M1
HARDWARE LEVEL
USER'S MANUAL

A] M M 1
A Q MM MM 11
Q @ MM MM 11
Q Q M M M 1
| Q M M e 1
Q Q M M 1
2 Q8 M b | 1
A 2 M v 1
QG Q@ M M 11111

HARDUWARE L EVEL

U S E R'S MANUAL

Second Edition
Revision 2
August 31, 1974
NANODATA CORPIRATION
2457 Wehrle Drive

Williamsvilley, New York 14221
716-631-5880

Copyright ¢ 1972 NANODATA CORPORATION

OM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0002

J¥-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCORPORATION PAGE 0003
TABLE JF CONTENTS

i1 SCOPE AND PURPJSE =—=---=---mmeemem e c e e o e e ———————— e 9
2 INTRODJCTION TO MICROPROGRAMMING AND THE QM-1 ----=-==—-=---—--—-—o—oo-—= 10
2.1 BASIC INSTRJUCTICN SEQUENCE ===--==m---=---—c-o-—=—-————- ———————— e - 11
2.2 MICROPROGRAMMED CONTROL ====—---===-------oo-————-————- ————— 12
2.3 USES OF MICRIPROGRAMMING —-———-—-- ———————e e ——————m e m e — e 14
2.4 HORIZCONTAL AND VERTICAL CONTRIL ----------- e e e 16
2.5 THE QM-1 CONTROL HIERARCHY ===---=-—--——o--———-—- e L L DLt 18

3 JSER AND MACHINE HIERARCHIES --———-- ————m - e e 20
4 QM-1 FUNCTIONAL SPECIFICATIONS, PART [--=--------—-c---oo———-—ommo————- 23
4.1 GENERAL =-----m—--mm-mmmommm—eoem oo oo e e e e == 23
4.2 MAJOR RESDJRCES AND CRGANIZATION -------—--- ———— e e o ————— 24
4.2.1 MAJOR BUSING STRJUCTURE AND LOCAL STORE ----—--o--------———-—- 24

t.2.2 LJOCAL STORE SPECIAL FEATURES --------—-- —————- ———— e e e mmm 27

4.2.2.1 MICRD INSTRUCTION REGISTER —------w=———- ——mm e m e 27

4.2.2.2 MICRD PROGRAM C[OUNTERS -====----—----o——oe-—-oo———o—- 28

4.2.2.3 INDEX ALY FEATURE ---e------m--o-c—o—ccooomoooooomno 28

4.2.3 ALU AND SHIFTER =--m—===----—--oo—oo- e 29

4e2e30] ALU =-m=mmm——mm s m— e oo e — s - 29

4.2.3.2 SINGLE SHIFTS =-=-==-----mes-emmmeme——meooomeemmm--—= 30

4.2.3.2 DOUBLE SHIFTS ———-==--m-—--=--—omooooo oo oo ———— 31

4.,2.3.4 CARRY CONTROL -===-=-=—---—--ooo—oomo- ———mmme e mmme—— 32

4.2.3.5 TEST CONDITIONS --=--==-=m-mm—e——oo—oomooommomoe == 34

4.2¢3.6 SIXTEEN-BIT MODE -—-=---=-==--==-—--—-—————-——----<--- 35

4.2.4 CINTRIL STORE —-=—----—==m--——--—————oooo— s e oo e == 36

4.2.5 EXTERNAL STORE =—------mmemmmmemmmmm e e oo c o m o= B b S

6.2.6 MAIN STORE =—===mm==em—o—ecmem e e e mm——e——ee e — oo == - ————=— 3§

4.2.6.1 GENERAL -—=----=m-mmemo—mmmm——m o m e e ————mmmme e 39

4.2.6.2 MS DPERATIONS =====-==-=-—--—co———o——=———oe-—--o—--—- 40

4.2.6.3 MS ADDRESSING AND PRITECTION (QM-1 option) -------- - 42

4.2.6.% RMI UNIT (QM-1 o0ption) ======-=-==-------------—----- 43

4.3 SIX-BIT CONTROL STRJCTURE ----- e mm—mmmoe= 44
4e3.1 GENERAL =====-=m-c-mmmccommmmmmmmm— oo —— - R e L

4.3.2 F-STIRE ===-==emm-eemece e meeemem e mme——e o ————se---o—-———- 45

4.3.2.1 GENERAL -=—==——--==-=-===-——— - s—————co—--———-—- 45

4.3.2.2 BUS CONTROL F'§ —=---===-—---—--comooo——o-ooo oo 46

4.3.2.3 SPECIAL F'S —=---=---mem-me—c—o—c—ooo e oo oo oo oo 47

S~

"
vt

QM-1 HARDWARE LEVEL JSER'S MANUAL NANJDATA CORPORATION PAGE
4636204 G'S oo e e e el —————

#e343 AUX FIELDS —-mmmmmmmm e e e e el
4.3.4 ALUF (QM-1 DPTIUN) -------------------------------------- e
TIMING —-—mm e e e -
NANOPROGRAM CONTROL —==mmm s oo m e oo
e5e1 CONTROL MATRIX s e e e e
4<5.2 NANDSTORE ADDRESSING —====moceomeoeome m—————————— ———————
4.5.2.1 PRIORITY SELECT --cocmmmmmmmmmeeea o ——————- ———————-
4.5.2.2 PROGRAM CHECK —--=--- ———————————— - e
4.5.2.3 NANOBRANCH =——===ce-coa——o e s
%e5.2.4 EXTERNAL INTERRUPTS =mmoomcm e

4e5.3 NANOPROGRAM COUNTER =—mmmm oo oo e e el
4e503.1 GENERAL - mm oo e e e e
4.5.3.2 MICRIINSTRUCTION EXEEJYIDN e bt LT

4e5.4 NANDPROGRAM FLOW ==—===comccoccmm e ——————————— e
4.5.9.1 NANDPRIGRAM CONNECTION =--—mmmmmmmm oo ———
%e5¢4.2 INTERRUPTIBILITY ==-omcmccmm e —————————
4.5.4.3 HOLD =-=---—-- e e
EXTERNAL INTERFACE =-=--c-omommm e ———————————e —————ee—- ———
WRITING NANODSTORE == e s o e e e e
READ-CNLY MEMGRIES AND MACHINE START =—--=mmm e oo
FUNCTIONAL SPECIFICATIONS, PART JI ==-=-- e s
GENERAL === oo e e e e e e ——————— e m e oo
SUMMARY JF NANOPRIMITIVE CONTROLS --~—-weeeeee ———————— —————e—ee——-
5¢2.1 K=VETTOR CONTROL FIELDS ==--com oo e
5.2.2 T-VECTOR CONTRGL FIELDS -====——m- e e
FUNDAMENTAL TIMING CONSIDERATIDONS =-==-meee-o R e LT L PR
5.3. 1 GENERAL = mm e e e e e —————————— e
5.3. LEADING EDGE FUNCTIONS =---—eommeea- e e T TP e
5¢3.3 TRAILING EDGE EVENTS —=——---- ———————- R e -
2e3¢3.1 T=CLOCK EVENTS ==mmmm oo e el -
5¢3.3.2 F-CLOCK EVENTS ------- —————— R e
5¢3¢3.3 R-CLOCK EVENTS --=-commmmmmmmee e

5¢.3.4 R31 JPERATIONS --=--==moeemen B -
MEMORY REFERENCE FUNCTIONS —-—---mmm e~ e e
Seftel NANOSTORE OPERATIONS == mmom oo s s o e e
5.4.1.1 READ N§ -----—- e e e e e e
5.6.102 WRITE NS ~———-mmoemm- ———————————— ————- ———mmmmmmeee

5¢4.2 C(CNTROL STORE CPERATIONS ==--emmmemeecoooo ————e m———eeeee - -
: 5.4.2.1 (CONTROL STORE ADDRESS SELECTIDN ---------- —————————
5ehe2e2 READ (S mmmmmmmm o e e o

004

49
50
52
53
56
56
59
59
61
62
63
65
65
66
68

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE

_ 5.4.2.3 WRITE (S ==——=mm-mom oo oo
5.4.3 MAIN STORE OPERATIONS === == cm oo oemoecm e
5.4.3,1 READ MAIN STORE ----=-——- e

5.4.3.2 WRITE MAIN STORE - e

5.4.3.3 READ-MODIFY-WRITE —-——- .

5.4.4 EXTERNAL OPERATIONS ———m—mmmm oo oo

5.5 DATA TRANSFER FUNCTIONS - ——- .
5.5.1 T TRANSFERS ===-=c————n e S ——
5.5.2 F TRANSFERS —-—-—o - e e e e e e e
5.5.3 R TRANSFERS —--——--—cm—mmmemeoeee S ——

5.6 DATA MANIPULATION FUNCTIONS ————o—mm oo oo oo
5.6.1 GENERAL=mm—mm-mmm—aee S —
5.6.2 OPERATION OF THE ARITHMETIC-LOGIC UNIT ———m—mmemcecmocmm e
5.6.3 OPERATIGN OF THE SHIFTER AND SHIFTER EXTENSION -—-----———m—m
5.6.4 OPERATION OF THE INDEX ALU —--—-—- .
5645 MPC JPERATIONS === mm oo mm o oo
5.6.6 INCREUENT F AND DECREMENT F OPERATIONS —-------oo-o--—ooo-
5.6.7 ALUF OPERATION -—--—- -- .
5.6.8 RMI JPERATION === ommm oo oo o oo e

5.7 CONDITIONAL FUNCTIONS —m-—m——mmmmemomemmeeee S —
5.7.1 TEST FIELDS AND MASKS === —— oo oo ommcemc e
54702 TESTS mmmm e oo e e

5.8 MISCELLANEOUS FUNCTIONS —=—=——— - s oo omm s meme e
5.8.1 GENERATE INTERRUPT ——m—oom oo ————
5842 AUXILLARY ACTION ===m—mmmm oo oo e e ——
5.8.3 MISCELLANEOUS CONTROLS ====--co—--ev S

5.9 REFERENCE LAYOUT AND MAPS ——m——ommommmmm oo e .
5.9.1 CPU REGISTER ASSIGNMENT AND LAYDUT ——=——-momemmommm oo
5.9.2 NANOSTORE MAP ——m o mm oo e e ————-

NANJPROGRAMMING LANGUAGE SPECIFICATIONS ==—==--omcommo oo mmm oo cmmmmem
6ol GENERAL mmmm = e e e e e e e e e

602 ELEMENTS mmm e e e e e e e e
6.2.1 SDURCE STATEMENTS =————mcom-mmmmmmme e ——————— e
60202 CHARACTER SET ==mm oo m oo oo S
6.2.3 SYMBOLIC NAMES ==m-mmmmmommmmcmcmeee o e mccecemeee
6020t DELIMITERS === o o o oo e e e

6.2.%01 FIELD DELIMITERS ====—mm = oo e
6.2.4.2 SYMBOLIC NAME DELIMITERS —=---—-momommmmmeeoomee o

60205 COMMENTS mmmm = e e o e e e e e e e
6¢2.5.1 COMMENT STATEMENTS =--——-——mmmmmmmmm oo

602.5.2 COMMENT FIELDS ==mmmm—mm e e e e o e e oo e

UM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0005

6e2.6 BLANKS —--—-m-m e 128

5.3 NANOWCRD DEFINITION =--==--=--mmeemmmm e ———————— R 129
6.3.1 LABELS STATEMENTS ---—m-memmem e e 129
$e3.2 C(OMMAND STATEMENTS ———---mmcmccccneo ————————— ———meee-——-=- 130
€.3.2.1 PSEUDD COMMAND BPERATURS ----- ——————— ———————— e — e 130

6.3.2.2 NANOPRIMITIVE COMMANDS -=-=—-- ————— e 133

5.3.2.3 VARIABLES SYMBOLS AND CONSTANTS ----memeccccccnaaao 141

$.3.2.4 6 BIT DATA TRANSFER COMMANDS -==-=-veweee- ———————————— 143

6e3.3 CONTROL STATEMENTS =mmeeemme e m e e e e e 145
5.3.3.1 ASSEMBLY CONTROL STATEMENTS ——=--emmcmmccmc e e 145

6.3.3.2 LISTING CONTROL STATEMENTS ===--cmoommemmcc e 146

6.4 OPERATION (VERSION 1, LEVEL 2, JNDER Ne Co S.) =mmmmmmeme o ————————- 167
6.4.1 INVOCATION —----mmmmmm e e ————————— e e e m e 147
6ehe2 ERROR FLACS ————-mmmemme e e ——————————— e e 147

7 NANJPROGRAMMING EXAMPLES ==m=-—m e e e e e e e 150
7.1 BASIC MODEL NANCPROGRAMS ——mmmem e m e e e 150
7.2 USE OF PREDZFINEC NANDAORDS —=-=c--cecee--- - e e ———— 154
7.3 CONTROL STORE ACCESS NANOPROGRAMS ===meemcmom e e e e 156
7.4 MICROINSTRUCZTION BRANCH NANDOPRIGRAMS ==-=-- e 159
7.5 ARITHMETIC NANCPROIGRAMS (SHIFTS) —--oommmmmm e e 162
7.6 MULTIWIRD NANOPRCGRAMS =---—mmmmcee e R et 168
8 AM=1 I/0 SYSTEM —--—mmm e e e e e e 173
8.1 GENERAL -=----—ceuu-- et it 173
8.2 QM-=1 I/0 CONTROLS =--=----mmmm e e e e 176
8e2el GENERAL —=-----mme e e e e == 176
8.2.2 (PU PORT CPERATION —----- e e ——————— D e 177
8e.2.3 CPU INTERRUPT OPERATION ===--meem e e e e e e - 180

8.3 STANDARD CHANNEL CONTROLLER =—--cmccmm e e e e e 181
Ba3el GENERAL =—=—=——eemmcmme—m e o —————— e e e e 181
8.3.2 CHANNEL COMMANDS ~—====--mmmemcm e e ————— e 187

5.6 STANDARD DEVICE CONTROLLER =-—--mmcmmm e e 189
Bee]l GENERAL =--=-eemme e e e 189
8.4.2 DEVICE CONTROL ----—m—emmm e e e e e 191
8.6.2.1 DEVICE CONTROL NDRD ------------------------------- 191

8e6.2.2 STATUS =-=mmmmemm e cce e e e e - —————— 193

8.4.2.32 INTERRUPT MECHANISM ————————— ————— e e e - == 197

8.6.2.4 DIRECT REQUEST MECZHANISM =—--mcmommmm e e 199

8.4.2.5 PDEVICE COMMANDS -------oeoomo—o R e it 200

Be4e3 DATA ROUTING SUPPORT —------emcmmeno e ittt 202
8.4.3.1 BUFFER ADCRESS REGISTER -comoococmccee—— m——mmm— e o 202

Z¥-1 HARDWARE LEVEL JSER'S MANUAL NANODATA CCRPORATION PAGE 0007

8.4.3.2 WORD COUNT REGISTER =-===---——-o-ssm—mo—co——com———=- 203
8.4.3.3 DATA TRANSFER ==----c—ms-—m--—-—oo——————ooooo—o=oos 204

8§.6.3.4 DATA CHAINING -===----=-—-o==-—m—-ooso== ——mem———— -—= 205

8.4.3.5 DIRECT MEMORY ACCESS =====--- ———— ———————- ———- 206

8.5 1/3 SYSTEM JPERATIONS —--==m======--=—-e-=-——===—=————————-——=-————=- 207
8.5.1 GENERAL —=—--=---==——————ocw—o=———- R e L LDt bt 207
8.5.,2 INITIALIZATION ---==———---===-==-= ‘ m—mem ———== 207
8.5.3 COMMAND EXECUTION ===—=---=mse-=—m————-—s-—s——o-o—o-ooso=osoos 209
8.5.4 DATA TRANSFERS ==-=—=——mcm—emmmm— oo mm——oo—— oo oo m— oo 210
8.5.5 STATJS INTERRUPT HANDLING —---===-=-—=——== ————————— - 212
8.5.6 DIREZT REQUEST COMMANDS ---—==-===s=--—o—-=-—-—————o-o-so—=ooos 213
§.5.7 DATA CHAINING ====————----==me=—m——————s————————————————o=o oo 214

§.6 EXAMPLE OF AN ACTUAL DEVICE CONTROLLER —======-=-----===-=--------—- 215
8.6.1 DEVICE SPECIFICATIONS =—-=====-—-—-—======-———————==--=————--= 215
8.6.2 CONTRILLER SPECIFICATIONS -=-=—==---—- e §
8.6.2.1 DEVICE STATUS —===m=m=—=—-m—o—==m=-——————==----————-= 216

8.6.2.2 DEVICE COMMANDS =====—-—---======-—oo———=-—----——--= 218

8.6.2.3 DEVICE CONTROL WORDS —-==—===—--—- ————— e 220

8.6.3 OJPERATION AND PROGRAMMING —--==--=-==—-=- ——————————- - S ettt 222
8.6.3.1 DATA TRANSFER GPERATIGN --------------------------- 223

8.6.3.2 DEVICE CONTROL FUNCTIONS —--—-=-===------=---==—--== 225
INSTALLATION PLANNING -====-—=-===—cs—=——eomo—o—oo- D D 226
9.1 GENERAL =—==-———-—mm-emmmm——— oo o —— o oo e L et 226
9.2 SPACE REQUIREMENTS =====--——-—-=-o-o-—————o- e mmmc e —mmm—m—m e 226
9.3 ENVIRONMENTAL REQUIREHENTS ————mmmmm e ————— e 227
9.4 POWER REQUIREMENTS =—------—--ssemmm-o—oo-—o————m————oo—o—s oo oo 227
9.5 PERIPHERAL REQUIREMENTS —-—~———-=m===me=—————s———s———o—o——ososooosooos 228
9.6 TYPICAL INSTALLATION LAYOUT —==-===————=-——-—=s——o—oooo=——ooomoomoss 229

APPENDICES
APPENDIX A - QM-1 PORT INTERFACE SPECIFICATIONS

APPENDIX B - QM-1 CPU OPTIONAL FEATURES

Q¥-1 HARDWARE LEVEL USER'S MANUAL NANOCATA CCRPORATION PAGE 0003

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0003

1. SCOPE AND PURPOSE

The @M-1 is a hioch—-speed general-purpose digital computer that operates under
two levels of microprogram controle. The unique design of the @M-1 supports a
system of software-created user levels; whereby users at different levels B
approach architecture, machine language, and programming in ways most suited to
their own specific requirements of the hardware. The present document explains
these concepts and defines the QM-1 as it appears to the "hardware-level" user.

The "hardware-level” user approaches a programming interface whose functional
parts correspond to the facilities provided by the physical @M-1 computer
itselfy, without any restrictions to the full generality of the hardware imposed
by pre-definition of the contents of any of the machines control menories.

Even the contents of the Read-Only Memories, included for machines bootstrap and
diagnostic purposes, may be programmed by this user. The Hardware-Level User's
Manual, while not an engineering or maintenance document, is thus oriented
toward the QM-1 user whcse purpose is to define his own computer starting at
the lowest possible level.

Q-1 HARDWARE LEVEL JSER'S MANUAL NANODATA CCRPORATION PAGE 0C1D

2. INTRODUCTION TO MICROPROGRAMMING AND THE QM-1

Every programmable device, or "machine", possesses an architecture and an
instructicn set. The architecture is its system of components and their
interconnecticonsy in the case of a computer, architectures are described

in terms of stores, registersy, arithmetic-logic units, data paths, 2tc.

A machine instruction is a command which causes elements of the architecture
tc operate in some predetermined manner; the instruction set of a machine

is simply a tist of all instructions which the machine recognizes.
Using these broad definitions = = sccmmmmccmccc e
and the simpltifted nodel! of a I MAIN STORE (MEMORY) 1
computer shown in Figure 2a, I I
a discussion of three phases] - —— I
of the "instruction sequence” -—=-==\ 1 1 INSTRUCTIONS 1] =——==—- \
provides a basic explanation INPUT >] --=meeemecrem e I QUTPUT >
of cemputer operation.s. 00 —e—m—— /r emeeme———] -——=—- /
I I DATA T 1
INSTRUCTION FETCH I eeee————— I
I I

Seaquences of machine instructions, e et -

in the form of binary numbers, are I 1 /\

typically stored in contiguous CPU supplies 1 I / \ Control unit
locations in main store (memory); address for I I I I signals main
instruction execution is initiated single word I 1 1 I store, IO units,
by fetching a machine instruction transfers I 1 1 T and other CPU
from a given location in memory N / 1 1 functions

and pltacing it into an instruction \/ I 1

register. The memory address from —— e ————————— -

which to fetch an instruction is I CENTRAL PROCESSING UNIT 1
contained in an instruction 1 (CPU) 1
location counter register, often | it
called a program counter; part I 1 Registers, 1

of the effect of every instruction I CONTRCOL 1 Shifters, 1

ts to update this register to 1 UNIT I Test Units, 1

point to the successor instruction, I I Adders, etc.l

and then to begin the memory = =ccceeeeeeao —————————— - ———

fetch for the next sequential

instruction. BLICK DIAGRAM OF A COMPUTER

Figure 2A

QM-1 HARDWARE LEVEL JSER'®S MANUAL NANODATA CORPORATION PAGE 0011

INSTRUCTION DECODE

A portion of the contents of the instruction register is designhated as the
operation code. This binary number is decoded by the controf unit to select
ameng a number of modules, each of which is responsible for accomplishing
the effect of one of the instructions in the computer®s instruction set. As
will be shown later, the method of decoding and the nature of these modules
is critical to the definition of microprogramming.

