.

Specifies the file system type.

The getfsent() function reads the next line of the file, opening the file if necessary.

The setfsent() function opens the file and positions to the first record.

The endfsent() function closes the file.

The getfsspec() function sequentially searches from the beginning of the file until
a matching special filename is found, or until the end of the file is encountered.

The getfsfile() function sequentially searches from the beginning of the file until a
matching file system filename is found, or until the end of the file is encountered.

The getfstype() function sequentially searches from the beginning of the file until
a matching file system type is found, or until the end of the file is encountered.

Functions
getfsent(3}

Notes
All information is contained in a static area, so it must be copied if it is to be saved.

Return Values

Upon successful completion, the getfsent(), getfsspec(), getfstype(), and
getsfile() functions return a pointer to a structure that contains information about a
file system, defined in the fstab.h file. A pointer to null is returned on EOF (End­
of-File) or error.

1-215

OSF/1 Programmer's Reference

getfsstai (2)

getfsstat

Purpose Gets list of all mounted file systems

Synopsis #include <sys/types.h>
#include <sys/mount.h>

Parameters

Description

1-216

getfsstat(

buf

bufsize

flags

struct statfs *buf[],
long bufsize,
int.flags);

Points to an array of statfs structures.

Specifies the size in bytes of the bufparameter.

Specifies one of the following flags:

MNT_WAIT
Wait for an update from each file system before returning
information.

MNT_NOWAIT
Information is returned without requesting an update from
each file system. Thus, some of the information will be out
of date, but the getfsstat() function will not block waiting
for information from a file system that is unable to respond.

The getfsstat() function returns information about all mounted file systems. Upon
successful completion, the buffer pointed to by the buf parameter is filled with an
array of statfs structures, one for each mounted file system up to the size specified
by the bufsize parameter.

If the buf parameter is given as 0 (zero), the getfsstat() function returns just the
number of mounted file systems.

Functions

getfsstat (2}

Return Value

Errors

Upon successful completion, the number of statfs structures is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

If the getfsstat() function fails, errno may be set to one of the following values:

[EFAULT] The buf parameter points to an invalid address.

[EIO] An 1/0 error occurred while reading from or writing to the file
system.

Related Information
Functions: statfs(2)

Commands: mount(8)

1-217

OSF/1 Programmer's Reference

getgid(2)

getgid, getegid

Purpose Gets the process group IDs

Synopsis #include <sys/types.h>

gid_t getgid (void);

gid_t getegid (void);

Description

Notes

The getgid() function returns the real group ID of the calling process.

The getegid() function returns the effective group ID of the calling process.

The real group ID is specified at login time. The effective group ID is more
transient, and determines additional access permission during execution of a "set­
group-ID" process. It is for such processes that the getgid() function is most
useful.

AES Support Level: Full use

Return Values

The getgid() and getegid() functions return the requested group ID. They are
always successful.

Related Information

1-218

Functions: getgroups(2), initgroups(3), setgroups(2), setregid(2)

Commands: groups(l)

Functions

getgrent(3)

getgrent, getgrgid, getgmam, setgrent, endgrent

Purpose Accesses the basic group information in the user database

Library
Standard C Library (Jibe.a)

Synopsis #include <grp.h>

Parameters

struct group *getgrent (void)

struct group *getgrgid (
gid_tgid);

struct group *getgrgid _r (
struct group *result,
gid_t gid,
char *buffer,
int Zen);

struct group *getgrnam (
const char *name);

struct group *getgrnam _r (
struct group result,
const char *name,
char *buffer,
int Zen);

void setgrent (void)

void endgrent (void)

be read.

gid Specifies the group ID of the group for which the basic attributes are
to be read.

result Points to a buffer containing the result.

1-219

OSF/1 Programmer's Reference
getgrent(3)

Description

Notes

1-220

buffer

/en

Points to a character array to contain the strings associated with the
entry returned by the getpwnam_r() or getpwuid_r() functions.

Specifies the length of buffer.

The getgrent(), getgrgid(), getgrnam(), setgrent(), and endgrent() functions
may be used to access the basic group attributes. These attributes can also be
accessed with the getgroupattr() function, which can access all group attributes
and offer better granularity of access.

The setgrent() function opens the user database (if not already open) and rewinds
the cursor to point to the first group entry in the database.

The getgrent(), getgrnam(), and getgrgid() functions return information about
the requested group. The getgrent() function returns the next group in the
sequential search. The getgrnam() function returns the first group in the database
with the gr_name field that matches the name parameter. The getgrgid() function
returns the first group in the database with a gr _gid field that matches the gid
parameter. The endgrent() function closes the user database.

The group structure, which is returned by the getgrent(), getgrnam(), and
getgrgid() functions, is defined in the grp.h header file, and contains the following
members:

gr name

gr_passwd

gr_gid

The name of the group.

The password of the group. (Note that this field is no longer used by
the system, so its value is meaningless.)

The ID of the group.

gr_ mem The members of the group.

The getgrgid _r() and getgrnam _r() functions are the reentrant versions of
getgrgid() and getgrnam(), respectively. Upon successful completion, the result
is stored in the buffer pointed to by the result parameter.

The data that is returned by the gretgrent(), getgrnam(), and getgrgid()
functions is stored in a static area and will be overwritten on subsequent calls to
these routines. If it is to be saved, it should be copied.

AES Support Level: Full use (getgrgid(), getgrnam())

Functions
getgrent(3)

Return Values

Upon successful completion, the getgrent(), getgrnam(), and getgrgid()
functions return a pointer to a valid group structure containing a matching entry.
Otherwise, null is returned.

Related Information

Functions: getpwent(3)

1-221

OSF/1 Programmer's Reference
getgroups(2)

getgroups

Purpose Gets the supplementary group set of the current process

Synopsis #include <unistd.h>
#include <sys/types.h>

Parameters

Description

Notes

int getgroups (
int gidsetsize,
gid _ t grouplist []) ;

gidsetsize

group list

Indicates the number of entries that can be stored in the array
pointed to by the grouplistparameter.

Points to the array in which the process' supplementary group set of
the user process is stored. Element grouplist[OJ is the effective
group ID of the process.

The getgroups() function gets the supplementary group set of the process. The list
is stored in the array pointed to by the grouplist parameter. The gidsetsize
parameter indicates the number of entries that can be stored in this array.

The getgroups() function never returns more than NGROUPS_MAX entries.
(NGROUPS_MAX is a constant defined in the limits.h header file.) If the
gidsetsize parameter is 0 (zero), the getgroups() function returns the number of
groups in the supplementary group set.

AES Support Level: Full use

Return Values

1-222

Upon successful completion, the getgroups() function returns the number of
elements stored in the array pointed to by the grouplist parameter. If getgroups()
fails, then a value of -1 is returned and errno is set to indicate the error.

Errors

Functions

getgroups(2}

If the getgroups() function fails, errno may be set to one of the following values:

[EFAULT] The gidsetsize and grouplist parameters specify an array that is
partially dr completely outside of the allocated address space of the
process.

[EINVAL] The gidsetsize parameter is nonzero and smaller than the number of
groups in the supplementary group set.

Related Information

Functions: setgroups(2), getgid(2), setsid(2), initgroups(3)

Commands: groups(l)

1-223

OSF/1 Programmer's Reference
gethostbyaddr(3}

gethostbyaddr

Purpose Gets network host entry by address

Library
Sockets Library (libc.a)

Synopsis #include <netdb.h>

Parameters

Description

1-224

struct hostent *gethostbyaddr (
char *addr,
int len,
int type);

addr Specifies an Internet address in network order.

len Specifies the number of bytes in an Internet address.

type Specifies the Internet Domairi address format. The value AF _INET
must be used.

The gethostbyaddr() function searches the hosts network hostname file
sequentially until a match with the addr and type parameters occurs. The len
parameter must specify the number of bytes in an Internet address. The address
parameter must specify the address in network order. The type parameter must be
the constant AF _INET, which specifies the Internet address format. When EOF
(End-of-File) is reached without a match, an error value is returned.

The gethostbyaddr() function returns a pointer to a structure of type hostent. Its
members specify data obtained from a name server specified in the /etc/resolv.conf
file or from fields of a record line in the /etc/hosts network hostname database file.
When the name server is not running, the gethostbyaddr() function searches the
hosts name file. The hostent structure is defined in the netdb.h header file.

Use the endhostent() function to close the /etc/hosts file.

Notes

Functions
gethostbyaddr(3)

A return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Return Values

Errors

Files

Upon successful completion, a pointer to a hostent structure is returned. A null
pointer is returned whenever the end of the hosts network hostname file is reached.

If the gethostbyaddr() function fails, h _ errno may be set to one of the following
values:

[TRY_AGAIN]
This is a soft error that indicates that the local server did not receive
a response from an authoritative server. A retry at some later time
may be successful.

[NO_RECOVERY]
This is a nonrecoverable error.

[NO_ADDRESS]

/etc/hosts

The address you used is not valid. This is not a soft error, another
type of name server request may be successful.

This file is the DARPA Internet network hostname database. Each
record in the file occupies a single line and has three fields
consisting of the host address, official host name, and aliases.

Related Information

Functions: gethostent(3), gethostbyname(3), endhostent(3)

1-225

OSF/1 Programmer's Reference
gethostbyname(3)

gethostbyname

Purpose Gets network host entry by name

Library
Sockets Library (Jibe.a)

Synopsis #include <netdb.h>

Parameters

Description

Notes

1-226

struct hostent *gethostbyname (
char *name);

name Specifies the official network name or alias.

The gethostbyname() function returns a pointer to a structure of type hostent. Its
members specify data obtained from a name server specified in the /etc/resolv.conf
file or from fields of a record line in the /etc/hosts network hostname database file.
When the name server is not running, this function searches the hosts name file.
The netdb.h header file defines the hostent structure.

The gethostbyname() function searches the hosts network hostname file
sequentially until a match with the name parameter occurs. If the environment
variable HOSTALIASES is set, the gethostbyname() function first searches the
file named by HOSTALIASES. The name parameter must specify the host official
name or an alias. When EOF (End-Of-File) is reached without a match, an error
value is returned by this function.

Use the endhostent() function to close the /etc/hosts file.

A return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Functions

gethostbyname{ 3)

Return Values

Errors

Files

Upon successful completion, a pointer to a hostent structure is returned. A null
pointer is returned whenever the end of the hosts network hostname file is reached.

If the gethostbyname() function fails, h _ errno may be set to one of the following
values:

[TRY _AGAIN]
This is a soft error that indicates that the local server did not receive
a response from an authoritative server. A retry at some later time
may be successful.

[NO_RECOVERY]
This is a nonrecoverable error.

[HOST_NOT_FOUND]
The name you have used is not an official hostname or alias; this is
not a soft error, another type of name server request may be
successful.

[NO_ADDRESS]

/etc/hosts

The requested name is valid but does not have an Internet address at
the name server.

The DARPA Internet network hostname database. Each record in
the file occupies a single line and has three fields consisting of the
host address, official hostname, and aliases.

/etc/resolv.conf
Contains the name server and domain name.

Related Information

Functions: gethostent(3). gethostbyaddr(3), endhostent(3)

Files: hostname(5)

1-227

OSF/1 Programmer's Reference
gethostent(3)

gethostent, sethostent

Purpose Opens network host file

Library
Standard C Library (libc.a)

Synopsis #include <netdb.h>

Parameters

Description

1-228

struct hostent *gethostent (void);

void sethostent (
int stay _open);

stay_open Contains a value used to indicate when to close the host file.
Specifying a value of 0 (zero) closes the /etc/hosts file after each
call to the gethostbyname() or gethostbyaddr() function.
Specifying a nonzero value allows the /etc/hosts file to remain open
after each call.

The gethostent() (get host entry) function reads the next line of the /etc/hosts file,
opening it if necessary.

The sethostent() (set host entry) function opens the /etc/hosts file and resets the
file marker to the beginning of the file.

Passing a nonzero value to the stay_open parameter establishes a connection with a
name server and allows a client process to retrieve one entry at a time from the
/etc/hosts file. The client process can close the connection with the endhostent()
function.

Functions

gethostent(3)

Return Values

Errors

Files

If an error occurs or if the end of the file is reached, the sethostent() function
returns a null pointer to the calling program and an error code, indicating the
specific error, is moved into the h_errno variable. The calling program must
examine h errno to determine the error.

If the sethostent() function fails, h _ errno may be set to the following value:

[NO_RECOVERY]
This error code indicates an unrecoverable error.

/etc/hosts Contains the hostname database.

/etc/resolv.conf
Contains the name server and domain name.

Related Information

Functions: endhostent(3), gethostbyaddr(3), gethostbyname(3)

1-229

OSF/1 Programmer's Reference
gethostld (2}

gethostid

Purpose Gets the unique identifier of the current host

Synopsis int gethostid (void);

Description

The gethostid() function allows a process to retrieve the 32-bit identifier for the
current host. In most cases, the host ID is stored in network standard byte order and
is a DARPA Internet address for the local machine.

Return Values

Upon completion, the gethostid() function returns the identifier for the current
host.

Related Information

Functions: gethostname(2), sethostname(2)

1-230

Functions
gethostname(2)

gethostname

Purpose

Synopsis

Parameters

Description

Gets the name of the local host

int gethostname (
char *address,
int address _len);

address Returns the address of an array of bytes where the hostname is
stored.

address len Specifies the length of the array pointed to by the address
parameter.

The gethostname() function retrieves the standard host name of the local host. If
sufficient space is provided, the returned address parameter is null-terminated.

System hostnames are limited to MAXHOSTNAMELEN as defined in the
/usr/include/sys/param.h file.

The gethostname() function allows a calling process to determine the internal
hostname for a machine on a network.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the gethostname() function fails, errno may be set to the following value:

[EFAULT] The address parameter or address _len parameter gives an invalid
address.

Related Information

Functions: gethostid(2), sethostid(2), sethostname(2)

1-231

OSF/1 Programmer's Reference

getitimer(2)

setitimer, getitimer

Purpose Sets or returns the value of interval timers

Synopsis #include <sys/time.h>

Parameters

Description

1-232

#define ITIMER REAL 0
#define ITIMER_ VIRTUAL 1
#define ITIMER_PROF 2

int setitimer(
int which,
struct itimerval *value,
struct itimerval *ovalue) ;

int getitimer(

which

value

ovalue

int which,
struct itimerval *value) ;

Identifies the interval timer. This parameter may be expressed as one
of three symbolic constants: ITIMER_REAL, ITIMER_ VIRTUAL,
and ITIMER_FROF.

Points to an itimerval structure whose members specify a timer
interval and the time left to the end of the interval.

Points to an itimerval structure whose members specify a current
timer interval and the time left to the end of the interval.

The getitimer() function returns the current value for the timer specified by the
which parameter in the structure pointed to by the value parameter.

The setitimer() function sets a timer to the specified value (returning the previous
value of the timer if ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {

};

struct timeval it_interval;
struct timeval it_ value;

Notes

Functions

getltimer(2)

If the it_ value field is nonzero, it indicates the time to the next timer expiration. If
the it_interval field is nonzero, it specifies a value to be used in reloading it_ value
when the timer expires. Setting it_ value to 0 (zero) disables a timer. Setting
it_interval to 0 causes a timer to be disabled after its next expiration (assuming
it_ value is nonzero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution.

The system provides each process with three interval timers, defined in the
sys/time.h header file:

• The ITIMER_REAL timer decrements in real time. A SIGALRM signal is
delivered when this timer expires.

• The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs
only when the process is executing. A SIGVTALRM signal is delivered when
it expires.

• The ITIMER_PROF timer decrements both in process virtual time and when
the system is running on behalf of the process. It is designed to be used by
interpreters in statistically profiling the execution of interpreted programs.
Each time the ITIMER_FROF timer expires, the SIGPROF signal is
delivered. Because this signal may interrupt in-progress system calls,
programs using this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in the sys/time.h header
file. The timerclear() macro sets a time value to zero, the timerisset() macro
tests if a time value is nonzero, and the timercmp() macro compares two time
values. Beware that the comparisons >= and <= do not work with the timercmp()
macro.

Return Values
Upon successful completion, the value 0 (zero) is returned. Otherwise, -1 is
retn!!!e<l and ~!"!"!'!!! is set ta in.di~ate the errcr.

1-233

OSF/1 Programmer's Reference

getitimer(2)

Errors
If the getitimer() or setitimer() function fails, errno may be set to one of the
following values:

[EFAULT] The value parameter specified a bad address.

[EINVAL] The value parameter specified a time that was too large to be
handled.

Related Information

Functions: gettimeofday(2)

1-234

Functions

getlogln(2)

getlogin, getlogin_r, setlogin

Purpose

Synopsis

Parameters

Description

Notes

Gets and sets login name

char *getlogin(void);

int getlogin _r(
char *name,
int fen);

setlogin (
char *name);

name Points to the login name.

fen Specifies the length of the buffer pointed to by name.

The getlogin() function returns the login name of the user associated with the
current session, as previously set by the setlogin() function. The name is normally
associated with a login shell at the time a session is created, and is inherited by all
processes descended from the login shell. (This is true even if some of those
processes assume another user ID, for example when the su command is used.)

The setlogin() function sets the login name of the user associated with the current
session to name. This call is restricted to the superuser, and is normally used only
when a new session is being created on behalf of the named user (for example, at
login time, or when a remote shell is invoked).

The getlogin _ r() function is the reentrant version of getlogin(). Upon successful
completion, the login name is stored in name .

AES Support Level: Full use (getlogin())

Return Values
Upon successful completion, the getlogin() function returns a pointer to a null­
terminated string in a static buffer. If the name has not been set, it returns null.

Upon successful completion, the setlogin() function returns a value of 0 (zero). If
setlogin() fails, then a value of -1 is returned and an error code is placed in errno.

1-235

OSF/1 Programmer's Reference
getlogin(2)

Errors

Upon successful completion, the getlogin_r() function returns a value of 0 (zero).
Otherwise, -1 is returned and errno is set to indicate the error.

If the getlogin(), getlogin _r(), or setlogin() function fails, errno may be set to
one of the following values:

[EFAULT] The name parameter gave an invalid address.

[EINVAL] The name parameter pointed to a string that was too long. Login
names are limited to MAXLOGNAME characters (defined in
sys/param.h).

[EPERM] The caller tried to set the login name and was not the superuser.

Related Information

1-236

Functions: setsid(2)

Command: su(1)

Functions

_getlong(3)

_getlong

Purpose

Library

Synopsis

Parameters

Description

Retrieves long quantities from a byte stream

Standard C Library (Jibe.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser .h>

#include <resolv.h>

unsigned long _getlong (

u_char *message_ptr);

message_ptr
Specifies a pointer into the byte stream.

The _getlong() function gets long quantities from the byte stream or arbitrary byte
boundaries.

The _getlong() function is one of a set of subroutines that form the resolver, a set
of functions that resolves domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The include/resolv.h file
contains the _res data structure definition.

Upon successful completion, the _getlong() function returns an unsigned long
(32-bit) value.

1-237

OSF/1 Programmer's Reference

_getlong(3)

Files

/etc/resolv.conf
Defines name server and domain names.

Related Information

1-238

Functions: res_ipit(3), res_mkquery(3),
dn_expand(3), dn_find(3), getshort(3),
dn_skipname(3)

res_send(3),
putshort(3),

dn_comp(3),
putlong(3),

Functions

getnetbyaddr{ 3)

getnetbyaddr

Purpose

Library

Synopsis

Parameters

Description

Notes

Gets network entry by address

Sockets Library (libc.a)

#include <netdb.h>

struct netent *getnetbyaddr (
long net,
int type);

net Specifies the number of the network in host-byte order.

type Specifies the Internet Domain address format. The value AF _INET
must be used.

The getnetbyaddr() function returns a pointer to a structure of type netent. Its
members specify data in fields from a record line in the /etdnetworks network
name database file. The netdb.h header file defines the netent structure.

The getnetbyaddr() function searches the networks file sequentially until a match
with the net and type parameters occurs. The net parameter must specify the
network number in host-byte order. The type parameter must be the constant
AF _INET. When EOF (End-of-File) is reached without a match, an error value is
returned by this parameter.

Use the endnetent() function to close the /etc/networks file.

The return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Return Values

Upon successful completion, a pointer to a netent structure is returned. A null
pointer is returned when an error occurs or when the end of the networks name file
is reached.

1-239

OSF/1 Programmer's Reference
getnetbyaddr(3)

Files

/etc/networks

Related Information

The DARPA Internet network-name database. Each record in the
file occupies a single line and has three fields consisting of the
official service name, network number, and aliases.

Functions: getnetent(3), getnetbyname(3), setnetent(3), endnetent(3)

1-240

Functions
getnetbyname(3)

getnetbyname

Purpose

Library

Synopsis

Parameters

Description

Notes

Gets network entry by name

Sockets Library (libc.a)

#include <netdb.h>

struct netent *getnetbyname (

char *name);

name Specifies the official network name or alias.

The getnetbyname() function returns a pointer to a structure of type netent. Its
members specify data in fields from a record line in the /etc/networks network­
name database file. The netdb.h header file defines the protoent structure.

The getnetbyname() function searches the networks file sequentially until a
match with the name parameter occurs. When EOF (End-of-File) is reached
without a match, an error value is returned by this function.

Use the endnetent() function to close the /etc/networks file.

The return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Return Values

Upon successful completion, a pointer to a servent structure is returned. A null
pointer is returned when an error occurs or when the end of the networks name file
is reached.

1-241

OSF/1 Programmer's Reference

getnetbyname(3)

Files

/etc/networks

Related Information

This file is the DARPA Internet network-name database. Each
record in the file occupies a single line and has three fields
consisting of the official service name, network number, and alias.

Functions: getnetent(3), getnetbyaddr(3), setnetent(3), endnetent(3)

1-242

Functions

getnetent { 3)

getnetent

Purpose Gets network entry

Library
Standard C Library (libc.a)

Synopsis #include <netdb.h>

Description

Notes

struct netent *getnetent (void);

The getnetent() function retrieves network information by opening and
sequentially reading the /etc/networks file.

The getnetent() function returns a pointer to a netent structure, which contains the
equivalent fields for a network description line in the /etc/networks file. The
netent structure is defined in the netdb.h header file.

Use the endnetent() function to close the /etc/networks file.

The return value points to static data that is overwritten by subsequent calls.

Return Values

Upon successful completion, the getnetent() function returns a pointer to a netent
structure. If an error occurs or the end of the file is reached, the getnetent()
function returns a null (0) pointer.

/etc/networks
Contains official network names.

Related Information

Functions: getnetbyaddr(3), getnetbyname(3), setnetent(3), endnetent(3)

1-243

OSF/1 Programmer's Reference
getopt(3)

getopt

Purpose

Library

Synopsis

Parameters

Description

1-244

Gets flag letters from the argument vector

Standard C Library (Jibe.a)

#include <stdio.h>

#include <stdlib.h>

int getopt (
int argc,
char *argv[],
char *optstring);

extern char *optarg;

extern int optind;

extern int opterr;

extern char optopt;

argc

argv

optstring

Specifies the number of parameters passed to the routine.

Points to an array of argc pointers to argument strings.

Specifies a string of recognized option characters. If a character is
followed by a colon, the flag is expected to take a parameter that
may or may not be separated from it by white space.

The getopt() function returns the next flag character in the argv parameter list that
matches a character in the optstring parameter. The getopt() function is used to
help programs interpret shell command-line flags that are passed to them.

The optarg external variable is set to point to the start of the flag's parameter on
return from the getopt() function.

Notes

Functions
getopt(3)

The getopt() function places the argv index of the next argument to be processed
in optind. The optind variable is externally initialized to 1 before the first call to
getopt() so that argv[O] is not processed.

The external int optopt variable is set to the real option found in the argv
parameter. This is true whether the flag is in the optstring parameter or not.

AES Support Level: Trial use

Return Values

Upon successful completion, the getopt() function returns the flag character that
was detected. If it encounters a flag that is not included in the optstring parameter,
or if the : (colon) character is used incorrectly, the getopt() function prints an error
message on stderr and returns a ? (question mark). The error message can be
suppressed by setting the int variable opterr to 0 (zero).

When all flags have been processed (that is, up to the first nonflag argument), the
getopt() function returns EOF. The special flag -- (dash dash) can be used to
delimit the end of the flags; EOF is returned, and the -- string is skipped.

Related Information

Commands: getopt(l)

1-245

OSF/1 Programmer's Reference

getpagesize(2)

getpagesize

Purpose Gets the system page size

Synopsis int getpagesize (void);

Description

The getpagesize() function returns the number of bytes in a page. Knowing the
system page size is useful for specifying arguments to memory management system
calls.

The page size is a system page size and may not be the same as the underlying
hardware page size.

Return Values
The getpagesize() function returns the number of bytes in a page, and is always
successful.

Related Information

1-246

Functions: brk(2), getrlimit(2), mmap(2), mprotect(2), munmap(2), sysconf(3),
madvise(2), msync(2)

getpass

Purpose

Library

Synopsis

Parameters

Description

Notes

Reads a password

Standard C Library (Jibe.a)

#include <stdlib.h>

char *getpass (
const char *prompt);

prompt Points to the prompt string that is written to stderr.

Functions

getpass(3)

The getpass() function opens the /dev/tty file, flushes output, disables echoing, and
reads up to a newline character or an End-of-File character from the /dev/tty file.
The terminal state is then restored and /dev/tty is closed.

If the getpass() function is interrupted by the SIGINT signal, the terminal state of
/dev/tty will be restored before the signal is delivered to the calling process.

AES Support Level: Trial use

Return Values

Upon successful completion, the getpass() function returns a pointer to a null­
termmated string ot no more than PASS_MAX characters. This return value pomts
to data that is overwritten by successive calls. If the /dev/tty file cannot be opened,
a NULL pointer is returned.

1-247

OSF/1 Programmer's Reference

getpass{3)

Files

/dev/tty Specifies the tty device special file.

Related Information

Files: tty(7) termios(4)

1-248

Functions
getpeername{ 2)

getpeername

Purpose Gets the name of the peer socket

Synopsis #include<sys/types.h>

Parameters

Description

#include <sys/socket.h>

int getpeername (

socket

address

int socket,
struct sockaddr *address,
int *address_len);

Specifies the descriptor number of a connected socket.

Points to a sockaddr structure, the format of which is determined by
the domain and by the behavior requested for the socket. The
sockaddr structure is an overlay for a sockaddr_in, sockaddr_un,
or sockaddr_ns structure, depending on which of the supported
address families is active. If the compile-time option
_SOCKADDR_LEN is defined before the sys/socket.h header file is
included, the sockaddr structure takes 4.4BSD behavior, with a
field for specifying the length of the socket address. Otherwise, the
default 4.3BSD sockaddr structure is used, with the length of the
socket address assumed to be 14 bytes or less.

If _SOCKADDR_LEN is defined, the 4.3BSD sockaddr structure is
defined with the name osockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the
address parameter.

The getpeername() function retrieves the name of the peer socket connected to
the specified socket.

1-249

OSF/1 Programmer's Reference

getpeername(2)

Notes

A process created by another process can inherit open sockets, but may need to
identify the addresses of the sockets it has inherited. The getpeername() function
allows a process to retrieve the address of the peer socket at the remote end of the
socket connection.

The getpeername() function operates only on connected sockets.

A process can use the getsockname() function to retrieve the local address of a
socket.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned and the address
parameter holds the address of the peer socket. If the getpeername() function
fails, a value of -1 is returned and errno is set to indicate the error.

If the getpeername() function fails, errno may be set to one of the following
values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[ENOTCONN]
The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to complete the
call.

[EFAULT] The address or address_len parameter is not in a writable part of the
user address space.

Related Information

Functions: accept(2), bind(2), getsockname(2), socket(2)

1-250

getpid, getpgrp, getppid

Purpose Gets the process ID, process group ID, parent process ID

Synopsis #include <unistd.h>

#include <sys/types.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

Description

The getpid() function returns the process ID of the calling process.

Functions

getpid(2)

The getpgrp() function returns the process group ID of the calling process.

Notes

The getppid() function returns the parent process ID of the calling process. When
a process is created, its parent process ID is the process ID of its parent process. If
a parent process exits, the parent process IDs of its child processes are changed to
the process ID of init.

AES Support Level: Full use

Related Information

System calls: fork(2), kill(2), setpgid(2), setsid(2), wait(2)

1-251

OSF/1 Programmer's Reference

getpriority(2)

getpriority, setpriority

Purpose Gets or sets process scheduling priority

Synopsis #include <sys/resource.h>

int getpriority(

Parameters

Description

1-252

int which,
int who);

int setpriority(
int which,
int who,

which

who

priority

int priority);

Specifies one of PRIO _PROCESS, PRIO _PGRP, or PRIO _USER.

Specifies a numeric value interpreted relative to the which
parameter (a process identifier, process group identifier, and a user
ID, respectively). A 0 (zero) value for the who parameter denotes
the current process, process group, or user.

Specifies a value in the range -20 to 20. The default priority is 0
(zero); negative priorities cause more favorable scheduling.

The setpriority() function sets the scheduling priority of a process, process group,
or user. The getpriority() function obtains the current priority of a process,
process group, or user.

The getpriority() function returns the highest priority (lowest numerical value)
pertaining to any of the specified processes. The setpriority() function sets the
priorities of all of the specified processes to the specified value. If the specified
value is less than -20, a value of -20 is used; if it is greater than 20, a value of 20 is
used.

Functions
getpriority(2)

Return Values

Errors

Upon successful completion, the getpriority() function returns an integer in the
range -20 to 20. Otherwise, -1 is returned.

Upon successful completion, the setpriority() function returns 0 (zero).
Otherwise, -1 is returned.

If the getpriority() or setpriority() function fails, errno may be set to one of the
following values:

[ESRCH] No process was located using the which and who parameter values
specified.

[EINVAL] The which parameter was not recognized.

In addition to the errors indicated above, the setpriority() function can fail with
errno set to one of the following values:

Related Information

Functions: exec(2), nice(3)

1-253

OSF/1 Programmer's Reference
getprotobyname(3)

getprotobyname

Purpose Gets protocol entry by protocol name

Library
Sockets Library (libc.a)

Synopsis #include <netdb.h>

Parameters

Description

Notes

struct protoent *getprotobyname (
char *name);

name Specifies the official protocol name or alias.

The getprotobyname() functioii returns a pointer to a structure of type protoent.
Its members specify data in fields from a record line in the /etc/protocols network
protocols database file. The netdb.h header file defines the protoent structure.

The getprotobyname() function searches the protocols file sequentially until a
match with the name parameter occurs. The name parameter may specify either the
official protocol name or an alias. When EOF (End-of-File) is reached without a
match, an error value is returned by this function.

Use the endprotoent() function to close the protocols file.

The return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Return Values

1-254

Upon successful completion, a pointer to a protoent structure is returned. A null
pointer is returned when an error occurs or when the end of the protocols file is
reached.

Files

/etc/protocols

Functions

getprotobyname(3)

The DARPA Internet network protocols name database. Each record
in the file occupies a single line and has three fields consisting of the
official protocol name, protocol riumber, and protocol alias.

Related Information

Functions: getprotobynumber(3), getprotoent(3), setprotoent(3),
endprotoent(3)

1-255

OSF/1 Programmer's Reference
getprotobynumber{ 3)

getprotobynumber

Purpose Gets a protocol entry by number

Library
Sockets Library (libc.a)

Synopsis #include <netdb.h>

Parameters

Description

Notes

struct protoent *getprotobynumber (
int proto);

proto Specifies the protocol number.

The getprotobynumbei'() function returns a pointer to a structure of type
protoent. Its members specify data in fields from a record line in the
/etC/protocols network protocols database file. The netdb.h header file defines the
protoent structure.

The getprotobynumber() function searches the protocol file sequentially until a
match with the proto parameter occurs. The proto parameter must specify the
official protocol number. When EOF (End-Of-File) is reached without a match, an
error value is returned by this function.

Use the endprotoent() function to close the protocols file.

The return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Return Values

1-256

Upon successful completion, a pointer to a protoent structure is returned. A null
pointer is returned when an error occurs or whenever the end of the protocols file
is reached.

Files

/etc/protocols

Related Information

Functions

getprotobynumber(3)

The DARPA Internet network protocols name database. Each record
in the file occupies a single line and has three fields consisting of the
official protocol name, protocol number, and protocol alias.

Functions: getprotobyname(3), getprotoent(3), setprotoent(3), endprotoent(3)

1-257

OSF/1 Programmer's Reference
getprotoent(3)

getprotoent

Purpose Gets protocol entry from the /etc/protocols file

Library
Sockets Library (Ube.a)

Synopsis #include <netdb.h>

Description

Notes

struct protoent *getprotoent (void);

The getprotoent() (get protocol entry) function retrieves protocol information
from the /etc/protocols file. The getprotoent() function returns a pointer to a
protoent structure, which contains the fields for a line of information in the
/etc/protocols file. The netdb.h header file defines the protoent structure.

An application program can use the getprotoent() function to access a protocol
name, its aliases, and protocol number. Use the endprotoent() function to close
the /etc/protocols file.

The return value points to static data that is overwritten by subsequent calls.

Return Values

Files

Upon successful completion, the getprotoent() function returns a pointer to a
protoent structure.

If an error occurs or the end of the file is reached, the getprotoent() function
returns a null pointer.

/etc/protocols
Contains protocol information.

Related Information

Functions: getprotobynumber(3), getprotobyname(3), setprotoent(3),
endprotoent(3)

1-258

Functions

getpwent(3)

getpwent, getpwuid, getpwnam, putpwent, setpwent,
endpwent

Purpose Accesses the basic user information in the user database

Library
Standard C Library (libc.a)

Synopsis #include <pwd.h>

Parameters

struct passwd *getpwent (void)

struct passwd *getpwuid (
uid_t uid);

int *getpwuid_r (
struct passwd *result,
uid_t uid,
char buffer,
int Zen);

int *getpwnam_r (
struct passwd *result,
const char *name,
char buffer,
int Zen);

struct passwd *getpwnam (
const char *name);

int putpwent (
struct passwd *passwd
FILE *file);

void setpwent (void)

void endpwent (void)

uid Specifies the ID of the user for which the basic attributes are to be
read.

name Specifies the name of the user for which the basic attributes are to
be read.

1-259

OSF/1 Programmer's Reference

getpwent(3)

Description

1-260

passwd

file

result

buffer

fen

Specifies the password structure which contains the user attributes
which are to be written.

Specifies a stream open for writing to a file whose format is like that
of the /etc/passwd file.

Points to passwd structure to contain the entry returned by the
getpwnam_r() or getpwuid_r() functions.

Points to a character array to contain the strings associated with the
entry returned by the getpwnam_r() or getpwuid_r() functions.

Specifies the length of the character array that buffer points to.

The getpwent(), getpwuid(), getpwnam(), putpwent(), setpwent(), and
endpwent() functions may be used to access the basic user attributes.

The getpwent(), getpwnam(), and getpwuid() functions return information about
the specified user. The getpwent() function returns the next user entry in the
sequential search. The getpwnam() function returns the first user entry in the
database with a pw _name field that matches the name parameter. The getpwuid()
function returns the first user entry in the database with a pw _uid field that
matches the u<id parameter.

The putpwent() function writes a password entry into a file in the colon-separated
format of the /etc/passwd file. Note that the pw_passwd field will be written into
the corresponding field in the file. If this user's password is stored in the shadow
password file, this field must be an ! (exclamation mark). The password in the
shadow file cannot be updated with this function.

The setpwent() function insures that the next call to getpwent() returns the first
entry.

The endpwent() function closes the user database.

The user structure, which is returned by the getpwent(), getpwnam(), and
getpwuid() functions and which is written by the putpwent() function, is defined
in the pwd.h file and has the following members:

pw_name

pw_passwd

pw_uid

The name of the user.

The encrypted password of the user. If the password is not stored in
the /etc/passwd file and the invoker does not have access to the
shadow file which contains them, this field will contain an
unencryptable string, usually an! (exclamation mark).

The ID of the user.

Notes

Functions

getpwent(3)

pw_gid The group ID of the principle group of the user.

pw _gecos The personal information about the user.

pw _dir The home directory of the user.

pw _shell The initial program for the user.

The getpwuid_r() and getpwnam_r() functions are the reentrant versions of the
getpwuid() and getpwnam() functions, respectively. Upon successful
completion, the result is stored in two parts. The struct passwd (which includes
only pointers) is stored in result, and the strings themselves are stored in buffer.

All information generated by the getpwent(), getpwnam(), and getpwuid()
functions is stored in a static area and will be overwritten on subsequent calls to
these routines. If it is to be saved, it should be copied.

AES Support Level: Full use (getpwnam(), getpwuid())

Return Values

Errors

Upon successful completion, the getpwent(), getpwnam() and getpwuid()
functions return a pointer to a valid password structure. Otherwise, null is returned.

Upon successful completion, the getpwnam_r() and getpwuid_r() functions
return a value of 0 (zero). Otherwise, -1 is returned and errno is set to indicate the
error.

If the getpwnam_r() or getpwuid_r() function fails, errno may be set to one of
the following values:

[EINVAL]

[ENO ENT]

Either the result or buffer parameter is empty.

The entry could not be found.

Related Information

Functions: getgrent(3)

1-261

OSF/1 Programmer's Reference
getrlimit(2)

getrlimit, setrlimit

Purpose Controls maximum system resource consumption

Synopsis #include <sys/time.h>
#include <sys/resource.h>

Parameters

1-'-262

int setrlimit(
int resource],
struct rlimit *rip);

int getrlimit (
int resource],
struct rlimit *rip);

resource] Specifies one of the following values:

RLIMIT_CPU
The maximum amount of CPU time (in seconds) to be used
by each process.

RLIMIT _FSIZE
The largest size, in bytes, of any single file that can be
created.

RLIMIT_DATA
The maximum size, in bytes, of the data segment for a
process; this defines how far a program can extend its break
with the sbrk() function.

RLIMIT_STACK
The maximum size, in bytes, of the stack segment for a
process; this defines how far a program stack segment can be
extended. Stack extension is performed automatically by the
system.

Description

rip

Functions

getrlimit(2)

RLIMIT_CORE
The largest size, in bytes, of a core file that can be created.

RLIMIT_RSS
The maximum size, in bytes, to which a process's resident
set size can grow. This imposes a limit on the amount of
ppysical memory to be given to a process; if memory is tight,
the system prefers to take memory from processes that are
exceeding their declared resident set size.

Points to the rlimit structure, which contains the current soft and
hard limits. For the getrlimit() function, the requested limits are
returned in this structure, and for the setrlimit() function, the
desired new limits are specified here.

The getrlimit() function obtains the limits on the consumption of system resources
by the current process and each process it creates. The setrlimit() function is used
to set these resources.

Each resource limit is specified as either a soft limit or a hard limit. When a soft
limit is exceeded (for example, if the CPU time is exceeded) a process can receive
a signal until it reaches the hard limit, or until it modifies its resource limit. The
rlimit structure is used to specify the hard and soft limits on a resource, as defined
in the sys/resource.h header file.

The calling process must have superuser privilege in order to raise the maximum
limits. An unprivileged process can alter the rlim_cur field of the rlimit structure
within the range from 0 (zero) to rlim_max or can (irreversibly) lower rlim_max.

An infinite value for a limit is defined as RLIM_INFINITY.

Because this information is stored in the per-process information, the setrlimit()
function must be executed directly by the shell in order to affect all future
processes created by the shell; limit is thus a built-in command to the shells.

The system refuses to extend the data or stack space when the limits would be
exceeded in the normal way: a brk() function fails if the data space limit is
reached. When the stack limit is reached, the process receives a SIGSEGV signal;
if this signal is not caught by a handler using the signal stack, this signal kills the
process. A file 1/0 operation that would create a file that is too large causes a signal

1-263

OSF/1 Programmer's Reference

getrlimit(2)

Notes

SIGXFSZ to be generated; this normally terminates the process, but can be caught.
When the soft CPU time limit is exceeded, a signal SIGXCPU is sent to the
offending process.

The ulimit() function is implemented in terms of setrlimit(). Therefore, the two
interfaces should not be used in the same program. The result of doing so is
undefined.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the getrlimit() or setrlimit() function fails, errno may be set to one of the
following values:

[EFAULT]

[EINVAL]

[EPERM]

The address specified for the rip parameter is invalid.

The resource] parameter is not a valid resource.

The limit specified to the setrlimit() function would have raised the
maximum limit value, and the caller does not have· appropriate
privilege.

Related Information

Functions: quota(2), setquota(2), sigaction(2), sigstack(2), sigvec(2), ulimit(3)

1-264

Functions

getrusage(2)

getrusage, vtimes

Purpose

Library

Gets information about resource utilization

Berkeley Compatibility Library (libbsd.a)
(vtimes() only)

Synopsis #include <sys/time.h>
#include <sys/resource.h>

Parameters

Description

int getrusage (
int who,
struct rusage *r _usage);

#include <sys/vtimes.h>

vtimes (
struct vtimes *par _vm,
struct vtimes ch_vm);

who Specifies one of the following:

r_usage

RUSAGE_SELF
Retrieve information about resources used by the current
process.

RUSAGE_CHILDREN
Retrieve information about resources used by child
processes of the current process.

Points to a buffer that will be filled in as described in the
sys/resource.h header file.

The getrusage() function returns information describing the resources utilized by
the current process or its terminated child processes.

1-265

OSF/1 Programmer's Reference

getrusage(2)

Notes

The numbers the ru_inblock and ru_outblock fields of the rusage structure
account only for real 1/0; data supplied by the caching mechanism is charged only
to the first process to read or write the data.

The vtimes() function is supported to provide compatibility with older programs.
It is superceded by the getrusage() function.

The vtimes() function returns accounting information for the current process and
for the terminated child processes of the current process. Either par _vm or ch_vm
or both may be zero, in which case only the information for the pointers which are
nonzero are returned.

After the call, each buffer contains information as defined by the contents of the
sys/vtimes.h include file.

Return Values

Errors

Upon successful completion, the getrusage(), function returns 0 (zero).
Otherwise, -1 is returned and errno is set to indicate the error.

If the getrusage() function fails, errno may be set to one of the following values:

[EINVAL] The who parameter is not a valid value.

[EFAULT] The address specified for r_usage is not valid.

Related Information

Functions: gettimer(3), time(3), times(3), wait(2)

1-266

Functions
gets(3)

gets, fgets

Purpose Gets a string from a stream

Library

Standard 110 Library (Jibe.a)

Synopsis #include <stdio.h>

char *gets (

Parameters

Description

const char *string);

char *fgets (

string

stream

n

const char *string,
int n,
FILE *stream);

Points to a string to receive characters.

Points to the FILE structure of an open file.

Specifies an upper bound on the number of characters to read.

The gets() function reads characters from the standard input stream, stdio, into the
array pointed to by the string parameter. Data is read until a newline character is
read or an End-of-File condition is encountered. If reading is stopped due to a
newline character, the newline character is discarded and the string is terminated
with a null character.

The fgets() function reads characters from the data pointed to by the stream
parameter into the array pointed to by the string parameter. Data is read until the
n-1 characters have been read, until a newline character is read and transferred to
string, or until an End-of-File condition is encountered. The string is then
terminated with a null character.

1-267

OSF/1 Programmer's Reference
gets(3)

Notes

AES Support Level: Full use

Return Values

If the end of the file is encountered and no characters have been read, no characters
are transferred to string and a null pointer is returned. If a read error occurs, a null
pointer is returned. Otherwise, string is returned.

Related Information

1-268

Functions: clearerr(3), feof(3), ferror(3), fileno(3), fopen(3), fread(3), getc(3),
getwc(3), getws(3), puts(3), putws(3), scanf(3)

Functions

getservbyname(3)

getservbyname

Purpose

Library

Synopsis

Parameters

Description

Get service entry by name

Sockets Library (Ube.a)

#include <netdb.h>

struct servent *getservbyname (
char *name,
char *proto);

name Specifies the official name or alias name of the service.

proto Specifies the name of the protocol to use when contacting the
service.

The getservbyname() function returns a pointer to a structure of type servent. Its
members specify data in fields from a record line in the /etc/services database file.
The netdb.h header file defines the servent structure.

The getservbyname() function searches the /etc/services file sequentially until a
match with the name parameter or with the proto parameter occurs. The name
parameter may specify either the official name or its alias. When EOF (End-of-File)
is reached without a match, an error value is returned by this subroutine. When the
protocol name is not specified (proto parameter is null), the proto parameter need
not be matched during the /etc/services file record search.

The getservbyname() function searches the /etc/services file sequentially until
one of the following occurs:

• A name and protocol number match.

• A name match when the proto parameter is set to null.

• The end of the /etc/services file is reached.

Use the endservent() function to close the /etc/services file.

1-269

OSF/1 Programmer's Reference
getservbyname(3)

Notes
The return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Return Values

Files

Upon successful completion, a pointer to a servent structure is returned. A null
pointer is returned when an error occurs or whenever the end of the /etc/services
file is reached.

/etc/services The DARPA Internet network service-name database. Each record
in the file occupies a single line and has four fields consisting of the
official service name, port reference, protocol name, and alias.

Related Information

Functions: getprotobyname(3), getprotobynumber(3), getprotoent(3),
setprotoent(3), endprotoent(3)

1-270

Functions

getservbyport(3)

getservbyport

Purpose

Library

Synopsis

Parameters

Description

Gets service entry by port

Sockets Library (Ube.a)

#include <netdb.h>

struct servent *getservbyport (
int port,
char *proto);

port Specifies the port number where the service is located.

proto Specifies the protocol name to use when contacting the service.

The getservbyport() function returns a pointer to a structure of type servent. Its
members specify data in fields from a record line in the /etc/services network
services database file. The netdb.h header file defines the servent structure.

The getservbyport() function searches the /etc/services file sequentially until a
match with the port parameter or with the proto parameter occurs. When used, the
proto parameter must specify the /etc/services file protocol name. When a port
number is not used (port parameter is null), the port parameter need not be matched
during the /etc/services file record search. When EOF (End-of-File) is reached
without a match, an error value is returned by this function.

The getservbyport() function searches the /etc/services file sequentially until one
of the following occurs:

• A port number and protocol name match.

• A protocol name match when the port parameter is set to null.

• The end of the file is reached.

Use the endservent() function to close the /etc/services file.

1-271

OSF/1 Programmer's Reference
getservbyport(3)

Notes
The return value points to static data, which is overwritten by any subsequently
called functions using the same structure.

Return Values

Files

Upon successful completion, a pointer to a servent structure is returned. A null
pointer is returned when an error occurs or whenever the end of the /etc/services
file is reached.

/etc/services The DARPA Internet network service-name database. Each record
in the file occur.i~s a single line and has four fields consisting of the
official service name, port number, protocol name, and aliases.

Related Information

Functions: getprotobyname(3), getprotobynumber(3), getprotoent(3),
setprotoent(3), endprotoent(3)

1-272

Functions

getservent(3)

getservent

Purpose

Library

Synopsis

Description

Notes

Gets services file entry

Standard C Library (libc.a)

#include <netdb.h>

struct servent *getservent (void);

The getservent() (get service entry) function opens and reads the next line of the
/etc/services file.

An application program can use the getservent() function to retrieve information
about network services and the protocol ports they use.

The getservent() function returns a pointer to a servent structure, which contains
fields for a line of information from the /etc/services file. The servent structure is
defined in the netdb.h header file.

The /etc/services file remains open after a call by the getservent() function. To
close the /etc/services file after each call, use the setservent() function.
Otherwise, use the endservent() function to close the /etc/services file.

The return value points to static data that is overwritten by subsequent calls.

Return Values

Upon successful completion, the getservent() function returns a pointer to a
serveni strucmre.

If an error occurs or the end of the file is reached, the getservent() function returns
a null pointer.

1-273

OSF/1 Programmer's Reference

getservent(3)

Files

/etc/services The DARPA Internet network service-name database. Each record
in the file occupies a single line and has four fields consisting of the
official service name, port number, protocol name, and aliases.

Related Information

1-274

Functions: getservbyport(3), getservbyname(3), endservent(3), setservent(3),
getprotoent(3), getprotobynumber(3), getprotobyname(3), setprotoent(3),
endprotoent(3)

Functions

_getshort(3)

_getshort

Purpose

Library

Synopsis

Parameters

Description

Retrieves short quantities from a byte stream

Standard C Library (Jibe.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

unsigned short getshort (

u_char *message_ptr);

message_ptr Specifies a pointer into the byte stream.

The _getshort() function gets quantities from the byte stream or arbitrary byte
boundaries.

The _getshort() function is one of a set of subroutines that form the resolver, a set
of functions that resolve domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The include/resolv.h file
contains the _res data structure definition.

Return Values

Upon successful completion, the _getshort() function returns an unsigned short
(16-bit) value.

1-275

OSF/1 Programmer's Reference
_getshort(3)

Files

/etc/resolv .conf
Defines name server and domain names.

Related Information

1-276

Functions: res_init(3), res_mkquery(3), res_send(3), dn_comp(3),
dn_expand(3), dn_find(3), getlong(3), putshort(3), putlong(3), dn_skipname(3)

Functions

getsockname{ 2)

getsockname

Purpose

Synopsis

Parameters

Description

Gets the socket name

#include<sys/types.h>

#include <sys/socket.h>

int getsockname(

socket

address

int socket,
struct sockaddr *address,
int *address_len);

Specifies the socket for which the local address is desired.

Points to a sockaddr structure, the format of which is determined by
the domain and by the behavior requested for the socket. The
sockaddr structure is an overlay for a sockaddr_in, sockaddr_un,
or sockaddr_ns structure, depending on which of the supported
address families is active. If the compile-time option
_SOCKADDR_LEN is defined before the sys/socket.h header file is
included, the sockaddr structure takes 4.4BSD behavior, with a
field for specifying the length of the socket address. Otherwise, the
default 4.3BSD sockaddr structure is used, with the length of the
socket address assumed to be 14 bytes or less.

If _SOCKADDR_LEN is defined, the 4.3BSD sockaddr structure is
defined with the name osockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the
address parameter.

The getsockname() function retrieves the locally bound address of the specified
socket.

A process created by another process can inherit open sockets. To use the inherited
sockets, the created process may need to identify its address. The getsockname()
function allows a process to retrieve the local address bound to the specified
socket.

1-277

OSF/1 Programmer's Reference
getsockname(2)

A process can use the getpeername() function to determine the address of a
destination socket in a socket connection.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned, and the address_len
parameter points to the size of the socket address. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

If the getsockname() function fails, errno may be set to one of the following
values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[ENOBUFS] Insufficient resources are available in the system to complete the
call.

[EFAULT] The address or address_len parameter is not in a writable part of the
user address space.

Related Information

Functions: accept(2), bind(2), getpeername(2), socket(2)

1-278

Functions
getsockopt(2)

getsockopt

Purpose

Synopsis

Parameters

Gets socket options

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt (
int socket,
int level,
int option_nam,
char *option_value,
int *option_len);

socket Specifies the unique socket name.

level Specifies the protocol level at which the option resides. To retrieve
options at the socket level, specify the level parameter as
SOL_SOCKET. To retrieve options at other levels, supply the
appropriate protocol number for the protocol controlling the option.
For example, to indicate that an option will be interpreted by the
TCP protocol, set level to the protocol number of TCP, as defined in
the netinet/in.h header file, or as determined by using the
getprotobyname() function.

option_nam Specifies a single option to be retrieved. The socket level options
can be enabled or disabled by the setsockopt() function. The
getsockopt() function retrieves information about the following
options:

SO_DEBUG
Reports whether debugging information is being recorded.
This option returns an int value.

SO_ACCEPTCONN
Reports whether socket listening is enabled. This option
returns an int value.

SO_BROADCAST
Reports whether transmission of broadcast messages is
supported. This option returns an int value.

1-279

OSF/1 Programmer's Reference
getsockopt(2)

1-280

SO_REUSEADDR
Reports whether the rules used in validating addresses
supplied by a bind() function should allow reuse of local
addresses. This option returns an int value.

SO_KEEPALIVE
Reports whether connections are kept active with periodic
transmission of messages. If the connected socket fails to
respond to these messages, the connection is broken and
processes using that socket are notified with a SIGPIPE
signal. This option returns an int value.

SO_DONTROUTE
Reports whether outgoing messages should bypass the
standard routing facilities. (Not recommended, for
debugging purposes only.) This option returns an int value.

SO_USELOOPBACK
Only valid for routing sockets. Reports whether the sender
receives a copy of each message. This option returns an int
value.

SO_LINGER
Reports whether the socket lingers on a close() function if
data is present. If SO_LINGER is set, the system blocks the
process during the close() function until it can transmit the
data or until the time expires. If SO_LINGER is not
specified, and a close() function is issued, the system
handles the call in a way that allows the process to continue
as quickly as possible. This option returns an struct linger
value.

SO_OOBINLINE
Reports whether the socket leaves received out-of-band data
(data marked urgent) in line. This option returns an int
value.

SO_SNDBUF
Reports send buffer size information. This option returns an
int value.

SO_RCVBUF
Reports receive buffer size information. This option returns
an int value.

SO_SNDLOWAT
Reports send low-water mark information. This option
returns an int value.

Description

Functions

getsockopt(2)

SO_RCVLOWAT
Reports receive low-water mark information. This option
returns an int value.

SO_SNDTIMEO
Reports send time-out information. This option returns a
struct timeval value.

SO_RCVTIMEO
Reports receive time-out information. This option returns a
struct timeval value.

SO_ERROR
Reports information about error status and clear. This option
returns an int value.

SO_TYPE
Reports the socket type. This option returns an int value.

Options at other protocol levels vary in format and name.

option_value Points to the address of a buffer.

option_len
Specifies the length of buffer pointed to by option_value. The
option_len parameter initially contains the size of the buffer pointed
to by the option_value parameter. On return, the option_len
parameter is modified to indicate the actual size of the value
returned. If no option value is supplied or returned, the option_ value
parameter can be 0 (zero).

Options at other protocol levels vary in format and name.

The getsockopt() function allows an application program to query socket options.
The calling program specifies the name of the socket, the name of the option, and a
place to store the requested information. The operating system gets the socket
nntlnn lnfnrm!ltlnn frnm 1t~ 1ntPrn!ll rl!lt!l ~trnf"tnrP~ !lnrl n~fl;:cP.i;;: thP. rP.flHP.~.tP.ti
~r--~-- ___________ .,._..., __ --~--- --- --------- ---- ~--------- ---- r----- ---- ---.i-------

information back to the calling program.

Options may exist at multiple protocol levels. They are always present at the
uppermost socket level. When retrieving socket options, specify the level at which
the option resides and the name of the option.

1-281

OSF/1 Programmer's Reference

getsockopt(2)

Return Values

Errors

Upon successful completion, the getsockopt() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned, and errno is set to indicate the error.

If the getsockopt() function fails, errno may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[ENOPROTOOPT]
The option is unknown.

[EFAULT] The address pointed to by the option_value parameter is not in a
valid (writable) part of the process space, or the option_len
parameter is not in a valid part of the process address space.

Related Information

Functions: bind(2), close(2), endprotoent(3), getprotobynumber(3),
getprotoent(3), setprotoent(3), setsockopt(2), socket(2)

1-282

Functions
gettimeofday(2)

gettimeof day, settimeof day, ftime

Purpose

Library

Synopsis

Parameters

Description

Gets and sets date and time

Standard C Library (libc.a)
ftime() call: Berkeley Compatibility Library (libbsd.a)

#include <sys/time.h>

int gettimeofday (
struct timeval *tp,
struct timezone *tzp);

int settimeofday (
struct timeval *tp,
struct timezone *tzp);

#include <sys/time.h>
#include <sys/timeb.h>

int ftime (
struct timeb *tp);

tp

tzp

Points to a timeval structure, defined in the sys/time.h file.

Points to a timezone structure, defined in the sys/time.h file.

The gettimeofday() and settimeofday() functions get and set the system's notion
of the current time and time zone. The time is expressed in seconds and

__ •_ ---- - - t _ _ • - - - --!_1_-~_L,;_ /r'I. L _____ \. T _______ , __ 1 1fV'"71"\ ~1-- ----1 __ ..__! ___ -~ .._.__

lllll:IU:SC\.:UIIU:S :Sllll:C llUUlll):;lll \U llUUI), Ji:U!Ui:UJ 1, 1:1 /V. Ult: lC'>VlUUUU Ul Ult:

system clock is hardware dependent, and the time may be updated continuously or
in ticks. If the tzp parameter is 0 (zero), the time zone information will not be
returned or set.

The tp parameter returns a pointer to a timeval structure which contains the time
since the epoch began in seconds (up to 1000 milliseconds of a more precise
interval), the local time zone (measured in minutes westward from Coordinated
Universal Time), and a flag that, if nonzero, indicates that daylight saving time
applies.

1-283

OSF/1 Programmer's Reference

gettimeofday(2)

Notes

The timezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that daylight
saving time applies locally during the appropriate part of the year.

In addition to the difference in timer granularity, the timezone structure
distinguishes these calls from the OSF Application Environment Specification
getclock and setclock calls, which deal strictly with Coordinated Universal Time.

A process must have superuser privilege to set the system's time.

The gettimeofday() and settimeofday() functions are supported for compatibility
with BSD programs. They support a process-local time zone parameter in addition
to the system-wide time and date.

The ftime() function is included for compatibility with older BSD programs. Its
function has been made obsolete by the gettimeofday() function.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the gettimeofday() or settimeofday() function fails, errno may be set the
following value:

[EFAULT] A parameter points to an invalid address.

[EPERM] The process's effective user ID does not have superuser privilege.

Related Information

1-284

Functions: adjtime(2), ctime(3), gettimer(3), strftime(3)

Commands: date(l)

Functions
gettimer(3)

gettimer

Purpose

Library

Synopsis

Parameters

Description

Notes

Gets date and time

Standard C Library (libc.a)

#include <sys/time.h>

int gettimer(

time rid

tp

timer_t timerid,
struct itimerspec *tp);

Specifies the timer to get the current time from; only time
TIMEOFDAY is supported.

Points to a itimerspec structure.

The gettimer() function gets the current value of a system time-of-day clock. The
timerid parameter specifies the symbolic name that identifies the timer whose time
is being monitored. Only one symbolic name may be specified: TIMEOFDAY,
which returns the CUT (Coordinated Universal Time) time and date. The tp
parameter points to a type itimerspec structure, which has members that specify
the elapsed time and date in nanoseconds from 00:00:00 UCT, January 1, 1970.
The tp structure is defined in the sys/time.h include file.

Actual resolution of a timer is determined by the basic system hardware clock
period, which is l/HZ. The restimer function returns the resolution for any
particular system.

AES Support Level: Trial use

Return Values
Upon successful completion, the gettimer() function returns the value 0 (zero).
Otherwise, a value of -1 is returned and errno is set to indicate the error.

1-285

OSF/1 Programmer's Reference

gettimer(3)

Errors
If the gettimer() function fails, errno may be set to the following value:

[EINV AL] The time rid parameter does not specify a known timer.

Related Information

Functions: gettimeofday(2), gettimeofday(2), gettimeofday(2), getitimer(2)

1-:286

getuid, geteuid

Purpose Gets the process' real or effective user ID

Synopsis #include <unistd.h>

#include <sys/types.h>

uid_t getuid(void);

uid_t geteuid(void);

Description

The getuid() function returns the real user ID of the current process.

Functions

getuid(2)

The geteuid() function returns the effective user ID of the current process.

Notes

AES Support Level: Full use

Related Information

Functions: setuid(2), setruid(3), setreuid(2)

1-287

OSF/1 Programmer's Reference
getusershell { 3)

getusershell, setusershell, endusershell

Purpose Gets names of legal user shells

Library
Standard C Library (Jibe.a)

Synopsis char *getusershell(void);

int setusershell(void);

int endusershell(void);

Description

Notes

The getusershell() function returns a pointer to a string that contains the name of a
legal user shell as defined by the system manager in the /etc/shells file. If the
/etc/shells file does not exist, the standard system shells are returned.

The getusershell() function reads the next line of the /etc/shells file, opening it if
necessary. The setusershell() function rewinds the file, and the endusershell()
function closes it.

The returned information is in a static area. It must be copied if it is to be saved.

Return Values

Files

1-288

Upon successful completion, a pointer to a character string is returned. A null
pointer is returned on EOF (End-of-File) or error.

/etc/shells Contains the names of legal user shells.

Functions

getutent(3)

getutent, getutid, getutline,
endutent, utmpname

pututline, setutent,

Purpose Accesses utmp file entries

Library
Standard C Library (libc.a)

Synopsis #include <utmp.h>

Parameters

struct utmp *getutent (void);

struct utmp *getutid (
struct utmp *ID);

struct utmp *getutline (
struct utmp *line);

void pututline (
struct utmp *utmp_ptr);

void setutent (void);

void endutent (void);

void utmpname (

ID

char *file);

Specifies one of RUN_LVL, BOOT_TIME, OLD_TIME,
NEW_ TIME, INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD_PROCESS.

If ID is one of RUN_LVL, BOOT_TIME, OLD_TIME, or

current point in the utmp file until an entry with a ut_type matching
ID->ut_type is found.

If ID is one of INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD_PROCESS, the getutid() function
returns a pointer to the first entry whose type is one of these four
and whose ut_id field matches ID->ut_id. If the end of the file is
reached without a match, the getutid() function fails.

1-289

OSF/1 Programmer's Reference
getutent(3)

Description

1-290

line

utmp_ptr

file

Matches a utmp entry of the type LOGIN_PROCESS or
USER_PROCESS such that the ut_line matches line->ut_line. The
getutline() function searches from the current point in the utmp file
until it finds a matching line. If the end the of file is reached without
a match, the getutline() function fails.

Points to a utmp structure.

Specifies the name of the file to be examined.

The getutent(), getutid(), and getutline() functions return a pointer to a utmp
structure.

The getutent() function reads the next entry from a utmp-like file. If the file is not
already open, the getutent() function opens it. If the end of the file is reached, the
getutent() function fails.

The pututline() function writes the supplied utmp_ptr parameter structure into the
utmp file. If you have not searched for the proper place in the file using one of the
getut- routines, the pututline() function calls getutid() to search forward for the
proper place. It is expected that the user of pututline() searched for the proper
entry using one of the getut- functions. If so, pututline() does not search. If the
pututline() function does not find a matching slot for the entry, it adds a new entry
to the end of the file.

The setutent() function resets the input stream to the beginning of the file. You
should do this before each search for a new entry if you want to examine the entire
file.

The endutent() function closes the currently open file.

The utmpname() function changes the name of the file to be examined from
/var/adm/utmp to any other filename. The name specified is usually
/var/adm/wtmp. If the specified file does not exist, no indication is given until the
file is referenced. The utmpname() function does not open the file, but closes the
old file (if it is currently open) and saves the new filename.

The most current entry is saved in a static structure, making the utmpname()
function non-reentrant. To make multiple accesses, you must copy or use the
structure between each access. The getutid() and getutline() functions examine
the static structure first. If the contents of the static structure match what they are
searching for, they do not read the utmp file. Therefore, you must fill the static
structure with zeros after each use if you want to use these subroutines to search
for multiple occurrences.

Functions

getutent{3)

If the pututline() function finds that it is not already at the correct place in the file,
the implicit read it performs does not overwrite the contents of the static structure
returned by the getutent(), getuid(), or getutline() functions. This allows you to
get an entry with one of these subroutines, modify the structure, and pass the
pointer back to the pututline() function for writing.

These functions use buffered standard 1/0 for input, but the pututline() function
uses an unbuffered nonstandard write to avoid race conditions between processes
trying to modify the utmp and wtmp files.

Return Values

These functions fail and return a null pointer if a read or write fails due to the end
of the file, or due to a permission conflict.

Files

/etc/utmp
/usr/adm/wtmp

Related Information

Functions: ttyslot(3)

1-291

OSF/1 Programmer's Reference

getwc(3)

getwc, f getwc, getwchar

Purpose Gets a character or word from an input stream

Library
Standard 1/0 Package (libc.a)

Synopsis #include <stdio.h>

int getwc (

Parameters

Description

FILE *stream);

int fgetwc (
FILE *stream);

int getwchar (void);

stream Specifies the input data.

The getwc(), fgetwc(), and getwchar() functions are provided when Japanese
Language Support is installed on your system.

The getwc() function gets the next I-byte or 2-byte character from the input
stream specified by the stream parameter, and returns an NLchar data type as an
integer. The fgetwc() function performs the same function as getwc().

The getwchar() function gets the next I-byte or 2-byte character from the standard
input stream and returns an NLchar as an integer.

Return Values

These functions and macros return the integer constant EOF at the end of the file or
upon an error.

Related Information

Functions: fopen(3), fread(3), getc(3), gets(3), putwc(3), scanf(3), wsscanf(3)

1-292

Functions
getwd(3)

getwd

Purpose Gets current directory pathname

Library
Standard C Library (libc.a)

Synopsis char *getwd (

Parameters

Description

char *path_name);

path_name
Points to the full pathname.

The getwd() function determines the absolute pathname of the current directory,
then copies that pathname into the area pointed to by the path_name parameter.

The maximum pathname length, in characters, is set by the PATH_MAX definition,
as specified in the limits.h file.

Return Values

Upon successful completion, a pointer to the absolute pathname of the current
directory is returned. If an error occurs, the getwd() function returns a value of 0
(zero) and places a message in the path_name parameter.

Related Information

Functions: getcwd(3)

1-293

OSF/1 Programmer's Reference
getws{3)

getws, f getws

Purpose Gets a string from a stream

Library
Standard J/O Library (libc.a)

Synopsis #include <NLchar .h>
NLchar *getws (

Parameters

Description

NLchar *string);

NLchar *fgetws (
NLchar *string,
int number,
FILE *stream);

string

stream

number

Points to a string to receive characters.

Points to the FILE structure of an open file.

Specifies an upper bound on the number of characters to read.

The getws() and fgetws() fonctions are provided when Japanese Language
Support is installed on your system. They parallel the gets() and fgets() functions.

The getws() function transforms multibyte character input values to uniform
NLchar width. The fgetws() function also expands 1-byte and 2-byte character
input values to uniform NLchar (2-byte) width.

Return Values
If the end of the file is encountered and no characters have been read, no characters
are transferred to the string parameter and a null pointer is returned. If a read error
occurs, a null pointer is returned. Otherwise, string is returned.

Related Information

1-294

Functions: clearerr(3), feof(3), ferror(3), fileno(3), fopen(3), fread(3), getc(3),
gets(3), getwc(3), puts(3), putws(3), scanf(3)

Functions

hsearch(3)

hsearch, hcreate, hdestroy

Purpose Manages hash tables

Library
Standard C Library (libc.a)

Synopsis #include <search.h>

ENTRY *hsearch(
ENTRY item,
ACTION action) ;

Parameters

int hcreate(
unsigned int nel) ;

void hdestroy(void) ;

item

action

Identifies a structure of the type ENTRY as defined in the search.h
header file. It contains two pointers:

item.key Points to the comparison key string.

item.data Points to any other data associated with the item.key
parameter.

Pointers to types other than char should be cast as char *.
Specifies a value for an ACTION enum type, which indicates what
is to be done with an item key when it cannot be found in the hash
table. The ACTION enum type specifies the following two actions
that can be specified for this parameter:

ENTER Enter the key specified by the item parameter into the
hash table at the appropriate place. When the table is
full, a null pointer is returned.

FIND Do not enter the item key into the table, but return a
null pointer when an item key cannot be found in the
hash table.

1-295

OSF/1 Programmer's Reference
hsearch(3)

Description

Notes

nel Specifies an estimate of the maximum number of entries that the
hash table contains. Under some circumstances, the hcreate()
function may make the hash table larger than specified,. to obtain
mathematically favorable conditions for access to the hash table.

The hsearch(), hcreate() and hdestroy() functions are used to manage hash-table
operations.

The hsearch() function searches a hash table. It returns a pointer into a hash table
that indicates where a given entry can be found. The hsearch() function uses
"open addressing" with a hash function.

The hcreate() function initializes the hash table. You must call the hcreate()
function before calling the hsearch() function.

The hdestroy() function deletes the hash table. This allows you to start a new hash
table because only one table may be active at a time. After the call to hdestroy()
the hash-table data should no longer be considered accessible.

AES Support Level: Trial use

Return Values
The hsearch() function returns a null pointer when the action is FIND and the key
pointed to by item can not be found, or when the specified action is ENTER and the
hash table is full.

Upon successful completion, the hcreate() function returns a nonzero value.
Otherwise, when sufficient space for the table cannot be allocated, the hcreate()
function returns 0 (zero).

Related Information

Functions: bsearch(3), lsearch(3), tsearch(3)

1-296

htonl

Purpose

Library

Functions

htonl(3)

Converts an unsigned long (32-bit) integer from host-byte order to Internet
network-byte order

Standard C Library (libc.a)

Synopsis #include <netinet/in.h>

unsigned long htonl (

Parameters

Description

unsigned long hostlong);

hostlong Specifies a 32-bit integer in host-byte order.

The htonl() (host-to-network long) function converts an unsigned long (32-bit)
integer from host-byte order to Internet network-byte order.

The Internet network requires address and port reference data in network-byte
order (most significant byte leftmost, least significant byte rightmost). Use the
htonl() function to convert address and port long integers from Internet host-byte
order to Internet network-byte ordered long integers.

The htonl() function is defined as a big-endian macro in the netinet/in.h header
file for machine environments where network-byte order and host-byte order are
identical.

Return Values

Upon successfui compietion, the iuoni() function returns a 32-bit long integer m
Internet network-byte order.

Related Information

Functions: htons(3), ntohl(3), ntohs(3)

1-297

OSF/1 Programmer's Reference
htons(3)

htons

Purpose

Library

Converts an unsigned short (16-bit) integer from host-byte order to a 2-byte
Internet network integer

Standard C Library (Jibe.a)

Synopsis #include <netinet/in.h>

unsigned short htons (

Parameters

Description

unsigned short hostshort) ;

hostshort
Specifies a 16-bit integer in host-byte order.

The htons() (host-to-network short) function converts an unsigned short (16-bit)
integer from host-byte order to Internet network-byte order.

The Internet network requires address and port reference data in network-byte
order (most significant byte leftmost, least signficant byte rightmost). Use the
htons() function to convert address and port short integers from host-byte order to
Internet network-byte order.

The htonl() function is defined as a big-endian macro in the netinet/in.h header
file for machine environments where network-byte order and host-byte order are
identical.

Return Values

Upon successful completion, the htons() function returns a 16-bit short integer in
Internet network-byte order.

Related Information

Functions: htonl(3), ntohl(3), ntohs(3)

1-298

hypot, cabs

Purpose Computes Euclidean distance function and complex absolute value

Library
Math Library (libm.a)

Synopsis #include <math.h>

double hypot (
doublex,
double y);

Parameters

Description

double cabs (
struct {double x, y;} z);

x

y

z

Specifies a double value.

Specifies a double value.

Specifies a structure that has two double elements.

Functions

hypot(3)

The hypot() and cabs() functions compute the length of the hypotenuse of a right
angled triangle with the formula:

sqrt()(x*x +y*y).

Notes

AES Support Level: Trial use (hypot())

1-299

OSF/1 Programmer's Reference
hypot(3)

Errors

If the hypot() function fails, errno may be set to one of the following values:

[EDOM] The value of x or y is NaN.

[ERANGE] The value to be retuned would cause overflow.

Related Information

Functions: exp(3), isnan(3), sqrt(3)

1-300

Functions
lnet_addr{ 3)

inet_addr

Purpose Translates an Internet network address string to an Internet address integer

Library
Standard C Library (Ube.a)

Synopsis #include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet _ addr (
char *string) ;

Parameters

Description

Notes

string Defines an Internet dot-formatted address character string of the
form a.b.c.d, where a, b, c, and d may be expressed as decimal,
octal, or hexadecimal integers in the C idiom.

The inet_addr() function translates a dot-formatted Internet character address
string to an Internet address integer. The Internet address integer is returned as a
network byte-ordered integer (most significant byte leftmost, least significant byte
rightmost).

On VAX machines, the dot-formatted network-address a.b.c.d is returned as the
machine integer dcba.

Return Values

upon successfui compieuon, the inet_addrO function returns an equivalent
network byte-ordered address integer. Otherwise, -1 is returned.

Related Information

Functions: inet_netof(3), inet_lnaof(3), inet_makeaddr(3), inet_network(3),
in et_ ntoa(3)

1-301

OSF/1 Programmer's Reference

inet_lnaof(3)

inet_lnaof

Purpose Translates an Internet address integer into its host (local) address component

Library
Standard C Library (libc.a)

Synopsis #include <netinet/in.h>

#include <arpa/inet.h>

u_long inet_lnaof (

Parameters

Description

struct in_addr net_addr);

net addr
Defines an Internet address as a network byte-ordered integer. May
be expressed as octal (leading 0), hexadecimal (leading Ox or OX),
or decimal.

The inet _lnaof() function translates an Internet network byte-ordered address into
its host (local) address component. The host address integer is returned in network
byte-order (most significant byte leftmost, least significant byte rightmost).

Return Values

Upon successful completion, the inet_lnaof() function returns a network byte­
ordered integer that specifies the host (local) address part of the Internet network
a<ldress integer. When the inet _ lnaof() function fails, -1 is returned.

Related Information

1-302

Functions: inet_addr(3), inet_netof(3), inet_makeaddr(3), inet_network(3),
inet_ntoa(3)

Functions
inet_makeaddr(3)

inet_makeaddr

Purpose

Library

Translates an Internet address and host address into an Internet byte-ordered
address integer

Standard C Library (libc.a)

Synopsis #include <netinet/in.h>

#include <arpa/inet.h>

Parameters

Description

struct in_ addr inet _ makeaddr (
u _long net_ num,

net num

toe addr

u_long loc_addr);

Defines an Internet number in network-byte order. May be
expressed as octal (leading 0), hexadecimal (leading Ox or OX), or
decimal.

Defines a host (local) address integer. May be expressed as octal
(leading 0), hexadecimal (leading Ox or OX), or decimal.

The inet_makeaddr() function translates a multipart Internet address and a local
host address into their equivalent Internet byte-ordered address integer. The
Internet network address integer is returned in network-byte order (most significant
byte leftmost, least significant byte rightmost).

Return Values

Upon successful completion, the inet _ makeaddr() function returns a machine
integer that specifies the Internet network byte-ordered address. When the
inet_makeaddr() function fails, -1 is returned.

Related Information

Functions: inet_addr(3), inet_lnaof(3), inet_netof(3), inet_network(3),
inet _ntoa(3)

1-303

OSF/1 Programmer's Reference
inet_netof(3)

inet_netof

Purpose Translates an Internet address integer into its network address component

Library
Standard C Library (Jibe.a)

Synopsis #include <netinet/in.h>

#include <arpa/inet.h>

u _long inet _ netof(

Parameters

Description

struct in_addr net_addr);

net addr
Defines an Internet address in network-byte order. May be
expressed as octal (leading 0), hexadecimal (leading Ox or OX), or
decimal.

The inet_netof() function translates an Internet address into its network address
component. The network address integer is returned in network-byte order (most
significant byte leftmost, least significant byte rightmost).

Return Values

1-304

Upon successful completion, the inet_netof() function returns a network byte­
ordered integer that specifies the Internet network address. When the inet_netof()
function fails, -1 is returned.

Functions

inet_network(3}

inet_network

Purpose Translates an Internet dot-formatted address string to a network address integer

Library
Standard C Library (libc.a)

Synopsis #include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

u_long inet_network (

Parameters

Description

char *string);

string Defines an Internet dot-formatted address as the character string
a.b.c.d, where a, b, c and d may be expressed as decimal, octal, or
hexadecimal in the C-language idiom.

The inet_network() function translates a dot-formatted Internet network character
address string to a network byte-ordered address integer (most significant byte
leftmost, least significant byte rightmost).

Return Values

Upon successful completion, the inet_network() function returns an Internet
byte-ordered address integer. When the inet _network() function fails, -1 is
returned.

Related Information

Functions: inet_netof(3), inet_lnaof(3), inet_makeaddr(3), inet_addr(3),
inet_ntoa(3)

1-305

OSF/1 Programmer's Reference
inet_ntoa{3)

inet_ntoa

Purpose Translates an Internet integer address into a dot-formatted character string

Library
Standard C Library (Ube.a)

Synopsis #include <netinet/in.h>

#include <arpa/inet.h>

char *inet _ ntoa (

Parameters

Description

struct in_addr net_addr);

net addr
Defines an Internet network-byte ordered integer address to be

converted to an equivalent character string.

The inet _ ntoa() function translates an Internet byte-ordered address integer into a
dot-formatted character string. The dot-formatted string is returned in network-byte
order (most significant byte leftmost, least significant byte rightmost).

Return Values

Upon successful completion, the inet_ntoa() function returns a dot-formatted
Internet character string address. When the inet_ntoa() function fails, -1 is
returned.

Related Information

1-306

Functions: inet_netof(3), inet_lnaof(3), inet_makeaddr(3), inet_addr(3),
inet _ network(3)

Functions
initgroups(3)

initgroups

Purpose

Library

Synopsis

Parameters

Description

Caution

Initializes concurrent group set

Standard C Library (libc.a)

int initgroups (
char *user,
gid_t base_gid);

user Specifies the user whose groups are to be used to initialize the group
set.

base_gid Specifies an additional group to include in the group set.

The initgroups() function reads the defined group membership of the specified
user and sets the concurrent group set of the current process to that value. The
base _gid parameter is always included in the concurrent group set, and is normally
the principal user's group. If the user is in more than NGROUPS_MAX groups,
only NGROUPS_MAX groups are set, including the base _gid group.

The initgroups() function uses the getgrent() functions. If the program that
invokes initgroups() uses any of these functions, then calling initgroups()
overwrites the static group structure.

Return Values

Upon successful completion, the initgroups() function returns 0 (zero). If the
initgroups() function fails, 1 is returned and errno is set to indicate the error.

1-307

OSF/1 Programmer's Reference
initgroups{ 3)

Errors

If the initgroups() function fails, errno may be set to the following value:

[EPERM] The calling process does not have the appropriate privilege in its
current effective privilege set.

Related Information

1-308

Functions: getgroups(2), setgroups(2), getgid(2)

Commands: groups(l)

Functions
insque(3)

.
1nsque, remque

Purpose

Library

Synopsis

Parameters

Description

Inserts or removes an element in a queue

Standard C Library (libc.a)

struct qelem [

];

struct qelem *q_forw;
struct qelem *q_back;
char q_data[];

insque (
struct qelem *element,
struct qelem *pred);

remque (
struct qelem *element);

pred Points to the element in the queue immediately before the element
to be inserted or deleted.

element Points to the element in the queue immediately after the element to
be inserted or deleted.

The insque() and remque() functions manipulate queues built from double-linked
lists. Each element in the queue must be in the form of a qelem structure. The
q_forw and q_ back elements of that . structure must point to the elements in the
queue immediately before and after the element to be inserted or deleted.

The insque() function inserts the element pointed to by the element parameter into
a queue immediately after the element pointed to by the pred parameter.

The remque() function removes the element defined by the element parameter
from a queue.

1-309

OSF/1 Programmer's Reference
ioctl(2)

ioctl

Purpose Controls devices

Synopsis #include <sys/ioctl.h>

ioctl(

Parameters

Description

d

request

argp

intd,
unsigned long request,
char *argp);

Specifies the file descriptor of the requested device.

Specifies the ioctl command to be performed on the device.

Points to an parameter array for the request.

The ioctl() function performs a variety of operations on open descriptors. In
particular, many operating characteristics of character special files (for example,
terminals) may be controlled with ioctl() requests.

An ioctl() request has encoded in it whether the parameter is an "in" parameter or
"out" parameter, and the size of the argp parameter in bytes. Macros and defines
used in specifying an ioctl() request are located in the sys/ioctl.h file.

Return Values
If an error occurs, a value of -1 is returned and errno is set to indicate the error.

Errors
If the ioctl() function fails, errno may be set to one of the following values:

[EBADF] The d parameter is not a valid descriptor.

[ENOTTY] The d parameter is not associated with a character special device.

1-310

Functions

ioct1(2)

[ENOTIY] The specified request does not apply to the kind of object that the
descriptor d references.

[EINVAL] Either the request or argp parameter is not valid.

Related Information

Functions: exec(2), fcntl(2)

Files: tty(7) lvm(7)

1-311

OSF/1 Programmer's Reference

isnan(3)

.
1snan

Purpose Tests for NaN (Not a Number)

Library
Math Library (libm.a)

Synopsis #include <math.h>

int isnan (
doublex);

Parameters

x Specifies a double value.

Description
The isnan() function tests whether xis NaN (Not a Number).

Notes

AES Support Level: Trial use

Return Values

1-312

The isnan() function returns a nonzero value if xis NaN. Otherwise, 0 (zero) is
returned.

Functions

jctype(3)

isjalpha, isjdigit, isjxdigit, isjalnum, isjspace, isjpunct

Purpose Classifies characters

Library
Standard C Library (libc.a)

Synopsis #include <ctype.h>

int isjalpha (

Parameters

Description

int c);

int isjdigit (
int c);

int isjxdigit (
int c);

int isjalnum (
int c);

int isjspace (
int c);

int isjpunct (
int c);

c Specifies the character to be tested.

The Japanese ctype functions are provided when Japanese Language Support is
installed on your system. The ctype macros classify character-coded integer
values specified in a iable. Each of ihese macros reiurns a nonzero value for TRUE
and 0 (zero) for FALSE.

The following list shows the ctype macros which should be used when classifying
characters of type NLchar:

isjalnum

isjalpha

isjspace

The c parameter specifies a letter or digit.

The c parameter specifies an alphabetic SJIS character.
Ox8260 - Ox8279 Ox8281 - Ox829A

The c parameter specifies a space SJIS character.
Ox8140

1-313

OSF/1 Programmer's Reference
jctype(3)

isjpunct

isjdigit

isjxdigit

Related Information

The c parameter specifies a punctuation SJIS character, that is,
neither a control character nor an alphanumeric character.
Ox8141- Ox8151 Ox815A - Ox8198 Ox81F5 - Ox81

The c parameter specifies a digit SJIS character in the range [0-9].
Ox824F - Ox8258

The c parameter specifies an Arabic hexadecimal SJIS character in
the range [0-9], [A-F], or [a-f].
Ox824F - Ox8258
Ox8260 - Ox8265
Ox8281 - Ox8286

Functions: ctype(3), setlocale(3)

1-314

kill

Purpose

Library

Synopsis

Parameters

Description

Notes

Sends a signal to a process or to a group of processes

Berkeley Compatibility Library (libbsd.a)

#include <sys/types.h>

#include <signal.h>

int kill(
pid_t process;
int signal);

process Specifies the process or group of processes.

Functions
kill(2)

signal Specifies the signal. If the signal parameter is a value of 0 (the null
signal), error checking is performed but no signal is sent. This can
be used to check the validity of the process parameter.

process_grp Specifies the process group.

The kill() function sends the signal specified by the signal parameter to the process
or group of processes specified by the process parameter.

To send a signal to another process, at least one of the following must be true:

• The real or the effective user ID of the sending process matches the real or
effective user ID of the receiving process.

; The precess is trying tc ~end the SIGCONT sign~! !a one of its sess!0n's
processes.

• The calling process has superuser privilege.

Processes can send signals to themselves.

Sending a signal does not imply that the operation is successful. All signal
operations must pass the access checks prescribed by each enforced access control
policy on the system.

1-315

OSF/1 Programmer's Reference
kill(2}

If the process parameter is greater than 0 (zero), the signal specified by the signal
parameter is sent to the process that has a process ID equal to the value of the
process parameter.

If the process parameter is equal to 0 (zero), the signal specified by the signal
parameter is sent to all of the processes (other than system processes) whose
process group ID is equal to the process group ID of the sender.

If the process parameter is equal to -1 and the effective user ID of the sender has
root privileges, the signal specified by the signal parameter is sent to all of the
processes other than system processes.

If the process parameter is negative but not -1, the signal specified by the signal
parameter is sent to all of the processes which have a process group ID equal to the
absolute value of the process parameter.

The killpg() function is provided by OSF/l for binary compatibility only.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the kill() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

If the kill() function fails, no signal is sent and ermo may be set to one of the
following values:

[EINVAL]

[EINVAL]

The signal parameter is not a valid signal number.

The signal parameter is SIGKILL, SIGSTOP, SIGTSTP or
SIGCONT and the process parameter is 1 (procl).

[ESRCH] No process can be found corresponding to that specified by the
process parameter.

[EPERM] The real or saved user ID does not match the real or effective user
ID of the receiving process, the calling process does not have
appropriate privilege, and the process is not sending a SIGCONT
signal to one of its session's processes.

[EACCES] The calling process does not have appropriate privilege.

Related Information

Functions: getpid(2), ki11(2), setpgid(2), sigaction(2), sigvec(2)

1-316

ldr_entry

Purpose Returns the entry point for a loaded module

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>
#include <loader.h>
ldr_entry_pt_tldr_entry(

ldr_module_t mod_id);

Parameters

mod_id

Functions

ldr_entry{3)

Identifies the loaded module. The module ID is returned when the module
is first loaded.

Description

The ldr_entry() function returns the entry poiht for the specified loaded module.

Return Values

Errors

Upon successful completion, the ldr_entry() function returns the entry point. If
the operation fails, the function returns null and errno is set to indicate the error.

If the ldr_entry() function fails, errno may be set to the following value:

[EINVAL] The specified module ID has no entry point or is hot valid.

Related Information
Functions: load(3), ldr_xentry(3)

1-317

OSF/1 Programmer's Reference
ldr _inq_module(3)

ldr_inq_module

Purpose

Library

Synopsis

Parameters

Description

1-318

Returns information about a loaded module

Standard C Library (libc.a)

#include <sys/types.h>
#include <loader.h>
int ldr_inq_module(

ldr_process_t process,
ldr _module_t mod_id,
ldr _module_info_t *info,
size_t info_size,
size_t *ret_size);

process
Specifies the process whose address space contains the module for which
information is required.

mod_id
Identifies the module. The module ID is returned when the module is first
loaded.

info Points to a buffer into which the information is returned.

info_size
Specifies the size of the info buffer, in bytes.

ret_size
Specifies the number of bytes returned into the info buffer.

The ldr_inq_module() function returns information about a specified module
contained within the address space of the specified process into the variable
pointed to by the info parameter. The info_size parameter is the size of the buffer
provided. The number of bytes filled in (that is, the returned structure size) is
returned in the buffer pointed to by the ret_size parameter.

Notes

Functions
ldr _inq_module(3)

To obtain the unique process identifier for the current process, use the call:

ldr_process_t ldr_my_pi"!)Cess();

To obtain the unique process identifier for the kernel, use the call:

ldr_process_t ldr_kernel_process();

This function is currently only implemented for the current process and the kernel.

Return Values

Errors

Upon successful completion, the function returns a value of 0 (zero). If the
operation fails, the function returns a negative error value and sets errno to
indicate the error.

If the ldr_inq_module() function fails, errno may be set to one of the following
values:

[EINVAL]

[ESRCH]

The specified module ID is not valid.

The process identifier is not valid.

In addition, errors pertaining to the IPC mechanism can be returned.

Related Information
Functions: ldr_inq_region(3), ldr_next_module(3)

1-319

OSF/1 Programmer's Reference

ldr _inq_region(3)

ldr_inq_region

Purpose Returns module information about a region in a loaded module

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>
#include <loader.h>
int ldr _inq_region(

Parameters

Description

1-320

ldr _process_t process,
ldr_module_t mod_id,
ldr_region_t region,
ldr _region_info_t *info,
size_t info_size,
size_t *ret_size);

process
Specifies the process whose address space contains the module for which
the region information is required.

mod_id
Identifies the module. The module ID is returned when the module is first
loaded.

region Identifies the region.

info Points to a ldr_region_info_t buffer in which the information about the
loaded regibn is returned.

info_size
Specifies the size of the allocated ldr_region_info_t structure, in bytes.

ret_size
Specifies the number of types actually returned into the buffer pointed to by
the info parameter.

The ldr_inq_region() function returns information about a specified region within
a specified module. The module is contained within the address space of the

Notes

Functions
ldr _inq_region(3)

specified process. The returned information includes the number and name of the
region, its protection attributes, its size, and address information about the region in
the process' address space.

To obtain the unique identifier for the current process, use the call:

ldr_process_t ldr_my_process();

To obtain the unique identifier for the kernel, use the call:

ldr_process_t ldr_kernel_process();

The ldr_region_t values are unique identifiers for each loaded region for a
particular module. The value of the region parameter ranges from 0 (zero) to
(maximum number of regions) -1.

The loader assumes that each object module contains one or more regions. A
region is a separately relocated, virtually contiguous range within a module. A
region can contain text or data.

This function is currently implemented only for the current process and the kernel.

Return Values

Errors

Upon successful completion, the function returns a value of 0 (zero). If the
operation fails, the function returns a negative error value and errno is set to
indicate the error.

If the ldr_inq_region() function fails, errno may be set to one of the following
values:

[EINVAL]

[ESRCH]

The specified module ID or region ID is not valid.

The process identifier is not valid.

Aclclitionll 1 error~ mlly be retnmed fro!Y! the !1:!1-dedyi!!g !PC mech?.!'.ism (for
kernel/cross-process loading).

Related Information
Functions: ldr_inq_module(3), ldr_next_module(3)

1-321

OSF/1 Programmer's Reference
ldr_install(3)

ldr_install

Purpose Installs a module in the current process' private known package table

Library
Standard C Library (Jibe.a)

Synopsis #include <loader.h>
int ldr_install(

Parameters

Description

const char* mod_name);

mod_name
Points to the name of the module to be installed.

The ldr_install() function installs a specified module in the current process'
private known package table. The private known package table is inherited copy­
on-write by the process' children. This makes the packages exported by the
module available for symbol resolution for modules loaded into this process and its
children, overriding any module exporting the package in the global known
package table.

Return Values

Errors

1-322

Upon successful completion, the ldr_install() function returns 0 (zero).
Otherwise, a negative value is returned and errno is set to indicate the error.

If the ldr _install() function fails, errno may be set to the following value:

[EEXIST] The module was previously loaded in the known package table of
this process.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied, or the file exists and the user does not
have read access.

Functions

ldr_insta11(3)

[ENOEXEC] The file is not in a recognized format.

[ENOSPC] The process' private known package table is full and cannot be
expanded.

Related Information
Functions: load(3), ldr_remove(3)

1-323

OSF/1 Programmer's Reference
ldr _lookup_package(3)

ldr_lookup_package

Purpose Returns the address of a symbol name in a package

Library
Standard C Library (libc.a)

Synopsis #include <loader.h>

Parameters

Description

Notes

1-324

void *Idr_lookup_package(
char *package,
char *symbol_name);

package
Specifies the name of the package that contains the symbol name.

symbol_name
Specifies the name of the symbol whose address is required.

The ldr_Iookup_package() function returns the address of the specified symbol
name within the specified package.

The loader employs a two-dimensional hierarchical symbol name space in which
each symbol is represented by a package name, symbol name pair. Packages are
an abstraction that allows symbol resolution at the granularity of a library or
fraction of a library without having to bind symbols to library names.

Package names are attached to symbols at link time. The set of symbols exported
by a library is divided among one or more packages. By default, a package name is
derived from a library name, so that all symbols exported by a given library belong
to the same package. However, the programmer can attach symbols to arbitrary
package names to create multiple packages within a library.

When a module is linked against a library, the linker can derive the package name
for each imported symbol from the package name associated with the
corresponding exported symbol. The programmer, however, can also assign
arbitrary package names to imported symbols at link time.

Functions

ldr _lookup_package(3)

The package scheme avoids symbol name conflicts when more than one library
exports the same symbol. It assumes that each symbol name is unique within its
package and that each package name is unique across the system. Since each
imported symbol includes a package name, the symbol name can be resolved
unambiguously to the correct exported symbol.

Return Values

Errors

Upon successful completion, the address of the specified symbol is returned.
Otherwise, null is returned and errno is set to indicate the error.

If the ldr_lookup_package() function fails, errno may be set to one of the
following values:

[ENOSYM]

[ERAN GE]

[ENOPKG]

The specified package does not contain the specified symbol name.

The symbol value cannot be represented as an absolute value.

The specified package name is not known in this process.

Related Information

Functions: Ioad(3), ldr_xlookup_package(3)

1-325

OSF/1 Programmer's Reference

ldr _next_module{ 3)

ldr_next_module

Purpose

Library

Synopsis

Parameters

Description

1-326

Returns the next module ID for a process

Standard C Library (libc.a)

#include <sys/types.h>
#include <loader.h>
int ldr _next_module()(

ldr_process_t process,
ldr_module_t *mod_id_ptr);

process
Specifies the process for which the next module ID is required.

mod_id_ptr
Points to a buffer in which the module ID of a loaded module will be
returned.

The ldr_next_module() function returns the next module ID for the specified
process, given a specified module ID. It iterates through the module IDs of all
modules currently loaded in a specified process.

To get the first module ID for the process, specHy LDR_NULL_MODULE for the
initial module ID. Repeated calls to the ldr_next_module() function will return
all the module IDs for the process. The function returns LDR_NULL_MODULE
after returning the last module ID.

To obtain the unique identifier for the current process, use the following call:

ldr_process_t ldr_my_process();

To obtain the unique identifier for the kernel, use the following call:

ldr_process_t ldr_kernel_process();

To return the IDs for kernel modules, specify the returned identifier for the process
parameter.

Functions

ldr _next_ module(3)

Return Values

Errors

Upon successful completion, the function returns a value of 0 (zero). If the
operation fails, the function returns ~negative value and ermo is set to indicate the
error.

If the ldr_next_module() function fails, ermo may be set to the following value:

[EINVAL] The module ID specified by mod_id_ptr is not valid.

Related Information

Functions: ldr_inq_module(3), ldr_inq_region(3)

1-327

OSF/1 Programmer's Reference
ldr_remove(3)

ldr_remove

Purpose Removes an installed module from the private known package table

Library
Standard C Library (Ube.a)

Synopsis #include <loader.h>
int ldr _remove(

Parameters

Description

const char * mod_name);

mod_name
Points to the name of the module to be removed from known package table.

The ldr_remove() function removes a specified module from the current process'
private known package table. This module must have been previously installed in
the private known package table with the ldr_install() function, or have been
inherited as loaded in the private known package table from its parent process.

Return Values

Errors

Upon successful completion, the ldr_remove() function returns 0 (zero).
Otherwise, a negative value is returned and errno is set to indicate the error.

If the ldr_remove() function fails, errno may be set to the following value:

[EINVAL] The module was not found in the process' private known package
table.

Related Information

Functions: ldr_install(3), load(3)

1-328

Functions

ldr _xattach (3)

ldr_xattach

Purpose

Library

Attaches to another process to permit loading/unloading of modules in that process'
address space

Standard C Library (Jibe.a)

Synopsis #include <sys/types.h>
#include <loader .h>

Parameters

Description

Notes

int ldr_xattach(
ldr_process_t process);

process Specifies the process to attach to.

The ldr_xattach() function is used to permit a process to load, unload, query, or
retrieve the contents of another process' address space. Before a call to the
ldr_xload(), ldr_xunload(), ldr_xlookup(), or ldr_xlookup_package()
functions, the ldr_xattach function must be performed to that process.

This function currently works only for the current process or the kernel.

Return Values

If the attach operation is a success, the function returns a code of 0 (zero). If the
attach fails, the function returns a negative error value and errno is set to indicate
the error.

1-329

OSF/1 Programmer's Reference
ldr_xattach(3)

Errors

If the ldr_xattach() function fails, errno may be set to the following value:

[ESRCH] The process identifier is invalid.

Additional errors are possible from the underlying IPC mechanism.

Related Information
Functions: ldr_xdetach(3), ldr_xunload(3), ldr _xlookup(3),
ldr_xlookup_package(3), ldr_xload(3)

1-330

Functions
ldr _xdetach (3)

ldr_xdetach

Purpose Detaches from an attached process

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>
#include <loader.h>

Parameters

Description

Notes

int ldr _xdetach(
ldr_process_t process);

process Specifies the process from which to detach.

The ldr_xdetach() function detaches the calling process from process, with which
it had been associated for cross-process loading and debugging. This procedure
should be used only if a ldr_xattach() was previously performed on the specified
process.

This function currently works only for the current process and the kernel.

Return Values

If the detach operation is a success, the function returns a value of 0 (zero). If the
detach fails, the function returns a negative value and errno is set to indicate the
error.

1-331

OSF/1 Programmer's Reference
ldr_xdetach(3)

Errors

If the ldr_xdetach() function fails, errno may be set to the following value:

[ESRCH] The process identifier is invalid.

Additional errors are possible from the underlying IPC mechanism.

Related Information

Functions: ldr_xattach(3)

1-332

Functions
ldr_xentry(3)

ldr_xentry

Purpose Returns the entry point for a module loaded in another process

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>
#include <loader.h>
int ldr _xentry(

Parameters

Description

Notes

ldr_process_t process,
ldr_module_t mod_id,
ldr_entry_pt_t *entry_pt);

process
Specifies the process whose address space contains the module for which
the entry point is required.

mod_id
Identifies the loaded module. The module ID is returned when the module
is first loaded.

entry_pt
Points to a buffer in which the entry point will be returned.

The ldr_xentry() function returns the entry point for the specified module in the
address space of the specified process.

To obtain the unique identifier for the current process, use the following call:

ldr_process_t ldr_my_process();

To obtain the unique identifier for the kernel, use the following call:

ldr_process_t ldr_kernel_process();

This function currently works only for the current process and the kernel process.

1-333

OSF/1 Programmer's Reference
ldr _xentry(3)

Return Values

Errors

Upon successful completion, the function returns a value of 0 (zero). If the
operation fails, the function returns a negative value and ermo is set to indicate the
error.

If the ldr _xentry() function fails, ermo may be set to one of the following values:

[EINVAL]

[EINVAL]

The specified module ID is not valid.

There is no entry point for the loaded module.

[ESRCH] The process identifier is invalid.

Additional errors may occur due to the underlying IPC mechanism.

Relatecl. Information

Functions: ldr_entry(3), ldr_xload(3), load(3)

1-334

Functions

ldr_xload(3)

ldr_xload

Purpose

Library

Synopsis

Parameters

Loads a module in another process and returns the module ID

Standard C Library (libc.a)

#include <sys/types.h>
#include <loader.h>
int ldr _xload(

ldr_process_t process,
char *file_pathname,
ldr_load_flags_t load_jlags,
ldr _module_t *mod_id_ptr);

process
Specifies the process into whose address space the object module is to be
loaded.

file _pathname
Specifies the pathname of the object module.

loadJlags
Specifies options on the load. Valid values are:

LDR_ WIRE Wire the module in physical memory so that it will not be
paged out.

LDR_NOFLAGS
No flags are specified.

LDR_NOUNREFS
Allow no unresolved references after resolving shared
library refer~nces.

1-335

OSF/1 Programmer's Reference

ldr_xload(3)

Description

Notes

LDR_PREXIST
The module must have been already loaded.

LDR_NOPREXIST
Return an error if the module is already loaded.

mod_id_ptr
Points to a variable in which the module ID of the loaded module is
returned.

The ldr_xload() function loads the specified object module into the virtual address
space of the specified process. It can be used to load both relocatable and absolute
modules.

If the object module is already loaded, the function does not load it again, but it
does return its ID. Using the LDR_NOPREXST load flag forces an error if the
module is already loaded.

To obtain the unique identifier for the current process, use the following call:

ldr_process_t ldr_my_process();

To obtain the unique identifier for the kernel, use the following call:

ldr_process_t ldr_kernel_process();

The loader assigns a unique identifier to each module when it is loaded. Module
IDs provide a convenient way of referencing loaded modules in other loader­
related functions.

The loader can link unresolved references in dynamically loaded kernel modules,
relocate the code as necessary, and call an initialization entry point. The loader,
however, cannot automatically load further modules to resolve unresolved
references. Each kernel module must link completely against symbols exported by
the kernel or by previously loaded modules. Circular dependencies are not allowed
for dynamically loaded kernel modules.

This function currently works only for the current process and for the kernel.

Return Values

1-336

Upon successful completion, the module is loaded and 0 (zero) is returned.
Otherwise, a negative value is returned and errno is set to indicate the error.

Errors

Functions
ldr_xload(3)

If the ldr_xload() function fails, errno may be set to one of the following values:

[ENOEXEC] The file_pathname parameter specifies a file with an unrecognizable
object file format.

[EINVAL] The load_ftags parameter specified an invalid option or an invalid
ldr_module_t has been specified.

[EEXIST] The LDR_NOPREXST load flag was specified and the module was
already loaded.

[ESRCH] The process identifier is invalid.

[ENOPKG] One or more unresolved package names were found.

[ENOSYM] One or more unresolved symbol names were found.

[EDUPPKG] The loaded module exported a package which duplicated the
package name of a module already loaded in the same process.

Related Information

Functions: ldr_xunload(3), ldr_xentry(3), ldr_xlookup(3), load(3)

1-337

OSF/1 Programmer's Reference

ldr _xlookup_package(3)

ldr_xlookup _package

Purpose

Library

Synopsis

Parameters

Description

1-338

Returns the address of a symbol name within a specified package in another
process

Standard C Library (libc.a)

#include <sys/types.h>
#include <loader.h>
int ldr_xlookup_package(

ldr_process_t process,
char *package_name,
char *symbol_name,
void **symbol_addr _ptr);

process
Specifies the process whose address space contains the package with the
symbol whose address is required.

package_name
Specifies the name of the package that contains the symbol name.

symbol_name
Specifies the name of the symbol whose address is required.

symbol_addr _ptr
Points to a void* variable. The function returns the address for the symbol
name in this variable.

The ldr_xlookup_package() function returns the address of the specified symbol
name within the specified package. The package is contained within the address
space of the specified process.

To obtain the unique identifier for the current process, use the following call:

ldr_process_t ldr_my_process();

To obtain the unique identifier for the kernel, use the following call:

ldr_process_t ldr_kemel_process();

Notes

Functions
ldr _xlookup_package(3)

This call currently only supports lookup in the current process or the kernel.

The loader employs a two-dimensional hierarchical symbol name space in which
each symbol is represented by a package name, symbol name pair. Package names
are attached to symbols at link time. The package scheme assumes that each
symbol name is unique within its package and that each package name is unique
across the system.

Return Values

Errors

If the operation is a success, the function returns a value of 0 (zero). If the
operation fails, the function returns a negative value and errno is set to indicate the
error.

If the ldr_xlookup_package() function fails, errno may be set to one of the
following values:

[ENOPKG] The specified package was not found.

[ENOSYM] The specified symbol name was not found in the specified package.

[ESRCH] The process identifier is invalid.

[ERANGE] The symbol address could not be converted into an absolute value.

Additional errors may be returned from the underlying IPC mechanism.

Related Information

Functions: ldr_lookup_package(3), ldr_xload(3), load(3)

1-339

OSF/1 Programmer's Reference

ldr_xunload(3)

ldr_xunload

Purpose

Library

Synopsis

Parameters

Description

1-340

Unloads a module previously loaded in another process

Standard C Library (Ube.a)

#include <sys/types.h>
#include <loader.h>
int ldr _xunload(

ldr_process_t process,
ldr_module_t mod_id);

process
Specifies the process from whose address space the module is to be
unloaded.

mod_id
Identifies the module to be unloaded. The module ID is returned when the
module is first loaded.

The ldr_xunload() function unloads the specified module from the virtual address
space of the specified process. The function unmaps the module's regions and
discards the loader data structures that describe the module.

The module is unloaded even if any references to it remain in other modules. The
loader does not keep track of such dangling references or attempt to unsnap any
invalidated links. These housekeeping tasks are the responsibility of the calling
process. Attempts to refer to addresses in an unloaded module can result in
indeterminate errors.

To obtain the unique identifier for the current process, use the following call:

ldr_process_t ldr_my_process();

To obtain the unique identifier for the kernel, use the following call:

ldr_process_t ldr_kernel_process();

Notes

Functions
ldr_xunload{3)

This function currently works only for the current process and the kernel process.

Once a module has been unloaded, its module ID is no longer valid.

Return Values

Errors

If the unload operation is a success, the function returns a value of 0 (zero). If the
unload fails, the function returns a negative value and errno is set to indicate the
error.

If the ldr_xunload() function fails, errno may be set to one of the following
values:

[EINVAL]

[EINVAL]

[ESRCH]

The specified module ID is not valid.

The specified module cannot be unloaded (that is, it was loaded with
the flag LDR_NOUNLOAD).

The process identifier is invalid.

Related Information

Functions: ldr_xload(3), load(3), unload(3)

1-341

OSF/1 Programmer's Reference
libPW(3)

Programmers Workbench Library

Purpose

Library

Description

1-342

Provides functions for compatibility with existing programs

Programmers Workbench Library (libPW.a)

The Iibpw functions are provided for compatibility with existing programs. Their
use in new programs is not recommended.

any (character, string)
Determines whether string contains character.

anystr (string I, string2)
Determines the offset in string 1 of the first character that also occurs
in string2.

balbrk (string, open, close, end)
Determines the offset in string of the first character in the string end
that occurs outside of a balanced string as defined by open and
close.

cat (destination, sourcel, ... , 0)
Concatenates the source strings and copies them to destination.

clean_up ()
Defaults the cleanup routine.

curdir (string)
Puts the full pathname of the current directory in string.

dname (p)
Determines which directory contains the file p.

fatal (message)
General purpose error handler.

fdfopen (jd, mode)
Same as the stdio fdopen() function.

giveup (dump)
Forces a core dump.

imatch (pref, string)
Determines if the string pref is an initial substring of string.

Functions
libPW(3)

index (string I, string2)
Determines the offset of the first occurrence in string I of string2.

lockit (lockfile, count, pid)
Creates a lock file.

logname () Returns caller's login name.

move (string I, string2, n)
Copies the first n characters of string] to string2.

patoi (string)
Converts string to integer.

patol (string)
Converts string to long.

repeat (destination, string, n)
Sets destination to string repeated n times.

repl (string, old, new)
Replaces each occurrence of the character old in string with the

character new.

satoi (string, ip)
Converts string to integer and saves it in *ip.

setsig () Causes signals to be caught by the setsigl() function.

setsigl (signal)
General purpose signal handling routine.

sname (s)
Gets a pointer to the simple name of full pathname s.

strend (string)
Finds the end of string.

substr (s, destination, origin, length)
Places a substring of string s in destination using the offset origin
and length.

trnslat (s, old, new, destination)
Copies string s into destination and replaces any character in old
with the corresponding characters in new.

unlockit (loclifile, pid)
Deletes the lock file.

userdir (uid)
Gets the user's login directory.

userexit (code)
Defaults user exit routine.

1-343

OSF/1 Programmer's Reference

libPW(3)

1-344

username (uid)
Gets the user's login name.

verify (string}, string2)

xalloc (asize)

Determines the offset in string 1 of the first character that is not also
in string2.

Allocates memory.

xcreat (name, mode)
Creates a file.

xfree (aptr)
Frees memory.

xfreeall ()
Frees all memory.

xlink (jl, j2)
Links files.

xmsg (file, June)
Calls the fatal() function with an appropriate error message.

xopen (name, mode)

xpipe (t)

xunlink (j)

Opens a file:

Creates a pipe.

Removes a directory entry.

xwrite (jd, buffer, n)
Writes n bytes to the file associated withfd from buffer.

zero (p, n)
Zeros n bytes starting at address p.

zeropad (s)
Replaces the initial blanks with the character 'O' in strings.

link

Purpose

Synopsis

Parameters

Description

Notes

Functions
link(2)

Creates an additional directory entry for an existing file on current file system

int link (
const char *pathl,
const char *path2);

Points to the pathname of an existing file. path I

path2 Points to the pathname for the directory entry to be created. If the
path2 parameter names a symbolic link, an error is returned.

The link() function creates an additional hard link (directory entry) for an existing
file. Both the old and the new link share equal access rights to the underlying
object. The link() function atomically creates a new link for the existing file and
increments the link count of the file by one.

Both the pathl and path2 parameters must reside on the same file system. A
process must have superuser privilege to make a directory hard link.

Upon successful completion, the link() function marks the st_ctime field of the file
for update, and marks the st_ctime and st_mtime fields of the directory containing
the new entry for update.

AES Support Level: Full use

Upon successful completion, the link() function returns a value of 0 (zero). If the
link() function fails, a value of -1 is returned, no link is created, and errno is set to
indicate the error.

1-345

OSF/1 Programmer's Reference
link(2)

Errors

If the link() function fails, errno may be set to one of the following values:

[ENO ENT]

[EFAULT]

[EEXIST]

[EPERM]

[EXDEV]

[EACCES]

[EMLINK]

[EROFS]

[ENOSPC]

[ELOOP]

The file named by the pathl parameter does not exist or the pathl or
path2 parameter is an empty string.

Either the pathl or path2 parameter is an invalid address.

The link named by the path2 parameter already exists.

The file named by the path] parameter is a directory and the calling
process does not have appropriate privilege.

The link named by the path2 parameter and the file named by the
path] parameter are on different file systems.

The requested link requires writing in a directory with a mode that
denies write permission, or a component of either the pathl or path2
parameter denies search permission.

The number of links to the file named by path] would exceed
LINK_MAX.

The requested link requires writing in a directory on a read-only file
system.

The directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

Too many links were encountered in translating either pathl or
path2.

[ENAMETOOLONG]

[ENOTDIR]

[EDQUOT]

The length of the pathl or path2 string exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

A component of either path prefix is not a directory.

The directory in which the entry for the new link is being placed
cannot be extended because the user's quota of disk blocks on the
file system containing the directory has been exhausted.

Related Information

1-346

Functions: unlink(2)

Commands: link(l)

listen

Purpose

Synopsis

Parameters

Description

Functions
listen(2)

Listens for socket connections and limits the backlog of incoming connections

int listen (

socket

backlog

int socket,
int backlog);

Specifies the unique name for the socket.

Specifies the maximum number of outstanding connection requests.

The listen() function identifies the socket that receives the connections, marks the
socket as accepting connections, and limits the number (backlog) of outstanding
connection requests in the system queue.

The maximum queue length (backlog) that the listen() function can specify is five.
The maximum queue length is indicated by the SOMAXCONN value in the
sys/socket.h header file.

Return Values

Errors

Upon successful completion, the listen() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the listen() function fails, errno may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EOPNOTSUPP]
The referenced socket is not a type that supports the listen()
function.

1-347

OSF/1 Programmer's Reference
listen(2)

Related Information

Functions: accept(2), connect(2), socket(2)

1-348

Functions

load(3)

load

Purpose Loads a module and returns the module ID

Library
Standard C Library (Jibe.a)

Synopsis #include <sys/types.h>
#include <loader.h>
ldr_module_t load(

Parameters

Description

char *file_pathname,
ldr_load_flags_t load_fiags);

file_pathname
Specifies the pathname of the object module to be loaded.

load_flags
Specifies options on the load. Valid values are:

LDR_NOFLAGS
No flags are specified.

LDR_NOINIT
Do not run initialization routines.

LDR_NOUNREFS
Allow no unresolved references after resolving shared
library references.

LDR]REXIST
The module must have been already loaded.

LDR_NOPREXIST
Return an error if the module is already loaded.

The load() function loads the specified object module into the virtual address
space of the calling process.

If the object module is already loaded, the function does not load it again, but it
returns its module ID unless the LDR_NOPREXST load flag is specified. To use
the LDR_PREXIST load flag, the module must already be loaded and its module
ID returned.

1-349

OSF/1 Programmer's Reference
load{3)

Notes
The loader assigns a unique identifier to each module when it is loaded. This
identifier is called a module ID, and is defined as type ldr_module_t. Module IDs
provide a convenient way to reference loaded modules in other loader-related
functions. For efample, the ldr_entry() function returns the entry point for the
loaded module associated with a specified module ID.

Return Values

Errors

Upon successful completion, a nonzero module ID of type ldr_module_t is
returned. Otherwise, a module ID of 0 (zero) is returned and errno is set to
indicate the error.

If the load() function fails, errno may be set to one of the following values:

[ENOEXEC] The file_pathname parameter specifies a file with a bad object file
format.

[EINVAL] The load_ftags parameter specified an invalid option.

[EEXIST] The LDR_NOPREXST load flag was specified and the module was
already loaded.

[ENOSYM] One or more unresolved external symbols were found.

[ENOPKG] One or more unresolved package names were found.

Related Information

Functions: unload(3), ldr_entry(3), ldr_lookup(3), ldr_xload(3)

1-350

Functions
localeconv{ 3)

localeconv, localeconv _r

Purpose

Library

Synopsis

Parameters

Description

Retrieves locale-dependerit formatting parameters

Standard C Library (libc.a)

#include <locale.h>
struct lconv *localeconv (void)

int localeconv _r(

result

buf

len

struct lconv *result,
char *buf,
int Zen);

Points to a lconv structure in which to return the conventions.

Points to a buffer used for constructing char *'s.

Specifies the length of buf.

The localeconv() function provides access to the object that specifies the current
locale's conventions for the format of numeric quantities.

The lconv structure contains values appropriate for formatting numeric quantities
(monetary and otherwise) according to the rules of the current locale. The members
of the structure with the type char * are strings, any of which (except
decimal_point) can point to a null string, to indicate that the value is not available
in the current locale or is of zero length. The members with type char are
nonnPoMi"" nnmhPr« lln'1 of mhirh <'lln hP. CH AR MAX to inrlirlltP. thllt thP. VllhlP. --------o---·- ---~-.-,-----, ----.1 -- ··------ ---- -- --------------- -- ----------- ----- - ---- - ----

is not available in the current locale. The members include the following:

char *decimal_point
The decimal-point character used to format nonmonetary quantities.

char *thousands_sep
The separator for groups of digits to the left of the decimal point in
formatted nonmonetary quantities.

1-351

OSF/1 Programmer's Reference
localeconv(3)

1-352

char *grouping
A string whose elements indicate the size of each group of digits in
formatted nonmonetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale,
left justified within a four-character, space-padded field. The
character sequences are in accordance with those specified in ISO
4217 Codes for the Representation of Currency and Funds.

char *currency _symbol
The currency symbol applicable to the current locale.

char *mon_decimal_point
The decimal point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits to the left of the decimal point in
formatted monetary quantities.

char *mon_grouping
A string whose elements indicate the size of each group of digits in
formatted monetary quantities.

char *positive_sign
The string used to indicate a nonnegative formatted monetary
quantity.

char *negative_sign
The string used to indicate a negative formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those to the right of the decimal
point) to be displayed in a formatted monetary quantity.

char frac_digits
The number of fractional digits (those to the right of the decimal
points) to be displayed in a formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 (zero) if the currency_symbol respectively precedes
or succeeds the value for a nonnegative formatted monetary
quantity.

char p_sep_by _space
Set to 1 or 0 (zero) if the currency_symbol respectively is or is not
separated by a space from the value for a nonnegative formatted
monetary quantity.

Functions

localeconv(3)

char n_cs_precedes
Set to 1 or 0 (zero) if the currency_symbol respectively precedes
or succeeds the value for a negative formatted monetary quantity.

char n_sep_by _space
Set to 1 or 0 (zero) if the currency _symbol respectively is or is not
separated by a space from the value for a negative formatted
monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for
nonnegative formatted monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a
negative formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the
following:

MAX_ CHAR

0

other

No further grouping is to be performed.

The previous element is to be repeatedly used for the remainder of
the digits.

The value is the number of digits that comprise the current group.
The next element is examined to determine the size of the next
group of digits to the left of the current group.

The value
following:

of p_sign_posn and n_sign_posn is interpreted according to the

0

1

2

3

Parenthesis surround the quantity and currency _symbol.

The sign string precedes the quantity and currency _symbol.

The sign string succeeds the quantity and currency _symbol.

The sign string immediately precedes the currency _symbol.
'T"\...,.,, ,..,;..,.....,. ,..,..,...;,. ;,._.........,,...,....:1;...,+,,,.1.,, n-.-. a.a.....:ln +h,,,. .,..,.,. __ ..,. ,.,., """'',,,_J,,..,..,)

..1. .ll"-' .:J.151.1. i."JU.J.J.J.f' .tl.l.UJ..l""U.lUlA,,..J.) "'"·"•"""""""'-'"' uu,,, '-I.a& a. '-'••"'J-"'J aaaov••

The localeconv_r() function is the reentrant version of localeconv(). The
conventions are filled into the structure pointed to by the result parameter. The buf
parameter is used to construct all the members of the structure with type char*.

1-353

OSF/1 Programmer's Reference
localeconv(3)

Notes

The localeconv() function is not supported for multi-threaded applications.
Instead, its reentrant version, Iocaleconv _r(), should be used with multiple threads.

Library functions do not call the localeconv() function.

AES Support Level: Full use (localeconv())

Return Values

Errors

Upon successful completion, the localeconv() function returns a pointer to the
filled-in object. The structure pointed to by the return value will not be modified by
the program, but may be overwritten by a subsequent call to the localeconv()
function. In addition, calls to the setlocale() function with categories LC_ALL,
LC_MONETARY or LC_NUMERIC may overwrite the contents of the structure.

Upon successful completion, the localeconv _r() function returns a value of 0
(zero). Otherwise, -1 is returned and errno is set to indicate the error.

If the localeconv _r() function fails, errno may be set to the following value:

[EINVAL] Either the result or buffer parameters are null pointers.

[ENOMEM] The buffer parameter is too small.

Related Information

Functions: setlocale(3)

1-354

lockf

Purpose

Synopsis

Parameters

Description

Functions
lockf(3)

Controls open file descriptors

#include <fcntl.h>

int lockf(
intfiledes,
int request,
off_t size);

filedes

request

size

Specifies the file to which the lock is to be applied or removed. The
file descriptor is returned by a successful open() or fcntl() function.

Specifies one of the following constants for the lockf() function:

F _ULOCK Unlocks a previously locked region in the file.

F _LOCK Locks the region for exclusive use. This request
causes the calling process to sleep if the region
overlaps a locked region, and to resume when it is
granted the lock.

F _TLOCK Same as F _LOCK, except that the request returns an
error if the region overlaps a locked region.

F _TEST Tests to see if another process has already locked a
region. The lockf() function returns 0 (zero) if the
region is unlocked. If the region is locked, then -1 is
returned and errno is set to [EACCES].

The number of bytes to be locked or unlocked for the lockf()
function. The region starts at the current location in the open file and
extends forward if size is positive and backward if size is negative.
If the size parameter is 0 (zero), the region starts at the current
location and extends forward to the maximum possible file size,
including the unallocated space after the end of the file.

The lockf() function locks and unlocks sections of an open file. Unlike the fcntl()
function, however, its interface is limited to setting only write (exclusive) locks.

1-355

OSF/1 Programmer's Reference
lockf(3)

Notes

1-356

Although the lockf() and fcntl() functions are different, the implementations are
fully integrated. Therefore, locks obtained from one function are honored and
enforced by the other lock function.

Each lock is either an enforced lock or an advisory lock, and must also be either a
read lock or a write lock.

Locks on a file are advisory or enforced depending on the mode of the file (see the
chmod() function.) A given file can have advisory or enforced locks, but not both.
See the sys/mode.h header file for a description of file attributes.

When a process holds an enforced exclusive lock on a section of a file, no other
process can access that section of the file with the read() or write() functions. In
addition, the open(), truncate(), and ftruncate() functions cannot truncate the
locked section of the file. If another process attempts to read or modify the locked
section of the file, it sleeps until the section is unlocked or returns with an error
indication.

The file descriptor on which an exclusive lock is being placed must have been
opened with write access.

Some general rules about file locking include the following:

• Changing or unlocking part of a file in the middle of a locked section leaves
two smaller sections locked at each end of the originally locked section.

• All locks associated with a file for a given process are removed when the
process closes any file descriptor for that file.

• Locks are not inherited by a child process after running a fork() function.

Locks can start and extend beyond the current end of a file, but cannot be negative
relative to the beginning of the file. A lock can be set to extend to the end of the file
by setting the l_len field to 0 (zero). If a lock is specified with the l_start field set
to 0 and the I_ whence field set to SEEK_SET, the whole file is locked.

Buffered 1/0 does not work properly when used with file locking. Do not use the
standard 1/0 package routines on files that will be locked.

Deadlocks due to file locks in a distributed system are not always detected. When
such deadlocks are possible, the programs requesting the locks should set time-out
timers.

Functions

lockf(3}

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the lockf() function fails, errno may be set to one of the following values:

[EACESS] The file region is locked and F _TEST was specified.

[EINV AL] The request parameter is not valid.

[EBADF] The filedes parameter is not a valid open file descriptor; or the
request parameter is F _SETLK or F _SETLKW, the type of lock
(l_type) is a shared lock (F _RDLCK) and filedes is not a valid file
descriptor open for reading; or the type of lock (l_type) is an
exclusive lock (F _ WRLCK) and filedes is not a valid file descriptor
open for writing.

[EINTR] The command parameter is F _SETLKW and the fcntl() function
was interrupted by a signal which was caught.

[EDEADLK] The lock is blocked by some lock from another process. Putting the
calling process to sleep while waiting for that lock to become free
would cause a deadlock.

Related Information

Functions: chmod(2), close(2), exec(2), fcntl(2), flock(2), fork(2), open(2),
read(2), write(2)

1-357

OSF/1.Programmer's Reference
lsearch(3)

lsearch, lfind

Purpose

Library

Synopsis

Parameters

1-358

Performs a linear search and update

Standard C Library (libc.a)

#include <search.h>

#include <sys/types.h>

void *lsearch(
const void *key,
const void *base,
size_t *nelp,
size_t width,
int (*compar) (const void*, const void*)) ;

void *Hind(
const void *key,
const void *base,
size_t *nelp,
size_t width,
int (*compar) (const void*, const void*));

key

base

nelp

width

compar

Points to an entry containing the key that specifies the entry to be
searched for in the table.

Points to the first entry in the table to be searched.

Poi,nts to an integer that specifies the number of entries in the table
to be searched. This integer is incremented whenever an entry is
added to the table.

Specifies the size of each entry, in bytes.

Points to the user-specified functidn to be used for comparing two
table entries (strcmp(), for example). This function must return 0
(zero) when called with arguments that point to entries whose keys
compare equal, and nonzero otherwise.

Description

Notes

Functions

lsearch{3)

The lsearch() function performs a linear search of a table. This function returns a
pointer into a table indicating where a specified key is located in the table. When
the key is not found in the table, it is added to the end of the table. Free space must
be available at the end of the table, or other program information may be corrupted.

