
ENHANCED ONYX SYSTEM V

ADMINISTRATOR GUIDE VOLUME I

Onyx Systems, Inc.
25 East Trimble Road

San Jose, California 95131
(408) 946-6330

Part Number [805-02667-001]

DISCLOSURES

Copyright ONYX Systems, Inc. 1985

All rights reserved. No part of this publication
may be reproduced without prior written permission.

Request additional copies from:

ONYX Systems, Inc.
25 East Trimble Road
San Jose, California

95131
(408) 946-6330

Part Number: 805-02667-001

UNIX is a trademark of AT&T, Bell Labs.

NOTICES

The information contained in this document is subject
to change without notice.

Onyx Systems, Inc. MAKES NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Onyx Systems
shall not be liable for errors contained herein or for
incidental or consequential damages in connection with
the furnishing, performance or use of this material.

Onyx Systems assumes no responsibility for the use or
reliability of software on equipment that is not
furnished by Onyx Systems.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No
part of this document may be photocopied, reproduced or
translated to another program language without the
prior written consent of Onyx Systems, Inc.

Onyx Systems, Inc. -i- Revised (5/85)

Enhanced ONYX System V

Administrator Guide Volume I

MAIN CONTENTS

CHAPTER 1 : INTRODUCTION

CHAPTER 2 : THE UNIX OPERATING SYSTEM

CHAPTER 3 : INSTALLING A NEW VERSION

CHAPTER 4 : GETTING STARTED

CHAPTER 5 : THE DAILY ROUTINE

CHAPTER 6 : SYSTEM EXPANSION

CHAPTER 7 : HANDLING SYSTEM PROBLEMS

INDEX: PROCEDURES

OF UNIX

Onyx Systems, Inc. -ii- Revised (5/85)

TABLE OF CONTENTS

CHAPTER 1

Intent of this Guide •••••••••••••••••• 1-1

How to use this Guide •••.••••••••••••• 1-1

Description of Topics .•.•••••.•.•••••• 1-2

Related Documentation •..•••••••••••••• 1-5

Duties of the System Administrator •••• 1-5

Setting Up Procedures ..••• ; ••••••••••• 1-7

Onyx Systems, Inc. Revised (5/85)

CHAPTER 1

INTRODUCTION

Intent of this Guide

The Enhanced ONYX System V Administrator Guide is a reference
manual. Its goal is to inform and instruct a UNIX system
administrator on those functions that must be performed to estab­
lish, manage, and ,maintain a UNIX system successfully. This
guide is but one of the resource "tools" available to help the
system administrator in effectively performing this job.

How to use this Guide

This section describes how to use the Enhanced ONYX System V
Administrator Guide.

The guide is divided into topics, each represented by a chapter
with its own table of contents, and a list of illustrations if
applicable. In addition, each chapter has a preface that
describes the topic and the learning goal to be achieved.

All section headings appear in bold type. Sub-section headings.
if any, are underlined.

For example:

This is a Section Heading

This is a Sub-Section Heading

The page numbering format reflects the chapter and page currently
being addressed. (e.g., "1-1:" chapter 1, page 1).

Page "header" information contains the chapter and topic that are
being discussed.

The terms "Caution" and "Warning" refer to important information
that should be noted by the system administrator. Caution is
used to inform the administrator of some special circumstance
relative to the execution of a procedure or a UNIX command.
Warning is used to warn the administrator that failure to follow
a specific procedure or improperly using a specific UNIX command
could result in damage to the system or loss of system data.

Onyx Systems, Inc. 1-1 Revised (5/85)

CHAPTER 1 INTRODUCTION

Where elaboration of a specific topic would extend beyond the
scope of this guide, an explicit reference is made to the docu­
ment which contains the needed additional information.

Procedural instructions are organized in numbered steps, each
followed by the task to perform.

For example:

PROCEDURE: Title

1. Do t his •••

2. Now do this

In those procedures where a command or action is requested to be
performed, the command or action appears in bold type, immedi­
ately followed by the system's response.

For example:

PROCEDURE: Display a file's contents

1. Display the contents of a file.

$ cat [file name] <cr>

[The file's contents are displayed]

$

Locating the Subject

To locate a subject, first look at the main contents page in the
front of this guide, then select the chapter that best fits the
question in mind. Next, advance to that chapter's table of con­
tents and scan its list of subtopics for the one that specifi­
cally applies.

Description of TopiCS

The topics in this guide address what a UNIX system administrator
needs to know and the functions that need to be performed.

Chapter E. "The Ql:U.! Operating System"

This chapter provides a general overview of the major features
and structure of the UNIX system.

Onyx Systems, Inc. 1-2 Revised (5/85)

CHAPTER 1 INTRODUCTION

Among these topics are:

• File system's structure, files, directories

• Logical device structure

• Process control, structure, and memory management

• The user interface

• System accounting, protection and printer spooler

• Communication vehicles and methods

• Enhancements to UNIX

• UNIX system environments

Chapter 1. "Installing A New Version Qi UNIX"

This chapter provides a list of general tasks and considerations
for installing a new version of UNIX on a currently operating
system.

Chapter ~ "Getting Started"

This chapter describes the tasks and considerations for initially
setting up a UNIX system.

They include:

• Transferring data from tape to disk

• Loading the operating system into memory

• Verifying system integrity

• Moving between the various UNIX environments

• Configuring the system

• Backing up and rebuilding the operating system

• Required system accounts and directories

• Starting up and shutting down the system

• Documenting the system

Onyx Systems, Inc. 1-3 Revised (5/85)

CHAPTER 1 INTRODUCTION

Chapter .2. "The Daily Routine"

This ~hapter describes daily management and maintenance of a UNIX
system.

The functions for this are as follows:

• System startup and shutdown

• Data storage resource management

• Saving and restoring user data

• Altering files and directories

• Creating new user accounts

• Managing user processes

• Communicating with the users

• Funning system accounting

• System protection and security

• Handling user problems and resolving system errors

Chapter.§. "System Expansion"

This chapter describes how to add extra or different peripheral
devices such as printers and disk drives to the system.

Chapter I "Handling System Problems"

This chapter describes how to define, isolate, and correct system
probleils.

These topics include:

• System diagnostic tools

• Crash procedures

• Emergency shutdown

• Who to call

Onyx Systems, Inc. 1-4 Revised (5/85)

CHAPTER 1 INTRODUCTION

Related Documentation

The followi~g sources of information will be helpful to the sys­
tem administrator:

• Enhanced ONYX System V USER REFERENCE MANUAL

• Enhanced ONYX System V PROGRAMMER REFERENCE MANUAL

• Enhanced ONYX System V ADMINISTRATOR REFERENCE MANUAL

• ONYX 6810 MICROCOMPUTER SYSTEM USER'S GUIDE for the sys­
tem

• SOFTWARE RELEASE NOTICE

The first three manuals focus primarily on the "command" usage
aspects of a UNIX system.

Periodically, changes are performed to the UNIX system software
to enhance performance or correct some software anomaly. These
changes, and any associated implementation instructions, appear
in a "SOFTWARE RELEASE NOTICE" (SRN). These SRN's contain all
the information necessary to effect the change. Each SRN
thereafter should become a part of this guide.

Duties of the System Administrator

The duties of a System Administrator fall into two general
categories:

• System activity management

• User management

System Activity Management

This category describes daily tasks which ensure continued system
efficiency.

Onyx Systems, Inc. 1-5 Revised (5/85)

CHAPTER 1 INTRODUCTION

These tasks include:

• Starting up the system

• Monitoring system process activity

• Managing the data storage

• Altering system attributes

• Managing system accounting

• Handling system problems

In addition to these functions, the system administrator should
also maintain historical records pertaining to system configura­
tion, system problems, data backups, system usage, and system
security.

User Management

This category can be divided into three main elements:

• Educating users

• Informing users

• Handling user problems

Many problems can be avoided if the user has a basic understand­
ing of how to use the computer. The responsibilty for providing
this knowledge generally rests upon the system administrator.

Some of the areas in which the user should have knowledge
include:

• How to "log" into the system

• How to create, ed it, and print files

• How to "move about" through the fi 1 e system structure

• How to maintain system security

• When and who to ask for help if a problem ar i se s

Users should be kept apprised of changes or events involving the
system which might have an impact on their work. Some of these
events include: reconfiguration of the system, addition of spe­
cial hardware or software features, scheduled maintenance, and
system problems.

Onyx Systems, Inc. 1-6 Revised (5/85)

CHAPTER 1 INTRODUCTION

The UNIX system, as will be Seen in later chapters, provides a
number of ways to accomplish this task easily.

Users can and will, in the course of learning to
UNIX system, "pilot themselves into a black
there is no obvious escape." "Pilot errors," as
called, may involve: improperly exiting from
attempting to access a restricted file, or using
mand syntax.

manipulate the
hole, from which
they are often
an edit session,
incorrect com-

These types of problems are generally easy to solve. However, it
is important for the system administrator to listen to the users'
problems because their interaction with the system is more con­
stant. Users can inform a system administrator of subtle changes
in system performance or actions that might indicate a more seri­
ous underlying problem.

Setting Up Procedures

This section provides certain considerations for setting up a
UNIX system.

First Encounter

Upon receiving the system, the system administrator should verify
that all the items necessary to effect the installation are
present. Onyx provides a "checklist" just for this purpose. All
discrepancies should be noted, and the proper people should be
notified in order to obtain or replace missing or damaged parts.

Familiarization

Before attempting to USe the UNIX operating system, the system
administrator should become acquainted with the various manuals
and documentation provided. Skipping this step can create
unnecessary problems and delays in the installation of the sys­
tem.

If there are any procedures that are not understood, the system
administrator should contact the technical support staff of the
sale organization from whom the system was purchased for help.

Initial System Loading

Upon configuring and activating the system hardware, the system
administrator should perform any tests and diagnostics that may
be suggested by the instructions.

Once satisfied that the hardware is functional, the system
administrator should start transferring the UNIX operating system
from tape to disk.

Onyx Systems, Inc. 1-7 Revised (5/85)

CHAPTER 1 INTRODUCTION

Once the transfer is completed, further tests can be performed to
verify that no errors occurred during this process and that all
the necessary files and directories are intact.

System Configuration Planning

Planning the system configuration involves determining the fol­
lowing:

• The number of user accounts to be installed

• What peripheral communication devices are to be supported

• What other special peripheral devices are to be supported

• Whether or not system accounting will be used

• What system protection and security measures will be used

• Disk file system initialization

• Any other special changes/additions needed to accommodate
specific system requirements

Onyx Systems, Inc. 1-8 Revised (5/85)

TABLE OF CONTENTS

CHAPTER 2

Pre fae e •.•.....••.••••••••. •.••••••••••••• 2~1

UNIX Overview •.•••••••.•••••••••••••••••• 2-1

Major Features ..••.•••.••••••.•.••••••••• 2-2

Printer Resource Scheduling •••••.•••••••• 2-14

System Accounting •••••••••••••••••••• : ••• 2-15

System Protection •••••••••••••••••••••••• 2-16

Communications .•.••.••.•••.•.•••••••••••• 2-18

Onyx Changes and Enhancements to UNIX •••• 2-19

UNIX System Environments ••.••••••.••••••• 2-21

Summary •••••••••••••••••••••••••••••• ~ ••• 2-25

LIST OF ILLUSTRATIONS ---

Logical File System Structure •••••••••••• 2-5

Logical Device Interaction Scheme •••••••• 2-9

Where The Shell Fits In The UNIX System •• 2-13

/

Onyx Systems, Inc. Revised (5/85)

CHAPTER 2

THE UNIX OPERATING SYSTEM

Preface

"This chapter describes the structure and major feature content of
the UNIX operating system. The goal of this chapter is to help
the system administrator achieve a fundamental understanding of
this structure, its features and tools, as they apply to the job
of UNIX system administration.

It should be noted that if you're already familiar with the UNIX
system, then you may want to proceed directly to Chapter 4.

UNIX Overview

The UNIX operating system was born out of the need to have a com­
puting environment in which programmers could comfortably and
effectively pursue their programming research endeavors. This
was" the goal the Computing Science Research Group at Bell Labora­
tories set out to achieve, and did.

UNIX has undergone many changes since that original version in
1968. Over the past seventeen years, it has been enriched in
flexibility and power; and it has grown in popularity, expanding
its followers far beyond the academic sphere of the universities
and firmly into worlds of business and government.

Now that you have an idea of How the UNIX operating system came
into being; let's discuss What the UNIX operating system is.

The UNIX operating system is:

• An INTERACTIVE SYSTEM

• A MULTI-TASKING SYSTEM

• A MULTI-USER SYSTEM

Interactive System

By this it is meant that a user enters commands, and the system
obeys these commands and displays appropriate responses.

Onyx Systems, Inc. 2-1 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

Multi-tasking System

This means that a user can instruct the system to perform a
number of tasks (called "processes") at the same time, freeing
the user to concentrate on a new set of tasks.

Multi-user System

This attribute allows more than one user to use the system at the
same time. It comes as a natural consequence of the "multi­
tasking" system just described: the system can attend just as
easily to multiple users at the same time as it can to multiple
processes at the same time.

The Major Parts of UNIX

The UNIX operating system, though complex in appearance, can be
divided into three major parts: the Kernel, the File System, and
the Shell.

The Kernel manages all device resources of the system such as the
disk drive, tape drive, terminals, communication lines and any
other devices.

The File System provides organization for the data that will be
created by users and stored on disk or tape.

The Shell makes UNIX an interactive system. The shell listens and
interprets the commands a user enters from a terminal.

In UNIX, a command is often called a "utility" because it per­
forms a useful set of tasks for a user. Concurrently, the term
"utilities" refers to all the UNIX commands collectively. These
terms appear often throughout this guide.

Major Features

The following text provides a conceptual look at the major attri­
butes of the UNIX system.

File Systems

A file system represents an allocated area of disk storage for
which its size and boundaries have been established. Under nor­
mal operation, a system's disk storage may be partitioned into
many file systems. This is desirable because UNIX treats each
file system and the contents therein as a separate entity, capa­
ble of being "removed" from the system (transferred between tape
and disk) without disturbing any other file system or its con­
tents.

Onyx Systems. Inc. 2-2 Revised (S/8S)

CHAPTER 2 OPERATING SYSTEM

However, the desirability of this feature does not come without
some restrictions:

• File system contents cannot be truncated
file system •

into another

• File systems cannot bridge between physical disk drives.

File systems within the UNIX system are accessed through an
assigned directory "name" (e.g., F1, F2 etc.).

Figure 2-1, "Logical File System Structure," illustrates the
various components involved, and shows their relative order of
occurrence within a file system.

Let's briefly explain the function each of these components
serves.

The Boot Block is the very first block (block 0) of a file sys­
tem. It is where the information needed to "bootstrap" a UNIX
system would be put. In general, this bootstrap information
exists only in one file system of a UNIX system. Therefore, the
boot block for the other file systems has no real significance.

The Super-Block (block 1) of every file system contains the major
pieces of information about that file system such as its size in
blocks, the file system name, number of blocks reserved for i­
nodes, the free i-node list and the start of the chain of free
blocks (those blocks that are available for use).

"What is an i-node?" An i-node is an object which contains infor­
mation that describes a file on the UNIX system. Therefore,
every file on the system will have an associated i-node. In the
UNIX system, i-nodes are represented by a number.

The number of i-node blocks depends upon the total number of
blocks established by a file system.

Along with the descriptive information, each i-node contains
"pOinters" to the location of the blocks that comprise that file.
These pointers are very important because in writing data to the
disk, the disk will attempt to place the data contiguously (next
to each other); however, if it cannot do so, it will place the
data wherever it can find a free space within that file system.
Without these pOinters a file could never be reassembled.

Note: each "logical" block reported by the UNIX system utilities
is 512 bytes in size; however, "physical" blocks (disk) are 1024
bytes in size.

Onyx Systems, Inc. 2-3 Revised (5/8S)

CHAPTER 2 OPERATING SYSTEM

When UNIX is install~d on the Onyx computer system, four file
systems are initially configured.

The four file systems are:

• cOdOsO the reserved area

• cOdOs1 the "root"

• cOdOs2 the "swap" device

• cOdOs3 the "usr"

The cOdOsO or reserved area file system is 1188 blocks in size
and contains the system bootup data and disk configuration infor­
mation.

ThecOdOsi or root file system is 8,000 blocks in size and is
where UNIX resides.

The cOdOs2 or swap device file system is 3,000 blocks in size and
serves as the temporary storage space for process data that is
"swapped-out" during system operation.

The cOdOs3 or usr file system contains all additional user com­
mands and their libraries.

Files and Directories

Within the UNIX scheme of data organization, two more instruments
are employed to control and define this orgariization further:
files and directories.

A file can be thought of as a "box" in which data is placed, and
then labeled with a "filename." The most important part of this
box is its filename because it is through the reference of this
filename that you can address and manipulate the data contained
therein.

A directory is simply a file which contains information about
other files or other di.rectories called "sub-directories."

The overall relational structure of files, directories, and file
systems has been described as an "upside down tree" having its
base or "root" at the top and its branches reaching out and down­
ward from the root.

Onyx Systems, Inc. 2-4 Revised (5/85)

~-~- --

CHAPTER 2 OPERATIHG SYSTEM

DISK ..

lOOT SUPER l-WODE DATA
ILOCI: noel ILOCI: ILOCI.

/ Figure 2-1 Logical File System Structure

Onyx Systems, Inc. 2-5 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

The method used by UNIX to traverse these branches and limbs is
called a pathname. Pathnames, like road maps, provide directions
for how to get from one place to another. For example: A user
wants to print a file named "apple," and apple is contained in a
directory named "fruit," for which both apple and fruit reside in
a second file system named "F2."

The pathname in this case looks like:

[command] IF2/fruit/apple

The first slash ("I") in the pathname is the symbolic
representation (name) for the "root" file system, which is always
the starting pOint. Subsequent slashes instruct the .system to
continue searching for the file from the last named directory in
the path.

As you examine the file system, certain files may appear which
possess suffixes of ".0," ".h," and ".c." These suffixes
indicate the file is of the binary object type, a "C" language
Header-include type or a "C" language source file, respectively.

Note: other suffixes such as: ".a," ".f," ".cbl," and ".s"
indicating file types of archive, FORTRAN, COBOL, and assembler
respectively may also appear.

Logical Device Structures

A "logical device" deals primarily with the kernel-to-user
communications portion of the UNIX system. Three major elements
are involved in this communications process: the logical device
file, the device driver, and the device electronics.

A logical device is simply a special file which contains
information that the kernel will use when a user is communicating
with a peripheral device such as a disk drive, tape drive,
terminal, or some other device.

A device driver is a program deeply embedded in the kernel which
provides the intelligence necessary to communicate directly with
the "device electronics."

Figure 2-2 , "Logical Device Interaction Scheme," examines the
relationships among each of the components involved, and shows
the flow of interaction between a user and a device.

Logical device files can be of two types: "blocked lID" and
"character lID."

Onyx Systems, Inc. 2-6 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

The "type" of a logical device will depend upon the requirements
of the device driver it is interfacing with. Both blocked and
character refer to the manner in which the device driver accepts
data, and I/O is short for Input/Output.

In blocked mode, data will be assembled in groups of a specific
size prior to being transferred to the intended device. In UNIX,
each block typically includes 1024 bytes of data. One of the
peripheral devices which uses blocked I/O is the disk drive.

In character mode, data will be dealt with on a character-by­
character basis. A typical peripheral device which uses this
type of I/O is the terminal.

One of the reasons that some devices work in blocked mode, while
others use character mode, relates to the action that is going to
be performed on or to the data. If the action is one of moving
large amounts of data from one place to another, where no
interpretation of this data is required, the blocked mode is
employed for speed and efficiency. Where the interpretation of
data is necessary, character mode is used.

Note: some devices utilize both of these modes of data transfer.
In addition, the device files concurrent to these modes are
contained in sub-directories in /dev (e.g., "/dsk," for blocked
disk mode and "/rdsk," for character disk mode.)

Logical device files in the UNIX system are contained in the /dev
directory. Generally, they may appear like this:

crw--w--w- 1 root a 8, 1 (date/time) filename

Where:
c

rw--w--w-
1

root
a

8 ,
1

=
=
=
=
=
=
=

mode: "b" if blocked "c" if character
file permissions field
number of links to other files
the owner
group it belongs to
major device number
minor device number

The major and minor device numbers determine what class of device
driver (major) is to be used and the specific device (minor)
itself. The other fields mentioned are discussed in detail in
subsequent chapters.

The mnemonic names used for device driver files in this version
of UNIX are quite different from those used in prior released
versions. For example, in UNIX System III the root file system
device file is named "rp1;" however, in this version it is named
"cOdOs1."

Onyx Systems, Inc. 2-7 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

The naming convention format used in this version is as follows:

cOdOs1

Where:
c = the hardware controller device being requested.

In thi sease, "cO" is the disk controller.
d = the device driver being addressed. In this case,

"0" indicates the first disk drive.
s = the file svstem being addressed.

"1" is the root file system.
In this case,

In addition, there are other differences pertaining to device
driver files and how to address them which are discussed in sub­
sequent chapters of this guide.

Onyx Systems, Inc. 2-8 Revised (5/85)

---- --~ ---------

CHAPTER 2 OPERATING SYSTEM

/

-.
-------------------------------- ••

/ Figure 2-2 Logical Device interaction Scheme

Onyx Systems, Inc. 2-9 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

Process Structure

As described earlier, the UNIX system is a multi-tasking operat­
ing system. In UNIX, processes can be executed in one of two
environments:

• Foreground

• Background

A foreground process is one for which the interaction between the
user and the invoked process is maintained until the task has
concluded and the results have been conveyed. Therefore, a user
can execute only one process in the foreground at a time.

A background process is one that, once invoked and· placed into
this environment by a user, will execute independently and
require no further interaction between the user and the process.
Therefore, a user is able to perform multiple tasks at the same
time. A process is placed in the background environment by
appending an ampersand (&) to the end of a command line.

The system keeps track of these processes and who owns them by
assigning to each process a process identification (PID) number.
This PID number is conveyed to the user who originally invoked
the process; it is prudent for the user to make a note of it in
the event it becomes necessary to terminate the process manually.

Another aspect of a background process is that it may draw upon
the resources of another process if required to complete its
task.

The relationship between a background process which calls another
process is a parent (the calling process) and child (the called
process) relationship.

A parent process may have many "children" tied to it. However, a
parent process cannot conclude until all of its children
processes have completed their tasks.

Process activity is recorded and constantly updated by the UNIX
system. It can be viewed with the ps(1) command. The use of
this command and the management of processes are discussed in
subsequent chapters of this guide.

Memory Management

In general, the computer memory serves as the system's workplace.
Data is brought into it, manipulated, and then returned to where
it came from or to some other designated place. How well a com­
puter system performs is, in part, dependent upon how fast its
electronic memory operates and how efficiently the memory is
managed.

Onyx Systems, Inc. 2-10 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

Memory management has both software and hardware connotations.
In the hardware sense, tlmanagement tl applies to the control of the
electronic mechanism that transfers data to and from memory and
keeps track of where data is placed.

The software aspect pertains to making the decisions· involving
what data is to be transferred and when this transfer is to take
place.

This discussion is confined to the general software aspects of
memory management.

In the UNIX system, this management task takes the form of a
priority scheduling and a memory allocation control scheme. When
a process is invoked, the UNIX system will scan a table contain­
ing a list of all the processes currently in progress and those
waiting to be performed. The system will then add this new pro­
cess to that list. Processes are generally serviced on a
"first-in-first-out tl (FIFO) basis. However, there are some
exceptions which pertain to special processes that help maintain
system integrity in terms of: updating the system's knowledge of
new or altered files and directories, and attending to processes
which "listen" to a user's terminal. These types of processes
have high priority, and therefore can supersede this FIFO scheme.

The priority assigned to a process, as described above, is pri­
marily controlled by the system; however, a user can manually
assign a process priority number by using the nice(1) command.

The second part of memory management mentioned above is the
"memory allocation" control scheme.

Before a process can be performed, the UNIX system must determine
if there is enough memory available to accommodate all the data
needed by the process to accomplish its job. The memory manage­
ment programming in the kernel makes this determination. The
actual task of memory resource allocation is performed by the
"swapper" programs.

The swapper(s), "swapin tl and "xswap," handle those situations
where a reallocation o.f the memory resource is needed to accommo­
date a process whose priority deems it is to be serviced immedi­
ately. The xswap program temporarily moves another process's
data from memory to disk storage, and then places the priority
process's data into that memory location. The swapin program
puts back the swapped process's data into memory as soon as the
priority process has completed.

User Interface

What is meant by a "user interface?" Simply this: it is the
vehicle through which a user's requests are communicated and
interpreted by the computer operating system.

Onyx Systems, Inc. 2-11 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

In a broad sense, the computer terminal could be considered a
user interface because it is one of the vehicles used to communi­
cate with a computer system. However, the discussion is limited
to the UNIX software aspects that interplay and support interac­
tion between user and computer.

As previously mentioned, the shell is thought of as being one of
the major components of the UNIX system. (See Figure 2-3, "Whe~e
the Shell fits in the UNIX System.")

The shell is a program which acts as an "interpreter," listening
to those requests that a user enters from a terminal, and
translating them into actions on the part of the kernel or some
other system program. However, without limiting the generality
of the foregoing, the shell possesses much power. It has many
special attributes that provide flexibility for a user when work­
ing within the UNIX system.

For instance, the use of pathnames and the placing of a process
in "background" are functions of the shell. The ability to
direct a process's input or output is an attribute of the shell;
and the construction of simple or complex programs without need­
ing to be a "programmer" can be accomplished through the shell.

Examples of shell programming, also known as "shell scripts," can
be found throughout the UNIX system. Programs such as nrc ,n
".profile," and "shutdown" are shell scripts created to perform
various system tasks automatically.

The point here is that the system administrator should take the
time to become familiar with this particular UNIX facility.

There are two shell environments available under this UNIX sys­
tem:

• The native Bourne Shell (sh)

• The Berkeley C-shell (csh)

The Bourne Shell was so named by its creator, Mr. S. Bourne of
Bell Laboratories; the C-shell was so titled by the group who
developed it at the University of California at Berkeley. The
differences between these shells lie in feature content.

The system administrator can find additional information about
the shell sh(1) and the C-shell esh(1) in the Enhanced ONYX Sys­
tem V USER REFERENCE MANUAL.

Another aspect under the topic of user interface is the user
"account." An account is basically a software representation of
a person who has been granted access to a UNIX system.

Onyx Systems, Inc. 2-12 Revised (5/85)

CHAPTER 2 OPERATIHG SYSTEM

UTLITY

e 2-3 Where The Shel fits In The UNIX System

Onyx Syste.s, Inc. 2-13 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

Like people, accounts have unique personalities which describe
and distingish them from other accounts.

In the UNIX system, an account can possess the following attri­
but e s :

• Login name

• Encrypted password

• User identification number

• Group identi fication number

• Accounting name

• Login directory

• Program name

Printer Resource Scheduling

Printer resource scheduling feature allows users to "queue" or
schedule files to be printed by a printer, freeing the user to go
on to some other work.

In the UNIX system, the printer scheduling function is performed
by a program called Ip(1). Lp can be programmed to perform a
number of special functions:

• Inform the user upon completion of the job.

• Remove the printed file after completion.

• Make a copy of the printed file after completion.

• Cancel any queued files waiting to be printed.

Onyx Systems, Inc. 2-14 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

In addition, there are seven programs that allow the administra­
tor to manage, control, and configure certain aspects of the
printer scheduling facility. These seven programs are:

• accept(1H)

• reject(1M)

• lpstat(1)

• Ipsched(1M)

• lpshut(1M)

• Ipmove(1M)

allows printer requests to be accepted.

inhibits printer requests.

displays status information concerning
printer scheduler.

activates the printer scheduler.

deactivates the printer scheduler.

moves printer requests to another
printer device.