INSTRUCTION EXECUTION

The ultimate effect of any instruction-execution module is the generation
of electrical signals to the various computer components.

2.1 BASIC INSTRUCTIOJN SEQUENCE

These three phases of instruction fetch, decode, and execute, form the basic
instruction sequence (or “instruction cycle"). After initial start-up, all

computers follow an instruction sequence similar to that illustrated in
Figure 2B. '
I INSTRUCTION [---—--- -\ 1 [A\ I INSTRUCTION I--=-==-=-\ 1 1
1 LGCATION I Step 1 >1 MEMORY I Step 2 >I REGISTER . 1 Step 4 >1 DECUDER 1
I COUNTER I--==-~~/ 1 Am————— /1 (DPCDDE)]-—=—====-/1 1
/\ 11
/ 0\ Instruction Fetch I 1
I 1 Step 1 - A word is read from memory 2t the location Step 5
Step 3 specified by the (CPU's Instruction Location Counter. I 1
Add One Steo 2 - The word is placed in Instruction Register. \ /
I 1 Step 3 - The Location Counter is updated (Add One). \/
Instruction Decode e ———————
Step 4 - The QOperation Code (a portion of the I SELECTED 1
INSTRUCTION instruction word) is transferred to a decoder. I EXECUTION 1
SEQUENCE Stee 5 - The Decoder selects one of a number of I UNIT I
execution plans. e
Figure 2B Instruction Execute I 1

Step 6 - Carry out execution plan which may include Step 6
data fetch, data manipulation, data store, repeatediy. \ /
End of Sequence - Do next Instruction Fetch (Step 1. \/“

a¥-1 AARDWNARE LEVEL JSER'S MANUAL NANODATA CORPORATION PAGE 0012

2.2 MICROPRGGRAMMED CONTROL

Tre final phase is of particular interest hsre. The electrical signals

which the control unit sends to the architectural components are the most
bhasic, or “"primitive", commands in the computer; these signals have effects
such as opening and closing gates (for example, to transfer register contents),
inittatine memory cycles, and setting individual bits. In fact, the
instruction csequence itself is under the coatrol of such primitive operationss
ar implicit effect of every machine instruction is the execution of the next
instruction seaquence.

Jrly rarely do machine instructions correspond to a single architectural
sorimitives; most machine instructions result in the generation of a number

of orimitives, frequently arranged in a time sequence. For some instructions,
the arrancement of primitives can be fairly conplex. An example is a multiply
instruction on a machine which has only an adding component; the adder must be
used iteratively, and the internal! plan of the instructicn resembles a computer
program,

The later observation suggests an implementation of the primitive signal
control function. In the conventionaly, or "hard-wired" computer, 2

nardware degcodinc of the relevant portion of the instruction word selects
one of several locgic circuitsy each of which is responsible for generating
and segquencing the primitive signals of a given machine instruction. 1If,
howevery the primitive control functions are regarded as "micro-operations",
then a "microprocran®” can be written to plan the flow of an instruction.

The steps of this microprogram can then be implemented as primitive commands
executing out of a fast-access store, such as semiconductcr memory.
(Execution of such commands is simple to accomplish, since the micro-
operations correspond directly to architectural functions.)

Using a microprogcranmed approach to machine instruction implementation, the
instruction-deccde step cf machine operation changest® rather than decoding
the operation-cocde portion of the instruction to select one of several
hardware modulesy this binary number is used directly as an addressy OF
pointery, into the microprogram store (*control store")s; the location so
defined is proarammed as the entry point of the microprogram which implements
the original machine instruction. This process is illustrated in Figure Z2c.

dM-1 HARDWARE LEVEL USER'S MANUAL

. ————— - . ——— - W~ ——— . -~ -~

NANCDATA CORPORATION PAGE 0013

- - - T . . - . - . . - —— —— - - ——— - W > -

1 THE OPERATION CUDE OF A MACHINE INSTRUCTION DETERMINES THE ARRANGEMENT AND I
I TIMING OF THE 'SIGNALS WHICH CONTROL MOVEMENT OF DATA BETWEEN MEMORY, CPU I.

I REGISTERS,

HARD-WIRED COMPUTER

In a conventional (hard-wired)
computer, the opcode is decoded
and used to select among logic
circuits which provide the
control signals within computer.

INSTRUCTION REGISTER

- - - - ——— - ——
—— . ————— - Y ——_———— - -

——— - — - - -

-->1 CIRCUIT 1 I

\/ B
1 DECODER I--
----------- \

- ———— - - -
—— - i — o — ——
-—— - - - — -

- ——-—— - ——

Machine Instructions--and hence the
functional nature of the computer
ac seen by the programmer--are
determined by the machine decigner.

N L T mE T EmEm s e - -
B R R R R S L T

I ALTERNATIVE SCHEMES FOR 1
I INSTRUCTION DECODE 1
1 v Figqure 2C 1

o B B R o O
e eSSt LISFIESZZEESZzsSsS===z=

ARITHMETIC-LOGIC UNITS AND OTHER HARDWARE FACILITIES. I

e e e e T S T T D . S - e S W A - W Bl i . . . T T S K . W . - . T o — — . — T —— — —— - — - — ——— . . .

T . . 1 —— . o —— A . . -

In a microprogrammed computer, the opcode
is used as an address ("pointer") into a
fast "CONTROL STORE™. The microprogranm
starting at that address has been written
to provide the control signals.

INSTRUCTION REGISTER

. — " ———— - - — — — - .

- — - .~ o — — ——

I 1
I 1 CIONTROL STORE
| S R et
\ / I/////////I e bttt
\/ | e & I Mechanism to 1
--=>1 BEGIN I--\ I convert micro 1
(address 1 . I >1 instruction I
of 1 . l1--/ I into control I
micro I END I I signals 1
program)]===—eec—ee-] ———— e ————
17777777771
17777777771

- —-—-— - - - -

Machine Instructions--and hence the
functional nature of the computer as seen
by the programmer--are determined by the

.microprogrammer and may be redefined as

readily as the control store may be
reprogramned. If control store is
writable (rather than "read-only), the
user can microprogram at his convenience,
modifying his machine at computer speeds
instead of "soldering iron™ speeds.

QM-1 HARDWARE LEVEL JSER'S MANUAL NANODATA CCRPORATION PAGE 020154

2.3 USES OF MICROPROGRAMMING

With the previously defined model of microprogram machine control, We can now
examine the uses and advantages of microprogramming. The strongest single
Justification for microprogramming !ies in the current disparity between the
speed of main store (core memory) and the speed of currently avaitable logical
components. For exampley, more than 10 sets of primitive functions nay be
executed in the time taken to read one word from core memory. Thus time exists
for more than 10 control store steps to implement a main store instruction.
This large ratio makes possible a significant increase in the power of the
instructions defined at the higher level over those required in the underlying
hardware. For this reason, microprogramming is now common in many computers.

Microprogramming provides other advantages as well. Since microprogramming in
conirol store serves to define the computer as seen at the conventional level,
the flexibility of microprogramming may be used to vary the machine defined.
Many of the advantages that result are tabulated in Figure 2D.

WI'QDPRDGQAMMIVS MAY BE USED T3 ADVANTAGES Figure 20

1. DEFINE A CCMPUTERS INSTRUCTIGN
SET independent of the basic
nardware developnent. This was
thke most common early use.

2. CAUSE THE HARDHARE TO FUNCTION
AS ANDTHER (PRE-EXISTING)
COMPUTER. This is the common
definition of emulation.

— ———— — ——— T ————— - — —— — . — — ——— - ——— - — - - -

a) Seperates the instruction definition
from the hardware specification.
b) Permits matching memory speed to logic
speeds when a large difference exists.
a) Emulated machines software may be used
without modification thus preserving
possibly larce software investments.
b) Host computer system may be faster or
less expensive than original machine.
c) Several macnines may be emulated at
dcfferent timesy, on same hardware host.
Increased efficiency: functions requiring
complex and time consuming software may be
performed directly on the machine, as a
single (special) instruction. Examples:
Floating point Arithmetic
deerating system functions
Arny programmed procedure commonly
used in a aiven application.

- ———— — - e - v — S — - — - —

3. EMULATE ANGTHER COMPUTER, BUT
WITH EXTRA INSTRUCTIONS AND/OR
SPECIAL FEATURES.

&%

-~
~
P
~

el et Pt Bracd puad Pt Peed el poed bmed foeed ot P fd b Pl] e md Pk feed ed

~QM-1 HARDWARE LEVEL USER'S MANUAL

e CREATE A SPECIAL-PURPCSE
COMPUTER TO MEET THE NEEDS OF
A PARTICULAR ENVIRONMENT,

—— ——— —— ——— - — = — T - S S > - —

e e B e I T B B B)

I

b)

cl

N&ANODATA CORPORATION PAGE 0015

- ——— - ——— — - —— - - — . — - - ——— — ———-

Microprogram development is easier,
faster, and less expensive than
hardware development, and is performed
by personnel typically closer to end
needs than hardware personnel.

Result can be modified easily when
necessaryy, as needs change.

When application is phased outs host
hardware remains usable.

e - - —— - - - - . . —— - - - .-

Since a fully flexible microprogrammed design also
performs the instruction fetch and instruction decode
under microprogram controly main store becomes merely
a storage area which may (among other things) contain
instructions of a higher—level machine. Therefore a

fifth use of microprogramming

. WARITE USER PROGRAMS IN CONTROL
STORE, WITH MAIN STORE USED AS
A FAST MESSAGE BJUFFER, PAGE
BACKUP, FILE STORAGE, ETC.

———————— ——— ——— ——— - —— ——— A ——— . ———— i~ ——

w

1
I
I
I
1

——— . -

iss

Very fast processing times are possible
for suitable applications. Less
hardware may be necessary to do the job
since the hardware is used directly.

. — — —— T —— - - —— —— ———— ————— — - — — — - ———

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0015

2.4 HORIZONTAL AND VERTICAL CONTROL

The desianer of a machine with microprogrammed control faces an immediate
decision as to the format of microinstructions to be used in the machine.
He may choose to use a widey unstructured microword, usually called a
Horizontal Microinstruction:

--- Each bit is
[.............HDRIZUNTAL MICRGINSTRJCT]HN.............l independent

--- of other bits.

When executed, each bit in a horizontal microinstruction results in a control
signal to a hardware component. This is generally found in more powerful
machines. The microinstruction may run to 100 or more bits (the 1BY 360/50
uses a microinstruction 90 pits wide).

Or the designer may choose a highly encoded microinstruction packed into a
much smaller word. The word contains a micro-opcode and several other
encoded fields. For this reason, it is often referred to as a Vertical
Microinstructicnt
-------------------------- Together, several
VERTICAL MICRCOINSTRJUCTION [Micro- opcode / xxx xxxx] bits form an
-------------------------- encoded field.

When executed, the micro-opcode of a vertical microinstruction selects a
sequence of control signais, similar to the operation of a machine
instruction opcode but at a lower level (simpler sequences are invoked)}.
Vertical microinstructions are much shorter (the IBM 350/25 has a 15 bit
mtcroinstruction).

Each scheme for microproarammed control offers certain advantages. A choice

involves evaluation of many trade-offs. Some of the factors are tabulated in
Figure 2E.

TRADE-QOFFS BETWEEN AORIZONTAL AND VERTICAL CONTROL Figure 2E
HORIZONTAL MICRIINSTRUCTIDNS... VERTICAL MICROINSTRUCTIANS...
............................... ._-_..._..-,_.I . - ——— W - . - W W . e ——— - -
Allow ultnmate flexibility in I Provide a Iimited seiection of

control, since each signal (bit) I control patternss; the number of

QM~1 HARDWARE LEVEL USER'S MANUAL - NANODATA CURPBRATIUN PAGE 0017

may be individually selected by I possibilities depends upon the

the microprogrammer, 1 width of the micro-opcode.

...................................... I —— i —————— - -~ - - - . —— - . -——

May be executed simply by 1 Require execution machinery

gating them to a registers to I similar to (but simpler than)

which signal lines are I that required to execute machine

attached directly. I instructions.

......................... - - _.I..-_...--_---------------_—_-----------_-__
" Allow paralle! operation of I Typically specify "single-thread"

Shardware components. operations.

—————— - —— — ————— — - - e W N -~ . - T - W . S - —— -

Are relatively difficult to
‘program.

- ——— . —— - - - W T D D S . - - - -

Are relatively simple to
program.

- — — - ——— - T " — . Y - - - — A A S —— - - . . - | . - ———— —— " - — " " — — - ———— ——

May specify a time-sequence of
control signals, so they may be
executed less frequentiy.

1

1

I

I

I

Must be executed fregquently, I

since they exercise each 1

hardware component at most once. I

--------------------------------------- 1 .

Are wide, typically on the 1 Require only enough bits to

‘prder of 100 bits. I contain the micro‘oppode and
: 1 perhaps some parameters --

1 typically 8 to 16 bitse.

1

I

1

1

1

I

I

1

e e s e . e o e . . S e e o o s i o e | i e — i ——— — . ——— - — —— - . W . e W - - - -

The last two ttems imply that
,storage of enough horizontal
microinstructions to run a
reasonably powerful emulation
may be prohibitively expensive
in number of bits.

[P ————— A ettt

The last two items imply that
storage of enough vertical '
microinstructions to run a
reasonably powerful emulation
may be acceptably inexpensive
in number of bits. :

- ——— e SIS S W M. W S W e Ve - w——

© CONCLUSIONS:

Horizontal microinstructions are preferable to vertical microinstructions
for flexibiltty and parallelismy, but they are more difficult to program,

require larger amounts of expensive storage, and are limited in what time
sequences may be programmed.

The @M-1 has been designed to make available the advantages of each scheme of
microprogrammed control and to avoid the disadvantages inherent in each. The
qnique features of the QM-1 that make this possible will be examined next.

QM-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CORPORATION

2.5 THE QM-1 CONTR3IL HIERARCHY

In the QM-1, a two-level
stages, achieving the advantages of both horizontal

in Main Store are executed by
in Control Store, under vertical control.

Machine instructions
microprograms

Microinstructions in Control Store are
by} nanoprograms in Nanostore, under horizontal control.

An itllustration of this concept is shown in Figure 2F - QM-1 Control
Main Store
———————————— Main Store instruction "ABC" is fetched
|—————————] arnd decoded under microprogram control.
]———————— I
1 ABC I Control Store
|- I\ —ese~-e-—e——-——- Mijcroinstruction "XYZ"” is fetched and
- I A\ - I decoded by hardware under nanoprogram
/ . / \-=>1 XYZ //////1 control
] Yr77777777771N
------------ =1\ Nanostore
[I \ e -
- I \ [e I

- —— - ——————————

Microcrogram executing

\N=>Y///0/17/77777777771N
L/177/71777777717771 N\

"ABC" is shaded. et I A\
........ s —— —— \
Nanoprogram executing
"XYZ" is shaded.
Nanoprograms are directly executed by
hardware; control signals are sent to components =—==—=—eeeao-2>

Figure 2F Q4-1 CCNTROL HIERARCHY

in turn executed by

EXAMPLE OF TwO

PAGE 0018

design smooths the machine definition process over two

and vertical controlz:

{and defined by}

{and defined

Hierarchy.

Machine Control

- -

I Ta |
1o
1ot 1
PRI

LEVEL EMULATION

QM-1 HARDWARE LEVEL USER*®S MANUAL NANODATA CORPORATION PAGE 0013

This unique control hierarchy takes advantages of the best features of both
horizontal and vertical control as summarized in Figure 2G. In addition,
flexible time seguencing is possible at botn levels. And most important,
botn Control Store and Nanostore are fully writable semiconductor memories,
so that the QM-1 user can take advantage of all possible flexibility in the
system by dynamic reprogramming.

In particutar, Control Store is a fully general-purpose read/write store;
hence it is feasible, for some applications, to approach GM-1 Control Store
as the primary program store of the machine, executing programs which can
regard the passive Main Store as a secondary storage unit.

CONTROL HIERARCHY DIMENSIONAL ADVANTAGES Figure 26

AT HIGHEST LEVEL AT LOWEST LEVEL

End User has system ' Hardware Designer has system
simple to program. (==—=—=—-==-=-- —————————— > direct to implement.
Generalized Indirect Control Absolute Direct Control.
Powerful (high level} (-==—---rr—e—co——o—so==-= > Primitive (low level)
Instructions _ Functions.

Meaning of Main Store Meaning of Control

Contents Fully Redefinable (ememmmm—e—e———=====> Sjignals Fixed in Hardware.
Large Memory Available (eemmmmmem—ceeeccemm—e====> Small Store Reguired.

Low Cost/Bit <(--—=---=--—————-soo—mmmmooo- ————— > Fast Operation.

QM-1 ‘HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 00290

3. USER AND MACHINE HIERARCHIES

The design of the QM-1 suggests the use of a system of "virtual macnines"”
arranged in a hierarchy of levels. Each tevel is supported by the machine
belows and in turn supports the machine above. GOnce a given machine is
defined by suitable software (or "firmware"), its implementation -- ie€ay
the nature of that software structure -- is transparent to the user of that
machine. For example, after suitable nanoprogramming is done to define a
"*micro-machine”, the very existence of Nanostore is irrelevant to the micro-
machine user.

Such a machine hierarchy is shown in Figure 3A and described in detail below.

(1) HARDWARE LEVEL Components THE QM-1 HIERARCHY
L S,
/ \ \
Logic Design (by NANODATA)
defines / \ \
/QqM?? NaM=?2 \IM-1
(2) NAND MACHINES 2= T REEE
/ \ O\
/ AN
Nanoprogramming / AN
defines / O\
/ N
(3) MICRO MACHINES % x o
/ / \
/ / \ Cr Microprogramming
Microprogramming / / \ is used to satisfy
defines / / \ Application
/ / \ directly.
(4) MAIN STORE MACHINES T REEE %
/ NN v
/ AN v
Main Store Programming / AN v
to satisfy / -\ v
/ N v
(5) APPLICATICONS T B X % Figure 3A

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0021

4ARDWARE LEVEL

The basic hardware components of the dM-1 include several banks of registerss;

a system of three stores; arithmetic, Boolean, and shift componentss and twelve
independent buses. Bus connections between the components are programmable and
may be changed as often as required to best fit the current task. All these
units may be exercised independently, allowing a high degree of paraltelism.

Complete control over the hardware is provided by a 360-bit word read from the
dynamically writable Nanostore; the active nanoword provides a sequence of four
machine state vecteors, each of which drives the individual machine components
and their interconnections during a machine clock period of 80 nanoseconds.

NANJ-MACHINE LEVEL

Nanoprogramming is the process of defining a set of such control sequences
te implement microinstructions executed at the next level. The opcode of a
vertically formatted microinstructiony read from Control Storey is used to
select the entry point in Nanostore at which to begin executing the defining
nanoprogram. The microinstruction set used may be either that defined by
NANODATA (with possible user modifications/extensions for the current task)
or that defined by the useri the NANODATA supplied micro-language is
accompanited by systems software to support I0Q and process management.

MICRO-MACHINE LEVEL

Since microinstructions reside in the fully readable/writable Control Store,
microprogramming can be used to define the application directly. Due to the
flexibility provided at the nano level, a variety of micro-machines may be
defined to efficiently match the application. The micro-machine can ithen be
viewed as a conventional machine with 2 customized instruction set and a 160-
nanosecond memory.

MAIN-STORE-MACHINE LEVEL

For many applications, the above number of levels will be sufficients
applications software may be written in the defined microlanguage, executing
out of Control Store at very high speeds. For those applications in which
another level of flexibility is desiredy, however, microprogramming in Control
Store may be used to define the architecture and instruction set for software
in Main Store. At the micro level, Main Store is viewed simply as a passive
general-purpose data storej; the process is one of classical emulation.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0022

As indicated in Section 1, the purpose of this manual is to provide complete
functional specifications of the GM-I, and thus to define the "nano-machine®
~available to the hardware-level user. Many users will be concerned with the
machine at this most fundamental level. The NANODATA systems software staff,
for example, approaches the machine at this level.

When appropriate software, including both systems support functions and any one
of several micro language definitions, is included in the QM-1, the micro-level
user can program the machine without being concerned with the structure
beneath.

Thus this manual is dedicated to that new breed - the NANOPROGRAMMER. QOther
programmers may have interest in the manual in order to understand the hardware
that supports the level at which they write programs; the hardware-leve! user
will find the material in the next two sections essential.

QM-1 HARDWARE LEVEL JUSER'S MANUAL NANODATA CORPORATION PAGE 0023

4. OM-1 FUNCTIONAL SPECIFICATIONS, PART I

4.1 GENERAL

sections &4 and 5 of this manual are a complete functional specification of
the QM-1 CPU in two parts. Part II tSection 5) is intended to be used as a
a8 programmer's reference guides, and includes control field mappings and
encodings as well as detailed functional description. Part 1 (Section 4}
explains QM-1 machine concepts, architecture, and operations, and provides
an overview of the 9M-1 and an introduction to Part 11.