The lfind() function is similar to the lsearch() function, except that when a key is
not found in a table, an entry for it is not added to the table. In this case, a null
pointer is returned.

Pointers to the key parameter and the entry at the base of the table should be of
type pointer-to-element and cast to type pointer-to-character. Although it is
declared as type pointer-to-character, the returned value should be cast into type
pointer-to-element.

The comparison function need not compare every byte; therefore, the table entries
can contain arbitrary data in addition to the values undergoing comparison.

AES Support Level: Trial use

Return Values

Upon successful completion, both the lsearch() and lfind() functions return a
pointer to its location in the table. Otherwise, the lfind() function returns a null
pointer and the lsearch() function returns a pointer to the location of the newly
added table entry.

Related Information

Functions: bsearch(3), hsearch(3), tsearch(3), qsort(3)

1-359

OSF/1 Programmer's Reference
lseek(2)

ls eek

Purpose Moves read-write file offset

Synopsis #include <sys/types.h>
#include <unistd.h>

Parameters

Description

1-360

otf_t lseek (

filedes

offset

whence

intfiledes,
otf_t offset,
int whence);

Specifies a file descriptor obtained from a successful open() or
fcntl() function.

Specifies a value, in bytes, that is used in conjunction with the
whence parameter to set the file pointer. A negative value causes
seeking in the reverse direction. The resulting file position may also
be negative.

Specifies how to interpret the offset parameter in setting the file
pointer associated with the filedes parameter. Values for the whence
parameter are as follows:

SEEK_SET Sets the file pointer to the value of the offset
parameter.

SEEK_CUR Sets the file pointer to its current location plus the
value of the offset parameter.

SEEK_END Sets the file pointer to the size of the file plus the
value of the offset parameter.

The lseek() function sets the file offset for the open file specified by the filedes
parameter. The whence parameter determines how the offset is to be interpreted.

Notes

Functions

lseek(2)

The lseek() function allows the file offset to be set beyond the end of existing data
in the file. If data is later written at this point, subsequently reading data in the gap
returns bytes with the value 0 (zero) until data is actually written into the gap.

The lseek() function does not, by itself, extend the size of the file.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the resulting pointer location, measured in bytes from
the beginning of the file, is returned. If the lseek() function fails, the file offset
remains unchanged, a value of (off_t) - l is returned, and errno is set to indicate
the error.

If the lseek() function fails, the file offset remains unchanged and errno may be set
to one of the following values:

[EBADF]

[ES PIPE]

[EINVAL]

Thefiledes parameter is not an open file descriptor.

Thefiledes parameter is associated with a pipe (FIFO), a socket, or a
multiplexed special file.

The whence parameter is an invalid value, or the resulting file offset
would be invalid.

Related Information

Functions: fcntl(2), fseek(3), open(2), read(2), write(2)

1-361

OSF/1 Programmer's Reference

madvise{2}

mad vise

Purpose Advise the system of a process' expected paging behavior

Synopsis #include <sys/types.h>

#include <sys/mman.h>

int madvise (

Parameters

Description

1-362

addr

!en

behav

caddr_t addr,
size_t /en,
int behav);

Specifies the address of the region to which the advice refers.

Specifies the length in bytes of the region specified by the addr
parameter.

Specifies the behavior of the region. The following values for the
behav parameter are defined in the sys/mman.h header file:

MADY _NORMAL
No further special treatment

MADY _RANDOM
Expect random page references

MADY _SEQUENTIAL
Expect sequential references

MADY_ WILLNEED
Will need these pages

MADY _DONTNEED
Do not need these pages

MADY _SPACEAYAIL
Ensure that resources are reserved

The madvise() function permits a process to advise the system about its expected
future behavior in referencing a mapped file or shared memory region.

Notes

Functions

madvlse(2)

The madvise() function has no functionality in OSF/l. It is supported for
compatibility only.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the madvise() function returns zero. Otherwise, -1 is
returned and errno is set to indicate the error.

If the mad vise() function fails, errno may be set to one of the following values:

[EINVAL] The behav parameter is invalid.

[ENOSPC] The behav parameter specifies MADY _SPACEAVAIL and
resources can not be reserved.

Related Information
Functions: mmap(2)

1-363

OSF/1 Programmer's Reference
malloc(3)

malloc, free, realloc, calloc, mallopt, mallinfo, alloca

Purpose

Library

Provides a memory allocator

Standard C Library (Jibe.a)
Berkeley Compatibility Library (libbsd.a)
Pthreads library (libpthreads.a)

Synopsis #include <malloc.h>

void *malloc (

Parameters

1-364

size_t size);

char *alloca (
int size);

void free (
void *pointer);

void *realloc (
void *pointer,
size_t size);

int mallopt (
int command,
int value);

struct mallinfo mallinfo(void) ;

void *calloc (
size_t num_of_elts,
size_t elt_size);

size

pointer

command

value

Specifies a number of bytes of memory.

Points to the block of memory that was returned by the malloc() or
calloc() function.

Specifies a mallopt() function command.

Specifies M_MXFAST, M_NLBLKS, M_GRAIN, or M_KEEP.

Description

num_of_elts Specifies the number of elements in the array.

elt size Specifies the size of each element in the array.

Functions

malloc(3)

The malloc() and free() functions provide a simple, general-purpose memory
allocation package.

The malloc() function returns a pointer to a block of memory of at least the
number of bytes specified by the size parameter. The block is aligned so that it can
be used for any type of data.

The free() function frees the block of memory pointed to by the pointer parameter
for further allocation. The block pointed to by the pointer parameter must have
been previously allocated by either the malloc(), realloc(), or calloc() functions.

The realloc() function changes the size of the block of memory pointed to by the
pointer parameter to the number of bytes specified by the size parameter, and
returns a pointer to the block. The contents of the block remain unchanged up to
the lesser of the old and new sizes. If necessary, a new block is allocated, and data
is copied to it. If the pointer parameter is a null pointer, the realloc() function
simply allocates a new block of the requested size. If the size parameter is 0 (zero),
the realloc() function frees the specified block.

The calloc() function allocates space for an array with the number of elements
specified by the num_of_elts parameter, where each element is of the size specified
by the elt _size parameter. The space is initialized to zeros.

The alloca() function allocates the number of bytes of space specified by the size
parameter in the stack frame of the caller. This space is automatically freed when
the function that called the alloca() function returns to its caller.

The malh>pt() and mallinfo() functions allow tuning the allocation algorithm at
execution time.

The mallopt() function initiates a mechanism that can be used to allocate small
blocks of memory quickly. You can use the mallopt() function to allocate a large
group (called a holding block) of these small blocks at one time. Then, each time a
program requests a small amount of memory, a pointer to one of the preallocated
small blocks is returned. Different holding blocks are created for different sizes of

1-365

OSF/1 Programmer's Reference

malloc{3)

1-366

small blocks and are created when needed. This function allows the programmer to
set the following three parameters to maximize efficient small block allocation for a
particular application:

size

number

grain

Below this value, requests to the malloc() function are filled using
the special small block algorithm. Initially, this value, which is
called maxfast, is zero, which means that the small block option is
not normally in use by malloc().

The number of small blocks in a holding block. If holding blocks
have many more small blocks than the program is using, space will
be wasted. If holding blocks are too small or have too few small
blocks in each, performance gain is lost.

The grain of small block sizes. This value determines what range of
small block sizes is considered the same size, which influences the
number of separate holding blocks allocated. For example, if the
grain parameter is l(i bytes, all small blocks of 16 bytes or less
belong to one holding block and blocks from 17 to 32 bytes belong
to another holding block. Thus, if the grain parameter is too small,
space may be wasted because many holding blocks are created.

The values for the command parameter to the mallopt() function are:

M_MXFAST Sets maxfast to the value parameter. The algorithm allocates all
blocks below the size of maxfast in large groups and then doles
thellJ: out very quickly. The default value for maxfast is 0 (zero),

M_NLBLKS Sets numblks to the value parameter. The aforementioned large
groups each contain numblks blocks. The value for numblks must
be greater than 1. The default value is 100.

M_GRAIN Sets grain to the value parameter (must be greater than 0 (zero)).

M_KEEP

The sizes of all blocks smaller than maxfast are considered to be
rounded up to the nearest multiple of grain. The default value for
the grain parameter is the smallest number of bytes that allows
alignment of any data type. When the grain parameter is set, the
value parameter is rounded up to a multiple of the default

Preserves data in a free block until the next call to the malloc(),
realloc(), or calloc() function. This option is provided only for
compatibility with the older version of the malloc() function and is
not recommended.

The mallopt(). function may be called repeatedly, but parameters cannot be
changed after the first small block is allocated from a holding block. If the
mallopt() function is called again after the first small block is allocated, it returns
an error.

Notes

Functions

malloc(3)

The mallinfo() function can be used during program development to determine the
best settings of these parameters for a particular application. It must only be called
after some storage has been allocated. Information describing space usage is
returned., Refer to the malloc.h file for details of the mallinfo structure.

The mallopt() and mallinfo() functions are not supported for multi-threaded
applications.

The mallopt() and mallinfo() functions are provided for System V compatibility
only, and should not be used by new, portable applications. The behavior of the
malloc() and free() functions may not be affected by calls to mallopt(). The
structure returned by the mallinfo() function may not contain any useful
information. The mallopt() and mallinfo() functions are designed for tuning a
specific algorithm. OSF/1 uses a new, more efficient algorithm.

The valloc() function found in many BSD systems is supported as a compatibility
interface in the Berkeley Compatibility Library (libbsd.a). The function of the
valloc() function is superceded by the malloc() function, which automatically
page aligns large (>= 1 page) requests. The valloc() syntax follows:

char *valloc (size)
unsigned int size;

AES Support Level: Full use (calloc(), free(), malloc(), realloc())

Return Values

Each of the allocation functions returns a pointer to space suitably aligned for
storage of any type of object. Cast the pointer to the type pointer-to-element before
using it.

The malloc(), realloc(), and calloc() functions return a null pointer if there is no
available memory or if the memory arena has been corrupted by storing outside the
bounds of a block. When this happens, the block pointed to by the pointer
parameter could be destroyed.

Upon successful completion, the mallopt() fuqction returns 0 (zero). Otherwise, a
nonzero value is returned.

The mallinfo() function returns a pointer to a mallinfo() structure, defined in the
malloc.h header file.

1-367

OSF/1 Programmer's Reference
mblen(3)

mblen

Purpose Determines the length in bytes of a multibyte character

Library
Standard C Library (libc.a)

Synopsis #include <stdlib.h>

int mblen(

Parameters

Description

Notes

1-368

const char *mbs,
size_t n);

mbs Points to a multibyte character string.

n Specifies the maximum number of bytes to consider.

The mblen() function determines the number of bytes in a multibyte character.
The behavior of the mblen() function is affected by the LC_CTYPE category of
the current locale. In environments with shift-state dependent encoding, calls to
mblen() with a null value for the mbs parameter place the function in the initial
shift state. Subsequent calls with the mbs parameter set to nonnull values alter the
state of the function as necessary. Changing the LC_CTYPE category of the locale
causes the shift state of the function to be indeterminate.

The implementation behaves as though no other function calls the mblen()
function.

AES Support Level: Full use

Functions

mblen(3)

Return Values

Errors

If the mbs parameter does not have a null pointer value, the mblen() function
returns a value determined as follows:

• If mbs points to a valid multibyte character other than null, mblen() returns
the number of bytes in the character unless the number of bytes is greater than
n.

• If mbs points to the null character, mblen() returns 0 (zero).

• If mbs does not point to a valid multibyte character or points to a character of
more than n bytes, mblen() returns -1 and sets errno to indicate the error.

When the mbs parameter is a null pointer, the return value depends on the
environment, as follows:

• In environments where encoding is not shift-state dependent, mblen() returns
0 (zero).

• In environments where encoding is shift-state dependent, mblen() returns a
nonzero value.

If the mblen() function fails, errno may be set to the following value:

[EINVAL] The mbs parameter points to an invalid multibyte character.

Related Information

Functions: mbtowc(3), wctomb(3), mbstowcs(3), wcstombs(3)

1-369

OSF/1 Programmer's Reference

mbstowcs(3)

mbstowcs

Purpose

Library

Converts a multibyte (single-byte or double-byte) character string to a wide
character string

Standard C Library (libc.a)

Synopsis #include <stdlib.h>

Parameters

Description

Notes

1-370

size_t mbstowcs(
wchar_t *pwcs,
const char *s,
size_t n);

pwcs Points to the array where the result of the conversion is stored.

s Points to the multibyte character string to be converted.

n Specifies the number of wide characters in the string to be
converted.

The mbstowcs() function converts a multibyte character string into a wide
character string, which is stored at a specified location. The mbstowcs() function
does not convert characters occurring after a null character in the input string
(which is converted to value 0 (zero)). When operating on overlapping strings, the
behavior of this function is undefined.

Behavior of the mbstowcs() function is affected by the LC_CTYPE category of
the current locale. In environments that use shift-state dependent encoding, the
array pointed to by the s parameter begins in the initial shift state.

AES Support Level: Full use

Functions

mbstowcs(3)

Return Values

Errors

When mbstowcs() encounters an invalid multibyte character during conversion,
(size _t) -1 is returned and errno is set to indicate the error. Otherwise,
mbstowcs() returns the number of wide characters stored in the output array, not
including a terminating null. (When the return value is n, the output array is not
null-terminated.)

If the mbstowcs() function fails, errno may be set to the following value:

[EINVAL] The s parameter points to a string containing an invalid multibyte
character.

Related Information

Functions: mblen(3), mbtowc(3), wctomb(3), wcstombs(3)

1-371

OSF/1 Programmer's Reference
mbtowc(3)

mbtowc

Purpose Converts a multibyte character to a wide character

Library
Standard C Library (libc.a)

Synopsis #include <stdlib.h>

Parameters

Description

Notes

1-372

int mbtowc(
wchar_t *pwc,
const char *s,
size_t n);

pwc Points to the wide character variable location.

s Points to multibyte character to be converted.

n Specifies the number of bytes in the multi byte character.

The mbtowc() function converts a multibyte character to a wide character and
returns the number of bytes of the multibyte character, which is stored as an output
variable. In environments with shift-state dependent encoding, calls to mbtowc()
with the s parameter set to null, places the function in its initial shift state.
Subsequent calls with the s parameter set to nonnull values alter the state of the
function as necessary. Changing the LC_CTYPE category of the locale causes the
shift state of the function to be unreliable.

The implementation behaves as though no other function calls the mbtowc()
function.

AES Support Level: Full use

Functions

mbtowc(3)

Return Values

Errors

When the s parameter is not a null pointer, the mbtowc() function returns the
following values:

• When s points to a valid multibyte character other than null, mbtowc()
returns the number of bytes in the character unless the character contains
more than the number of bytes specified by the n parameter.

• Whens points to a null character, mbtowc() returns 0 (zero).

• When s does not point to a valid multibyte character or points to a character
having more than the number of bytes expressed by the n parameter,
mbtowc() returns -1 and sets errno to indicate the error.

When the s parameter is a null pointer, the return value depends on the
environment in which the mbtowc() function is called, as follows:

• In environments where encoding is not state dependent, mbtowc() returns 0
(zero).

• In environments where encoding is state dependent, mbtowc() returns a
nonzero value.

In no case is the return value greater than the value specified by the n parameter or
the value of the MB CUR MAX macro.

If the mbtowc() function fails, errno may be set to the following value:

[EINVAL] The s parameter points to an invalid multibyte character.

Related Information

Functions: mblen(3), wctomb(3), mbstowcs(3), wcstombs(3)

1-373

OSF/1 Programmer's Reference

memccpy(3)

memccpy, memchr, memcmp, memcpy, memset,
memmove

Purpose Performs memory operations

Library
Standard C Library (libc.a)

Synopsis #include <string.h>

1-374

void *memccpy(
void *sl,
const void * s2,
int c,
size_t n) ;

void *memchr(
const void *s,
int c,
size_t n);

int memcmp(
const void *sl,
const void * s2,
size_t n);

void *memcpy(
void *sl,
const void * s2,
size_t n);

void *memmove(
void *sl,
const void *s2,
size_t n);

void *memset(
void *s,
int c,
size_t n);

Parameters

Description

s

sl

s2

c

n

Points to the location of a string.

Points to the location of a destination string.

Points to the location of a source string.

Specifies a character for which to search.

Specifies the number of characters to search.

Functions

memccpy(3)

The memccpy(), memchr(), memcmp(), memcpy(), memset(), and
memmove() functions operate on strings in memory areas. A memory area is a
group of contiguous characters bound by a count and not terminated by a null
character. These memory functions do not check for overflow of the receiving
memory area. All of these memory functions are declared in the string.h header
file.

The memccpy() function sequentially copies characters from the location pointed
to by the sl parameter into the location pointed to by the s2 parameter until one of
the following occurs:

• The character specified by the c parameter (which is converted to an
unsigned int) is encountered.

• The number of characters specified by the n parameter have been copied to
the string at location sl.

A pointer to character c in the string pointed to by sl is returned. When character c
is not encountered after n characters have been copied to the string at location sl, a
null pointer is returned.

The memchr() function sequentially searches the string at the location pointed to
by the s parameter until one of the following occurs:

• The character specified by the c parameter (which is conveted to an unsigned
int) is encountered.
~·1__ " ______ 1_ ___ _ f! _1 ______ ,,.. ____ -----~,c. __ 11_ __ .._1 __ - __________ ,._ ___ 1_ ____ 1 _____ ----~-_:I"--

lllC HUH1uc1 u1 l'Uilli1l'Lc1:s :spcl01ucu uy LUC rt pillillllCLCl Hi1VC uccH l0up1cu LU

the string at locations.

A pointer to character c in the string pointed to by s is returned. When character c
is not encountered after n characters have been copied to the string at location s, a
null pointer is returned.

The memcmp() function compares the first n characters (which are converted to
unsigned char) of the string pointed to by the sl parameter with the first n
characters (also interpreted as unsigned char) of the string pointed to by the s2
parameter.

1-375

OSF/1 Programmer's Reference
memccpy(3)

Notes

The memcmp() function uses native character comparison, which may have
signed values on some machines. This function returns one of the following values:

Less than 0 When sl is less than s2

Equal to 0 When sl is equal to s2

Greater than 0 When sl is greater than s2

The memcpy() function copies n characters from the string pointed to by the s2
parameter into the location pointed to by the sl parameter. When copying
overlapping strings, the behavior of this function is unreliable.

The memset() function copies the ·value of the character specified by the c
parameter (which is converted to an unsigned char) into each of the first n
locations of the string pointed to by the s parameter.

The memmove() function copies n characters from the string at the location
pointed to by the s2 parameter to the string at the location pointed to by the sl
parameter. Copying takes place as though then number of characters from string
s2 are first copied into a temporary location having n bytes that do not overlap
either of the strings pointed to by sl and s2. Then, n number of characters from the
temporary location are copied to the string pointed to by sl. Consequently, this
operation is nondestructive and proceeds from left to right.

AES Support Level: Full use (memchr(), memcmp(), memcpy(), memmove(),
memset())
Trial use (memccpy())

Return Values

1-376

The memccpy() function returns a pointer to the character following the character
specified by the c parameter in the string pointed to by the sl parameter. When
character c is not found after the number of characters specified by the n parameter
are scanned, a null pointer is returned.

The memccpy() function returns a pointer to the character specified by the c
parameter. When character c does not occur after n characters in the string pointed
to by the s parameter are scanned, a null pointer is returned.

The memcmp() function returns a value greater than, equal to, or less than 0
(zero), accordingly as the string pointed to by the sl parameter has a value greater
than, equal to, or less than the string pointed to by the s2 parameter.

Functions

memccpy(3)

The memcpy() and memmove() functions return the string pointed to by the sl
parameter.

The memset() function returns the string pointed to by the s parameter.

Related Information

Functions: string(3), swab(3)

1-377

OSF/1 Programmer's Reference
mkdir(2)

mkdir

Purpose

Synopsis

Parameters

Description

1-378

Creates a directory

#include <sys/stat.h>

#include <sys/types.h>

int mkdir (
const char *path,
mode_t mode);

path Specifies the name of the new directory. If NFS is installed on your
system, this path can cross into another node. In this case, the new
directory is created at that node. If the final component of the path
parameter refers to a symbolic link, the link is traversed and
pathname resolution continues.

mode Specifies the mask for the read, write, and execute (RWX) flags for
owner, group, and others.

The mkdir() function creates a new directory with the following attributes:

• The owner ID is set to the process's effective user ID.

• The group ID is set to the group ID of its parent directory.

• Permission and attribute bits are set according to the value of the mode
parameter modified by the process's file creation mask (see the umask()
function). This parameter is constructed by logically ORing values described
in the sys/stat.h header file.

• The new directory is empty, except for. (dot) and •• (dot-dot).

To execute the mkdir() function, a process must have search permission to get to
the parent directory of the path parameter and write permission in the parent
directory of the path parameter with respect to all of the system's configured access
control policies.

Notes

Functions

mkdir(2)

Upon successful completion, the mkdir() function marks the st atime, st ctime,
and st_mtime fields of the directory for update, and marks the st_ctime and
st_ mtime fields of the new directory's parent directory for update.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the mkdir() function returns a value of 0 (zero). If
the mkdir() function fails, a value of -1 is returned, and errno is set to indicate the
error.

If the mkdir() function fails, the directory is not created and errno may be set to
one of the following values:

[EACCES] Creating the requested directory requires writing in a directory with
a mode that denies write permission, or search permission is denied
on the parent directory of the directory to be created.

[EEXIST] The named file already exists.

[EMLINK] The link count of the parent directory would exceed LINK_MAX.

[ELOOP] Too many links were encountered in translating path.

[EFAULT] The path parameter is an invalid address.

[ENAMETOOLONG]
The length of the path parameter exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

[ENOENT] A component of the path parameter does not exist or points to an
empty string.

[EROFS] The named file resides on a read-only file system.

[ENOSPC] The file system does not contain enough space to hold the contents
of the new directory or to extend the parent directory of the new
directory.

[EDQUOT] The directory in which the entry for the new link is being placed
cannot be extended because the user's quota of disk blocks or i­
nodes on the file system containing the directory is exhausted.

[ENOTDIR] A component of the path prefix is not a directory.

1-379

OSF/1 Programmer's Reference
mkdir(2)

Related Information

1-380

Functions: chmod(2), mknod(2), rmdir(2), umask(2)

Commands: chmod(l), mkdir(l), mknod(8)

Functions

mkflfo(3)

mkfifo

Purpose Creates a FIFO

Library
Standard C Library (Jibe.a)

Synopsis #include <sys/types.h>
#include <sys/stat.h>

Parameters

Description

Notes

int mkfifo (
const char *path,
mode_t mode);

path Names the new file. If the final component of the path parameter
names a symbolic link, the link will be traversed and pathname
resolution will continue.

mode Specifies the type, attributes, and access permissions of the file. This
parameter is constructed by logically ORing values described in the
sys/mode.h header file.

The mkfifo() function is an interface to the mknod() function, where the file to be
m:ated is a FIFO special file. No special system privileges are required.

Upon successful completion, the mkfifo() function marks the st_atime, st_ctime,
and st_mtime fields of the file for update, and sets the st_ctime and st_mtime
fields of the directory that contains the new entry for update.

AES Support Level: Full use

1-381

OSF/1 Programmer's Reference

mkfifo(3)

Return Values

Errors

Upon successful completion of mkfifo(), a value of 0 (zero) is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the mkfifo() function fails, the new file is not created and errno may be set to
one of the following values:

[EACCES] A component of the path prefix denies search permission, or write
permission is denied on the parent directory of the FIFO to be
created.

[EPERM] The mode parameter specifies a file type other than S_IFIFO and the
calling process does not have the DEV _CONFIG system privilege.

[EEXIST] The named file exists.

[EROFS] The directory in which the file is to be created is located on a read­
only file system.

[ENOSPC] The directory that would contain the new file cannot be extended or
the file system is out of file allocation resources.

[EDQUOT] The directory in which the entry for the new link is being placed
cannot be extended because the user's quota of disk blocks or inodes
on the file system is exhausted.

[ELOOP] Too many links were encountered in translating path.

[ENAMETOOLONG]
The length of the path parameter exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

[ENOENT] A component of the path prefix does not exist or the path parameter
points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

Related Information

1-382

Functions: chmod(2), mkdir(2), mknod(2), open(2), stat(2), umask(2)

Commands: chmod(l), mkdir(l)

mknod

Purpose

Library

Synopsis

Parameters

Description

Functions

mknod(2)

Creates an FIFO or special file

Standard C Library (libc.a)

#include <sys/types.h>
#include <sys/stat.h>

int mknod (

path

mode

device

const char *path,
int mode,
dev _ t device) ;

Names the new file. If the final component of the path parameter
names a symbolic link, the link will be traversed and pathname
resolution will continue.

Specifies the file type, attributes, and access permissions. This
parameter is constructed by logically ORing values described in the
sys/mode.h header file.

Depends upon the configuration and is used only if the mode
parameter specifies a block or character special file. If the file you
specify is a remote file, the value of the device parameter must be
meaningful on the node where the file resides.

The mknod() function creates a special file or FIFO. Using the mknod() function
to create file types other than FIFO special requires superuser privilege.

For the mknod() function to complete successfully, a process must have search
permission and write permission in the parent directory of the path parameter.

The new file has the following characteristics:

• File type as specified by the mode parameter.

• Owner ID set to the process effective user ID.

1-383

OSF/1 Programmer's Reference
mknod(2)

• Group ID set to the group ID of its parent directory.

• Permission and attribute bits set according to the value of the mode parameter.
All bits set in the process file mode creation mask are cleared. See the
umask() function.

Return Values

Errors

1-384

Upon successful completion of the mknod() function a value of 0 (zero) is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the mknod() function fails, the new file is not created and errno may be set to
one of the following values:

[EACCES]

[EPERM]

[EEXIST]

[EROFS]

[ENOSPC]

[EDQUOT]

A component of the path prefix denies search permission, or write
permission is denied on the parent directory of the FIFO to be
created.

The mode parameter specifies a file type other than FIFO and the
calling process does not have the sufficient privilege.

The named file exists.

The directory in which the file is to be created is located on a read­
only file system.

The directory that would contain the new file cannot be extended or
the file system is out of file allocation resources.

The directory in which the entry for the new link is being placed
cannot be extended because the user's quota of disk blocks or inodes
on the file system is exhausted.

[ENAMETOOLONG]
The length of the path parameter exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

[ENOENT] A component of the path prefix does not exist or the path parameter
points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

Related Information

Functions: chmod(2), mkdir(2), open(2), umask(2), stat(2)

Commands: chmod(l), mkdir(l)

Functions

mknod{2)

1-385

OSF/1 Programmer's Reference
mktemp(3)

mktemp, mkstemp

Purpose Constructs a unique filename

Library
Standard C Library (libc.a),
Berkeley Compatibility Library (libbsd.a)

Synopsis char *mktemp (

Parameters

Description

Notes

char *template);

char *mkstemp (

template

char *template);

Points to a string to be replaced with a unique filename. The string
in the template parameter must be a filename with six trailing "X"s.

The mktemp() function replaces the contents of the string pointed to by the
template parameter with a unique filename.

To get the BSD version of this function, compile with the Berkeley Compatibility
Library (libbsd.a).

The mkstemp() function performs the same substitution to the template name and
also opens the file for reading and writing.

In BSD systems, the mkstemp() function was intended to avoid a race condition
between generating a temporary name and creating the file. Because the name
generation in this system is more random, this race condition is less likely.

Return Values

1-386

Upon successful completion, the mktemp() function returns the address of the
string pointed to by the template parameter.

Functions

mktemp(3)

If the string pointed to by the template parameter contains no "X''s, or if the
mktemp() function is unable to construct a unique filename, the first character of
the template parameter string is replaced with a null character, and a null pointer is
returned.

Upon successful completion, the mkstemp() function returns an open file
descriptor. If the mkstemp() function fails, it returns a value of -1.

Related Information

Functions: tmpfile(3), tmpnam(3), getpid(2)

1-387

OSF/1 Programmer's Reference
mktlmer(3)

mktimer

Purpose Allocates a per-process timer

Library
Standard C Library (libc.a)

Synopsis #include <sys/timers.h>

Parameters

Description

1-388

timer_ t mktimer(
int clock_ type,
int notify_ type,
void *reserved) ;

clock_ type Specifies the system-wide clock to be used as a per-process time
base for the new timer.

notify_type Specifies the mechanism by which a process is to be notified when
the per-process timer times out.

reserved Not used.

The mktimer() function is used to allocate a per-process timer using a specified
system-wide clock as its timebase. The mktimer() function returns a unique timer
ID of type timer_t, which is used to identify the timer in per-process timer
requests.

Each implementation of per-process timers defines a set of clocks that can be used
as a time base for per-process timers, and one or more mechanisms for notifying
the process that a per-process timer has expired. OSF/1 allows each process to
allocate one per-process timer whose clock_ type parameter is specified by the
TIMEOFDAY symbolic constant, which is defined in the timers.h include file,
using the notification mechanism whose notify_ type parameter is specified by the
DELIVERY _SIGNALS symbolic constant.

When the notify_ type parameter is specified as DELIVERY _SIGNALS, the system
sends a SIGALRM signal to the process whenever the timer expires.

Notes

Functions

mktlmer(3)

Per-process timers are not inherited by a child process across fork() or exec()
functions.

The reserved parameter is not currently used, but is specified for future support of
other delivery mechanisms.

The mktimer() function is part of the POSIX 1003.4 real time extensions, which is
not an approved standard. As such, it is liable to change.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the mktimer() function returns a timer _t value,
which may be passed to a per-process timer call. Otherwise, mktimer() returns a
value of (timer _t)-1 and sets errno to indicate the error.

If the mktimer() function fails, errno may be set to one of the following values:

[EAGAIN] The calling process has already allocated all available timers.

[EINVAL] The clock_type or notify_type parameter is invalid.

Related Information

Functions: exec(2), fork(2), getclock(3), gettimer(3), reltimer(3), rmtimer(3),
setclock(3)

1-389

OSF/1 Programmer's Reference
mmap(2)

mmap

Purpose Maps file system object into virtual memory

Synopsis #include <sys/types.h>

#include <sys/mman.h>

caddr _ t mmap (
caddr_t addr,
size_t ten,

Parameters

Description

1-390

addr

Zen

prot

flags

filedes

off

int prot,
int.flags,
intjitedes,
otf_t off);

Specifies the starting address of the new region.

Specifies the length in bytes of the new region.

Specifies access permissions as any combination of PROT_READ,
PROT_ WRITE and PROT_EXEC ORed together, or PROT_NONE.

Specifies attributes of the mapped region with any combination of
MAP _FILE, MAP _ANONYMOUS, MAP_ VARIABLE,
MAP _FIXED, MAP _SHARED, or MAP _PRIVATE, ORed
together.

Specifies the file to be mapped to the new mapped file region.

Specifies the offset for the address.

The mmap() function creates a new mapped file or shared memory region.

The addr and ten parameters specify the requested starting address and length in
bytes for the new region. This address is a multiple of the page size returned by
sysconf(_SC_PAGE_SIZE).

If the ten parameter is not a multiple of the page size returned by
sysconf(_SC_PAGE_SIZE), then the result of any reference to an address
between the . end of the region and the end of the page containing the end of the
region is undefined.

Functions

mmap{2)

The flags parameter specifies attributes of the mapped region. Values of the flags
parameter are constructed by bitwise-inclusive ORing flags from the following list
of symbolic names defined in the sys/mman.h file:

MAP _FILE Create a mapped file region.

MAP _ANONYMOUS
Create an unnamed memory region.

MAP_ VARIABLE
Pl.ice region at the computed address.

MAP _FIXED Place region at fixed address.

MAP_SHARED
Share changes.

MAP _PRIVATE
Changes are private.

The MAP _FILE and MAP _ANONYMOUS flags control whether the region to be
mapped is a mapped file region or an anonymous shared memory region. Exactly
one of these flags must be selected.

If MAP _FILE is set in the flags parameter:

• A new mapped file region is created, mapping the file associated with the
filedes parameter.

• The off parameter specifies the file byte offset at which the mapping starts.
This offset must be a multiple of the page size returned by
sysconf(_SC_PAGE_SIZE).

• If the end of the mapped file region is beyond the end of the file, the result of
any reference to an address in the mapped file region corresponding to an
offset beyond the end of the file is unspecified.

If MAP _ANONYMOUS is set in the flags parameter:

• A new memory region is created and initialized to all zeros. This memory
region can be shared only with descendents of the current process.

• If the filedes parameter is not -1, the mmap() function fails.

The new region is placed at the requested address if the requested address is not
null and it is possible to place the region at this address. The MAP_ VARIABLE
and MAP _FIXED flags control the placement of the region when the requested
address is null or the region cannot be placed at the requested address. A region is
never placed at address zero, or at an address where it would overlap with an
existing region. Exactly one of these flags must be selected.

1-391

OSF/1 Programmer's Reference
mmap{2)

1-392

If MAP_ VARIABLE is set in the flags parameter:

• If the requested address is null, or if it is not possible for the system to place
the region at the requested address, the region is placed at an address selected
by the system.

If MAP _FIXED is set in the flags parameter:

• If the requested address is not null, and it is not possible for the region to be
placed at this address, the mmap() function fails.

• If the requested address is null, the region is placed at the default exact
mapping address for the region. If there is no default exact mapping address
for the region, the region is placed at an address selected by the system, and
this address becomes the default exact mapping address for all subsequent
attempts to map the same region, until all mappings of the region are
unmapped. If it is not possible to place the region at the default exact
mapping address, the mmap() function fails. Two mapped file regions are
considered the same region for the purpose of default exact mapping if they
map the same file and start at the same file offset.

The MAP _PRIVATE and MAP _SHARED flags control the visibility of
modifications to the mapped file or shared memory region. Exactly one of these
flags must be selected.

If MAP _SHARED is set in the flags parameter:

• If the region is a mapped file region, modifications to the region are visible to
other processes which have mapped the same region using MAP _SHARED.

• If the region is a mapped file region, modifications to die region are written to
the file.

If MAP _PRIVATE is set in the flags parameter:

• Modifications to the mapped region by the calling process are not visible to
other processes which have mapped the same region using either
MAP _PRIVATE or MAP _SHARED.

• Modifications to the mapped region by the calling process are not written to
the file.

It is unspecified whether modifications by processes which have mapped the region
using MAP _SHARED are visible to other processes which have mapped the same
region using MAP _PRIVATE.

Functions

mmap{2)

The prot parameter specifies the mapped region's access permissions. The
sys/mman.h header file defines the following access options:

PROT_READ
The mapped region can be read.

PROT_WRITE
The mapped region can be written.

PROT _EXEC The mapped region can be executed.

PROT_NONE
The mapped region cannot be accessed.

The prot parameter can be PROT_NONE or any combination of PROT_READ,
PROT_WRITE, and PROT_EXEC ORed together. If PROT_NONE is not
specified, access permissions may be granted to the region in addition to those
explicitly requested, except that write access is not granted unless PROT_ WRITE
is specified.

If the region is a mapped file that was mapped with MAP _SHARED, the mmap()
function grants read or execute access permission only if the file descriptor used to
map the file is open for reading, and grants write access permission only if the file
descriptor used to map the file is open for writing. If the region is a mapped file
which was mapped with MAP _PRIVATE, the mmap() function grants read, write,
or execute access permission only if the file descriptor used to map the file is open
for reading. If the region is a shared memory region which was mapped with
MAP _ANONYMOUS, the mmap() function grants all requested access
permissions.

After the successful completion of the mmap() function, the filedes parameter may
be closed without effect on the mapped region or on the contents of the mapped
file. Each mapped region creates a file reference, similar to an open file descriptor,
which prevents the file data from being deallocated.

Whether modifications made to the file using the write() function are visible to
mapped regions, and whether modifications to a mapped region are visible with the
read() function, is undefined, except for the effect of the msync() function.

After a call to the fork() function, the chiid process inherits all mapped regions
with the same sharing and protection attributes as in the parent process. Each
mapped file and shared memory region created with the mmap() function is
unmapped by a successful call to any of the exec functions, unless that region is
made inheritable across exec.

1-393

OSF/1 Programmer's Reference

mmap(2)

Notes
Note that memory acquired with the mmap() function is not locked, regardless of
the previous use of the plock() function.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the mmap() function returns the address at which the
mapping was placed. Otherwise, mmap() returns (caddr_t)-1 and sets errno to
indicate the the error.

If the mmap() function fails, errno may be set to one of the following values:

[EACCES] The file referred to by filedes is not open for read access, or the file
is not open for write access and PROT_ WRITE was set for a
MAP _SHARED mapping operation.

[EBADF] The filedes parameter is not a valid file descriptor.

[EINVAL] The flags or prot parameter is invalid, or the addr parameter or off
parameter is not a multiple of the page size returned by
sysconf(_SC_PAGE_SIZE).

[ENODEV] The file descriptor filedes refers to an object that cannot be mapped,
such as a terminal.

[ENOMEM] There is not enough address space to map !en bytes, or
MAP _FIXED was set and part of the address space range [addr,
addr + !en) is already allocated.

[ENXIO] The addresses specified by the range [off, off+ !en) are invalid for
filedes.

[EINVAL] MAP _ANONYMOUS was specified infiags andfiledes is not-1.

[EFAULT] The addr parameter is an invalid address.

Related Information

1-394

Functions: fcntl(2), fork(2), madvise(2), mprotect(2), msync(2), munmap(2),
plock(2), sysconf(3)

Functions
mount{2)

mount, umount

Purpose Mounts or unmounts a file system

Synopsis #include <sys/mount.h>

Parameters

mount(
int type,
char *dir,
int mnt_flag,
caddr_t data);

umount(

type

dir

mntJlag

char *dir,
int umnt_flag);

Defines the type of the file system. The types of file systems defined
in the sys/mount.h header file are MOUNT_NONE, MOUNT_UFS,
MOUNT_NFS, MOUNT_MFS, and MOUNT_S5FS.

Points to a null-terminated string containing the appropriate
pathname.

Specifies whether certain semantics should be suppressed when
accessing the file system. Valid flags are:

M_RDONLY
The file system should be treated as read-only; no writing is
allowed (even by a process with appropriate privilege).
Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access
times are updated, whether or not any explicit write is
attempted.

M_NOEXEC
Do not allow files to be executed from the file system.

M_NOSUID
Do not honor setuid or setgid bits on files when executing
them.

1-395

OSF/1 Programmer's Reference
mount(2)

Description

1-396

data

umnt_flag

M_NODEV
Do not interpret special files on the file system.

M_SYNCHRONOUS
All 1/0 to the file system should be done synchronously.

M_FMOUNT
Forcibly mount, even if the file system is unclean.

M_UPDATE
The mount command is being applied to an already mounted
file system. This allows the mount flags to be changed
without requiring that the file system be umounted and
remounted.

Some file systems may not allow all flags to be changed. For
example, most file systems do not allow a change from read-write to
read-only.

Points to a structure that contains the type-specific parameters to
mount.

Specifies one of the following values:

MNT_NOFORCE or MNT_ WAIT
The umount should fail if any files are active on the file
system.

MNT_FORCE or MNT_NOWAIT
The file system should be forcibly umounted even if files are
still active. Active special devices continue to work, but any
further accesses to any other active files result in errors even
if the file system is later remounted. Support for forcible
unmount is filesystem dependent.

The mount() function mounts a file system on the directory pointed to by the dir
parameter. Following the mount, references to dir refer to the root directory on the
newly mounted file system.

The dir parameter must point to a directory that already exists. Its old contents are
inaccessible while the file system is mounted.

The umount() function unmounts a file system mounted at the directory pointed to
by the dir parameter. The associated directory reverts to its ordinary interpretation.

To call either the mount() or umount() function, the calling process must have
superuser privilege.

Notes

Functions
mount(2)

Two mount() functions are supported by OSF/1: the BSD mount() and the System
V mount(). The default mount() function is the BSD mount() documented on
this reference page. To use the System V version of mount(), you must link with
the libsys5 library before you link with libc.

Return Value

Errors

The mount() function returns 0 (zero) if the file system was successfully mounted.
Otherwise, -1 is returned. The mount can fail if the dir parameter does not exist or
is not a directory. For a UFS or SSFS file system, the mount can fail if the special
device specified in the ufs_args structure is inaccessible, is not an appropriate file,
or is already mounted. A UFS, MFS, or SSFS mount can also fail if there are
already too many file systems mounted.

The umount() function returns 0 (zero) Ef the file system was successfully
unmounted. Otherwise, -1 is returned. The unmount will fail if there are active
files in the mounted file system.

If the mount() function fails, errno may be set to one of the following values:

[EPERM] The caller does not have appropriate privilege.

[ENAMETOOLONG]
A component of a pathname exceeded NAME_MAX characters, or
an entire pathname exceeded P ATH_MAX characters.

[ELOOP] Too many symbolic links were encountered in translating a
pathname.

[ENO ENT] A component of the dir parameter does not exist.

[ENOTDIR] A component of the name parameter is not a directory, or a path
prefix of the special parameter is not a directory.

[EINVAL]

[EBUSY]

[EDIRTY]

[EFAULT]

A pathname contains a character with the high-order bit set.

Another process currently holds a reterence to the dir parameter.

The file system is not clean and M_FORCE is not set.

The dir parameter points outside the process' allocated address
space.

The following errors can occur for a UFS or SSFS file system mount:

[ENO DEV] A component of ufs _ args fspec does not exist.

[ENOTBLK] The fspec field is not a block device.

1-397

OSF/1 Programmer's Reference
mount(2)

1-398

[ENXIO] The major device number of fspec is out of range (this indicates no
device driver exists for the associated hardware).

[EBUSY] The device pointed to by the fspec field is already mounted.

[EMFILE] No space remains in the mount table.

[EINVAL] The super block for the file system had a bad magic number or an
out of range block size.

[ENOMEM] Not enough memory was available to read the cylinder group
information for the file system.

[EIO] An 1/0 error occurred while reading the super block or cylinder
group information.

[EFAULT] The fspec field points outside the process' allocated address space.

The following errors can occur for a NFS compatible file system mount:

[ETIMEDOUT]
NFS timed out trying to contact the server.

[EFAULT] Some part of the information described by nfs_args points outside
the process' allocated address space.

The following errors can occur for a MFS file system mount:

[EMFILE] No space remains in the mount table.

[EINVAL] The super block for the file system had a bad magic number or an
out of range block size.

[ENOMEM] Not enough memory was available to read the cylinder group
information for the file system.

[EIO] A paging error occurred while reading the super block or cylinder
group information.

[EFAULT] The name field points outside the process' allocated address space.

If the umount() functiqn fails, errno may be set to one of the following values:

[EPERM] The caller does not have appropriate privilege.

[ENOTDIR] A component of the path is not a directory.

Functions
mount(2)

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded NAME_MAX characters, or
an entire pathname exceeded PATH_MAX characters.

[ELOOP] Too many symbolic links were encountered in translating the
pathname.

[EINVAL] The requested directory is not in the mount table.

[EBUSY] A process is holding a reference to a file located on the file system.

[EIO] An 1/0 error occurred while writing cached file system information.

[EFAULT] The dir parameter points outside the process' allocated address
space.

Related Information

Commands: mount(8)

1-399

OSF/1 Programmer's Reference
mount(3)

mount

Purpose Mounts a file system

Library
System V Compatibility Library (libsys5.a)

Synopsis #include <sys/mount.h>

Parameters

Description

1-400

int mount(

spec

dir

rwflag

char *spec,
char *dir,
int rwflag);

Points to the pathname of the file system to be mounted.

Points to the pathname of the directory on which spec will be
mounted.

Specifies whether write permission is permitted on the mounted file
system.

The mount() function mounts a removable file system contained on the block
special file pointed to by the spec parameter onto the directory pointed to by the dir
parameter.

The rwflag parameter controls whether write permission is permitted on the new
mounted file system. If rwflag is specified as 1, writing is forbidden. Otherwise,
writing is permitted according to individual file accessibility.

The mount() function can only be invoked by the superuser.

Notes

Functions
mount(3)

Two mount() functions are supported by OSF/l: the BSD mount() and the System
V mount(). The default mount() function is the BSD mount(). To use the
version of mount() documented on this reference page, you must link with the
libsys5 library before you link with libc.

Return Value

Errors

The mount() function returns 0 (zero) if the file system was successfully mounted.
Otherwise, -1 is returned and errno is set to indicate the error.

If the mount() function fails, errno may be set to one of the following values:

[EPERM] The effective user ID of the calling process is not root.

[ENOENT] The spec or dir parameter points to a pathname that does not exist.

[ENOTDIR] A component of the path prefix of either spec or dir is not a
directory.

[ENOTBLK] The device identified by spec is not a block-special device.

[ENXIO] The device identified by spec does not exist.

[ENOTDIR] The pathname pointed to by dir is not a directory.

[EBUSY] Either dir has already been mounted onto, dir is a current working
directory for some process, or dir is otherwise busy; or spec is
already mounted; or the system mount table is full.

Related Information

Commands: mount(8)

1-401

OSF/1 Programmer's Reference
mp(3)

madd, msub, mult, mdiv, pow, gcd, invert, rpow,
msqrt, mcmp, move, min, omin, fmin, m_in,
mout, omout, fmout, m_out, sdiv, itom

Purpose Performs multiple precision integer arithmetic

Library
Object Code Library (libmp.a)

Synopsis #include <mp.h>
#include <stdio.h>

1-402

typedef struct mint {int len; short *val;} MINT;

madd(

msub(

molt(

mdiv(

pow(

MINT *a,
MINT *b,
MINT *c);

MINT *a,
MINT *b,
MINT *c);

MINT*a,
MINT*b,
MINT *c);

MINT *a,
MINT *b,
MINT *q,
MINT *r);

MINT *a,
MINT *b,
MINT*m,
MINT *c);

Functions

mp(3)

gcd(
MINT *a,
MINT *b,
MINT *c);

invert(
MINT*a,
MINT*b,
MINT *c);

rpow(
MINT*a,
int n,
MINT *c);

msqrt(
MINT*a,
MINT*b,
MINT *r);

mcmp(
MINT *a,
MINT *b);

move(
MINT*a,
MINT *b);

min(
MINT *a);

omin(
MINT *a);

fmin(
MINT*a,
FILE *f);

m_in(
MINT*a,
int n,
FILE *f);

mout(
MINT *a);

omout(
MINT *a);

1-403

OSF/1 Programmer's Reference
mp(3}

Description

1-404

fmout(
MINT*a,
FILE*/);

m_out(
MINT *a,
int n,
FILE*/);

sdiv(
MINT *a,
short n,
MINT *q,
short *r);

*itom(
short n);

These functions perform arithmetic on integers of arbitrary length. The integers
are stored using the defined type MINT. Pointers to a MINT can be initialized
using the itom() function, which sets the initial value to n. After that, space is
managed automatically by the routines.

The madd(), msub() , and mult() functions assign to c the sum, difference, and
product, respectively, of a and b.

The mdiv() function assigns to q and r the quotient and remainder obtained from
dividing a by b. The sdiv() function is like the mdiv() function except that the
divisor is a short integer n and the remainder is placed in a short integer whose
address is given as r.

The msqrt() function produces the integer square root of a in b and places the
remainder in r.

The rpow() function calculates in c the value of a raised to the ("regular"
integral) power n, while the pow() function calculates this with a full multiple
precision exponent b and the result is reduced modulo m.

The gcd() function returns the greatest common denominator of a and b in c, and
the invert() function computes c such that a*c mod b = 1, for a and b relatively
prime.

The mcmp() function returns a negative, zero, or positive integer value when a is
less than, equal to, or greater than b, respectively.

The move() function copies a to b.

Notes

Functions
mp(3)

The min() and moot() functions do decimal input and output while the omin()
and omout() functions do octal input and output. More generally, the fmin() and
fmout() functions do decimal input and output using file/, and m_in() and m_out
do input and output with arbitrary radix n.

On input, records should have the form of strings of digits terminated by a newline;
output records have a similar form.

Programs which use the multiple-precision arithmetic library must be compiled
with -Imp.

1-405

OSF/1 Programmer's Reference
mprotect{2)

mprotect

Purpose Modifies access protections of memory mapping

Synopsis #include <sys/types.h>

#include <sys/mman.h>

int mprotect (

Parameters

Description

1-406

caddr _ t addr,
size_t /en,
intprof);

addr Specifies the address of the region to be modified.

/en Specifies the length in bytes of the region to be modified.

prof Specifies access permissions as any combination of PROT _READ,
PROT_ WRITE, and PROT_EXEC ORed together, or
PROT_NONE.

The mprotect() function modifies the access protection of a mapped file or shared
memory region. The addr and /en parameters specify the address and length in
bytes of the region to be modified. The /en parameter must be a multiple of the
page size as returned by sysconf(_ SC_ PAGE_ SIZE). If len is not a multiple of
the page size as returned by sysconf(_SC_PAGE_SIZE), the length of the region
will be rounded up to the next multiple of the page size.

The prof parameter specifies the new access protection for the region. The
sys/mman.h header file defines the following access options:

PROT_READ
The mapped region can be read.

PROT_WRITE
The mapped region can be written.

PROT_EXEC The mapped region can be executed.

PROT_NONE
The mapped region cannot be accessed.

The prof parameter can be PROT_NONE, or any combination of PROT_READ,
PROT_WRITE, and PROT_EXEC ORed together. If PROT_NONE is not

Notes

Functions

mprotect(2)

specified, access permissions may be granted to the region in addition to those
explicitly requested, except that write access will not be granted unless
PROT_ WRITE is specified.

If the region is a mapped file which was mapped with MAP _SHARED, the
mprotect() function grants read or execute access permission only if the file
descriptor used to map the file is open for reading, and grants write access
permission only if the file descriptor used to map the file is open for writing. If the
region is a mapped file which was mapped with MAP _PRIVATE, the mprotect()
function grants read, write, or execute access permission only if the file descriptor
used to map the file is open for reading. If the region is a shared memory region
which was mapped with MAP _ANONYMOUS, the mprotect() function grants all
requested access permissions.

The mprotect() function does not modify the access permission of any region
which lies outside of the specified region, except that the effect on addresses
between the end of the region and the end of the page containing the end of the
region is unspecified.

If the mprotect() function fails under a condition other than that specified by
[EINVAL], the access protection of some of the pages in the range [addr, addr +
fen) may have been changed. Suppose the error occurs on some page at an addr2;
mprotect() may have modified the protections of all whole pages in the range
[addr, addr2).

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the mprotect() function returns 0 (zero). Otherwise,
mprotect() returns -1 and sets errno to indicate the error.

if the mprotect() function fails, errno may be set to one of the following values:

[EACCES] The prot parameter specifies a protection that conflicts with the
access permission set for the underlying file.

[EINVAL] The prot parameter is invalid, or the addr parameter is not a
multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

1-407

OSF/1 Programmer's Reference
mprotect(2)

[EFAULT] The range [addr, addr +ten) includes an invalid address.

Related Information

Functions: getpagesize(2), mmap(2), msync(2), sysconf(3)

1-408

Functions
msem_lnit(3)

msem_init

Purpose Initializes a semaphore in a mapped file or shared memory region

Library
Standard C Library (libc.a)

Synopsis #include <sys/mman.h>

msemaphore *msem_init (
msemaphore *sem,
int initial_value);

Parameters

Description

sem Points to an msemaphore structure in which the state of the
semaphore is stored.

initial value Determines whether the semaphore is locked or unlocked at
allocation.

The msem _init() function allocates a new binary semaphore and initializes the
state of the new semaphore.

If the initial_value parameter is MSEM_LOCKED, the new semaphore is
initialized in the locked state. If the initial_ value parameter is
MSEM_UNLOCKED, the new semaphore is initialized in the unlocked state.

The msemaphore structure is located within a mapped file or shared memory
region created by a successful call to the mmap() function and having both read
and write access.

If a semaphore is l:teaie<l in a mappe<l lilt:: region, llllY reforence by a process which
has mapped the same file, using a (struct msemaphore *) pointer which resolves
to the same file offset, is taken as a reference to the same semaphore. If a
semaphore is created in an anonymous shared memory region, any reference by a
process which shares the same region, using a (struct msemaphore *) pointer
which resolves to the same offset from the start of the region, is taken as a
reference to the same semaphore.

Any previous semaphore state stored in the msemaphore structure is ignored and
overwritten.

1-409

OSF/1 Programmer's Reference
msem_init(3)

Notes

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the msem_init() function returns a pointer to the
initialized msemaphore structure. On error, the msem_init() function returns null
and sets errno to indicate the error.

If the msem_init() function fails, errno may be set to one of the following values:

[EINVAL] The initial_value parameter is not valid.

[ENOMEM] A new semaphore could not be created.

Related Information

Functions: mmap(2), rnsern_lock(3), rnsern_remove(3), rnsern_unlock(3)

1-410

Functions
msem_lock(3)

rnsern_lock

Purpose

Library

Synopsis

Parameters

Description

Locks a semaphore

Standard C Library (libc.a)

#include <sys/mman.h>

int msem_lock (
msemaphore *sem,
int condition);

sem Points to an msemaphore structure which specifies the semaphore
to be locked.

condition Determines whether the msem_lock() function waits for a currently
locked semaphore to unlock.

The msem_lock() function attempts to lock a binary semaphore.

If the semaphore is not currently locked, it is locked and the msem_lock() function
returns successfully.

If the semaphore is currently locked, and the condition parameter is
MSEM_IF _NOWAIT, then the msem_lock() function returns with an error. If the
semaphore is currently locked, and the condition parameter is 0 (zero), then
msem_lock() will not return until either the calling process is able to successfully
lock the semaphore, or an error condition occurs.
411 __ 11_, ...__ -------- •--1-1"\. ----1 ------- ---1--..1-1'\ L-. ----1"-!-1- --~~-~~~~ ~L~-.!-..-

f"\.11 l:i:11H'.i LU llll>t:lll_lU\:I\.\) i:111U llll>t:lll_UlllUl:I\.\) u y 1uu1up1<0 p1 U'-"'"""'" "ucu1115 a

common msemaphore structure behave as if the calls were serialized.

If the msemaphore structure contains any value not resulting from a call to
msem_init() followed by a (possibly empty) sequence of calls to msem_lock()
and msem_unlock(), the results are undefined. The address of an msemaphore
structure may be significant. If the msemaphore structure contains any value
copied from an msemaphore structure at a different address, the result is
undefined.

1-411

OSF/1 Programmer's Reference

msem_lock(3)

Notes

AES Support Level: Trial use

Return Values

Errors

On successful completion, the msem_lock() function returns 0 (zero). On error,
the msem_lock() function returns -1 and sets errno to indicate the error.

If the msem_lock() function fails, errno may be set to one of the following values:

[EAGAIN] MSEM_IF _NOWAIT was specified and the semaphore was already
locked.

[EINVAL]

[EINTR]

The sem parameter points to an msemaphore structure which
specifies a semaphore which has been removed, or the condition
parameter is invalid.

The msem_lock() function was interrupted by a signal which was
caught.

Related Information

Functions: msem_init(3), msem_remove(3), msem_unlock(3)

1-412

Functions
msem_remove(3)

msem_remove

Purpose

Library

Synopsis

Parameters

Description

Notes

Removes a semaphore

Standard C Library (libc.a)

#include <sys/mman.h>

int msem_remove (
msemaphore *sem);

sem Points to an msemaphore structure which specifies the semaphore
to be removed.

The msem_remove() function removes a binary semaphore. Any subsequent use
of the msemaphore structure before it is again initialized by calling the
msein_init() function will have undefined results.

The msem_remove() function also causes any process waiting in the
msem_lock() function on the removed semaphore to return with an error.

If the msemaphore structure contains any value not resulting from a call to the
msem_init() function followed by a (possibly empty) sequence of calls to the
nisem_lock() and msem_unlock() functions, the result is undefined. The address
of an msemaphore structure may be significant. If the msemaphore structure
contains any value copied from an msemaphore structure at a different address,
the result is undefined.

AES Support Level: Trial use

1-413

OSF/1 Programmer's Reference

msem_remove(3)

Return Values

Errors

On successful completion, the msem_remove() function returns 0 (zero). On
error, the msem_remove() function returns -1 and sets errno to indicate the error.

If the msem_remove() function fails, errno may be set to the following value:

[EINVAL] The sem parameter points to an msemaphore structure which
specifies a semaphore which has been removed.

Related Information

Functions: msem_init(3), msem_lock(3), msem_unlock(3), munmap(2)

1-414

Functions
msem_unlock(3)

msem_unlock

Purpose

Library

Synopsis

Parameters

Description

Unlocks a semaphore

Standard C Library (libc.a)

#include <sys/mman.h>

int msem_unlock (
msemaphore *sem,
int condition);

sem Points to an msemaphore structure which specifies the semaphore
to be unlocked.

condition Determines whether the msem_unlock() function unlocks the
semaphore if no other processes are waiting to lock it.

The msem_unlock() function unlocks a binary semaphore.

If the condition parameter is 0 (zero), the semaphore is unlocked, whether or not
any other processes are currently attempting to lock it. If the condition parameter
is MSEM_IF _WAITERS, and another process is waiting to lock the semaphore or
it cannot be reliably determined whether some process is waitillg to lock the
semaphore, the semaphore is unlocked by the calling process. If the condition
parameter is MSEM_IF _WAITERS, and no process is waiting to lock the
semaphore, the semaphore will not be unlocked and an error will be returned.

AJ! c~!!s to the msem!~~k() 3.nd ~~~m_u~!c~~(} functions by multiple processes
sharing a common msemaphore structure behave as if the calls were serialized.

1-415

OSF/1 Programmer's Reference
mser11_unlock(3)

Notes

If the msemaphore structure contains any value not resulting from a call to the
msem_init() function followed by a (possibly empty) sequence of calls to the
msem_lock() and msem_unlock() functions, the results are undefined. The
address of an msemaphore structure may be significant. If the msemaphore
structure contains any value copied from an msemaphore structure at a different
address, the result is undefined.

AES Support Level: Trial use

Return Values

Errors

On successful completion, the msem_unlock() function returns 0 (zero). On error,
the msem_unlock() function returns -1 and sets ermo to indicate the error.

If the msem_unlock() function fails, ermo may be set to one of the following
values:

[EAGAIN] MSEM_IF _WAITERS was specified and there were no waiters.

[EINVAL] The sem parameter points to an mseniaphore structure which
specifies a semaphore which has been removed, or the condition
parameter is invalid.

Related Information

Functions: msem_init(3), msem_lock(3), msem_remove(3)

1-416

msgctl

Purpose

Synopsis

Parameters

Functions

msgctl(2)

Performs message control operations

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgctl(

msqid

cmd

int msqid,
int cmd,
struct msqid_ds *buf) ;

Specifies the message queue ID.

Specifies the type of command. The possible commands and the
operations they perform are as follows:

IPC_STAT
Queries the message queue ID by copying the contents of its
associated data structure into the buf structure.

IPC_SET
Sets the message queue ID by copying values found in the
buf structure into corresponding fields in the msqid_ds
structure associated with the message queue ID. This is a
restricted operation. The effective user ID of the calling
process must be equal to that of superuser or equal to the
value of msg_perm.uid or msg_perm.cuid in the associated
msqid_ds structure. Only superuser can raise the value of
msg_qbytes.

IPC_RMID
Removes the message queue ID and deallocates its
associated msqid_ds structure. This is a restricted
operation. The effective user ID of the calling process must
be equal to that of superuser or equal to the value of
msg_perm.uid or msg_perm.cuid in the associated msqid_ds
structure.

1-417

OSF/1 Programmer's Reference
msgctl(2)

Description

buf Points to a msqid_ds structure. This structure is used only with the
IPC_STAT and IPC_SET commands. With IPC_STAT, the results
of the query are copied to this structure. With IPC_SET, the values
in this structure are used to set the corresponding fields in the
msqid_ds structure associated with the message queue ID. In either
case, the calling process must have allocated the structure before
making the call.

The msgctl() function allows a process to query or set the contents of the
msqid_ds structure associated with the specified message queue ID. It also allows
a process to remove the message queue ID and its associated msqid_ds structure.
The cmd value determines which operation is performed.

The IPC_SET command uses the user-supplied contents of the buf structure to set
the following members of the msqid_ds structure associated with the message
queue ID:

msg_perm.uid
The owner's user ID.

msg_perm.gid
The owner's group ID.

msg_perm.mode
The access modes for the queue. Only the low-order nine bits are
set.

msg_qbytes The maximum number of bytes on the queue.

msg_ctime The time of the last msgctl() operation that changed the structure.

Return Values

Errors

1-418

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the msgctl() function fails, errno may be set to one of the following values:

[EINVAL] The msqid parameter is not a valid message queue ID, or the cmd
parameter is not a valid command.

[EACCES] The cmd parameter is IPC_STAT, but the calling process does not
have read permission.

Functions

msgct1(2)

[EPERM] The cmd parameter is equal to either IPC_RMID or IPC_SET, and
the calling process does not have appropriate privilege.

[EPERM] The cmd parameter is equal to IPC_SET, and an attempt is being
made to increase the value of the msg_qbytes parameter when the
effective user ID of the calling process does not have the
SET _OBJ_STAT system privilege.

[EFAULT] The cmd parameter is IPC_STAT or IPC_SET. An error occurred in
accessing the buf structure.

Related Information
Functions: msgget(2), msgrcv(2), msgsnd(2)

Data Structures: msqid_ds(4)

1-419

OSF/1 Programmer's Reference
msgget(2)

msgget

Purpose Returns (and possibly creates) the ID for a message queue

Synopsis #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

Parameters

Description

1-420

int msgget(

key

msgfig

key_t key,
int msgfig);

Specifies the key that identifies the message queue. The
IPC_PRIVATE key can be used to assure the return of a new,
unused, message queue ID.

Specifies creation flags. Possible values are:

IPC_CREAT
If the key does not exist, the msgget() function creates a
message queue ID using the given key. If the key does exist,
it forces an error notification.

IPC_EXCL
If the key already exists, the msgget() function fails and
returns an error notification.

The low-order nine bits of msg_perm.mode are set equal to the low­
order nine bits of msgfig.

The msgget() function returns (and possibly creates) the message queue ID for the
message queue identified by the key parameter. If IPC_PRIVATE is used for key,
the msgget() function returns the ID for a private (that is, newly created) message
queue. The msgfig parameter supplies creation options for the msgget() function. If
the key parameter does not already exist, IPC_CREAT instructs the msgget()
function to create a new message queue for the key and return the kernel-assigned
ID for the message queue.

Functions

msgget(2)

After creating a new message queue ID, the msgget() function initializes the
msqid_ds structure associated with the ID as follows:

• The msg_perm.cuid and msg_perm.uid members are set equal to the effective
user ID of the calling process.

• The msg_perm.cgid and msg_perm.gid members are set equal to the effective
group ID of the calling process.

• The low-order nine bits of the msg_perm.mode member are set equal to the
low-order nine bits of msgflg.

• The msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime members
are all set equal to zero.

• The msg_ctime member is set equal to the current time.

• The msg_qbytes member is set equal to the system limit.

Return Value

Errors

Upon successful completion, a message queue identifier is returned. If the msgget()
function fails, a value of -1 is returned and errno is set to indicate the error.

If the msgget() function fails, errno may be set to one of the following values:

[EACCES] A message queue identifier exists for the key parameter but
operation permission, which is specified by the low-order nine bits
of the msgflg parameter, is not granted.

[ENOENT] A message queue identifier does not exist for the key parameter and
the IPC_CREAT value is not set.

[ENOSPC] A message queue identifier can be created, but the system-imposed
limit on the maximum number of allowed message queue identifiers
has been exceeded.

[EEXIST] A message queue identifier exists for the key parameter, and both
TDr' r'DP A'T' n~-1 TDr' PVr'T n-~ n~•
....... __, ,,.~£ Jt...1. M.J.J.U .L..M. ~-.L...IL'!lo..'-'.L...I Ul.ilw' "''-''-•

Related Information
Functions: msgctl(2), msgrcv(2), msgsnd(2)

Data Structures: msqid_ds(4)

1-421

OSF/1 Programmer's Reference
msgrcv(2)

msgrcv

Purpose Receives a message from a message queue

Synopsis #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

Parameters

Description

1-422

int msgrcv(

msqid

msgp

msgsz

msgtyp

msgflg

intmsqid,
struct msgbuf *msgp,
intmsgsz,
long msgtyp,
int msgfig);

Specifies the ID of the message queue from which to receive the
message.

Specifies a pointer to the msgbuf structure that is to receive the
message. See NOTES.

Specifies the maximum number of bytes allowed for the received
data.

Specifies the message type to read from the queue.

Specifies the action to be taken by the kernel if there are no msgtyp
messages on the queue.

The msgrcv() function receives a message from the queue associated with the
msqid parameter. It returns the number of bytes in the received message.

The msgp parameter points to a user-defined msgbuf structure. The structure will
receive the message read from the queue.

Functions
msgrcv(2)

The msgsz parameter specifies the maximum size allowed for the received data. If
the message is longer than msgsz, the kernel will take one of the following actions,
depending 011 whether the MSG_NOERROR flag is set:

• If MSG_NOERROR is not set, the kernel returns an [E2BIG] error to the
calling process and leaves the message on the queue.

• If MSG_NOERROR is set, the kernel truncates the message to msgsz and
discards the truncated portion without notifiying the calling process.

The msgtyp parameter specifies the message type that the process wants to receive.
Possible values and their results are as follows:

0 The process receives the message at the head of the queue.

>0 The process receives the first message of the requested positive-integer type.

<0 The process receives the first message of the lowest type on the queue. To
qualify as the lowest type, the negative-integer type must be less than or equal
to the absolute value of msgtyp.

The msgfig parameter specifies the action that the kernel should take if the queue
does not contain a message of the requested type. Either of two kernel actions can
be specified, as follows:

• If IPC_NOWAIT is set, the kernel returns immediately with a return value of
-1 and errno set to [ENOMSG].

• If IPC_NOW AIT is not set, the kernel suspends the calling process. The
process remains suspended until one of the following occurs:

A message of the requested type appears on the queue. In this case, the
kernel wakes the process to receive the message.

The specified message queue ID is removed from the system. In this case,
the kernel sets errno to [EIDRM] and returns -1 to the calling process.

The process catches a signal. In this case, the process does not receive
the message and, instead, resumes execution as directed by the signal()
call.

The user-specified msgbuf structure, used to store received messages, is defined as
follows:

struct msgbuf {
mtyp_t mtype;
char mtext[];

}

The mytpe field is set to the message type supplied by the sender.

1-423

OSF/1 Programmer's Reference
msgrcv(2)

The mtext field is set to the message text. Unless MSG_NOERROR is set, the
message size will be less than or equal to the msgsz specified on the call to
msgrcv().

Return Values

Errors

Upon successful completion, the msgrcv() function returns a value equal to the
number of bytes actually stored in mtext. Also, the kernel updates the msqid_ds
structure associated with the message queue ID as follows:

• Decrements msg_qnum by 1.

• Sets msg_lrpid equal to the process ID of the calling process.

• Sets msg_rtime equal to the current time.

• Decrements msg_cbytes by the message text size.

When the msgrcv() function fails, a value of -1 is returned and errno is set to
indicate the error.

If the msgrcv() function fails, errno may be set to one of the following values:

[EINVAL] The msqid parameter is not a valid message queue ID, or the msgsz
parameter is less than 0 (zero).

[EACCES] The calling process does not have permission for the operation.

[EIDRM] The msgid parameter has been removed from the system.

[E2BIG] The number of bytes to be received in mtext is greater than msgsz
and the MSG_NOERROR flag is not set.

[ENOMSG] The queue does not contain a message of the requested type and the
IPC_NOWAIT flag is set.

[EINTR] The operation was interrupted by a signal.

Related Information
Functions: msgctl(2), msgget(2), msgsnd(2), sigaction(2)

Data Structures: msqid_ds(4)

1-424

msgsnd

Purpose

Synopsis

Parameters

Description

Functions

msgsnd(2)

Sends a message to a message queue

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(

msqid

msgp

msgsz

msgfig

int msqid,
struct msgbuf *msgp,
int msgsz,
int msgfig);

Specifies the ID of the message queue on which to place the
message. The ID is typically returned by a previous msgget()
function.

Specifies a pointer to the msgbuf structure that contains the
message. See NOTES.

Specifies the size of the data array in the msgbuf structure.

Specifies the action to be taken by the kernel if it runs out of internal
buffer space.

The msgsnd() function sends a message to the queue associated with the msqid
parameter.

The msgp parameter points to a user-defined msgbuf structure. The structure
identifies the message type and contains a data array with tbP. messagP. text

The size of the data array is specified by the msgsz parameter. The msgsz value can
be from zero to a system-defined maximum.

The msgfig parameter specifies the action that the kernel should take if either or
both of the following are true:

• The current number of bytes in the message queue is equal to msg_qbytes (in
the msqid_ds structure).

• The total number of messages on all message queues is equal to the system­
defined limit.

1-425

OSF/1 Programmer's Reference

msgsnd(2)

Notes

1-426

Either of two kernel actions can be specified, as follows:

• If IPC_NOWAIT is set, the kernel does not send the message and returns to
the calling process immediately.

• If IPC_NOW AIT is not set, the kernel suspends the calling process. The
process remains suspended until one of the following occurs:

The blocking condition is removed. In this case, the kernel sends the
message.

The specified message queue ID is removed from the system. In this case,
the kernel sets errno to [EIDRM] and returns -1 to the calling process.

The process catches a signal. In this case, the message is not sent and the
process resumes execution as directed by the signal() function.

If the msgsnd() function completes successfully, the kernel updates the msqid_ds
structure associated with the msgid parameter. Specifically, it:

• Increments msg_qnum by 1.

• Increments msg_cbytes by the message text size.

• Sets msg_lspid equal to the process ID of the calling process.

• Sets msg_stime equal to the current time.

The user-specified msgbuf structure is defined as follows:

struct msgbuf {
mtyp_t mtype;
char mtext[];

}

The mytpe field is a user-chosen positive integer. A receiving process can use the
message type to select only those messages it wants to receive from the queue. See
the msgrcv() function.

The mtext field is any text of length msgsz.

When the kernel sends a message, it allocates space for the message and copies the
data from user space. The kernel then allocates a msg (message header) structure,
sets its fields, and inserts the structure at the tail of the message queue associated
with the message queue ID. The msg structure is defined as follows:

struct msg {

};

struct msg *msg_next;
long msg_type;
long
caddr_t

msg_ts;
msg_addr;

Functions

msgsnd{2)

The msg_next field is a pointer to the next message in the queue. The msg_type
field is the message type supplied in the user-specified msgbuf structure. The
msg_ts field is the size of the message text. The msg_addr field is the address of the
message text.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the msgsnd() function fails, errno may be set to one of the following values:

[EINVAL] The msqid parameter is not a valid message queue ID, mtype is less
than 1, or msgsz is less than 0 (zero) or greater than the system­
defined limit.

[EACCES] The calling process does not have permission for the operation.

[EAGAIN] If the maximum number of message headers has been allocated or if
the bytes for the message exceed the maximum number of bytes on
the queue, the message cannot be sent and the IPC_NOW AIT flag is
set.

[EINTR]

[EIDRM]

The operation was interrupted by a signal.

The msqid parameter has been removed from the system.

Related Information
Functions: msgctl(2), msgget(2), msgrcv(2), sigaction(2)

Data Structures: msqid_ds(4)

1-427

OSF/1 Programmer's Reference
msync(2)

msync

Purpose Synchronizes a mapped file

Synopsis #include <sys/types.h>

#include <sys/mman.h>

int msync (

Parameters

Description

1-428

caddr_t addr,
size_t Zen,
int flags);

addr Specifies the address of the region to be synchronized.

Zen Specifies the length in bytes of the region to be synchronized.

flags Specifies one of the following symbolic constants defined in the
sys/mman.h file:

MS_SYNC
Synchronous cache flush

MS_ASYNC
Asynchronous cache flush

MS_INVALIDATE
Invalidate cached pages

The msync() function controls the caching operations of a mapped file region.
The msync() function can be used to ensure that modified pages in the region are
transferred to the file's underlying storage device, or to control the visibility of
modifications with respect to file system operations.

The addr and Zen parameters specify the region to be synchronized. The Zen
parameter must be a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE). If Zen is not a multiple of the page size as returned
by sysconf(_SC_PAGE_SIZE), the length of the region will be rounded up to the
next multiple of the page size.

If the flags parameter is set to MS_SYNC, the msync() function does not return
until the system completes all 1/0 operations. If the flags parameter is set to
MS_ASYNC, the msync() function returns after the system schedules all 1/0

Notes

Functions

msync(2)

operations. If the flags parameter is set to MS_INVALIDATE, the msync()
function invalidates all cached copies of the pages. New copies of the pages then
must be obtained from the file system the next time they are referenced.

After a successful call to the msync() function with the flags parameter set to
MS_SYNC, all previous modifications to the mapped region are visible to
processes using the read() parameter. Previous modifications to the file using the
write() function may be lost.

After a successful call to the msync() function with the flags parameter set to
MS_INVALIDATE, all previous modifications to the file using the write() function
are visible to the mapped region. Previous direct modifications to the mapped
region may be lost.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the msync() function returns 0 (zero). Otherwise, the
msync() function returns -1 and sets ermo to indicate the error.

If the msync() function fails, ermo may be set to one of the following values:

[EIO] An 1/0 error occurred while reading from or writing to the file
system.

[ENOMEM] The range specified by [addr, addr + Len) is invalid for a process'
address space, or the range specifies one or more unmapped pages.

[EINV AL] The addr parameter is not a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE), or the flags parameter is MS_SYNC
or MS_ASYNC and the region was mapped with MAP _PRIVATE.

[EFAULT] The range [nddr, 11ddr +!en_) !!!dudes '1!! i!!va!id address.

Related Information

Functions: fsync(2), mmap(2), read(2), sysconf(3), write(2)

1-429

OSF/1 Programmer's Reference
munmap(2}

rnunrnap

Purpose Unmaps a mapped region

Synopsis #include <sys/types.h>

#include <sys/mman.h>

intmunmap (

Parameters

Description

Notes

caddr_t addr,
size_t Zen);

addr Specifies the address of the region to be unmapped.

Zen Specifies the length in bytes of the region to be unmapped.

The munmap() function unmaps a mapped file or shared memory region.

The addr and Zen parameters specify the address and length in bytes, respectively,
of the region to be unmapped. The Zen parameter must be a multiple of the page
size as returned by sysconf(_SC_PAGE_SIZE). If Zen is not a multiple of the
page size as returned by sysconf(_SC_PAGE_SIZE), the length of the region will
be rounded up to the next multiple of the page size.

The result of using an address which lies in an unmapped region and not in any
subsequently mapped region is undefined.

AES Support Level: Trial use

Return Values

1-430

Upon successful completion, the munmap() function returns 0 (zero). Otherwise,
munmap() returns -1 and sets errno to indicate the error.

Errors

Functions

munmap(2)

If the munmap() function fails, errno may be set to one of the following values:

[EINV AL] The addr parameter is not a multiple of the page size as returned by
sysconf(_SC _PAGE_SIZE).

[EFAULT] The range [addr, addr +Zen) includes an invalid address.

Related Information

Functions: mmap(2), sysconf(3)

1-431

OSF/1 Programmer's Reference

mvalid(2)

mvalid

Purpose Checks memory region for validity

Synopsis #include <sys/types.h>

#include <sys/mman.h> ,,

Parameters

Description

int mvalid (
caddr_t addr,
size_t Zen,
int prot);

addr Specifies the address of the region whose validity is to be checked.

Zen Specifies length in bytes of the region specified by the addr
parameter.

prot Specifies the desired access protection for the region.

The mvalid() function checks the validity of a memory region. A region is
considered to be valid if accesses of the requested type are allowed to all addresses
in the region.

The sys/mman.h header file defines the following access options:

PROT_READ
The mapped region can be read.

PROT_WRITE
The mapped region can be written.

PROT_EXEC The mapped region can be executed.

The prot parameter can be any combination of PROT_READ, PROT_ WRITE, and
PROT_EXEC ORed together.

Return Values

1-432

The mvalid() function returns 0 (zero) if accesses requmng the specified
protection are allowed to all addresses within the specified range of addresses.
Otherwise, the mvalid() function returns -1 and sets errno to indicate the error.

Errors

Functions

mvalid(2)

If the mvalid() function fails, errno may be set to one of the following values:

[EACCES] The range specified by [addr, addr +Zen) is invalid for the process'
address space, or the range specifies one or more unmapped pages,
or one or more pages of the range disallows accesses of the
specified protection.

[EINVAL] The prot parameter is invalid, or the addr parameter is not a
multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

Related Information

Functions: mmap(2), mprotect(2), sysconf(3)

1-433

OSF/1 Programmer's Reference

ndbm(3)

dbm_open, dbm_close, dbm_fetch, dbm_store,
dbm_delete, dbm_firstkey, dbm_nextkey,
dbm_forder, dbm_error, dbm_clearerr

Purpose Database subroutines

Synopsis #include <ndbm.h>

typedef struct {
char *dptr;

1-434

int dsize;
} datum;

DBM *dbm_open(
char *file,
int flags,
int mode);

void dbm_close(
DBM *db);

datum dbm_fetch(
DBM *db,
datum key);

int dbm_store(
DBM*db,
datum key,
datum content,
int flags);

int dbm_delete(
DBM *db,
datum key);

datum dbm_firstkey(
DBM *db);

datum dbm_nextkey(
DBM *db);

long dbm_forder(
datum key);

Parameters

Description

Functions
ndbm(3)

int dbm_error(
DBM *db);

int dbm_clearerr(
DBM *db);

db

file

mode

flags

key

content

Specifies the database.

Specifies the file to be opened. If the file parameter refers to a
symbolic link, the dbm_open() function opens the file pointed to by
the symbolic link. See the open() manual page for further details.

Specifies the read, write, and execute permissions of the file to be
created (requested by the O_CREAT flag). If the file already exists,
this parameter is ignored. This parameter is constructed by logically
ORing values described in the sys/mode.h header file. See the
open() manual page for further details.

Specifies one of the following flags for opening:

DBM_INSERT
Only insert new entries into the database. Do not change an
existing entry with the same key.

DBM_REPLACE
Replace an existing entry ifit has the same key.

Specifies the key.

Specifies a value associated with key.

The dbm_open(), dbm_close(), dbm_fetch(), dbm_store(), dbm_delete(),
dbm_firstkey(), dbm_nextkey(), dbm_forder(), dbm_error(), and
dbm_clearerr() functions maintain key/content pairs in a database. The functions
handle very large databases (a billion blocks) and access a keyed item in one or
two file system accesses. Arbitrary binary data, as well as normal ASCII strings,
are allowed.

The database is stored in two files. One file is a directory containing a bit map and
has .dir as its suffix. The second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by the dbm_open()
function. The dbm_open() function opens (and if necessary, creates) thefile.dir
andfile.pag files, depending on the flags parameter.

1-435

OSF/1 Programmer's Reference
ndbm(3)

Once open, the data stored under a key is accessed by the dbm_fetch() function
and data is placed under a key by the dbm_store() function. A key (and its
associated contents) is deleted by the dbm_delete() function. A linear pass
through all keys in a database may be made, in an (apparently) random order, by
use of the dbm_firstkey() and dbm_nextkey() functions. The dbm_firstkey()
function returns the first key in the database. The dbm_nextkey() function returns
the next key in the database. The order of keys presented by the dbm_firstkey()
and dbm_nextkey() functions depends on a hashing function. The following code
traverses the database:

for (key = dbm_firstkey(db); key.dptr != NULL; key
= dbm_nextkey(db))

The dbm_error() function a returns nonzero value when an error has occurred
reading or writing the database. The dbm_clearerr() function resets the error
condition on the named database.

The dbm_forder() function returns the block number in the .pag file that the
specified key will map to.

Return Values
Upon successful completion, all functions that return an int return a value of 0
(zero). Otherwise, a negative value is returned. Routines that return a datum
indicate errors with a null (0) dptr. If the dbm_store() function is called with a
flags value of DBM_INSERT, and finds an existing entry with the same key, it
returns 1.

Related Information

Functions: dbm(3), open(2)

1-436

neg

Purpose Negates and returns the value of the double operand x

Library
Math Library (libm.a)

Synopsis double neg(
double x);

Parameters

x Specifies some double value.

Description

Functions

neg(3)

The neg() function returns a negative of the value of the double operand x.

1-437

OSF/1 Programmer's Reference

nfssvc(2)

nfssvc

Purpose

Synopsis

Parameters

Description

Creates a remote NFS server

nfssvc(

sock

mask

match

int sock,
int mask,
int match);

Specifies the socket. The sock parameter must be in the AF _INET
family and of type SOCK_DGRAM.

Specifies a mask to be supplied to the client host address.

Specifies a value to be compared against the value of the client host
address ANDED with the value in the mask parameter. If the values
are equal, the daemon is started; otherwise, the request is dropped
by the server.

The nfssvc() function starts an NFS daemon listening on a specified socket.

Return Values

Errors

Normally this function does not return unless the server is terminated by a signal, at
which time a value of 0 (zero) is returned. Otherwise, -1 is returned and errno is
set to indicate the error.

If the nfssvc() function fails, errno may be set to one of the following values:

[EBADF]

[EPERM]

An invalid file descriptor has been passed to the nfssvc() function.

The caller is not the superuser.

Related Information

Functions: async_daemon(2)

1-438

.
nice

Purpose

Library

Synopsis

Parameters

Description

Notes

Functions
nice{3)

Changes scheduling priority of a process

Standard C Library (libc.a),
Berkeley Compatibility Library (libbsd.a)

int nice(
int increment);

increment
Specifies a value that is added to the current process pnonty.
Negative values can be specified, although values exceeding either
the high or low limit are truncated.

The nice() function adds an increment to the nice value of the calling process. The
nice value is a nonnegative number; by incrementing the nice value, a process is
given lower CPU priority.

Process priorities in are defined in the range of 0 to 39 in AT&T System V systems,
and in the range -20 to 20 in BSD systems. For that reason, two versions of the
nice() function are supported by OSF/1. The default version, in libc, behaves like
the AT&T System V version, with the increment parameter treated as the modifier
of a value in the range of 0 to 39.
-.rr ,1 "' 1 • r '"' T"l>nT"'Oo.. • _ • 1 _ _ •,, _ _ 1 --------~1- ---~ 1- .._1 __ n ___ 1 __ 1 __ _
lI tne oenav1ur 01 me O;:)LJ vers1u11 ts ucsucu, 1,;uu1puc wILu Luc ocu~c1cy

Compatibility Library (libbsd.a) and the increment parameter is treated as the
modifier of a value in the range -20 to 20.

AES Support Level: Trial use

1-439

OSF/1 Programmer's Reference
nice(3)

Return Values

Errors

Upon successful completion, the nice() function returns the new nice value minus
the value of NZERO. Otherwise, -1 is returned and errno is set to indicate the
error.

If the libc version of nice() fails, errno may be set to the following value:

[EPERM] The calling process does not have appropriate privilege.

If the libbsd version of nice() fails, errno may be set to the same values as the
setpriority() function.

Related Information

Functions: exec(2), getpriority(2)

1-440

Functions

nl_langinfo(3)

nl_langinf o

Purpose Language information

Library
Standard C Library (libc.a)

Synopsis #include <nl_types.h>
#include <langinfo.h>

Parameters

Description

Notes

char *nl_langinfo (
nl_item item);

char *nl_langinfo_r (
nl_item item ,
char *buf,
int len);

item Specifies constant names and values.

buf Points to a string containing the requested information.

len Specifies the length of buf.

The nl_langinfo() function returns a pointer to a string containing information
relevant to the particular language or cultural area defined in the program's locale.
The manifest, constant names and values of the item parameter are defined in the
langinfo.h header file.

The nl_langinfo_r() function is the reentrant version of nl_langinfo().

AES Support Level: Trial use (nl_langinfo())

1-441

OSF/1 Programmer's Reference
nl_langinfo(3)

Example

For example, the following returns a pointer to the abbreviated name of the first
day of the week in the current locale:

nl_langinfo (ABDAY_l)

This function call would return a pointer to the string ''Dom'' if the identified
language was Portuguese, "Sun" ifthe identified language was English, and so on.

Return Values

Errors

In a locale where langinfo data is not defined, the nl_langinfo() function returns a
pointer to the corresponding string in the C locale. In all locales, the nl_langinfo()
function returns a pointer to an empty string if the item parameter contains an
invalid setting.

Upon successful completion, the nl_langinfo_r() function returns a value of 0
(zero) and places the requested information in buf. Otherwise, -1 is returned and
errno is set to indicate the error.

If the nl_langinfo_r() function fails, errno may be set to the following value:

[EINVAL] The item parameter is invalid.

Related Information

Functions: setlocale(3)

1-442

Functions
ns_addr{3)

ns_addr, ns_ntoa

Purpose

Library

Synopsis

Parameters

Description

Xerox NS address conversion routines

Standard C Library (Ube.a)

#include <sys/types.h>
#include <netns/ns.h>

struct ns_addr ns_addr(
char *cp);

char *ns_ntoa(

cp

ns

struct ns_addr ns);

Points to a character string representing an XNS address.

Specifies an XNS address.

The ns_addr() function interprets character strings representing Xerox NS
addresses, and returns binary information suitable for use in functions. The
ns_ntoa() function takes XNS addresses and returns ASCII strings representing
the address in a notation in common use in the Xerox development environment:

<network number> . <host number> . <port number>

Trailing zero fields are suppressed, and each number is printed in hexadecimal, in a
format suitable for input to the ns_addr() function. Any fields lacking
superdecimal digits will have a trailing ''H'' appended.

Unfortunately, no universal siamian.i exi1;b for representing XNS actili·e5ses. An
effort has been made to insure that the ns_addr() function be compatible with most
formats in common use.

The ns_addr() function first separates an address into one to three fields using a •
(period), a : (colon), or a # (number sign) single delimiter. Each field is then
examined for byte separators (colon or period). If there are byte separators, each
subfield separated is taken to be a small hexadecimal number, and the entirety is
taken as a network-byte-ordered quantity to be zero extended in the high-network­
order bytes.

1-443

OSF/1 Programmer's Reference

ns_addr(3)

Next, the field is inspected for hyphens. If there are hyphens, the field is assumed
to be a number in decimal notation with hyphens separating the millenia. Next, the
field is assumed to be a number. It is interpreted as hexadecimal if there is a
leading "Ox" (as in C), a trailing "H" (as in Mesa), or if there are any superdecimal
digits present. It is interpreted as octal if there is a leading 0 (zero) and there are
no superoctal digits. Otherwise, it is converted as a decimal number.

Related Information

Files: hosts(4), networks(4)

1-444

ntohl

Purpose

Library

Functions

ntohl{3)

Converts an unsigned long (32-bit) integer from Internet network-byte order to
host-byte order

Standard C Library (libc.a)

Synopsis #include <netinet/in.h>

unsigned long ntohl (

Parameters

Description

unsigned long netlong);

netlong Specifies a 32-bit integer in network-byte order.

The ntohl() (network-to-host long) function converts an unsigned long (32-bit)
integer from Internet network-byte order to host-byte order.

The Internet network requires address and port reference data in network-byte
order (most significant byte leftmost, least significant byte rightmost). You can use
the ntohl() function to convert Internet network address and port data to host
byte-ordered integers.

The ntohl() function is defined as a little-endian function in the netinet/in.h
header file for machine environments where network-byte order and host-byte
order are not identical.

Return Values

The ntohl() function returns a 32-bit long mteger m host-byte order.

Related Information

Functions: ntohs(3), htonl(3), htons(3)

1-445

OSF/1 Programmer's Reference
ntohs(3)

ntohs

Purpose

Library

Synopsis

Parameters

Description

Converts an unsigned short (16-bit) integer from Internet network-byte order to
host-byte order

Standard C Library (Jibe.a)

#include <netinet/in.h>

unsigned short ntohs (
unsigned short netshort) ;

nets ho rt Specifies a 16-bit integer in host-byte order.

The ntohs() (network-to-host short) function converts an unsigned short (16-bit)
integer from Internet network-byte order to host-byte order.

The Internet network requires address and port reference data in network-byte
order (most significant byte leftmost, least significant byte rightmost). You can use
the ntohs() function to convert Internet network address and port data to host-byte
ordered integers.

The ntohs() function is defined as a little-endian function in the netinet/in.h
header file for machine environments where network-byte order and host-byte
order are not identical.

Return Values

The ntohs() function returns a 16-bit short integer in host-byte order.

Related Information

Functions: ntohl(3), htonl(3), htons(3)

1-446

Functions
open(2)

open, creat

Purpose

Synopsis

Parameters

Description

Opens a file for reading or writing

#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>

int open (
const char *path,
int ofiag [,
mode_t mode]);

int creat (
const char *path,
mode_t mode);

path Specifies the file to be opened or created. If the path parameter
refers to a symbolic link, the open() function opens the file pointed
to by the symbolic link.

oflag Specifies the type of access, special open processing, the type of
update, and the initial state of the open file. The parameter value is
constructed by logically ORing special open processing flags.
These flags are defined in the fcntl.h header file and are described
below.

mode Specifies the read, write, and execute permissions of the file to be
created (requested by the O_CREAT flag in the open() interface). If
the file already exists, this parameter is ignored. This parameter is
constructed by logically ORing values described in the sys/mode.h
header file.

The open() and creat() functions establish a connection between the file named
by the path parameter and a file descriptor. The opened file descriptor is used by
subsequent 1/0 functions, such as read() and write(), to access that file.

The returned file descriptor is the lowest file descriptor not previously open for that
process. No process can have more than OPEN_MAX file descriptors open
simultaneously.

1-447

OSF/1 Programmer's Reference

open(2)

1-448

The open() and creat() functions, which suspend the calling process until the
request is completed, are redefined so that only the calling thread is suspended'.

The file offset, marking the current position within the file, is set to the beginning of
the file. The new file descriptor is set to remain open across exec functions. (See
the fcntl() function.)

The file status flags and file access flags are designated by the oftag parameter. The
oflag parameter is constructed by bitwise-inclusive ORing exactly one of the file
access flags (O_RDONLY, O_WRONLY, or O_RDWR) with one or more of the
file status flags.

File Access Flags

The file access flags are as follows:

O_RDONLY The file is open for reading only.

O_ WRONLY The file is open for writing only.

O_RDWR The file is open for reading and writing.

Exactly one of the file access values (O_RDONLY, O_ WRONLY, or O_RDWR)
must be specified. If none is set, O _RDONLY is assumed.

File Status Flags

File status flags that specify special open processing are as follows:

O_CREAT If the file exists, this flag has no effect except as noted under
O_EXCL. If the file does not exist, a regular file is created with the
following characteristics:

• The owner ID of the file is set to the effective user ID of the
process.

• The group ID of the file is set to the group ID of its parent
directory.

• The file permission and attribute bits are set to the value of the
mode parameter, modified as follows:

All bits set in the process file mode creation mask are
cleared.

The set-user ID attribute (S_ISUID bit) is cleared.

The set-group ID attribute (S_ISGID bit) is cleared.

The S_ISVTX attribute bit is cleared.

Functions

open(2)

The calling process must have write permission to the file's parent
directory with respect to all access control policies to create a new
file.

O_EXCL If O_EXCL and O_CREAT are set, the open fails if the file exists.

O_NOCTTY If the path parameter identifies a terminal device, this flag assures
that the terminal device does not become the controlling terminal
for the process.

O_TRUNC If the file does not exist, this flag has no effect. If the file exists and
is a regular file, and if the file is successfully opened O_RDWR or
O_WRONLY:

• The length of the file is truncated to 0 (zero).

• The owner and group of the file are unchanged.

• The set-user ID attribute of the file mode is cleared.

• The set-user ID attribute of the file is cleared.

The open fails if either of the following conditions are true:

• The file supports enforced record locks and another process has
locked a portion of the file.

• The file does not allow write access.

If the ofiag parameter also specifies O_SYNC, the truncation is a
synchronous update.

A program can request some control over when updates should be
made permanent for a regular file opened for write access.

File status flags that define the initial state of the open file are as follows:

O_SYNC If set, updates and writes to regular files and block devices are
synchronous updates. File update is performed by:

• fclear()

• ftruncate()

• open() with O_TRUNC

• write()

On return from a function that performs a synchronous update (any
of the above system calls, when O_SYNC is set), the program is
assured that all data for the file has been written to permanent
storage, even if the file is also open for deferred update.

1-449

OSF/1 Programmer's Reference
open(2)

Notes

O _APPEND If set, the file pointer is set to the end of the file prior to each write.

O_NONBLOCK,O_NDELAY
If set, the call to open() will not block, and subsequent read() or
write() operations on the file will be nonblocking.

General Notes on oflag Parameter Flag Values

The effect of O_CREAT is immediate.

When opening a FIFO with O_RDONLY:

• If neither O_NDELAY nor O_NONBLOCK is set, the open() function blocks
until another process opens the file for writing. If the file is already open for
writing (even by the calling process), the open() function returns without
delay.

• If O_NDELAY or O_NONBLOCK is set, the open() function returns
immediately.

When opening a FIFO with O_WRONLY:

• If neither O_NDELAY nor O_NONBLOCK is set, the open() function blocks
until another process opens the file for reading. If the file is already open for
reading (even by the calling process), the open() function returns without
delay.

• If O_NDELAY or O_NONBLOCK is set, the open() function returns an error
if no process currently has the file open for reading.

When opening a block special or character special file that supports nonblocking
opens, such as a terminal device:

• If neither O_NDELAY nor O_NONBLOCK is set, the open() function blocks
until the device is ready or available.

• If O_NDELAY or O_NONBLOCK is set, the open() function returns without
waiting for the device to be ready or available. Subsequent behavior of the
device is device-speci fie.

AES Support Level: Full use

Return Values

1-450

Upon successful completion, the open() and creat() functions return the file
descriptor, a nonnegative integer. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

Errors

Functions
open(2)

If the open() or creat() function fails, errno may be set to one of the following
values:

[ENO ENT]

[EACCES]

[EIS DIR]

[EMFILE]

[EFAULT]

[ENFILE]

[ENXIO]

[ENXIO]

[ENXIO]

[EEXIST]

[EA GAIN]

[EINTR]

[EROFS]

[ENOS PC]

[EDQUOT]

The O_CREAT flag is not set and the named file does not exist, or
O_CREAT is set and the path prefix does not exist, or the path
parameter points to the empty string.

Search permission is denied on a component of the path prefix, or
the type of access specified by the ofiag parameter is denied for the
named file, or the file does not exist and write permission is denied
for the parent directory, or O_TRUNC is specified and write
permission is denied.

The named file is a directory and write access is requested.

The system limit for open file descriptors per process has already
reached OPEN_MAX.

The path parameter is an invalid address.

The system file table is full.

The named file is a character special or block special file, and the
device associated with this special file does not exist.

The named file is a multiplexed special file and either the channel
number is outside of the valid range or no more channels are
available.

The O_NONBLOCK flag is set, the named file is a FIFO,
O _ WRONLY is set, and no process has the file open for reading.

The O_CREAT and O_EXCL flags are set and the named file exists.

The O_TRUNC flag is set, the named file exists with enforced
record locking enabled, and there are record locks on the file.

A signal was caught during the open() function.

The named file resides on a read-only file system and write access is
required.

The directory that would contain the new file cannot be extended,
the file does not exist, and O_CREAT is requested.

The directory in which the entry for the new link is being placed
cannot be extended because the quota of disk blocks or i-nodes
defined for the user on the file system containing the directory has
been exhausted.

1-451

OSF/1 Programmer's Reference
open(2)

[ENOTDIR] A component of the path prefix is not a directory.

[BLOOP] Too many links were encountered in translating path.

[ENAMETOOLONG]
The length of the path string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX. [ETXTBSY] The file is
being executed and ojlag is O_ WRONLY or O_RDWR.

Related Information

1-452

Functions: chmod(2), close(2), fcntl(2), lockf(3), lseek(2), read(2), stat(2),
truncate(2), umask(2), write(2)

Functions

opendir{3)

opendir, readdir, telldir, seekdir, rewinddir, closedir

Purpose Performs operations on directories

Library
Standard C Library (Ube.a)

Synopsis #include <sys/types.h>
#include <::sys/dirent.h>

Parameters

DIR *opendir (
const char *dir _name);

int opendir _t (
char *dir _name,
DIR *dir _pointer);

struct dirent *readdir (
DIR *dir _pointer);

int readdir_r (
DIR *dir _pointer,
struct dirent result);

long telldir (
DIR *dir _pointer);

int seekdir (
DIR *dir _pointer,
long location);

int rewinddir (
DIR *dir _pointer);

int closedir (
DIR *dir pointer);

dir_name Names the directory. If the final component of dir_name names a
symbolic link, the link will be traversed and pathname resolution
will continue.

dir _pointer Points to the dir structure of an open directory.

1-453

OSF/1 Programmer's Reference

opendir(3)

Description

1-454

location

result

Specifies the number of an entry relative to the start of the directory.

Contains the next directory entry on return from the readdir_r()
function.

The opendir() function opens the directory designated by the dir _name parameter
and associates a directory stream with it. The directory stream is positioned at the
first entry. The type DIR, which is defined in the dirent.h header file, represents a
directory stream, which is an ordered sequence of all the directory entries in a
particular directory. If a file descriptor is used, the FD_CLOEXEC flag will be set
on that file descriptor.

The opendir() function also returns a pointer to identify the directory stream in
subsequent operations. The null pointer is returrted when the directory named by
the dir _name parameter cannot be accessed or when not enough memory is
available to hold the entire stream.

The type DIR, which is defined in the dirent.h header file, represents a directory
stream, which is an ordered sequence of all the directory entries in a particular
directory. Directory entries represent files; files may be :removed from a directory
or added to a directory asynchronously to the operation of the readdir() function.

The readdir() function returns a pointer to a structure representing the directory
entry at the current position in the directory stream specified by the dir _pointer
parameter, and positions the directory stream at the next entry. It returns a null
pointer upon reaching the end of the directory stream. The dirent structure defined
in the dirent.h header file describes a directory entry.

The readdir() function will not return directory entries containing empty names.
If entries for . (dot) or .. (dot-dot) exist, one entry will be returned for. (dot) and
one entry will be returned for .. (dot-dot); otherwise, they will not be returned.

The pointer returned by the readdir() function points to data which may be
overwritten by another call to readdir() on the same directory stream. This data
will not be overwritten by another call to readdir() on a different directory stream.

If a file is removed from or added to the directory after the most recent call to the
opendir() or rewinddir() function, whether a subsequent call to the readdir()
function returns an entry for that file is unspecified.

Functions
opendir(3)

The readdir() function may buffer several directory entries per actual read
operation; the readdir() function marks for update the st_atime field of the
directory each time the directory is actually read.

When it reaches the end of the directory, or when it detects an invalid seekdir()
operation, the readdir() function returns the null value.

The telldir() function returns the current location associated with the specified
directory stream.

The seekdir() function sets the position of the next readdir() operation on the
directory stream specified by the dir _pointer parameter to the position specified by
the location parameter.

If the value of the location para~eter was not returned by a call to the telldir()
function, or if there was an intervening call to the rewinddir() function on this
directory stream, the effect is undefined. The new position reverts to the one
associated with the directory stream when the telldir() operation was performed.

An attempt to seek to an invalid location causes the readdir() function to return
the null value the next time it is called. The position should be that returned by a
previous telldir() function call.

The rewinddir() function resets the position of the specified directory stream to
the beginning of the directory. It also causes the directory stream to refer to the
current state of the corresponding directory, as a call to the opendir() function
would have done. If the dir _pointer parameter does not refer to a directory stream,
the effect is undefined.

The closedir() function closes a directory stream and frees the structure associated
with the dir _pointer parameter. Upon return, the value of dir _pointer may no
longer point to an accessible object of the type DIR. If a file descriptor is used to
implement type DIR, that file descriptor will be closed.

The opendir_r() and readdir_r() functions are the reentrant versions of the
opendir() and readdir() functions, respectively. The opendir_r() function stores
the new directory stream associated with dir _name at dir _pointer. The
readdir_r() function stores the next directory entry at result.

1-455

OSF/1 Programmer's Reference
opendir(3)

Example

To search a directory for the entry name:

len = strlen(name);
dir_pointer = opendir(".");
for (dp = readdir(dir_pointer); dp !=NULL; dp =

readdir(dir_pointer))
if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {

closedir(dir_pointer);
return FOUND;

closedir(dir_pointer);
return NOT_FOUND;

Notes
An open directory must always be closed with the closedir() function to ensure
that the next attempt to open that directory is successful.

The use of the seekdir() and telldir() functions is not recommended in OSF/l, as
the results can be unpredictable.

AES Support Level: Full use (opendir(), closedir(), readdir(), rewinddir())
Trial use (seekdir(), telldir())

Return Values

1-456

Upon successful completion, the opendir() function returns a pointer to an object
of type DIR. Otherwise, null is returned and errno set to indicate the error.

Upon successful completion, the readdir() function returns a pointer to an object
of type struct dirent. When an error is encountered, a null pointer is returned and
errno is set to indicate the error. When the end of the directory is encountered, a
null pointer is returned and errno is not changed.

Upon successful completion, the telldir() function returns the current location,
Otherwise, -1 is returned.

Upon successful completion, the seekdir() function returns 0 (zero). Otherwise, -1
is returned.

Upon successful completion, the rewinddir() function returns 0 (zero).
Otherwise, -1 is returned.

Upon successful completion, the closedir() function returns 0 (zero). Otherwise,
-1 is returned.

Errors

Functions

opendir(3)

Upon successful completion, the opendir_r() function returns 0 (zero).
Otherwise, -1 is returned.

Upon successful completion, the readdir_r() function returns 0 (zero). Otherwise,
-1 is returned.

If the opendir() function fails, ermo may be set to one of the following values:

[EACCES] Search permission is denied for any component of dir _name or read
permission is denied for dir _name.

[ELOOP] Too many links were encountered in translating dir _name.

[ENAMETOOLONG]
The length of the dir_name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX.

[ENO ENT] The dir _name parameter points to the name of a file which does not
exist, or the parameter points to an empty string.

[ENOTDIR] A component of dir_name is not a directory.

Related Information

Functions: close(2), lseek(2), open(2), read(2), scandir(3)

1-457

OSF/1 Programmer's Reference

pathconf{3)

pathconf, fpathconf

Purpose Retrieves file implementation characteristics

Library

Standard C Library (libc.a)

Synopsis #include <unistd.h>

long pathconf(

Parameters

Description

1-458

const char *path,
int name);

long fpathconf(

path

filedes

name

int .filedes,
int name);

Specifies the pathname. If the final component of path is a symbolic
link, it will be traversed and filename resolution will continue.

Specifies an open file descriptor.

Specifies the configuration attribute to be queried. If this attribute is
not applicable to the file specified by the path or .filedes parameter,
the pathconf() function returns an error.

The pathconf() function allows an application to determine the characteristics of
operations supported by the file system underlying the file named by the path
parameter. Read, write, or execute permission of the named file is not required, but
all directories in the path leading to the file must be searchable.

The fpathconf() function allows an application to retrieve the same information
for an open file.

Functions

pathconf(3)

Symbolic values for the name parameter are defined in the unistd.h header file, as
follows:

_PC_LINK_MAX
The maximum number of links to the file. If the path or filedes
parameter refers to a directory, the value returned applies to the
directory itself.

_PC_MAX_CANON
The maximum number of bytes in a canonical input line. This is
applicable only to terminal devices.

_PC_MAX_INPUT
The number of types allowed in an input queue. This is applicable
only to terminal devices.

_PC_NAME_MAX
Maximum number of bytes in a filename (not including a
terminating null). This may be as small as 13, but is never larger
than 255. This is applicable only to a directory file. The value
returned applies to filenames within the directory.

_PC_PATH_MAX
Maximum number of bytes in a pathname (not including a
terminating null). This is never larger than 65,535. This is
applicable only to a directory file. The value returned is the
maximum length of a relative pathname when the specified
directory is the working directory.

_PC_PIPE_BUF
Maximum number of bytes guaranteed to be written atomically.
This is applicable only to a FIFO. The value returned applies to the
referenced object. If the path or filedes parameter refers to a
directory, the value returned applies to any FIFO that exists or can
be created within the directory.

_PC_CHOWN_RESTRICTED
This is applicable only to a directory file. The value returned
applies to any files (other than directories) that exist or can be
created within the directory.

1-459

OSF/1 Programmer's Reference
pathconf{3)

Notes

_PC_NO_TRUNC
Returns 1 if supplying a component name longer than allowed by
NAME_MAX will cause an error. Returns 0 (zero) if long
component names are truncated. This is applicable only to a
directory file.

PC VDISABLE
This is always 0 (zero); no disabling character is defined. This is
applicable only to a terminal device.

AES Support Level: Full use

Return Values

Errors

1-460

Upon successful completion, the pathconf() or fpathconf() function returns the
specified parameter. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

If the pathconf() function fails, errno may be set to the following value:

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many links were encountered in translating a pathname.

[EINVAL] The name parameter specifies an unknown or inapplicable
characteristic.

[EFAULT] The path argument is an invalid address.

[ENAMETOOLONG]
The length of the path string exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] The named file does not exist or the path argument points to an
empty strng.

[ENOTDIR] A component of the path prefix is not a directory.

Functions
pathconf(3)

If the fpathconf() function fails, errno may be set to the following value:

[ELOOP]

[EINVAL]

[EBADF]

Too many links were encountered in translating a pathname.

The name parameter specifies an unknown or inapplicable
characteristic.

The.ft/des argument is not a valid file descriptor.

1-461

OSF/1 Programmer's Reference

pause(3)

pause

Purpose

Library

Synopsis

Description

Notes

Suspends a process until a signal is received

Standard C Library (Jibe.a)

int pause(void);

The pause() function suspends the calling process until it receives a signal whose
action is either to execute a signal-catching function or terminate the process. The
signal must not be one that is not acknowledged by the calling process. The
pause() function does not affect the action taken when a signal is received.

The pause() function, which suspends the calling process until the request is
completed, is redefined so that only the calling thread is suspended.

The pause() function is not supported for multi-threaded applications.

AES Support Level: Full use

Return Values

Errors

1-462

When the received signal causes the calling process to end, the pause() function
does not return.

When the signal is caught by the calling process and control is returned from the
signal-catching function, the calling process resumes execution from the point of
suspension, and the pause() function returns a value of -1 and sets errno to the
value [EINTR].

If the pause() function fails, errno may be set to the following value:

[EINTR] The signal is caught by the calling process and control is returned
from the signal-catching function.

Functions

pause{3)

Related Information

Functions: alarm(3), kill(2), sigaction(2), sigvec(2), wait(2)

1-463

OSF/1 Programmer's Reference
pclose(3)

pc lose

Purpose Closes a pipe to a process

Library

Standard 1/0 Package (Jibe.a)

Synopsis #include <stdio.h>

int pclose (

Parameters

Description

Notes

Caution

stream

FILE *stream);

Points to a FILE structure for an open pipe returned by a previous
call to the popen() function.

The pclose() function closes a pipe between the calling program and a shell
command to be executed. Use the pclose() function to close any stream you have
opened with the popen() function. The pclose() function waits for the associated
process to end, and then returns the exit status of the command.

AES Support Level: Trial use

If the original processes and the process started with the popen() function
concurrently read or write a common file, neither should use buffered 1/0. If they
do, the results are unpredictable.

Return Values

1-464

Upon successful completion, the pclose() function returns the exit status of the
command. If the stream parameter is not associated with a popen() command, a
value of -1 is returned.

Functions

pclose(3)

Errors

If the pclose() function fails, errno may be set to the following value:

[ECHILD] The status of the child process could not be obtained.

Related Information

Functions: fclose(3}, popen(3}, wait(2)

1-465

OSF/1 Programmer's Reference
perror(3)

perror

Purpose Writes a message explaining a function error

Library

Standard C Library (libc.a)

Synopsis #include <errno.h>

void perror (

Parameters

Description

Notes

char *string);

extern char *sys_errlist[];
extern int sys_nerr;

string A parameter string that contains the name of the program that
caused the error. The ensuing printed message contains this string, a
colon, and an explanation of the error.

The perror() function writes a message on the standard error output that describes
the last error encountered by a function or library function. The error message
includes the string parameter string followed by a : (colon), a blank, the message,
and a newline character. The string parameter string should include the name of the
program that caused the error. The error number is taken from errno, which is set
when an error occurs, but is not cleared when a successful call is made.

Use errno as an index into this table to get the message string without the newline
character. The largest message number provided in the table is sys_nerr. Be sure
to check sys_ nerr because new error codes can be added to the system before they
are added to the table.

AES Support Level: Full use

Related Information

Functions: printf(3)

1-466

pipe

Purpose

Synopsis

Parameters

Description

Notes

Functions

pipe(2)

Creates an interprocess channel

int pipe (
intfiledes[2]);

filedes Specifies the address of an array of two integers into which the new
file descriptors are placed.

The pipe() function creates a unidirectional interprocess channel called a pipe, and
returns two file descriptors, filedes[O] and filedes[l]. The file descriptor specified
by the filedes[O] parameter is opened for reading and the file descriptor specified
by the filedes[l] parameter is opened for writing. Their integer values will be the
two lowest available at the time of the call to the pipe() function. The
O_NONBLOCK flag will be clear on both file descriptors. (The fcntl() function
can be used to set the O_NONBLOCK flag.)

A process has the pipe open for reading if it has a file descriptor open that refers to
the read end, filedes[O]. A process has the pipe open for writing if it has a file
descriptor open that refers to the write end, filedes[l]. A read on file descriptor
filedes[O] accesses the data written to filedes[l] on a first-in, first-out (FIFO) basis.

Upon successful completion, the pipe() function marks the st_atime, st_ctime and
st_ mtime fields of the pipe for update.

The FD_CLOEXEC flag will be clear on both file descriptors.

AES Support Level: Full use

Return Values

Upon successful completion, a value of 0 (zero) is returned. If the pipe() function
fails, a value of -1 is returned and errno is set to indicate the error.

1-467

OSF/1 Programmer's Reference
plpe(2)

Errors

If the pipe() function fails, errno may be set to one of the following values:

[EFAULT] Thefiledes parameter is an invalid address.

[EMFILE] More than OPEN_MAX-2 file descriptors are already open by this
process.

[ENFILE] The system file table is full, or the device containing pipes has no
free i-nodes.

Related Information

1-468

Functions: read(2), fcntl(2), select(2), write(2)

Commands: sh(l)

plock

Purpose

Synopsis

Parameters

Description

Locks a process' text and/or data segments in memory

#include <sys/lock.h>

int plock(
int opr);

opr Specifies one of the following operations:

PROCLOCK
Locks the text and data segments into memory.

TXTLOCK
Locks the text segment into memory.

DATLOCK
Locks the data segment into memory.

UNLOCK
Removes locks.

Functions
plock(2)

The plock() function locks or unlocks a process' text segments, data segments, or
both in physical memory. When locked, the physical pages containing the text or
data segment will not be paged out. It is an error to lock a segment that is already
locked.

The caller must have superuser privilege to use the plock() function.

Note that memory acquired subsequent to a plock() function may or may not be
locked in memory, depending on the specific acquisition method. Memory
acquired using the ork() function (or rhe sork() funcrion) wiii be locked if rhe
data segment was locked. Memory acquired via the mmap() or vm _allocate()
functions will not be locked.

1-469

OSF/1 Programmer's Reference
plock(2)

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned to the calling process.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the plock() function fails, errno may be set to one of the following values:

[EPERM] The caller does not have appropriate privilege.

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

The opr parameter is PROCLOCK, but the text segment or the data
segment is already locked.

The opr parameter is TXTLOCK, but the text segment is already
locked.

The opr parameter is DATLOCK, but the data segment is already
locked.

The opr parameter is UNLOCK, but neither the text segment nor the
data segment is locked.

Related Information

Functions: brk(2), mmap(2)

1-470

Functions

poll(2)

poll

Purpose Monitors conditions on multiple file descriptors

Synopsis #include <sys/poll.h>

Parameters

Description

int poll(

filedes

nf ds

timeout

struct pollfd.fi/edes[],
unsigned int nfds,
int timeout);

Points to an array of pollfd structures, one for each file descriptor of
interest.

Specifies the number of pollfd structures in the file des array.

Specifies the maximum length of time (in milliseconds) to wait for
at least one of the specified events to occur.

The poll() function provides a general mechanism for reporting 1/0 conditions
associated with a set of file descriptors and for waiting until one or more specified
conditions becomes true. Specified conditions include the ability to read or write
data without blocking, and error conditions.

Each pollfd structure includes the following members:

int fd The file descriptor

short events The requested conditions

short revents The reported conditions

The fd member of each !JOllfd structure specifies an open file descriptor. The
poll() function uses the events member to determine what conditions to report for
this file descriptor. If one or more of these conditions is true, the poll() function
sets the associated revents member.

The poll() function ignores any pollfd structure whose fd member is less than 0
(zero). If the fd member of all pollfd structures is less than 0, the poll() function
will return 0 and have no other results.

1-471

OSF/1 Programmer's Reference
poll(2)

Notes

1-472

The events and revents members of the pollfd structure are bitmasks. The calling
process sets the events bitmask, and poll() sets the revents bitmasks. These
bitmasks contain ORed combinations of condition flags. The following condition
flags are defined:

POLLNORM Data may be read without blocking.

POLLOUT Data may be written without blocking.

POLLERR An error has occurred on the file descriptor.

POLLHUP The device has been disconnected.

POLLNVAL The value specified for fd is invalid.

The conditions indicated by POLLNORM and POLLOUT are true if and only if at
least one byte of data can be read or written without blocking. The exception is
regular files, which always poll true for POLLNORM and POLLOUT.

The condition flags POLLERR, POLLHUP, and POLLNVAL are always set in
revents if the conditions they indicate are true for the specified file descriptor,
whether or not these flags are set in events.

for each call to the poll() function, the set of reportable conditions for each file
descriptor consists of those conditions that are always reported, together with any
further conditions for which flags are set in events. If any reportable condition is
true for any file descriptor, the poll() function will return with flags set in revents
for each true condition for that file descriptor.

If no reportable condition is true for any of the file descriptors, the poll() function
waits up to timeout milliseconds for a reportable condition to become true. If, in
that time inter\ral, a reportable condition becomes true for any of the file
descriptors, poll() reports the condition in the file descriptor's associated revents
member and returns. If no reportable condition becomes true, poll() returns
without setting any reverits bitmasks.

If the timeout parameter is a value of -1, the poll() function does not return until at
least one specified event has occurred. If the value of the timeout parameter is 0
(zero), the poll() function does not wait for an event to occur but returns
immediately, even if no specified event has occurred. The behavior of the poll()
function is not affected by whether the O_NONBLOCK flag is set on any of the
specified file descriptors.

For compatibility with BSD systems, the select() function is also supported.

AES Support Level: Trial use

Functions

poll(2}

Return Values

Errors

Upon successful completion, the poll() function returns a nonnegative value. If
the call returns 0 (zero), poll() has timed out and has not set any of the revents
bitmasks. A positive value indicates the number of file descriptors for which poll()
has set the revents bitmask. If the poll() function fails, -1 is returned and errno is
set to indicate the error.

If the poll() function fails, errno may be set to one of the following values:

[EAGAIN] Allocation of internal data structures failed. A later call to the
poll() function may complete successfully.

[EINTR] A signal was caught during the poll() function and the signal
handler was installed with an indication that functions are not to be
restarted.

[EINV AL] The timeout parameter is a negative number other than -1.

[EFAULT] The .filedes parameter in conjunction with the nfds parameter
addresses a location outside of the allocated address space of the
process.

Related Information

Functions: read(2), write(2)

1-473

OSF/1 Programmer's Reference
popen(3)

papen

Purpose Initiates a pipe to a process

Library

Standard 1/0 Package (libc.a)

Synopsis #include <stdio.h>

FILE *popen (

Parameters

Description

1-474

const char *command,
const char *type);

command Points to a null-terminated string containing a shell command line.

Points to a null-terminated string containing an 1/0 mode. If the type
parameter is the value r, the calling program can read from the
standard output of the command by reading from the returned file
stream. If the type parameter is the value w, the calling program can
write to the standard input of the command by writing to the
returned file stream.

type

Because open files are shared, a type r command can be used as an
input filter and a type w command as an output filter.

The popen() function creates a pipe between the calling program and a shell
command to be executed. It returns a pointer to a FILE structure for the stream.

Notes

Caution

Functions

popen(3)

Programs using the popen() function to invoke an output filter should beware of
possible deadlock caused by output data remaining in the program's buffer. This
can be avoided by either using the setbuf() function to ensure that the output
stream is unbuffered, or by using the fllush() function to ensure that all buffered
data is flushed before calling the pclose() function.

AES Support Level: Trial use

If the original processes and the process started with the popen() function
concurrently read or write a common file, neither should use buffered 1/0. If they
do, the results are unpredictable.

Return Values

Upon successful completion, the popen() function returns a pointer to the FILE
structure for the opened stream. In case of error because files or processes could
not be created, the popen() function returns a null pointer.

Related Information

Functions: exec(2), fork(2), fclose(3), fopen(3), pclose(3), pipe(2), setbuf(3)

1-475

OSF/1 Programmer's Reference
printf(3)

printf, fprintf, sprintf

Purpose Prints formatted output

Library

Standard 1/0 Package (Jibe.a)

Synopsis #include <stdio.h>

int printf (

Parameters

Description

1-476

const char *format [, value, ...]);
int fprintf (

FILE *stream,
const char *format [, value, ...]);

int sprintf (

format

value

stream

string

char *string,
const char *format [, value, ...]);

Specifies a character string combining literal characters with
conversion specifications.

Specifies the data to be converted according to the format
parameter.

Points to a FILE structure specifying an open stream to which
converted values will be written.

Points to a character array in which the converted values will be
stored.

The printf() function converts, formats, and writes its value parameters, under
control of the format parameter, to the standard output stream stdout.

The fprintf() function converts, formats, and writes its value parameters, under
control of the format parameter, to the output stream specified by its stream
parameter.

Functions

printf{3)

The sprintf() function converts, formats, and stores its value parameters, under
control of the format parameter, into consecutive bytes starting at the address
specified by the string parameter. The sprintf() function places a '\O' (null
character) at the end. You must ensure that enough storage space is available to
contain the formatted string.

The format parameter is a character string that contains two types of objects:

• Literal characters, which are copied to the output stream.

• Conversion specifications, each of which causes zero or more items to be
fetched from the value parameter list.

If there are not enough items for format in the value parameter list, the results are
unpredictable. If more values remain after the entire format has been processed,
they are ignored.

Conversion Specifications

Each conversion specification in the format parameter has the following syntax:

• A % (percent) sign.

• Zero or more options, which modify the meaning of the conversion
specification. The option characters and their meanings are:

Left align within the field the result of the conversion.

+ Begin the result of a signed conversion with a sign(+ or-).

(space)
Prefix a space character to the result if the first character of a signed
conversion is not a sign. If both the (space) and + options appear, the
(space) option is ignored.

Convert the value to an alternate form. For c, d, i, s, and u conversions,
the option has no effect. For o conversion, it increases the precision to
force the first digit of the result to be a 0 (zero). For x and X
conversions, a nonzero result has Ox or OX prefixed to it. For e, E, f, g,
and G conversions, the result always contains a decimal point, even if
no digits follow it. For g and G conversions, trailing zeros are not
removed from the result.

B Give field width and precision in bytes, rather than in code points, for
conversions using the s or S conversion characters.

N Convert each international character support code point in the
converted string into a printable ASCII escape sequence that uniquely
identifies the code point. This option affects the s and S conversion
characters.

1-477

OSF/1 Programmer's Reference
printf(3)

1-478

0 Pad to field width using leading zeros (following any indication of sign
or base) for d, i, o, u, x, X, e, E, f, g, and G conversions; no space
padding is performed. If the 0 and - (dash) flags both appear, the 0 flag
will be ignored. For d, i, o u, x, and X conversions, if a precision is
specified, the 0 flag is also ignored. For other conversions, the
behavior is undefined.

J For Japanese language support. This option can be used with all
conversion characters that take an int, long, double, or float value as
an argument. The J flag, appearing with any of these numeric
conversions, indicates that output such as characters, digits, signs, or
padding blanks will be 2-byte codes and two columns wide. The J flag
can also be used with the %c, %s, and %S conversion characters to
indicate that padding should use double-width spaces.

• An optional decimal digit string that specifies the minimum field width. If the
converted value has fewer characters than the field width, the field is padded
on the left to the length specified by the field width. If the left-adjustment
option is specified, the field is padded on the right.

• An optional precision. The precision is a . (dot) followed by a decimal digit
string. If no precision is given, it is treated as 0 (zero). The precision specifies:

The minimum number of digits to appear for the d, u, o, x, or X
conversions.

The number of digits to appear after the decimal point for the e, E, and f
conversions.

The maximum number of significant digits for the g and G conversions.

The maximum number of characters to be printed from a string in the s
conversion.

• An optional h, I, or L specifying that a following d, i, u, o, x, or X conversion
character applies to, respectively, a long integer value, a short integer value,
or a double integer value. The h and I options can also be used with the n
conversion specifier to indicate a pointer to a short int or long int argument,
respectively.