• lpadmin(1M) -- configures the printer spooling system.

The manipulation and execution of these programs are discussed in
subsequent chapters of this guide.

System Accounting

System accounting keeps track of who is using the computer
resource, how much of the resource is being used. and how effi­
ciently the resource is working. It is the method used by com­
panies who offer the use of their computer resource to others
(time sharing) t to determine how much to bill the other "party"
for this service.

The system accounting facility in the UNIX system gathers sta­
tistical data on and monitors the activities of:

• Disk access occurrence

• Disk storage utilization

• Process execution time

• Process usage

• Frequency of user/computer access

However. system accounting. when allowed to run unnecessarily,
can accumulate vOlumes of data which will chew away at the avail­
able disk storage and degrade the performance of the system.
Therefore. the system administrator should take this negative
aspect into account when deciding whether or not system account­
ing is necessary in the application.

Onyx Systems. Inc. 2-15 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

System Protection

System protection conjures up many interpretations. According to
some people, it has been said to encompass every area from physi­
cal security of a computer facility to the protection of the data
itself. And in fact, these and all the areas which fall between
them are aspects of system protection! However, this discussion
of system protection in the UNIX system is limited to the follow­
ing:

• User access control

• User data archive

User Access Control

This subject can be divided into two basic levels: system entry,
and file access.

System entry involves the control over who shall be granted
access to the system resource. The UNIX system achieves control
over this aspect with accounts and passwords.

As mentioned above, accounts are used to identify a valid user by
name in the login process. However, since many people possess the
same name, a second method of identity is used -- the "password."

A password provides that unique characteristic which distingishes
one user from another or determines whether or not they are valid
users at all.

Passwords, in the UNIX system, are set by the users themselves.
To be effective, a password should have the following attributes:

• It should be UNIQUE.

• It should be able to be REMEMBERED.

• It should NOT BE SHARED.

In addition, passwords ~re "encrypted," ensuring that they do not
appear in their natural form anywhere in the system that is
accessible to a user.

The next level under user access control is "file access."

UNIX offers three basic methods a user can use to control accesS
to files: file "permissions," "restricted" shell, and file
"encryption."

Onyx Systems, Inc. 2-16 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

A file's permissions, also known as its "mode," describe what
type of access is allowed, and by whom. Each file created will
have a corresponding field which exhibits its permissions.

For example:

Where:

2
3
r
w
x

[prefixJ

=
=
=
=
=
=
=

[prefixJrwx-rwx-rwx [other informationJ [filenameJ

[1J [2] [3]

OWNERS permissions field.
GROUP permissions field.
WORLD or other users permissions field.
means READ permission with an octal value of "4."
means WRITE permission with an octal value of "2."
means EXECUTE permission with an octal value of "1."
may either be a "b" for blocked t "c" for character
or "d" for directory.

The next tool used to restrict and control access is the
restricted shell rsh(1). This feature can limit a user to a
given defined group of UNIX commands. It should not be thought
of as a separate shell, but merely another tool the shell sh(1)
provides. This capability is especially useful in controlling
access for "casual users:" those who require only occasional
access to the system.

The last tool mentioned is file encryption. The UNIX system
maintains a facility for which a user can provide ultimate
protection of a file's contents.

This encryption facility is based upon the National Bureau of
Standards "Data Encryption Standard" (DES). It is implemented
with the crypt(1) command, and its use and options are described
in detail in the Enhanced ONYX System V USER REFERENCE MANUAL.

Note: the crypt(1) utility is not available to international
users.

User Data Archive

Protecting the user's work is an important activity! It requires
maintaining a periodic copy of the user's work or other system
information that is valuable and necessary to operation of the
facility.

When the system administrator should make system copies (backups)
depends upon how much data is accumulated over a given period of
time and its value.

Onyx Systems, Inc. 2-17 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

The methods available under UNIX are as follows:

• tar(1) -- a tape archive utility

• finc(1M) a fa st , incremental fi 1 e system
backup utility

• fr ec (1 M) -- a fa st , incremental fil e restore utility

• volcopy(1M) a file system copy utility, with
label checking

• d d (1) a device-to-device data transfer
utility

• cpio(1) a data copy input-output program

Chapter 5, "The Daily Foutine," describes when backups should be
performed, and what method is most applicable.

Communications

The UNIX system offers and supports a wide variety of methods and
vehicles for communicating informati~n, locally or remotely, to
users or other computer systems.

The four most commonly used methods of communication are:

• cu(1C) call UNIX

• uucp(1C) UNIX to UNIX copy

• mail(1) an electronic mail facility

• news(1) an electronic bulletin board

These methods can be grouped into two general categories: those
which are primarily used for conversation with or data transfer
to another computer system; and those which are used chiefly to
keep the user informed.

Conversation ~ ~ Transfer -- cu uucp

The cu(1C) program utility provides the basic requirements needed
to establish communications through a peripheral communications
device such as a modem.

Cu can be used to log in and transfer data to another computer
system operating under UNIX, or sometimes, to a different operat­
ing system.

Onyx Systems, Inc. 2-18 Re'vised (5/85)

CHAPTER 2 OPERATING SYSTEM

The uucp(1C) program is designed to accommodate the transfer of
large volumes of data between computer systems in a controlled
environment. Like cu, uucp can interface and support communica­
tions through the above mentioned peripheral devices. However,
uucp is far more sophisticated in that it carefully monitors all
associated activity and provides an "audit trail" in the event
that problems arise.

Keeping the user Informed -- mail news

The mail(1) program allows the sending and receiving of letters
from individuals or groups of users.

The news(1) program, on the other hand, is primarily used to
inform users of a coming event such as: "the system is going to
be down for maintenance." News does not involve any interactive
dialogue between users.

All of these utilities, plus others
between users, are discussed in
guide.

Onyx Changes and Enhancements to UNIX

that involve communication
subsequent chapters of this

As stated earlier, the UNIX system has undergone
describes

many changes
some of these since its inception. This section

enhancements and their values.

Onyx Changes

To improve system efficiency and performance, Onyx has enhanced,
and/or developed and implemented the following features in this
UNIX system:

• Record locking

• Scatter memory allocation

• Shared text

• Auto configuration

Record Locking

As already explained, one of the features of the UNIX system is
its ability to allow multiple users to access and alter the con­
tents of a file at the same time. However, this ability to
"share" a file's contents presents a potential problem. How can
you be assured that alterations to a file's contents are safely
made and saved, while that file is being shared?

Onyx Systems, Inc. 2-19 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

Users c~n be assured of this by "record locking," a means which
protects that portion of a file's contents undergoing changes,
and prevents any intervention until the changes are effected.

Fecord locking permits multiple user processes to "lock" or
secure segments of a file's contents while that segment is being
altered.

The Onyx implementation of record locking also corrects situa­
tions where multiple user processes attempt to access the same
segment at the same time, or a segment that is already locked.
Record locking is transparent to the user.

Scatter Memory Allocation

As discussed previously, memory management has a significant
effect upon the system's overall efficiency and performance.
Typically, when a block of data is loaded into memory, it occu­
pies a contiguous block of memory space. This scheme of memory
management is adequate. However, when system usage becomes heavy
and contiguous memory space is unavailable, data to be written
into memory must be delayed. These delays decrease the perfor­
mance of the system. To counteract this condition, Onyx has
implemented scatter memory allocation. Scatter memory allocation
is the ability to split a process into fixed length pages and
load them into any available memory space without regard to con­
tiguity. This memory managment feature maintains system effi­
ciency and performance during those times when the system is in
heavy use.

Shared Text

Concurrent to scatter memory ~llocation, Onyx has enhanced its
memory management scheme further with shared text. This feature
allows a single copy of a program to reside in memory and be
"shared" (accessed) by more than one user at the same time. This
sharing process significantly reduces the occurrence of swapping
out users' processes when system activity is heavy. In addition,
when swapping does occur only the stack/data space needs to be
swapped; generally, there will be enough physical memory space
available to accommodate the text/stack/data without having to
swap out any other user.

Auto Configuration

Auto Configuration is the means by which the UNIX operating sys­
tem adjusts to the system it is running on automatically! This
feature, an Onyx created utility, tailors the UNIX kernel and
associated support files using the information passed to it from
the system firmware (PROM) thereby making start up much easier!·

Onyx Systems, Inc. 2-20 Re~lsed (5/85)

CHAPTER 2 OPERATING SYSTEM

Enhancements 1£ UNIX -- The Berkeley utilities

By now, you should be familiar with the references of "Berkeley"
and the "C-shell." The C-shell is but one of a variety of useful
utility programs developed by the University of California that
have been added to the standard UNIX system.

Some of the other utilities in this group, collectively known as
the "Berkeley Enhancements," are:

• tset

• ex

• termcap

• mail

• more

a program that configures terminals
based upon "termcap"

line oriented text editors

a database describing the personalities
of terminals

an electronic mail system

a program that displays the contents
of a file a page at a time

Much has been written on these utilities, and their descriptions
can be found in the Enhanced ONYX System V USER REFERENCE MANUAL .

. 1 UNIX System Environments

The UNIX system offers a choice of four system work environments:

• Standalone

• Single-user

• Multi-user

• Super-user

The following describes the general purpose of each environment,
what general functions can be performed, and what functions
should not be attempted under these environments.

Standalone Environment

The standalone environment, that which is evoked upon powering-up
and "booting" the computer system, is actually outside of the
UNIX system. It is established primarily through programming
which resides in Read-Only Memory (ROM) devices in the computer
system.

Onyx Systems, Inc. 2-21 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

The system indicates that
environment by displaying
console terminal screen.

it
the

is in the standalone (shell)
SHELL$$ prompt message on the

Note: only the console terminal is active in the standalone mode.

The primary purpose of standalone is to provide a working level
which supports the diagnostic testing of the system's hardware
elements, in addition to allowing the system administrator to
effect repairs to the UNIX system which cannot be performed under
the other environments.

These standalone shell programs are as follows:

• cp

• cat

• diskconf

• ed

• format

• fsck

• fsd b

• In

• Is

• mv

• mkdir

• mkfs

• mknod

• od

• rm

• rmdir

• spar e

• sparelist

• ustat

Onyx Systems, Inc.

makes a copy of a file

displays the contents of a file

configures the disk file system

edits a file

formats and prepares a disk drive

checks a file system for errors

debugs a file system

logically links files together

lists the contents of a directory

mo~e~, bopies and or renames files

makes a directory

makes a file system

makes a directory entry and correspond­
ing i-node for a special device file

displays the octal representation of a
file's contents

removes files

removes a directory

spares defective disk sectors

displays the list of spared disk sectors

displays special data about a file system

2-22 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

*************** WARNING ****************
* * * The mkfs, format, and spare programs *
* destroy data on the disk! *
* *
**

Single-~ Environment

Single-user is the next operational level after the UNIX system
bootup has been completed. The system indicates that it is in
single-user by displaying a pound symbol (D) prompt character on
the system console screen.

Single-user, as its name implies, means that only one user, the
console, can interact with the system.

This environment, when invoked, will allow the system administra­
tor to perform functions relating to the following:

• System preparation

• System integrity verification

• Data backup and restoration

System preparation includes: setting the system's "clock" to the
appropriate date and time; removing, copying and moving files;
altering system configuration parameters; modifying, adding or
removing system user accounts; and so on.

System integrity involves determining whether or not a file
system's organization has been corrupted due to an event such as
a sudden loss'of electrical power to the computer system.

Data backup and restoration is another function performed in this
environment. It is prudent to take backups in this mode because
users do not have the ability to make any further changes; there­
fore, the data is constdered stable.

While a system administrator is working in single-user mode,
there are a few precautions to be considered.

First, many of the programs that are designed to protect the sys­
tem from loss of data are not running. Therefore, it is wise to
perform only necessary tasks, then proceed to the normal opera­
tional environment -- multi-user.

Second, the console terminal
interact with the system;
information to another user.

Onyx Systems, Inc.

is the ONLY
therefore, do

2-23

terminal that can
not attempt to send

Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

Multi-user Environment

The multi-user level is considered to be the normal operational
environment. Multi-user mode is initiated by the user entering
an init 2 command on his/her terminal which invokes the init pro­
gram residing in the /etc directory.

The system indicates to all users that it is in multi-user mode
by displaying either a dollar sign ($) or a percent sign (%)
prompt character on all users' terminals.

Upon invoking the .multi-user environment, certain programs are
automatically set into operation:

• bcheckrc • brc • rc • cron • openup • lpd

The following is a brief description of the purpose of each pro­
gram.

The bcheckrc program allows the user to perform a file system
check (fsck), if desired, before completing the change to multi­
user mode.

The brc program performs the tasks of clearing out and reinitial­
izing the /etc/mnttab (file system mount table) file.

The rc program establishes the interactive link between between
users' terminals and the system and invokes the other programs
listed above.

The cron program functions as a "clock," allowing a task to be
performed at a specified time. The tasks that will be performed
are located in a file called "crontab" in the /usr/lib directory.

The openup program performs the basic initialization tasks neces­
sary for supporting the serial communication devices such as ter­
minals and serial printers.

The lpd program initializes the printer spooler facility in the
system. In UNIX System V, there is a choice of two different
spoolers which may be invoked. These two spoolers are: Ip or
Ipr. It is suggested that the Ip spooler be used because it
operates under the printer scheduler (lpsched) facility which
provides better control and management over the print
queue/request mechanism.

Note: the selection of either of the aforementioned spoolers is
accomplished by reprogramming the /etc/rc program.

As in the single-user mode, there are certain considerations and
precautions the system administrator should be aware of while in
the multi-user environment.

Onyx Systems, Inc. 2-24 Revised (5/85)

CHAPTER 2 OPERATING SYSTEM

One such precaution is to ensure that users do not attempt to
alter any system configuration parameter. This can be accom­
plished by making sure the permissions of files in the root file
system are not altered, unless it is necessary.

Another precaution is to avoid leaving the multi-user environment
in any way other than what is prescribed in this guide. To do so
can leave the system in an unstable state.

Super-~ Mode

The super-user (su) mode is not actually a separate environment,
but rather an unrestricted mode for which one is not constrained
"by system permissions.

Note: because this is an unrestricted mode, use extreme caution
while in super-user!

A system administrator can invoke the super-user mode by entering
"su" after the normal system prompt character. In addition,
super-user mode can be invoked from any directory.

Super-user mode acts as any other login process, asking for a
password. After the password has been entered and verified, the
system indicates super-user mode by displaying a pound sign
prompt character on the terminal screen. To leave the super-user
mode, simply enter <control-d>, and the system will return to
the prior login state.

The super-user mode will be
administrator; other users
password.

used quite often by the system
should not have access to the "su"

Note: the same password used by "su" is also used
into the root account.

Summary

for logging

This chapter examines the major features of the UNIX operating
system. It is by no means a complete example of the power that is
inherent in the UNIX system and the flexibility it offers to the
user.

As'you become familiar with the UNIX system, you will realize
that there are a multitude of unique and useful tools that allow
you to be innovative in performing the job of a system adminis­
trator.

Onyx Systems, Inc. 2-25 Revised (5/85)

TABLE OF CONTENTS

CHAPTER 3

Preface •••••••••••••••••• 3-1

Considerations ••••••••••. 3-1

Procedures ...•••••••••.•• 3-3

Summary ..•••.•••••••••••• 3-4

Onyx Systems, Inc. Revised (5/85)

/

CHAPTER 3

INSTALLING A NEW VERSION OF UNIX

Preface

This chapter describes procedures for converting to a new UNIX
system.

The "procedures" which follow are conceptually represented, and
actual execution of commands is not included here.

Considerations

Each UNIX update package contains a detailed installation docu­
ment, and the SRN pertaining to the specific computer system
involved.

Some of the issues which should be considered before installing a
new version of UNIX are:

• System configuration

• System backup

• Compatibility

Onyx Systems, Inc. 3-1 Rev i sed (5 /85)

CHAPTER 3

System Configuration

This applies to maintaining a
unique configuration. Thls
least, the following:

INSTALLING NEW OS

written record of the system's
record should contain, at the very

• The number of file systems created, their names, sizes,
and location on the physical disk

• The number of user accounts installed

• Communication "ports" that have been changed to support
anything other than a terminal

• Special programs that were incorporated into the "root"
directory

• Any changes to the system's features that are allowed to
be performed under the UNIX system

• Any other changes pertaining to system configuration that
have occurred since original installation

• List of system files that have been modified
installation

for thi s

Keeping such a "log" up to date can save a system administrator a
significant amount of time and frustration, not only when chang­
ing to a new version of UNIX, but also if problems arise in daily
operation.

System Backup

The idea of periodically making a copy of the work performed on
the system will be iterated throughout this guide. Remember, the
loss of important data can be very costly, in terms of both time
and money!

Before attempting to install a new UNIX version, make sure there
is a copy (backup) of all the users' work current to that day!
In addition, a copy of the configured version of the "root" file
system should already exist. This will be invaluable if revert­
ing to the older UNIX version becomes necessary.

Plan effectively, and inform all users of the coming event so
they (users) will know not to perform any major work after the
specified period of time.

As with every backup operation performed, the system administra­
tor should verify the file sy~tem's integrity prior to making a
copy.

Onyx Systems, Inc. 3-2 Revised (5/85)

CHAPTER 3 INSTALLING NEW OS

Compatibility Issue

The issue of "compatibility" means determining whether or not the
new version of the UNIX system will have an impact on the normal
operation of any special application package such as the Onyx
Office.

Compatibility information is included in the installation docu­
mentation. However, it applies only to those special application
packages that are a product of or supported by Onyx. If another
manufacturer's application package is being used, the system
administrator should contact the manufacturer to determine
whether or not compatibility is maintained.

Procedures

The following procedure describes in general terms how to make a
successful conversion to a new UNIX system.

PROCEDURE: Converting to a new UNIX system

1. Plan the transition. Allow enough time for the users to
do their part.

2. ~ead all of the installation directions provided before
attempting to install the new system.

3. If there is some part of the procedure that is unclear,
ask the questions now!

4. Make the necessary backups of the user data.

5. Install the new system as per the directions provided.

6. Perform any advised integrity checks to ensure the
installation is intact.

7. Reconfigure the system to your special requirements.

8. Make a new copy of the reconfigured "root" file system.

9. Update the historical record with any new configuration
information.

10. Monitor the system's operation, looking for actions that
do not appear normal.

Onyx Systems, Inc. 3-3 Revised (5/85)

CHAPTER 3 INSTALLING NEW OS

Summary

This chapter discusses the aspects of "system configuration,"
"system backup," and "compatibility" as they pertain to instal­
ling a new UNIX system. In addition, this chapter describes a
procedure outlining, in general terms, the steps involved in a
new UNIX installation.

It should be noted that such an installation is not an everyday
event. However, when necessary, having a basic understanding-of
the factors involved can avoid confusion, frustration. and delay.

Onyx Systems, Inc. 3-4 Revised (5/85)

TABLE OF CONTENTS

CHAPTER 4

Preface 4-1

Overview

Special

In i tid 1

Ke ys .
Preparation of a UNIX System

.4-1

.4-2

• 4-2

Checking the Basic File System • • • • • • • • • • • • • • • • • • 4 ... 9

Configuring the Operating System

Transferring System Doc umen ta tion to Disk

Initiating the Multi-User Environment from Single-User

Con fig ur i ng

Configuring

the

Printers

Terminals

Login Environment

Accounts ~

.4-10

.4-43

.4-43

.4 -44

.4-47

.4-48

.4-52

Creating

Required

Required

Creating

System

System Directories • • • • 4 -5 2

Setting

User Accounts
Up Automatic System Functions

.... 4-54

.4 -5 6 ... '.'
Add.ing other Software Packages 4-57

Protecting the System • 4-58

Setting Up System Accounting • 4-59

Making a Copy of the System 4-60

Documenting the System 4-61

Summary 4-63

Onyx Systems, Inc. Revised (5/85)

LIST OF ILLUSTRATIONS

Ba si c Log in Se quenc e ••• 4-50

Onyx Systems, Inc. Revised (5/85)

/

CHAPTER 4

GETTING STARTED

Preface

This chapter defines and illustrates the procedures for setting
up and configuring a UNIX system.

Overview

This chapter begins by outlining the way in which a UNIX operat­
ing system is transferred from tape to disk, and describes the
loading of this operating system into memory. It further
describes the creation of file systems,. configuring the system,
performance considerations, creating user environments, and much
more.

Prior to getting started, certain conventions and considerations
associated with this chapter should be noted.

The procedures described herein are for reference only! They are
provided as a general example of tasks the system administrator
mayor may not need to perform depending upon the specific Onyx
computer system in use.

Command references are in the form of: name(number). Where
"name," is the actual command and "(number)" indicates the sec­
tion in the Enhanced ONYX System V USER, PROGRAMMER, and ADMINIS­
TRATOR REFERENCE MANUAL's where commands are explained in detail.

Remember, Caution and Warning titles refer to important informa­
tion that should be· noted by the system administrator. There­
fore, read all the associated text to these titles carefully!

When references are made to "edit," they mean to alter the con­
tents of the named file with one of the UNIX system editors. As
mentioned earlier, there are two primary editors: "vi," and the
more primitive "ed." The system administrator should become fami­
liar with the vi editor because of its flexibility.

Onyx Systems, Inc. 4-1 Revised (5/85)

CHAPTER 4 GETTING STARTED

While studying a procedure, notice that all commands and actions
to be performed appear in bold type. All system responses to a
requested command appear immediately below that command. In
addition, all comments made within a procedure are contained
between brackets "[]." The symbol <cr> means "carriage return."

Special Keys

There are a number of terminal keyboard control sequences which
have either special significance in the UNIX system or are just
frequently used. A control sequence means to hold down the <con­
trol> key while pressing some other terminal key.

Some of the more commonly used control sequences in the UNIX sys­
tem include the following:

• Control - d

• Con trol - h

• Control - x

The <control-d> sequence is used to terminate (log off) the com­
puter system or terminate communications while under the control
of some of the communications facilities.

The <control-h> sequence is used to backspace over previously
entered characters. However, without adding some other special
parameters, this sequence backs up and writes over the character
without erasing it.

The <control-x> sequence is used to delete and not execute a com­
mand line that has been entered by mistake.

The control sequences of "h" and "x" can be configured in the
UNIX system to reflect the terminal's backspace and delete keys
respectively.

In a control sequence example, it appears as: <cntrl- >, where
the actual letter desired will follow to the right of the "-"
within the arrows.

Initial Preparation of a UNIX System

The following discussion outlines the two procedures required to
be performed in order to prepare, for the first time, a UNIX
operating system for operation.

Onyx Systems, Inc. 4-2 Revised (5/85)

CHAPTER 4 GETTING STARTED

These two procedures include:

• Transferring the "root" file system from tape to disk

• Auto-configuration of device files and the "/usr" file
system

Transferring the !oot Iile System ~ Tape to ~

This process is performed in the standalone shell environment and
involves the loading of the Onyx "Initialization" (INIT) tape
which contains the standalone shell programs and the root file
system.

The example procedure below shows a typical transfer process.
However, the system administrator should use the exact procedures
described in the SRN that accompanies the system.

Note: during this process, the system administrator should
monitor the console display for error messages. If an error
occurs during any part of the process, the system administrator
should note the error message, proceed no further with the
preparation process, and follow the error analysis and recovery
procedures described in Chapter 7 of this guide.

PROCEDURE: How to transfer the root file system

1. Using the INIT tape, ensure it is in the
SAFE position; then insert it into the
system.

2. Press the reset button on the system.

-- PROM 05/03/85-12:19:48

[At this point, the self test phase is
envoked.]

O,1.c,9,?:c <cr>

[Entering "c" instructs the system to load,
execute, and boot up from the cartridge
tape device. The other options available
are: "0," boot from disk drive 0; "1 ttl

boot from disk drive 1; "9," boot from
nine track tape, and "?" for displaying
the oefinitiQns Qf all the options.]

CHAPTER 4

SHELL 02/01/85-15:45:12

SHELL$$

3. From the console terminal, perform
the following:

SHELL$$ init <cr>

GETTING STAFTED

Do you want to save a new standalone shell to the disk (yln)?y <cr>
Saving shell to disk •..•••••••••••.•••••••••••••.•••••••....
Here is the tape directory info block:
ONYX-INIT-TAPE
UNIX 5.1 6810
02/06/85
17:16:14
1
5

The disk on controller 0, unit 0, is already formatted.
Would you like to reformat it (yln)?n <cr>

If there are two or more disk drives attached to the
system, the program displays the "format" query again.
If a drive has been added, respond to the query with
a IIy"; otherwise, enter "n".]

The disk on controller 0, unit 0 was already formatted and
configured.
Would you like to reconfigure it (yln)?n <cr>

[Note: this message reappears if two or more disks exist.
If a disk was reformatted, then it must be reconfigured
by entering "y" to the query! Otherwise, enter "n" as
shown above.]

Answering "y" to the following question will overwrite (destroy)
what is currently in the root file system ("I") on disk
controller 0, unit O.

Do you want to load in the new root file system fro.m tape (yIn)?
y <cr>

Dumping tape to disk,

Ii

II I .

II I I I

j
,
IlL, I .

J j KI • I ,
J] XlII II

I

~] rJ (I ~.
; ~,. L. •

/

CHAPTER 4 GETTING STARTED

These two procedures include:

• Transferring the "root" file system from tape to disk

• Auto-configuration of device files and the "/usr"
system

Transferring the ~oot file System from Tape to Disk

file

This process is performed in the standalone shell environment and
involves the loading of the Onyx "Initialization" (INIT) tape
which contains the standalone shell programs and the root file
system.

The example procedure below shows a typical transfer process.
However, the system administrator should use the exact procedures
described in the SRN that accompanies the system.

Note: during this process, the system administrator should
monitor the console display for error messages. If an error
occurs during any part of the process, the system administrator
should note the error message, proceed no further with the
preparation process, and follow the error analysis and recovery
procedures described in Chapter 7 of this guide.

PROCEDURE: How to transfer the root file system

1. Using the INIT tape, ensure it is in the
SAFE position; then insert it into the
system.

2. Press the reset button on the system.

-- PROM 05/03/85-12:19:48

[At this point, the self test phase is
envoked.]

0,1,c,9,?:c <cr>

[Entering "c" instructs the system to load,
execute, and boot up from the cartridge
tape device. The other options available
are: "0," boot from disk drive 0; "1,"
boot from disk drive 1; "9," boot from
nine track tape, and "?" for displaying
the definitions of all the options.]

Onyx Systems, Inc. 4-3 Revised (5/85)

CHAPTER 4

SHELL 02/01/85-15:45:12

SHELL$$

3. From the console terminal, perform
the following:

SHELL$$ init <cr>

GETTING STAFTED

Do you want to save a new standalone shell to the disk (yln)?y <cr>
Sav i ng shel I to disk •••••••••••••••••••••••••••••••••••••••.
Here is the tape directory info block:
ONYX-IN IT-TAPE
UNIX 5.16810
02106/85
17:16:14
1
5

The disk on controller 0, unit 0, is already formatted.
Would you like to reformat it (yln)?n <cr>

[If there are two or more disk drives attached to the
system, the program displays the "format" query again.
If a drive has been added, respond to the query with
a "y"; otherwise, enter "n".]

The disk on controller 0, unit ° was already formatted and
configured.
Would you like to reconfigure it (yln)?n <cr>

[Note: this message reappears if two or more disks exist.
If a disk was reformatted, then it must be reconfigured
by entering "y" to the queryl Otherwise, enter "n" as
shown above.]

Answering "y" to the following question will overwrite (destroy)
what is currently in the root file system ("I") on disk
controller 0, unit 0.

Do you want to load in the new root file system from tape (yIn)?
y <cr>

Dumping tape to disk.

Writing to sector [sector number]

[The sector number advances as the root file system data
is written onto each disk sector.]