In order to introduce the machine specifications to the first—-time reader,

Part I becomes proaressively more specific as more of the overall QM-1
structure is revealed. Hence the earlier sections of Part 1 have more detailed
explanations in Part II.

The machine described in Sections &4 and 5 (QM-1 FUNCTIONAL SPECIFICATIONS]

is the "hardware GM-1". 1Its architectural features and controis are those
available to the lowest level (nano-) programmer. Nanoprogramming may be
usefully viewed as the task of implementing a ("virtual"™) machine definition
for use at the next higher (micro) level. The description of the "nicro-
machine® will not necessarily resemble that of the QM-1, and in fact may be
quite different. Any number of the QM-1 resources may be dedicated to the
implementation of the micro-machine definition. The nanoprogrammer can assign
several of the 32 general-purpose registers (LOCAL STORE) available to him

as special-purpose architectural features of the micro-machiney, €.ge,
instruction register and location counter. The micro-machine architecture
will in general be an extension (rather than a restriction) of the QM~-1
architecture; for exzmpley, 2 micro-machine may be designed with a large

number of general-purrose registers (which the nanoprogrammer would probably
map into Control Store). The range of feasible micro-machine definitions

is limited only by the ingenuity of the nanoprogrammer and the efficiency
considerations of the emulation processj stack-machine architectures,
sophisticated arithmetic processors, and "wide-word" machines are, for example,
well within this range.

QM-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CCRPORATION PAGE 0024

4.2 MAJOR RESOURCES AND ORGANIZATION
4.2.1 MAJOR BUSING STRUCTURE AND LOCAL STORE

The major hardware units of the Q@M-1 -- stores, Arithmetic-Logic Unit, shifter,
register banks -- can each process or store 18 bits of data in parallel, and
are connected by a system of twelve 18-bit-wide data paths (buses). The
central major unit, Local Store, is a terminus for all twelve buses;i the other
end of each bus is connected to some other major unit. This structure is shown
in Figure 4.2.1A.

QM-1 MAJOR BUSING STRUCTURE (18 BIT WIDE ARCHITECTURE) Figure 4.2.1A

- ———— - - - . - — -

-------------------------- >I MAIN STORE I-=>I RMI UNIT I->---

1 e e]

I 1

I eseeese 22222 meoeems- Ssosmssssssesssss l

I AlL o===-—--=->1 I I SHIFTER I cecee I

I eesses ooeee I ALU I=-->1 | it >---.A0D. 1

1 I «AIR.=>1 1 I EXTENSION I cesen 1

1 S 1 I

I 1 I 1 1

1 I I B 1 1

1 I I ceacne I I cevee I I

1 I I eSIDe=—=mm >I SHIFTER [-=->--.500. I 1

1 1 1 cesen I 1 cesee I I

I I I I R I 1 I

1 I I I 1 1 I

1 1 1 1 = —mmmmmmmmmme—mmmmee- S I 1

1 1 I ~=—=<=1 RO 1////7//1 R31 I=-K-- I I

1 I - {======1 o Y/77/77771 .« 1 I I

1 - L 1 . 1/7177171 . I=Kemmmmmmee 1
cesas I < I Locat 1 o 1 ceeee
MIX mmmmm e {mmmmm e = I .1 STORE I o [{====-====mme- .MOD.
ceeee Tmmm——— {-—====——=- I o L//70407471 o1 csces

1 1 S BT 0 2222 7 2 A T B 1

1 I I -===<=1 RC 1////7//1 R31 I-=<K=- 1 I

1 I I I mmmmmmmmmmmm e 1 I I

I I I I I I I

1 I 1 1 1 I 1

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0025

I I I cecese e ——————— I I I
I I I (IA =====>1 I cesne I 1
I I I coses I CONTROL [-->--.C0D. I 1
1 1 cecee I STORE 1 ceene I I
I 1 «CIDs == >1 I 1 I
I I escee mm e —— - I I
I L K 2 2 L 2R 2N 2 4 I
I .EID. = emmeemememe—ece—eee—————— .EO0D. 1
I ceves 1 E31 I//7/777/7771 EO 1 cecse I
/1IN I 1 o 12777770771 . 1 I I
1 1 I .« I EXTERNALI . 1 I I
I | S I « 1 REG'S T . 1 esees | I
I == BlA========>1 . /777771771 o 1->-.EQA.-- I
I coens T o Y7740 /7107772/1 .1 cesss v
I 1 o L/77777477/1 o1 1
I 1 E3Y 1///7477/7/71 EOC 1 I
r mmees—me—e—ree—— o I
1 I /IN I
I I I I
S —— (mmmmem e ————————————— —e et e —— e —————————

Associated with each bus is a direction of data flow and, in general, a
distinct nanoprimitive control for the gating (transmission} of data. Since
the buses and their controls are physically independent, they may be exercised
in parallel, allowing a maximum of twelve program-controlled 18-bit bus
transfers to occur simultaneocusiy. Fach bus bears a three-letter jabel
structured as follows:

The first letter codes the The second letter The third letter provides
major unit which the bus defines the direction further descriptive
connects to Local Store: of data flow? informations:
M — Main Store 1 - Input (to the A - Address
C - Control Store named unit from D - Data
A - Arithmetic-Logic Unit Local Store) L - Left
(and high-order half R - Right
of shifter output) 0 - Output (from the X = "Multiplex" (used
S - Shifter (low order named unit to only for 41X which is
18 bits only) Local Store) shared for Main Store

E —-— External Store Address and data)

Q-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0025

Thus the twelve buses are labeled:

MIX - Main Store Input - Address/Data MOD - Main Store Qutput Data

C(IA - Control Store Input - Address

CID - Control Store Input - Data COD - Contro!l Store Qutput Data
AIL - ALU Input - Left

AlIR - ALU Input - Right AOD - ALU Dutput Data

SI10 - Shifter Input Data SOD - Shifter Output Data

EID - External Store Input Data EOD - External Store Jutput Data

Explanation of the EDA and EIA labels in the diagram is deferred to Section
4.2.5.

Much of the programner®!s attention involves the interaction of Local Store
with the other major unitsy via the busing structure. Local Store is a

bank of 32 18-bit registers, logically uniform with respect to busing.

EACH BUS 1S INDEPENDENTLY CONNECTABLE, UNDER PROGRAM CONTROL, TO ANY LOCAL
STCRE REGISTER. Connecting a bus to a register ("setting a bus control”)

is a primitive operation for the nanoprogrammer. Once a bus control has

been set, the bus remains connected to the register until the nanoprogram
changes that bus control. There is no restriction on the number or identity
of buses that may be connected to any (one) Local Store register at the csame
time, although each bus is connected to one and only one register at any given
time. Once a word appears on a bus, however, it remains available until

some specific action changes the bus source. (Thus, for example, it is
possible to gate the contents of a Control Store location into several Local
Store registers by successively changing the C3D bus control and executing the
appropriate GATE nanoprimitive.)

If the data on two or more buses are gated into the same Local Store register
simultaneously, the logical "(QgR" of the values appears in the register.

A convenient model of the busing structure represents each bus control as a
"rotary switch” attached to a data path; the position ¢f the switch as last
set connects the path to one of the 32 Local Store registers. A "GATE"
nanoprimitive activates data transmission on any path into Local Store.

Since the nanoprogrammer will typically use many of the Local Store registers
to support the functions of some higher level emulated machine (accunutators,
tocation counters, memory address registers, stack pecintersy, general-purpose
registers, etc.), the bus controls effectively allow the resource organization
of that machine to be dynamically redefined to best fit the current task.

dM-1 HARDWARE LEVEL JSER®S MANUAL - NANODATA CORPORATION PAGE 0027

4.2.2 LOCAL STORE SPECIAL FEATURES

The Local Store registers are labeled RO through R31. 1In addition to their
standard properties as members of Local Store, certain of the Local Store

registers possess special capabilities as illustrated in Figure 4.2.2A.
SPECIAL FEATURES OF LOCAL STORE et —————
' ’ 1 I
v I
SIS ESSTSSTSSSSSZS=TSSTTTET 1
ROO 1 I 1
RC1 1 I I
I I I
--------- - - -—= -- I I
I I I I I
Tx=sTT======== 1 ' I 1
I INCREMENT I [=z==2=z=szas=ss=2==22s=z=ss=s=zsz=z=z=z===z] I
I MPC I R24 1 FOUR REGISTERS AVAILABLE I 1
I FEATURE 1 R25 1 WITH SPECIAL INCREMENT I zzzzsz==s==S
Tz=Zz===z= === R26 1 FEATURE TO FACILITATE USE I I INDEX 1
A R27 I AS MICRO PROGRAM CJOUNTERS I I ALU 1
I I::::::::;:::::::::::::::::::I 1 FEATURE |
I 1 1 I zz==z=zz=z=zz==
—————————————————————————————— I A
1 1 1
I===s=2sz2==2=22sz2==s=2s=z==z=z=z==z=z==] 1
===> R31 I MICRO INSTRUCTION REGISTER [====e= i
1 T s=E=ss=Z=TzTz ===z ===s======= 1 1
I I 1 1
I
I I
I =SS =Z=Zs===z3zT=cT==ZTZT=S===sS=== 1

Figure 4.2.2A

T E e D T m e e e o m e e a - - - -
s s S SsESSs ST ST T s sz ===

“e2.2.1 MICRO INSTRUCTION REGISTER

The most important special

facility in Local Store involves R31. This is the

onty Local Store register that is dedicated to a specific purpose. R31 is the
Micro Instruction Register. When a Control Store word is executed as a
it can readily be gated into R31 so that the nanoprogarammer

microinstruction,

QM-1 HARDWARE LEVEL JSER'S MANUAL NANODATA CORPORATIGN PAGE 0028

may conveniently make use of the parameter information in the word (the micro-
opcode is automatically cleared to zeros). Thus, R31 serves as the Micro
Instruction Register (MIK).

To allow micreoinstruction parameters access toc the QM-I six-bit control
structures (to be presented in Section 4.3}, R31 is partitioned into three
6-bit fields:s C,A,B (high to low orderl. Hence R31 2lso serves the special
function of interfacing the QM-1 18-bit and six-bit architectures (see Section
5.3.61). C

4.2.2.2 MICRO PROGRAM COUNTERS

Stilt a different special capability applies to four other registers in Local
Store; R24, R25, R26 and R27. An Increment MPC feature is provided to
facilitate the use of any of these registers as a "Micro-Program Counter™
(location counter for microprograms executing out of Control Store). Controls
exist for directly incrementing any of these registers by one of the following
values:

+1

+2

"8" Fijeld of R31 (six bits sign-extended; 2's complement)

"AB" Field of R31 (low order 11 bits only; sign extended)

Other elements of the MP(C facility are discussed in sections 4.2.%y %.5.3, and
5.6.5.

4.2.2.3 INDEX ALU FEATURE

An "Index ALU"™ capability is available for all Local Store registers other than
the four MPC registers. Arithmetic operations may be performed on the contents
of these registers directly using one of several quantities (in 2!'s complement
form) without routing through the Arithmetic-Logic Unit. Selection of Index
source is made from the following list:

One of 12 External Store registers
Data on the CCD bus
Data on the MOD bus _

Further detail on the Index Alu Feature is given in Section 5.6.4

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0029

6.2.3 ALU AND SHIFTER

4.2.3.1 ALU

The Arithmetic-Logic Unit can be controlled to perform ail of the 16 logical
tBoolean) operations, as well as certain arithmetic operations {including
addition and subtraction}, upon the two 18-bit operands present on the AIL
and AIR buses. (The carry-in value for arithmetic functions is supplied by
the CIH bit; see section 4.2.3.4). The I8-bit result proceeds through the
Shifter Extension to the AOD bus, where it is available for gating into a
Local Store register upon execution of the nanoprimitive “GATE ALU". The ALU
may be used to do 2's complement, 1's complement, or unsigned arithmetic.
(2%s complement arithmetic is most consistent with other CPU mechanismsl}.

A 16 BIT MODE permits the inputs to be sign extended from 16 to 18 bits so that
the operation of the ALU need not be changed when dealing with 16 bit data
values. '

A DECIMAL control facilitates decima! arithmetic by generating a "decimal
correction word" on the 50D bus while binary functions are performed in the
ALU. If the ALU propagates a carry out of a four-bit group (counting from the
low-order end), "0000" is forced onto the corresponding group on the SOD bus.
If no carry is propagated, "0110" is forced. The high-order two bits of SOD
are forced to zeros. When the DECIMAL control is active, the Shifter Extension
is automatically bypassed. The shifter input is also blocked, and has no
effect on the correction word value.

"ALU functions include PASS LEFT, for transferring the value on the AIL bus
directly to the Shifter Extension without incurring ALU propagation delay.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0033

4.2.3.2 SINGLE SHIFTS

The Shifter can be functioned to perform a large number of different shift
operations upon the data present on the SID bus. The result is placed

on the SOD bus, where it is available for gating into a Local Store register
upon execution of the nanoprimitive "GATE S$S4”. MWhen no shift operation is
specifiedy the Shifter functions as a direct connection from the SID bus to
the SOD bus, providing a convenient route for transfers between Local Store
registerse.

Shift operations as described above, involving only the Shifter and the SID
and SOD buses, are known as "single—length" shifts. The following types of
single-length shifts can be specified:

LEFT AND RIGHT LOGICALS
zeros inserted at one endy bits shifted off the
other end.
RIGHT ARITHMETIC:
sign bit (high-order bit] extended (copied) rightward,
bits shifted off right end.
LEFT AND RIGHT CIRCULAR:
rotations of the 18-bit quantity.

For each type of shift operation, shifts of any (meaningful) number of
positions are performed in parallel -- i.e., as a single hardware operation.
Hence single—length shifts of 0 through 18 positions can be performed directly.

Note: When single-length shifts are specified, the Shifter Extension
functions as a direct connection from the ALU output to the AOD bus.

GM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0031

4.2.3.3 DOUBLE SHIFTS

When a double-length shift operation is specified, the Shifter Extension joins
the Shifter in treating the ALU output and the value on the SID bus as the
high—-order and low-order halves, respectively, of a 36-bit quantity. The high=-
order and low-order halves of the shifted result appear on the AOD and SOD
buses, respectively. In some types of double~length shifting, a 37th bit,
involved in the carry function, is also used. When included, it is placed

to the teft of the Shifter Extension. (Carry will be further treated tater.)
The following types of double-length shifts can be specified:

LEFT 2nd RIGHT LCGICAL:
Leros inserted at one end of a 37-bit quantity
~(carry included), bits shifted off other end.
RIGHT ARITHMETIC: _
Sign bit of 36-bit quantity (high-order bit of
ALU resuit) extended (copied] rightward: bits shifted
off right end of Shifter. Carry is not involved.
LEFT ARITHMETIC:
Same as LEFT LOGICAL, except that this operation can
set the Overflow condition (to be discussed), whereas
LEFT LOGICAL does not set Overflow.
LEFT and RIGHT CIRCULAR: '
Rotations of the 36-bit quantity tcarry not involved).

Double-length shifts of any number of positions (0 through 37) are
also performed in parallel.

Note: When double length shifts are specifiedy the AOD bus contains the high
order portion of the shifted quantity for as long as the double-shift
is in control and the inputs are stable.

dM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0032

%.2.3.4 CARRY CONTRIOL

Two flip-flops are involved in carry functions within the ALU-shifting complex:
the “CARRY~IN HOLD" (LIH) and the "CARRY-0OUT HOLD"™ (COH)-

The 37th bit position involved in double logical and arithmetic shifts
{section 4.2.3.3) is knhown as the "SH END" position; it is logically located
at the high—-order (left) end of the double-length shift unit.

Two other elements are required in the model to be explained belows

a) Two independently programmable controls, "LEFT CTL" and “RIGHT CTL"
b) The following mutually exclusive nanoprimitive operationsz:

SET CIH CLEAR C1IH SH TC COH
SET COH CLEAR COH ALU TO COH
ALU TO BOTH (COA AND CIH)

Figure 4.2.3.4A aitds in understanding the ALU-shift-carry systen.

The output of CIH is permanently enabled as ALU carry-in, and has no
other function.

CIH can be loaded from one of two sources:
a) direct program loade: "SET CIH", "CLEAR CIH".
b} ALU carry—-outs; effected by "ALU TO BDTH".

The output of COH is permanently enabled to serve the following functionsse
a) sole input to the SH END bit position.
b} one of two inputs to the "LEFT CONTROL SWITCH", to be explained.
¢) sole source of the “carry test" value, one of the "local conditions”
that can be tested in a nanoprogram.

CGH can be loaded from one of three sourcesst
a) direct nanoprogram loads: "SET COH", "CLEAR COH".
b) ALU carry-out; effected by "ALU TO COH" or "ALU T0O BOTH".
¢) output of the "RIGHT CONTROL SWITCH", to be explained.

The output of the LEFT CONTROL SWITCH is the low-order bit positiaon of the
5CD bus. In its normal state, this switch connects the SOD-low=-bit to the
low—order bit position of the SHAIFTER output. MWhen the "LEFT CTL"™ is active,
however, the latter connection is broken, and SOD-low=bit is instead taken

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0033

from the output of COH.

The output of the RIGHT CONTROL SWITCH serves the sole function of providing
a source for loading COH (by "SH T0 COH*"). In its normal state, this switch
loads COH from the output of the SH END bit position. When the "RIGHT CTL"®
is active, however, this connection is broken, and this switch instead loads
COH from the low-order bit of the SID bus.

Figure 4.2.3.4A

/I\ Local /IN 50D

I Carry 1 bit

I Test /1IN 0

I LEFT CONTRIL SWITCH *

I (normal setting shown) =

I /1IN /IN

I 1 I
bttt - —-——— - 1

1 1

1 I

I RIGHT CONTROL SWITCH 1

I (normal setting shown) 1

I e e e
I <LK 1 1
I 1 #x{L] I 1
I 1 1 I I
I 1 1 I I
1 1 ST CSECSESI SIS SISEESESS SRS S =SS STSSZISSTISSISSS=SS 1
I 1 I SH 1 I bit I 1
I 1 I END I SHIFTER EXTENSION I SHIFTER 0 I 1
I 1 I BIT 1 1 (SLB)I 1
1 1 T EZEICS S SSS S S=SSSSSSTSsSSSSZS=ZT =TS T=SsSSTS=SSZT==== 1
I 1 /1IN /1IN I
I 1 1 SID I—=->1
| e et 1

I v

I COH [{~—====-==~ I AL U [{-===-~ I CIH 1

- - - - P R R — - e msw m— —
=====x==

S SESS S ESESsS=E=ETE=s===== ==Ss====zT

Carry QJut Carry In

QM-1 HARDWARE LEVEL USER'S MANUAL NANﬂDATA CORPORATION PAGE 003%

4.2.3.5 TEST CONDITIONS

Including CARRY, there are six "local conditidns", generated by ALU and/or
shifting cperationsy which can be tested by nanoprimitives. They are:

CARRY () Output of COH, as discussed in Section 4.2.3.%.
SIGN {S) The high-order bit on the AOD bus.

RESULT (R) Normally the Logical OR of the low-order 17 bits on the
AO0 bus. However, when either of the special carry
controls, "RIGHT CTL"™ or "LEFT CTL", are set, "RESULT" is
the Logical OR of the low order 17 bits on the AJD bus
and all 18 bits on the SOD bus. Thus an absolutes zero
value, either 18 or 35 bits may be tested with the condition
of both S and R equal 0.

OVERFLOW (0O) This condition is the logical OR of shifting overflow
and ALU overflow. Shifting overflow arises only in
double teft arithmetic shifts, and is defined to arise
if and only if a serial (bit-by-bit) shift of thes same
number of positions would, at any timey, change the value
of the high-order (sign) bit of AOD. ALU overflow arises
{see Section 5.6.2), if and only if the bit-carry signals
propagated into the sign and carry-out positions are of
opposite values.

SHIFTER HIGH BIT (SHB) The high-order bit on the S0D bus.
SHIFTER LOW BIT (SLB) The low-order bit on the SCD bus.

Since it is highly desirable to have a convenient methcd of preserving
condition bits, a location is provided in the CPU for a copy of eacn of the
six local conditions. The nanoprogrammer can set a control such that when
GATE ALU is executed, the four local conditions CySyRy and O are automatically
copied into their corresponding "global condition™ bits, and f{under separate
control) when GATE SH is executed, the two local conditions SHB and SLB

are copied into their global counterparts. Then, independent nanoprimitive
tests can be made upon these "global conditions".

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE

4.,2.3.5 SIXTEEN-BIT MODE

A special CPU feature is included to facilitate manipulation of
byte-oriented data. A "16-BIT MODE" control can be set by the
nanoprogrammer, with the following effectss:

al The local conditions Sy R,y and SHB are redefined to
function as if the Shifter and Shifter Extension were each
16 bits wide, with the virtual units mapped onto the low-
order 16 bits of the 18-bit units (i.e., the S5-test is taken
from ADD bit 15 instead of AOD bit 17 -- using O-origin
numbering; etc.). The "double width” R test is based on the
lower 33 bits of the concatenated ADOD and SOD buses.

b) The RIGHT CONTROL SWITCH selects bit 16 of the AOD bus instead
of the output of the SH END bit to load COH.