• A character that indicates the type of conversion to be applied:

% Performs no conversion. Prints % .

d, i Accepts an integer value and converts it to signed decimal notation.
The precision specifies the minimum number of digits to appear. If the

Functions

printf(3)

value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of
converting a zero value with a precision of zero is a null string.
Specifying a field width with a zero as a leading character causes the
field width value to be padded with leading zeros.

u Accepts an integer value and converts it to unsigned decimal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of
converting a zero value with a precision of zero is a null string.
Specifying a field width with a zero as a leading character causes the
field width value to be padded with leading zeros.

o Accepts an integer value and converts it to unsigned octal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of
converting a zero value with a precision of zero is a null string.
Specifying a field width with a zero as a leading character causes the
field width value to be padded with leading zeros. An octal value for
field width is hot implied.

x, X Accepts an ii:iteger value and converts it to unsigned hexadecimal
notation. The letters abcdef are used for the x conversion and the
letters ABCDEF are used for the X conversion. The precision specifies
the minimum number of digits to appear. If the value being converted
can be represented in fewer digits, it is expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a
precision of zero is a null string. Specifying a field width with a zero
as a leading character causes the field width value to be padded with
leading zeros.

f Accepts a float or double value and converts it to decimal notation in
the format [-]ddd.ddd. The number of digits after the decimal point is
equal to the precision specification. If no precision is specified, six
digits are output. If the precision is zero, no decimal point appears. lf
a decimal point is output, at least one digit is output before it. The
value is rounded to the appropriate number of digits.

e, E Accepts a float or double value and converts it to the exponential form
[-]d.ddde+!-dd. There is one digit before the decimal point and the
number of digits after the decimal point is equal to the precision
specification. If no precision is specified, six digits are output. If the

1-479

OSF/1 Programmer's Reference
printf(3)

1-480

precision is zero, no decimal· point appears. The E conversion
character produces a number with E instead of e before the exponent.
The exponent always contains at least two digits. If the value is zero,
the exponent is zero.

g, G Accepts a float or double value and converts it in the style of the e, E,
or f conversion characters, with the precision specifying the number of
significant digits. Trailing zeros are removed from the result. A
decimal point appears only if it is followed by a digit. The style used
depends on the vaiue converted. Style e (E, if G is the flag used)
results only if the exponent resulting from the conversion is less than
-4, or if it is greater or equal to the precision:

c Accepts and prints an integer value converted to an unsigned char.

s Accepts a value as a string (character pointer), and characters from the
string are printed until a ' ' (null ehwaeter) is encountered or the
number of characters indicated by the precision is reached. If no
precision is specified, all characters up to the first null character are
printed. If the string pointer value has a value of 0 (zero) or null, the
results are undefined.

p Accepts a pointer to void. The value of the pointer is converted to a
sequence of printable characters, the same as unsigned hexadecimal
(x).

n Accepts a pointer to an integer into which is written the number of
characters written to the output stream so far by this call. No argument
is converted.

A field width or precision can be indicated by an * (asterisk) instead of a digit
string. In this ease, an integer value parameter supplies the field width or precision.
The value parameter converted for output is not fetched until the conversion letter
is reached, so the parameters specifying field width or precision must appear before
the value (if any) to be converted.

If the result of a conversion is wider than the field width, the field is expanded to
contain the converted result. No truncation occurs. However, a small precision can
cause truncation on the right.

The e, E, f, and g formats represent the special floating-point values as follows:

Quiet Na.N +Na.NQ or -Na.NQ

Signaling NaN +Na.NS or -NaNS

+/-INF +INF or -INF

+/cO +O or -0

Functions

printf(3)

The representation of the plus sign depends on whether the+ or (space) formatting
option is specified.

The printf() functions can handle a format string that enables the system to
process elements of the argument list in variable order. In such a case, the normal
conversion character % (percent sign) is replaced by "%digit$", where digit is a
decimal number in the range [1, NL_ARGMAX]. Conversion is then applied to the
argument, rather than to the next unused argument. This feature provides for the
definition of format strings in an order appropriate to specific languages. When
variable ordering is used, the * (asterisk) specification for field width in precision is
replaced by "%digit$". If the variable ordering feature is used, it must be specified
for all conversions.

The * (asterisk) specification for field width or precision is not permitted with the
variable order %digit$ format.

All forms of the printf() functions allow for the insertion of a language-dependent
radix character in the output string. The radix character is defined by langinfo data
in the program's locale (category LC_NUMERIC). In the "C" locale, or in a
locale where the radix character is not defined, the radix character defaults to .
(decimal point).

The st_ctime and st_mtime fields of the file are marked for update between the
successful execution of the printf() or fprintf() functions and the next successful
completion of a call to the ftlush() or fclose() functions on the same stream, or a
call to the exit() or abort() functions.

AES Support Level: Full use

Return Values

Upon successful completion, each of these functions returns the number of display
characters in the output string rather than the number of bytes in the string.
Otherwise, a negative value is returned.

The value returned by the sprintf() function does not include the final '\O'
character.

1-481

OSF/1 Programmer's Reference
printf(3)

Errors
The printf() or fprintf() functions fail if either the stream is unbuffered, or the
stream's buffer needed to be flushed and the function call caused an underlying
write() or lseek() function to be invoked. In addition, if the printf() or fprintf()
function fails, errno may be set to one of the following values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor
open for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process' file
size limit or the maximum file size.

[EINTR] The read operation was interrupted by a signal which was caught,
and no data was transferred.

[BIO] The implementation supports job control, the process is a member of
a background process group attempting to write to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is
orphaned. This error may also be returned under implementation­
defined conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

Related Information

Functions: conv(3), ecvt(3), putc(3), scanf(3), wsprintf(3)

1-482

profil

Purpose

Synopsis

Parameters

Description

Starts and stops execution profiling

void profil(
short *short_buffer,
unsigned int buffer _size,
unsigned int offset,
unsigned int scale);

Functions
profil(2)

short_buffer Points to an area of memory in the user address space. Its length (in
bytes) is given by the buffer _size parameter.

buffer _size Specifies the length (in bytes) of the buffer.

offset Specifies the delta of program counter start and buffer; for example,
an offset of 0 (zero) implies that text begins at 0.

scale Specifies the mapping factor between the program counter and
short_buffer.

The profil() function controls execution profiling.

The short_buffer parameter points to an area of memory whose length (in bytes) is
given by the buffer _size parameter. After this call, the process' program counters
are examined at regular intervals (10 ms. in most implementations). The value of
the offset parameter is subtracted from the program counter, and the result
multiplied by the scale parameter. The corresponding location in the short_buffer
parameter is incremented if the resulting number is less than the buffer _size
parameter.

The scale parameter is interpreted as an unsigned, fixed point fraction with 16 bits
of mantissa: OxlOOOO gives a 1-1 mapping of program counter values to words in
the short_buffer parameter; Ox8000 maps each pair of program counter values
together.

Profiling is turned off by giving a scale parameter of I. Profiling is turned off when
an execve() is executed. Profiling remains on in both the parent and child
processes after a fork. Profiling is turned off if an update in the short_bujfer
parameter would cause a memory fault.

1-483

OSF/1 Programmer's Reference
profil(2)

If the process contains multiple kernel threads, each will be independently sampled
and the counts will reflect the sum of the samples for all of the threads.

Related Information

1-484

Functions: exec(2), fork(2)

Commands: prof(l), gprof(l)

Functions

pthread_attr _create(3)

pthread_attr_ create

Purpose

Library

Synopsis

Parameters

Description

Notes

Creates a thread attributes object

Threads Library (libpthreads.a)

#include <pthread.h>
int pthread_attr_create(

pthread_attr_t *attr);

attr Specifies the address in which the ID for the new thread attributes
object will be stored.

The pthread_attr_create() function creates a thread attributes object specified by
the attr parameter, initialized with the default values for the thread attributes.
When you create a new thread (using the pthread_create() function), you use an
attributes object to specify the attributes to be used for that thread.

The only thread attribute that is currently modifiable is stack size. Use the
pthread_attr_setstacksize() function to change the value of the stack size
attribute. The default stack size is the maximum stack size allowed on your system.

You can apply the same attributes object to more than one thread.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
,...L.-.---....l ..__ --~-C--- "'-- ... L- C--1 -·---~-~-
\..-UaU5\;,,U LV \.,..UlUU1111 LU u1c:; 111li:11 vc:;unuu.

Return Values

Upon successful completion, a value of 0 (zero) is returned. Otherwise, - l is
returned and errno is set to indicate the error.

1-485

OSF/1 Programmer's Reference
pthread_attr _create(3)

Errors

If the pthread_attr_create() function fails, errno may be set to one of the
following values:

[ENOMEM] There is not enough memory to create the thread attributes object.
This is not a temporary condition.

[EINVAL] The value specified by the attr parameter is invalid.

Related Information

Functions: pthread_create(3), pthread_attr_delete(3)

1-486

Functions
pthread_attr _delete(3)

pthread_attr_delete

Purpose Deletes a thread attributes object

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_attr_delete(
pthread_attr_t *attr);

attr Specifies the address of the thread attributes object to be deleted.

The pthread_attr_delete() function deletes a thread attributes object, which
allows the resources for the attr parameter to be reclaimed.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Errors

Upon successful completion, the attr parameter is set to an illegal value, and a
value of 0 (zero) is returned. Otherwise, -1 is returned and ermo is set to indicate
the error.

If the pthread_attr_delete() function fails, ermo may be set to the following
value:

[EINVAL] The value specified by the attr parameter is invalid.

Related Information

Functions: pthread_create(3), pthread_attr_create(3)

1-487

OSF/1 Programmer's Reference

pthread_attr _getstacksize (3}

pthread_attr_getstacksize

Purpose Returns the value of the stack size attribute of a thread attributes object

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_attr _getstacksize(
pthread_attr_t *attr);

attr Specifies the address of the thread attributes object to be examined.

The pthread_attr_getstacksize() function returns the value of the stack size
attribute of the specified attributes object in bytes.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Errors

1-488

Upon successful completion, the stack size is returned. Otherwise, -1 is returned
and errno is set to indicate the error.

If the pthread_attr_getstacksize() function fails, errno may be set to the
following value:

[EINVAL] The value specified by the attr parameter is invalid.

Functions

pthread_attr _getstackslze(3)

Related Information

Functions: pthread_attr _create(3), pthread_attr _setstacksize(3)

1-489

OSF/1 Programmer's Reference

pthread_attr _setstacksize (3)

pthread_attr_setstacksize

Purpose Sets the value of the stack size attribute of a thread attributes object

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_attr _setstacksize(
pthread_attr_t *attr,
long stacksize);

attr

stacksize

Specifies the address of the thread attributes object to be modified.

Specifies the new value for the stack size attribute (in bytes).

The pthread_attr_setstacksize() function sets the thread stack size attribute. The
stack size attribute specifies the minimum number of bytes allocated to the thread
when it is created. The default stack size is the maximum stack size allowed on
your system.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-490

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

Errors

Functions

pthread_attr _setstacksize (3)

If the pthread_attr_setstacksize() function fails, ermo may be set to the
following value:

[EINVAL] The value specified by the attr or stacksize parameter is invalid.

Related Information

Functions: pthread_attr_create(3), pthread_attr_getstacksize(3)

1-491

OSF/1 Programmer's Reference
pthread_cancel (3)

pthread_cancel

Purpose Initiates termination of a thread

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
int pthread_cancel(

pthread_t thread);

Parameters

Description

Notes

thread Specifies the ID of the thread to be canceled.

The pthread_cancel() function initiates termination processing of the specified
thread. If the target thread has already been canceled, the termination request is
ignored.

If the general cancelability of the target thread has been disabled, the termination
of the thread is held pending until general cancelability is reenabled. If general
cancelability is enabled and asynchronous cancelability is enabled, the termination
of the target thread begins immediately. If general cancelability is enabled and
aynchronous cancelability is disabled, termination is held pending until the next
cancellation point.

During termination processing, any outstanding cleanup routines are executed in
the context of the target thread and a status of ((void *)-1) is made available to any
threads joining with the target thread.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-492

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and ermo is set to indicate the error.

Errors

Functions

pthread_cancel (3)

If the pthread_cancel() function fails, errno may be set to one of the following
values:

[EINVAL] The value specified by thread is invalid.

[ESRCH] The value specified by thread does not refer to an existing thread.

Related Information

Functions: pthread_exit(3), pthread_setasynccancel(3), pthread_setcancel(3),
pthread_Join(3)

1-493

OSF/1 Programmer's Reference
pthread_cleanup_pop(3)

pthread_cleanup_pop

Purpose

Library

Removes a routine from the top of the cleanup stack of the calling thread and
optionally executes it

Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

1-494

void pthread_cleanup_pop(
int execute);

execute Specifies whether or not to execute the cleanup routine.

The pthread_cleanup_pop() function removes the routine at the top of a thread's
cleanup stack. If the execute parameter is nonzero, pthread_cleanup_pop() also
executes the routine. If execute is 0 (zero), the routine is not executed.

Every call to the pthread_cleanup_push() function must be matched by exactly
one call to the pthread_cleanup_pop() function at the same lexical level as the
push.

The effect of calling longjmp() or executing a return or goto after a call to the
pthread_cleanup_push() function but before the matching call to the
pthread_cleanup_pop() function is unspecified. The effect of calling longjmp()
from a cleanup routine is also unspecified.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
changed to conform to the final version.

Functions

pthread_cleanup_pop(3)

Return Values

No value is returned.

Related Information
Functions: pthread_cleanup_push(3), pthread_cancel(3), pthread_setcancel(3)

1-495

OSF/1 Programmer's Reference

pthread_cleanup_push(3)

pthread_cleanup_push

Purpose Pushes a routine onto the cleanup stack of the calling thread

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

1-496

void pthread_cleanup_push(
void (*routine)(void *arg),
void *arg);

routine

arg

Specifies the routine to push on the calling thread's cleanup stack.

Specifies the single parameter to be passed to the cleanup routine.

The pthread_cleanup_push() function pushes the specified routine onto the
calling thread's cleanup stack.

Each thread maintains a list of cleanup routines. The pthread_cleanup_push()
function is used to place routines on the list, and the pthread_cleanup_pop()
function is used to remove routines from the list.

A cleanup routine will be popped from the stack and executed with the arg
parameter when one of the following occurs:

• The thread exits.

• The thread is canceled.

• The thread calls the pthread_cleanup_pop() function with a nonzero execute
parameter.

Every call to the pthread_cleanup_push() function must be matched by exactly
one call to the pthread_cleanup_pop() function at the same lexical level as the
push.

Notes

Functions

pthread_cleanup_push(3)

The effect of calling the longjmp() parameter or executing a return or goto after a
call to the pthread_cleanup_push() function but before the matching call to the
pthread_cleanup_pop() function is unspecified. The effect of calling the
longjmp() parameter from a cleanup routine is also unspecified.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
changed to conform to the final version.

Return Values

No value is returned.

Related Information

Functions: pthread_cancel(3), pthread_setcancel(3)

1-497

OSF/1 Programmer's Reference

pthread_cond_broadcast(3)

pthread_cond_broadcast

Purpose Wakes up all threads that are waiting on a condition variable

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_cond_broadcast(
pthread_cond_t cond);

cond Specifies the condition variable being waited on.

The pthread_cond_broadcast() function wakes up all of the threads that are
waiting for the specified condition to be satisfied.

The call has no effect if no threads are waiting on the condition.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Errors

1-498

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the pthread_cond_broadcast() function fails, errno may be set to the
following value:

[EINVAL] The value specified by the cond parameter is invalid.

Functions
pthread_cond_broadcast(3)

Related Information

Functions: pthread_cond_wait(3), pthread_cond_timedwait(3)

1-499

OSF/1 Programmer's Reference

pthread_cond_destroy(3)

pthread_cond_destroy

Purpose Destroys a condition variable

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_cond_destroy(
pthread_cond_t *cond);

cond Specifies the address of the ID of the condition variable to be
deleted.

The pthread_cond_destroy() function deletes the specified condition variable,
which allows the resources for the cond parameter to be reclaimed.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-500

Upon successful completion, the cond parameter is set to an illegal value, and a
value of 0 (zero) is returned. Otherwise, -1 is returned and errno is set to indicate
the error.

Errors

Functions

pthread_cond_destroy(3)

If the pthread_cond_destroy() function fails, errno may be set to one of the
following values:

[EBUSY]

[EINVAL]

A thread is currently executing a pthread_cond_ wait() or
pthread_cond_timedwait() function on the specified condition
variable.

The value specified by the cond parameter is invalid.

Related Information

Functions: pthread_cond_init(3),
pthread_cond_broadcast(3),
pthread_cond_timedwait(3)

pthread_cond_signal(3),
pthread_cond_ wait(3),

1-501

OSF/1 Programmer's Reference

pthread_cond_init(3)

pthread_cond_init

Purpose

Library

Synopsis

Parameters

Description

Notes

Creates a condition variable

Threads Library (libpthreads.a)

#include <pthread.h>
int pthread_cond_init(

pthread_cond_t *cond,
pthread_condattr_t attr);

cond Specifies the address in which the ID for the new condition variable
will be stored.

attr Specifies the attributes object to use in creating the new condition
variable.

The pthread_cond_init() function creates a condition variable with attributes
specified by the attr parameter. If the attr parameter is
pthread_condattr_default, the default attributes are used.

To have a thread block until some condition is true, use a condition variable with a
mutex. Use the pthread_cond_wait() or pthread_cond_timedwait() function to
cause the calling thread to wait until the condition is satisfied, and use the
pthread_cond_signal() or pthread_cond_broadcast() function to indicate that
the condition has been satisfied and to wake up the waiting thread(s).

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-502

Upon successful completion, the ID of the new condition variable is stored at
*cond, and a value of 0 (zero) is returned. Otherwise, no condition variable is
created, -1 is returned, and ermo is set to indicate the error.

Errors

Functions

pthread_cond_init(3)

If the pthread_cond_init() function fails, errno may be set to one of the
following values:

[EAGAIN] The system lacks the resources necessary for creating another
condition variable.

[EAGAIN] The new condition variable cannot be created without exceeding the
system-imposed limit on the total number of condition variables
allowed for each user.

[ENOMEM] There is not enough memory to create the condition variable. This
is not a temporary condition.

[EINV AL] The value specified by the cond or attr parameter is invalid.

Related Information

Functions: pthread_cond_destroy(3), pthread_cond_signal(3),
pthread_cond_broadcast(3), pthread_cond_ wait(3),
pthread_cond_timedwait(3)

1-503

OSF/1 Programmer's Reference
pthread_cond_signal(3)

pthread_cond_signal

Purpose Wakes up a thread that is waiting on a condition variable

Library
Threads Library (libpthreads~a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_cond_signal(
pthread_cond_t cond);

cond Specifies the condition variable being waited on.

The pthread_cond_signal() function wakes up a thread, if one exists, that is
waiting for the specified condition to be satisfied.

If more than one thread is waiting on the conditfon, the thread to be awakened will
be determined by the scheduler.

This call has no effect if no threads are waiting on the condition.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-504

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

Errors

Functions

pthread_cond_signal(3)

If the pthread_cond_signal() function fails, ermo may be set to the following
value:

[EINVAL] The value specified by the cond parameter is invalid.

Related Information

Functions: pthread_cond_ wait(3), pthread_cond_timedwait(3)

1-505

OSF/1 Programmer's Reference
pthread_cond_timedwait(3)

pthread_cond_timedwait

Purpose

Library

Synopsis

Parameters

Description

Notes

1-506

Waits on a condition variable for a specified period of time

Threads Library (libpthreads.a)

#include <pthread.h>
int pthread_cond_timedwait(

pthread_cond_tcond,
pthread_mutex_t mutex,
struct timestruct *abstime);

cond

mutex

abstime

Specifies the condition variable to wait on.

Specifies the mutex in which the condition variable is located; the
mutex must be locked by the calling thread.

Specifies the time in nanoseconds to wait for the condition variable
to be satisfied.

The pthread_cond_timedwait() function unlocks the mutex specified by the
mutex parameter and causes the calling thread to wait on the specified condition
variable. If the condition is satisfied within the time specified by the abstime
parameter, the mutex is relocked and the function returns. If the absolute time
specified by abstime elapses before the condition is signaled, an error is returned
with mutex relocked.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Functions

pthread_cond_timedwait(3)

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and ermo is set to indicate the error.

If the pthread_cond_timedwait() function fails, ermo may be set to one of the
following values:

[EINVAL] The value specified by the mutex, cond, or abstime parameter is
invalid.

[EAGAIN] The time specified by abstime has elapsed.

[EDEADLK] The calling thread does not own the mutex.

Related Information

Functions: pthread_cond_signal(3), pthread_cond_broadcast(3)

1-507

OSF/1 Programmer's Reference
pthread_cond_ wait(3)

pthread_cond_ wait

Purpose Waits on a condition variable

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

1-508

int pthread_cond_wait(
pthread_cond_t cond,
pthread_mutex_t mutex);

cond

mutex

Specifies the condition variable to wait on.

Specifies the mutex in which the condition variable is located; the
mutex must be locked by the calling thread.

The pthread_cond_ wait() function unlocks the mutex specified by the mutex
parameter and causes the calling thread to wait on the specified condition variable.
When the condition is satisfied, the mutex is relocked and the function returns. The
condition should be retested after the return to ensure the thread has not been
erroneously awakened.

Use the pthread_cond_signal() or pthread_cond_broadcast() function to
indicate that the condition has been satisfied.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Example

Functions
pthread_cond_ wait(3)

pthread_mutex_lock(&mutex);
while (!condition_true)

pthread_cond_wait(&cond,&mutex);
/*
* condition is valid here
*/

pthread_mutex_unlock(&mutex);

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and ermo is set to indicate the error.

If the pthread_cond_ wait() function fails, ermo may be set to one of the
following values:

[EINVAL] The value specified by the mutex or cond parameter is invalid.

[EDEADLK] The calling thread is not the owner of mutex.

Related Information

Functions: pthread_cond_signal(3), pthread_cond_broadcast(3)

1-509

OSF/1 Programmer's Reference

pthread_condattr _create(3)

pthread_condattr_create

Purpose Creates a condition variable attributes object

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_condattr_create(
pthread_condattr_t *attr);

attr Specifies the address in which the ID for the new condition variable
attributes object will be stored.

The pthread_condattr_create() function creates a condition variable attributes
object initialized with the default values for the defined attributes and stores its ID
in attr. When you create a new condition variable (with the pthread_cond_init()
function), you use an attributes object to specify the attributes to be used for that
condition variable.

No condition variable attributes are currently defined.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-510

Upon successful completion, the ID of the created condition variable attributes
object is stored in *attr, and a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

Errors

Fuhctions

pthread_condattr _create(3)

If the pthread_condattr_create() function fails, errno may be set to one of the
following values:

[ENOMEM] There is not enough memory to create the condition attributes
object. This is not a temporary condition.

[EINV AL] The value specified by the attr parameter is invalid.

Related Information

Functions: pthread_cond_init(3)

1-511

OSF/1 Programmer's Reference
pthread_condattr _delete(3)

pthread_condattr_delete

Purpose Deletes a condition variable attributes object

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_condattr _delete(
pthread_condattr_t *attr);

attr Specifies the address of the ID of the condition variable attributes
object to be deleted.

The pthread_condattr_delete() function deletes a condition variable attributes
object, which allows the resources for attr to be reclaimed.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Errors

1-512

Upon successful completion, the attr parameter is set to an illegal value, and a
value of 0 (zero) is returned. Otherwise, -1 is returned and errno is set to indicate
the error.

If the pthread_condattr_delete() function fails, errno may be set to the
following value:

[EINVAL] The value specified by the attr parameter is invalid.

Functions

pthread_condattr _delete(3)

Related Information

Functions: pthread_cond_init(3), pthread_condattr_create(3)

1-513

OSF/1 Programmer's Reference
pthread_create(3)

pthread_create

Purpose Creates a thread

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

1-514

int pthread_create(
pthread_t *thread,
pthread_attr_t attr,
void*(*start_routine) (void *arg),
void *arg);

thread Specifies the address in which the ID for the new thread will be
stored.

attr Specifies the address of the attributes object to use in creating the
new thread.

start_routine Specifies the address of the routine to be executed by the new
thread.

arg Specifies the single argument to be passed to the start_routine
parameter.

The pthread_create() function creates a new thread, with attributes specified by
the attr parameter. If attr is pthread_attr_default, the default attributes are used.

The thread is created executing start_routine, with arg as its sole argument. If
start_routine returns, an implicit call to the pthread_exit() function is made using
the return value of start_routine as the exit status.

Variables accessible to one thread in a process are available to all other threads in
that process. Use the pthread_mutex_init() function to create a mutex for
controlling access to shared data. Use the pthread_keycreate() function to create
a key for accessing thread-specific data.

Each thread has its own cancelability state, which determines the thread's
response to a cancellation request (that is, whether or not the thread can be
canceled, and when it can be canceled). There are two types of cancelability:

Notes

Functions
pthread_create{3}

general cancelability (which is set with pthread_setcancel() function), and
asynchronous cancelability (which is set with pthread_setasynccancel()
function). They work together to determine a thread's cancelability state. When a
thread is created, general cancelability is enabled and asynchronous cancelability
is disabled, which means that the thread can only be canceled at cancellation
points.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Errors

Upon successful completion, the ID of the created thread is stored at *thread, and a
value of 0 (zero) is returned. Otherwise, no thread is created, -1 is returned, and
errno is set to indicate the error.

If the pthread_create() function fails, errno may be set to one of the following
values:

[EAGAIN] The system lacks the resources necessary to create another thread.

[EAGAIN] The new thread cannot be created without exceeding the system­
imposed limit on the total number of threads allowed for each user.

[ENOMEM] There is not enough memory to create the thread: This is not a
temporary condition.

[EINVAL] The value specified by the thread or attr parameter is invalid.

Related Information

Functions: fork(2), pthread_exit(3), pthread_join(3)

1-515

OSF/1 Programmer's Reference

pthread_detach(3)

pthread_detach

Purpose Detaches a thread

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
int pthread_detach(

pthread_t *thread);

Parameters

Description

Notes

thread Specifies the address of the ID of the thread to detach.

The pthread_detach() function indicates that all resources for thread may be
reclaimed when thread terminates. This may include storage for thread's return
value. If thread has not terminated, pthread_detach() will not cause it to
terminate, but will cause the storage to be reclaimed after thread terminates.

Once a thread has been detached, any subsequent calls to the pthread_join()
function will fail.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-516

Upon successful completion, the thread parameter is set to an illegal value, and a
value of 0 (zero) is returned. Otherwise, -1 is returned and ermo is set to indicate
the error.

Errors

Functions

pthread_detach{ 3)

If the pthread_detach() function fails, errno may be set to one of the following
values:

[EINVAL]

[ESRCH]

The value specified by the thread parameter is invalid.

The value specified by the thread parameter does not refer to an
existing thread.

Related Information

Functions: pthread_join(3)

1-517

OSF/1 Programmer's Reference

pthread_equal(3)

pthread_equal

Purpose Compares two thread identifiers

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
int pthread_equal(

pthread_t tl,
pthread_t t2);

Parameters

Description

Notes

ti

t2

Specifies a thread to be compared with the thread represented by t2.

Specfies a thread to be compared with the thread represented by tl.

The pthread_equal() function determines whether two thread identifiers are
equivalent.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

If tl is equal to t2, a nonzero value is returned. Otherwise, 0 (zero) is returned.

Related Information

Functions: pthread_create(3)

1-518

Functions
pthread_exit(3)

pthread_exit

Purpose Terminates the calling thread

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
void pthread_exit(

void *status);

Parameters

Description

Notes

status Specifies the exit status of the thread.

The pthread_exit() function terminates the calling thread and saves the exit status.
This status is thereby made available to any thread that joins with this thread (using
the pthread_join() function).

The pthread_exit() function is called implicitly when a thread returns from the
start routine tpat was used to create the thread; the routine's return value serves as
the thread's exit· status. The process itself exits when the last thread calls
pthread_exit(). If the last thread to call pthread_exit() has been detached, the
process exit status will be 0 (zero). Otherwise, it will be -1.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
changed to conform to the final version.

Return Values

The i;>thread_exit() function cannot return to its caller.

Related Information

Functions: pthread_create(3), pthread_join(3)

1-519

OSF/1 Programmer's Reference

pthread_getspecific{ 3)

pthread_getspeci fie

Purpose Returns the value bound to a key

Library
Threads Library (libpthreads.a)

Synopsis #include <t>thread.h>
int pthread_getspecific(

pthread_key _t key,
void **value);

Parameters

Description

Notes

key Specifies the address of the key that the value parameter is bound to.

value Specifies the address in which the thread-specific data is ston~d.

The pthread_getspecific() function stores the value that is bound to the specified
key for the calling thread in the value parameter. If no data has been bound, then a
value of null will be stored.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-520

Upon successful completion, the value bound to the key parameter is stored at the
value parameter, and a value of 0 (zero) is returned. Otherwise, -1 ts returned and
ermo is set to indicate the error.

Errors

Functions

pthread_getspecific(3)

If the pthread_getspecific() function fails, errno may be set to the following
value:

[EINVAL] The value specified by the key parameter is invalid.

Related Information

Functions: pthread_keycreate(3), pthread_setspecific(3)

1-521

OSF/1 Programmer's Reference

pthread_join(3)

pthreadjoin

Purpose Waits for a thread to terminate

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
int pthread_join(

pthread_tthread,
void **status);

Parameters

Description

Notes

thread

status

Specifies the ID of the thread to wait for.

Specifies the location in which the exit status of the joined thread
will be stored.

The pthread_join() function blocks execution of the calling thread until the target
thread, specified by the thread parameter, terminates. If the target thread has
already terminated, pthread_join() returns without blocking.

When the target thread exits, the exit status of the thread is stored in the status
parameter unless status is a null pointer.

A thread may be joined by many threads until it is detached.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-522

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

Errors

Functions

pthread_join(3)

If the pthread_join() function fails, errno may be set to one of the following
values:

[EINVAL] The value specified by the thread parameter is invalid.

[ESRCH] The value specified by the thread parameter does not refer to an
existing thread.

[EDEADLK] A deadlock condition was detected: the target thread is the calling
thread.

Related Information

Functions: pthread_create(3), wait(2)

1-523

OSF/1 Programmer's Reference

pthread_keycreate(3)

pthread_keycreate

Purpose Creates a key to be used with thread-specific data

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
int pthread_keycreate(

pthread_key_t *key,

Parameters

Description

Notes

1-524

void (*destructor)(void *value)s);

destructor

value

key

Specifies the address of an optional destructor function.

Specifies the value associated with the key.

Specifies the address in which the new key will be stored.

The pthread_keycreate() function creates a key. A key is an opaque object that
can be seen by all of the threads in a process. Each thread can bind its own value to
that key using the pthread_setspecific() function; the value is maintained by the
thread until the thread exits.

Ordinarily, the value that a thread binds to a key will be a pointer to storage
allocated dynamically on behalf of that thread. To have this storage freed when the
thread exits, use the destructor function. If the old value needs to be destroyed
before the new value is bound, then the calling thread must use the
pthread_getspecific() function and call the destructor explicitly itself. The
destructor function is also called when the thread exits if the value bound is not
null. If you do not specify destructor, no destructor function is called.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Functions
pthread_keycreate(3)

Return Values

Errors

Upon successful completion, the newly created key is stored at *key, and a value of
0 (zero) is r~tumed. Otherwise, no key is created, -1 is returned, and errno is set to
inqicate the error.

If the pthread_keycreate() function fails, errno may be set to one of the
following values:

[EAGAIN] There is not enough memory to create the key.

[ENOMEM] The key name space is exhausted, so the key cannot be allocated.
This is not a temporary condition.

[EINVAL] The value specified by the destructor, value, or key parameter is
invalid.

Related Information

Functions: pthread_getspecific(3), pthread_setspecific(3)

1-525

OSF/1 Programmer's Reference
pthread_mutex_destroy(3)

pthread_mutex_destroy

Purpose Deletes a mutex

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_mutex_destroy(
pthread_mutex_t *mutex);

mutex Specifies the address of the ID of the mutex to be deleted.

The pthread_mutex_destroy() function deletes the specified mutex, which allows
the r\!sources of the mutex to be reclaimed.

Attempting to lock or unlock a mutex that has been deleted will result in undefined
behavior.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
changed to conform to the final version. '

Return Values

1-526

Upon successful completion, the mutex parameter is set to an illegal value, and a
value of 0 (zero) is returned. Otherwise, -1 is returned and ermo is set to indicate
the error.

Errors

Functions
pthread_mutex_destroy(3)

If the pthread_mutex_destroy() function fails, errno may be set to one of the
following values:

[EBUSY] The mutex is locked.

[EINVAL] The value specified by the mutex parameter is invalid.

Related Information

Functions: pthread_mutex_init(3), pthread_mutex_lock(3),
pthread_mutex_unlock(3), pthread_mutex_trylock(3)

1-527

OSF/1 Programmer's Reference
pthread_mutex_init(3)

pthread_mutex_init

Purpose Creates a mutex

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

1-528

int pthread_mutex_init(
pthread_mutex_t *mutex,
pthread_mutexattr_t attr);

mutex

attr

Specifies the address in which the ID for the new mutex will be
stored.

Specifies the attributes object to use in creating the new mutex.

The pthread_mutex_init() function creates a new mutex with attributes specified
by the attr parameter. If attr is pthread_nmtexattr_default, the default attributes
are used.

A mutex (from "mutual exclusion") is used to serialize the access of multiple
threads to shared data. Mutexes should only be used for synchronizing threads
within a single process; using p:mtexes outside of a single process results in
undefined behavior.

Because a mutex lock is not a cancellation point, use mutexes to protect resources
that will be held only for short fixed periods of time, where the absence of
cancelability will not cause problems. Use a condition variable to protect
resources that need to be held exclusively for long periods of time.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Functions
pthread_mutex_init(3)

Return Values

Errors

Upon successful completion, the ID of the created mutex is stored at *mutex, and a
value of 0 (zero) is returned. Otherwise, no mutex is created, -1 is returned, and
errno is set to indicate the error.

If the pthread_mutex_init() function fails, errno may be set to one of the
following values:

[EAGAIN] The system lacks the resources necessary to create another mutex.

[EAGAIN] The new mutex cannot be created without exceeding the system­
imposed limit on the total number of mutexes allowed for each user.

[ENOMEM] There is not enough memory to create the mutex object. This is not
a temporary condition.

[EINVAL] The value specified by the mutex or attr parameter is invalid.

Related Information

Functions: pthread_mutex_destroy(3), pthread_mutex_lock(3),
pthread_mutex_unlock(3), pthread_mutex_trylock(3)

1-529

OSF/1 Programmer's Reference
pthread_mutex_lock(3)

pthread_mutex_lock

Purpose Locks a mutex

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_mutex_lock(
pthread_mutex_t * mutex);

mutex Specifies the ID of the mutex to be locked.

The pthread_mutex_lock() function locks the specified mutex and makes the
calling thread the owner of the mutex. If mutex is already locked, the
pthread_mutex_lock() function blocks the calling thread until the mutex is
available.

Because the pthread_mutex_lock() function is not a cancellation point, you can
safely call the pthread_mutex_lock() function during a cleanup routine. During
cleanup, it is often necessary to lock a mutex so that you can change the state that
says that a resource is owned. However, care must be taken to ensure that the
thread does not already have the mutex locked.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
changed to conform to the final version.

Return Values

1-530

Upon successful completion, a value of 0 (zero) is returned. Otherwise, no mutex is
created, -1 is returned, and errno is set to indicate the error.

Errors

Functions

pthread_mutex_lock(3)

If the pthread_mutex_lock() function fails, errno may be set to one of the
following values:

[EINVAL] The value specified by the mutex parameter is invalid.

[EDEADLK] The mutex was already locked by the calling thread.

Related Information

Functions: pthread_mutex_init(3), pthread_mutex_destroy(3),
pthread_mutex_trylock(3), pthread_mutex_unlock(3)

1-531

OSF/1 Programmer's Reference

pthread_mutex_trylock(3)

pthread_mutex_trylock

Purpose Tries once to lock a mutex

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_mutex_trylock(
pthread_mutex_t * mutex);

mutex Specifies the ID of the mutex to lock.

The pthread_mutex_trylock() function attempts to lock the specified mutex. If
the mutex is already locked, pthread_mutex_trylock() returns immediately
indicating the lock failed.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
changed to conform to the final version.

Return Values

1-532

If the mutex is owned by a thread (which may be the calling thread), a value of 0
(zero) is returned. If a lock on the mutex is acquired, a value of 1 is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

Errors

Functions

pthread_mutex_trylock(3)

If the pthread_mutex_trylock() function fails, ermo may be set to the following
value:

[EINVAL] The value specified by the mutex parameter is invalid.

Related Information

Functions: pthread_mutex_init(3), pthread_mutex_destroy(3)

1-533

OSF/1 Programmer's Reference

pthread_mutex_unlock(3)

pthread_mutex_unlock

Purpose Unlocks a mutex

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_mutex_unlock(
pthread_mutex_t * mutex);

mutex Specifies the ID of the mutex to unlock.

The pthread_mutex_unlock() function unlocks the specified mutex. When the
mutex is unlocked, if more than one thread is waiting for the mutex, the next thread
to lock the mutex is determined by the scheduler.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-534

Upon successful completion, a value of 0 (zero) is returned. Otherwise, no mutex
is created, -1 is returned, and errno is set to indicate the error.

Errors

Functions

pthread_mutex_unlock(3)

If the pthread_mutex_unlock() function fails, errno may be set the the following
value:

[EINVAL]

[EPERM]

The value specified by the mutex parameter is invalid.

The mutex is not locked by the calling thread.

Related Information

Functions: pthread_mutex_init(3), pthread_mutex_destroy(3),
pthread_mutex_lock(3)

1-535

OSF/1 Programmer's Reference

pthread_mutexattr_create(3)

pthread_mutexattr_create

Purpose Creates a mutex attributes object

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_mutexattr _create(
pthread_mutexattr_t *attr);

attr Specifies the address in which the ID for the new mutex attributes
object will be stored.

The pthread_mutexattr_create() function creates a mutex attributes object
initialized with the default values for the defined attributes, and stores its ID in the
attr parameter. When you create a new mutex (with the pthread_mutex_init()
function), you use an attributes object to specify the attributes to be used for that
mutex.

No mutex attributes are currently defined.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

1-536

Upon successful completion, the ID of the created mutex attributes object is stored
in *attr, and a value of 0 (zero) is returned. Otherwise, -1 is returned and errno is
set to indicate the error.

Errors

Functions

pthread_mutexattr _create(3)

If the pthread_mutexattr_create() function fails, errno may be set to one of the
following values:

[ENOMEM] There is not enough memory to create the mutex attributes object.
This is not a temporary condition.

[EINVAL] The value specified by the attr parameter is invalid.

Related Information

Functions: pthread_create(3), pthread_mutex_init(3), pthread_cond_init(3)

1-537

OSF/1 Programmer's Reference

pthread_mutexattr _delete(3)

pthread_mutexattr_delete

Purpose Deletes a mutex attributes object

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Parameters

Description

Notes

int pthread_mutexattr _delete(
pthread_mutexattr _t *attr);

attr Specifies the address of the ID of the mutex attributes object to be
deleted.

The pthread_mutexattr_delete() function deletes a mutex attributes object,
which allows the storage for attr to be reclaimed.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Errors

Upon successful completion, *attr is set to an illegal value, and a value of 0 (zero)
is returned. Otherwise, -1 is returned and errno is set to indicate the error.

If the pthread_mutexattr_delete() function fails, errno may be set to the
following value:

[EINVAL] The value specified by the attr parameter is invalid.

Related Information

Functions: pthread_mutexattr_create(3)

1-538

Functions
pthread_once(3}

pthread_once

Purpose

Library

Synopsis

Parameters

Description

Notes

Calls an initialization routine

Threads Library (libpthreads.a)

#include <pthread.h>
static pthread_once_t once_block= pthread_once_init;
int pthread_once(

pthread_once_t *once_block,
void(*init_routine)());

once_block Specifies a name to use for the routine that is used to check whether
the initialization routine has already been executed.

init_routine Specifies the name of the initialization routine.

The pthread_once() function determines whether or not init_routine has been
called by a previous pthread_once() call; if init_routine has not been called,
pthread_once() calls it.

The pthread_once() function does not return to any calling thread until the
init_routine has been completed. You should declare a single once_block for each
initialization routine.

Undefined behavior results if once_block is not initialized or is not declared as
static.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

1-539

OSF/1 Programmer's Reference

pthread_once(3}

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the pthread_once() function fails, errno may be set to one of the following
values:

[EINVAL] The value specified by the once_block or init_routine parameter is
invalid.

Related Information

Functions: pthread_mutex_init(3), pthread_cond_init(3)

1-540

Functions

pthread_self(3)

pthread_self

Purpose Returns the ID of the calling thread

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
pthread_t pthread_self(void);

Description

Notes

The pthread_self() function returns the thread ID of the calling thread. You can
use the returned thread ID to pass as the thread argument to other thread calls.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Upon successful completion, the pthread_self() function returns the thread ID of
the calling thread.

Related Information

Functions: pthread_create(3)

1-541

OSF/1 Programmer's Reference
pthread_setasynccancel (3)

pthread_setasynccancel

Purpose

Library

Synopsis

Parameters

Description

1-542

Enables or disables the asynchronous cancelability of the calling thread

Threads Library (libpthreads.a)

#include <pthread.h>
int pthread_setasynccancel(

int state);

state Specifies the new cancelability state; legal values are:

CANCEL_ ON
Enables asynchronous cancellation

CANCEL_ OFF
Disables asynchronous cancellation

The pthread_setasynccancel() function sets the calling thread's asynchronous
cancelability state to that indicated by the state parameter and returns the previous
asynchronous cancelability state.

By default, asynchronous cancelability is disabled, and general cancelability is
enabled (see the pthread_setcancel() function), which means that the thread can
only be canceled at cancellation points.

If you enable both asynchronous cancelability and general cancelability, the thread
can be canceled at any time.

If you disable general cancelability, the thread cannot be canceled; the state of
asynchronous cancelability is ignored.

You should not enable asynchronous cancelability if the thread is executing in a
critical section, or is in another state that would be difficult or impossible to recover
from (for example, ifthe thread is contending for a shared resource).

Notes

Functions

pthread_setasynccancel (3)

The C standard functions that you can safely call with asynchronous cancelability
enabled are the character handling functions, the mathematical functions, the string
handling functions, and the abs() function. The effect of calling any other C
standard function with asynchronous cancelability enabled is unspecified.

The character handling functions that you can safely call with asynchronous
cancelability enabled are:

isalnum isalpha iscntrl isdigit
isgraph islower isprint ispunct
isspace isupper isxdigit to lower
toupper

The mathematical functions that you can safely call with asynchronous
cancelability enabled are:

a cos asin atan atan2
cos sin tan co sh
sinh tanh exp frexp
ldexp log log10 modf
pow sqrt ceil tabs
floor fmod

The string handling functions that you can safely call with asynchronous
cancelability enabled are:

memcpy memmove strcpy strncpy
street strncat memcmp strcmp
strcoll strncmp strxfrm memchr
strchr strcspn strpbrk strrchr
strspn strstr strtok memset
strerror strlen

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Return Values

Upon successful completion, the previous value of the cancelability state is
returned. Otherwise, -1 is returned and errno is set to indicate the error.

1-543

OSF/1 Programmer's Reference

pthread_setasynccancel (3)

Errors

If the pthread_setasynccancel() function fails, errno may be set to the following
vaiue:

[EINVAL] The specified state is not CANCEL_ ON or CANCEL_ OFF.

Related Information
Functions: pthread_cancel(3), pthread_setcancel(3)

1-544

Functions
pthread_setcancel (3)

pthread_setcancel

Purpose

Library

Synopsis

Parameters

Description

Enables or disables the general cancelability of the calling thread

Threads Library (libpthreads.a)

#include <pthread.h>
int pthread_setcancel(

int state);

state Specifies the new cancelability state; legal values are:

CANCEL_ ON
Enables general cancellation

CANCEL_ OFF
Disables general cancellation

The pthread_setcancel() function sets the calling thread's general cancelability to
that indicated by the state parameter and returns the previous cancelability state.

By default, general cancelability is enabled and asynchronous cancelability (see
the pthread_setasynccancel() function) is disabled, which means that the thread
can only be canceled at cancellation points. Cancellation points include the
following:

• While waiting on a condition variable (within a call to the
pthread_cond_ wait() or pthread_cond_timedwait() function)

• While waiting for the termination of another thread (within a call to the
pthread_join() function)

• Where the pthread_testcancel() function has been called

• Where the pthread_setcancel() function has been called with the parameter
CANCEL_ ON

If the general cancelability of the target thread has been disabled, the termination
of the thread is held pending until general cancelability is reenabled. If general
cancelability is enabled and asynchronous cancelability is enabled, the termination

1-545

OSF/1 Programmer's Reference

pthread_setcancel (3)

Notes

of the target thread begins immediately. If general cancelability is enabled and
asynchronous cancelability is disabled, termination is held pending until the next
cancellation point.

This interface is based on draft 4 of the IEEE Pl003.4a standard, and will be
changed to conform to the final version.

Return Values

Errors

Upon successful completion, the previous value of the cancelability state is
returned. Otherwise, -1 is returned and errno is set to indicate the error.

If the pthread_setcancel() function fails, errno may be set to the following value:

[EINVAL] The specified state is not CANCEL_ON or CANCEL_OFF.

Related Information
Functions: pthread_cancel(3), pthread_setasynccancel(3)

1-546

Functions

pthread_setspecific{3)

pthread_setspeci fie

Purpose

Library

Synopsis

Parameters

Description

Notes

Binds a thread-specific value to a key

Threads Library (libpthreads.a)

#include <pthread.h>
int pthread_setspecific(

pthread_key _t key,
void *value);

key Specifies the key that the value parameter will be bound to.

value Specifies the value of the thread-specific data to be bound to the
key.

The pthread_setspecific() function binds a thread-specific value with a key
created with a previous call to the pthread_keycreate() parameter. Different
threads may bind different values to the same key. The values are typically
pointers to blocks of dynamically allocated memory that will be used only by the
calling thread.

The calling thread must explicitly destroy the old value itself, if required, before
binding the new value using this call.

This interface is b2.sed Gr,. draft 4 vf the IEEE PlCC3.4a ~ta11dard, an<l wiil be
changed to conform to the final version.

Return Values

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and ermo is set to indicate the error.

1-547

OSF/1 Programmer's Reference

pthread_setspecific(3)

Errors

If the pthread_setspecific() function fails, errno may be set to the following
value:

[EINV AL] The value specified by the key parameter is invalid.

Related Information

Functions: pthread_keycreate(3), pthread_getspecific(3)

1-548

Functions
pthread_testcancel(3)

pthread_testcancel

Purpose Creates a cancellation point in the calling thread

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>

Description

Notes

void pthread_testcancel (void);

The pthread_testcancel() function creates a cancellation point in the calling
thread. A cancellation point is a place where it is permissible for the thread to be
canceled. A common place for a cancellation point is right before an operation
that may block or before or after a long critical section.

If general cancelability is disabled, cancellation points, including
pthread_testcancel(), are ignored.

Before any cancellation point, you should always set up a cleanup handler that will
restore invariants if the thread is canceled at that point, if necessary.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

Related Information
Functions: pthread_cancel(3)

1-549

OSF/1 Programmer's Reference
pthread_yield(3)

pthread_yield

Purpose Allows the scheduler to run another thread instead of the current one

Library
Threads Library (libpthreads.a)

Synopsis #include <pthread.h>
void pthread_yield(void);

Description

Notes

1-550

The pthread_yield() function allows the scheduler to determine if another thread
could be run in preference to the calling thread. If no other thread is suitable, the
scheduler continues to run the calling thread.

This interface is based on draft 4 of the IEEE P1003.4a standard, and will be
changed to conform to the final version.

ptrace

Purpose

Synopsis

Parameters

Description

Traces the execution of a child process

#include <sys/signal.h>

#include <sys/ptrace.h>

int ptrace(
int request,
int process,
int *address,
int data);

Functions
ptrace(2)

request

process

address

data

Determines the action to be taken by the ptrace() function.

Specifies the process ID.

Determined by the value of the request parameter.

Determined by the value of the request parameter.

The ptrace() function permits a parent process to control execution of a child
process. It is primarily used by utility programs to enable breakpoint debugging.

The child process behaves normally until it receives a signal. When a signal is
delivered, the child process is stopped, and a SIGCHLD signal is sent to its parent.
The parent process can wait for the child process to stop using the wait() function.

When the child process is stopped, its parent process may use the ptrace() function
to examine and modify the image memory of the child process, to either terminate
the child process or permit it to continue.

As a security measure, the ptrace() function inhibits the set-user ID facility when
any subsequent exec function is issued by the child process. When a traced process
calls one of the exec functions, it stops before executing the first instruction of the
new image as if it had received the SIGTRAP signal.

The request parameter is set to one of the following values. Only the
PT_TRACE_ME request may be issued by child processes; the remaining requests
can only be used by the parent process. For each request, the process parameter is
the process ID of the child process. The child process must be in a stopped state
before these requests are made.

1-551

OSF/1 Programmer's Reference

ptrace(2)

1-552

PT_TRACE_ME
This request sets the child process trace flag. It must be issued by the
child process that is to be traced by its parent process. When the
trace flag is set, the child process is left in a stopped state on receipt
of a signal, and the action specified by the sigaction() function is
ignored. The process, address, and data parameters are ignored, and
the return value is not defined for this request. Do not issue this
request when the parent process does not expect to trace the child
process.

PT_READ_I or PT_READ_D
These requests return the address space data of the child process at
the location pointed to by the address parameter. The PT_READ_I
and PT_READ_D requests can be used with equal results. The data
parameter is ignored. These requests fail when the value of the
address parameter is not in the address space of the child process or
on some machines, when the address parameter is not properly
aligned~ These errors return a value of -1, and the parent process
errno is set to [EIO].

PT_READ_U This request returns the variable of the system's per-process data
area for the child, specified by the address parameter. This area
contains the register values and other information about the process.
On some machines, the address parameter is subject to alignment
constraints. The data parameter is ignored. This request fails when
the value of the address parameter is outside of the system's per­
process data area for the child. On failu.re, a value of -1 is returned
and the parent process errno is set to [BIO].

PT_ WRITE_I, PT_ WRITE_D
These requests write the value of the data parameter into the address
space variable of the child process at the location pointed to by the
address parameter. On some machines, where necessary, the
PT_ WRITE_I request synchronizes any hardware caches, if present.
In all other respects, the PT_ WRITE_I and PT_ WRITE_D requests
can be used with equal results. On some machines, these requests
return the previous contents of the address space variable of the
child process, while on other machines no useful value is returned.
These requests fail when the address parameter points to a location
in a pure procedure space and a copy cannot be made. These
requests also fail when the value of the address parameter is out of
range and on some machines, when the address parameter is not
properly aligned. On failure a value of -1 is returned and the parent
process errno is set to [EIO].

V-----
~J.J.UJ."

Functions
ptrace(2)

PT_WRITE_U
This request writes the value of the data parameter into the variable
of the system's per-process data area for the child, specified by the
address parameter. This area contains the register values and other
information about the process. On some machines, the address
parameter is subject to alignment constraints. Not all locations
within the system's per-process data area for the child may be
written. This request fails when the value of the address parameter
is outside of the systems's per-process data area for the child. On
failure, a value of -1 is returned and the parent process errno is set
to indicate the error.

PT_CONTINUE

PT_KILL

PT_STEP

This request permits the child process to resume execution. When
the data parameter is 0 (zero), the signal that caused the child
process to stop is canceled before the child process resumes
execution.

When the data parameter has a valid signal value, the child process
resumes execution as though that signal had been received. When
the address parameter is equal to 1, execution continues from where
it stopped. When the address parameter is not 1, it is assumed to be
the address at which the process should resume execution.

This request fails when the data parameter is not 0 (zero) or a valid
signal value. On failure, a value of -1 is returned to the parent
process and the parent process errno is set to [EIO].

This request terminates a child process as if the child process called
the exit() function.

This request permits execution to continue in the same manner as
PT_CONTINUE; however, as soon as possible after the execution
of at least one instruction, execution stops again as if the child
process had received the SIGTRAP signal.

If the ptrace() function fails, errno may be set to one of the following values:

[EIO] The request parameter does not have one of the listed values, or is
not valid for the machine type on which the process is executing.

[EIO] The given signal number is invalid.

[EIO] The specified address is either out of bounds or improperly aligned.

1-553

OSF/1 Programmer's Reference

ptrace{2)

[ESRCH]

[EPERM]

[EINVAL]

The process parameter identifies a child process that does not exist
or that has not executed this function with the request parameter
PT_TRACE_ME.

The specified process cannot be traced.

An invalid location was specified for the system's per-process data
area.

[EACCES] The location within the system's per-process data area could not be
modified.

Related Information

Functions: exec(2), sigaction(2), wait(2)

1-554

Functions

putc(3)

putc, putchar, fputc, putw

Purpose

Library

Synopsis

Parameters

Description

Writes a character or a word to a stream

Standard 1/0 Package (libc.a)

#include <stdio.h>

int putc(
int c,
FILE *stream);

int putchar(
int c);

int fputc(
int c,
FILE *stream);

int putw(

stream

c

w

int w,
FILE *stream);

Points to the file structure of an open file.

Specifies the character to be written.

Specifies the word to be written.

Th~ put~{ } macru writ\35 the c;1IDa.cter c.: io iht uuiput speciiieci. by ihe stream
parameter. The character is written at the position at which the file pointer is
currently pointing, if defined.

The putchar() macro is the same as the putc() macro except that putchar()
writes to the standard output.

The fputc() function works the same as the putc() macro, but fputc() is a true
function rather than a macro. It runs more slowly than putc(), but takes less space
per invocation.

1-555

OSF/1 Programmer's Reference
putc{3)

Notes

1-556

Because putc() is implemented as a macro, it incorrectly treats a stream
parameter with side effects, such as putc(c, *f++). For such cases, use the fputc()
function. Also, use fputc() when you need to pass a pointer to this function as a
parameter to another function.

The putw() function writes the word (int) specified by the w parameter to the
output specified by the stream parameter. The word is written at the position at
which the file pointer, if defined, is pointing. The size of a word is the size of an
integer and varies from machine to machine. The putw() function does not assume
or cause special alignment of the data in the file.

Because of possible differences in word length and byte ordering, files written
using the putw() function are machine-dependent, and may not be readable using
the getw() function on a different processor.

With the exception of stderr, output streams are, by default, buffered if they refer
to files, or line-buffered if they refer to terminals. The standard error output stream,
stderr, is unbuffered by default, but using the freopen() function causes it to
become buffered or line-buffered. Use the setbuf() function to change the stream
buffering strategy.

When an output stream is unbuffered, information is queued for writing on the
destination file or terminal as soon as it is written. When an output stream is
buffered, many characters are saved and written as a block. When an output stream
is line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon as a newline character is
written or terminal input is requested).

The st_ctime and st_mtime fields of the file are marked for update between the
successful execution of the putc(), putw(), putchar(), or fputc() function, and
the next successful completion of a call to the fflush() or fclose() function on the
same stream, or a call to the exit() or abort() function.

The reentrant versions of these functions are locked against multiple threads
calling them simultaneously. This will incur an overhead to ensure integrity of the
stream. The unlocked versions of these calls may be used safely, providing that the
stream is locked when the calls are used with the ftockfile() and funlockfile()
functions.

AES Support Level: Full use (putc(), fputc(), putchar())
Trial use (putw())

Functions

putc(3)

Return Values

Errors

Upon successful completion, these functions each return the value written. If these
functions fail, they return the constant EOF. They fail if the stream parameter is not
open for writing, or if the output file size cannot be increased. Because the EOF
value is a valid integer, you should use the ferror() function to detect the putw()
parameter errors.

The putc(), putw(), putcbar(), and fputc() functions fail if either the stream is
unbuffered, or the stream's buffer needed to be flushed and the function call caused
an underlying write() or lseek() to be invoked. In addition, if the putc(), putw(),
putchar(), or fputc() function fails, errno may be set to one of the following
values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor
open for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process' file
size limit or the maximum file size.

[EINTR] The read operation was interrupted by a signal which was caught,
and no data was transferred.

[EIO] The implementation supports job control, the process is a member of
a background process group attempting to write to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is
orphaned. This error may also be returned under implementation­
defined conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

Related Information

Fµnctions: getc(3), getwc(3), printf(3), puts(3), putwc(3), unlocked_putc(3),
unlocked_putchar(3)

1-557

OSF/1 Programmer's Reference
putenv(3)

putenv

Purpose

Library

Synopsis

Parameters

Description

Notes

Sets an environment variable

Standard C Library (Ube.a)

#include <stdlib.h>

int putenv (
char *string);

string Points to a name=value string.

The putenv() function sets the value of an environment variable by altering an
existing variable or by creating a new one. The string parameter points to a string
of the form name=value, where name is the environment variable and value is the
new value for it.

The putenv() function manipulates the environ external variable, and it can be
used in conjunction with the getenv() function. However, the third parameter to
the main function (the environment pointer), is not changed.

The putenv() function uses the malloc() function to enlarge the environment.

AES Support Level: Trial use

Return Values

Upon successful completion, a value of 0 (zero) is returned. If the malloc()
function is unable to obtain sufficient space to expand the environment, then the
putenv() function returns a nonzero value.

Related Inf orrnation

Functions: clearenv(3), exec(2), getenv(3), malloc(3)

1-558

Functions

putlong(3)

putlong

Purpose Places long byte quantities into the byte stream

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv .h>

Parameters

Description

Files

void putlong (
unsigned long long,
u_char *message_ptr);

long Represents a 32-bit integer.

message_ptr
Represents a pointer into the byte stream.

The putlong() function places long byte quantities into the byte stream or arbitrary
byte boundaries.

The putlong() function is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The /include/resolv.h file
contains the _res data structure definition.

/etc/resolv .conf
Lists the name server and domain name.

Related Information

Functions: dn_comp(3), dn_expand(3), dn_find(3), dn_skipname(3),
getlong(3), getshort(3), putshort(3), res_init(3), res_mkquery(3), res_send(3)

1-559

OSF/1 Programmer's Reference

puts(3)

puts, fputs

Purpose Writes a string to a stream

Library

Standard 1/0 Library (libc.a)

Synopsis #include <stdio.h>

int puts (

Parameters

Description

Notes

1-560

const char *string);

int fputs (

string

stream

const char *string,
FILE *stream;

Points to a string to be written to output.

Points to the FILE structure of an open file.

The puts() function writes the null-terminated string pointed to by the string
parameter, followed by a newline character, to the standard output stream, stdout.

The fputs() function writes the null-terminated string pointed to by the string
parameter to the output stream specified by the stream parameter. The fputs()
function does not append a newline character.

Neither function writes the terminating null character.

The st_ctime and st_mtime fields of the file are marked for update between the
successful execution of the puts() or fputs() function, and the next successful
completion of a call to the Dlush() or fclose() function on the same stream, or a
call to the exit() or abort() function.

AES Support Level: Full use

Functions

puts(3)

Return Values

Errors

Upon successful completion, the puts() and fputs() functions return the number of
characters written. Both subroutines return EOF on an error. This happens if the
routines try to write on a file that has not been opened for writing.

The puts() and fputs() functions fail if either the stream is unbuffered, or the
stream's buffer needed to be flushed and the function call caused an underlying the
write() or lseek() function to be invoked. In addition, if the puts() or fputs()
function fails, ermo may be set to one of the following values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor
open for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process' file
size limit or the maximum file size.

[EINTR] The read operation was interrupted by a signal which was caught,
and no data was transferred.

[EIO] The implementation supports job control, the process is a member of
a background process group attempting to write to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is
orphaned. This error may also be returned under implementation­
defined conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

Functions: gets(3), getws(3), printf(3), putc(3), putwc(3), putws(3)

1-561

OSF/1 Programmer's Reference
putshort(3)

putshort

Purpose Places short byte quantities into the byte stream

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

Parameters

Description

1-562

void putshort (

unsigned short short,

u_char *message_ptr);

short Represents a 16-bit integer.

message_ptr
Represents a pointer into the byte stream.

The putshort() function puts short byte quantities into the byte stream or arbitrary
byte boundaries.

The putshort() function is one of a set of subroutines that form the resolver, a set
of functions that resolve domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The /include/resolv.h file
contains the _res structure definition.

Functions

putshort(3)

Files

/etc/resolv.conf
Lists the name server and domain name.

Related Information

Functions: dn_comp(3), dn_expand(3), dn_find(3), dn_skipname(3),
getlong(3), getshort(3), putlong(3), res_init(3), res_mkquery(3), res_send(3)

1-563

OSF/1 Programmer's Reference

putwc(3)

putwc, putwchar, fputwc

Purpose Writes a character or a word to a stream

Library
Standard 1/0 Library (libc.a)

Synopsis #include <stdio.h>
int putwc(

Parameters

Description

1-564

int c,
FILE *stream);

int putwchar(
int c);

intfputwc(

c

stream

int c;
FILE *stream);

Specifies the NLchar to be written.

Points to the output data.

The putwc(), putwchar(), and fputwc() functions are provided when Japanese
Language Support is installed on your system. They parallel the putc(),
putchar(), and fputc() functions.

The putwc() function writes the NLchar specified by the c parameter to the
stream parameter as 1 or 2 bytes.

The putwchar() macro works like the putwc() function, except that putwchar()
writes the specified NLchar to the standard output.

The fputwc() function works the same as putwc().

Functions

putwc(3)

With the exception of stderr, output streams are, by default, buffered if they refer
to files, or line-buffered if they refer to terminals. The standard error output stream,
stderr, is unbuffered by default, but using the freopen() function causes it to
become buffered or line-buffered. Use the setbuf() function to change the stream's
buffering strategy.

Return Values

Upon successful completion, these functions each return the value written. If these
functions fail, they return the constant EOF. They fail if the stream parameter is not
open for writing, or if the output file size cannot be increased.

Related Information

Functions: getc(3), getwc(3), printf(3), putc(3), puts(3), wsprintf(3)

1-565

OSF/1 Programmer's Reference
putws(3)

putws, fputws

Purpose

Library

Synopsis

Parameters

Description

1-566

Writes a string to a stream

Standard 1/0 Library (Ube.a)

#include <stdio.h>
#include <NLchar.h>

int putws (
NLchar *string);

int fputws (

string

stream

NLchar *string,
FILE *stream);

Points to a string to be written to output.

Points to the FILE structure of an open file.

The putws() and fputws() functions are provided when Japanese Language
Support is installed on your system. They parallel the puts() and fputs() functions.

The putws() function writes the NLchar string pointed to by the string parameter
to the standard output stream, stdout. In this case, each element of the string
parameter produces either 1 or 2 bytes of output, according to the size required for
its encoding. In all other respects, putws() functions like puts().

The fputws() function writes the NLchar string pointed to by the string parameter
to the output stream. Again, each element of the string parameter produces either 1
or 2 bytes of output, according to the size required for its encoding. In all other
respects, fputws() functions like fputs().

Functions

putws(3)

Return Values

Upon successful completion, the putws() and fputws() functions return the
number of characters written. Both subroutines return EOF on an error. This
happens if the routines try to write on a file that has not been opened for writing.

Related Information

Functions: gets(3), getws(3), printf(3), putc(3), puts(3), putwc(3)

1-567

OSF/1 Programmer's Reference
qsort(3)

qsort

Purpose Sorts a table in place

Library
Standard C Library (Jibe.a)

Synopsis #include <stdlib.h>

Parameters

Description

1-568

void qsort(
void *base,
size_t nmemb,
size_t size,
int ((*compar)(const void*, const void*));

base

nmemb

size

compar

Points to the first entry in the table.

Specifies the number of entries in the table.

Specifies the size in bytes of each table entry.

Points to the user-specified function to be used to compare pairs of
table elements. The comparison function will be called with two
parameters that point to the two elements to be compared. The
comparison function must return an integer less than, equal to, or
greater than zero, depending on whether the first element in the
comparison is considered less than, equal to, or greater than the
second element.

The qsort() function sorts a table having a specified number of entries. The
contents of the table are sorted in ascending order according to a user-specified
comparison function (the strcmp() function, for example). · ·

Notes

Functions

qsort(3)

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

When two members compare equal, their order in the sorted array is indeterminate.

AES Support Level: Full use

Related Information

Functions: bsearch(), lsearch()

1-569

OSF/1 Programmer's Reference
quotactl{2)

quotactl

Purpose

Synopsis

Parameters

Description

1-570

Manipulates disk quotas

#include <ufs/quota.h> /* for "ufs" quotas */

quotactl(
char *path,
int cmd,
int id,
char *addr);

path Specifies the pathname of any file within the mounted file system.

cmd Specifies a command for interpreting the id parameter.

id Specifies the user or group identifier.

addr Specifies the address of an optional, command-specific data
structure that is copied in or out of the system. The interpretation of
the addr parameter is given with each command.

The quotactl() function is used to enable and disable quotas and to manipulate
disk quotas for file systems on which quotas have been enabled.

Currently quotas are supported only for the UFS file system. For UFS, a command
is composed of a primary command (see below) and a command type that is used to
interpret the id parameter. Types are supported for interpretation of user identifiers
and group identifiers. The UFS specific commands are:

Q_QUOTAON
Enable disk quotas for the file system specified by the path
parameter. The command type specifies the type of the quotas being
enabled. The addr parameter specifies a file from which to take the
quotas. The quota file must exist; it is normally created with the
quotacheck program. The id parameter is unused. Only users with
superuser privilege can tum quotas on.

Functions

quotactl(2)

Q_QUOTAOFF
Disable disk quotas for the file system specified by the path
parameter. The command type specifies the type of the quotas being
disabled. The addr and id parameters are unused. Only users with
superuser privilege can tum quotas off.

Q_GETQUOTA
Get disk quota limits and current usage for the user or group (as
determined by the command type) with identifier id. The addr
parameter points to a struct dqblk structure, defined in the
ufs/quota.h header file.

Q_SETQUOTA
Set disk quota limits for the user or group (as determined by the
command type) with identifier id. The addr parameter points to a
struct dqblk structure, defined in the ufs/quota.h header file. The
usage fields of the dqblk structure are ignored. This function is
restricted to processes with superuser privilege.

Q_SETUSE Set disk usage limits for the user or group (as determined by the
command type) with identifier id. The addr parameter points to a
struct dqblk structure, defined in the ufs/quota.h header file. Only
the usage fields are used. This function is restricted to processes
with superuser privilege.

Q_SYNC Update the on-disk copy of quota usages. The command type
specifies which type of quotas are to be updated. The id and addr
parameters are ignored.

Return Value

Errors

Upon successful completion, 0 (zero) is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

If the quotactl() function fails, errno may be set to one of the following values:

[EOPNOTSUPP]
The kernel has not been compiled with the QUOTA option.

[EUSERS] The quota table cannot be expanded.

[EINVAL] The cmd parameter or the command type is invalid.

[EINVAL] A pathname contains a character with the high-order bit set.

[EACCES] In Q_QUOTAON, the quota file is not a plain file.

[EACCES] Search permission is denied for a component of a path prefix.

1-571

OSF/1 Programmer's Reference
quotactl(2)

[ENOTDIR] A component of a path prefix is not a directory.

[ENAMETOOLONG]

[ENO ENT]

[ELOOP]

[EROFS]

[EIO]

[EFAULT]

[EFAULT]

[EPERM]

A component of the pathname exceeded NAME_MAX, or the entire
length of the pathname exceeded PATH_MAX.

A filename does not exist.

Too many symbolic links were encountered in translating a
pathname.

In Q_QUOTAON, the quota file resides on a read-only file system.

An 1/0 error occurred while reading from or writing to a file
containing quotas.

An invalid addr is supplied; the associated structure could not be
copied in or out of the kernel.

The path parameter points outside the process's allocated address
space.

The call is privileged and the caller does not have appropriate
privilege.

Related Information
Commands: quota(l), edquota(8), quotacheck(8), quotaon(8), repquota(8)

1-572

Functions

raise(3)

.
raise

Purpose Sends a signal to the executing program

Library
Standard C Library (libc.a)

Synopsis #include <sys/signal.h>

Parameters

Description

Notes

int raise(
int signal);

signal Specifies a signal number.

The raise() function sends the sigrtal specified by the signal parameter to the
executing program. It is equivalent to the following:

error= kill(getpid(), signal);

AES Support Level: Full use

Return Values

Errors

Upon successful completion of the raise() function, a value of 0 (zero) is returned.
Otherwise, a nonzero value is returned and ermo is set to indicate the error.

If the raise() function fails, ermo may be set to the following value:

[EINVAL] The value of the signal parameter is an invalid or unsupported signal
number.

Related Information

Functions: kill(2), sigaction(2)

1-573

OSF/1 Programmer's Reference
rand(3)

rand,rand_r, srand

Purpose

Library

Synopsis

Parameters

Description

1-574

Generates pseudo-random numbers

Standard C Library (Ube.a),
Berkeley Compatibility Library (libbsd.a)
Reentrant Library (libc_r.a)

#include <stdlib.h>

int rand (void);

int rand_r(
unsigned int *seedptr,
int *randval);

void srand (

seed

seedptr

randval

unsigned int seed);

Specifies an initial seed value.

Points to a seed value, updated at each call.

Points to a place to store the random number.

The rand() function returns successive pseudo-random numbers in the range from
0 (zero) to RAND_MAX. The sequence of values returned depends on the seed
value set with the srand() function. If rand() is called before any calls to srand()
have been made, the same sequence will be generated as when srand() is first
called with a seed value of 1.

The rand_r() function is the reentrant version of the rand() function, for use with
multi-threaded applications. The rand_r() function places the seed value at the
address pointed to by seedptr, and places the random number at the address pointed
to by randval.

The srand() function resets the random-number generator to a random starting
point. The generator is initially seeded with a value of 1.

Notes

Functions
rand(3)

The rand() function is a very simple random-number generator. Its spectral
properties, the mathematical measurement of how random the number sequence is,
are somewhat weak.

See the drand48() and random() functions for more elaborate random-number
generators that have better spectral properties.

The rand() function is not supported for multi-threaded applications. Instead, its
reentrant equivalent rand_r() should be used with multiple threads.

The BSD version of the rand() function returns a number in the range 0 to 231 - 1,
rather than 0 to 215 - 1, and can be used by compiling with the Berkeley
Compatibility Library (libbsd.a).

There are better random number generators, as noted above; however, the rand()
and srand() functions are the interfaces defined for the ANSI C library.

The following functions define the semantics of the rand() and srand() functions,
and are included here to facilitate porting applications from different
implementations:

static unsigned int next= 1;

int rand()
{

next = next * 1103515245 + 12345;

return ((next >>16) & RAND_MAX);

void srand (seed)
int seed;
{

next= seed
}

Return Values

The rand() function returns the next pseudo-random number in the sequence.

Upon successful completion, the rand_r() function returns a value of 0 (zero).
Otherwise, -1 is returned and errno is set to indicate the error.

The srand() function returns no value.

1-575

OSF/1 Programmer's Reference

rand(3)

Errors

If the rand_r() function fails, errno may be set to the following value:

[EINVAL] Either seedptr or randval is a null pointer.

Related Information

Functions: drand48(3), random(3)

1-576

Functions
random(3)

random, srandom, initstate, setstate

Purpose

Library

Synopsis

Parameters

Description

Generates "better" pseudo-random numbers

Standard C Library (libc.a)

long random (void);

srandom (
int seed);

char *initstate (
unsigned seed,
char *state,
int size);

char *setstate (
char *state);

seed Specifies an initial seed value.

state Points to the array of state information.

size Specifies the size of the state information array.

The random() and srandom() functions are random number generators that have
virtually the same calling sequence and initialization properties as the rand() and
srand() functions, but produce sequences that are more random. The low dozen
bits generated by the rand() function go through a cyclic pattern, and all the bits
generated by the random() function are usable. For example, "random()&01"
produces a random binary value.

The random() function uses a nonlinear additive feedback random number
generator employing a default state array size of 31 long integers to return
successive pseudo-random numbers in the range from 0 to 231 -1. The period of this
random number generator is approximately 16 x (231 -1). The size of the state array
determines the period of the random number generator. Increasing the state array
size increases the period.

1-577

OSF/1 Programmer's Reference

random{3)

With a full 256 bytes of state information, the period of the random-number
generator is greater than 269, which should be sufficient for most purposes.

Like the rand() function, the random() function produces by default a sequence
of numbers that can be duplicated by calling the srandom() function with 1 as the
seed. The srandom() function, unlike the srand() function, does not return the
old seed because the amount of state information used is more than a single word.

The initstate() and setstate() functions handle restarting and changing random­
number generators. The initstate() function allows a state array, passed in as an
argument, to be initialized for future use. The size in bytes of the state array is
used by the initstate() function to decide how sophisticated a random-number
generator to use; the larger the state array, the more random the numbers. Values
for the amount of state information are 8, 32, 64, 128, and 256 bytes. Amounts less
than 8 bytes generate an error, while other amounts are rounded down to the
nearest known value. The seed parameter specifies a starting point for the random­
number sequence and provides for restarting at the same point. The initstate()
function returns a pointer to the previous state information array.

Once a state has been initialized, the setstate() function allows rapid switching
between states. The array defined by the state parameter is used for further
random-number generation until the initstate() function is called or the setstate()
function is called again. The setstate() function returns a pointer to the previous
state array.

After initialization, a state array can be restarted at a different point in one of two
ways:

1. The initstate() function can be used, with the desired seed, state array, and
size of the array.

2. The setstate() function, with the desired state, can be used, followed by the
srandom() function with the desired seed. The advantage of using both of
these functions is that the size of the state array does not have to be saved
once it is initialized.

Return Values

1-578

The random() and srandom() functions return a random number. The initstate()
and setstate() functions return a pointer to the previous state information array.

Errors

Functions

random(3)

If the initstate() function is called with less than 8 bytes of state information, or if
the setstate() function detects that the state information has been damaged, error
messages are sent to the standard output.

Related Information

Functions: drand48(3), rand(3)

1-579

OSF/1 Programmer's Reference

rcmd{3)

rcmd

Purpose

Library

Synopsis

Parameters

1-580

Allows execution of commands on a remote host

Standard C Library (Ube.a)

int rcmd (
char **host,
u_short port,
char *local_user,
char *remote_user,
char *command,
int *err _file_desc);

host Specifies the name of a remote host that is listed in the /etc/hosts
file. If the specified name of the host is not found in this file, the
rcmd() function fails.

port Specifies the well-known port to use for the connection. The
/etc/services file contains the DARPA Internet services, their ports,
and socket types.

local_user Points to user names that are valid at the local host. Any valid user
name can be given.

remote_user Points to user names that are valid at the remote host. Any valid
user name can be given.

command Specifies the name of the command to be executed at the remote
host.

err _flle_desc Specifies an integer that controls the set up of communications
channels. Integer options are as follows:

• If a nonzero integer is specified, an auxiliary channel to a
control process is set up, and the error _file_desc parameter
points to the file descriptor for the channel. The control
process provides diagnostic output from the remote command
on this channel and also accepts bytes as signal numbers to be
forwarded to the process group of the command.

Description

Functions

rcmd(3)

• If 0 (zero) is specified, the standard error (stderr) of the
remote command is the same as the standard output (stdout).
No provision is made for sending arbitrary signals to the
remote process. However, it is possible to send out-of-band
data to the remote command.

The rcmd() (remote command) function allows execution of certain commands on
a remote host that supports the rshd(), rlogin(), and rpc() functions, among
others.

The rcmd() function looks up a host via the name server or, if the local name
server is not running, via the /etc/hosts file. If the connection succeeds, a socket in
the Internet domain of type SOCK_STREAM is returned to the calling process and
given to the remote command as standard input (stdio) and standard output
(stdout).

Always specify the host name. If the local domain and remote domain are the
same, specifying the domain parts is optional.

Only processes with an effective user ID of root user can use the rcmd() function.
An authentication scheme based on remote port numbers is used to verify
permissions. Ports in the range from 0 to 1023 can only be used by a root user.

Return Values

Files

Upon successful completion, the rcmd() function returns a valid socket descriptor.
The function returns "1 if the effective user ID of the calling process is not root user
or if the function fails to resolve the host.

/etdservices Contains the service names, ports, and socket types.

/etc/hosts Contains hostnames and their addresses for hosts in a network.

/etdresolv .conf
Contains the name server and domain name.

Related Inf orlllation

Functions: gethostname(2), rresvport(3), ruserok(3), sethostname(2)

Commands: rlogind(8), rshd(8), named(8)

1-581

OSF/1 Programmer's Reference
re_comp(3)

re_cornp,re_exec

Purpose

Library

Synopsis

Parameters

Description

Handles regular expressions

Standard C Library (libc.a)
Berkeley Compatibility Library (libbsd.a)

char *re_comp(
char *string);

int re_exec(
char *string) ;

string Points to the string that is to be matched or converted.

The re_comp() function converts a string into an internal form suitable for pattern
matching. The re_exec() function compares the string parameter with the last
string passed to the re_comp() function.

When the re_comp() function is passed a value of 0 (zero) or null, the regular
expression currently being converted remains unchanged.

Strings passed to both the re_comp() and re_exec() functions may have trailing or
embedded newline characters; however, these strings are terminated by a null.
Recognized regular expressions are described in the reference page for the regexp
functions (advance(), compile() and step()). Refer to that reference page when
the differences described above are noted.

Return Values

1-582

The re_comp() function returns 0 (zero) when the string pointed to by the string
parameter is successfully converted; otherwise an error message string is returned.
The re_exec() function returns 0 (zero) when the string is recognized by the last

Errors

Functions
re_comp(3)

compiled regular expression and a value of + 1 when the string pointed to by the
string parameter fails to match the last converted regular expression; the value -1 is
returned when the converted regular expression is invalid (indicating an internal
error).

Upon error, the re_exec() function returns a value of -1, and the re_comp()
function returns a string indicating the nature of the error.

Related Information

Function: regexp(3)

1-583

OSF/1 Programmer's Reference
read{2)

read, readv

Purpose

Synopsis

Parameters

Description

1-584

Reads from a file

int read(
intfiledes,
char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

int readv(

filedes

buffer

nbytes

iov

iovcount

intfiledes,
struct iovec *iov,
int iovcount);

Specifies a file descriptor identifying the object to be read.

Points to the buffer to receive data read.

Specifies the number of bytes to read from the file associated with
the filedes parameter.

Points to an array of iovec structures that identifies the buffers into
which the data is to be placed.

Specifies the number of iovec structures pointed to by the iov
parameter.

The read() function attempts to read nbytes of data from the file associated with
the filedes parameter into the buffer pointed to by the the buffer parameter. The
readv() function performs the same action as the read() function, but scatters the
input data into the buffers specified by the array of iovec structures pointed to by
the iov parameter.

On regµlar files and devices capable of seeking, the read() function starts at a
position in the file given by the file pointer associated with the filedes parameter.
Upon return from the read() function, the file pointer is incremented by the
number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The
value of a file pointer associated with such a file is undefined.

Functions
read(2)

The read() and readv() functions, which suspend the calling process until the
request is completed, are redefined so that only the calling thread is suspended.

Upon successful completion, the read() function returns the number of bytes
actually read and placed in the buffer. This number will never be greater than
nbytes. The value returned may be less than nbytes if the number of bytes left in
the file is less than nbytes, if the read() request was interrupted by a signal, or if
the file is a pipe or FIFO or special file and has fewer than nbytes bytes
immediately available for reading. For example, a read() from a file associated
with a terminal may return one typed line of data.

No data transfer will occur past the current End-of-File. If the starting position is
at or after the End-of-File, 0 (zero) is returned.

If the value of nbytes is 0 (zero), the read() function will return 0 and have no
other results.

When attempting to read from an empty pipe (or FIFO):

• If no process has the pipe open for writing, the read() function returns 0
(zero) to indicate End-of-File.

• If some process has the pipe open for writing:

If neither O_NONBLOCK nor O_NDELAY is set, the read() function
will block until some data is written or the pipe is closed by all processes
that had opened the pipe for writing.

If O_NONBLOCK or O_NDELAY is set, the read() function returns a
value of -1 and sets errno to [EA GAIN].

When attempting to read from a character special file that supports nonblocking
reads, such as a terminal, and no data is currently available:

• If neither O_NONBLOCK nor O_NDELAY is set, the read() function will
block until data becomes available.

• If O_NONBLOCK or O_NDELAY is set, the read() functions return -1 and
sets errno to [EAGAIN] if no data is available. The use of the
O_NONBLOCK flag has no effect ifthere is some data available.

When attempting to read from a regular file with enforcement mode record locking
enabled, and all or part of the region to be read is currently locked by another
process (a write lock or exclusive lock):

• If O_NDELAY and O_NONBLOCK are clear, the read() function blocks the
calling process until the lock is released, or read() is terminated by a signal.

• If O_NDELAY or O_NONBLOCK is set, the read() function returns -1 and
sets errno to [EAGAIN].

1-585

OSF/1 Programmer's Reference
read(2)

Notes

If a read() function is interrupted by a signal before it reads any data, it will return
-1 with errno set to [EINTR]. If a read() function is interrupted by a signal after
it has successfully read some data, the behavior depends on how the handler for the
arriving signal was installed.

If the handler was installed with an indication that functions should not be
restarted, the read() function returns a value of -1 and errno is set to [EINTR]
(even if some data was already consumed). If the handler was installed with an
indication that functions should be restarted, and data had been read when the
interrupt was handled, the read() function returns the amount of data consumed.

A read() from a pipe or FIFO will never return with errno set to [EINTR] if it has
transferred any data.

For any portion of an ordinary file prior to the End-of-File that has not been
written, the read() function returns bytes with value 0 (zero).

Upon successful completion, the read() function marks the st_atime field of the
file for update.

The readv() function performs the same action as the read() function, but scatters
the input data into the buffers specified by the array of iovec structures pointed to
by the iov parameter. The iovcount parameter specifies the number of buffers
pointed to by the iov parameter. Each iovec entry specifies the base address and
length of an area in memory where data should be placed. The readv() function
always fills an area completely before proceeding to the next.

The iovec structure is defined in the sys/uio.h header file and contains the
following members:

caddr_t iov_base;
int iov _len;

AES Support Level: Full use (read())

Return Values

1-586

Upon successful completion, the read() and readv() functions return the number
of bytes actually read and placed into buffers. The system guarantees to read the
number of bytes requested only if the descriptor references a normal file that has
the same number of bytes left before the End-of-File. Otherwise, a value of -1 is
returned, errno is set to indicate the error, and the content of the buffer pointed to
by the buffer parameter is indeterminate.

Errors

Functions

read(2)

If the read() or readv() function fails, errno may be set to one of the following
values.

[EBADF] Thejiledes parameter is not a valid file descriptor open for reading.

[EINVAL] The file position pointer associated with the filedes parameter was
negative.

[EINVAL] The sum of the iov_len values in the iov array was negative or
overflowed a 32-bit integer.

[EINVAL] The value of the iovcount parameter was not between 1 and 16,
inclusive.

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the
process would be delayed in the read operation.

[EFAULT] The buffer or part of the iov points to a location outside of the
allocated address space of the process.

[EINTR] A read() was interrupted by a signal before any data arrived, and
the signal handler was installed with an indication that functions are
not to be restarted.

[EIO] The process is a member of a background process attempting to read
from its controlling terminal, the process is ignoring or blocking the
SIGTTIN signal, or the process group is orphaned.

[EAGAIN] Enforced record locking is enabled, O_NDELAY or
O_NONBLOCK is set, and there is a write lock owned by another
process.

[ENOLCK] The file has mandatory enforcement mode file locking set and
LOCK_MAX regions are already locked in the system.

[EDEADLK] Enforcement mode file locking is enabled, O_NDELAY and
O_NONBLOCK are clear, and a deadlock condition is detected.

Related Information

Functions: fcntl(2), lockf(3), lseek(2), open(2), pipe(2), po11(2), socket(2),
socketpair(2), opendir(3)

1-587

OSF/1 Programmer's Reference

readlink(2)

readlink

Purpose Reads the value of a symbolic link

Synopsis #include <symlink.h>

Parameters

Description

Notes

1-588

int readlink (

path

buffer

buf_size

const char *path,
char *buffer,
int buf_size);

Specifies the pathname of the destination file or directory.

Points to the user's buffer. The buffer should be at least as large as
the buf_size parameter.

Specifies the size of the buffer.

The readlink() function places the contents of the symbolic link named by the
path parameter in buffer, which has size buf_size. If the actual length of the
symbolic link is less than buf_size, the string copied into the buffer will be null­
terminated. If the actual length of the symbolic link is greater than buf_size, an
error will be returned. The length of a symbolic link will not exceed PATH_MAX.

For a readlink() function to complete successfully, the calling process must have
search access to the directory containing the link.

AES Support Level: Trial use

Functions

readlink(2)

Return Values

Errors

Upon successful completion, the readlink() function returns a count of the number
of characters placed in the buffer (not including any terminating null). If the
readlink() function fails, the buffer is not modified, a value of -1 is returned, and
errno is set to indicate the error.

If the readlink() function fails, errno may be set to one of the following values:

[ENOENT] The file named by the path parameter does not exist or the path
parameter points to an empty string.

[EINVAL]

[ERAN GE]

The file named by the path parameter is not a symbolic link.

The pathname in the symbolic link is longer than buf_size.

[ENOTDIR] A component of the path prefix of the path parameter is not a
directory.

[EACCES] Search permission is denied on a component of the path prefix of the
path parameter, or read permission is denied on the final component
of the path prefix of the path parameter.

[ENAMETOOLONG]
The length of the path parameter exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX.

Related Information

Functions: link(2), stat(2), symlink(2), unlink(2)

1-589

OSF/1 Programmer's Reference

reboot(2)

reboot

Purpose

Synopsis

Parameters

Description

1-590

Reboots system or halts processor

#include <sys/reboot.h>

void reboot(
int howto);

how to Specifies a mask of options.

The reboot() function restarts the system. The startup is automatic and brings up
/vmunix in the normal, nonmaintenance mode. The calling process must have
superuser privilege to run this function successfully. However, a reboot is invoked
automatically in the event of unrecoverable system failures.

The following options, defined in the sys/reboot.h include file are passed to the
new kernel or the new bootstrap and init programs. They are supplied as values to
the howto parameter.

RB_AUTOBOOT
The default, causing the system to reboot in its usual fashion.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to prompt on
the console as to what file should be booted.

RB_DFLTROOT
Use the compiled-in root device. If possible, the system uses the
device from which it was booted as the root device. (The default
behavior is dependent on the ability of the bootstrap program to
determine the drive from which it was loaded, which is not possible
on all systems.)

RB_DUMP Dump kernel memory before rebooting; see the savecore command
for more information.

RB_HALT The processor is simply halted; no reboot takes place. This option
should be used with caution.

Functions

reboot(2)

RB_INITNAME

RB_KDB

RB_NOSYNC

RB_RDONLY

Allows the specification of an init program (see the init program)
other than /sbin/init to be run when the system reboots. This switch
is not currently available.

Load the symbol table and enable a built-in debugger in the system.
This option has no useful function if the kernel is not configured for
debugging. Several other options have different meanings if
combined with this option, although their use may not be possible
via the reboot() function.

Normally, the disks are sync'd (see the sync() command) before the
processor is halted or rebooted.

Initially mount the root file system read-only. This is currently the
default, and this option has been deprecated as a no-op.

RB_SINGLE Normally, the reboot procedure involves an automatic disk
consistency check and then multiuser operations. RB_SINGLE
prevents this, booting the system with a single-user shell on the
console. RB_SINGLE is actually interpreted by the init program in
the newly booted system.

RB_UNIPROC
Restart the system in uniprocessor mode.

When no options are given (that is, RB_AUTOBOOT is used), the system is
rebooted from file vmunix in the root file system of unit 0 (zero) of a disk chosen
in a processor-specific way. An automatic consistency check of the disks is then
normally performed (see the fsck command).

Some options may not be supported on all machines.

Return Values
If successful, this call does not return. Otherwise, a -1 is returned and errno is set
to indicate the error.

1-591

OSF/1 Programmer's Reference

reboot(2)

Errors
If the reboot() function fails, errno may be set to the following value:

[EPERM] The calling process does not have appropriate privilege.

Related Information

Commands: crash(8), halt(8), init(8), reboot(8), savecore(8)

1-592

Functions

recv(2)

recv

Purpose Receives messages from connected sockets

Synopsis #include <sys/types.h>

#include <sys/socket.h>

int recv (

Parameters

Description

socket

buffer

length

flags

int socket,
char *buffer,
int length,
int.flags);

Specifies the socket descriptor.

Points to an address where the message should be placed.

Specifies the size of the address pointed to by the buffer parameter.

Points to a value controlling the message reception. The flags
parameter is formed by logically ORing one or more of the
following values, defined in the sys/socket.h file:

MSG_pEEK
Peek at incoming message. The data is treated as unread and
the next recv() function (or similar function) will still return
this data.

MSG_OOB
Process out-of-band data.

The recv() function receives messages from a connected socket. The recvfrom()
and recvmsg() functions receive messages from both connected and unconnected
sockets; however, they are usually used for unconnected sockets only.

The recv() function returns the length of the message. If a message is too long to
fit in the supplied buffer, excess bytes may be truncated depending on the type of
socket that issued the message.

1-593

OSF/1 Programmer's Reference

recv(2)

Notes

If no messages are available at the socket, the recv() function waits for a message
to arrive, unless the socket is nonblocking. If a socket is nonblocking, ermo is set
to [EWOULDBLOCK].

Use the select() function to determine when more data arrives.

The recv() function is identical to the recvfrom() function with a zero-valued
address_len parameter, and to the read() function if no flags are used. For that
reason, the recv() function is disabled when 4.4BSD behavior is enabled (that is,
when the _SOCKADDR_LEN compile-time option is defined).

Return Values

Errors

Upon successful completion, the recv() function returns the length of the message
in bytes. Otherwise, a value of -1 is returned, and ermo is set to indicate the error.

If the recv() function fails, ermo may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EWOULDBLOCK]
The socket is marked nonblocking, and no data is waiting to be
received.

[EINTR] A signal interrupted the recv() function before any data was
available.

[EFAULT] The data was directed to be received into a nonexistent or protected
part of the process address space. The buffer parameter is invalid.

Related Information

1-594

Functions: recvfrom(2), recvmsg(2), send(2), sendmsg(2), sendto(2), select(2),
shutdown(2), socket(2), read(2), write(2)

Functions
recvfrom{2)

recvfrom

Purpose Receives messages from sockets

Synopsis #include <sys/types.h>

#include <sys/socket.h>

int recvfrom(

Parameters

socket

buffer

length

int socket,
char *buffer,
int length,
int.flags,
struct sockaddr *address,
int *address_len) ;

Specifies the socket file descriptor.

Specifies a pointer to the buffer to which the message should be
written.

Specifies the length in bytes of the buffer pointed to by the buffer
parameter.

flags Points to a value that controls message reception. The parameter to
control message reception is formed by the logical OR of one or
more of the following values:

address

MSG_PEEK
Peeks at the incoming message.

MSG_OOB
Processes out-of-band data.

Points to a sockaddr structure, the format of which is determined by
the domain and by the behavior requested for the socket. The
sockaddr structure is an overlay for a sockaddr_in, sockaddr_un,
or sockaddr_ns structure, depending on which of the supported
address families is active. If the compile-time option
_SOCKADDR_LEN is defined before the sys/socket.h header file is

1-595

OSF/1 Programmer's Reference

recvfrom (2)

Description

included, the sockaddr structure takes 4.4BSD behavior, with a
field for specifying the length of the socket address. Otherwise, the
default 4.3BSD sockaddr structure is used, with the length of the
socket address assumed to be 14 bytes or less.

If _SOCKADDR_LEN is defined, the 4.3BSD sockaddr structure is
defined with the name osockaddr.

address_len Specifies the length of the sockaddr structure pointed to by the
address parameter.

The recvfrom() function permits an application program to receive messages from
unconnected sockets. It is normally applied to unconnected sockets because it
includes parameters that permit a calling program to retrieve the source endpoint of
received data.

To obtain the source address of the message, specify a nonzero value for the
address parameter. The recvfrom() function is called with the address_len
parameter set to the size of the buffer specified by the address parameter. On
return, this function modifies the address_len parameter to the actual size in bytes
of the address specified by the address parameter. The recvfrom() function returns
the length of the message written to the buffer pointed to by the buffer parameter.
When a message is too long for the specified buffer, excess bytes may be truncated
depending on the type of socket that issued the message, and depending on which
flags are set with the flags parameter.

When no message is available at the socket specified by the socket parameter, the
recvfrom() function waits for a message to arrive, unless the socket is
nonblocking. When the socket is nonblocking, errno is set to [EWOULDBLOCK].

Return Values

Errors

1-596

Upon successful completion, the byte length of the written message is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the recvfrom() function fails, errno may be set to one of the following values:

[EBADF] The socket parameter is not a valid file descriptor.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

Functions

recvfrom(2)

[EWOULDBLOCK]
The socket is nonblocking; no data is ready to be received.

[EFAULT] A valid message buffer was not specified. Nonexistent or protected
address space is specified for the message buffer.

Related Information

Functions: recv(2), recvmsg(2), send(2), sendmsg(2), sendto(2), select(2),
shutdown(2), socket(2), read(2), write(2)

1-597

OSF/1 Programmer's Reference
recvmsg(2)

recvmsg

Purpose Receives a message from a socket

Synopsis #include <sys/types.h>

#include <sys/socket.h>

int recvmsg(

Parameters

1-598

int socket,
struct msghdr *message,
int flags) ;

socket

message

Specifies a unique name of the socket.

Points to a msghdr structure, containing both the address for the
incoming message and the buffers for the source address. The format
of the address is determined by the behavior requested for the
socket. If the compile-time option _SOCKADDR_LEN is defined
before the sys/socket.h header file is included, the msghdr structure
takes 4.4BSD behavior. Otherwise, the default 4.3BSD msghdr
structure is used.

In 4.4BSD, the msghdr structure has a separate msg_ftags field for
holding flags from the received message. In addition, the
msg_accrights field is generalized into a msg_control field. See
the DESCRIPTION section for more information.

If _SOCKADDR_LEN is defined, the 4.3BSD msghdr structure is
defined with the name omsghdr.

flags Permits the caller of this function to exercise control over the
reception of messages. The value for this parameter is formed by a
logical OR of one or both of the following values:

MSG_PEEK
Peeks at the incoming message.

MSG_OOB
Processes out-of-band data.

Description

Functions

recvmsg(2)

The recvmsg() function receives messages from unconnected or connected
sockets and returns the length of the message. When a message is too long for the
buffer, the message may be truncated depending on the type of socket from which
the the message is written.

When no messages are available at the socket specified by the socket parameter,
the recvmsg() function waits for a message to arrive. When the socket is
nonblocking and no message is available, the recvmsg() function fails and sets
errno to [EWOULDBLOCK].

Use the select() function to determine when more data arrives.

In the msghdr structure, the msg_name and msg_namelen fields specify the
destination address if the socket is unconnected. The msg_name field may be
given as a null pointer if no names are desired or required. The msg_iov and
msg_iovlen fields describe the scatter gather locations.

In 4.3BSD, the msg_accrights field is a buffer for passing access rights. In
4.4BSD, the msg_accrights field has been expanded into a msg_control field, to
include other protocol control messages or other miscellaneous ancillary data.

In the 4.4BSD msghdr structure, the msg_flags field holds flags from the received
message. In addition to MSG_PEEK and MSG_OOB, the incoming flags reported
in the msg_flags field can be any of the following values:

MSG_EOR Data includes the end-of-record marker.

MSG_TRUNC
Data was truncated before delivery.

MSG_CTRUNC
Control data was truncated before delivery.

Return Values

Errors

Upon successful completion, the recvmsg() function returns the length of the
message in bytes, and fills in the fields of the msghdr structure pointed to by the
message parameter as appropriate. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

If the recvmsg() function fails, errno may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

1-599

OSF/1 Programmer's Reference

recvmsg{2)

[EWOULDBLOCK]
The socket is marked nonblocking and no data is ready to be
received.

[EINTR] This function was interrupted by a signal before any data was
available.

[EFAULT] The message parameter is not in a readable or writable part of user
address-space.

Related Information

1-600

Functions: recv(2), recvfrom(2), send(2), sendmsg(2), sendto(2), select(2),
shutdown(2), socket(2)

Functions

regexp(3)

advance, compile, step

Purpose

Synopsis

Parameters

Regular-expression compile and match routines

#define INIT declarations
#define GETC getc code
#define PEEK peek code
#define UNGETC(c) ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char *compile(
char * instring,
char *expbuf,
char *endbuf,
int eof);

int step(
char *string,
char *expbuf);

int advance(
char *string,
char *expbuf);

extern char *locl, *loc2, *Iocs ;

instring Specifies a string to be passed to the compile() function. The
instring parameter is never used explicitly by the compile()
function, but you can use it in your macros. For example, you may
want to pass the string containing a pattern as the instring parameter
to the compile() function and use the INIT() macro to set a pointer
to the beginning of this string. When your macros do not use
instring, call the compile() function with a value of ((char *) 0) for
this parameter.

expbuf Points to a character array where the compiled regular expression is
stored.

1-601

OSF/1 Programmer's Reference
regexp(3)

Description

1-602

endbuf

eof

string

Points to the location that immediately follows the character array
where the compiled regular expression is stored. When the compiled
expression cannot be contained in (endbuf-expbuf) number of bytes,
a call to the ERROR(50) macro is made.

Specifies the character that marks the end of the regular expression.
For example, in ed this character is usually I (slash).

Points to a null-terminated string of characters in the step()
function, to be searched for a match.

The compile(), advance(), and step() functions are used for general-purpose
expression-matching.

The compile() function takes a simple regular expression as input and produces a
compiled expression that can be used with the step() and advance() functions.

The following six macros, used in the compile() function, must be defined before
the #include <regexp.h> statement in programs. The GETC(), PEEKC(), and
UNGETC() macros operate on the regular expression provided as input for the
compile() function.

INIT()

GETC()

PEEKC()

The INIT() macro is used for dependent declarations and
initializations. In the regexp.h header file this macro is located right
after the compile() function declarations and opening { (left brace).
Your INIT() declarations must end with a ; (semicolon).

The INIT() macro is frequently used to set a register variable to
point to the beginning of the regular expression so that this pointer
can be used in declarations for GETC(), PEEKC(), and
UNGETC(). Alternatively, you can use INIT() to declare external
variables that GETC(), PEEKC(), and UNGETC() need.

The GETC() macro returns the value of the next character (byte) in
the regular-expression pattern. Successive calls to GETC() return
successive characters of the regular expression.

The PEEKC() macro returns the next character (byte) in the
regular expression. Immediate subsequent calls to this macro return
the same byte, which is also the next character returned by the
GETC() macro.

Functions

regexp(3)

UNGETC(c) The UNGETC() macro causes the c parameter to be returned by the
next call to the GETC() and PEEKC() macros. No more than one
character of pushback is ever needed because this character is
guaranteed to be the last character read by the GETC() macro. The
value of the UNGETC() macro is always ignored.

RETURN(ptr)
The RETURN() macro is used for normal exit of the compile()
function. The value of the ptr parameter is a pointer to the character
following the last character of the compiled regular expression.
This is useful in programs that manage memory allocation.

ERROR(val) The ERROR() macro is the abnormal return from the compile()
function. A call to this macro should never return a value. In this
macro, val is an error number, which is described in the ERRORS
section of this reference page.

The step() function finds the first substring of the string parameter that matches the
compiled expression pointed to by the expbuf parameter. When there is no match,
the step() function returns 0 (zero). When there is a match, the step() function
returns a nonzero value and sets two global character pointers: locl, which points
to the first character of the substring that matches the pattern, and loc2, which
points to the character immediately following the substring that matches the
pattern. When the regular expression matches the entire expression, locl points to
the first character of the string parameter and loc2 points to the null character at the
end of the expression specified by the string parameter.

The step() function uses the integer variable circf, which is set by the compile()
function when the regular expression begins with a A (circumflex). When this
variable is set, the step() function only tries to match the regular expression to the
beginning of the string. When you compile more than one regular expression
before executing the first one, save the value of circf for each compiled expression
and set circf to the saved value before each call to step().

The advance() function tests whether an initial substring of the string parameter
matches the expression pointed to by the expbuf parameter. Using the same
parameters that were passed to it, the step() function calls the advance() function.
The step() function increments a pointer through the string parameter characters
and calls advance() until a nonzero value, which indicates a match, is returned, or
until the end of the expression pointed to by the string parameter is reached. To
unconditionally constrain string to point to the beginning of the expression, call the
advance() function directly instead of calling step().

1-603

OSF/1 Programmer's Reference

regexp(3)

Example

Notes

1-604

When the advance() function encounters an * (asterisk) or a\{\} sequence in the
regular expression, it advances its pointer to the string to be matched as far as
possible and recursively calls itself, trying to match the remainder of the regular
expression. As long as there is no match, the advance() function backs up along
the string until it finds a match or reaches the point in the string where the initial
match with the * or\{\} character occurred.

It is sometimes desirable to stop this backing-up before the initial pointer position
in the string is reached. When the locs global character pointer is matched with the
character at the pointer position in the string during the backing-up process, the
advance() function breaks out of the recursive loop that backs up and returns the
value 0 (zero).

The following is an example of the regular expression macros and calls from the
grep command:

#define INIT
#define GETC()
#define PEEKC ()
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

register char *sp=instring;
(*sp++)
(*sp)
(--sp)
return;
regerr ()

compile (patstr, expbuf, &expbuf[ESIZE], ' ');

if (step (linebuf, expbuf))
succeed () ;

Two versions of these functions are available. The first, for XPG3 applications,
supports simple internationalized expressions. The second, for System V
applications, supports simple (non-internationalized) regular expressions.

BSD applications use different functions for regular expression handling. See the
re_comp() and re_exec() functions.

AES Support Level: Trial use

Functions

regexp(3)

Return Values

Errors

Upon successful completion, the compile() function calls the RETURN() macro.
Upon failure, this function calls the ERROR() macro.

Whenever a successful match occurs, the step() and advance() functions return a
nonzero value. Upon failure, these functions return 0 (zero).

lf the compile() function fails, the ERROR() macro is called with an error
number as its argument. The possible error numbers are:

Error

11

16

25

36

41

42

43

44

45

46

49

50

70

Meaning

Range endpoint too large

Bad number

\digit out of range

Illegal or missing delimiter

No remembered search string

There is a \(\) pair imbalance

Too many \(\) pairs (maximum is 9)

More than two numbers given in the\{\} pair

A } character expected after \

First number exceeds second in the\{\} pair

There is a [] pair imbalance

Regular expression overflow

Invalid endpoint in range expression

Related Information

Functions: ctype(3), re_comp(3)

Commands: ed(l), sed(l), grep(l)

1-605

OSF/1 Programmer's Reference
reltimer(3)

reltimer

Purpose

Library

Synopsis

Parameters

Description

1-606

Establishes timeout intervals of a per-process timer

Standard C Library (libc.a)

#include <sys/timers.h>

int reltiiner(
timer_t tmrid,
struct itimerspec *val,

struct itimerspec *oval) ;

tmrid

val

oval

Specifies the per-process timer to access.

Points to a type itimerspec structure containing the values of the
initial and offset timeout intervals.

Points to a type itimerspec structure where the current value of the
timer timeout interval and the time-to-go are to be stored.

The reltimer() function establishes initial and offset timeout intervals of a per­
process timer specified by the tmrid parameter. Initial and offset timeout interval
information is stored in an itimerspec structure pointed to by the val parameter.
When the per-process timer specified by the tmrid parameter is active, after
timeout of the initial time interval, all subsequent timeouts are controlled by the
offset timeout value; as long as tmrid continues to operate, the offset values pointed
to by the val parameter are used as the per-process timeout interval. The current
timeout interval and the time-to-go are returned to the location pointed to by the
oval parameter.

Initial and offset time information for the per-process timer is stored in space
reserved by a type itimerspec structure pointed to by the val parameter. A type
itimerspec structure is also used to store returned time information specified by the
oval parameter. The itimerspec structure is defined in the sys/timers.h include file.

Notes

Functions
reltimer(3)

Time values smaller than the resolution of the specified timer are rounded up to the
resolution value. Time values larger than the maximum timeout value of the
specified per-process timer are rounded down to that maximum value.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the reltimer() function returns 0 (zero). Otherwise,
-1 is returned and errno is set to indicate the error.

If the reltimer() function fails, errno may be set to the following value:

[EINVAL] The timerid parameter does not specify an allocated per-process
timer, or the val parameter points to a nanosecond value less than
zero or greater than or equal to 1000 million.

Related Information

Functions: alarm(3), getclock(3), gettimer(3), mktimer(3)

1-607

OSF/1 Programmer's Reference

remove{3)

remove

Purpose Removes a file

Library

Standard C Library (libc.a)

Synopsis #include <stdio.h>

int remove(

Parameters

Description

Notes

const char *file_name);

file_name Points to the file to be removed.

The remove() function causes a file named by the string pointed to by file_name to
be no longer accessible by that name. A subsequent attempt to open that file using
that name will fail unless it is created anew.

If the file_name parameter is called on a directory, it is equivalent to calling the
rmdir() function on that directory.

If the file operated upon by the remove() function has multiple links, the link
count in the file is decremented.

AES Support Level: Full use

Return Values

1-608

Upon successful completion, the remove() function returns 0 (zero). Otherwise, a
nonzero value is returned.

Errors

Functions

remove(3)

Refer to the unlink() function and the rmdir() function for information on error
conditions.

Related Information

Functions: link(2), rename(2)

Commands: link(l), unlink(l)

1-609

OSF/1 Programmer's Reference

rename(2)

rename

Purpose

Synopsis

Parameters

Description

1-610

Renames a directory or a file within a file system

#include <stdio.h>

int rename (
char *from,
char *to);

from Identifies the file or directory to be renamed.

to Identifies the new pathname of the file or directory to be renamed. If
the to parameter is an existing file or empty directory, it is replaced
by the from parameter. If the to parameter is a nonempty directory,
the rename() function exits with an error.

The rename() function renames a directory or a file within a file system.

For rename() to complete successfully, the calling process must have write and
search permission to the parent directories of both the from and to parameters. If
the from parameter is a directory and the parent directories of from and to are
different, then the calling process must have write and search permission to the
from parameter as well.

If the from and to parameters both refer to the same existing file, the rename()
function returns successfully and performs no other action.

Both the from and to parameters must be of the same type (that is, both directories
or both nondirectories) and must reside on the same file system. If the to parameter
already exists, it is first removed. In this case it is guaranteed that a link named the
to parameter will exist throughout the operation. This link refers to the file named
by either the to or from parameter before the operation began.

If the final component of the from parameter is a symbolic link, the symbolic link
(not the file or directory to which it points) is renamed. If the final component of
the to parameter is a symbolic link, the symbolic link is destroyed.

Notes

Functions

rename(2)

If the from and to parameters name directories, the following must be true:

• The from parameter is not an ancestor of the to parameter. For example, the to
pathname must not contain a path prefix that names from.

• The from parameter is well-formed. For example, the. (dot) entry infrom, if
it exists, refers to the same directory as from, exactly one directory has a link
to from (excluding the self-referential •), and the •• (dot-dot) entry infrom, if it
exists, refers to the directory that contains an entry for from.

• The to parameter, if it exists, must be well-formed (as defined previously).

Upon successful completion, the rename() function marks the st_ctime and
st_mtime fields of the parent directory of each file for update.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the rename() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned, and errno is set to indicate the error.

If the rename() function fails, the file or directory name remains unchanged and
errno may be set to one of the following values:

[ENOTDIR] Thefrom parameter names a directory and the to parameter names a
nondirectory.

[EISDIR] The to parameter names a directory and the from parameter names a
nondirectory.

[ENOENT] A component of either path does not exist, or either path is the
empty string, or the file named by the from parameter does not exist.

[EACCES] Creating the requested link requires writing in a directory with a
mode that denies write permission, or a component of either
pathname denies search permission.

[EXDEV] The link named by the to parameter and the file named by the from
parameter are on different file systems.

[EBUSY] The directory named by the from or to parameter is currently in use
by the system or by another process.

1-611

OSF/1 Programmer's Reference
rename(2)

[EINVAL]

[EROFS]

[EEXIST]

[ENOS PC]

[EDQUOT]

[EFAULT]

[ELOOP]

Either the from or to parameter is not a well-formed directory, an
attempt is made to rename . (dot) or .. (dot-dot), or the from
parameter is an ancestor of the to parameter.

The requested operation requires writing in a directory on a read­
only file system.

The to parameter is an existing nonempty directory.

The directory that would contain to cannot be extended because the
file system is out of space.

The directory that would contain to cannot be extended because the
user's quota of disk blocks on the file system containing the
directory is exhausted.

Either the to or from parameter is an invalid address.

Too many links were encountered in translating either to or from.

[ENAMETOOLONG]
The length of the to or from parameters exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

[EPERM] The S_ISVTX flag is set on the directory containing the file to be
renamed, and the caller is not the file owner.

Related Information

1-612

Functions: chmod(2), Iink(2), mkdir(2), rmdir(2), unlink(2)

Commands: chmod(l), mkdir(l), mv(l), mvdir(l)

res_init

Purpose

Library

Synopsis

Description

Notes

Files

Searches for a default domain name and Internet address

Standard C Library (libc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv .h>

void res_init (void);

Functions

res_init(3)

The res_init() function reads the /etc/resolv.conf file for the default domain name
and the Internet address of the initial hosts running the name server, even if the
name server is not functioning.

The res_init() function is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. All resolver functions use the
/usr/include/resolv.h header file, which defines the _res data structure. The
res_init() function stores domain name information in the _res data structure.

If the /etc/resolv.conf file does not exist, the res_init() function attempts name
resolution using the local /etc/hosts file. If the system is not using a domain name
server, the /etc/resolv.conf file should not exist. The /etc/host file should be
present on the system even if the system is using a name server. In this instance,
the file should contain the host IDs that the system requires to function even if the
name server is not functioning.

/etc/resolv .conf

/etc/hosts

Contains the name server and domain name.

Contains hostnames and their addresses for hosts in a network. This
file is used to resolve a hostname into an Internet address.

1-613

OSF/1 Programmer's Reference

res_init{3)

Related Information

Functions: dn_comp(3), dn_expand(3), dn_find(3), dn_skipname(3),
getlong(3), getshort(3), putlong(3), putshort(3), res_mkquery(3), res_send(3)

1-614

Functions

res_mkquery(3)

res_mkquery

Purpose

Library

Synopsis

Parameters

Makes query messages for name servers

Standard C Library (Jibe.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv .h>

int res_mkquery (
int query_type,
char *domain_name,
int class,
int type,
char *data,
int data_length,
sfruct rrec *reserved,
char *buffer,
int buf_length);

query_type Specifies a query type. The usual type is QUERY, but the parameter
can be set to any of the query types defined in the arpa/nameser.h
file.

domain_name Points to the name of the domain. If the domain_name parameter
points to a single label and the RES_DEFNAMES bit is set, as it is
by default, the function appends domain_name to the current
domain name. The current domain name is defined by the name
server in use or in the /etc/resolv .conf file.

class Specifies one of the following parameters:

C_IN Specifies the ARP A Internet.

C_CHAOS
Specifies the Chaos network at MIT.

1-615

OSF/1 Programmer's Reference

res_mkquery(3)

1-616

type Requires one of the following values:

T_A Host address

T_NS Authoritative server

T_MD Mail destination

T_MF Mail forwarder

T_CNAME Canonical name

T_SOA Start of authority zone

T_MB Mailbox domain name

T_MG Mail group member

T_MR Mail rename name

T_NULL NULL resource record

T_WKS Well known service

T_PTR Domain name pointer

T_HINFO Host information

T_MINFO Mailbox information

T_MX Mail routing information

T_UINFO User (finger) information

T_UID User ID

T_GID Group ID

data Points to the data that is sent to the name server as a search key.
The data is stored as a character array.

data_length Defines the size of the array pointed to by the data parameter.

reserved Specifies a reserved and currently unused parameter.

buffer Points to a location containing the query message.

buf_length Specifies the length of the message pointed to by the buffer
parameter.

Description

Functions

res_mkquery(3)

The res_mkquery() function makes packets for name servers in the Internet
domain. The res_mkquery() function makes a standard query message and places
it in the location pointed to by the buffer parameter.

The res_mkquery() function is one of a set of subroutines that form the resolver, a
set of functions that resolve domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The /include/resolv.h file
contains the _res data structure definition.

Return Values

Files

Upon successful completion, the res_mkquery() function returns the size of the
query. If the query is larger than the value of the buf_length parameter, the
function fails and returns a value of -1.

/etc/resolv.conf
Contains the name server and domain name.

Related Information

Functions: dn_comp(3), dn_expand(3), dn_find(3), dn_skipname(3),
getlong(3), getshort(3), putlong(3), putshort(3), res_init(3), res_send(3)

1-617

OSF/1 Programmer's Reference

res_send{3)

res_send

Purpose Sends a query to a name server and retrieves a response

Library
Standard C Library (Ube.a)

Synopsis #include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

Parameters

Description

1-618

int res_send (

msg_ptr

msg_len

answer

ans_len

char *msg_ptr,
int msg_len,
char *answer,
int ans_len);

Points to the beginning of a message.

Specifies the length of the message.

Points to an address where the response is stored.

Specifies the size of the answer area.

The res_send() function sends a query to name servers and calls the res_init()
function if the RES_INIT option of the _res data structure is not set. This function
sends the query to the local name server and handles timeouts and retries.

The res_send() function is one of a set of subroutines that form the resolver, a set
of functions that resolve domain names. Global information that is used by the
resolver functions is kept in the _res data structure. The /include/resolv.h file
contains the _res data structure definition.

Functions

res_send{3}

Return Values

Files

Upon successful completion, the res_send() function returns the length of the
message. Otherwise, -1 is returned.

/etc/resolv .conf
Contains general name server and domain name information.

Related Information

Functions: dn_comp(3), dn_expand(3), dn_find(3), dn_skipname(3),
getlong(3), getshort(3), putlong(3), putshort(3), res_init(3), res_mkquery(3)

1-619

OSF/1 Programmer's Reference
rexec(3)

rexec

Purpose

Library

Synopsis

Parameters

1-620

Allows command execution on a remote host

Standard C Library (Ube.a)

int rexec (
char **host,
int port,
char *user,
char *passwd,
char *command,
int *err _file_desc);

host Contains the name of a remote host that is listed in the /etc/hosts file
or /etc/resolv.conf file. If the name of the host is not found in either
file, the rexec() fails.

port

user

passwd

command

Specifies the well-known DARPA Internet port to use for the
connection. A pointer to the structure that contains the necessary
port can be obtained by issuing the following library call:
getservbyname()(exec,tcp)

Points to a user ID valid at the host.

Points to the password of the specified user ID on the host.

Points to the name of the command to be executed at the remote
host.

err Jile_desc Specifies the file to which standard error from the remote command
is sent.

If the err _file_desc parameter is 0 (zero), the standard error of the
remote command is the same as standard output. No provision is
made for sending arbitrary signals to the remote process. In this
case, however, it may be possible to send out-of-band data to the
remote command.

Description

Functions

rexec(3)

If the err _file_desc parameter is nonzero, an auxiliary channel to a
control process is set up, and a descriptor for it is placed in the
err _file_desc parameter. The control process provides diagnostic
output from the remote command on this channel and also accepts
bytes as signal numbers to be forwarded to the process group of the
command. This diagnostic information does not include remote
authorization failure, since this connection is set up after
authorization has been verified.

The rexec() (remote execution) function allows the calling process to execute
commands on a remote host.

If the rexec() connection succeeds, a socket in the Internet domain of type
SOCK_STREAM is returned to the calling process and is given to the remote
command as standard input and standard output.

The user and passwd parameters specify a valid user ID and the associated
password for that user on the remote host. If the user and passwd parameters are
not supplied, the rexec() function takes the following actions until finding a user
ID and password to send to the remote host:

1. Searches the current environment for the user ID and password on the remote
host.

2. Searches the tser 's home directory for a file called $HOME/.netrc that
contains a user ID and password.

3. Prompts the user for a user ID and password.

Return Values

Upon successful completion, the system returns a socket to the remote command.
Otherwise, -1 is returned, indicating that the specified hostname does not exist.

1-621

OSF/1 Programmer's Reference
rexec{3)

Files

/etc/hosts Contains hostnames and their addresses for hosts in a network. This
file is used to resolve a hostname into an Internet address.

/etc/reso!v .conf
Contains the name server and domain name.

$HOME/.netrc
Contains automatic login information.

Related Information

1-622

Functions: getservbyname(3), rcmd(3), rresvport(3), ruserok(3)

Commands: rexecd(8)

rmdir

Purpose

Synopsis

Parameters

Description

Notes

Functions
rmdir(2)

Removes a directory file

int rmdir (
const char *path);

path Specifies the directory pathname. The final component of the path
parameter cannot be a symbolic link.

The rmdir() function removes the directory specified by the path parameter. The
directory is removed only if it is an empty directory.

For the rmdir() function to execute successfully, the calling process must have
write access to the parent directory of the path parameter.

If the directory's link count becomes 0 (zero) and no process has the directory
open, the space occupied by the directory is freed and the directory is no longer
accessible. If one or more processes have the directory open when the last link is
removed, the . (dot) and .. (dot-dot) entries, if present, are removed before the
rmdir() function returns, and no new entries may be created in the directory.
However, the directory is not removed until all references to the directory have
been closed.

Upon successful completion, the rmdir() function marks the st_ctime and
st_mtime fields of the parent directory for update.

AES Support Level: Full use

Return Values

Upon successful completion, the rmdir() function returns a value of 0 (zero). If
the rmdir() function fails, a value of -1 is returned and errno is set to indicate the
error.

1-623

OSF/1 Programmer's Reference
rmdir(2)

Errors

If the rmdir() function fails, the directory is not deleted and errno may be set to
one of the following values:

[EBUSY] The directory is in use as either the mount point for a file system or
the current directory of the process that issued the rmdir() function.

[EEXIST] The directory named by the path parameter is not empty.

[ENOENT] The directory named by the path parameter does not exist or is an
empty string.

[EROFS] The directory named by the path parameter resides on a read-only
file system.

[EACCES] Search permission is denied on a component of the path parameter,
or write permission is denied on the parent directory of the directory
to be removed.

[EFAULT] The path parameter is an invalid address.

[BLOOP] Too many links were encountered in translating path.

[ENAMETOOLONG]
' The length of the path parameter exceeds PATH_MAX, or a

pathname component is longer than NAME_MAX.

[EPERM] The S_ISVTX flag is set on the parent directory of the directory to
be removed, and the caller is not the file owner.

[ENOTDIR] A component of the path parameter is not a directory.

Related Information

1-624

Functions: chmod(2), mkdir(2), mknod(2), mkfifo(3), remove(3), rename(2),
umask(2), unlink(2)

Functions

rmtimer(3)

rm timer

Purpose Frees a per-process timer

Library
Standard C Library (Jibe.a)

Synopsis #include <sys/timers.h>

int rmtimer(

Parameters

Description

Notes

timer_t timer _id);

timer_id Specifies the per-process timer to deallocate.

The rmtimer() function is used to free a previously allocated per-process timer
(previously returned by the mktimer() function). Any pending per-process timer
event generated by the timer specified by the timer _id parameter is cancelled when
this function successfully executes.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, the value 0 (zero) is returned. Otherwise, the value -1
is returned and errno is set to indicate the error.

If the rmtimer() function fails, errno may be set to the following value:

[EINVAL] The timerid parameter does not specify an allocated per-process
timer.

Related Information

Functions: gettimer(3), mktimer(3), reltimer(3)

1-625

OSF/1 Programmer's Reference
rresvport(3}

rresvport

Purpose

Library

Synopsis

Parameters

Description

Retrieves a socket with a privileged address

Standard C Library (Ube.a)

int rresvport (

int *port);

port Specifies the port to use for the connection.

The rresvport() function obtains a socket with a privileged address bound to the
socket. A privileged Internet port is one that falls in the range of 0 to 1023.

Only processes with an effective user ID of root can use the rresvport() function.
An authentication scheme based on remote port numbers is used to verify
permissions.

If the connection succeeds, a socket in the Internet domain of type
SOCK_STREAM is returned to the calling process.

Return Values

Errors

1-626

Upon successful completion, the rresvport() function returns a valid, bound
socket descriptor. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

If the rresvport() function fails, errno may be set to one of the following values:

[EAGAIN] All network ports are in use.

[EAFNOSUPPORT]
The addresses in the specified address family cannot be used with
this socket.

Files

Functions

rresvport(3)

[EMFILE] Two hundred (200) file descriptors are currently open.

[ENFILE] The system file table is full.

ENOBUFS Insufficient buffers are available in the system to complete the
function.

/etc/services Contains the service names.

Related Information

Functions: rcmd(3), ruserok(3)

1-627

OSF/1 Programmer's Reference
ruserok(3)

ruserok

Purpose

Library

Synopsis

Parameters

Description

1-628

Allows servers to authenticate clients

Standard C Library (libc.a)

int ruserok (
char *host,
int root_user,
char *remote_user,
char *local_user);

host Specifies the name of a remote host.

root_user

remote_user

local_user

Specifies a value to indicate whether the effective user ID of the
calling process is that of a root user. A value of 0 (zero) indicates
the process does not have a root user ID. A value of 1 indicates that
the process has local root user privileges, and the /etc/host.equiv
file is not checked.

Points to a usemame that is valid at the remote host. Any valid
usemame can be specified.

Points to a usemame that is valid at the local host. Any valid
usemame can be specified.

The ruserok() (remote command user OK) function allows servers to authenticate
clients requesting services.

Functions

ruserok(3)

The hostname must be specified. If the local domain and remote domain are the
same, specifying the domain parts is optional. To determine the domain of the host,
use the gethostname() function. The ruserok() function checks for this host in
the /etc/host.equiv file. Then, if necessary, the subroutine checks a file in the
user's home directory at the server called $HOME/.rhosts for a host and remote
user ID.

Return Values

Files

The ruserok() function returns 0 (zero) if the subroutine successfully locates the
name specified by the host parameter in the /etc/hosts.equiv file or if the IDs
specified by the host and remote_user parameters are found in the $HOME/.rhosts
file.

If the name specified by the host parameter was not found, the ruserok() function
returns a value of -1.

/etc/services Contains service names.

/etc/host.equiv
Specifies foreign hostnames.

$HOME/.rhosts
Specifies the remote users of a local user account.

Related Information

Functions: gethostname(2), rcmd(3), rresvport(3), sethostname(2)

Commands: rlogind(8), rshd(8)

1-629

OSF/1 Programmer's Reference

scandir(3)

scandir, alphasort

Purpose Scans or sorts directory contents

Library
Standard C Library (Jibe.a)

Synopsis #include <sys/types.h>
#include <sys/dir.h>

Parameters

Description

1-630

int scandir (
char *dir_name,
struct direct * (*name _list[]),
int (*select) (void),
int (*compare) (void));

int alphasort (
struct direct **dirl,
struct direct **dir2);

dir name

name list

select

compare

dirl

dir2

Points to the directory name.

Points to the array of pointers to directory entries.

Points to a user-supplied function that is called by the scandir()
function to select which entries to include in the array.

Points to a user-supplied function that sorts the completed array.

Points to a direct structure.

Points to a direct structure.