Do you want to save a new standalone shell to the disk (yln)?n <cr>
Returning to the standalone shell.
SHELL$$

Onyx Systems, Inc. 4-4 Revised (5/85)

/

CHAPTER 4 GETTING STARTED

4. Remove and store the INIT tape for future use.

Auto-Configuration of Device Files ~ the "/~" File System

The second phase of initial UNIX system preparation involves
creating the necessary special device files in the tl/dev"
d ire c to r y, c rea ti n g the "I u s riff i 1 e s y s t em, and t r an s fer r in g the
lusr file system data from tape to disk.

Note: the auto-configuration phase is performed and encountered
ONLY after a transfer of the root file system from the INIT tape
has been performed! It does not occur upon booting the system
for daily use.

PROCEDURE: How to auto-configure the devices and lusr file system

1. Press the reset button on the system.

-- PROM 05/03/85-12:19:48

O,1,c,9,?:0 <cr>

"0" instructs the system to boot
fr om dis k O.]

SHELL 02101/85-15:45:12

SHELL$$

2. From the console terminal, perform the
following:

SHELL$$ boot <cr>
Booting lunix.

INIT: SINGLE USER MODE

Completing Initialization procedure.

Creating special files in Idev.

The scsi config struct

contrl
00000
00001
00002
00003
00004
00005
00006
00007

unit 0 unit 1 unit 2 unit 3 unit 4 unit 5 unit 6 unit 7
DISK
CART

Onyx Systems, Inc. 4-5 Revised (5/85)

CHAPTER 4 GETTING STARTED

Display indicates all currently configured and
physically existing devices.]

Aswering yes to the following question will overwrite
(destroy) any information on slice 3 (/dev/dsk/cOdOs3).

Do you want to create "/usr"? y <cr>
Creating a file system on slice 3 for "/usr" •••

bytes per logical block = 1024
total logical blocks = 22374
total inodes = 5584
gap (physical blocks) = 1
cylinder size (physical blocks) = 1

Total number of logical blocks and i-nodes configured
depends upon the actual storage capacity of the disk.]

Next phase labels the new file system.]

Current fsname: , Current volname: , Blocks = 44744,
Inodes = 5552, FS Units: 1Kb, Date last mounted:[date]
NEWfsname = usr, NEW volname = S3 -- DEL if wrong!!

Next phase indicates the disk storage used by the
configured file systems.]

lusr (/dev/dsk/cOdOs3): 22022 blocks 5550 i-nodes
I (/dev/dsk/cOdOs1): 4527 blocks 1670 i-nodes

Please insert the release CPIO tape for "/usr" and press return.

<cr>

Reading from tape •••

[System transfers all lusr files from tape to disk.]

10700 blocks
DONE.

Initialization Complete.

Going to INIT state 2 (Multi-user)

INIT: New run level 2

ONYX onyx 5.1 6810

Do you want to check the file systems (y or n)? y <cr>

Onyx Systems, Inc. 4-6 Revised (5/85)

I

--- --- ---

CHAPTER 4 GETTING STARTED

/dev/dsk/cOdOs1
fi 1 e system: root Vol ume: [name/number]
** Phase 1 - Check Blocks and si ze s
** Pha se 2 - Check Pathnames
** Pha se 3 - Check Conn ec t i v i t y
** Phase 4 - Check Reference Co un t s
** Phase 5 - Check Free Li st
[N] files [N] blocks [N] free

/dev/dsk/cOdOs3
fi I e system: usr Vol urn e: S3
** Pha se 1 - Check Blocks and si zes
** Phase 2 - Check Pathnames
** Phase 3 - Check Conn ec t i v i t Y
** Pha se 4 - Check Fe fer enc e Coun t s
** Phase 5 - Check Free List
[N] files [N] blocks [N] free

["N" indicates the number of files and blocks
configured which may vary among systems.]

Current date: [date]
Error logging started.
Cron started.

Mounted file systems -

/usr (/dev/dsk/cOdOs3):
/ (/dev/dsk/cOdOs1):

16471 blocks
4529 blocks

5073 i-nodes
1672 i-nodes

********* SYSTEM MULTI-USER [date] *****11**

Console login:

4. Remove and store the /usr tape for future use.

11******************** CAUTION ********1*********************
* I

* Other tasks may need to be performed to complete the * * initial configuration of the system such as establishing * * user accounts or altering the system's default parameters *
* prior to allowing users to start their work. Performing *
* such tasks requires the system to be in the single-user * * environment; therefore, it may be necessary to execute * * the "shutdown" command to effect the mode change. *
* *
**************************************1*111*1111*************

Onyx Systems, Inc. 4-7 Revised (5/85)

CHAPTER 4 GETTING STARTED

Booting QE the System for Normal Use

The Itbootup" process is generally performed in three phases:
first, the system "self test" phase; second, loading the neces­
sary data from disk to system memory; and third, transferring
control to the kernel.

Note: initialization default state (mode) is set to "2."

The self test phase performs an array of "go-nogo" tests that
ensure system hardware integrity. This array may include testing
the system memory elements, the serial communications ports, and
so on. A failure at this level means the system cannot function
enough to achieve an operational state.

The loading phase, or "bootup," involves reading the bootup data
from disk and loading this data into system memory to be acted
upon.

The final phase, multi-user, is achieved as a result of the suc­
cessful execution of the bootup data. It is, as already
described, the normal operational environment used under the UNIX
system.

The following procedure describes how to boot up the system.

PROCEDURE: How to boot up the system for normal use

1. Press the system reset button. The
console terminal should display the
following:

-- PROM 05/03/85-12:19:48

0,1,c,9,?: 0 <cr>

SHELL 02-01-85-15:45:12

SHELL$$

[Note: approximately one minute elapses between the
"PROM" and "SHELL" messages. This time is used for
running the self test programs. · Unless an
error occurs, no messages are displayed during
the self test phase.]

2. Perform the fOllowing:

SHELL$$ boot <cr>

Booting lunix.

Co n so 1 e log in:

Onyx Systems, Inc. 4-8 Revised (5/85)

~'\

CHAPTER 4 GETTING STARTED

Checking the Basic File System

The methods used in the UNIX system to verify the integrity of a
file system are the fsck program or dfsck if there is more than
one disk drive configured.

The fsck(1M) program checks a file system based upon five cri­
teria.

They are:

• Verifies proper blocks and their sizes

• Verifies the pathname structure

• Verifies the connectivity of i-node po inter s

• Verifies the reference count of the i-nod e list

• Verifies the list of free blocks

In addition to these checks, the program displays the total
number of files listed, the number of disk blocks used by these
files, and the number of disk blocks still available for use.

When fsck is invoked, it checks all of the file systems existing
on the system. Fsck gets its information by reading the "check­
list" file in the /etc directory. Checklist contains the names
of all the file systems and should be updated each time one is
ad d ed •

The following procedure illustrates the use of fsck.

Note: do not attempt to check a mounted file system! If the sys­
tem is currently in multi-user, unmount the desired file system
using the umount(1) command or revert to single-user mode.

PROCEDURE: How to use the fsck(1H) command

1. Perform the following.

II fsck <cr>

/dev/dsk/cOdOs1
file system: [name] Volume: [name/number]
** Phase 1 - Check Blocks and sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
[N] files [N] blocks [N] free
II

Onyx Systems, Inc. 4-9 Revised (5/85)

CHAPTER 4 GETTING STARTED

The feature content and diagnostic messages inherent to fsck are
quite extensive. Diagnostic information is contained in Chapter
7. Feature content is contained in the FSCK(1M) section of the
Enhanced ONYX System V ADMINISTRATOR REFERENCE MANUAL.

Configuring the Operating System

This section describes how to configure the operating system.

Overview

The UNIX system, as installed from the Onyx INIT tape, estab­
lishes basic default configurations for:

• Pre-mapped file system boundaries

• Basic number of users supported

• Basic support for serial and parallel printers

With everyday use, some of
need to be altered, or
activated.

these configuration parameters may
some unused facility may need to be

System Default Configurations

The basic system default conditions set by the Onyx INIT tape
include the following:

• The system is configured for at least six terminals,
including console.

• The system establishes the terminal baud rate at 9600
baud.

• The system is configured for a parallel pr in ter •

• The system is configured for a serial printer at 9600
baud.

• The system has pre-mapped (sliced) disk storage.

• The time, date, and timezone (TZ) parameters have not
been established.

• The Bourne (sh) shell is activated upon logging in.

• A basic "profile" file has been created.

• The prompt characters SHELL$$ - standalone, ,- root or
super-user, and $ - users, have been set.

Onyx Systems, Inc. 4-10 Revised (5/85)

CHAPTER 4 GETTING STARTED

• The login accounts - root, uucp, bin, adm, and sync are
established but without password protection •

• In multi-user, the super-block is updated every 30
seconds.

UNIX Kernel Sizing and Parameter Selection

This section describes those UNIX kernel parameters that are
altered to achieve optimal operating system performance or accom­
modate some special operating system environment.

Note: Onyx has already configured the kernel parameters for
optimal performance! Making changes to these parameters requires
an in-depth knowledge of the UNIX system; therefore, DO NOT alter
any kernel parameter arbitrarily!

The major parameters of concern are found in the system "descrip­
tion" file dfile "configuration" file which resides in the
/src/uts/cf directory.

Onyx Systems, Inc. 4-11 Revised (5/85)

CHAPTER 4 GETTING STARTED

The dfile File

The contents of dfile may appear as follows:

* (/I)dfile.m4 2 • 1
*
* Motorola VME/10 Dev el opm en t System
*
* dev v ec to r add r bus count
*
disk 3dO 0 5
clock 130 0 6
cart 3d4 0 5
dman 1 90 0 7
sc si 78 0 7
con 100 0 5
con 104 0 5
con 108 0 5
lptr 180 0 5
dmae 194 0 7
*
* Traps - Not to be modified
*
buserr 8 0 7
*
* System Devices
*
root disk 1
swap disk 2 3000
pipe disk 1
dump disk 0
*
* Tunable Parameters
*
buf fer s 50
calls 50
floc ks 200
inodes 90
fi 1 es 60
mounts 8
procs 50
texts 40
clists 150
sabufs 0
max proc 25
swapmap 75
hashbuf 64
physbuf 4
power 0
mesg 1
serna 1
shmem 1

Onyx Systems, Inc. 4-12 Revised (5/85)

CHAPTER 4 GETTING STARTED

The first section denotes all the hardware devices acknowledged
by the system. In addition, this section lists the interrupt
vector addresses, link (addr) addresses, bus assignments, and the
device count associated with these devices.

Note: where the count is unspecified, the default of "1" is
assumed.

The second section denotes the vector address, link (addr)
address, and bus assignment for communicating error conditions on
the bus.

The third section denotes major system disk devices currently
configured on the system. These devices are described briefly as
follows.

The root mnemonic specifies the device where the root file system
is located. Normally, root is logical disk drive 1, section 1.

The pipe mnemonic specifies where "pipes," the function of using
the output of a command as the input to another command, are
allocated within a mounted file system (normally the root).

The dump mnemonic specifies the device used by the system for
storing the contents of the system memory after a crash.
Currently, this information gets dumped into /dev/dsk/cOdOsO.

; The swap mnemonic refers to the device and how many disk blocks
are allocated for swapping. In the example above, swap is con­
figured such that file system "cOdOs2" is the allocated storage
area for swapped data, "1" indicates the first starting block
("swplo" value) of the storage area, and "3000" (the "nswap"
value) signifies the total number of blocks usable.

Note: "swplo" and "nswap" are parameters defined in the conf.c
fi Ie.

The last section denotes the major tunable parameters and their
values currently configured. These parameters are discussed
later in this section.

To display a "snapshot" of all the tunable parameters currently
configured, the system administrator uses the sysdef(1M) command
as shown in the following procedure.

Onyx Systems, Inc. 4-13 Revised (5/85)

CHAPTER 4

PROCEDURE: How to use the sysdef program

1. Per form the following:

/I /etc/sysdef <cr>

UNIX SYSDEF: version= unix5.1, node= reI
System Size: 1=51214, D=35110

Rootdev: Haj. o , Mi n. 1
Swapdev: Maj. 0, Min. 2
Pipedev: Maj. o , Min. 1
*
* Tunable Parameters
*
swplo 1
nswap 3000
buffers 50
sabufs 0
proc s 50
mounts 8
inodes go
files 60
calls 50
texts 40
cl is t s 150
swapmap 50
hashbuf 64
physbuf 4
maxproc 25
maxlock 200
power 0
mesg 1
serna
shmem
II

Onyx Systems, Inc. 4-14

GETTING STARTED

Revised (5/85)

CHAPTER 4 GETTING STARTED

The following describes briefly the function of each tunable
parameter.

swplo
nswap
buffers
procs
mounts
inodes
fi 1 e s
calls
tex t
clists
swapmap
hashbuf
physbuf
maxproc
maxlock
power
mesg
serna
shmem

swap starting block
number of swap blocks
number of buffers
number of processes
number of mounted file systems
number of open i-nodes
number of open files
number of time invoked functions
number of active text segments
number of character list buffers
size of free swap block list
number of hash buffers
number of header buffers
maximum number of user processes
maximum number of locked files
powerfail condition code
enables message buffer parameters
enables semaphore parameters
enables shared memory parameters

The following text briefly defines the pertinent parameters which
may be altered.

The swplo parameter, as described earlier, represents the start­
ing block location in the allocated "swap" disk storage space.

The nswap parameter, also described earlier, defines the size or
number of blocks used by the "swap" disk storage space.

The buffers parameter determines the number of system buffers to
allocate. It can be noted that in a "real-time" operating
environment, increasing the number of available buffers can
improve system response.

The procs parameter determines the number of entries to be allo­
cated for the process table. Each entry represents an active
process. Within the table, the first and second entries are
always the "scheduler'" and "init" processes, respectively. The
number of entries depends upon the number of terminal lines
available for use and the number of processes created by each
active user. Each user logged onto the system generates an aver­
age of from two to five processes.

When the table is full or overflows, the system issues error mes­
sages such as "no more processes" or "EAGAIN."

The mounts para~eter specifies the number of entries allocated
for the mount table. Each entry represents a mounted file sys­
tem. The root file system is always the first e~try. When the
table is full, the system issues a "BUSY" error message.

Onyx Systems, Inc.' 4-15 Revised (5/85)

CHAPTER 4 GETTING STARTED

The inodes parameter determines the number of entries allocated
for the i-node table. Each entry represents a unique available
i-node. When the table overflows, the system issues an "Inode
table overflow" error message. If this error message is experi­
enced regularly, the size of the table is too small and should be
increased. The number of entries used depends upon the number of
processes, text segments, and mounted file systems currently
active on the system.

The files parameter specifies the number of file table entries' to
allocate. Each entry represents an open file. When the table
overflows, the error message: "no file" is issued to the console

.terminal. If this error is experienced often, the table size
should be increased.

The calls parameter determines how many entries are allocated for
the call-out table. Each entry represents a function to be
invoked at a later time by the clock handler. The unit of time
used is 1/60 of a second. The call-out table is used by the ter­
minal handler program, and various other 1/0 handler programs, to
provide a delay in 1/0 interaction. When the table overflows,
the system halts and issues the message: "Timeout table over­
flow. "

Note: the value of calls must be greater than two (2)!

The texts parameter specifies how many text
allocate. Each entry represents an active
mente Such a segment is created by using
options of the Id(1) command. When the table
tern issues an "out of text" error message.

table entries to
read-only text seg­
the "_in or "-n"
overflows, the sys-

The clists parameter determines the number of character list
buffers to allocate. Each buffer contains up to 64 bytes. The
buffers are dynamically linked together to form input and output
queues for the terminal lines and various other slow speed 1/0
devices. The average number of buffers needed for each terminal
line ranges from five to ten. When the buffers are full, any
further characters queued are lost.

The swapmap parameter determines the number of entries to allo­
cate for the free list of swap blocks. It represents free blocks
in the swap area in units of 1024 byte blocks.

The maxproc parameter specifies how many concurrent processes a
nonsuper-user can invoke at any given time.

Onyx Systems, Inc. 4-16 Revised (5/85)

CHAPTER 4 GETTING STARTED

Guidelines for Kernel Sizing and Altering Parameters

/ The following text examines the considerations involved with
altering parameters and sizing the kernel, and offers some
suggestions for determining their proper sizes and values.

In many cases there is a tradeoff between getting all of the
rlesired resources into the system and keeping the system from
growing too large. One way to reduce the size of the kernel is
to leave out or remove the device driver software for non­
essential devices. Doing so may decrease the overall kernel size
by a few hundred to over a thousand bytes! However, most systems
do not have "extra" devices which can be left out or removed.
Therefore, the only way to trim the kernel size is to reduce the
allocation of some of the system's resources.

To aid in the decision of which resources to reduce, each per­
tinent system parameter is discussed in further detail below.

Buffers -- buffers

In the UNIX system, there is a "cache" or group of buffers which
functions transparently to the user and through which most disk
IIO is funneled. The system attempts to maintain in memory
copies of those blocks of disk data that are most often accessed,
thereby reducing the number of 1/0 operations needed to access
those blocks. As the size of the buffer cache is reduced
(buffers), the length of time a particular block remains in
memory is reduced. This results in a reduction in the effective­
ness of the caching and an increase in the amount of disk IIO
operations that must be performed. Concurrently, when the cache
size is insufficient to accommodate the number of processes
allowed, system performance suffers dramatically.

When the cache buffering is properly sized, there are enough
available buffers to accommodate those processes which require
them and allows processes to perform in parallel rather than
waiting for a buffer to free up.

Onyx Systems, Inc. 4-17 Revised (5/85)

CHAPTER 4 GETTING STARTED

The size of the buffer cache (buffers) should never be less than
the number of active processes allowed! To estimate the number
of active processes, use the formula below.

of active processes = (0 of concurrent users) + (.15 * procs)

A system can function with as few as 10 or 15 buffers, but 30 is
the recommended minimum. Each buffer added increases the size of
the kernel by approximately 540 bytes. Conversely, deleting a
buffer decreases the kernel by the same amount. Adding buffers
visibly improves system performance until the number of available
buffers exceeds the number of active processes by a factor of
three (3). Beyond that point, no significant gain in performance
is achieved.

Processes -- procs

There is a firm upper limit in every UNIX kernel on the number of
concurrent processes (active and inactive) that are supported.
Reaching or exceeding this limit causes invoked processes to fail
or wait until the system can accommodate the process. If this
condition arises often, it can be alleviated by raising the procs
limit. However, each increase to the limit adds approximately 40
bytes to the size of the kernel.

To apprOXimate the "minimum" value for procs, the formula is as
follows:

procs = (D of terminals) + (1.5 * (concurrent users + 10))

Where:
1 • 5

10

accounts for the required process associated with
every terminal exclusive of other processes.
accounts for system processes such as daemons that
are required for normal operation.

The recommended lower limit is· 40 or 50;
limit should not exceed 200.

the recommended upper

Mounts -- mounts

Each UNIX kernel has a configured limit on the number of file
systems that can be mounted at the same time. Once this limit is
reached, no additional file systems can be used until one of the
file systems currently in use is unmounted. Increasing the size
of the mount table adds approximately 12 bytes to the kernel
size. In addition, each mounted file system consumes one of the
system buffers while it is in a mount state.

..
Onyx Systems. Inc. 4-18 Revised ('5/85)

/

CHAPTER 4 GETTING STARTED

In determining the mounts value to set, calculate the number of
file systems needed for the installation and then increase that
number by one or two. The recommended minimum number of mount­
able file systems is four or five.

I-nodes -- inodes

Each UNIX kernel has a configured limit on the number of files
that can be concurrently in use. Once this limit is reached, no
additional files can be used and system activity is impeded until
some of the active processes have relinquished references to some
of the open files.

Conceptually, each process uses approximately 20 separate files.
However, this condition seldom occurs; therefore, allocating two
or three i-nodes for each process is quite adequate. Increasing
the number of i-nodes the system uses adds 32 bytes to the kernel
size for each additional i-node. The recommended minimum number
for inodes ranges from 90 to 100.

Files -- files

The distinction between an i-node and a file is subtle. As
described earlier, each file has an associated i-node. Each open
file on the system has a file table entry. If the table entries
are exhausted, no new files can be opened until others have been
closed. Increasing the number of entries in the file table adds
eight bytes to the kernel size for each additional entry. Again,
the recommended minimum number of entries is from 90 to 100.

Calls -- calls

The UNIX system supports internal, time-based calls; meaning cer­
tain functions are scheduled for action at a specific time.
These calls are typically used for time related activites within
a device driver's software. Exhausting the number of entries in
the call table causes the system to halt operation! Therefore,
it is prudent to ensure the parameter is large enough to prevent
this condition. To determine a safe lower limit, use the follow­
ing formula:

calls = (.25 * (0 of terminals)) + (0 of terminals)

The recommended minimum number of entries is 30 and each added
entry increases the size of the kernel by eight bytes.

Texts texts

The UNIX system supports shared load modules; one copy that is
shared among all users who are executing the same program. This
feature contributes enormously to system efficiency when programs
such as the shell, editors, and the C compiler are being con­
stantly invoked by many users. To provide this feature, the

Onyx Systems, Inc. 4-19 Revised (5/85)

CHAPTER 4 GETTING STARTED

system must maintain a special table containing an entry for each
actively shared text segment. If the maximum number of entries
is reached, no additional shared text programs are allowed until
some of the processes involved have completed.

The addition of an entry to the table increases the size of the
kernel by approximately 16 bytes. A reasonable estimation of the
minimum number of shared text segments required is 30% of the
number of processes on the system. The recommended minimum value
for texts is from 25 to 30.

Swapmap -~ swapmap

UNIX manages its memory and swap space through the use of vari­
able size maps. These maps grow as the demand for space
increases; however, when either table reaches its maximum limit,
the system becomes very inefficient. A reasonable estimate for
the size of these parameters is 1/3 to 1/2 the number of
processes on the system. The recommended minimum value to set
for both tables is 40 or 50.

Tty Buffering -- clists

There are several parameters that control the buffering of termi­
nal input and output (I/O). These parameters have a significant
effect on system throughput and on what the user sees.

The first set of parameters involved is: tthiwat and ttlowat, the
high and low water marks for buffering. These parameters are
found in the tty.h file in the /usr/include/sys directory. The
tthiwat value sets the maximum number of output characters that
is buffered for a terminal before the writing process is blocked
to await a "draining" of the queued backlog. The ttlowat value
establishes the level at which the writing process is allowed to
continue outputting characters to the terminal.

Therefore, the larger the value of tthiwat, the more output char­
acters a process is allowed to queue before suspension. If the
value is small, a process is suspended many times while attempt­
ing to output a large number of characters. This suspended
action increases process overhead in terms of additional context
switching and device interrupt generation, thereby decreasing
system throughput.

The ttlowat value also affects how the outputted data is
displayed on the terminal. When the output queue has been
drained to the low water mark, the suspended writing process is
awakened. However, even after the process is awake, it may not
run immediately. If the value of ttlowat is high enough to
prevent draining the queue before the process runs again, the
output on the terminal will appear continuous.

Onyx Systems, Inc. 4-20 Revised (5/85)

CHAPTER 4 GETTING STARTED

Conversely, if the value is too small the output data appears
"choppy" due to pauses between the time that enqueued output com­
pletes and the writing process starts again.

When very low speed terminals (300 baud or below) are used, there
is no reason to buffer large amounts of data; at 30 0 baud, only
30 characters are outputted a second. Therefore, if tthiwat is
set to 60 and ttlowat to 15, the buffer would enqueue two seconds
worth of characters (60) before the writing process was
suspended. After the process was awakened, it would have a full
half-second to enqueue more output. Under this circumstance, the
output would appear continuous.

However, using these same values (60 and 15) on a terminal line
at 9600 baud would produce a "choppy" output because of an insuf­
ficient time interval between outputting the enqueued data and
restarting the writing process. The time interval involved in
this case equates to 60 milliseconds for flushing the buffer and
15 milliseconds to restart the writing process. For systems
using terminals at low speeds, the values for tthiwat and ttlowat
described above are adequate. For systems using higher speed
terminals (9600 baud is common), values such as 200 for tthiwat
and 70 for ttlowat are recommended.

Once the high and low water mark values have been established, an
adequate number of buffers must be allocated to hold the enqueued
output and terminal input characters. The parameter which speci­
fies the number of buffers called "clists" is clists.

Note: the slists value represents the amount of buffering for all
terminals combined!

Each clist buffer holds up to 64 bytes and the segments are main­
tained outside of the kernel's address space; therefore, clists
do not increase the size of the kernel. However, clists do
reduce the amount of memory space available for use by user
processes. In determining how many clists to allocate, the value
set must be adequate to handle all the necessary buffer demands.
At best, there should be enough buffers to accommodate a full
input line (80 characters) and a full output queue (tthiwat char­
acters) for every terminal used on the system.

However, as stated earlier, each clist consumes valuable memory
space for user processes and it is unlikely that all the system
terminals would fill all of the buffers at the same time. There­
fore, a safe number of clist buffers to allocate can be deter­
mined using the following formulas:

clists = (II of characters)/6

Wher e:

of characters = (.65 * (D of terminals» * (tthiwat + 65)

Onyx Systems, Inc. 4-21 Revised (5/85)

CHAPTER 4 GETTING STARTED

Considerations for Testing ~ Modified System

Once the parameter changes have qeen made and a new
erated, the system administrator should test
before it is installed as the standard system.

kernel gen­
the new kernel

Testing the new kernel involves booting it up and operating as
normal while monitoring system activity for any adverse effects.
If any adverse conditions occur, make note of the symptoms exhi­
bited by the system, isolate the problem, and effect a repair.
If the problem cannot be readily determined, reinstate operation
by rebooting the old kernel and then recheck all the changes made
to the modified system.

111111111**1****11 WARNING *11*1**111***1**11*****
* *
I If changes were made to the allocation of
* the root or swap disk area, ensure the values
* selected DO NOT CAUSE AN OVERLAP ONTO ANOTHER
I ALLOCATED DISK SPACE!

*

*
*
*
*
* **********11**11111**1*****11*1111111*111*111*1*11

Making the desired changes involves using one of the system edi­
tors and generating a new kernel under a different name for test­
ing. The procedures for generating and booting an alternate ker­
nel are described in this chapter under the sub-heading of
"Rebuilding the Operating System."

Creating File Systems

As discussed in Chapter 2, Onyx initially configures four file
systems on the computer system. The last of these four file sys­
tems is usr. The usr file system boundaries start at the ending
boundary of the swap file system and continues to the end of the
disk storage. The beginning portion of the usr file system con­
tains all the additional user utilities and their libraries leav­
ing the rest of the file system storage available for users'
work. The actual size of the users' workspace depends upon the
physical storage capacity of the disk drive in use; however, the
workspace allocated in usr is generally adequate for most instal­
l a t.i 0 n s •

11*11111111111111111111111 CAUTION 1111111111111*1***~**********I****

I *
* If the particular needs of a given installation dictate that
* the usr file system be partitioned further into additional

*
* * file systems, then this decision should be made prior to allowing *

* users to start their work in the usr file system! *
* *
1*1*1**********

Onyx Systems, Inc. 4-22 Revised (5/85)

/

CHAPTER 4 GETTING STARTED

The reason for this is that
disk requires repositioning
figuring the disk. Since a
cated into another file
after data has been written
the loss of that portion of
exist.

creating additional file systems on a
the file system boundaries and recon­
file system's data cannot· be trun­
system, repositioning the boundaries
into the file system could result in
the data where the new boundary would

Planning and determining the particular needs of the installation
is one of the important jobs of the system administrator!

To make an additional file system requires performing the follow­
ing steps:

1. Determining the sizes of the file systems currently con­
figured.

2. Reconfiguring the disk storage boundaries and sizes.

3. Creating the additional device "nodes."

4. Making the additional file system.

5. Labeling the additional file system.

Determining the Sizes of the File Systems

The Onyx configured file systems and their sizes are defined as
follows:

cOdOsO reserved ar e a , 1188 bloc ks in size

cOdOs1 root file system, 8000 blocks in size

cOdOs2 swap file system, 3000 bloc ks in si ze

cOdOs3 usr file system, 4311 blocks used and
the remaining disk storage allocated
for wor ks pac e

Reconfiguring the Disk Storage Boundaries and Sizes

The following example procedures are based upon creating and con­
figuring an additional file system whose directory name is
wrkspc, device name is cOdOs4, and block size as starting from
the end boundary of the usr file system and continuing to the end
of the available disk storage.