¢} The ALJ Overflow condition and ALU carry-cut are redefined to
function as if the ALU were 16 bits widey, with the virtual ALU
mapped ontc the low-order 16 bits of the 18-bit ALU.
Note: shifting Overflow is not redefined.

dl The AIL and AIR buses automatically copy the 3rd-highest-order

0035

bit (i.e., the sign bit of a 16-bit word) into the two high-order
positions; thus arithmetic in 16-bit mocde also generates correct

18-bit results, for later use in 18-bit mode if desired.

Importants the "PASS LEFT" ALU function, which routes the contents
of AIL directly around the ALU, also bypasses this sign-extension

mechanisme.

aM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE CO

4.2.4 CONTROL STORE

Control Store is a fully readable/writable general-purpose 18-bit wide
store, impiemented in semiconductor memory. It is available in blocks
of 1K words, up to a2 maximum of 16K words.

The nanoprimitives "READ (CS", "WRITE (S", and "GATE CS" are provided to access
Control Store. The READ CS and WRITE CS nanoprimitives are accompanied by

a field which selects the source of the address in Control Store at which

a word is to be accessed. Sources of (S addresses are as follow?

CIA: The value on the CIA bus; for general -purpose
data accesse.
0Dz The value on the COD buss for convenient
indirect access.
MPC, MPC+1l, MP(+2, MP(C+B, MPC+AB (low-order 11 bits of R31):
(Increments sign-extended, 2's compliement.)
For microinstruction sequencing and branching,
and for reading microinstruction parameter listss
microtnstruction execution is discussed in
section 4.5.3. Selection of which of the
four MPC's is to be used is made by a
mechanism similar to a bus control (see section 4.3.2.3)
INDEX: The (18-bit) value taken from the INDEX ALU QOutput
bus (see section 5.4.2.1)

When a word has been read out of Control Store, it appears on the C3D bus,
available for gating intc a Local Store register by execution of the
nanoprimitive GATE {S. O0Once established, a COD value remains until changed
by the next READ CS or WRITE CS operation.

Writing a word into Control Store is accomplished by placing the datum
on the CID busy and then executing the nanoprimitive WRITE CS with the
appropriate CS address selected. The newly written value then appears on COD.

If READ CS and WRITE (S are executed simultaneously, READ CS is ignored.

Execution of READ CS from (or WRITE CS to) a nonexistent location generates
zeros on the (0D bus; nothing in Control Store is changed in either case.
NOTE: Negative addresses(bit 17 on) will execute READ CS from READ - ONLY
Centrol Storeli.e. ROCS; see section 4.8)

Q@M-1 HARDWARE LEVEL USER'®S MANUAL NANODATA CCRPORATION PAGE 0037

4.2.5 EXTERNAL STORE

External Store is a bank of 32 registers, partitioned intoe several groups to
support specific functions: External portsy, Index registers, Main Store
addressing facilities, and interrupt control.

Although each type of ES register is associated with special hardware
facilities to implement its specific functiony all 32 ES registers are
uniformly accessible by the nanoprogram via the EBD and EID buses. To provide
this accessibility, two additional bus controls are associated with External
Store transfers, as follows: '

While the destination end of the EOD bus is connected to one of the 32 Local
Store reagisters by the ECD bus controly the source end of the same bus is
connected to one of the 32 External Store registers by a different bus control,
labeled EBA. The transfer from ES to LS is executed by the nanoprimitive

“"GATE ES". Similarly, the External Store connection of the EID bus is selected
by the EIA bus control. The transfer from LS to ES is executed by the
nanoprimitive "“LOAD ES".

. Functions of External Store registers are as follows:

EQO through E7:2 Eight Port Registers available for interfacing the QM-1
to its environment. These registers are directly connectable to Main
‘Store. (The GM-1 external interface is discussed in section 4.6.)

E8 through E19: Twelve Index ALY Operand sources. These include eight
registers for general use and four registers from the groups below,

El64E172 BASE ADDRESS register and FIELD LENGTH register associated with
Main Store addressing (discussed in section 4.2.6.3}). Inclusion of
these machine-control functions in El16 and E17 is a QM=-1 OPTION; if
such functions are not included, E16 and E17 are scratch registers.

E204E212 ALTERNATE BASE Address and FIELD Length registers.
E18 through E31: The remaining twelve registers are associated with
Interrupt control (see section 4.5.2.%). These registers include:
E18 and E19: Interrupt Enable Bits.
E22 --- E31¢ Interrupt Address Fields.

The overall layout of External Store is shown in Figure 4.2.5A

QM-1 HARDWARE LEVEL USER'S MANUAL NANOGDATA CCRPORATIDN PAGE 0033

B I ——=------
E0 I I R
e e] E
El I | 1 P 5
B I 0 1
-— -— R S
e e LR SRR PR e I T T
E6 1 I E
B T I R
E7 1 1 s
[mmm i e e e [——mmmmmmmmmeee
Es 1 I
J — e e e] 1
——- -— INDEX ALU
] mm e e ——————————— I OPERANDS
E15 I I 1
e g LSS T
El6 1 MAIN STORE BASE ADDRESS REGISTER I HAIN 1
e e L I STORE 1
E17 1 MAIN STORE FIELD LENGT4 REGISTER I CONTRILS 1

E18 1 PROGRAM/02 03 04/05 06 37/08 09 10/11 12 13/14 15 161 INTERRJPT I
1 CHECK /------—-—- e s I ENABLE I
v

E19 I MASKS /17 18 19720 21 22/23 24 25/25 27 28729 30 311 CONTRILS

E20 I ALTERNARE BASE ADDRESS REGISTER I ALTERNATE
== m e e e I MAIN STORE
E21 1 ALTERNATE FIELD LENGTH REGISTER 1 CONTROLS
J == e e e e e e [——mmmmm e
E22 1 02 / 03 / 04 I 1 A
Jmm e e e e e e -1 N D
E23 05 / 06 / 07 1 T 0
T e e I E R
— I R E
T ———- ————————— I R S
E30 26 / 27 / 28 1 U s
[e e e e e e e e e 1 P E
E31 29 / 30 / 31 I T S
e S R

Bit 17 15 15 1% 13 12 11 10 09 08 07 D06 05 04 03 02 01 0O

LAYJUT OF EXTERNAL STORE Figure 4.2.5A

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0033

4.2.6 MAIN STORE

4.2.6.1 GENERAL

Main Store is a general-purpose 18-bit-wide core storage, available in blocks
of 8K words up to 256K maximum (16K words minimum). Full cycle time is 800D
nanoseconds; since lower—level control operations occcur an order of magnitude
faster, Main Store is well suited to contain programs of virtual (emulated)

machines whose instructions require a moderately complicated interpretation
at fower levels. ,

For convenience and efficiency in Input/0Output processing, the two buses
associated with Main Store (MIX and MOD) may be connected not oniy to any of
the 32 Local Store registers, but also to any of the 8 Port Registers in
External Store. Thus for the MIX and MOD bus controls only, the Port Registers
are treated as extensions to Local Store; they are designated as R32 through
R39 when used in this way.

GM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0043

4.2.6.2 MS OPERATIONS

To initiate a full (non-destructive) read operation in Main Store, the
nanoprogrammer first determines that Main Store is not busy ("MS BJSY" is one
of the "special conditicons” available for nanoprogram testingl, and then
simultaneously executes the two nanoprimitives "MSGO" and "MSRS" (for "Main
Store Restart"). Main Store accesses the location addressed by the valtue

on the MIX busy as modified by addressing facilities which are discussed

in the next section.

When the accessed word is availabley, another special test condition, "MS
DATA INVALID", becomes false, and the nanoprogram can gate out the word
through the MOD bus by executing the nanoprimitive "GATE MS"; access time
is 640 nanoseconds.

The same two nanoprimitives, MSGO and MSRS, are used to control other
operations of Main Store, as followss;

When MSGD is executed without MSRS, Main Store begins the first half-cycle
{"extraction part") of a split-cycle operation. As in the case of a full~-
read operation, the address is taken from the MIX bus. Main Store will remain
BUSY until the completion of the second half-cycle ("insertion part"}. 1In

the split-cycle mode of operation, however, the latter must be explicitly
invoked by the nanoprogram execution of MSRS; the data word to be inserted
(written) is taken from the MIX bus at the time MSRS is executed. This mode
of operation may be used in two ways:

To perform a Read/Modify/Write sequence, the nanoprogrammer initiates split-
cycle aperation as described above and then, when MS DATA INVALID becomes
false, gates out the extracted word (GATE MS}) for modification (for example
indexing) by CPU facilities. When the modified word is ready for insertion
back into its MS location, it is placed on the MIX bus and MSRS is axecuted.

Since MS BUSY will become false at the completion of the second half-
cycle, this operation can offer significant time savings over the
alternative full-read, data manipulation, full-write sequence, especially

if the modification period is relatively short.

Alternatively, to perform a "full write", the nanoprogrammer initiates
split cycle operation as described above and then AT ANY TIME THEREAFTER --
including immediately after MSGO -- places the word tc be inserted on the
MIX bus and executes MSRS. If MSRS is received during the first half-cycle
of split-cycle operation, Main Store will latch the data-in word from

J¥-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPDRATION PAGE 0041

the MIX bus and "remnember" to initiate the second half-cycle as soon as
pcssible.

& distinct advantage to lessening the distinction between the full-write and
Read/Modify/Write functions is that the nanoprogram can initiate a Main Store
operation without making a2 commitment to either of the two functions; if the
nanoprogram subsequently decides that the operation is to be a full-write, no
time loss is incurred if the decision is made before the end of the first half-
cycle. (ln fact, the full-read function may alsoc be achieved in-the split-
~cycle mode, although with a slight degradation in cycle time due to routing
delays.) This facility is thus useful in implementing certain Main Store
modification look-ahead schemes.

Kotes:

l. Main Store ignorés any MSGO signal received when MS BUSY is true.
(See section 5.4.3.)

2. Main Store ignores any MSRS signal received when either:
a) MS is not BUSY; or .
bl MS is BUSY in fuill read mode§ or
c) the second half-cyclie in split-cycle
mode is already in progress. (See section 5.4.3.]

3. When either mode of operation is initiated:
a) MS BUSY becomes true}
b) MS DATA INVALID becomes true$ and
¢) MOD is cleared to zeros.

4. When the second half-cycle of split-cycle mode is initiated,
MBD takes on the value of the word being inserted. Note,
howevery, that MS DATA INVALID is set "true".

<M-1 HARDWARE LEVEL JUSER'S MANUAL NANODDATA CCORPORATION PAGE 0042

4.2.6.3 MS ADDRESSING AND PROTECTION (QM-1 OPTIODN)

A JM-1 OPTION is the use of External Store register 16 as the BASE register
ana External Store register 17 as the FIELD LENGTH register associated with
the base-addressing, write-protection, and address-alarm facilities to be
described below. If this option is not present, then:

a) El16 and E17 are available for scratch use; and

b) the facilities described below operate as if the BASE register
permanently contained the value zero and the FIELD LENGTH regqister
permanently contained the value 2%%18-1.

Khenever Main Store uses the value on the MIX bus as an addressy, that value
is treated as a displacement; it is added to the contents of the BASF
register to yield the true (absolute) address to be accessed.

An MS ADDRESS VIOLATION Program Check is generated in either of the
following two cases:

a} When an MS access of any kind uses an absolute address which
falls outside the allowed range defined by the BASE and FIELD
LENGTH registers. The lowest physical address in the allowed
range is the value of the BASE register; the number of words
(consecutive locations) in the allowed range is given by the
contents of the FIELD LENGTH register(i.e. 0 < the number of words
accessable < c(FIELD LENGTHA) +1). Wraparound is disallowed.

b) When an MS access of any kind addresses a location which is
not physically present in Main Store.

For the convenience of programs used as "privileged” or "system” routines,

a nanoprimitive control ("CIRECT MS ACCESS") can momentarily force the
effective value of the BASE REGISTER to zero and the effective value of the
FIELD LENGTH REGISTER to 2%¥%18~1 (E16 and E17 themselves do not change value).

In addition to generating the Program Check, detection of M$S address violation
sets MOD to all ones and leaves the contents of the memory unchanged.

In all modes of Main Store operation, a Program Check is generated in the
case of failure of a parity test automatically made upon the extracted word.

Q@M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0043

4.2.6.4 RMI UNIT (QM-1 OPTIONF FURTHER SPECIFICATIONS TO BE ANNOUNCED)

If desiredy the contents of the MOD bus can be routed through the RMI unit
before being gated into a Local Store register or a Channel Register.

The RMI unit - Rotate, Mask, and Index - is a very general data-transformation
device with special application in extracting fields and decoding information
when emulating a "Main Store Machine". The operation of the RMI unit passes

a word through three successive stages of transformation$

a) The initial value undergoes a right circular shift by the
number of positions specified in a ROTATE parameter.

b} The resulit of this operation is iogically ANDed with an
18-bit MASK parameter.

¢l The result of this operation is added (2%s complement) to
an 18-bit INDEX parameter to yieid the final result.

There are three sets of such parameters. They are loaded with three separate
AUX Actionsy and the data is taken form the COD busisee section 5.8.21).
Selection of one of the three parameter sets is associated with the GATE MS
nanoprimitivey a fourth option is to bypass the RMI unit.

Notes:

1. Since the MOD source value remains stable until changed by
a Main Store operation, the same word may be taken through
a succession of different RMI transformations (and alsoc routed
to different destinations} without re-cycling Main Store.

2. The RM] parameters may be changed as often as desired by the
nanoprogrammer.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 004%

4.3 SIX-BIT CONTROL STRUCTURE

4.3.1 GENERAL

The large number of hardware resources in the QM-1 and the flexibility with
which they may be used require a large variety of control information,
dynamically changeable during the execution of user programse.

Rather than having all such information placed in a store from which
instructions are executed, the concept of "residual control" is implemented.
Registers are provided in the machine for holding this hardware-controlling
information. These registers can be loaded at the explicit command of anm
executing program; their contents will remain in control of their assigned
hardware functions until relocaded (hence "residual control”)., In this manual,
the terms "residual control™ and "nanoprimitive control”™ are used with mutually
exclusive definitions. :

Residual control functions in the UM-1 are maintained in a bank of six-bhit
registers known as F-store. A complete system of nanoprimitive controls and
six-bit data paths exists for transferring quantities between F-registers and
a set of six-bit source and destination fields elsewhere in the machine, and
for manipulating these data.

The six-bit source and destination fields (from the point of view of F~store)
are collectively known as Auxiliary {(AUX) fields, although some are control
registers in their own right. ’

The same rules of simultaneous busing azpply to both 18-bit and six-bit
transfersy, such that if two or more AUX Fields are gated into the same

F Recister simultaneously, the logical "OR" of those source values appears
in the F Register. Two or more F Registers bussed to the same AUX Field,
however, produces the logical AND of the values.

QM-1 HARDWARE LEVEL JSER'S MANUAL NANGDATA CORPORATION ' PAGE 0045

4.3.2 F-STORE
4.3.2.1 GENERAL

The 32 six-bit registers in F-store, numbered FO through F31, are all
uniformly accessible for the purpose of loading from six-bit source fields
and reading into six-bit destination fields. Execution of such six-bit
transfers and the associated addressing in F-store (as well! as selection

of source and destination fields) are accomplished entirely by nanoprimitive
control.,

Simitarlyy nanoprimitive controls may be applied uniformly to any register
in F=Store to INCREMENT (by one) or DECREMENT (by one) the contents of
that register (modulo 64).

It is convenient, however, toc approach F=Store as partitioned into three
groups, by function? bus control Ft*s, special F's, and G's. This is shown
in Figure 64.3.2.40.

F STORE ‘ AUX FIELDS
I FMIX 1 I THREE FIELDS IN R31 I
I FMCD 1 / 1 Cy Ay B I
I FCIA 1 /- e ettt L) |
I -—-- BUS | G4 IN I K FIELDS IN THE I
[=== CONTROLS I \ TRANSFERS I EXECUTING NANOWORD 1
I FEOD I \e—eooe—— 1 1
I FEIA 1 \ I ALJ CONTROL-KALC I
I FECA I I SHIFT CONTROL-KSHC I
etttk I SHIFT AMOUNT-KSHA I
| I I TEST MASKS-KS,KX,KT 1
I FMPC SPECIAL I I CONSTANTS-KA,KB I
| CONTROLS I \ 1
I FIPH [e AN | MISC. SOURCES I
e ittt I gurt \ - I
I 6O CONSTANTS, I TRANSFERS / 1 60 - G611 I
I —==- BACK-UP I - / 1 (AVAILABLE ONLY 1
I I AS SOURCE AUX) I

. . — —— . ——_— ———— - -~ ———— — o - - - - ———— - — - —— —

SIX BIT ARCHITECTURE FIGURE 4.3.2A

@M-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CORPORATION PAGE 00C456

4.3.2.2 BUS CONTROL F's

The first fourteen F Registers are the bus controls(see section 4.2.11).
They are symbolically referenced in association with their bus names (FMOD,
FAOD, etc.)y, with the addition of FEIA and FEOA. The contents of tnese
registers are interpreted in one of three ways to achieve bus control,
depending on the nature of the associated bus.

The contents of an F-register associated with the DESTINATION end of a bus
(with the exception of FMOD) are used modulo 32 to address (connect) a
Local Store register (FSGD, FADD, FEOQOD, FCOD) or, in the case of FEIA, an
External Store register. (The high-order bit is ignored for bus control
purposes, although it is physically present in the F-register as loaded.)

The contents of an F-register associated with the SODURCE end of a bus

{with the exception of FMIX) are used moduio 64 to address (connect) a

Local Store register (FSID, FAIL, FAIR, FEID, FCIA, FCID). If the address is
greater than 31 (i.e., if the high-order bit is set), the bus is connected

to a permanent source of all ones, rather than to a Local Store register.

In the case of FEOA greater than 31, the EOD bus is connected to a source of
all zeros rather than to an External Store register. (i.e. If FEIA > 31 then
LOAD ES wraps around the E Registers; if FEJA > 31 GATE ES sends zeroes to LS.)

Since MIX and MOD have an addressing range beyond 32 (see section 4.2.6.1),
special rules are used in interpreting the bus control functions of FMIX

and FMOD; these F-registers are used modulo 64, with the eight Port

Registers (EQ0 through £7 ~- see section 4.2.5) treated as contiguous
extensions to Local Store for this purpose. Since the MIX and MOD buses

may not be connected to an External Store Register beyond the Port Registers,
the following rules apply:?

1. When FMIX contains a value greater than 39 (corresponding
to E7, the last Port Register), the MIX bus takes tne value
of all ones.

2. When FMOD contains a value greater than 39, GATE MS is a
null operation.

QM-1 HARDWARE LEVEL JUSER'S MANUAL NANODATA CORPORATION PAGE 0047

4.3.2.3 SPECIAL F's

The next cix F-registers serve special control funetions, some of which have
been mentioned previouslye.

FACT: (Auxillary ACTion) FACT is used as a source value to specify
a variety of special action commands. These are described in
Section 5.8.2.

FUSR: (Control Store USeR partition number) Bits O thru 3 identify
the Control Store partition currently accessible by the CPU.
This function is meaningful only in those systems utilizing the
Contro! Store Address Translation option(see Appendix B). Bits
4 and 5 are ignored. When the CS Address Translation is not in
use FUSR is a general scratchpad 6 bit register.

FMPC: The contents of FMPC, modulo 4, select one of the four Micro
_Program Counters in Local Store tc be used for MPC gperations
{see section 4.2.2). The selection is according to?

FMPC (mod &) MpPC

0 R26
1 R25
2 R26
3 R27
FIDX: (IndeX) FIDX has one main function and three auxilliary oness:

—— - o — —— - ——— W T G- = . -

———— - —— o — - A= . W SR - I - W S G W G D - VI SN - W e G S A M W S A S S g

Bit 5: 16-BIT-MODE controls "1" for 1l6-bit mode, "O0" for 18.

Bit 4: Supervisor instruction State; "1" allows entry to
supervisory (restricted]) nanoprograms {section 4.5.2.2)

8it 3: NANDSTORE Mode Control (section 4.B}3
wO» for normal, "1" for read-only

Rits 2, 1, O0: Nanostore Page Index, used in Nancstore
addressing under Micro control. (Sections 4%.5.3, 46.5.%)

<M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0048

FIST: (STatus) The six bits of FIST contain the "global! conditions"
mentioned in section 4.2.3. Since the FIST bits can be tested
by nanoprimitive controls which are independent of those used
to test the "local conditions", and since any F-register can be
loaded with a six-bit guantity, FIST may also be used as a
general—-purpose bit-testing facility.

The FIST test bits arec:

- ——— —— . — — ——— —————— T —— - —— . > .~ — . . - . - -

S —— —— " —— ;. — — —— T — " —— T — —— — . S - — . ——— — —— -

FIPH: (PHantom) FIPH is a special F that gives the nanoprogrammer
the ability to transfer a value from a source AUX to a
destination AUX without using two T-steps as would be required
when going through an F register, and without destroying the
value in an F register. This is possible because FIPH is not
truly a register. Having no data-storing capability, it is a
direct connection between the input and output bus structures
of F-store. If nanoprimitives are simultaneously executed to
INput to FIPH frem a six-bit source field and GUTput from FIPH
into a six-bit destination field, the result is a direct
transfer from the source field to the destination field. 1If
only a load into FIPH is executed, there is no effect (except
as a function code in 1/0 operations,section 4.6). If only
a gate out of FIPH is executed, the transferred value is zero.
Note: Transfers from source AUX to destination AJX via FIPH
must be placed in a STRETCHed T-step.