The scandir() function reads the directory pointed to by the dir _name parameter.
It then uses the malloc() function to create an array of pointers to directory entries.
The scandir() function returns the number of entries in the array and, through the
name _list parameter, a pointer to the array.

Functions

scandir{3)

The select parameter points to a user-supplied function that the scandir() function
calls to select which entries to include in the array. The selection routine is passed
a pointer to a directory entry and returns a nonzero value for a directory entry that
is included in the array. If the select parameter is a null value, all directory entries
are included.

The compare parameter points to a user-supplied function that is passed to the
qsort() function to sort the completed array. If the compare parameter is a null
value, the array is not sorted.

The memory allocated to the array can be deallocated by freeing each pointer in
the array, and the array itself, with the free() function.

The alphasort() function alphabetically compares the two direct structures
pointed to by the dirl and dir2 parameters. This function can be passed as the
compare parameter to either the scandir() function or the qsort() function. A
user-supplied subroutine may also be used.

Return Values

The scandir() function returns -1 if the directory cannot be opened for reading or
if the malloc() function cannot allocate enough memory to hold all the data
structures. If successful, the scandir() function returns the number of entries
found.

The alphasort() function returns the following values:

• Less than 0 (zero): The direct structure pointed to by the dirl parameter is
lexically less than the direct structure pointed to by the dir2 parameter.

• 0 (zero): The direct structures pointed to by the dirl parameter and the dir2
parameter are equal.

• Greater than 0 (zero): The direct structure pointed to by the dirl parameter is
lexically greater than the direct structure pointed to by the dir2 parameter.

Related Information

Functions: malloc(3), opendir(3), qsort(3)

1-631

OSF/1 Programmer's Reference
scanf(3)

scanf, fscanf, sscanf

Purpose Converts formatted input

Library

Standard 1/0 package (libc.a)

Synopsis #include <stdio.h>

int scanf (

Parameters

Description

1-632

const char *format [,pointer, ...]);

int fscanf (
FILE *stream,
const char *format [,pointer, ...]);

int sscanf (

format

stream

string

pointer

const char *string,
const char *format [,pointer, ...]);

Specifies the format conversion.

Specifies the input stream.

Specifies input to be read.

Points to location to store interpreted dati1.

The scanf(), fscanf(), and sscanf() functions read character data, interpret it
according to a format, and store the converted results into specified memory
locations. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored.

These functions read their input from the following sources:

scanf() Reads from standard input (stdio).

fscanf()

sscanf()

Reads from the stream parameter.

Reads from the character string specified by the string parameter.

Functions
scanf(3)

The format parameter contains conversion specifications used to interpret the input.
The pointer parameters specify where to store the interpreted data. If there are
insufficient arguments for the format, the behavior is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated as always
but are otherwise ignored.

The format parameter can contain white-space characters (blanks, tabs, newline, or
formfeed) that, except in the following two cases, read the input up to the next
nonwhite-space character. Unless there is a match in the control string, trailing
white space (including a newline character) is not read.

• Any character except % (percent sign), which must match the next character
of the input stream.

• A conversion specification that directs the conversion of the next input field.

Conversion Specifications

Each conversion specification in the format parameter contains the following
elements:

• The character% (percent sign)

• The optional assignment suppression character * (asterisk)

• An optional numeric maximum field width

• An optional character that sets the size of the receiving variable as for some
flags, as follows:

Signed long integer rather than an int when preceding the d, u, o, or x
conversion codes.

L A double rather than a· float, when preceding the e, f, or g conversion
codes.

h Signed short integer (half int) rather than an int when preceding the d,
u, o, or x conversion codes.

• A conversion code

The conversion specification has the following syntax:

% [*][width][size]convcode

The results from the conversion are placed in *pointer unless you specify
assignment suppression with * (asterisk). Assignment suppression provides a way
to describe an input field that is to be skipped. The input field is a string of
nonwhite-space characters. It extends to the next inappropriate character or until
the field width, if specified, is exhausted.

1-633

OSF/1 Programmer's Reference
scanf(3)

1-634

The conversion code indicates how to interpret the input field. The corresponding
pointer must usually be of a restricted type. You should not specify the pointer
parameter for a suppressed field. You can use the following conversion codes:

% Accepts a single % (percent sign) input at this point; no assignment is done.

d, i Accepts a decimal integer; the pointer parameter should be an integer
pointer.

u Accepts an unsigned decimal integer; the pointer parameter should be an
unsigned integer pointer.

o Accepts an octal integer; the pointer parameter should be an integer
pointer.

x Accepts a hexadecimal integer; the pointer parameter should be an integer
pointer.

e, f, g Accepts a floating-point number. The next field is converted accordingly
and stored through the corresponding parameter, which should be a pointer
to a float. The input format for floating-point numbers is a string of digits,
with the following optional characteristics:

It can be a signed value.

It can be an exponential value, containing a decimal point followed by
an exponent field, which consists of an E or an e followed by an
(optionally signed) integer.

It can be one of the special values INF, NaNQ, or NaNS. This value is
translated into the ANSI/IEEE value for infinity, quiet NaN, or
signaling NaN, respectively.

For Japanese Language Support, the conversion codes recognize double­
width versions of digits as equivalent to the single-width versions of those
digits.

p Matches an unsigned hexadecimal integer, the same as the &p conversion
of the printf() function. The corresponding argument will be a pointer to a
pointer to void.

n No input is consumed. The corresponding argument is a pointer to an
integer into which is written the number of characters read from the input
stream so far by this function. The assignment count returned at the
completion of this function is not incremented.

Functions

scanf(3)

s Accepts a string of characters. The pointer parameter should be a character
pointer that points to an array of characters large enough to accept the
string and ending with \0. The \0 is added automatically. The input field
ends with a white-space character. A string of char values is output.

c A char value is expected. The pointer parameter should be a char pointer.
The normal skip over white space is suppressed. Use %ls to read the next
nonwhite-space character. If a field width is given, pointer refers to a
character array, and the indicated number of char values is read.

c For Japanese Language Support, a char value is expected and the pointer
parameter should be a char pointer. The normal skip over white space is
again suppressed, and %ls is used to read the next nonwhite-space char
value. If a field width is given, pointer refers to a character array, and the
indicated number of char values is read.

[scanset]
Accepts as input the characters included in the scanset. The scanset
explicitly defines the characters that are accepted in the string data as those
enclosed within square brackets. The leading white space that is normally
skipped over is suppressed. A scanset in the form of [Ascanset] is an
exclusive scanset: the A (circumflex) serves as a complement operator and
the following characters in the scanset are not accepted as input.
Conventions used in the construction of the scanset follow:

You can represent a range of characters by the construct First-Last.
Thus, you can express [0123456789] as [0-9]. The First parameter
must be lexically less than or equal to Last, or else the - (dash) stands
for itself. The - also stands for itself whenever it is the first or the last
character in the scanset.

You can include the] (right bracket) as an element of the scanset if it
is the first character of the scanset. In this case it is not interpreted as
the bracket that closes the scanset. If the scanset is an exclusive
scanset, the] is preceded by the A (circumflex) to make the] an
element of the scanset. The corresponding pointer parameter must
point to a character array large enough to hold the data field and that
ends with 0 (zero). The 0 is added automatically.

1-635

OSF/1 Programmer's Reference

scanf(3)

A scanf() ends at the end of the file, the end of the control string, or when an input
character conflicts with the control string. If it ends with an input character
conflict, the conflicting character is not read from the input stream.

Unless there is a match in the control string, trailing white space (including a
newline character) is not read.

The success of literal matches and suppressed assignments is not directly
determinable.

Japanese Language Support

Notes

The NLS extensions to the scanf() functions can handle a format string that
enables the system to process elements of the argument list in variable order. The
normal conversion character % (percent sign) is replaced by %digit$, where digit
is a decimal number. Conversions are then applied to arguments in the list with
ordinal digits, rather than to the next unused argument.

The following restrictions apply:

• The format passed to the NLS extensions can contain one of the following
forms, but not both:

The format of the conversion.

The explicit or implicit argument number.

These forms cannot be mixed within a single format string.

• The * (asterisk) specification for field width or precision is not permitted with
the variable order %digit$ format.

AES Support Level: Full use

Return Values

1-636

The scanf(), fscanf(), or sscanf() function returns the display length of the string
it outputs, which is the number of the display characters in the string, rather than
the number of bytes. These functions return EOF on the end of input and on a short
count for missing or invalid data items.

The scanf() functions return the number of successfully matched and assigned
input items. This number can be 0 (zero) if there was an early conflict between an
input character and the control string. If the input ends before the first conflict or
conversion, EOF is returned and errno is set to indicate the error.

Errors

Functions

scanf{3)

The fscanf() function fails if either the stream is unbuffered, or the stream's buffer
needed to be flushed and the function call caused an underlying write() or lseek()
to be invoked. In addition, if the scanf(), fscanf(), sscanf(), function fails, errno
may be set to one of the following values:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor
open for writing.

[EFBIG] An attempt was made to write to a file that exceeds the process' file
size limit or the maximum file size.

[EINTR] The read operation was interrupted by a signal which was caught,
and no data was transferred.

[EIO] The implementation supports job control, the process is a member of
a background process group attempting to write to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is
orphaned. This error may also be returned under implementation­
defined conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

Related Information

Functions: atof(3), atoi(3), getc(3), getwc(3), printf(3), wsscanf(3)

1-637

OSF/1 Programmer's Reference
select(2)

select

Purpose Synchronous 1/0 muitiplexing

Synopsis #include<sys/types.h>

Parameters

1-638

#include<sys/time.h>

int select(
int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout) ;

FD_SET(
intfd,
fd_set *fdset);

FD_CLR(
intfd,
fd_set *fdset);

FD_ISSET(
intfd,
fd _set *fdset);

FD_ZERO(

nf ds

readfds

writefds

fd_set *fdset);

Specifies the number of open objects that may be ready for reading
or writing or that have exceptions pending. The nfds parameter
cannot be greater than FD _SETSIZE.

Points to an 1/0 descriptor set consisting of file descriptors of
objects opened for reading. When the readfds parameter is a null
pointer, the read 1/0 descriptor set is ignored by the select()
function.

Points to an 1/0 descriptor set consisting of file descriptors for
objects opened for writing. When the writefds parameter is a null
pointer, the write 1/0 descriptor set is ignored.

Description

exceptfds

timeout

Functions

select(2)

Points to an 1/0 descriptor set consisting of file descriptors for
objects opened for reading or writing that have an exception
pending. When the exceptfds parameter is a null pointer, the
exception 1/0 descriptor set is ignored.

Points to a type timeval structure that specifies the time to wait for a
response to a select() function. When the timeout parameter has a
nonzero value, the maximum time interval to wait for the select()
function to complete is specified by values stored in space reserved
by the type timeval structure pointed to by the timeout parameter.

When the timeout parameter is a null pointer, the select() function
blocks indefinitely. To poll, the timeout parameter should be
specified as a nonzero value and point to a zero-valued timeval
structure.

fd Specifies a file descriptor.

fdset Points to an 1/0 descriptor set.

The select() function checks the status of objects identified by bit masks called 1/0
descriptor sets. Each 1/0 descriptor set consists of an array of bits whose relative
position and state represent a file descriptor and the status of its corresponding
object. There is an 1/0 descriptor set for reading, writing, and for pending
exceptions. These 1/0 descriptor sets are pointed to by the readfds, writefds, and
exceptfds parameters, respectively. The 1/0 descriptor sets provide a means of
monitoring the read, write, and exception status of objects represented by file
descriptors.

The status of nf ds - 1 file descriptors in each referenced 1/0 descriptor set is
checked when theselect() function is called. The select() function returns a
modified 1/0 descriptor set, which has the following characteristics: for any
selected 1/0 descriptor set pointed to by the readfds, writefds, and exceptfds
parameters, if the state of any bit corresponding with an active file descriptor is set
on entry, when the object represented by the set bit is ready for reading, writing, or
its exception condition has been satisfied, a corresponding bit position is also set in
the returned 1/0 descriptor set pointed to by the readfds, writefds, or exceptfds
parameters.

On return, the select() function replaces the original 1/0 descriptor sets with the
corresponding 1/0 descriptor sets that have a set bit for each file descriptor
representing those objects that are ready for the requested operation. The total
number of ready objects represented by set bits in all the 1/0 descriptor sets is
returned by the select() function.

1-639

OSF/1 Programmer's Reference
select(2)

Notes

After an 1/0 descriptor set is created, it may be modified with the following
macros:

FD _ZERO(&fdset)
Initializes the 1/0 descriptor set addressed by f dset to a null value.

FD_SET(fd, &fdset)
Includes the particular 1/0 descriptor bit specified by fd in the 1/0
descriptor set addressed by fdset.

FD_ CLR(fd, &fdset)
Clears the 1/0 descriptor bit specified by file descriptor f d in the 1/0
descriptor set addressed by fdset.

FD _ISSET(fd, &fdset)
Returns a nonzero value when the 1/0 descriptor bit for f d is
included in the 1/0 descriptor set addressed by fdset. Otherwise 0
(zero) is returned.

The behavior of these macros is undefined when parameter fd has a value less than
0 (zero) or greater than or equal to FD_SETSIZE, which is normally at least equal
to the maximum number of file descriptors supported by the system.

Although the getdtablesize() function is intended to allow users to write programs
independently of the kernel limit on the number of open files, the dimensioning of a
sufficiently large bit field for select() remains a problem. The default size
FD_SETSIZE (currently 256) is larger than the current kernel limit on the
permitted number of open files. To accommodate programs that specify more open
files with the select() function, it is possible to specify an alternate value for
FD _SETSIZE before including the sys/types.h header file.

Return Values

1-640

Upon successful completion, the select() function returns the number of ready
objects represented by corresponding file descriptor bits in the 1/0 descriptor sets.
When an error occurs, -1 is returned. When the time limit specified by values
pointed to by the timeout parameter expires, this function returns the value 0
(Zero).

When select() returns an error, including a process interrupt, the 1/0 descriptor sets
pointed to by the readfds, writefds, and exceptfds parameters remain unmodified.

Errors

Functions

select(2)

If the select() function fails, errno may be set to one of the following values:

[EBADF]

[EINTR]

[EINVAL]

One of the 1/0 descriptor sets you specified is invalid.

A signal was delivered before the time limit specified by the timeout
parameter expired and before any of the selected events occurred.

The time limit specified by the timeout parameter is invalid. One of
its components is negative or too large.

Related Information

Functions: accept(2), connect(2), send(2), getdtablesize(2), poll(2) read(2),
recv(2), write(2)

1-641

OSF/1 Programmer's Reference

semctl(2)

semctl

Purpose Performs semaphore control operations

Synopsis #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

Parameters

1-642

int semctl(

semid

semnum

cmd

arg

int semid,
int semnum,
int cmd,
union semun {

int val,

} arg);

struct semid_ds *buf,
u_short *array,

Specifies the ID of the semaphore set.

Specifies the number of the semaphore to be processed.

Specifies the type of command. See DESCRIPTION.

The address of a user data structure to be used either to set or to
return semaphore values. If the structure is specified, the calling
process must allocate it before making the call. The members of
this structure are described as follows:

val Contains the semaphore value to which semval is set when
the SETV AL command is performed.

buf Points to the structure containing the contents of the
requested semid_ds. When the IPC_STAT command is
performed, the contents of the requested semid _ ds structure
are copied into arg.buf. When the IPC_SET command is
performed, the contents of arg.buf are copied into the
requested the semid.ds structure.

array Points to an array of semval values. These semval values are
returned by the GETALL command and set by the SETALL
command.

Description

Functions
semctl(2)

The semctl() function allows a process to perform various operations on an
individual semaphore within a semaphore set, on all semaphores within a
semaphore set, and on the semid _ ds structure associated with the semaphore set. It
also allows a process to remove the semaphore set's ID and its associated
semid ds structure.

The cmd value determines which operation is performed. The following
commands operate on the specified semaphore (that is, semnum) within the
specified semaphore set:

GETVAL Returns the value of semval. This command requires read
permission.

SETVAL

GETPID

Sets the value of semval to arg.val. When this command
successfully executes, the kernel clears the semaphore's adjust-on­
exit value in all processes. This command requires modify
permission.

Returns the value of sempid. This command requires read
permission.

GETNCNT Returns the value of semncnt. This command requires read
permission.

GETZCNT Returns the value of semzcnt. This command requires read
permission.

The following commands operate on all the semaphores in the semaphore set:

GE TALL

SE TALL

Returns all the semval values and places them in the array pointed to
by arg.array. This command requires read permission.

Sets all the semval values according to the array pointed to by
arg.array. When this command successfully executes, the kernel
clears the semaphore's adjust-on-exit value in all processes. This
command requires modify permission.

The following IPC commands can also be used:

IPC_STAT Queries the semaphore ID by copying the contents of its associated
semid_ds structure into the structure pointed to by arg.buf This
command requires read permission.

IPC_SET Sets the semaphore set by copying the user-supplied values found in
the arg.buf structure into corresponding fields in the semid_ds
structure associated with the semaphore ID. This is a restricted
operation. The effective user ID of the calling process must have

1-643

OSF/1 Programmer's Reference
semctl(2)

superuser ' privilege or must be equal to the value of sem_perm.cuid
or sem_perm.uid in the structure associated with the semaphore ID.
The fields are set as follows:

The sem_perm.uid field is set to the owner's user ID.

The sem_perm.gid field is set to the owner's group ID.

The sem_perm.mode field is set to the access modes for the
semaphore set. Only the low-order nine bits are set.

IPC_RMID Removes the semaphore ID and destroys the set of semaphores and
the semid_ds data structure associated with it. This is a restricted
operation. The effective user ID of the calling process must have
superuser privilege or equal to the value of sem_perm.cuid or
sem_perm.uid in the associated semid_ds structure.

Return Value

Errors

1-644

Upon successful completion, the value returned depends on the cmd parameter as
follows:

GETVAL Returns the value of semval.

GETPID Returns the value of sempid.

GETNCNT Returns the value of semncnt.

GETZCNT Returns the value of semzcnt.

All other commands return a value of 0 (zero).

If the semctl() function fails, a value of -1 is returned and errno is set to indicate
the error.

If the semctl() function fails, errno may be set to one of the following values:

[EINVAL] The semid parameter is not a valid semaphore ID; the value of
semnum is less than 0 (zero) or greater than sem_nsems; or cmd is
not a valid command. 1:

[EACCES] The calling process does not have the required permission.

[ERAN GE] The cmd parameter is SETV AL or SETALL and the value to which
semval is to be set is greater than the system-defined maximum.

Functions

semct1(2)

[EPERM] Either the cmd parameter is equal to IPC_RMID and the effective
user ID of the calling process does not have appropriate privilege, or
the cmd parameter is equal to IPC_SET and the effective user ID of
the calling process is not equal to the value of sem_perm.cuid or
sem_perm.uid in the semid_ds structure associated with the
semaphore ID.

[EFAULT] The cmd parameter is IPC_STAT or IPC_SET and an error occurred
in accessing the arg structure.

[ENOMEM] The system does not have enough memory to complete the function.

Related Information

Functions: semget(2), semop(2)

Data structures: semid_ds(4)

1-645

OSF/1 Programmer's Reference
semget(2)

semget

Purpose Returns (and possibly creates) a semaphore ID

Synopsis #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget(

Parameters

Description

1-646

key

nsems

semflg

key_t key,
int nsems,
int semflg):

Specifies the key that identifies the semaphore set. The
IPC_PRIVATE key can be used to assure the return of a new,
unused, entry in the semaphore table.

Specifies the number of semaphores to create in the semaphore set.

Specifies the creation flags. Possible values are:

IPC_CREAT
If the key does not exist, the semget() function creates a
semaphore set using the given key. If the key does exist,
forces an error notification.

IPC_EXCL
If the key already exists, the semget() function fails and
returns an error notification.

The low-order nine bits of sem_perm.mode are set equal to the low­
order nine bits of semflg.

The semget() function returns (and possibly creates) the ID for a semaphore set
identified by the key parameter. Semaphores are used primarily for
synchronization between processes.

The sets of semaphores are implemented collectively as a system-wide table, with
each set being an entry in the table. The returned ID identifies the semaphore set's
entry in the table. Each set of semaphores is implemented using the semid_ds data
structure. This structure defines an array whose members are the individual
semaphores in the set.

Functions

semget(2)

Each individual semaphore within a set is implemented using the sem structure.

The semget() function creates a semaphore ID, its associated semid_ds data
structure, and nsems individual semaphores if one of the following is true:

• The key parameter is IPC_PRIV ATE.

• The key parameter does not already exist as an entry in the semaphore table
and the IPC_CREAT flag is set.

After creating a semaphore ID, the semget() function initializes the semid_ds
structure associated with the ID as follows:

• The sem_perm.cuid and sem_perm.uid fields are set equal to the effective user
ID of the calling process.

• The sem_perm.cgid and sem_perm.gid fields are set equal to the effective
group ID of the calling process.

• The low-order nine bits of sem_perm.mode are set equal to the low-order nine
bits of semflg.

• The sem_nsems field is set equal to the value of nsems.

• The sem_otime field is set equal to 0 (zero) and the sem_ctime field is set
equal to the current time.

The semget() function does not initialize the sem structure associated with each
semaphore in the set. The individual semaphores are initialized by using the
semctl() function with the SETVAL or SETALL command.

Return Values

Errors

Upon successful completion, a semaphore identifier is returned. If the semget()
function fails, a value of -1 is returned and errno is set to indicate the error.

If the semget() function fails, errno may be set to one of the following values:

[EACCES] A semaphore ID already exists for the key parameter, but operation
permission as specified by the low-order nine bits of the semflg
parameter was not granted.

[EINVAL] The value of the nsems parameter is less than or equal to 0 (zero) or
greater than the system-defined limit. Or, a semaphore ID already
exists for the key parameter, but the number of semaphores in the set
is less than the nsems parameter, and the nsems parameter is not
equal to 0 (zero).

[ENOENT] A semaphore ID does not exist for the key parameter and
IPC_CREAT was not set.

1-647

OSF/1 Programmer's Reference

semget(2)

[ENOSPC] An attempt to create a new semaphore ID exceeded the system-wide
limit on the size of the semaphore table.

[EEXIST] A semaphore ID already exists for the key parameter, but
IPC_CREAT and IPC_EXCL were used for the semflg parameter.

Related Information

1-648

Functions: semctl(2), semop(2)

Data structures: semid_ds(4)

semop

Purpose

Synopsis

Parameters

Performs semaphore operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
intsemop(

semid

int semid,
struct sembuf *sops,
u_int nsops);

Specifies the ID of the semaphore set.

Functions

semop(2)

sops Points to the user-defined array of sembuf structures that contain
the semaphore operations.

nsops

Description
The number of sembuf structures in the array.

The semop() function performs operations on the semaphores in the specified
semaphore set. The semaphore operations are defined in the sops array. The sops
array contains nsops elements, each of which is represented by a sembuf structure.

The sembuf structure (from sys/sem.h) is shown here:
struct sembuf {

};

u_short
short
short

sem_num;
sem_op;
sem_fig;

The fields in the sembuf structure are defined as follows:

sem_num

sem_op

Specifies an individual semaphore within the semaphore set.

Specifies the operation to perform on the sempahore.

1-649

OSF/1 Programmer's Reference
semop(2)

1-650

sem_flg Specifies various flags for the operations. The possible values are:

SEM_UNDO
Instructs the kernel to adjust the process's adjust-on-exit
value for a modified semaphore. When the process exits, the
kernel uses this value to restore the semaphore to the value it
had before any modifications by the process. This flag is
used to prevent semaphore locking by a process that no
longer exists.

IPC_NOWAIT
Instructs the kernel to return an error condition if a requested
operation would cause the process to sleep. If the kernel
returns an error condition, none of the requested semaphore
operations are performed.

The sem_op operation is specified as a negative integer, a positive integer, or 0
(zero). The effects of these three values are described below.

If sem_op is a negative integer and the calling process has modify permission, the
semop() function does one of the following:

• If the semaphore's current value (in semval) is equal to or greater than the
absolute value of sem_op, the absolute value of sem_op is subtracted from
semval. If SEM_UNDO is set, the absolute value of sem_op is added to the
calling process' adjust-on-exit value for the semaphore.

• If semval is less than the absolute value of sem_op and IPC_NOW AIT is set,
semop() returns immediately with an [EAGAIN] error.

• If semval is less than the absolute value of sem_op and IPC_NOWAIT is not
set, semop() increments the semaphore's semncnt value and suspends the
calling process.

If the process is suspended, it sleeps until one of the following occurs:

• The semval value becomes equal to or greater than the absolute value of
sem_op. In this case, the semaphore's semncnt value is decremented; the
absolute value of sem_op is subtracted from semval; and, if SEM_UNDO is
set, the absolute value of sem_op is added to the calling process's adjust-on­
exit value for the semaphore.

• The semaphore set (specified by semid) is removed from the system. In this
case, errno is set equal to [EIDRM] and a value of -1 is returned to the calling
process.

• The calling process catches a signal. In this case, the semaphore's semncnt
value is decremented, and the calling process resumes execution as directed by
the signal() function.

Notes

Functions

semop(2)

If sem_op is a positive integer and the calling process has modify permission,
semop() adds the sem_op value to the semaphaore's current semval value. If
SEM_UNDO is set, the sem_op value is subtracted from the calling process's
adjust-on-exit value for the semaphore.

If sem_op is 0 (zero) and the calling process has read permission, semop() does
one of the following:

• If semval is 0, semop() returns immediately.

• If semval is not equal to 0 and IPC_NOW AIT is set, semop() returns
immediately.

• If semval is not equal to 0 and IPC_NOWAIT is not set, semop() increments
the semaphore's semzcnt value and suspends the calling process.

If the process is suspended, it sleeps until one of the following occurs:

• The semval value becomes 0 (zero). In this case, the semaphore's semncnt
value is decremented.

• The semaphore set (specified by semid) is removed from the system. In this
case, errno is set equal to [EIDRM] and a value of -1 is returned to the calling
process.

• The calling process catches a signal. In this case; the semaphore's semncnt
value is decremented, and the calling process resumes execution as directed by
the signal() function.

Semaphore operations are performed atomically; that is, either all of the requested
operations are performed, or none are. If the kernel goes to sleep while doing the
operations, it restores all of the semaphores in the set to their previous values, at
the start of the semop() function.

Return Values
Upon successful completion, the semop() function returns a value of 0 (zero) and
the sempid value for each semaphore that is operated upon is set to the process ID
of the calling process.

If the semop() function fails, a value of -1 is returned and errno is set to indicate
the error.

1-651

OSF/1 Programmer's Reference
semop(2)

Errors
If the semop() function fails, ermo may be set to one of the following values:

[EINVAL] The semid parameter is not a valid semaphore ID, or the number of
semaphores for which SEM_ UNDO is requested exceeds the
system-defined limit.

[EFBIG] The sem_num parameter is less than 0 (zero) or greater than or equal
to the number of semaphores in semid.

[E2BIG] The nsops parameter is greater than the system-defined maximum.

[EACCES] The calling process does not have the required permission.

[ENOSPC] The system-defined limit on the number of processes using
SEM_UNDO was exceeded.

[ERANGE] An operation caused a semval to overflow the system-defined limit,
or an operation caused an adjust-on-exit value to exceed the
system-defined limit.

[EINTR] The semop() function was interrupted by a signal.

[EIDRM] The semaphore ID specified by the semid parameter has been
removed from the system.

Related Information

1-652

Functions: exec(2), exit(2), fork(2), semctl(2), semget(2)

Data Structures: semid_ds(4)

Functions

send(2)

send

Purpose Sends messages on a socket

Synopsis #include <sys/types.h>

#include <sys/socket.h>

int send (

Parameters

Description

socket

message

length

flags

int socket,
char *message,
int length,
int.flags);

Specifies the unique name for the socket.

Points to the address of the message to send.

Specifies the length of the message in bytes.

Allows the sender to control the transmission of the message. The
flags parameter to send a call is formed by logically ORing the
values shown in the following list, defined in the sys/socket.h
header file:

MSG_OOB
Sends out-of-band data on sockets that support out-of-band
communication.

MSG_DONTROUTE
Sends without using routing tables. (Not recommended, for
debugging purposes only.)

The send() function sends a message only when the socket is connected. The
sendto() and sendmsg() functions can be used with unconnected or connected
sockets.

Specify the length of the message with the length parameter. If the message is too
long to pass through the underlying protocol, the system returns an error and does
not transmit the message.

No indication of failure to deliver is implied in a send() function. A return value
of -1 indicates only locally detected errors.

1-653

OSF/1 Programmer's Reference

send(2)

Notes

If no space for messages is available at the sending socket to hold the message to
be transmitted, the send() function blocks unless the socket is in a nonblocking 1/0
mode. Use the select() function to determine when it is possible to send more data.

The send() function is identical to the sendto() function with a zero-valued
dest_len parameter, and to the write() function if no flags are used. For that
reason, the send() function is disabled when 4.4BSD behavior is enabled (that is,
when the _SOCKADDR_LEN compile-time option is defined).

Return Values

Errors

Upon successful completion, the send() function returns the number of characters
sent. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the send() function fails, errno may be set to one of the following values:

[EBADF] The ~ocket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EFAULT] The message parameter is not in a readable or writable part of the
user address space.

[EMSGSIZE] The message is too large be sent all at once, as the socket requires.

[EWOULDBLOCK]
The socket is marked nonblocking, and no space is available for the
send() function.

Related Information

Functions: recv(2), recvfrom(2), recvmsg(2), sendmsg(2), sendto(2),
shutdown(2), connect(2), socket(2), getsockopt(2), select(2), setsockopt(2)

1-654

Functions
sendmsg(2)

sendmsg

Purpose

Synopsis

Parameters

Sends a message from a socket using a message structure

#include <sys/types.h>

#include <sys/socket.h>

int sendmsg (

socket

message

int socket,
struct msghdr *message,
int flags);

Specifies the socket descriptor.

Points to a msghdr structure, containing both the address for the
incoming message and the buffers for the source address. The format
of the address is determined by the behavior requested for the
socket. If the compile-time option _SOCKADDR_LEN is defined
before the sys/socket.h header file is included, the msghdr structure
takes 4.4BSD behavior. Otherwise, the default 4.3BSD msghdr
structure is used.

In 4.4BSD, the msghdr structure has a separate msg_Jlags field for
holding flags from the received message. In addition, the
msg_accrights field is generalized into a msg_control field. See
the recvmsg() function for more information.

If _SOCKADDR_LEN is defined, the 4.3BSD msghdr structure is
defined with the name omsghdr.

flags Allows the sender to control the message transmission. The
sys/socket.h file contains the flags values. The flags value to send a
call is formed by logically ORing the following values:

MSG_OOB
Processes out-of-band data on sockets that support out-of­
bound data.

MSG_DONTROUTE
Sends without using routing tables. (Not recommended, for
debugging purposes only.)

1-655

OSF/1 Programmer's Reference
sendmsg(2)

Description

The sendmsg() function sends messages through connected or unconnected
sockets using the msghdr message strueture. The sys/socket.h file contains the
msghdr structure and defines the structure members.

To broadcast on a socket, the application program must first issue a setsockopt()
function using the SO_BROADCAST option to gain broadcast permissions.

Return Values

Errors

Upon successful completion, the sendmsg() function returns the number of
characters sent. Otherwise, a value of -1 is returned and ermo is set to indicate the
error.

If the sendmsg() function fails, errno may be set to one of the following valµes:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EMSGSIZE] The message is too large to be sent all at once, as the socket
requires.

[EWOULDBLOCK]
The socket is marked nonblocking, and no space is available for the
sendmsg() function.

Related Information

1-656

Functions: recv(2), recvfrom(2), recvmsg(2), send(2), sendto(2), shutdown(2),
socket(2), select(2), getsockopt(2), setsockopt(2)

Functions
sendto(2)

send to

Purpose Sends messages through a socket

Synopsis #include <sys/types.h>

#include <sys/socket.h>

int sendto (

Parameters

socket

int socket,
char *message_addr,
int length,
int flags,
struct sockaddr *dest_addr,
int dest_len);

Specifies the unique name for the socket.

message_addr

length

flags

dest_addr

Points to the address containing the message to be sent.

Specifies the size of the message in bytes.

Allows the sender to control the message transmission. The flags
value to send a call is formed by logically ORing the following
values, defined in the sys/socket.h file:

MSG_OOB
Processes out-of-band data on sockets that support out-of­
band data.

MSG_DONTROUTE
Sends without using routing tables. (Not recommended, for
debugging purposes only.)

Points to a sockaddr structure, the format of which is determined by
the domain and by the behavior requested for the socket. The
sockaddr structure is an overlay for a sockaddr_in, sockaddr_un,
or sockaddr_ns structure, depending on which of the supported
address families is active.

1-657

OSF/1 Programmer's Reference
sendto(2)

Description

dest_len

If the compile-time option _SOCKADDR_LEN is defined before
the sys/socket.h header file is included, the sockaddr structure
takes 4.4BSD behavior, with a field for specifying the length of the
socket address. Otherwise, the default 4.3BSD sockaddr structure
is used, with the length of the socket address assumed to be 14 bytes
or less.

If _SOCKADDR_LEN is defined, the 4.3BSD sockaddr structure is
defined with the name osockaddr.

Specifies the length of the sockaddr structure pointed to by the
dest_addr parameter.

The sendto() function allows an application program to send messages through an
unconnected socket by specifying a destination address.

To broadcast on a socket, issue a setsockopt() function using the
SO_BROADCAST option to gain broadcast permissions.

Use the dest_addr parameter to provide the address of the target. Specify the
length of the message with the length parameter.

If the sending socket has no space to hold the message to be transmitted, the
sendto() function blocks unless the socket is in a nonblocking 1/0 mode.

Use the select() function to determine when it is possible to send more data.

Return Values

Errors

1-658

Upon successful completion, the sendto() function returns the number of
characters sent. Otherwise, the a value of -1 is returned, and errno is set to indicate
the error.

If the sendto() function fails, errno may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[EFAULT] The dest_addr parameter is not in a writable part of the user address
space.

Functions

sendto(2)

[EMSGSIZE] The message is too large to be sent all at once, as the socket
requires.

[EWOULDBLOCK]

Related Information

The socket is marked nonblocking, and no space is available for the
sendto() function.

Functions: recv(2), recvfrom(2), recvmsg(2), send(2), sendmsg(2),
shutdown(2), socket(2), select(2), getsockopt(2), setsockopt(2)

1-659

OSF/1 Programmer's Reference
setbuf(3)

setbuf, setvbuf, setbuffer, setlinebuf

Purpose Assigns buffering to a stream

Library

Standard 110 Package (libc.a)

Synopsis #include <stdio.h>

void setbuf (

Parameters

Description

1-660

FILE *stream,
char *buffer);

int setvbuf (
FILE *stream,
char *buffer,
int mode,
size_t size);

void setbutfer (
FILE *stream,
char *buffer,
char *size);

void setlinebuf (

stream

buffer

mode

size

FILE *stream);

Specifies the input/output stream.

Points to a character array.

Determines how the stream parameter is buffered.

Specifies the size of the buffer to be used.

The setbuf() function causes the character array pointed to by the buffer parameter
to be used instead of an automatically allocated buffer. Use the setbuf() function
after a stream has been opened, but before it is read or written.

If the buffer parameter is a null character pointer, input/output is completely
unbuffered.

Notes

Functions

setbuf(3)

A constant, BUFSIZ, defined in the stdio.h header file, tells how large an array is
needed:

char buf[BUFSIZ];

For the setvbuf() function, the mode parameter determines how the stream
parameter is buffered:

_IOFBF

_IOLBF

_IONBUF

Causes input/output to be fully buffered.

Causes output to be line-buffered. The buffer is flushed when a new
line is written, the buffer is full, or input is requested.

Causes input/output to be completely unbuffered.

If the buffer parameter is not a null character pointer, the array it points to is used
for buffering instead of an automatically allocated buffer. The size parameter
specifies the size of the buffer to be used. The constant BUFSIZ in the stdio.h
header file is one buffer size. If input/output is unbuffered, the buffer and size
parameters are ignored. The setbuft'er() function, an alternate form of the setbuf()
function, is used after stream has been opened, but before it is read or written. The
character array buffer, whose size is determined by the size parameter, is used
instead of an automatically allocated buffer. If the buffer parameter is a null
character pointer, input/output is completely unbuffered.

The setbuft'er() function is not needed under normal circumstances since the
default file 1/0 buffer size is optimal.

The setlinebuf() function is used to change stdout or stderr from block-buffered
or unbuffered to line-buffered. Unlike the setbuf() and setbuft'er() functions, the
setlinebuf() function can be used any time the file descriptor is active.

A buffer is normally obtained from the malloc() function at the time of the first
getc() or putc() function on the file, except that the standard error stream, stderr,
is normally not buffered.

Output streams directed to terminals are always either line-buffered or unbuffered.

A common source of error is allocating buffer space as an automatic variable in a
code block, and then failing to close the stream in the same block.

AES Support Level: Full use (setbuf(), setvbuf())

Related Information

Functions: fopen(3), fread(3), getc(3), getwc(3), malloc(3), putc(3), putwc(3)

1-661

OSF/1 Programmer's Reference

setclock(3)

setclock

Purpose

Library

Synopsis

Parameters

Description

Notes

1-662

Sets value of system-wide clock

Standard C Library (libc.a)

#include <sys/timers.h>

int setclock(
int clktyp,
struct timespec *val) ;

clktyp

val

Specifies a system-wide clock whose symbolic name must be
TIMEOFDAY.

Points to the location where the value of the time to set into the
clock specified by the clktyp parameter is stored.

The setclock() function sets a time value into the system-wide clock whose
symbolic name is specified by the clktyp parameter, which must be TIMEOFDAY,
defined in the sys/timers.h header file.

The source of the current value of time set into the system-wide time-of-day clock
by this function is stored in space reserved by a type timespec structure pointed to
by the val parameter. This time information is the amount of time since the epoch.
The epoch is referenced to 00:00:00 GMT (Greenwich Mean Time) I Jan 1970.
The timespec structure, which is also defined in the sys/timers.h header file has
the following members:

unsigned long
long

tv _sec Time of day since the epoch in seconds.
tv_nsec Time of day fraction of a second (expressed in

nanonseconds).

AES Support Level: Trial use

Functions
setclock(3)

Return Values

Errors

Upon successful completion, the setclock() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the setclock() function fails, errno may be set to one of the following values:

[EINVAL]

[EIO]

[EPERM]

The clktyp parameter does not specify a known system-wide clock,
the information pointed to by the val parameter is outside the
permissible range for the clock specified by the clktyp parameter, or
a nanosecond value less than zero or greater than or equal to 1000
million is specified by the information pointed to by the val
parameter.

An error occurred while accessing the clock speicfied by the clktyp
parameter.

The requesting process does not have the appropriate privilege to set
the clock specified by the clktyp parameter.

Related Information

Functions: getclock(3), gettimer(3), time(3)

1-663

OSF/1 Programmer's Reference

setgid(2)

setgid

Purpose Sets the group ID

Synopsis #include <sys/types.h>

int setgid (

Parameters

Description

Notes

gid_t gid);

gid Specifies the new group ID.

The setgid() function sets the real group ID, effective group ID, and the saved set
group ID to the value specified by the gid parameter.

If the process does not have superuser privilege, but the gid parameter is equal to
the real group ID or the saved set group ID, the setgid() function. sets the effective
group ID to gid; the real group ID and saved set group ID remain unchanged.

Any supplementary group IDs of the calling process remain unchanged.

AES Support Level: Full use

Return Values

Errors

1-664

Upon successful completion, the setgid() function returns 0 (zero). Otherwise, -1
is returned and errno is set to indicate the error.

If the setgid() function fails, errno may be set to one of the following values:

[EINV AL] The value of the gid parameter is invalid.

[EPERM] The process does not have superuser privilege and the gid parameter
does not match the real group ID or the saved set group ID.

Functions

setgid(2)

Related Information

Functions: exec(2), getgid(2), setuid(2)

1-665

OSF/1 Programmer's R._ef_e_re_n_c_e ___________________ _
setgroups(2)

setgroups

Purpose Sets the group access list

Synopsis #include <unistd.h>

#include <sys/types.h>
int setgroups (

Parameters

Description

Notes

int gidsetsize,
gid_t grouplist []);

gidsetsize

group list

Indicates the number of entries in the array pointed to by the
grouplist parameter. Must not be more than NGROUPS_MAX, as
defined in the limits.h header file.

Points to the array that contains the group access list of the current
user process. Element grouplist[O] becomes the new effective group
ID.

The setgroups() function sets the group access list of the current user process
according to the array pointed to by the grouplist parameter.

This function fails unless the invoking process has superuser privilege.

AES Support Level: Trial use

Return Values

1-666

Upon successful completion, a value of 0 (zero) is returned. If the setgroups()
function fails, a value of -1 is returned and errno is set to indicate the error.

Errors

Functions
setgroups(2)

If the setgroups() function fails, ermo may be set to one of the following values:

[EPERM] The caller does not have the appropriate system privilege.

[EINVAL] The value of the gidsetsize parameter is greater than
NGROUPS_MAX or an entry in the grouplist parameter is not a
valid group ID.

[EFAULT] The grouplist parameter points outside of the allocated address
space of the process.

Related Information

Functions: getgroups(2), initgroups(3)

1-667

OSF/1 Programmer's Reference
sethostid (2)

sethostid

Purpose Sets the unique identifier of the current host

Synopsis int sethostid (

Parameters

Description

int host_id);

host_id Specifies the unique 32-bit identifier for the current host.

The sethostid() function allows a calling process with a root user ID to set a new
32-bit identifier for the current host. The sethostid() function enables an
application program to reset the host ID.

The host ID is a unique number which may be used by application programs. It is
usually set to the primary IP address of the local machine.

The sethostid() function fails if the calling process does not have superuser
privilege.

Return Values

Errors

Upon successful completion, the sethostid() function returns a value of 0 (zero).
If the sethostid() function fails, a value of -1 is returned and errno is set to
indicate the error.

If the sethostid() function fails, errno may be set to the following value:

[EPERM] The calling process does not have the appropriate privilege.

Related Information

Functions: gethostid(2), gethostname(2)

1-668

Functions

sethostname(2)

sethostname

Purpose Sets the name of the current host

Synopsis int sethostname (

Parameters

Description

char *name,
int name_len);

name Points to an array of bytes where the hostname is stored.

name_len
Specifies the length of the array pointed to by the name parameter.

The sethostname() function allows a calling process with root user authority to set
the internal hostname of a machine on a network.

Systein hostnames are limited to MAXHOSTNAMELEN as defined in the
/usr/include/sys/param.h file.

The sethostid() function fails if the calling process does not have superuser
privilege.

Return Values

Errors

Upon successful completion, the system returns a value of 0 (zero). If the
sethostname() function fails, -1 is returned and ermo is set to indicate the error.

If the sethostname() function fails, ermo may be set to one of the following
values:

[EFAULT] The name parameter or the name_len parameter gives an address
that is not valid.

[EPERM] The calling process does not have appropriate privilege.

Related Information

Functions: gethostid(2), sethostid(2), gethostname(2)

1-669

OSF/1 Programmer's Reference

setjmp(3)

setjmp, longjmp

Purpose

Library

Synopsis

Parameters

Description

1-670

Saves and restores the current execution context

Standard C Library (libc.a)

#include <setjmp.h>

int setjmp (
jmp_buf environment);

void longjmp (
jmp_buf environment,
int value);

int _setjmp (
jmp_buf environment);

void _longjmp (
jmp_buf environment,
int value);

environment Specifies an address for a jmp_buf structure.

value Specifies any nonzero value.

The setjmp() and longjmp() functions are useful when handling errors and
interrupts encountered in low-level functions of a program.

The setjmp() function saves the current stack context and signal mask in the buffer
specified by the environment parameter.

The longjmp() function restores the stack context and signal mask that were saved
by the setjmp() function in the corresponding environment buffer. After the
longjmp() function runs, program execution continues as if the corresponding call
to the setjmp() function had just returned the value of the value parameter. The
function that called the setjmp() function must not have returned before the
completion of the longjmp() function. The setjmp() function and the longjmp()
function save and restore the signal mask, while _setjmp() and _longjmp()
manipulate only the stack context.

Notes

Caution

Functions

setjmp(3)

As it bypasses the usual function call and return mechanisms, the longjmp()
function executes correctly in contexts of interrupts, signals, and any of their
associated functions. However, if the longjmp() function is invoked from a nested
signal handler (that is, from a function invoked as a result of a signal raised during
the handling of another signal), the behavior is undefined.

The reentrant versions of the setjmp() and longjinp() functions are identical in
behavior to the _setjmp() and _longjmp()

The System V versions of the setjmp() and longjmp() functions, which are
equivalent to _setjmp() and _longjmp() respectively, are also supported for
compatibility. To use the System V versions of setjmp() and longjmp(), you must
link with the libsys5 library before you link with libc.

AES Support Level: Full use

If the longjmp() function is called with an environment parameter that was not
previously set by the setjmp() function, or if the function that made the
corresponding call to the setjmp() function has already returned, then the results
of the longjmp() function are undefined. If the longjmp() function detects such a
condition, it calls the longjmperror() function. If longjmperror() returns, the
program is aborted. The default version of longjmperror() prints an error message
to standard error and returns. Users wishing to exit more gracefully can write their
own versions of the longjmperror() program.

Return Values

The setjmp() function returns a value of 0 (zero), unless the return is from a call to
the longjmp() function, in which case setjmp() returns a nonzero value.

The longjmp() function cannot return 0 (zero) to the previous context. The value 0
is reserved to indicate the actual return from the setjmp() function when first
called by the program. If the longjmp() function is passed a value parameter of 0,
then execution continues as if the corresponding call to the setjmp() function had
returned a value of 1. All accessible data have values as of the time the longjmp()
function is called.

Related Information

Functions: siglongjmp(3), sigsetjmp(3)

1-671

OSF/1 Programmer's Reference

setlocale (3)

setlocale

Purpose Changes or queries the program's entire current locale or portions thereof

Library
Standard C Library (Ube.a)

Synopsis #include <locale.h>

char *setlocale (

Parameters

Description

1-672

int category,
const char *locale);

int setlocale_r (

category

locale

int category,
const char *locale,
char *result);

Specifies a value from the locale.h header file that names the
program's entire locale or a portion thereof.

Points to a string defining the locale.

result Points to the string associated with category for the new locale.

The setlocale() function selects the appropriate portion of the program's locale as
specified by the category an.ct locale parameters. The setlocale() function can be
used to change or query the program's entire current locale or portions thereof. The
LC_ALL value for the category parameter names the entire locale; the other values
name only a portion of the program locale, as follows:

LC_ COLLATE
Affects the behavior of the strtoll() and strxfrm() functions.

LC_CTYPE Affects the behavior of the character handling functions (except for
the isdigit() and isxdigit() functions) and the multibyte functions.

LC_MONETARY
Affects the monetary formatting information returned by the
localeconv() function.

Functions

setlocale(3)

LC_NUMERIC
Affects the decimal-point character for the formatted input/output
functions and the string conversion functions, as well as the
nonmonetary formatting information returned by the localeconv()
function.

LC_ TIME Affects the behavior of the strftime() function.

The behavior of the language information function defined in the nl_langinfo()
function is also affected by settings of the category parameter.

The locale parameter points to a character string containing the required setting of
the category parameter. The following values of locale are defined for all settings
of category:

C Specifies the minimal environment for C-language translation. If
setlocale() is not invoked, the C locale is the default. Operational
behavior within the C locale is defined separately for each interface
function that is affected by the locale string.

,, '' Specifies a native environment, corresponding to the value of the
associated environment variables.

In all cases, the setlocale() function first checks the value of the
corresponding environment variable and if valid, setlocale() sets the
specified category of the international environment to that value and
returns the string corresponding to the locale set (that is, the value of the
environment variable, not '"'). If the value is invalid, setlocale() returns
a null pointer and the international environment is not changed by this
function call.

If the environment variable corresponding to the specified category is not
set or is set to the empty string, and the LANG environment variable is
set and valid, then setlocale() sets the category to the corresponding
value of LANG. If the LANG environment variable is not set, the
setlocale() function uses a system-wide default.

To set all categories in the international environment, the setlocale()
function is invoked in the following manner:

setlocale (LC_ALL, "");

To satisfy this request, the setlocale() function first checks all the
environment variables. If any environment variable is invalid,
setlocale() returns a null pointer and the international environment is not

1-673

OSF/1 Programmer's Reference

setlocale{3)

Notes

changed by this function call. If all the relevant environment variables
are valid, setlocale() sets the international environment to reflect the
values of the environment variables. The categories are set in the
following order:

LC_CTYPE
LC_COLLATE
LC_ TIME
LC_NUMERIC
LC_MONETARY

Using this scheme, the categories corresponding to the environment
variables will override the value of the LANG environment variable for
a particular category.

NULL Used to direct setlocale() to query the current internationalized
environment and return the name of the locale .

The reentrant version of the setlocale() function, setlocale_r(), stores the string
associated with the category for the new locale in the buffer pointed to by the result
parameter.

AES Support Level: Full use (setlocale())

Return Values

1-674

If a pointer to a string is given for the locale parameter and the selection can be
honored, the setlocale() function returns the string associated with the specified
category parameter for the new locale. If the selection cannot be honored, a null
pointer is returned and the program locale is unchanged.

If a null pointer for the locale parameter causes the setlocale() function to return
the string associated with the category parameter for the program current locale,
the program locale is unchanged.

The string returned by the setlocale() function is such that a subsequent call with
that string and its associated category restores that part of the program locale. The
string returned is not modified by the program, but can be overwritten by a
subsequent call to the setlocale() function.

Upon successful completion, the setlocale_r() function returns a value of 0 (zero).
Otherwise, -1 is returned and ermo is set to indicate the error.

Functions

setlocale{3)

Errors

If the setlocale_r() function fails, errno may be set to the following value:

[EINVAL] Either result is a null pointer, or the selection is invalid.

Related Inf orrnation

Functions: atof(3), ctype(3), jctype(3), localeconv(3), nl_langinfo(3), printf(3),
scanf(3), strftime(3), string(3)

1-675

OSF/1 Programmer's Reference

setnetent (3)

setnetent

Purpose Opens and rewinds the networks file

Library
Standard C Library (libc.a)

Synopsis #include <netdb.h>

void setnetent (

Parameters

Description

int stay_open);

stay_open Specifies a value that indicates when to close the networks file.
Specifying a value of 0 (zero) closes the networks file after each
call to the getnetent() function. Specifying a nonzero value leaves
the /etc/networks file open after each call.

The setnetent() (set network entry) function opens the /etc/networks file and sets
the file marker at the beginning of the file.

Return Values

Files

If an error occurs or if the end of the file is reached, the setnetent subroutine
returns a null pointer.

/etc/networks
Contains official network names.

Related Information

Functions: endnetent(3), getnetbyaddr(3), getnetbyname(3), getnetent(3)

1-676

Functions

setpgid(2)

setpgid, setpgrp

Purpose Sets the process group ID

Synopsis #include <sys/types.h>

int setpgid (

Parameters

Description

Notes

pid_t process_id,
pid_t process_group_id);

process_id Specifies the process whose process group ID is to be changed.

process_group_id
Specifies the new process group ID.

The setpgid() function is used either to join an existing process group or to create
a new process group within the session of the calling process. The process group
ID of a session leader will not change.

The process group ID of the process designated by the process_id parameter is set
to the value of the process_group_id parameter. If process_id is 0 (zero), the
process ID of the calling process is used. If process_group_id is 0 (zero), the
process group ID of the indicated process is used.

This function is implemented to support job control.

The setpgrp() function is supported by OSF/l for binary compatibility only.

AES Support Level: Full use (setpgid())

Return Values

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

1-677

OSF/1 Programmer's Reference

setpgid(2)

Errors

If the setpgid() function fails, errno may be set to one of the following values:

[EINV AL] The value of the process_group _id parameter is less than or equal to
0 (zero), or is not a valid process ID.

[EPERM] The value of the process_group_id parameter is a valid process ID,
but that process is not in the same session as the calling process.

[EPERM] The process indicated by the process_id parameter is a session
leader.

[EPERM] The value of the process_id parameter matches the process ID of a
child process of the calling process and the child process is not in
the same session as the calling process.

[EPERM] The value of the process_group_id parameter is valid but does not
match the process ID of the process indicated by the process_id
parameter, and there is no process with a process group ID that
matches the value of the process_group_id parameter in the same
session as the calling process.

[ESRCH] The value of the process_id parameter does not match the process
ID of the calling process or of a child process of the calling process.

[EACCES] The value of the process_id parameter matches the process ID of a
child process of the calling process and the child process has
successfully executed one of the exec functions.

Related Information

Functions: getpid(2)

1-678

Functions

setprotoent (3)

setprotoent

Purpose Opens and rewinds the /etc/protocols file

Library
Standard C Library (libc.a)

Synopsis #include <netdb.h>

void setprotoent (

Parameters

Description

int stay_open);

stay_open Indicates when to close the protocols file. Specifying a value of 0
(zero) closes the file after each call to the getprotoent() function.
Specifying a nonzero value allows the /etc/protocols file to remain
open after each function.

The setprotoent() (set protocol entry) function opens the /etc/protocols file and
sets the file marker to the beginning of the file.

Return Values

The return value points to static data that is overwritten by subsequent calls.

Files

/etc/protocols
Contains the protocol names.

Related Information

Functions: endprotoent(3), getprotobyname(3), getprotobynumber(3),
getprotoent(3)

1-679

OSF/1 Programmer's Reference
setquota(2)

setquota

Purpose Enables or disables quotas on a file system

Synopsis int setquota(

Parameters

Description

special

file

char *special,
char *file) ;

Points to the pathname of the block special device on which a
mounted file system exits.

Points to the pathname of a file in the file system pointed to by the
special parameter from which to take quotas.

The setquota() function enables and disables disk quotas on a file system. The
special parameter specifies a block special device on which a mounted file system
currently exists. When the file parameter has a positive value, the file in the file
system pointed to by special is the one from which to take the quotas. When file
has a null value, quotas are disabled on the file system pointed to by special.

The setquota() function fails unless the calling process has superuser privilege.

Return Values

Errors

1-680

Upon successful completion, a value of 0 (zero) is returned. Upon failure, a value
of -1 is returned and errno is set to indicate the error.

If the setquota() function fails, errno may be set to one of the following values:

[ENOTDIR] A component of either path prefix is not a directory.

[EINVAL] Either pathname contains a character with its high-order bit set.

[EINVAL] The kernel has not been compiled with the QUOTA option.

[ENAMETOOLONG]
A component of either pathname exceeded NAME_MAX
characters, or the entire length of ei1her pathname exceeds
PATH_NAME characters.

[ENO DEV]

[ENO ENT]

[BLOOP]

[EPERM]

Functions

setquota(2)

The block special device pointed to by the special parameter does
not exist.

The file pointed to by the file parameter does not exist.

Too many symbolic links were encountered when translating either
pathname.

The caller does not have the appropriate privilege.

[ENOTBLK] The special parameter does not point to a block device.

[ENXIO]

[EROFS]

[EACCES]

[EACCES]

[EACCES]

[EIO]

[EFAULT]

Related Information

The major device number of the block special device pointed to by
the special parameter is out of range (this indicates no device driver
exists for the associated hardware).

The file pointed to by the file parameter resides on a read-only file
system.

Search permission is denied for a component of either path prefix.

The file pointed to by the file parameter resides on a file system
different from the one pointed to by the special parameter.

The file pointed to by the file parameter is not a plain file.

An 1/0 error occurred while reading quotas from or writing quotas
to the file pointed to by the file parameter.

The file or special parameter points outside allocated address space
accessible by the process.

Functions: quotactl(2)

1-681

OSF/1 Programmer's Reference

setregid{2)

setregid

Purpose Sets the real and effective group ID

Synopsis setregid(

Parameters

Description

int rgid,
int egid);

rgid Specifies the new real group ID.

egid Specifies the new effective group ID.

The setregid() function sets the real group ID of the current process to the value
specified by the rgid parameter, and sets the effective group ID to the value
specified by the egid parameter.

Unprivileged users may change the effective group ID to the real group ID; only
the superuser may make other changes.

Supplying a value of -1 for either the real or effective group ID forces the system to
substitute the current ID in place of the -1 parameter.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the setregid() function fails, errno may be set to the following value:

[EPERM] The current process does not have superuser privilege and a change
other than changing the effective group ID to the real group ID was
specified.

Related Information

Functions: getgid(2), setgid(2), setrgid(3), setreuid(2)

1-682

setreuid

Purpose

Synopsis

Parameters

Description

Sets real and effective user ID's

setreuid(
int ruid,
int euid);

ruid Specifies the new real user ID.

euid Specifies the new effective user ID.

Functions
setreuid(2)

The setreuid() function sets the real and effective user ID's of the current process
to the values specified by the ruid and euid parameters. If ruid or euid is -1, the
current uid is filled in by the system.

Unprivileged users may change the effective user ID to the real user ID; only
processes with superuser privilege may make other changes. This is normally done
by the system's authentication program (for example, login), but is not done for
system daemons.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the setreuid() function fails, errno may be set to the following value:

[EPERM] The current process is not the superuser and a change other than
changing the effective user ID to the real user ID was specified.

Related Information

Functions: getuid(2), setgid(2), setregid(2), setruid(3)

1-683

OSF/1 Programmer's Reference
setrgid(3)

setrgid, setegid

Purpose Sets the process group IDs

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>

int setrgid (

Parameters

Description

gid_t rgid);

int setegid (
gid_t egid);

rgid Specifies the value of the real group ID to be set.

egid Specifies the value of the effective group ID to be set.

The setegid() function sets the process' effective group ID to the value of the egid
parameter if the egid parameter is equal to the current real, effective, or saved
group ID.

The setrgid() function sets the process' real group ID to the value of the rgid
parameter.

Only the superuser may change the real or effective group ID to a value other than
the current real or saved group ID of the process.

Return Values

1-684

Upon successful completion, the setegid() and setrgid() functions return a value
of 0 (zero). If the either function fails, a value of -1 is returned and ermo is set to
indicate the error.

Errors

Functions

setrgid(3)

If the setrgid() or setegid() function fails, ermo may be set to one of the
following values:

[EPERM] The rgid or egid parameter is not equal to either the real or saved
group IDs of the process and the calling process does not have
superuser privilege.

Related Information

Functions: getgroups(2), setgroups(2), setregid(2)

Commands: setgroups(l)

1-685

OSF/1 Programmer's Reference

setruid(3)

setruid, seteuid

Purpose

Library

Synopsis

Parameters

Description

Sets the process user IDs

Standard C Library (libc.a)

#include <sys/types.h>

int setruid(
uid_t ruid);

int seteuid(
uid_t euid);

euid Specifies the effective user ID to set.

ruid Specifies the real user ID to set.

The setruid() and seteuid() functions reset the process' real and effective user
IDs, respectively.

A process with superuser privilege can set either ID to any value. An unprivileged
process can only set the effective user ID if the euid parameter is equal to either the
real, effective, or saved user ID of the process. An unprivileged process cannot set
the real user ID.

Return Values

1-686

Upon successful completion, the seteuid() and setruid() functions return a value
of 0 (zero). Otherwise, a value of -1 is returned and ermo is set to indicate the
error.

Errors

Functions

setruid(3)

If the seteuid() or setruid() function fails, errno may be set to the following
value:

[EPERM] The euid parameter is not equal to either the real or saved user IDs
of the process and the calling process does not have appropriate
privilege.

Related Information

Functions: getuid(2), setreuid(2)

1-687

OSF/1 Programmer's Reference

setservent (3)

setservent

Purpose Gets service file entry

Library
Standard C Library (Ube.a)

Synopsis #include <netdb.h>

v9id setservent (

Parameters

Description

int stay_open);

stay_open Indicates wheq t~ close the services file. Specifying a value of 0
(zero) closes the file after each call to the getservent() function.
Specifying a nonzero value allows the file to remain open after each
call.

The setservent() (set service entry) function opens the /etc/services file and sets
the file marker at the beginning of the file.

Return Values

Files

If an error occurs or the end of the file is reached, the setservent() function returns
a null pointer.

/etc/services Contains service names.

Related Information

1-688

Functions: endprotoent(3), getprotobyname(3), getprotobynumber(3),
getprotoent(3), getservbyname(3), getservbyport(3), getservent(3),
setprotoent(3)

setsid

Purpose

Synopsis

Description

Notes

Sets the process group ID

#include <unistd.h>

#include <sys/types.h>

pid_t setsid(void);

Functions

setsid(2)

The setsid() function creates a new session when the calling process is not a
process group leader. The calling process then becomes the session leader of this
session, becomes the process leader of the new process group, and has no
controlling terminal. The process group ID of the calling process is set equal to its
process ID. The calling process becomes the only process in the new process
group and the only process in the new session.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the value of the new process group ID is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the setsid() function fails, errno may be set to the following value:

[EPERM] The calling process is already the process group leader, or the
process group ID of a process other than the calling process matches
the process ID of the calling process.

Related Information

Functions: getpid(2), setpgid(2)

1-689

OSF/1 Programmer's Reference

setsockopt(2)

setsockopt

Purpose

Synopsis

Parameters

1-690

Sets socket options

#include <sys/types.h>

#include <sys/socket.h>

int setsockopt (
int socket,
int level,
int option_name,
char *option_value,
int option_len);

socket Specifies the unique socket name.

level Specifies the protocol level at which the option resides. To set
options at the socket level, specify the level parameter as
SOL_SOCKET. To set options at other levels, supply the
appropriate protocol number for the protocol controlling the option.
For example, to indicate that an option will be interpreted by the
TCP protocol, set level to the protocol number of TCP, as defined in
the netinet/in.h file or as determined by using the
getprotobyname() function.

option_name Specifies the option to set. The option_name parameter and any
specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The sys/socket.h header file
defines the socket level options. The socket level options can be
enabled or disabled. The options are:

SO_DEBUG
Tums on recording of debugging information. This option
enables or disables debugging in the underlying protocol
modules. This option takes an int value.

SO_ACCEPTCONN
Enables or disables socket listening. This option takes an int
value.

Functions
setsockopt(2)

SO_BROADCAST
Permits sending of broadcast messages. This option takes an
int value.

SO_REUSEADDR
Specifies that the rules used in validating addresses supplied
by a bind() function should allow reuse of local addresses.
This option takes an int value.

SO_KEEPALIVE
Keeps connections active. Enables the periodic transmission
of messages on a connected socket. If the connected socket
fails to respond to these messages, the connection is broken
and processes using that socket are notified with a SIGPIPE
signal.

SO_DONTROUTE
Indicates that outgoing messages should bypass the standard
routing facilities. Instead, they are directed to the
appropriate network interface according to the network
portion of the destination address.

SO_USELOOPBACK
Valid only for routing sockets. Determines if a sending
socket receives a copy of its own message.

SO_LINGER
Lingers on a close() function if data is present. This option
controls the action taken when unsent messages queue on a
socket and a close() function is performed. If SO_LINGER
is set, the system blocks the process during the close()
function until it can transmit the data or until the time
expires. If SO_LINGER is not specified and a close()
function is issued, the system handles the call in a way that
allows the process to continue as quickly as possible. This
option takes a struct linger value, defined in the
sys/socket.h header file, to specify the state of the option and
linger interval.

SO_OOBINLINE
Leaves received out-of-band data (data marked urgent) in
line. This option takes an int value.

SO_SNDBUF
Sets send buffer size. This option takes an int value.

1-691

OSF/1 Programmer's Reference
setsockopt(2)

Description

1-692

option_value

option_Jen

SO_RCVBUF
Sets receive buffer size. This option takes an int value.

SO_SNDLOWAT
Sets send low-water mark. This option takes an int value.

SO_RCVLOWAT
Sets receive low-water mark. This option takes an int value.

SO_SNDTIMEO
Sets send time out. This option takes an int value.

SO_RCVTIMEO
Sets receive time out. This option takes an int value.

Options at other protocol levels vary in format and name.

To enable a Boolean option, set the option_value parameter to a
nonzero value. To disable an option, set the option_value parameter
to 0 (zero).

The option_len parameter contains the size of the buffer pointed to
by the option_value parameter.

The setsockopt() function sets options associated with a socket. Options may exist
at multiple protocol levels. The SO_ options are always present at the uppermost
socket level.

The setsockopt() function provides an application program with the means to
control a socket communication. An application program can use the setsockopt()
function to enable debugging at the protocol level, allocate buffer space, control
timeouts, or permit socket data broadcasts. The sys/socket.h file defines all the
options available to the setsockopt() function.

When setting socket options, specify the protocol level at which the option resides
and the name of the option.

Use the option_value and option_len parameters to access option values for the
setsockopt() function. These parameters identify a buffer in which the value for
the requested option or options is returned.

Functions

setsockopt(2)

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and ermo is set to indicate the error.

If the setsockopt() function fails, ermo may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

[ENOPROTOOPT]
The option is unknown.

[EFAULT] The option_value parameter is not in a readable part of the user
address space.

Related Information

Functions: bind(2), endprotoent(3), getsockopt(2), getprotobynumber(3),
getprotoent(3), setprotoent(3), socket(2)

1-693

OSF/1 Programmer's Reference

setuid(2)

setuid

Purpose

Synopsis

Parameters

Description

Notes

Sets the user ID

#include <sys/types.h>

int setuid (
uid_t uid);

uid Specifies the new user ID.

The setuid() function sets the real user ID, effective user ID, and the saved set user
ID to the uid parameter.

To change the real user ID, the effective user ID, and the saved set user ID, the
calling process must have superuser privilege. If the process does not have
appropriate privilege, but the uid parameter is equal to the real user ID or the saved
set user ID, the setuid() function sets the effective user ID to the uid parameter; the
real user ID and saved set user ID remain unchanged.

AES Support Level: Full use

Return Values

1-694

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Errors

Functions
setuid(2)

If the setuid() function fails, errno may be set to one of the following values:

[EINVAL]

[EPERM]

The value of the uid parameter is invalid and not supported by the
implementation.

The process does not have superuser privileges, and the uid
parameter does not match the real user ID or the saved set user ID.

Related Information

Functions: exec(2), getuid(2), getuid(2), setreuid(2)

1-695

OSF/1 Programmer's Reference

shmat(2)

shmat

Purpose Attaches a shared memory region

Synopsis #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
char *shmat(

Parameters

Description

1-696

shmid

addr

flags

intshmid,
caddr_t *addr,
int flags);

Specifies the ID for the shared memory region. The ID is typically
returned by a previous shmget() function.

Specifies the virtual address at which the process wants to attach the
shared memory region. The process can also specify 0 (zero) to
have the kernel select an appropriate address.

Specifies the attach flags. Possible values are:

SHM...:.RND
If the addr parameter is not 0 (zero), the kernel rounds off
the address, if necessary.

SHM_RDONLY
If the calling process has read perm1ss10n, the kernel
attaches the region for reading only.

The sh01at() function attaches the shared memory region identified by the shmid
parameter to the virtual address space of the calling process. For the addr
parameter, the process can specify either an explicit address or 0 (zero), to have the
kernel select the address. If an explicit address is used, the process can set the
SHM_RND flag to have the kernel round off the address, if necessary.

Functions

shmat(2)

Access to the shared memory region is determined by the operation permissions in
the shm_perm.mode member in the region's shmid_ds structure. The low-order
bits in shm_perm.mode are interpreted as follows:

00400 Read by user

00200 Write by user

00040 Read by group

00020 Write by group

00004 Read by others

00002 Write by others

The calling process is granted read and write permissions on the attached region if
at least one of the following is true:

• The effective user ID of the process is superuser.

• The effective user ID of the process is equal to shm_perm.cuid or
shm_perm.uid and bit 0600 in shm_perm.mode is set.

• The effective group ID of the process is equal to shm_perm.cgid or
shm_perm.gid and bit 0060 in shm_perm.mode is set.

• Bit 0006 in shm_perm.mode is set.

If the process has read permission, it can attach the region as read only by setting
the SHM_RDONLY flag.

Return Values

Errors

Upon successful completion, the starting address for the attached region is
returned. If the shmat() function fails, a value of -1 is returned and errno is set to
indicate the error.

If the shmat() function fails, the shared memory region is not attached and errno
may be set to one of the following values:

[EACCES] The calling process does not have the appropriate privilege.

[ENOMEM] There was not enough data space available to attach the shared
memory region.

1-697

OSF/1 Programmer's Reference

shmat(2)

[EINVAL]

[EMFILE]

The shmid parameter does not specify a valid shared memory region
ID; the addr parameter is not 0 (zero) and not a valid address; or the
addr parameter is not 0 (zero) and not a valid address, and
SHM_RND is not set.

An attempt to attach a shared memory region exceeded the
maximum number of attached regions allowed for any one process.

Related Information

1-698

Functions: exec(2), exit(2), fork(2), shmctl(2), shmdt(2), shmget(2)

Data structures: shmid_ds(4)

Functions

shmct1(2)

shmctl

Purpose Performs shared memory control operations

Synopsis #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl(

Parameters

shmid

cmd

buf

int shmid,
intcmd,
struct shmid_ds *buf);

Specifies the ID of the shared memory region.

Specifies the type of command. The possible commands and the
operations they perform are as follows:

IPC_STAT
Queries the shared memory region ID by copying the
contents of its associated shmid_ds data structure into the
buf structure.

IPC_SET
Sets the shared memory region ID by copying values found
in the buf structure into corresponding fields in the shmid_ds
structure associated with the shared memory region ID. This
is a restricted operation. The effective user ID of the calling
process must be equal to that of superuser or equal to the
value of shm_perm.cuid or shm_perm.uid in the associated
shmid_ds structure.

IPC_RMID
Removes the shared memory region ID and deallocates its
associated shmid_ds structure. This is a restricted
operation. The effective user ID of the calling process must
be equal to that of superuser or equal to the value of
shm_perm.cuid or shm_perm.uid in the associated shmid_ds
structure.

Specifies the address of a shmid_ds structure. This structure is used
only with the IPC_STAT and IPC_SET commands. With
IPC_STAT, the results of the query are copied to this structure.
With IPC_SET, the values in this structure are used to set the

1-699

OSF/1 Programmer's Reference
shmctl(2)

Description

corresponding fields in the shmid_ds structure associated with the
shared memory region ID. In either case, the calling process must
have allocated the structure before making the call.

The shmctl() function allows a process to query or set the contents of the
shmid_ds structure associated with the specified shared memory region ID. It also
allows a process to remove the shared memory region's ID and its associated
shmid_ds structure. The cmd value determines which operation is performed.

The IPC_SET command uses the user-supplied contents of the buf structure to set
corresponding fields in the shmid_ds structure associated with the shared memory
region ID. The fields are set as follows:

• The shm_perm.uid field is set to the owner's user ID.

• The shm_perm.gid field is set to the owner's group ID.

• The shm_perm.mode field is set to the access modes for the shared memory
region. Only the low-order nine bits are set.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. If the shmctl()
function fails, a value of -1 is returned and errno is set to indicate the error.

If the shmctl() function fails, errno may be set to one or more of the following
values:

[EINVAL] The shmid parameter does not specify a valid shared memory region
ID, or cmd is not a valid command.

[EACCES] The cmd parameter is IPC_STAT, but the calling process does not
have read permission.

[EPERM] The cmd parameter is equal to either IPC_RMID or IPC_SET, and
the calling process does not have appropriate privilege.

[EFAULT] The cmd parameter is IPC_STAT or IPC_SET. An error occurred in
accessing the buf structure.

Related Information

1-700

Functions: shmat(2), shmdt(2), shmget(2)

Data structures: shmid_ds(4)

Functions

shmdt(2)

shmdt

Purpose Detaches a shared memory region

Synopsis #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmdt(

Parameters

Description

caddr_t *addr);

addr Specifies the starting virtual address for the shared memory region
to be detached. This is the address returned by a previous shmat()
call.

The shmdt() function detaches the shared memory region at the address specified
by the addr parameter. Other instances of the region attached at other addresses are
unaffected.

Return Values

Errors

Upon successful completion, the shmdt() function returns 0 (zero). Upon failure,
-1 is returned and errno is set to indicate the error.

If the shmdt() function fails, the shared memory segment is not detached and
errno may be set to the following value:

[EINVAL] The addr parameter does not specify the starting address of a shared
memory region.

Related Information

Functions: shmat(2), shmctl(2), shmget(2)

Data structures: shmid_ds(4)

1-701

OSF/1 Programmer's Reference

shmget(2)

shmget

Purpose

Synopsis

Parameters

Description

1-702

Returns (and possibly creates) the ID for a shared memory region

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(

key_t key,
u_int size,
u_intjiags);

key Specifies the key that identifies the shared memory region. The
IPC_PRIVATE key can be used to assure the return of a new,
unused, shared memory region.

size Specifies the minimum number of bytes to allocate for the region.

flags Specifies the creation flags. Possible values are:

IPC_CREATE
If the key does not exist, the shmget() function creates a
shared memory region using the given key. If the key does
exist, it forces an error notification.

IPC_EXCL
If the key already exists, the shmget() function fails and
returns an error notification.

The low-order nine bits of shm_perm.mode are set equal to the low­
order nine bits ofjiags.

The shmget() function returns (and possibly creates) the ID for the shared memory
region identified by the key parameter. If IPC_PRIV ATE is used for the key
param~for, the shmget() function returns the ID for a private (that is, newly
created) shared memory region. The flags parameter supplies creation options for
the shmget() function. If the key parameter does not already exist, the
IPC_CREAT flag instructs the shmget() function to create a new shared memory
region for the key and return the kernel-assigned ID for the region.

Functions
shmget(2)

After creating a new shared memory region ID, the shmget() function initializes
the shmid_ds structure associated with the ID as follows:

• The shm_perm.cuid and shm_perm.uid fields are set equal to the effective user
ID of the calling process.

• The shm_perm.cgid and shm_perm.gid fields are set equal to the effective
group ID of the calling process.

• The low-order nine bits of the shm_perm.mode field are set equal to the low­
order nine bits of flags.

• The shm_segsz field is set equal to size.

• The shm_lpid, shm_nattch, shm_atime, and shm_dtime fields are all set equal
to 0 (zero).

• The shm_ctime field is set equal to the current time.

• The shm_cpid field is set to the process ID of the calling process.

Return Values

Errors

Upon successful completion, a shared memory identifier is returned. If the
shmget() function fails, a value of -1 is returned and ermo is set to indicate the
error.

If the shmget() function fails, ermo may be set to one of the following values:

[EINVAL] The value of the size parameter is less than the system-defined
minimum or greater than the system-defined maximum. Or, a
shared memory region ID already exists for the key parameter, but
the number of bytes allocated for the region is less than size and size
is not equal to 0 (zero).

[EACCES] A shared memory region ID already exists for the key parameter,
but operation permission as specified by the low-order nine bits of
the flags parameter was not granted.

[ENOENT] A shared memory region ID does not exist for the key parameter,
and IPC_CREAT was used for the flags parameter.

[ENOSPC] An attempt to create a new shared memory region ID exceeded the
system-wide limit on the maximum number of IDs allowed.

1-703

OSF/1 Programmer's Reference

shmget(2)

[ENOMEM] An attempt was made to create a shared memory region ID and its
associated shmid_ds structure, but there was not enough physical
memory available.

[EEXIST] A shared memory region ID already exists for the key parameter,
but IPC_CREAT and IPC_EXCL were used for the.flags parameter.

Related Information

1-704

Functions: shmat(2), shmctl(2), shmdt(2)

Data structures: shmid_ds(4)

Functions

shutdown(2)

shutdown

Purpose Shuts down socket send and receive operations

Synopsis int shutdown (

Parameters

Description

socket

how

int socket,
int how);

Specifies the file descriptor of the socket.

Specifies the type of shutdown. Values are:

0 To disable further receive operations

1 To disable further send operations

2 To disable further send operations and receive operations

The shutdown() function disables receive and/or send operations on the specified
socket.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and ermo is set to indicate the error.

If the shutdown() function fails, ermo may be set to one of the following values:

[EBADF] The socket parameter is not valid.

[ENOTSOCK]
The socket parameter refers to a file, not a socket.

Related Information

Functions: getsockopt(2), read(2), recv(2), recvfrom(2), recvmsg(2), select(2),
send(2), sendto(2), setsockopt(2), socket(2), write(2)

1-705

OSF/1 Programmer's Reference

sigaction(2)

sigaction, signal

Purpose Specifies the action to take upon delivery of a signal

Synopsis #include <signal.h>

Parameters

Description

1-706

int sigaction (
int signal,
const struct sigaction *action,
struct sigaction *o_action);

void (*signal(

signal

action

o_action

function

int signal,
void (*function)(int))) (int);

Defines the signal.

Points to a sigaction structure that describes the action to be taken
upon receipt of the signal parameter.

Points to a sigaction structure in which the signal action data in
effect at the time the sigaction() function is returned.

Specifies the action associated with a signal.

The sigaction() function allows the calling process to examine and/or change the
action to be taken when a specific signal is delivered to the process issuing this
function.

The signal parameter specifies the signal. If the action parameter is not null, it
points to a sigaction structure that describes the action to be taken on receipt of the
signal parameter signal. If the o_action parameter is not null, it points to a
sigaction structure in which the signal action data in effect at the time of the
sigaction() call is returned. If the action parameter is null, signal handling is
unchanged; thus, the call can be used to inquire about the current handling of a
given signal.

Functions

sigaction(2)

The sigaction structure has the following members:

void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

The sa_handler field can have the SIG_DFL or SIG_IGN value, or can point to a
function. A SIG_DFL value requests default action to be taken when the signal is
delivered. A value of SIG_IGN requests that the signal have no effect on the
receiving process. A pointer to a function requests that the signal be caught; that is,
the signal should cause the function to be called. These actions are more fully
described in the signal.h file.

The sa_mask field can be used to specify that individual signals, in addition to
those in the process signal mask, be blocked from being delivered while the signal
handler function specified in sa_handler is executing. The sa_flags field can have
the SA_ONSTACK, SA_RESTART, or SA_NOCLDSTOP bits set to specify
further control over the actions taken on delivery of a signal.

If the SA_ONSTACK bit is set, the system runs the signal-catching function on the
signal stack specified by the sigstack() function. If this bit is not set, the function
runs on the stack of the process to which the signal is delivered.

If the signal parameter is SIGCHLD and a child process of the calling process
stops, a SIGCHLD signal will be sent to the calling process if and only if
SA_NOCLDSTOP is not set for SIGCHLD.

If a signal for which a signal-catching function exists is sent to a process while that
process is executing certain system calls, the call can be restarted if the
SA_RESTART bit is set. The affected system calls are the read() and write()
functions on a slow device (such as a terminal, but not a regular file) and the wait()
function. If SA_RESTART is not set, and such a system call is interrupted by a
signal which is caught, then the system call returns -1 and sets ermo to [EINTR].

The signal parameter can be any one of the signal values defined in the signal.h
header file, except SIGKILL.

The signal() function is provided for compatibility with older versions of UNIX
operating systems. It sets the action associated with a signal. The function
parameter can have the same values that are described for the sa_handler field in
the sigaction structure of the sigaction() function. However, no signal handler
mask or flags can be specified.

The effect of calling the signal() function differs in some details depending on
whether the calling program is linked with either of the special libraries libbsd or
libsys5. If neither library is used, the behavior is the same as that of the

1-707

OSF/1 Programmer's Reference
sigaction(2)

Notes

sigaction() function with all flags set to 0 (zero). If the libbsd library is used
(through compilation with the -lbsd switch), the behavior is the same as that of the
sigaction() function with the SA_RESTART flag set. If the libsysS library is used
(though compilation with the -lsysS switch), then the specified signal is not blocked
from delivery when the handler is entered, and the disposition of the signal reverts
to SIG_DFL when the signal is delivered. See the OSF!l Applications
Programmer's Guide for details on these switches.

In a multi-threaded environment, the sigaction() function should only be used for
the synchronous signals.

The sigvec() and signal() functions are provided for compatibility to old UNIX
systems; their function is a subset of that available with the sigaction() function.

AES Support Level: Full use

Return Values

Errors

1-708

Upon successful completion of the sigaction() function, a value of 0 (zero) is
returned. If the sigaction() function fails, a value of -1 is returned and errno is set
to indicate the error.

Upon successful completion of a signal() function, the value of the previous signal
action is returned. If the call fails, a value of -1 is returned and errno is set to
indicate the error as in the sigaction() call.

If the sigaction() function fails, no new signal handler is installed and errno may
be set to one of the following values:

[EFAULT] The action or o_action parameter points to a location outside of the
allocated address space of the process.

[EINVAL] The signal parameter is not a valid signal number.

[EINVAL] An attempt was made to ignore or supply a handler for the
SIGKILL, SIGSTOP, and SIGCONT signals.

Functions

sigaction(2)

Related Information

Functions: acct(2), exit(2), kill(2), pause(3), ptrace(2), setjmp(3), sigblock(2),
sigpause(3), sigprocmask(2), sigstack(2), sigsuspend(2), sigvec(2), umask(2),
wait(2)

Commands: kill(l)

Files: signal(4)

1-709

OSF/1 Programmer's Reference

sigblock(2)

sigblock

Purpose Provides a compatibility interface to the sigprocmask function

Library
Standard C Library (libc.a)

Synopsis int sigblock(

Parameters

Description

Notes

int mask);

mask Specifies the signals to be added to the set of signals currently being
blocked from delivery.

The sigblock() function causes the signals specified by the mask parameter to be
added to the set of signals currently being blocked from delivery. The signals are
blocked from delivery by logically ORing the mask parameter into the signal mask
of the process. Signal i is blocked if the i-th bit in the mask parameter is a value of
1. Only signals with values 1-31 can be masked with the sigblock() function.

It is not possible to block SIGKILL. The system provides no indication of this
restriction.

The sigblock() function is provided for compatibility to other UNIX systems. Its
function is a subset of the sigprocmask() function.

Return Values
On completion, the previous set of masked signals is returned.

Related Information

1-710

Functions: kill(2), sigaction(2), sigpause(3), sigprocmask(2), sigsuspend(2),
sigvec(2)

sigemptyset, sigfillset,
sigismember

Purpose Creates and manipulates signal masks

Library
Standard C Library (libc.a)

Synopsis #include <signal.h>

int sigemptyset (
sigset_t *set);

Parameters

int sigfillset (
sigset_t *set);

int sigaddset (
sigset_t *set,
int sig_number);

int sigdelset (
sigset_t *set,
int sig_number);

int sigismember (
sigset_t *set,
int sig_number);

set Specifies the signal set.

sigaddset,

sig_number Specifies the individual signal.

Description

Functions

sigemptyset(3)

sigdelset,

The sigemptyset(), sigfillset(), sigaddset(), sigdelset(), and sigismember()
functions manipulate sets of signals. These functions operate on data objects that
can be addressed by the application, not on any set of signals known to the system,
such as the set blocked from delivery to a process or the set pending for a process.

1-711

OSF/1 Programmer's Reference
sigemptyset(3)

Notes

The sigemptyset() function initializes the signal set pointed to by the set parameter
such that all signals are excluded. The sigfillset() function initializes the signal set
pointed to by the set parameter such that all signals are included. A call to either
the sigfillset() or sigemptyset() function must be made at least once for each
object of the type sigset_t prior to any other use of that object.

The sigaddset() and sigdelset() functions respectively add and delete the
individual signal specified by the sig_number parameter from the signal set
specified by the set parameter. The sigismember() function tests whether the
sig_number parameter is a member of the signal set pointed to by the set parameter.

AES Support Level: Full use

Example

To generate and use a signal mask that blocks only the SIGINT signal from
delivery, enter:

#include <signal.h>
int return_value;
sigset_t newset;
sigset_t *newset_p;

newset_p = &newset;
sigemptyset(newset);

sigaddset(newset, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Return Values

1-712

Upon successful completion, the sigismember() function returns a value of 1 if the
specified signal is a member of the specified set, or a value of 0 (zero) if it is not.
Upon successful completion, the other functions return a value of 0. For all the
preceding functions, if an error is detected, a value of -1 is returned and errno is
set to indicate the error.

Errors

Functions

sigemptyset(3)

If the sigfillset(), sigdelset(), sigismember(), or sigaddset() function fails, errno
may be set to the following value:

[EINVAL] The value of the sig_numberparameter is not a valid signal number.

Related Information

Functions: sigaction(2), sigprocmask(2), sigsuspend(2), sigvec(2)

Files: signal(4)

1-713

OSF/1 Programmer's Reference

siginterrupt(3)

siginterrupt

Purpose Allows signals to interrupt functions

Library
Berkeley Compatibility Library (libbsd.a)

Synopsis int siginterrupt(

Parameters

Description

Notes

1-714

sig

flag

int sig,
intflag);

Specifies the expected interrupt signal.

Indicates whether the function is to restart when interrupted by the
specified signal. When the flag parameter is TRUE, restart is
disabled. When theflag parameter is FALSE, restart is enabled.

The siginterrupt() function is used to change the restart behavior of a system call
when it is interrupted by a signal specified by the sig parameter. When the flag
parameter is FALSE (0), system calls restart when they are interrupted by the sig
signal and no data has yet been transferred.

When the flag parameter is TRUE (1), restart of system calls is disabled. When a
system call is interrupted by the sig signal and no data has been transferred, the
function returns a value of -1 with errno set to [EINTR]. Otherwise, interrupted
system calls that have started transferring data return a value that is the number of
data bytes actually transferred.

System call interrupt is the default behavior unless the calling program has been
linked with the libbsd library.

The use of the siginterrupt() function does not affect signal-handling semantics in
any other way. Programs may switch between restartable and interruptible system
call operation as often as desired in the execution of a program.

Issuing a siginterrupt() call during the execution of a signal handler causes the
new action to take place when the next instance of the specified signal is caught.

Functions
siginterrupt(3)

The siginterrupt() function is provided for compatibility with BSD systems, and
programs that use it should be linked with the libbsd library. The recommended
method for controlling whether a signal is restartable or interruptible is to use the
sigaction() function.

Return Values

Errors

Upon successful completion, siginterrupt() returns a value of 0 (zero). Otherwise,
a value of -1 is returned to indicate that an invalid signal value has been used.

If the siginterrupt() function fails, errno may be set to the following value:

[EINVAL] The value of the sig parameter does not represent a valid signal.

Related Information

Functions: sigaction(2), sigprocmask(2), sigsuspend(2)

1-715

OSF/1 Programmer's. Reference
siglongjmp(3)

siglongjmp

Purpose

Library

Synopsis

Parameters

Description

1-716

Nonlocal goto with signal handling

Standard C Library (libc.a)

#include <setjmp.h>

void siglongjmp (
sigjmp_buf env,
int value);

env Specifies an address for a sigjmp_buf structure.

value Specifies any nonzero value.

The siglongjmp() function restores the environment saved by the most recent
sigsetjmp() function in the same process with the corresponding sigjmp_buf
parameter.

All accessible objects have values as of the time siglongjmp() was called, except
that the values of objects of automatic storage duration that have been changed
between the sigsetjmp() call and siglongjmp() call are indeterminate.

As it bypasses the usual function call and return mechanisms, the siglongjmp()
function executes correctly in contexts of interrupts, signals, and any of their
associated functions. However, if the siglongjmp() function is invoked from a
nested signal handler (that is, from a function invoked as a result of a signal raised
during the handling of another signal), the behavior is undefined.

The siglongjmp() function restores the saved signal mask if and only if the env
parameter was initialized by a call to the sigsetjmp() function with a nonzero
savemask parameter.

Functions
siglongjmp(3)

Notes

AES Support Level: Full use

Return Values
After the siglongjmp() function is completed, program execution continues as if
the corresponding call of the sigsetjmp() function had just returned the value
specified by the value parameter. The siglongjmp() function cannot cause the
sigsetjmp() function to return 0 (zero); if value is 0, the sigsetjmp() function
returns 1.

Related Information

Functions: setjmp(3), sigprocmask(2), sigsetjmp(3), sigsuspend(2)

1-717

OSF/1 Programmer's Reference
sigpause(3)

.
s1gpause

Purpose

Library

Synopsis

Parameters

Description

Provides a compatibility interface to the sigsuspend function

Standard C Library (libc.a)

#include <signal.h>

int sigpause (
int signal_mask);

signal_mask
Specifies which signals to block.

The sigpause() function call blocks the signals specified by the signal_mask
parameter and then suspends execution of the process until delivery of a signal
whose action is either to execute a signal-catching function or to end the process.
Signal of value i is blocked if the i-th bit of the mask is set. Only signals with
values 1 to 31 can be blocked with the sigpause() function. In addition, the
sigpause() function does not allow the SIGKILL, SIGSTOP, or SIGCONT signals
to be blocked. If a program attempts to block one of these signals, the sigpause()
function gives no indication of the error.

The sigpause() function sets the signal mask and waits for an unblocked signal as
one atomic operation. This means that signals cannot occur between the operations
of setting the mask and waiting for a signal.

The sigpause() function is provided for compatibility with older UNIX systems; its
function is a subset of the sigsuspend() function.

Return Values

1-718

If a signal is caught by the calling process and control is returned from the signal
handler, the calling process resumes execution after the sigpause() function, which
always returns a value of -1 and sets ermo to [EINTR].

Functions

sigpause(3)

If delivery of a signal causes the process to end, the sigpause() function does not
return.

If delivery of a signal causes a signal-catching function to execute, the sigpause()
function returns after the signal-catching function returns, with the signal mask
restored to the set that existed prior to the sigpause() call.

Related Information

Functions: pause(3), sigaction(2), sigblock(2), sigprocmask(2), sigsuspend(2),
sigvec(2)

1-719

OSF/1 Programmer's Reference

sigpending(2)

sigpending

Purpose Examines pending signals

Synopsis #include <signal.h>

int sigpending (
sigset_t *set);

Parameters

Description

Notes

set Points to a sigset_t structure.

The sigpending() function stores the set of signals that are blocked from delivery
and pending to the calling process in the object pointed to by the set parameter,

Applications should call either the sigemptyset() or the sigfillset() function at
least once for each object of type sigset_t prior to any other use of that object. If
such an object is not initialized in this way, but is nonetheless supplied as an
argument to the sigpending() function, the results are undefined.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the sigpending() function returns a value of 0 (zero).
Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the sigpending() function fails, errno may be set to the following value:

[EFAULT] The set parameter points to a location outside the allocated address
space of the process.

Related Information

1-720

Functions: sigemptyset(3), sigprocmask(2)

Files: signal(4)

Functions

sigprocmask(2)

sigprocmask, sigsetmask

Purpose Sets the current signal mask

Library
Standard C Library (Ube.a)

Synopsis #include <signal.h>

Parameters

int sigprocmask(
int how,
sigset_t *set,
sigset_t *o_set);

int sigsetmask (
int signal_mask);

how Indicates the manner in which the set of masked signals is changed;
it has one of the following values:

set

SIG_BLOCK
The resulting set is the union of the current set and the signal
set pointed to by the set parameter.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the
complement of the signal set pointed to by the set parameter.

SIG_SETMASK
The resulting set is the signal set pointed to by the set
parameter.

Specifies the signal set. If the value of the set parameter is not null,
it points to a set of signals to be used to change the currently
blocked set. If the value of the set parameter is null, the value of the
how parameter is not significant and the process signal mask is
unchanged; thus, the call can be used to inquire about currently
blocked signals.

1-721

OSF/1 Programmer's Reference

sigprocmask(2)

o_set If the o_set parameter is not the null value, the signal mask in effect
at the time of the call is stored in the spaced pointed to by the o _set
parameter.

signal_mask Specifies the signal mask of the process.

Description

The sigprocmask() function is used to examine or change the signal mask of the
calling process.

Typically, you would use the sigprocmask (SIG_BLOCK) function to block
signals during a critical section of code, and then use the sigprocmask
(SIG_SETMASK) function to restore the mask to the previous value returned by
the sigprocmask (SIG_BLOCK) function.

If there are any unblocked signals pending after the call to the sigprocmask()
function, at least one of those signals will be delivered before the sigprocmask()
function returns.

The sigprocmask() function does not allow the SIGKILL or SIGSTOP signals to
be blocked. If a program attempts to block one of these signals, the sigprocmask()
function gives no indication of the error.

The sigsetmask() function allows the process signal mask to change for signal
values 1 to 31. This same function can be accomplished for all values with the
sigprocmask(SIG_SETMASK) function. The signal of value i will be blocked if
the i-th bit of signal_mask parameter is set.

Example

1-722

To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;

newset_p = &newset;
sigemptyset(newset_p);
sigaddset(newset_p, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Functions

sigprocmask{ 2)

Notes

AES Support Level: Full use (sigprocmask())

Return Values

Errors

Upon successful completion, the sigprocmask() function returns a value of 0
(zero). If the sigprocmask() function fails, the signal mask of the process is
unchanged, a value of -1 is returned, and errno is set to indicate the error.

Upon successful completion, the sigsetmask() function returns the value of the
previous signal mask. If the function fails, a value of -1 is returned.

If the sigprocmask() function fails, errno may be set to one of the following
values:

[EINVAL]

[EFAULT]

The value of the how parameter is not equal to one of the defined
values.

The set or o_set parameter points to a location outside the allocated
address space of the process.

Related Information

Functions: kill(2), sigaction(2), sigpause(3), sigsuspend(2), sigvec(2)

1-723

OSF/1 Programmer's Reference
sigreturn(2)

sigreturn

Purpose

Synopsis

Parameters

Description

Notes

Returns from signal

#include <signal.h>

int sigreturn(

scp

struct sigcontext * scp) ;

Points to a sigcontext structure whose members contain the
processor state to be restored. The contents of the sigcontext
structure should have been previously obtained by entry to a signal
handler or by the setjmp() or sigsetjmp() function.

The sigreturn() function restores the processor state of the calling process from a
sigcontext structure. The sigcontext structure contains the state of all application­
visible registers as well as the signal mask. The specific members of the sigcontext
structure depend on the machine architecture. Each machine-dependent structure
member is defined in the signal.h include file.

The sigreturn() function is used internally by the system software to restore the
processor state on return from a signal handler and from a longjmp() function, to
restore the state saved by a previous setjmp() or sigsetjmp() function.

An application should only use sigreturn() with great caution.

Return Values

1-724

Upon successful completion, the sigreturn() function does not return. Otherwise,
a value of -1 is returned and errno may be set to indicate the error.

Errors

Functions

sigreturn(2)

If the sigreturn() function fails, the process context remains unchanged and errno
is set to one of the following values:

[EFAULT] The scp parameter points to memory space that is not a valid part of
the process address space.

[EINVAL] The sigcontext structure contains unsupported or illegal values.

Related Information

Functions: setjmp(3), sigaction(2), sigvec(2)

1-725

OSF/1 Programmer's Reference
sigset{3)

sigset, sighold, sigrelse, sigignore

Purpose Compatibility interfaces for signal management

Library
Standard C Library (libc.a)

Synopsis #include<signal.h>

Parameters

1-726

void (*sigset(
int signal,
void (*function) (int))) (int)

int sighold(
int signal);

int sigrelse(
int signal);

int sigignore(

signal

function

int signal);

Specifies the signal. The signal parameter can be assigned any of
the signals defined in the signal.h header file.

Specifies one of four values: SIG_DFL, SIG_IGN, SIG_HOLD, or
an address of a signal-catching function. The function parameter is
declared as type pointer to a function returning void. The following
actions are prescribed by these values:

SIG_DFL
System default handling of the signal.

SIG_IGN
Ignore signal.

Any pending signal specified by the signal parameter is
discarded. A pending signal is a signal that has occurred but
for which no action has been taken. The system signal action
is set to ignore future occurrences of this signal type.

Functions
sigset{3)

SIG_HOLD
Hold signal.

The signal specified by the signal parameter is to be held.
Any pending signal of this type remains held. Only one
signal of each type is held.

(Address of signal-catching function.)
Catch signal.

Upon receipt of the signal specified by the signal parameter,
the receiving process is to execute the signal catching
function pointed to by the function parameter. Any pending
signal of this type is released. This address is retained across
calls to the other signal management funtions, sighold() and
sigrelse(). The signal number signal will be passed as the
only argument to the signal-catching function.

Before entering the signal-catching function, the value of
function for the caught signal will be set to SIG_HOLD.
During normal return from the signal-catching handler, the
system signal action is restored to function and any held
signal of this type is released. If a nonlocal goto (see the
setjmp() function) is taken, the sigrelse() function must be
invoked to restore the system signal action and to release any
held signal of this type.

Upon return from the signal-catching function, the receiving
process will resume execution at the point at which it was
interrupted, except for implementation-defined signals where
this may not be true.

The signal-catching function will be executed and then the
interrupted routine may return a value of -1 to the calling
process with errno set to [EINTR] under the following
conditions:

A signal to be caught occurs during a nonatomic
operation such as a call to the read(), write(), open(),
or ioctl() function on a slow device (such as a
terminal).

A signal to be caught occurs during a pause() or
sigsuspend() function.

A signal to be caught occurs during a wait function that
does not return immediately.

1-727

OSF/1 Programmer's Reference

sigset(3)

Description

Notes

The sigset(), sighold(), sigrelse(), and sigignore() functions enhance the signal
facility and provide signal management for application processes.

The sigset() function specifes the system signal action to be taken upon receipt of
signal.

The sighold() and sigrelse() functions establish critical regions of code. A call to
the sighold() function has the effect of deferring or holding a signal until a
subsequent call to the sigrelse() function. The sigrelse() function restores the
system signal action to the action that was previously specified by sigset().

The sigignore() function sets the action for signal to SIG_IGN.

The signal() routine should not be used in conjunction with these routines for a
particular signal type.

These interfaces are provided for compatibility only. New programs should use
sigaction() and sigprocmask() to control the disposition of signals.

Return Values

Errors

Upon successful completion, the sigset() function returns the previous value of the
system signal action for the specified signal. Otherwise, it returns SIG_ERR arid
errno is set to indicate the error.

For the sighold(), sigrelse(), and sigignore() functions, a value of 0 (zero) is
returned upon success. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

If the sigset(), sighold(), sigrelse(), or sigignore() function fails, errno is set to
the following value:

[EINVAL] The signal parameter is either an illegal signal number or SIGKILL,
or the default handling of signal cannot be changed.

Related Information

1-728

Functions: kill(2), setjmp(3), sigaction(2), sigprocmask(2), wait(2)

Files: signal(4)

Functions

sigsetjmp{ 3}

sigsetjmp

Purpose Sets jump point for a nonlocal goto

Library
Standard C Library (libc.a)

Synopsis #include <setjmp.h>

Parameters

Description

Notes

int sigsetjmp (
sigjmp_buf env,
int savemask);

env

savemask

Specifies an address for a sigjmp_buf structure.

Specifies whether the current signal mask should be saved.

The sigsetjmp() function saves its calling environment in its env parameter for
later use by the siglongjmp() function.

If the value of the savemask parameter is not 0 (zero) the sigsetjmp() function will
also save the process' current signal mask as part of the calling environment.

AES Support Level: Full use

Return Values
If the return is from a successful direct invocation, the sigsetjmp() function returns
the value 0 (zero). If the return is from a call to the siglongjmp() function, the
sigsetjmp() function returns a nonzero value.

Related Information

Functions: sigaction(2), siglongjmp(3), sigprocmask(2), sigsuspend(2)

1-729

OSF/1 Programmer's Reference

sigstack(2)

sigstack

Purpose

Synopsis

Parameters

Description

1-730

Sets and gets signal stack context

#include <signal.h>

int sigstack (

ins tack

outstack

struct sigstack *instack,
struct sigstack *outstack);

Specifies the stack pointer of the new signal stack.

If the value of the instack parameter is nonzero, it points to a
sigstack() structure, which has the following members:

struct sigstack{
caddr_t ss_sp;
int ss_onstack;

}

The value of instack->ss_sp specifies the stack pointer of the new
signal stack. The value of instack->ss_onstack should be set to 1 if
the process is currently running on that stack; otherwise, it should be
0 (zero).

If the value of the instack parameter is 0 (that is, a null pointer), the
signal stack state is not set.

Points to the structure where the current signal stack state is stored.
If the value of the outstack parameter is nonzero, it points to a
sigstack() structure into which the sigstack() function stores the
current signal stack state. If the value of the outstack parameter is 0
(zero), the previous signal stack state is not reported.

The sigstack() function defines an alternate stack on which signals are to be
processed.

Caution

Functions

sigstack(2)

When a signal occurs and its handler is to run on the signal stack, the system
checks to see if the process is already running on that stack. If so, the process
continues to run even after the handler returns. If not, the signal handler runs on the
signal stack, and the original stack is restored when the handler returns.

Use the sigaction() function to specify whether a given signal handler routine is to
run on the signal stack.

A signal stack does not automatically increase in size as a normal stack does. If the
stack overflows, unpredictable results can occur.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and ermo is set to indicate the error.

If the sigstack() function fails, ermo may be set to the following value:

[EFAULT] The instack or outstack parameter points outside of the address
space of the process.

Related Information

Functions: setjmp(3), sigaction(2), sigvec(2)

1-731

OSF/1 Programmer's Reference
sigsuspend(2}

sigsuspend

Purpose Atomically changes the set of blocked signals and waits for a signal

Library
Standard C Library (Jibe.a)

Synopsis #include <signal.h>

Parameters

Description

1-732

int sigsuspend (
sigset_t *signal_mask);

signal_mask Points to a set of signals.

The sigsuspend() function replaces the signal mask of the process with the set of
signals pointed to by the signal_mask parameter, and then suspends execution of
the process until delivery of a signal whose action is either to execute a signal­
catching function or to terminate the process. The sigsuspend() function does not
allow the SIGKILL or SIGSTOP signals to be blocked. If a program attempts to
block one of these signals, the sigsuspend() function gives no indication of the
error.

If delivery of a signal causes the process to terminate, the sigsuspend() function
does not return. If delivery of a signal causes a signal-catching function to execute,
the sigsuspend() function returns after the signal-catching function returns, with
the signal mask restored to the set that existed prior to the call to the sigsuspend()
function.

The sigsuspend() function sets the signal mask and waits for an unblocked signal
as one atomic operation. This means that signals cannot occur between the
operations of setting the mask and waiting for a signal. If a program invokes
sigprocmask(SIG_SETMASK) and sigpause() separately, a signal that occurs
between these functions might not be noticed by sigpause().

Notes

Functions

sigsuspend(2)

In normal usage, a signal is blocked by using the sigprocmask(SIG_BLOCK, •..)
function at the beginning of a critical section. The process then determines whether
there is work for it to do. If no work is to be done, the process waits for work by
calling the sigsuspend() function with the mask previously returned by the
sigprocmask() function.

The sigpause() function is provided for compatibility with older UNIX systems; its
function is a subset of the sigsuspend() function.

AES Support Level: Full use

Return Values

If a signal is caught by the calling process and control is returned from the signal
handler, the calling process resumes execution after the sigsuspend() function,
which always return a value of -1 and sets errno to [EINTR].

Related Information

Functions: pause(3), sigaction(2), sigblock(2), sigprocmask(2), sigvec(2)

1-733

OSF/1 Programmer's Reference

sigvec(2)

.
s1gvec

Purpose Provides a compatibility interface to the sigaction() function

Synopsis #include <sys/signal.h>

Parameters

Description

1-734

int sigvec (

signal

in_vec

out_vec

int signal,
struct sigvec *in_vec,
struct sigvec *out_vec);

Specifies the signal number.

Points to a sigvec() structure that specifies the action to be taken
when the specified signal is delivered, the mask to be used when
calling the signal handler, and the flags that modify signal behavior.

Points to a sigvec() structure that is set to the previous signal action
state on successful return from the sigvec() function.

The sigvec() function is provided for compatibility to old UNIX systems; its
function is a subset of that available with the sigaction() function. Like the
sigaction() function, the sigvec() function allows the user to set the action to take
upon the receipt of a signal and to specify a signal handler mask to block signals
before calling the signal handler. However, only signals with values 1 to 31 can be
masked on entry to a signal-handler set up with the sigvec() function.

The sigvec() structure has the following members:

void (*sv_handler)();
int sv _mask;
int sv _flags;

The sv _handler field specifies the action for the signal, and can be SIG_DFL,
SIG_IGN, or the address of a signal handler function. See the sigaction() function
for a detailed description of the signal actions.

The sv _mask field specifies a mask which specifies signals to block (in addition to
any signals already blocked at time of delivery) when the signal handler function is
called for the signal. Signal i is blocked if the i-th bit of the mask is set. Only
signals with values 1 to 31 can be masked with the sigvec() function. The sv _flags
field contains flags that further specify signal behavior. If SV _ONSTACK is set,

Notes

Functions

sigvec(2)

the signal handler runs on the signal stack specified by the sigstack() function;
otherwise, the signal handler runs on the stack of the process receiving the signal.
If SV _INTERRUPT is set, a system call that is interrupted by signal returns a value
of -1 with errno set to [EINTR]; otherwise, a system call interrupted by signal is
restarted.

If the value of the in_vec parameter is a null pointer, then the signal handler
information is not set. If the value of the out_vec parameter is null, then the
previous signal handler information is not returned.

Once a signal handler is assigned, it remains assigned until another call to the
sigvec(), signal(), sigaction(), or exec function is made.

The sigvec() function is provided for compatibility only, and its use is not
recommended. Programs should use the sigaction() function instead.

The sigvec() function does not check the validity of the sv _handler field pointer.
If it points to a location outside of the process address space, the process receives a
memory fault when the system attempts to call the signal handler. If the
sv _handler field points to anything other than a function, the results are
unpredictable.

The signal-handler function can be declared as follows:

void handler (
int signal);

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. If the sigvec()
function fails, a value of -1 is returned and errno is set to indicate the error.

If the sigvec() function fails, no new signal handler is installed and errno may be
set to one of the following values:

[EFAULT] The in_vec or out_vec parameter points to a location outside of the
process' address space.

[EINV AL] The signal parameter is not a valid signal number.

[EINVAL] An attempt was made to ignore or supply a handler for the SIGKILL
signal.

1-735

OSF/1 Programmer's Reference
sigvec(2)

Related Information

Functions: kill(2), ptrace(2), sigaction(2), sigblock(2), sigpause(3), sigstack(2)

1-736

Functions

sigwait(3)

sigwait

Purpose Suspends a calling thread

Library
Threads Library (libpthreads.a)

Synopsis #include <signal.h>
int sigwait(

Parameters

Description

sigset_t *set);

set Specifies the set of signals to wait for.

The sigwait() function suspends the calling thread until at least one of the signals
in the set parameter is in the threads set of pending signals. When this happens,
one of those signals is atomically chosen and removed from the set of pending
signals and that signal number is returned.

The effect is unspecified if any signals in the set parameter are not blocked when
the sigwait() function is called.

The set parameter is created using the set manipulation functions sigemptyset(),
sigfillset(), sigaddset(), and sigdelset().

Return Values

Upon successful completion, the signal number of the pending signal is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

1-737

OSF/1 ·Programmer's Reference
sigwait(3)

Errors

If the sigwait() function fails, errno may be set to the following value:

[EINV AL] The value of the set parameter contains an invalid or unsupported
signal number.

Related Information

Functions: sigaction(2), sigpending(2), sigsuspend(2)

1-738

sin, cos, tan, asin, acos, atan, atan2

Purpose Computes the trigonometric and inverse trigonometric functions.

Library
Math Library (libm.a)

Synopsis #include <math.h>

Parameters

Description

double sin (
double x);

double asin (
doublex;

double cos (
doublex;

double acos (
doublex);

double tan (
double x);

double atan (
doublex);

double atan2 (
double y, x);

x

y

Specifies some double value.

Specifies some double value.

The sin() function computes the sine of x, measured in radians.

The cos() function computes the cosine of x, measured in radians.

Functions

sin(3)

1-739

OSF/1 Programmer's Reference
sin{3)

Notes

The tan() function computes the tangent of x, measured in radians.

The asin() function computes the principal value of the arc sine of x, in the range
[-rr/2, rr/2] radians. The value of x must be in the domain [-1, 1].

The acos() function computes the principal value of the arc cosine of x, in the
range [0, 7t] radians. The value of x must be in the domain [-1, 1].

The atan() function computes the principal value of the arc tangent of x, in the
range [-7t/2, 7t/2] radians.

The atan2() function computes the principal value of the arc tangent of ylx, in the
range [-7t, 7t] radians, using the signs of both arguments to determine the quadrant
of the return value.

The sin(), cos(), and tan() functions lose accuracy when passed a large value for
the x parameter.

AES Support Level: Full use

Return Values

1-740

The sin() and cos() functions return the sine and cosine, respectively, of their
parameters. If xis NaN, NaN is returned. Otherwise, either ermo is set to indicate
an error, or NaN is returned.

The tan() function returns the tangent of its parameter. If x is NaN, NaN is
returned. Otherwise, either ermo is set to indicate an error, or NaN is returned.

The asin() function returns the principal value of the arc sine of x. Otherwise, the
asin() function returns NaN and sets ermo to [EDOM] if its parameters are not in
the range -1 to + 1.

The acos() function returns the principal value of the arc cosine of x. Otherwise,
the acos() function returns NaN and sets ermo to [EDOM] if its parameters are
not in the range -1 to + 1.

The atan() function returns the principal value of the arc tangent of x. If xis NaN,
NaN is returned. Otherwise, NaN is returned.

The atan2() function returns the principal value of the arc tangent of ylx. If x or y
is NaN, NaN is returned.

Errors

Functions

sin(3)

If the sin() or cos() function fails, errno may be set to one of the following values:

[EDOM] The value of xis NaN, or xis ±HUGE_ VAL.

[ERANGE] The magnitude of x is such that total or partial loss of significance
resulted.

If the tan() function fails, errno may be set to one of the following values:

[ERANGE] The value to be returned would have caused overflow.

[ERANGE] The value to be returned would have caused underflow, or the
magnitude of x is such that total or partial loss of significance would
result.

[EDOM] The value xis NaN.

If the asin() or acos() function fails, errno may be set to the following value:

[EDOM] The x parameter is not in the domain [-1, 1].

If the atan() function fails, errno may be set to the following value:

[EDOM] The value of xis NaN.

If the atan2() function fails, errno may be set to the following value:

[EDOM] Both arguments are zero or one of the arguments is NaN.

Related Information

Functions: isnan(3), sinh(3)

1-741

OSF/1 Programmer's Reference

sinh(3)

sinh, cosh, tanh

Purpose Computes hyperbolic functions

Library
Math Library (libm.a)

Synopsis #include <math.h>

double sinh (
double x);

Parameters

Description

Notes

double tanh (
double x);

double cosh (
double x);

x Specifies some double value.

The sinh(), cosh(), and tanh() functions compute the hyperbolic sine, hyperbolic
cosine, and hyperbolic tangent of x, respectively.

AES Support Level: Full use

Return Values

1-742

The sinh() function returns the hyperbolic sine of its parameter. If the result would
cause an overflow, HUGE_ VAL is returned and errno is set to [ERANGE]. If xis
NaN, NaN is returned. Otherwise, ±HUGE_ VAL or NaN is returned.

The cosh() function returns the hyperbolic cosine of its parameter. If the result
would cause an overflow, HUGE_ VAL is returned and errno is set to [ERANGE].
If xis NaN, NaN is returned. Otherwise, either errno is set to indicate the error or
NaN is returned.

Errors

Functions

sinh{3)

The tanh() function returns the hyperbolic tangent of its parameter. If x is NaN,
NaN is returned. Otherwise, either zero is returned and errno is set to indicate the
error, or NaN is returned.

If the sinh(), cosh(), or tanh() function fails, errno may be set to one of the
following values:

[EDOM] The value of xis NaN.

[ERAN GE] The result of the sinh() or cosh() function would cause an
overflow.

Related Information

Functions: isnan(3), sin(3)

1-743

OSF/1 Programmer's Reference
sleep(3)

sleep

Purpose

Library

Suspends execution for an interval

Standard C Library (libc.a)
Threads Library (libpthreads.a)

Synopsis unsigned int sleep (

Parameters

Description

Notes

unsigned int seconds);

seconds Specifies the number of seconds to sleep.

The sleep() function suspends execution of a process for the interval specified by
the seconds parameter. The suspension time may be longer than requested due to
the scheduling of other activity by the system.

In a multi-threaded environment, the sleep() function, is redefined so that only the
calling thread is suspended.

AES Support Level: Full use

Return Values
If the sleep() function returns because the requested time has elapsed, 0 (zero) is
returned. If the sleep() function returns because a signal was caught, the amount
of time still remaining to be "slept" is returned.

Related Information

1-744

Functions: alarm(3), pause(3), sigaction(2), sleep(3)

Commands: shutdown(8), wall(l)

socket

Purpose

Synopsis

Parameters

Creates an end point for communication and returns a descriptor

#include <sys/types.h>

#include <sys/socket.h>

int socket (
int addr Jamily,
int type,
int protocol);

Functions

socket(2)

addr Jamily Specifies an address family with which addresses specified in later
socket operations should be interpreted. The sys/socket.h file
contains the definitions of the address families. Commonly used
families are:

AF_UNIX
UNIX pathnames

AF_INET
ARP A Internet addresses

AF_NS
Xerox Network Software addresses

type Specifies the semantics of communication. The sys/socket.h file
defines the socket types. The following types are supported:

SOCK_STREAM
Provides sequenced, reliable, two-way byte streams with a
transmission mechanism for out-of-band data.

SOCK_DGRAM
Provides datagrams, which are connectionless messages of a
fixed maximum length.

SOCK_RAW
Provides access to internal network protocols and interfaces.
This type of socket is available only to a process with
superuser privilege.

1-745

OSF/1 Programmer's Reference

socket(2)

Description

protocol Specifies a particular protocol to be used with the socket.
Specifying a protocol of 0 (zero) causes the socket() function to
default to the typical protocol for the requested type of returned
socket.

The socket() function creates a socket of the specified type in the specified
addr Jamily.

The socket() function returns a descriptor (an integer) that can be used in later
system calls that operate on sockets.

Socket level options control socket operations. The getsockopt() and setsockopt()
functions are used to get and set these options, which are defined in the
sys/socket.h file.

Return Values

Errors

1-746

Upon successful completion, the socket() function returns a nonnegative integer
(the socket descriptor). Otherwise, a value of -1 is returned and errno is set to
indicate the error.

If the socket() function fails, ermo may be set to one of the following values:

[EAFNOSUPPORT]
The addresses in the specified address family are not available in the
kernel.

[EPROTONOSUPPORT]
The socket in the specified address family is not supported.

[EMFILE] The per-process descriptor table is full.

[ENOBUFS] Insufficient resources were available in the system to complete the
call.

[EPERM] The process is attempting to open a raw socket and does not have
superuser privilege.

Functions

socket(2)

Related Information

Functions: accept(2), bind(2), connect(2), listen(2), getsockname(2),
getsockopt(2), recv(2), recvfrom(2), recvmsg(2), send(2), sendto(2),
sendmsg(2), setsockopt(2), shutdown(2), socketpair(2)

1-747

OSF/1 Programmer's Reference
socketpair(2)

socketpair

Purpose

Synopsis

Parameters

Description

1-748

Creates a pair of connected sockets

#include <sys/types.h>

#include <sys/socket.h>

int socketpair(

domain

type

protocol

int domain,
int type,
int protocol,
int socket_vector[2]);

Specifies the communications domain in which the sockets are
created. This function does not create sockets in the Internet
domain.

Specifies the communications method that sockets use, for example
SOCK_DGRAM or SOCK_STREAM.

Specifies an optional identifier used to define the communications
protocols used in the transport layer interface.

socket_vector Specifies a two-integer array used to hold the file descriptors of the
socket pair created with the call to this function.

The socketpair() function creates an unnamed pair of connected sockets in a
specified domain, of a specified type, under the protocol optionally specified by
the protocol parameter. The two sockets are identical. The file descriptors used in
referencing the created sockets are returned to socket_vector[O] and
socket_vector[l]. The sys/socket.h include file contains definitions for socket
domains, types, and protocols.

Not all protocol families support the socketpair() function.

Functions

socketpair(2)

Return Values

Errors

Upon successful completion, this function returns a value of 0 (zero). Otherwise, -1
is returned and errno is specified to indicate the error.

If the socketpair() function fails, errno may be set to one of the following values:

[EMFILE] The current process has too many open file descriptors.

[EAFNOSUPPORT]
The addresses in the specified address family cannot be used to
create this socket pair.

[EPROTONOSUPPORT]
The specified protocol cannot be used in this system.

[EOPNOTSUPP]
The specified protocol does not permit creation of socket pairs.

[EFAULT] The socket_vector array is not located in a writable part of user
address space.

Related Information

Functions: socket(2)

1-749

OSF/1 Programmer's Reference
sqrt(3)

sqrt, cbrt

Purpose Computes square root and cube root functions

Library
Math Library (libm.a)

Synopsis #include <math.h>

double sqrt (
double x);

Parameters

Description

Notes

double cbrt (
doublex);

x Specifies some double value.

The sqrt() and cbrt() functions compute the square root and cube root,
respectively, of their parameters.

AES Support Level: Full use (sqrt())

Return Values

1-750

The sqrt() function returns the square root of x. The value of x must be positive. If
xis NaN, NaN is returned. Otherwise, NaN is returned and errno is set to indicate
the error.

The cbrt() function returns the cube root of x.

Functions

sqrt(3)

Errors

If the sqrt() function fails, ermo may be set to the following value:

[EDOM] The value of the x parmeter is negative.

Related Information
Functions: exp(3), isnan(3)

1-751

OSF/1 Programmer's Refere11ce
stat(2)

stat, f stat, ls tat

Purpose Provides information about a file

Synopsis #include <sys/stat.h>

#include <sys/types.h>

Parameters

Description

1-752

int stat(

int lstat(

const char *path,
struct stat *buffer);

const char *path,
struct stat *buffer);

int fstat(

path

filedes

buffer

intjiledes,
struct stat *buffer);

Specifies the pathname identifying the file.

Specifies the file descriptor identifying the open file.

Points to the stat structure in which information is returned. The
stat structure is described in the sys/stat.h header file.

The stat() function obtains information about the file named by the path
parameter. Read, write, or execute permission for the named file is not required,
but an directories listed in the pathname leading to the file must be searchable. The
file information is written to the area specified by the buffer parameter, which is a
pointer to a stat structure, defined in sys/stat.h.

The fstat() function is like the stat() function except that the information obtained
is about an open file referenced by thefiledes parameter.

The lstat() function is like the stat() function except in the case where the named
file is a symbolic link. In this case, the lstat() function returns information about
the link, while the stat() and fstat() functions return information about the file the
link references. In the case of a symbolic link, the stat() functions set the st_size
field of the stat structure to the length of the symbolic link, and sets the st_mode
field to indicate the file type.

Notes

Functions

stat(2)

The stat(), Istat() , and fstat() functions update any time-related fields associated
with the file before writing into the stat structure.

AES Support Level: Full use (stat(), fstat())
Trial use (lstat())

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the stat() or lstat() function fails, errno may be set to one of the following
values:

[ENOENT] The file named by the path parameter does not exist or is an empty
string.

[ELOOP] Too many links were encountered in translating path.

[ENAMETOOLONG]
The length of the path parameter exceeds P ATH_MAX or a
pathname component is longer than NAME_MAX.

[EACCES] Search permission is denied for a component of the path parameter.

[ENOTDIR]

[EFAULT]

A component of the path parameter is not a directory.

Either the buffer parameter or the path parameter points to a location
outside of the allocated address space of the process.

If the fstat() function fails, errno may be set to one of the following values:

[EBADF] The filedes parameter is not a valid file descriptor.

[EFAULT] The buffer parameter points to a location outside of the allocated
address space of the process.

Related Information

Functions: chmod(2), chown(2), link(2), mknod(2), mount(3), open(2), pipe(2),
symlink(2), utime(2)

1-753

OSF/1 Programmer's Reference

statfs{2)

statfs, fstatfs, ustat

Purpose Gets file system statistics

Synopsis #include <sys/statfs.h>

Parameters

Description

1-754

int statfs(
char *path,
struct statfs *buffer,
int length);

int fstatfs(
int jile_descriptor,
struct statfs *buffer,
int length);

#include <sys/types.h>
#include <ustat.h>

int ustat(
dev_t device,
struct ustat *buffer);

path Specifies any file within the mounted file system.

file_descriptor

buffer

length

device

Specifies a file descriptor obtained by a successful open() or fcntl()
function.

Points to a statfs buffer to hold the returned information for the
statfs() or fstatfs() function; points to a ustat buffer to hold the
returned information for the ustat() function.

Specifies the size of the buffer pointed to by the buffer parameter.

Specifies the ID of the device. It corresponds to the st_rdev member
of the structure returned by the stat() function.

The statfs() and fstatfs() functions return information about a mounted file
system. The returned information is in the format of a statfs structure, defined in
the sys/statfs.h header file.

Functions

statfs(2)

The ustat() function also returns information about a mounted file system. The
returned information is in the format of a ustat structure, defined in the ustat.h
header file. This function is superseded by the statfs() and fstatfs() functions.

Return Values

Errors

Upon successful completion, 0 (zero) is returned. Otherwise, -1 is returned, and
errno is set to indicate the error.

If the statfs() function fails, errno may be set to one of the following values:

[EFAULT] The buffer or path parameter points to a location outside of the
allocated address space of the process.

[ENOTDIR] A component of the path prefix of the path parameter is not a
directory.

[EINV AL] The path parameter contains a character with the high-order bit set.

[ENAMETOOLONG]
The length of a component of the path parameter exceeds
NAME_MAX characters, or the length of the path parameter
exceeds PATH_MAX characters.

[ENOENT] The file referred to by the path parameter does not exist.

[EACCES] Search permission is denied for a component of the path prefix of
the path parameter.

[BLOOP] Too many symbolic links were encountered in translating the path
parameter.

[EIO] An 1/0 error occurred while reading from or writing to the file
system.

If the fstatfs() or ustat() function fails, errno may be set to one of the following
values:

[EBADF]

[EIO]

[EFAULT]

Thefile_descriptor parameter is not a valid file descriptor.

An 1/0 error occurred while reading from the file system.

The buffer parameter points to an invalid address.

Related Information

Functions: stat(2)

1-755

OSF/1 Programmer's Reference
stime(3)

stime

Purpose Sets the system-wide time-of-day clock

Library
Standard C Library (libc.a)

Synopsis #include <sys/time.h>

int stime(

Parameters

Description

tz

long *tz);

Points to the value of time, to be interpreted as the number of
seconds since 00:00:00 GMT on January 1, 1970.