The reconfiguration process is accomplished by using the diskconf
program one of the utilities contained in the standalone
shell.

Onyx Systems, Inc. 4-23 Revi'sed (5/85)

CHAPTER 4 GETTING STARTED

Note: this procedure requires the system to be reset in order to
achieve the standalone shell environment! In addition, the
diskconf program destroys the spare sector information residing
on track 0; therefore, perform the sparelist program first and
write down the sectors currently spared.

PROCEDURE: How to use the diskconf program

1. From the standalone shell, display the current
spare sector data as follows:

SHELL$$ sparelist Idev/dsk/cOdOsO <cr>

Spare information for Controller 0 Unit 0 slice 0

Base sector [number]
Number of sectors [number]
Number of Alternates [number]
Number of bad sectors [number]

[If sectors have been spared previously, the
following additional data will appear:]

Sector [number] -> Physical [number]

[Otherwise, the program displays ..•]

There are no spared sectors on this slice.

SHELL$$

2. Write down all spared sector information.

3. Configure the disk as follows:

SHELL$$ diskconf -c 0 -d 0 -s 1188 8000 3000 4000 0 -b <cr>
Loading /stand/diskconf.

[Where:

-s

-c 0 = the controller bus address.
-d 0 = the physical drive number.
1188 = the si ze of cOdOsO
8000 = the si ze of cOdOs1
3000 = the si ze of cOdOs2
4000 = the si ze of cOdOs3

0 = the default instruction
to make cOdOs4 the rest
of the available storage

-b = the "boot" flag which configures
the disk for booting.

Onyx Systems, Inc. 4-24 Revised (2/85)

CHAPTER 4

diskconf: new
sl ic e o ,
slice 1 ,
slice 2 ,
slice 3 ,
slice 4 ,
slice 5 ,
sl ic e 6 ,
slice 7 ,

slice
offset
offset
offset
of fe st
offset
offset
offset
offset

GETTING STARTED

structure - number of slices 5
0, size 1188
1188, size 8000
9188, size 3000
12188, size 4000
16188, size 18372
0, size 0
0, size 0
0, size 0

This configuration establishes file system
cOdOs4 as being 18372 blocks in size. J

SHELL$$

Creating the Additional Device ~odes

This task is accomplished by using the devices utility which
resides in the /etc directory. Devices, when invoked, creates
all the additional disk drive device files (nodes) to support
eight file systems automatically. In addition, devices config­
ures these nodes for both the "blocked" and "character" device
modes. The list of blocked disk devices resides in the /dev/dsk
directory and ihe character disk devices in the /dev/rdsk direc­
to ry.

Note: the devices program must be performed in the single-user
environment and the actual "device" (e.g., disk, cartridge or
nine-track tape) must be turned on! In addition, the "-w" option
means "write" or create the entries.

PROCEDURE: How to use the devices program

1. In single-user mode, perform the following:

/etc/devices -w <cr>
II

2. Verify the nodes exist in the /dev/dsk and /dev/rdsk
directories for the new file system.

n Is -1 /dev/dsk/cOdOs4 Idev/rdsk/cOdOs4 <cr>

br-------­
cr--------
II

root system 0, 4 [date/timeJ/dev/dsk/cOdOs4
root system 4, 4 [date/time]/dev/rdsk/cOdOs4

Making the Additional File System

The additional file system is created using the mkfs(1) utility
as illustrated in the following procedure.

Onyx Systems, Inc. 4-25 Revised (5/85)

CHAPTER 4 GETTING STARTED

Note: the mkfs program must be performed in the single-user
environment!

PROCEDURE: How to make the file system

1. Make the file system.

mkfs /dev/dsk/cOdOs4 <cr>

bytes per logical block = 1024
total logical blocks = 18374
total inodes = 4592
gap (physical blocks) = 1
cylinder size (physical blocks) =
n

Labeling the Additional File System

The last step involved in this process is labelling the newly
created file system. This is done using the labelit(1) command
as shown in the following procedure.

Note: the labelit program must be performed in the single-user
environment!

PROCEDURE: How to use the labelit command

1. To label the file system, perform the following:

labelit /dev/dsk/cOdOs4 wrkspc DRIVEO <cr>

Current fsname:[blank], Current volname:[blankJ, Blocks: 36744,
Inodes: 4560. FS Unit: lKb. Date last mounted:[dateJ.
NEW fsname = wrkspc, NEW volname = DRIVEO -- DEL if wrong !!

Upon successful completion of these steps, the system administra­
tor should verify the newly created file system's integrity by
performing the fsck(1M) program before advancing to multi-user
mode.

Installing Optional Device Drivers

This section describes briefly the installation of a new or dif­
ferent device "driver."

The addition of a new driver is not an everyday occurrence. How­
ever, when it is necessary to do so, the new driver software is
supplied on tape. and a complete set of installation instructions
accompanies this tape.

Onyx Systems, Inc. 4-26 Revised (5/85)

/

CHAPTER 4 GETTING STARTED

The new device driver is typically in the form of a binary object
file suffixed by a ".0".

The directory where the file will reside varies. However, the
files that have to be manipulated to incorporate a new driver are
fairly consistent. These files are "unix" -- the kernel, "dfile"

a system device table, the special device file which is
generated and placed in /dev, and the appropriate device driver
entry for the /etc/master file.

The upper entries appearing in /etc/master define certain
characteristics about the device as shown in the example below.

* (lI)master.m4 2 • 1
*
* The following devices ar e those that can be specified in the system

* description file. The name specified must agree with the name
*
cl oc k 4 0 302 clk 0 0 0 1 6
con 4 137 104 scc 0 0 0 32 5
1 ptr 4 33 1 04 lp 0 0 6 1 5
disk 4 36 154 d sc 0 0 4 32 5
car t 4 37 154 ct 0 1 5 32 5
sc si 4 0 102 sc 0 0 0 1 7
dman 4 0 1 02 dma 0 0 0 1 7
dmae 4 0 1 02 dmae 0 0 0 1 7

Note: determining these device
access to the UNIX source
internal structure of UNIX.

driver characteristics requires
code and an understanding of the

The following procedure describes the general tasks a system
administrator performs in incorporating a new device driver into
the UNIX system. During such an installation, the system should
be in single-user mode with the /usr file system (cOdOs3) mounted
manually.

PROCEDURE: How to install a new device driver

1. Change to the major directory where the driver
will reside. For example, /usr/lib.

cd /usr/lib <cr>
II

2. Make a SUb-directory to contain the contents
of this tape. For example, "newdrvr."

II mkdir newdrvr <cr>
Ii

Onyx Systems, Inc. 4-27 Revised (5/85)

shown.

CHAPTER 4 GETTING STARTED

3. Change directories to newdrvr.

U cd newdrvr <cr>
/I

4. Insert the tape into the system, and read it
into this directory.

/I cpio -ivBdu < /dev/rmt rwd <cr>

/[directories]
/[files]

[total number of] blocks
/I

[Note: the "rmt_rwd" tape device is used
as an example. The tape containing the
needed file should specify what track the
file is actually on.]

5. Change directories to /dev, and make a new
special device file. For example, "driver."

II cd /dev <cr>
/I

/I mknod /dev/driver [type][major][minor] <cr>
n

6. Change directories to /etc.

Ii cd /etc <cr>
II

7. Edit dfile and add the driver name
"driver" to the list.

* * Motorola VME/10 Development System

*
* dev v ec tor
*
disk 3dO
clock 130
cart 3d4
dman 190
sc si 78
con 100
con 104
con 108
1 ptr 180
dmae 1 94
driver 198

Onyx Systems, Inc.

add r

0
0
0
0
0
0
0
0
0
0
0

bus

5
6
5
7
7
5
5
5
5
7
5

4-28

count

1
1
1

Revised (5/85)

/

/

CHAPTER 4

8. When done, write and quit the file.

9. Reconfigure the dfile.

n config dfile <cr>
II

10. Edit /etc/master and add the device
driver entry.

11. Change directories to /usr/src/uts.

12. Make a new version of the kernel using
the make(1) command. For example,
"new."

1/ make <cr>

[The system responds with a variety
of messages.]

13. Rename the new kernel.

mv unix unix.nu <cr>
/I

14. Move the newly created kernel version to
the root directory.

II mv unix.nu /
1/

<cr>

15. Change directories to root (/).

16. Save the old version of the kernel as
follows:

1/ mv lunix lunix.old <cr>
II

17. Make the new kernel the one that will be
booted upon initializing the system.

1/ mv /unix.nu /unix <cr>
II

18. Update the disk super-block.

II sync;sync <cr>
/I

Onyx Systems, Inc. 4-29

GETTING STARTED

Revised (5/85)

CHAPTER 4 GETTING STARTED

19. Unmount the /usr file system.

II umount /dev/dsk/cOdOs3 <cr>
II

20. Press the reset button and boot the system
as usual.

Setting lLE. Asynchronous Communications

This section describes the most common configuration functions
performed by the system administrator pertaining to communica­
tions.

These configuration functions include:

• Configuring and installing terminal ports

• Configuring the system to use modems

• Configuring the system for cu

• Configuring the system for uucp

Configuring and Installing Terminal Ports

This procedure includes the construction or modification of an
existing terminal port, and may involve adding or altering param­
eters within the following system files: /etc/inittab and (dev.

The contents of ·/etc/inittab determine certain operational
characteristics about a serial port such as its environment, its
name, th~ terminal mode, its speed and any special allowable
features.

For example:

Where:

03
2

respawn

/etc/getty

tty03
9600155

03:2:respawn:/etc/getty tty03 9600155

=
=

=

=

=
=

the Hid" or actual tty port number.
the "rstate" such as "5" for
single-user or "2" for multi-user
mode.
the "action" or initialization and
process control setting for the port.
the init program used for terminal mode
setup.
the specific /dev device name file.
the speed or "baud rate" setting.

• Onyx Systems, Inc. 4-30 Revised (~/85)

CHAPTER 4 GETTING STARTED

Note: there are many other "action" settings available for port
control. A detailed description of all the available se~tings is
shown in the Enhanced ONYX System V PPOGRAMMER REFERENCE MANUAL
under the sub-topic of inittab(4).

Onyx offers two options in regards to data output control of a
serial device. These two serial output control options are:

• Direct memory access control

• Non-direct memory access control

Direct memory access (DMA) control, as it applies to serial
ports, means transferring data in large blocks to a terminal or
other serial device. Having this ability increases significantly
the speed at which data is presented to and displayed on a termi­
nal, or other serial device. In installations where constant
retrieval and presentation of data occurs, DMA output control
becomes a valued asset over the non-DMA output (character-by­
character) method. The primary reason that non-DMA output con­
trol exists in the system is that the console terminal port does
not support DMA output control. Therefore, the system adminis­
trator should take advantage of this Onyx feature whenever possi­
ble. For convenience, Onyx has already configured the appropri­
ate serial ports for DMA output control.

The directories, "/dev/tty dma" and "/dev/tty ndma" contain the
terminal (tty) port device entries for DMA and non-DMA support,
respectively. If the entries for "tty03" in both directories
were listed using the Is -1 command, they would appear as:

crw--w--w- 2 root system 0, 131 [date/time] tty03

crw--w--w- 1 root system 0, 3 [date/time] tty03

The major differences in the two listings are the link count and
the minor device number. For non-DMA control, the link count is
"1," unless altered manually by the administrator; the link count
for DMA control is "2," meaning that it has been logically linked
to the actual tty03 output device file for normal use. The minor
device number listed for the non-DMA control is "3," reflecting
the actual tty port number; the minor device number listed for
DMA control is "131." This minor device number was derived by
adding "128" to the actual tty port number thereby differentiat­
ing DMA from non-DMA devices.

The following procedure outlines the configuration of a system to
support eight additional ports numbered tty06 to tty13.

Onyx Systems, Inc. 4-31 Revised (5/85)

CHAPTER 4 GETTING STARTED

Note: this procedure must be performed in the single-user mode.
If the system is currently in multi-use mode, use the
/etc/shutdown command to bring the system to single-user mode.

PROCEDURE: How to configure and install additional tty ports

1. Ensure the system is in single-user mode by
performing the following:

II init s <cr>

INIT: New run level: S

INIT: SINGLE USEF MODE

Current date:[date]

"
2. Mount the /usr file system as follows:

II mount /dev/dsk/cOdOs3 /usr <cr>
II

3. Change directories to /usrlsrc/uts as
follows:

1/ cd /usr/src/uts <cr>
i

4. Make the new kernel as follows:

D make. tty14 <cr>

touch cf/dfile14
cd cf; make "DFILE=dfile14"
letc/config dfile14
cc -c -0 -I/usr/include conf.c
ar rv .• /cflib.a conf.o

r - conf.o
rm -f conf.o
Ilib/cpp -P -DASM -I/usr/include m68kvec.s>m68kvec.i
as -0 m68kvec.o m68kvec.i
ar rv •• /cflib.a m68kvec.o

r - m68kvec.o
Ilib/cpp -p -DASM -I/usr/include low.s >low.i
as -0 low.o low.i
ar rv •. /cflib.a low.o

r - low.o

II

rm -f name.o
•. /cflib.a is ready
Id -e start -0 unix cflib.a iolib.a mllib.a iolib.a
oslib.a cflib.a iolib.a mllib.a oslib.a
unix is ready

Onyx Systems, Inc. 4-32 Revised (5/85)

CHAPTER 4

5. Rename the new kernel as follows:

mv unix unix.nu <cr>

6. Change directories to /dev.

cd Idev

<cr>

7. Make the special device files
using the mknod(1) command
as fOllows:

mknod tty06 c 0 134 <cr>

Repeat the command line for each tty
up to and including tty13. Remember,
add 128 to the tty number to get the
proper minor device number.]

8. Link the new tty device files for DMA
output control as follows:

In Idev/tty_dma/tty06 Idev/tty06 <cr>

[Repeat the command line for each tty
up to and including tty13.]

9. Change directories to /etc.

H cd letc <cr>

10. Edit the inittab file and add the new
tty entries after tty05.

05:2:respawn:/etc/getty tty05 9600155
06:2:respawn:letc/getty tty06 9600155

Repeat the task, making the necessary
changes, until all tty's are entered.]

11. When done, write and quit the file.

12. Change directories to root (/).

H cd I <cr>

Onyx Systems, Inc. 4-33

GETTING STARTED

Revised (5/85)

CHAPTER 4

13. Move "unix.nu" to the root directory.

mv /usr/src/uts/unix.nu I <cr>
IJ

14. Save the old kernel as follows:

mv /unix /unix.old <cr>
/I

GETTING STARTED

15. Make the "unix.nu" the kernel normally booted
as follows:

mv /unix.nu /unix <cr>
/I

16. Unmount the /usr file system.

umount /dev/dsk/cOdOs3 <cr>
IJ

17. Update the super-block.

/I sync;sync

<cr>

18. Reset and reboot the system.

In cases where simple changes need to be made to a terminal
port's characteristics, such as altering the baud rate or its
port control actions, no changes to /dev files or the generation
of a new kernel would ensue.

For example, to change the baud rate of a terminal port, first
determine the proper baud rate value to be used and then make the
change to the desired port entry in /etc/inittab.

The following procedure shows how to change the baud rate of
tty04 from 9600 baud to 2400 baud.

Note: this procedure requires the administrator to be either
logged in as root or become a super-user.

Onyx Systems, Inc. 4-34 Revised (5/85)

/

CHAPTER 4 GETTING STARTED

PROCEDURE: How to change a terminal port's baud rate

1. Change directories to letc.

1/ cd letc <cr>
II

2. Edit letc/inittab; locate the tty04
entry and effect the change.

04:2:respawn:/etc/getty tty04 9600155

04:2:respawn:/etc/getty tty04 2400155

3. When done. write and quit the file.

4. Instruct the system to read and act upon
the changes in letc/inittab as follows:

1/ init q <cr>

[Displays various messages.]
/I

5. Perform a ps -el process status command
to obtain the process "id" of the old "getty"

on the changed port.

6. Manually kill the old "getty" on the changed port
as follows:

II kill -9 [old getty PID] <cr>

killed [PID]
II

Not e: c han gin g the ba u d rat e 0 f the " con sol e" t e r min a I po r t
requires altering the switch settings of the console port baud
rate switch in the system. To obtain the proper settings, con­
sult the ONYX 6810 MICROCOMPUTER SYSTEM USER'S GUIDE for that
system.

Configuring the System for Modems

Preparing the system to use a modem device for communications
between two computers or a remote terminal involves configuring
both the hardware and software of the system. The hardware con­
figuration data is explained in the ONYX 6810 MICROCOMPUTER SYS­
TEMS USER'S GUIDE for that particular system. Therefore. this
text focuses upon the software configuration data needed to
incorporate the use of a modem.

Onyx Systems. Inc. 4-35 Revised (5/85)

CHAPTER 4 GETTING STARTED

The software process may involve altering information
/etc/inittab file, along with reprogramming a file
"dialout.c" located in the /usr/src/uucico directory.

in the
call ed

One of the considerations for the system administrator is
deciding what tty init field options are desirable when using a
modem. As described earlier, the init field settings determine
the state of the tty port upon logging on and off the system.
When incorporating a modem, the associated tty port init field is
configured to control either a "dial-in" or "dial-out" state;
meaning the tty port and modem are dedicated for either accessing
a remote system (dialing out) or allowing a remote system or
terminal to access (dialing in) the local system.

Another consideration is whether or not the modem is "direct
dial" or "auto dial." Onyx has configured the system to support
both types of modems. However, the preset configuration only
addresses modem products manufactured by either the "VEN-TEL" or
"HAYES" companies, or modems that are directly compatible with
those companies' products. To use another manufacturer's modems
may involve altering the program "dialout.c," which requires a
knowledge of C language programming.

The following procedure illustrates configuring tty04 to support
the dial-in state at 1200 baud and the dial-out state where the
baud rate is determined by the modem hardware.

PROCEDURE: Configuring a tty port for a modem

1. Change directories to /etc.

II cd /etc <cr>
II

2. Edit /etc/inittab, locate the tty04
entry and effect the change as follows:

As a dial-in state]

04:2:respawn:/etc/getty tty04 9600155

04:2:respawn:/etc/getty tty04 1200uucp

[As a dial-out state]

04:2:respawn:/etc/getty tty04 9600155

04:2:off:/etc/getty 1200

3. When done, write and quit the file.

Onyx Systems, Inc. 4-36 Rev i sed ~5 /85)

/

CHAPTER ~ GETTING STARTED

4. Instruct the system to read and act
upon the changes in letc/inittab as
follows:

Ii init q <cr>

Displays various messages.]

5. Manually kill the old "getty" for the changed
port as follows:

kill -9 [old getty PID]

Killed [PID]

<cr>

Configuring ~ System for ~

The cu(1C) command, as previously defined, can establish a com­
munications link between UNIX computer systems. These "links"
are generally achieved through modem devices; however, eu can
also be used to connect between two local systems that have been
"hard wired." Hard wired means that a physical connection (wire)
has been made from one terminal port to another between these
local systems without the use of a modem.

Note: when making a hard wired connection, the wires used for
receive and transmit must be reversed on one end of the connec­
tion!

Tf cu is used with a modem, then the system administrator must
configure the desired terminal port for modem support.

The initial setup involves configuring the "L-devices" file
located in the lusr/lib/uucp directory. This file is used by
both the cu and uucp facilities. The structure of the L-devices
file is as follows:

EXAMPLE:
[type] [line] [call-device] [speed] [protocol]

Where:
type = DIR, for direct line or ACU for automatic

calling unit where ACU1 is a VEN-TEL
modem and ACU2 is a HAYES modem

line = the device name involved, such as tty03
call-device = the ACU device name or if none, contains

a "0" as a place holder
speed = the line speed (baud rate) of that line

protocol = an optional field that supports other
communication protocols

Onyx Systems, Inc. 4-37 Revised (5/85)

CHAPTER 4 GETTING STARTED

The L-devices file has been configured with the following preset
parameters:

DTB tty01 0 1200

ACU1 tty01 cuaO 1200

Note: the actual tty "number" configured is a svstem dependent
factor; therefore, consult the ONYX 6810 MICROCOMPUTER SYSTEM
USER'S GUIDE for the system to obtain the port assignment data.

The procedures for using cu(1C) are described in Chapter 5, under
the heading of "Establishing Communication Links."

Configuring the System for ~

The uucp(1C) command provides the system administrator with the
ability to establish a controlled UNIX to UNIX system
communications environment.

To establish uucp communications the following files must be
prepared:

• L-devices

• L.sys

• L-dialcodes

These files reside in the lusr/lib/uucp directory.

The L-devices file format has already been illustrated;
therefore, no further explanation is provided.

L.sys is divided into seven fields. These seven fields include:

[name] [time] [device] [speed] [phonenumber] [login-login] [password]

Where:
name =
time =

device =
speed =

phonenumber =

the system name of the remote system.
the time the system may be called. If
not applicable, "Any", can be placed
here.
the device that should be used, such as
DIR or ACU, etc.
the baud rate to use.
the actual telephone number used to call
the remote system. May be all numbers or
may have a letter prefix supplied by
the L-dialcodes file.

login-login = the login sequence accepted by the
remote computer. It appears as
"ogin:-ogin:" where the "1" is

Onyx Systems, Inc. 4-38 Revised (5/85)

/

CHAPTER 4 GETTING STARTED

intentionally left off because it is not
known whether "L" or "1" has been used.

password = the password on the remote computer that
is associated with this calling user. It,
like the "ogin:," appears as "assword:"
for the same reasons.

The L-dialcodes file is an option. Uucp functions without it as
long as all telephone information is provided. However, it can
make the process easier when a number of different area codes are
to be used. The procedure for creating an L-dialcodes file is
shown below.

PROCEDURE: Configuring the L-dialcodes file

1. Change directories to /usr/lib/uucp.

cd lusr/lib/uucp <cr>

2. Create the file. Enter the desired
data following the format below.

sf
ny
dc

415
718
202

[Where "sf" is the name and "415" its
associated area code.]

4. When done, write and quit the file.

5. Set the file permissions as indicated
below.

chmod 600 L-dialcodes <cr>
II

6. Change its ownership to uucp.

chown uucp L-dialcodes <cr>

The L.sys file initially configured on the system has been esta­
blished for explanatory purposes only, and it does not illustrate
the use of L-dialcodes. Therefore, an example is provided below.

A configured L.sys file might look like this:

onixl Any ACUl 1200 sf5551212 ogin:-ogin: uucp assword: pieceofcake

Onyx Systems, Inc. 4-39 Revised (5/85)

CHAPTER 4 GETTING STARTED

Where the "sf" applies to the area code entry in L-dialcodes.

In addition, the "ogin:" fields might also be configured as:

ogin:--ogin:-EOT-ogin:-BREAK-ogin:

Where "EOT" and "BREAK" represent the <cntrl-d> and the <break>
key on the terminal respectively. These keys are used for gen­
erating signals which synchronize the speed (baud rate) between
the two computers.

The procedures for using uucp(1C) are described in Chapter 5,
under the heading of "Establishing Communication Links."

Setting QE Synchronous Communications

In this guide, "synchronous" communications means the "Bisynchro­
nous 2780/3780 Emulator" software package configured to operate
on Onyx computer systems.

In general, this package provides the ability to interface with
and transfer continuous streams of data (batched) to a mainframe
class computer at a high rate of speed.

For example: A bank's branch offices might use this method to
transfer their daily account activities to the home office.

It should be noted that this software is not a part of the stan­
dard release UNIX system sent with each Onyx computer. It is,
however, a valuable option offered by Onyx. If acquired, it
includes a tape containing the software and a detailed installa­
tion and instruction guide.

Note: a new kernel must be made after
package!

Rebuilding the Operating System

installing this software

This section describes how to save and make operational the con­
figured alternate UNIX kernel.

The example procedure is brief and may be familiar since it has
been explained in detail in other sections of this chapter.

After the system administrator has made the desired configuration
changes, the next task to perform is generating (building) the
new UNIX k~rnel. The following example procedure describes this
process which is performed in the single-user mode.

Onyx Systems, Inc. 4-40 Revised (5/85)

CHAPTER 4

PROCEDURE: How to rebuild the operating system

1. Mount the /usr file system.

/I mount Idev/dsk/cOdOs3 lusr <cr>
/I

2. Change directories to /usr/src/uts.

/I cd lusrlsrc/uts <cr>
IF

3. Make the new kernel as follows:

/I make <cr>

touch cf/dfile
cd cf; make "DFILE=dfile"
/etc/config dfile
cc -c -0 -I/usr/include conf.c
ar rv .. /cflib.a conf.o

r - conf.o
rm -f conf.o

GETTING STARTED

/lib/cpp -P -DASM -I/usr/include m68kvec.s>m68kvec.i
as -0 m68kvec.o m68kvec.i
ar rv .. /cflib.a m68kvec.o

r - m68kvec.o
•• /cflib.a is ready

ld -e start -0 unix cflib.a iolib.a mllib.a oslib.a cflib.a
iolib.a mllib.a oslib.a
unix is ready

IF

4. Rename the new kernel.

n mv unix unix.nu <cr>
1/

5. Change directoires to root (I).

/I cd I <cr>
II

6. Move the new kernel to root.

/I mv lusrlsrc/uts/unix.nu I <cr>
1/

7. Save the old kernel.

n mv lunix lunix.old <cr>
II

Onyx Systems, Inc. 4-41 Revised (5/85)

CHAPTER ~

8. Make the new kernel the one normally booted
and update the super-block as follows:

mv lunix.nu lunix <cr>

sync;sync <cr>
II

9. Unmount the /usr file system.

umount Idev/dsk/cOdOs3 <cr>
II

10. Update the super-block.

sync;sync <cr>
II

11. Press the reset button and boot up as usual.

GETTING STARTED

Once the new kernel has been functionally verified, make a tape
backup copy of the root file system using the cpio(1) command.

In the event the new kernel cannot be booted, the system adminis­
trator can boot the system from the old kernel manually. The
following procedure shows how this is done.

PROCEDURE: How to boot from an alternate kernel

1. Press the system reset button. The
console terminal should display the
following:

-- PROM 05/03/85-12:19:~8

O,1,c,9,?: 0 <cr>

SHELL 02-01-85-15:45:12

SHELL$$

2. Per form the following:

SHELL$$ boot lunix.old <cr>

Booting /unix.old.

Con sol e login:

Onyx Systems, Inc. ~-42 Revised (.5/85)

CHAPTER 4 GETTING STARTED

Transferring System Documentation to Disk

Onyx may supply as an option with each UNIX system a tape con­
taining the System V USER REFERENCE MANUAL package. If desired,
this tape copy of the manual can be transferred into the /usr
directory. However, the entire manual set consumes approximately
2 megabytes of disk storage! For systems using smaller capacity
disk drives, the loss of this much storage space can signifi­
cantly impair the flexibility of the system. Therefore, it is
adviserl that only a subset of this manual be installed.

A suggested subset of this manual is: "u_man/man1,ft which
describes most of the UNIX commands.

The following example procedure describes how to transfer this
subset onto the system.

Note: this procedure requires the system administrator to be
either logged in as root or to become a super-user!

PROCEDURE: How to transfer the system manuals to disk

1. Insert the "Manual Pages" tape into the
system.

2. Change directories to /usr.

1/ cd /usr <cr>
/I

3. Transfer u man/man1 from tape.

/I cpio -ivBdu u man/man1 < /dev/rmt rwd <cr>

/[directory]
I[files]

/I

Initiating the Multi-User Environment from Single-User

If the system is in the single-user environment, the multi-user
mode can be initiated from the console terminal.