QM-1 HARDWARE LEVEL USER®S MANUAL 'NANCDATA CORPORATION PAGE 0049

4.3.2.& G'S

The last twelve recisters in F-store are known as G-fieldsy or G's. The

s have no direct dedicated machine~control functions in themselves, but
are used in programming systems to store back-up contro! information, as

focllowss '

Firsty since the G's are a part of F-store, any G may be loaded from any
source AUX, or read intoc any destination AUX. (Hence one use of G's is for
temporarys of scratch, storage in six-bit programming, without inhibiting
the use of machine functions.)

Seconds the Gt!'s have the special property that they are also addressable

as source AUX fieldsy, and hence may be transferred directly to any register
in F-Store({including G*s). Therefore the G's provide space for the programmer
to store control information that will subsequently be transferred into

tcr exchanged with) bus control Fts, special F's, and/or other control
registers (i.e., certain destination AUX fields). In this sense, the G's
serve the function of a "second level® of residual control.

Note: As a sources G's may be referred to as G's or as their corresponding
F's, depending on the transfer, e.g. 60 = F20. As a destination they may only
be Ft's.

UM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 00593

4.3.3 AUX FIELDS

‘Available source AUX fields (which can be loaded into F-store) ares

C: Ay, B2 The three six-bit fields of R31, as introduced
in Section 64,2.2.

KAy KB, Six-bit fields from the executing nanoword

KXy KT, to be discussed below and in Section 4.5.1.

KS: KA and KB ordinarily are used for constant

and/or scratch storage.
GO - G111 The 12 G's (see Section 4.3.2.4).

The following additional source AUX's are not registerss

ALUF: Output of six-bit ALU, to be discussed in Section

10 ID: A six-bit IDentification number associated with a
device on an external port; see Sections b.6y 5.5.2.

INCF1, DECF1, Increments and decrements of F-store elements
INCF2, DECF2: (Sections 5.5.2, 5.6.6).

SW: Six external switches on the engineering control panel
(see Figure 5.9.1A) ’

dM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0051

tvailable destination AUX fields (to which F-store can be output) ares

CyA,B2 See above.
KAg¢KB 2 See above.

KALC: A field which specifies the»operation of the
. ALU (ALU Control}. _

- KSHCz: A field which specifies shifting operations
{Shift Control).

KSHA < A field which specifies number c¢f positions
to shift (Shift Amount). ’

KS: A six-bit mask fteld associated with global
condition {(FIST) testing.

KTz A six-bit mask field associated with local
condition testing. ; :

KX¢$ A six-bit mask field associated with special
condition testing.

KAy KBy KALC, KSHC, KSHA, KS, KT, and KX are all six-bit fields in the
executing nanoword (see section 4.5.1).

GM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0052

4.3.46 ALUF (QM-1 OPTIONS FURTHER SPECIFICATIONS TO BE ANNOUNCED)

A six-bit ALU, similar in characteristics to the 18-bit ALU, operates under
nanoprimitive control to generate arithmetic and logical functions from

two six-bit inputs.)

The left and right inputs to “ALUF" are any register in F-store (selected by
nanoprimitive controlisl.

The oqtput of ALUF mnay be loaded into any register in F-store.

1f the ALUF is not present, operations defined to gate its output produce
an all ones(63.) value (see section 5.6.7 for further description).

OM-1 HARDWARE LEVEL USER'S MANUAL "NANODATA CORPORATIODN PAGE 0053

4.4 TIMING

The Q@M-1 CPU is a synchronous device, driven by a single machine clock whose
period is 80 nanoseconds.

To allow the hardware-level user intimate access to and control of QM-I
hardware facilities, nanoprogram steps are executed at the machine ciock rate.

To avoid ambiguity in discussing three closely related conceptis, the following
terms are used in this manual:

T-PERIOD: A period of elapsed time equal to
the clock periods 80 nanoseconds.

T-STEP: An elementary event in program
controly a single step of nanoprogram
execution. A T-step consists of the
simultaneous (parailel) execution of some
number of nanoprimitive commands
{nanoprimitiveste A T-step generally
occurs in one T-period, but for certain
purposes it may be expanded (by the
"STRETCH" nanoprimitive) to last for two
T-periods.

T-VECTOR: A string of bits representing a set of
nanoprimitives to be executed concurrently
in a single T-step. The "active T-vector™
corresponds to the "current T-step”.
(Program control is presented in detail
in section 4.5.)

When there is no danger of confusing the three concepts of time (T-PERIODI,
event (T-STEP), and physical entity (T-VECTOR}, the term "T" may be used;
for example: "A 24-hour QM-1 working day is egquivalent to more than a
tritlion Tos." ("T" is derived from "TEE": Time, Event, Entity.)

All nanoprimitives may be classified as either "leading-edge" (LE) or
"{railing-edge" (TE), according to whether the function they define takes
effect at the beginning or the end, respectively, of the T-step in which
they are executed. 1In general, the effect of trailing-edge nanoprinitives
(the larger class) may be considered to occur at the end of the T-step in

QM-1 HARDWARE LEVEL USER'®S MANUAL NANODATA CORPORATION PAGE 005%

which they occur. For examples all nanoprimitives which transfer values into
registers {18-bit or six-bit) are trailing-edge. Leading-edge nanoprimitives,
on the other hand, initiate processes which have a duration of one or more
T-periodss examples are READ €S, MSGO. The duration of such processes are
measured from the beginning of the T-step in which their nanoprimitives are
executed. The "STRETCH"™ nanoprimitive separates the leading edge of a T-step
from the trailing edge by one extra T-period.

The difference between a T-step and a T-period is important when both fleading-
edge and trailing-edge nanoprimitives are programmed. For example, if READ CS
{leading—-edge) and GATE (S (trailing-edge) are programmed in the same T-step,
and that T-step is not STRETCHed, Control Store will not generate the new value
on the CDD bus in time for the GATE CS. 1If, however, the T-step is STRETCHed,
the value gated into Local Store will be that generated by the READ CS, since
the time span between the leading and trailing edges of a STRETCHed T-step is
two T-periods, enough for a Control Store cycle. (Timing considerations for
programming Control Store and other leading-edge operations will be discussed
in detail! in section 5.3)

All register transfers, both 18-bit and six-bit, are controlled by trailing-
edge nanoprimitives. Since these operations are synchronous, the same register
effectively can be loaded and read in the same T-step ("simultaneousiy”),
without loss of data. Given the model that register "REG"™ is to be gated to
register "DEST" and loaded from register "SOURCE" simultaneously, then the
state before the operation is that the data from SOURCE is present on the bus
from SOURCE to REG, and the data in REG is oresent on the bus from REG to DESTS
the effect of the nanoprimitives is then to latch ("clock in") the bus values
into REG and DEST. Propagation delays are such that DEST will have latched its
new value before the new value in REG has time to reach the bus from REG to
DEST. It is quite important, however, that the new values are on the buses and
ready for a repeat operation within one T—-period; this fact is fundamental in
nanoprogramming.

The basic timing structure of the QM-1 is derived not only from hardware
considerations, but also from the design objective of being able to nanoprogram
certain operations and sequences of operations efficientiy. The three most
important such sequences are listed below (in the symbolic program examples,
the T-steps are not stretchedl.

l. Closed loop through Local Store. For example, let the EOD and EID buses
both connect the same Local Store register and External Store register
(FEOD=FEID, FEOA=FEIA}, and then execute the following T-steps:

o¥M-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CORPORATION PAGE 0055
Tne LOAD ES, GATE ES.
Tn+l s LOAD ES, GATE ES.

the result is a double exchange (final status = initial status) of the contents
of the two registers.

2. (losed loop through F—-storese.g.:

Tns AUX {(x) ====DF(y), Fly)—==D>AUX{X).
Tn+l: AUXIx)==—-D>F(y), Fly)=——==>AUX(x).

The result is a double exchange (final status = initial status) of the
contents of AUX{x) and Fly).

3. Bus setting immediately prior to bus use; e.g.:

Tns AUX {x)~-—-->FSOD.
Tn+l: GATE SH.

The Shifter output is gated into that Local Store register "pointed to" by
the number contained in AUX{x} at the beginning of T-step T(nl).

THE ABOVE THREF TYPES OF SEQUENCES ARE MUTUALLY CONSISTENT. For example, the
third illustration could be expanded to include the T-step:

Tn-1: Fly)--—-=>AUX(x].

which would set AUX(x) in time for the described sequence to occur with the
Ltocal Store register number specified by Flyl.

To achieve these objectives, the machine clock signal that controls six-bit
operations (the F clock) is phased differently from the signal that controls
18-bit operations (the R clock). Both are derived from the same single

machine clock that controls the T-vector (the T clock)l. This phasing is
normally transparent to the nanoprogrammer, and must be considered mainly when
dealing with the interface between the six-bit architecture and the 18-bit
architecture which exists in R31; the necessary programming rules are specified
in detail in section 5.3.5.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0055

4.5 NANOPROGRAM CONTROL

4.5.1 CONTROL MATRIX

The current T-step is specified by the contents of the active T-vector.
This T-vector remains active for one T-period (or two, if it inciudes the
STRETCH nanoprimitive). The active T-vector is one of four T-vectors
resident in a structure known as the Control Matrix. This structure is
shown in Figure 4.5.1A.

CONTROL MATRIX

(EXECUTES NANOWORD) —===————————reseee mosssosossos—oso-oo——-—=

I I 11 PROGRAM [HECK I

--------------------- I —_——————-— I Il (ADDRESS 0) I

1 K VECTOR I I I 1 I -
I{INCLUDES AUX FLDS)I-——-= I I e >IT NANOBRANCH (KN} J===—-=
] - 1 I N I I ADDRESS I I
. | 1 I A I —————remmme e I
ITl1 NANOPRIMITIVE 1 / I N 1 ———————— - 11 INTERRUPT ADDRESS 1 1
I-—— MACHINE CONTROLI /=-—-- I O I 7/ 1 NANOSTORE 11 (2) I 1
1 FROM CIRCULAR I /) Y 1/--1 ADDRESS - 1
IT2 ACTIVATION I\ I T I\--1 SELECT 1 . 1
1— 0OF T VECTORS I \—=——- I 0O I \ I MECHANISM 1 . I
I . 1 \ I R I - I . v
I1T3 1 1 E I [swemmr e e e 1
I— I I I I1 INTERRUPT ADDRESS I I
1 1 I 1 11 (31) 1 I
IT4 I I | ettt b 1
e —————— ~==—=——— LOADED FROM II NANOPROGRAM (NPC) I I
A s e————— —>11 COUNTER 1 1
XS T T T E T T 2 T X 8 £ 8 LOADED FROM 1 : C3D BUS ——— ———— s e o e e o ‘ 1
I PROGRAM CONTRIL I ——————m——m—e—e 1 A A 1
I Figure 4.5.1A I EQD BUS I SEQUENCE I I FROM KN 1

TSI STSsID =X —— - — —— - - ——————— —— - ——_—

At any given time, the Control Matrix contains 360 bits, corresponding to the
360 bits in a nanoword. This includes the four T-vectors, one of which is
active (72 bits in each T-vector) -- and a 72-bit entity, the "K-vector".
(The AUX registers KA, KB, KALC, KSHC, XSHA, KS, KT, and KX are all portions
of the K-vector.) Since the Control Matrix bits correspond to some 360-bit
word ("nanoword"”) in Nanostore, they may be referred to as the "active

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0057

nanoword”. Because of this correspondence, every word in Nanostore is
togically partitioned as followsz

[K-vector] [T-vector{l)} [T-vectort2}] [T-vector{3)] [T-vector(4})]
(or, brieflys K, T1, T2, T3, T4 -~ high-order to low-order)

Mechanisms are provided for selecting 2 nanoword, fetching that word from
Nanostore, and loading it into the Control Matrix. When the nanoword is
toaded into the Control Matrixs its first T-vector (T1l) immediately becomes
the active T-vector (and its K-vector becomes active).

The normal operation of the Control Matrix activates the four T-vectors in
succession and circularly, with no loss of time between activations: T1, T2,
73, T4, Tl, etc. Unless a special high-priority facility (Program Clheck)
interruptssy this sequence continues until certain program-control
nanoprimitives are executed. These nanoprimitives can be programmed

to execute conditionally, so that the nanoprogrammer may create a useful loop
in a single nanoword. (For example, the F ZERO test may be used; see Section
5.7.) 11 the programmer does not need such looping, then the sequence

may of course be broken after the first activation of T4 (or earlier, if
desired).

For protection against infinite looping, a Control Matrix Time-Out facility
breaks the loop and generates a Program Check if the same nanoword circulates
in the Control Matrix for approximately one second (more than 12 million
T-pertodsl}e.

The two program control nanoprimitives of immediate interest are "S<IP" and
"GATE NS". Either can be executed conditionally, according to the T-vector
test facilities specified in section 5.7. The bit structure in the T-vector
is such that SKIP and GATE NS are mutually exclusive in the same T-step.
However, another nanoprimitive "GATE NS UNCONDITIONALLY" is provided to avoid
this restriction and to permit conditionally skipping Tl of the next nanoword.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0058

SKIP, when executed, modifies Control Matrix operation so that the next T-step
in succession is skipped overs activation of the succeeding .T-vector is
inhibited. The skipped T-step consumes one T-period of time (whether ,
STRETCHed or not), which shouid be observed when leading-edge processes are
programmed; the effect is the same as if the succeeding T-vector were
activated, but with all its specified nanoprimitives {including STRETCH)
nturned off". Note that a SKIP executed in T3 results in Tl being the next
T-vector activated; a SKIP in T4 goes to T2.

GATE NS is a trailing-edge nanoprimitive which, when executed, causes the
Control Matrix to be loaded with the nanoword resulting from the most

recently completed Nanostore access. The successor to the T-step in which
GATE NS is executed is generated by the first T-vector {T1) of the newly gated
nanoword; no time is lost in the transition. The K-vector is also loaded

from the K-vector of the nanoword as a result of the GATE NS.

Note: any six-bit transfers into K-vector AUX fields commanded in a T-step
in which GATE NS is also executed result in undefined values, unless the
"HOLD* control is on (see section 4.5.2.31}.

To supply a nanoword for gating into the Control Matrix, the leading-edge
nanoprimitive READ NS is executed. Nanostore completes the read operation
within two T-periods (but not within one T-period)i hence either of the

following program examples illustrate a successful shortest-time segquence of
the operations READ NS, GATE NS:

a) Tn: READ NS. {not stretched}
Tn+l: GATE NS. (not stretched)

b} Tn: STRETCH, READ NS, GATE NS.

The READ NS nanoprimitive has a secondary effect, involving the
wnanobranch" facility; this is discussed in section 4.5.2.3.

0!-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0059

4e5.2 NANJISTORE ADDRESSING
4.5.2.1 PRIORITY SELECT

Wwhen READ NS is executed, a priority-select mechanism supplies the actual
nanostore address from a list of potential addresses. FEach potential address
value is 10 bits wide, since Nanostore may contain as many as 1324 nanowords.

Nanostore is available in 256-word blocks, and can be arranged so that any of
eight possible 128-word "pages” is full, half-full, or empty. Execution of
READ NS from a nonexistant location generates a zero nanoword; if such a word
is lcaded into the Control Matrix, no nanoprimitive operations are inveked, and
a Control Matrix Time-Out Program Check eventually results.

Each source of potential nanostore address has a fixed priority relative to
the other sourcesi furthermores, an ACTIVE/INACTIVE status is associated with
each source at any given time. When invoked, the priority-select mechanism
selects the address from the highest-priority source that is currentiy ACTIVE
and supplies it to Nanostore. If the corresponding nanoword is then executed
(GATE NS occurs before the next READ NS), the address source is reset to
INACTIVE status. The source with lowest fixed priority is the NanoProgram
Counter (NPC)5 this is defined as permanently ACTIVE, and can be considered
a default.

The process can be modeled by a list of activation flags, each associated

with a nanostore-address source, ordered by the priority of the sources;
operation of the priority-select mechanism is equivalent to reading down

this listy, from high-priority to low—priority, until the first ACTIVE flag

is encountered. The address associated with that flag is then supplied to
Nanostore, and the flag is turned off (INACTIVE) upon successful use (GATE NS)
of the nanoword fetched from that location.

Figure 4.5.2.1A illustrates the model and identifies the various address
sources, to be discussed in the following sections.

QM-1 HARDWARE LEVEL USER'SVEANUAL NANODATA CORPORATION PAGE 0062

FIGURE 4.5.2.1A

PRIORITY SELECTION OF NANOSTDRE ADDRESS

FLAGS SOURCE (HIGHEST PRIORITY AT TOP)

[1 PROGRAM CHECK
1 NANOBRANCH
1] I I
. I I
. I INTERRUPTS (MAXIMUM 30) I
. I I
‘ I I

[X1} NANOPROGRAM COUNTER (NPC)
' {permanently active)

*

Upon execution of READ NS, the mechanism reads down from the top to first flag
that is active [Xl. Associated 10 bit address is sent to Nanostore. If the
corresponding nanoword is executed (GATE NS}, flag is turned off.

Note: The flag associated with NANOBRANCH is treated .in a special manner to be
described in section 4.5.2.3.

dM-1 HARDWARE LEVEL USER'S MANUAL NANDDATA CCRPORATION PAGE

4.5.2.2 PROGRAM CHECK

when a Program Check occurs, the following is automatically done:

1. Execution of the active nanoword is terminated.
2. The appropriate bit is set in the Program (heck Status fields
to identify the type of error.
3. The contents of RONSIO] are loaded into the Control Matrix to begin

execution of the service programe.

Since the entry point of RONS[O] is shared by the Program Check service
orogram and the Machine Start program (see section 4.8), the common program
must test for Program Check Status fields of zeros (cleared by the Machine
Start pushbutton) to determine the nature of its invocation. A "special

0061

condition®s set to “"TRUE" if any of the Program Check Status bits are on, can

be tested for this purpose (see section 5.7.1 and 5.7.2).

Generai Program Check Types are:

1. MS Parity Error

2. MS Address Error

3. Itlegat Micro Operation Entry

G4, Priviledged Operation{Supervisoryl Error

5. Nanoprogram(Microinstruction} Time QOut

dM-1 HARDWARE LEVEL USER*®S MANUAL NANODATA CCRPORATION PAGE 0062

4.5.2.3 NANIJIBRANCH

The nanobranch facility is one means of continuing a nanoprogram beyond‘one
nanoword. Due to the high priority given to the nanobranch operation, a
branch~connected nanoprogram is never interruptible except by Program Check.

The source of the nanobranch address is a 1)-bit fields, KNy within the active
K-vector.

Control of the nanobranch activity status for priority selection is
accomplished through the BRANCH bit in the active K-vector, in conjunction
with the READ NS nanoprimitives

BEach time a READ NS is executed, the BRANCH bit is tested. If active,
the nanobranch address is taken. If inactive, the nanostore address is
taken from one of the lower priority sources as described in Section
%.5.2.1. Thus, the BRANCH bit serves as the activation flag for the
sefection of the nanobranch address.

The tnitial condition of the BRANCH bit is determined by its setting in the
nanoword gated into the control matrix. If set, BRANCH is ACTIVE as soon as
the nanoword (i.e., the one containing the BRANCH bit) is loaded into the
Control Matrix. The state of another bit, the "ALTERNATE" bit in the active
K vector determines the future condition of the BRANCH flag. When ALTERNATE
is not sety the BRANCH bit retains its initial status. However, when the
ALTERNATE bit is set, every execution of READ NS in the active nanoword
acquires the secondary function of inverting (complementing) the BRANCH
activity flag after initiating the Nanostore read operation.

Thus, the nanoprogrammer can specify four possible settings of these two bits
to control the selection of the nanobranch address:

ALTERNATE BRANCH ACTION
0 0 NANOBRANCH ADDRESS NEVER USED BY READ NS
0 1 NANOBRANCH ADDRESS ALWAYS USED BY READ NS
1 0 2NDy 4TH, 6TH, ETC. READ NS USES NANOBRANCH ADDRESS
1 1 15Ty 3RDy 5TH, ETC. READ NS USES NANOBRANCH ADDRESS

Note that this control is always determined on the READ NS execution and not on
the GATE NS as for other activation flags. Thus the SKIP and/or GATE NS
facilities may be used to effect a variety of conditional nanobranching.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0063

4.5.2.4 EXTERNAL INTERRUPTS

Interrupts are signals which can notify the program of the occurrence of events
external to the QM-1. A maximum of 30 such signals are directly detectable by
QM-1 hardware.

The 30 interrupts are ordered by priority level for Nanostore address selection
and are labeled Level 2 through Level 31; Level 2 is highest-priority
{immediately below nanobranchl, and Level 31 is lowest priority (immediately
above the NanoProgram Counter).