The stime() function sets the time and date of the system.

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the stime() function fails, errno is set to one of the following values:

[EPERM] The calling process does not have the appropriate system privilege.

Related Information

Functions: gettimeofday(2), gettimer(3)

1-756

strftime

Purpose

Library

Synopsis

Parameters

Description

Functions
strftime(3)

Converts date and time to string

Standard C Library (libc.a)

#include <time.h>

size_t strftime(
char *s,
size_t maxsize,
const char *format,
const struct tm *timeptr);

s

maxsize

format

timeptr

Points to the array containing the specified date and time string.

Specifies the maximum number of characters to be written to the
array pointed to by the s parameter.

Points to a sequence of control characters (refer to the foregoing
list) that specify the format of the date and time string pointed to by
the s parameter.

Points to a type tm structure that contains broken-down time
information.

The strftime() function places characters into the array pointed to by the s
parameter as controlled by the string pointed to by the format parameter. The string
pointed to by the format parameter is a multibyte character sequence, beginning
and ending in its initial shift state.

Local time zone information is used as though the strftime() function called the
tzset() function. Time information used in this subroutine is fetched from space
containing type tm structure data, which is defined in the time.h include file. The
type tm structure must contain the time information used by this subroutine to
construct the time and date string.

1-757

OSF/1 Programmer's Reference
strftime(3)

1-758

The format string consists of zero or more conversion specifications and ordinary
multibyte characters. A conversion specification consists of a % (percent)
character followed by a character that determines how the conversion specification
constructs the formatted string.

All ordinary multibyte characters (including the terminating null character) are
copied unchanged into the s array. When copying between objects that overlap
takes place, behavior of this function is undefined. No more than the number of
characters specified by the maxsize parameter are written to the array. Each
conversion specification is replaced by appropriate characters as described in the
following list. The appropriate characters are determined by the LC_TIME
category of the current locale and by values specified by the type tm structure
pointed to by the timeptr parameter.

%a Is replaced by the abbreviated weekday name appropriate for the locale

%A Is replaced by the full weekday name appropriate for the locale

% b Is replaced by the abbreviated month name appropriate for the locale

% B Is replaced by the full month name appropriate for the locale

%c Is replaced by the date and time representation appropriate for the locale

%d Is replaced by the day of the month as a decimal number [01, 31]

%D Is replaced by the date (%m/%d/%y)

% h Is replaced by the abbreviated month name appropriate for the locale

%H Is replaced by the hour (24-hour clock) as a decimal number [00, 23]

%1 Is replaced by the hour (12-hour clock) as a decimal number [01, 12]

% j Is replaced by the day of the year as a decimal number [001, 366]

%m Is replaced by the month as a decimal number [01, 12]

%M Is replaced by the minute as a decimal number [00, 59]

%n Is replaced by a newline character

%p Is replaced by the locale equivalent of either a.m. or p.m.

%r Is replaced by the time in a.m./p.m. notation according to British/US
conventions (%1:%M:%S\ [AMIPM])

%S Is replaced by the second as a decimal number [00, 61]

% t Is replaced by a tab character

%T Is replaced by the time (%H:%M:%S)

% U Is replaced by the week number of the year (Sunday as the first day of the
week) as a decimal number [00, 53]

Notes

Functions

strftime(3)

%w Is replaced by the weekday as a decimal number [O(Sunday), 6)

% W Is replaced by the week number of the year (Monday as the first day of the
week) as a decimal number [00, 53]

%x Is replaced by the date representation appropriate for the locale

%X Is replaced by the time representation appropriate for the locale

%y Is replaced by the year without century as a decimal number [00, 99)

% Y Is replaced by the year with century as a decimal number

%Z Is replaced by the time zone name or abbreviation, or by no characters
when no time zone exists

% % Is replaced by %

When a directive is not one of the above, the behavior of this function is undefined.

AES Support Level: Full use

Return Values
When the total number of resulting characters, including the terminating null
character, is not more than maxsize, the strftime() function returns the number of
characters written into the array pointed to by the s parameter. The returned value
does not include the terminating null character. Otherwise, a value of (size_t) 0
(zero) is returned and the contents of the array are undefined.

Related Information

Functions: ctime(3), setlocale(3)

1-759

OSF/1 Programmer's Reference

string(3)

strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup,
strerror, strlen, stmcat, stmcmp, stmcpy,
strpbrk, strrchr, strspn, strstr, strtok, strto:K_r,
strxfrm

Purpose Performs operations on strings

Library
Standard C Library (libc.a)

Synopsis #include <string.h>
char *strcat(

1-760

char *sl,
const char * s2) ;

char *strchr(
const char * s,
int c);

int strcmp(
const char * s I,
const char * s2) ;

int strcoll(
const char * s 1,
const char * s2) ;

char *strcpy(
char *sl,
const char * s2) ;

size_t strcspn(
const char *sl,
const char * s2) ;

char * strdup(
char *sl);

char *strerror(
int ermum);

size_t strlen(
char *s);

char *strncat(
char *sl,
const char * s2,
size_t n);

intstrncmp(
const char *sl,
const char * s2,
size_t n

char *strncpy(
char *sl,
const char *s2,
size_t n);

char *strpbrk(
const char * s 1,
const char *s2);

char *strrchr(
const char *s,
int c) ;

size_t strspn(
const char * sl,
const char * s2) ;

char *strstr(
const char *sl,
const char * s2) ;

char *strtok(
char *sl,
const char * s2) ;

char *strtok_r(
char *sl,
const char * s2,
char **last_string) ;

size_t strxfrm(
char*sl,
const char *s2,
size_t n);

Functions

string(3)

1-761

OSF/1 Programmer's Reference

string(3)

Parameters

Description

1-762

c

errnum

n

s

sl

s2

last_string

Specifies a character expressed as an int data type in functions
strchr() and strrchr().

Specifies an error-number value in the strerror() function.

Specifies the number of characters in a string referenced in the
strncat(), strncmp(), strncpy(), and strncpy() functions.

Specifies a string variable referenced in the strchr(), strlen(), and
strrchr() functions.

Points to a location containing one of two strings referenced in the
strcat(), strcmp(), strcoll(), strcpy(), strcspn(), strncat(),
strncmp(), strncpy(), strpbrk(), strspn(), strstr(), strtok(), and
strxfrm() functions.

Points to a location containing the second of two strings referenced
in the same functions that use the sl parameter.

Points to the first character of the next token.

The string functions copy, compare, and append strings in memory, and determine
such values as location, size, and the existence of strings in memory.

The strcat() function appends a copy of the string pointed to by the s2 parameter,
including the terminating null character, to the end of the string pointed to by the sl
parameter. The beginning character of the string pointed to by the s2 parameter
overwrites the null character at the end of the string pointed to by the sl parameter.
When operating on overlapping strings, the behavior of this function is unreliable.

The strchr() function locates the first occurrence of the integer specified by the c
parameter, which is converted to a char, in the string pointed to by the s parameter.
The terminating null character is treated as part of the string pointed to by the s
parameter.

The strcmp() function compares the string pointed to by the sl parameter to the
string pointed to by the s2 parameter. The sign of a nonzero value returned by
strcmp() is determined by the sign of the difference between the values of the first
pair of bytes (both interpreted as unsigned char) that differ in the two compared
objects.

The strcoll() function compares the string pointed to by the sl parameter with the
string pointed to by the s2 parameter, both interpreted as appropriate to the
LC_COLLATE category of the current locale. The sign of a nonzero value

Functions

string(3)

returned by strcoll() is determined by the relative ordering within the current
collating sequence of the first pair of characters that differ in the objects under
comparison.

The strcpy() function copies the string pointed to by the s2 parameter, including
the terminating null character, to the location pointed to by the sl parameter.
When operating on overlapping strings, the behavior of this function is unreliable.

The strdup() function returns a pointer to a new string that is an exact duplicate of
the string pointed to by the sl parameter. The malloc() function is used to allocate
space for the new string.

The strerror() function maps the error number specified by the errnum parameter
to a language-dependent error message string, and returns a pointer to the string.
The string pointed to by the return value is not modified by the program, but may
be overwritten by a subsequent call to this function. The implementation behaves
as though no other function calls the strerror() function.

The strlen() function returns the number of bytes in the string pointed to by the s
parameter. The string length value does not include the string terminating null
character.

The strcmp() function compares the string pointed to by the sl parameter with the
string pointed to by the s2 parameter. The sign of any nonzero value returned by
strcmp() is determined by the sign resulting from the difference in integer values
of the first character-pair comparison (both converted to unsigned char) in which
the characters are different.

The strncat() function appends n bytes in the string pointed to by the s2 parameter
to the end of the string pointed to by the s 1 parameter. The initial character of the
string pointed to by s2 overwrites the null character at the end of the string pointed
to by sl. The number of characters specified by the n parameter and a terminating
null character are always appended to the string pointed to by the sl parameter.
When operating on overlapping strings, the behavior of this function is unreliable.

The strncpy() function copies no more than the number of characters specified by
the n parameter from the location pointed to by the s2 parameter to the location
pointed to by the sl parameter. Characters following a null character are not
copied. When operating on overlapping strings, the behavior of this function is
unreliable. When the location pointed to by the s2 parameter is a string whose
character length is less than the value specified by the n parameter, null characters
are appended to the sl string until n characters are contained in the string.

1-763

OSF/1 Programmer's Reference

string(3)

1-764

The strpbrk() function scans the string pointed to by the sl parameter for the first
occurrence of any character in the string pointed to by the s2 parameter.

The strrchr() function locates the last occurrence of the integer specified by the c
parameter, which is converted to a char value, in the string pointed to by the s
parameter. The terminating null character is treated as a part of the string pointed
to by the s parameter.

The strspn() function computes the length of the maximum initial segment of the
string pointed to by the sl parameter, which consists entirely of characters from the
string pointed to by the s2 parameter.

The strcspn() function computes the byte length of the maximum initial segment
of the string pointed to by the sl parameter, which consists entirely of characters
that are not from the string pointed to by the s2 parameter.

The strstr() function locates the first occurrence in the string pointed to by the sl
parameter of the sequence of bytes in the string pointed to by the s2 parameter,
excluding the terminating null character.

The strtok() function expects that the string pointed to by the sl parameter
consists of multiple tokens separated by one or more characters that match those in
a separator string pointed to by the s2 parameter. A sequence of calls to the
strtok() function breaks the sl string into a sequence of expected tokens, each of
which is delimited by one or more characters from the s2 string.

The initial call to function strtok() in the token-sequence search specifies the sl
parameter as the address of the token string. This call is followed by subsequent
calls that have a null pointer as the value of the sl parameter. The separator string
pointed to by the s2 parameter may be different in every call to this function.

The first call in the token-sequence search tests every character in the sl string for
any character that is not contained in the current separator string pointed to by the
s2 parameter. When no matching character is found, there are no tokens in that
string and a null pointer is returned. When a nonseparator character is found, it
becomes the starting character of the next token.

The strtok() function then searches for a character that matches any character in
the current separator string pointed to by the s2 parameter. When no matching
character is found, the current token extends to the end of the string pointed to by
the sl parameter and subsequent searches for a token return a null pointer. When a
matching separator-string character is found, it is overwritten by the null character,
which terminates the current token. The strtok() function saves a pointer to the
next character, which is the character from which the next search for a token starts.

Notes

Functions

string(3)

Each subsequent call having a null pointer as the value of the the sl parameter
begins a search at the character pointed to by the saved pointer and behaves as
described above.

The implementation behaves as though no function calls the strtok() function.

The strtok_r() function is the reentrant version of strtok(). Upon successful
completion, the first character of the next token is stored in **last_string, and a
value of 0 (zero) is returned.

The strxfrm() function transforms the string pointed to by the sl parameter and
places the result in the address specified by s2. When the strcmp() function is
applied to two transformed strings, a value greater than, equal to, or less than 0
(zero) is returned. The returned value corresponds to the same value that is
returned when the strcoll() function is applied to the same two original
transformed strings. No more than n characters are placed in the location pointed
to by the sl parameter, including the terminating null character. When n is 0
(zero), the sl parameter is a null pointer. When operating on overlapping strings,
the behavior of this function is unreliable.

AES Support Level: Full use (strcat(), strchr(), strcmp(), strcoll(), strcpy(),
strcspn(), strerror(), strlen(), strncat(), strncmp(),
strncpy(), strpbrk(), strrchr(), strspn(), strstr(),
strtok(), strxfrm())

Return Values

Upon successful completion, the strcat(), strcpy(), strncat(), and strncpy()
functions return a pointer to the resulting string. Otherwise these functions return a
null pointer.

Upon successful completion, the strchr() and strrchr() functions return a pointer
to the matching character in the scanned string, When the character specified by
parameter c is not found, a null pointer is returned.

Upon successful completion, the strcmp(), strcoll(), and strncmp() functions
return an integer whose value is greater than, equal to, or less than 0 (zero),
according to whether the sl string is greater than, equal to, or less than the s2
string. When a successful comparison can not be made, these functions return 0
(zero).

1-765

OSF/1 Programmer's Reference

string(3)

Errors

Upon successful completion, the strcspn(), strnspn(), and strxfrm() functions
return the length of the string segment. Otherwise, (size_t)-1 is returned and errno
is set to indicate the error.

Upon successful completion, the strerror() function returns a pointer to the
generated message string. If the error number is not valid, errno is set to
[EINVAL].

Upon successful completion, the strlen() function returns the number of characters
in the string to which the s parameter points. Otherwise, (size_t)-1 is returned and
errno is set to indicate the error.

Upon successful completion, the strpbrk() function returns a pointer to the
matched character. When no character in the string pointed to by the s2 parameter
occurs in the string pointed to by the sl parameter, a null pointer is returned and
the value of errno remains unchanged. On error, the strpbrk() function returns a
null pointer and sets errno to indicate the error.

Upon successful completion, the strstr() function returns a pointer to the located
string or a null pointer when the string is not found. When the s2 parameter points
to a string having 0 (zero) length, the strstr() function returns the string pointed to
by parameter sl. On error, a null pointer is returned and errno is set to indicate the
error.

Upon successful completion, the strtok() function returns a pointer to the first
character of the parsed token in the string. When there is no token in the string, a
null pointer is returned.

If one of the string functions fails, errno may be set to the following value:

[EINVAL] The string pointed to by the sl or s2 parameter contains characters
outside the domain of the collating sequence, or the value of the
errnum parameter used in the strerror() function is not a valid
message number.

Related Information

Functions: memccpy(3), setlocale(3), swab(3)

1-766

Functions

swab{3)

swab

Purpose Swaps bytes

Library
Standard C Library (Jibe.a)

Synopsis #include <string.h>

Parameters

Description

Notes

void swab(
const char *src,
char *dest,
int nbytes) ;

src

de st

nbytes

Points to the location of the string to copy.

Points to the location to which the resulting string is copied.

Specifies the number of even nonnegative bytes to be copied. The
nbytes parameter should have an even nonnegative value. When the
nbytes parameter is odd positive, the swab() function uses nbytes-1
instead. When the nbytes parameter is negative, the swab() function
does nothing.

The swab() function copies the number of bytes specified by the nbytes parameter
from the location pointed to by the src parameter to the array pointed to by the dest
parameter, exchanging adjacent even and odd bytes.

AES Support Level: Trial use

Return Values
The swab() function returns no values.

Related Information

Functions: memccpy(3), string(3)

1-767

OSF/1 Programmer's Reference
swapon(2)

swapon

Purpose Adds a swap device for interleaved paging and swapping

Synopsis swapon(

Parameters

Description

char *path,
int.flags,
int lowat,
int hiwat);

path Specifies the file or block device to be made available.

flags Specifies a flag. Only one flag is currently supported:

MS_PREFER
The specified path becomes the preferred paging file or
device.

lowat Specifies the low water mark.

hiwat Specifies the high water mark.

The swapon() function makes a file or block special device available to the system
for aliocation of paging and swapping space.

The lowat and hiwat parameters specify the low water and high water. inarks that
the paging file will float be.tween. If the low water mark ts 0 (zero), then the file
will not shrink after paging space is freed. If the high water mark is 0 (zero), then
the file will grow without bounds. These parameters are not used for swapping
devices. The size of the swap area on the block device is calculated at the time the
device is first made available for swapping.

The calling process must have superuser privilege to call the swapon() function.

Return Values

1-768

Upon successful completion, the swapon() function returns a value of 0 (zero). If
an error has occurred, -1 is returned and errno is set to indicate the error.

Errors

Functions

swapon{2)

If the swapon() function fails, errno may be set to one of the following values:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set, the
device was not specified, the device configured by the path
parameter was not configured into the system as a swap device, or
the device does not allow paging.

[ENAMETOOLONG]
A component of a pathname exceeded NAME_MAX characters, or
an entire pathname exceeded PATH_MAX characters.

[ENOENT] The named file or device does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[BLOOP] Too many symbolic links were encountered in translating the
pathname.

[EPERM] The caller does not have appropriate privilege.

[EBUSY] The file or device specified by the path parameter has already been
made available for swapping.

[ENXIO] The major device number of the path parameter is out of range (this
indicates no device driver exists for the associated hardware).

[EIO] An 1/0 error occurred while opening the swap device.

[EFAULT] The path parameter points outside the process' allocated address
space.

[EROFS] An attempt was made to activate a paging file on a read-only file
system.

Related Information

Commands: swapon(8), config(8)

1-769

OSF/1 Programmer's Reference
symlink(2)

symlink

Purpose Makes a symbolic link to a file

Synopsis #include <symlink.h>

int symlink (

Parameters

Description

1-770

path I

path2

const char *pathl ,,
const char *path2);

Specifies the contents of the symbolic link to create.

Names the symbolic link to be created.

The symlink() function creates a symbolic link with the name specified by the
path2 parameter which refers to the file named by the pathl parameter.

Like a hard link (described in the link() function), a symbolic link allows a file to
have multiple names. The presence of a hard link guarantees the existence of a file,
even after the original name has been removed. A symbolic link provides no such
assurance; in fact, the file named by the pathl parameter need not exist when the
link is created. Unlike hard links, a symbolic link can cross file system boundaries.

When a component of a pathname refers to a symbolic link rather than a directory,
the pathname contained in the symbolic link is resolved. If the pathname in the
symbolic link starts with a I (slash), the symbolic link pathname is resolved relative
to the process root directory. If the pathname in the symbolic link does not start
with a I (slash), the symbolic link pathname is resolved relative to the directory that
contains the symbolic link.

If the symbolic link is the last component of the original pathname, remaining
components of the original pathname are appended to the contents of the link and
pathname resolution continues.

The symbolic link pathname may or may not be traversed, depending on which
function is being performed. Most functions traverse the link.

Notes

Functions

symlink(2}

The functions which refer only to the symbolic link itself, rather than to the object
to which the link refers, are:

link() An error will be returned if a symbolic link is named by the path2
parameter.

lstat() If the file specified is a symbolic link, the status of the link itself is
returned.

mknod() An error will be returned if a symbolic link is named as the path
parameter.

readlink() This call applies only to symbolic links.

remove() A symbolic link can be removed by invoking the remove()
function.

rename() If the file to be renamed is a symbolic link, the symbolic link is
renamed. If the new name refers to an existing symbolic link, the
symbolic link is destroyed.

rmdir() An error will be returned if a symbolic link is named as the path
parameter.

symlink() An error will be returned if the symbolic link named by the path2
parameter already exists. A symbolic link can be created that refers
to another symbolic link; that is, the pathl parameter can refer to a
symbolic link.

unlink() A symbolic link can be removed by invoking unlink().

Search access to the symbolic link is required to traverse the pathname contained
therein. Normal permission checks are made on each component of the symbolic
link pathname during its resolution.

AES Support Level: Trial use

Return Values

Upon successful completion, the symlink() function returns a value of 0 (zero). If
the symlink() function fails, a value of -1 is returned and ermo is set to indicate
the error.

1-771

OSF/1 Programmer's Reference

symlink(2)

Errors

If the symlink() function fails, errno may be set to one of the following values:

[EEXIST] The path specified by the path2 parameter already exists.

[EACCES] The requested operation requires writing in a directory with a mode
that denies write permission, or search permission is denied on a
component of path2.

[EROFS] The requested operation requires writing in a directory on a read­
only file system.

[ENOSPC] The directory in which the entry for the symbolic link is being
placed cannot be extended because there is no space left on the file
system containing the directory.

[EDQUOT] The directory in which the entry for the symbolic link is being
placed cannot be extended because the user's quota of disk blocks
on the file system containing the directory has been exhausted.

[ENOENT] The path2 parameter points to a null pathname, or a component of
path2 does not exist.

[ENOTDIR] A component of path2 is not a directory.

[ENAMETOOLONG]
The length of the pathl parameter or path2 parameter exceeds
PATH_MAX, or a pathname component of path2 is longer than
NAME_MAX.

Related Information

1-772

Functions: link(2), readlink(2), unlink(2)

Commands: ln(l)

Functions
sync(2)

sync

Purpose Updates all file systems

Synopsis void sync (void);

Description

The sync() function causes all information in memory that should be on disk to be
written out. The writing, although scheduled, is not necessarily complete upon
return from the sync() function. Types of information to be written include
modified superblocks, inodes, data blocks, and indirect blocks.

The sync() function should be used by programs that examine a file system, such
as the df command and the fsck command.

Related Information

Functions: fsync(2)

Commands: sync(l)

1-773

OSF/1 Programmer's Reference

sysconf(3)

sysconf

Purpose Gets configurable system variables

Library
Standard C Library (Jibe.a)

Synopsis #include <unistd.h>

long sysconf (

Parameters

Description

1-774

int name);

name Specifies the system variable to be queried.

The sysconf() function provides a method for determining the current value of a
configurable system limit or whether optional features are supported.

The set of system variables from the limits.h or unistd.h include file that are
returned by the sysconf() function, and the symbolic constants, defined in the
unistd.h header file that correspond to the name parameter, are as follows:

Variable

ARG_MAX

CHILD_MAX

clock ticks/second

NGROUPS_MAX

OPEN_MAX

_POSIX_JOB_CONTROL

_POSIX_SAVED_IDS

POSIX VERSION

PASS_MAX

XOPEN VERSION

Value of name

_SC_ARG_MAX

_SC_CHILD_MAX

_SC_CLK_TCK

_SC_NGROUPS_MAX

_SC_OPEN_MAX

_SC_JOB_CONTROL

_SC_SAVED_IDS

SC VERSION

_SC_PASS_MAX

_SC_XOPEN_ VERSION

Notes

Variable

ATEXIT_MAX

PAGE_SIZE

AES_OS_ VERSION

AES Support Level: Full use

Functions

sysconf(3)

Value of name

_SC_ATEXIT_MAX

_SC_PAGE_SIZE

_SC_AES_OS_ VERSION

Return Values

Errors

If the name parameter is an invalid value, the sysconf() function returns -1 and sets
errno to indicate the error. If the variable corresponding to name is undefined, the
sysconf() function returns -1 without changing the value of errno.

If the name parameter is _SC_JOB_CONTROL or _SC_SAVED_IDS, the
sysconf() function returns a nonnegative value.

Otherwise, the sysconf() function returns the current variable value on the system.
The value will not change during the lifetime of the calling process.

If the sysconf() function fails, errno may be set to the following value:

[EINVAL] The value of the name parameter is invalid.

Related Information

Functions: pathconf(3)

1-775

OSF/1 Programmer's Reference
syslog(3)

syslog, openlog, closelog, setlogmask

Purpose Controls the system log

Library
Standard C Library (libc.a)

Synopsis #include <syslog.h>

Parameters

1-776

int openlog (
char *id,
int log_option,
intfacility);

int syslog (
int priority,
char *message [, value ...]);

int closelog (void);
int setlogmask(

int mask_priority);

id Specifies a string that is attached to the beginning of every message.

log_option Specifies logging options. Values of the log_option parameter
include:

Log the process ID with each message. This option
is useful for identifying daemons.

LOG_CONS
Send messages to the console if unable to send them to
syslogd. This option is useful in daemon processes that have
no controlling terminal.

LOG_NDELAY
Open the connection to syslogd immediately, instead of
when the first message is logged. This option is useful for
programs that need to manage the order in which file
descriptors are allocated.

facility

priority

Functions

syslog(3)

LOG_NOWAIT
Log messages to the console without waiting for child
processes that are forked. Use this option for processes that
enable notification of termination of child processes through
SIGCHLD; otherwise, the syslog() function may block,
waiting for a child process whose exit status has already
been collected.

Specifies the facility that generated the message, which is one of the
following:

LOG_KERN
Messages generated by the kernel. These cannot be
generated by any user processes.

LOG_USER
Messages generated by user processes. This is the default
facility when none is specified.

LOG_MAIL
Messages generated by the mail system.

LOG_DAEMON
Messages generated by system daemons.

LOG_AUTH
Messages generated by the authorization system: login, su,
and so on.

LOG_LPR
Messages generated by the line printer spooling system.

LOG_RFS
Messages generated by remote file systems.

LOG_LOCALO through LOG_LOCAL 7
Reserved for local use.

Messages are tagged with codes indicating the type of priority for
each. The priority parameter is encoded as a facility (as listed
above), which describes the part of the system generating the
message, and as a level, which indicates the severity of the message.
The level of severity is selected from the following list:

A panic condition reported to all users.

LOG_ALERT
A condition to be corrected immediately; for example, a
corrupted database.

1-777

OSF/1 Programmer's Reference

syslog(3)

Description

1-778

LOG_CRIT
Critical conditions; for example, hard device errors.

LOG_ERR
Errors.

LOG_ WARNING
Warning messages.

LOG_NOTICE
Not an error condition, but a condition requiring special
handling.

LOG_INFO
General information messages.

LOG_DEBUG
Messages containing information useful to debug a program.

message [value ...]
Similar to the printf fmt string, with the difference that %m is
replaced by the current error message obtained from errno.

mask_priority Specifies a bit mask used to set the new log priority mask and return
the previous mask. The LOG_MASK and LOG_UPTO macros in
the sys/syslog.h file are used to create the priority mask.

The syslog() function writes messages to the system log maintained by the syslogd
daemon.

The message parameter is similar to the printf() fmt string, with the difference that
%mis replaced by the current error message obtained from errno. A trailing new
line can be added to the message if needed. The value parameters are the same as
the value parameters of the printf() function.

The syslogd daemon reads messages and writes them to the system console or to a
log file, or forwards them to the syslogd daemon on the appropriate host.

If syslog() cannot pass the message to syslogd, it writes the message on
/dev/console, provided the LOG_CONS option is set.

If special processing is required, the openlog() function can be used to initialize
the log file. The id parameter contains a string that is attached to the beginning of
every message. The facility parameter encodes a default facility from the previous
list to be assigned to messages that do not have an explicit facility encoded.

The closelog() function closes the log file.

Functions

syslog(3)

The setlogrnask() function uses the bit mask in the mask_priority parameter to set
the new log priority mask and returns the previous mask. Logging is enabled for the
levels indicated by the bits in the mask that are set and is disabled where the bits
are not set. The default mask allows all priorities to be logged. If the syslog()
function is called with a priority mask that does not allow logging of that level of
message, then the function returns without logging the message.

Return Values
The syslog() function returns -1 if either the priority mask excludes this message
from being logged, or if an error occurs and it is impossible to send the message to
the syslogd daemon or to the system console.

Related Information

Functions: profi.1(2)

Commands: cc(l)

1-779

OSF/1 Programmer's Reference
system(3)

system

Purpose Executes a shell command

Library
Standard C Library (libc.a)

Synopsis #include <stdio.h>
#include <stdlib.h>

Parameters

Description

Notes

int system (
const char *string);

string Specifies a valid sh shell command.

The system() function passes the string parameter to the sh command, which
interprets string as a command and executes it.

The system() function invokes the fork() function to create a child process that in
tum uses the exec function to run sh, which interprets the shell command contained
in the string parameter. The current process waits until the shell has completed,
then returns the exit status of the shell.

AES Support Level: Full use

Return Values

1-780

Upon successful completion, the system() function returns the exit status of the
shell. Otherwise, the system() function returns a value of -1 and sets errno to
indicate the error. Exit status 127 indicates that the shell could not be executed.

Errors

Functions
system(3)

If the system() function fails, ermo may be set to one of the following values:

[EAGAIN] The system-imposed limit on the total number of processes under
execution, systemcwide or by a single user ID, would be exceeded.

[EINTR] The system() function was interrupted by a signal which was
caught.

[ENOMEM] There is not enough space left for this process.

Related Information

Functions: exec(2), exit(2), fork(2), wait(2)

Commands: sh(l)

1-781

OSF/1 Programmer's Reference

t_accept (3)

t_accept

Purpose Accepts a connect request

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

1-782

int t_accept(
intfd,
int resfd,
strqct t_call *call) ;

The t_accept() function can only be called in the T_INCON transport provider
state. The following table summarizes the relevance of input and output parameters
before and after t_accept() is called:

Parameter Before Call After Call

f d y n
resfd y n
call->addr.maxlen n n
call->addr.len y n
call->addr.buf o(o) n
call->opt.maxlen n n
call->opt.len y n
call->opt.buf o(o) n
call->udata.maxlen n n
call->UdE1ta.len y n
call->udata.buf o(o) n
call->sequence y n

Notes to table:
y
n
0

(o)

This is a meaningful parameter.
This is not a meaningful parameter.
This is an optional parameter.
The content of the object pointed to by o is optional.

Functions

t_accept(3)

fd Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint from which the connect
indication arrived.

resfd Specifies the local transport endpoint where the connection is to be
established. A calling transport user may accept a connection on
either the same, or on a different local transport endpoint than the
one on which the connect indication arrived.

call

Before the connection can be accepted on the same transport
endpoint (resfd == fd), the calling transport user must have
responded to any previous connect indications received on that
same transport endpoint using the t_accept() or t_snddis()
functions. Otherwise, the t_accept() function fails and sets t_errno
to [TBADF].

When a different transport endpoint (resfd != fd) is specified, the
transport endpoint must be bound to a protocol address with a call to
the t_bind() function. When the address bound to the resfd
parameter is the same as that bound to the fd parameter, the
req->qlen parameter of t_bind() must be set to 0 (zero).

Also, the transport provider state must be T_IDLE, (refer to the
t_getstate() function) before the t_accept() function is called. For
both types of transport endpoint, t_accept() fails and sets t_errno
to [TLOOK] when there are indications, such as connect or
disconnect, waiting to be received at that endpoint.

Points to a type t_call structure used to store information required
by the transport provider to complete the connection. The t_call
structure has the following four members:

struct netbuf addr
Specifies a buffer for protocol address information sent by
the calling transport user. The type netbuf structure
referenced by this member is defined in the xti.h include file.
This structure, which is used to define buffer parameters, has
the following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of data written to the
buffer.

char *buf
Points to the buffer location.

1-783

OSF/1 Programmer's Reference

t_accept (3)

Description

struct netbuf opt
Specifies protocol-specific parameters associated with the
calling transport user.

struct netbuf udata
Specifies parameters of user data returned to the calling
transport user from the remote transport user.

int sequence
Specifies a unique identification number used to identify the
previously received connect indication.

The values of parameters specified by call->opt and the syntax of
those values are protocol-specific.

The call->udata parameters enable the remote transport user to
send data to the calling transport user. The amount of user data must
not exceed the limits specified by the transport provider as returned
in the info->connect parameter of the t_open() and t_getinfo()
functions. When the call->udata.len parameter is 0 (zero), no data
is sent to the calling transport user.

Data specified by all call->udata.maxlen parameters are
meaningless.

The call->sequence parameter is a value returned by the t_listen()
function that uniquely associates the response with a previously
received connect indication.

The t_accept() function is an XTI connection-oriented service function that is
issued by a calling transport user to accept a connect request after a connect
indication has arrived. Structures of types t_call and netbuf, which are defined in
the xti.h include file, are used by this function.

Return Values

1-784

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

Errors

Functions

t_accept (3)

If the t_accept() function fails, t_errno may be set to one of the following:

[TBADF] The fd or resfd file descriptor does not refer to a transport endpoint,
or the user is illegally accepting a connection on the same transport
endpoint on which the connect indication arrived.

[TOUTS TATE]
The t_accept() function was called in the wrong sequence at the
transport endpoint referenced by the fd parameter, or the transport
endpoint referred to by the re sf d parameter is not in the appropriate
state.

[TACCES] The user does not have permission to accept a connection on the
responding transport endpoint or to use the specified options.

[TBADOPT] The specified options were in an incorrect format or contained
illegal information.

[TBADDATA]
The amount of user data specified was not within the bounds
allowed by the transport provider.

[TBADADDR]
The specified protocol address was in an incorrect format or
contained illegal information.

[TBADSEQ] An invalid sequence number was specified.

[TLOOK] An asynchronous event has occurred on the transport endpoint
referenced by the fd parameter and requires immediate attention.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_connect(3), t_getstate(3), Uisten(3), t_open(3), t_optmgmt(3),
t_rcvconnect(3)

1-785

OSF/1 Programmer's Reference

t_alloc(3)

t_alloc

Purpose Allocates a library structure

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

1-786

char *t_alloc(
intfd,
int struct_type,
int.fields) ;

The t_alloc() function can be called in any transport provider state except
T_UNINIT. (If called in T_UNIT, the function returns the TBADF error and an
invalid fd). The following table summarizes the relevance of input and output
parameters before and after t_alloc() is called:

Notes to table:
y
n

Parameters Before Call After Call

f d y n
struct_type y n
fields y n

This is a meaningful parameter.
This is not a meaningful parameter.

fd Specifies a file descriptor that identifies the local transport endpoint.
Because the length of the allocated buffer is based on size
information that is returned to the user on a call to the t_open() and
t_getinfo() functions, the fd parameter must refer to the transport
endpoint through which a newly allocated structure passes.

struct_type Specifies the structure type for the function for which memory is to
be allocated; the struct_type parameter must specify one of the
symbolic names listed in the Symbolic Name column of the
following table.

Functions

t_alloc(3)

Symbolic Name Structure Type Using Function

T_BIND_STR struct t_bind t_bind()
T_CALL_STR struct t_call t_accept(),

t_connect(), t_listen(),
t_rcvconnect(),
t_snddis()

T _OPTMGMT _STR struct t_optmgmt t_optmgmt()
T_DIS_STR struct t_discon t_rcvdis()
T _UNITDATA_STR struct t_unitdata t_rcvudata(),

t_sndudata()
T _UDERROR_STR struct t_uderr t_rcvuderr()
T_INFO_STR struct Unto t_info()

fields

The structures listed in the Structure Type column of the preceding
table are referenced as a parameter in one or more of the various
XTI transport service functions. Each structure type, except struct
t_info, contains at least one member of structure type struct netbuf,
which is defined in the xti.h include file. For each structure type in
the preceding table, you may specify that the buffer for the struct
netbuf member should be allocated as well. The length of the buffer
allocated for the referenced structure member depends on protocol­
specific size limits returned as info member information of the
t_open() and t_getinfo() functions. Refer to the description of the
fields parameter for the relevant sizes returned in info.

Specifies buffers for t_info type structures that are allocated for
members of structures named by the struct_type parameter for a
given function. The following table lists the symbolic name that
must be specified for the fields parameter, identifies the t_info
structure member that is the source of relevant size information, and
lists the XTI function structure reference for which t_info Member
memory space is reserved. The value of this parameter must be the
bitwise logical OR of any of the symbolic names listed in the
Symbol Name column.

1-787

OSF/1 Programmer's Reference

t_alloc(3)

1-788

Symbol Unto Structure
Name Member Reference

T_ADDR addr Member addr of structures t_blnd,
t_call, t_unitdata, t_underr.

T_OPT options Member opt of structures
t_optmgmt, t_call, t_unltdata,
t_underr.

T_UDATA tsdu Member udata of structures t_call,
t_discon, t_unitdata.

For struct_type T _CALL_STR, size is
the greater value of members
connect and discon of structure
Unto.

For struct_type T _DIS_STR, size is
the value of member discon of
structure t_info.

For struct_type T _UNITDATA_STR,
size is the value of member tsdu of
structure t_info.

T_ALL addr, options,
tsdu All relevant members of the specified

structures.

For each field type specified by the fields parameter, the t_alloc() function reserves
function memory for the associated buffer. Additionally, its len member is set to 0
(zero) and its buf pointer and maxlen members are initialized.

When the size value associated with any specified t_info structure member is -1 or
-2 (see the t_open() or t_getinfo() functions), the t_alloc() function can not
determine the size of the buffer, causing failure. On failure, t_errno is set to
[TSYSERR] and errno is set to [EINVAL]. For any structure member not specified
by this parameter, its buf member is set to the null pointer and its maxlen member
is set to 0 (zero).

Description

Fuhctions
t_alloc(3)

The t_alloc() XTI memory utility function is used to dynamically allocate memory
for structures required by various XTI transport interface functions. The structure
to allocate is specified by a structure symbolic name used as a mnemonic. In most
cases, the mnemonic is similar to the name of the corresponding function in which
the structure is used.

The t_alloc() function allocates memory for the named structure as well as for
other buffers referenced by the named structure. Use of this function to allocate
structures ensures compatibility with the corresponding XTI transport interface
functions in which the allocated structures are used.

Return Value

Errors

Upon successful completion, this function returns a pointer to the newly allocated
structure. Upon failure, a null pointer is returned.

If the t_alloc() function fails, t_errno may be set to one of the following values:

[TBADF] The fd file descriptor does not refer to a valid transport endpoint.

[TSYSERR] A system error occurred during execution of this function.

[TNOSTRUCTYPE]
An unsupported structure type is specified.

Related Information

Functions: t_free(3), t_getinfo(3), t_open(3)

1-789

OSF/1 Programmer's Reference
t_bind{3)

t_bind

Purpose Binds an address to a transport endpoint

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

1-790

int t_bind(
intfd,
struct t_bind *req,
struct t_bind *ret) ;

The t_bind() function can only be called in the T_UNBND transport provider
state. The following table summarizes the relevance of input and output parameters
before and after t_bind() is called:

Parameter Before Call After Call

fd y n
req->addr.maxlen n n
req->addr .len y>= 0 n
req->addr.buf y(y) n
req->qlen Y>=O n
ret->addr.maxlen y n
ret->addr.len n y
ret->addr.buf y (y)
ret->qlen n Y>= O

Notes to table:
y This is a meaningful parameter.
n This is not a meaningful parameter.
(y) The content of the object pointed to by y is meaningful.

fd Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint. More than a single transport
endpoint may be bound to the same protocol address, but only one
protocol address can be bound to a transport endpoint.

req

Functions

t_bind{3)

When a transport user binds more than one transport endpoint to the
same protocol address, only one endpoint can be used to listen for
connect indications associated with that protocol address using the
t_listen() function. Consequently, for a given protocol address, only
one t_bind() function may specify a value greater than 0 (zero) for
the req->qlen parameter. In this way, the transport provider can
identify the transport endpoint that should be notified of an
incoming connect indication is called.

No other transport endpoint may be bound for listening to that same
protocol address when the initial listening endpoint is active, during
data transfer, or during the T_IDLE state. This prevents more than
one transport endpoint, which is bound to the same protocol address,
from accepting any connect indication.

Points to a type t_bind() structure used to define the protocol
address of the caller and to hold the allowable number of
outstanding connect indications in connection-oriented transport
protocol service. An outstanding connect indication is one that has
been passed to the transport provider, but has not been accepted or
rejected. The t_bind() structure has the following two members:

struct netbuf addr
Specifies a buffer for protocol address information sent by
the calling transport user. The type netbuf structure
referenced by this member is defined in the xti.h include file.
This structure, which is used to specify the address to be
bound to the endpoint, has the following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of data written to the
buffer.

char *buf
Points to the buffer location.

unsigned qlen
Specifies the allowable number of outstanding connect
indications in connection-oriented service.

The req parameter is used to request that the protocol address,
pointed to by req->addr.buf be bound to the transport endpoint
specified by thefd parameter. The req->addr.maxlen parameter has
no meaning.

1-791

OSF/1 Programmer's Reference

t_bind(3)

ret

1-792

When the protocol address is not available, or when 0 (zero) is
specified for req->addr.len, the transport provider assigns an
alternate protocol address whenever automatic address generation is
supported. A pointer to the returned alternate protocol address is
specified by req->addr.buf.

When a transport user does not specify a protocol address, the value
0 (zero) is used for req->addr.Jen. When the transport provider
does not support automatic address generation and the value 0
(zero) is specified by req->addr.len as the data buffer length, a
t_bind() call returns the value -1 and sets t_errno to [TNOADDR].

A value greater than 0 (zero) for req->qlen has meaning whenever
it is specified by a transport user expecting other transport users to
call it. When the transport provider can not support the requested
number of allowable outstanding connections, the value returned in
ret->qlen may be different than the one requested.

The req parameter may be specified as a null pointer when a
transport user does not need to use a protocol address for binding.
The req parameter may also be specified as a null pointer when the
protocol address is not significant.

When the protocol addresses pointed to by the req and ret
parameters are not the same, a protocol address different than the
one specified by req has been bound to the transport endpoint by the
transport provider.

When the t_bind() function does not allocate a local transport
protocol address (that is, automatic address generation is not
supported), the protocol address pointed to by the ret parameter is
always the same as the protocol address pointed to by the req
parameter. In this case, values for variables pointed to by this
par!lmeter must be specified before the t_bind() function is called.

Points to a type t_bind() structure. The addr structure member
returned by t_bind() specifies variables ·for the protocol address
actually bound to the transport endpoint specified by the fd
parameter. The bound address may be different than the address
pointed to by the transport user with the req->addr.buf parameter.

The transport user must specify the maximum size in bytes of the
protocol address with the ret->addr.maxlen parameter. On return,
the ret->addr.len parameter specifies the actual number of bytes in
the bound protocol address. When the ret->addr.maxlen parameter
is not large enough to hold the returned protocol address, an error
occurs.

Description

Functions

t_bind(3)

The ret->qlen parameter, which specifies the allowable number of
outstanding connect indications that the transport provider can
support, is meaningful only when initializing connection-oriented
transport provider service.

The t_bind() XTI function is used in connectionless and connection-oriented
transport service to associate a protocol address with the transport endpoint
returned by the t_open() function and to activate that transport endpoint. This
function uses type t_bind() and netbuf structures, which are defined in the xti.h
include file.

When connection-oriented transport service is in effect, and once this function has
been called, the transport provider may begin enqueuing incoming connect
indications or may service a connection request on the transport endpoint.

When connectionless transport service is in effect and once this function has been
called, the transport user may send or receive data units through the transport
endpoint.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_bind() function fails, t_errno may be set to one of the following values:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTS TATE]
The function was issued in the wrong sequence.

[TBADADDR]
The specified protocol address was in an incorrect format or
contained illegal information.

[TNOADDR] The transport provider could not allocate an address.

[TACCES] The user does not have permission to use the specified address.

[TBUFOVFL W]
The number of bytes allowed for an incoming argument is not
sufficient to store the value of that argument. The provider's state
will change to T_IDLE and the information to be returned in the ret
parameter will be discarded.

1-793

OSF/1 Programmer's Reference

t_bind(3)

[TSYSERR] A system error occurred during execution of this function.

[TADDRBUSY]
The address requested is in use and the transport provider could not
allocate a new address.

Related Information

Functions: t_alloc(3), t_close(3), t_open(3), t_optmgmt(3), t_unbind(3)

1-794

t_close

Purpose

Library

Synopsis

Parameters

Description

Closes a transport endpoint

XTI Library (libtli.a)

#include <xti.h>

int t _close(
intfd);

Functions
t_close(3)

The t_close() function is intended to be called in the T_UNBND transport provider
state (see the DESCRIPTION section). The following table summarizes the
relevance of the input parameter before and after t_close() is called:

Parameter Before Call After Call

fd y n

Notes to table:
y This is a meaningful parameter.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies a local transport endpoint.

The t_close() XTI function is used in connection-oriented and connectionless
transport service to inform a transport provider that the transport user has finished
with the transport endpoint. The transport endpoint is specified by a file descriptor
previously returned by the t_open() function. The t_close() function frees any
local library resources associated with the transport endpoint referenced by the file
descriptor.

The t_close() function does not check state information (see the t_getstate()
function). Consequently, t_close() may be called in any transport provider state to
close an open transport endpoint. When t_close() executes, local library resources
associated with the transport endpoint are automatically freed. In addition, a

1-795

OSF/1 Programmer's Reference
t_close(3)

close() function is called for the referenced file descriptor. The close() function
aborts when there are no other file descriptors, in the current or any other process,
that reference the same transport endpoint. When close() aborts, any connection
that is associated with that transport endpoint is broken.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_close() function fails, t_errno may be set to the following value:

[TBADF] File descriptor f d does not refer to a valid transport endpoint.

Related Information

Functions: t_getstate(3), t_open(3), t_unbind(3)

1-796

Functions

t_connect(3)

t_connect

Purpose Establishes a connection with another transport user

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

int t_connect(
intfd,
struct t_call *sndeall,
struct t_call *reveal!) ;

The t_connect() function can only be called in the T_IDLE transport provider
state. The following table summarizes the relevance of input and output parameters
before and after t_connect() is called.

1-797

OSF/1 Programmer's Reference
t_connect(3)

Parameters Before Call After Call

f d y n
sndcall->addr.maxlen n n
sndcall->addr.len n n
sndcall->addr.buf n n
sndcall->opt.maxlen n n
sndcall->opt.len y' n
sndcall->Opt.buf o(o) n
sndca/l->udata.maxlen n n
sndcall->udata.len y n
sndcall->udata.buf o(o) n
sndcall->sequence n n
rcvcall->addr.maxlen y n
rcvcall->addr.len n y
rcvcall->addr.buf y (y)
rcvcall->opt.maxlen y n
rcvcall->opt.len n y
rcvcall->opt.buf y (y)
rcvcall->udata.maxlen y n
rcvcall->udata.len n y
rcvcall->udata.buf y (y)
rcvcall->sequence n n

Notes to table:

fd

1-798

y
n
0

(o)

This is a meaningful parameter.
This is not a meaningful parameter.
This is an optional parameter.
The content of the object pointed to by o is optional.

Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint where the connection will be
established.

sndcall

Functions
t_connect(3)

Points to a type t_call structure. The t_call structure pointed to by
the sndcall parameter provides information required by the transport
provider to establish a connection at the transport endpoint specified
by the fd parameter. The t_call structure has the following four
members:

struct netbilt. addr
Specifies protocol address parameters of the destination
transport user needed by the transport provider. The type
netbuf structure referenced by this member is defined in the
xti.h include file. This structure, which is used to define
buffer parameters explicitly, has the following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of the data written to
the buffer.

char *buf
Points to the buffer location.

struct netbuf opt
Specifies protocol-specific information needed by the
transport provider.

struct netbuf udata
Specifies user-data parameters passed to the destination
transport user.

int sequence
This parameter is not meaningful.

The sndcall->addr.maxlen, sndcall->opt.maxlen, and
sndcall->udata.maxlen parameters have no meaning when the
t_connect() function is called.

When options are used, the sndcall->opt.buf parameter must
specify the established options structure (such as isoco_options,
isocl_options or tcp_options). A transport user may choose not to
negotiate protocol options by setting the sndcall->opt.len parameter
to 0 (zero). When options are not specified by the transport user, the
transport provider has the option of returning default option values.

1-799

OSF/1 Programmer's Reference

t_connect(3)

Description

1-800

reveal/

The amount of transport user data passed to the destination transport
user must not exceed the limits specified by the transport provider as
returned to the info->connect parameter of the t_open() or
t_getinfo() function.

The sndeall->opt.len and sndeall->udata.leii parameters must be
set before the t_connect() function is called.

Points to a type t_call structure. The t_call structure pointed to by
the reveal/ parameter reserves storage for information associated
with the connection established at the transport endpoint specified
by the fd parameter. When rcveall is a null pointer, no data is
returned to the caller. The structure pointed to by reveall has the
following members:

struct netbuf addr
Specifies protocol address parameters associated with the
responding transport endpoint.

struct netbuf opt
Specifies proiocol-specific information associated with the
transport provider.

struct netbuf udata
Specifies parameters for user data that may be optionally
returned to the caller from the destination transport user.

int sequence
This parameter is not meaningful.

The reveall->addr.rnaxlen, reveall->opt.rnaxlen, and
reveall->udata.maxlen parameters must be set before the
t_connect() function is called.

When it is provided, the rcveall->udata.len parameter specifies the
actual destination user user-data byte length and the data buffer
pointed to by reveall->udata.buf contains destination transport user
data.

The t_connect()s XTI function is a connection-oriented service function issued by
a transport user to request connection to the specified destination transport user. By
default, this function executes in the synchronous operating mode. In this mode,
the t_connect() function waits for the destination user to respond and the
connection to be set up before returning control to the transport user who called
this function.

Functions

t_connect(3)

When the transport endpoint, specified by the file descriptor, has been previously
opened with the O_NONBLOCK flag set in the t_open() or fcntl() function, the
t_connect() function executes in asynchronous mode and does not wait for the
transport user at the specified endpoint to respond before returning control to the
caller, but returns a [TNODATA] error, which indicates that the connection has not
yet been established. In asynchronous mode, use the t_rcvconnect() function to
determine the status of a connect request.

The t_connect() function uses type t_call and netbuf structures, which are defined
in the xti.h include file.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate an error.

If the t_connect() function fails, t_errno may be set to one of the following
values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TOUTS TATE]
The t_connect() function was issued in the wrong sequence.

[TNODATA] Asynchronous mode is indicated because O_NONBLOCK was set,
but no data is currently available from the transport provider.

[TBADADDR]
The specified protocol address was in an incorrect format or
contained illegal information.

[TBADOPT] The specified protocol options were in an incorrect format or
contained illegal information

[TBADDATA]
The amount of user data specified was not within the bounds
allowed by the transport provider.

1-801

OSF/1 Programmer's Reference
t_connect(3)

[TACCESS] The user does not have permission to use the specified protocol
address or options.

[TBUFOVFLW]

[TLOOK]

The number of bytes allocated for incoming data is not sufficient for
storage of that data. In asynchronous mode only, the connect
information normally returned to the rcvcall function was discarded.
The transport provider state was changed to T_DATAXFER.

An asynchronous event that requires immediate attention has
occurred on the transport endpoint specified by the f d parameter.

[TSYSERR] A system error occurred during execution of this function.

Related Information

1-802

Functions: fcntl(2), t_accept(3), t_alloc(3), t_getinfo(3), t_listen(3), t_open(3),
t_optmgmt(3), t_rcvconnect(3)

Functions
t_error(3)

t_error

Purpose Produces error message

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

Description

int t_error(
char *errmsg);
extern char *t_errlist[] ;
extern int t_nerr ;

The t_errno() function can be called in any transport provider state except
T_UNINIT. The following table summarizes the relevance of input parameter data
before and after t_error() is called:

Notes to table:
y
n

Parameter Before Call After Call

errmsg y n

This is a meaningful parameter.
This is not a meaningful parameter.

errmsg Points to a user-supplied error message character string that lends
proper context to the nature of the detected error.

The t_error() function is a general utility function used to produce an error
message on the standard error output device. The error message describes the last
error encountered during execution of an XTI function. The user-supplied error
message is printed, followed by a colon and a standard error message for the
current error defined in t_errno. When t_errno is [TSYSERR], t_error() also
prints a standard error message for the current value contained in errno. The error
number, t_errno, is set only when an error occurs and is not cleared when XTI
functions execute successfully.

1-803

OSF/1 Programmer's Reference
t_error(3)

To simplify variant formatting of messages, the array of message strings named
t_errlist is specified. Variable t_errno may be used as an index into this table to get
a relevant message string without an ending newline character. External variable
t_nerr specifies the maximum number of messages in the t_errlist table.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate an error.

The t_error() function does not have any error numbers.

Related Information

1-804

Functions: t_accept(3), t_alloc(3), t_bind(3), t_close(3), t_connect(3), t_free(3),
t_getinfo(3), t_getstate(3), t_listen(3), Uook(3), t_open(3), t_optmgmt(3),
t_rcv(3), t_rcvconnect(3), t_rcvdis(3), t_rcvrel(3), t_rcvudata(3),
t_rcvuderr(3), t_snd(3), t_snddis(3), t_sndrel(3), t_sndudata(3), t_sync(3),
t_unbind(3)

Functions
t_free(3)

t_free

Purpose Frees a library structure

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_free(

Parameters

char *ptr,
int struct_type) ;

The t_free() function can be called in all transport provider states. The following
table summarizes the relevance of input parameter data before and after t_free() is
called:

Parameters Before Call After Call

ptr y n
struct_type y n

Notes to table:
y This is a meaningful parameter.
n This is not a meaningful parameter.

ptr Points to one of the seven structure types described for structures
previously named by the struct_type parameter of the t_alloc()
function, listed below.

1-805

OSF/1 Programmer's Reference
t_free(3)

Description

1-806

struct_type Specifies the structure type for functions for which memory was
previously allocated. This parameter must be one of the symbolic
names listed in the following table:

Symbolic Name Structure Using Function

T_BIND_STR struct t_bind t_bind()
BT _CALL_STR struct t_call t_accept(),

t_connect(), Uisten(),
t_rcvconnect(),
t_snddis()

T _OPTMGMT _STR struct t_optmgmt l_optingmt()
T_DIS_STR struct t_discon t_rcvdis()
T _UNITDATA_STR struct t_unitdata t_rcvudata(),

t_sndudata()

T _UDERROR_STR struct t_uderr t_rcvuderr()
T_INFO_STR structt_info Unto()

Any structure symbolic name listed in the preceding table may be
used as an argument to dealloe1;1te previously reserved memory.
Each of the structures, except t_info, contains at least one member
of type struct netbuf structure, which is defined in the xti.h include
file.

This function checks all members of a netbuf structure and
deallocates those buffers. When a netbuf structure buf parameter is
a null pointer, no memory is deallocated. After all buffers are
deallocated, this function frees all memory referenced by the ptr
parameter.

The t_free() function is an XTI general utility function used to deallocate memory
buffers previously allocated with the t_alloc() function. When executed, t_free()
deallocates memory for the named structure and for any buffers referenced by the
named structure. When t_free() is executed, undefined results are obtained when
structure pointers or buffer pointers point to memory blocks not previously
allocated with the t_alloc() function.

Functions

t_free(3)

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_free() function fails, t_errno may be set to the following value:

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_alloc(3)

1-807

OSF/1 Programmer's Reference

t_getinfo(3)

t_getinfo

Purpose Gets protocol-specific information

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

#include <fcntl.h>

int t_getinfo(
intfd,

Parameters

1-808

struct Unfo *info) ;

The t_getinfo() function can be called in any transport provider state except
T_UNINIT. The following table summarizes the relevance of input and output
parameter data before and after t_info() is called:

Parameter !=Sefore Call After Call

f d y n
info->addr n y
info->optlons n y
info->tsdu n y
info->etsdu n y
info->connect n y
inf o->dlscon n y
info->servtype n y

Notes to table:
y This a meaningful parameter.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint.

info Points to a type t_info structure that is returned when t_getinfo()
executes. Parameters defined by the t_info structure specify
characteristics of the underlying transport protocol associated with
the f d file descriptor.

Functions
t_getinfo(3)

When the info parameter is set to the null pointer value by a
transport user, no protocol information is returned by the
t_getinfo() function.

When a transport user must preserve protocol independence, data
length information defined by members of the t_info structure
pointed to by the info parameter may be accessed to determine how
large data buffers must be to hold exchanged data. Alternatively, the
t_alloc() function may be used to allocate necessary data buffers.
An error results when a transport user exceeds the allowed data
length during any data exchange.

Values associated with parameters of the t_info structure may change as the result
of protocol option negotiations during initialization of a connection. The t_info
structure has the following seven members:

addr Specifies the permitted number of bytes in the protocol address. A
value greater than or equal to zero indicates the maximum number
of permitted bytes in a protocol address. A value of -1 specifies that
there is no limit on the protocol address size. A value of -2 specifies
that the transport provider does not permit the transport user access
to the protocol addresses.

options

tsdu

Specifies the permitted number of bytes of options. A value greater
than or equal to zero indicates the maximum number of bytes of
protocol-specific options supported by the transport provider. A
value of -1 specifies that there is no limit to the number of options
bytes. A value of -2 specifies that the transport provider does not
permit a transport user to set options.

Specifies the permitted number of bytes in a Thansport Service Data
Unit (TSDU). A value greater than zero specifies the maximum
number of bytes in a TSDU message. A value of zero specifies that
the transport provider does not support TSDU data exchanges,
although it does support the sending of a data stream with no logical
boundaries preserved across a connection. A value of -1 specifies
that there is no limit to the number of bytes in a TSDU data
exchange. A value of -2 specifies that the transfer of normal data is
not supported by the transport provider.

1-809

OSF/1 Programmer's Reference

t_getinfo(3)

etsdu

connect

discon

servtype

1-810

Specifies the permitted number of bytes in an Expedited Transport
Service Data Unit (ETSDU). A value greater than zero specifies the
maximum number of bytes in an ETSDU data exchange. A value of
zero specifies that the transport provider does not support ETSDU
data exchanges, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a
connection. A value of -1 specifies that there is no limit on the
number of bytes in an ETSDU data exchange. A value of -2
specifies that the transfer of expedited data is not supported by the
transport provider.

Specifies the permitted number of bytes of data in a connect request.
A value greater than or equal to zero specifies the maximum number
of data bytes that may be exchanged using the t_connect() or
t_rcvconnect() function. A value of -2 specifies that there is no
limit to the number of data bytes that may be sent when a
connection is requested. A value of -2 specifies that the transport
provider does not permit data to be sent when a connection is
established.

Specifies the permitted number of bytes of data in a disconnect
request. A value greater than or equal to zero specifies the
maximum number of data bytes that may be exchanged using the
t_snddis() or t_rcvdis() function. A value of -1 specifies that there
is no limit to the number of data bytes that may be sent when a
connection is closed using these abortive release functions. A value
of -2 specifies that the transport provider does not permit data to be
sent with an abortive release function.

Specifies only one of the following types of service supported by the
transport provider:

T_COTS
The transport provider supports connection-mode service but
does not support the optional orderly release facility.

T_COTS_ORD
The transport provider supports connection-mode service
with the optional orderly release facility.

T_CLTS
The transport provider supports connectionless mode
service. For this service type, this function returns the value
-2 for the etsdu, connect, and discon parameters.

Description

Functions
t_getinfo(3)

The t_getinfo() function is an XTI general utility function that provides
information about the underlying transport protocol associated with a file
descriptor previously returned by the t_open() function. The t_getinfo() function
returns the same protocol-specific information as does t_open() in the info
parameter.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_getinfo() function fails, t_errno may be set to one of the following values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_alloc(3), t_open(3)

1-811

OSF/1 Programmer's Reference

t_getstate (3)

t_getstate

Purpose Gets the current state of the transport provider

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_getstate(
intfd);

Parameters

Description

Notes

1-812

The t_getstate() function can be called in all transport provider states except
T _ UNINIT. The following table summarizes the relevance of input parameter data
before and after the t_getstate() function is called:

Parameter Before Call After Call

f d y n

Notes to Table:
y This is a meaningful parameter.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint.

The t_getstate() function is a general utility function used to get the current state
of the transport provider. The transport endpoint, which is specified by a file
descriptor, is regarded as a finite-state machine that may be in any one of eight
states. When the t_getstate() function is executed, the current state of the transport
endpoint is returned.

If the transport provider is undergoing a change in state when t_getinfo() is called,
a failure occurs.

Functions

t_getstate (3)

Return Value

Errors

Upon successful completion, the transport endpoint state is returned Otherwise, a
value of -1 is returned and t_errno is set to indicate the error. The current state is
one of the following:

[T_UNBND] Address not bound to transport endpoint.

[T _IDLE] The transport endpoint is inactive.

[T_OUTCON]
Outgoing connection pending.

[T_INCON] Incoming connection pending.

[T_DATAXFER]
Data transfer in progress.

[T_OUTREL] Outgoing orderly release (waiting for an orderly release indication).

[T_INREL] Incoming orderly release (waiting to send an orderly release
request).

If the t_getstate() function fails, t_errno may be set to one of the following
values:

[TBADF] The specified file descriptor does not refer to a transport endpoint.
This error may be returned when the endpoint referenced by the fd
parameter has been previously closed or an erroneous file descriptor
value has been provided.

[TSTATECHNG]
The transport provider is undergoing a change in state.

[TSYSERR] A system error occurred during execution of this function.

1-813

OSF/1 Programmer's Reference

t_listen (3)

t_listen

Purpose Listens for a connect request

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_listen(

Parameters

1-814

intfd, struct t_call *cal[) ;

The t_listen() function can only be called in the T_IDLE and T_INCON transport
provider states. The following table summarizes the relevance of input and output
parameters before and after t_listen() is called:

Parameters Before Call After Call

fd y n
call->addr.maxlen y n
call->addr.len n y
call->addr.buf y (y)
call->opt.maxlen y n
call->opt.len n y
call->opt.buf y (y)
call->udata.maxlen y n
call->udata.len n y
call->udata.buf y (o)
call->sequence n y

Notes to Table
y This is a meaningful parameter.
n This is not a meaningful parameter.
(y) The content of the object pointed to by y is meaningful.
(o) The content of the object pointed to by o is optional.

fd Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint where connect indication may
arrive;

Description

call

Functions
t_listen(3)

Points to a type t_call structure used to specify information that
describes the connect indication. The t_call structure has the
following four members:

struct netbuf addr
Specifies a buffer for protocol address information sent by
the calling transport user. The type netbuf structure
referenced by this member is defined in the xti.h include file.
This structure, which is used to define buffer parameters, has
the following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int Jen
Specifies the actual byte length of data written to the
buffer. char *buf Points to the buffer location.

struct netbuf opt
Specifies a buffer for protocol-specific parameters associated
with the connect request.

struct netbuf udata
Specifies a buffer for user data sent by the caller.

int sequence
Specifies a unique identification number used to identify the
returned connect indication.

The sequence parameter pointed to by the call parameter is used to
uniquely identify the returned connection indicatio·n. Values greater
than 1 for this parameter enable the transport user to listen for more
than a single connect indication before responding to any of those
returned.

Each maxlen parameter must be set before calling this function to
indicate the maximum size of the buffer associated with values sent
by the caller.

The t_listen() function is an XTI connection-oriented service function that listens
for a connect request from a calling transport user. The transport endpoint where
the connect indications arrive is specified by a file descriptor previously returned
by the t_open() function. By default, the t_listen() function executes in the
synchronous operating mode. In the synchronous operating mode, t_listen() waits
for a connect indication to arrive before returning control to the transport user who
called this function.

1-815

OSF/1 Programmer's Reference
t_listen(3)

Notes

When the transport endpoint specified by the fd file descriptor has been opened
with the O_NONBLOCK flag set when the t_open() or fcntl() function is called,
the t_listen() functiort executes in asynchronous mode.

When the t_listen() function executes in asynchronous mode, it does not wait for a
connect indication before returning control to the caller, but returns a [TNODATA]
error if a connection request has not yet been received.

The t_listen() function returns a pointer to a type t_call structure, which defines
information associated with the arriving connect request. The t_call structure also
references a type netbuf structure. Both structures are defined in the xti.h include
file.

When operation is set for the asynchronous mode, and no connect indications are
available, the t_listen() function fails, the value -1 is returned, and t_errno is set
to [TNODATA].

Return Value

Errors

1-816

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_listen() function fails, t_errno may be set to one of the following values:

[TBADF]

[TBADQLEN]

The specified file descriptor does not refer to a transport endpoint.

The qlen argument of the endpoint referenced by the f d parameter is
zero.

[TBUFOVFLW]
The number of bytes allocated for incoming information is not
sufficient to store the value of that information. The transport
provider state, as seen by the transport user, changes to T_INCON,
and connect indication information, normally returned to the
structure pointed to by the call parameter, is discarded. The returned
value of call->sequence may be used to call a t_snddis() function.

[TNODATA] The O_NONBLOCK flag was set, but no connect indications had
been queued.

[TLOOK]

Functions

t_listen(3)

An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TOUTSTATE]
The function was issued in the wrong sequence on the transport
endpoint referenced by the fd parameter.

[TSYSERR] A system error has occurred during execution of this function.

Related Information
Functions: fcntl(2), t_accept(3), t_alloc(3), t_bind(3), t_connect(3), t_open(3),
t_optmgmt(3), t_rcvconnect(3), t_snddis(3)

1-817

OSF/1 Programmer's Reference

t_look(3)

t_look

Purpose

Library

Synopsis

Parameters

Description

1-818

Looks at the current event on a transport endpoint

XTI Library (libtli.a)

#include <xti.h>

int t_look(
intfd);

The t_look() function can be called in all transport provider states except
T_UNINIT. The following table summarizes the relevance of the fd parameter
when t_look() is called:

Parameter Before Call After Call

f d y n

Notes to Table
y This is a meaningful parameter.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint.

The t_look() XTI function is used in connectionless and connection-oriented
transport service to monitor the current event at the transport endpoint specified by
a file descriptor previously returned by the t_open() function. The t_look()
function permits a transport provider to notify a transport user of any one of the
nine asynchronous events listed in the RETURN VALUE section when the
transport user is calling other XTI functions in synchronous mode.

During synchronous operation, all events at a transport endpoint are saved by XTI
so that any current event may be known to a transport user. Each of the nine
asynchronous events listed under the RETURN VALUE section is defined by a
symbolic name in the xti.h include file. This symbolic name can be retrieved when
the t_Iook() function is called.

Functions

Uook(3)

Some XTI functions fail unconditionally when they are called because the current
event at the transport endpoint does not permit them to successfully execute. Four
of the nine synchronous events listed in the Event column of the following table
cause unconditional failure when any function listed in the Immediate T_LOOK
Functions column is called. Any of these four synchronous events requires that the
transport user be immediately notified. Unconditional failure returns a [T_LOOK]
error during execution of the currently called function or the next called function
when it is executed. This function can then be used to determine which event
occurred.

Immediate T _LOOK
Event Functions Event Description

T_LISTEN t_accept(), Connection indication
t_connect(),1 received
t_unbind()

T _DISCONNECT t_accept(), Disconnect received
t_connec~),
t_listen(), t_rcv(),
t_rcvconnect(),
t_rcvrel(), t_snd(),
t_sndrel()

T_UDERR t_rcvudata(), Datagram error
t_sndudata() indication

T_ORDREL t_rcvudata(), Orderly release
t_sndudata() indication

Notes to Table

1. Connection indication received at a transport endpoint which
has been bound with qlen > 0 (zero) and for which a
connection indication is pending (refer to the t_bind()
function).

2. Disconnect for an outstanding connect indication.

When multiple events occur, the order in which their value is returned is
implementation dependent. All together, there are 11 XTI functions that fail when
a particular synchronous event requiring immediate notification is detected.

1-819

OSF/1 Programmer's Reference

t_look(3)

The following table lists transport endpoint events and corresponding functions to
which a [T_LOOK] error is immediately returned when the event causes function
failure:

Event Cleared with T _LOOK? Event Consuming Functions

T_LISTEN No t_listen()

T_CONNECT No t_rcvconnect()
T_DATA No t_rcv(), t_rcvudata()

T_EXDATA No t_rcv()

T _DISCONNECT No t_rcvdis()

T_UDERR No t_rcvuderr()

T_ORDREL No t_rcvrel()

T_GODATA Yes t_snd(), t_sndudata()

T_GOEXDATA Yes t_snd()

An event at a transport endpoint remains outstanding until a consuming function
clears it. Every event has an associated consuming function that handles the event
and clears it. The Event Consuming Function column of the preceding table lists
these events and the function that clears each one when successfully executed.

Return Value

1-820

Upon successful completion, the t_look() function returns one of the following
values. Upon failure, 0 (zero) is returned.

[T_LISTEN] Connect indication received.

[T_CONNECT]
Connect confirmation received.

[T_DATA] Normal data received.

[T_EXDATA] Expedited data received.

[T _DISCONNECT]
Disconnect received.

[T_UDERR] Datagram error indication.

[T_ORDREL]
Orderly release indication.

Errors

[T_GODATA]

Functions
t_look(3)

Flow control restrictions on normal data flow have been lifted.
Normal data may be sent again.

[T_GOEXDATA]
Flow control restrictions on expedited data flow have been lifted.
Expedited data may be sent again.

Upon failure, the value -1 is returned and t_errno is set to indicate the error.

If the t_look() function fails, t_errno is set to one of the following values:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_bind(3), t_connect(3), t_listen(3), t_open(3), t_rcv(3),
t_rcvconnect(3), t_rcvdis(3), t_rcvrel(3), t_rcvudata(3), t_rcvuderr(3),
t_snd(3), t_sndudata(3)

1-821

OSF/1 Programmer's Reference

t_open(3)

t_open

Purpose Establishes a transport endpoint

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

#include <fcntl.h>

int t_open(

Parameters

1-822

char *path,
int ofiag,
struct t_info *info);

The t_open() function can be called in the T_UNINIT transport provider state
only. The following table summarizes the relevance of input and output
parameters before and after the t_open() function is called:

Parameter Before Call After Call

path y n
oflag y n
info->addr n y
info->options n y
info->tsdu n y
info->etsdu n y
irifo->connect n y
info->discon n y
info->servtype n y

Notes to Table:
y This is a meaningful parameter.
n This is not a meaningful parameter.

path Identifies the transport provider. The transport provider must define
the type of transport service (protocol) to associate with the opened
transport endpoint.

Functions

t_open(3)

oflag The oflag parameter is similar to the oflag parameter of the open()
function and is used in the same way. Use oflag to establish
synchronous or asynchronous operating modes of the transport
provider pointed to by the path parameter. The transport provider
operating mode is specified with the O_NONBLOCK flag. The
actual value for this parameter is obtained from the symbolic name
variable O_RDWR, which may be optionally bitwise combined with
a logical inclusive OR of flag O_NONBLOCK, defined in the
fcntl.h include file.

info Points to a type t_info structure. The location of a type t_info
structure is returned to the info parameter when the t_open()
function successfully executes. Members of the t_info structure
specify default characteristics of the underlying transport protocol
pointed to by the path parameter.

When the info parameter is set to the null pointer value by a
transport user, no protocol information is returned by this function.

When a transport user must preserve protocol independence, data
length information defined by members of the type t_info structure
may be accessed to determine how large data buffers must be to hold
exchanged data. Alternatively, the t_alloc() function may be used
to allocate necessary data buffers. An error results when a transport
user exceeds the allowed data length during any data exchange. This
structure has the following seven members:

addr Permitted number of bytes in the protocol address. A value
greater than or equal to zero indicates the maximum number
of permitted bytes in a protocol address. A value of -1
specifies that there is no limit on the protocol address size. A
value of -2 specifies that the transport provider does not
permit the transport user access to the protocol addresses.

options
Permitted number of bytes of options. A value greater than
or equal to zero indicates the maximum number of bytes of
protocol-specific options supported by the transport
provider. A value of -1 specifies that there is no limit to the
number of options bytes. A value of -2 specifies that the
transport provider does not permit a transport user to set
options.

tsdu Permitted number of bytes in a Transport Service Data Unit
(TSDU). A value greater than zero specifies the maximum
number of bytes in a TSDU message. A value of zero
specifies that the transport provider does not support TSDU

1-823

OSF/1 Programmer's Reference
t_open(3)

1-824

data exchanges, although it does support the sending of a
data stream with no logical boundaries preserved across a
connection. A value of -1 specifies that there is no limit to
the number of bytes in a TSDU data exchange. A value of -2
specifies that the transfer of normal data is not supported by
the transport provider.

etsdu Permitted number of bytes in an Expedited Transport Service
Data Unit (ETSDU). A value greater than zero specifies the
maximum number of bytes in an ETSDU data exchange. A
value of zero specifies that the transport provider does not
support ETSDU data exchanges, although it does support the
sending of an expedited data stream with no logical
boundaries preserved across a connection. A value of -1
specifies that there is no limit on the number of bytes in an
ETSDU data exchange. A value of -2 specifies that the
transfer of expedited data is not supported by the transport
provider.

connect
Permitted number of bytes of data in connect request. A
value greater than or equal to zero specifies the maximum
number of data bytes that may be exchanged using the
t_connect() and t_rcvconnect() functions. A value of -2
specifies that there is no limit to the number of data bytes
that may be sent when a connection is requested. A value of
-2 specifies that the transport provider does not permit data
to be sent when a connection is established. discon
Permitted number of bytes of data in a disconnect request. A
value greater than or equal to zero specifies the maximum
number of data bytes that may be exchanged using the
t_snddis() and t_rcvdis() functions. A value of -1 specifies
that there is no limit to the number of data bytes that may be
sent when a connection is closed using these abortive release
functions. A value of -2 specifies that the transport provider
does not permit data to be sent with an abortive release
function.

Description

Functions
t_open(3)

servtype
This member specifies only one of the following types of
service supported by the transport provider:

T_COTS
The transport provider supports connection-mode
service but does not support the optional orderly
release facility.

T_COTS_ORD
The transport provider supports connection-mode
service with the optional orderly release facility.

T_CLTS
The transport provider supports connectionless-mode
service. For this service type, this function returns the
value -2 for the etsdu, connect, and discon
parameters.

The t_open() XTI function must be the first one called when initializing a
transport endpoint. Two modes of operation may be specified, synchronous and
asynchronous. In synchronous mode, a transport user must wait for some specific
event to occur before control is returned (refer to the t_Iook() function). In
asynchronous mode, a transport user is not required to wait for the event to occur;
control is returned immediately.

The t_open() function establishes the transport endpoint by supplying a transport
provider identifier that specifies a particular transport protocol. A file descriptor,
which must subsequently always be used to identify the established endpoint, is
returned by this function.

Return Value
Upon successful completion, the function returns 0 (zero). Otherwise, a value of -1
is returned and t_errno is set to indicate the error.

1-825

OSF/1 Programmer's Reference

t_open(3)

Errors
If the t_open() function fails, t_errno may be set to one of the following values:

[TBADFLAG]
An invalid flag is specified.

[TBADNAME]
Invalid transport provider name.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: open(2)

1-826

Functions

t_optmgmt{3)

t_optmgmt

Purpose Manages protocol options for a transport endpoint

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

int t_optmgmt(
intfd,
struct t_optmgmt *req,
struct t_optmgmt *ret) ;

The t_optmgmt() function can only be called in the T_IDLE transport provider
state. The following table summarizes the relevance of input and output
parameters before and after t_optmgmt() is called:

Parameter Before Call After Call

f d y n
req->opt.maxlen n n
req->opt.len y n
req->opt.buf y(y) n
req->flags y n
ret->opt. maxlen y n
ret->opt.len n y
ret->opt.buf y (y)
ret->flags n -

Notes to Table:
y This a meaningful parameter.
n This is not a meaningful parameter.
(y) The content of the object pointed to by y is meaningful.

fd Specifies a file descriptor returned by t_open() function that
identifies the local transport endpoint.

1-827

OSF/1 Programmer's Reference
t_optmgmt(3)

req

1-828

Points to a type t_optmgmt structure. This structure is used to
reserve space for a transport-user options data buffer that stores
negotiable protocol options. The type t_optmgmt structure has the
following members:

struct netbuf opt
Specifies a buffer for protocol-optional parameters
associated with the referenced transport endpoint. The type
netbuf structure pointed to by this member is defined in the
xti.h include file. This structure, which is used to define
buffer parameters, has the following members:

unsigned int maxlen
Specifies maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of data written to the
buffer.

char *buf
Points to the buffer location.

flags A longword (least significant bit rightmost) that specifies the
response action that must be taken by a transport provider
when the t_optmgmt() function is processed.
Corresponding values and symbolic names for the following
flag bits are defined in the xti.h include file. Note that the
flags parameter can specify only one of these values, not a
combination.

Bit

2

3

4

ret

Functions

t_optmgmt(3)

Symbolic Name Meaning

T _NEGOTIATE The transport user wants to negotiate the
values of the options stored in the options
buffer. In response, the transport provider
evaluates the options arid writes acceptable
(negotiated) values to the data buffer pointed
to by ret->Opt.buf.

T_CHECK The transport user wants to verify that the
options specified in the data buffer pointed to
by req->opt.buf are supported by the
transport provider. On return, the transport
provider writes a ret->flags> value, which is
either T _SUCCESS or T _FAILURE.

T_DEFAULT The transport user wants to know what the
default options supported by the transport
provider are. The transport provider writes
default data into the options data buffer
pointed to by ret->Opt.buf. The req->opt.len
parameter must be set to O (zero). The
req->opt.buf member may be set to its null
value.

Points to a second type t_optmgmt structure. The ret->opt.maxlen
parameter specifies the maximum length of the transport provider
options data buffer. The ret->opt.len parameter specifies the actual
length of the transport provider options data buffer. The
ret->opt.buf parameter points to the transport provider options data
buffer. On return, if T_CHECK was specified in req->ftags, the
ret->flags parameter is set to T_SUCCESS or T_FAILURE,
indicating whether the transport provider supports the options
specified by the transport user.

1-829

OSF/1 Programmer's Reference
t_optmgmt(3)

Description
The t_optmgmt() XTI function is used in connectionless and connection-oriented
transport service. The t_optmgmt() function associates specific optional
parameters with a bound transport endpoint previously defined by a file descriptor
returned by the t_open() function. The t_optmgmt() function permits a transport
user to retrieve, verify, or negotiate desired options with a transport provider.

A type t_optmgmt structure defined in the xti.h include file is used to specify
options.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_optmgmt() function fails, t_errno may be set to one of the following
values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TOUTS TATE]
This function was called in the wrong sequence.

[TBADOPT] The specified protocol options are either of an incorrect format or
contain illegal information.

[TBADFLAG]
The specified flag is invalid.

[TACCES] The transport user does not have permission to negotiate the
specified options.

[TBUFOVFLW]
The number of bytes allowed for an incoming argument is not
sufficient to store the value of that argument. The information
intended for the data buffer pointed to by the ret parameter is
discarded.

[TSYSERR] A system error occurred during execution of the t_optmgmt()
function.

Related Information

1-830

Functions: t_accept(3), t_alloc(3), t_connect(3), t_getinfo(3), t_listen(3),
t_open(3), t_rcvconnect(3)

t_rcv

Purpose

Library

Synopsis

Parameters

Receives normal data or expedited data on a connection

XTI Library (libtli.a)

#include <xti.h>

int t_rcv(
intfd,
char *buf,
unsigned nbytes,
int *flags) ;

Functions

t_rcv(3}

The t_rcv() function can only be called in the T_DATAXFER and T_OUTREL
transport provider states. The following table summarizes the relevance of input
and output parameters before and after t_rcv() is called:

Parameters Before Call After Call

f d y n
buf y (y)
nbytes y n
flags n y

Notes to Table:
y This is a meaningful parameter.

This is not a meaningful parameter.

f d

buf

nbytes

n
(y) The content of the object pointed to by y is meaningful.

Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint where an active connection
exists.

Points to the receive data buffer where returned data is to be written.

Specifies the length in bytes of the received-data buffer pointed to
by the buf parameter.

1-831

OSF/1 Programmer's Reference

t_rcv(3)

1-832

flags Points to an unsigned integer (least significant bit rightmost) whose
bits are flags that specify the action that must be taken by the
responding transport user when the t_rcv() function is processed.
Corresponding values and symbolic names for the following flag
bits are defined in the xti.h include file:

Bit Symbolic Name Meaning

O T _MORE When set, this bit notifies the transport user
that received data is a fragment of a
Jransport Service Data Unit (TSOU) or
Expedited Transport Service Data Unit
(ETSDU), and that more data is availal::>le.
The rest of the TSOU or ETSDU can be
received through further t_rcv() function
calls. Each tinie this flag is set on return,
another t_rcv() call can receive additional
pieces of the TSOU or ETSDU. When the
final TSOU or ETSDU is received, this flag
bit has a value of O (zero) on return. When
the transport provider does not support
TSOU or ETSDU data exchanges (refer to
the t_open() and t_getinfo() functions), the
state of this flag bit should be ignored.

T _EXPEDITED When set, this bit notifies the transport user
that received data is an ETSDU. When the
number of ETSDU data bytes exceed.s the
value specified by the nbytes parameter, this
flag bit and the T _MORE flag bit is set on
return of the initial t_rcv() call. Subsequent
t_rcv() calls issued to retrieve the rest of the
ETSDU have both these flag bits set on
return. When the final piece of the ETSDU is
received, the T _MORE flag bit has a value
of o (zero) on return.
When an ETSDU is received during
reception of a TSOU, no remaining pieces of
the TSOU may be received until the current
ETSDU has been completely received.

Description

Notes

Functions

t_rcv(3)

The t_rcv() function is an XTI connection-oriented service function that is used to
receive normal or expedited data. The transport endpoint through which data
arrives is specified by a file descriptor previously returned by the t_open()
function. By default, t_rcv() executes in the synchronous operating mode. In
synchronous mode t_rcv() waits for data to arrive even when none is currently
available before returning control to the calling transport user.

When the transport endpoint, specified by the fd parameter, has been opened with
the O_NONBLOCK flag set in the t_open() or fcntl() functions, the t_rcv()
function executes in asynchronous mode. In asynchronous mode, when no data is
available, this function fails.

In synchronous mode, the only way for a transport user to be notified of the arrival
of normal or expedited data is to call the t_rcv() function or to check for states
T_DATA or T_EXDATA using the t_look() function.

Return Value

Errors

Upon successful completion, the t_rcv() function returns the number of bytes of
data received. Otherwise, the value -1 is returned and t_errno is set to indicate the
error.

If the t_rcv() function fails, t_errno is set to one of the following values:

[TBADF] The specified file descriptor does not refer to a valid transport
endpoint.

[TNODATA] Asynchronous mode is indicated because O_NONBLOCK was set,
but no data is currently available from the transport provider.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention (refer to t_look() function).

[TOUTS TATE]
The t_look() function was issued in the wrong sequence on the
transport endpoint referenced by the fd parameter.

[TSYSERR] A system error occurred during execution of t_look().

Related Information

Functions: fcntl(2), t_getinfo(3), t_look(3), t_open(3), t_snd(3)

1-833

OSF/1 Programmer's Reference
t_rcvconnect(3)

t_rcvconnect

Purpose Receives the confirmation from a connect request

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_rcvconnect(
intfd,

Parameters

1-834

struct t_call *cal[) ;

The t_rcvconnect() function can only be called in the T_OUTCON transport
provider state. The following table summarizes the relevance of input and output
parameters before and after t_rcvconnect() is called:

Parameter Before Call After Call

f d y n
call->addr.maxlen y n
call->addr.len n y
call->addr.buf y (y)
call->opt.maxlen y n
call->opt.len n y
call->opt.buf y (y)
call->udata.maxlen y n
call->udata.len n y
call->udata.buf y (o)
call->sequence n n

Notes to Table
y This is a meaningful parameter.

This is not a meaningful parameter.

f d

n
(o)
(y)

The content of the object pointed to by o is optional.
The content of the object pointed to by y is meaningful.

Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint where the connection is to be
established.

call

Functions

t_rcvconnect(3)

Points to a type t_call structure, used to reserve space for a buffer
that stores information associated with the connection at the
transport endpoint referenced by the f d parameter. When the call
parameter is set to the null pointer value, no data is returned to the
caller. The t_call structure has the following members:

struct netbuf addr
References a buffer for protocol address information
returned from the transport endpoint specified by the fd
parameter. The type netbuf structure referenced by this
member is defined in the xti.h include file and has the
following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int Jen
Specifies the actual byte length of data written to the
buffer.

char *buf
Points to the buffer location.

struct netbuf opt
Specifies a buffer for protocol-specific parameters associated
with the connection.

struct netbuf udata
Specifies a buffer for transport user data sent from the
destination transport user.

int sequence
This parameter is not meaningful for the t_rcvconnect()
function.

The addr parameters pointed to by the call parameter specify
protocol address information associated with the responding
transport endpoint. Before this function is called, the addr.maxlen
parameter must be set to specify the maximum byte length of the
protocol-address buffer pointed to by the addr.bufparameter, which
is used to hold the protocol address of the responding transport
endpoint.

On return, the addr.Ien parameter specifies the actual transport
endpoint protocol-address byte length and the buffer pointed to by
addr.buf contains the transport endpoint protocol address.

1-835

OSF/1 Programmer's Reference

t_rcvconnect(3)

Description

The opt parameters pointed to by the call parameter specify
optional information associated with the responding transport
endpoint. Before this function is called, the opt.maxlen parameter
must be set to specify the maximum byte length of the options-data
buffer pointed to by the opt.buf parameter, which is used to hold
optional information from the responding transport endpoint when it
is provided.

On return, the opt.len parameter specifies the actual transport
endpoint optional-data byte length and the data buffer pointed to by
opt.buf contains transport endpoint optional data.

The udata parameters pointed to by the call parameter specify user
information associated with the responding transport endpoint.
Before this function is called, the udata.maxlen parameter must be
set to specify the maximum byte length of the user-data buffer
pointed to by the udata.buf parameter, which is used to hold remote
transport user information from the responding transport endpoint
when it is provided.

On return, the udata.len parameter specifies the actual transport
endpoint user-data byte length and the data buffer pointed to by
udata.buf contains transport endpoint user data.

The t_rcvconnect() XTI function enables a calling transport user to determine the
status of a previously sent connect request at a transport endpoint specified by a file
descriptor returned by the t_open() function. The t_rcvconnect() function is used
in conjunction with the t_connect() function to establish a connection in
asynchronous mode. By default, this function executes in synchronous mode,
waiting for the connection to be established before returning control to the caller.

However, when the transport endpoint specified by the fd file descriptor has been
opened with the O_NONBLOCK flag set in the t_open() or t_fcntl() functions,
the t_connect() function executes in asynchronous mode. In asynchronous mode,
when no connection confirmation is available, control is immediately returned to
the caller.

The t_rcvconnect() function uses type t_call and netbuf structures, which are
defined in the xti.h include file.

Return Value

1-836

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

Errors

Functions
t_rcvconnect(3)

If the t_rcvconnect() function fails, t_errno may be set to one of the following
values:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW]
The number of bytes allocated for incoming data is not sufficient for
storage of that data. The connect information normally returned to
the the call parameter is discarded. The transport provider state is
changed to T_DATAXFER.

[TNODATA] Asynchronous mode is indicated because O_NONBLOCK was set,
but no connect confirmation is currently available from the transport
provider.

[TLOOK] An asynchronous event has occurred on this transport connection
and requires immediate attention (refer to the t_look() function).

[TOUTS TATE]
The function was issued in the wrong sequence on the transport
endpoint referenced by the fd parameter.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_accept(3), t_alloc(3), t_bind(3), t_connect(3), t_listen(3),
t_open(3), t_optmgmt(3)

1-837

OSF/1 Programmer's Reference

t_rcvdis(3)

t_rcvdis

Purpose Retrieves disconnect information

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_rcvdis(

Parameters

1-838

intfd, struct t_discon *discon);

The t_rcvdis() function can be called in the following transport provider states:
T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, and T_INCON (when the
number of outstanding connections is greater than 0 (zero)). The following table
summarizes the relevance of input and output parameters before and after
t_rcvdis() is called:

Parameter Before Call After Call

f d y n
discon->Udata.maxlen y n
discon->udata.len n y
discon->udata.buf y (o)
discon->reason n y
discon->sequence n 0

Notes to Table:

f d

y
n
0

(o)

This is a meaningful parameter.
This is not a meaningful parameter.
This an optional parameter.
The content of the object pointed to by y is optional.

Specifies a file descriptor returned by the t_open() function that
identifies the transport endpoint where a disconnect occurred.

discon

Functions
t_rcvdis(3)

Points to a type t_discon structure used to specify user-data
parameters that can be returned by the transport user. The t_discon
structure has the following members:

struct netbuf udata
Specifies a buffer for transport user data sent to the caller
with the disconnect when the t_rcvdis() function is
processed. The type netbuf structure referenced by this
member is defined in the xti.h include file and has the
following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of data written to the
buffer.

char *buf
Points to the buffer location.

int reason
Specifies the reason the disconnect occurred.

int sequence
Specifies the sequence number identifying an outstanding
connection indication that has been disconnected.

On return, the discon->udata buffer contains information associated
with the disconnect. Before the t_rcvdis() function is called,
udata.maxlen must be set to specify the maximum byte length of
the user-data buffer.

The discon->reason parameter specifies the reason for the
disconnect using a protocol-dependent reason code. When protocol
independence is a concern, this information should not be examined.

When this function is called after issuing one or more t_listen()
functions, and there is more than one outstanding transport endpoint
connection (refer to the t_listen() function), the discon->sequence
parameter is used to specify the the outstanding connection
indication with which the disconnect is associated.

1-839

OSF/1 Programmer's Reference
t_rcvdis(3)

Description

When a transport user is not concerned with incoming .remote
transport user data, with a reason for a disconnect, or with the
sequence number of the transport endpoint where the disconnect
took place, the discon parameter may be specified as a null pointer.
When discon is specified as a null pointer, no data is returned to the
caller.

When a transport user knows there is more than one active
connection indication (refer to the Uook() function), and this
function is called with the discon parameter set to the null pointer
value, there is no way to identify the connection where the
disconnect occurred.

The t_rcvdis() XTI connection-oriented function is used to identify the cause of a
disconnect at a transport endpoint specified by a file descriptor returned by the
t_open() function, and to retrieve any user data queued with the disconnect.

Return Value

Errors

1-840

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_rcvdis() function fails, t_errno is set to one of the following values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TNODIS] No disconnect indication currently exists on the transport endpoint
specified by the fd parameter.

[TBUFOVFLW]
The number of bytes allocated for incoming data is not suffic;ient to
store the clata. When fd specifies a passive transport endpoint (the
number of outstanding connection indications is greater than 1), the
transport endpoint remains in state T_INCON; otherwise, the
transport endpoint state becomes T_IDLE.

Functions

t_rcvdis(3)

[TSYSERR] A system error occurred during execution of this function.

[TOUTSTATE]
The t_rcvdis() function was issued in the wrong sequence on the
transport endpoint referenced by the fd parameter.

Related Information

Functions: t_alloc(3), t_connect(3), t_listen(3), t_open(3), t_snddis(3)

1-841

OSF/1 Programmer's Reference

t_rcvrel(3)

t_rcvrel

Purpose Acknowledges receipt of an orderly release indication

Synopsis #include <xti.h>

int t_rcvrel(
intfd):

Parameters

Description

1-842

The t_rcvrel() function can be called in the T_DATAXFER and T_OUTREL
transport provider states only. The following table summarizes the relevance of
input parameter data before and after t_rcvrel() is called:

Parameter Before Call After Call

f d y n

Notes to Table:
y This is a meaningful parameter.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies a local transport endpoint that has been released.

The t_rcvrel() XTI function is used in connection-oriented mode to acknowledge
receipt of an orderly release indication at a transport endpoint. The released
endpoint is specified by a file descriptor previously returned by the t_open()
function.

After receipt of this orderly release indication, at the transport endpoint specified
by the file descriptor, a transport user should not try to receive additional data from
that transport endpoint. Any attempt to receive more data from a released transport
endpoint blocks continuously. However, a transport user may continue to send
data across the connection until a release is sent by a transport user who invokes a
t_sndrel() function call.

Functions
t_rcvrel (3)

The t_rcvrel() function should not be used unless the servtype type-of-service
returned by the t_open() or t_getinfo() functions is T_COTS_ORD (supports
connection-mode service with the optional orderly release facility).

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_rcvrel() function fails, t_errno may be set to one of the following values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TNOREL] No orderly release indication currently exists at the transport
endpoint specified by the fd parameter.

[TLOOK] An asynchronous event has occurred on the transport endpoint
specified by the fd parameter and requires immediate attention.

[TSYSERR] A system error occurred during execution of this function.

[TOUTSTATE]
The t_rcvrel() function was issued in the wrong sequence at the
transport endpoint referenced by the f d parameter.

Related Information

Functions: t_getinfo(3), t_open(3), t_sndrel(3)

1-843

OSF/1 Programmer's Reference
t_rcvudata (3)

t_rcvudata

Purpose Receives a data unit

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

1-844

int t_rcvudata(
intfd,
struct t_unitdata *unitdata,
int *flags) ;

The t_rcvudata() function can only be called in the T_IDLE transport provider
state. The following table summarizes the relevance of input and output parameter
data before and after t_rcvudata() is called:

Parameters Before Call After Call

fd y n
unitdata->addr.maxlen y n
unitdata->addr.len n y
unitdata->addr.buf y (y)
unitdata->opt.maxlen y n
unitdata->opt.len n y
unitdata->opt.buf y (y)
unitdata->udata.maxlen y n
unitdata->udata.len n y
unitdata->udata.buf y (y)
flags n y

Notes to Table:
y This is a meaningful parameter.
n This is not a meaningful parameter.
(y) The content of the object pointed to by y is meaningful.

fd Specifies a file descriptor returned by the t_open() function that
identifies the transport endpoint.

unitdata

Functions
t_rcvudata (3)

Points to a type t_unitdata structure used to specify information
required by the transport provider user to receive a data unit through
the transport endpoint specified by the fd parameter The t_unitdata
structure has the following members:

struct netbuf addr
References a buffer for protocol address information
required from the transport endpoint specified by the fd
parameter. The type netbuf structure referenced by this
member is defined in the xti.h include file and has the
following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of the data written to
the buffer.

char *buf
Points to the buffer location.

struct netbuf opt
Specifies a buffer for protocol-specific parameters associated
with the data unit.

struct netbuf udata
Specifies parameters for any user data unit that may be
returned to the caller.

Before the t_rcvudata() function is called the
unitdata->addr.maxlen, unitdata->opt.maxlen, and
unitdata->udata.maxlen parameters must be set to specify the
maximum byte length of of the protocol address buffer, the protocol
options buffer, and the user data buffer, respectively.

flags Points to a flag integer that indicates that the complete data unit was
not received. Corresponding values and symbolic names for flags
are defined in the xti.h include file (see the t_optmgmt() and
t_rcv() functions). The flag specified by this function is:

T_MORE.
When the data buffer specified by the unitdata->udata.buf
parameter is not large enough to hold the current user data
unit, the buffer is filled and this bit is set to indicate that
another t_rcvudata() function should be called to retrieve
the rest of the data unit.

1-845

OSF/1 Programmer's Reference
t_rcvudata (3)

Description

The set state of this bit notifies the local transport user that
the received data unit is a fragment and that another data
unit is available. When this bit is set on return of this
function, another data unit must also be fetched with another
t_rcvudata() call. Each time this flag is set on return,
another t_rcvudata() call must immediately be made to
receive additional current data units. When the final data
unit is received, this flag bit has a value of 0 (zero) on return.

Subsequent calls to the t_rcvudata() function return 0
(zero) as the length of the address specified by the
unitdata->addr.len and unitdata->opt.len parameters until
the full data unit has been received.

The t_rcvudata() fun(;:tion is an XTI connectionless service function that is used
to receive a data unit from a remote transport provider user. By default,
t_rcvudata() executes in the synchronous operating mode. The t_rcvudata()
function waits for data to arrive at the transport endpoint specified by fd before
returning control to the transport user who called this function.

However, when the transport endpoint, specified by the fd parameter, has been
previously opened with the O_NONBLOCK flag set in the t_open() or fcntl()
function, the t_rcvudata() function executes in asynchronous mode. In
asynchronous mode, when a data unit is unavailable, control is immediately
returned to the caller.

Return Value

Errors

1-846

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_rcvudata() function fails, t_errno may be set to one of the following
values:

[TBADF] The specified file descriptpr \:loes not refer to a transport endpoint.

[TNODATA] Asynchronous mode is indicated because O_NONBLOCK was set,
but no data is currently available from the transport provider.

[TBUFOVFLW]
The number of bytes allocated for the incoming protocol address or
protocol options is not sufficient to store the information. The unit
data information normally returned to the unitdata parameter is
discarded.

[TLOOK]

Functions

t_rcvudata { 3)

An asynchronous event that requires immediate attention has
occurred at the transport endpoint specified by the fd parameter.

[TOUTS TATE]
The t_rcvudata() function was issued in the wrong sequence at the
transport endpoint referenced by the fd parameter.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: fcntl(2), t_alloc(3), t_open(3), t_optmgmt(3), t_rcv(3),
t_rcvuderr(3), t_sndudata(3)

1-847

OSF/1 Programmer's Reference

t_rcvuderr(3)

t_rcvuderr

Purpose Receives a unit data error indication

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

Parameters

1-848

int t_rcvuderruderr(
intfd,
struct t_uderr *uderr);

The t_sndudata() function can only be called in the T_IDLE transport provider
state. The following table summarizes the relevance of input and output parameters
before and after t_rcvuderr() is called:

Notes to Table:
y
n

Parameters Before Call After Call

f d y n
uderr->addr .maxlen y n
uderr->addr.len n y
uderr->addr.buf y (y)
uderr->opt.maxlen y n
uderr->Opt.len n y
uderr->Opt.buf y (y)
uderr->error n y

This is a meaningful parameter.
This is not a meaningful parameter.

(y) The content of the object pointed to by y is meaningful.

f d Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint on which the error occurred.

Description

uderr

Functions

t_rcvuderr(3)

Points to a type t_uderr structure used to specify the protocol
address, protocol options, and the nature of the error associated with
the data unit sent through the transport endpoint specified by the fd
parameter. The t_uderr structure has the following members:

struct netbuf addr
References a buffer for protocol address information
associated with the erroneous data unit sent from the
transport endpoint specified by the fd parameter. The type
netbuf structure referenced by this member is defined in the
xti.h include file and has the following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of data written to the
buffer.

char *buf
Points to the buffer location.

struct netbuf opt
Specifies a buffer for protocol-specific parameters associated
with the previously sent erroneous data unit.

long error
Specifies a protocol-specific error code associated with the
previously sent erroneous data unit.

Before the t_rcvuderr() function is called the uderr->addr.maxlen
and uderr->opt.maxlen parameters must be set to specify the
maximum byte length of the protocol address buffer and the protocol
options buffer, respectively, of the calling transport user.

When a transport user does not wish to identify the source of the
previously sent data unit error, the uderr parameter may be specified
as a null pointer. When this parameter is expressed as a null pointer,
the data unit error indication is cleared, but no information is
returned to buffers pointed to by this parameter.

The t_rcvuderr() function is an XTI connectionless service function that is used
to retrieve information about an error indication returned when a data unit was
previously sent with a t_sndudata() call.

1-849

OSF/1 Programmer's Reference
t_rcvuderr(3)

The t_rcvuderr() function should be called only after a [T_LOOK] error is
returned in response to a t_sndudata() call. When t_rcvuderr() successfully
executes, the error will be cleared. The t_rcvuderr() function uses type t_uderr
and netbuf structures, which are defined in the xti.h include file.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_rcvuderr() function fails, t_errno may be set to one of the following
values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TNOUDERR]
No unit data error indication currently exists at the transport
endpoint specified by the fd parameter.

[TBUFOVFLW]
The number of bytes allocated for the incoming protocol address or
options information is not sufficient to store that information. Unit
data error information was not returned to buffers pointed to by the
uderr parameter.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_look(3), t_rcvudata(3), t_sndudata(3)

1-850

t_snd

Purpose

Library

Synopsis

Parameters

Sends normal data or expedited data over a connection

XTI Library (libtli.a)

#include <xti.h>

int t_snd(
intfd,
char *buf,
unsigned nbytes,
int.flags) ;

Functions
t_snd(3)

The t_snd() function can only be called in the T_DATAXFER and T_INREL
transport provider states. The following table summarizes the relevance of input
and output parameters before and after t_snd() is called:

Parameters Before Call After Call

f d y n
buf y(y) n
nbytes y n
flags y n

Notes to Table:
y This is a meaningful parameter.

This is not a meaningful parameter.

f d

buf

nbytes

n
(y) The content of the object pointed to by y is meaningful.

Specifies a file descriptor returned by the t_open() function that
identifies the local transport endpoint where an active connection
exists.

Points to the data buffer from which data is to be sent.

Specifies the length in bytes of the send data buffer contents pointed
to by the bufparameter.

1-851

OSF/1 Programmer's Reference
t_snd{3)

flags Points to an integer whose bits specify certain optional information.

Description

1-852

Corresponding values and symbolic names for these flag bits are
defined in the xti.h include file. Flags specified by this function are:

Symbolic Name

T_MORE

T_EXPEDITED

Meaning

When set, this bit notifies the transport
provider that sent data is a fragment of a
Transport Service Data Unit (TSDU) or
Expedited Transport Service Data Unit
(ETSDU), and that more data will be sent on
the same TSDU or ETSDU via the t_snd()
function. The rest of the TSDU or ETSDU
can be sent through further t_snd() function
calls.

Each time the T_MORE flag is set, another
t_snd() call follows so that additional parts of
the TSDUs or ETSDUs can be sent. When the
final piece is sent, this flag bit is set to a value
of 0 (zero). When the transport provider does
not support TSDU or ETSDU data exchanges
(refer to the t_open() and t_getinfo()
functions) the state of this flag bit is
meaningless.

When set, this bit notifies the transport
provider that expeditied data is sent. When
the value of ETSDU data exceeds the value
specified by nbytes parameter, this flag bit
and the T_MORE flag bit should be set prior
to the initial t_snd() call. Subsequent t_snd()
calls used to send pieces of ETSDU must
have both these flag bits set. When the final
ETSDU is sent, the T_MORE flag bit is set to
a value ofO (zero).

The t_snd() function is an XTI connection-oriented service function that is used to
send normal or expedited data. The transport endpoint through which normal
Transport Service Data Unit (TSDU) data or special Expedited TSDU (ETSDU)
data is sent is specified by a file descriptor previously returned by the t_open()
function.

Notes

Functions
t_snd(3)

The size of each TSDU or ETSDU must not exceed the size limits specified by
info->tsdu or info->etsdu, respectively, returned by the t_open() or t_getinfo()
functions. Failure to comply with specified size constraints results in return of a
[TYSYSERR] protocol error. By default, the t_snd() function executes in the
synchronous operating mode. In the synchronous operating mode t_snd() waits
for data to be accepted by the transport provider, before returning control to the
calling transport user.

When the transport endpoint specified by the file descriptor has been opened with
the O_NONBLOCK flag set in the t_open() or fcntl() function, the t_snd()
function executes in asynchronous mode. When data cannot be immediately
accepted because flow control restrictions apply, control is immediately returned to
the caller.

When the t_snd() function executes successfully, the number of bytes accepted by
the transport provider is returned. It is possible that only part of the data may be
accepted by a transport provider. When only partial data is accepted, the returned
value is less than the number of bytes sent. If the nbytes parameter is specified as 0
(zero), and the underlying transport service does not support the sending of 0
octets, t_errno is set to [TBADDATA] and -1 is returned.

In asynchronous mode, when the number of bytes accepted by the transport
provider is less than the number of bytes sent, the transport provider may be
blocked because of flow-control restrictions.

Return Value

Errors

Upon successful completion, the t_snd() function returns the number of bytes of
data accepted by the transport provider. Otherwise, -1 is returned and t_errno is
set to indicate the error.

If the t_snd() function fails, t_errno may be set to one of the following values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TBADDATA]
Illegal amount of data. Zero octets is not supported.

[TBADFLAG]
An invalid flags value was specified.

1-853

OSF/1 Programmer's Reference

t_snd(3)

[TFLOW]

[TLOOK]

Asynchronous mode is indicated because O_NONBLOCK was set,
but no data can currently be accepted by the transport provider
because of flow-control restrictions.

An asynchronous event occurred on this transport endpoint.

[TOUTS TATE]
The t_snd() function was issued in the wrong sequence on the
transport endpoint referenced by the fd parameter.

[TSYSERR] A system error occurred during execution of the t_snd() function. A
protocol error may not cause t_snd() to fail until a subsequent
access of the transport endpoint is made.

Related Information

Functions: fcntl(2), t_getinfo(3), t_look(3), t_open(3), t_optmgmt(3), t_rcv(3)

1-854

Functions

t_snddis(3)

t_snddis

Purpose Sends user-initiated disconnect request

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_snddis(
intfd,

Parameters

struct t_call *call) ;

The t_snddis() function can be called in the following transport provider states:
T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, and T_INCON (when the
number of outstanding connections is greater than zero). The following table
summarizes the relevance of input and output parameters before and after
t_snddis() is called:

Parameter Before Call After Call

fd y n
call->addr.maxlen n n
call->addr.len n n
call->addr.buf n n
call->opt.maxlen n n
call->opt.len n n
call->opt.buf n n
call->udata.maxlen n n
call->udata.len y n
call->udata.buf o(o) n
call->sequence 0 n

Notes to Table:
y This is a meaningful parameter.

This is not a meaningful parameter.
This an optional parameter.

f d

n
0

(o) The content of the object pointed to by y is optional.

Specifies a file descriptor returned by the t_open() function that
identifies the transport endpoint at which the disconnect is wanted.

1-855

OSF/1 Programmer's Reference

t_snddis(3)

call

1-856

Points to a type t_call structure used to specify information
associated with the disconnect at the transport endpoint specified by
file descriptor fd. When the call parameter is set to the null pointer
value, no data is sent to the remote transport provider user. The
t_call structure has the following two members:

struct netbuf udata
Specifies a buffer for user data that may be optionally sent to
the remote transport user. The type netbuf structure
referenced by this member is defined in the xti.h include file.
This structure, which is used to explicitly define buffer
parameters, has the following members:

unsigned int maxlen
Specifies the maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of data written to the
buffer.

char *buf
Points to the buffer location.

int sequence
Specifies the identity of the connection for which this
disconnect request is intended and has meaning only when
the transport provider is in the T_INCON state and is
rejecting an incoming rejection request.

The udata parameters pointed to by the call parameter need only be
used when data is sent with a disconnect request.

When data is sent with the disconnect request, the size of the data
written to the buffer pointed to by call->udata.buf must not exceed
the limits specified by in/o->discon, which is returned by the
t_open() or t_getinfo() functions. Failure to comply with the
specified size constraints may result in return of a [T_SYSERR]
protocol error.

The sequence parameter is meaningful only if the transport user is
rejecting an incoming connection request and needs to identify
which incoming connection request to reject.

Description

Functions

t_snddis(3)

The t_snddis() XTI connection-oriented function is used to initiate an abortive
disconnect at an established transport endpoint. The transport endpoint is specified
by a file descriptor returned by the t_open() function. The t_snddis() function
uses type t_call and netbuf structures, which are defined in the xti.h include file.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_snddis() function fails, t_errno may be set to one of the following values:

[TBADF] File descriptor fd does not refer to a valid transport endpoint.

[TOUTS TATE]

[TBADDATA]

This function was issued in the wrong sequence at the transport
endpoint referenced by the f d parameter.

The amount of user data specified was not within the bounds
allowed by the transport provider. Some outbound data queued for
this endpoint may be lost.

[TBADSEQ] An invalid sequence number was specified, or a null value was used
for the call parameter when the connect request was rejected. Some
outbound data queued for this endpoint may be lost.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_connect(3), t_getinfo(3), t_listen(3), t_open(3)

1-857

OSF/1 Programmer's Reference

t_sndrel(3)

t_sndrel

Purpose

Library

Synopsis

Parameters

Initiates an endpoint connect orderly release

XTI Library (libtli.a)

#include <xti.h>

int t_sndrel(
intfd);

The t_sndrel() function can be called in the T_DATAXFER and T_INREL
transport provider states only. The following table summarizes the relevance of
input parameter data before and after t_sndrel() is called:

Notes to Table
y
n

Parameter Before Call After Call

f d y n

This is a meaningful parameter.
This is not a meaningful parameter.

f d Specifies a file descriptor returned by the t_open() function that
identifies a local transport endpoint where an orderly release is
wanted.

Description

1-858

The t_sndrel() XTI function is used in connection-oriented mode to initiate an
orderly release at a transport endpoint specified by a file descriptor previously
returned by the t_open() function.

After this orderly release is indicated, the transport user should not try to send more
data through that transport endpoint; an attempt to send more data to a released
transport endpoint may block continuously. However, a transport user may
continue to receive data over the connection until an orderly release indication is
received.

Functions

t_sndre1(3)

The t_sndrel() function should not be used unless the servtype type-of-service
returned by the t_open() or t_getinfo() functions is T_COTS_ORD (supports
connection-mode service with the optional orderly release facility).

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate an error.

If the t_sndrel() function fails, t_errno may be set to one of the following values:

[TBADF]

[TFLOW]

[TLOOK]

File descriptor fd does not refer to a valid transport endpoint.

Asynchronous mode is indicated because O_NONBLOCK was set,
but the transport provider cannot accept a release because of
flow-control restrictions.

An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TOUTS TATE]
The t_sndrel() function was issued in the wrong sequence at the
transport endpoint specified by the fd parameter.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_getinfo(3), t_open(3), t_rcvrel(3)

1-859

OSF/1 Programmer's Reference

t_sndudata(3)

t_sndudata

Purpose Sends a data unit

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_sndudata(
intfd,

Parameters

1-860

struct t_unitdata *unitdata) ;

The t_sndudata() function can only be called in the T_IDLE transport provider
state. The following table summarizes the relevance of input and output parameters
before and after t_sndudata() is called:

Parameters Before Call After Call

f d y n
unitdata->addr.maxlen n n
unitdata->addr.len y n
unitdata->addr .buf y(y) n
unitdata->opt.maxlen n n
unitdata->Opt.len y n
unitdata->Opt.buf o(o) n
unitdata->udata.maxlen n n
unitdata->udata.len y n
unitdata->udata.buf y(y) n

Notes to Table:
y This is a meaningful parameter.
(y) The content of the object pointed to by y is meaningful.
o This is a meaningful but optional parameter.
(o) The content of the object pointed to by o is meaningful.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies the transport endpoint through which data is sent.

Description

unitdata

Functions

t_sndudata(3)

Points to a type t_unitdata structure used to specify a data unit
being sent through the transport endpoint specified by the fd
parameter. The t_unitdata structure has the following members:

struct netbuf addr
References a buffer for protocol address information of the
remote transport user. The type netbuf structure referenced
by this member is defined in the xti.h include file and has the
following members:

unsigned int maxlen
Specifies a maximum byte length of the data buffer.

unsigned int len
Specifies the actual byte length of the data written to
the buffer.

char *buf
Points to the buffer location.

struct netbuf opt
Specifies protocol-specific optional parameters.

struct netbuf udata
Specifies the user data unit that is being sent to the remote
transport user.

The unitdata->addr.maxlen, unitdata->opt.maxlen, and
unitdata->udata.maxlen parameters are not meaningful with the
t_sndudata() function.

When optional data is not provided, the opt.len parameter should be
set to the null V(llue.

If the udata.len parameter is specified as 0 (zero), and the
underlying transport service does not support the sending of 0 (zero)
octets, t_errno is set to [TBADDATA] and -I is returned.

The t_sildudata() function is an XTI connectionless service function that is used
to send a data unit to a remote transport user. By default, t_sndudata() executes in
the synchronous operating mode. The t_sndudata() function waits for the
transport provider to accept the data before returning control to the calling
transport user.

1-861

OSF/1 Programmer's Reference

t_sndudata(3)

When the transport endpoint specified by the fd parameter has been previously
opened with the O_NONBLOCK flag set in the t_open() or fcntl() functions, the
t_sndudata() function executes in asynchronous mode. In asynchronous mode,
when a data unit is not accepted control is immediately returned to the caller. The
t_look() function can be used to determine when flow control restrictions have
been lifted.

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_sndudata() function fails, t_errno may be set to one of the following
values:

[TBADDATA]

[TBADF]

[TFLOW]

[TLOOK]

Illegal amount of data. Zero octets is not supported.

File descriptor fd is not a valid transport endpoint.

Asynchronous mode is indicated because O_NONBLOCK was set,
but the transport provider cannot accept the data because of
flow-control restrictions.

An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TOUTS TATE]
The t_sendudata() function was issued in the wrong sequence on
the transport endpoint referenced by the f d parameter.

[TSYSERR] A system error occurred during execution of this function. A
protocol error may not cause the t_sndudata() function to fail until
a subsequent call is made to access the transport endpoint specified
by the f d parameter.

Related Information

Functions: fcntl(2), t_alloc(3), t_open(3), t_rcvuderr(3), t_sndudata(3)

1-862

t_sync

Purpose

Library

Synopsis

Parameters

Description

Synchronizes transport library

XTI Library (libtli.a)

#include <xti.h>
int t_sync(

intfd);

Functions

t_sync(3)

The t_sync() function can be called in any transport provider state except
TUNINIT. The following table summarizes the relevance of input parameter data
before and after t_sync() is called:

Parameter Before Call After Call

f d y n

Notes to Table
y This is a meaningful parameter.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies an active, uninitialized local transport endpoint.

The t_sync() XTI utility service function is used to synchronize data structures
managed by the transport library with information from the underlying transport
provider.

The t_sync() function is used to convert an uninitialized file descriptor, previously
returned by the open() or dup() functions, or returned as the result of fork() or
exec() functions, to an initialized transport endpoint. When the file descriptor
references a valid transport endpoint, necessary library data structures are
allocated and updated.

1-863

OSF/1 Programmer's Reference

t_sync(3)

The t_sync() function also permits two cooperating processes to synchronize their
interaction with a transport provider. When a process forks, for example, and an
exec() function is issued, the child (new) process must call the t_syitc() function to
build a private library data structure associated with the transport endpoint
referenced by the fd parameter and to synchronize the library data structure with
relevant transport provider information.

A transport provider treats multiple users of a transport endpoint as the same user.
When more than one process is using the same transport endpoint, each should
coordinate its activities so that operation does not conflict with the transport
provider state at the transport endpoint specified by fd.

The t_sync() function returns the current state of the transport provider (refer to
the t_getstate() function). Return of the current state of the transport provider
permits the calling transport user to verify the transport provider state before
issuing the next function call. This coordination is only valid among cooperating
processes; it is possible that a process or an incoming event can change the
transport provider state at the reference transport endpoint after t_sync() is called.

When the transport provider at the transport endpoint referenced by the fd
parameter is undergoing a change of state and the t_sync() function is called, the
t_sync() process fails and returns a [TSTATECHNG] error.

Return Value

1-864

Upon successful completion, the state of the transport provider at the transport
endpoint specified by the fd parameter is returned. Otherwise, a value of -1 is
returned and t_errno is set to indicate the error. The returned state is one of the
following:

[T_UNBND] Transport endpoint not bound to an address.

[T_IDLE] Transport endpoint is idle.

[T_OUTCON]
Outgoing connection pending.

[T _INCON] Incoming connection pending.

[T_DATAXFER]
Data transfer.

[T_OUTREL] Outgoing orderly release (waiting for an orderly release indication).

[T .. JNREL] Incoming orderly release (waiting for an orderly release request).

Errors

Functions

t_sync{3)

If the t_sync() function fails, t_errno may be set to one of the following values:

[TBADF] File descriptor fd is not a valid transport endpoint. This error may
be returned when the fd parameter has been previously closed or an
erroneous file-descriptor value may have been passed to the call.

[TSTATECHNG]
The transport endpoint is undergoing a state change.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: exec(2), fcntl(2), fork(2), open(2), t_getstate(3)

1-865

OSF/1 Programmer's Reference

t_unbind(3)

t_unbind

Purpose Disables a transport endpoint

Library
XTI Library (libtli.a)

Synopsis #include <xti.h>

int t_unbind(
intfd);

Parameters

Description

1-866

The t_bind() function can only be called in the T_IDLE transport provider state.
The following table summarizes the relevance of input parameter data before and
after t_bind() is called:

Parameter Before Call After Call

f d y n

Notes to Table:
y This is a meaningful parameter.
n This is not a meaningful parameter.

fd Specifies a file descriptor returned by the t_open() function that
identifies an active, previously bound local transport endpoint.

The t_unbind() XTI service function is used in connection-oriented and
connectionless modes to disable the transport endpoint, specified by the file
descriptor that was previously bound by a t_bind() call. When t_bind()
completes, no further data destined for this transport endpoint or events are
accepted by the transport provider.

Functions
t_unbind(3}

Return Value

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and t_errno is set to indicate the error.

If the t_unbind() function fails, t_errno is set to one of the following values:

[TBADF] File descriptor fd is not a valid transport endpoint.

[TOUTSTATE]
This function was issued in the wrong sequence.

[TLOOK] An asynchronous event occurred at the transport endpoint specified
by thefd parameter.

[TSYSERR] A system error occurred during execution of this function.

Related Information

Functions: t_bind(3)

1-867

OSF/1 Programmer's Reference
tcdrain(3)

tcdrain

Purpose Waits for output to complete

Library
Standard C Library (libc.a)

Synopsis #include <termios.h>

Parameters

Description

Notes

Example

1-868

int tcdrain(
intfiledes);

filedes Specifies an open file descriptor.

The tcdrain() function waits until all output written to the object referred to by the
.filedes parameter has been transmitted.

A process group is sent a SIGTTOU signal if the tcdrain() function is called from
one of its member processes. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation and no signal is
sent.

The tcdrain() function, which suspends the calling process until the request is
completed, is redefined so that only the calling thread is suspended.

AES Support Level: Full use

To wait until all output has been transmitted, enter:

re= tcdrain(stdout);

Functions

tcdrain(3)

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the tcdrain() function fails, errno may be set to one of the following values:

[EBADF] The filedes parameter does not specify a valid file descriptor.

[EINTR] A signal interrupted the tcdrain() function.

[ENOTTY] The file associated with the filedes parameter is not a terminal.

Related Information

Functions: tcftow(3), tcftush(3), tcsendbreak(3)

1-869

OSF/1 Programmer's Reference
tcflow(3)

tcflow

Purpose Performs flow control functions

Library
Standard C Library (libc.a)

Synopsis #include <termios.h>

int tcflow(

Parameters

Description

1-870

filedes

action

intfiledes,
int action);

Specifies an open file descriptor.

Specifies one of the following:

TCOOFF
Suspend output.

TCOON
Restart suspended output.

TCIOFF
Transmit a STOP character, which is intended to cause the
terminal device to stop transmitting data to the system.

TCION
Transmit a START character, which is intended to cause the
terminal device to start transmitting data to the system.

The tcflow() function suspends transmission or reception of data on the object
referred to by the filedes parameter, depending on the value of the action
parameter.

A process group is sent a SIGTTOU signal if the tcflow() function is called from
one of its member processes. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation and no signal is
sent.

Functions

tcflow(3)

Notes

AES Support Level: Full use

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the tcflow() function fails, errno may be set to one of the following values:

[EBADF] Thefiledes parameter does not specify a valid file descriptor.

[EINVAL] The action parameter is not a supported value.

[ENOTTY] The file associated with the filedes parameter is not a terminal.

Related Information

Functions: tcdrain(3), tcflush(3), tcsendbreak(3)

Files: termios(4)

1-871

OSF/1 Programmer's Reference

tcflush(3)

tcflush

Purpose Flushes nontransmitted output data or nonread input data

Library
Stan!}ard C Library (Ube.a)

Synopsis #include <termios.h>

int tcflush(

Parameters

Description

Notes

1-872

intjiledes,
int queue_selector);

file des Specifies an open file descriptor associated with a terminal.

queue_selector
Specifies one of the following:

TCIFLUSH
Flush data received but not read.

TCOFLUSH
Flush data written but not transmitted.

TCIOFLUSH
Flush both data received but not read and data written but
not transmitted.

The tcflush() function discards any data written to the object referred to by the
.filedes parameter, or data received but not read by the object referred to by filedes,
depending on the value of the queue_selector parameter.

A process group is sent a SIGTTOU signal if the tcflush() function is called from
one of its member processes. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation and no signal is
sent.

AES Support Level: Full use

Functions
tcflush(3)

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the tcftush() function fails, errno may be set to one of the following values:

[EBADF] The .filedes parameter does not specify a valid file descriptor.

[EINVAL] The queue_selector parameter does not specify a proper value.

[ENOTTY] The file associated with the .filedes parameter is not a terminal.

Related Information

Functions: tcdrain(3), tcflow(3), tcsendbreak(3)

Files: termios(4)

1-873

OSF/1 Programmer's Reference
tcgetattr(3)

tcgetattr

Purpose Gets the parameters associated with the terminal

Library
Standard C Library (libc.a)

Synopsis #include <termios.h>

Parameters

Description

Notes

int tcgetattr (
intfile_des,
struct termios *termios_p);

file_des

termios_p

Specifies an open file descriptor associated with a terminal.

Points to a termios structure.

The tcgetattr() function gets the parameters associated with the object referenced
by the file_des parameter and stores them in the termios structure referenced by
the termios_p parameter.

If the device does not support split baud rates, the input baud rate stored in the
termios structure will be 0 (zero).

The tcgetattr() function may be called from any process.

AES Support Level: Full use

Return Values

1-874

Upon successful completion, 0 (zero) is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

Functions

tcgetattr(3)

Errors
If the tcgetattr() function fails, errno may be set to one of the following values:

[EBADF] Thefile_des parameter is not a valid file descriptor.

[ENOTTY] The file associated with the file_des parameter is not a terminal.

Related Information

Functions: tcsetattr(3)

Files: termios(4)

1-875

OSF/1 Programmer's Reference

tcgetpgrp(3)

tcgetpgrp

Purpose Gets foreground process group ID

Library
Standard C Library (Jibe.a)

Synopsis #include <sys/types.h>

pid_t tcgetpgrp(
intfile_des);

Parameters

Description

Notes

file_des Indicates the open file descriptor for the terminal special file.

The tcgetpgrp() function returns the value of the process group ID of the
foreground process group associated with the terminal. The function can be called
from a background process; however, the information may be subsequently
changed by the foreground process.

AES Support Level: Full use

Return Values

1-876

Upon successful completion, the process group ID of the foreground process is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Errors

Functions

tcgetpgrp(3)

If the tcgetpgrp() function fails, errno may be set to one of the following values:

[EBADF] Thefile_des parameter is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal or the file is
not the controlling terminal.

Related Information

Functions: setpgid(2), setsid(2), tcsetpgrp(3)

1-877

OSF/1 Programmer's Reference
tcsendbreak(3)

tcsendbreak

Purpose

Library

Synopsis

Parameters

Description

Notes

1-878

Sends a break on an asynchronous serial data line

Standard C Library (libc.a)

#include <termios.h>

int tcsendbreak(
intfiledes,

filedes

duration

int duration);

Specifies an open file descriptor.

Specifies the number of milliseconds that zero-valued bits are
transmitted. If the value of the duration parameter is 0 (zero),
transmission of zero-valued bits is for 250 milliseconds. If duration
is not 0, transmission of zero-valued bits is for duration
milliseconds.