The following proc'edure describes how to initiate the' multi-user
mode.

Onyx Systems, Inc. 4-43 Revised (5/85)

CHAPTER 4 GETTING STARTED

PROCEDURE: How to initiate multi-user mode from single-user

1. Perform the following:

1/ init 2 <cr>

INIT: New run level: 2

Do you want to check the file system? (y or no) y <cr>

/dev/dsk/cOdOs1
fi I e system: [name] Vol ume: [name/number]
** Phase 1 - Check Blocks and sizes
** Pha se 2 - Chec k Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Chec k Reference Co un t s
** . Pha se 5 - Check Free Li st
[N] files [N] blocks [N] free

Continues to check all other file
systems listed.]

Current date: [date]
Process accounting started. [If enabled.]
Error logging started.
Cron started.
Line printer scheduler started. [If enabled.]

Mounted file systems -

/usr (/dev/dsk/cOdOs3): [N] blocks
/ (/dev/dsk/cOdOs1): [N] blocks

[N] i-nodes
[N] i-nodes

[Continues to list all mounted file systems.]

********* SYSTEM MULTI-USER [date] *********

Consol e log in:

Configuring Printers

UNIX, as installed from the Onyx INIT tape, has configured both a
serial and parallel printer facility.

Onyx Systems, Inc. 4-44 Revised (5/85)

)

CHAPTER 4 GETTING STARTED

These facilities reside in /dev and include the following:

• pIp - parallel printer device file

• sIp - serial printer device file

• Ip - common printer driver device file

Note: as configured by Onyx, the parallel printer device file
(pIp) has been linked to the common printer device driver lp.
Therefore, if a serial printer is to be used, the administrator
must link the serial printer device file (sIp) to the common
printer driver lp using the In(1) command.

When a serial printer, or any other serial device, is configured
onto the system, its characteristics or "attributes" can be
displayed using the stty(1) command. The stty command can also
alter the attributes of a serial device. The attribute options
of stty are quite extensive, therefore, thfe discussion on stty
and the serial printer focusses on what the standard options are
and how to make desired changes.

The following procedure shows how to view the current stty set­
tings of a serial printer.

PROCEDURE: How to view the serial printer attributes

1. Per fo rm the fo 110 wing:

$ stty < /dev/slp <cr>

speed 9600 baud; -parity hupcl clocal
line = 1; -inpck -istrip -ixon -opost
-isig -icanon -echo -echoe -echok
$

When configuring the UNIX system to support the use of a serial
printer, the administrator should set certain stty attributes in
the /etc/rc file manually.

For example:

stty 300 ixany ixon ixoff onclr opost </dev/slp

The last aspect involving printers which may be of concern to the
system administrator is enabling the desired printer for use with
the scheduler facility (the spooler suggested for use). The
example procedure below shows configuring the parallel (pIp)
printer device for use with the spooler. A serial (sIp) printer
device can also be easily configured by substituting sIp for pIp
where indicated in the command syntax.

Onyx Systems, Inc. 4-45 Revised (~/85)

CHAPTER 4 GETTING STARTED

Note: this procedure requir.es the administrator to either log in
as root or become a super-user. In addition, the· printer
scheduler must be turned off! This is done using the lpshut(1H)
command.

PROCEDURE: How to configure the parallel printer to the scheduler

1. Change directories to /usr/lib.

II cd lusr/lib <cr>
II

2. Add the parallel printer as follows:

II Ipadmin -pplp -cprinter2 -mdumb -v/dev/plp <cr>

Where "_p" is the printer name, "_C" is the printer
class, "_mn is the model interface program, and
n_v" is the actual device file name. Note: unlike
other command syntax, there must be no spaces
between the option selection and the entered
argument.]

3. Display the new printer status as follows:

/I lpstat -t <cr>

scheduler is not running
system default destination: printer1
members of class printer1:

sIp
members of class printer2:

pIp
device for sIp: /dev/slp
device for pIp: Idev/pip
sIp accepting requests since [date]
printer1 accepting requests since [date]
pIp not accepting requests since [date]

new destination
printer2 not accepting requests since [date]

new destination
printer sIp is idle. enabled since [date]
printer pIp disabled since [date]

new printer
/I

4. Reactivate the scheduler for use as follows:

iJ lpsched <cr>
II

Onyx Systems, Inc. 4-46 Revised (5/85)

CHAPTER ~

Note: the proceoure for configuring the
additional serial printer is discussed
Expansion."

Configuring Terminals

GETTING STARTED

system to support an
in Cha pter 6, "System

Disparities among different manufacturers' terminals can lead to
problems; UNIX circumvents the problems with "termcap," a file
that resides in the lete directory and describes certain charac­
teristics about a wide variety of terminals. It is, as previ­
ously noted, one of the members of the Berkeley Enhancement pack­
age.

The contents of termcap typically appear as follows:

dOlvt100n:vt100 wIno init:is@:if@:tc:vt100:
d6Ivt100:vt-100:pt100Ipt-100Idec vt100:

The data above partially describes the features set for a "vt100"
type of terminal.

If the system administrator wants to learn how to interpret the
symbolism used and perhaps develop unique entries, the informa­
tion is contained in the Enhanced ONYX System V PROGRAMMER REFER­
ENCE MANUAL. However, this discussion focuses on how to use
termcap.

Prior to each major terminal description section, there is a
brief English definition of the terminal itself (i.e., DEC model
vt100, Televideo model 925, etc.).

Using an editor's pattern matching capabilities, locate the
English name of a terminal, then find its mnemonic designator
such as "vt100" for a DEC model vt100. This mnemonic name is
useo in conjunction with a shell option to describe the terminal.
The shell option is "TERM."

TERM is a parameter that can be set when building a user's .pro­
file file. When used, TERM appears as "TERM:[mnemonic terminal
nameJ."

Another option offered by the shell in conjunction with TERM is
"EXINIT." EXINIT allows certain terminal functions to be invoked
without going through the letc/termcap file. These functions are
used by the vi editor to force specific terminal screen controls
to ta ke pI ac e •

Onyx Systems, Inc. 4-47 Revised (5/85)

CHAPTER ~ GETTING STARTED

For example:

EXINIT='set ai '

Where:

a1 = the auto indent feature. Forces text
to be indented while entering data
under vi.

A second terminal configuration utility is the stty(1) command.
Stty is used to manipulate parameters for a serial communication
device. As discussed earlier, there are many stty parameters
that can be altered. Therefore, if a parameter is going to be
changed, the system administrator should fully understand what
function the parameter performs before effecting the change; oth­
erwise, communication problems could result.

Creating the Login Environment

One of the convenient features of the UNIX system is that it per­
mits a user to create a customized working environment which can
be invoked and made a part of the normal login process.

This customization can be achieved by programming a group of spe­
cial files which function either under the Bourne shell (sh) or
the Berkeley C-shell (csh).

This group of files includes:

• profile •• cshrc

•• profile •• login

Note: the creation or manipulation of some of these files
requires a working knowledge of shell or C-shell programming.

Figure 4-1 t· "Basic Login Sequence," illustrates the relationships
among some of these files and others involved in this operation.

Onyx Systems, Inc. 4-48 Revised ~5/85)

I

/

CHAPTER 4 GETTING STARTED

Bourne Shell Special Files

The profile special file is constructed using shell programming
conventions. When executed, profile implements the following
actions:

1. Initiate a sh.ell (sh).

2. Establishes ba si c stty characteristics.

3. Se ts the time zone it kno ws •

4. Establishes the basic directory paths.

5 • Displays the message of the day.

6 • In fo rm the user of an y mail.

7 • In fo rm the user of an y news.

Profile is executed every time any user logs onto the system
under the Bourne shell and it can be reprogrammed to perform
other functions that are deemed desirable at that time.

Onyx Systems, Inc. ~-~9 Revised (5/85)

CHAPTER 4 GETTING STARTED

.1°11. Csh· Sh

,
lOll.

flspe 4-1 Balle Login 81qul~

Onyx Systems, Inc. 4-50 Revised (5/85)

CHAPTER 4 GETTING STARTED

The .profile file can be programmed to establish a customized
working environment for a user.

/ A typical .profile file might appear as follows:

EXINIT='set ai nowrapscan'
stty erase ''''h' kill ''''x' echoe
PATH=.I:/bin:lusr/bin
SHELL:/bin/sh
PS1='[my unique prompt]'
TERM=[my terminal mnemonic in letc/termcapJ
HOME=lu/[my home directory]
MAIL=lusr/mail/[my mail stop]
export EXINIT PATH SHELL PS1 TERM HOME MAIL

And other special options or commands
supported by she]

Berkeley f-shell Special Files

The .cshrc file is programmed to establish a number of special
conditions that are desirable prior to working on the system.
Among these might be the "path" for which the system will look
for commands, the user's "home" directory, or a unique "prompt"
char ac ter.

For example:

set home=[/usr/myhome/directory]
set path=[/bin lusr/binJ
set prompt='(x)'

The .login file is read and acted upon after the .cshrc file.
When programmed, the .login file performs an additional set of
commands such as: "ignoreof," which instructs the shell not to
exit upon receiving an end-of-file (EOF) signal from the termi­
nal, or set the "noclobber" feature to prevent overwriting a file
inadvertently.

A typical .login file might appear as follows:

Onyx Systems, Inc.

set noclobber
set ignoreof
set mail=[/usr/mail/mail/meJ

4-51 • Revised (5/85)

CHAPTER 4 GETTING STARTED

Required System Accounts

This section describes the set of required accounts that have
been incorporated and configured into the system.

These accounts include the following:

• root • uuc p • sync • lp

• bin • adm • sys • user

These accounts are "required" for one of two reasons: they are
necessary for the initialization and configuration of a UNIX sys­
tem, and/or they are used extensively in everyday operation.

The root account is essential because, like super-user, the sys­
tem administrator can work in an unrestricted mode. Once
entered, the root account allows the administrator to create file
systems, verify and repai.r corrupted file systems, and add users,
to name a few.

The other configured accounts are not as critically needed, but
they are required because of their frequency of use.

Required System Directories

This section describes the directories that are required for
proper operation of a UNIX system.

These directories include the following:

• bin • etc

• dev • lib

• lost+found • tmp

• usr

There may be more directories residing in root, but those listed
above MUST be there.

The following text describes the contents of each of these essen­
tial directories.

The Ibin directory contains most of the executable "binary" files
for the standard UNIX commands.

Onyx Systems, Inc. 4-52 Revised (5/85)

CHAPTER 4 GETTING STARTED

The letc directory contains most of the privileged commands that
can be executed or altered only by logging into root or becoming
a super-user.

The Idev directory contains all the special device files for com­
municating with devices such as the disk drive, tape drive, and
terminals.

The Ilib directory contains the library of "C" language functions
used by UNIX commands.

The Ilost+found directory is used by fsck to store files and
directories that have been orphaned. Each file system created
must have this directory.

The Itmp directory is a storage place for temporary system files.

The lusr directory contains added commands, libraries, and impor­
tant data for users.

Removing Unneeded Files

This section discusses the removal of tools and facilities to
increase the usable disk storage space on the system.

As previously stated, the UNIX system is very flexible. One
aspect of its flexibility is noted in the number of specialized
facilities and tools such as "sdb," a program debugging package,
which is included in the standard UNIX system. However, these
"packages" may not be needed for the particular installation in
everyday use. Therefore, you may decide to remove them to make
more disk storage space available.

It should be noted that many of the UNIX programs call upon the
resources of other programs in accomplishing their tasks. There­
fore, the system administrator should determine whether or not
removing the desired program impairs the function of any other
program before it is removed! The Enhanced ONYX System V USER
REFERENCE MANUAL is the primary source for this information.
Each command description has a sub-section named "SEE ALSO;"
where notations are made concerning other programs that are
involved with the command in question.

To remove unneeded files, use the rm(1) command as described ear­
lier in this chapter.

If a file has been removed inadvertently, it can be restored from
the Onyx lusr CPIO tape using the epio(1) command with the
appropriate options.

Onyx Systems, Inc. 4-53 Revised (5/85)

CHAPTER 4 GETTING STARTED

Creating User Accounts

Installing a new user onto the UNIX system can be accomplished
either automatically using the adduser(1M) command (the suggested
method) or effecting the necessary changes to the appropriate
system files manually.

The following discussion below pertains to adding user accounts
by the automatic method using the add user command. To learn how
to effect the necessary changes manually, refer to Section 5,
"Creating Additional User Accounts" in this guide.

Note: using the adduser command requires the administrator to be
either logged in as "root" or become a super-user.

PROCEDURE: How to use the adduser program

1. To add a user, per form the following:

II adduser <cr>

This program is used to create a new user account on the
computer. You are prompted for all of the particulars
and after answering all prompt, a new user account
and login directory is created. Enter if you
choose to exit at any time •••

Each user login requires a unique name. This name must
be 8 character or less and should be one that is
easily remembered •••

Enter the new user name: [myname] <cr>
User = myname
Ok? (yIn): y <cr>

Scanning for next available user id number.

The next available user id is [number]
Press <Return> to use or enter a new id: <9r>

Scanning for the default Group id number.
The default Group id is [number]
Press <Return> to use or enter a new id: <cr>

Group II: [number]
Group Name: [name]
Ok? (yIn): y <cr>

Onyx Systems, Inc. 4-54 Rev i sed (-5 /85)

CHAPTER 4 GETTING STARTED

User accounts also contain a description of
what a particular user login id is for.

Enter a description for user myname: workspace <cr>
Description = workspace
Ok? (yin): y <cr>

Make the user's HOME login directory.
Example: JuJmyname for
user myname

Enter a login directory for· user myname: myname <cr>
Directory = myname
Ok? (yin): y <cr>

Set the user's login shell
Selection:

Standard Unix Shell - Jbin/sh
Berkeley "C" Shell - Ibin/csh

ONYX Office Main Menu - mainmenu

Enter a login shell for user myname: /bin/sh <cr>
Shell = /bin/sh
Ok? (yin): y <cr>

The following has been entered:

1 • User Name = myname
2 • User ID /I = [number]
3. Group ID /I = [number]
4 • Description = workspace
5 • Directory = myn arne
6. Shell = Jbin/sh

Do you want to continue and add myname? (yin) : y <cr>

[If answered "y," the program effects the necessary
changes to the system; if answered "n," it explains
how to make changes to any entry made above.]

Directory myname created for user myname

Assign a password for the user's account.
The password should .be at least 6 characters long.
Assign a password for myname? (yin): y <cr>

[If answered "n," the program displays ••]

Ensure user myname, adds a password when convenient!!!

[Otherwise, the program displays •••]

Onyx Systems, Inc. 4-55 Revised (5/85)

CHAPTER 4

Changing password for myname
enter password: [password selected] <cr>
re-enter the password: [enter it again] <cr>

Add another user? (y/n): n <cr>

adduser program exited •••
II

GETTING STARTED

If a user forgets his/her password, the system anministrator can,
using super-user mode, delete the password field in /etc/passwd.
The user can then make a new password manually using the
passwd(1) command.

Setting Up Automatic System Functions

There are numerous functions that occur automatically during nor­
mal everyday use of the system.

However, there are three specific functions a system administra­
tor should become familiar with:

• Automatic startup -- /etc/rc

• Automatic shutdown -- /etc/shutdown

• Automated command execution -- /usr/lib/crontab

In review, rc is a programmable file whereupon initiating multi­
user mode will start up the programs necessary for this environ­
ment.

The shutdown program performs an organized and safe transition
from the multi-user to the single-user environment. The system
administrator executes shutdown by entering "/etc/shutdown" from
the console terminal while logged in as root or as a super-user.
The actual procedure is shown in chapter 5, "The Daily Routine."

Lastly, crontab is a file that is read and executed every minute
by the /etc/cron program which is initiated by /etc/rc. The
crontab file allows the administrator to program a set of events
to occur at a specified time. For example, to instruct the sys­
tem to clean out the contents of the /usr/adm/sulog file on Sun­
day October 6, at 11:55pm, construct the crontab file as follows:

55 22 6 10 0 cat /dev/null>/usr/adm/sulog%

[Where:

55 = the minutes 0-59
22 = the hours 0-23

6 = the numeric day of the month 1-31
10 = th·e numeric month of the year 1-12

0 = the n urn er i c day of the week 0-6, "0" is Sunday]

Onyx Systems, Inc. 4-56 Revised (5/85)

/

CHAPTER 4 GETTING STARTED

In addition, crontab supports a set of special functions which
add flexibility to its use. This set includes: the dash (-), the
asterisk (*), the comma (,), and the percent sign (%).

The dash (-) allows a "range" of numeric values to be established
and acted upon for any numeric field in crontab (i.e., 55-59
minutes.).

The asterisk (*) represents all the legal numeric
supported in crontab (i.e., 0 to 59 minutes.).

val ue s

The comma (,) is used to separate two consecutive numeric values
within a crontab field (i.e., 55,59 minutes.).

The percent sign (%) is used to simulate a <cr> function in a
crontab command string.

Note: the crontab file can also be used to automate tasks such as
system backup and the removal of unwanted files, to name a few.

Adding other Software Packages

This section describes adding "special"
software packages.

(not part of UNIX)

Special software packages include the following:

• Database management systems

• Word processors

• Financial application tools

• Graphics display tools

• Languages such as FORTRAN, COBOL, BASIC

Many such packages enhance the system's flexibility,
productivity, and efficiency. However, with the prospective
addition of any of these packages, there are a number of
considerations that must be taken into account.

First, the system administrator should determine whether or not
there is enough disk storage space to accommodate this package.
Most of these packages indicate how much disk space they take up.
The df(1) command shows how much space is left on the file system
(usually the "root") where this package will reside.

Second, most of these packages come with a detailed instruction
and installation document. These documents should be read
thoroughly before attempting to integrate the software into the
system!

•
Onyx Systems, Inc. 4-57 Revised (5/85)

CHAPTER 4 GETTING STARTED

Third, some of these packages may involve altering the basic
system configuration. Therefore, it is prudent to make a copy of
the root file system as it is currently configured before
installing the additional software. A copy of the root file
system can be generated using the cpio(1) command. It is also a
good idea to make a current backup of the user's file system(s)
if one does not already exist.

Finally, after the software package has been added, the system
administrator should monitor the system's response and
performance for a given period of time to determine whether or
not any adverse effects have resulted.

Protecting the System

This section describes a set of rules the system administrator
can follow to maintain a reasonable level of system security.

First, and most importantly,
assign a password to the
required accounts!

the
root

system
login

administrator should
account and all other

Second, the system administrator should be careful when altering
the permissions of any of the files in the root file system.
Remember, "permissions" means the method used to control a user's
access to a file or directory and what a user can do with the
file.

Third, create "casual" user accounts only when necessary and
ensure that their access in terms of where they can go and what
they can do is restricted. Again, this is done with proper file
permissions, controlling the .profile settings, and possibly the
rsh(1) restricted shell feature of the Bourne shell.

The restricted shell feature is implemented by directing the
user's path through Ibin/rsh instead of Ibin/sh as established in
the letc/passwd file.

For example:

casual::10:10:Casual User:/u/casual:/bin/rsh

[was Ibin/sh]

Next, the system administrator should not allow users to perform
any work in the root file system. As previously discussed, users
should do their work in other file systems.

Finally, the system administrator should ensure that all users
make and keep secret their login passwords. Passwords are
effective if they are known only by their intended users!

Onyx Systems, Inc. 4-58 Revised (5/85)

)

CHAPTER 4 GETTING STARTED

Setting Up System Accounting

The system accounting facility in UNIX can provide a massive
amount of statistical data relating to command usage by users,
how long a user was logged onto the system, and disk usage
resource information.

The elements of the accounting facility can be divided into three
general groups: those which generate reports, those which
initiate main actions, and those which provide special functions.

Under report generation, there are eight programs which provide
various types of reports in various formats. These programs all
reside in the /usr/lib/acct directory.

They are:

• acctcms - provides command usage data.

• acctcon1/2 - provides connect time data.

• acctprc1/2 - provides process accounting data.

• monacct

• prctmp

• prtacct

• prdaily

• runacct

- provides periodic file cycling and
monthly summary data.

- provides a printout of session related
data.

- provides a printout of consolidated
accounting data.

provides a report of the previous day's
accounting data.

includes the main daily accounting
functions.

The following programs initiate main actions in the accounting
facility. These commands reside in the /usr/lib/acct directory.

They are:

• turnacct (shutacct) - turn accounting on/off.

• accton - activate line connect accounting.

• startup - command process accounting.

• lastlogin - update user login trace file.

• acctwtmp - update login/logoff history file.

Onyx Systems, Inc. 4-59 Revised (5/85)

CHAPTER 4 GETTING STARTED

The following programs provide special information or control in
the accounting facility. These programs reside in the same direc­
tory as the foregoing.

They are:

• acctcom - search for and print accounting data.

• acctdusg - compute disk resources.

• acctdisk - create disk usage totals for consolidation.

• acctmerg - merge summary accounting data.

• chargefee - enter a special account billing charge.

• ckpacct

• dociisk

• fwtmp

• wtmpfix

monitor size of accounting files.

- perform time initiated disk accounting
function.

- create ASCII accounting records for editing.

- adjust accounting records for clock changes.

The data gathered by accounting is kept in sub-directories named
"fiscal.," "nite," and "sum" which reside in the main directory
lusr/adm/acct. In addition, two more accounting files "pacct"
and "wtmp," reside in the lusr/adm directory.

The "pacct" file contains process termination data that is gen­
erated by the kernel, and "wtmp" keeps a record of the login and
init activities.

For convenience, the accounting facility can be configured and
ini~ialized uRon entering the multi-user environment by program­
ming the letc/rc file.

Making a Copy of the System

This section describes how to make a backup copy of the root file
system. As expressed earlier, a copy of the root file system
should be made after the system has been configured and whenever
it is deemed desirable by the system administrator.

The following procedure shows how to make a copy of the root file
system. The system should be in the single-user environment and
the file system's integrity should be checked using the fsck(1M)
command. If the check showed errors, fix them prior to making
the backup copy.

Note: this procedure must be performed
environment!

Onyx Systems, Inc. 4-60

in the single-user

Rev i sed (:> /85)

CHAPTER 4 GETTING STARTED

PROCEDURE: How make a copy of the root file system

1. Using a cartridge tape, ensure it is NOT in the
SAFE position, then insert the tape into the system.

2. Change directories to root (I).

/I cd I <cr>
/I

3. Perform the following:

/I find. -print lcpio -ovcB > Idev/rmt rwd <cr>

[Where the find command string instructs the system
react all the files in all the root directories recursively.
The "ovcB" command options mean the following: o=output
mode, v=verbose display mode, c=writes a header in ASCII,
and B:blocked output at 5120 bytes-per-block. The
"rmt rwd" means the cartridge tape device -- write all
tracks.]

I[directories]
I[files]

[Total number of blocks for files]

The copy may take 20 minutes or more.]

It is important to label these tapes with the name of the file
system, when the backup was performed, and the method used (cpio
with its options) to create the backup. Ensure the tape is set
to the SAFE position and store it in a dry cool place to preserve
data integrity.

Note: the cpio(1) utility has many options that can be envoked.
Because of its flexibility, cpio is focused upon extensively in
this guide for transferring files and directories between disk
and tape. Therefore, it is suggested that the system administra­
tor become very familiar with this UNIX utility!

Documenting the System

The system administrator needs to keep a physical record of the
system's layout and parameters. This record or "log" should
include, but not be limited to, the following:

Onyx Systems, Inc. 4-61 Revised (5/85)

CHAPTER 4 GETTING STARTED

1. Physical Layout

(a) Number of terminal ports
(b) What users are on what terminal port
(c) Ports dedicated to modern communications
(d) Ports dedicated to parallel printers
(e) Ports dedicated to serial printers
(f) Number and types of disk drives
(g) Number of tape drives

2. Logical Layout

(a) File systems

(1) How many
(2) Their names
(3) Their size
(4) Their general purpose
(5) Their location on the disk

(b) The number and names of user accounts on
the system

(c) Number and names of any restricted user accounts
(d) The names of and places where any additional

software packages have been incorporated
(e) The name and function of any installed special

device driver

3. Maintenance Log

(a) System model number
(b) System serial number
(c) Maintenance contract number (if any)
(d) Who to call for service
(e) Record of maintenance performed
(f) System down time

4. Data Backup Log

(a) Date performed
(b) What file system was backed up

5. System Trouble Log

(a) When it occurred
(b) Who reported the problem
(c) Symptoms
(d) Co r r e c t ion
(e) When corrected
(f) Is it a recurring problem?

6. System Accounting Statistics (if applicable)

Onyx Systems, Inc. 4-62 Revised (5/85)

CHAPTER 4 GETTING STARTED

7. Security Breach

(a) Who reported it
(b) Who committed it
(c) How was it committed

8. General Information

(a) Hail sent to users
(b) News sent to users
(c) Planned system events

The outline seems large and time consuming; however, it can actu­
ally save time in the event that a problem arises.

Summary

This chapter educates the system administrator on the following: .

• Generating the operating system

• Transferring software between tape and disk

• Checking and maintaining system integrity

• Configuring the system

• System communications techniques

This chapter also describes what is required for system opera­
tion, and it outlines a list of general practices the system
administrator can follow.

In addition, this chapter illustrates the following procedures:

• How to transfer the root file system

• How to auto-configure the devices and lusr fil e system

• How to boot up the system for normal use

• How to use the fsck(1M) command

• How to use the sysdef program

• How to use the diskconf program

• How to use the devices program

• How to make the fi 1 e system

Onyx Systems, Inc. 4-63 Revised (~/85)

CHAPTER 4 GETTING STARTED

• How to use the labelit command

• How to install a new device driver

• How to configure and install additional tty ports

• How to change a terminal port's baud rate

• Configuring a tty port for a modem

• Configuring the L-dialcodes file

• How to rebuild the operating system

• How to boot from an alternate kernel

• How to transfer the system manuals to disk

• How to initiate multi-user mode from single-user

• How to view the serial printer attributes

• How to configure the parallel printer to the scheduler

• How to use the adduser program

• How make a copy of the root file system

Onyx Systems,Inc. 4-64 Revised (5/85)

- /

TABLE OF CONTENTS

CHAPTER 5

Preface •••••••••••••••••••••••••••••••••••• 5 - 1

Startup ••••••••••••••••••••••••••••••• '3 - 1

Shl..ltdown .•••••••••••••••••••••••••••••••••••• 5-2

System Disk Management •••••••••.••.•••••.•.•. 5-4

Backing Up ana Pestoring the System ••••.••••• 5-6

Adding or Removing a File or Directory .••••.• 5-10

Changing permissions ...••.....•.••.•.••.••••. 5-12

Ki 1 1 ing Proc esse s •.•...•.••.•.••.•.••..•...•• 5- 1 4

Maintaining System Documentation ••.•••.••.••• 5-15

Creating Adrlitional User Accounts •.••••••.... 5-17

Creating Turnkey Accounts •••••.....•••.••..•. 5-20

Managing the Print Queue .•••••.•.•.•••.•.•.•. 5-21

Communications with Users •••..•••..•••••••••. 5-26

Establishing Communication Links ••••••••••.•• 5-28

System Accounting ••••.••.•••••.••.••.•••••••• 5-32

System Performance Considerations ••••....•.•. 5-33

Handling User Problems •.••••••••••••••••••.•. 5-36

Handling Errors •••••.••.•••••••••••••.••••••• 5-37

Summary ••••••••••.••••••••••••••••••••••••••• 5-41

Onyx Systems, Inc. Revised (5/85)

/

CHAPTER 5

THE DAILY ROUTINE

Preface

This chapter describes and illustrates those tasks that are
routinely performed by the system administrator on a daily basis.

The text associated with each topic has been kept brief to draw
more attention towards the actual procedure.

Remember, while following a procedure all commands and actions
requested appear in bold type. Any system response to a
requested command appears immediately below that ~ommand. In
addition, all comments made within a procedure are contained
between brackets fI[]." The symbol <cr> means "carriage return."