Assignment of levels to signal lines is INTERRUPT LEVEL ASSIGNMENTS
performed by NANODATA at installiation
time according to user specifications. Channel Level Assigned
A typical assignment is shown in the Number Data In Data Out Status
adjoining figure. 0 2 3 22

1 4 5 23
For an interrupt to become ACTIVE for P & 7 24
priority setection, it must be "“LATCHED", 3 8 9 25
"ENABLED"”, "PENDING"” and "ALLOWED". 4 10 12 26

5 13 11 27
An interrupt level is LATCHED when a 50 6 14 15 28
nse. pulse is sensed on its signal line. 7 16 17 29
Interrupt levels are individually ENABLED Levels 18-21, 30 and 31 may be
by the "1* state of the corresponding assigned to other external
Interrupt Enable bit. These 30 bits signals.
are stored in External Store registers Levels 2-11 - Nano Interrupts.
18 and 19 (see section 4.2.5}). Levels 12-31 - Micro Interrupts.

Every ENABLED level is tested for the presence of a LATCHED interrupt signal
by each execution of GATE NS. 1If this test succeeds, the level is set to
PENDING status. Once a level is PENDING, it remains in that state until

the priority-select mechanism eventually selects the Nanostore address
corresponding to that interrupt level, and the associated nanoword is loaded
into the Control Matrix to begin the service program; at that time the level
is also unLATCHED, and unPENDING.

A PENDING interrupt level automatically becomes ACTIVE for priority

selection if and only if its associated ALLOW INTERRUPT bit in the active
K-vector is "1" when the priority-select mechanism is invoked by READ NS.
There are two such bits ("ALLOW NAND INTERRJPT" and "ALLOW MICRO INTERRUPT"),

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 006%

The high 10 interrupt levels (2-12) are designated as NANO INTERRUPT levels.
The}remaining 20 levels (12-31) are designated as MICROD INTERRUPT levels.

If a nanobranch is not taken at the end of executing a nanoword, and if no
tnterrupts are active, the priority-seiect mechanism gives controi to the
NanoProgram Counter (see Figure 4.5.2.1A)% hence the ALLOW INTERRUPT bits are a
facility the programmer can use to insure that a chain of nanoword executions
invoked through the NPC is not interrupted. This subject is further discussed
‘in section 4.5.4.2.

All 1/0 interrupts mnay be blocked from priority selection by disabling 1/0
interrupts with the Auxilliary Action "disable” command as described in Section
5.8.2. The ALLOW INTERRUPT bits are then ignored and no I/0 interrupts will be
accepted. Following the Auxillary Action "enable® command, all blocked 1/0
interrupts again become eligible for priority selection, assuming all other
prerequisites exist, as described above.

" The Nanostore addresses associated with the MAPPING OF INTERRUPT ADDRESSES
tnterrupt levels are generated from six~-bit
fietds in ten External Store registers 22 - SIX-BIT FIELD: "ABCDEF*"
31 (see section 4.2.5). The mapping of the TEN-BIT ADDRESS: "OABOOOCDEF"

six-bit field into the 10-bit address is as

shown on the right. This mapping permits up to 16 interrupt entries in each
page of nanostore. To conserve entry points in Nanostore, several interrupt
tevels may be assigned the same address in nanostore by placing the common
address in the appropriate positions in External Store registers 22 - 31.

Finally, & facility exists for the programmer to "generate" interrupts
{simulate external interrupts) and also to "clear"” interrupt latches. One
interrupt level can be so affected in a nanoword. When the "GENERATE INT® bit
is set in the active K-vector, the selected level is latched or unlatched

at the beginning of T-period 12 if the "generate” option is used, the level
becomes LATCHED, PENDING, and ACTIVE in time to be selected for execution by

a READ NS executed in T-period 3 or later; if the "clear" option is used,

the level is unLATCHED immediately upon activation of the current nanoword.
The mechanism for selecting the level and the "generate”" vs. "clear" option

is presented in section 5.8.1.

Other External Interface facilities are discussed in section &4.6.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0065

4.5.3 NANJIPROGRAM COUNTER
4.5.3.1 GENERAL

When an nanobranch is not taken and no interrupts are active, the priority-
select mechanism supplies an address to Nanostore from the NanoProgram Counter,
the lowest element on the priority list.

The NPC is a 10-bit register which changes value only as a result of
nanoprimitive commands. The following (mutually exclusive} NPC control
operations are avaitable in the T-vector (all trailing-edge):

LOAD NPC (CS)
LOAD NPC (KN}
LOAD NPC (SEQUENCE)

The first operatton -- LOAD NPC (CS) -- invoives microinstruction execution,
since the address is a Control Store Opcode. This is discussed in the
next Section.

The LOAD NPC (KN) operation loads the NanoProgram Counter from the KN field

tn the active K-vector. Thus an executing nanoword can transfer nanoprogranm
execution to NS(KN) either directly (nanobranch) or through NPC (NP{ branch):
the interrelationship of these two facilities is discussed in section 4.5.4.

The LOAD NPC (SEQUENCE) operation adds one (modulo 1024) to the contents of
the NPC. Thus a nanoprogram executing at an NPC-specified Nanostore address
can conveniently continue execution through sequential Nanostore locations
(nanosequencing).

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0066

4.5.3.2 MICROINSTRUCTION EXECUTION

One of the most important modes of program control is the invocation of a
nanoprogram by a microinstructioni the operation code of a machine nicro-
instruction, extracted from Contro! Store, is used to select the Nanostore

entry address of the nanoprogram {(of one or more nanowords) whose execution
defines that micraoinstruction.

Wwhen the nanoprimitive command LOAD NPC (CS) is executed, the following occurs
{(trailing—-edge):

a) The high~-order three bits of NPC are loaded with the Nanostore
Page Index from the low-order three bits of FIDX, a special
F-register (see section 4.3.2.3)3

b) the low-order seven bits of NPC are loaded from the high-order
seven bits of the (0D busj

¢) the low-order eleven bits of the COD bus are saved in a
dedicated register.

The nanoprimitive "LDAD R31" is available to cause the following action?

a) The high-order seven bits of R31 are cleared to zeros; and

b) the low-order eleven bits of R31 are loaded with the saved eleven
low-order bits of COD (this is the parameter part of the machine
microbinstructionl.

This event is concurrent with six-bit transfers executed in the last T-step
of the previous active nanoword; thus the new contents of the C, A, and B
fields #n R31 are available for gating to F-store in the first T-step of the
microinstruction, if desired (see section 5.3.51}.

The high-order seven bits of a machine microinstruction are thus defined as

the -micro-opcodes and provide the microprogrammer with a maximum of 128
microinstructions supported by a page of Nanostore; i.e., 128 NP(-addresses

are possible under a given value of the Nanostore page index in FIDX.

Different Nanostore pages may be used to define different micro-machines,
extend the microinstruction set of a given micro-machine, implement different
machine states, and/or contain continuations of nanoprograms. from another page.
For convenience in microinstruction sequencing, one of the Local Store MP(C's
will normally be used in addressing Control Store to generate the machine
microinstruction on the COD bus (see section 4.2.4]).

dM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0067

Toc protect against the execution of illegal micro-opcodes (for exampley when
scme or all nanowords in a page are used for nanoprogram continuations and/or
interrupt entry points), a "LEGAL MICRO ENTRY™ bit is provided in the
K-vector. If this bit is off ("0"} in a nanoword loaded into the Control
matrix as the initial word of a nanoprogram invoked by a microinstruction, a
Procgram Check is generated.

To protect against infinite looping between two or more nanowords, a
Microinstruction Time—-0Out facility generates a Program Check if

microinstruction executions do not follow within approximately one second
of each other.

This section has used the term "machine microinstruction” to refer to a
Control Store word which is executed through NPC to invoke a nanoprogram.
For the microprogrammer, however, a "microinstruction™ may consist of
several Control Store words and contain a large number of parameters and/or
immediate operands; the only restriction is that one of the words (most
conveniently, the first of a contiguous string) must be a machine micro-
tnstruction. The invoked nanoprogram is able to fetch the other words from
Control Storey and, if appropriatey can use the CyA, and B fields of the R31
interface to route six-bit parameters to various control registers. -

Microinstructions defined using this technique can be quite powerful, and have
the advantage of economizing on micro-opcodes; for example, 2 “general
arithmetic and logic” microinstruction can be defined by routing a parameter
fteld to the ALU control register (KALC, in ‘the active K-vector).

QM-1 <ARDWARE LEVEL USER'S MANUAL NANODATA CGRPORATION PAGE 0068

4.5.% NANOPROGRAM FLOMW
4.5.4.1 NANDPRJIGRAM CONNECTION

Nznoprogram execution controiied by the NPC may be considered to be
mpnanoprogram mainline” flow. A mainline is ordinarily initiated by
the invocation of a machine microiqstruction {section 4.5.3.2).

Using this model, the operation LOAD NPC (SEQUENCE) then can be used as a
straightforward method of continuing a mainline; the operation LOAD NPC (KN)
has the effect of transferring the location of the mainline to a different
place in Nanostore. Thus the following technique can be used to maximize

the number of micro-opcodes in a page: If a nanoprogram which defines a
micrcinstruction is longer than one nanoword, the first nanoword -exits

by transferring the mainline to a different page of Nanostore; the nanoprogram
consumes only one micro-opcode entry point in the initial page.

Since the nanobranch facility does not affect the state of the NanoProgram
Counter, the following technique provides a mainline nanoprogram with the
capability for caliing one level of subroutines in Nanostore, as follows:

A call is effected by a nanobranch to the first word of the sub—nanoprcgram,
which must proceed (if longer than one word) by nanobranch only; the called
sub~nanoprogram returns to mainline via the NPC, which has remained as a link.

A sub-nanoprogram can terminate the nanoprogram -— even conditionaily, if
desired, since its return to nanoprogram mainline is exactly the samne

as those steps of a return to microinstruction control that follow LOAD

NPC (CS). For exampley the mainline can perform normal microinstruction
prefetch operations and then conditionally (via SKIP)} execute LOAD NPC (CS)
before calling the sub-nanoprogrami the latter will return either to mainiine
or to new microinstruction control, depending upon whether LOAD NPC (CS) was
SKIPped or noty respectively.

QM-1 HARDWARE LEVEL USER*®S MANUAL NANBDATA CDRPURATIGN PAGE 0063

4.5.46.2 INTERRUPTIBILITY

One suggested mode of interruptibility is to allow low-priority interrupt
levels to take control only between microinstructionss this plan is enforced
by setting the ALLONW MICRO INTERRUPT bit (in the K-vector} only in the exiting
nanoword of a nanoprogram (i.eey that word which is ordinarily succeeded by

a nanoprogram invoked by the next machine microinstruction). In this mode,
the interrupt-service nanoprograms are free to make use of the NPC to
establish a maintine, and thus call subroutines, transfer to microinstruction
control, etc.; the lower-priority interrupts are more likely to require such
service (e.g., end of 10 operation).

A suggested paralliel mode of interruptibility is to allow mainline nanoprograms
to be interrupted between (some) nanowords, using the ALLOW NAND INTERRUPT bit.
(Note: branch-connected nanoprograms, including sub-nanoprograms as defined

in section 4.5.4.1, cannot be interrupted because of the high fetch-priority

of nanobranch.) When allowing the mainline nanoprogram to be interrupteds the
interrupt-service nanowords must proceed by nanobranch only, since any other
technique would destroy the value of the NPC and hence break the link for
returning to the interrupted (mainline} nanoprogram. The higher-priority’
interrupts are more tikely to be serviceable by this kind of progran {eeQ.r

- single-word transfer in a data stream).

Any-pragramming structure must allocate various machine resources to the
various levels of program control. For examnple, programming conventions could
be established such that bus controls are undefined between microinstructions
tfor free usability by interrupt service routines), but are expected to hold
between mainline nanowords; that certain G's do not change value between
microinstructionss etc.

QM-1 HARDAARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0070

§.5.4.3 HOLD

For convenience in programming across nanowords, the "HOLD” and "HOLD 2" bits
in the active K-Vector are provided. They allow the nanoprogrammer to retain
various contro! values in the K vector portion of the Control Matrix during the
transition to the next nanoword.

If a HOLD bit is set ("1") in the active nanoword, then the corresponding K
fields in the control matrix do not change their values as a result of gating
the next nanoword into the control matrix. The action of the HOLD bits is
suppressed if the next nanoword is invoked by microinstruction entry (GATE NS
and LOAD R31 in the final T-Vector) or by program check interrupt.

For obvious reasons, the HOLD control and the ALLOW INTERRUPT controls should
normally be used with mutual exclusione.

The following is a list of K-Vector fields affected by the HOLD bits:

HOLD HOLD 2
KALC KA
KSHC KB
KSHA

dM-1 HARDWARE LEVEL USER'S MANUAL - NANODATA CORPORATION PAGE 0071

P
L.5

Tre

EXTERNAL INTERFACE

material in this section functionally specifies the interface between the

aM-1 computer itself and its environment. Information on NANODATA Channel
Control Units is presented in a Section 8 of this manual.

The
its

The
Jse

The

external interface consists of eight "external ports", each identified by
association with a Port Register (EQ through E7; see section 4.2.5).

following "outgoing" external interface facilities are bused for common
by the eight ports:

a) The "Phantom Bus™ {current input to the "phantom" register, FIPH)
supplies six bits of information

b) The "G-bus" supplies six bits of information taken from one of 16
sources: GO through G11, KSHA, B, KS, KX. The selection of the source
is performed by the "GSPEC™ field in the currently active T-vector,
and is further discussed in section 5.5.2 (where the value on the
G-bus is referred to as "G(GSPEC)™).

c) 10 Cltock - a syncronizing signal to external devices available at the
port during . each T-step. ‘

d) XIO Strobe - a syncronizing signal to external devices, generated only
when XIO is present.

e) MASTER CLEAR - a signal sent when the system is initially cleareds
this signal cannot be generated by program control.

followiﬁg "outgoing” external interface facilities are local to each ports

a) A path through which an external unit can read the contents of
the Port Register (18 bits in parallell). ,

b} The "Port-XIO" pulse.

c) The "Port-RIO" pulse.

dM-1 HARDWARE LEVEL USER'®S MANUAL NANODATA CORPORATION

The following "incoming®” external interface facilities are also local
to each port: A

PAGE 0072

a) A path through which an external! unit can supply data to the Port

Register {18 bits in paraliel}.

b) The "I0 ID" linesy through which an external unit can
supply six bits of information to the port.

c) Some number of interrupt levels, logically assigned to the port

by software in accordance with the physical system configuration.

Program control of the external interface involves these internal facilitiess:

KA

a) KA (of the active K-Vector),

b} The RIO nanoprimitive ("Read 10"},

c) The X100 nanoprimitive ("transmit 10"),

d) Six-bit transfer nanoprimitives, used to read 10 ID,

e) The interrupt structure, as presented in section 4.5.2.%.

s used modulo 8 to select one of the eight ports for nanoprimitive

control. If no external unit interfaces to the KA-selected port, incoming
values are zero and outgoing operations are nuill.

Execution of the XIO nanoprimitive causes a Port-XIO signal to be sent

the KA-selected port for the duration of the XIO,

all ports.

Execution of the RIO nanoprimitive has these effects:

al At leading edge, a Port-RID pulse is sent through the
KA-selfected porte.

b} At leading edge, the KA-selected Port Register is set to zeros.

¢) At trailing edge, the contents of the 18 incoming data |ines

through

and XIO Strobe to be sent to

associated with the latter register are gated into that register.

The 6-bit 10 ID of the currently interrupting device is available to the
program as an AUX (see section 5.5.2, and section 8).

@M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE

4.7 WRITING NANIJSTORE

Each 360-bit word in Nanostore is partitioned into 20 18-bit bytes for the
purpose of writing. When the RRITE NS nanoprimitive is to be used,

the Nanostore address is taken from the 10 bits of R31 -on
the high-order side of Bj}

the byte selection is the B field, used modulo 32;
the 18 bits of data to be written are taken from the EOD bus.

Each time an address is sent to Nanostore (with a Read NS or a WRITE NS},
160 ns later the full 360 bits is available for GATE NS. Therefore, if
WRITE NS is followed by GATE NS, the full Nanoword with the modification
will be gated into the Control Matrix, and execution begun in T1l.

If either a nonexistent word-location is addressed, or B is greater than

19 (bytes are addressed 0 through 19), WRITE KNS does not alter Nanostore.
Instead it acts like READ NS; it calls out zeroes on a bad word address, and
a non altered word on a bad byte address.

~If WRITE NS and READ NS appear in the same active T-vector, READ NS-is
ignored.

0073 -

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 007%

4.8 READ-ONLY MEMORIES AND MACHINE START

In addition to Nanostore and Control Store, the QM-1 contains a Read-Only
Nanostore (RONS) of 32 360-bit wordsy, and a Read-0Only Control Store (ROCS)
of 128 18-bit words. These memories are iogically distinct from NS and CS,
and are accessed as followsse

When the Nanostore Mode switch in FIDX is cleared ("0"), RONS is inaccessable.
When set ("1"), RONS address spaces are effectively subtituted for NS address
spaces on READ NS.

When bit 17 of a Control Store address is cleared ("0"), ROCS is inaccessible.
when set ("1"), ROCS addresses spaces are substituted for Control Store address
spaces on READ CS or WRITE CS5 the WRITE will not alter CS but will instead

act like a READ CS. NOTE: If incrementing a Contro! Store address causes a
"negative" result, ROCS will be accessed. A READ CS from a nonexistent ROCS
address places OONES onto the COD bus.

The contents of RONS AND ROCS are specified by the user and permanently
inserted by NANODATA at installation time. (NANODATA-suppliied machine
diagnostic routines must be included, and NANODATA-supplied system software
may be specified.)

Machine use of these memories is for nanoprogram entry at RONS[O] for
Program Check (section 4.5.2.2) and for Machine Start.

When the QM-1 MASTER CLEAR / START button is depressed,

a) FIDX is cleared;

b) the Program Check Status fields are cleared so that the program
starting at RONSIO] can recognize its invocation by Machine Start
rather than Program Check {(see section 4.5.2.2); and

c) RONS[O] is fetched and loaded into the Control Matrix to begin
execution.

QM-1 HARDWARE LEVEL USER'S MANUAL _ NANODATA CORPORATION . PAGE 0075

5 QM-1 FUNCTIONAL SPECIFICATIONS, PART Il

5.1 GENERAL

Sections 4 and 5 of this manual are a complete functional specification of
the QM-1 CPU in two parts. Part I (Section 4) has explained QM-I concepts,
architecture and operations. It has provided an overview of all of the
features of the machine. Part Il (Section 5) is intended as a programmerts
reference guide and will complete the description of those parts of the
machine covered only briefly in Part 1.

It is assumed that the reader has a general understanding of the @M-1 at this
point. Thus Part Il will concentrate more on the detailed operation of the
tndividual machine functions and less on their possible combined use.

The next two sections present, in summary form, all of the control functions
included in the machine. In most cases, the functions are activated by single
bits or contain a string of bits used as a numeric value. In the few remaining
cases, the encodings of the bits are given. References are provided for each
function to the section numbers where the function is specified in detail.

QM-1 HARDWARE LEVEL USER'S MANUAL

NANODATA CORPORATION

5.2 SUMMARY OF NANDPRIMITIVE CONTROLS

5.2.1

The control

described. {The number of bits in the field is shown in parentheses.)

CONTROL FIELD {(Bits} SUMMARY OF CDNTRBL FUNCTION

KN (10) Address of possible successor nanoword.
Nanobranch address and source for NPC load.

SUPERVISOR {1} Program Check if on when this word is
invoked while not in Supervisor Mode.

LEGAL MICRDO ENTRY {1) Program Check if not on when this word
is invoked by a microinstruction.

BRANCH {1} Must be on if nanobranch planned from
this word. Complemented after each READ
NS when ALTERNATE is on.

ALTERNATE {1) Causes BRANCH to be complemented after
each READ NS.

HCGLD {1) 1Inhibits automatic loading of KALC,

KSHC, KSHA, and KS from next nanoword
to be executed, unless executed by
microinstruction or Program Check.

HCLD 2 (1) Inhibits automatic loading of KA and KB
from next nanoword to be executed, unless
executed by microinstruction or Program
Check.

{1) Allows higher-priority interrupts at end

ALLOW NANO INTERRUPT

K-~VECTOR CONTROL

function of
table belowy along with

each of the fields
references to sections

FIELDS

in the K-vector

of execution of this word, if nanobranch

is not taken.

is summarized
in which the function is

PAGE 0075

in the

References

sSsSs==2Ss=

4.5.2.2
4.5.3

4.5.2.3

4.5.2‘3

4.5.4.3

6.5.4.3

gM~1 HARDWARE LEVEL USER®'S

ALLOW MICRO INTERRUPT (1)

GENERATE INTERRUPT
ALU STATUS ENABLE
SH STATUS ENABLE
DIRECT MS ACCESS

KA

KB

KALC
KSHC
KSHA

KS
KT
KX

SPARE

(1}

(1}

(1)

(1}

(6)

(6)

(6)
(6)
(6)

(6)

(6)

(6)

(2)

72 BITS

MANUAL NANODATA CORPORATION

Allows lower-priority interrupts at end
of execution of this word, if nanobranch
is not taken.