If the terminal is using asynchronous serial data transmission, the tcsendbreak()
function causes transmission of a continuous stream of zero-valued bits for a
specific duration. If the terminal is not using asynchronous serial data
transmission, the tcsendbreak() function returns without taking any action.

A process group is sent a SIGTTOU signal if the tcsendbreak() function is called
from one of its member processes. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation and no signal is
sent.

AES Support Level: Full use

Functions
tcsendbreak(3)

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the tcsendbreak() function fails, errno is set to one of the following values:

[EBADF] The filedes parameter does not specify a valid open file descriptor.

[ENOTTY] The file associated with the filedes parameter is not a terminal.

Related Information

Functions: tcdrain(3), tcflow(3), tcflush(3)

Files: termios(4)

1-879

OSF/1 Programmer's Reference
tcsetattr (3)

tcsetattr

Purpose Sets the parameters associated with the terminal

Library
Standard C Library (libc.a)

Synopsis #include <termios.h>

Parameters

Description

1-880

int tcsetattr (
intfile_des,
int optional_actions,
struct termios *termios_p);

file_des Specifies an open file descriptor associated with a terminal.

optional_actions
Specifies the options defining how the parameters will be set.

termios_p Points to a termios structure containing the terminal parameters.

The tcsetattr() function sets the parameters associated with the terminal referred
to by the open file descriptor from the termios structure referenced by termios_p
as follows:

• If optional_actions is TCSANOW, the change will occur immediately.

• If optional_actions is TCSADRAIN, the change will occur after all output
written to file_des has been transmitted. This function should be used when
changing parameters that affect output.

• If optional_actions is TCSAFLUSH, the change will occur after all output
written to file_des has been transmitted, and all input so far received but not
read will be discarded before the change is made.

If the output baud rate stored in the termios structure pointed to by the termios_p
parameter is the zero baud rate, BO, the modem control lines will no longer be
asserted. Normally, this will disconnect the line.

If the input baud rate stored in the termios structure pointed to by the termios_p
parameter is zero, the input baud rate given to the hardware will be the same as the
output baud rate stored in the termios structure.

Notes

Functions

tcsetattr (3)

Attempts to use the tcsetattr() function from a process which is a member of a
background process group on a .file_des associated with its controlling terminal
causes the process group to be sent a SIGTTOU signal. If the calling process is
blocking or ignoring SIGTTOU signals, the process is allowed to perform the
operation and no signal is sent.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, 0 (zero) is returned. Otherwise, -1 is returned and
errno is set to indicate the error.

If the tcsetattr() function fails, errno may be set to one of the following values:

[EBADF] Thefile_des parameter is not a valid file descriptor.

[EINVAL] The optional_actions parameter is not a proper value, or an attempt
was made to change an attribute represented in the termios
structure to an unsupported value.

[ENOTTY] The file associated with the file_des parameter is not a terminal.

Related Information

Functions: cfgetispeed(3), tcgetattr(3)

1-881

OSF/1 Programmer's Reference

tcsetpgrp(3)

tcsetpgrp

Purpose Sets foreground process group ID

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>

int tcsetpgrp(
intfiledes,
pid_t pgrp_id);

Parameters

Description

Notes

filedes

pgrp_id

Specifies an open file descriptor.

Specifies the process group identifier.

If the process has a controlling terminal, the tcsetpgrp() function sets the
foreground process group ID associated with the terminal to the value of the
pgrp_id parameter. The file associated with the filedes parameter must be the
controlling terminal of the calling process, and the controlling terminal must be
currently associated with the session of the calling process. The value of the
pgrp_id parameter must match a process group ID of a process in the same session
as the calling process.

AES Support Level: Full use

Return Values

1-882

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Errors

Functions
tcsetpgrp(3)

If the tcsetpgrp() function fails, errno may be set to one of the following values:

[EBADF] The filedes parameter is not a valid file descriptor.

[EINV AL] The pgrp _id parameter is invalid.

[ENOTTY] The calling process does not have a controlling terminal, the file is
not the controlling terminal, or the controlling terminal is no longer
associated with the session of the calling process.

[EPERM] The pgrp_id parameter is valid, but matches a process ID or process
group ID of a process in another session.

Related Information

Functions: tcgetpgrp(3)

1-883

OSF/1 Programmer's Reference

time(3)

time

Purpose Gets time

Library
Standard C Library (Jibe.a)

Synopsis #include <time.h>

time_t time(
time_t *tloc) ;

Parameters

Description

Notes

tloc Points to the location where the return value is stored. When this
parameter is a null pointer, no value is stored.

The time() function returns the time in seconds since the epoch. The epoch is
referenced to 00:00:00 CUT (Coordinated Universal Time) 1Jan1970.

AES Support Level: Full use

Return Values
Upon successful completion, the time() function returns the value of time in
seconds since the epoch. Otherwise, the value ((time_t) - 1) is returned.

Related Information

Functions: clock(3), gettimeofday(2), stime(3)

1-884

Functions
times(3)

times

Purpose Gets process and child process times

Library
Standard C Library (libc.a)

Synopsis #include <sys/types.h>

#include <sys/times.h>

time_t times(

Parameters

Description

struct tms *buffer) ;

buffer Points to type tms structure space where system time information is
stored.

The times() function fills the type tms structure space pointed to by the buffer
parameter with time-accounting information. All time values reported by this
function are in hardware-dependent clock ticks.

The times of a terminated child process are included in the tms_cutime and
tms_cstime elements of the parent process when a wait() or waitpid() function
returns the process ID of that terminated child.

The tms structure, which is defined in the sys/times.h header file, contains the
following members:

time_t tms_utime
User time. The CPU time charged while executing user instructions
of the calling process.

time_t tms_stime
System time. The CPU time charged during system execution on
behalf of the calling process.

1-885

OSF/1 Programmer's Reference

times(3)

Notes

time_t tms_cutime
User time, children. The sum of the tms_utime and the tms_cutime
times of the child processes.

time_t tms_cstime
System time, children. The sum of the tms_stime and the
tms_cstime times of the child processes.

When a child process does not wait for its children, its child-process times are not
included in its times.

This information comes from the calling process and each of its terminated child
processes for which a wait() function has been executed.

AES Support Level: Full use

Return Values

Upon successful completion, the times() function returns the elapsed real time in
clock ticks since an arbitrary reference time in the past (for example, system start­
up time). This reference time does not change from one times() function to
another. The return value may overflow the possible range of type clock_t values.
When the times() function fails, a value of -1 is returned.

Related Information

1-886

Functions: exec(2), fork(2), getrusage(2), profil(2), stime(3), sysconf(3),
time(3), wait(2)

Commmands: cc(l)

Functions

tmpfile(3)

tmpfile

Purpose Creates a temporary file

Library

Standard 1/0 Package (libc.a)

Synopsis #include <stdio.h>

FILE *tmpfile (void);

Description

Notes

The tmpfile() function creates a temporary file and returns its FILE pointer. The
file is opened for update. The temporary file is automatically deleted when the
process using it terminates.

AES Support Level: Full use

Return Values

Errors

Upon successful completion, the tmpfile() function returns a pointer to the stream
of the file that is created. Otherwise, it returns a null pointer and sets errno to
indicate the error.

If the tmpfile() function fails, errno may be set to one of the following values:

[EMFILE]

[ENFILE]

[ENOS PC]

OPEN_MAX file descriptors are currently open in the calling
process.

Too many files are currently open in the system.

The directory or file system that would contain the new file cannot
be expanded.

Related Information

Functions: fopen(3), mktemp(3), tmpnam(3), unlink(2)

1-887

OSF/1 Programmer's Reference
tmpnam(3)

tmpnam, tempnam

Purpose

Library

Synopsis

Parameters

Description

1-888

Constructs the name for a temporary file

Standard 1/0 Package (libc.a)

#include <stdio.h>

char *tmpnam (
char *s);

char *tempnam (

s

const char *directory,
const char *prefix);

Specifies the address of an array of at least the number of bytes
specified by L_tmpnam, a constant defined in the stdio.h header file.

directory Points to the pathname of the directory in which the file is to be
created.

prefix Points to an initial character sequence with which the filename
begins. The prefix parameter can be null, or it can point to a string of
up to five characters to be used as the first characters of the
temporary filename.

The tmpnam() and tempnam() functions generate filenames for temporary files.

The tmpnam() function generates a filename using the pathname defined as
P _tmpdir in the stdio.h header file.

Files created using this function reside in a directory intended for temporary use,
and their names are unique. It is the user's responsibility to use the unlink()
function to remove the file when it is no longer needed.

Between the time a filename is created and the file is opened, it is possible for some
other process to create a file with the same name. This should not happen if that
other process uses these functions or the mktemp() function, and if the filenames
are chosen to make duplication by other means unlikely.

Notes

Functions

tmpnam(3)

The tempnam() function allows you to control the choice of a directory. If the
directory parameter is null or points to a string that is not a pathname for an
appropriate directory, the pathname defined as P _tmpdir in the stdio.h header file
is used. If that pathname is not accessible, /tmp is used. You can bypass the
selection of a pathname by providing an environment variable, TMPDIR, in the
user's environment. The value of the TMPDIR variable is a pathname for the
desired temporary file directory.

The prefix parameter can be used to specify a prefix of up to 5 characters for the
temporary filename.

The tmpnam() function generates a different filename each time it is called. If it is
called more than TMP _MAX times by a single process, it starts recycling
previously used names.

AES Support Level: Trial use

Return Values

Errors

If the s parameter is null, the nonreentrant version of the tmpnam() function
places its result into an internal static area and returns a pointer to that area. The
next call to this function destroys the contents of The area. The reentrant version
of the tmpnam() function always returns null ifs is null.

If the s parameter is not null, it is assumed to be the address of an array of at least
the number of bytes specified by L_tmpnam. L_tmpnam is a constant defined in the
stdio.h header file. The tmpnam() function places its results into that array and
returns the value of the s parameter.

Upon successful completion, the tempnam() function returns a pointer to the
generated pathname, suitable for use in a subsequent call to the free() function.
Otherwise, null is returned and errno is set to indicate the error.

If the tempnam() function fails, errno may be set to the following value:

[ENOMEM] Insufficient storage space is available.

Related Information

Functions: fopen(3), free(3), malloc(3), mktemp(3), open(2), tmpfile(3),
unlink(2)

1-889

OSF/1 Programmer's Reference

truncate(2)

truncate, ftruncate

Purpose Changes file length

Synopsis #include <sys/types.h>

int truncate (

Parameters

Description

1-890

const char *path,
off_t length);

int ftruncate (

path

file des

length

intfiledes,
off_t length);

Specifies the name of a file that is opened, truncated, and then
closed. The path parameter must point to a pathname which names
a regular file for which the calling process has write permission. If
the path parameter refers to a symbolic link, the length of the file
pointed to by the symbolic link will be truncated.

Specifies the descriptor of a file that must be open for writing.

Specifies the new length of the file in bytes.

The truncate() and ftruncate() functions change the length of a file to the size in
bytes specified by the length parameter. If the new length is less than the previous
length, the truncate() and ftruncate() functions remove all data beyond length
bytes from the specified file. All file data between the new End-of-File and the
previous End-of-File is discarded. If the new length is greater than the previous
length, new file data between the previous End-of-File and the new End-of-File
will be added, consisting of all zeros.

Full blocks are returned to the file system so that they can be used again, and the
file size is changed to the value of the length parameter.

The truncate() and ftruncate() functions have no effect on FIFO special files or
directories. These functions do not modify the seek pointer of the file.

Notes

Functions

truncate(2)

Upon successful completion, the truncate() and ftruncate() functions mark the
st_ctime and st_mtime fields of the file for update. If the file is a regular file, the
ftruncate() and truncate() functions clear the S_ISUID and S_ISGID attributes
of the file.

If the file has enforced file locking enabled and there are file locks on the file, the
truncate() or ftruncate() function fails.

AES Support Level: Trial use

Return Values

Errors

Upon successful completion, a value of 0 (zero) is returned. If the truncate() or
ftruncate() function fails, it returns a value of -1, and errno is set to indicate the
error.

If the truncate() or ftruncate() function fails, errno may be set to one of the
following values:

[EINV AL] The file is not a regular file.

[EISDIR] The file is a directory.

[EAGAIN] The write operation failed due to an enforced write lock on the file.

[EACCES] Write access permission to the file was denied.

[EFBIG] The new file size would exceed the process' file size limit or the
maximum file size.

[EROFS] The file resides on a read-only file system.

[EAGAIN] The file has enforced mode file locking enabled and there are file
locks on the file.

1-891

OSF/1 Programmer's Reference

truncate(2)

In addition, the truncate() function fails if errors occur that apply to any service
requiring pathname resolution, or if one of the following are true:

[ENAMETOOLONG]
The size of the pathname exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

[ENOENT] A component of the specified pathname does not exist, or the path
parameter points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

In addition, if the ftruncate() function fails, errno may be set to the following
value:

[EBADF] The filedes parameter is not a valid file descriptor open for writing.

Related Information

Functions: chmod(2), fcntl(2), open(2)

1-892

Functions

tsearch(3)

tsearch, tfind, tdelete, twalk

Purpose Manages binary search trees

Library
Standard C Library (libc.a)

Synopsis #include <search.h>

Parameters

void *tsearch(
const void *key,
const void *rootp,
int ((*compar) (const void*, const void*));

void *tfind(
const void *key,
const void **rootp,
int ((*compar) (const void*, const void*));

void *tdelete(
const void *key,
const void **rootp,
int ((*compar) (const void*, const void*));

void twalk(const void **rootp,
void (*action)(const void*, const enunt VISIT, const int));

key Points to a key that specifies the entry to be searched in the binary
tree.

rootp

compar

action

Points to a variable that points to the root of the binary tree.

Specifies the name (that you supply) of a comparison function
(strcmp(), for example). This function is called with two
parameters that point to the data undergoing comparison in the
binary tree.

The name of a routine to be invoked at each node during a walk
through the binary tree.

1-893

OSF/1 Programmer's Reference

tsearch(3)

Description

1-894

The tsearch(), tfind(), tdelete() and twalk() functions are used to operate on
binary search trees. Comparisons are done with a function that you supply
(strcmp(), for example). The address of the compare function is passed as the
compar parameter in these functions. The compare function must be called with
two parameters that point to entries in the binary tree undergoing comparison.

The tsearch() function is used to build and access a binary tree during a search.
The key parameter is a pointer to an entry that is accessed or stored. When an entry
in the binary tree compares with (is equal to) the value pointed to by the key
parameter, a pointer to this entry in the binary tree is returned. Otherwise, the value
pointed to by the key parameter is inserted into the binary tree in its proper place,
and a pointer to the inserted key is returned. Only pointers are copied, so the
calling routine must store the data.

The rootp parameter points to a variable that points to the root of a binary tree.
When a null value is specified for the rootp parameter, an empty tree is specified;
in this case, the variable pointed to by the rootp parameter is set to point to the
entry, which is located at the root of a new tree.

As with the tsearch() function, the tfind() function searches for an entry in the
binary tree, returning a pointer to that entry in the binary tree when a match with
the key parameter occurs. However, when key is not matched, this function returns
a null pointer.

The tdelete() function deletes a node from a binary search tree. Parameters for this
function are used in the same way as for the tsearch() function. The variable
pointed to by the rootp parameter is changed when the deleted node is the root of
the binary tree. The tdelete() function returns a pointer to the parent of the deleted
node.

The twalk() function traverses a binary search tree. The rootp parameter specifies
the root of the binary tree to be traversed. Any node in a binary tree may be used as
the rodtnode for a traverse at the level below the specified root node. The action
parameter is the name of a routine to be invoked at each node. This action routine
is called with three parameters. The first parameter specifies the address of the
visited node. The second parameter specifies a value from an enum data type,
which is defined in the search.h include file as follows:

typedef@enum { preorder, postorder, endorder, leaf} VISIT

The value of the second parameter in the action routine depends on whether this is
the first (preorder), second (postorder), or third (endorder) time that the node
has been visited during a depth-first left-to-right traversal of the tree, or whether
the node is a leaf. (A leaf is a node that is not the parent of another node). The
third parameter in the action routine is the level of the node in the binary tree; the
root level of a binary tree is 0 (zero).

Notes

Functions

tsearch(3)

The comparison function need not compare every byte; consequently, arbitrary
data may be contained in the searched keys in addition to the values undergoing
comparison.

Pointers to keys and to roots of binary trees should be of type pointer-to-element
and cast to type pointer-to-character. Although declared as type pointer-to­
character, the value returned should be cast to type pointer-to-element.

AES Support Level: Trial use

Return Values

Errors

When the key parameter is matched with an entry in the binary tree, both the
tsearch() and tfind() functions return a pointer to the matching entry in the binary
tree. When key remains unmatched, the tfind() function returns a null pointer. The
tsearch() function returns a pointer to the inserted entry.

A null pointer is returned by the tsearch() function when there is not enough space
available in the binary tree to create a new node.

A null pointer is returned by the tsearch(), tfind(), and tdelete() functions when
the rootp parameter is set to the null pointer value.

No value is returned by the twalk() function.

If the tsearch(), tfind(), twalk(), or tdelete() function fails, errno may be set to
the following value:

[ENOMEM] Insufficient storage space is available to add an entry to the binary
tree.

Related Information

Functions: bsearch(3), hsearch(3), lsearch(3)

1-895

OSF/1 Programmer's Reference
ttyname(3)

ttyname, isatty

Purpose

Library

Synopsis

Parameters

Description

1-896

Gets the name of a terminal

Standard C Library (libc.a)

char *ttyname(
intfiZe_descriptor);

int isatty(
intfiZe_descriptor);

int ttyname_r(
int fiZe_descriptor,
char *buffer,
int Zen);

fiZe_descriptor

buffer

Zen

Specifies an open file descriptor.

Points to a buffer in which the terminal name is stored.

Specifies the length of the buffer pointed to by the buffer parameter.

The ttyname() function gets the name of a terminal. It returns a pointer to a string
containing the null-terminated pathname of the terminal device associated with the
fiZe_descriptor parameter.

The isatty() function determines if the device associated with the fiZe_descriptor
parameter is a terminal. If so, the isatty() function returns a value of 1. If the file
descriptor is not associated with a terminal, a value of 0 (zero) is returned.

The ttyname_r() function is the reentrant version of the ttyname() function.
Upon successful completion, the terminal name is stored as a null-terminated string
in the buffer pointed to by the buffer parameter.

Functions
--------------------------------"" __ _

ttyname(3)

Notes

AES Support Level: Full use

Return Values

Errors

The ttyname() function returns a pointer to a string which is static data that is
overwritten by each call. A null pointer is returned if the file_descriptor parameter
does not describe a terminal device in the directory /dev.

The isatty() function returns a value of 1 if the specified file descriptor is
associated with a terminal, and 0 (zero) otherwise.

The ttyname_r() function returns 0 (zero) if successful. Otherwise, -1 is returned.

If the ttyname_r() function fails, errno may be set to the following value:

[EINVAL] The buffer parameter is a null pointer or the ten parameter was too
short to store the string.

If the isatty() function fails, errno may be set to the following value:

[ENOTTY] THe file associated withfiledes is not a terminal.

Related Information

Functions: ttyslot(3)

1-897

OSF/1 Programmer's Reference

ttyslot(3)

ttyslot

Purpose Finds the slot in the utmp file for the current user

Library
Standard C Library (libc.a)

Synopsis int ttyslot (void);

Description

The ttyslot() function returns the index of the current user's entry in the /etc/utmp
file. The ttyslot() function scans the /etc/utmp file for the name of the terminal
associated with the standard input, the standard output, or the error output file
descriptors (0, 1, or 2).

Return Values

Upon successful completion, the ttyslot() function returns the index of the current
user's entry in the /etc/utmp file. Otherwise, if an error is encountered while
searching for the terminal name, or if none of the first three file descriptors (0, 1,
and 2) is associated with a terminal device, 0 (zero) is returned.

Related Information

Functions: getutent(3), ttyname(3)

1-898

Functions

ulimit(3)

ulimit

Purpose Sets and gets user limits

Library
Standard C Library (Jibe.a)

Synopsis #include <ulimit.h>

Parameters

long ulimit (
int command,
off_t new _limit,
...);

command

new limit

Specifies the form of control. The command parameter values
follow:

UL_ GETFSIZE ()
Returns the process file size limit. The limit is in units of
UBSIZE blocks (see the sys/param.h file) and is inherited
by child processes. Files of any size can be read.

UL_ SETFSIZE ()
Sets the process file size limit for output operations to the
value of the new _limit parameter, and returns the new file
size limit. Any process can decrease this limit, but only a
process with the SEC_LIMIT system privilege can increase
the limit.

GET_GETBREAK ()
Returns the maximum possible break value (described in the
brk() and sbrk() functions).

Specifies the new limit. The value of the new _limit parameter
depends on the command parameter value that is used.

1-899

OSF/1 Programmer's Reference

ulimit(3)

Description

Notes

Example

The ulimit() function controls process limits.

With remote files, the ulimit() function values of the client node or local node are
used.

The ulimit() function is implemented in terms of setrlimit(); therefore, the two
interfaces should not be used in the same program. The result of doing so is
undefined.

AES Support Level: Trial use

To increase the size of the stack segment by 2048 bytes, and set the re variable to
the new lowest valid stack address, enter:

re= ulirnit(l006, ulirnit(l005, 0) - 2048);

Return Values

Errors

Upon successful completion, a nonnegative value is returned. If the ulimit()
function fails, a value of -1 is returned and errno is set to indicate the error.

If the ulimit() function fails, the limit remains unchanged and errno may be set to
one of the following values:

[EPERM]

[EINVAL]

A process without appropriate system privilege attempts to increase
the file size limit.

The command parameter is invalid.

Related Information

Functions: brk(2), getrlimit(2), pathconf(3), write(2)

1-900

Functions

umask(2)

umask

Purpose Sets and gets the value of the file creation mask

Synopsis #include <sys/types.h>

#include <sys/stat.h>

mode_ t umask (

Parameters

Description

Notes

mode_t cmask);

cmask Specifies the value of the file mode creation mask.

The umask() function sets the file mode creation mask of the process to the value
of the cmask parameter and returns the previous value of the mask. The cmask
parameter is constructed by logically ORing file permission bits defined in the
sys/stat.h header file.

Whenever a file is created (by the open(), mkdir(), or mknod() function), all file
permission bits set in the file mode creation mask are cleared in the mode of the
created file. This clearing allows users to restrict the default access to their files.

The mask is inherited by child processes.

AES Support Level: Full use

Return Values

Upon successful completion, the previous value of the file mode creation mask is
returned.

Related Information

Functions: chmod(2), mkdir(2), mknod(2), open(2), stat(2)

Commands: chmod(l), mkdir(l), sh(l), umask(l)

1-901

OSF/1 Programmer's Reference
umount(3)

umount

Purpose Unmounts a file system

Library
System V Compatibility Library (libsys5.a)

Synopsis #include <Sys/mount.h>

int umount(

Parameters

Description

Notes

char *spec);

spec Points to the pathname of the special file or file system to be
unmounted.

The umount() function unmounts a previously-mounted file system contained on
the block special file pointed to by the spec parameter. When the file system is
unmounted, the directory mount point where the file system was mounted returns to
its normal interpretation.

The umount() function can only be invoked by the superuser.

Two umount() functions are supported by OSF/l: the BSD umount() and the
System V umount(). The default umount() function is the BSD umount(). To
use the version of umount() documented on this reference page, you must link
with the libsys5 library before you link with libc.

Return Value

1-902

The umount() function returns 0 (zero) if the file system was successfully
unmounted. Otherwise, -1 is returned and errno is set to indicate the error.

Errors

Functions
umount(3)

If the umount() function fails, errno may be set to one of the following values:

[EPERM] The effective user ID of the calling process is not root.

[ENOENT] The spec parameter points to a pathname that does not exist.

[ENOTDIR] A component of the path prefix of spec is not a directory.

[ENOTBLK] The device identified by spec is not a block-special device.

[ENXIO] The device identified by spec does not exist.

[EBUSY]

[EINVAL]

A file on the device pointed to by the spec parameter is busy.

The device pointed to by the spec parameter is not mounted.

Related Information

Commands: mount(8)

1-903

OSF/1 Programmer's Reference

uname(2)

uname

Purpose Gets the name of the current system

Synopsis #include <sys/utsname.h>

int uname (

Parameters

Description

Notes

1-904

struct utsname *name);

name Points to a utsname structure.

The uname() function stores information identifying the current system in the
structure pointed to by the name parameter.

The uname() function uses the utsname structure, which is defined in the
sys/utsname.h file and contains the following members:

char sysname[SYS_NMLNJ;
char nodename[SYS _ NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS _ NMLN];

The uname() function returns a null-terminated character string naming the
current system in the sysname character array. The nodename array contains the
name that the system is known by on a communications network. The release and
version arrays further identify the system. The machine array identifies the CPU
hardware being used.

AES Support Level: Full use

Functions
uname(2)

Return Values

Errors

Upon successful completion, a nonnegative value is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

If the uname() function fails, errno may be set to the following value:

[EFAULT] The name parameter points outside of the process address space.

Related Information

Commands: uname(l)

1-905

OSF/1 Programmer's Reference
ungetc(3)

ungetc, ungetwc

Purpose

Library

Synopsis

Parameters

Description

Notes

1-906

Pushes a character back into input stream

Standard 1/0 Package (Jibe.a)

#include <stdio.h>

int ungete (
int character,
FILE *stream);

character Specifies a character.

Specifies the input stream. stream

The ungete() function inserts the character specified by the character parameter
into the buffer associated with the input stream specified by the stream parameter.
This causes the next call to the gete() function to return character. The ungete()
function returns character, and leaves the stream parameter file unchanged.

If the character parameter is EOF, the ungete() function does not place anything
in the buffer and a value of EOF is returned.

You can push one character back onto a stream, provided that something has been
read from the stream or the setbuf() function has been called. The fseek()
subroutine erases all memory of inserted characters.

The ungete() function returns a value of EOF if it cannot insert the character.

When running with Japanese Language Support, the following function, stored in
Jibe.a, is provided:

#include <stdio.h>

int ungetwe (
int character,
FILE *stream);

Functions

ungetc{3)

The ungetwc() function inserts the NLchar specified by the character parameter
into the buffer associated with the input stream. This causes the next call to the
getwc() function to return the value of the character parameter.

AES Support Level: Full use

Return Values

The ungetwc() function returns a value of EOF if the character cannot be inserted.

Related Information

Functions: fseek(3), getc(3), getwc(3), setbuf(3)

1-907

OSF/1 Programmer's Reference

unlink(2)

unlink

Purpose

Synopsis

Parameters

Description

Notes

Removes a directory entry

int unlink (
const char *path);

path Specifies the directory entry to be removed.

The unlink() function removes the directory entry specified by the path parameter
and, if the entry is a hard link, decrements the link count of the file referenced by
the link.

When all links to a file are removed and no process has the file open or mapped, all
resources associated with the file are reclaimed, and the file is no longer accessible.
If one or more processes have the file open or mapped when the last link is
removed, the link will be removed before the unlink() function returns, but the
removal of the file contents is postponed until all open or map references to the file
are removed. If the path parameter names a symbolic link, the symbolic link itself
is removed.

Removing a hard link to a directory requires superuser privilege.

Upon successful completion, the unlink() function marks for update the st_ ctime
and st_ mtime fields of the directory which contained the link. If the file's link
count is not 0 (zero), the st_ctime field of the file is also marked for update.

AES Support Level: Full use

Return Values

1-908

Upon successful completion, a value of 0 (zero) is returned. If the unlink()
function fails, a value of -1 is returned, the named file is not changed, and errno is
set to indicate the error.

Errors

Functions

unlink(2)

If the unlink() function fails, the named file is not unlinked and errno may be set
to one of the following values:

[ENOENT] The named file does not exist or the path parameter points to an
empty string.

[EACCES] Search permission is denied for a component of the path prefix, or
write permission is denied on the directory containing the link to be
removed.

[EPERM] The named file is a directory, and the calling process does not have
superuser privilege.

[EPERM] The S_ISVTX flag is set on the directory containing the file to be
deleted, and the caller is not the file owner.

[EBUSY] The entry to be unlinked is the mount point for a mounted file
system.

[EROFS] The entry to be unlinked is part of a read-only file system.

[EFAULT] The path parameter is an invalid address.

[ELOOP] Too many links were encountered in translating path.

[ENAMETOOLONG]
The length of the path parameter exceeds P ATH_MAX or a
pathname component is longer than NAME_MAX.

[ENOTDIR] A component of the path prefix is not a directory.

Related Information

Functions: close(2), link(2), open(2), rmdir(2)

Commands: rm(l)

1-909

OSF/1 Programmer's Reference

unload(3)

unload

Purpose

Library

Synopsis

Parameters

Description

Notes

Unloads a previously loaded module

Loader Library libld.a

#include <sys/types.h>
#include <loader.h>
int unload(

ldr _module_ t mod _id);

mod id
Specifies the identifier for the module to be unloaded. The module ID is
returned when the module is first loaded.

The unload() function unloads the specified module from the virtual address space
of the calling process. The function unmaps the module's regions and discards the
loader data structures that describe the module.

The module is unloaded even if any references to it remain in other modules. The
loader does not keep track of such dangling references or attempt to unsnap any
invalidated links. These housekeeping tasks are the responsibility of the calling
process. Attempts to refer to addresses in an unloaded module can result in
indeterminate errors.

Once a mopule has been unloaded, its module ID is no longer valid.

Return Values

1-910

Upon successful completion, the unload() function returns a value of 0 (zero). If
the unload fails, the function returns a value of -1 and errno is set to indicate the
error.

Functions
unload(3)

Errors

If the unload() function fails, errno may be set to one of the following values:

[EINVAL] The specified module ID cannot be unloaded or is not valid.

[EDUPPKG] The loaded module exported a package which duplicated the
package name of a module already loaded in the same process.

Related Information

Functions: load(2), ldr _ xunload(2)

1-911

OSF/1 Programmer's Reference

unlocked_getc(3)

unlocked_getc, unlocked_getchar

Purpose Gets a character from an input stream

Library
Standard C Library (libc.a)

Synopsis #include <stdio.h>
int unlocked _getc(

FILE* file);

Parameters

Description

int unlocked_getchar (void);

file Specifies the input stream.

The unlocked_getc() and unlocked_getchar() functions are functionally
identical to the getc() and getchar() functions, except that unlocked _getc() and
unlocked_getchar() may be safely used only within a scope that is protected by
the flockfile() and funlockfile() functions used as a pair. The caller must ensure
that the stream is locked before these functions are used.

Return Values

The integer constant EOF is returned at the end of the file or upon an error.

Related Information

Functions: flockfile(3), funlockfile(3), getc(3)

1-912

Functions
unlocked_putc(3)

unlocked_putc, unlocked_putchar

Purpose Writes a character to a stream

Library
Standard C Library (Jibe.a)

Synopsis #include <stdio.h>

Parameters

Description

int unlocked _putc(
char c,
FILE *file);

int unlocked _putchar(
char c);

file Specifies the stream.

c Specifies the character to be written.

The unlocked _putc() and unlocked _putchar() functions are functionally
identical to the putc() and putchar() functions, except that unlocked _putc() and
unlocked _putchar() may be safely used only within a scope that is protected by
the flockfile() and funlockfile() functions used as a pair. The caller must ensure
that the stream is locked before these functions are used.

Return Values

Upon successful completion, the value written is returned. Otherwise, the constant
EOF is returned.

Related Information

Functions: flockfile(3), funlockfile(3), putc(3)

1-913

OSF/1 Programmer's Reference
usleep(3)

usleep

Purpose

Library

Synopsis

Parameters

Description

Suspends execution for an interval

Standard C Library (libc.a)

unsigned usleep(
unsigned mseconds);

mseconds The number of microseconds to suspend execution for.

The usleep() function suspends the current process from execution for the number
of microseconds specified by the mseconds parameter. Because of other activity in
the system, or because of the time spent in processing the call, the actual
suspension time may be longer than specified.

The usleep() function sets an interval timer and pauses until it occurs. The
previous state of this timer is saved and restored. If the sleep time exceeds the time
to the expiration of the previous timer, the process sleeps only until the signal
would have occurred, and the signal is sent a short time later.

The usleep() function uses the setitimer() function. It requires eight system calls
each time it is invoked. A similar but less compatible function can be obtained
with a single select; it would not restart after signals, but would not interfere with
other uses of setitimer().

Related Information

Functions: alarm(3), getitimer(2), sigaction(2), sigvec(2), sleep(3)

1-914

Functions

utime(2)

utime, utimes

Purpose Sets file access and modification times

Synopsis #include <sys/time.h>

#include <utime.h>

#include <sys/types.h>

int utime (

Parameters

Description

const char *path,
struct utimbuf *times);

int utimes (
const char *path,
struct timeval times[2];

path Points to the file. If the final component of the path parameter names
a symbolic link, the link will be traversed and pathname resolution
will continue.

times Points to a utimbuf structure for the utime() function, or to an
array of timeval structures for the utimes() function.

The utimes() function sets the access and modification times of the file pointed to
by the path parameter to the value of the times parameter. The utimes() function
allows time specifications accurate to the microsecond.

The utime() function also sets file access and modification times; however, each
time is contained in a single integer and is accurate only to the nearest second.

1-915

OSF/1 Programmer's Reference

utime(2)

Notes

For utime(), the times parameter is a pointer to a utimbuf structure, defined in the
utime.h header file. The first structure member represents the date and time of last
access, and the second member represents the date and time of last modification.
The times in the utimbuf structure are measured in seconds since the epoch
(00:00:00, January 1, 1970, Coordinated Universal Time (CUT)).

For utimes(), the times parameter is an array of timeval structures, as defined in
the sys/time.h header file. The first array element represents the date and time of
last access, and the second element represents the date and time of last
modification. The times in the timeval structure are measured in seconds and
microseconds since the epoch, although rounding towards the nearest second may
occur.

If the times parameter is null, the access and modification times of the file are set to
the current time. If the file is a remote file, the current time at the remote node,
rather than the local node, is used. The effective user ID of the process must be the
same as the owner of the file, or must have write access to the file or superuser
privilege in order to use the call in this manner.

If the times parameter is not null, the access and modification times are set to the
values contained in the designated structure, regardless of whether those times
correlate with the current time. Only the owner of the file or a user with superuser
privilege can use the call this way.

Upon successful completion, the utime() and utimes() functions mark the time of
the last file status change, st_ctime, for update.

AES Support Level: Full use

Return Values

Errors

1-916

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned, errno is set to indicate the error, and the file times will not be
affected.

If the utimes() or utime() function fails, errno may be set to one of the following
values:

[ENOENT] The named file does not exist or the path parameter points to an
empty string.

[EPERM] The times parameter is not the null value and the calling process has
write access to the file but neither owns the file nor has the
appropriate system privilege.

Functions
utime(2)

[EACCES] Search permission is denied by a component of the path prefix; or
the times parameter is null and effective user ID is neither the owner
of the file nor has appropriate system privilege, and write access is
denied.

[EROFS] The file system that contains the file is mounted read-only.

[EFAULT] The path parameter is an invalid address, or (for utimes()) either
the path or times parameter is an invalid address.

[BLOOP] Too many links were encountered in translating path.

[ENAMETOOLONG]
The length of the path parameter exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

[ENOTDIR] A component of the path prefix is not a directory.

The utimes() function can also fail if additional errors occur.

Related Information

Functions: stat(2)

1-917

OSF/1 Programmer's Reference
varargs(3)

varargs

Purpose

Library

Synopsis

Parameters

1-918

Handles a variable-length parameter list

Standard C Library (Jibe.a)

#include <stdargs.h>

va_alist
va_dcl
void va_start (

va_alist argp);
type va_arg (

va_alist argp,
type);

void va_end (
va_alist argp);

argp Specifies a variable that the varargs macros use to keep track of the
current location in the parameter list. Do not modify this variable.

type Specifies the type to which the expected argument will be converted
when passed as an argument. In C, arguments that are char or short
should be accessed as int; unsigned char or short are converted to
unsigned int, and float arguments are converted to double. Different
types can be mixed, but it is up to the routine to know what type of
argument is expected, since it cannot be determined at runtime.

Functions
varargs(3)

Description

Example

The varargs set of macros allows you to write portable functions that accept a
variable number of parameters. Subroutines that have variable-length parameter
lists (such as the printf() function), but that do not use the varargs macros, are
inherently nonportable because different systems use different parameter-passing
conventions.

The varargs macros are as follows:

va_alist() Defines the type of the variable used to traverse the list.

va_start()

va_argp()

va_arg()

va_end()

Initializes argp to point to the beginning of the list. The va_start()
macro will be invoked before any access to the unnamed arguments.

A variable that the varargs macros use to keep track of the current
location in the parameter list. Do not modify this variable.

Returns the next parameter in the list pointed to by argp.

Cleans up at the end.

Your function can traverse, or scan, the parameter list more than once. Start each
traversal with a call to va_start() and end it with va_end().

The following example is a possible implementation of the execl() function:

#include <varargs.h>
#define MAXargS 100
/*
**
**

execl is called by
execl(file, argl, arg2,

*/

execl(va_alist)
va_dcl
va_alist ap;
char *file;
char *args[MAXargS];
int argno = O;
va_start (ap);
file = va_arg(ap, char *);

(char *) 0);

while ((args[argno++] = va_arg(ap, char*)) != (char*) 0)
/* Empty loop body */

va_end (ap) ;
return (execv(file, args));

1-919

OSF/1 Programmer's Reference

varargs(3)

Notes

The calling routine is responsible for specifying the number of parameters because
it is not always possible to determine this from the stack frame. For example, the
execl() function is passed a null pointer to signal the end of the list. The printf()
function determines the number of parameters from itsfmt parameter.

AES Support Level: Temporary use

Related Information

Functions: exec(2), printf(3), vprintf(3)

1-920

Functions

vprintf(3)

vprintf, vfprintf, vsprintf

Purpose Formats a varargs parameter list for output

Library

Standard UO Package (libc.a)

Synopsis #include <stdio.h>
#include <stdarg.h>

Parameters

Description

int vprintf (
const char *format,
va_list printarg);

int vfprintf (
FILE *stream,
const char *format,
va_list printarg);

int vsprintf (

format

printarg

stream

string

char *string,
const char *format,
va_list printarg);

Specifies a character string that contains two types of objects:

Plain characters, which are copied to the output stream.

Conversion specifications, each of which causes zero or more
items to be fetched from the varargs parameter lists.

Specifies the arguments to be printed.

Specifies the output stream.

Specifies the buffer to which output is printed.

The vprintf(), vfprintf(), and vsprintf() functions format and write varargs
parameter lists.

1-921

OSF/1 Programmer's Reference
vprintf(3)

Notes

These functions are the same as the printf(), fprintf(), and sprintf() functions,
respectively, except that they are not called with a variable number of parameters.
Instead, they are called with a parameter list pointer as defined by varargs.

AES Support Level: Full use

Example

The following example demonstrates how the vfprintf() function can be used to
write an error routine:

#include <stdio.h>
#include <varargs.h>

/* error should be called with the syntax:
/* error(routine_name, Format [, value,
*/

/*VARARGSO*/

void error(va_alist) va_dcl;

*/
l) ;

/* ** Note that the function name and Format arguments **
cannot be separately declared because of the **
definition of varargs. */ {

va_list args;
char *fmt;
void fprintf() , vfprintf() , abort();

va_start(args);
/*
** Display the name of the function that called error
*/
fprintf(stderr, "ERROR in %s: ", va_arg(args, char*));
/*
** Display the remainder of the message
*/
fmt = va_arg(args, char *);
vfprintf(fmt, args);
va_end (args) ;

abort () ; }

Related Information

Functions: printf(3)

1-922

Functions
wait(2)

wait, waitpid, wait3

Purpose Waits for a child process to stop or terminate

Synopsis #include <sys/types.h>

#include <sys/wait.h>

pid_t wait (

Parameters

Description

int *status_location);

pid_t waitpid (
pid_t process_id,
int *status_location,
int options);

#include <sys/resource.h>

pid_t wait3 (
union wait *status_location,
int options,
struct rusage *resource_usage);

status_location
Points to a location that is filled in with the child process termination
status, as defined in the sys/wait.h header file.

process_id Specifies the child process.

options Modifies the behavior of the function.

resource_usage
Specifies the location of a structure to be filled in with resource
utilization information for terminated child processes.

The wait() function suspends the calling process until it receives a signal that is to
be caught, or until any one of the calling process' child processes stops or
terminates. The wait() function returns without waiting if a child process that has
not been waited for has already stopped or terminated prior to the call.

The effect of the wait() function can be modified by the setting of the SIGCHLD
signal. (See the sigaction() function for details.)

1-923

OSF/1 Programmer's Reference

wait(2)

1-924

The waitpid() function behaves identically to the wait() function if the process_id
parameter has a value of -1 and the options parameter has a value of 0 (zero).
Otherwise, its behavior is modified by the values of the process_id and options
parameters.

The wait(), waitpid(), and wait3() functions, which suspend the calling process
until the request is completed, are redefined so that only the calling thread is
suspended.

The process_id parameter allows the calling process to gather status from a specific
set of child processes, according to the following rules:

• If the process_id parameter is equal to -1, status is requested for any child
process. In this respect, the waitpid() function is equivalent to the wait()
function.

• If the process_id parameter is greater than 0 (zero), it specifies the process ID
of a single child process for which status is requested.

• If the process_id parameter is equal to 0 (zero), status is requested for any
child process whose process group ID is equal to that of the calling process.

• If the process_id parameter is less than -1, status is requested for any child
process whose process group ID is equal to the absolute value of the
process_id parameter.

The waitpid() function will only return the status of a child process from this set.

The options parameter to both the waitpid() and wait3() functions modifies the
behavior of the function. Two values are defined, WNOHANG and
WUNTRACED, which can be combined by specifying their bitwise-inclusive OR.
The WNOHANG option prevents the calling process from being suspended even if
there are child processes to wait for. In this case, 0 (zero) is returned indicating
that there are no child processes that have stopped or terminated. If the
WUNTRACED option is set, the call also returns information when child processes
of the current process are stopped because they received a SIGTTIN, SIGTTOU,
SIGSTOP, or SIGTSTOP signal.

If the wait(), waitpid(), or wait3() function returns because the status of a child
process is available, they return the process ID of the child process. In this case, if
the status_location parameter is not null, information will be stored in the location
pointed to by status_location. The value stored at the location pointed to by
status_location is 0 (zero) if and only if the status returned is from a terminated
child process that returned 0 (zero) from the main() routine, or passed 0 (zero) as
the status parameter to the _exit() or exit() function. Regardless of its value, this
information can be interpreted using the following macros, which are defined in the
sys/wait.h header file and evaluate to integral expressions; the status_value
parameter is the integer value pointed to by status_location.

Functions
wait(2)

WIFEXITED(status_value)
Evaluates to a nonzero value if status was returned for a child
process that terminated normally.

WEXITSTATVS(status_value)
If the value of WIFEXITED(status_value) is nonzero, this macro
evaluates to the low-order 8 bits of the status parameter that the
child process passed to the _exit() or exit() functions, or the value
the child process returned from the main() routine.

WIFSIGNALED(status_value)
Evaluates to nonzero value if status was returned for a child process
that terminated due to the receipt of a signal that was not caught.

WTERMSIG(status_value)
If the value of WIFSIGNALED(status_value) is nonzero, this macro
evaluates to the number of the signal that caused the termination of
the child process.

WIFSTOPPED(status_value)
Evaluates to a nonzero value if status was returned for a child
process that is currently stopped.

WSTOPSIG(status_value)
If the value of WIFSTOPPED(status_value) is nonzero, this macro
evaluates to the number of the signal that caused the child process to
stop.

If the information stored at the location pointed to by the status_location parameter
was stored there by a call to the waitpid() or wait3() function that specified the
WUNTRACED flag, exactly one of the WIFEXITED(*status_location),
WIFSIGNALED(*status_location), and WIFSTOPPED(*status_location) macros
will evaluate to a nonzero value. If the information stored at the location pointed
to by the status_location function was stored there by a call to waitpid() or
wait3() that did not specify the WUNTRACED flag or by a call to the wait()
function, exactly one of the WIFEXITED(*status_location) and
WIFSIGNALED(*status_location) macros will evaluate to a nonzero value.

The wait3() function is provided for compatibility with BSD systems. A program
that calls wait3() must be compiled with the _BSD switch defined. In this case,
the parameter to the macros described above should be the w _status member of the
union pointed to by status_location. The wait3() function also provides a
resource_usage parameter that points to a location in which resource usage
information for the child process is stored, as defined in the sys/resource.h
function.

1-925

OSF/1 Programmer's Reference
wait(2)

Notes

If a parent process terminates without waiting for all of its child processes to
terminate, the remaining child processes will be assigned a parent process ID equal
to the process ID of init.

If a program that calls the wait() function is compiled with the _BSD switch
defined and linked with the libbsd compatibility library, the status_location
parameter is of type union wait * rather than int *, as described above for the
wait3() function.

AES Support Level: Full use (wait(), waitpid())

Return Values

Errors

1-926

If the wait(), waitpid(), or wait3() function returns because the status of a child
process is available, the process ID of the child is returned to the calling process. If
they return because a signal was caught by the calling process, -1 is returned and
errno is set to [EINTR].

If the WNOHANG option was specified, and there are no stopped or exited child
processes, the waitpid() and wait3() functions return a value of 0 (zero).
Otherwise, -1 is returned and errno is set to indicate the error.

If the wait(), waitpid(), or wait3() function fails, errno may be set to one of the
following values:

[ECHILD]

[EINTR]

The calling process has no existing unwaited-for child processes.

The function was terminated by receipt of a signal.

[EFAULT] The status_location or resource_usage parameter points to a
location outside of the address space of the process.

The waitpid() function fails if one or both of the following are true:

[ECHILD] The process or process group ID specified by the process_id
parameter does not exist or is not a child process of the calling
process.

Functions

wait(2)

The waitpid() and wait3() functions fail if the following is true:

[EINVAL] The value of the options parameter is not valid.

Related Information

Functions: exec(2), exit(2), fork(2), pause(3), ptrace(2), getrusage(2),
sigaction(2)

1-927

OSF/1 Programmer's Reference

wcstombs(3)

wcstombs

Purpose Converts a wide character string into a multibyte character string

Library
Standard C Library (Jibe.a)

Synopsis #include <stdlib.h>

Parameters

Description

1-928

size_t wcstombs(
char *s,
const wchar_t *pwcs,
size_t n);

s Points to the location where the converted multibyte character string
is stored.

pwcs Points to the wide-character string to be converted.

n Specifies the number of bytes to be converted.

The wcstombs() function converts a wide character string into a multibyte
character string and stores the coverted string in a location pointed to by the s
parameter. The wcstombs() function stops storing characters supplied to the
output array when it encounters a null character. The wcstombs() function only
stores the number of bytes specified by the n parameter as the output string. When
copying between objects that overlap, the behavior of wcstombs() is undefined.

The behavior of the wcstombs() function is affected by the LC_CTYPE category
of the current locale. In environments that use shift-state dependent encoding, the
array pointed to by s begins in its initial shift state.

Conversion terminates when the wide-character null is encountered or when the
number of bytes expressed by the value of the n parameter (or n-1) has been stored
at the location pointed to by the s parameter. When the amount of space available
at the location pointed to by s only permits a partial multibyte character to be
stored, n-1 bytes are used because only valid (complete) multibyte characters are
allowed.

Functions

wcstombs(3)

Notes

AES Support Level: Full use

Return Values

Errors

When the wcstombs() function encounters a wide character code that does not
correspond to a valid multibyte character, the value (size_ t) -1 is returned and
errno is set to indicate the error. Otherwise, wcstombs() returns the number of
bytes stored, not including a null terminator. (When the return value is n, the
output array is not null terminated.)

If the wcstombs() fails, ermo may be set to the following value:

[EINVAL] The array pointed to by the pwcs parameter contains an entry that
does not correspond with a valid multibyte character.

Related Information

Functions: mblen(3), mbstowcs(3), mbtowc(3), wctomb(3)

1-929

OSF/1 Programmer's Reference
wctomb(3)

wctomb

Purpose

Library

Synopsis

Parameters

Description

Notes

1-930

Converts a wide character into a multibyte character

Standard C Library (libc.a)

#include <stdlib.h>

int wctomb(
char *s,
wchar_t wchar) ;

s

wchar

Points to the location where the conversion is stored.

Specifies the wide character to be converted.

The wctomb() function converts a wide character into a multibyte character. The
wctomb() function stores no more than MB_CUR_MAX bytes.

The behavior of the wctomb() function is affected by the LC_CTYPE category of
the current locale. In environments with shift-state dependent encoding, calls to
the wctomb() function with the wchar parameter set to 0 (zero) put the function in
its initial shift state. Subsequent calls with the wchar parameter set to nonzero
values alter the state of the function as necessary. Changing the LC_CTYPE
category of the locale causes the shift state of the function to be unreliable.

The implementation behaves as though no other function calls the wctomb()
function.

AES Support Level: Full use

Functions

wctomb(3)

Return Values

Errors

When the s parameter is not a null pointer, the wctomb() function returns a value
determined as follows:

• If the wchar parameter corresponds to a valid multibyte character, the
wctomb() function returns the number of bytes in the multibyte character.

• If the wchar parameter does not correspond to a valid multibyte character, the
wctomb() function returns -1 and sets errno to indicate the error.

When the s parameter is a null pointer, the return value depends on the
environment in the following way:

• In environments where encoding is not state dependent, wctomb() returns 0
(zero).

• In environments where encoding is state dependent, wctomb() returns a
nonzero value.

In no case is the returned value greater than the value of the MB_ CUR_ MAX
macro.

If the wctomb() function fails, errno may be set to the following value:

[EINVAL] The wchar parameter does not correspond to a valid multibyte
character.

Related Information

Functions: mblen(3), mbstowcs(3), mbtowc(3), wcstombs(3)

1-931

OSF/1 Programmer's Reference

write(2)

write, writev

Purpose

Synopsis

Parameters

Description

1-932

Writes to a file

int write(
intjiledes,
const char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

int writev(

file des

buffer

nbytes

iov

intjiledes,
struct iovec *iov,
int iov_count);

Identifies the object to which the data is to be written.

Identifies the buffer containing the data to be written.

Specifies the number of bytes to write.

Points to an array of iovec structures, which identifies the buffers
containing the data to be written. The iovec structure is defined in
the sys/uio.h header file and contains the following members:

caddr _t iov _base;
int iov _Jen;

iov_count Specifies the number of iovec structures pointed to by the iov
parameter.

The write() function attempts to write nbytes of data to the file associated with the
jiledes parameter from the buffer pointed to by the buffer parameter.

Functions
write(2)

If the nbyte parameter is 0 (zero), the write() function returns 0 (zero) and has no
other results if the file is a regular file.

The writev() function performs the same action as the write() function, but
gathers the output data from the iov _count buffers specified by the array of iovec
structures pointed to by the iov parameter. Each iovec entry specifies the base
address and length of an area in memory from which data should be written. The
writev() function always writes a complete area before proceeding to the next.

The write() and writev() functions, which suspend the calling process until the
request is completed, are redefined so that only the calling thread is suspended.

With regular files and devices capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the file pointer. If this
incremented file pointer is greater than the length of the file, the length of the file is
set to this file offset. Upon return from the write() function, the file pointer
increments by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

Fewer bytes than requested can be written if there is not enough room to satisfy the
request. In this case the number of bytes written is returned. The next attempt to
write a nonzero number of bytes fails (except as noted in the following text). The
limit reached can be either the ulimit() or the end of the physical medium. For
example, suppose there is space for 20 bytes more in a file before reaching a limit.
A write of 512 bytes returns 20. The next write of a nonzero number of bytes will
give a failure return (except as noted below).

Upon successful completion, the write() function returns the number of bytes
actually written to the file associated with the .fildes parameter. This number is
never be greater than the nbyte parameter.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the
file prior to each write.

If the O_SYNC flag of the file status flags is set and the .fildes parameter refers to a
regular file, a successful write() function does not return until the data is delivered
to the underlying hardware (as described in the open() function).

Write requests to a pipe (or FIFO) are handled the same as a regular file with the
following exceptions:

• There is no file offset associated with a pipe; hence each write() request
appends to the end of the pipe.

• If the size of the write() request is less than or equal to the value of the
PIPE_BUF system variable, the write() function is guaranteed to be atomic.
The data is not interleaved with data from other processes doing writes on the

1-933

OSF/1 Programmer's Reference

write(2)

1-934

same pipe. Writes of greater than PIPE_BUF bytes can have data interleaved,
on arbitrary boundaries, with writes by other processes, whether or not
O_NONBLOCK or O_NDELAY are set.

• If neither O_NONBLOCK nor O_NDELAY are set, a write() request to a full
pipe causes the process to block until enough space becomes available to
handle the entire request.

• If the O_NONBLOCK or O_NDELAY flag is set, write() requests are
handled differently in the following ways: the write() function does block the
process; write() requests for PIPE_BUF or fewer bytes either succeed
completely and return nbyte, or return -1 and set errno to [EAGAIN]. A
write() request for greater than PIPE_BUF bytes either transfers what it can
and returns the number of bytes written, or transfers no data and returns -1
with errno set to [EAGAIN]. Also, if a request is greater than PIPE_BUF
bytes and all data previou~ly written to the pipe has been read, write()
transfers at least PIPE_BU~ bytes.

When attempting to write to a regular file with enforcement mode record locking
enabled, and all or part of the region to be written is currently locked by another
process:

• If O_NDELAY and O_NONBLOCK are clear (the default), the calling
process blocks until all the blocking locks are removed, or the write()
function is terminated by a signal.

• If O_NDELAY or O_NONBLOCK is set, then the write() function returns -1
and sets errno to [EAGAIN].

Upon successful completion, the write() function marks the st_ctime and
st_mtime fields of the file for update, and clears its set-user ID and set-group ID
attributes if the file is a regular file.

The fcntl() function provides more information about record locks.

The behavior of an interrupted write() function depends on how the handler for
the arriving signal was installed:

• If a write() function is interrupted by a signal before it writes any data, it
returns -1 with errno set to [EINTR].

• If a write() function is interrupted by a signal after it successfully writes some
data, it returns the number of bytes written. A write() request to a pipe or
FIFO never returns with errno set to [EINTR] if it has transferred any data
and nbyte is less than or equal to PIPE_BUF.

Notes

Functions

write(2)

• If the handler was installed with an indication that functions should not be
restarted, the write() function returns a value of -1 and sets errno to [EINTR]
(even if some data was already written).

• If the handler was installed with an indication that functions should be
restarted:

If no data was written when the interrupt was handled, the write()
function does not return a value (it is restarted).

If data was written when the interrupt was handled, the write() function
returns the amount of data already written.

AES Support Level: Full use (write())

Return Values

Errors

Upon successful completion, the write() and writev() functions return the number
of bytes that were actually written. Otherwise, -1 is returned and errno is set to
indicate the error.

If the write() or writev() function fails, errno may be set to one of the following
values:

[EBADF]

[EINVAL]

[EINVAL]

[EINVAL]

[EFAULT]

[EPIPE]

[EPERM]

The filedes parameter does not specify a valid file descriptor open
for writing.

The file position pointer associated with the filedes parameter was
negative.

The iov_count parameter value was not between 1 and 16, inclusive.

One of the iov_len values in the iov array was negative or the sum
overflowed a 32-bit integer.

The buffer parameter or part of the iov parameter points to a location
outside of the allocated address space of the process.

An attempt was made to write to a pipe or FIFO that is not opened
for reacting by any process. A SIGPIPE signal is sent to the process.

An attempt was made to write to a socket or type SOCK_STREAM
that is not connected to a peer socket.

1-935

OSF/1 Programmer's Reference

write(2)

[EAGAIN] The O_NONBLOCK flag is set on this file and the process would be
delayed in the write operation.

[EAGAIN] An enforcement mode record lock is outstanding in the portion of
the file that is to be written, and O_NDELAY or O_NONBLOCK is
set.

[ENOLCK] Enforced record locking is enabled and LOCK_MAX regions are
already locked in the system.

[EDEADLK] Enforced record locking is enabled, O_NDELAY is clear, and a
deadlock condition is detected.

[EFBIG] An attempt was made to write a file that exceeds the maximum file
size.

[ENOSPC] No free space is left on the file system containing the file.

[EINTR] A signal was caught during the write() operation, and the signal
handler was installed with an indication that functions are not to be
restarted.

[EIO] The process is a member of a background process group attempting
to write to its controlling terminal, TOSTOP is set, the process is
neither ignoring nor blocking SIGTTOU, and the process group of
the process is orphaned.

Related Information

1-936

Functions: open(2), fcntl(2), fcntl(2), lseek(2), open(2), pipe(2), poll(2),
select(2), ulimit(3)

Functions

wsprintf(3)

wsprintf

Purpose

Library

Synopsis

Parameters

Description

Prints formatted output

Standard 1/0 Package (libc.a)

#include <stdio.h>

int wsprintf (

string

format

value

wchar_t *string,
char *format[, value, ...]);

Specifies a wchar_t string.

Specifies a character string that contains plain characters, which are
copied to the output stream, and conversion specifications, each of
which causes zero or more items to be fetched from the value
parameter list. If there are not enough items for format in the value
parameter list, the results are unpredictable. If more values remain
after the entire format has been processed, they are ignored.

Specifies the input to the format parameter.

The wsprintf() function is provided when Japanese Language Support is installed
on your system.

The wsprintf() function converts, formats, and stores its value parameters, under
control of the format parameter, into consecutive wchar_t characters starting at the
address specified by the string parameter. The wsprintf() function places a ' '
(null character) at the end; It is your responsibility to ensure that enough storage
space is available to contain the formatted string. The field width unit is specified
as the number of wchar_t characters.

The wsprintf() function is the same as the sprintf() function, except that the
wsprintf function uses a wchar_t string.

1-937

OSF/1 Programmer's Reference

wsprintf(3)

Return Values

Upon successful completion, the wsprintf() function returns the number of display
characters in the output string rather than the number of bytes in the string. The
wsprintf() function uses strings that can contain 2-byte wchars. The value
returned by wsprintf does not include the final ' ' character. If an output error
occurs, a negative value is returned.

Related Information

Functions: conv(3), ecvt(3), printf(3), putc(3), putwc(3), scanf(3)

1-938

Functions
wsscanf(3)

wsscanf

Purpose

Library

Synopsis

Parameters

Description

Converts fonnatted input

Standard 1/0 Package (Ube.a)

#include <stdio.h>

int wsscanf (

string

format

pointer

wchar_t *string,
char *format [,pointer, ...]);

Specifies a wchar_t string.

Contains conversion specifications used to interpret the input. If
there are insufficient arguments for the format parameter, the
behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated as always but are
otherwise ignored.

Specifies where to store the interpreted data.

The wsscanf() function is provided when Japanese Language Support is installed
on your system.

The wsscanf() function reads character data, interprets it according to a format,
and stores the converted results into specified memory locations. If there are
insufficient arguments for the format, the behavior is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated but
otherwise ignored.

This function is the same as the scanf() function, except that the wsscanf()
function reads its input from the wchar_t string specified by the string parameter.

1-939

OSF/1 Programmer's Reference

wsscanf(3}

Return Values
The wsscanf() function returns the number of successfully matched and assigned
input items. This number can be 0 (zero) if there was an early conflict between an
input character and the control string. If the input ends before the first conflict or
conversion, only EOF is returned.

Related Information

Functions: atof(3), atoi(3), getc(3), getwc(3), printf(3), scanf(3)

1-940

wstrcat, wstrchr,
wstrdup,
wstrncpy,
wstrtok

wstrcmp, wstrcpy,
wstrlen, wstrncat,
wstrpbrk, wstrrchr,

Purpose Performs operations on wide character strings

Library
Standard C Library (libc.a)

Synopsis #include <wstring.h>
wchar_t *wstrcat (

wchar_t *wsl,
wchar_t *ws2);

wchar_t *wstrncat (
wchar_t *wsl,
wchar_t *ws2,
int n);

int wstrcmp (
wchar_t *wsl,
wchar_t *ws2);

int wstrncmp (
wchar_t *wsl,
wchar_t *ws2,
int n);

wchar_t *wstrcpy (
wchar_t *wsl,
wchar_t *ws2);

wchar_t *wstrncpy (
wchar_t *wsl,
wchar_t *ws2,
int n);

size_t wstrlen (
wchar_t *ws);

wchar_t *wstrchr (
wchar_t *ws,
int n);

Functions

wstring(3)

wstrcspn,
wstrncmp,

wstrspn,

1-941

OSF/1 Programmer's Reference

wstring(3)

Parameters

Description

1-942

wchar_t *wstrrchr (
wchar_t *ws,
int n);

wchar_t *wstrpbrk (
wchar_t *wsl,
wchar_t ws2;

size_t wstrspn (
wchar_t *wsl,
wchar_t ws2);

size_twstrcspn (
wchar_t *wsl,
wchar_t ws2);

wchar_t *wstrtok (
wchar_t *wsl,
wchar_t ws2);

wchar_t *wstrdup (
wchar_t *wsl);

ws, wsl, ws2 Pointers to strings of type wchar_t (arrays of wide characters
terminated by a wchar_t null character).

The wstring functions copy, compare, and append strings in memory, and
determine such things as location, size, and existence of strings in memory. For
these functions, a string is an array of wide characters, terminated by a null
character. The wstring functions parallel the string functions, but operate on
strings of type wchar_t rather than on type char, except as noted below.

These functions require their parameters to be explicitly converted to type
wchar_t, so they should be used on input that will be scanned many times for each
time it is converted.

The wsl, ws2, and ws parameters point to strings of type wchar_t.

The wstrcat(), wstrn~at(), wstrcpy(), and wstrncpy() functions all alter the wsl
parameter. They do ~ot check for overflow of the array pointed to by wsl. All
string movement is performed character by character and starts at the left.
Overlapping moves toward the left work as expected, but overlapping moves
toward the right may give unexpected results. All of these functions are declared
in the wstring.h header file.

Functions

wstring{3)

The wstrcat() function appends a copy of the ws2 string to the end of the wsl
string. The wstrcat() function returns a pointer to the null-terminated result.

The wstrncat() function copies, at most, n wchar _ts in the ws2 parameter to the
end of the string pointed to by the wsl parameter. Copying stops before n wchar_ts
if a null character is encountered in the string pointed to by the ws2 parameter. The
wstrncat() function returns a pointer to the null-terminated result.

The wstrcmp() function lexicographically compares the wsl string to the ws2
string. The wstrcmp() function returns a value that is less than 0 (zero) if wsl is
less than ws2, equal to 0 if wsl is equal to ws2, and greater than 0 if wsl is greater
than ws2.

The wstrncmp() function makes the same comparison as the wstrcmp() function,
but it con:pares, at most, the value of the n parameter of pairs of wchars. Both
wstrcmp() and wstrncmp() use the environment variable NLCTAB to determine
the collating sequence for performing comparisons.

The wstrcpy() function copies the ws2 string to the wsl string. Copying stops
when the wchar_t null character is copied. The wstrcpy() function returns the
value of the wsl parameter.

The wstrncpy() function copies the value of the n parameter of wchar_ts from the
ws2 string to the wsl string. If ws2 is less than n wchar_ts long, then wstrncpy()
pads wsl with trailing null characters to fill n wchar_ts. If ws2 is n or more
wchar_ts long, then only the first n wchar_ts are copied; the result is not
terminated with a null character. The wstrncpy() function returns the value of the
wsl parameter.

The wstrlen() function returns the number of wchar_ts in the string pointed to by
thews parameter, not including the terminating wchar_t null character.

The wstrchr() function returns a pointer to the first occurrence of the wchar_t
specified by the n parameter in the ws string. A null pointer is returned if the
wchar_t specified by n does not occur in thews string. The wchar_t null character
that terminates a string is considered to be part of the ws string.

The wstrrchr() function returns a pointer to the last occurrence of the wchar_t
specified by the n parameter in the ws string. A null pointer is returned if the
wchar_t does not occur in the ws string. The wchar_t null character that
terminates a string is considered to be part of the wchar_t string.

The wstrpbrk() function returns a pointer to the first occurrence in the wsl string
of any code point from the ws2 string. A null pointer is returned if no character
matches.

The wstrspn() function returns the length of the initial segment of the wsl string
that consists entirely of code points from the ws2 string.

1-943

OSF/1 Programmer's Reference

wstring(3)

The wstrcspn() function returns the length of the initial segment of the wsl string
that consists entirely of code points not from the ws2 string.

The wstrtok() function returns a pointer to an occurrence of a text token in the
wsl string. The ws2 parameter specifies a set of code points as token delimiters. If
the wsl parameter is anything other than null, then the wstrtok() function reads
the string pointed to by the wsl parameter until it finds one of the delimiter code
points specified by the ws2 parameter. It then stores a wchar_t null character in the
wchar_t string, replacing the delimiter code point, and returns a pointer to the first
wchar _t of the text token. The wstrtok() function keeps track of its position in the
wchar_t string so that subsequent calls with a null wsl parameter step through the
wchar_t string. The delimiters specified by the ws2 parameter can be changed for
subsequent calls to wstrtok(). When no tokens remain in the wchar_t string
pointed to by the wsl parameter, the wstrtok() function returns a null pointer.

The wstrdup() function returns a pointer to a wchar_t string that is a duplicate of
the wchar_t string to which the wsl parameter points. Space for the new string is
allocated using the malloc() function. When a new string cannot be created, a null
pointer is returned.

Related Information

Functions: malloc(3), string(3)

1-944

Files

Chapter 2

This chapter contains reference pages for OSF/l files. The reference pages
from the man4 and man7 directories are sorted alphabetically in this
chapter.

2-1

OSF/1 Programmer's Reference
ar(4)

ar

Purpose Archive (library) file format

Synopsis #include <ar.h>

Description

The ar archive command combines several files into one. Archives are used
mainly as libraries to be searched by the Id link editor

A file produced by ar has a magic string at the start, followed by the constituent
files, each preceded by a file header. The magic number and header layout are
described in the ar.h include file.

Each file begins on an even boundary. A newline character is inserted between
files if necessary; nevertheless, the size given reflects the actual size of the file
exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains
printable files, the archive itself is printable.

Related Information

Commands: ar(l), ld(l), nm(l)

2-2

core

Purpose

Synopsis

Description

Files

core(4)

Specifies the format of the memory image file

#include <sys/param.h>

The OSF/l kernel writes out a memory image of a terminated process when an
error occurs. The most common errors are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The memory image is called core and
is written in the process' working directory (provided it can be; normal access
controls apply).

The maximum size of a core file is limited by the setrlimit() function. Files which
would be larger than the limit are not created. Using the C shell, the core file size
can be limited with the limit command.

The core file consists of pertinent information about the stat of the process that
terminated. The exact layout of the core file is machine dependent, and is not
described here.

In general, the user debuggers are sufficient to deal with core images.

Related Information

Commands: csh(l)

Functions: sigvec(2), setrlimit(2)

2-3

OSF/1 Programmer's Reference
ctab(4)

ctab

Purpose

Description

2-4

Locale character classification, case conversion, and collating input file

A locale character classification, case conversion and collating input file consists
of records separated by newline characters. Each record consists of one character
or collation element in the locale, where a collation element is a sequence of two or
more characters that collate as a single unit. These files are not directly accessed
by user programs: the ctab command reads them to produce binary files loaded by
the setlocale() function.

The ordering of the records determines the order of the locale's characters.
Records marked with the translate or ignore indicator (see KEYWORDS) do not
reflect this ordering. The ordering of characters in a locale may also be referred to
as their collation weights.

Several characters may have the same primary collation weights but different
secondary weights. In French, the plain and accented versions of a's all sort to the
same primary location. If there is a tie between a plain and accented character,
however, a secondary sort is applied. A group of characters with the same primary
collation value are said to belong to the same equivalence class. If a character is
not part of an equivalence class, it has identical primary and secondary collation
weights.

This primary and secondary collation weight information is used in applications,
such as grep, which use ctab information to determine string sequence.

The ctab input file describes the collating weights for an assumed code set and a
particular language. If a character is encountered which does not appear in the
ctab file corresponding to the current locale, the character's collation weight will
be based on its relative position in the current code set.

Records in the locale ctab input files have fields separated by a separator character
(By default, this separator is a : (colon), but the user can change this; see
KEYWORDS). The records have the following fields:

subject character
The subject character field is actually the collating element, which
may be comprised of more than one character. If the subject
character is a multicharacter collating element, the first character in
the element must also be defined as a subject character elsewhere in
the input file. If the character or collating element is followed by
the equivalence class character, which is a' (circumflex) by default,
it is given the same primary collating weight as the character

Files

ctab(4)

represented by the preceding record. The secondary collation
weight is unique. Characters can be specified using octal escape
sequences consisting of a \ (backslash) followed by one or more
octal digits. Any backslash not followed by an octal digit is an
escape character. The subject character field must be terminated by
a separator character even if there are no other fields in the record.

case conversion
The case conversion field specifies the character that is the inverse
case of the character in the first field. For example, if the first field
is p, the second field is P. If the third field, the character
classification field (see below), contains an I or L (for lowercase),
the second field specifies the uppercase equivalent of the subject
character. If the character classification field contains a u or U (for
uppercase), the case conversion field specifies the lowercase
equivalent of the subject character. Any character with a nonempty
case conversion field can specify the corresponding uppercase or
lowercase letter. Characters classified as alphabetic do not require a
corresponding case; that is, the second field can be empty. The
second field currently is not used for SJIS characters when Japanese
Language Support is installed.

character classification
The character classification field values assume the following
classes and values:

uorU Uppercase letter

I orL Lowercase letter

aor A Alphabetic character

norN Digits

xorX Hexadecimal digits

p orP Punctuation characters

s or S Whitespace characters

core Control characters

gorG Graphic

No type

2-5

OSF/1 Programmer's Reference
ctab(4)

Characters can belong to more than one character class, subject to
certain rules. The difference between graphic and printable
characters is that the set of graphic characters does not include the
space character, but the set of printable characters does include the
space character. The ASCII code set is predefined as follows:

A through Z Uppercase letters

a through z Lowercase letters

A through Z, and a through z
Alphabetic characters

0 through 9 Digits

Alphabetic characters and digits
Alphanumeric characters

0 through 9, A through F, and a through f
Hexadecimal digits

Any character below the Space character and the Delete character
Control characters

Space, formfeed, newline, carriage-
retum, horizontal tab, and vertical tab
Whitespace characters

Any character except the above
Punctuation characters

Characters not defined as alphabetic are automatically defined as
punctuation.

Keywords

2-6

A line beginning with the word "option" serves to change one or more of the
default conditions or metacharacters built into the collating table. The word
"option" is followed by one or more keyword/value pairs. Keywords and values are
separated by tab or space characters. The following keywords are recognized:

comment

sep

Uses the assigned value as the comment character. The default
value is the # (number sign). Anything on a line that follows the
comment character is ignored.

Uses the assigned value as the field separator character. The default
value is a : (colon). Tabs or spaces can surround fields or
separators.

Examples

ignore

repeat

trans

Files
ctab(4)

Uses the assigned value as the ignore character indicator. The
default value is the@ (at sign). A character marked with the ignore
indicator is ignored for collation purposes.

Uses the assigned value as the equivalence class indicator. The
default value is the ' (circumflex) character. A character marked
with the equivalence class indicator has the same primary collation
value as the preceding character.

Uses the assigned character as the translate indicator. The default
value is the I (vertical bar). A collation element marked with the
translate indicator is translated to the collation element(s) following
the indicator. For example, to treat the German eszet (8) element as
the two characters ss, the first field of the line would be:

\3371ss:

The unique collation weight is used in regular expressions (see
grep). Characters being translated cannot be followed by an
equivalence character. The subject character cannot be contained in
its own substitution collation element(s) (not oloe). The translation
mechanism completes in one pass: none of the characters in the
substitution collation elements can in tum be the subject of further
translation, so the following example is illegal:

qlr:
xlpq:

Characters being translated have no primary collating weight of
their own, but have a unique collation weight, which is based on the
order of the input line of the input file.

The following line is interpreted as a field containing a backslash and a colon
followed by a field separator:

\ \ \::

2-7

OSF/1 Programmer's Reference

ctab{4)

Files

Here are the first and last three lines of a sample C.ctab file:

\000:
\001:
\002:

} :

\177::c

/usr/Iib/nls/loc/<locale>
Binary character classification, case conversion and collating output
file for locale <locale>.

/etc/nls/loc/<locale>
Binary locale classification, case conversion and collating output
file. This is only used as a default during single-user mode
operation.

Related Information

Commands: ctab(l)

Functions: setlocale(3)

"Using Internationalization Features" in the OSF/l User's Guide

2-8

Files

dir(4)

dir

Purpose Format of directories

Synopsis #include <sys/types.h>
#include <dirent.h>

Description
A directory behaves like an ordinary file except that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the flag word of
its inode entry; see the fs reference page.

The POSIX standard way of returning directory entries is in directory entry
structures, which are of variable length. Each directory entry has a struct direct at
the front of it, containing its inode number, the length of the entry, and the length
of the name contained in the entry. These are followed by the name padded to a
4-byte boundary with null bytes. All names are guaranteed null terminated. The
maximum length of a name in a directory is _D_NAME_MAX.

By convention, the first two entries in each directory are for. (dot) and .. (dot-dot).
The first is an entry for the directory itself. The second is for the parent directory.
The meaning of .. (dot-dot) is modified for the root directory (/) of the master file
system, where .. (dot-dot) has the same meaning as. (dot).

Related Information

Functions: opendir(3)

Files: fs(4)

2-9

OSF/1 Programmer's Reference
disklabel (4)

disklabel

Purpose Disk pack label

Synopsis #include <sys/disklabel.h>

Description

2-10

Each disk or disk pack on a system may contain a disk label which provides
detailed information about the geometry of the disk and the partitions into which
the disk is divided. It should be initialized when the disk is formatted, and may be
changed later with the disklabel program. This information is used by the system
disk driver and by the bootstrap program to determine how to program the drive
and where to find the file systems on the disk partitions. Additional information is
used by the file system in order to use the disk most efficiently and to locate
important file system information. The description of each partition contains an
identifier for the partition type (standard file system, swap area, etc.). The file
system updates the in-core copy of the label if it contains incomplete information
about the file system.

The label is located in sector number LABELSECTOR of the drive, usually sector 0
(zero) where it may be found without any information about the disk geometry. It
is at an offset LABELOFFSET from the beginning of the sector, to allow room for
the initial bootstrap. The disk sector containing the label is normally made read­
only so that it is not accidentally overwritten by pack-to-pack copies or swap
operations; the DIOCWLABEL ioctl, which is done as needed by the disklabel
program, allows modification of the label sector.

A copy of the in-core label for a disk can be obtained with the DIOCGDINFO
ioctl; this works with a file descriptor for a block or character (raw) device for any
partition of the disk. The in-core copy of the label is set by the DIOCSDINFO
ioctl. The offset of a partition cannot generally be changed, nor made smaller
while it is open. One exception is that any change is allowed if no label was found
on the disk, and the driver was able to construct only a skeletal label without
partition information. Finally, the DIOCWDINFO ioctl operation sets the in-core
label and then updates the on-disk label; there must be an existing label on the disk
for this operation to succeed. Thus, the initial label for a disk or disk pack must be
installed by writing to the raw disk. All of these operations are normally done
using the disklabel program.

Related Information

Files: disktab(4)

Commands: disklabel(8)

Files

disklabel (4)

2-11

OSF/1 Programmer's Reference

disktab(4)

disktab

Purpose Disk description file

Synopsis #include <disktab.h>

Description

2-12

The disktab database describes disk geometries and disk partition characteristics.
It is used to initialize the disk label on the disk. The format is patterned after the
termcap terminal database. Entries in a disktab file consist of a number of :
(colon) separated fields. The first entry for each disk gives the names which are
known for the disk, separated by I (vertical bar) characters. The last name given
should be a long name fully identifying the disk.

The following list indicates the normal values stored for each disk entry:

Name Type Description

ty str Type of disk (e.g. removable, winchester)

dt str Type of controller (e.g. SMD, ESDI, floppy)

ns num Number of sectors per track

nt num Number of tracks per cylinder

nc num Total number of cylinders on the disk

SC num Number of sectors per cylinder, nc*nt default

SU num Number of sectors per unit, sc*nc default

se num Sector size in bytes, DEV _BSIZE default

sf bool Controller supports bad144-style bad sector forwarding

rm num Rotation speed, rpm, default 3600

sk num Sector skew per track, default 0

cs num Sector skew per cylinder, default 0

hs num Headswitch time, usec, default 0

ts num One-cylinder seek time, usec, default 0

il num Sector interleave (n:l), default 1

d[0-4] num Drive-type-dependent parameters

Files

disktab(4)

Name Type Description

bs num Boot block size, default BB~IZE

sb num Superblock size, default SBSIZE

ba num

"
Block size for partition 'a' (bytes)

' bd num Block size for partition 'd' (bytes)

be num Block size for partition 'e' (bytes)

bf num Block size for partition 'f' (bytes)

bg num Block size for partition 'g' (bytes)

bh num Block size for partition 'h' (bytes)

fa num Fragment size for partition 'a' (bytes)

fd num Fragment size for partition 'd' (bytes)

fe num Fragment size for partition 'e' (bytes)

ff num Fragment size for partition 'f' (bytes)

fg num Fragment size for partition 'g' (bytes)

fh num Fragment size for partition 'h' (bytes)

oa num Offset of partition 'a' in sectors

ob num Offset of partition 'b' in sectors

oc num Offset of partition 'c' in sectors

od num Offset of partition 'd' in sectors

oe num Offset of partition 'e' in sectors

of num Offset of partition 'f' in sectors

og num Offset of partition 'g' in sectors

oh num Offset of partition 'h' in sectors

pa num Size of partition 'a' in sectors

pb num Size of partition 'b' in sectors

pc num Size of partition 'c' in sectors

pd num Size of partition 'd' in sectors

pe num Size of partition 'e' in sectors

pf num Size of partition 'f' in sectors

pg num Size of partition 'g' in sectors

ph num Size of partition 'h' in sectors

2-13

OSF/1 Programmer's Reference
disktab(4)

Example

Files

Name

ta

tb

tc

td

te

tf

tg

th

Type

str

str

str

str

str

str

str

str

Description

Partition type of partition 'a' (4.2BSD file system,
swap, etc.)

Partition type of partition 'b'

Partition type of partition 'c'

Partition type of partition 'd'

Partition type of partition 'e'

Partition type of partition 'f

Partition type of partition 'g'

Partition type of partition 'h'

The following is an example disktab entry:

rz221RZ221DEC RZ22 Winchester:\
:ty=winchester:dt=SCSI:ns#33:nt#4:nc#776:\
:pa#32768:ba#8192:fa#1024:\
:pb#69664:bb#8192:fb#1024:\
:pc#102432:bc#8192:fc#1024:

/etc/disktab

Related Information

2-14

Functions: getdiskbyname(3)

Files: disklabel(4)

Commands: disklabel(8), newfs(8)

en

Purpose

Description

Files
en(4)

Locale country convention tables

A locale country convention table consists of newline-separated records of the
form name=value, where name is the name of a variable and value is its value.
These name=value pairs specify configuration information and tailor input and
output forms of dates, times, and monetary sums according to national or local
requirements. If a symbolic constant value contains spaces, the value appears in
quotes. Spaces cannot separate the equal sign from the variable or value which
follows it.

Variables

AMPMSTR AM/PM string with two colon-separated fields for suffixes to AM
and PM time strings (for example, AMPMSTR=AM:PM).

CUR_SYM The currency symbol (for example, CUR_SYM=$).

DEC_PNT The radix character, or character that separates whole and fractional
quantities (for example, DEC_PNT=,).

FRAC_DIG The number of fractional digits.

GROUPING The number of digits in each group separated by the THOUS_SEP
character.

INT_CUR_SYM
International currency symbol.

INT_FRAC International currency fraction digits.

MON_DEC_PNT
Currency radix character (for example, MON_DEC_PNT=.).

MON_GRP The number of digits in each group separated by the MON_ THOUS
character in currency digits.

MON_ THOUS
Currency thousands separator.

NEG_SGN Currency minus sign.

2-15

OSF/1 Programmer's Reference

en(4)

2-16

NLDATE, NLSDATE, NLLDATE, NLDATIM, NLTIME
These variables are conversion specifications for date, short form of
date, long form of date, date and time, and time strings, respectively.
Their values cannot begin with an asterisk. Consult the strftime()
function for a description of valid conversion specification
elements.

NLLDAY The full (long) names for the days of the week, beginning with
Sunday.

NLLMONTH The full (long) names of the months of the year, beginning with
January.

NLSDAY The short names of the days of the week. Names should be the same
length, and contain five or fewer characters. The specification starts
with the short name for Sunday.

NLSMONTH The short names of the months of the year. Names should be the
same length and contain five or fewer characters. The specification
starts with the short name for January.

NLTIME The conversion specification for the forIIl.at of the time.

NLTMISC Miscellaneous strings needed for input of date and time
specifications. The default value is:

at:each:every:on:through:am:pm:zulu.

NLTSTRS The relative or informal names needed for input of date and time
specifications to the remind and at commands. The default value
is:

now:yesterday:tontorrow:noon:midnight:next:weekdays:weekend:today.

NLTUNlTS The singular and plural forms for all names of units of time, used for
input of date specifications to the at command. The default value is:

minute:minutes:hour:hours:day:days:week:weeks:month:months:year:\
years:min:mins.

NLYEAR The specification of eras to be used for display of the year relative
to the Japanese emperor calendar. It consists of colon-separated
elements of the format YYYYMMDD, name, where YYYY represents
the starting year of the era (year 1) and MMDD represents the
month and day, and name is the name of the era. If more than one
element is given, they must be in reverse order. Years B.C. must be
specified with a leading minus sign. There is llo default. Example:

NOSTR

NLYEAR=19890108,Heisei:19261225,Showa:.

The allowed forms for negative responses. A leading or trailing
colon, or two adjacent colons, indicate a null response. The order in
which the possible responses are listed has no significance.

Files

Files

en(4)

N_CS_PRE Set to 1 if the currency symbol precedes the value for a negative
formatted monetary quantity and to 0 (zero) if it succeeds the value.

N_SEP _SP Set to 1 if the currency symbol is separated by a space from the
value for a negative formatted monetary quantity and to 0 (zero) if
not.

N_SGN_POS Set to a value indicating the positioning of the positive sign for a
negative formatted monetary quantity.

POS_SGN The positive sign.

P _CS_PRE Set to 1 if the currency symbol precedes the value for a nonnegative
formatted monetary quantity and to 0 (zero) if it succeeds it.

P _SEP _SP Set to 1 if the currency symbol is separated by a space from the
value for a nonnegative formatted monetary quantity and to 0 (zero)
if not.

P _SGN_POS Set to a value indicating the positioning of the positive sign for a
nonnegative formatted monetary quantity.

THOUS_SEP Separator for thousands place in decimal notation, where that place
is determined by the GROUPING variable.

YESSTR The allowed forms for positive responses. A leading or trailing
colon, or two adjacent colons, indicate a null response. The order in
which the possible responses are listed has no significance.

/usr/lib/nls/locl<locale>.en
Country conversion file for locale <locale>.

/etc/nls/loc/<locale>.en
Locale country conversion file for locale <locale>. This file is only
used as a default during single-user mode operation.

Related Information

Functions: strftime(3)

"Using Internationalization Features" in the OSF/l User's Guide

2-17

OSF/1 Programmer's Reference
exports(4)

exports

Purpose

Description

Example

2-18

Defines remote mount points for NFS mount requests

The exports file specifies remote mount points for the NFS compatible mount
protocol per the NFS server specification.

Each line in the file specifies one remote mount point. The first field is the mount
point directory path followed optionally by export options and specific hosts
separated by white space. Only the first entry for a given local file system may
specify the export options, since these are handled on a "per local file system"
basis. If no specific hosts are specified, the mount point is exported to all hosts.

The export options are as follows:

-root=<oid> Specifies how to map root's uid (default -2).

-r

-ro

-o

Synonymous with -root, in an effort to be backward compatible with
older export file formats.

Specifies that the file system should be exported read-only (default
read/write).

Synonymous for -ro in an effort to be backward compatible with
older export file formats.

Given that /usr, /u and /u2 are local file system mount points, the following are
valid entries in the /etdexports file:

/usr -root=O rickers snowhite.cis.uoguelph.ca
/usr/local 131.104.48.16
/u -root=5
/u2 -ro

These entries specify that /usr is exported to hosts rickers and
snowhite.cis.uoguelph.ca with root mapped to root, /usr/local is exported to host
131.104.48.16 with root mapped to root, /u is exported to all hosts with root
mapped to user ID 5, and /u2 is exported to all hosts read-only with root mapped to
-2.

Note that /usr/local -root=5 would have been incorrect, since /usr and /usr/local
reside in the same local file system.

Files
exports{4)

Files
/etc/exports

Related Information

Commands: mountd(8), nfsd(8), showmount(8)

2-19

OSF/1 Programmer's Reference

fd(7)

f d, stdin, stdout, stderr

Purpose

Description

Files

File descriptors

The /dev/fd/O through /dev/fd/# files refer to file descriptors which can be accessed
through the file system. If the file descriptor is open and the mode the file is being
opened with is a subset of the mode of the existing descriptor, the call:

fd = open("/dev/fd/O", mode);

and the call:

fd = fcntl(O, F _DUPFD, 0);

are equivalent.

Opening the /dev/stdin, /dev/stdout and /dev/stderr files is equivalent to the
following calls:

fd = fcntl(STDIN_FILENO, F _DUPFD, 0);
fd = fcntl(STDOUT _FILENO, F _DUPFD, 0);
fd = fcntl(STDERR_FILENO, F _DUPFD, 0);

Flags to the open() function other than O_RDONLY, O_ WRONLY and O_RDWR
are ignored.

/dev/fd/#

/dev/stdin

File descriptor files, where # (number sign) represents the file
descriptor number.

Special file for the standard input device.

/dev/stdout Special file for the standard output device.

/dev/stderr Special file for the standard error device.

Related Information

Files: tty(7)

2-20

Files
fs(4)

fs, inode

Purpose Specifies the format of the file system volume

Synopsis #include <sys/types.h>
#include <sys/fs.h>
#include <sys/inode.h>

Description
Every file system storage volume (disk, nine-track tape, for instance) has a
common format for certain vital information. Each such volume is divided into a
certain number of blocks. The block size is a parameter of the file system. Sectors
beginning at BBLOCK and continuing for BBSIZE are used to contain a label and
for some hardware primary and secondary bootstrapping programs.

Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its superblock, which in tum describes the cylinder
groups. The superblock is critical data and is replicated in each cylinder group to
protect against loss of data. This is done at file system creation time and the
critical superblock data does not change, so the copies need not be referenced
further until necessary.

Addresses stored in inodes are capable of addressing fragments of blocks. File
system blocks of at most MAXBSIZE size can be optionally broken into 2, 4, or 8
pieces, each of which is addressable; these pieces may be DEV _BSIZE, or some
multiple of a DEV _BSIZE unit.

Large files consist exclusively of large data blocks. To avoid wasted disk space,
the last data block of a small file is allocated only as many fragments of a large
block as are necessary. The file system format retains only a single pointer to such
a fragment, which is a piece of a single large block that has been divided. The size
of such a fragment is determined from information in the inode, using the
blksize(fs, ip, lbn) macro.

The file system records space availability at the fragment level; to determine block
availability, aligned fragments are examined.

The root inode is the root of the file system. Inode 0 (zero) can't be used for
normal purposes and, historically, bad blocks were linked to in ode 1. Thus, the
root inode is 2 (inode 1 is no longer used for this purpose, but numerous dump
tapes make this assumption).

2-21

OSF/1 Programmer's Reference
fs{4)

2-22

Some fields to the fs structure are as follows:

fs_minfree Gives the minimum acceptable percentage of file system blocks that
may be free. If the freelist drops below this level only the superuser
may continue to allocate blocks. The fs_minfree field may be set to
0 (zero) if no reserve of free blocks is deemed necessary. However,
severe performance degradations will be observed if the file system
is run at greater than 90% full; thus the default value of the
fs_minfree field is 10%.

fs_optim

Empirically the best trade-off between block fragmentation and
overall disk utilization at a loading of 90% comes with a
fragmentation of 8, thus the default fragment size is an eighth of the
block size.

Specifies whether the file system should try to minimize the time
spent allocating blocks, or if it should attempt to minimize the space
fragmentation on the disk. If the value of fs_minfree is less than
10%, then the file system defaults to optimizing for space to avoid
running out of full sized blocks. If the value of fs_minfree is
greater than or equal to 10%, fragmentation is unlikely to be
problematical, and the file system defaults to optimizing for time.

Cylinder group related limits: Each cylinder keeps track of the
availability of blocks at different positions of rotation, so that
sequential blocks can be laid out with minimum rotational latency.
With the default of 8 distinguished rotational positions, the
resolution of the summary information is 2 milliseconds for a typical
3600 rpm drive.

fs_rotdelay Gives the minimum number of milliseconds to initiate another disk
transfer on the same cylinder. The fs_rotdelay field is used in
determining the rotationally optimal layout for disk blocks within a
file; the default value for fs_rotdelay is 2 milliseconds.

Each file system has a statically allocated number of inodes. An inode is allocated
for each NBPI bytes of disk space. The inode allocation strategy is extremely
conservative.

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is
possible to create files of size 232 with only two levels of indirection. MINBSIZE
must be big enough to hold a cylinder group block, thus changes to struct cg must
keep its size within MINBSIZE. Note that superblocks are never more than size
SB SIZE.

Notes

Files
fs{4)

The pathname on which the file system is mounted is maintained in fs_fsmnt.
MAXMNTLEN defines the amount of space allocated in the superblock for this
name. The limit on the amount of summary information per file system is defined
by MAXCSBUFS. For a 4096 byte block size, it is currently parameterized for a
maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first
cylinder group's data blocks. These blocks are read in from fs_csaddr (size
fs_cssize) in addition to the superblock.

Superblock for a file system: The size of the rotational layout tables is limited by
the fact that the superblock is of size SB SIZE. The size of these tables is inversely
proportional to the block size of the file system. The size of the tables is increased
when sector sizes are not powers of two, as this increases the number of cylinders
included before the rotational pattern repeats (fs_cpc). The size of the rotational
layout tables is derived from the number of bytes remaining in (struct fs).

The number of blocks of data per cylinder group is limited because cylinder groups
are at most one block. The inode and free block tables must fit into a single block
after deducting space for the cylinder group structure struct cg.

!node: The inode is the focus of all file activity in the UNIX file system. There is a
unique inode allocated for each active file, each current directory, each mounted­
on file, text file, and the root. An inode is 'named' by its device/i-number pair.

sizeof (struct csum) must be a power of two in order for the fs_cs macro to work.

2-23

OSF/1 Programmer's Reference
group(4)

group

Purpose

Description

Files

Group file

The /etc/group database contains the following information for each group:

• Group name

• Encrypted password

• Numerical group ID

• A comma-separated list of all users allowed in the group

The /etc/group file is an ASCII file, with the fields separated by colons. Each
group is separated from the next by a new line. If the password field is null, no
password is demanded.

Because of the encrypted passwords, it can and does have general read permission
and can be used, for example, to map numerical group IDs to names.

/etc/group

Related Information

2-24

Functions: setgroups(2), initgroups(3), crypt(3)

Commands: passwd(l)

Files: passwd(5)

.
1cmp

Purpose

Synopsis

Description

Errors

Files
icmp(7)

Internet Control Message Protocol

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF _INET, SOCK_RA W, proto);

The Internet Control Message Protocol (ICMP) is the error and control message
protocol used by the Internet Protocol (IP) and the Internet Protocol family. It may
be accessed through a raw socket for network monitoring and diagnostic functions.
The proto parameter to the socket call to create an ICMP socket is obtained from
the getprotobyname() function. ICMP sockets are connectionless, and are
normally used with the sendto() and recvfrom() functions. The connect()
function may also be used to fix the destination for future packets, in which case
the read() or recv() and write() or send() functions may be used.

Outgoing packets automatically have an IP header prepended to them (based on the
destination address). Incoming packets are received with the IP header and options
intact.

If a socket operation fails, errno may be set to one of the following values:

[EISCONN] The socket is already connected. This error occurs when trying to
establish connection on a socket or when trying to send a datagram
with the destination address specified.

[ENOTCONN]
The destination address of a datagram was not specified, and the
socket has not been connected.

[ENOBUFS] The system ran out of memory for an internal data structure.

[EADDRNOTAVAIL]
An attempt was made to create a socket with a network address for
which no network interface exists.

2-25

OSF/1 Programmer's Reference

icmp(7)

Related Information

2-26

Functions: send(2), recv(2)

Files: netintro(7), inet(7), ip(7)

Files
idp(7)

idp

Purpose Xerox Internet Datagram Protocol

Synopsis #include <sys/socket.h>
#include <netns/ns.h>
#include <netns/idp.h>

Description

s = socket(AF _NS, SOCK_DGRAM, O);

The Xerox Internet Datagram Protocol (IDP) is a simple, unreliable datagram
protocol which is used to support the SOCK_DGRAM abstraction for the Internet
protocol family. IDP sockets are connectionless, and are normally used with the
sendto() and recvfrom() functions. The connect() function may also be used to
fix the destination for future packets, in which case the recv() or read() and
send() or write() functions may be used.

Xerox protocols are built vertically on top of IDP. Thus, IDP address formats are
identical to those used by the Sequenced Packet Protocol (SPP). Note that the IDP
port space is the same as the SPP port space; that is, an IDP port may be connected
to an SPP port, with certain options enabled as described below. In addition,
broadcast packets may be sent (assuming the underlying network supports this) by
using a reserved broadcast address; this address is network interface dependent.

The following socket options are available:

SO_HEADERS_ON_INPUT
When set, the first 30 bytes of any data returned from a read() or
recv() function will be the initial 30 bytes of the IDP packet, as
described by
struct idp {

u_short

};

u_short
u_char
u_char
struct ns_addr
struct ns_addr

idp_sum;
idp_len;
idp_tc;
idp_pt;
idp_dna;
idp_sna;

This allows the user to determine the packet type, and whether the packet was a
multicast packet or directed specifically at the local host. When requested, gives
the current state of the option as either NSP _RA WIN or 0 (zero).

2-27

OSF/1 Programmer's Reference
idp(7)

Errors

2-28

SO_HEADERS_ON_OUTPUT
When set, the first 30 bytes of any data sent will be the initial 30
bytes of the IDP packet. This allows the user to determine the
packet type, and whether the packet should be a multicast packet or
directed specifically at the local host. You can also misrepresent the
sender of the packet. When requested, gives the current state of the
option as either NSP _RA WOUT or 0 (zero).

SO_DEFAULT_HEADERS
The user provides the kernel an IDP header, from which it gleans
the packet type. When requested, the kernel will provide an IDP
header, showing the default packet type, and local and foreign
addresses, if connected.

SO_ALL_PACKETS
When set, this option defeats automatic processing of error packets,
and sequence protocol packets.

SO_SEQNO When requested, this option returns a sequence number which is not
likely to be repeated until the machine crashes or a very long time
has passed. It is useful in constructing packet exchange protocol
packets.

If a socket operation fails, errno may be set to one of the following values:

[EISCONN] The socket is already connected. This error occurs when trying to
establish connection on a socket or when trying to send a datagram
with the destination address specified.

[ENOTCONN]
The destination address of a datagram was not specified, and the
socket has not been connected.

[ENOBUFS] The system ran out of memory for an internal data structure.

[EADDRINUSE]
An attempt was made to create a socket with a network address for
which no network interface exists.

[EADDRNOTAVAIL]
An attempt was made to create a socket with a network address for
which no network interface exists.

Related Information

Functions: send(2), recv(2)

Files: netintro(7), ns(7)

Files

idp(7)

2-29

OSF/1 Programmer's Reference
inet{7)

in et

Purpose

Synopsis

Description

2-30

Internet Protocol family

#include <sys/types.h>
#include <netinet/in.h>

The Internet Protocol family is a collection of protocols layered atop the Internet
Protocol (IP) transport layer, and utilizing the Internet address format. The Internet
family provides protocol support for the SOCK_STREAM, SOCK_DGRAM, and
SOCK_RA W socket types; the SOCK_RA W interface provides access to the IP
protocol.

Internet addresses are 4-byte quantities, stored in network standard format (on the
VAX and other machines, these are word and byte reversed). The netinet/in.h
include file defines this address as a discriminated union.

Sockets bound to the Internet protocol family utilize an addressing structure
sockaddr_in, whose format is dependent on whether _SOCKADDR_LEN has
been defined prior to including the netinet/in.h header file. If
_SOCKADDR_LEN is defined, the sockaddr_in structure takes 4.4BSD behavior,
with a separate field for specifying the length of the address; otherwise, the default
4.3BSD behavior is used.

Sockets may be created with the local address INADDR_ANY to effect wildcard
matching on incoming messages. The address in a connect() or sendto() call may
be given as INADDR_ANY to mean ''this host.'' The distinguished address
INADDR_BROADCAST is allowed as a shorthand for the broadcast address on
the primary network if the first network configured supports broadcast.

The Internet protocol family is comprised of the IP transport protocol, Internet
Control Message Protocol (ICMP), Transmission Control Protocol (TCP), and User
Datagram Protocol (UDP). TCP is used to support the SOCK_STREAM
a,bstraction while UDP is used to support the SOCK_DGRAM abstraction. A raw
interface to IP is available by creating an Internet socket of type SOCK_RA W.
The ICMP message protocol is accessible from a raw socket.

The 32-bit Internet address contains both network and host parts. It is frequency­
encoded; the most-significant bit is clear in Class A addresses, in which the high­
order 8 bits are the network number. Class B addresses use the high-order 16 bits
as the network field, and Class C addresses have a 24-bit network part. Sites with a
cluster of local networks and a connection to the DARPA Internet may chose to
use a single network number for the cluster; this is done by using subnet

Notes

Files
inet(7)

addressing. The local (host) portion of the address is further subdivided into subnet
and host parts. Within a subnet, each subnet appears to be an individual network;
externally, the entire cluster appears to be a single, uniform network requiring only
a single routing entry.

Subnet addressing is enabled and examined by the following ioctl() commands on
a datagram socket in the Internet domain; they have the same form as the
SIOCIFADDR command (see the reference page for the netintro function).

SIOCSIFNETMASK
Set interface network mask. The network mask defines the network
part of the address; if it contains more of the address than the
address type would indicate, then subnets are in use.

SIOCGIFNETMASK
Get interface network mask.

The Internet protocol support is subject to change as the Internet protocols develop.
Users should not depend on details of the current implementation, but rather the
services exported.

Related Information

Functions: ioctl(2), socket(2)

Files: netintro(7), tcp(7), udp(7), ip(7), icmp(7)

OSF/l Network Applications Programmer's Guide

OSF/l Network and Communications Administrator's Guide

OSF!l System and Network Administrator's Reference

2-31

OSF/1 Programmer's Reference

ip(7)

.
lp

Purpose

Synopsis

Description

2-32

Internet Protocol

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_RAW,proto);

The Internet Protocol (IP) is the transport layer protocol used by the Internet
Protocol family. Options may be set at the IP level when using higher-level
protocols that are based on IP (such as the Transmission Control Protocol (TCP)
and the User Datagram Package (UDP)). It may also be accessed through a raw
socket when developing new protocols, or special purpose applications.

IP _OPTIONS is used to provide IP options to be transmitted in the IP header of
each outgoing packet. Options are set with the setsockopt() function and
examined with the getsockopt() function. The format of IP options to be sent is
that specified by the IP specification, with one exception: the list of addresses for
Source Route options must include the first-hop gateway at the beginning of the list
of gateways. The first-hop gateway address will be extracted from the option list
anci the size adjusted accordingly before use. IP options may be used with any
socket type in the Internet family.

Raw IP sockets are connectionless, and are normally used with the sendto() and
recvfrom() calls, though the connect() call may also be used to fix the destination
for future packets, in which case the read() or recv() and write() or send()
functions may be used.

If proto is 0 (zero), the default protocol IPPROTO_RAW is used for outgoing
packets, and only incoming packets destined for that protocol are received. If
proto is nonzero, that protocol number will be used on outgoing packets and to
filter incoming packets.

Outgoing packets automatically have an IP header prepended to them (based on the
destination address and the protocol number the socket is created with), unless the
IP _HDRINCL option is set. IP _HDRINCL specifies whether the IP header is
provided by the sent packet. Incoming packets are received with IP header and
options intact.

Errors

Files

ip(7)

If a socket operation fails, errno may be set to one of the following values:

[EISCONN] The socket is already connected. This error occurs when trying to
establish connection on a socket or when trying to send a datagram
with the destination address specified.

[ENOTCONN]
The destination address of a datagram was not specified, and the
socket has not been connected.

[ENOBUFS] The system ran out of memory for an internal data structure.

[EADDRNOTAVAIL]
An attempt was made to create a socket with a network address for
which no network interface exists.

The following errors specific to IP may occur when setting or getting IP options:

[EINVAL]

[EINVAL]

An unknown socket option name was given.

The IP option field was improperly formed; an option field was
shorter than the minimum value or longer than the option buffer
provided.

Related Information

Functions: getsockopt(2), send(2), recv(2)

Files: netintro(7), icmp(7), inet(7)

2-33

OSF/1 Programmer's Reference

lo(7)

lo

Purpose

Synopsis

Description

Notes

Errors

Software loopback network interface

pseudo-device loop

The loopback interface is a software loopback mechanism which is used for
performance analysis, software testing, and/or local communication. As with other
network interfaces, the loopback interface must have network addresses assigned
for each address family with which it is to be used. These addresses may be set or
changed with the SIOCSIFADDR ioctl. The loopback interface should be the last
interface configured, as protocols may use the order of configuration as an
indication of priority. The loopback should never be configured first unless no
hardware interfaces exist.

Previous versions of the UNIX system enabled the loopback interface
automatically, using a nonstandard Internet address (127 .1). Use of that address is
now discouraged; a reserved host address for the local network should be used
instead.

Ion: can't handle afn
The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

Related Information

Files: netintro(7), inet(7), ns(7)

2-34

lvrn

Purpose

Synopsis

Description

Files
lvm(7)

Logical Volume Manager (LVM) programming interface

#include <lvm/lvm.h>

The Logical Volume Manager (LVM) implements virtual disks, called logical
volumes, and uses physical disks, called physical volumes, to store the actual data.
The programming interface to the LVM is provided through a number of LVM ioctl
commands. These commands perform functions like creating logical and physical
volumes, removing logical and physical volumes, and so on. Basically, there are
four groupings of the LVM ioctl commands: those that deal with volume groups,
those that deal with logical volumes, those that deal with physical volumes, and
those that perform miscellaneous functions. The following table illustrates these
groupings:

Volume Group

LVM_ACTIVATEVG

LVM_CREATEVG

LVM_DEACTIVATEVG

LVM_QUERYVG

LVM_SETVGID

Logical Volume

LVM_CHANGELV

LVM_CREATELV

LVM_DELETELV

LVM_EXTENDLV

LVM_QUERYLV

LVM_QUERYLVMAP

LVM_REALLOCLV

LVM_REDUCELV

LVM_RESYNCLV

Activate volume group

Create volume group

Deactivate volume group

Query volume group (retrieve information)

Set volume group ID

Change logical volume attributes

Create logical volume

Delete logical volume from volume group

Extend logical volume (adds extents)

Query logical volume (retrieve information)

Query logical volume physical extent map

Move physical extents between logical volumes

Reduce logical volume (reduce extents)

Resynchronize logical volume

2-35

OSF/1 Programmer's Reference
lvm{7)

2-36

Physical Volume

LVM_ATTACHPV

LVM_CHANGEPV

LVM_DELETEPV

LVM_INSTALLPV

LVM_QUERYPV

LVM_QUERYPVMAP

LVM_QUERYPVPATH

LVM_QUERYPVS

LVM_REMOVEPV

LVM_RESYNCPV

Miscellaneous

LVM_OPTIONGET

LVM_OPTIONSET

Attach physical volume to volume group

Change physical volume attributes

Delete physical volume from volume group

Install physical volume to volume group

Query physical volume (retrieve information)

Query map of physical extents on physical volume

Query physical volume using physical identifier as
the pathname

Query multiple physical volumes (retrieve
information)

Remove a physical volume from the volume group

Resynchronize physical volume

Obtain current raw device 1/0 options, as set by the
LVM_OPTIONSET command

Set 1/0 options for the raw logical volume device

LVM_RESYNCLX Initiates resynchronization for physical extents

The following alphabetic listing of the L VM ioctl commands first gives synopses
and descriptions of the LVM ioctl commands, then provides descriptions of the
command parameters, and finally provides a list of returned errors.

For detailed information on the LYM, see The Design of the OSF/l Operating
System.

ioctl(fd, LVM_ACTIVATEVG, &flags)
intfd;
int.flags;

This command brings the specified volume group online. This
involves reconciliation of the VGDA's on all attached physical
volumes, and recovery of active mirrors. Depending on whether the
LVM_ALL_PVS_REQUJRED or
LVM_NONM/SS/NG_PVS_REQUJRED flags are set in.flags, it may
fail if some of the physical volumes in the volume group are missing
(LVM_ALL_PVS_REQUJRED flag set).

ioctl(fd, LVM_ATTACHPV,path)
intfd;
char *path;

Files
lvm(7)

This command attaches the specified physical volume to the
specified volume group. This operation is analogous to a mount()
command: the named device is opened, and the LVM maintains a
reference to it. The LVM_ATTACHPV command reads the LVM
record to determine the vg_id and the pvnum. This command fails if
the volume is a member of another volume group.

ioctl(fd, LVM_CHANGELV, &lv_statuslv)
intfd;
struct Iv _statuslv {

ushort_t minor _num;
ushort_t maxlxs;
ushort_t Iv _flags;
ushort_t sched_strat;
ushort_t maxmirrors;

} lv _statuslv;

This command changes the attributes of a logical volume in a
specified volume group. It updates the specified logical volume's
LVM data structures and logical volume entry in the descriptor area.

You can use this command on a logical volume device. In this case,
the minor _num is ignored, and the command applies to that device.

ioctl(fd, LVM_CHANGEPV, &lv_changepv)
intfd;
struct lv_changepv {

ushort_t pv_key;
ushort_t pv_flags;
ushort_t maxdefects;

} lv_changepv;

This command changes the attributes of a physical volume. You
can use LVM_CHANGEPV to change the maximum number of
defects (maxdefects) that can be relocated on this physical volume.
You can also use this command to disallow or re-allow allocation of
extents on the physical volume. Allocation from a physical volume
should be disallowed if the physical extents of that physical volume
are to be migrated to another physical volume.

2-37

OSF/1 Programmer's Reference

lvm(7)

2-38

Note that if you change maxdefects to a number lower than what has
already been relocated on the physical volume,
LVM_CHANGEPV will reset maxdefects to the relocated number
of defects.

ioctl(fd, LVM_CREATELV, &lv_statuslv)
intfd;
struct Iv _statuslv {

ushort_t minor _num;
ushort_t maxlxs;
ushort_t lv_fiags;
ushort_t sched_strat;
ushort_t maxmirrors;

} Iv _statuslv;

This command creates a logical volume in a specified volume group.
It uses the supplied information to update a previously unused entry
in the logical volume list. The index into the list of logical volume
entries corresponds to the minor number (minor _num) of the logical
volume. LVM_CREATELV does not do extent allocation. The
LVM_EXTENDLV ioctl must be used to allocate extents for the
new logical volume.

ioctl(fd, LVM_CREATEVG, &lv_createvg)
intfd;
struct lv _createvg {

char *path;
lv_uniqueID_t vg_id;
ushort_t pv _flags;
ushort_t maxlvs;
ushort_t maxpvs;
ushort_t maxpxs;
ulong_t pxsize;
ulong_t pxspace;
ushort_t maxdefects;

} lv_createvg;
struct lv _uniqueID {

ulong_t idl;
ulong_t id2;

};
typedef struct lv_uniqueID lv_uniquelD_t;

This command creates a volume group and installs the first physical
volume. It initializes the in-memory VGDA for the volume group.

ioctl(fd, LVM_DEACTIVATEVG, 0)
intfd;

Files

lvm(7)

This command takes a specified volume (fd) group offiine. All
logical volumes in this volume group must be closed. The argument
(0) is ignored.

ioctl(fd, LVM_DELETEL V, minor _num)
intfd;
int minor _num;

ioctl(fd, LVM_DELETEPV,pv_key)
intfd;
intpv_key;

This command deletes a physical volume from a specified volume
group (fd). The physical volume must not contain any extents of a
logical volume for it to be deleted. If the physical volume contains
any extents of a logical volume, an error code is returned. In this
case, you must delete logical volumes or relocate the extents that
reside on this physical volume. For an empty physical volume,
LVM_DELETEPV removes the entries for this physical volume
from the LVM data structures and from the descriptor area, and
initializes the descriptor area on the physical volume being deleted.

ioctl(fd, LVM_EXTENDLV, &lv_lvsize)
intfd;
struct Iv _lvsize {

ushort_t minor _num;
ulong_t size;
lxmap_t *extents;

} Iv _lvsize;
struct lxmap {

};

ushort_t lx_num;
ushort_t pv _key;
ushort_t px_num;
ushort_t status;

typedef struct lxmap lxmap_t;

This command adds extents to a given logical volume. It allocates
physical extents for the specified logical volume at the physical
volume and physical extent specified as input via the extent list
pointer. It updates the LVM data structures and the descriptor area.

2-39

OSF/1 Programmer's Reference

lvm(7)

2-40

ioctl(fd, LVM_INSTALLPV, &Iv _installpv)
intfd;
struct Iv _installpv {

char *path;
ulong_t pxspace;
ushort_t pv_fiags;
ushort_t maxdefects;

} Iv _installpv;

This command installs a physical volume into a specified volume
group. To do this, LVM_INSTALLPV adds the physical volume
specification to the in-memory VGDA for the volume group, and
then updates all active physical volumes in the volume group. This
command fails if the physical volume is already a member of
another volume group.

ioctl(fd, LVM_OPTIONGET, &lv_option)
intfd;
struct lv_option lv_option;
ioctl(fd, LVM_OPTIONSET, &lv_option)
intfd;
struct Iv _option {

ushort_t opt_avoid;
ushort_t opt_options;

} Iv _option;

This command sets the 1/0 options for the raw logical volume
device. The raw device is capable of avoiding specified mirrors on
read operations, set through the opt_avoid field. This allows a
program to access a specific copy of a mirrored logical volume.

The opt_options field allows the program to temporarily (until the
device is closed) specify that all writes are to be verified
(LVM_ VERIFY) or that defect relocation is not to be performed
(LVM_NORELOC) To set these options permanently, or for the
block device, see LVM_CHANGELV . The raw 1/0 options are
cleared when the raw device is first opened, and never have an
effect on block device operations.

The LVM_OPTIONGET command obtains the current raw device
1/0 options, as set by the LVM_OPTIONSET command. These
functions apply only to open devices, are only valid against the
logical volume devices, not the control device.

ioctl(fd, LVM_QUERYLV, &lv_querylv)
intfd;
struct Iv _querylv {

ushort_t minor _num;
ulong_t numpxs;
ushort_t numlxs;
ushort_t maxlxs;
ushort_t Iv _flags;
ushort_t sched_strat;
ushort_t maxmirrors;

} lv _querylv;

Files
lvm(7)

This command obtains information about a particular logical
volume from the specified volume group. It verifies that the logical
volume is valid and returns the information requested for its volume
group to the buffer supplied.

You can use this command on a file descriptor corresponding to a
logical volume device. In this case, the command ignores the
minor _num field. Structure fields are output fields unless marked
otherwise.

ioctl(fd, LVM_QUERYLVMAP, &lv_lvsize)
intfd;
struct Iv _lvsize {

ushort_t minor _num;
ulong_t size;
lxmap_t *extents;

} Iv _lvsize;
struct lxmap {

};

ushort_t lx_num;
ushort_t pv _key;
ushort_t px_num;
ushort_t status;

typedef struct lxmap lxmap_t;

This command obtains information from the specified volume group
about the space and extents allocated to a particular logical volume.
It verifies that the logical volume is valid and returns the
information requested for its volume group to the buffer supplied.
The allocation map must be large enough to accommodate the
extent map from the logical volume. This information is available
from LVM_QUERYLV.

You can use this command on a file descriptor corresponding to a
logical volume device. In this case, the minor _num field is ignored.

2-41

OSF/1 Programmer's Reference

lvm(7)

2-42

ioctl(fd, LVM_QUERYPV, &lv_querypv)
intfd;
struct lv _querypv {

ushort_t pv _key;
ushort_t pv _flags;
ushort_t px_count;
ushort_t pxJree;
ulong_t px_space;
dev _t pv _rdev;
ushort_t maxdefects;
ushort_t bbpool_len;

} Iv _querypv;

This command retrieves information about a specified physical
volume. It verifies that the physical volume is valid and writes the
requested information to the buffer supplied.

ioctl(fd, LVM_QUERYPVMAP, &lv_querypvmap)
intfd;
struct lv _querypvmap {

ushort_t pv _key;
ushort_t numpxs;
pxmap_t *map;

} lv_querypvmap;
struct pxmap {

};

ushort_t Iv _minor;
ushort_t Iv _extent;
ushort_t status;

typedef struct pxmap pxmap_t;

This command returns the map of physical extents on the specified
physical volume. This mapping indicates the logical volume and
logical extent to which each corresponds. A physical extent which
is not currently assigned to a logical volume will be indicated by an
Iv _minor value of 0 (zero).

ioctl(fd, LVM_QUERYPVPATH, &lv_querypvpath)
intfd;
struct lv_querypvpath {

char *path;
ushort_t pv _key;
ushort_t pv _flags;
ushort_t px_count;
ushort_t pxJree;
ulong_t px_space;
dev _t pv _rdev;
ushort_t maxdefects;
ushort_t bbpool_len;

} lv _querypvpath;

Files

lvm(7)

This command is identical to LVM_QUERYPV, except that it takes
a pathname (path) as the physical volume identifier. Also, it returns
the pv _key rather than taking it as input.

ioctl(fd, LVM_QUERYPVS, &lv_querypvs)
intfd;
struct lv _querypvs {

ushort_t numpvs;
ushort_t *pv _keys;

} lv _querypvs;

This command retrieves the physical volume list from the volume
group. It requires the number of volumes in the volume group as
input (as obtained from LVM_QUERYVG) and returns the pv_key
for each.

ioctl(fd, LVM_QUERYVG, &lv_queryvg)
intfd;
struct lv_queryvg {

lv_uniqueID_t vg_id;
ushort_t maxlvs;
ushort_t maxpvs;
ushort_t maxpxs;
ulong_t pxsize;
ushort_t freepxs;
ushort_t cur _lvs;
ushort_t cur _pvs;
ushort_t status;

} lv _queryvg;

This command retrieves information about a specified volume
group. It verifies that the specified volume group is valid and writes
the information requested to the buffer supplied.

2-43

OSF/1 Programmer's Reference

lvm(7)

2-44

ioctl(fd, LVM_REALLOCLV, &lv_realloclv)
intfd;
struct lv _realloclv {

ushort_t sourcelv;
ushort_t destlv;
ulong_t size;
lxmap_t *extents;

} lv _realloclv;

This command atomically removes physical extents from one
logical volume (fd) and assigns them to another (destlv). The
logical extent number of each physical extent is preserved. If the
destination logical volume already has space allocated for the
indicated logical extents, the new extents will be marked as stale by
the reallocation.

ioctl(fd, LVM_REDUCELV, &lv_lvsize)
intfd;
struct lv _lvsize {

ushort_t minor _num;
ulong_t size;
lxmap_t *extents;

} lv _lvsize;
struct lxmap {

};

ushort_t lx_num;
ushort_t pv _key;
ushort_t px_num;
ushort_t status;

typedef struct lxmap lxmap_t;

This command removes extents from a specified logical volume. It
deallocates a logical extent for the specified logical volume at the
physical volume. The extents to be removed are specified as input
via the extent list pointer (*extents). It updates the LVM data
structures and the descriptor area.

You can use LVM_REDUCELV on a file descriptor corresponding
to a logical volume device. In this case, the minor _num field is
ignored.

ioctl(fd, LVM_REMOVEPV, &pv_key)
intfd;
intpv_key;

This command temporarily removes a physical volume from the
volume group by closing the physical volume device. If the volume

Files

lvm(7)

group is active, the pl,l;ysical volume state is changed to "missing".
This command is effectively the inverse of LVM_ATTACHPV.

ioctl(fd, LVM_RESYNCLV, &minor_num)
intfd;
int minor _num;

This command resynchronizes a logical volume. As a result, every
logical extent in the specified logical volume (minor _num), that has
a physical extent in the LVM_PXSTALE state, will be updated from
a mirror copy. If successful, then the corresponding physical
extent's LVM_PXSTALE state is cleared.

You can use this command on a file descriptor corresponding to a
logical volume device. In this case, the minor _num argument is
ignored.

ioctl(fd, LVM_RESYNCLX, &lv_resynclx)
intfd;
struct Iv _resynclx {

ushort_t minor _num;
ushort_t lx_num;

} Iv _resynclx;

For each physical extent of a logical extent, if the physical extent is
in the LVM_PXSTALE state, this command initiates mirror
resynchronization for that physical extent. When the command is
done, these extents will be in the LVM_ACTIVE state.

ioctl(fd, LVM_RESYNCPV, &pv_key)
intfd;
intpv_key;

This command resynchronizes a physical volume. For each physical
extent on the physical volume that is in the LVM_PXSTALE state,
this command resynchronizes the corresponding logical extent.

ioctl(fd, LVM_SETVGID, &lv_setvgid)
intfd;
struct Iv _setvgid {

lv_uniquelD_t vg_id;
} Iv _setvgid;
struct Iv _uniquelD {

ulong_t idl;
ulong_t id2;

};
typedef struct lv_uniquelD lv_uniqueID_t;

2-45

OSF/1 Programmer's Reference

lvm(7)

Parameters

2-46

This command sets the volume group ID for the volume group
implied by the file descriptor. It fails if the volume group already
has a v~lume group ID and attached physical volumes. It is a
necessary precursor to the LVM_ATTACHPV ioctl. If the unique
ID passed in is 0 (zero), it is stored. The LVM ioctl commands use
the following parameters:

allocmap Allocation map for logical volume.

cur _!vs Allowed Values: 0 (zero) to 255
Current number of logical volumes in this volume group.

cur_pvs Allowed Values: 0 (zero) to LVM_MAXPVS
Current number of physical volumes in this volume group.

currentsize Allowed Values: 0 (zero) to LVM_MAXLXS
Current size for logical volume.

extents Pointer to the extent array. flags Allowed Values:

freepxs

lv_extent

LVM_ACTIVATE_LVS
Allow logical volume opens.

LVM_AUTO_RESYNC
Automatically resynchronize returned volumes.

LVM_ALL_PVS_REQUIRED
Activate fails if any physical volumes are missing.

LVM_NONMISSING_PVS_REQUIRED
Activate fails if any physical volumes are missing which
were not previously known as missing.

Allowed Values: 0 (zero) to LVM_MAXPXS
Current number of free extents.

Allowed Values: 0 (zero) to MAXLXS
Logical extent number on volume.

lv_flags

Files
lvm(7)

Allowed Values: Logical OR of the following constants:

LVM_LVDEFINED
Logical volume entry defined.

LVM_DISABLED
Logical volume unavailable for use.

LVM_NORELOC
New bad blocks are not relocated.

LVM_RDONLY
Read-only logical volume; no writes permitted.

LVM_STRICT
Allocate mirrors on different physical volumes.

LVM_VERIFY
Verify all writes to the logical volume.

LVM_NOMWC
Do not perform mirror write consistency for this logical
volume.

lv_minor Allowed Values: 0 (zero) to LVM_MAXLVS
Logical volume minor number. lv_unique/D The unique ID should
be set to a globally unique number.

lx_num Allowed Values: 0 (zero) to LVM_MAXLXS
Logical extent number to perform command on.

map Pointer to the physical extent map.

maxdefects Allowed Values: 0 (zero) to bbpool_len
Maximum number of software-relocated defects.

max/vs Allowed Values: 0 (zero) to LVM_MAXLVS
Maximum number of logical volumes this volume group will
contain.

maxlxs Allowed Values: 0 (zero) to LVM_MAXLXS
New maximum size for logical volume, count of logical extents.

maxmirrors Allowed Values: LVM_MAXCOPIES
Maximum number of mirrors allowed for this logical volume.

maxpvs Ailowed Values: 0 (zero) to LVM_MAXPVS
Maximum number of physical volumes this volume group will
contaiB.

maxpxs Allowed Values: 0 (zero) to LVM_MAXPXS
Maximum number of physical extents any physical volumes in this
volume group will contain.

2-47

OSF/1 Programmer's Reference
lvm(7)

2-48

minor _num Allowed Values: 1 to LVM-'-MAXLVS (or 255)
Logical volume minor number.

path Allowed Values: PATH_MAX chars max
NULL terminated physical volume pathname.

numlxs Allowed Values: 0 (zero) to LVM_MAXLXS
Current number of logical extents.

opt_avoid Allowed Values: 0 (zero) to LVM_MIRAVOID
Mirrors avoided during raw reads.

opt_options Allowed Values: Logical OR of the following constants:

pv_flags

pv_flags

pv_key

numpxs

LVM_NORELOC
No bad block relocation performed.

LVM_VERIFY
Verify all writes.

Allowed Values: Logical OR of the following constants:

LVM_PVNOALLOC
No 'extent allocation allowed from this physical volume.

LVM_PVRORELOC
No new defects relocated on this physical voiume.

LVM_NOVGDA
No extent allocation allowed from this physical volume.

Allowed Values: Logical OR of the following constants:

LVM_PVMISSING
Physical volume is missing from the volume group.

LVM_NOTATTACHED
Physical volume is not attached to a volume group.

LVM_NOVGDTA
Physical volume does not contain a Volume Group
Descriptor Area.

LVM_PVNOALLOC
No extent allocation allowed from this physical volume.

LVM_PVRORELOC
No new defects relocated on this physical volume.

Allowed Values: Internally defined
Physical volume identifier assigned' by driver.