Carefully read all Cautions and Warnings.
information.

They provide important

Note: the system responses appearing herein are general and may
differ among systems.

Startup

The following outlines the system initialization procedure which
may occur each day. The example presumes a "cold start"
condition; that is, the machine was turned off and needs to be
powered on before initialization. If it has not been turned off,
then the bootup portion should not be performed.

PROCEDURE: How to initialize the system

1. Apply power to the system. The
console terminal should display the
following:

-- PROM 05/03/85-12:19:48

0,1,c,9,?: 0 <cr>

SHELL 02-01-85-15:45:12
SHELL$$

Onyx Systems, Inc. 5-1 Revised (S/8S)

CHAPTER 5 DAILY ROUTINE

[Note: approximately one minute elapses between the
"PROM" and "SHELL" messages. Thi s time is used for
running the self test programs. Unless an
error occurs, no messages are displayed during
the self test phase.]

2. Perform the following:

SHELL$$ boot <cr>
Booting /unix.

Console login: [your login name] <cr>

password: [your password] <cr>

Do you want to check the file system? (y or no) y <cr>

/dev/dsk/cOdOs1
file system: [name] Volume: [name/number]
II Phase 1 - Check Blocks and sizes
II Phase 2 - Check Pathnames
II Phase 3 - Check Connectivity
1* Phase 4 - Check Reference Counts
1* Phase 5 - Check Free List
[N] files [N] blocks [N] free

Continues to check all other file
systems listed.]

Current date: [date]
Process accounting started.
Error logging started.
Cron started.

[If enabled]

Line printer scheduler started. [If enabled]

Mounted file systems -

/usr (/dev/dsk/cOdOs3): [N] blocks
/ (/dev/dsk/cOdOs1): [N] blocks

[N] i-nodes
[N] i-nodes

[Continues to list all mounted file systems.]

*1111*11* SYSTEM MULTI-USER [date] *1**1****

Shutdown

This procedure illustrates the way in which a system administra­
tor should terminate multi-user mode after work has ceased, or at
any other time when it is necessary to return to single-user
mode.

Onyx Systems, Inc. 5-2 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

PROCEDURE: How to use the shutdown program

1. From the console terminal, log in as root, and
execute the shutdown program.

/I /etc/shutdown
1/

<cr>

2. The following is rlisplayed on the console
terminal. Answer the self-explanatory questions.

SHUTDOWN PROGPAH
Do you want to send your own message? (y or n):y <cr>
Type your message followed by ctrl d ..••

The program notifies ALL users that the system
is coming dow~ in 60 seconds.]

SYSTEM BEING BROUGHT DOWN NOW !

Busy out (push down) the appropriate phone lines for this system.
Do you want to continue? (y or n):y <cr>

Line printer scheduler stopped. [If enabled]
Process accounting stoppen. [If enabled]
Error logging stopped.

All currently running processes will now be killen.

1*11 SYSCON LINKED TO Idev/console 11II

**** INIT s EFFECTIVE IN 20 SECONDS IIII

Wait for 'INTT: SINGLE USER MODE' before halting.

INIT: New run level: S

INIT: SINGLE USER MODE

Current date:[date]

II
[The error messages that shutdown may

exhibit are:
For help, call your system administrator.
Only the shutdown messsage has been sent.
THE SYSTEM IS STILL IN MULTI-USER STATE!]

3. The system is now in single-user mode.

Onyx Systems, Inc. '5 -3 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

System Disk Management

Monitoring the disk storage means to: find out how much disk
storage is used, find out how much disk storage is available,
purge data files, and align the file system.

How Much is Used/Available -----
The following procedure shows how to determine how much disk
storage space is used/available. While performing these pro­
cedures, the system administrator should be either logged in as
root or become a super-user.

PROCEDURE: How to determine disk storage usage

1. Check disk storage as follows:

/I df <cr>

/ (/dev/dsk/cOdOsl): 2523 blocks 4293 i-nodes

Lists all file systems contained in
letc/mountable]

If the "blocks" value displayed is 100 or less, the system
administrator must free up more space on that file system! The
system administrator can determine further the directory that is
too large by using the du(1) command.

PROCEDURE: How to further isolate disk storage usage

1. Find the directory that is using too
much storage as follows:

/I du [/file system] [/directory] <cr>

[blocks] /[subdirectory]
[blocks] [files].
[total blocks used] /[main directory]
II

Once the directory in question is identified, the system adminis­
trator should notify and instruct the directory's owner to remove
all unnecessary files.

Data File Purging

If lack of disk storage space is in the root directory, first
check the Itmp directory and remove all the files.

Note: this procedure should be performed in the single-user mode!

Onyx Systems, Inc. 5-4 Revised (5/85)

/

CHAPTER 5 DAILY ROUTINE

PROCEDURE: How to purge data files

1. Change directories to Itmp, list the contents,
then remove the files as follows:

/I cd Itmp <cr>
1/

1/ Is -1 <cr>

rwxrwxrwx 1 root system [size][date/time] file name
/I

U rm -f [file name(s)]
/I

<cr>

Next, check the contents of the following files in the lusr/adm
directory: "pacct," "sulog," and "wtrnp." These files are used by
the system to accumulate statistical data on system activity.
Therefore, over time they can grow quite large. If the contents
are of value print them onto a printer; otherwise remove the con­
tents using the procedure below.

Note: the "pacct" file is a data-type file which does not allow
printing onto a printer.

PROCEDURE: How to use the null device to purge files

1. Change directories to lusr/adm. Display
the contents of each file as follows:

1/ cd lusr/adm
II

<cr>

/I more -d [file name] <cr>

IJ

Displays contents of a file a page
at a time.]

2. Purge the file contents as follows:

cat Idev/null > [file name] <cr>
1/

[This removes the contents, but leaves
all other aspects of the file alone.]

Onyx Systems, Inc. 5-5 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

File System Realignment

Files are written onto the disk contiguously, if possible, and
their location and the number of blocks left for allocation is
maintained in the system's "free list." However, over time the
free list organization on the disk becomes scattered (non­
contiguous). Once this happens, it takes a greater amount of
time to locate and reassemble a file. By reconstructing a file
system's "free list" the system regains the contiguity.

Note: to regain the contiguity of file organization on the disk
requires backing up all the files in a file system onto tape, and
then restoring them back onto disk.

Note: while performing this procedure, the system should be in
single-user mode!

PROCEDURE: How to rebuild the system free list

1. Rebuild the free list as follows:

II fsck -S1 <cr>

Idev/dsk/cOdOs1
file system:[name] Volume:[name/number]
II Phase 1 - Check Blocks and sizes
II Phase 2 - Check Pathnames
II Phase 3 - Check Connectivity
II Phase 4 - Check Reference Count
II Phase 5 - Check Free List (Ignored)
II Phase 6 - Salvage Free List
[N] files [N] blocks [N] free

1111* BOOT UNIX (NO SYNC!) 1II1I

The "_5" option instructs the program
to reconstruct the free list only upon
detecting no errors during the check.
If errors were detected, the program
terminates immediately. The "1"
denotes the desired file system.]

2. Type nothing further on the terminal! Press
the reset button, and boot up the system.

Backing Up and Restoring the System

This section describes how to save and restore an entire file
system, a directory, or a single file.

Onyx Systems, Inc. 5-6
..

Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Saving and Restoring ~ Entire File System

This procedure uses the cpio(1) command to save anrl restore data
between disk and tape drives.

Note: check the file system for errors then mount it before sav­
ing the rlata onto disk!

PROCEDURE: How to back up a file system

1. Using a cartridge tape, ensure it is not in
the SAFE position, then insert it into the
system.

2. If the file system is not the root, then
mount it as described below; otherwise,
skip this step.

mount Idev/dsk[number] [/name] <cr>

3. Change directories to the file system being saved.

cd I[file system name] <cr>
I)

4. Save the file system as follows:

find. -print Icpio -ovcB > Idev/rmt_rwd <cr>

Where the find command string instructs the system to
read all the files in all the root directories recursively.
The "0 v c B" com man d 0 P t ion s mea nth e follow i n g: '0 = 0 u t put
mode, v=verbose display mode, c=writes a header in ASCII,
and B=blocked output at 5120 bytes-per-block. The
"rmt_rwd ll means the cartridge tape device -- write all
tracks.]

I[directories]
I[files]

[Total number of blocks for files]

II·

[The copy may take 20 minutes or more.]

It is important to label these tapes with the name of the file
system, when the backup was performed, and the method used (cpio
and the options used) to create the backup. Ensure the tape is
set to the SAFE position and store it in a dry cool place to
preserve data integrity.

Onyx Systems, Inc. 5-7 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

To restore a file system, follow the procedure described below in
the single-user environment.

PROCEDURE: How to restore a file system

1. If the file system to be restored is not the root,
mount that file system as previously described.

2. Ensuring the tape to be restored is in the
SAFE position, insert it into the system.

3. Restore the file system as follows:

U cpio -ivcBdu < Idev/rmt rwd <cr>

[Where the options envoked mean: i=input mode,
v=verbose display mode, B=blocked at 5120
bytes-per-block, d=create directories as needed,
and u=copy unconditionally.]

I[directories]
I[files]

[Total number of blocks transferred]

4. Update the super-block.

sync;sync <cr>

5. If the file system was mounted, and not the
root, unmount it as follows:

umount Idev/dsk/[file system device name] <cr>

Saving ~ Restoring ~ ~irectory ~ File

The contents of a directory or file are saved or restored using
the cpio(1) command as described in the following procedures.

Onyx Systems, Inc. 5-8 Revised (5/85)

CHAPTER 5

PROCEDURE: How to save a directory using cpio

1. Change directories to the one being saved.

n cd [/directory name] <cr>
/I

2. To save the directory, perform the following.

DAILY ROUTINE

find • -print : cpio -ovcB > Idev/rmt_rwd <cr>

[Where the find command string instructs the system to

II -

read all files in that directory (sub-directory) recursively.
The "oveB" command options mean the following: o=output mode t

v=verbose display mode, c=writes a header in ASCII, and
B=blocked output at 5120 bytes-per-block.]

Displays the list of file(s) and blocks being transferred
to tape.]

PROCEDURE: How to restore a directory using cpio

1. Change directories to the one being restored.

II cd [/directory name] <cr>
/I

2. To restore the data, perform the following.

/I cpio -idcumvB < /dev/rmt_rwd <cr>

Where the options "idcumB" mean: i=input mode, d=create
directories if needed, e:writes a header in ASCII,
u=eopy unconditionally, m=retain previous file
modification time(s), B=blocked input at 5120
bytes-per-block, and v=verbose display mode.]

[Displays list of file(s) and blocks being transferred
to disk.]

II

PROCEDURE: How to save a single file using cpio

1. To save a file, per form the following:

echo [/directory/file] : epio -ovcB >/dev/rmt rwd <cr>

[file name]
[blocks used)

Onyx Systems, Inc. 5-9 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Note: the procedure for restoring a single file is the same as
restoring a directory using cpio except the desired file name is
added to the command string just after the cpio options (i.e.,
cpio -idcumvB file name (/dev/rmt_rwd).

Saving and Restoring ~ ~ Individual ~ Tracks

The procedure illustrate above, used the rmt rwd cartridge tape
device file. This special device file addre~ses and utilizes the
tape as one coptinuous track. The special device files for
addressing and utilizing the individual tape tracks are contained
in the Idev/rcmt directory and appear in the following format:

c1dOtO or c1dOtOn

Where:
c1 = the controller bus address.
dO = the device number.
to = the actual track number.

In this case, "0."
n = the flag for a no rewind.

The following procedure shows how to write and retrieve a file to
and from track "0" of the cartridge tape using the cpio(1) util­
ity.

PROCEDURE: How to write and retrieve a file on a.tape track

1. To write a file to track 0, perform the following:

echo[file name] lcpio -ovcB)/dev/rcmt/c1dOtO (cr)

[file]
[blocks used]
II

2. To retrieve a file, perform the following:

cpio -ivBdu[file name] < Idev/rcmt/c1dOtO <cr>

[file]
[blocks used]
II.

Adding or Removing a File or Directory

This section describes how files or directories are created and
r emov ed •

It should be noted that users can freely create or remove files
and sub-directories which reside under and are owned by the
user's principal (home) directory. However, for a system

Onyx Systems, Inc. 5-10 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

administrator to remove suer. files and sub-directories, the
administrator needs to either log in as root or become a super­
user.

Directories

The following procedure shows how to use the mkdir(1)
directory) and rmdir(1) (remove a directory) commands.

(make a

Note: the files residing under a directory or sub-directory must
first be removed before removing the actual directory or sub­
directory. This is accomplished using the rm(1) command with the
"-ir" options (e.g., rm -ir <cr».

PROCEDURE: How to create and remove a directory

1. Change to the desired file system.

/I cd [/file system]
/I

<cr>

2. To create a directory, perform the following:

/I mkdir [directory name]
/I

[OR]

<cr>

[To remove a directory, perform the following:]

Files

/I rmdir [directory name] <cr>
/1

This section illustrates the rm(1) command and describes the pro­
cedures for copying and moving a file using the cp{l) and mv(l)
commands, respectively. In addition, this section shows the
method for creating a "null" file meaning a file that has a file
name but no contents.

PROCEDURE: How to create a null file

1. To create a null file, do the following:

cat Idev/null >[file name] <cr>
/I

Onyx Systems, Inc. 5 -11 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

PROCEDURE: How to copy a file

1. To make a copy of a file, do the following:

II cp [file 1] [to file 2] <cr>
/I

PROCEDURE:

Note: file 2 must have a different name
from file 1.]

How to move a file

1. The mv(l) command can be used to
overwrite an existing file, rename/create
a new file, or move a file to another
directory. An example of each procedure
is shown below.

Move a file to another directory]

II mv [myfile] [/directory] <cr>
II

Rename/create a new file]

/I mv [myfile] [newfile] <cr>
/I

[Overwrite an existing file]

/I mv [file 1] [file 2J <cr>
II

PROCEDURE: How to remove a file

1. To remove a file, perform the following:

n rm -f [file nameJ <cr>
1/

Note: if the file is not in the current working
directory, use full pathnames.]

Changing Permissions

This section describes the use of: chmod(1) (change mode,)
chown(1) (change ownership,) and chgrp(l) (change group) com­
mands.

Onyx Systems, Inc. 5-12 Revised (~/85)

CHAPTER 5 DAILY ROUTINE

Again, users can perform these functions on what is owned by
them; however, if the system administrator is going to c~ange the
permissions of a user's file, the administrator must either log
in as root or become a super-user.

The definitions of the fields involved are:

-rwxrwxrwx [nJ [owners name] [group name][file name]

[1J[2J[3J

Where:

r =
w =
x =
1 =
2 =
3 =

means READ permission with an octal of 4
means WRITE permission with an octal value of 2
means EXECUTE permission with an octal value of
OWNERS or user's permissions field
GROUP permissions field
WORLD or others permissions field

The chmod(') command USes the octal representations for read,
write, and execute when changing a file's permissions. In the
command syntax, these octal values will be "additive" for each
individual field.

For example, changing the owner/user field to reflect permissions
of read, write, and execute would be expressed using an octal
value of 7; whereby "7" was derived by adding the octal values of
4 (read), 2 (write), and 1 (execute) together.

The following example procedure shows how to use these commands.

PROCEDURE: How to change a file's permissions

1. Change permissions of a file to read, write,
and execute for all fields.

1/ chmod 777 [file or directory] <cr>
1/

2. Alter the group and others fields read permissions
only.

No te :

1/ chmod 744 [file or directory] <cr>
II

[it would look like: rwxr--r--]

all directories should have execute (x)
otherwise, their contents cannot be accessed!

Onyx Systems, Inc. 5-13

permissions;

Revised (5/85)

CHAPTER 5 DAILY ROUTINE

PROCEDUFE: How to change a file's ownership

1. Change the user ownership of a file or directory as
follows:

II chown [new owner] [fi Ie or directory] <cr>
U

PROCEDURE: How to change the group ownership of a file

1. Change the group ownership of a file or directory as
follows:

chgrp [new group] [file or directory] <cr>
U

Killing Processes

This section describes how to terminate or "kill" a system
process manually.

To determine what processes are running on the system at any
given time, the system administrator uses the ps(1) process
status command. This command has many options which control the
format presentation of its information. For this purpose, the
option "-el" is used because it provides a detailed display such
as that shown in the following example:

F S UID
3 R 7

Where:

F =

S =

uro =
PID =

PPID =
C =

PRI =
NI =

ADDR =
SZ =

WCHAN =
TTY =

TIME =
CMD =

PlO PPlD
234 47

C PRI Nr AODR SZ
67 83 20 241 2

WCHAN TTY TIME CMD
73610 co 0:01 getty

Flags field indicators: 1=in core memory;
2=system process; 3=in core and system process;
4=locked in core; 10=being swapped-out
State of the process: O=nonexistent; S=sleeping;
W=waiting; R=running; I=intermediate; Z=terminated;
T=stopped; X=growing
User identification number
Process identification number
Parent/child process identification number
Process utilization scheduling
Priority of the process. Higher [N] means lower priority
Nice value, user invoked with the nice(1) command
Memory address
Number of blocks in memory the process consumes
The event for which th~ process is waiting
The controlling terminal
The cumulative execution time
The command being executed

Onyx Systems, Inc. 5-14 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

For killing processes, the fields of concern in the display are
the process identification number (PID) and parent/child process
identification number (PPID).

*********************** CAUTION *******************************
* * * If the process being killed has children, the children must •
• be killed before the parent can be killed. Otherwise, a •
* child process may become orphaned which may create other •
* problems. *
* *
.***.************************.*.* ••• *.***.*************.*

PROCEDURE: How to kill a process

1. Kill a process as follows:

U kill -9 [PlD or PPlD number] <cr>
killed: [PID or PPID number]
/I

Note: using kill option "0" instead of "9"
terminates all child processes associated with
a named parent automatically.]

If the system administrator needs to kill all system
quickly, this can be done using the killall program.
the s y s t em ad min is t rat 0 r m u s t bee i the rIo g g e din • a s
become a super-user from the console terminal.

PROCEDURE: How to kill all processes simultaneously

1. Kill all processes quickly by
doing the following:

letc/killall <cr>
Killed: [PID numbers]

processes
To use it,

roo t or

Note: if a process cannot be terminated as described above, it
may then be necessary to reboot the system.

Maintaining System Documentation

This section describes how to maintain the system administrator
"log," previously mentioned in Chapter 4.

Onyx Systems, Inc. 5-15 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

The system administrator should maintain a- current
including, but not limited to, the following:

1. Changes in the physical layout of the system

(a) Additional peripheral devices
(b) Deleted peripheral devices
(c) Moved peripheral devices

2. Changes in the logical layout of the system

(a) Added file systems
(b) Altered file systems
(c) Added user accounts
(d) Deleted user accounts
(e) Added software packages, or features

3. Data backup and restore activity

(a) When performed
(b) What was saved or restored
(c) Next date to perform

4. System accounting

(a) What was gathered
(b) What was saved or deleted
(c) What abnormalities, if any, were indicated

5. System problems

(a) What type of problem
(b) Who reported it
(c) How resolved
(d) When resolved
(e) If not resolved, why?

6. Maintenance

(a) When performed
(b) Type performed
(c) What was performed
Cd) Total down time
(e) When returned to operation

7. General information

(a) Mail sent to users
(b) News sent to users
(c) Synopsis of content
(d) Date sent

record

Onyx Systems, Inc. 5-16 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Creating Additional User Accounts

This section shows two methods for adding a user to the system.
These two methods are:

• Adding users automatically

• Adding users manually

Adding Users Automatically

The adduser(1H) command allows the administrator to perform the
tasks necessary for adding a user to the UNIX system such as:
creating a login name, setting the account's user-id (uid) and
group-id (gid), and establishing the account's home directory,
login shell and password, automatically! The adduser program
prompts the administrator for each parameter and explains briefly
the use of these parameters. The adduser program resides in the
lete directory.

Note: making changes such as these to the system requires the
administrator to either login as "root" or become a super-user.

PROCEDURE: How to use the adduser command

1. To add a user automatically, perform the following:

adduser <cr>

This program is used to create a new user account on the
computer. You are prompted for all of the particulars
and after answering all prompt, a new user account
and login directory is created. Enter if you
choose to exit at any time •.•

Each user login requires a unique name. This name must
be 8 character or less and should be one that is
easily remembered •••

Enter the new user name: [myname] <cr>
User = myname
Ok? (yin): y <cr>

Scanning for next available user id number.

The next available user id is [number]
Press <Return> to use or enter a new id: <cr>

Scanning for the default Group id number.
The default Group id is [number]
Press <Return> to use or enter a new id: <cr>

Onyx Systems, Inc. 5-17 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Group II: [number]
Group Name: [name]
Ok? (y In): y < c r >

User accounts also contain a description of
what a particular user login id is for.

Enter a description for user myname: workspace <cr>
Description = workspace
Ok? (yIn): y <cr>

Make the user's HOME login directory.
Example: lu/myname for
user myname

Enter a login directory for user myname: myname <cr>
Directory = myname
Ok? (yIn): y <cr>

Set the user's login ~hell
Selection:

Standard Unix Shell - Ibin/sh
Berkeley "C" Shell - Ibin/csh

ONYX Office Main Menu - mainmenu

Enter a login shell for user myname: /bin/sh <cr>
Shell = /bin/sh
Ok? (yIn): y <cr>

The following has been entered:

1 • User Name = myname
2. User ID II = [number]
3. Group ID /I = [number]
4 . Description = workspace
5 • Directory = myname
6. Shell = Ibinlsh

Do you want to continue and add myname? (yIn): y <cr>

[If answered "y," the program effects the necessary
changes to the system; if answered "n," it ex~lains
how to make changes to any entry made above.]

Directory myname created for user myname

Assign a password for the user's account.
The password should be at least 6 characters long.
Assign a password for myname? (yIn): y <cr>

[If answered "n," the program displays ••]

Ensure user myname, adds a password when convenient!!!

• Onyx Systems, Inc. 5-18 Revised (i/85)

CHAPTER 5

[Otherwise, the program rlisplays ••. J
\

Changing password for myname
enter password: [password selectedJ <cr>
re-enter the password: [enter it againJ <cr>

Add another user? (y/n): n <cr>

adduser program exited •••
I!

Adding Users Manually

DAILY ROUTINE

In the event a
command, the
manually.

user account cannot be added by using the adduser
following procedure describes how to add users

PROCEDURE: How to add user accounts manually

1. Change directories to /etc and edit the
"passwd" file to create a new entry.

/I cd letc
/I

<cr)

II [edit] passwd <cr>

[1]:: [2J: [3J: [4J :/[5J/[6J: [7J

Where:
1 = log in name
2 = user identification number
3 = group identification number
4 = user name
5 = file system
6 = user's directory
7 = shell or program J

2. When done, write and quit the file. If a user
is going to belong to more than one "group,"
an entry must be made in the /etc/group file.

3. Change directories to the file system where the
user directory is to be made, and make the
directory.

/I cd [file systemJ
/I

<cr>

/I mkdir [user directory nameJ <cr>
/I

Onyx Systems, Inc. 5-19 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

4. Change direc.tories to the user directory, and
create a basic .profile file.

n cd [user directory]
n

Ii [edit] .profile <cr>

<cr>

stty erase ,A h , kill lAX' echoe
TERM:[terminal type]
PATH:/bin:/usr/bin
HOME:[/filesystem] [user. dirname]
HAIL:/usr/mail/[login name]
export TERM PATH HOME HAIL

5. When done, write and quit the file.

6. Have the new user log in and set his/her
password.

<cntrl-d>

login:[login name] <cr>

$ [or %]

$ passwd <cr>

Changing password for [login name]
enter password: [password selected] <cr>
re-enter the password: [enter it again] <cr>
$

Creating Turnkey Accounts

The following section describes "turnkey" accounts and how they
differ from a normal user account. It also illustrates how to
create a turnkey account.

A turnkey account immediately places the user in an application
environment upon logging in. The application environment can be
a database management system (DBMS), a word processing system, or
a . financial management system, to name a few. A turnkey account
differs from a normal user account in that the UNIX environment
is masked or appears transparent in operation to the turnkey
account.

A turnkey account is created in the same manner as a normal user
account. However, the pathname information needed to direct this
account into the special application is substituted for the shell
path direction as shown .in the procedure below:

Onyx Systems, Inc. 5-20 Revised (5/85)

CHAPTER 5

PROCEDUPE: How to create a turnkey account

1. Create the account as normal by editing the
letc/passwd file.

[edit] letc/passwd <cr>

DAILY ROUTINE

2. Locate the line indicating the user to be changed and
substitute the application direction for the shell
path as described above.

[login name][all other fields]:[/bin/shell]

[login nameJ[all other fields]:[special application path]

3. When done, write and quit the file.

Note: the special application may create the user's directory
automatically. However, if it does not, use mkdir(1) to make the
needed directory in the appropriate file system.

The ONYX Office, developed by Onyx Systems, Inc., is an example
of a special application for which a turnkey account would be
created.

Managing the Print Queue

This section describes the procedures for two levels of printer
scheduler management under the UNIX system. These two levels of
management are:

• User printer request management

• Administrator printer request management

User Printer Request Management

This level involves the users' control over initiating and can­
celling printer requests.

Note: the following procedures assume the parallel printer as the
default destination.

Onyx Systems, Inc. 5-21 Revised (5/85)

CHAPTER 5

PROCEDURE: How to initiate a printer request

1. Using the lp(1~ command, a user may
scherlule a file for printing as follows:

/I lp [options] [file name] <cr>

request id is printer1-01 cn of files)
/I

2. To display the status of the request,
do the following:

lpstat -t <cr>

scherluler is running
system default destination: printer1
member of class printer1:

pI p
device for pIp: /dev/plp
pIp accepting requests since [date]
printer1 accepting requests since [date]

DAILY ROUTINE

printer pIp now printing serial-01 enabled since [date]

printer1-01
/I

[owner] [size of file] [date] on sIp

If a printer request has been made in error, it can be cancelled
as shown in the following procedure.

PROCEDURE: How to cancel a printer request

1. Determine the status of the request using
lpstat as shown above, noting the
file's "id."

2. To cancel the request, perform the following:

cancel printerl-01 <cr>

request "printer1-01" cancelled
II

Note: cancel instructs the system
to stop printing the file immediately!]

Onyx Systems, Inc. 5-22 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Administrator Printer Request Management

This level allows the administrator to manage and control the
scheduler and request mechanism through the use of six programs.

These six programs are:

• accept(1M)

• reject(1M)

• lpstat(1)

• lpsched(1M)

• lpshut(1M)

• lpmove(1M)

allows printer requests to be accepted.

inhibits printer requests.

displays the status of printer requests.

activates the printer scheduler.

deactivates the printer scheduler.

redirects printer requests to another
destination (printer).

Note: to use these commands, the administrator must either log in
as root or become a super-user. In addition, the "destination"
printer assumed is printer1.

The accept command prepares and enables the printer facility to
accept user's requests. The following procedure illustrates its
use.

PROCEDURE: How to use the accept command

1. To enable the printer facility, perform
the following:

n /usr/lib/accept printer1 <cr>

destinaton "printer1" now accepting requests
n

The reject command inhibits and
from accepting any user requests.
trates its use.

disables the printer facility
The following procedure illus-

Onyx Systems, Inc. 5-23 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

PROCEDURE: How to use the reject command

1. To disable the printer facility, perform
the following:

/I lusr/lib/reject -r["mesg"J printer1 <cr>

destination "printer1" is no longer accepting requests

Note: the "-r" option allows the administrator
to provide a "reason" message which is displayed
each time a user attempts to request the disabled
facility (e.g., "printer down for maintenance").]