Generates or clears an interrupt level
according to GIGSPECI in T1.

Enables move of C,S,R,0 bits from local to
global upon GATE ALU; C treated specially.

Enables move of SHB, SLB bits from local
to global upon GATE SH.

Inhibits MS base addressing and field
length protection in this nanoword.

Constant and/or scratch field for nanowords
source and destination AUX.

Constant and/or scratch field for nanowords;
source and destination AUX.

ALU control; destination AUX.
Shift control; destination AUX.
Shift amount; destination AUX.

Global condition (and general) test masks
source and destination AUX.

Local condition test mask (also constant

and/or scratch); source and destination AUX.

Special condition test mask (also constant

and/or scratch); source and destination Aux.

Reserved for future use

PAGE 0077

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0078

5.2.2 T-VECTOR CONTROL FIELDS

The controtl function of each of the fields in the active T-Vector is summarized
in the table belows along with references to sections in which the function is
described. A code showing the characteristic timing of the action associated
with the function is given; LE = Leading Edge, TE = Trailing Edge. (The number
of bits in the field is shown parenthetically.)

CONTROL FlELD - BITS SUMMARY OF CONTROL FUNCTICN TIME Refs.
STRETCH {1} Stretches time of this T-step 4.4
: from one T-period to two.

WRITE NS {1) MWrites 18 bits from EOD bus LE 4.7

‘ ' into Nanostore Seb.l .2

X1a {1} Sends pulse to external'interface; one LE 4.5
of eight external ports selected by KA.

RIO (1) Clears Port Register and sends pulse LE 4.6
through port, then gates external data
word into Port Register; selected by KA.

MSGO (1) Initiates MS operations split-cycle if LE 4.2.6.2
alone, full-read if MSRS simultaneous. 5.4.3

MSRS (1) 1f alone, requests second half-cycle of LE b.2.6.2
MS split-cycle operation; if with MSGO, 5.4.3
initiates full-read.

GATE MS . (1)} Gates MOD bus into Local Store or Port TE G.2.601
Registers;y modified by RMI SELECT. 5.4.3

RMI SELECT (2) Selects RMI parameters for GATE MS, LE G6.2.6.4

00 BYPASS including BYPASS. If RMI not
01 PARAMETER SET A tnstalled all encodings are BYPASS

10 PARAMETER SET B
11 PARAMETER SET ¢

GATE ES (1) Gates EOD bus into Local Store. TE 4.2.5

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0079

LOAD ES {1} Loads an External Store register TE 4.2.5
from EID bus. »
TXX (1) Halts T-Clock with Program Step Switch. TE 5.8.3
READ CS (1) Reads Control Store; uses CS ADDR LE 6.2.64
' SELECT. ’ Selhel el
WRITE CS " (1) Writes Control Store; uses CS ADDR LE 4.2.4
SELECT. _ ' 5¢4e2.3
CS ADDR SELECT (3) Selects address for READ CS, WRITE LE 4,2.4
000 CIA CS. (MPC is selected by FMP(C) 5¢4e201
001 (CObd A and AB are sign extended operands.
010 MPC INDEX is output of INDEX ALU.
011 MPC+1
100 MPC+2
101 MPC+B
110 MPC+AB
111 INDEX
GATE (S (1} Gates COD bus into Local Store. TE G6.,2.6
. 5.4.2
GATE ALU {1) Gates AOD bus into Local Store. TE G.2.3
GATE SH | {1 Gates SOD bus into Local Store. TE 4.2.3
CARRY CTL ' {3) Controls Carry operation uithin the TE 4.2.3.4
000 NO OPERATION - ALU and Shifter ccmponents.

001 CLEAR (CIH
010 SET CIH

011 ALU TO BOTH
100 ALU TO COH
101 SET COH

110 CLEAR COH
111 SH TO COH

INJDEX {1} Gates INDEX ALU output into Local TE [
Store, selected by G(GSPEC). 5.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0083

INC MPC (1] Increments MPC selected by FMPC3 TE 4.2.2
modified by GSPEC. 5.4e2.1
5‘605
LOAD NPC (2i Loads‘or sequences NanoProgram TE 6.5.3
00 NO OPERATION Counter. 4.5.4
01 (CS)
10 {KN)
11 {SEQUENCE)
READ NS (1) Reads NS; address is from priority- LE 4.5
select mechanitsm. Influences BRANCH. 5.4.1.1
GATE NS UNCON- {1) Causes the nanoword last read to be TE 4.5.1
DITIDNALLY gated into the Control Matrix. 5.5.1
Independent of any TEST ACTION in T.
TEST ACTION {1) Conditional Action based on TE 4.5
0 SKIP Test Specifier 4.5.1
1 GATE NS Se7.2
TEST SPECIFIER (3) Specifies the conditions under LE 5.7.1
000 NEVER which TEST ACTION is to be executed
001 ALWAYS :
010 If FIST AND KS =0
011 1If FIST AND KS NCT =0
100 TIf LOCAL CONDS AND KT =0
101 If LOCAL CONDS AND KT NOT =0
110 - If SPECIAL CONDS AND KX = 0
111 If SPECIAL CONDS AND KX NOT =0
LOAD R31 {1} Enables R31 to be loaded with micro- TE 4.5.3.2
instruction parameters. 5.3.4
AUXILLARY ACTION (1} Initiates Action specified by the LE §.3.2.3
SeB8.2

contents of FACT (F register 14).

QM-1 HARDWARE LEVEL USER®S MANUAL

GSPEC
0000
1011
1100
1101
1110
1111

FSELO
FSEL1
FSEL2

AUXO
AUX1
AUX2
AUX3

INO
IN1
IN2

guTl
guTe
ouT3

GO
Gl1
KSHA
B

KS
KT

(&)

(5)
(5)
(5)

(3)
(3)
(3)
(3)

(1)
(1)
(1)

(1)

(11
(1)

NANODATA CCRPORATION

Selects a G or pseudo-G for 6-bit
transfersy right inout to ALUF,

used in GENERATE INTERRUPT, External
Interface G~lines; also used with
INC MPC.

Selects F register for 6-bit transfers
in Group 0y 1, and 2 respectively.

Selects AUX for 6-bit transfers in

Group Oy 1y and 2 respectivelye.

(AUX2 applies to Group 2 input,
AUX3 applies to Group 2 output.}

Commands AUX tnto F register transfer
using AUX0O, AUX1l, AUX2 to FSELC,
FSEL1, FSEL2 respectively.

Commands F register dutput to AUX
transfer using FSELO, FSELl, FSELZ2 to
AUX0, AUX1, AUX3 respectively.

72 Bits

PAGE 0081

5.5.2

5.5.2

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0082

5.3 FUNDAMENTAL TIMING CONSIDERATIONS
5.3.1 GENERAL

The "hardware ievel®™ QM-1 is a highly parailel machine. One of the tasks
facing the nanoprogrammer is to put together the functions he desires in such

a way as to utilize this parallelism to the fullest extent possible. Hence

he must have an intimate knowledge of the internal timing of the machine.

This section on timing considerations is included in order that nanoprogrammers
can answer questions regarding meaningful combinations of functions in the.

same or adjacent T-steps.

All T-vector control functions have been
classified as "Leading Edge™ (LE) or

“Trailing Edge®" (TE) functions depending T-CLOCK I I I
on the time of the action they initiate, PULSES I 1 I
relative to the period of the T-step in emmm—s mr—ce——— —seesses S-osso—-

which the control is active. The period
of any T-step is defined as the time = =—-——=--

between the machine clock puise which T-VECTOR NOT i T2 I NOT
causes the T-vector to become active and T2 ACTIVE I ACTIVE 1 ACTIVE
the next clfock pulse which causes the next —_—————— ——————
T-vector to become active. These pulses

are known as T-clock pulses or just T- T-STEP T2

Clocks and the T-step (T2 for example} is
as shouwn.

Leading edge functions are those which are triggered by the beginning edge
tor activation) of the T-step and trailing edge functions are those triggered
by the ending edge (or deactivation) of the T-step.

Examination of this situation for two successive T-steps shows that a trailing
edge for one T-step occurs at exactly the same time as the leading edge of the
next. Thus it would seem that a leading edge event could occur at exactly the
same time a trailing edge transition is happening. In actuallity, this problem
is avoided by having some functions "more trailing edge” than others. This is
necessary since the Machine State Vector (active K and T-vectors) must be in a
defined state before the 6-bit domain can operate properly. And the 6-bit
sections must be in a defined state for the 18-bit domain to operate properly.
Hence the necessity of two additional clocks derived from the T-Clock. These
are, not suprisingly, called the "F Register Clock” (or F-Clock) and the "LS
Register Clock"” {or R-Clock). The actual delays between these clocks are

QM-1 HARDWARE LEVEL USER®S MANUAL NANGDATA CORPORATION PAGE 0083

important only when the boundaries between the three domains within the machine
are crossed. The extreme case is in R31 operations since all three domains
meet in R31 (covered extensively in Section 5.3.5). :

Briefly, the clocks act as foltlows. The T-Clocks activate a T-Vector. All
leading edge functions are begun immediately. All decoding and set-up for
tratling edge functions also begins at this time. The next T—-Clock deactivates
this T-Vector (which will now be called the previous T-Vector) and activates
the next one. Approximately 20 nanoseconds after the T-Clock, the F~-Clock
occurss completing any 6-bit data transfers specified in the previous T-Vector.
Approximately 20 nanoseconds after the F-Clock, the R-Clock occurs. This
completes any 18-bit transfers specified in the previous T-Vector. This
seguence is shown in Figure 5.3.1A.

ACTIVE : 1 I
T-VECTOR 1 I

——— —— - — - Y = - . T ——— - —— - e -——— -

{--Start Leading Edge Functions

1 I
T-CLOCK 1 |
(~~Finish F Transfers
I 1
F-CLOCK I i
{--Finish R Transfers
1 ’ 1
R=CLOCK 1 I

-— i —— o~ - - - - - - - - - - — - - -

RELATIONSHIP OF MACHINE CLOCKS ' Figure 5.3.1A

QM-1 HARDWARE LEVEL USER'S MANUAL , NANODATA CORPORATION PAGE 008%

5¢3.2 LEADING EDGE FUNCTIONS

The Memory Reference Functions; Read/Write Nanostore, Read/Write Control Store,
Go/Restart Main Store, are all operations which do not cause data to be gated
but are necessary to make data available for gating. In order to make the data
available as soon as possible, these operations must be initiated as soon as
the T-Vector in which they are specified becomes active. Thus they are leading
edge functions. Care must be taken to assure that the address and/or data to
be used by the operation is stable before the function is initiated. Section
5.4 covers this in detail.

X10 and RIO are the only other leading edge functions. Both XIO and RIO
generate a signal to the External Port and must therefore begin on the leading
edge in order for the action they initiate to be completed by the end of the
T-period.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0085

5.3.3 TRAILING EDGE EVENTS
5.3.3.1 T-CLOCK EVENTS

LOAD NPC is executed on the trailing edge T-clock. The three possiblie sources
of new values to be transferred into the NanoProgram Counter are-the COD bus,
KN in the executing nanoword, and the current value of NPC. No special timing
problems arise with the LOAD NPC operation.

GATE NS and LUAD R31 are the only other functions executed on the trailing edge
T-Clock. Both are used to cause the transition between one instruction and the
next. Thus they must be completed before any other functions can begin.

A conflict is possible between each of these functions and some other function
in the machine. In the case of GATE NS, an F-transfer intoc a K, initiated in-
the same T-step as the GATE NS will cause an undefined result in the K unless
the K is "held" by the appropriate HOLD command. See section 4.5.4.3.

In the case of LOAD R31, an F transfer into R31, initiated in the same T-step
as LOAD R31 will cause an undefined result in R31. See Section 5.3.4. An R
transfer will override the effect of the LOAD R31.

ALl F transfers are completed by the trailing edge F-Clock. These include
F Register Increment and Decrement and ALUF operations since the results are
gated as an F transfer.

Simultaneous F transfers to the same F-Register do not cause undefined results
since they occur at exactly the same time. A logical "OR" of the transferred
values occurs.

5.3.3.3 R-CLECK EVENTS

All 18 bit transfers into Local Store or External Store are syncronized on the
traifing edge R-Clock. Simultaneous R transfers into the same Local Store
register will produce the logical "OR" of the transferred values.

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATION PAGE

5.3.% R31 OPERATIONS

R31 is the primary interface between the 18—bit'arch§tecture and the &6-bit
architecture in the QM-1, since it is simultaneously a Local Store register
and also contains three 6-bit AUX fields:

——————— T — ————— o — -~ - - o e me -—— —— a——

R31 1 18 Bit Local Store Register I

- —— - - - - - - - ——-—

——— - - - - - ————— - — -

R31 1 C I A I ‘ B 1

e T I - . S T A S e n T S T M . S . A S - T e S S S W . S . G S G- S - e - G ——

Bit 17 16 15 164 13 12 11 10 09 08 07 06 05 04 03 02 01 0O

When serving in its additional special function as the Micro Instruction
Registers R31 is classified in the control matrix domain, since the

LOAD R31 command transfers the saved microinstruction parameter part
into R31 on the Leading Edge T-Clocks:

—— — - . T - i S ——— - G G L G G G G S T S - W - ——— - -

Because of this interface, care must be taken in organizing transfers
involving R31. The following programming rules are derived from the
clock relationships discussed in Section 5.3.1.

1. If the only transfers into R31 commanded in a T-step
are tn the 18 bit domain, then six-bit transfers out
of R31 commanded in the following T-step will occur
too soon to use the 18-bit value, and will instead
transfer an undefined value. This holds true unless
the T-step containing the six bit transfer command is
stretched, in which case such transfers do use the
new 18-bit value. ’

2. I1f the only transfers into R31 commanded in a T-step
are from the six-bit domain, these values are available
for transferring out to either domain in the next
T-stepe. :

0C8s

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION

3.

1f transfers into R31 from both the six-bit and the

18-bit domains are commanded in a T-step, an undef ined
value results in R31l.

When R31 is used within one domain onlys norma! timing

rules applyy 2s in section 6.4,

I1f six-bit transfers into R31 are concurrent with LOAD R31
parameter loading (i.e.y if such transfers are commanded
in the last T-step of a nanoword along with the LOAD R31
command} an undefined value results in R31.

PAGE 0087

d¥-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0083

5.4 MEMORY REFERENCE FUNCTIDNS
5.4.1 NANISTORE OPERATIONS
5.4.1.1 READ NS

READ NS is a leading edge command that causes a 360-bit word to be read from
nanostore using the nanostore address selected previously by the nanostore
addressing mechanism (section 4.5.2). The address must have been established
in the previous T-step. This address must be stable for the T-step in which
READ NS occurs. Neither of these requirements cause any difficulty since the
LOAD NPC commands are properly syncronized to satisfy them.

For Nanostore data-out to be available in time for a traiiing-edge
GATE NS executed in a given T-period, the leading—edge operation
READ NS must occur in the prior T-period or earlier. Therefore
READ NS, GATE NS can be programmed as a sequence in one T-step if
and only if that T-step is STRETCHed.

READ NS, GATE NS executed in the same un-STRETCHed T-step result in
an undefined value loaded into the Control Matrix.

READ NS cannot be commanded in T1 of any nanoword that ALLOWs INTERRUPTs.
Undefined data results in this situation.

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0089

5.4.1.2 WRITE NS

WRITE NS is a leading-edge nanoprimitive that initiates writing 18 bits into
nanostore from the EOD bus at the address specified by the contents of R3l.

The B field of R31 specifies which of the 20 byles of the nanoword is to be

written (0-19, modulo 32}. The 10 bits of R31 on the high order side of the
B8 field in R31 select the paricular nanoward to be written. With an invalid
nanostore address fout of rangel, WRITE NS does not alter Nanostore.

———— —— —— —— - - -

R31 IXX XX <=——-—NANOWORD ADDRESS—=———=> XX

BYTE ADDRESS 1 Bits marked XX
- are ignored.

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

The WRITE NS address must be stable for 3 T-periods. (Attempts to initiate a
READ NS or another WRITE NS during such time are ignored.) Thus if WRITE NS
appears in T—-period T(n)y Nanostore will be written in time for a READ NS
executed in T-period T{n+2). The WRITE NS acts like a READ NS and brings up
the full modified Nanoword ready to be gated.

Assuming that WRITE NS is executed in T-period T{(n), results of the operation
are undefined ifs

1. The Nanostore word-address is modified by a command in T-period Tin-1J).
2. The byte-selector in B is modified by a command in T-period Ttn-1}.
3. The data on the EOD bus is modified by a command in T-period T{n-1).

It is possible to execute a nanoprogram by addressing it from R31 and using the
"WRITE NS*" primitive. This is accomplished by putting an invalid byte address

in bits 0-15 of R31 and executing a "WRITE NS*. The addressed nanoword is not

changed but the outputs are available for "GATE NS" into the control matrix.

QM=-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0090

5.4.2 CONTROL STORE OPERATIDNS
5.6.2.1 ° CONTROL STORE ADDRESS SELECTION

cr\either READ CS or WRITE CS, the address used is determined by the value

of the CS ADDR SELECT field in the same T-Vector as the READ CS or WRITE CS.
Since both READ CS and WRITE CS are leading edge functions, the address must be
stable at the beginning of the T-step in which the command occurs. This has
different implications, depending on the address source. FEach of the cases

is covered below, assuming that the READ CS or WRITE CS occurs in T(n):

CS ADDR SELECT) CONDITIONS
0 000 (1A ’ Address is taken from the iocal store register designated
by FCIA. No commands changing FCIA or CIA should appear
in T(N-1)
1 001 <cOD Here the address is taken directly from the CGD bus rather

than from a register. Since the only thing that can change
the data on the COD bus is a previous READ (S, this should
not occur in T(N-1) uniess STRETCHed.

2 010 MPC Address is taken from the local store register designated
by FMPC. No commands changing FMPC or MPC should appear
T(N-1). .

3 D011 MPC+l} Here the address depends on FMPC, MPC and the output of the

4 100 MP(+2 MPC Increment facility. Again, nothing that changes either

FMPC or MPC should occur in T(N-1).

5 101 MPC+B In this case, an added factor is involved - the contents of
6 110 MBP+AB R31. Thus nothing that changes the contents of R31 should
appear in T(N-1) '

7 111 INDEX Output from the INDEX ALUj inputs must appear in T(n-1),

’ and must remain stable for three T-Periods.
The Control Store Address determined by the above selection must be stable only
for the duration of the T-step in which READ CS or WRITE CS occurs. Thus

it is possible to specify in the same T-step, any Trailing Edge operations that
change the address.

Both READ and WRITE CS place the 18 bit value on COD. Attempts to read or write

QM-1 HARDWARE LEVEL USER'S MANUAL NANGODATA CORPDRATION PAGE 0091

nonexistant focartions result in zeros on the COD buss but does not alter CS.

If READ CS and WRITE CS occur simultaneously, only the WRITE CS occurs.
READ CS and/or WRITE €S commands are valid in two successtve T-steps only if
the first T-step is STRETCHed. Negative C5 addresses indicate RO(S.

5.4.2.2 READ (S

READ (S reads the 18 bit value from Control Store at the address determined by
CS ADDR SELECT. The value read is placed on the COD bus for gating into a '
Local Store registery, for loading as a microinstruction, for use as an

indirect Contro! Store address or for use as an arithmetic operand. If

the READ (S is.executed in T-period T{n}, the desired data is available on COD
for each of these uses at the trailing edge of T(n+l}. It is available at the .
trailing edge of Tén) if the T-step is STRETCHed.

Once establishedy a2 CCD value remaihs available until changed by the next
Control Store access (READ or WRITE]).

5.4.2.3 HWRITE (S

WRITE (S writes the 18 bit value from the Local Store register specified by
FCID into Control Store at the address determined by CS ADDR SELECT.

In addition to all of the rules that apply to the address selection (section
5.4.2.1}y the data on the CID bus must be stable for the duration of the T-step
i4n which the WRITE (S occurs. Thus, for a WRITE CS in T(N) to be valid,
nothing that changes either FCID or CID may appear in T(N-1). WRITE (S acts as
READ CS and places the new value on COD.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODDATA CORPORATION PAGE 0092

5.4.3 MAIN STORE ODPERATIONS
5.4.3.1 READ MAIN STORE

A READ MAIN STORE ocperation is initiated by placing the appropriate values in
the following registers and simultaneously issuing the commands MSGO.and MSRS.

FMIX - pointer to Local Store register used for Main Store Address

MIX - Main Store Address in Local Store Register
El16 — Main Store Base Address in External Store register
E17 - Main Store Field Length in External Store register

These four values must be changed no later than the T-step before the commands
MSGO and MSRS appear. The values need only be held stable during the T-step in
in which MSGO and MSRS are issued. MSGO and MSRS must not be issued together
until a test of "MS BUSY" indicates that Main Store is available.

The word in Main Store, addressed by the sum of the values in MIX and E16 is
read and placed on the MOD bus in time for gating with the trailing edge
ccmmand GATE MS in the same T-step that the test "MS DATA" indicates data
available. If the value in MIX exceeds the value in E17, or if the addressed
word is beyond the range of installed Main Store addresses, the result on the
MCD bus is zero and a Program Check occurs.