Allowed Values: 0 (zero) to LVM_MAXPXS
Total number of physical extents on this physical volume.

pv_rdev

px_num

pxsize

pxspace

px_count

pxJree

px_space

Files

lvm(7)

Device number (major,minor) currently used to access this physical
volume. Not valid if physical volume is not attached.

Allowed Values: 0 (zero) to LVM_MAXPXS
Physical extent number to add or remove.

Allowed Values: lMB to 256MB
Physical extent size for all extents in this volume group (in bytes).
Must be a power of 2.

Allowed Values: lMB to 256MB
Actual space allocated for each extent (in bytes). This must be the
same or larger than pxsize.

Allowed Values: 0 (zero) to LVM_MAXPXS
Maximum number of physical extents this physical volume will ever
contain.

Allowed Values: 0 (zero) to LVM_MAXPXS
Current number of free physical extents on this physical volume.

Allowed Values: lMB to 256MB
Actual space allocated for each extent (in bytes). This must be the
same or larger than pxsize.

sched_strat Allowed Values:

size

status

status

LVM_SEQUENTIAL
Write mirror copies sequentially.

LVM_PARALLEL
Write mirror copies in parallel.

Allowed Values: 1 to L VM_MAXPXS
Number of extents to add or remove.

Allowed Values: Any This parameter is ignored. status Allowed
Values: LVM_pXSTALE
Physical extent is stale.

Allowed Values: Logical OR of the following constants:

LVM_PXSTALE
Physical extent is stale (does not contain valid data).

LVM_PXMISSING
Physical extent is on a missing physical volume.

2-49

OSF/1 Programmer's Reference
lvm{7)

Errors

2-50

vg_id

vg_state

Allowed Values: Valid unique ID
Valid volume group unique ID.

Allowed Values: Logical OR of the following constants:

LVM_ VGACTIVATED
Volume group is activated.

LVM_LVSACTIVATED
Logical volumes are activated.

On failure, the LVM ioctl commands return the following:

LVM_ACTIVATEVG

[ENODEV] No valid volume group descriptor areas (VGDA) were found on any
physical volume.

[ENODEV] Could not find a valid volume group status area (VGSA).

[ENOENT] Quorum was lost while attempting to update the volume group status
area.

[EEXIST] LVM_ALL_PVS_REQUIRED was specified and at least one
physical volume was missing.

[ENOMEM] Insufficient kernel memory to complete request.

[ENXIO]

[EIO]

[EINVAL]

[ENOTDIR]

Quorum does not exist.

I/O error while reading the bad block directory.

There is an invalid physical extent in the VGDA's extent map.

LVM_NONMISSING_PVS_REQUIRED was specified and a
"nonmissing" physical volume has not been attached.

LVM_ATTACHPV

[EFAULT] The path parameter does not refer to a valid memory address.

[ENXIO] The physical volume is a member of another volume group.

[ENOENT] A component of the path parameter does not exist.

[ENOTDIR] A component of the path parameter prefix is not a directory.

[ENXIO] The path parameter refers to a device that does not exist, or is not
configured into the kernel.

[ENOTBLK] The path parameter designates a file that is not a block device.

[EACCES]

[ELOOP]

A component of the path parameter was not accessible.

Too many symbolic links were encountered while looking up the
path.

Files
lvm(7)

[ENAMETOOLONG]

[EEXIST]

[ENOTTY]

[ENO DEV]

[EXDEV]

[ENOMEM]

[EIO]

The path parameter is too long, or a component exceeds the
maximum allowable size.

A physical volume with the same physical volume number is
already attached to this volume group.

Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

The physical volume is not a member of any volume group.

The physical volume is not a member of the specified volume group.

Insufficient kernel memory to complete request.

UO error while reading the bad block directory or the volume group
descriptor area.

LVM_CHANGELV

[EINVAL] The minor _num parameter is invalid.

[EINVAL]

[EINVAL]

[EROFS]

[ENO DEV]

[EINVAL]

The maxmirrors parameter was not m the range (0,
LVM_MAXCOPIES-1).

The lv_flags parameter contains an unrecognized flag.

The volume group is not activated.

The minor _num parameter refers to a nonexistent logical volume.

The sched_strat parameter was not one of LVM_PARALLEL or
LVM_SEQUENTIAL. [EBUSY] The maxlxs or maxmirrors
parameter is smaller than the current allocation for the logical
volume. Must deallocate before changing the logical size.

[ENOMEM] Insufficient kernel memory to complete request.

[EFAULT] The parameter does not refer to a valid memory address.

LVM_CHANGEPV

[EINVAL]

[ENXIO]

[EBUSY]

[EFAULT]

[ENOTTY]

The pv_flags parameter contains unrecognized flags.

The pv _key parameter references a nonexisting physical volume.

There are more existing defects than could be supported with the
max_defects parameter.

The parameter does not refer to a valid memory address.

Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

2-51

OSF/1 Programmer's Reference

lvm(7)

2-52

LVM_CREATELV

[EINVAL] The minor _num parameter is 0 (zero).

[EDOM] The minor _num parameter is greater than the maximum number of
logical volumes in the volume group.

[EEXIST] The minor _num parameter refers to an already existing logical
volume.

[ENOMEM] Insufficient kernel memory to satisfy the request.

[EROFS] The volume group is not activated.

[ENODEV] The minor _num parameter refers to a nonexistent logical volume.

[EINVAL] The sched_strat parameter was not one of LVM_PARALLEL or
LVM_SEQUENTIAL.

[EBUSY] The maxlxs or maxmirrors parameter is smaller than the current
allocation for the logical volume. Must deallocate before changing
the logical size.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

LVM_CREATEVG

[EINVAL] Invalid parameter structure; some field within the structure
contained an invalid value. Specific checks are made for; 0 (zero)
volume group ID, the maxlvs parameter greater than
LVM_MAXLVS, the maxpvs parameter greater than MAXPVS, the
maxpxs parameter greater than LVM_MAXPXS, lMB <= pxsize <=
256MB, pxsize <= pxspace, the pxspace parameter is a multiple
DEV _BSIZE, the pv_flags parameter is valid.

[EEXIST]

[ENOMEM]

[ENOSPC]

[ENO ENT]

[ENO DEV]

[EPERM]

[EIO]

The volume group already exists.

Insufficient kernel memory to complete request.

Insufficient space on the volume for the volume group reserved area
(VGRA).

The file specified by the path parameter does not exist.

The path parameter does not specify a valid physical volume.

Permission denied on open of the path parameter.

Unable to read the physical volume.

[ENOTBLK] The path parameter designates a file that is not a block device.

Files
lvm(7)

[ENXIO] The physical volume has no driver configured.

[EFAULT] The parameter does not refer to a valid memory address.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

LVM_DEACTIVATEVG

[EINVAL] The minor _num parameter was less than or equal to zero.

[EROFS] The volume group is not activated.

[ENO DEV] The minor _num parameter refers to a nonexistent logical volume.

[EBUSY] The indicated logical volume is open.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

LVM_DELETEPV

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

LVM_EXTENDLV

[EFAULT] The parameter does not refer to a valid memory address.

[EBUSY] An extent described by the extent array is already in use.

[ENODEV] The specified logical volume does not exist.

LVM_INSTALLPV

[EROFS] The volume group is not active.

[ENOMEM] Unable to allocate memory.

[ENO DEV]

[EPERM]

[EACCES]

[EIO]

The device is not a valid physical volume.

Write permission denied on the device.

A component of the path parameter was not accessible.

Unable to read the physical volume.

[ENOTBLK] The path parameter designates a file that is not a block device.

[ENXIO] The physical volume has no driver configured.

[EFAULT] The parameter does not refer to a valid memory address.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

2-53

OSF/1 Programmer's Reference
lvm(7)

2-54

LVM_OPTIONSET/LVM_OPTIONGET

[EINVAL] The opt_avoid parameter out of range (LVM_OPTIONSET only).

[EINV AL] The opt_options parameter included invalid bit values
(LVM_OPTIONSET only).

[EFAULT] The parameter does not refer to a valid memory address.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on the
control device.

LVM_QUERYLV

[EINVAL] The minor _num parameter is 0 (zero).

[ENXIO] The volume group is not activated.

[EFAULT] The parameter does not refer to a valid memory address.

LVM_QUERYLVMAP

[EFAULT] The parameter does not refer to a valid memory address.

LVM_QUERYPV

[EFAULT] The parameter does not refer to a valid memory address.

[ENODEV] The specified pv_key parameter does not correspond to physical
volume attached to this volume group, that is, no such device.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on the
control device.

LVM_QUERYPVMAP

[EFAULT] The parameter does not refer to a valid memory address.

[ENODEV] The specified pv _key parameter does not correspond to physical
volume attached to this volume group, that is, no such device.

[ENOTTY] Inappropriate ioctl for device; the cdmmand was attempted on the
control device.

LVM_QUERYPATH

[EFAULT] The parameter does not refer to a valid memory address.

[ENO ENT] A component of the path parameter does not exist.

[ENOTDIR] A component of the path parameter prefix is not a directory.

[ENXIO] The path parameter refers to a device that does not exist, or is not
configured into the kernel.

[ENOTBLK] The path parameter designates a file that is not a block device.

[EACCES] A component of the path parameter was not accessible.

Files

lvm(7)

[ELOOP] Too many symbolic links were encountered while looking up the
path.

[ENAMETOOLONG]
The path parameter is too long, or a component exceeds the
maximum allowable size.

[ENODEV] The specified path parameter does not correspond to physical
volume attached to this volume group, that is, no such device.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device.

LVM_QUERYPVS

[EFAULT] The parameter does not refer to a valid memory address.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device.

LVM_QUERYVG

[EFAULT] The parameter does not refer to a valid memory address.

LVM_REDUCELV

[EFAULT] The parameter does not refer to a valid memory address.

LVM_RESYNCLX

[EFAULT] The parameter does not refer to a valid memory address.

LVM_RESYNCPV

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device.

LVM_SETVGID

[EFAULT] The parameter does not refer to a valid memory address.

[ENOTTY] Inappropriate ioctl for device; the command was attempted on a
logical volume device rather than the control device.

Related Information

Function: ioctl(2)

2-55

OSF/1 Programmer's Reference
msqid_ds(4)

msqid_ds

Purpose Defines a message queue

Synopsis #include <sys/msg.h>

Description

Fields

2-56

struct msqid_ds{

};

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
u_short msg_cbytes;
u_short msg_qnum;
u_short msg_qbytes;
u_short msg_lspid;
ushort msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time_t msg_ctime;

The msqid_ds structure defines a message queue associated with a message queue
ID. There is one queue per message queue ID. Collectively, the queues are stored
as an array, with message queue IDs serving as an index into the array.

A message queue is implemented as a linked list of messages, with msg_first amd
msg_last pointing to the first and last messages on the queue.

The IPC permissions for the message queue are implemented in a separate, but
associated, ipc_perm structure.

A message queue is created indirectly via the msgget() call. If msgget() is called
with a non-existent message queue ID, the kernel allocates a new msqid_ds
structure, initializes it, and returns the message queue ID that is to be associated
with the message queue.

msg_perm The ipc_perm structure that defines permissions for message
operations. See NOTES.

msg_first A pointer to the first message on the queue.

msg_last A pointer to the last message on the queue.

Notes

Files

msqid_ds(4)

msg_cbytes The current number of bytes on the queue.

msg_qnum The number of messages currently on the queue.

msg_qbytes The maximum number of bytes allowed on the queue.

msg_lspid The process ID of the last process that called msgsnd() for the
queue.

msg_lrpid The process ID of the last process that called msgrcv() for the
queue.

msg_stime The time of the last msgsnd() operation.

msg_rtime The time of the last msgrcv() operation.

msg_ctime The time of the last msgctl() operation that changed a member of
the msqid_ds structure.

The msg__perm field identifies the associated ipc_perm structure that defines the
permissions for operations on the message queue. The ipc_perm structure (from
the sys/ipc.h header file) is shown here.

struct ipc_perm {
ushort uid;
ushort gid;
ushort cuid;
ushort cgid;
ushort mode;

I* owner's user id
I* owner's group id
I* creator's user id
I* creator's group id
I* access modes

*I
*I
*I
*I
*/

ushort seq; /* slot usage sequence number */
key_t key; /*key */

};

The mode field is a 9-bit field that contains the permissions for message operations.
The first three bits identify owner permissions; the second three bits identify group
permissions; and the last three bits identify other permissions. In each group, the
first bit indicates read permission; the second bit indicates write permission; and
the third bit is not used.

Related Information
Functions: msgctl(2), msgget(2), msgrcv(2), msgsnd(2)

2-57

OSF/1 Programmer's Reference

netintro(7)

networking

Purpose

Synopsis

Description

2-58

Introduction to socket networking facilities

#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

This section is a general introduction to the networking facilities available in the
system. Documentation in this part of Section 7 is broken up into three areas:
protocol families (domains), protocols, and network interfaces.

All network protocols are associated with a specific protocol family. A protocol
family provides basic services to the protocol implementation to allow it to
function within a specific network environment. These services may include
packet fragmentation and reassembly, routing, addressing, and basic transport. A
protocol family may support multiple methods of addressing, though the current
protocol implementations do not. A protocol family is normally comprised of a
number of protocols, one per socket type. It is not required that a protocol family
support all socket types. A protocol family may contain multiple protocols
supporting the same socket abstraction.

A protocol supports one of the socket abstractions detailed in the reference page
for the socket() function. A specific protocol may be accessed either by creating a
socket of the appropriate type and protocol family, or by requesting the protocol
explicitly when creating a socket. Protocols normally accept only one type of
address format, usually determined by the addressing structure inherent in the
design of the protocol family and network architecture. Certain semantics of the
basic socket abstractions are protocol specific. All protocols are expected to
support the basic model for their particular socket type, but may, in addition,
provide nonstandard facilities or extensions to a mechanism. For example, a
protocol supporting the SOCK_STREAM abstraction may allow more than one
byte of out-of-band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces comprise
the lowest layer of the networking subsystem, interacting with the actual transport
hardware. An interface may support one or more protocol families, address
formats, or both. The SYNOPSIS section of each network interface entry gives a
sample specification of the related drivers for use in providing a system description
to the config program. The ERRORS section lists messages which may appear on
the console and/or in the system error log, /var/log/messages (see the syslogd
function), due to errors in device operation.

Files

netintro(7)

The system currently supports the DARPA Internet protocols and the Xerox
Network Systems protocols. Raw socket interfaces are provided to the IP layer of
the DARPA Internet, and to the IDP of Xerox NS. Consult the appropriate manual
pages in this section for more information regarding the support for each protocol
family.

Addressing
Associated with each protocol family is an address format. All network
address adhere to a general structure, called a sockaddr. However, each
protocol imposes finer and more specific structure, generally renaming the
variant.

Both the 4.3BSD and 4.4BSD sockaddr structures are supported by OSF/1. The
default sockaddr structure is the 4.3BSD structure, which is as follows:

struct sockaddr {
u_short sa_family;
char sa_data[14];

};

If the compile-time option _SOCKADDR_LEN is defined before the sys/socket.h
header file is included, however, the 4.4BSD sockaddr structure is defined, which
is as follows:

struct sockaddr {
u_char sa_len;
u char sa_family;
char sa_data[14];

};

The 4.4BSD sockaddr structure provides for a sa_len field, which contains the
total length of the structure. Unlike the 4.3BSD sockaddr structure, this length
may exceed 16 bytes.

The following address values for sa_family are known to the system (and
additional formats are defined for possible future implementation):

#define AF UNIX
#define AF INET
#define AF NS 6

Routing

1 /*local to host (pipes, portals) */
2 I* internetwork: UDP, TCP, etc.*/
I* Xerox NS protocols */

The UNIX operating system provides packet routing facilities. The kernel
maintains a routing information database, which is used in selecting the appropriate
network interface when transmitting packets.

2-59

OSF/1 Programmer's Reference
netlntro(7)

A user process (or possibly multiple cooperating processes) maintains this database
by sending messages over a special kind of socket. This supplants fixed size ioctl' s
used in earlier releases.

This facility is described in the files reference page for the route function.

Interfaces

2-60

Each network interface in a system corresponds to a path through which
messages may be sent and received. A network interface usually has a
hardware device associated with it, though certain interfaces such as the
loopback interface, lo, do not.

The following ioctl calls may be used to manipulate network interfaces. The ioctl
is made on a socket (typically of type SOCK_DGRAM) in the desired domain.
Most of the requests supported in earlier releases take an ifreq structure as its
parameter. This structure has the following form:

struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZE]; /*if name, e.g. "enO" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru _ broadaddr;
short ifru _flags;
int ifru _metric;
caddr_t ifru_data;

} ifr_ifru;
#define ifr addr ifr ifru.ifru addr /*address*/ - -
#define ifr dstaddr ifr _ifru.ifru _ dstaddr /* other end of p-to-p link */
#define ifr broadaddr ifr ifru.ifru broadaddr /*broadcast address*/
#define ifr _flags ifr _ ifru.ifra°i" _flags - I* flags *I
#define ifr metric ifr ifru.ifru metric /*metric */
#define ifr_dataifr_ifru.ifra°i"_data - I* for use by interface*/
};

Files
netintro(7)

Calls which are now deprecated are:

SIOCSIFADDR
Set interface address for protocol family. Following the address
assignment, the "initialization" routine for the interface is called.

SIOCSIFDSTADDR
Set point to point address for protocol family and interface.

SIOCSIFBRDADDR
Set broadcast address for protocol family and interface.

All ioctl requests to obtain addresses and requests both to set and retreive other
data are still fully supported and use the ifreq structure:

SIOCGIFADDR
Get interface address for protocol family.

SIOCGIFDSTADDR
Get point to point address for protocol family and interface.

SIOCGIFBRDADDR
Get broadcast address for protocol family and interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any
processes currently routing packets through the interface are
notified; some interfaces may be reset so that incoming packets are
no longer received. When marked up again, the interface is
reinitialized.

SIOCGIFFLAGS
Get interface flags.

SIOCSIFMETRIC
Set interface routing metric. The metric is used only by user-level
routers.

SIOCGIFMETRIC
Get interface metric.

2-61

OSF/1 Programmer's Reference

netintro(7)

2-62

There are three requests that make use of a new structure:

SIOCAIFADDR
An interface may have more than one address associated with it in
some protocols. This request provides a means to add additional
addresses (or modify characteristics of the primary address if the
default address for the address family is specified). Rather than
making separate calls to set destination addresses, broadcast
addresses, or network masks (now an integral feature of multiple
protocols) a separate structure is used to specify all three facets
simultaneously:

strutc
ifaliasreq {

char ifra_name[IFNAMSIZ]; /*if name, e.g. "enO" */
struct sockaddr ifra_addr;
struct sockaddr ifra_broadaddr;
struct sockaddr ifra_mask;

};

One would use a slightly tailored version of this struct are specific to
each family (replacing each sockaddr by one of the family-specific
type). Where the sockaddr itself is larger than the default size, one
needs to modify the ioctl identifier itself to include the total size.

SIOCDIFADDR
This request deletes the specified address from the list associated
with an interface. It uses the if_ aliasreq structure to permit
protocols to allow multiple masks or destination addresses, and it
adopts the convention that specification of the default address
means to delete the first address for the interface belonging to the
address family in which the original socket was opened.

Files

netintro(7)

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf
structure (see below) as a value-result parameter. The ifc_len field
should be initially set to the size of the buffer pointed to by ifc _ buf.
On return it contains the length, in bytes, of the configuration list.

I*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
*for machine (useful for programs which
* must know all networks accessible).
*I
struct ifconf {

int ifc_len;
union {

caddr t
struct

} ifc_ifcu;
#define ifc buf

I* size of associated buffer */

ifcu_buf;
ifreq *ifcu_req;

ifc ifcu.ifcu buf /* buffer address */
#define ifc_req ifc =if cu.if cu= req /* array of structures returned *I
};

Related Information

Functions: socket(2), ioctl(2)

Files: config(8), routed(8)

2-63

OSF/1 Programmer's Reference

ns(7)

ns

Purpose Xerox Network Systems protocol family

Synopsis options NS
options NSIP
pseudo-device ns

Description
The NS protocol family is a collection of protocols layered atop the Internet
Datagram Protocol (IDP) transport layer, and using the Xerox NS address formats.
The NS family provides protocol support for the SOCK_STREAM,
SOCK_DGRAM, SOCK_SEQPACKET, and SOCK_RA W socket types. The
SOCK_RA W interface is a debugging tool, allowing you to trace all packets
entering (or with toggling kernel variable, additionally leaving) the local host.

Addressing

2-64

The NS addresses are 12-byte quantities, consisting of a 4-byte network
number, a 6-byte host number and a 2-byte port number, all stored in
network standard format. (On the VAX and other machines, these are word
and byte reversed; on a Sun machine, they are not reversed). The netns/ns.h
include file defines the NS address as a structure containing unions (for quicker
comparisons).

Both the 4.3BSD and 4.4BSD sockaddr_ns structures are supported py OSF/l.
The default sockaddr _ ns structure is the 4.3BSD structure, which is as follows:

struct sockaddr _ ns {
u short sns _family;
struct ns addr sns_addr;
char sns_zero[2];

};

If the compile-time option _SOCKADDR_LEN is defined before the netns/ns.h
header file is included, however, the 4.4BSD sockaddr structure is defined, which
is as follows:

struct sockaddr _ ns {
u char

};

u char
struct ns addr
char

sns_len;
sns_family;
sns_addr;
sns _zero[2];

Files

ns(7)

The 4.4BSD sockaddr_in structure provides for a sns_Ien field, which contains the
total length of the structure.

The ns _ addr field is composed as follows:

union ns _host {
u char
u short

};

union ns _net {
u char
u short

};

struct ns _ addr {

c_host[6];
s_host[3];

c_net[4];
s_net[2];

union ns net x _net;

};

union ns host x _host;
u_short x_port;

Sockets may be created with an address of all zeros to effect ''wildcard'' matching
on incoming messages. The local port address specified in a bind(2) call is
restricted to be greater than NSPORT_RESERVED (=3000, in netns/ns.h) unless
the creating process is running as the superuser, providing a space of protected port
numbers.

Protocols
The NS protocol family supported by the operating system is comprised of
the Internet Datagram Protocol (IDP) idp(4), Error Protocol (available through
IDP), and Sequenced Packet Protocol (SPP) spp(4).

SPP is used to support the SOCK_STREAM and SOCK_SEQPACKET
abstraction, while IDP is used to support the SOCK_DGRAM abstraction. The
error protocol is responded to by the kernel to handle and report errors in protocol
processing; it is, however, not easily accessible to user programs.

Related Information

Functions: gethostbyname(3), getnetent(3), getprotoent(3), getservent(3), ns(3)

Files: netintro(7), spp(7), idp(7), nsip(7)

2-65

OSF/1 Programmer's Reference
nsip(7)

.
ns1p

Purpose Software network interface encapsulating NS packets in IP packets

Synopsis options NSIP

Description

Errors

#include <netns/ns if.h>

The nsip interface is a software mechanism which may be used to transmit Xerox
NS packets through otherwise uncooperative networks. It functions by prepending
an IP header, and resubmitting the packet through the UNIX IP machinery.

The superuser can advise the operating system of a willing partner by naming an IP
address to be associated with an NS address. Presently, only specific host pairs are
allowed, and for each host pair, an artificial point-to-point interface is constructed.
At some future date, IP broadcast addresses or hosts may be paired with NS
networks or hosts.

Specifically, a socket option of SO_NSIP _ROUTE is set on a socket of family
AF _NS, type SOCK_DGRAM, passing the following structure:

struct nsip _req {

};

struct sockaddr rq_ ns;
struct sockaddr rq_ip;
short rq_ flags;

nsipn: can't handle afn

I* must be ns format destination*/
I* must be ip format gateway*/

The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

Related Information

Files: netintro(4), ns(4)

2-66

null

Purpose

Description

Examples

Files

Data sink

Data written on a null special file are discarded.

Reads from a null special file always return 0 (zero) bytes.

To read a device and discard all the data using the dd command:

dd if=/dev/rzlc of=/dev/null

To create a zero length file using the cat command:

cat > foo < /dev/null

/dev/null

Files
null(7)

2-67

OSF/1 Programmer's Reference

OSF/ROSE(4)

OSF/ROSE

Purpose Object file format for output from OSF/l translators

Synopsis #include <mach o format.h>
#include <mach o header .h>

Description

#include <mach o vals.h>
#include <machine/mach _ o _ types.h>

The OSF/ROSE format is the object file format for output files produced by the
OSF/l translators (that is, the assembler, the compilers, and the linker).

An OSF/ROSE object file consists of the following:

• A fixed-length file header.

• A list of variable-length load commands, in no particular order. One of the
load commands is the load command map, which contains the offsets of the
other load commands in the list. Individual load commands are referenced as
indexes into the load command map.

• A variable number of sections, in no particular order. The sections contain the
object file's program data and meta data. Each section must have an
appropriate load command to serve as its header.

An object file must begin with the file header, followed immediately by the list of
load commands with the load command map. The sections follow the load
commands.

The OSF/ROSE format incorporates an implicit hierarchy whereby entries in the
load command map point to individual load commands, which in tum point to their
associated sections.

The OSF/ROSE format is designed to support the features of the OSF/1 program
loader, including regions and packages. However, it is also a general-purpose
extensible format that can be adapted to other loading schemes.

Program Data and Meta Data

2-68

The OSF/ROSE format distinguishes between program data and nonprogram, or
meta, data. Program data is contained only in program sections, called regions.

Files

OSF/ROSE(4)

By definition, all other sections contain meta data. Sections containing meta data
can be read in or mapped anywhere in virtual memory. Examples of meta data
include the lists of symbols exported by various regions and the lists of external
symbols imported (referenced) by various regions. The OSF/ROSE format
distinguishes the different types of meta data by providing a separate load
command for each type.

Data Representation

Most of the meta data in an OSF/ROSE object file is represented and aligned in a
natural way for C on the machine that is to run the program. This allows the loader
to use the most efficient accessing code. Most fields are either long or short
integers declared with types specific to OSF/ROSE. On most 32-bit word
machines, these long and short intege8s correspond to four bytes and two bytes
respectively.

To handle those situations where it is necessary to read object files created for
different types of machines, OSF/ROSE defines a single data representation field
in the file header. Each value of the field corresponds to a particular combination
of attributes (for example, byte order, word size, compiler-specific packing of
structures, and so on.). The implementation of a single data representation field
allows cross tools to use data conversion routines.

Note that currently there is no provision for assigning unique data representation
field values. The byte order field in the file header is probably sufficient for most
machines.

In order for the data and machine representation fields to be read correctly in all
cases, they must be in the OSF/ROSE canonical form. These fields are stored in
the object file header, which is treated differently from the rest of the file. The
header fields are always in network byte order (big-endian), are aligned in the
natural way for 32-bit word machines, and are two or four 8-bit bytes long.

All character strings in the meta data of an OSF/ROSE object file are null­
terminated and consist of single-byte or multibyte characters. Note that wide
characters are not supported. The OSF/ROSE tools are required to use only
single-byte-character processing, since the only comparisons are for equality.

File Header

The OSF/ROSE object file header contains two types of information. One type of
information describes the data representation and indicates how the file can be
used. For example, it describes the data representation of the meta data, machine­
and vendor-specific information, and version numbers. This information is used by
the loader and linker to determine whether they are able to handle a given object
file. The other type of information is used in reading in the load commands. (The
list of load commands follows the file header.)

2-69

OSF/1 Programmer's Reference
OSF/ROSE(4)

2-70

A given OSF/ROSE file header can exist in either a canonical or a native form.

The canonical form, also known as the "raw" form, describes the file
representation of the header. As stored in an object file, the header must be in the
canonical form. The canonical form allows the header to be interpreted on any
system.

The native form describes the memory representation of the header. When
accessed in memory (for example, by the linker), the header must be in native
form.

To support the reading and writing of the canonical form on different machines,
OSF/l provides the decode_mach_o_hdr() and encode_mach_o_hdr()
functions. These functions allow file headers to be converted between the
OSF/ROSE canonical form and a given machine's native form. For example, to
produce an executable object file, the linker fills in the header fields in native form
and reserves space for the header in the object file. It then calls
encode_ mach _ o _ hdr() to convert the header to canonical form and write it to the
reserved space.

The file header includes version information to support backward compatibility
with previous versions of the OSF/ROSE format. The header structure can be
modified only by extending it -- that is, only by adding fields at the end. This
requirement ensures that a conversion routine can always read in the number of
bytes that a particular version requires and expect to get all the information
available for that version of the header. In other words, the conversion routines
can convert between any two versions that they recognize.

When the decode_ mach _ o _ hdr() routine reads the header from a file, it returns
the version of the header from the file (canonical form) rather than the version
from the memory structure being filled in (native form). It is the caller's
responsibility to check the version, if version checking is required.

The native form of the file header is described by the following structure
declaration from the machine-independent mach_o_header.h file. If a program
needs to access an object file header, it must call decode_mach_o_hdr(2) to copy
the contents of the canonical (raw) form of the header into this structure so they

Files

OSF/ROSE(4)

can be interpreted in a straightforward way. (The canonical form of the header is
defined by the raw_ mo_ header t structure declaration in the
machine/mach _ o _header_ md.h file.)

typedef struct mo_ header_ t {
mo_long_t moh_magic;
mo_ short_ t moh _major_ version;
mo_ short_ t moh _minor_ version;
mo_ short_ t moh _header_ version;
mo_ short_ t moh_ max _page_ size;
mo_short_t moh_byte_order;
mo_short_t moh_data_rep_id;
mo_cpu_type_t moh_cpu_type;
mo_cpu_subtype_t moh_cpu_subtype;
mo_ vendor_ type_ t moh _vendor_ type;
mo_long_t moh_flags;
mo_ offset_ t mob _load_ map_ cmd _off;
mo_ offset_ t moh _first_ cmd _off;
mo _long_ t moh _ sizeofcmds;
mo _long_ t moh _ n _load_ cmds;
mo_long_t moh_reserved [2];

} mo_header_t;

The header fields are defined as follows:

moh _magic The magic number for the OSF/ROSE header. The magic number
is a 32-bit number that is the same on all machines. The values of
this number as it appears when read directly on various machines
are defined in the mach _ o _ vals.h file. The way the value looks
when read directly on the current machine is defined in the
mach_o_types.h header file as OUR_MOH_MAGIC. The value as
it appears in the native (translated) version of the header is defined
in the mach_o_header.h file as MOH_MAGIC.

moh_ major _version
The major version number for the header structure. The most
recently defined value is MOH_MAJOR_ VERSION (defined in the
ma ch_ o _ vals.h file).

moh minor version - -
The minor version number for the header structure. The most
recently defined value is MOH_MINOR_ VERSION (defined in the
mach _ o _header .h file).

2-71

OSF/1 Programmer's Reference

OSF/ROSE(4)

2-72

moh header version - -
The header version. The most recently defined value is
MOH_HEADER_ VERSION (defined in the mach o header.h
file).

moh _max yage _size
The maximum page size assumed by the linker, in bytes. In
executable files this refers to the virtual memory alignment of
program regions. In some executable files the regions must be
loaded at specified virtual addresses or at addresses that are at
specified offsets from other regions. Regions also have to be loaded
on page boundaries. If the system's page size is either larger than
moh _max yage _size or is not an even divisor of
moh_maxyage_size, it may not be possible to load a region both on
a page boundary and in the proper relation to other regions.

The safest course of action is for the linker to make
moh _max yage _size equal to the system's page size, since some
loaders insist on this when loading regions with relative addressing
requirements.

This field should be irrelevant in files whose regions have no
relative addressing requirements.

moh _byte_ order
The byte order for the target machine. Values are defined in the
mach o vals.h. file. The value used on the current machine is
defined in the mach_o_types.h file as OUR_BYTE_ORDER.

moh _data _rep _id

moh_cpu_type

The data representation used on the target machine. Values are
defined in the roach o vals.h. file. The value used on the current
machine is defined in the mach_o_types.h file as
OUR_DATA_REP _ID.

The type of machine on which the code will run. Values are defined
in the mach o vals.h file. The value used on the current machine is
defined in the mach_o_types.h file as OUR_CPU_TYPE.

moh _ cpu _subtype
The vendor variation of the basic CPU type. This field is provided
to handle the case where two (or more) machines with the same
basic CPU type are so different that executable files compiled for
one machine should not be executed on the other. A restriction of

Files

OSF/ROSE(4)

this type should be enforced in the file header so that linkers and
loaders can prevent incompatible files from being executed. Values
are defined in the mach o vals.h file. The value used on the
current machine is defined in the mach _ o _ types.h file as
OUR_CPU_SUBTYPE.

moh_vendor _type

moh_flags

The vendor type of the format variation used in this file. Vendor
types are used to differentiate files with incompatible formats, such
as different symbol or relocation information, when the
incompatibility is introduced to provide an alternative rather than a
replacement. (Replacements affect the version number.) It is the
responsibility of the party defining the vendor type to ensure that the
necessary software knows about it. The most significant half of the
possible values are reserved for machine-dependent vendor types,
and the least significant half for machine-independent types. Values
for machine-independent vendor types are defined in the
mach o vals.h file. The value used on the current machine is
defined in the mach o vals.h file as OUR_ VENDOR_ TYPE.

Characteristics of the object file, indicating how the object file may
be used. These values are not mutually exclusive. Possible values
are as follows:

MOH_RELOCATABLE_F
The object file has loader relocation.

MOH_LINKABLE_F
The object file has linker relocation.

MOH_EXECABLE_F
The object file has crtO and can be exec'd.

MOH_EXECUTABLE_F
The object file can be loaded for execution.

MOH_UNRESOLVED_F
The object file has unresolved references to imported
symbols.

moh _load_ map_ cmd _off
The offset of the load command map in bytes from the beginning of
the file.

2-73

OSF/1 Programmer's Reference
OSF/ROSE (4)

2-74

moh Jirst _cmd _off
The offset of the first load command in bytes from the beginning of
the file.

moh _sizeofcmds
The number of bytes occupied by all the load commands, including
the load command map.

moh n load cmds
The number of load commands.

moh reserved Reserved for future use.

Load Commands

In the OSF/ROSE format, load commands are used for section headers, loader
directives, and information that is too short to have its own section. The load
commands must be grouped together and must immediately follow the file header
(although not necessarily on the next available byte). A variable number of load
commands can be specified, in no particular order. Individual load commands are
of variable length.

All load commands begin with a standard header, which includes type information
and the file offset and length of the associated section, if there is one. The file
offset and length fields are included even if there is no associated section.

The load command header is described by the following structure declaration from
the maeh o format.h file:

typedef struet Ide_ header_ t {
mo_Iong_t
mo_long_t
mo offset t - -
mo_long_t

} Ide_ header_ t;

ldci _ emd _type;
ldci_emd_size;
ldci_seetion _off;
ldci_seetion _Ien;

The load command header fields are defined as follows:

ldci _ cmd _type
The load command type. The most significant half of the type field
values are machine or vendor dependent and are unique only for a
given CPU type. The name space for these values is determined by
the object file header's moh _ cpu _type field. The least significant
half of the type field values are reserved for machine- and vendor-

Files

OSF/ROSE(4)

independent load commands. These values should have unique
meanings, but there is no mechanism for enforcing uniqueness. The
currently defined machine- and vendor-independent types (from the
mach_o_format.h file) are as follows:

LDC_UNDEFINED
An undefined load command. Used when logically deleting
a load command entry from the load command map.

LDC_CMD_MAP
Load command for the load command map.

LDC_INTERPRETER
Load command for the program interpreter (no section).
Only one interpreter load command is allowed. If this load
command is used, it must be the first entry in the load
command map so that further processing of the load
commands can be avoided if an interpreter is to be called
instead.

LDC_STRINGS
Load command for a strings section.

LDC_REGION
Load command for a region section (part of the program).

LDC_RELOC
Load command for a relocation information section.

LDC_FACKAGE
Load command for an import or export package list (no
section).

LDC_SYMBOLS
Load command for a symbols section.

LDC_ENTRY
Load command for the program main entry point (no
section).

LDC_FUNC_ TABLE
Load command for a function table (no section).

LDC_GEN_INFO
Load command for general information (no section).

ldci _ cmd _size The size of the load command in bytes.

2-75

OSF/1 Programmer's Reference
OSF/ROSE(4)

2-76

ldci _section_ off
The offset of the associated section from the beginning of the file. If
there is no associated section, this field is set to 0 (zero).

ldci section ten
The length of the associated section in bytes. If there is no
associated section, this field is set to 0 (zero).

Data Types Specific to OSF/ROSE

The OSF/ROSE format implements several special data types for use with the
format declarations. The typedefs for the machine-dependent base types are
defined in the mach _ o _ types.h file. The machine-independent typedefs are
defined in the mach o format.h file and are listed below:

typedef mo _long_ t mo _lcid _ t;

The mo _lcid _ t typedef identifies a load command entry (index) in the load
command map.

typedef struct mo_ addr _ t {
mo_lcid_t adr_lcid;
mo_ offset_ t adr _ sctoff;

} mo_addr_t;

The mo_addr_t typedef describes an address in terms of an offset within a section.
It specifies the section as a load command index and contains the offset in bytes of
the address within the associated section.

typedef struct mo_ index_ t {
mo_lcid_t adx_lcid;
mo_long_t adx_index;

} mo_index_t;

The mo_index_t typedef identifies an element within an array-type section. It
specifies the section as a load command index and contains the index of the
element within the associated section.

typedef struct mo _rel_ addr _ t {
mo_lcid_t adrl_Icid;
mo_offset_t adrl_reloff;

} mo _rel_ addr _ t;

The mo_rel_addr_t typedef describes an address that is relative to a (region)
section. It specifies the section as a load command index and contains the offset in
bytes of the address from the beginning of the associated section. The address is
not within the section and the offset is not negative. This type of address is used at
load time to position a region at a fixed offset relative to another region.

Files
OSF/ROSE(4)

The Load Command Map

Direct file offsets can be specified only in load commands. Each section has its
own load command, which serves as a header for the section. Any reference from
one section to another is made indirectly, via the target section's load command.
As an aid in determining the addresses of the load commands, the OSF/ROSE
format provides a special load command called the load command map. As a
load command, it is stored with the other load commands.

The load command map is an array that contains the offsets of all the other load
commands. Each load command is represented by an index into the array. Load
command indexes already assigned will not change when new load commands or
sections are added to the file or when old load commands are deleted.

Internal address references (that is, references within the object file) reflect the
load command map/load command/section hierarchy. They are specified in terms
of a load command map index and an offset within a section. The index indicates
an entry within the load command map array which in tum provides the offset of a
load command. The load command identifies the section to which the offset
applies. The OSF/ROSE format specifies a special data type (mo_addr_t) to
represent internal address references.

To logically delete a load command, change its entry in the load command map to
LCM_INVALID_ENTRY and change the ldci_cmd_type field in the load
command's header to undefined (LDC_ UNDEFINED).

While the OSF/ROSE format allows load commands to be logically deleted by
marking their entries in the load command map as invalid, the load commands for
nonabsolute regions must not be logically deleted since they may be referenced by
other sections.

The OSF/l linker and loader are not required to check for undefined load
commands. Therefore, only those load command map entries that are not used by
the linker and loader can be made obsolete.

The load command map load command identifies the strings section used by the
other load commands.

The load command map is described by the following structure declaration from
the mach o format.h file:

typedef struct load_ cmd _map_ command_ t {
Ide_ header_ t Ide_ header;
mo_lcid_t lcm_ld_cmd_strings;
mo_long_t lcm_nentries;
mo_offset_t lcm_map [1];

} load_ cmd _map_ command_ t;

2-77

OSF/1 Programmer's Reference

OSF/ROSE(4)

2-78

The load command map fields are defined as follows:

Ide header The load command header for the load command map. In this
structure, the ldci_cmd_type field must be set to LDC_CMD_MAP.
The section fields must be set to 0 (zero) since the load command
map cannot have an associated section.

lcm_ld _cmd _strings
The load command map index (entry) of the strings section that
contains the strings used by the load commands.

',
lcm nentries The number of load command entries in the load command map,

including any invalid entries that are followed by valid entries.

!cm_ map The variable-length array that contains the file offsets (type
mo_otfset_t) of the load commands.

Regions

A region is an object file section that contains a piece of the program. Any
nonregion section is considered meta data. Meta data sections can be read in or
mapped anywhere in virtual memory because their file offsets are contained only in
their associated load commands. The loader manages nonregion sections
differently from region sections.

When loaded, a region exists as a virtually contiguous range of bytes in process
address space. To fully support this format, a loader should be able to load an
arbitrary number of regions (rather than just text, data, and bss).

A region's attributes (such as address, size, protection, and type) are described in
its associated region load command. All object files, linkable and executable, use
the same region load command structure.

Files

OSF/ROSE(4)

The region load commarid is described by the following structure declaration from
the maeh o format.h file:

typedef struct region_eommand_t {
Ide_ header_ t Ide_ header;
mo addr t rege _region_ name;
union {

mo vm addr t
mo rel addr t

vm_addr;
rel_addr; - - -

} regc_addr;
mo_long_t
mo_long_t
mo lcid t
mo_long_t
mo short t - -
mo short t - -

} region_ command_ t;

regc_vm_size;
regc_flags;
regc _reloc _ addr;
regc _ addralign;
regc _usage_ type;
regc _initprot;

The region load command fields are defined as follows:

Ide header The load command header for the region load command. In this
structure, the ldci_cmd_type field must be set to LDC_REGION.
The section offset and length fields are normally filled in, but they
can be set to 0 (zero) for a bss (uninitialized data) region.

regc _region_ name
The name of the region, specified as an address within the strings
section used by the load commands.

regc _ addr The address to use for the region. This field is defined by a union
and is used in conjunction with regc _flags. If regc _flags is
REG_ABS_ADDR_F, regc _ addr.vm _ addr specifies the absolute
address to use. If regc _flags is REG_REL_ADDR_F,
regc_addr.rel_addr specifies the address in terms of the region that
this region is relative to. If neither of those flags is specified, this
field is not used (that is, the loader chooses the address).

regc_vm_size The amount of memory to allocate for the region, in bytes. The
memory size can be larger than the region's actual size in the object
file.

2-79

OSF/1 Programmer's Reference

OSF/ROSE(4)

2-80

regcJlags Region flags. Currently these flags are used only to specify the type
of address for the region, but others may be added in the future.
Possible values are as follows:

REG_ABS_ADDR_F
The region has an absolute address, as specified by
regc_addr. vm_addr.

REG_REL_ADDR_F
The region has a relative address, as specified by
regc_addr.rel_addr.

NULL The region's address will be assigned by the loader.

regc_reloc_addr
The index in the load command map of the load command for the
associated relocation section, if there is one. If there is no associated
relocation section, this field is set to MO_INVALID_LCID. See
"Relocation Information," later in this reference page.

regc_addralign
The alignment in bytes that is required for the data contained in the
region to be referenced properly by the hardware. For example, a
region that contains double precision floating point numbers may
have to be aligned at least on a four-byte boundary. This field is
used by the linker when combining regions from several object files
into a single region for an executable file.

regc_usage_type
The region's usage type (that is, text, data, bss, and so on). The
values for this field are machine dependent and are defined in the
mach_o_types.h file.

regc_initprot The protection for the region. The loader must translate these
generic protection flags (from the mach_o_format.h file) into the
actual protection values used by the system:

MO_PROT_NONE

MO_PROT_READ

MO_PROT_ WRITE

MO_PROT_EXECUTE

A region's address can be specified as absolute, relative to another region, or not
specified at all. If a region has an absolute address, it is loaded at that address. It
cannot be relocated to a different virtual address. However, it may require that

Files
OSF/ROSE (4)

another region be relocated to resolve external references to addresses in that
region. If a region has a relative address, it must indicate the region that it is
relative to. The load command for the (nonrelative) region being referenced must
have a lower load command map index than the (relative) region load commands
that reference it. If a region has no virtual address specified, the loader assigns one
for it.

The memory size specified for a region can be larger than the region's actual size
in the file. Memory in excess of the region's actual size is allocated zero fill on
demand. For a bss (uninitialized data) region, the region's load command might
not have an associated section in the file.

For executable (that is, nonlinkable) files, a region's offset in the file must be page
aligned. The page boundary defines the finest granularity for protection when
mapping into virtual memory. In other words, two parts of the same page cannot
be mapped with different protections.

The regc_region_name, regc_addralign, and regc_usage_type fields are used only
by the linker.

The regc_usage_type field serves to distinguish text, data, read-only data, and so
forth. It allows the linker to combine similar region types from multiple object
files. It is the linker's responsibility to combine n types of input regions into m
types of output regions. Region usage, though, is also affected by the protection
attribute. At a minimum, there must be a different region for each kind of
protection attribute. One possible strategy is to combine regions first by usage type
and then combine the resulting regions by protection attribute.

The regc_addralign field allows the linker to ensure that each region in a page­
aligned composite region is aligned properly for the data that the region contains.

Packages

The OSF/l loader implements a two-dimensional name space for managing symbol
resolution. The first dimension consists of named abstractions called packages.
The second dimension consists of named symbols.

If an object module references a symbol (which can be a routine or a data item) in
another module, the referenced symbol is said to be imported. If an object module
makes a symbol available for referencing by other modules, the symbol is said to
be exported. Symbol resolution is the process of binding each imported symbol
to the address of a corresponding exported symbol.

Packages are containers for symbols. Package names must be unique across a
system. Symbol names must be unique within a package. Several exported
symbols, then, can have the same name as long as they are associated with different
packages.

2-81

OSF/1 Programmer's Reference

OSF/ROSE (4)

2-82

The OSF/ROSE object format supports the use of the
(package_name,symbol_name) pair for symbol references. At load time, the
OSF/1 loader resolves the package names in the object file to the file pathnames of
the appropriate libraries (modules) by searching a hierarchy of package tables. A
system-wide package table contains the default package to library mappings. A set
of per-process tables contain mappings specific to a given process. The loader
searches the per-process tables first and then the system-wide table.

The OSF/ROSE format implements separate package lists for imported and
exported symbols. Packages are implemented separately from the symbol
references because they consist of more than just package names. A reference (via
the symbol load command) specifies its associated package by using the index of
the package in the appropriate package list.

In OSF/l, the package lists are generated by the linker and not by the compiler or
assembler. Thus exported and imported symbols in unlinked object files need not
have package names. (This is likely to change in future releases.) The OSF/1
Release 1.0 linker does not use package names in its own symbol resolution policy.

Package Entries

The package load command does not have an associated section. It ends in a
variable-length array. The array entries are described by the following structure
declaration from the mach_o_format.h file:

typedef struct pkg_entry _t {
mo_otfset_t pe_pkg_name;
mo_addr_t pe_ version_addr;

} pkg_entry_t;

The package entry fields are defined as follows:

pe__pkg_name The package name, specified as an offset into the strings section
whose map index is pkgc_strings_id.

pe_version_addr
The address of information describing the version of the package
referenced during linking. (Not used in OSF/l.)

Files
OSF/ROSE(4)

Package Load Command

There must be a separate package load command for the import package list and
the export package list. In each case the structure is the same, with the value of the
pkgc_fiags field determining the type of list. The package load command is
described by the following structure declaration from the mach_o_format.h file:

typedef struct package_command_t {
ldc_header_t ldc_header;
mo_short_t pkgc_flags;
mo_short_t pkgc_nentries;
mo_lcid_t pkgc_strings_id;
pkg_entry_t pkgc_pkg_list [l];

} package_command_t;

The package load command fields are defined as follows:

ldc_header The load command header for the package load command. In this
structure, the ldci_cmd_type field must be set to LDC_PACKAGE.
The section offset and length fields must be set to 0 (zero).

pkgcJlags The type of package list. Possible values are as follows:

PKG_EXPORT_F

PKG_IMPORT_F

pkgc_nentries The number of entries in the package list.

pkgc_strings_id
The index of a strings load command in the load command map.
The index is used to establish a link to the strings section that
contains the package name strings.

pkgc_pkg_list The variable-length array that contains the packages (type
pkg_entry_t) in the list.

Symbols

The OSF/ROSE format provides a single load command for all symbol types. The
symbol load command requires an associated section. An object file can have
several different kinds of symbol sections, as determined by the symc_kind field.
Individual symbols are defined in their respective sections using the symbol_info_t
structure supplied with the OSF/ROSE format.

2-83

OSF/1 Programmer's Reference

OSF/ROSE(4)

2-84

The OSF/ROSE format supports the following types of symbols:

• Defined Symbols - Identify locations or actual values within the object file.
Some of these symbols may be exported (that is, available to other object
files). They have the export flag set. Exported symbols in executable files
also have package names. (A package name is specified as an index into the
export package list.) Defined symbols that are not exported have the value
MO_INVALID_pKG_INDEX in their package_index fields.

• Imported Symbols - Reference symbols in other modules. These symbols
represent a module's unresolved references. Like exported symbols, imported
symbols in executable files have associated package names (specified as
indexes into the import package list.) The OSF/1 assembler identifies each
imported symbol as being either code or data. This distinction can be used by
the loader to allow lazy evaluation of unresolved code references (although
the OSF/1 loader does not do this).

• Stab Symbols - Provide information for use by symbolic debuggers. Most
of the information is stored as part of the name string, but several type fields
(used only for stabs) are used as well. The OSF/1 symbolic debugger uses this
format. Other vendors may wish to use their own format for debugging
information.

Symbol Entries

Each entry in a symbol section is described by the following structure declaration
from the mach_o_format.h file:

typedef struct symbol_info_t {
union {mo_otfset_t symbol_name;

mo_ptr_t symbol_nameP;
} si_name;
mo_short_t si_package_index;
mo_short_t si_type;
mo_short_t si_flags;
mo_byte_t si_reserved_byte;
mo_byte_t si_sc_type;
union { mo_addr_t def_ val;

mo_long_t imp_ val;
mo_long_t lit_val;
mo_vm_addr_t abs_ val;

} si_value;
} symbol_info_t;

Files

OSF/ROSE(4)

The symbol entry fields are defined as follows:

si_name The name of the symbol. The symbol name is defined by a union
and can be specified either as an offset into the associated strings
section (si_name.symbol_name) or as a pointer
(si_name.symbol_nameP). The pointer form should be used only
when symbol_info_t is used as part of a runtime data structure such
as in the linker -- and never in an object file.

si_package_index

si_type

siJlags

The index of the associated package within the appropriate package
list. This field is used only for exported and imported symbols.
Otherwise, its value is MO_INVALID_PKG_INDEX, defined in the
mach_o_types.h file.

Encoded type information for debug symbols. (The encoding used
in OSF/l Release 1.0 was "inherited" for easier porting and is not
defined here.)

Flags describing the symbol or how it is used. Possible values are as
follows:

Sl_EXPORT_F
The defined symbol is exported (that is, made visible to other
object files).

SI_IMPORT_F
The symbol is imported (that is, its value is defined in
another object file). The si_value.imp_val field contains the
index of this symbol_info_t structure in the associated
import list.

Sl_LOCAL_F
The defined symbol is local (that is, it is not visible outside
the object file).

SI_CODE_F
The imported symbol is referenced via calls.

SI_DATA_F
The imported symbol is referenced via data references.

SI_LITERAL_F
The si_value field contains the actual value of the symbol,
and not just the address.

SI_FORWARD_F
The value of this symbol is the address of another symbol,
which contains the "real" value. (The OSF/1 compiler tools
do not currently use this flag.)

2-85

OSF/1 Programmer's Reference
OSF/ROSE(4)

2-86

SI_COMMON_F
The data represented by the symbol will live in the common
area and so the value field is not used to find the address.
Instead, if the symbol is defined, si_value.lit_val contains the
symbol's size in bytes.

SI_LOCAL_LABEL_F
The symbol represents a local (internal) label. Use of this
flag makes it unnecessary to use special naming conventions
to identify such labels.

SI_ABSOLUTE_ VALUE_F
The value of this defined symbol is an absolute virtual
address, referenced as si_value.abs_val.

si_reserved_byte
Reserved for future use (possibly more flags) and should not be used
for such things as more debugging information.

si_sc_type Storage class type information. As with si_type, the values used by
OSF/l were inherited and are not described in this document.

si_value The symbol's value. This field is used in conjunction with the
si_Jlags fields. The symbol value is defined by a union.

If SI_IMPORT_F is set, si_value.ilnp_val is used and contains this
symbol's index in the import section.

If SI_LITERAL_F is set, si_value.lit_val is used and contains either
the value itself (as opposed to an address), or the size of the symbol.

If SI_ABSOLUTE_ VALUE_F is set, si_value.abs_val is used and
contains an absolute virtual memory address.

If none of the above flags is set, si_value.def_val is used and
contains an address as an offset within an object file section.

Files
OSF/ROSE(4)

Symbol Load Command

The symbol load command is described by the following structure declaration from
the mach_o_format.h file:

typedef struct symbols_command_t {
ldc_header_t ldc_header;
mo_short_t symc_kind;
mo_short_t symc_short_reserved;
mo_long_t symc_nentries;
mo_lcid_t symc_pkg_list;
mo_lcid_t symc_strings_section;
mo_lcid_t symc_reloc_addr;
union { mo_short_t n_exported_symb;

mo_long_t long_ reserved;
} symc_other;

} symbols_command_t;

The symbol load command fields are defined as follows:

ldc_header The load command header for the symbol load command. In this
structure, the ldci_cmd_type field must be set to LDC_SYMBOLS.
The section offset and length fields must be filled in.

symc_kind The kind of symbol section associated with the load command.
Possible values are as follows:

SYMC_IMPORTS
The section contains imported symbols.

SYMC_DEFINED_SYMBOLS
The section contains defined, and possibly exported,
symbols.

SYMC_STABS
The section contains stab symbols (for use by symbolic
debuggers).

symc_short_reserved

symc_nentries

Reserved for future use.

The number of symbol_info_t entries in the associated symbols
section.

symc_pkg_list The index of a package load command in the load command map.
The package load command contains the associated package list.

2-87

OSF/1 Programmer's Reference
OSF/ROSE(4)

2-88

symc _string s_section
The index of a strings load command in the load command map.
The strings load command identifies the strings section that contains
the symbol names.

symc_reloc_addr
The index in the load command map of the load command for the
associated relocation section, if there is one. If there is no associated
relocation section, this field is set to MO_INVALID_LCID. See
"Relocation Information," later in this reference page.

symc_other Used for additional, kind-related information. For defined symbol
sections, this field contains the number of exported symbols. This
information enables programs that are only interested in exported
symbols to avoid having to look at every symbol entry. (Although it
is preferable to put all the exported symbols first in the section, it is
not required.)

Relocation Information

Relocation is the process of modifying references so that they reflect the actual
addresses of the entities they reference.

An object file can contain references with incomplete or missing addresses, The
linker must modify such references as regions are moved and external functions
become internal. The loader must also modify such references when virtual
addresses are assigned. The OSF/ROSE format specifies a separate relocation
section for each region or symbol section containing references that need to be
adjusted. The relocation load command serves as the header for a relocation
section. A region's incomplete references are defined (via the reloc_info_t
structure) as entries in the relocation section associated with the region.

The OSF/ROSE format provides two methods for relocation entries to specify the
referenced locations:

• Symbol Relative - With this method, the referenced location has a name and
the relocation entry "points to" a symbol information structure. The symbol
information structure connects the symbol name with the location.

• Location Relative - With this method, the relocation entry specifies the
referenced location explicitly. Location-relative relocation can be used only
for references within the same object file and is provided primarily as an
optimization.

Because different kinds of references may need to be relocated, the relocation
entries also specify how the referencing fields are to be updated. The update
information is contained in the type field for each relocation entry. The values of
the relocation types are machine dependent.

Files
OSF/ROSE(4)

Each relocation entry contains a set of flags whose general purpose is to specify
how the target address is to be interpreted. Some of the flags indicate the type of
target address specification to use. Other flags indicate extra processing that must
be done to a target address before updating the referencing field.

Note: The following algorithm is not implemented in OSF/1 Release 1.0. Instead,
it describes now the indirect flag is intended to be used.

The indirect flag, in particular, is intended to be used for external or long-distance
references in position-independent-code (PIC) programs. It indicates that the
linker must generate an address constant in the data table (also known as the
program table or table of contents). The linker is responsible for building the data
table from those relocation entries that have the indirect flag set. When the linker
finds a relocation entry that has the indirect flag set, it performs the following steps:

1. It generates an address constant for the referenced location and inserts this
constant as an entry in the data table. If the address constant entry already
exists in the data table, the linker does not duplicate it.

2. It relocates the referencing field using the address or offset of the address
constant entry in the data table.

3. It moves the relocation entry from the referencing field to the corresponding
address constant entry in the data table. The linker turns off the indirect flag
in the moved relocation entry and assigns a different relocation type.

The linker follows this procedure even if the assembler generates data tables. In
this case, the linker fabricates a new data table as above and ignores or discards the
data tables produced by the assembler.

Relocation Entries

Each entry in a relocation section is described by the following structure
declaration from the mach_o_format.h file:

typedef struct reloc_info_t {
mo_offset_t ri_roffset;
mo_short_t ri_flags;
mo_short_t ri_size_type;
union { mo_index_t symbol_index;

mo_addr_t loc_addr;
} ri_value;

} reloc_info_t;

The relocation entry fields are defined as follows:

ri_rojfset The offset from the beginning of the section of the first byte to be
relocated.

2-89

OSF/1 Programmer's Reference

OSF/ROSE(4)

2-90

ri_flags Indicators specifying extra processing or how ri_value is to be
interpreted. Possible values are as follows:

RI_PC_REL_F
Derive the relocated value as the difference between the
address of the location being relocated and the address of the
location being referenced.

RI_INDIRECT _F
Interpret ri_rojfset as a reference to an address constant entry
in the linker-generated data table.

RI_SYMBOL_F
Interpret ri_value as a symbol table index.

RI_LOC_F
Interpret ri_value as an internal address within the object
file.

ri_size_type An indicator specifying how the referencing field is to be updated.
Values are machine dependent.

ri_value The referenced location. The location value is defined by a union.
For a symbol-relative reference, ri_value.symbol_index specifies the
symbol being referenced. For a location-relative reference,
ri_value.loc_addr specifies the actual location within the same
object file.

Relocation Load Command

The relocation load command is described by the following structure declaration
from the mach_o_format.h file:

typedef struct reloc_command_t {
ldc_header_t ldc_header;
mo_long_t relc_nentries;
mo_lcid_t relc_owner_section;
mo_long_t relc_reserved;

} reloc_command_t;

The relocation load command fields are defined as follows:

ldc_header The load command header for the relocation load command. In this
structure, the ldci_cmd_type field must be set to LDC_RELOC. The
section offset and length fields must be filled in.

relc_nentries The number of relocation entries in the associated section.

Files
OSF/ROSE(4)

relc_owner _section
The index in the load command map of the load command for the
region or section being relocated.

relc_reserved Reserved for future use.

Strings

The strings sections contain the strings referenced by the load commands and the
object file's meta data. The OSF/ROSE format supports multiple strings sections.
This allows strippable strings, such as those used by debug symbols, to be clearly
separated from non-strippable strings, such as those used by the load commands. It
also allows load commands and sections that have their own strings sections to be
added or replaced more easily. (The OSF/l compiler tools do not fully support
multiple strings sections.)

String references are of type mo_addr_t. In other words, they specify the index of
a strings load command in the load command map and an offset into the associated
strings section.

The entries in a strings section are null-terminated strings.

The strings load command is described by the following structure declaration from
the mach_o_format.h file:

typedef struct strings_command_t {
ldc_header_t ldc_header;
mo_long_t strc_ftags;

} strings_command_t;

The strings load command fields are defined as follows:

ldc_header The load command header for the strings load command. In this
structure, the ldci_cmd_type field must be set to LDC_STRINGS.
The section offset and length fields must be filled in.

strcJlags

Program Main Entry

None are defined currently. These flags could indicate such things
as use of multiple-byte encoding, compression, strings that are
preceded by a count, and so on.

The OSF/ROSE format provides the entry load command for specifying the main
entry point in a program. An object file can contain only one entry load command.

If the module is to be loaded by the kern_exec() function, the absolute address
field (entc_absaddr) is required. Otherwise, it is optional.

2-91

OSF/1 Programmer's Reference
OSF/ROSE(4)

2-92

The entry load command is described by the following structure declaration from
the mach_o_format.h file:

typedef struct entry _command_t {
ldc_header_t ldc_header;
mo_short_t entc_flags;
mo_short_t entc_short_reserved;
mo_vm_addr_t entc_absaddr;
mo_addr _t entc_entry _pt;

} entry_command_t;

The entry load command fields are defined as follows:

ldc_header The load command header for the entry load command. In this
structure, the ldci_cmd_type field must be set to
LDC_MAIN_ENTRY. The section offset and length fields must be
set to 0 (zero).

entc_flags Entry flags. The only currently defined value is as follows:

ENT_ VALID_ABSADDR_F
The entc_absaddr field has a valid address value.

entc_short_reserved
Reserved for future use.

entc_absaddr The absolute address of the entry point in virtual memory. This field
is required for loading by the kern_exec() function.

entc_entry_pt The address of the entry point within the object file, expressed as the
load command map index of a region load command along with an
offset.

Generation Information

The OSF/ROSE format provides a generation information load command. It can
be used to embed the following pieces of information in the object file:

• The creation date and time for the object file.

• The name of the assembler or linker used to create the object file.

• The version of the assembler or linker used to create the object file.

• The build time stamp of the assembler or linker used to create the object file.

• The options specified to the assembler or linker.

The generation information load command does not have an associated section.
Parts of the information, though, are stored as strings in the strings section used by
the load commands. As such, these strings are not strippable.

Files
OSF/ROSE(4)

Currently, the OSF/l linker retains no generation information from the component
object files. It puts only information about itself in this load command.

The generation information load command is described by the following structure
declaration from the mach_o_format.h file:

typedef struct gen_info_command_t {
ldc_header_t ldc_header;
time_t genc_obj_create_time;
mo_addr_t genc_creator_name;
mo_addr _t genc_creator _version;
time_t genc_creator _time;
mo_addr _t genc_options_to_creator;

} gen_info_command_t;

The generation information load command fields are defined as follows:

ldc_header The load command header for the generation information load
command. In this structure, the ldci_cmd_type field must be set to
LDC_GEN_INFO. The section offset and length fields must be set
to 0 (zero).

genc_obj_create_time
The date and time at which the object file was created.

genc_creator _name
The name of the assembler or linker that created the object file.

genc_creator _version
The version of the assembler or linker that created the object file.

genc_creator _time
The build time stamp of the assembler or linker that created the
object file.

genc_options_to_creator
The options specified to the assembler or linker.

Function Tables

The OSF/ROSE format provides a separate function table load command. This
load command establishes an array of function entry points that are to be called
outside of the main flow of the program, usually by the loader.

This load command is supported by the OSF/l loader, but is not generated by the
OSF/l compiler tools.

Sets of related functions are grouped by means of the type field. The type field
indicates when the functions in the associated table are to be called. Currently, two
function types are supported: initialization and termination. Initialization functions

2-93

OSF/1 Programmer's Reference
OSF/ROSE{4)

2-94

are called when the object file is loaded. Termination functions are called when
the file is unloaded. As a rule, an object file should contain no more than one table
of each type.

Since the function entry points are stored in an array, each component of a linked
module can have its own set of functions. The array format also allows the
function calls to be ordered.

The function table load command does not have an associated section. The
functions are treated as part of the program and are located in regions, either
separately or in combination with other code. The load command specifies only
the region and offset of each function's entry point.

The function table load command is described by the following structure
declaration from the mach_o_format.h file:

typedef struct func_table_command_t {
ldc_header_t ldc_header;
mo_short_t fntc_type;
mo_short_t fntc_nentries;
mo_addr _t fntc_table_name;
ino_long_t fntc_reserved;
qio_addr_t fntc_entry_loc [1];

} func.:.Jable_command_t;

The function table load command fields are defined as follows:

ldc_header The load command header for the function table load command. In
this structure, the ldci_cmd_type field must be set to
LDC_FUNC_TABLE. The section offset and length fields must be
set to 0 (zero).

fntc_type The type of functions in the associated table. Currently defined
values are as follows:

FNTC_INITIALIZATION
For functions to be called when the module is loaded

FNTC_ TERMINATION
For functions to be called when the module is unloaded

fntc_nentries The number of functions in the associated table.

fntc_table_name
The name of the function table, specified as a string address.

fntc_reserved Reserved for future use.

fntc_entry_loc

Files
OSF/ROSE(4)

An array of the function addresses. Functions are implemented in
regions. Each function is identified by the ID of its region's load
command and its offset into that region's section.

Program Interpreter

If an OSF/ROSE object file uses a program interpreter, the interpreter load
command must be the first entry in the load command map. The interpreter load
command is designed to have no dependencies on other load commands. It has no
associated section.

This load command is not supported by the OSF/1 compiler tools or loader.

The interpreter load command is intended to be used when the object file is loaded.
The loader would retrieve the pathname for the interpreter and create the initial
process image using the interpreter file's regions, rather than the object file's
regions. The interpreter would be responsible for receiving control from the
system and establishing an environment for the program.

The interpreter load command is described by the following structure declaration
from the mach_o_format.h file:

typedef struct interpreter_command_t {
ldc_header_t ldc_header;
char intc_interpreter_path [1];

} interpreter_command_t;

The interpreter load command fields are defined as follows:

ldc_header The load command header for the interpreter load command. In this
structure, the ldci_cmd_type field must be set to
LDC_INTERPRETER. The section offset and length fields must be
set to 0 (zero).

intc_interpreter __path

Related Information

A null-terminated string that specifies the pathname for the
interpreter.

Functions: decode_mach_o_hdr(3), encode_mach_o_hdr(3)

2-95

OSF/1 Programmer's Reference

passwd(4)

passwd

Purpose

Description

2-96

Password files

A passwd file is a file consisting of records separated by newline characters, one
record per user, containing ten colon (:) separated fields. These fields are as
follows:

name

password

uid

id

class

change

expire

gecos

home_dir

shell

User's login name

User's encrypted password

User's ID

User's login group ID

User's general classification (unused)

Password change time

Account expiration time

General information about the user

User's home directory

User's login shell

The name field is the login used to access the computer account, and the uid field is
the number associated with it. They should both be unique across the system (and
often across a group of systems) since they control file access.

While it is possible to have multiple entries with identical login names and/or
identical user id's, it is usually a mistake to do so. Routines that manipulate these
files will often return only one of the multiple entries, and that one by random
selection.

The login name must never begin with a hyphen(-); also, it is strongly suggested
that neither uppercase characters or dots (.) be part of the name, as this tends to
confuse mailers. No field may contain a colon (:) as this has been used historically
to separate the fields in the user database.

The password field is the encrypted form of the password. If the password field is
empty, no password is required to gain access to the machine. Because these files
contain the encrypted user passwords, they should not be readable by anyone
without appropriate privileges.

Files
passwd(4)

The gid field is the group that the user will be placed in upon login. Since OSF/l
supports multiple groups (see the groups command) this field currently has little
special meaning.

The class field is currently unused. In the near future it will be a key to a termcap
style database of user attributes.

The change field is the number in seconds, Coordinated Universal Time (CUT),
from the epoch until the password for the account must be changed. This field may
be left empty to tum off the password aging feature.

The expire field is the number in seconds, Coordinated Universal Time, from the
epoch until the account expires. This field may be left empty to tum off the
account aging feature.

The gecos field normally contains comma(,) separated subfields as follows:

name

office

User's full name

User's office number

wphone User's work phone number

hphone User's home phone number

This information is used by the finger command.

The user's home directory is the full UNIX pathname where the user will be placed
on login.

The shell field is the command interpreter the user prefers. If the shell field is
empty, the Bourne shell (/bin/sh) is assumed.

Related Information

Functions: getpwent(3)

Commands: login(l), passwd(l)

2-97

OSF/1 Programmer's Reference
protocols{ 4)

protocols

Purpose

Description

Files

Protocol name database

The protocols file contains information regarding the known protocols used in the
DARPA Internet. For each protocol, the file should contain a single line with the
following information:

• Official protocol name

• Protocol number

• Aliases

Items are separated by any number of blanks, tab characters, or both. A # (number
sign) indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file.

Protocol names may contain any printable character other than a field delimiter,
newline, or comment character.

/etc/protocols

Related Information

Functions: getprotoent(3)

2-98

pty

Purpose

Synopsis

Description

Files
pty(7)

Pseudo terminal driver

pseudo-device pty [count]

The pty driver provides support for a device-pair termed a pseudo terminal. A
pseudo terminal is a pair of character devices, a master device and a slave device.
The slave device provides an interface identical to that described in the tty
reference page. However, whereas all other devices which provide the interface
described in the tty reference page have a hardware device behind them, the slave
device has, instead, another process manipulating it through the master half of the
pseudo terminal. That is, anything written on the master device is given to the
slave device as input and anything written on the slave device is presented as input
on the master device.

In configuring, if an optional "count" is given in the specification, that number of
pseudo terminal pairs are configured; the default count is 32.

The following ioctl calls apply only to pseudo terminals:

TIOCSTOP Stops output to a terminal (for example, like entering <ctrl-S>).
Takes no parameter.

TIOCSTART Restarts output (stopped by TIOCSTOP or by typing <ctrl-S>).
Takes no parameter.

TIOCPKT Enable or disable packet mode. Packet mode is enabled by
specifying (by reference) a nonzero parameter and disabled by
specifying (by reference) a zero parameter. When applied to the
master side of a pseudo terminal, each subsequent read() from the
terminal will return data written on the slave part of the pseudo
terminal preceded by a zero byte (symbolically defined as
TIOCPKT_DATA), or a single byte reflecting control status
information. In the latter case, the byte is an inclusive-OR of zero
or more of the bits:

TIOCPKT_FLUSHREAD
Whenever the read queue for the terminal is flushed.

TIOCPKT_FLUSHWRITE
Whenever the write queue for the terminal is flushed.

2-99

OSF/1 Programmer's Reference
pty{7)

2-100

TIOCPKT _STOP
Whenever output to the terminal is stopped by <ctrl-S>.

TIOCPKT_START
Whenever output to the terminal is restarted.

TIOCPKT_DOSTOP
Whenever t_stopc is <ctrl-S> and t_startc is <ctrl-Q>.

TIOCPKT_NOSTOP
Whenever the start and stop characters are not <ctrl-S> and
<ctrl-Q>.

While this mode is in use, the presence of control status information
to be read from the master side may be detected by a select() for
exceptional conditions.

This mode is used by the rlogin and rlogind commands to
implement a remote-echoed, locally <ctrl-S>/<ctrl-Q> flow­
controlled remote login with proper back-flushing of output; it can
be used by other similar programs.

TIOCUCNTL Enable or disable a mode that allows a small number of simple user
ioctl commands to be passed through the pseudo-terminal, using a
protocol similar to that of TIOCPKT. The TIOCUCNTL and
TIOCPKT modes are mutually exclusive. This mode is enabled
from the master side of a pseudo terminal by specifying (by
reference) a nonzero parameter and disabled by specifying (by
reference) a zero parameter. Each subsequent read() from the
master side will return data written on the slave part of the pseudo
terminal preceded by a zero byte, or a single byte reflecting a user
control operation on the slave side. A user control command
consists of a special ioctl operation with no data; the command is
given as UIOCCMD(n), where n is a number in the range 1-255.
The operation value n will be received as a single byte on the next
read() from the master side. The ioctl UIOCCMD(O) is a no-op
that may be used to probe for the existence of this facility. As with
TIOCPKT mode, command operations may be detected with a
select() for exceptional conditions.

Files

Files
pty(7)

TIOCREMOTE
A mode for the master half of a pseudo terminal, independent of
TIOCPKT. This mode causes input to the pseudo terminal to be
flow controlled and not input edited (regardless of the terminal
mode). Each write to the control terminal produces a record
boundary for the process reading the terminal. In normal usage, a
write of data is like the data typed as a line on the terminal; a write
of 0 (zero) bytes is like typing an End-of-File character. The
TIOCREMOTE mode can be used when doing remote line editing
in a window manager, or whenever flow controlled input is required.

/dev/pty[p-r][0-9a-f]
Master pseudo terminals

/dev/tty[p-r][0-9a-f]
Slave pseudo terminals

2-101

OSF/1 Programmer's Reference
resolver(4)

resolver

Purpose

Description

2-102

Resolver configuration file

The resolver is a set of routines in the C library that provide access to the Internet
Domain Name System. The resolver configuration file contains information that is
read by the resolver routines the first time they are invoked by a process. The file
is designed to be read by humans and contains a list of keywords with values that
provide various types of resolver information.

On a normally configured system this file should not be necessary. The only name
server to be queried will be on the local machine, the domain name is determined
from the hostname, and the domain search path is constructed from the domain
name.

The different configuration options are:

nameserver Internet address (in dot notation) of a name server that the resolver
should query. Up to MAXNS (currently 3) name servers may be
listed, one per keyword. If there are multiple servers, the resolver
library queries them in the order listed. If no nameserver entries
are present, the default is to use the name server on the local
machine. (The algorithm used is to try a name server, and if the
query times out, try the next, until out of name servers, then repeat
trying all the name servers until a maximum number of retries are
made).

domain Local domain name. Most queries for names within this domain can
use short names relative to the local domain. If no domain entry is
present, the domain is determined from the local hostname returned
by gethostname(); the domain part is taken to be everything after
the first . (dot). Finally, if the hostname does not contain a domain
part, the root domain is assumed.

search Search list for hostname lookup. The search list is normally
determined from the local domain name; by default, it begins with
the local domain name, then successive parent domains that have at
least two components in their names. This may be changed by
listing the desired domain search path following the search
keyword with spaces or tabs separating the names. Most resolver

Files

Files

resolver(4)

queries will be attempted using each component of the search path
in tum until a match is found. Note that this process may be slow
and will generate a lot of network traffic if the servers for the listed
domains are not local, and that queries will time out if no server is
available for one of the domains.

The search list is currently limited to six domains with a total of 256
characters.

The domain and search keywords are mutually exclusive. If more than one
instance of these keywords is present, the last instance will override.

The keyword and value must appear on a single line, and the keyword (e.g.
nameserver) must start the line. The value follows the keyword, separated by
white space.

/etc/resolv .conf

Related Information

Functions: gethostbyname(3), res_mkquery(3), res_send(3), res_init(3),
dn_comp(3), dn_expand(3)

Files: hostname(5)

Commands: named(8)

2-103

OSF/1 Programmer's Reference

route(7)

ROUTE

Purpose

Synopsis

Description

2-104

Kernel packet forwarding database

#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>
int family
s = socket(PF_ROUTE, SOCK_RAW,family);

THe UNIX operating system provides packet routing facilities. The kernel
maintains a routing information database, which is used in selecting the appropriate
network interface when transmitting packets.

A user process (or possibly multiple cooperating processes) maintains this database
by sending messages over a special kind of socket. Routing table changes may
only be carried out by the superuser.

The operating system may spontaneously emit routing messages in response to
external events, such as receipt of a redirect, or failure to locate a suitable route for
a request.

Routing database entries are of two types: those for a specific host, and those for all
hosts on a generic subnetwork (as specified by a bit mask and value under the
mask). The effect of a wildcard or default route may be achieved by using a mask
of all zeros. There may be hierarchical routes.

When the system is booted and addresses are assigned to the network interfaces,
each protocol family installs a routing table entry for each interface when it is
ready for traffic. Normally the protocol specifies the route through each interface
as a ''direct'' connection to the destination host or network. If the route is direct,
the transport layer of a protocol family usually requests that the packet be sent to
the host specified in the packet. Otherwise, the interface is requested to address the
packet to the gateway listed in the routing entry (that is, the packet is forwarded).

When routing a packet, the kernel first attempts to find a route to the destination
host. Failing that, a search is made for a route to the network of the destination.
Finally, any route to a default (wildcard) gateway is chosen. If no entry is found,
the destination is declared to be unreachable, and an error message is generated if
there are any listeners on the routing control socket described later in this section.

A wildcard routing entry is specified with a zero destination address value.
Wildcard routes are used only when the system fails to find a route to the

Errors

Files
route(7)

destination host and network. The combination of wildcard routes and routing
redirects can provide an economical mechanism for routing traffic.

To open the channel for passing routing control messages, use the socket call
shown in the SYNOPSIS section.

The family parameter may be AF _UNSPEC which will provide routing information
for all address families, or can be restricted to a specific address family by
specifying which one is desired. There can be more than one routing socket open
per system.

Messages are formed by a header followed by a small number of sockadders (now
variable length), interpreted by position, and delimited by the new length entry in
the sockaddr. An example of a message with four addresses might be an ISO
redirect: destination, netmask, gateway, and author of the redirect. The
interpretation of which addresses are present is given by a bit mask within the
header, and the sequence is least significant to most significant bit within the
vector.

Any messages sent to the kernel are returned, and copies are sent to all interested
listeners. The kernel will provide the process ID for the sender, and the sender
may use an additional sequence field to distinguish between outstanding messages.
However, message replies may be lost when kernel buffers are exhausted.

The kernel may reject certain messages, and will indicate this by filling in the
rtm_errno field. In the current implementation, all routing process run locally,
and the values for rtm_errno are available through the normal errno mechanism,
even if the routing reply message is lost.

A process may avoid the expense of reading replies to its own messages by issuing
a setsockopt() call indicating that the SO_USELOOPBACK option at the
SOL_SOCKET level is to be turned off. A process may ignore all messages from
the routing socket by shutting down further input with the shutdown() function.

If a route is in use when it is deleted, the routing entry will be marked down and
removed from the routing table, but the resources associated with it will not be
reclaimed until all references to it are released. User processes can obtain
information about the routing entry to a specific destination by using a RTM_GET
message, or by reading the /dev/kmem device.

If messages are rejected, rtm_errno may be set to one of the following values:

[EEXIST]

[ESRCH]

The entry to be created already exists.

The entry to be deleted does not exist.

[ENOBUFS] Insufficient resources were available to install a new route.

2-105

OSF/1 Programmer's Reference

semid_ds(4)

sernid_ds

Purpose

Synopsis

Description

Fields

2-106

Defines a semaphore set

#include <sys/sem.h>

struct semid_ds{

} ;

struct ipc_perm sem_perm;
struct sem *sem_base;
u_short sem_nsems;
time_t sem_otime;
time_t sem_ctime;

The semid_ds structure defines a semaphore set associated with a semaphore ID.
There is one semaphore set per semaphore ID.

A semaphore set is implemented as an array of sem_nsems semaphores, with
sem_base pointing to the first semaphore in the set.

The IPC permissions for a semaphore set are implemented in a separate, but
associated, ipc_perm structure.

A semaphore set is created indirectly via the semget() call. If semget() is called
with a non-existent semaphore ID, the kernel allocates a new semid_ds structure,
initializes it, and returns the semaphore ID that is to be associated with the
semaphore set.

sem_perm The ipc_perm structure that defines permissions for semaphore
operations. See NOTES.

sem_base A pointer to the first semaphore in the set. Individual semaphores
are defined using the sem structure. See NOTES.

sem_nsems The number of semaphores in the set. Each semaphore in the set is
referenced by a unique integer. A semaphore number is sometimes
referred to as sem_num, but this is not a field carried in any of the
relevant data structures. Semaphore numbers run sequentially from
zero to sem_nsems-1.

sem_otime The time of the last semop() operation on the set.

sem_ctime The time of the last semctl() operation that changed a semaphore in
the set.

Notes

Files

semid_ds(4)

The sem_perm field identifies the associated ipc_perm structure that defines the
permissions for operations on the semaphore set. The ipc_perm structure (from
the sys/ipc.h header file) is shown here.

struct ipc_perm {
ushort uid;
ushort gid;
ushort cuid;
ushort cgid;
ushort mode;
ushort seq;
key_t key;

};

I* owner's user id
I* owner's group id
I* creator's user id
I* creator's group id
I* access modes

*I
*I
*I
*I
*I

I* slot usage sequence number */
I* key */

The mode field is a 9-bit field that contains the perm1ss10ns for semaphore
operations. The first three bits identify owner permissions; the second three bits
identify group permissions; and the last three bits identify other permissions. In
each group, the first bit indicates read permission; the second bit indicates write
permission; and the third bit is not used.

Individual semaphores are implimented with the sem structure. The sem structure
(from the sys/sem.h header file) is shown here:

struct sem {

};

u_short semval;
short sempid;
u_short semncnt;
u_short semzcnt;

The sem fields are defined as follows:

semval

sempid

A nonnegative integer that is the current value of the semaphore.

The process ID of the last process to perform an operation on the
semaphore.

2-107

OSF/1 Programmer's Reference

semid_ds(4)

semncnt

semzcnt

Related Information

The number of processes that are currently suspended while waiting
for an operation to increment the current semval value.

The number of processes that are currently suspended while waiting
for semval to go to zero.

Functions: semctl(2), semget(2), semop(2)

2-108

.
services

Purpose

Description

Files

Files
services{ 4)

Service name database

The /etc/services file contains information regarding the known services available
in the DARPA Internet. For each service, the file should contain a single line with
the following information:

• Official service name

• Port number

• Protocol name

• Aliases

Items are separated by any number of blanks, tab characters, or both. The port
number and protocol name are considered a single item; a I (slash) is used to
separate the port and protocol (for example, 512/tcp). A# (number sign) indicates
the beginning of a comment; subsequent characters up to the end of the line are not
interpreted by the routines which search the file.

Service names may contain any printable character other than a field delimiter,
newline, or comment character.

/etc/services

Related Information

Functions: getservent(3)

2-109

OSF/1 Programmer's Reference

shells(4)

shells

Purpose

Description

Files

Shell database

The shells file contains a list of the shells on the system. For each shell, the file
should contain a single line consisting of the shell's path, relative to root.

A# (number sign) indicates the beginning of a comment; subsequent characters up
to the end of the line are not interpreted by the routines which search the file.
Blank lines are also ignored.

/etc/shells

Related Information

Functions: getusershell(3)

2-110

Files
shmid_ds(4)

shmid_ds

Purpose

Synopsis

Description

Defines a shared memory region

#include <sys/shm.h>

struct shmid_ds{

} ;

struct ipc_perrli shm_perm;
int shm_segsz;
u_short shm_lpid;
u_shortshm_cpid;
u_short shm_nattch;
time_t shm_atime;
time_t shm_dtime;
time_t shm_ctime;

The shmid_ds structure defines a shared memory region associated with a shared
memory region ID. There is one shared memory region per ID. Collectively, the
shared memory regions are maintained in a shared memory table, with the shared
memory region IDs identifying the entries in the table.

The IPC permissions for the shared memory regions are implemented in a separate,
but associated, ipc_perm. structure.

A shared memory region is created indirectly via the shmget() call. If shmget() is
called with a non-existent shared memory region ID, the kernel allocates a new
shmid_ds structure, initializes it, and returns the ID that is to be associated with the
region.

The kernel allocates actual memory of shm_segsz bytes only when a process
attaches a region to its address space. Attached regions are maintained in a
separate region table. The entries in the shared memory table point to the
associated attached regions in the region table. The same shared memory region
can be attached multiple times, by the same or different processes. Each
attachment of the region creates a new entry in the region table.

After a process attaches a shared memory region, the region becomes part of the
process's virtual address space. Processes access shared memory regions by using
the same machine instructions used to access any virtual address.

2-111

OSF/1 Programmer's Reference

shmid_ds{ 4)

Fields

Notes

shm_perm The ipc_perm structure that defines pennissions for shared memory
operations. See NOTES.

shm_segsz The size of the shared memory region, in bytes.

shm_cpid The process ID of the process that created the shared memory
region ID.

shm_lpid The process ID of the last process that perfonned a shmat() or
shmdt() operation on the shared memory region.

shm_nattch The number of processes that currently have this region attached.

shm_atime The time of the last shmat() operation.

shm_dtime The time of the last shmdt() operation.

shm_ctime The time of the last shmctl() operation that changed a member of
the shmid_ds structure.

The shm__perm field identifies the associated ipc_perm structure that defines the
pennissions for operations on the shared memory region. The ipc_perm structure
(from the sys/ipc.h header file) is shown here.

struct ipc_perm {
ushort uid;
ushort gid;
ushort cuid;
ushort cgid;
ushort mode;
ushort seq;
key_t key;

};

I* owner's user id */
I* owner's group id */
I* creator's user id */
I* creator's group id */
I* access modes */

I* slot usage sequence number*/
I* key */

The mode field is a nine-bit field that contains the pennissions for shared memory
operations. The first three bits identify owner pennissions; the second three bits
identify group pennissions; and the last three bits identify other pennissions. In
each group, the first bit indicates read pennission; the second bit indicates write
pennission; and the third bit is not used.

Related Information
Functions: shmat(2), shmdt(2), shmct1(2), shmget(2)

2-112

Files

signal(4)

signal.h

Purpose Contains definitions and variables used by signal functions

Description
The /usr/include/signal.h file defines the signals described in the following table.

Signal Number Meaning

SIGH UP 1 Hangup.
SIGINT 2 Interrupt.
SIGQUIT 3 Quit.1

SIGILL 4 Invalid instruction (not reset when caught).1

SIGTRAP 5 Trace trap (not reset when caught). 1

SI GAB RT 6 End process (see the abort() function).1

SIG EMT 7 EMT instruction.
SIGFPE 8 Arithmetic exception, integer divide by O (zero),

or floating-point exception.1

SIG KILL 9 Kill (cannot be caught or ignored).
SIGBUS 10 Specification exception. 1

SIGSEGV 11 Segmentation violation. 1

SIGSYS 12 Invalid parameter to system call. 1

SIGPIPE 13 Write on a pipe when there is no process to read it.
SIGALRM 14 Alarm clock.
SIGTERM 15 Software termination signal.
SIGURG 16 Urgent condition on 1/0 channel.2

SIGSTOP 17 Stop (cannot be caught or ignored).3

SIGTSTP 18 Interactive stop.3

SIG CONT 19 Continue if stopped (cannot be caught or ignored).4

SIGCHLD 20 To parent on child stop or exit.2

SIGTTIN 21 Background read attempted from control terminal.3

SIGTTOU 22 Background write attempted from control terminal.3

2-113

OSF/1 Programmer's Reference

signal(4)

2-114

Signal Number Meaning

SIGIO 23 Input/Output possible or completed7
SIGXCPU 24 CPU time limit exceeded (see the setrlimit() function).
SIGXFSZ 25 File size limit exceeded (see the setrlimit() function).
SIGVTALRM 26 Virtual time alarm (see the setitimer() function).
SIG PROF 27 Profiling time alarm (see the setitimer() function).
SIGWINCH 28 Window size change.2

SIGINFO 29 Information request 2

SIGUSR1 30 User-defined signal 1.
SIGUSR2 31 User-defined signal 2.

Notes to table:

2

3

Default action includes creating a core dump file.

Default action is to ignore these signals.

Default action is to stop the process receiving these signals.

4 Default action is to restart or continue the process receiving these signals.

The three types of actions that can be associated with a signal: SIG_DFL,
SIG_IGN, or a pointer to a function are described as follows:

SIG_DFL Default action: signal-specific default action.

Except for those signal numbers marked with a 2, 3, or 4, the default
action for a signal is to end the receiving process with all of the
consequences described in the _exit() system call. In addition, a
memory image file is created in the current directory of the
receiving process if the signal parameter is one for which a
superscript 1 appears in the preceding list and the following
conditions are met:

• The effective user ID and the real user ID of the receiving
process are equal.

• An ordinary file named core exists in the current directory and
is writable, or it can be created. If the file must be created, it
will have the following properties:

The access permission code 0666 (OxlB6), modified by
the file creation mask (see the umask() function).

A file owner ID that is the same as the effective user ID of
the receiving process.

A file group ID that is the same as the effective group ID
of the receiving process.

SIG_IGN

Files
signal(4)

For signal numbers marked with a superscript 4, the default action is
to restart the receiving process if it is stopped, or to continue
execution of the receiving process.

For signal numbers marked with a superscript 3, the default action is
to stop the execution of the receiving process temporarily. When a
process stops, a SIGCHLD signal is sent to its parent process, unless
the parent process has set the SA_NOCLDSTOP bit. While a
process is stopped, any additional signals that are sent to the process
are not delivered until the process is continued. An exception to this
is SIGKILL, which always terminates the receiving process.
Another exception is SIGCONT, which always causes the receiving
process to restart or continue running. A process whose parent has
ended shall be sent a SIGKILL signal if the SIGTSTP, SIGTTIN, or
SIGTTOU signals are generated for that process.

For signal numbers marked with a superscript 2, the default action is
to ignore the signal. In this case, delivery of the signal has no effect
on the receiving process.

If a signal action is set to SIG_DFL while the signal is pending, the
signal remains pending.

Ignore signal.

Delivery of the signal has no effect on the receiving process. If a
signal action is set to SIG_IGN while the signal is pending, the
pending signal is discarded.

Note that the SIGKILL, SIGSTOP, and SIGCONT signals cannot be
ignored.

pointer to a function
Catch signal.

Upon delivery of the signal, the receiving process is to run the
signal-catching function specified by the pointer to function. The
signal-handler subroutine can be declared as follows:

void handler(signal)
int signal;

The signal parameter is the signal number.

A new signal mask is calculated and installed for the duration of the signal­
catching function (or until sigprocmask() or sigsuspend() system calls are made).
This mask is formed by taking the union of the process signal mask, the mask
associated with the action for the signal being delivered, and a mask corresponding
to the signal being delivered. The mask associated with the signal-catching

2-115

OSF/1 Programmer's Reference

signal(4)

2-116

function is not allowed to block those signals that cannot be ignored. This is
enforced by the kernel without causing an error to be indicated. If and when the
signal-catching function returns, the original signal mask is restored (modified by
any sigprocmask() calls that were made since the signal-catching function was
called) and the receiving process resumes execution at the point it was interrupted.

The signal-catching function can cause the process to resume in a different context
by calling the longjmp() subroutine. When the longjmp() subroutine is called, the
process leaves the signal stack, if it is currently on it, and restores the process
signal mask to the state when the corresponding setjmp() call was made.

Once an action is installed for a specific signal, it remains installed until another
action is explicitly requested (by another call to the sigaction() system call), or
until one of the exec system calls is called.

If a signal action is set to a pointer to a function while the signal is pending, the
signal remains pending.

When signal-catching functions are invoked asynchronously with process
execution, the behavior of some of the functions defined by this standard is
unspecified if they are called from a signal-catching function. The following set of
functions are reentrant with respect to signals (that is, applications can invoke
them, without restriction, from signal-catching functions):

_exit() access() alarm()
chmod() ch own() close()
dup2() dup() exec()
fork() fstat() getegid()
getgid() getgroups() getpgrp()
getppid() getuid() kill()
lseek() mkdir() mkfifo()
pause() pipe() read()
rmdir() setgid() setpgrp()
sigaction() sigaddset() sigdelset()
siginitset() sigismember() signal()
sigprocmask() sigsuspend() sleep()
tcdrain() tcftow() tcftush()
tcgetprgp() tcsendbreak() tcsetattr()
time() times() umask()
unlink() ustat() utime()
wait() write()

chdir()
creat()
fcntl()
geteuid()
getpid()
link()
open()
rename()
setuid()
sigfillset()
sigpending()
statx()
tcgetattr()
tcsetpgrp()
uname()
wait2()

All other system calls should not be called from signal-catching functions since
their behavior is undefined.

Files

signal(4)

Related Information

Functions: sigaction(2), sigblock(2), sigemptyset(3), siginterrupt(3),
siglongjmp(3), sigpause(3), sigpending(2), sigprocmask(2), sigreturn(2),
sigset(3), sigsetjmp(3), sigstack(2), sigsuspend(2), sigvec(2), sigwait(3)

2-117

OSF/1 Programmer's Reference

spp(7)

spp

Purpose

Synopsis

Description

2-118

Xerox sequenced packet protocol (SPP)

#include <sys/socket.h>
#include <netns/ns.h>
s = socket(AF _NS, SOCK_STREAM, 0);

#include <netns/sp.h>
s = socket(AF _NS, SOCK_SEQPACKET, O);

The SPP provides reliable, flow-controlled, two-way transmission of data. It is a
byte-stream protocol used to support the SOCK_STREAM abstraction. SPP uses
the standard NS address formats.

Sockets utilizing the SPP are either active or passive. Active sockets initiate
connections to passive sockets. By default, SPP sockets are created active; to
create a passive socket the listen() function must be used after binding the socket
with the bind() function. Only passive sockets may use the accept() function to
accept incoming connections. Only active sockets may use the connect() function
to initiate connections.

Passive sockets may underspecify their location to match incoming connection
requests from multiple networks. This technique, termed wildcard addressing,
allows a single server to provide service to clients on multiple networks. To create
a socket which listens on all networks, the NS address of all zeroes must be bound.
The SPP port may still be specified at this time; if the port is not specified the
system will assign one. Once a connection has been established the socket's
address is fixed by the peer entity's location. The address assigned the socket is
the address associated with the network interface through which packets are being
transmitted and received. Normally this address corresponds to the peer entity's
network.

If the SOCK_SEQP ACKET socket type is specified, each packet received includes
the actual 12-byte sequenced packet header for the user to inspect. This facilitates
the implementation of higher level Xerox protocols which make use of the data
stream type field and the end of message bit. Conversely, the user is required to
supply a 12-byte header, the only parts of which are inspected are the data stream
type and the end of message fields.

Errors

Files
spp(7)

For either socket type, packets received with the attention bit set are interpreted as
out of band data. Data sent with send(... , ... , ... , MSG_OOB) cause the attention bit
to be set.

The following socket options are available:

SO_DEFAULT_HEADERS

SO_MTU

Determines the data stream type and whether the end of message bit
is to be set on every ensuing packet.

Specifies the maximum amount of user data in a single packet. The
default is 576 bytes - sizeof(struct spidp). This quantity affects
windowing; increasing it without increasing the amount of buffering
in the socket will lower the number of unread packets accepted.
Anything larger than the default will not be forwarded by a bona
fide Xerox product internetwork router. The data argument for the
setsockopt() function must be an unsigned short.

If a socket option fails, errno may be set to one of the following values:

[EISCONN] The socket to be connected already has a connection.

[ENOBUFS] The system ran out of memory for an internal data structure.

[ETIMEDOUT]
The connection was dropped due to excessive retransmissions.

[ECONNRESET]
The remote peer forced the connection to be closed.

[ECONNREFUSED]
The remote peer actively refused establishment of a connection
(usually because no process is listening to the port).

[EADDRINUSE]
An attempt was made to create a socket with a port which has
already been allocated.

[EADDRNOTAVAIL]
An attempt was made to create a socket with a network address for
which no network interface exists.

Related Information

Files: netintro(7), ns(7)

2-119

OSF/1 Programmer's Reference
stab(4)

stab

Purpose Symbol table types

Synopsis #include <stab.h>

Description

2-120

The stab.h header file defines some values of the n_type field of the symbol table
of a.out files. These are the types for permanent symbols (that is, not local labels,
etc.) used by the old debugger sdb. Symbol table entries can be produced by the
.stabs assembler directive. This allows one to specify a double-quote delimited
name, a symbol type, one char and one short of information about the symbol, and
an unsigned long (usually an address). To avoid having to produce an explicit label
for the address field, the .stabd directive can be used to implicitly address the
current location. If no name is needed, symbol table entries can be generated using
the .stabn directive. The loader promises to preserve the order of symbol table
entries produced by .stab directives. An element of the symbol table consists of
the following structure:

I* SYMBOL INFORMATION ENTRY
* This is used for defined symbols, imports and stabs. The type (kind)
* of the associated symbols load command determines which.
*I

typedef struct symbol_info_t {
union {mo_offset_t symbol_name;

mo_ptr_t symbol_nameP;
} si_name;

mo_short_t si_package_index;
mo_short_t si_type;
mo_short_t si_flags;
mo_byte_t si_reserved byte;
mo_byte_t si_sc_type;
union {mo_addr_t def_ val;/* defined section, offset*/

mo_long_t imp_ val;/* index in import list */
mo_long_t lit_ val;/* literal value */
mo_vm_addr_tabs_val;/* absolute value*/

} si_value;
} symbol_info_t;

Files

stab(4)

The low bits of the si_sc_type field are used to place a symbol into at most one
segment, according to the following masks. A symbol can be in none of these
segments by having none of these segment bits set.

I*
* Simple values for si_sc_type.
*I

#define N_UNDF OxO /*undefined*/
#define N_ABS Ox2 /* absolute */
#define N_TEXT Ox4 /*text*/
#define N_DATA Ox6 /* data */
#define N_BSS Ox8 /* bss */

#define N_EXT 01 /* external bit, or'ed in */

The n_ value field of a symbol is relocated by the linker, Id, as an address within
the appropriate segment. The n_ value fields of symbols not in any segment are
unchanged by the linker. In addition, the linker will discard certain symbols,
according to rules of its own, unless the si_sc_type field has one of the following
bits set:

#define N_STABOxeO /*if any of these bits set, don't discard */

This allows up to 112 (7 * 16) symbol types, split between the various segments.
Some of these have already been claimed. The old symbolic debugger, sdb, uses
the following n_type values:

#define N_GSYM Ox20 /* global symbol: name,,O,type,O */

#define N_FNAME Ox22 /* procedure name (f77 kludge): name,,O */

#define N_FUN Ox24 /* procedure: name,,O,linenumber,address */

#define N_STSYM Ox26 /* static symbol: name,,O,type,address */

#define N_LCSYM Ox28 /* .lcomm symbol: name,,O,type,address */

#define N_RSYM Ox40 /* register sym: name,,0,type,register */

#define N_SLINE Ox44 /* src line: 0,,0,linenumber,address */

#define N_SSYM Ox60 /* structure elt: name,,O,type,struct_offset */

#define N_SO Ox64 /* source file name: name,,0,0,address */

#define N_LSYM Ox80 /* local sym: name,,O,type,offset */

#define N_SOL Ox84 /* #included file name: name,,0,0,address */

#define N_PSYM OxaO /* parameter: name,,O,type,offset */

#define N_ENTRY Oxa4 /* alternate entry: name,,linenumber,address */

#define N_LBRAC OxcO /* left bracket: 0,,0,nesting level,address */

2-121

OSF/1 Programmer's Reference

stab(4}

#define N_RBRAC OxeO /* right bracket: 0,,0,nesting level,address */

#define N_BCOMM Oxe2 /* begin common: name,, */

#define N_ECOMM Oxe4 /* end common: name,, */

#define N_ECOML Oxe8 /*end common (local name): ,,address*/

#define N_LENG Oxfe /* second stab entry with length information */

The comments give sdb conventional use for .stabs and the n_name, n_other,
n_desc, and n_ value fields of the given n_type. The sdb debugger uses the
n_desc field to hold a type specifier in the form used by the Portable C Compiler,
cc.

The Berkeley Pascal compiler, pc, uses the following si_sc_type value:

#define N_PC Ox30 /* global pascal symbol: name,,O,subtype,line */

and uses the following subtypes to do type checking across separately compiled
files:

1 Source filename

2 Included filename

3 Global label

4 Global constant

5 Global type

6 Global variable

7 Global function

8 Global procedure

9 External function

10 External procedure

11 Library variable

12 Library routine

Related Information

Commands: as(l), ld(l)

2-122

tar

Purpose

Description

Files
tar(4)

Tape archive file format

The tar command dumps several files into one, in a medium suitable for
transportation.

A tar tape or tar file is a series of blocks, with each block of size TBLOCK. A file
on the tape is represented by a header block which describes the file, followed by
zero or more blocks which give the contents of the file. At the end of the tape are
two blocks filled with binary zeros, as an end-of-file indicator.

The blocks are grouped for physical 110 operations. Each group of n blocks (where
n is set by the b keyletter on the tar command line, with a default of 20 blocks) is
written with a single system call. On nine-track tapes, the result of this write is a
single tape record. The last group is always written at the full size, so blocks after
the two zero blocks contain random data. On reading, the specified or default
group size is used for the first read, but if that read returns less than a full tape
block, the reduced block size is used for further reads.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

};

char dummy[TBLOCKJ;
struct header {

} dbuf;

char name[NAMSIZ];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[NAMSIZ];

2-123

OSF/1 Programmer's Reference

tar(4)

The name field is a null-terminated string. The other fields are zero-filled octal
numbers in ASCII format. If the width of each field is given as w, each field
contains w-2 digits, a space, and a null, with the exception of the size and mtime
fields, which do not contain the trailing null, and the chksum field, which has a
null followed by a space.

The name field is the name of the file, as specified on the tar command line. Files
dumped because they were in a directory that was named in the command line have
the directory name as prefix and /filename as suffix.

The mode field is the file mode, with the top bit masked off. The uid and gid fields
are the user and group numbers that own the file. The size field is the size of the
file in bytes. Links and symbolic links are dumped with this field specified as zero.

The mtime field is the modification time of the file at the time it was dumped.

The chksum field is an octal ASCII value which represents the sum of all the bytes
in the header block. When calculating the checksum, the chksum field is treated
as if it were all blanks.

The linkftag field is null if the file is a regular or special file, ASCII 1 if it is an
hard link, and ASCII 2 if it is a symbolic link. The name that the file is linked to, if
any, is in the linkname field, with a trailing null. Unused fields of the header are
binary zeros (and are included in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file.
Subsequently, it is dumped as a link instead. Upon retrieval, if a link entry is
retrieved but the file it was linked to is not, an error message is printed and the tape
must be manually rescanned to retrieve the file that it is linked to.

The encoding of the header is designed to be portable across machines.

Related Information

Commands: tar(l)

2-124

tcp

Purpose

Synopsis

Description

Internet transmission control protocol

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF _INET, SOCK_STREAM, O);

Files
tcp(7)

The TCP provides reliable, flow-controlled, two-way transmission of data. It is a
byte-stream protocol used to support the SOCK_STREAM abstraction. TCP uses
the standard Internet address format and, in addition, provides a per-host collection
of port addresses. Thus, each address is composed of an Internet address
specifying the host and network, with a specific TCP port on the host identifying
the peer entity.

Sockets utilizing the TCP are either active or passive. Active sockets initiate
connections to passive sockets. By default, TCP sockets are created active; to
create a passive socket the listen() function must be used after binding the socket
with the bind() function. Only passive sockets may use the accept() function to
accept incoming connections. Only active sockets may use the connect() function
to initiate connections.

Passive sockets may underspecify their location to match incoming connection
requests from multiple networks. This technique, termed wildcard addressing,
allows a single server to provide service to clients on multiple networks. To create
a socket which listens on all networks, the Internet address INADDR_ANY must
be bound. The TCP port may still be specified at this time; if the port is not
specified the system will assign one. Once a connection has been established the
socket's address is fixed by the peer entity's location. The address assigned the
socket is the address associated with the network interface through which packets
are being transmitted and received. Normally this address corresponds to the peer
entity's network.

TCP supports one socket option which is set with the setsockopt() function and
tested with the getsockopt() function. Under most circumstances, TCP sends data
when it is presented; when outstanding data has not yet been acknowledged, it
gathers small amounts of output to be sent in a single packet once an
acknowledgement is received. For a small number of clients, such as window
systems that send a stream of mouse events which receive no replies, this gathering

2-125

OSF/1 Programmer's Reference

tcp(7)

Errors

of output may cause significant delays. Therefore, TCP provides a Boolean option,
TCP _NODELAY (from the netinet/tcp.h header file), to defeat this algorithm.
The option level for the setsockopt() function is the protocol number for TCP,
available from the getprotobyname() function.

Options at the IP transport level may be used with TCP; see ip(4). Incoming
connection requests that are source-routed are noted, and the reverse source route
is used in responding.

If a socket operation fails, ermo may be set to one of the following values:

[EISCONN] The socket to be connected already has a connection.

[ENOBUFS] The system ran out of memory for an internal data structure.

[ETIMEDOUT]
A connection was dropped due to excessive retransmissions.

[ECONNRESET]
The remote peer forced the connection to be closed.

[ECONNREFUSED]
The remote peer actively refuses connection establishment (usually
because no process is listening to the port).

[EADDRINUSE]
An attempt is made to create a socket with a port which has already
been allocated.

[EADDRNOTAVAIL]
An attempt is made to create a socket with a network address for
which no network interface exists.

Related Information

2-126

Functions: getsockopt(2), socket(2)

Files: netintro(7), inet(7), ip(7)

Files
terminfo(4)

terminfo

Purpose

Description

Describes terminals by capability

A terminfo file is a database that describes the capabilities and method of
operation of various terminals. The database includes definitions of initialization
sequences, padding requirements, cursor positioning, and other command
sequences that control specific terminals.

Before a terminfo source file can be used, it must be compiled using the tic
command. The compiled terminfo entries are placed into subdirectories of the
/usr/lib/terminfo directory. This directory may be redefined with the
TERMINFO environment variable. See the EXAMPLE section for more
information on using the TERMINFO environment variable.

Each terminfo file entry consists of a number of fields separated by commas. Any
white space between commas is ignored. The first field for each terminal supplies
the names the terminal is known by, separated by vertical bars (I). The first name
given is the most common abbreviation for tjle terminal, the last name given is a
long name fully identifying the terminal, and all others are synonyms for the
terminal name. All names except the last are in lowercase and do not contain any
white space.

The fields following the terminal name supply the capabilities of the terminal.
Although capability names have no absolute length limit, an informal limit of 5
characters is adopted to keep them short and to allow the tabs in the source file
caps to be aligned. Whenever possible, names are chosen to be the same as or
similar to the ANSI X3.64 standard of 1979.

Terminal names (except the last) are chosen using the following conventions. A
root name is chosen to represent the particular hardware class of the terminal. This

2-127

OSF/1 Programmer's Reference
terminfo(4)

name does not contain hyphens, except to avoid synonyms that conflict with other
names. Possible modes for the hardware or user preferences are indicated by
appending a • (hyphen) and one of the suffixes listed below:

-am With automatic margins (usually default)

·C Color mode

·W Wide mode (more than 80 columns)

-nam Without automatic margins

·n Number of lines on the screen

-na No arrow keys (leave them in local)

-np Number of pages of memory

-rv Reverse video

Thus, a vtlOO terminal in 132-column mode would be vtlOO-w.

Capabilities in the terminfo file are of three types:

• Boolean capabilities indicate that the terminal has some particular feature.
Boolean capabilities are evaluated as true if the corresponding name is in the
terminal description.

• Numeric capabilities give the size of the terminal or the size of particular
delays.

• String capabilities give a sequence that can be used to perform particular
terminal operations.

To continue an entry onto multiple lines, place white space at the beginning of each
subsequent line. Include a comment on a line beginning with the # (number sign)
character. To comment out an individual capability, precede it with a. (dot).

List of Capabilities

2-128

The following table shows the C variable (which the programmer uses to access the
terminfo capabilities), the capability name (the short name used in the text of the
database), the 2-letter internal code used in the compiled database (always
corresponding to a termcap capability name), and a short description of each
capability.

Boolean

auto_left_margin

auto_right_margin
beehive_glitch

ceol_standout_glitch

eat_newline_glitch

erase_overstrike
generic_type

hard_ copy
has_meta_key

has_status_line
insert_null_glitch
memory_above
memory_below
move_insert_mode
move_standout_mode
over_strike
status_line_esc_ok

teleray _glitch

tilde_glitch

transparent_ underline
xon_xoff

Name

bw

am
xsb

xhp

xenl

eo
gn

he
km

hs
in
da
db
mir
msgr
OS
eslok

xt

hz

ul
xon

Code

bw

am
XS

XS

xn

eo
gn

he
km

hs
in
da
db
mi
ms
OS
es

xt

hz

ul
XO

Files
terminfo(4)

Description

Indicates cub1 wraps from column 0 (zero) to
last column.

Indicates terminal has automatic margins.
Indicates a terminal with F1 =<esc> and
F2=<Ctrl-C>.

Indicates standout not erased by overwriting.

Ignores newline character after 80 columns.

Erases overstrikes with a blank.
Indicates generic line type (such as dialup,
switch}

Indicates hardcopy terminal.
Indicates terminal has a meta key (shift, sets
parity bit).

Indicates terminal has extra status line.
Indicates insert mode distinguishes nulls.
Retains information above display in memory.
Retains information below display in memory.
Indicates safe to move while in insert mode.
Indicates safe to move in standout modes.
Indicates terminal overstrikes.
Indicates escape can be used on the status
line.

Indicates destructive tabs and blanks inserted
while entering standout mode.

Indicates terminal cannot print - (tilde)
characters.

Overstrikes with underline character.
Indicates terminal uses xon/xoff handshaking.

2-129

OSF/1 Programmer's Reference

terminfo(4)

Number Name

columns cols
in it_ tabs it
lines lines

lines_of_memory Im

magic_cookie_glitch xmc

padding_baud_rate pb

virtual_terminal vt
width_status_lines wsl

2-130

Code

co
it
Ii

Im

sg

pb

vt
ws

Description

Specifies the number of columns in a line.
Provides tabs initially every # spaces.
Specifies the number of lines on screen
or page.

Specifies the number of lines of memory
if greater than the number of lines on the
screen. A value of O (zero) indicates that
the number of lines is variable.

Indicates number of blank characters left
by smso or rmso.
Indicates lowest baud where carriage
return and line return padding is needed.

Indicates virtual terminal number.
Specifies the number of columns in
status line.

Files

term info(4)

String Name Code Description

appl_defined_str apstr za Application-defined terminal string.
back_ tab cbt bt Back tab. (P)
bell bel bl Produces an audible signal (bell). (P)
box_chars_ 1 box1 bx Box characters primary set.
box_chars_2 box2 by Box characters alternate set.
box_attr_1 batt1 Bx Attributes for box_chars_ 1.
box_attr_2 batt2 By Attributes for box_chars_2.
carriage_return er er Indicates carriage return. (P*)
change_scroll_region csr cs Changes scroll region to lines 1

through 2. (PG)
clear _all_ tabs tbc ct Clears all tab stops. (P)
clear _screen clear cl Clears screen and puts cursor in

home position. (P*)
clr_eol el ce Clears to end of line. (P)
clr_eos ed cd Clears to end of the display. (P*)
color_bg_O colbO dO Background color O black.
color_bg_1 colb1 d1 Background color 1 red.
color_bg_2 colb2 d2 Background color 2 green.
color_bg_3 colb3 d3 Background color 3 brown.
color_bg_4 colb4 d4 Background color 4 blue.
color_bg_S colbS dS Background color 5 magenta.
color_bg_6 colb6 d6 Background color 6 cyan.
color_bg_7 colb7 d7 Background color 7 white.
color_fg_O colfO co Foreground color O white.
color_fg_1 colf1 c1 Foreground color 1 red.
color_fg_2 colf2 c2 Foreground color 2 green.
color_fg_3 colf3 c3 Foreground color 3 brown.
color_fg_4 colf4 c4 Foreground color 4 blue.
color_fg_S coifs cs Foreground color 5 magenta.
color_fg_6 colf6 c6 Foreground color 6 cyan.
color_fg_7 colf7 c7 Foreground color 7 black.
column_address hpa ch Sets cursor column. (PG)
command_ character cmdch cc Indicates terminal command prototype

character can be set.
cursor _address cup cm Indicates screen relative cursor

motion row #1 col #2. (PG)
cursor_down cud1 do Moves cursor down one line.

2-131

OSF/1 Programmer's Reference
terminfo(4)

String Name Code Description

cursor _home home ho Moves cursor to home position
(if no cup).

cursor _invisible civis vi Makes cursor invisible.
cursor _left cub1 le Moves cursor left one space.
cursor _mem_address mrcup CM Indicates memory relative cursor

addressing.
cursor _normal cnorm ve Makes cursor appear normal (undo vs

or vi).
cursor_right cuf1 nd Indicates nondestructive space

(cursor right).
cursor_to_ll II II Moves cursor to first column of last line

(if no cup).
cursor_up cuu1 up Moves cursor up one line (cursor up).
cursor_ visible cvvis vs Makes cursor very visible.
delete_character dch1 de Deletes character. (P*)
delete_line dl1 di Deletes line. (P*)
dis_status_line dsl ds Disables status line.
down_half_line hd hd Indicates subscript (forward 1/2

linefeed).
enter _alt_charset_mode smacs as Starts alternate character set. (P)
enter_blink_mode blink mb Enables blinking.
enter _bold_mode bold md Enables bold (extra bright) mode.
enter _ca_mode smcup ti Begins programs that use cup.
enter _delete_mode smdc dm Starts delete mode.
enter_dim_mode dim mh Enables half-bright mode.
enter _insert_mode smir m Starts insert mode.
enter _protected_mode prot mp Enables protected mode.
enter _reverse_mode rev mr Enables reverse video mode.
enter _secure_mode invis mk Enables blank mode (characters

invisible).
enter _standout_mode smso so Begins standout mode.
enter _underline_mode smul us Starts underscore mode.
erase_chars ech ec Erases #1 characters. (PG)
exit_alt_charset_mode rmacs ae Ends alternate character set. (P)
exit_attribute_mode sgrO me Disables all attributes.
exit_ca_mode mcup te Ends programs that use cup.
exit_delete_mode rmdc ed Ends delete mode.
exit_insert_mode rmir ei Ends insert mode.

2-132

Files

terminfo(4)

String Name Code Description

exlt_standout_mode rm so se Ends stand out mode.
exlt_underllne_mode rmul ue Ends underscore mode.
flash_screen lash vb Indicates visual bell (may not

move cursor).
font_O fontO fO Select font 0.
font_1 font1 f1 Select font 1.
font_2 font2 f2 Select font 2.
font_3 font3 f3 Select font 3.
font_4 font4 f4 Select font 4.
font_S fonts f5 Select font 5.
font_6 font6 f6 Select font 6.
font_7 font7 f7 Select font 7.
form_feed ff ff Ejects page (hard-copy terminal). (P*)
from_status_line fsl fs Returns from status line.
init_ 1 string is1 i1 Initializes terminal.
init_2string is2 i2 Initializes terminal.
init_3string is3 13 Initializes terminal.
init_file if if Identifies file containing is.
insert_ character ich1 ic Inserts character. (P)
insert_line 111 al Adds new blank line. (P*)
insert_padding Ip Ip Inserts pad after character inserted. (P*)
key_backspace kbs kb Sent by backspace key.
key_back_tab kbtab kO Sent by backtab key.
key_catab ktbc ka Sent by clear-all-tabs key.
key_clear kclr kC Sent by clear-screen or erase key.
key_ctab kctab kt Sent by clear-tab key.
key_command kcmd kc Command request key.
key _command_pane kcpn kW Command pane key.
key_dc kdch1 kD Sent by delete-character key.
key_dl kdl1 kl Sent by delete-line key.
key_do kdo ki Do request key.
key_down kcud1 kd Sent by terminal cursor down key.
key_eic krmir kM Sent by rmir or smir in insert mode.
key_end kend kw End key.
key_eol ke1 kE Sent by clear-to-end-of-line key.
key_eos ked kS Sent by clear-to-end-of-screen key.
key_fO kfO kO Sent by function key FO.
key_f1 kf1 k1 Sent by function key F1.

2-133

OSF/1 Programmer's Reference
terminfo(4)

String Name Code Description

key_f2 kf2 k2 Sent by function key F2.
key_f3 kf3 k3 Sent by function key F3.
key_f4 kf4 k4 Sent by function key F4.
key_f5 kf5 k5 Sent by function key F5.
key_f6 kf6 k6 Sent by function key F6.
key_f7 kf7 k7 Sent by function key F7.
key_fB kf8 kB Sent by function key FB.
key_f9 kf9 k9 Sent by function key F9.
key_f10 kf10 ka Sent by function key F10.
key_f11 kf11 k< Sent by function key F11.
key_f12 kf12 k> Sent by function key F12.
key_help khlp kq Help key.
key_home khome kh Sent by home key.
key_ic kich1 kl Sent by insert character/enter insert

mode key.
key_il kil1 kA Sent by insert line key.
key_left kcub1 kl Sent by terminal cursor left key.
key_ll kll kH Sent by home-down key.
key_newline knl kn New-line key.
key _next_pane knpn kv Next-pane key.
key_npage knp kN Sent by next-page key.
key_ppage kpp kP Sent by previous-page key.
key _prev _cmd kpcmd kp Sent by previous-command key.
key_quit kquit kQ Quit key.
key_right kcuf1 kr Sent by terminal cursor right key.
key _scroll_lett kscl kz Scroll left.
key _scroll_right kscr kZ Scroll right.
key_select ksel kU Select key
key_sf kind kF Sent by scroll-forward/down key.
key_smap_in1 kmpf1 Kv Input for special mapped key 1.
key _smap_out1 kmpt1 KV Output for mapped key 1.
key _smap_in2 kmpf2 Kw Input for special mapped key 2.
key_smap_out2 kmpt2 KW Output for mapped key 2.
key_smap_in3 kmpf3 Kx Input for special mapped key 3.
key_smap_out3 kmpt3 KX Output for mapped key 3.
key_smap_in4 kmpf4 Ky Input for special mapped key 4.
key _smap_out4 kmpt4 KY Output for mapped key 4.

2-134

Files

terminfo(4)

String Name Code Description

key_smap_in5 kmpf5 Kz Input for special mapped key 5.
key _smap_out5 kmpt5 KZ Output for mapped key 5.
key_sr kri kR Sent by scroll-backward/up key.
key_stab khts k Sent by set-tab key.
key_tab ktab ko Tab key.
key_up kcuu1 ku Sent by terminal cursor up key.
keypad_local rmkx ke Ends keypad transmit mode.
keypad_xmit smkx ks Puts terminal in keypad transmit mode.
lab_fO fO 10 Labels function key FO if not FO.
lab_f1 lf1 11 Labels function key F1 if not F1.
lab_f2 lf2 12 Labels function key F2 if not F2.
lab_f3 lf3 13 Labels function key F3 if not F3.
lab_f4 lf4 14 Labels function key F4 if not F4.
lab_f5 lf5 15 Labels function key F5 if not F5.
lab_f6 lf6 16 Labels function key F6 if not F6.
lab_f7 lf7 17 Labels function key F7 if not F7.
lab_f8 lf8 18 Labels function key FB if not FB.
lab_f9 lf9 19 Labels function key F9 if not F9.
lab_f10 lf10 la Labels function key F10 if not F10.
meta_ on smm mm Enables meta mode (8th bit).
meta_ off rmm mo Disables meta mode.
newline nel nw Performs newline function (behaves

like a carriage return followed
by a linefeed).

pad_ char pad pc Pad character (instead of null).
parm_dch dch DC Deletes #1 characters. (PG*)
parm_delete_line di DL Deletes #1 lines. (PG*)
parm_down_cursor cud DO Moves cursor down #1 lines. (PG*)
parm_ich ich IC Inserts #1 blank characters. (PG*)
parm_lndex indn SF Scrolls forward #1 lines. (PG)
parm_insert_line ii AL Adds #1 new blank lines. (PG*)
parm_left_cursor cub LE Moves cursor left #1 spaces. (PG)
parm_right_cursor cuf RI Moves cursor right #1 spaces. (PG*)
parm_rindex rin SR Scrolls backward #1 lines. (PG)
parm_up_cursor cuu UP Moves cursor up #1 lines. (PG*)
pkey_key pf key pk Programs function key F1 to type

string #2.

2-135

OSF/1 Programmer's Reference

term info(4)

String Name Code Description

pkey_local pl Programs function key F1 to execute
string #2.

pkey_xmit pfx px Programs function key F1 to xmit
string #2.

print_ screen mcO ps Prints contents of the screen.
prtr_off mc4 pf Disables the printer.
prtr_on mc5 po Enables the printer.
repeat_ char rep rp Repeats character #1 twice. (PG*)
reset_ 1string rs1 r1 Resets terminal to known modes.
reset_2string rs2 r2 Resets terminal to known modes.
reset_3string rs3 r3 Resets terminal to known modes.
reset_ file rt rt Identifies the file containing reset string.
restore_cursor re re Restores cursor to position of last sc.
row_address vpa CV Positions cursor to an absolute vertical

position (set row). (PG)
save_cursor SC SC Saves cursor position. (P)
scroll_forward ind sf Scrolls text up. (P)
scroll_reverse ri sr Scrolls text down. (P)
set_ attributes sgr sa Defines the video attributes. (PG*)
set_ tab hts st Sets a tab in all rows, current column.
set_ window wind wi Indicates current window is lines #1 to

#2 cols #3 to #4.
tab ht a Tabs to next 8-space hardware tab stop.
to_status_line tsl ts Moves to status line, column #1.
underline_char UC UC Underscores one character and moves

beyond it.
up_half_line hu hu Indicates superscript (reverse 1/2

linefeed}.
init_prog iprog iP Locates the program for init.
key_a1 ka1 K1 Specifies upper left of keypad.
key_a3 ka3 K3 Specifies upper right of keypad.
key_b2 kb2 K2 Specifies center of keypad.
key_c1 kc1 K4 Specifies lower left of keypad.
key_c3 kc3 K5 Specifies lower right of keypad.
prtr_non mc5p pO Enables the printer for #1 bytes.

2-136

Example

Files
term info(4)

Notes to table:

(P) Indicates that padding can be specified

(G) Indicates that the string is passed through tparm with parameters as given (#i)

(*) Indicates that padding can be based on the number of lines affected

(#i) Indicates the ith parameter

The following is an uncompiled terminfo entry for the xterm terminal type:

xtermlvslOOlxterm terminal emulator,
ind=AJ, cols#80, lines#25,
clear=E[HE[2J, cubl=AH, am, cup=E[%i%p1%d;%p2%dH,
cufl=E[C, cuul=E[A, el=E[K, ed=E[J,
cud=E[%p1%dB, CUU=E[%p1%dA, cub=E[%p1%dD,
cuf=E[%p1%dC, km,
smso=E[7m, rmso=E[m, smul@, rmul@,
bold=E[lm, rev=E[7m, blink=@, sgrO=E[m,
rsl=E>E[1;3;4;5;61E[?7hE[mE[rE[2JE[H, rs2=@
kfl=EOP, kf2=EOQ, kf3=EOR, kf4=EOS, ht=AI, ri=EM,
vt@, xon@, csr=E[%i%p1%d;%p2%dr,
il=E[%pl%dL, dl=E[%pl%dM, ill=E[L, dll=E[M,
ich=E[%p1%d@, dch=E[%p1%dP, ichl=E[@, dchl=E[P,
use=vtlOO-am,

The first line of the xterm entry contains two names for the terminal type (xterm
and vslOO), and a third name that fully describes the terminal. When the terminfo
entry is compiled with the tic command, entries are made in
/usr/lib/terminfo/x/xterm and /usr/lib/terminfo/v/vslOO, unless the TERMINFO
environment variable was used to redefine the default path. The TERMINFO
environment variable is useful when testing a new entry, or when you do not have
write permission for the /usr/lib/terminfo directory tree. For example, if the
TERMINFO environment variable is set to /usr/raj/test, the tic command places
the compiled terminfo entries into /usr/raj/test/x/xterm and /usr/raj/test/v/vslOO.
The TERMINFO environment variable is also referenced by programs that use
terminfo (such as vi), so the new entry can be tested right away.