The Ipstat command, previously described and illustrated, allows
the administrator or a user to display the current status of
print requests an~ their destinations (printers). In most cases,
using the "_t" option (print all the status) is desirable; how­
ever, there are other options which can be invoked. These other
optior.s are described in the Enhanced ONYX System V USER REFER­
ENCE MANUAL under the Ipstat(1) section.

The Ipsched command enables the printer scheduler facility for
queuing requests. The following procedure shows its use.

PROCEDURE: How to use the Ipsched command

1. To enable the scheduler, perform the
following:

/I lusr/lib/lpsched <cr>
1/

The Ipshut command disables the printer scheduler facility from
queuing requests. The following procedure shows its use.

PROCEDURE: How to use the Ipshut command

1. To disable the scheduler, perform the
following:

/I lusr/lib/lpshut <cr>

scheduler stopped
/I

Note: disabling the scheduler does not
remove any requests currently queued.
Therefore, when the scheduler is reenabled
those queued requests are serviced.]

•
Onyx Systems, Inc. 5-24 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

The Ipmove command performs two tasks: first, it can move any or
all requests currently queued to another destination (printer) or
second, it can redirect all future requests from the current des­
tination to another destination. The following procedures illus­
trate both forms of the command.

****************** CAUTION ***********************
* * * 7he Ipmove command must not be invoked while * * the scheduler is enabled! In addition, in its *
* second form the prior destination (printer) *
* is left disabled. *
* *
**

PROCEDURE: How to move requests using the lpmove command

1. Use the lpstat command to determine
whether or not the destination (printer)
is accepting requests. If not, activate
it using accept(1). In addition,
note all the request id's to be moved.

2. Inform all users, using wall(1),
that the scheduler is being disabled
and that the request id's are being
moved to another destination (printer).

3. Disable the scheduler as follows:

n lusr/lib/lpshut <cr>

scheduler stopped
n

4. To move the desired requests, do the
following:

n lusr/lib/lpmove rid's] [destination] <cr>

total of [D] of requests moved to [destination]
n

5. Feenable the scheduler as follows:

D lusr/lib/lpsched <cr>

6. Notify all users that the move is complete and
that the scheduler is again enabled.

Onyx Systems, Inc. 5-25 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

PROCEDURE: How to redirect the destination using Ipmove

1. As described above, determine whether or
not the new destination is active; if not,
activate it. Then inform all users of the
pending change.

2. Disable the scheduler as follows:

D lusr/lib/lpshut <cr>

scheduler stopped
D

3. To redirect the destination, perform the
following:

D lusr/lib/lpmove [dest1] [dest2] <cr>

destination [destl] is accepting requests

move in progress •••

total of [D] requests moved from [dest1] to [dest2]
D

4. Reenable the scheduler as follows:

D lusr/lib/lpsched <cr>
D

5. Inform all users that the redirection is complete
and the scheduler is reenabled.

Communications With Users

This section expands upon two utilities that have already been
discussed: the mail(1) and news(1) commands, and introduces two
more ways to talk to users: the wall(1) and write(1) commands.

The mail(1) command is baSically a file editor with communica­
ti6ns ability. Hail allows users to send and receive letters
electronically. The procedure for sending mail is shown in the
example below.

Onyx Systems, Inc. 5-26 Revised (5/85)

CHAPTER 5

PROCEDURE: How to send mail

1. To send mail, do the following:

$ mail [user name] <cr>

Subject: [message]

Compose your letter; when done,
do the following:]

<cntrl-d>
$

If sending mail via uucp, the
additional query will appear:]

Cc:[system name to send to]
$

<cr>

DAILY ROUTINE

The news(1) command searches the directory /usr/news and displays
the contents of all the files contained therein. Since all users
have access to this directory, the system administrator can place
whatever special information needs to be noted by users in a file
in /usr/news.

To display news, a user enters: news <cr> on his/her terminal
while logged onto the system.

The wall(1) command, an acronym for "write-alI-users," can be
used by the system administrator to notify all currently active
users of some needed information immediately.

Note: Wall is a privileged command; therefore, the system
administrator must either log in as root or become a super-user!

The procedure for writing to all users is as follows.

PROCEDURE: How to send a message to all active users

1. To send a message to all users, do the following:

II /etc/wall <cr>

Enter the message; when done, enter
the following:]

<cntrl-d>

Broadcast message from root •••
[The message]
II

Onyx Systems, Inc. 5-27 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

The system admi~istrator can also inform users about necessary
information by placing the message in the file called "motd"
(message-of-tb.e-day) in the Jete directory. Motd is displayed
each time a user logs onto the system.

The write(1) command is used to establish an interactive conver­
sation between users. The major anomaly associated with this
command is that the user sending a message must flag the reci­
pient when the message is complete. The old radio colloquialisms
"over" and "out" have been widely used for this purpose; in the
session they are represented by "-0-" for "over," and "-00-" for
"out."

PROCEDURE: How to communicate a message to another user

1. Determine the user's name and tty terminal
number that you want to call. To do this,
use the who(1) command as follows:

$ who <cr>

[user's name] [tty number] [date]
$

2. Write the message to that user as
follows:

$ write [user name] [tty number] <cr>

[Write the message. If a response is
desired, enter -0-; otherwise, enter
-00-.]

<cntrl-d>
$

3. The "receiver" will get the message:

Message from [your user name] [your tty]

[message]

4. To respond, the "receiver" would perform
the same sequence as described above.

Establishing Communication Links

This section describes the cu and uucp communication facilities
previously discussed in Chapter 4, and illustrates their use for
establishing communications between a local and remote system.

Onyx Systems, Inc. 5-28 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Note: prior to the invocation of either facility, all hardware
elements such as modems or automatic calling units should be
installed, tested, and rearly for use. In addition, all pertinent
system files should be configured as described in Chapter 4,
under the sub-hearling of "Setting Up Asynchronous Communica­
tions."

Qsing the cu Facility

The following procedure shows two ways to achieve communications
between a local and remote computer system using cu(1C).

PROCEDURE: How to establish a communications link with cu

Example 1:

$ cu -s1200 -ltty[number] [phone number] <cr>
Connected

[Where "-s" denotes the baud rate and "_1" the
port number being used.]

login: [from the remote computer]

Example 2:

$ cu -s1200 -ltty[port number] dir <cr>

"dir" means a direct dedicated telephone line.
If talking directly to a modem, the modem
must be initialized and dialed manually.]

Connected
login: [from the remote computer]

To execute commands or terminate communications under cu, the
command must be prefixed by a tilde (-) character.

For example, to log off enter: -. <cr>, instead of <cntrl-d> the
normal sequence.

It should be noted that the data integrity of files transferred
using cu is not verified automatically. Therefore, the system
administrator must perform the verification manually using the
sum(1) command. This command reads the contents of a file and
uses a mathematical algorithm to produce a unique number referred
to as a "checksum." This checksum number is used to determine
whether or not two files are identical.

Onyx Systems, Inc. 5-29 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

The following procedure illustrates the use of sum(1).

PROCEDURE: How to use the sum command

1. Perform a file checksum as follows:

/I sum [file name] <cr>

[checksum number] [blocks] [file name]
/I

The system administrator should perform a checksum for any files
transferred using cu(1C).

The following procedure shows how to transfer files
computers that have established a communications
cu(1C).

between two
link using

PROCEDURE: How to transfer files with cu

Ex am pI e 1:

Transfer a file from YOUR computer to THEIRS.

$ -Sput [/directory/myfile][/directory/theirfile] <cr>

$

Example 2:

Displays the number of lines, characters, and
elapsed time for the file being transferred.]

Transfer it from THEIR computer to YOURS.

$ -Stake [/directory/theirfile][/directory/myfile] <cr>

$

Displays the number of lines, characters and
elapsed time for the file being transferred.]

Using the uucp Facility

The uucp(1C) utility is primarily a controlled UNIX-to-UNIX file
transfer facility. Its "control" relates to the management,
auditing, and checksumming activities performed during each ses­
sion. Therefore, it is preferred over cu for file transfer.

This discussion and examples focus on the basic files involved
and how to invoke a simple session.

Onyx Systems, Inc. • Revised (5/85)

/

CHAPTER 5 DAILY ROUTINE

There are seven files, in addition to those previously discussed,
that are of concern to the system administrator for establishing
communications.

They are:

• AUDTT • lOGFILE • USERFILE • STST

• EFRLOG • SYSlOG • LC K ••

·AII of these files, except USERFIlE, reside in lusrlspool/uucp.
USEFFIlE resides in lusr/lib/uucp.

The AUDIT file contains some of the session activity associated
with a remote computer (Master) attempting to access a local
(Slave) computer. Under uucp, a computer may assume the role of
either a "Master" or "Slave" depending upon the activity that is
und er ta ken.

The ERRLOG file contains the errors associated with any given
uucp session.

The LOGFILE file contains the complete history of
associated with any given uucp session.

e v en t s

The SYSLOG file contains an extrapolated version of the LOGFILE,
of just those entries pertaining to the master's activity, and it
provides user accounts data and specific data on the size of the
file(s) transferred.

The USERFILE file cOhtains a list of directories and their
pathnames to which a calling computer is restricted.

The LCK •• file inhibits the initiating of uucp. Therefore, if
this file exists, it must be removed prior to invoking a session.

The STST file contains data relating to the system's attempt in
retrying a call that previously failed to a remote computer.

Note: the system is already configured with a uucp login account
where a user invokes uucp. In addition, all files transferred
during a session will have uucp as their owner. Therefore, it
may be necessary to change the file ownership after the file has
been received.

The following procedures show how to send and receive a file
between computers under uucp. For clarity, "myfile" is the file
being sent to the remote computer, "them" is the remote account
name, "theirsys" is the remote computer's uucp name, and "their­
file" is a file on the remote computer.

Onyx Systems, Inc. 5-31 Revised (5/85)

CHAPTER 5

PROCEDURE: How to send a file using uucp

1. Senn a file to a remote system as follows:

$ uucp -m -nthem myfile theirsys!-them <cr>
$

Where:
-m = notify me by mail
-n = notify them by mail]

PROCEDURE: How to copy a file using uucp

DAILY ROUTINE

1. Copy a file from the remote system as follows:

$ uucp -m theirsys!/dir/theirfile Idir/myfile <cr>
$

System Accounting

This section nescribes how to use the system accounting facility
in the UNIX system.

The accounting function is initialized only when the appropriate
commands are incorporated into the /etc/rc file. If initialized,
accounting compiles statistical data about system operation on a
naily basis while the system is in the multi-user mode. All of
the nata gathered is placed in files for later viewing.

Each day, the system administrator should print these files on
the printer, then purge them so they do not consume valuable disk
storage space. The procedure to do this is as follows.

Onyx Systems, Inc. 5-32 Revised (5/85)

CHAPTER 5

PROCEDUFE: How to manage system accounting

1. Change directories to lusr/lib/acct/.

/I cd /usr/lib/acct <cr>
II

DAILY ROUTINE

2. Print the accounting files using "prdaily" and
save them in lusr/adm/acct/sum/report.

II prdaily>/usr/adm/acct/sum/report <cr>
/I

3. Change directories to lusr/adm/acct/sum and
print the report file onto a printer.

II cd /usr/adm/acct/sum <cr>
II

1/ Ip report
/I

<cr>

4. Look at the contents of the lusr/adm/pacct file. If
desired, print the contents onto a printer.

5. Purge the files as follows:

/I cat /dev/null >/usr/adm/pacct <cr>
/I

/I cat /dev/null >report
/I

<cr>

6. All reports saved should become part of the system
administrator log.

System Performance Considerations

At various times the system may appear slow in completing a
requested task. This may be the result of a variety of condi­
tions; however, there is a known set of conditions which contri­
butes to performance degradation.

Onyx Systems. Inc. 5-33 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Among these are:

• Insufficient rlisk storage

• A poorly organized file system

• Insufficient memory

• An excessive amount of backgrounrl process activity

• An unmanagerl accounting facility

.• An inordinate amount of user interaction

• An unmanaged printer spooler facility

• An unterminated terminal cable

Elements such as ·insufficient rlisk
memory may be caused by reaching
these specific devices.

storage and insufficient
the physical limitations of

·Note: part of the system administrator's job" is to determine when
physical system expansion is necessary.

The following examines each of the topics above and defines what
a system administrator can do to maintain a reasonable level of
system performance.

Insufficient disk storage should be checked for daily with the
df(1) anrl duel) commanrls. Df displays the total number of blocks
used and how many are still available within a given file system.
Du further isolates storage usage by listing the blocks used by
each user directory and file within a given file system.

Note: if a file system shows less than 100 blocks available, the
system arlministrator must go through the system and remove or
purge all unnecessary user files and temporary system files.

A poorly organizerl file system causes the disk drive to work
"overtime" when attempting. to reassemble a file. To minimize
this conrlition the system administrator can use the epio(l) com­
mann to write user file systems to tape, remake the file system
using mkfs(l), and write them back onto disk contiguously. In
addition, the fsck(lH) program can restructure a file system's
"free list," making it more compact. All of these procedures are
discussed individually in Chapter 4, "Getting Started."

An excessive number of background processes causes the system to
"swap-out" processes extensively. Swapping out a process con­
sumes a considerable amount of system time. The system adminis­
trator can check what processes are active on the system with the
ps(1) command.

Onyx Systems, Inc. 5-34 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Sometimes processes become "orphaned," meaning that they are not
removed from the process table after completion. When the number
of orphaned processes becomes large, it can inhibit other
processes from being acted upon. The kill(') command is used to
terminate a process manually.

An unmanaged accounting facility consumes large amounts of disk
storage spa~e because it constantly accumulates statistical data
about the system. The applicable accounting files should be
purged daily to avoid this situation.

An inordinate amount of user activity means, for this purpose,
users who indiscriminately invoke processes that use large
amounts of system memory. For example, some of the "games" which
may be supplied with the system may fall into this category.
Some of these games can be played for hours without conclusion,
and thereby can significantly reduce the amount of system memory
available for necessary tasks.

An unmanaged printer spooler can result in an unnecessary amount
of background processes being generated. Each time a file is
queued to be printed, a background process is established. When
spooled files are not removed after printing or the same file is
queued more than once, valuable system space is taken up. These
files are removed using rm(1) and their processes terminated
using kill(') commands.

Last, an unterminated terminal cable means that one end of the
cable has been connected to the system but the other end remains
free. By not connecting (terminating) the free end, the cable
acts as an "antenna" which can cause erroneous signals to be sent
to the system. This could result in unpredictable system opera­
tion.

Onyx Systems, Inc. 5-35 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Handling Users Problems

Many problems occu~ when a user is learning UNIX. These can be
avoided by providing a basic instructional plan for new users.
Therefore, this discussion applies to conceptual rather than
actual user problems.

When problems occur, the system administrator should:

1. Gather all the relevant information from the user
as follows:

(a) What was done prior to the problem
(b) What was done after the problem
(c) Any error messages presented
Cd) All symptoms exhibited

2. Check the system process(es) status associated with
this user.

3. Check the administrator's log to see if the problem
has occurred before.

4. Analyze all information gathered before
taking any action.

5. Take the necessary corrective action indicated by
the problem analysis.

6. Write the problem and solution in the system
administrator's log.

A system administrator may encounter the following problems:

• Improper exiting from an edit session

• Too many background processes running

• Not enough disk storage space

• Runaway processes

• A user who can no longer interact with the system,
times called a "hung" terminal

some-

Correcting these problems may involve copying or rewriting files,
killing processes, removing files, restarting processes, and
reconfiguring file parameters.

Onyx Systems. Inc. 5-36 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Handling Errors

In the UNIX system, error messages can originate from the kernel
itself, or from a~y one of the vast number of utility programs
available. However, error messages are categorized as follows:

• Those which inform a user of a destructive condition

• Those which warn a user of a potential problem

• Those which are of an instructional nature

Any error message that is preceded by the caveat panic: indicates
that a condition has arisen in the system that, if allowed to
continue, would ultimately result in the destruction of data.
Therefore, when such a condition occurs, the UNIX operating sys­
tem ceases operation immediately and informs the system adminis­
trator on the console terminal.

The next category includes those messages the system issues to
warn of a potential problem. Two such messages might be: "no
space" left on a file system and "no more processes," indicating
the system process table is full.

The last category includes those messages which inform a user
that the system could not interpret the user's request. One such
message might be "syntax error," indicating that a command was
not entered in the proper format.

In handling errors, the most important action is to write down
all the error information displayed and the action that produced
the error! In the event additional help from the dealer's techn­
ical support personnel must be sought, these people cannot be of
assistance unless this information can be related exactly.

An Approach

One approach the system administrator can follow for handling
errors is:

1. Write down all error information provided.

2. If possible, determine what action occurred just prior to
the generation of the error message.

3. Check the log to see if it has occurred before.

4. Attempt to define and interpret the meaning of the error
message.

5. Attempt to isolate its origin.

Onyx Systems, Inc. 5-31 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Tools

6. Effect a solution, or call for help.

7. Record the error and sol ution, when known.

****'**""1'1""*'** CAUTION "'*""'*"""'*"'*'" , ,
, For panic: error conditions, the system must always *
, be rebooted. In doing so, always perform an fsck to *
* check for errors. '
, *
''~"**"*'****"'***'**"'***'***'*******************

Some of the tools a system administrator uses in isolating an
error message's origin and determining a possible cause are:

• df(1), du(1)

• fsck(1M)

• grep(1)

• strings(1)

• od (1)

• ncheck(1M)

• fin d (1)

checks disk storage space

verifies file system integrity

matches patterns globally

displays the ASCII strings in an
executable program

provides an octal dump of a
file allowing you to look for
non-printable characters

locates an owner of a file
file through its i-node number.

finds out where a file resides
in the system

The first two commands have already been described. The remaining
five are described below with examples.

The grep(1) command scans a file to match the variable parameter
supplied. Therefore, use grep to find out if an error message
orlginated from the suspected command.

PROCEDURE: How to use the grep command

1. Become super-user and perform the following.

/I grep '[error msg]' [/directory][/command] <cr>

[Matches, if there, or exits]
/I

Onyx Systems, Inc. 5-38 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

The strings(1) command displays all the ASCII format messages in
an executable (command) type file.

PROCEDURE: How to use the strings command

1. Become super-user and perform the following.

n strings [directory][command] lmore <cr>

[Displays all ASCII messages.]
/I

Using the more(1) utility in conjunction
with the command string above allows the data
to be viewed one page at a time.]

The od(1) command displays a file in its octal and ASCII form, so
that a comparison of the data to the ASCII table located in Sec­
tion 7 of the Enhanced ONYX System V USER REFERENCE MANUAL is
possible. This is helpful in looking for non-printable charac­
ters that may have been entered inadvertently.

PROCEDURE: How to use the od command

1. Look for non-printable characters.

/I od -bc [/directory] [/file name] Imore <cr>

0000000 007 S Y S T E M
007 123 131 123 124 105 115 040

/I

[Where:

0000000 = the byte count field in Octal.
Top line = ASCII representation.
Bottom line = octal representation.

040 = a space character.
007 = the non-printable character, in this

case a <control-g>.]

The ncheck(1H) command is used when output from fsck determines a
damaged file, but only gives the i-node number and not the file's
name.

For the example below, assume the i-node number is 10 in file
system Idev/dsk/cOdOs3.

Onyx Systems, Inc. 5-39 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

PROCEDURE: How to use the ncheck command

1. Become super-user and do the following:

1/ letc/ncheck -i 10 Idev/dsk/cOdOs3 <cr>

Idev/dsk/cOdOs3:
10 I[directory/file name]
II

The find(1) command traverses the directory hierarchy of path­
names in an attempt to locate and display the path for the
desired file.

PROCEDURE: How to use the find command

1. Display a file's path as follows:

1/ find I -name [file name] -print <cr>

[/file system/directory/sub-directory/file name]
II

Note: the "I" instructs the system to start at root
and move downward through the pathname tree looking
for every occurrence of the named file.]

Further information on what can be done when problems arise is
contained in Chapter 7, "Handling System Problems."

Onyx Systems, Inc. 5-40 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

Summary

This chapter discusses the tasks perceived to be a part of a
daily routine for the system administrator.

This chapter includes the following topics:

• System startup and shutdown • System disk management

• Backing up and restoring data • Adding and removing data

• Managing processes • Creating user accounts

• Communicating with users • Handling problems

• Establishing communication links • System performance management

In conjunction with the se to pic s t the following procedures ar e
described:

• How to i:1itialize the system

• How to use the shutdown program

• How to determine disk storage usage

• How to further isolate disk storage usage

• How to purge data files

• How to use the null cievice to purge files

• How to rebuild the system free 1 i st

• How to bac k up a file system

• How to restore a fi 1 e system

• How to save a directory using c pio

• How to restore a directory using cpio

• How to save a single file using c pio

• How to wr i te and retrieve a fi 1 e on a tape track

• How to create and remove a directory

• How to create a null fi 1 e

• How to copy a file

Onyx Systems, Inc. 5-41 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

• How to move a file

• How to remove a file

• How to change a file'S permissions

• How to change a file'S ownership

• How to change the group ownership of a file

• How to kill a process

• How to kill all processes simultaneously

• How to use the adduser command

• How to add user accounts manually

• How to create a turnkey account

• How to initiate a printer request

• How to cancel a printer request

• How to use the accept command

• How to use the reject command

• How to use the lpsched command

• How to use the lpshut command

• How to move requests using the lpmove command

• How to redirect the destination using lpmove

• How to send mail

• How to send a message to all active users

• How to communicate a message to another user

• How to establish a communications link with cu

• How to use the sum command

• How to transfer files with cu

• How to send a file using uucp

• How to copy a file using uucp

• Onyx Systems, Inc. 5-42 Revised (5/85)

CHAPTER 5 DAILY ROUTINE

• How to manage system accou;'lting

• How to use the gre p commano

• How to use the strings commanci

• How to use the od command

• How to use the ncheck command

• How to use the find command

Onyx Systems, Inc. 5-43 Revised (5/85)

TABLE OF CONTENTS

CHAPTER 6

Preface 6-1

Adding More Serial Printers •••• 6-1

Arlrling More Disk Drives .••••.•• 6-3

Summary ••.••••••••••••••••••••• 6-8

Onyx Systems, Inc. Revised (5/85)

/
/

CHAPTER 6

SYSTEM EXPANSION

Preface

The goal of this chapter is to instruct the system administrator
on the procedures for adding serial printers and expansion disk
drives.

Note: information on making changes to the parallel printer is
described in Chapter 4, "Getting Started ," under the heading of
"Confi.guring Printers."

Remember, while following a procedure all commands and actions
requested appear in bold type. Any system response to a
requested command will appear immediately below that command. In
addition, all comments made within a procedure are contained
between brackets "[J." The symbol <cr> means "carriage return."

Adding More Serial Printers

This section shows how to incorporate and configure the system to
support a second serial printer.

The procedure includes the following steps:

1. Altering parameters in /etc/inittab

2. Configuring the spooler facility

Note: while performing this procedure, the administrator must
either log in as root or become a super-user. In addition, the
printer scheduler must be turned off!

In this example procedure, port Itty02" is used to support the
added serial printer. The printer class name assigned is
"printer2;" which assumes that at least one other printer
currently exists. If more than two printers are currently con­
figured, than rename as desired. The printer class name is user
definable.

Onyx Systems, Inc. 6-1 Revised (5/85)

CHAPTER 6 SYSTEM EXPANSION

PROCEDURE: Modifying letc/inittab

1. Edit the desired tty entries in the
inittab file for the init 2 level.

02:2:respawn:/etc/getty tty02 9600155
02:2:off:/etc/getty tty02 9600155

2. Write and quit the letc/inittab file.

PROCEDURE: How to configure the spooler facility

1. Change directories to lusr/lib.

cd lusr/lib <cr>

2. Deactivate the printer scheduler as follows:
desired device parameters.

Ipshut <cr>

scheduler stopped

3. Added to serial printer as follows:

Ipadmin -ptty02 -cprinter2 -mdumb -v/dev/tty02 <cr>

4. Verify the added printer is configured by
performing the following:

Ipstat -t <cr>

scheduler is not running
system default destination: printer1
members of class printer1:

sIp
members of class printer2:

tty02'
device for sIp: Idev/slp
device for tty02: Idev/tty02
sIp accepting requests since [date]
printer1 accepting requests since [date]
tty02 not accepting requests since [date]

new destination
printer2 not accepting requests since [date]

new destination
printer sIp is idle. enabled since [date]
printer tty02 disabled since [date]

new printer
n

Onyx Systems, Inc. 6-2 Revised (5/85)

CHAPTER 6 SYSTEM EXPANSION

5. Reactivate the printer scheduler as follows:

lpsched <cr>

Requests to print files can now be directed to either or both
serial printers.

Adding More Disk Drives

Adding another disk drive involves five basic tasks:

• Formatting the drive

• Configuring the drive

• Making the special device file

• Making the file system

• Labelling the file system

Formatting the Drive

Formatting means preparing the drive's basic logical layout. A
disk drive is formatted using the format(1M/1SA) program; one of
the utilities contained in the standalone directory.

The procedure below illustrates formatting the second drive
(drive 1) a 40 megabyte drive (r203e). with an Adaptec disk con­
troller and preparing the drive's total storage capacity to be
configured as a single file system.

Note: format is a standalone program. therefore, the system must
be in the standalone environment. In addition. the Onyx 6810
deskside and desk top systems use the Adaptec5500 controller.

11111111111***1*11* WARNING 111111*1*1111111*********
I * * The format program destroys ALL data on the named *
* drive and once invoked it cannot be stopped! I

1 Therefore. ensure the requested drive to be *
* formatted is the correct one! *
I *
*******1***********************1*1*111111111111111***

Onyx Systems, Inc. 6-3 Revised (5/85)

CHAPTER 6 SYSTEM EXPANSION

PROCEDURE: How to use the format program

1. From the star.dalone shell, perform the following:

SHELL$$ format -c 0 -d 1 -s r203e -t adaptec55 -1 DRIVE1 <cr>
Loading Istand/format.

[Where:
-c 0

-d 1
-c r203e

-t adaptec55
-1 DRIVE1

=
=
=
=
=

the controller bus address.
the physical drive number.
the model number of the drive.
the type of disk controller used.
an optional name to be recorded
in sector zero.]

format: initial format with no data, type adaptec, size r203e

format: formatting disk.

format: checking entire drive for bad sectors;

number of sectors 34560

checking cylinder [number]

Program advances and checks each cylinder until
it reaches the total number of sectors.]

format: writing out sector zero
SHELL$$

Note: if errors occur during the format process, write down the
error data and contact your dealer's technical support personnel
for assistance!

Configuring the Drive

The second phase involves partitioning (slicing) the disk's
storage space into defined logical file systems and building a
"map" reflecting these file systems, their locations and sizes.
This "slicing" process is accomplished using the diskconf(1M/1SA)
program, another utility executed only in the standalone environ­
ment.

Onyx Systems, Inc. 6-4 Revised (~/85)

CHAPTER 6 SYSTEM EXPANSION

The following procedure shows how to use the diskconf program to
reserve five blocks of storage for bad sector sparing and
allocate the remaining disk storage for the user's workspace.

Note: like format, diskconf must be used in the. standalone
environment.

PROCEDURE: How to use the diskconf program

1. From the standalone shell, perform the following:

SHELL$$ diskconf -c 0 -d 1 -s 5 0 -b <cr>
Loading Jstand/diskconf.

Where:
-c 0 = the controller bus address.
-d = the ph y sic a 1 drive number.

-s 5 0 = the si ze , in sectors, of the
file system(s) to be made.

-b = the "boot" flag which configures
the disk for booting.

diskconf: new slice structure - number of slices
slice o , offset o , size 5
slice 1 , offset 5 , size 34555
slice 2 , offset o , si ze 0
slice 3 , of fe s t 0, size 0
sl ice 4 , offset o , size 0
slice 5 , offset 0, size 0
slice 6 , offset o , size 0
sl ic e 7 , offset 0, size 0

SHELL$$

Note: slice 0 (file system cOd1s0) reserves
five blocks (1024 bytes each) for spared
sectors and slice 1 (file system cOdOs1)
consumes the remaining available disk
storage.]