The second line of the xterm entry says that pressing a Ctrl-J causes the screen to
scroll up, and that the screen dimensions are 80 columns by 24 lines.

2-137

OSF/1 Programmer's Reference

terminfo(4)

The third line of the entry sets the string that clears the screen (ESCAPE followed
by "[H'', another ESCAPE, and then the string "[2J"), defines <Ctrl-H> as the
backspace key, and declares that the terminal has automatic margins. The string
for relative cursor movement is also specified, using terminfo parameter syntax.

The rest of the capabilities are declared likewise. The last line of the entry reads
"use=vtlOO-am", meaning that the vtlOO-am terminal entry should be read first as
the basis for the xterm terminal entry, with the capabilities explicitly defined
overriding their default vtlOO-am values. Note that the smul, rmul, vt, and xon
capabilities are removed by following them with an @ (at sign).

Related Information

2-138

Functions: curses(3)

Commands: tic(l)

J. Strang, L. Mui, and T. O'Reilly. Termcap and Terminfo. Sebastapol, California:
O'Reilly and Associates, Inc., 1990.

Files

termios(4)

termios.h

Purpose

Description

Defines the structure of the termios file, which provides the terminal interface for
POSIX compatibility

The /usr/include/termios.h header file contains information used by system calls
that apply to terminal files. The definitions, values, and structure in this file are
required for compatibility with the Institute of Electrical and Electronics Engineers
(IEEE) Pl003.l Portable Operating System Interface for Computer Environments
(POSIX) standard.

The general terminal interface information is contained in the termio.h header file.
The termio structure in the termio.h header file defines the basic input, output,
control, and line discipline modes. If a calling program is identified as requiring
POSIX compatibility, the termios structure and additional, POSIX control packet
information in the termios.h header file is implemented. Window and terminal size
operations use the winsize structure, which is defined in the ioctl.h header file.The
termios structure in the termios.h header file contains the following fields:

c_iflag Describes the basic terminal input control. The initial input control
value is all bits clear. The possible input modes are:

IGNBRK
Ignores the break condition. If set, the break condition is not
put on the input queue and is therefore not read by any
process.

BRKINT
Interrupts signal on the break condition. If set, the break
condition generates an interrupt signal and flushes both the
input and output queues.

IGNPAR
Ignores characters with parity errors. If set, characters with
other framing and parity errors are ignored.

PARMRK
Marks parity errors. If set, a character with a framing or
parity error that is not ignored is read as the 3-character
sequence: 0377, 0, x, where the x variable is the data of the
character received in error. If the !STRIP mode is not set,
then a valid character of0377 is read as 0377, 0377 to avoid
ambiguity. If the PARMRK mode is not set, a framing or
parity error that is not ignored is read as the null character.

2-139

OSF/1 Programmer's Reference

termios(4)

2-140

INPCK
Enables input parity checking. If set, input parity checking is
enabled. If not set, input parity checking is disabled. This
allows for output parity generation without input parity
errors.

IS TRIP

INLCR

Strips characters. If set, valid input characters are first
stripped to 7 bits; otherwise all 8 bits are processed.

Maps new-line character (NL) to carriage return (CR) on
input. If set, a received NL character is translated into a CR
character.

IGNCR

ICRNL

IUCLC

Ignores CR character. If set, a received CR character is
ignored (not read).

Maps CR character to NL character on input. If set, a
received CR character is translated into a NL character.

Maps uppercase to lowercase on input. If set, a received
uppercase, alphabetic character is translated into the
corresponding lowercase character.

IXON Enables start and stop output control. If set, a received STOP
character suspends output, and a received START character
restarts output. The START and STOP characters perform
flow control functions but are not read.

IXANY

IXOFF

Enables any character to restart output. If set, any input
character restarts output that was suspended.

Enables start and stop input control. If set, the system
transmits a STOP character when the input queue is nearly
full and a START character when enough input has been
read that the queue is nearly empty again.

IMAXBEL
Echoes the ASCII BEL character if the input stream
overflows. Further input is not stored, but any input present
in the input stream is not lost. If not set, the BEL character is
not echoed, and the input in the input queue is discarded if
the input stream overflows.

c_oflag

Files
termios(4)

Specifies how the system treats output. The initial output control
value is all bits clear. The possible output modes are:

OPOST
Post-processes output. If set, output characters are processed
as indicated by the remaining flags; otherwise, characters are
transmitted without change.

OLCUC
Maps lowercase to uppercase on output. If set, a lowercase
alphabetic character is transmitted as the corresponding
uppercase character. This function is often used in
conjunction with the IUCLC input mode.

ONLCR.
Maps NL to CR-NL on output. If set, the NL character is
transmitted as the CR-NL character pair.

OCRNL
Maps CR to NL on output. If set, the CR character is
transmitted as the NL character.

ON OCR
Indicates no CR output at column 0. If set, no CR character
is transmitted at column 0 (first position).

ONLRET

OFILL

NL performs CR function. If set, the NL character is
assumed to do the carriage return function. The column
pointer is set to a value of 0 and the delay specified for
carriage return is used. Otherwise the NL character is
assumed to do the line feed function only; the column
pointer remains unchanged. The column pointer is also set to
a value of 0 if the CR character is actually transmitted.

The delay bits specify how long a transmission stops to allow
for mechanical or other movement when certain characters
are sent to the terminal. The actual delays depend on line
speed and system load.

Uses fill characters for delay. If set, fill characters are
transmitted for a delay instead of a timed delay. This is
useful for high baud rate terminals that need only a minimal
delay.

2-141

OSF/1 Programmer's Reference

termios(4)

2-142

OFDEL
Sets fill characters to the DEL value. If set, the fill character
is DEL. If this flag is not set, the fill character is null.

NLDLY
Selects the newline character delays. This is a mask to use
before comparing to NLO and NL 1.

NLO Specifies no delay.

NLl Specifies one delay of approximately 0.10 seconds. If
ONLRET is set, the carriage return delays are used instead
of the newline delays. If OFILL is set, two fill characters are
transmitted.

CRDLY
Selects the carriage return delays. This is a mask to use
before comparing to CRO, CRl, CR2, and CR3.

CRO Specifies no delay.

CRl Specifies that the delay is dependent on the current column
position. If OFILL is set, this delay transmits two fill
characters.

CR2 Specifies one delay of approximately 0.10 seconds. If OFILL
is set, this delay transmits four fill characters.

CR3 Specifies one delay of approximately 0.15 seconds.

TABDLY
Selects the horizontal tab delays. This is a mask to use
before comparing to TABO, TAB l, TAB2, and TAB3. If
OFILL is set, any of these delays transmit two fill characters.

TABO Specifies no delay.

TAB 1 Specifies that the delay is dependent on the current column
position. If OFILL is set, two fill characters are transmitted.

TAB2 Specifies one delay of approximately 0.10 seconds.

TAB3 Specifies that tabs are to be expanded into spaces.

BSDLY
Selects the backspace delays. This is a mask to use before
comparing to BSO and BS 1.

c_cflag

Files

termios(4)

BSO Specifies no delay.

BS 1 Specifies one delay of approximately 0.05 seconds. If OFILL
is set, this delay transmits one fill character.

VTDLY
Selects the vertical -tab delays. This is a mask to use before
comparing to VTO and VTl.

VTO Specifies no delay.

VTl Specifies one delay of approximately 2 seconds.

FFDLY
Selects the formfeed delays. This is a mask to use before
comparing to FFO and FFl.

FFO Specifies no delay.

FFl Specifies one delay of approximately 2 seconds.

Describes the hardware control of the terminal. In addition to the
basic control modes, this field uses the following control characters:

CB AUD
Specifies baud rate. These bits specify the baud rate for a
connection. For any particular hardware, impossible speed
changes are ignored.

BO Hangs up. The zero baud rate is used to hang up the
connection. If BO is specified, the 'data terminal ready'
signal is not asserted. Normally, this disconnects the line.

B50 50baud.

B75 75 iaud.

B 110 110 baud.

B134 134.5 baud.

B150 150 baud.

B200 200 baud.

B300 300 baud.

B600 600 baud.

B600 600 baud.

B 1200 1200 baud.

B 1800 1800 baud.

B2400 2400 baud.

2-143

OSF/1 Programmer's Reference
termios{4)

2-144

B4800 4800 baud.

B9600 9600 baud.

Bl9200
19200baud.

B38400
38400baud.

EXTA External A.

EXTB External B.

CSIZE
Specifies the character size. These bits specify the character
size in bits for both transmit and receive operations. This
size does not include the parity bit, if any.

CS5 5 bits.

CS6 6 bits.

CS7 7 bits.

CS8 8 bits.

CS TO PB
Specifies number of stop bits. If set, 2 stop bits are sent;
otherwise, only 1 stop bit is sent. Higher baud rates require 2
stop bits. (At 110 baud, for example, 2 stop bits are
required.)

CREAD
Enables receiver. If set, the receiver is enabled. Otherwise,
characters are not received.

PARENB
Enables parity. If set, parity generation and detection is
enabled and a parity bit is added to each character.

PARODD
Specifies odd parity. If parity is enabled, this specifies odd
parity. If not set, even parity is used.

HUPCL
Hangs up on last close. If set, the line is disconnected when
the last process closes the line or when the process
terminates (when the 'data terminal ready' signal drops).

c_lflag

Files
termios(4)

CLOCAL
Specifies a local line. If set, the line is assumed to have a
local, direct connection with no modem control. If not set,
modem control (dialup) is assumed.

CIBAUD
Specifies the input baud rate if it is different than the output
rate.

PAREXT
Specifies extended parity for mark and space parity.

The initial hardware control value after an open is B300, CS8,
CREAD, and HUPCL

Controls various terminal functions. The initial value after an open
is all bits clear. In addition to the basic modes, this field uses the
following mask name symbols:

ISIG Enables signals. If set, each input character is checked
against the INTR and QUIT special control characters. If a
character matches one of these control characters, the
function associated with that character is performed. If the
ISIG function is not set, checking is not done.

I CANON
Enables canonical input. If set, turns on canonical
processing, which enables the erase and kill edit functions as
well as the assembly of input characters into lines delimited
by NL, EOF, and EOL.

If the ICANON function is not set, read requests are satisfied
directly from the input queue. In this case, a read request is
not satisfied until one of the following conditions is met: a)
the minimum number of characters specified by MIN are
received; or b) the time-out value specified by TIME has
expired since the last character was received. This allows
bursts of input to be read, while still allowing single
character input. The MIN and TIME values are stored in the
positions for the EOF and EOL characters, respectively. The
time value represents tenths of seconds.

XCASE
Enables canonical uppercase and lowercase presentation. If
set along with the I CANON function, an uppercase letter (or
the uppercase letter translated to lowercase by the IUCLC
input mode) is accepted on input by preceding it with a \
(backslash) character. The output is then preceded by a
backslash character.

2-145

OSF/1 Programmer's Reference

termios(4)

2-146

ECHO Enables echo. If set, characters are displayed on the terminal
screen as they are received.

ECHOE
Echoes erase character as BS-SP-BS. If the ECHO and
ECHOE functions are both set and ECHOPRT is not set, the
erase character is implemented as a backspace, a space, and
then another backspace (ASCII BS-SP-BS). This clears the
last character from the screen. If ECHOE is set, but ECHO is
not set, the erase character is implemented as ASCII SP-BS.

ECHOK
Echoes NL after kill. If ECHOK is set and ECHOKE is not
set, a newline function is performed to clear the line after a
KILL character is received. This emphasizes that the line is
deleted. Note that an escape character preceding the ERASE
or KILL character removes any special function.

ECHO NL
Echoes NL. If ECHONL is set, the line is cleared when a
newline function is performed whether or not the ECHO
function is set. This is useful for terminals that are set to
local echo (also referred to as half-duplex). Unless an escape
character precedes an EOF, the EOF character is not
displayed. Because the ASCII EOT character is the default
end-of-file character, this prevents terminals that respond to
the EOT character from hanging up.

NOFLSH
Disables queue flushing. If set, the normal flushing of the
input and output queues associated with the quit and
interrupt characters is not done.

The !CANON, XCASE, ECHO, ECHOE, ECHOK, ECHONL, and
NOFLSH special input functions are possible only if the ISIG
function is set. These functions can be disabled individually by
changing the value of the control character to an unlikely or
impossible value (for example, 0377 octal or OxFF)

ECHOCTL
Echoes control characters as AX, where the X variable is the
character given by adding 100 octal to the code of the
control character. The ASCII DEL character is echoed as A?
and the ASCII TAB, NL, and START characters are not

Files

termios(4)

echoed. Unless an escape character precedes an EOF, the
EOF character is not displayed. Because the ASCII EOT
character is the default End-of-File character, this mask
prevents terminals that respond to the EOT character from
hanging up.

ECHOPRT
Echoes the first ERASE and WERASE character in a
sequence as a \ (backslash), and then erases the characters.
Subsequent ERASE and WERASE characters echo the
characters being erased (in reverse order).

ECHO KE
Echoes the kill character by erasing from the screen each
character on the line.

FLUSHO
Flushes the output. When this bit is set by typing the FLUSH
character, data written to the terminal is discarded. A
terminal can cancel the effect of typing the FLUSH character
by clearing this bit.

PENDIN
Reprints any input that has not yet been read when the next
character arrives as input.

IEXTEN
Enables extended (implementation-defined) functions to be
recognized from the input data. If this bit is not set,
implementation-defined functions are not recognized, and
the corresponding input characters are processed as
described for ICANON, ISIG, IXON, and IXOFF.

TOSTOP
Sends a SIGTTOU signal when a process in a background
process group tries to write to its controlling terminal. The
SIGTTOU signal stops the members of the process group. If
job control is not supported, this symbol is ignored.

c_cc Specifies an array that defines the special control characters. The
relative positions and initial values for each function are:

VIN TR
Indexes the INTR control character (Ctrl-Backspace), which
sends a SIGINT signal to stop all processes controlled by
this terminal.

2-147

OSF/1 Programmer's Reference

termios(4)

2-148

VQUIT
Indexes the QUIT control character (Ctrl-v or Ctrl-1), which
sends a SIGQUIT signal to stop all processes controlled by
this terminal and writes a core image file into the current
working directory.

VERA SE

VKILL

Indexes the ERASE control character (Backspace), which
erases the preceding character. The ERASE character does
not erase beyond the beginning of the line (delimited by a
NL, EOL, EOF, or EOL2 character).

Indexes the KILL control character (Ctrl-u), which deletes
the entire line (delimited by a NL, EOL, EOF, or EOL2
character).

VEOF Indexes the EOF control character (Ctrl-d), which can be
used at the terminal to generate an end-of-file. When this
character is received, all characters waiting to be read are
immediately passed to the program without waiting for a
new line, and the EOF is discarded. If the EOF is at the
beginning of a line (no characters are waiting), zero
characters are passed back, which is the standard End-of­
File.

VEOL Indexes the EOL control character (Ctrl-@ or ASCII null),
which is an additional line delimiter that is not normally
used.

VEOL2
Indexes the EOL2 control character (Ctrl-@ or ASCII null),
which is an additional line delimiter that is not normally
used.

VSTART
Indexes the START control character (Ctrl-q), which
resumes output that has been suspended by a STOP
character. START characters are ignored if the output is not
suspended.

Files

termios(4)

VS USP
Indexes the SUSP control character (Ctrl-z), which causes a
SIGTSTP signal to be sent to all foreground processes
controlled by this terminal. This character is recognized
during input if the ISIG flag is enabled. If job control is not
supported, this character is ignored.

VDSUSP
Indexes the DSUSP control character (Ctrl-y), which causes
a SIGTSTP signal to be sent to all foreground processes
controlled by this terminal. This character is recognized
when the process attempts to read the DSUSP character. If
job control is not supported, this character is ignored.

VS TOP
Indexes the STOP control character (Ctrl-s), which can be
used to temporarily suspend output. This character is
recognized during both input and ouput if the IXOFF (input
control) or IXON (output control) flag is set.

VREPRINT
Indexes the REPRINT control character (Ctrl-r), which
reprints all characters that are preceded by a NL character
and that have not been read.

VDISCRD
Indexes the DISCARD control character (Ctrl-o), which
causes all output to be discarded until another DISCARD
character is typed, more input is received, or the condition is
cleared by a program.

VWERASE
Indexes the WERASE control character (Ctrl-w), which
erases the preceding word. The WERASE character does not
erase beyond the beginning of the line (delimited by a NL,
EOL, EOF, or EOL2 character).

VLNEXT
Indexes the LNEXT (literal next) control character (Ctrl-v),
which causes the special meaning of the next character to be
ignored, so that characters can be input without being
interpreted by the system.

The character values for INTR, QUIT, SWTCH, ERASE, KILL,
EOF, and EOL can be changed. The ERASE, KILL, and EOF
characters can also be escaped (preceded with a backslash) so that
no special processing is done.

2-149

OSF/1 Programmer's Reference

termios(4)

Files

The following values for the optional_actions parameter of the tcsetattr() function
are also defined in the termios.h header file:

TCSANOW Immediately sets the parameters associated with the terminal from
the referenced termios structure ..

TCSADRAIN Waits until all output written to the object file has been transmitted
before setting the terminal parameters from the termios structure.

TCSAFLUSH Waits until all output written to the object file has been transmitted
and all input received but not read has been discarded before setting
the terminal parameters from the termios structure.

The following values for the queue_selector parameter of the tcflush() function
are also defined in this header file:

TCIFLUSH Flushes data that is received but not read.

TCOFLUSH Flushes data that is written but not transmitted.

TCIOFLUSH Flushes both data that is received but not read and data that is
written but not transmitted.

The following values for the action parameter of the tcflow() system call are also
defined in the termios.h header file:

TCOOFF

TCOON

TCIOFF

TCION

Suspends the output of data by the object file named in the tcflow()
function.

Restarts data output that was suspended by the TCOOFF parameter.

Transmits a stop character to stop data transmission by the terminal
device.

Transmits a start character to start or restart data transmission by the
terminal device.

/usr/include/sys/termios.h
The path to the termios.h header file.

Related Information

Functions: ioctl(2), sigvec(2)

Commands: csh(l), getty(l), sh(l), stty(l), tset(l)

2-150

tty

Purpose

Synopsis

Description

Files
tty(7)

General terminal interface

#include <sys/termios.h>

This section describes both a particular special file /dev/tty and the terminal
drivers used for conversational computing. Much of the terminal interface
performance is governed by the settings of a terminal's termios structure. This
structure provides definitions for terminal input and output processing, control and
local modes, and so on. These definitions are found in the termios.h header file.

Line Disciplines

OSF/1 provides different line disciplines for controlling communications lines. In
this version of the system there are two disciplines available for use with terminals:

Standard Standard POSIX-compliant terminal driver, with features for job
control, sessions, termios.h support, and so on.

Kanji-support
Standard POSIX-compliant terminal driver with support for the
Japanese character set, Kanji. The Kanji terminal driver provides
support for multibyte characters.

Line discipline switching is accomplished with the TIOCSETD ioctl:

int ldisc = LDISC;
ioctl(f, TIOCSETD, &ldisc);

Here, LDISC is TTYDISC for the standard POSIX tty driver and KJIDISC for the
Kanji terminal driver. By convention, the standard (POSIX) tty driver is discipline
0 (zero) and the Kanji tty driver is discipline 8. Other disciplines exist for special
purposes, such as use of communications lines for network connections. The
current line discipline can be obtained with the TIOCGETD ioctl. Pending input is
discarded when the line discipline is changed.

All of the low-speed asynchronous communications ports can use any of the
available line disciplines, no matter what hardware is involved.

2-151

OSF/1 Programmer's Reference

tty{7)

2-152

The Controlling Terminal

OSF/1 supports the concept of a controlling terminal. Any process in the system
can have a controlling terminal associated with it. Certain events, such as the
delivery of keyboard generated signals (for example, interrupt, quit, suspend),
affect all the processes in the process group associated with the controlling
terminal. The controlling terminal also determines the physical device that is
accessed when the indirect device /dev/tty is opened.

In earlier versions of UNIX systems, a controlling terminal was implicitly assigned
to a process if, at the time an open was done on the terminal, the terminal was not
the controlling terminal for any process, and if the process doing the open did not
have a controlling terminal. In OSF/1, in accordance with POSIX 1003.1, a
process must be a session leader to allocate a controlling terminal. In addition, the
allocation is now done explicitly with a call to ioctl(). (This implies that the
O_NOCTTY flag to the open() function is ignored.) The following example
illustrates the correct sequence for obtaining a controlling tty (no error checking is
shown). This code fragment calls the setsid() function to make the current process
the group and session leader, and to remove any controlling tty that the process
may already have. It then opens the console device and attaches it to the current
session as the controlling terminal. Note that the process must not already be a
session or process group leader, and the console must not already be the controlling
tty of any other session.

(void) sets id () ; /* become session leader and */
/* lose controlling tty */

fd = open ("/dev/console", O_RDWR);
(void)ioctl(fd,TIOCSCTTY,0);

A process can remove the association it has with its controlling terminal by
opening the /dev/tty file and issuing the following call:

ioctl(fd, TIOCNOTTY, 0);

For example:

fd = open ("/dev/tty", O_RDWR);
if (fd > = 0) {

ioctl(fd,TIOCNOTTY,0);
close (fd);

Files
tty(7)

When a control terminal file is closed, pending input is removed, and pending
output is sent to the receiving device.

When a terminal file is opened, the process blocks until a carrier signal is detected.
If the open() function is called with the O_NONBLOCK flag set, however, the
process does not wait. Instead, the first read() or write() call will wait for carrier
to be established. If the CLOCAL mode is set in the termios structure, the driver
assumes that modem control is not in effect, and open(), read(), and write()
therefore proceed without waiting for a carrier signal to be established.

Process Groups

In OSF/l, each process belongs to a process group with a specific process group
ID. Each process belongs to the process group of its creating process. This enables
related processes to be signalled. Process group IDs are unique identifiers that
cannot be used for other system process groups until the original process group is
disbanded. Each process group also has a group leader process. A process group
leader has the same process ID as its process group.

Each process group belongs to a session. Each process in the process group also
belongs to the process group's session. A process which is not the process group
leader can create its own session and process group with a call to the setsid()
function. That calling process then becomes the session leader of the new session
and of the new process group. The new session has no controlling terminal until
the session leader assigns one to it. The calling process's ID is assigned to the new
process group. With the setpgid() function, other processes can be added to a
process group.

A controlling terminal can have a distinguished process group associated with it
known as the foreground process group. The terminal's foreground process group
is the one that receives signals generated by the INTR, QUIT, and SUSP special
control characters. Certain operations on the terminal are also restricted to
processes in the terminal's foreground process group (see "Terminal Access
Control"). A terminal's foreground process group may be changed by calling the
tcsetpgrp() function. A terminal's current foreground process group may be
obtained by calling the tcgetpgrp() function.

Input Processing Modes

The terminal drivers have two major modes, characterized by the kind of
processing that takes place on the input characters:

Canonical If a terminal is in canonical mode, input is collected and processed one
line at a time. Lines are terminated by a newline (\n), End-of-File
(EOF), or End-of-Line (EOL) character. A read request is not returned
until the line has been terminated, or a signal has been received. The
maximum number of bytes of unread input allowed on an input
terminal is 255 bytes. If the maximum number of unread bytes

2-153

OSF/1 Programmer's Reference

tty(7)

2-154

exceeds 255 bytes, the behavior of the driver depends on the setting of
the IMAXBEL input flag (see "Input Editing").

Erase and kill processing is performed on input that has not been
terminated by one of the line termination characters. Erase processing
removes the last character in the line, kill processing removes the
whole line.

Noncanonical
This mode eliminates erase and kill processing, making input
characters available to the user program as they are typed. Input is not
processed into lines. The received bytes are processed according to
the MIN and TIME elements of the c_cc array in the termios
structure.

MIN MIN is the minimum number of bytes the terminal can receive
in noncanonical mode before a read is considered successful.

TIME TIME, measured in 0.1 second granularity, times out sporadic
input.

These cases are summarized as follows:

MIN>O, TIME>O
In this case, TIME is an interbyte timer that is activated after
the first byte of the input line is received, and reset after each
byte is received. The read operation is a success if MIN bytes
are read before TIME runs out. If TIME runs out before MIN
bytes have been received, the characters that were received are
returned.

MIN>O, TIME=O
In this case, only MIN is used. A queued read() waits until
MIN bytes are received, or a signal is received.

MIN=O, TIME>O
In this case, TIME is used as a read timer that starts when a
read() call is made. The read() call is finished when one byte
is read, or when TIME runs out.

MIN=O, TIME=O
In this case, either the number of requested bytes or the number
of currently available bytes is returned, depending on which is
the lesser number. The read() function returns a zero if no
data was read.

Canonical mode is entered by setting the ICANON flag of the c_lftag field in the in
the terminal's termios structure. Other input processing is performed according to
the other flags set in the c_iflag and c_lflag fields.

Files
tty(7)

Input Editing

A terminal ordinarily operates in full-duplex mode. Characters may be typed at
any time, even while output is occurring. Characters are only lost when:

• The system's character input buffers become completely choked, which is
rare.

• The user has accumulated the maximum allowed number of input characters
(MAX_INPUT) that have not yet been read by some program. Currently this
limit is 255 characters. When this limit is reached, the terminal driver refuses
to accept any further input and rings the terminal bell if IMAXBEL is set in
the c_iftag field, or throws away all input and output without notice if this flag
is not set.

Input characters are normally accepted in either even or odd parity with the parity
bit being stripped off before the character is given to the program. The ISTRIP
mask of the c_iftag field controls whether the parity bit is stripped (ISTRIP set) or
not stripped (ISTRIP not set). By setting the PARENB flag in the c_cftag field, and
either setting (not setting) the PARODD flag, it is possible to have input characters
with EVEN (ODD) parity discarded or marked (see "Input Modes").

In all of the line disciplines, it is possible to simulate terminal input using the
TIOCSTI ioctl, which takes, as its third argument, the address of a character. The
system pretends that this character was typed on the argument terminal, which must
be the control terminal for the process, unless the process has superuser privileges.

Input characters are normally echoed by putting them in an output queue as they
arrive. This may be disabled by clearing the ECHO bit in the c_lflag word using
the tcsetattr() call or the TIOCSETA, TIOCSETA W, or TIOCSETAF ioctls.

In canonical mode, terminal input is processed in units of lines. A program
attempting to read will normally be suspended until an entire line has been
received (but see the description of SIGTTIN in "Terminal Access Control"). No
matter how many characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any number of
characters may be requested in a read, even one, without losing information. In
read() requests, the O_NONBLOCK flag affects the read() operation behavior.

2-155

OSF/1 Programmer's Reference

tty(7)

2-156

If O_NONBLOCK is not set, a read() request is blocked until data or a signal has
been received. If the O_NONBLOCK flag is set, the read() request is not blocked,
and one of the following situations holds:

• Some data may have been typed, but there may or may not be enough data to
satisfy the entire read request. In either case, the read() function returns the
data available, returning the number of bytes of data it read.

• If there is no data for the read operation, the read() returns a -1 with an error
ofEAGAIN.

During input, line editing is normally done with the erase special control character
(VERASE) logically erasing the last character typed and the kill special control
character (VKILL) logically erasing the entire current input line. These characters
never erase beyond the beginning of the current input line or an EOF (End-of-File).
These characters, along with the other special control characters, may be entered
literally by preceding them with the literal-next character (VLNEXT - default
AV).

The drivers normally treat either a newline character ('\ n'), End-of-File character
(EOF), or End-of-Line character (EOL) as terminating an input line, echoing a
return and a line feed. If the ICRNL character bit is set in the c_iflag word then
carriage returns are translated to newline characters on input, and are normally
echoed as carriage return-linefeed sequences. If ICRNL is not set, this processing
for carriage return is disabled, and it is simply echoed as a return, and does not
terminate cooked mode input.

The POSIX terminal driver also provides two other editing characters in normal
mode. The word-erase character, normally <Ctrl-W>, is a c_cc structure special
control character VWERASE. This character erases the preceding word, but not
any spaces before it. For the purposes of <Ctrl-W>, a word is defined as a
sequence of nonblank characters, with tabs counted as blanks. However, if the
ALTWERASE flag is set in the c_lflag word, then a word is considered to be any
sequence of alphanumerics or underscores bounded by characters that are not
alphanumerics or underscores. Finally, the reprint character, normally <Ctrl-R>,
is a c_cc structure special control character VREPRINT. This character retypes
the pending input beginning on a new line. Retyping occurs automatically in
canonical mode if characters which would normally be erased from the screen are
fouled by program output.

Files

tty(7)

Input Modes

The termios structure has an input mode field c_iflag, which controls basic
terminal input characteristics. These characteristics are masks that can be bitwise
inclusive ORed. The masks include:

BRKINT An interrupt is signalled on a break condition.

ICRNL All carriage retums are mapped to newline characters when input.

IGNBRK Break conditions are ignored.

IGNCR Carriage returns are ignored.

IGNPAR Characters with parity errors are ignored.

INLCR Newline characters are mapped to carriage returns when input.

INPCK Parity checks are enabled on input.

ISTRIP The eighth bit (parity bit) is stripped on input characters.

IXOFF Stop/start characters are sent for input flow control enabled.

IXON Stop/start characters are recognized for output flow control.

IXANY Any char will restart output after stop.

IUCLC Map upper case to lower case on input.

PARMRK Parity errors are marked with a three character sequence.

IMAXBEL The bell is rung when the input queue fills.

The input mode mask bits can be combined for the following results:

The setting of IGNBRK causes input break conditions to be ignored. If IGNBRK
is not set, but BRKINT is set, the break condition has the same effect as if the
VINTR control character had been typed. If neither IGNBRK nor BRKINT are
set, then the break condition is input as a single character '\O'. If the P ARMRK
flag is set, then the input is read as three characters, '\377', '\O', and '\O'.

The setting of IGNPAR causes a byte with a parity or framing error, except for
breaks, to be ignored (that is, discarded). If IGNPAR is not set, but PARMRK is
set, a byte with parity or framing error, except for breaks, is passed as the three
characters '\377', '\O', and X, where X is the character data received in error. If
the ISTRIP flag is not set, the valid character '\377' is passed as '\377', '377'. If
both PARMRK and IGNPAR are not set, framing or parity errors, including
breaks, are passed as the single character '\O'.

The setting of INPCK enables input parity checking. If input parity checking is not
enabled (INPCK not set), then characters with parity errors are simply passed
through as is. The enabling/disabling of input parity checking is independent of the
generation of parity on output.

2-157

OSF/1 Programmer's Reference
tty(7)

2-158

Setting !STRIP causes the eighth bit of the eight valid input bits to be stripped
before processing. If this mask is not set, all eight bits are processed.

Setting INLCR causes a newline character to be read as a carriage return character.
If the IGNCR flag is also set, the carriage return is ignored. If the IGNCR flag is
not set, INLCR works as described earlier.

The STOP character (normally <Ctrl-S>) suspends output and the START
character (normally <Ctrl-Q>) restarts output. Setting IXON enables stop/start
output control, in which the START and STOP characters are not read, but rather
perform flow control functions. Extra stop characters typed when output is already
stopped have no effect, unless the start and stop characters are made the same, in
which case output resumes. Disabling IXON causes the START and STOP
characters to be read.

Setting IXOFF enables stop/start input control. When this flag is set, the terminal
device will be sent STOP characters to halt the transmission of data when the input
queue is in danger of overflowing (exceed MAX_INPUT). When enough
characters have been read to reduce the amount of data queued to an acceptable
level, a START character is sent to the device to allow it to continue transmitting
data. This mode is useful when the terminal is actually another machine that obeys
those conventions.

Input Echoing and Redisplay

The terminal driver has several modes for handling the echoing of terminal input,
controlled by bits in the c_lftag field of the termios structure.

Hardcopy Terminals
When a hardcopy terminal is in use, the ECHOPRT bit is normally set in the
local flags word. Characters which are logically erased are then printed out
backwards preceded by \ (backslash) and followed by a I (slash) in this
mode.

Erasing Characters from a CRT
When a CRT terminal is in use, the ECHOE bit may be set to cause input to
be erased from the screen with a backspace-space-backspace sequence when
character or word deleting sequences are used. The ECHOKE bit may be
set as well, causing the input to be erased in this manner on line kill
sequences as well.

Echoing of Control Characters
If the ECHOCTL bit is set in the local flags word, then nonprinting (control)
characters are normally echoed as AX (for some X) rather than being echoed
unmodified; DELETE is echoed as A?.

Files

tty(7)

Output Processing

When one or more characters are written, they are actually transmitted to the
terminal as soon as previously written characters have finished typing. (As noted
above, input characters are normally echoed by putting them in the output queue as
they arrive.) When a process produces characters more rapidly than the terminal
can accept them, it will be suspended when its output queue exceeds some limit.
When the queue has drained down to some threshold the program is resumed.
Even parity is normally generated on output. If the NOEOT bit is set in the c_oflag
word of the termios structure, the EQT character (<Ctrl-D>) is not transmitted, to
prevent terminals that respond to it from hanging up.

The terminal drivers provide necessary processing for canonical and noncanonical
mode output including delay generation for certain special characters and parity
generation. Delays are available after backspaces (BSDLY), formfeeds (FFDLY),
carriage returns (CRDLY), tabs (TABDLY) and newlines (NLDLY). The driver
will also optionally expand tabs into spaces, where the tab stops are assumed to be
set every eight columns, and optionally convert newlines to carriage returns
followed by newline. Output process is controlled by bits in the c_ofiag field of the
termios structure. Refer to the write(2) reference manual page for a description of
the O_NONBLOCK flag.

The terminal drivers provide for mapping from lowercase to uppercase (OLCUC)
for terminals lacking lower case, and for other special processing on deficient
terminals.

Finally, the terminal driver, supports an output flush character, normally <Ctrl-0>,
which sets the FLUSHO bit in the local mode word, causing subsequent output to
be flushed until it is cleared by a program or more input is typed. This character
ha& effect in both canonical and noncanonical modes and causes any pending input
to be retyped. An ioctl to flush the characters in the input or output queues,
TIOCFLUSH, is also available.

Uppercase Terminals

If the IUCLC bit in the c_iftag field is set in the tty flags, then all uppercase letters
are mapped into the corresponding lowercase letter. The uppercase letter may be
generated by preceding it by\ (backslash). Uppercase letters are preceded by a\
(backslash) when output. In addition, the following escape sequences will be
generated on output and accepted on input if the XCASE bit is set in the c_lflag
word:

For:
Use: \, \!

{
\(

}
\)

2-159

OSF/1 Programmer's Reference
tty(7)

2-160

Line Control and Breaks

There are several ioctl calls available to control the state of the terminal line. The
TIOCSBRK ioctl will set the break bit in the hardware interface causing a break
condition to exist; this can be cleared (usually after a delay with sleep(3)) by
TIOCCBRK. The tcsendbreak() can also be used to cause a break condition for a
specified amount.of time. Break conditions in the input are handled according to
the c_iftag field settings for the termios structure. Refer to the section "Input
Modes" for a complete listing of the c_iftag field settings. The TIOCCDTR ioctl
will clear the data terminal ready condition; it can be set again by TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung
up his terminal) a SIGHUP hangup signal is sent to the processes in the
distinguished process group of the terminal; this usually causes them to terminate.
The sending of SIGHUP does not take place if the CLOCAL bit is set in c_cftag
field of the driver. Access to the terminal by other processes is then normally
revoked, so any further reads will fail, and programs that read a terminal and test
for End-of-File on their input will terminate appropriately.

Interrupt Characters

When the ISIG bit is set in the c_lftag word, there are several characters that
generate signals in both canonical and noncanonical mode; all are sent to ·the
processes in the foreground process group of the terminal. If the NOFLSH bit is
not set in c_lftag, these characters also flush pending input and output when typed
at a terminal. The characters shown here are the defaults; the symbolic names of
the indices of these characters in the c_cc array of the termios structure are also
shown. The characters may be changed.

T VINTR (in c_cc) generates a SIGINT signal. This is the normal
way to stop a process which is no longer interesting, or to regain
control in an interactive program.

VQUIT (in c_cc) generates a SIGQUIT signal. This is used to cause
a program to terminate and produce a core image, if possible, in the
file core in the current directory.

VSUSP (in c_cc) generates a SIGTSTP signal, which is used to
suspend the current process group.

VDSUSP (in c_cc) generates a SIGTSTP signal as <Ctrl-Z> does,
but the signal is sent when a program attempts to read the <Ctrl-Y>,
rather than when it is typed.

Files
tty(7)

Terminal Access Control

If a process attempts to read from its controlling terminal when the process is not in
the foreground process group of the terminal, that background process group is sent
a SIGTTIN signal. This signal normally causes the members of that process group
to stop. If, however, the process is ignoring SIGTTIN, has SIGTTIN blocked, or if
the reading process' process group is orphaned, the read will return -1 and set
errno to [EIO]. The operation will then not send a signal.

If a process attempts to write to its controlling terminal when the process is not in
the foreground process group of the terminal, and the TOSTOP bit is set in the
c_lftag word of the termios structure, that background process group is sent a
SIGTTOU signal and the process is prohibited from writing. If TOSTOP is not set,
or if TOSTOP is set and the process is blocking or ignoring the SIGTTOU signal,
process writes to the terminal are allowed, and the SIGTTOU signal is not sent. If
TOSTOP is set, if the writing process' process group is orphaned, and if SIGTTOU
is not blocked by the writing process, the write operation returns a -1 with errno
set to [EIO], and does not a send a signal.

Terminal/Window Sizes

To accommodate terminals and workstations with variable-sized windows, the
terminal driver provides a mechanism for obtaining and setting the current terminal
size. The driver does not use this information internally, but only stores it and
provides a uniform access mechanism. When the size is changed, a SIGWINCH
signal is sent to the terminal's process group so that knowledgeable programs may
detect size changes.

tty Parameters

In contrast to earlier versions of the tty driver, the POSIX terminal parameters and
structures are contained in a single structure, the termios structure defined in the
sys/termios.h file. Refer to the termios.h(O) reference manual page for a complete
summary of this file.

Basic ioctls Calls

A large number of ioctl(2) calls apply to terminals. Some have the general form:

#include <sys/termios.h>

ioctl(fildes, code, arg)
struct termios *arg;

2-161

OSF/1 Programmer's Reference
tty(7)

2-162

The applicable codes are:

TIOCGETA Gets the termios structure and all its associated parameters. The
interface delays until output is quiescent, then throws away any
unread characters.

TIOCSETA Sets the parameters according to the termios structure.

TIOCSETA W Drains the output before setting the parameters according to the
termios structure. Sets the parameters like TIOCSETA.

TIOCSETAF Drains the output and flushes the input before setting the parameters
according to the termios structure. Sets the parameters like
TIOCSETA.

With the following codes arg is ignored:

TIOCEXCL Set exclusive-use mode: no further opens are permitted until the file
has been closed.

TIOCNXCL Tum off exclusive-use mode.

With the following codes arg is a pointer to an int:

TIOCFLUSH If the int pointed to by arg has a zero value, all characters waiting in
input or output queues are flushed. Otherwise, the value of the int is
for the FREAD and FWRITE bits defined in the sys/file.h file; if the
FREAD bit is set, all characters waiting in input queues are flushed,
and if the FWRITE bit is set, all characters waiting in output queues
are flushed.

Setting and Unsetting Controlling Terminals

TIOCSCTTY Sets the terminal as the controlling terminal for the calling process.

TIOCNOTTY Voids the terminal as a controlling terminal.

The following are miscellaneous ioctl terminal commands. In cases where
arguments are required, they are described; arg should otherwise be given as 0.

TIOCSTI The argument points to a character which the system pretends had
been typed on the terminal.

TIOCSBRK The break bit is set in the terminal.

TIOCCBRK The break bit is cleared.

TIOCSDTR Data terminal ready is set.

TIOCCDTR Data terminal ready is cleared.

TIOCSTOP Output is stopped as if the ''stop'' character had been typed.

TIOCSTART Putput is restarted as if the ''start'' character had been typed.

Files
tty(7)

TIOCGPGRP The arg parameter is a pointer to an int into which is placed the
process group ID of the process group for which this terminal is the
control terminal.

TIOCSPGRP The arg parameter is a pointer to an int which is the value to which
the process group ID for this terminal will be set.

TIOCOUTQ Returns in the int pointed to by arg the number of characters queued
for output to the terminal.

TIOCREMOTE
Sets the terminal for remote input editing.

FIONREAD returns in the int pointed to by arg the number of characters
immediately readable from the argument descriptor. This works for
files, pipes, and terminals.

Controlling Terminal Modems

The following ioctls apply to modems:

TIOCMODG The arg parameter is a pointer to an int, which is the value of the
modem control state.

TIOCMODS The arg parameter is a pointer to an int, which is the value to which
the modem control state is to be set.

TIOCMSET Sets all modem bits.

TIOCMBIS The arg parameter is a pointer to an int, which specifies the modem
bits to be set.

TIOCMBIC arg is a pointer to an int, which specifies the modem bits to be
cleared.

TIOCMGET Gets all the modem bits and returns them in the int point to by arg.

Windowfferminal Sizes

Each terminal has provision for storage of the current terminal or window size in a
winsize structure, with format:

struct winsize {

};

unsigned short ws_row;
unsigned short ws_col;
unsigned short ws_xpixel;
unsigned short ws_ypixel;

I* rows, in characters */
I* columns, in characters */
I* horizontal size, pixels*/
I* vertical size, pixels*/

2-163

OSF/1 Programmer's Reference

tty(7)

Files

A value of 0 (zero) in any field is interpreted as "undefined;" the entire structure
is zeroed on final close.

The applicable ioctl functions are:

TIOCGWINSZ
The arg parameter is a pointer to a struct winsize into which will be
placed the current terminal or window size information.

TIOCSWINSZ

/dev/tty

/dev/tty*

The arg parameter is a pointer to a struct winsize, which will be
used to set the current terminal or window size information. If the
new information is different than the old information, a SIGWINCH
signal will be sent to the terminal's process group.

Special file for tty.

Special files for ttys, where the * (asterisk) sign represents the tty
number.

/dev/console Device special file for console.

Related Information

2-164

Functions: ioctl(2), sigvec(2), tcsetattr(3), tcgetattr(3), tcdrain(3), tcflush(3),
tcsendbreak(3), tcgetpgrp(3), tcsetpgrp(3)

Commands: csh(l), tset(l), getty(8)

IEEE Std POSIX 1003.1-1988

Application Environment Specification
Inteifaces Volume

Operating System/Programming

Files

udp(7)

udp

Purpose Internet user datagram protocol (UDP)

Synopsis #include <sys/socket.h>
#include <netinet/in.h>

Description

Errors

s = socket(AF _INET, SOCK_DGRAM, 0);

UDP is a simple, unreliable datagram protocol that is used to support the
SOCK_DGRAM abstraction for the Internet Protocol family. UDP sockets are
connectionless, and are normally used with the sendto() and recvfrorn()
functions, though the connect() function may also be used to fix the destination for
future packets, in which case the recv() or read() and send() or write() functions
may be used.

UDP address formats are identical to those used by TCP. In particular, UDP
provides a port identifier in addition to the normal Internet address format. Note
that the UDP port space is separate from the TCP port space (that is, a UDP port
may not be connected to a TCP port). In addition, broadcast packets may be sent
(assuming the underlying network supports this) by using a reserved broadcast
address; this address is network interface dependent.

Options at the IP transport level may be used with UDP; see the ip() reference
page.

If a socket operation fails, errno may be set to one of the following values:

[EISCONN] The socket is already connected. This error occurs when trying to
establish connection on a socket or when trying to send a datagram
with the destination address specified.

[ENOTCONN]
The destination address of a datagram was not specified, and the
socket has not been connected.

[ENOBUFS] The system ran out of memory for an internal data structure.

2-165

OSF/1 Programmer's Reference

udp{7)

[EADDRINUSE]
An attempt was made to create a socket with a port that has already
been allocated.

[EADDRNOTAVAIL]
An attempt was made to create a socket with a network address for
which no network interface exists.

Related Information

2-166

Functions: getsockopt(2), recv(2), send(2), socket(2)

Files: netintro(7), inet(7), ip(7).

Chapter 3

Miscellaneous Functions

This chapter contains reference pages for OSF/l miscellaneous functions.
The reference pages from the man5 directory are sorted alphabetically in
this chapter.

3-1

OSF/1 Programmer's Reference
ascii(5)

ascn

Purpose Octal, hexadecimal, and decimal ASCII character sets

Description

3-2

The octal character set is:

000 nul
007 bel
016 so

025 nak

034 f s

043 #

052 *
061 1

070 8

077 ?

106 F

115 M

124 T

133

142 b
151 i

160 p

001 soh
010 bs
017 si
026 syn

035 gs

044 $

053 +

062 2

071 9
100 @

107 G

116 N

125 u
134 \

143 c
152 j

161 q
167 w 170 x

176 177 del

002 stx
011 ht
020 dle
027 etb

036 rs

045 %
054

063 3
072

101 A

110 H

117 0

126 v
135

144 d
153 k

162 r
171 y

The hexadecimal character set is:

00 nul
07 bel

De so

15 nak
le fs

23 #

2a *
31 1

3 f ?

3e >

46 F

4d M

54 T

01 soh
08 bs
Of si
16 syn

ld gs

24 $
2b +

32 2

38 8

40 @

47 G
4e N

55 u

02 stx
09 ht

10 dle

17 etb
le rs

25 %

2c

33 3
39 9

41 A

48 H

4f 0

56 v

003 etx
012 nl
021 dcl

030 can
037 us

046 &
055
064 4

073
102 B

111 I

120 p

127 w
136

145 e
154 1

163 s
172 z

03 etx
Oa nl

11 dcl

18 can
lf us

26 &

2d

34 4

3a
42 B

49 I
50 p

57 w

004 eot

013 vt
022 dc2

031 em

040 sp

047

056
065 5
074 <

103 c
112 J

121 Q
130 x
137
146 f

155 m

164 t
173

04 eot
Ob vt

12 dc2
19 em

20 sp

27
2e

35 5

3b
43 c
4a J

51 Q

58 x

005 enq
014 np

023 dc3

032 sub
041

050

057 I
066 6
075

104 D

113 K

122 R
131 y

140
147 g

156 n

165 u
174

05 enq
Oc np

13 dc3
la sub

21

28

2f I

36 6
3c <

44 D
4b K

52 R

59 y

006 ack
015 er
024 dc4

033 esc

042
051

060 0
067 7

076 >

105 E

114 L
123 s
132 z
141 a

150 h
157 0

166 v

175

06 ack
Od er

14 dc4

lb esc
22

29

30 0
37 7

3d

45 E

4c L

53 s
Sa Z

Miscellaneous Functions
ascii(S)

Sb Sc \ Sd Se Sf 60 61 a
62 b 63 c 64 d 6S e 66 f 67 g 68 h

69 i 6a j 6b k 6c 1 6d m 6e n 6f 0

70 p 71 q 72 r 73 s 74 t 7S u 76 v

77 w 78 x 79 y 7a z 7b 7c 7d

7e 7f del

The decimal character set is:

0 nul 1 soh 2 stx 3 etx 4 eot S enq 6 ack

7 bel 8 bs 9 ht 10 nl 11 vt 12 np 13 er

14 so lS si 16 dle 17 dcl 18 dc2 19 dc3 20 dc4

21 nak 22 syn 23 etb 24 can 2S em 26 sub 27 esc

28 fs 29 gs 30 rs 31 us 32 sp 33 34

3S # 36 $ 37 % 38 & 39 40 41

42 * 43 + 44 4S 46 47 I 48 0

49 1 so 2 Sl 3 S2 4 S3 s S4 6 SS 7

S6 8 S7 9 S8 S9 60 < 61 62 >

63 ? 64 @ 6S A 66 B 67 c 68 D 69 E

70 F 71 G 72 H 73 I 74 J 7S K 76 L

77 M 78 N 79 0 80 p 81 Q 82 R 83 s
84 T 8S u 86 v 87 w 88 x 89 y 90 z
91 92 93 94 9S 96 97 a

98 b 99 c 100 d 101 e 102 f 103 g 104 h

lOS i 106 107 k 108 1 109 m 110 n 111 0

112 p 113 q 114 r llS s 116 t 117 u 118 v

119 w 120 x 121 y 122 z 123 124 12S

126 127 del

Files

/usr/share/misc/ascii

3-3

OSF/1 Programmer's Reference

end(5)

end, etext, edata

Purpose

Synopsis

Description

Defines the last location of a program

extern end;

extern etext;

extern edata;

The external names end, etext, and edata are defined for all programs. They are
not functions, but identifiers associated with the following addresses:

etext The first address following the program text.

edata

end

The first address following the initialized data region.

The first address following the data region that is not initialized.

The break value of the program is the first location beyond the data. When a
program begins running, this location coincides with end. However, many factors
can change the break value, including:

• The brk() function

• The malloc() function

• The standard VO functions

• The -p flag on the cc command

Therefore, use sbrk(O}, not end, to determine the break value of the program.

Related Information

3-4

Functions: brk(2), malloc(3)

Commands: cc(l)

.
environ

Purpose

Synopsis

Description

Miscellaneous Functions

environ(5)

User environment

extern char **environ ;

An array of strings called the environment is made available by the execve()
function when a process begins. By convention these strings have the form
name=value. The following names are used by various commands:

EXINIT A startup list of commands read by ex, edit, and vi.

HOME A user's login directory, set by login from the password file passwd.

PATH The sequence of directories, separated by colons, searched by csh,
sh, system, execvp, etc, when looking for an executable file. PATH
is set to :/usr/ucb:/bin:/usr/bin initially by login.

PRINTER The name of the default printer to be used by lpr, lpq, and lprm.

SHELL The full pathname of the user's login shell.

TERM The kind of terminal for which output is to be prepared. This
information is used by commands, such as nroff or plot which may
exploit special terminal capabilities. See /usr/share/misc/termcap
for a list of terminal types.

TERMCAP The string describing the terminal in the TERM environment
variable, or, if it begins with a I (slash), the name of the termcap
file. See TERMPATH below.

TERMPATH A sequence of pathnames of termcap files, separated by colons or
spaces, which are searched for terminal descriptions in the order
listed. Having no TERMPATH is equivalent to a TERMPATH of
$HOME/.termcap:/etc/termcap. TERMPATH is ignored if
TERMCAP contains a full pathname.

USER The login name of the user.

Further names may be placed in the environment by the export command and
name=value arguments in sh, or by the setenv command if you use csh. It is
unwise to change certain sh variables that are frequently exported by .profile files,
such as MAIL, PSl, PS2, and IFS.

3-5

OSF/1 Programmer's Reference

environ(S)

Related Information

3-6

Functions: exec(2), system(3)

Commands: csh(l), ex(l), login(l), sh(l)

hi er

Purpose

Description

Miscellaneous Functions
hier{5)

Layout of file systems

This page describes the file system hierarchy. As a general rule, it lists only
directories.

I The root directory of the file system

/dev/ Block and character device files

/etc/ System configuration files and databases. These are are
nonexecutable files.

nls/ National Language Support databases

/lost+found/ Files located by fsck

/net/

/opt/

/shin/

/stand/

/tmp/

/usr/

Mounted network directories

Optional application packages

Commands essential for the system to boot. These commands do
not depend on shared libraries or the loader and can have other
versions in /usr/bin or /usr/sbin.

init.d/ System state re files

rcO.d/ re files executed for system-state 0

rc2.d/ re files executed for system-state 2

rc3.d/ re files executed for system-state 3

Standalone programs

System generated temporary files (the contents of /tmp are usually
not preserved across a system reboot)

Contains the majority of user utilities and applications

bin/ Common utilities and applications

ccs/ C compilation system; tools and libraries used to generate C
programs

bin/ Development binaries (includes cc, Id, make, etc.)

lib/ Development libraries and backends

lex/ lex data

3-7

OSF/1 Programmer's Reference

hier(S)

3-8

include/
Program header (include) files; not all subdirectories are
listed below

mach/ Mach specific C include files

machine/
Machine specific C include files

net/ Miscellaneous network C include files

netimp/
C include files for IMP protocols

netinet/
C include files for Internet standard protocols

netns/ C include files for XNS standard protocols

nfs/ C include files fbr Network File System (NFS)

protocols/
C include files for Berkeley service protocols

rpc/ C include files for remote procedure calls

servers/
C include files for servers

streams/
C include files for Streams

sys/ System C include files (kernel data structures)

tli/ C include files for Transport Layer Interface

udp/ C include files for User Datagram Protocol

ufs/ C include files for UFS

lbin/ Back-end executables

spell/ Spell back-end

uucp/ UUCP programs

lib/ Consists entirely of links to libraries located elsewhere
(/usr/ccs/lib, /usr/libin, /usr/share/lib, /Xll/lib); included
for compatibility

shin/ System administration utilities and system utilities

Miscellaneous Functions
hier(S)

share/ Architecture-independent ASCII text files

diet/ Word lists

lib/

me/ Macros for use with the ME macro package

ms/ Macros for use with the MS macro package

tabset/
Tab description files for a variety of
terminals; used in /etc/termcap

terminfo/
Terminal information database

tmac/ Text processing macros

man/ Online reference pages

manl/ Source for user command reference pages

man2/ Source for system call reference pages

man3/ Source for library routine reference pages

man4/ Source for file format reference pages

man5/ Source for miscellaneous reference pages

man7/ Source for device reference pages

man8/ Source for administrator command reference
pages

catl -8 Formatted versions of reference pages in the
manl through man8 directories

shlib/ Binary loadable shared libraries; shared versions of libraries
in /usr/ccsnib

/var/ Multipurpose log, temporary, transient, varying, and spool files

adm/ Common administrative files and databases

cron/ Files used by cron

crash/ For saving kernel crash dumps

sendmail/
sendmail configuration and database files

syslog/
Files generated by syslog

3-9

OSF/t Programmer's Reference

hier(5)

/vmunix

spool/ Miscellaneous printer and mail system spooling directories

lpd/ Line printer spooling directories

mail/ Incoming mail messages

mqlleue/
Undelivered mail queue

uucp/ UUCP spool directory

tmp/ Application-generated temporary files that are kept between
system reboots

run/ Files created when daemons are running

Pure kernel executable (the operating system loaded into memory at
boot time)

Related Information

3-10

Commands: ls(l), apropos(l), whatis(l), whereis(l), finger(l), which(l),
find(l), grep(l), fsck(8)

Miscellaneous Functions

hostname(5)

hostname

Purpose

Description

Hostname resolution description

Hostnames are domains, where a domain is a hierarchical, dot-separated list of
subdomains; for example, the machine monet, in the Berkeley subdomain of the
EDU subdomain of the Internet would be represented as follows:

monet.Berkeley .EDU

Notice that there is no trailing dot.

Hostnames are often used with network client and server programs, which must
generally translate the name to an address for use. (This function is generally
performed by the gethostbyname() function.) Hostnames are resolved by the
Internet name resolver in the following fashion.

If the name consists of a single component (that is, contains no dot), and if the
HOSTALIASES environment variable is set to the name of a file, that file is
searched for a string matching the input hostname. The file should consist of lines
made up of two white-space separated strings, the first of which is the hostname
alias, and the second of which is the complete hostname to be substituted for that
alias. If a case-insensitive match is found between the hostname to be resolved and
the first field of a line in the file, the substituted name is looked up with no further
processing.

If the input name ends with a trailing dot, the trailing dot is removed, and the
remaining name is looked up with no further processing.

If the input name does not end with a trailing dot, it is looked up by searching
through a list of domains until a match is found. The default search list includes
first the local domain, then its parent domains with at least 2 name components
(longest first). For example, in the domain CS.Berkeley.EDU, the name
lithium.CChem will be checked first as lithium.CChem.CS.Berkeley.EDU and then
as lithium.CChem.Berkeley.EDU. Lithium.CChem.EDU will not be tried, as the
there is only one component remaining from the local domain. The search path can
be changed from the default by a system-wide configuration file.

Related Information

Functions: gethostbyname(3)

Commands: named(8)

3-11

Index

A
abort, 1-16, 1-30
abort function, 1-16
abs, 1-17
abs function, 1-17, 1-18
absolute value

complex, 1-299
function, 1-17

accept connect, 1-782
accept function, 1-19, 1-20
access

changing for a file, 1-61
file, 1-21

access function, 1-21, 1-22
access modes

changing for a mapped file,
1-406

changing for a shared
memory region,
1-406

retrieving and setting for a
file, 1-155

accounting
enabling and disabling, 1-23
process, 1-23

accounting record, expanding,
1-151

acct function, 1-23, 1-24

acos function, 1-739, 1-741
acosh function, 1-29
adjtime function, 1-25, 1-26
advance function, 1-601, 1-605
alarm function, 1-27, 1-28
alloca function, 1-364, 1-367
allocate memory, 1-786
alphasort function, 1-630, 1-631
any function, 1-342, 1-344
anystr function, 1-342, 1-344
ar, archive library file format, 2-2
arc cosine, hyperbolic function,

1-29
archive library file format, 2-2
arc sine, hyperbolic function, 1-29
arc tangent, hyperbolic function,

1-29
argument vector, returning flag

letters from, 1-244
asctime function, 1-83, 1-88
asctime_r function, 1-83, 1-88
asin function, 1-739, 1-741
asinh function, 1-29
assert macro, 1-30, 1-31
assigning buffers, 1-660
async_daemon function, 1-32
asynchronous server, creating in

NFS, 1-32
atan function, 1-739, 1-741

lndex-1

OSF/1 Programmer's Reference

atan2 function, 1-739, 1-741
atanh function, 1-29
atexit function, 1-145, 1-147
atof function, 1-33, 1-34
atoi function, 1-35, 1-38
atol function, 1-35, 1-38
attributes object, creating for

threads, 1-510
authenticating clients for servers,

1-628

B
balbrk function, 1-342, 1-344
baud rate

returning input from
termios, 1-55

returning output from
termios, 1-56

setting input in termios,
1-57

setting output in termios,
1-58

bcmp function, 1-39, 1-40
bcopy function, 1-39, 1-40
bessel functions, 1-41, 1-42
binary search function, 1-4 7
binary search trees, managing,

1-893
bind, socket name, 1-43
bind address, 1-790
bind function, 1-43, 1-44
bit strings, functions, 1-39
blocking signals, 1-718

lndex-2

break, changing data segment size,
1-45

breaking data transmission, 1-878
brk function, 1-45, 1-46
bsearch function, 1-47, 1-48
buffer, assigning, 1-660
byte quantities

long, 1-559
short, 1-562

bytes, swapping, 1-767
byte stream

retrieving long quantities
from, 1-237

retrieving short quantities
from, 1-275

byte strings, functions, 1-39
bzero function, 1-39, 1-40

c
cabs function, 1-299, 1-300
calloc function, 1-364, 1-367
cancelability of threads, 1-542,

1-545
cancellation points in threads,

1-549
capabilities of terminals, 2-127
case conversion, 2-4
catclose function, 1-49, 1-50
cat function, 1-342, 1-344
catgets function, 1-51, 1-52
catopen function, 1-53, 1-54
cbrt function, 1-750, 1-751
ceil function, 1-168, 1-170

cfgetispeed function, 1-55
cfgetospeed function, 1-56
cfsetispeed function, 1-57
cfsetospeed function, 1-58
character

classification functions, 1-
89, 1-313

converting multibyte to
wide, 1-372

finding length of multi byte,
1-368

getting from input stream,
1-292, 1-912

pushing back, 1-906
translating to 7-bit ASCII,

1-78
translating to lowercase,

1-78
translating to uppercase,

1-78
writing to output stream,
1-913

characteristics of file
implementation, 1-458

characters
classification, 2-4
writing out, 1-555

character string
converting multibyte to

wide, 1-370
converting to floating point,

1-33
converting to integer, 1-35

character strings, wide, operations
on, 1-941

character translation functions, 1-
78, 1-80

chdir function, 1-59, 1-60
child process

Index

creating via fork, 1-176
waiting for it to stop or

terminate, 1-923
chmod function, 1-61, 1-64
chown function, 1-65, 1-67
chroot function, 1-68, 1-69
clean_up function, 1-342, 1-344
cleanup stack

adding routines, 1-496
removing a routine from,
1-494

clearenv function, 1-70
clearerr function, 1-71
clients, authenticating for servers,

1-628
clock, 1-756

getting time, 1-884
setting value, 1-662

clock function, 1-72
closedir function, 1-453, 1-457
close endpoint, 1-795
close function, 1-73, 1-74
closelog function, 1-77 6, 1-779
closing a pipe, 1-464
collating sequence, 2-4
commands

executing, 1-780
executing on remote host,

1-580, 1-620
comparing thread identifiers, 1-518
compatibility

with old UNIX systems,
1-734

with other UNIX systems,
1-710

lndex-3

OSF/1 Programmer's Reference

compatibility interfaces for signals,
1-726

compile function, 1-601, 1-605
complementary error function,

computing, 1-134
configuring system variables, 1-77 4
connect, 1-797
connect function, 1-7 5, 1-77
connection

accepting on a socket, 1-19
establishing between two

sockets, 1-7 5
listening for on a socket,

1-347
protocol, 1-808

constructing a name for a
temporary file, 1-888

context, execution, saving and
restoring, 1-670

control, flow of, 1-870
controlling terminal, generating

pathname for, 1-81
control operations, on a file, 1-155
convention tables for locale, 2-15
converting a wide character, 1-930
converting dates and times, 1-7 57
converting formatted input, 1-632,

1-939
converting wide characters, 1-928
core memory image, 2-3
cos function, 1-739, 1-741
cosh function, 1-742, 1-743
CPU time, returning, 1-72
creat function, 1-447, 1-452
creating a temporary file, 1-887
creating a thread, 1-514
creating keys for threads, 1-524

lndex-4

creating mu~exes for threads, 1-528
creating signal masks, 1-711
ctab command, 2-4, 2-8
ctermid function, 1-81, 1-82
ctime function, 1-83, 1-88
ctime_r function, 1-83, 1-88
ctype functions, 1-89, 1-91
cube root function, 1-7 50
curdir function, 1-342, 1-344
current directory, changing, 1-59
curses

curses routines, 1-93
minicurses package, 1-92
screen dimensions, 1-92
termcap compatibility

functions, 1-106
terminfo level functions,
1-104

curses library, 1-92, 1-106
cuserid function, 1-107, 1-108

D
database

manipulating entry in user,
1-259

user, 1-219
database management, dbm library,

1-109
databases

disktab, 2-12
group, 2-24
protocols, 2-98
ROUTE, 2-104
services for Internet, 2-109
shell, 2-110

terminfo, 2-127
data segment, changing size for

break, 1-45
data sink, 2-67
data, thread_speci fie, binding

values to keys, 1-547
date and time, returning, 1-285
date conversion, 1-757
dbm_clearerr function, 1-434,

1-436
dbm_close function, 1-434, 1-436
dbm_delete, function, 1-434, 1-436
dbm_error function, 1-434, 1-436
dbm_fetch function, 1-434, 1-436
dbm_firstkey function, 1-434,

1-436
dbm_forder function, 1-434, 1-436
dbminit function, 1-109, 1-110
dbm_nextkey function, 1-434,

1-436
dbm_open function, 1-434, 1-436
dbm_store function, 1-434, 1-436
deallocate memory, 1-805
decode_mach_o_hdr function, 1-

111, 1-112
delete function, 1-109, 1-110
deleting attribute object from

threads, 1-512
deleting mutexes from threads,

1-526
descriptors, file, 2-20
descriptor table, returning size of,

1-210
detaching a thread, 1-516
device

adding swap device for
interleaved paging
and swapping, 1-768

allocating paging and

Index

swapping space,
1-768

device file, control operations on,
1-310

devices, null, 2-67
diagnostics, inserting in programs,

1-30
difftime function, 1-83, 1-88
dir, format of directories, 2-9
directories

scanning, 1-630
sorting, 1-630

directory
changing current, 1-59
changing root, 1-68
creating, 1-378, 1-383
effective root, 1-68
mounting a filesystem on,

1-395, 1-400
removing, 1-623
removing entry of, 1-908
renaming, 1-610
returning entries in file-

system independent
format, 1-207

returning pathname for
current, 1-293

returning pathname of
current, 1-205

umounting a filesystem
from, 1-902

walking a file tree, 1-192
directory operations, 1-453
discon endpoint, 1-838
disconnect, 1-838, 1-858

endpoint, 1-855
disk, getting description of, 1-209

lndex-5

OSF/1 Programmer's Reference

disklabel, 2-10, 2-11
disk packe label, 2-10
disk quotas

enabling and disabling,
1-680

manipulating, 1-570
disktab database, 2-14
disktab datbase, 2-12
div function, 1-17, 1-18
division function, 1-17
dname function, 1-342, 1-344
dn_comp function, 1-113, 1-114
dn_expand function, 1-115, 1-116
dn_find function, 1-117, 1-118
dn_skipname function, 1-119,

1-120
domain name, 2-102

compressing, 1-113
expanding, 1-115
searching for default, 1-613
searching for expanded,

1-117
skipping over compressed,
1-119

drand48 function, 1-121, 1-124
drivers

for terminals, 2-151
pseudo terminal, 2-99

dup function, 1-155, 1-160
dup2 function, 1-155, 1-160

E
ecvt function, 1-125, 1-127

lndex-6

_edata identifier, 3-4
edata identifier, 3-4
en, locale convention tables, 2-15,

2-17
encode_mach_o_hdr function, 1-

128, 1-129
endfsent function, 1-214, 1-215
endgrent function, 1-219, 1-221
endhostent function, 1-130
_end identifier, 3-4
end identifier, 3-4
endnetent function, 1-131
endpoint

close, 1-795
discon, 1-838
disconnect, 1-855
establish, 1-822
event, 1-818

endprotoent function, 1-132
endpwent function, 1-259, 1-261
endservent function, 1-133
endusershell function, 1-288
endutent function, 1-289, 1-291
enviromment variable, setting of,

1-558
environment file, 2-15
environment variable, returning

value of, 1-211
erand48 function, 1-121, 1-124
erfc function, 1-134, 1-135
erf function, 1-134, 1-135
error, 1-803
error function, computing, 1-134
_etext identifier, 3-4
etext identifier, 3-4
Euclidean distance function, 1-299
event, look, 1-818

exec function, 1-136, 1-141
execle function, 1-136, 1-141
execl function, 1-136, 1-141
execlp function, 1-136, 1-141
executing commands on remote

host, 1-580, 1-620
executing shell commands, 1-780
execution

starting and stopping
profiling, 1-483

suspending, 1-914
execution context, saving and

restoring, 1-670
execution of a process, suspending,

1-744
execve function, 1-136, 1-141
execv function, 1-136, 1-141
execvp function, 1-136, 1-141
exec_ with_loader function, 1-142,

1-144
_exit, 1-16
_exit function, 1-145, 1-147
exit function, 1-145, 1-147
expacct function, 1-151
exp function, 1-148, 1-150
exponential function, 1-148
exports file, 2-18, 2-19
expressions, regular, 1-582, 1-601
external variable, optarg, 1-244

F
fabs function, 1-168, 1-170
fatal function, 1-342, 1-344

fchdir function, 1-59, 1-60
fchmod function, 1-61, 1-64
fchown function, 1-65, 1-67
fclose function, 1-152, 1-154
fcntl function, 1-155, 1-160
fcvt function, 1-125, 1-127
FD_CLR macro, 1-638, 1-641
fd file descriptor, 2-20

Index

fdfopen function, 1-342, 1-344
FD_ISSET macro, 1-638, 1-641
fdopen function, 1-171, 1-175
FD_SET macro, 1-638, 1-641
FD_ZERO macro, 1-638, 1-641
feofmacro, 1-161
ferror macro, 1-162
fetch function, 1-109, 1-110
ffiush function, 1-152, 1-154
ffs function, 1-39, 1-40
fgetc function, 1-201, 1-202
fgetpos function, 1-184, 1-187
fgets function, 1-267, 1-268
fgetwc function, 1-292
fgetws function, 1-294
FIFO, creating, 1-381, 1-383
file

access, 1-61, 1-915
access flags, 1-44 7
access modes, 1-155
advisory lock, 1-164
changing access, 1-61
changing length of, 1-890
changing owner and group

IDs, 1-65
checking I/O status of file

objects, 1-638
closing, 1-73
controlling a device file,

1-310
controlling locking on file

sections, 1-355

lndex-7

OSF/1 Programmer's Reference

lndex-8

control operations, 1-155
creating, 1-383, 1-447
creating a directory, 1-378,

1-383
creating a FIFO, 1-383
creating a link for, 1-345
creating a pipe, 1-467
creating a special file, 1-383
creation mask, 1-901
determining accessibility,

1-21
device file control, 1-310
executable, 1-136
executable with loader,

1-142
executing, 1-136
executing with loader, 1-142
locking, 1-355
locks, 1-155
making symbolic links,

1-770
mapping a file mystennbject

into virtual memory,
1-390

modification time, 1-915
moving read-write offset,

1-360
opening and positioning on

first record, 1-214
opening for reading or

writing, 1-44 7
owner and group IDs, 1-65
polling, 1-471
providing information

about, 1-752
providing information about

an open file, 1-752
providing information

about, including
links, 1-752

reading from, 1-584
reading from a symbolic

link, 1-588
reading next line of, 1-214
removing, 1-608
removing a directory, 1-623
renaming, 1-610
retrieving and setting access

modes, 1-155
retrieving and setting locks,

1-155
retrieving and setting status

information, 1-155
returning the handle for,

1-212
searching for file system

type, 1-214
searching for special

filename, 1-214
searching for system

filename, 1-214
setting access and

modification times,
1-915

setting and getting creation
mask value, 1-901

setting or removing a lock,
1-164

shared library requirement,
1-142

status flags, 1-44 7
system statistics, 1-7 54
writing changes to disk,

1-188
writing to, 1-932

file descriptor
checking I/O status of,

1-638
closing, 1-73

monitoring conditions on
multiple, 1-4 71

sets for checking 1/0 status,
1-638

file descriptors, 2-20
file handle, returning, 1-212
file implemenatation,

characteristics of, 1-458
file locking, 1-164
filename, constructing unique,

1-386
file, network, opening and

rewinding, 1-676
fileno macro, 1-163
file, protocols, setting and

rewinding, 1-679
files

archive library, 2-2
core memory image, 2-3
directory format, 2-9
exports, 2-18
/fB/dev/tty/fR, 2-151
file system volume, 2-21
name for temporary, 1-888
password, 2-96
resolver configuration,

2-102
shells, 2-110
signal, 2-113
stab, 2-120
temporary, 1-887
terminfo, 2-127
termios, 2-139
utmp, 1-898

filesystem
enabling and disabling disk

quotas, 1-680
mapping an object into

virtual memory,
1-390

Index

mounted, 1-216
mounting, 1-395, 1-400
renaming files and

directories, 1-610
returning list of all mounted,

1-216
umounting, 1-395, 1-902

file system
information about mounted,

1-754
manipulating disk quotas,

1-570
returning information about,

1-214
updating, 1-773

file-system independent format,
returning directory entries
in, 1-207

firstkey function, 1-109, 1-110
flag letters, returning from

argument vector, 1-244
floating-point integer

absolute value function,
1-168

modulo remainder function,
1-168

round functions, 1-168
floating-point number

converting to a string, 1-125
converting to fraction and

integral power of 2,
1-181

converting to integral and
fractional parts,
1-181

multiplying by integral
power of 2, 1-181

lndex-9

OSF/1 Programmer's Reference

flockfile function, 1-167
flock function, 1-164, 1-166
floor function, 1-168, 1-170
flow control functions, 1-870
flushing input data, 1-872
flushing output data, 1-872
fmin function, 1-402, 1-405
fmod function, 1-168, 1-170
fmout function, 1-402, 1-405
fopen function, 1-171, 1-175
forder function, 1-109, 1-110
foreground process, group ID,

1-876
fork function, 1-176, 1-178
format of directories, 2-9
format of file system volume, 2-21
formatted input, converting, 1-632,

1-939
formatting output, 1-4 76
formatting output parameters,

1-921
formatting printed output, 1-93 7
fpathconf function, 1-458, 1-461
fprintf function, 1-4 76, 1-482
fputc function, 1-555, 1-557, 1-564,

1-565
fputs function, 1-560, 1-561
fputws function, 1-566, 1-567
fread function, 1-179, 1-180
free function, 1-364, 1-367
freeing process timers, 1-625
freopen function, 1-171, 1-17 5
frexp function, 1-181, 1-183
fs, file system volume, 2-21, 2-23
fscanf function, 1-632, 1-637
fseek function, 1-184, 1-187
fsetpos function, 1-184, 1-187

lndex-10

fstatfs function, 1-7 54, 1-7 55
fstat function, 1-752, 1-753
fsync function, 1-188, 1-189
ftell function, 1-184, 1-187
ftime function, 1-283, 1-284
ftok function, 1-190, 1-191
ftruncate function, 1-890, 1-892
ftw function, 1-192, 1-194
function, 1-219
function errors, 1-466
functions, interrupting with signals,

1-714
funlockfile function, 1-195
fwrite function, 1-179, 1-180

G
gamma function, 1-196, 1-197
gcd function, 1-402, 1-405
gcvt function, 1-125, 1-127
generating random numbers, 1-574,

1-577
geometry of disks, 2-10, 2-12
getaddressconf function, 1-198,

1-200
getchar macro, 1-201, 1-202
getclock function, 1-203, 1-204
getc macro, 1-201, 1-202
getcwd function, 1-205, 1-206
getdirentries function, 1-207, 1-208
getdiskbyname function, 1-209
getdtablesize function, 1-210
getegid function, 1-218
getenv function, 1-211

geteuid function, 1-287
getth function, 1-212, 1-213
getfsent function, 1-214, 1-215
getfsfile function, 1-214, 1-215
getfsspec function, 1-214, 1-215
getfsstat function, 1-216, 1-217
getfstype function, 1-214, 1-215
getgid function, 1-218
getgrent function, 1-219, 1-221
getgrgid function, 1-219, 1-221
getgmam function, 1-219, 1-221
getgroups function, 1-222, 1-223
gethostbyaddr function, 1-224,

1-225
gethostbyname function, 1-226,

1-227
gethostent function, 1-228, 1-229
gethostid function, 1-230
gethostname function, 1-231
getitimer function, 1-232, 1-234
getlogin function, 1-235, 1-236
getlogin_r function, 1-235, 1-236
_getlong function, 1-237, 1-238
getnetbyaddr function, 1-239,

1-240
getnetbyname function, 1-241,

1-242
getnetent function, 1-243
getopt function, 1-244, 1-245
getpagesize function, 1-246
getpass function, 1-247, 1-248
getpeemame function, 1-249,

1-250
getpgrp function, 1-251
getpid function, 1-251
getppid function, 1-251
getpriority function, 1-252, 1-253

Index

getprotobyname function, 1-254,
1-255

getprotobynumber function, 1-256,
1-257

getprotoent function, 1-258
getpwent function, 1-259, 1-261
getpwnam function, 1-259, 1-261
getpwuid function, 1-259, 1-261
getrlimit function, 1-262, 1-264
getrusage function, 1-265, 1-266
getservbyname function, 1-269,

1-270
getservbyport function, 1-271,

1-272
getservent function, 1-273, 1-274
gets function, 1-267, 1-268
_getshort function, 1-275, 1-276
getsockname function, 1-277,

1-278
getsockopt function, 1-279, 1-282
getstate, 1-812
gettimeofday function, 1-283,

1-284
gettimer function, 1-285, 1-286
getting service file entries, 1-688
getting user limits, 1-899
getuid function, 1-287
getusershell function, 1-288
getutent function, 1-289, 1-291
getutid function, 1-289, 1-291
getutline function, 1-289, 1-291
getwc function, 1-292
getwchar function, 1-292
getwd function, 1-293
getw function, 1-201, 1-202
getws function, 1-294
giveup function, 1-342, 1-344

lndex-11

OSF/1 Programmer's Reference

gmtime function, 1-83, 1-88
gmtime_;r function, 1-83, 1-88
group access list, setting, 1-666
group database, 2-24
group ID

changing for a file, 1-65
foreground process, 1-876
real and effective, 1-682
real, effective, and saved set,

1-664
returning effective, 1-218
returning for a process,

1-251
returning real, 1-218
setting, 1-664, 1-684, 1-689
setting for process, 1-677,

1-882
setting real and effective,
1-682

group information, accessing in
user database, 1-219

group set

H

initializing concurrent,
1-307

returning for current
process, 1-222

hash tables
creating, 1-295
deleting, 1-295
searching, 1-295

hcreate function, 1-295, 1-296

lndex-12

hdestroy function, 1-295, 1-296
host

returning ID for current,
1-230

returning name of current,
1-231

setting ID for current, 1-668
setting name of current,
1-669

host address, converting to byte­
ordered address 'integer,
1-303

host-byte order
converting long integer, 1-

297, 1-445
converting short integer, 1-

298, 1-446
host entries, ending retrieval of,

1-130
host entry

returning by address, 1-224
returning by name, 1-226

host ID
returning for current host,

1-230
setting for current host,
1-668

hostname
returning for current host,

1-231
setting for current host,
1-669

hosts file
opening, 1-228
reading next line, 1-228
resetting file marker, 1-228
retrieving entries, 1-228

hosts name files
searching by address, 1-224

searching by name, 1-226
hsearch function, 1-295, 1-296
htonl function, 1-297
htons function, 1-298
hyperbolic functions, 1-742

acosh, 1-29
asinh, 1-29
atanh, 1-29

hypotenuse function, 1-299
hypot function, 1-299, 1-300

I
icmp, Internet Control Message

Protocol, 2-25, 2-26
idp, Xerox Internet Protocol, 2-27,

2-29
IDs of threads, 1-541
imatch function, 1-342, 1-344
index function, 1-342, 1-344
Inet, Internet Protocol family, 2-30,

2-31
inet_addr function, 1-301
inet_lnaof function, 1-302
inet_makeaddr function, 1-303
inet_netof function, 1-304
inet_network function, 1-305
inet_ntoa function, 1-306
initgroups function, 1-307, 1-308
initializing routine for threads,

1-539
initstate function, 1-577, 1-579
inodes, 2-21
input

converting, 1-939
converting formatted, 1-632

flushing, 1-872
pushing back character,
1-906

input stream

Index

getting character from, 1-
201, 1-292

getting characters from,
1-912

getting word from, 1-201,
1-292

insque function, 1-309
integer arithmetic functions, 1-402,

1-405
integers

absolute value, 1-17
division, 1-17

interface
to the sigaction function,

1-734
to the sigprocmask function,
1-710

interface for terminals, 2-139
interfaces

loopback, 2-34
LVM,2-35

interfaces for terminals, 2-151
interfaces to networks, 2-66
Internet

domain name, 2-102
protocols database, 2-98
services available, 2-109

Internet address, searching for,
1-613

Internet Control Message Protocol,
2-25

Internet ports, 1-626
Internet Protocol, 2-30, 2-32

lndex-13

OSF/1 Programmer's Reference

Internet Protocol family, 2-165
interprocess communication key,

generating, 1-190
interrupting functions with signals,

1-714
interval timers

changing timeout, 1-27
setting and returning, 1-232
setting timeout, 1-27

introduction to networking, 2-58
inverse trigonometric functions,

1-739
invert function, 1-402, 1-405
ioctl function, 1-310, 1-311
IO functions, standard, 1-555, 1-

560, 1-564
I/O status, checking file descriptor

sets for, 1-638
ip, Internet Protocol, 2-32, 2-33
isalnum function, 1-89, 1-91
isalpha function, 1-89, 1-91
isascii function, 1-89, 1-91
isatty function, 1-896, 1-897
iscntrl function, 1-89, 1-91
isdigit function, 1-89, 1-91
isgraph function, 1-89, 1-91
isjalnum function, 1-313, 1-314
isjalpha function, 1-313, 1-314
isjdigit function, 1-313, 1-314
isjpunct function, 1-313, 1-314
isjspace function, 1-313, 1-314
isjxdigit function, 1-313, 1-314
islower function, 1-89, 1-91
isnan function, 1-312
is print function, 1-89, 1-91
ispunct function, 1-89, 1-91
isspace function, 1-33, 1-36, 1-89,

1-91

lndex-14

isupper function, 1-89, 1-91
isxdigit function, 1-89, 1-91
itom function, 1-402, 1-405

J
Japanese Language Support, 1-292
jO function, 1-41, 1-42
jl function, 1-41, 1-42
jn function, 1-41, 1-42
jrand48 function, 1-121, 1-124
jump point, setting, 1-729

K
kernel packet forwarding, database,

2-104
kill function, 1-315, 1-316
killpg function, 1-316

L
labels for disk packs, 2-10
labs function, 1-17, 1-18
lcong48 function, 1-121, 1-124
ldexp function, 1-181, 1-183
ldiv function, 1-17, 1-18
ldr_entry function, 1-317

ldr_inq_module function, 1-318,
1-319

ldr_inq_region function, 1-320,
1-321

ldr_install function, 1-322, 1-323
ldr_lookup_package function, 1-

324, 1-325
ldr_next_module function, 1-326,

1-327
ldr_remove function, 1-328
ldr_xattach function, 1-329, 1-330
ldr_xdetach function, 1-331, 1-332
ldr_xentry function, 1-333, 1-334
ldr_xload function, 1-335, 1-337
ldr_xlookup_package function, 1-

338, 1-339
ldr_xunload function, 1-340, 1-341
lfind function, 1-358, 1-359
lgamma function, 1-196, 1-197
libPW, 1-342
limits, for users, 1-899
linear search, of table, 1-358
link

creating, 1-345
decrementing count, 1-908
making symbolic link to a

file, 1-770
providing information about

symbolic links, 1-752
reading from symbolic,

1-588
removing directory entry,
1-908

link function, 1-345, 1-346
listen, 1-814
listen function, 1-347, 1-348
loaded module

returning entry point for,
1-317

loader

Index

returning entry point for in
another process,
1-333

returning information about,
1-318

returning next for a process,
1-326

returning region information
for, 1-320

unloading in another
process, 1-340

attaching to another process,
1-329

defined external names for
program locations,
3-4

detaching from an attached
process, 1-331

executing a file with, 1-142
installing module, 1-322
loading module, 1-349
loading module in another

process, 1-335
returning address of symbol

name in another
process package,
1-338

returning address of symbol
name in a package,
1-324

returning a module from
process package
table, 1-328

returning entry point for
loaded module, 1-317

returning entry point for
loaded module in
another process,
1-333

lndex-15

OSF/1 Programmer's Reference

returning information about
loaded module, 1-318

returning next module ID
for a process, 1-326

returning region information
for loaded module,
1-320

unloading a module, 1-910
unloading module in another

process, 1-340
loader module

installing, 1-322
loading, 1-349
loading in another process,

1-335
removing from process

package table, 1-328
load function, 1-349, 1-350
locale

convention tables, 2-15
setting and querying, 1-672

localeconv function, 1-351, 1-354
localeconv_r function, 1-351,

1-354
locale-dependent parameters,

1-351
localtime function, 1-83, 1-88
localtime_r function, 1-83, 1-88
lock

advisory on a file, 1-164
setting or removing on a file,
1-164

lockf function, 1-355, 1-357
locking mutexes for threads, 1-530,

1-532
lockit function, 1-342, 1-344
locks

lndex-16

enforced versus arbitrary,
1-355

on process' text and/or data
segments in memory,
1-469

on sections of an open file,
1-355

read versus write, 1-355
shared and exclusive on a

file, 1-155
logarithm functions, 1-148
log function, 1-148, 1-150
loglO function, 1-148, 1-150
Logical Volume Manager, 2-35
login name, returning and setting,

1-235
logname function, 1-342, 1-344
lo interface, 2-34
long byte quantities, placing in

byte stream, 1-559
long integer

converting to host-byte
order, 1-445

converting to network-byte
order, 1-297

longjmp function, 1-670, 1-671
loopback network interface, 2-34
lrand48 function, 1-121, 1-124
!search function, 1-358, 1-359
lseek function, 1-360, 1-361
lstat function, 1-752, 1-753
lvm, Logical Volume Manager, 2-

35, 2-55
LVM_ACTIVATEVM command,

2-36
LVM_ATTACHPV command, 2-37
LVM_CHANGELV command,

2-37
LVM_CHANGEPV command,

2-37

LVM_CREATELV command, 2-38
LVM_CREATEVG command, 2-38
LVM_DEACTIVATEVG

command, 2-39
LVM_DELETELV command, 2-39
LVM_DELETEPV command, 2-39
LVM_EXTENDLV command, 2-39
LVM_INSTALLPV command,

2-40
LVM_OPTIONGET command,

2-40
LYM QUERYLV command, 2-41
LVM_QUERYLVMAP command,

2-41
LVM_QUERYPV command, 2-42
LVM_QUERYPVMAP command,

2-42
LVM_QUERYPVPATH command,

2-43
LVM_QUERYPVS command, 2-43
LVM_QUERYVG command, 2-43
LVM_REALLOCLV command,

2-44
LVM_REDUCELV command, 2-44
LVM_REMOVEPV command,

2-44
LVM_RESYNCLV command, 2-45
LVM_RESYNCLX command, 2-45
LVM_RESYNCPV command, 2-45
LVM_SETVGID command, 2-45

M
madd function, 1-402, 1-405

Index

madvise function, 1-362, 1-363
mallinfo function, 1-364, 1-367
malloc function, 1-364, 1-367
mallopt function, 1-364, 1-367
management, 1-827
managing binary search trees,

1-893
managing signals, 1-726
manipulating strings, 1-760
mapped file

changing access modes,
1-406

initializing semaphore in,
1-409

synchronizing, 1-428
unmapping, 1-430
writing changes to disk,
1-428

mask, setting and getting value of
for file, 1-901

mathematical functions, 1-739,
1-742

mblen function, 1-368, 1-369
mbstowcs function, 1-370, 1-371
mbtowc function, 1-372, 1-373
mcmp function, 1-402, 1-405
mdiv function, 1-402, 1-405
memccpy function, 1-374, 1-377
memchr function, 1-374, 1-377
memcmp function, 1-374, 1-377
memcpy function, 1-374, 1-377
memmove function, 1-374, 1-377
memory, 1-786

allocating, 1-364
allocating space for an

array, 1-364
changing size of allocated,

1-364
free, 1-805

lndex-17

OSF/1 Programmer's Reference

freeing, 1-364
tuning allocation algorithm,
1-364

memory allocator functions, 1-364,
1-367

memory area, manipulating strings
in, 1-374

memory image, 2-3
memory operations, 1-374, 1-377
memory region, checking validity

of, 1-432
memset function, 1-374, 1-377
message

receiving from a message
queue, 1-422

retrieving from message
catalog, 1-51

sending to a message queue,
1-425

message catalog
closing, 1-49
opening, 1-53
retrieving a message from,
1-51

message queue
creating, 1-420
performing control

operations on, 1-417
receiving a message from,

1-422
removing, 1-417
returning the ID for, 1-420
sending a message to, 1-425

messages

lndex-18

for function errors, 1-466
receiving from connected or

unconnected sockets,
1-598

receiving from connected
sockets, 1-593

receiving from unconnected
sockets, 1-595

sending messages using a
message structure,
1-655

sending through connected
sockets, 1-653

sending through
unconnected sockets,

1-657
m_in function, 1-402, 1-405
min function, 1-402, 1-405
mkdir function, 1-378, 1-380
mkfifo function, 1-381, 1-382
mknod function, 1-383, 1-385
mkstemp function, 1-386, 1-387
mktemp function, 1-386, 1-387
mktime function, 1-83, 1-88
mktimer function, 1-388, 1-389
mmap function, 1-390, 1-394
modf function, 1-181, 1-183
module, unloading, 1-910
mount function, 1-395, 1-399, 1-

400, 1-401
mount points, remote', 2-18
m_out function, 1-402, 1-405
mout function, 1-402, 1-405
move function, 1-342, 1-344, 1-

402, 1-405
mprotect function, 1-406, 1-408
mrand48 function, 1-121, 1-124
msem_init function, 1-409, 1-410
msem_lock function, 1-411, 1-412
msem_remove function, 1-413,

1-414
msem_unlock function, 1-415,

1-416

msgctl function, 1-417, 1-419
msgget function, 1-420, 1-421
msgrcv function, 1-422, 1-424
msgsnd function, 1-425, 1-427
msqid_ds, 2-56
msqrt function, 1-402, 1-405
msub function, 1-402, 1-405
msync function, 1-428, 1-429
mult function, 1-402, 1-405
multibyte character, converting

from wide, 1-930
multibyte character string,

converting from wide, 1-928
munmap function, 1-430, 1-431
mutex attribute object

creating, 1-536
deleting, 1-538

mvalid function, 1-432, 1-433

N
name, terminal, 1-896
name servers

querying, 1-618
query messages for, 1-615

NaN, checking, 1-312
national language, returning

information about, 1-441
ndbm library, 1-434, 1-436
neg function, 1-437
netintro, 2-58, 2-63
network address

converting dot-formatted
string to integer,
1-305

converting integer form to
host (local) address,
1-302

Index

converting integer to dot­
formatted string,
1-306

converting multipart, 1-303
converting string form to

integer, 1-301
converting to byte-ordered

address integer,
1-303

converting to network
address component,

1-304
network-byte order

converting long integer, 1-
297, 1-445

converting short integer, 1-
298, 1-446

network entry
returning by address, 1-239
returning by name, 1-241

network file, opening and
rewinding, 1-676

networking
getstate, 1-812
introduction to, 2-58
rcvrel, 1-842
sndrel, 1-858
sync, 1-863
t_accept, 1-782
t_alloc, 1-786
t_bind, 1-790
t_close, 1-795
t_connect, 1-797
t_error, 1-803
t_free, 1-805
t_getinfo, 1-808
t_listen, 1-814
t_look, 1-818
t_open, 1-822

lndex-19

OSF/1 Programmer's Reference

t_optmgmt, 1-827
t_rcvconnect, 1-834
t_rcvdis, 1-838
t_rcvudata, 1-844
t_rcvuderr, 1-848
t_snd, 1-851
t_snddis, 1-855
t_sndudata, 1-860
t_unbind, 1-866

networking", t_rcv, 1-831
networks

loopback interface, 2-34
software interface, 2-66

networks file
closing, 1-131
opening, 1-243
reading next line, 1-243
searching by address, 1-239
searching by name, 1-241

nextkey function, 1-109, 1-110
NFS

creating a remote server,
1-438

creating local asynchronous
1/0 server, 1-32

nfssvc function, 1-438
nice function, 1-439, 1-440
nl_langinfo function, 1-441, 1-442
nl_langinfo_r function, 1-441,

1-442
nonlocal goto, 1-716

setting jump point, 1-729
nrand48 function, 1-121, 1-124
ns, Xerox Network Systems

protocol family, 2-64, 2-65
NS address

lndex-20

converting character strings
to binary, 1-443

converting to ASCII, 1-443
ns_addr function, 1-443, 1-444
nsip interface, 2-66
ns_ntoa function, 1-443, 1-444
ntohl function, 1-445
ntohs function, 1-446
NULL, 1-33
null, 2-67
null character, 1-33, 1-36

0
object file format, converting

osf_rose header, 1-111,
1-128

omin function, 1-402, 1-405
omout function, 1-402, 1-405
opendir function, 1-453, 1-457
open function, 1-447, 1-452
opening a network file, 1-676
opening a pipe to a process, 1-474
openlog function, 1-776, 1-779
operations on directories, 1-453
operations on strings, 1-760
operations on wide character

strings, 1-941
optarg, external variable, 1-244
OSF/ROSE, 2-68
osf_rose

converting header from
canonical to readable
form, 1-111

converting header from
readable to canonical

output
form, 1-128

completing, 1-868
flushing, 1-872
formatting, 1-937
formatting parameters,

1-921
printing and formatting,
1-476

output stream, writing characters
to, 1-913

owner, changing for a file, 1-65

p
package

returning address of symbol
name in, 1-324

returning address of symbol
name in another
process, 1-338

packet forwarding database, 2-104
page size, system versus hardware,

1-246
paging

adding device for
interleaved paging,
1-768

expected behavior for a
process, 1-362

parameters
formatting for output, 1-921
locale-dependent, 1-351
variable length, 1-918

Index

parameters, terminal, setting, 1-880
parent process ID, returning, 1-251
passwd, password files, 2-96, 2-97
password, reading, 1-247
pathconf function, 1-458, 1-461
patoi function, 1-342, 1-344
patol function, 1-342, 1-344
pause function, 1-462, 1-463
pclose function, 1-464, 1-465
peer name, returning for a socket,

1-249
permission, changing for a file,

1-61
perror function, 1-466
physical volumes, 2-35
pipe, 1-464, 1-474

creating, 1-467
pipe function, 1-467, 1-468
plock function, 1-469, 1-470
poll function, 1-471, 1-473
popen function, 1-474, 1-475
power function, 1-148
pow function, 1-148, 1-150, 1-402,

1-405
printf function, 1-4 7 6, 1-482
printing formmated output, 1-937
printing output, 1-476
process

accounting, 1-23
advising the system of

paging behavior,
1-362

allocating timers for, 1-388
attaching shared memory

region, 1-696
changing scheduling

priority, 1-439
cleanup on exit, 1-145
clearing environment, 1-70

lndex-21

OSF/1 Programmer's Reference

lndex-22

closing a pipe to, 1-464
creating a session, 1-689
creating via fork, 1-176
descriptor table size, 1-210
effective user ID, 1-287
examining and changing

actions, 1-706, 1-734
examining and changing

signal mask, 1-721
exiting, 1-145
forking, 1-176
generating signal to end,

1-16
group ID, 1-882
ID group, 1-876
locking text and/or data

segments in memory,
1-469

opening a pipe to, 1-474
pathname for controlling

terminal, 1-81
performing shared memory

control operations,
1-699

real user ID, 1-287
receiving signals, 1-706,

1-734
replacing signal mask, 1-732
restoring processor state,

1-724
return associated username,

1-107
returning and setting

scheduling priority,
1-252

returning CPU time used,
1-72

returning group ID, 1-251
returning ID, 1-251

returning ID of next ioaded
module, 1-326

returning parent process ID,
1-251

returning real and effective
group IDs, 1-218

returning r~source
utilization for, 1-265

returning supplementary
group set, 1-222

returning the effective user
ID, 1-287

returning the real user ID,
1-287

sending a signal to, 1-315
setting concurrent group set

for current, 1-307
setting grotip ID, 1-677,

1-684
setting ID, 1-689
setting real and effective

group ID, 1-682
setting real and effective

user ID's, 1-683
setting real, effective, and

saved set group ID,
1-664

setting real, effective, and
save set user ID,
1-694

setting the group access list,
1-666

setting user ID, 1-686
suspending, 1-462, 1-923,

1-932
suspending execution, 1-

732, 1-744, 1-914
terminating, 1-145
tracing execution of a child

process, 1-551

unloading specified module,
1-915

waiting for caught signals,
1-923

process group
returning and setting

scheduling priority,
1-252

sending a signal to, 1-315
process ID, returning, 1-251
process image

current, 1-136, 1-142
new, 1-136, 1-142

processor, halting, 1-590
process timer, 1-606

freeing, 1-625
profil function, 1-483, 1-484
profiling, starting and stopping,

1-483
Programmers Workbench Library,

1-342, 1-344
protocol, 1-808

connection, 1-808
endpoint, 1-822
supporting sockets, 1-7 45

protocol entry
retrieving, 1-258
returning by name, 1-254
returning by number, 1-256

protocols
ICMP, 2-25
IDP, 2-27
IP, 2-30, 2-32
NS, 2-64
SPP, 2-118
TCP, 2-125
UDP, 2-165

protocols file
closing, 1-132

opening, 1-258
reading, 1-258

Index

searching by name, 1-254
searching by number, 1-256
setting and rewinding, 1-679

protocols name database, 2-98
pseudo-random numbers, generator

functions, 1-121, 1-124
pseudo terminal driver, 2-99
pthread_attr_create function, 1-

485, 1-486
pthread_attr_delete function, 1-487
pthread_attr_getstacksize function,

1-488, 1-489
pthread_attr_setstacksize function,

1-490, 1-491
pthread_cancel function, 1-492,

1-493
pthread_cleanup_pop function, 1-

494, 1-495
pthread_cleanup_push function, 1-

496, 1-497
pthread_condattr_create function,

1-510, 1-511
pthread_condattr_delete function,

1-512, 1-513
pthread_cond_broadcast function,

1-498, 1-499
pthread_cond_destroy function, 1-

500, 1-501
pthread_cond_init function, 1-502,

1-503
pthread_cond_signal function, 1-

504, 1-505
pthread_cond_timedwait function,

1-506, 1-507
pthread_cond_ wait function, 1-

lndex-23

OSF/1 Programmer's Reference

508, 1-509
pthread_create function, 1-514,

1-515
pthread_detach function, 1-516,

1-517
pthread_equal function, 1-518
pthread_exit function, 1-519
pthread_getspeci fie function, 1-

520, 1-521
pthreadjoin function, 1-522, 1-523
pthread_keycreate function, 1-524,

1-525
pthread_mutexattr_create function,

1-536, 1-537
pthread_mutexattr_delete function,

1-538
pthread_mutex_destroy function,

1-526, 1-527
pthread_mutex_init function, 1-

528, 1-529
pthread_mutex_lock function, 1-

530, 1-531
pthread_mutex_trylock function,

1-532, 1-533
pthread_mutex_unlock function,

1-534, 1-535
pthread_once function, 1-539,

1-540
pthread_self function, 1-541
pthread_setasynccancel function,

1-542, 1-544
pthread_setcancel function, 1-545,

1-546
pthread_setspeci fie function, 1-

547, 1-548
pthread_testcancel function, 1-549
pthread_yield function, 1-550

lndex-24

ptrace function, 1-551, 1-554
pty, pseudo terminal driver, 2-99,

2-101
pushing a routine onto the cleanup

stack, 1-496
pushing character back into input,

1-906
putc function, 1-555, 1-557
putchar function, 1-555, 1-557
putenv function, 1-558
putlong function, 1-559
putpwent function, 1-259, 1-261
puts function, 1-560, 1-561
putshort function, 1-562, 1-563
pututline function, 1-289, 1-291
putwc function, 1-564, 1-565
putwchar function, 1-564, 1-565
putw function, 1-555, 1-557
putws function, 1-566, 1-567

Q
qsort function, 1-568, 1-569
querying locale, 1-672
querying name servers, 1-618
query messages for name servers,

queue
1-615

inserting element in, 1-309
removing element from,
1-309

quotactl function, 1-570, 1-572

R
raise function, 1-573
rand function, 1-574, 1-576
random function, 1-577, 1-579
random numbers, generating, 1-

574, 1-577
rand_r function, 1-574, 1-576
rcmd function, 1-580, 1-581
rcvrel, 1-842
rcvudata, 1-844
readdir function, 1-453, 1-457
read function, 1-584, 1-587
readlink function, 1-588, 1-589
readv function, 1-584, 1-587
read-write offset, moving for a file,

1-360
realloc function, 1-364, 1-367
reboot function, 1-590, 1-592
receive

connection, 1-834
data, 1-831
data error, 1-848

re_comp function, 1-582, 1-583
recvfrom function, 1-595, 1-597
recv function, 1-593, 1-594
recvmsg function, 1-598, 1-600
re_exec function, 1-582, 1-583
regular expressions, 1-582, 1-601
release, 1-858
reltimer function, 1-606, 1-607
remote host, executing commands

on, 1-580, 1-620
remote mount points, 2-18
remote server, creating in NFS,

1-438
remove function, 1-608, 1-609

removing a file, 1-608
removing routines from the

Index

cleanup stack, 1-494
remque function, 1-309
rename function, 1-610, 1-612
repeat function, 1-342, 1-344
repl function, 1-342, 1-344
res_init function, 1-613, 1-614
res_rnkquery function, 1-615,

1-617
resolver configuration file, 2-102,

2-103
resource utilization, returning

information on, 1-265
res_send function, 1-618, 1-619
restoring execution context, 1-670
retrieving sockets, 1-626
retrieving terminal name, 1-896
retrieving values of system

variables, 1-77 4
rewinddir function, 1-453, 1-457
rewind function, 1-184, 1-187
rewinding a network file, 1-676
rewinding the protocols file, 1-679
rexec function, 1-620, 1-622
rint function, 1-168, 1-170
rmdir function, 1-623, 1-624
rmtimer function, 1-625
root directory, changing effective,

1-68
route database, 2-104, 2-105
rpow function, 1-402, 1-405
rresvport function, 1-626, 1-627
ruserok function, 1-628, 1-629

lndex-25

OSF/1 Programmer's Reference

s
satoi function, 1-342, 1-344
saving execution context, 1-670
sbrk function, 1-45, 1-46
scandir function, 1-630, 1-631
scanf function, 1-632, 1-637
scanning directory contents, 1-630
scheduler on threads, 1-550
scheduling priority

returning and setting, 1-252
setting, 1-439

sdiv function, 1-402, 1-405
searching for default domain name,

1-613
searching for Internet address,

1-613
search trees, 1-893
seed48 function, 1-121, 1-124
seekdir function, 1-453, 1-457
select function, 1-638, 1-641
semaphore

initializing in mapped file,
1-409

initializing in shared
memory region,
1-409

locking binary, 1-411
removing binary, 1-413
unlocking binary, 1-415

semaphores
performing control

operations on, 1-642
performing operations on,
1-649

semaphore set

lndex-26

creating, 1-646
performing operations on,

1-649

removing, 1-642
returning the ID for, 1-646

semctl function, 1-642, 1-645
semget function, 1-646, 1-648
sernid_ds, 2-106
semop function, 1-649, 1-652
send

data, 1-851
data unit, 1-860
release, 1-858

send disconnect, 1-855
send function, 1-653, 1-654
sending signals, 1-573
sendmsg function, 1-655, 1-656
sendto function, 1-657, 1-659
sequence, collating, 2-4
server, authenticating clients,

1-628
service entry

returning by name, 1-269
returning by port, 1-271

service file entry, 1-688
services, service name database,

2-109
services file

closing, 1-133
opening, 1-273
reading next line, 1-273
searching by name, 1-269
searching by port, 1-271

session, creating a new one, 1-689
setbuffer function, 1-660, 1-661
setbuf function, 1-660, 1-661
setclock function, 1-662, 1-663
setegid function, 1-684, 1-685
seteuid function, 1-686, 1-687
setfsent function, 1-214, 1-215

setgid function, 1-664, 1-665
setgrent function, 1-219, 1-221
setgroups function, 1-666, 1-667
sethostent function, 1-228, 1-229
sethostid function, 1-668
sethostname function, 1-669
setitimer function, 1-232, 1-234
setjmp function, 1-670, 1-671
setlinebuf ful1ction, 1-660, 1-661
setlocale function, 1-672, 1-675
setlocale_r function, 1-672, 1-675
setlogin function, 1-235, 1-236
setlogmask function, 1-77 6, 1-779
setnetent function, 1-676
setpgid function, 1-677, 1-678
setpgrp function, 1-677, 1-678
setpriority function, 1-252, 1-253
setprotoent function, 1-679
setpwent function, 1-259, 1-261
setquota function, 1-680, 1-681
setregid function, 1-682
setreuid function, 1-683
setrgid function, 1-684, 1-685
setrlimit function, 1-262, 1-264
setruid function, 1-686, 1-687
setservent function, 1-688
setsid function, 1-689
setsig function, 1-342, 1-344
setsig 1 function, 1-342, 1-344
setsockopt function, 1-690, 1-693
setstate function, 1-577, 1-579
settimeofday function, 1-283,

1-284
setting environment variables,

1-558
setting group ID, 1-684
setting locale, 1-672

Index

setting process group ID, 1-882
setting system clock, 1-662
setting terminal parameters, 1-880
setting the protocols file, 1-679
setting the system clock, 1-7 56
setting user ID, 1-686
setting user limits, 1-899
setuid function, 1-694, 1-695
setusershell function, 1-288
setutent function, 1-289, 1-291
setvbuf function, 1-660, 1-661
shared library, executing a file with

loader, 1-142
shared memory

attaching, 1-696
control operations, 1-699
detaching, 1-701
ID, 1-702
performing control

operations, 1-699
returning and creating ID,
1-702

shared memory region
changing access modes,

1-406
initializing semaphore in,

1-409
unmapping, 1-430

shell commands, executing, 1-780
shell database, 2-110
shells file

closing, 1-288
reading, 1-288
rewinding, 1-288

shmat function, 1-696, 1-698
shmctl function, 1-699, 1-700
shmdt function, 1-701

lndex-27

OSF/1 Programmer's Reference

shmget function, 1-702, 1-704
shmid_ds, 2-111
short byte quantities, placing in

byte stream, 1-562
short integer

converting to host-byte
order, 1-446

converting to network-byte
order, 1-298

shutdown function, 1-705
SIGABRT, 1-16
sigaction function, 1-706, 1-709
sigaddset function, 1-711, 1-713
sigblock function, 1-710
sigdelset function, 1-711, 1-713
sigemptyset function, 1-711, 1-713
sigfillset function, 1-711, 1-713
sighold function, 1-726, 1-728
sigignore function, 1-726, 1-728
siginterrupt function, 1-714, 1-715
sigismember function, 1-711, 1-713
siglongjmp function, 1-716, 1-717
signal

lndex-28

adding to set of blocked
signals, 1-710

atomically changing set of
blocked signals,
1-732

blocked, 1-710, 1-720, 1-721
defining alternate stacks,

1-730
examining pending, 1-720
returning from, 1-724
sending to a process or

process group, 1-315
setting and getting stack

context, 1-730
setting mask, 1-721
suspending process

execution, 1-732

taking action upon receipt,
1-706, 1-734

to abort current process,
1-16

signal file, 2-113, 2-117
signal function, 1-706, 1-709
signal handling for nonlocal goto,

1-716
signal management, compatibility

interfaces, 1-726
signal masks, creating and

manipulating, 1-711
signals

blocking, 1-718
interrupting functions, 1-714
sending, 1-573

sigpause function, 1-718, 1-719
sigpending function, 1-720
sigprocmask function, 1-721, 1-723
sigrelse function, 1-726, 1-728
sigreturn function, 1-724, 1-725
sigset function, 1-726, 1-728
sigsetjmp function, 1-729
sigsetmask function, 1-721, 1-723
sigstack function, 1-730, 1-731
sigsuspend function, 1-732, 1-733
sigvec function, 1-734, 1-736
sigwait function, 1-737, 1-738
sin function, 1-739, 1-741
sinh function, 1-742, 1-743
sleep function, 1-744
sname function, 1-342, 1-344
sndrel, 1-858
socket

accepting a connection, 1-19
binding a name, 1-43
controlling socket

communication,
1-690

creating, 1-7 45
creating a connected pair,

1-748
creating by accepting a

connection, 1-19
creating end points, 1-745
disabling receive and send

operations, 1-705
establishing a connection,

1-75
inherited, 1-277
inherited by a process, 1-249
listening for connections,

1-347
locally bound address, 1-277
name, 1-43
options on, 1-279
receive and send operations,

1-705
receiving messages from

connected, 1-593
receiving messages from

connected or
unconnected, 1-598

receiving messages from
unconnected, 1-595

retrieving, 1-626
returning name, 1-277
returning options on, 1-279
returning peer name, 1-249
sending messages through

connected, 1-653
seriding messages through

unconnected, 1-657
sending messages using a

message structure,
1-655

Index

setting options, 1-690
socket function, 1-745, 1-747
socketpair, creating, 1-7 48
socketpair function, 1-7 48, 1-7 49
sockets, 2-25, 2-58, 2-118, 2-125,

2-165
sorting directory contents, 1-630
sorting tables, 1-568
special file, creating, 1-383
spp, Xerox Sequenced Packet

protocol, 2-118, 2-119
sprintf function, 1-476, 1-482
sqrt function, 1-750, 1-751
square root function, 1-7 50
srand function, 1-574, 1-576
srand48 function, 1-121, 1-124
srandom function, 1-577, 1-579
sscanf function, 1-632, 1-637
stab file, 2-120, 2-122
stack

defining alternates, 1-730
setting and getting context,
1-730

stack size attribute
finding value of, 1-488
setting value of, 1-490

standard IO functions, 1-555
statfs function, 1-754, 1-755
stat function, 1-752, 1-753
status, controlling for a file, 1-155
stderr file descriptor, 2-20
stdin file descriptor, 2-20
stdlib.h, 1-17
stdout file descriptor, 2-20
step function, 1-601, 1-605
stime function, 1-756
store function, 1-109, 1-110

lndex-29

OSF/1 Programmer's Reference

strcat function, 1-760, 1-766
strchr function, 1-760, 1-766
strcmp function, 1-760, 1-766
strcoll function, 1-760, 1-766
strcpy function, 1-760, 1-766
strcspn function, 1-760, 1-766
strdup function, 1-760, 1-766
stream

clearing errors, 1-71
closing, 1-152
flushing, 1-152
getting a string from, 1-294
getting a string from stdin,

1-267
locking stdio, 1-167
mapping pointer to file

descriptor, 1-163
opening, 1-171
performing binary

input/output, 1-179
returning file pointer for,

1-184
setting file pointer for, 1-184
testing EOF on, 1-161
testing error indicator on,

1-162
unlocking stdio, 1-195

strend function, 1-342, 1-344
strerror function, 1-760, 1-766
strftime function, 1-757, 1-759
string

converting character to
floating point, 1-33

converting character to
integer, 1-35

getting from a stream, 1-
267, 1-294

string conversion

lndex-30

character to floating point,
1-33

character to integer, 1-35
string manipulation, 1-760
string operations, 1-760
strings

manipulating in memory
area, 1-374

writing out, 1-560
strlen function, 1-760, 1-766
strncat function, 1-760, 1-766
strncmp function, 1-760; 1-766
strpbrk function, 1-760, 1-766
strrchr function, 1-760, 1-766
strspn function, 1-760, .1-766
strstr function, 1-760, 1-766
strtod function, 1-33, 1-34
strtok function, 1-760, 1-766
strtok_r function, 1-760, 1-766
strtol function, 1-35, 1-36, 1-38
strtoul function, 1-35, 1-38
structures, synchronize, 1-863
strxfrm function, 1-760, 1-766
substr function, 1~342, 1-344
suspending a process, 1-462
suspending process execution, 1-

744, 1-914
suspending threads, 1-737
swab function, 1-767
swapon function, 1-768, 1-769
swapping, adding device for, 1-768
swapping bytes, 1-767
symbolic link, reading from, 1-588
symbol name

returning address in another
process package,
1-338

returning address in
package, 1-324

symbol table types, 2-120
symlink function, 1-770, 1-772
sync, 1-863
sync function, 1-773
synchronize, library, 1-863
sysconf function, 1-77 4, 1-77 5
syslog function, 1-776, 1-779
system

getting name of, 1-904
identifying, 1-904
rebooting, 1-590

system address space, returning
configuration of, 1-198

system clock
getting time, 1-884
returning current value, 1-

203, 1-285
setting, 1-662, 1-7 56
synchronization, 1-25
times of process and child

process, 1-885
system function, 1-780, 1-781
system log, 1-776
system page size, returning, 1-246
system resources, returning and

setting limits for, 1-262
system time

adjusting, 1-25
returning and setting, 1-283

system timezone, returning and
setting, 1-283

system variables, retrieving values
of, 1-774

Index

T
table

performing linear search and
update, 1-358

sorting, 1-568
tables, collating, 2-4
t_accept function, 1-782, 1-785
t_alloc function, 1-786, 1-789
tan function, 1-739, 1-741
tanh function, 1-742, 1-743
t_bind function, 1-790, 1-794
tcdrain function, 1-868, 1-869
tcflow function, 1-870, 1-871
tcflush function, 1-872, 1-873
tcgetattr function, 1-87 4, 1-87 5
tcgetpgpr function, 1-876, 1-877
t_close function, 1-795, 1-796
t_connect function, 1-797, 1-802
tcp, Transmission Control Protocol,

2-125, 2-126
tcsendbreak function, 1-878, 1-879
tcsetattr function, 1-880, 1-881
tcsetpgrp function, 1-882, 1-883
tdelete function, 1-893, 1-895
telldir function, 1-453, 1-457
tempnam function, 1-888, 1-889
temporary file

creating, 1-887
name, 1-888

terminal drivers, 2-151
terminal interface, 2-139, 2-151
terminal name, 1-896
terminal parameters, 1-87 4

setting, 1-880
terminals, capabilities of, 2-127
terminating threads, 1-492, 1-519,

1-522

lndex-31

OSF/1 Programmer's Reference

terminfo file, 2-127, 2-138
termios file, 2-139
t_error function, 1-803, 1-804
tfind function, 1-893, 1-895
t_free function, 1-805, 1-807
t_getinfo function, 1-808, 1-811
t_getstate function, 1-812, 1-813
thread

lndex-32

asynchronous cancelability
of, 1-542

binding value to a key,
1-547

calling initializing routine,
1-539

cleanup stack
adding a routine onto,

1-496
removing a routine

from, 1-494
comparing identifiers, 1-518
creating, 1-514
creating a cancellation

point, 1-549
creating a key, 1-524
creating a mutex, 1-528
creating attributes object,

1-510
creating mutex attribute

object, 1-536
creating variable, 1-502
deleting a mutex, 1-526
deleting attribute objects,

1-512
deleting mutex attribute

object, 1-538
destroying variable, 1-500
detaching, 1-516
general cancelability of,

1-545

ID of, 1-541
locking a mutex, 1-530,

1-532
returning key value, 1-520
scheduler on, 1-550
suspending, 1-737
termination of, 1-492, 1-519
unlocking a mutex, 1-534
waiting for, 1-522
waiting on, 1-506, 1-508
waking up, 1-498, 1-504

thread attribute object
deletion of, 1-487
setting stack size, 1-490

thread attributes object
creation of, 1-485
stack size attribute, 1-488

time conversion, 1-757
time conversion functions, 1-83,

1-88
time function, 1-884
timeout

for interval timers, 1-27
setting and returning for

interval timers, 1-232
timeout intervals for processes,

1-606
timer, allocating per-process, 1-388
timers, 1-625
times function, 1-885, 1-886
times of processes, 1-885
time units

converting to other time
units, 1-83

converting to strings, 1-83
storing for later processing,
1-83

TIOCGWINSZ function, 2-164
TIOCPKT function, 2-99
TIOCREMOTE function, 2-101
TIOCSTART function, 2-99
TIOCSTOP function, 2-99
TIOCSWINSZ function, 2-164
TIOCUCNTL function, 2-100
t_listen function, 1-814, 1-817
t_Iook function, 1-818, 1-821
tmpfile function, 1-887
tmpnam function, 1-888, 1-889
toascii function, 1-78, 1-80
tolower function, 1-78, 1-80
_tolower macro, 1-78, 1-80
t_open function, 1-822, 1-826
t_optmgmt function, 1-827, 1-830
toupper function, 1-78, 1-80
_toupper macro, 1-78, 1-80
tracing of child process execution,

1-551
Transmission Control Protocol,

2-125
transport endpoint, 1-822
transport endpoint"unbind, 1-866
t_rcvconnect function, 1-834,

1-837
t_rcvdis function, 1-838, 1-841
t_rcv function, 1-831, 1-833
t_rcvrel function, 1-842, 1-843
t_rcvudata function, 1-844, 1-84 7
t_rcvuderr function, 1-848, 1-850
trees, binary search, 1-893
trigonometric functions, 1-739
trnslat function, 1-342, 1-344
truncate function, 1-890, 1-892
tsearch function, 1-893, 1-895
t_snddis function, 1-855, 1-857

Index

t_snd function, 1-851, 1-854
t_sndrel function, 1-858, 1-859
t_sndudata function, 1-860, 1-862
t_sync function, 1-863, 1-865
tty interface, 2-151, 2-164
ttyname function, 1-896, 1-897
ttyslot function, 1-898
t_unbind function, 1-866, 1-867
twalk function, 1-893, 1-895
tzset function, 1-83, 1-88

u
ualarm function, 1-27, 1-28
udp, User Datagram Protocol, 2-

165, 2-166
ulimit function, 1-899, 1-900
umask function, 1-901
umount function, 1-395, 1-399, 1-

902, 1-903
uname function, 1-904
unbind, transport endpoint, 1-866
ungetc function, 1-906, 1-907
ungetwc function, 1-906, 1-907
unlink function, 1-908, 1-909
unload function, 1-910, 1-911
unloading modules, 1-910
unlocked_getc function, 1-912
unlocked_getchar function, 1-912
unlocked_putc, 1-913
unlocked_putchar, 1-913
unlocking mutexes for threads,

1-534
unlockit function, 1-342, 1-344
user, returning and setting

lndex-33

OSF/1 Programmer's Reference

scheduling priority, 1-252
user database

accessing basic group
information, 1-219

defined, 1-259
manipulating entry in, 1-259

User Datagram Protocol, 2-165
userdir function, 1-342, 1-344
userexit function, 1-342, 1-344
user ID

real and effective, 1-683
real, effective, and saved set,

1-694
returning effective for a

process, 1-287
returning real for a process,

1-287
setting, 1-686, 1-694
setting real and effective,

1-683
setting real, effective, and

saved set, 1-694
user limits, setting and getting,

1-899
username, return for process, 1-107
username function, 1-342, 1-344
user password, 1-259
user's entry in utmp file, 1-898
user shell, returning name of, 1-288
usleep function, 1-914
ustatfs function, 1-754, 1-755
utime function, 1-915, 1-917
utimes function, 1-915, 1-917
utmp file

lndex-34

changing filename, 1-289
closing, 1-289
opening, 1-289
positioning in, 1-289
reading next entry, 1-289

resetting input stream, 1-289
writing to, 1-289

utmpname function, 1-289, 1-291

v
value, negating, 1-437
values in threads, 1-520
varargs function, 1-918, 1-920
variable length parameters, 1-918
verify function, 1-342, 1-344
vfprintf function, 1-921, 1-922
virtual address, unloading specified

module, 1-915
virtual disks, 2-35
virtual memory

attaching shared memory
region, 1-696

mapping an object into,
1-390

shared memory region,
1-696

vprintf function, 1-921, 1-922
vsprintf function, 1-921, 1-922
vtimes function, 1-265, 1-266

w
wait, 1-16
wait function, 1-923
wait3 function, 1-923

waiting for output, 1-868
waiting on threads, 1-506, 1-508
waitpid, 1-16
waitpid function, 1-923
waking up threads, 1-498, 1-504
wcstombs function, 1-928, 1-929
wctomb function, 1-930, 1-931
wide character, converting to

multibyte, 1-930
wide character string, converting to

multibyte, 1-928
wide character strings, operations

on, 1-941
word, getting from input stream,

1-292
write function, 1-932, 1-936
writev function, 1-932, 1-936
writing out a string, 1-560, 1-566
writing out characters, 1-555
writing out wide characters, 1-564
wsprintf function, 1-937, 1-938
wsscanf flilnction, 1-939, 1-940
wstrcat function, 1-941, 1-944
wstrchr function, 1-941, 1-944
wstrcmp function, 1-941, 1-944
wstrcpy function, 1-941, 1-944
wstrcspn function, 1-941, 1-944
wstrdup function, 1-941, 1-944
wstrlen function, 1-941, 1-944
wstrncat function, 1-941, 1-944
wstrncmp function, 1-941, 1-944
wstrncpy function, 1-941, 1-944
wstrpbrk function, 1-941, 1-944
wstrrchr function, 1-941, 1-944
wstrspn function, 1-941, 1-944
wstrtok function, 1-941, 1-944

Index

x
xalloc function, 1-342, 1-344
xcreat function, 1-342, 1-344
Xerox Internet Protocol, 2-27
Xerox Network Systems Protocol,

2-64
Xerox NS address

converting character strings
to binary, 1-443

converting to ASCII, 1-443
Xerox Sequenced Packet protocol,

2-118
xfreeall function, 1-342, 1-344
xfree function, 1-342, 1-344
xlink function, 1-342, 1-344
xmsg function, 1-342, 1-344
xopen function, 1-342, 1-344
xpipe function, 1-342, 1-344
XTI

error, 1-803
t_accept, 1-782
t_alloc, 1-786
t_bind, 1-790
t_close, 1-795
t_connect, 1-797
t_error, 1-803
t_free, 1-805
t_getinfo, 1-808
t_getstate, 1-812
t_listen, 1-814
t_look, 1-818
t_open, 1-822
t_optmgmt, 1-827
t_rcv, 1-831
t_rcvconnect, 1-834
t_rcvdis, 1-838
t_rcvrel, 1-842
t_rcvudata, 1-844

lndex-35

OSF/1 Programmer's Reference

t_rcvuderr, 1-848
t_snd, 1-851
t_snddis, 1-855
t_sndrel, 1-858
t_sndudata, 1-860
t_sync, 1-863
t_unbind, 1-866

xunlink function, 1-342, 1-344
xwrite function, 1-342, 1-344

y
yO function, 1-41, 1-42
yl function, 1-41, 1-42
yn function, 1-41, 1-42

z
zero function, 1-342, 1-344
zeropad function, 1-342, 1-344

lndex-36

OPEN SOFTWARE FOUNDATION™

INFORMATION REQUEST FORM

Please send to me the following:

() OSF™ Membership Information

() OSF/l'™ License Materials

() OSF/l Training Information

Contact Name

Company Name

Street Address

Mail Stop

City

Phone

Electronic Mail

MAfi,TO:

________ State __ Zip _____ _

________ FAX ________ ~

Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

Attn: OSF/1

For more information about OSF/l call OSF Direct Channels at 617 621 7300.

OSF/lTM

Operating
System

Programmer's Reference

Titles in the OSF 11 Operating System Series

• OSF fl User's Guide

• OSF I 1 Command Reference

• OSF / 1 Programmer's Reference

• OSF / l System and Network Administrator's Reference

• Application Environment Specification (AES)
-Operating System Programming Interfaces Volume

Printed in the U.S.A.

ISBN 0-13-643610-2

Open Software Foundation
11 Cambridge Center
Cambridge, Massachusetts 02142

Prentice-Hall, Inc. I
9 0 0 0 O>

I

9 780136 436102 '