Creating the Device File

2

The third phase of this process involves creating the device file
"node" entries in the JdevJdsk and JdevJrdsk directories for this
added disk drive. These "nodes" are created automatically using
the devices command in the Jetc directory. The devices program
assigns the appropriate device names, mode types (blocked and
character), and the major and minor device numbers for the added
device.

Onyx Systems, Inc. 6-5 Revised (5/85)

CHAPTER 6 SYSTEM EXPANSION

Devices builds all the nodes to its maximum configurable number
(e.g., cOd1s0 through c0d1s7) whether or not they currently exist
on the system. This affords the administrator the flexibility to
reconfigure, alter, or add file systems to a disk without having
to make their "nodes" manually. Devices is also used to add
other peripheral device nodes such as another cartridge tape
drive.

Note: the devices program is performed in the single-user
environme~t and requires the devices (such as disk, cartridge or
nine track tape) to be turned on.

PROCEDURE: How to use the devices program

1. In single-user mode, perform the following:

/etc/devices -w <cr>
II

2. Display the configuration structure map as
follows:

letc/devices <cr>

The scsi config struct

contrl unit 0 unit 1 unit 2 unit 3 unit 4 unit 5 unit 6 unit 7
00000 DISK DISK
00001 CAPT
00002
00003
00004
00005
00006
00007

[Display indicates all currently configured and
physically existing devices.]

/I

3. Verify the nodes exist in the Idev/dsk and Idev/rdsk
directories as follows:

Is -1 /dev/dskJcOd1s1 /dev/rdsk/cOd1s1 <cr>

br-------­
cr--------
II

root system 0, 9 [date/time]/dev/dsk/cOd1s1
root system 4, 9 [date/time]/dev/rdsk/cOd1s1

Making ~ File System

The fourth phase involves making the actual logical file system
through the use of the mkfs(l) program.

Onyx Systems, Inc. 6-6 R e-v 1 sed (5 /85)

CHAPTER 6

*********** WARNING ******1***1*1*
*

* This procedure must be done in *
* the single-user environment! *
* *

PROCEDURE: How to make the file system

1. Make the file system as follows:

mkfs Idev/dsk/cOd1s1 <cr>

bytes per logical block = 1024
total logical blocks = 34555
total inodes = 8624
gap (physical blocks) =
cylinder size (physical blocks) =
n

Labelling the file System

SYSTEM EXPANSION

The fifth phase is to label (name) the newly created file system.
This is done using the labelit command. In the example below,
NEWFS was selected for the file system name and DRIVE1 for the
volume name; however, they are user definable.

PROCEDURE: How to use the labelit command

1. To label the file system, perform the following:

labelit /dev/dsk/cOd1s1 HEWFS DRIVE1 <cr>

Current fsname:[blankJ, Current volname:[blank], Blocks: 69106,
Inodes: 8592, FS Unit: 1Kb, Date last mounted:[dateJ,
NEW fsname = NEWFS, NEW volname = DRIVE1 -- DEL if wrong !!

Onyx Systems, Inc. 6-7 Revised (5/85)

CHAPTER 6 SYSTEM EXPANSION

Summary

This chapter discusses how to add more serial printers and disk
drives. In addition, this chapter provides an example of the
followi~g procedures:

• Modifying letc/inittab

• How to configure the spooler facility

• How to use the fo rm a t program

• How to use the diskconf program

• How to use the devices program

• How to make the fi 1 e system

• How to use the labelit command

Onyx Systems, Inc. 6-8 Revised (5/85)

TABLE OF CONTENTS

CHAPTER 7

Pr e fa c e ••••••••••••••••••••••••••••• 7~ 1

System Error Reporting •.•..••.•..••• 7-1

FSCK Diagnostic Messages ••..•••...•• 7-5

Sparing Bad Disk Sectors •••••••••..• 7-9

System Crash Procedures ••..•.••••.•• 7-10

Restoring the System after a Crash •• 7-11

Emergency Shutdown•••....••••. 7-14

Who to call for help •••..•.••••••••• 7-16

Sl..lmrnary ••••••••••••••••••••••••••••• 7-17

LIST OF ILLUSTRATIONS

Crash Procedure Flow Chart •••.•••..• 7-12

Crash Procedure - continued ••••••••• 7-13

Onyx Systems, Inc. Revised (5/85)

CHAPTER 7

HANDLING SYSTEM PROBLEMS

Preface

.This chapter describes the tools for defining, verifying, and
isolating system problems.

The topics in this chapter include:

• System error reporting

• FSCK diagnostic messages

• Sparing bad disk sectors

• System crash procedures

• Restoring the system after a crash

• Emergency shutdown

• Who to call for help

Remember, while following a procedure all commands and actions
requested appear in bold type. Any system response to a
requested command appears immediately below that command. In
addition, all comments made within a procedure are contained
between brackets "[J." The symbol <cr> means "carriage return."

System Error Reporting

This section discusses the various classes of system errors which
might occur and directs the system administrator to those manuals
where such error information is detailed.

Generally, system errors are divided into two major classifica­
tions:

• Primary bootup (hardware/software) errors

• UNIX operation (hardware/software) errors

Onyx Systems, Inc. 7-1 Revised (~/85)

CHAPTER 7 SYSTEM PROBLEMS

Primary Bootup Errors

Primary bootup errors are those which occur during the system
self test (hardware} phase or during the initial attempt to boot
the UNIX system software. A failure at this level prevents the
system from booting up and generally indicates that either a
hardware component has failed or that the system software is
severely corrupted.

The list of self test errors and their descriptions is found
under the "Troubleshooting" section of the ONYX 6810 HICFOCOM­
PUTER SYSTEM USER'S GUIDE that accompanies the system.

UNIX Operation Errors

In the UNIX system, error messages can originate from the kernel
itself, or from anyone of the vast number of utility programs
available. However, this class of errors is categorized further
as follows:

• Those which inform a user of a destructive condition

• Those which warn a user of-a potential problem

• Those which are of an instructional nature

Any error message that is preceded by the caveat panic: indicates
that a condition has arisen in the system that, if allowed to
continue, would ultimately result in the destruction of data.
Therefore, when such a condition occurs, the UNIX operating sys­
tem ceases operation immediately and informs the system adminis­
trator on the console terminal.

The next category includes those messages the system issues to
warn of a potential problem. Two such messages might be: "no
space" left on a file system and· "no more processes," indicating
the system process table is full.

The last category includes those messages which inform a user
that the system could not interpret the user's request. One such
message might be "syntax er~or," indicating that a command was
not entered in the proper format.

In handling errors, the most important action is to write down
all the error information displayed and the action that produced
the error! In the event additional help from the dealer's techn­
ical support personnel must be sought, these people cannot be of
assistance unless this information can be related exactly.

The list of these types of errors is found in the section enti­
tled: intro(2), in the Enhanced ONYX System V PROGRAMMER REFER­
ENCE MANUAL.

Onyx Systems, Inc. 7-2 Revised (5/85)

CHAPTER 7 SYSTEM PROBLEMS

System Error Logging

As an aid in determining system integrity, the UNIX system
records and maintains a log of certain types of errors which may
occur during system operation. The error types of concern are as
follows:

• Stray interrupts

• Memory parity errors

• Thermostat interrupts

• SCSI bus errors

Stray interrupt errors occur when the system detects an interrupt
signal but is unable to determine its origin. This type of error
may occur when the system attempts to service an inordinate
amount of requests (such as multiple user terminal I/O) simul­
taneously.

Memory parity errors occur when data is corrupted to such an
extent that· the system memory error correction hardware cannot
correct it. Errors of this type may indicate a badly damaged
data file or a failure in the system memory subsystem itself.

Thermostat interrupt errors occur when the system hardware
detects that the ambient temperature exceeds the safe operating
range for the equipment (approximately 85 degrees fahrenheit);
therefore, causing the system to cease operation to avoid com­
ponent damage.

SCSI errors refer to the failure of a peripheral device (such as
the disk or tape drive) to complete a requested task. Errors of
this type generally apply to reading andlor writing data
unsuccesfully between the system and the device.

The system administrator displays the accummulated error data
using the errpt(1M) command. The actual error data is contained
in errfile which resides in the lusr/adm directory. The follow­
ing procedure describes the use of errpt.

Onyx Systems, Inc. 7-3 Revised (5/85)

CHAPTER 7 SYSTEM PROBLEMS

PROCEDURE: How to use the errpt command

1. Perform the command as follows:

if errpt <cr>

Summary Error Report prepared on [date] page 1

Error Types: all
Limitations:
Date of Earlist Entry: [date]
Date of Latest Entry: [date]

Total Stray Interrupts
Total Memory Parity Errors
Total Thermostat Interrupts
Total SCSI Errors

DISK Controller 0 Unit 0

Hard Errors
Soft Errors
Total I/O Operations
Total Misc. Operations
Errors Missed
Total SCSI Errors

- [number]
- [number]
- [number]
- [number]

- [number]
- [number]
- [number]
- [number]
- [number]
- [number]

CARTRIDGE TAPE Controller Unit 0

Hard Errors
Soft Errors
Total I/O Operations
Total Misc. Operations
Errors Missed
Total SCSI Errors

- [number]
- [number]
- [number]
- [number]
- [number]
- [number]

The errpt(1M) command has two significant options: the -d argu­
ment which allows the administrator to search and display just
that error data pertaining to a specific named device such as
disk file system "cOdOsO" and the -a argument which displays the
entire detailed version of the log. Because of its detail, the
-a argument is particularly helpful for determining the actual
type of failure on a peripheral device.

Note: the error logging facility in UNIX does not purge (flush­
out) "errfile" automatically. Therefore, the administrator
should program the system to periodically printout and then purge
/usr/adm/errfile. A suggested procedure is described in section
1M of the Enhanced ONYX SYSTEM V ADMINISTRATOR GUIDE VOLUME II.

Onyx Systems, Inc. 7-4 Revised (5/85)

/

CHAPTER 7 SYSTEM PROBLEMS

An Approach

One approach the system administrator can
errors is:

follow for handling

1. Write down all error information provided.

2. If possible, determine what action occurred just prior to
the generation of the error message.

3. Check the log to see if it has occurred before.

4. Attempt to define and interpret the meaning of the error
message.

5. Attempt to isolate its origin.

6. Effect a solution, or call for help.

7. Record the error and solution, when known.

********************** CAUTION *************************
* * * For panic: error conditions, the system must always *
* be rebooted. In doing so, always perform an fsck to *
* check for errors.

*
*
*

*111*111**111*******1***********************************

FSCK Diagnostic Messages

This section describes the various messages that the fsck(lH)
program can produce upon detecting an error.

The text below groups these error messages in reference to the
particular test phase that is invoked.

INITIALIZATION PHASE

Cannot fstat standard input: attempt to get status from the
interacting terminal failed.

Cannot get memory: a request to place its tables in memory
failed.

Cannot stat root: request for statistics from the "root" direc­
tory failed.

Cannot stat F: request for statistics about the named file system
failed.

Cannot open F: the named file system could not be opened.

Onyx Systems, Inc. 7-5 Revised (5/85)

CHAPTER 7 SYSTEM PROBLEMS

Cannot create F: request to create a scratch file failed.

CANNOT SEEK:BLK B: request to move to a specific file system
block failed.

CANNOT
system

CANNOT
system

READ:BLK B: request to read a specific bloc k
failed.

WRITE:BLK B: request to write a specific block
failed.

************* WARNING 11'*'*'*1"'*111
* I

I These messages indicate extensive *
, file system corruption! Therefore, *
* rebuild the file system. I

* I

**************'**"'**'*'*"*"**'***'

PHASE 1: CHECK BLOCKS AND SIZES

of

in

UNKNOWN FILE TYPE 1=1 (CLEAR): the information in the
i-node is not interpretable. If CLEAR is answered " y ," an
UNALLOCATED I-NODE message will appear.

a file

a file

LINK COUNT TABLE OVERFLOW: the i-node table used by fsck is not
large enough to accommodate all the listed i-nodes.

B BAD 1=1: the block number B contains an i-node with a lower
number than the first block on the disk.

EXCESSIVE BAD BLKS 1=1: there are many of these bad i-node
numbers.

BAD/DUP 1=1: an i-node contains a block number already claimed by
another i-node.

EXCESSIVE DUP BLKS 1=1: there are many i-nodes that contain the
same block number.

DUP TABLE OVERFLOW: there are more of these i-nodes than can be
accommodated by the DUP table.

POSSIBLE FILE SIZE ERROR 1=1: the i-node size does not match the
actual number of blocks used by that i-node.

DIRECTORY MISSALIGNED 1=1: the size of a directory i-node is not
a multiple of the size of the directory entries.

PARTIALLY ALLOCATED INODE 1=1: the i-node number is improper.

Note: these messages indicate that minimal file system corruption
has occurred. Therefore, a complete rebuild is not necessary.

Onyx Systems, Inc. 7-6 Revised (5/85)

)

CHAPTER 7 SYSTEM PROBLEMS

PHASE 2: CHECK PATHNAMES

ROOT INODE UNALLOCATED. TERMINATING: the "root" i-node number is
not correct.

ROOT INODE NOT A DIRECTORY (FIX): the
reflect that of a directory. If
condition is corrected.

i-node for "root"
FIX is answered

does
"y , "

not
this

DUPS/BAD IN ROOT IHODE: an i-node in the "root" directory has a
duplicate block number.

I OUT OF RANGE I=I NAME=F (REMOVE): a directory has a file with
an i-node number greater than the end of the list. If REMOVE is
answered "y," the i-node is removed.

UNALLOCATED I=I OWNER=O HODE=H SIZE=S MTIME=T NAME=F (REMOVE): a
directory has an i-node number that does not fit any known file.
If FEMOVE is answered "y," the i-node is removed.

DUP/BAD I=I OWNER=O HODE=M SIZE=S MTIME=T DIR=F (REMOVE): bad or
duplicate blocks were found in a directory. DUP/BAD I=I OWNER=O
MODE=M SIZE=S MTIME=T FILE=F (REMOVE): a file has a bad or
duplicate block number. If REMOVE is answered "y," the file is
removed.

BAD BLK BIN DIR I=I OWNER=O MODE=H SIZE=S MTIME=T: a bad block
exists in the /bin directory.

11**11""*'**'*,******* CAUTION 1**************1************
, *
, If there is an inordinate amount of unallocated/duplicate I

* blocks, i-nodes, or files, then rebuild the file system! *
* *
'*1************************************1***************

PHASE 1: CHECK CONNECTIVITY

UNREF DIR I=I OWNER=O HODE=M SIZE=S MTIME=T (RECONNECT): a
directory i-node was not connected to a directory. If the
response to RECONNECT is "y," then it will reconnect it;
otherwise, it will stay in the "lost+found" directory.

SORRY. NO lost+found DIRECTORY: the "lost+found" directory cannot
be found.

SORRY. NO SPACE IN lost+found DIRECTORY: there is no room to
accommodate another file.

DIR 1=11 CONNECTED. PARENT WAS I=I2: indicates that a directory
was placed in the "lost+found" directory.

Onyx Systems, Inc. 7-7 . " Revised (5/85)

CHAPTER 7 SYSTEM PROBLEMS

Note: these messages indicate that minimal file system corruption
has occurred. No file system rebuild is necessary.

PHASE ~: CHECK REFERENCE COUNT

UNREF FILE 1=1 OWNER=O HODE=M SIZE=S HTIHE=T (RECONNECT): same as
the directory UNFEF, except for a file.

LINK COUNT FILE 1=1 OWNER=O HODE=M SIZE=S HTIME=T COUNT=X SHOULD
BE (ADJUST): the link count for an i-node is wrong. If ADJUST is
answered "y," then the link count is adjusted.

FREE INODE COUNT WRONG IN SUPERBLK (FIX): this indicates the
actual count of the free i-nodes does not match the count in the
SUPERBLK. If FIX is answered "y," then the i-node count is
corrected.

************************ CAUTION ******************1*****1*11
* *
I If there is an inordinate amount of unreferenced files or *
* incorrect link counts, then rebuild the file system! *
* *
*1**1********

PHASE 5: CHECK FREE LIST - ---- ----
EXCESSIVE DUP BLKS IN FREE LIST: indicates that the free block
list contains more than a tolerable number.

BAD FREEBLK COUNT: indicates that the free block count is greater
than 50 or less than O.

X BAD BLKS IN FREE LIST: indicates the number of bad blocks in
fr eel i st .

X DUP BLKS IN FREE LIST: indicates the number of duplicate blocks
in the free list.

x BLK(S) MISSING: indicates that a number of blocks unused by the
file system were not in the free list.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX): the actual
free blocks does not match the number in the SUPERBLK.
answered "y," then the block count is corrected.

count of
If FIX is

BAD FREE LIST (SALVAGE): bad blocks found in the free list. If
SALVAGE is answered "y," then the following actions occur:

Onyx Systems, Inc. 7-8 Revised (5/85)

)

CHAPTER 7 SYSTEM PROBLEMS

PHASE 6: SALVAGE FREE LIST: self explanatory.

CLEANUP X files Y blocks Z free: self explanatory.

**** BOOT UNIX (NO SYNC!) ****: type nothing further; press the
reset button!

***** FILE SYSTEM WAS MODIFIED *****: self explanatory.

Note: some of the messages shown above actually appear in a sin­
gle line on the terminal screen.

Sparing Bad Disk Sectors

The Onyx enhanced UNIX system V has two utilities pertaining to
recording and sparing disk sectors. These two utilities are:
spare(B) which allows the sparing of a bad disk sector and
sparelist(B) which maintains the list of spared disk sectors.

The sparelist command displays the base sector, the total number
of se~tors in a slice, the number of alternate (spare) sectors
allocated, and the sectors that have been previously spared. The
following procedure illustrates displaying the spared sector
information for device "cOdOs3."

Note: the sparelist command must be performed standalone mode.

PROCEDURE: How to use the sparelist command

1. In standalone mode, perform the following:

SHELL$$ sparelist Idev/dsk/cOdOs3 <cr>

Idev/dsk/cOdOs3 is a mounted file system
Spare information for Controller 0 Unit 0 Slice 3

Base sector [number]
Number of sectors [number]
Number of Alternates [number]
Number of bad sectors [number]

If sectors have been spared previously, the
following additional information will appear:]

Sector [number] -> Physical [number]

[Otherwise the program displays •••]

There are no spared sectors on this slice
/I

Onyx Systems, Inc. 7-9 Revised (5/85)

CHAPTER 7 SYSTEM PROBLEMS

In addition, the administrator should periodically print this
list onto a printer ann incorporate it into the Administrator's
Log for referrence.

The need to spare a sector is generally indicated by either con­
sistent failures being logged and displayed by errpt, applicable
errors noted by the fsck(1M) program or the immediate issuance of
an error message to the terminal. As an example, assume that the
following error message was displayed on the terminal:

disk error class Ox1, code: OxO block
number in slice: 454, Absolute block number: 9674
Uncorrectable data error on Disk 0, Drive 0, Slice 2

The following procedure shows how to spare sector 454 in slice
(file system) 2.

Note: the spare command must be perfomed in the standalone shell
environment!

PROCEDURE: How to use the spare command

1. In the standalone shell environment, perform
the following:

SHELL$$ spare -cO -dO -s2 454 <cr>

Sector to be spared: 454

Unless an error occurs during the sparing process,
the action is silent.]

SHELL$$

2. Use the sparelist utility to verify the
bad sector is spared.

3. Reboot the system and initiate multi-user mode.

Note: an inordinate amount of bad sectors generally indicates
that the disk drive is defective and requires repair.

System Crash Procedures

This section describes what a "crash" is, the types of crashes,
and the appropriate measures to be taken.

A crash means that the UNIX operating system has suddenly ceased
to function. Crashes may be associated with a panic: error mes­
sage and/or the sudden loss of system-to-user interaction. Basi­
cally, there are two types of crashes: Recoverable and Unrecover­
able. The common denominator between these two is that file

Onyx Systems, Inc. 7-10 Revised (5/85)

CHAPTER 7 SYSTEM PROBLEMS

system damage usually results. The severity of the damage
becomes the governing factor when judging the type of crash.

\,J era s h P roc e d u r e

When a panic: message is associated with a crash, the system
administrator should write down the entire message.

If the panic: message indicates a memory error has occurred,
additional information such as the memory address in error is
displayed. These types of errors generally indicate a hardware
memory device failure, and repair involves replacing the
defective device.

If the error condition exhibited is different from the
then the system administrator can follow Figure 7-1,
Procedure Flow Chart" for the proper sequence of actions.

Restoring the System after a Crash

a b ov e •
"Crash

This section outlines the steps for restoring the system to an
operational state.

The utilities involved are those which were described in detail
in Chapters 4 and 5; therefore, only the request to perform a
specific program is given.

If a file system other than "root" has been corrupted, proceed to
~ STEP 6; otherwise, go to STEP 1.

Onyx Systems, Inc. 7 -11 Revised (5/85)

CHAPTER 7 SYSTEM PROBLEMS

PROCEDURE: How to restore the system after a crash

1. Press the reset button.

2. Ensure the On yx INIT tape is in the SAFE position, . then
insert it into the system.

3. En ter c (boot from tape) at the boot device query, then
proceed to the standalone (SHELL$$") environment. En ter
init to execute command s from tape.

4. Save a new standalone shell and load in the new root file
system from tape, but do not format the drive!

5. Boot up the system to single-user mode and perform an
fsck file system check for errors.

6. If another file system was damaged, perform the follow­
ing; otherwise, GO TO·STEP 7.

(a) From single-user, execute the mkfs(1M) command
to rebuild the file system.

(b) Label the file system using the labelit(1) command.

(c) Unmount the file system using the umount(1M) command.

(d) Ensuring the tape is in the SAFE position, insert the
most recent backup tape of this file system.

(e) Check the file system using fsck(1M).

(f) Mount th~ file ~ystem using the mount(1H) command.

(g) Restore the file system data from the tape
using cpio.

(h) I f er r 0 r soc cur, rep eat s t e p s "a " t h r 0 ugh "g;"
otherwi se, go to STEP 7 •.

7. Resume normal operation.

Emergency Shutdown

This section describes how to terminate operations quickly on the
system.

The specific methods discussed are: shutdown, killall, and "last
resort."

Onyx Systems, Inc. 7-14 Revised (5/85)

)

,j

CHAPTER 7 SYSTEM PROBL!:HS

Note: to bring down the system, the system administrator should
either be logged in as root or become super-user from the console
termi;'lal.

The shutdown(1H) program will methodically, and in an organized
manner, terminate all the processes currently running on the sys­
tem. Shutdown notifies and affords all currently active users 60
seconds to prepare for this event. However, in an emergency the
time factor can be defeated. Because of its attributes, the
shutdown(1M) program is the prescribed primary method for ter­
minating system operation.

PROCEDURE: How to use the shutdown program

1. Do the following:

n /etc/shutdown 0 <cr>

Displays the various messages.]

INIT: SINGLE USER MODE

Current date:[date]
/I

2. Update the super-block, then press the
reset button or remove power.

sync;sync <cr>
/I

Note: the "0" after the command defeats the 60 second delay. If
not desired, simply do not enter the "0."

The killall program terminates all currently active users'
processes. However, it does not notify users of the coming
event, and it silently allows twenty seconds to end any work.

PROCEDURE: How to use the killall program

1. Do t he foIl ow in g :

/etc/killall <cr>

killed: [UID's]

II sync; sync
1/

<cr>

2. The system is now ready for reset or power down.

Ony~ Systems, Inc. 7-15 Revised, (5/85)

CHAPTER 7 SYSTEM PROBLEMS

DEALER

NAHE: t ,~ '.;

----------~--------------------
TEL.NO.:

CONTACT: __________________________ __

REPAIR SERVICE, -----------,

,'< NAME =..;..' ..;,..._.,_. ____________ _

.i . TEL.. . NO. ::" '{ '.. . ';')

I 1 } ~
- ... , •• t

, CONTACT:~. _______________________ __

SYSIEM.MODEL.NO.: ________________ _

SYSTEM, SERIAL NO. : __ ~_~ __ _
• " .~f

, '

Onyx Systems, Inc. " 7-18 Revi sed (5/85 r " ','.:'

/

INDEX OF PROCEDURES

Description

Accept commanci
Add the parallel printer to the scheduler
Adduser command .•. ~ ..•••
Add user accounts manually' ..•.•••
Auto-configure the cievices and lusr file system
Back up a file system •••...•.
Boot from an alternate kernel
Boot up the system foi normal use
Cancel a printer request
Change a file's ownership'
Change a file's permissions
Change a terminal port's baud rate
Change the group owhership of a file
Communicate a message to another user
Configure and install additional tty ports
Configuring a tty port for a modem •••••
C~nfiguring the L-dialcodes file
Conversion to a new UNIX system
Copy a file ...•.••..
Copy a file using uucp
Create a null file ••.••
Create a turnkey account
Create and remove a directory
Determine disk storage usage
Devices program
Diskconf program
Errpt command .•••••
Establish a communications link with cu
Find command
Format program
Fsck(1M) command
Grep command
Initialize the system •••••

a printer request
multi-user mode

Initiate
Initiate
Install a new device
Isolate disk storage
Kill a process

driver
usage

Kill all processes
program
command

resort method

simultaneously
Killall
Labelit
Last

Onyx SYSt~~8, Inc~

for system shutdown

1-1

Section-Page

•••••• 5-23
••• ~ •• 4-46

1&4-.. 54,5-17
. ••• 5-17

· .4-5
· .5-7

..4-42
· .4-8
~ 5 -22
.'5--14
.5 -1 3
.4-35
.5-14
.5-28

• •• 4 - 32
.4-36

• ••••• 4 - 39
· .3-3

· .• 5-12
.5-32

• •• 5-11
.5-21
.5-11

• ••• '5-4
.4-25,6-6

• .4-24,6-5
• •••••• 7 ~4

• .5-29 9 5-30
.5-40
• .6-4

• ••••• 4 -1 0
.5-38

• ••• 5-1
.5-22

•• 4 -4 4
~4-27

• .5-4
.5-15
.5 -15

••• 5-15,7-15
• .4-26,6-1

••••••• 1-1 6

Revised (5/85)

INDEX

Lpsched command
Lpshut command
Make a copy of the root file system
Make the fi I e system .•.•
Manage system accounting
Modi-fying /etc/inittab
Move a file ••••••••. ~ ••• -
Move reque_sts usirtg the lpmove command
Nc heck command •.•.
Null device -to purge files
Od c:omm and
Rebuild the operatirig system
Rebuild the s y s t, emf r e e list
Redirect the destin.ation using lpmove
Reject command
Remove a file .•
Res tor e a d ire c· to r y u-s i n g c p i 0

Restore a file system •••.••
Fe s tor e the s y s t em a f·t era c r ash
Save a direc~ory using cpio
Save
-Se no
Send

a singl~ file using cpio
a file ~sing uucp
a message to all ~ctive users

Send mail
Shutdown program
Spare command
Sparelist command
Strings command
Sum command
Sysdef program
Transfer the root

.. " .

.. .
-file system

Transfer the system manuals to disk
View the ser~al printer attributes
Write and retrieve a file on a tape track

Onyx Systems, Inc. I-2

.. '

..

PROCEDURES

.5 -2 4
~ 5-2"4
.4-61

.4-26,6-7
.5-33

. •• 6-2
•••• 5 -1 25-25

.5-40

.... ,.
••• ,e •

...

.5-5,5-6
•••• 5 - 39

.4-41
•• 5 - 6
.5-26

•• 5 -2 4
.5-12
.5-9

• .-5-9
• •••• 7 -1 4

.5-9

.5-9
.5-32

••• 5 -27
.5-27

•• 5-2,7-15
.7-10
..7-9
.5-3''9
.5-30

•••• 4-1 4
._" ••. 4-3

_.4-46
.4-45
.5-10

R-evi sed (5/85)