If desired, the participation of El16 and E17 can be bypassed by issuing the
command DIRECT MS in the K-vector of the word containing MSGO and MSRS. 1In
effects this causes the operation performed to be equivalent to having zero
in E16 and all ones in E17. Addressing Main Store beyond installed addresses
results in a Program Check with all ones on the MOD bus.

If the MS ADDRESSING AND PROTECTION option is not installed, the effect is that
of having DIRECT MS always on. Thus El6 and E17 never participate in Main
Store addressing and are available for other use.

The value in FMOD must be establiished no later than the T—period in which the
GATE MS occurs. Both FMIX and FMOD have an extended address function as shown?

Value FMIX ’ FMQD
0 - 31 Local Store Registers Local Store Registers -
32 - 39 External Store EQO - E7 External Store EO -~ E7

43 ~ 64 Source of atll ones Null operation

M-1 HARDHARE LEVEL USER*®S MANUAL NANODATA CORPORATION PAGE 0093

This permits both address and data for Main Store operations to be placed in
the External Store Port registers as well as in Local Store.

After READ MAIN STDRE has been initiated, any subsequent MSGO or MSRS signals
will be ignored until MS BUSY is turned off at the end of the full nemory
cycle. The minimum timing between Leading Edge of MSGO and Trailing Edge of
GATE MS is 640 nanoseconds. The minimum period of successive MSGOD signals is
800 nano-seconds.

5«4.3.2 WRITE MAIN STORE

Since the MIX bus is shared for both address and datas, a WRITE MAIN STORE
operation requires that the data be placed on the MIX bus after the address

ts established. The singie command MSGO is issued as for the READ MAIN

STORE operation. At some time thereafer, the value of the data is established
by the combination of a changed value in FMIX or the register it references.
Then the command MSRS is issued and the memory cycle completes, placing the
new data on the MIX bus into the memory at the address previously specified.

In addition to all the reguirements for READ MAIN STORE (see Section 5.4.3.1),
one must establish FMIX and MIX no later than the T-step before MSRS is issued.

The memory cycle time is variable, depending on when MSRS is issued. In
particular, the leading edge of the next MSGO should not occur less than

400 nanoseconds after the Trailing Edge of MSRS or less than 800 nanoseconds
after the Leading Edge of the previous MSGO.

5.4.3.3 READ-MIDIFY-WRITE

Main Store may be operated in a READ-MODIFY-WRITE mode in order to modify the
contents of a memory location based on the value read. This operation is done
by starting a WRITE MAIN STORE, waiting for DATA AVAILABLE, extracting the
data with GATE MS, and finally issuing MSRS when the modified data is ready on
the MIX bus to be written back into memory. Thus the only difference between
a normal WRITE MAIN STORE and READ-MODIFY-WRITE is in the timing of the MSRS
signal. The timing rules of Sections 5.4.3.1 and 5.4.3.2 apply.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0094

5.4.4 EXTERNAL DPERATIONS

The commands for external operations are treated in this section because, from
a programming point of view, they are quite similar to the commands for
inatiating various memory reference operations.

Two nanoprimitives are available for initiating external operations. These
are RI0O (»Read I0O") and XIO ("Transmit 10").

Execution of the command RIO requires that the port be previously selected by
setting the appropriate value in KA . The RID command causes the following
actions

1. The port-RI0J pulse is sent immediately (leading edgel.
2. The port register (in External Store) is cleared.
3. The 18 incoming data fines are gated into the port register.

Execution of the command XIOD also requires that the port be previously selected
in KA. If required for the external operation, the data on the G-bus and on
tre input to the "phantom"™ register (FIPH} must be established in the same
T-Step as the XI0. The XIO command causes an X0 pulse to be sent to the
selected port.

Additional information on the external interface is given in
Section 4.6 and Section 8.

QM-1 HARDWARE LEVEL USER'®'S MANUAL NANODATA CORPORATION PAGE 0095

5.5 DATA TRANSFER FUNCTIONS

5.5.1 T TRANSFERS

Atl T-Transfers are involved with establishing the primary control state of
the machine. Thus such transfers take place on the trailing edge T-Clock.
The commands causing T—-transfers ares

LOAD NPC - causes a transfer of 10 bits into the NanoProgram Counter (NP(C)
from one of three sources as specified:
(KN} — 10 bits from the KN field of the active K-Vector.
(SEQUENCE) - current value in NPC plus one modulo 1024.
(CS) - fow order 3 bits of FIDX plus high order seven bits of
COD bus in the following orders

FIDX ' , COD BUS

—— o —— - —— - ——— - —— - -

- - ——

- - LOAD NPC (CS) also causes the
NPC / ABCDEFGHTILI J/ low order 11 bits from the COD
——————————————— e ————— bus to be saved in a dedicated
register for use by LOAD R31.

LOAD R31 - clears the high order seven bits of R31 and causes 2 transfer,
into the A and B fields of R31, of the low order 11 bits from
the COD bus that was saved by the most recent LOAD NPC ((CS).

GATE NS UNCONDITIONALLY -causes a transfer of the 360 bits last accessed
from nanostore to be gated into the Control Matrix with
execution begun in T1 of the word gated, unless Tl is skipped
as a result of SKIP issued concurrently with GATE NS UNC.

GATE NS - same as GATE NS UNCONDITIONALLY provided the test specification

in the current T-step is satisfied. Otherwise, the command is
ignored. See Section 5.7.

SKIP - causes all of the T-vector commands in the next T-step to be
ignored if the test secification in the current T-step is
satisfied. Otherwise the commands will be executed normally.
GATE NS and SKIP are mutually exclusive in a T-step.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0095

5.5.2 F TRANSFERS

Six-bit transfers into and out of F-store (including F increment, F decrement
and ALUF operations; see section 5.6.6 and 5.6.7) are controlled by three
groups of fields within the active T-vector:

GROUP 0Oz [ESELOT [AUXO] [INOI [OUTO]J

5 3 1 1 (bits)
GROUP 1: [FSEL11 [AUX1] [IN11 [QUT1]
5 3 1 1 (bits)
GROUP 22 [FSEL21 [AUX2] [IN2]
[AUX3] [QUT21]
5 3 1 1 {bits)

Since the IN and OUT controls serve as nanoprimitive commands, six (at most)
such transfers may occur in a single T-step. The six commands are defined as
followss

INO: AUX [AUXD] (with tts source-AUX encoding) ---> F [FSELO]-
guTO: F [FSELO] ——=> AUX [AUXO] (with its destination~AUX encoding)
IN1:S AUX [AUX1] (with its source—AUX encoding) ---> F [FSEL1]
QUT1l: F [FSEL1] ---> AUX [AUX1] (with its destination-AUX encoding)
IN2: AUX T[AUXZ21 (with its source—AUX encoding) —-> F [FSELZ2]
guTe: F [FSEL2] ---> AUX [AUX3] (with its destination—-AUX encoding)

Normally, only two or three of the F transfers are commanded in a given T-step
since the F selection must be common for each IN/OUT transfer. The AUX
encodings are shown schematically in Figure 5.5.2A."

QM-1 HARDWARE LEVEL USER®*S MANUAL

ENCODING OF F TRANSFERS

NANODATA CORPODRATION

Figure 5.5.2A

GR3UP O GROUP 1 GROUP 2
I SOURCE [AUXO] I I SOURCE [AUX1] 1 I SOURCE (AUX2] 1
I 0 000 A I I 0 000 A 1 1 0 000 A I
I 1 001 B I 1 1 001 B I I 1 001 8B I
I 2 010 SwW I I 2 010 ¢ I I 2 010 KX I
I 3 011 KA I I 3 011 KA 1 I 3 011 KA I
1 4 100 KB -1 I & -100 KT I I 4 100 KB I
I 5 101 GI(GSPEC) I 1 5 101 GEGSPEC) I I 5 101 G(GSPEC) I
I 6 110 ALUF I I 6 110 IN(CF1 I 1 6 110 INCF2 I
I 7 111 1IO0 ID 1 I 7 111 DECF1 I I 7 111 DECF2 I
I I 1
IND 1 IN1 1 INZ 1
v v v
1 F (FSELO) 1 I F (FSEL1) 1 I F (FSELZ2) I
I I I
guto 1 gut1 I gutT2 1
v v v
I DEST [AUXO] I I DEST [AUXL1I] I -1 DEST [AUX3] I
I 0 000 A I I1 0 000 & I I 0 000 A I
1 1 001 B 1 I 1 001 B 1 I 1 001 8 I
I 2 010 C I I 2 010 C I I 2 010 C I
I 3 011 Ka I I 3 011 KA 1 I 3 011 Ka I
I 4 100 KB I I 4 100 KB 1 I & 100 KB I
I 5 101 KSHC I I 5 101 KX I I 5 101 KSHC 1
1 6 110 KALC I I & 110 KALC I I & 110 KT 1
I 7 111 KS 1 7 111 KSHA I I 7 111 KSHA 1

Notes: G(GSPE(C) is defined below

this AUX source must appear

INCFl1, DECF1, INCF2 and DECF2 are the results of the F
and F decrement. They are described

ALUF is described in 5.6.6.

- —— - - ——— — o — "

—— i ———— - T — ——— — . -

in this section. Transfers involving

in STRET(Hed T-steps.

I0 ID

in 5.6.6.
is described in 4.6.

PAGE 0097

tncremnent

QM-1 HARDNARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0098

G SPECIFIER

Listed as a source in F transfers is the quantity G(GSPEC). Rather than
being a single source field, G(GSPEC) indicates one of 16 possible sources
on the "G-bus", selected by the value of a single four-bit field (GSPEC) in
the active T-vector. The normal use of GSPEC is to indirectly specify a six
btt value by referencing one of the G registers (the last 12 F registers).
However the complete use of GSPEC includes the following six disjoint
nanoprimitive operations. The G~specifier (GSPE(C) is used:

1. to specify a source for certain 6~-bit transferss

2. to specify ALUF input selection (5.6.7)%

3. to specify the operand in all INC MPC operations (5.6.51}3
4, as part of the GM-1 external interface (4.6).

5. in the GENERATE/CLEAR INTERRUPT facility (4.5.2.4).

6. to specify the destination of INDEX ALU operations (5.6.4).

Hence, uniess a bit pattern in the GSPEC can be shared to advantage, these
\ five types of operations must be considered mutually exclusive in a T-step.

When involved in operations (1), (2), (4)s (5) or (6) above, the GSPE(C selects
one of the 12 G's or one of four "pseudo~G's”, as followss

VALUE OF G REGISTER VALUE OF PSUEDO G COMMAND
GSPEC SELECTED GSPEC SELECTED SPECIFICATION

0 F20=G0 12 KSHA "G KSHA"

1 F21=G1 13 B “G B"

2 F22=G2 14 KS "G KS"

3 F23=G3 15 KX "G KX®

4 F24=G4 ' :

5 F25=G5

6 F26=G6

7 F27=G7 The termy, G(GSPE(C) has

8 F28=G8 been used to refer to

9 F29=6G9 any of these 16 selections.

10 F30=G10

11 F31=C11

When GSPEC is used in (3) the low order two bits are used directly to
specify the INC MPC operand (see section 5.6.5).

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0099

5.5.3 R TRANSFERS

ALl of the transfers to and from Local Store and External Store are classified
as R Transfers since they occur on the Trailing Edge R-clock. Actually such
transfers are divided intoc two classes; input and output, as viewed from the
store involved. All output transfers are enabled as soon as the bus control
is established; input transfers require an explicit command to enable the
gating of the data. .

Thus output from local store or external store is enabled on all of the
following buses as soon as the corresponding F register selects one of the
appropriate registerss

BUS CONTROL DATA USED WHENS

MIX EMIX MSGO or MSRS

CIA FCIA READ CS or KRITE CS

CID FCID WRITE (S

EID FEID LOAD ES

AIL FAIL ALU always operating

AIR FAIR b " "

SID FSID SHIFTER always operating

INC FMP(%% MPC and INDEX facility always operating

EGD FEOA GATE ES

Input to local store or external store requires not only a bus control but also
a command to cause the actual gating. For the six input buses to local store
and the input to external store, these are:s

BUS CONTROL DATA TRANSFERRED WHEN
MOD FMOD GATE MS

COD FCOD GATE CS

EQD FEOD GATE ES

A DD FAGD GATE ALU

saD FSOD - GATE SH

INC FMPC ##% INC MPC or INDEX

EID FEIA LOAD ES

Note: =2=-INDEX uses another selection mechanism, see section 5.6.%.

The input to all transfers is determined by the state of the controls as
they existed foliowing the R-Clock in the T-step in which the transfer is
issued. The transfer is completed following the R clock of the next T-step.

QM-1 HARDWARE LEVEL USER'S MANUAL 'NANODATA CORPORATION PAGE 010D

5.6 DATA MANIPULATION FUNCTIONS
S«6.1 GENERAL
A variety of data manipulation functions are provided in the QM-1. Section 5.6
treats each of the major components available for modifying data in either the
18-bit or 6-bit domains. These components ares)

ARITHMETIC-LOGIC UNIT (ALU)

SHIFTER AND SHIFTER EXTENSION

INDEX ALU

MPC FACILITY

F REGISTER INCREMENT AND DECREMENT FACILITY

ALUF

RM1
The first four operate on data in the 18-bit portion of the machine. The next
two are for manipulation of six-bit data. The last component provides optional
manipulative capability applied to data arriving from Main Store.
In addition, R31 provides an interface by which 18-bit data may be manipulated
in six-bit sub-fields. Finally, an "AUTO DR» capability exists for logically
combining two values in either domain with a simultaneous transfer.
Afl of the data manipulating components described in the following sections may

be operated in parallel. They combine to provide an extremely powerful
arithmetic and logical capability.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0101

Sebs2 OPERATION OF THE ARITHMETIC-LOGIC UNIT
The Arithmetic-Logic Unit (ALU) output is determined as a function of¢

18 bit input on the ALU Input Left (AIL) bus.

18 bit input on the ALU Input Right (AIR) bus.’

A single bity, the Carry=In-Hold (CIH) flipflop.

A 6 bit vatue in the K register (KALC) used to control the AlLU.

‘A single bit in the F register (FIDX) used to specify 16 or 18 bit mode.

The basic function is determined by the low order 4 bits of KALC as follows:

. - o ————— —— " d—— - - - —— - - ——

KALL I bit I bitt I bit I it I bit 1 bit 1
LAYQJUT 1 5 I 4 1 3 1 2 I 1 1 0 I
Decimal Logic
Control lontrol {~===w= basic ALY function-—-——==>
Code Code

ALU LOGICAL OUTPUT
TRUTH TABLE

The individual bit outputs are determined by the Right Input
two input bit values and the 4 low order bits of L 0 1
KALC as indicated in the truth table on the right. € emmmmmcec————
For example, the eXclusive OR function results f I NOT I NOT 1
when KALC is 011001. This can be seen by inserting t 0O BIT I 8IT I

the control bits into the truth table as specified. I 3 1 2 1
Thus all of the 16 Boolean functions are available I
and their encoding can be deduced from the truth n
table given. p 11 BIT 1 BIT 1
u
t

—— - - —— ———

In all of the cases above, the Logic Control Code is
set to 1 to disablie the internal carry inta each bit.
When the Logic Control Code is 0, the aperation on each bit is modified by
the carry into that bit. The Carry Into the bit is eXclusive OR'ed with
the result above to produce the modified result for the bit. This is
shown in the modified truth table below.

@M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0102

Herey, CIN is defined as the carry into ALU ARITHMETIC OUTPUT TRUTH TABLE
the bit in question. For the low order

bity CIN is defined as the value of the _ Right Input
Carry In Hold (CIH) flipflop. For each L 0] 1
subsequent bity CIN is the same as the e - -
Carry Output from the preceding bit. f I NOT BIT 3 1 NOT BIT 2 1
t 01 X0OR I XOR I
The Carry DOutput from any bit depends I CIN I CIN 1
or the inputs to the bit (including CIN) 1 e — e ———
and on the function specified as before. n 1 BIT O I BIT 1 1
This relationship is given in the final p 11 XOR I XOR I
truth table below. u I CIN I CIN 1
t - ——— - - .-
ALY CARRY OJUTPUT TRJTH TABLE The Carry Output is valid independent of
the setting of the Logic Control Code.
Right Input This is a consequence of the fact that
L 0 1 Logical Mode only inhibits the effect of
e ———— - ———————— e Carry on the OQUTPUT BIT and causes no
f I NOT 817 3 I N37 BIT 2 1 change in Carry generation witnin the
t 01 AND 1 AND I ALU.
I CIN 1 CIN I :
I = This detailed coverage of the ALU has
n 1 NOT BIT O I NOT BIT 1 1 been included so that any question about
p 11 OR I ORrR 1 the ALY operation can be answered. For
u I CIN 1 CIN 1 normal use, the table on the next page
t ———— e e suffices for encoding all ALU operations.

Normal operation of the ALU is in 18 Bit Mode. This results when the 16 Bit
Mode Control (high order bit in FIDX) is reset. When in 18 Bit Mode, all 18
bits are active on the inputs to the ALU. +However, when 16 Bit Mode Control
is sety Bit 15 on each of the inputs (AIL and AIR) is replicated to form the
inputs to Bit 16 and Bit 17. This applfies to all ALU operations except "PASS
LEFT” {011111) which provides a means of transmitting all 18 bits through the
ALU even when in 16 Bit mode. Otherwise, the ALU operates identically in
either 16 or 18 Bit Mode.

dM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0103

aLU control is taken from the KALC field in the active K-vector. The high-
order bit of KALC is the DECIMAL control; when it is on, decimal correction
words are forced onto the $0D bus to reflect current ALU activity, as per
section 4.2.3.1. '

The remaining five bits of KALC contro! ALU function as followsz:
(LyR=LEFT,RIGHT: 2's complement convention assumed)

3IT 3 LOGICAL ARITHMETIC FUNCTIONS Carry-out bit

TARY FUNCTIONS KALC BIT 4 = 0 is defined as .
3IT & KALC BIT 4 Carry-in bit
aF =1 CARRY IN HOLD CARRY IN HOLD ceccs
KALC =0 =1
JC 3! NOT L L -1 L arR L
ace NGT (L AND R) (L AND R) -1 L AND R . OR (L AND R}
2019 NCT L CR R (L AND NOT R) =1 L AND NCOT R OR (L AND NOT R)
2011 ALL ONES ALL ONES ALL ZERDS aR ZERD
0130 NOT (L 3R R) (L OR NOT R} +# L (L OR NOT R} + L + 1
0101 NOT R (L OR NOT R} + (L OR NOT R) +
(L AND R) (L AND R) + 1
01190 NOT (L XOR R} L =R -1 L - R
0111 L 3R NOT R (L OR NOT R} (L OR NOT R) + 1 AND (L OR NOT R)
1630 NCT L AND R (L OR R) + L (L ORR) +# L + 1
10301 L XOR R L + R L +R +1
1010 R (L OR R} + (L OR R) +
(L AND NOT R} (L AND NOT R} + 1

1311 L OR R L OR R (L OR R} + 1 AND (L OR R)
1100 ALL ZERDS L + L L'+ L + 1

1131 L AND NOT R L + (L AND R) (L AND R) + 1

1110 L AND R L + (L AND NOT R) (L AND NOT R) + 1

1111 L [PASS LEFT] L | AND L

-
+ o+

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0104

The output of the ALU consists of the followings

An 18 bit output determined by the above rules.

A carry-out condition (carry out of the high order bit}).

An overflow condition determined bty the EXclusive OR of the carry
out values from the two high order bits.

The 18-bit output value is used as the 18-bit input to the Shifter Extension
discussed in section S5.6.3. This value may be passed directly to the AOD bus
or it may be shifted before transfer.

The carry-out condition may be transferred to the Carry-Out-Hold for testing
and it may be also transferred to the Carry-In-Hold for future use. Section
4.2.3.4 covers Carry Control. Testing of the Carry Out and Overflow conditions
ts discussed in Section 5.7.

In general, operation of the ALU requires two T-periods; either one stretched
T-step or two unstretched T-steps. Detailed timing of both the ALU and the
Shifter is covered in Section 5.6.3.

IM-1 HARDWARE LEVEL USER®S MANUAL NANDDATA CORPORATION PAGE 0105

5.6.3 OPERATION OF THE SHIFTER AND SHIFTER EXTENSION

The Shifter and Shifter Extension form a combined shift matrix unit operating
on a total of 36 bits entering from the ALU (high order 18 bits) and from the
SID bus. This unit may operate in either Single mode (passing the ALU output
on to the AOD bus) or Doublie mode (shifting the ALU output before it reaches
the AQOD bus). The 36 bit output to the AOD and SOD buses is determined as a
function of: ‘

18 bit input from the ALU.

18 bit input from the SID bus. ,
A & bit value in the K register (KSHA) used to specify the shift amount.
A 6 bit value in the K register (KSHC) used to controil the shifter

A single bit, the Carry-Out-Hold (can) flipflope.

The high order bit (Decimal Control Code) of the ALU control, KALC.

KSHA specifies Shift Amount (number of positions), and is interpreted
modulo x, where x is appropriate for the type of shift specified in KSHC.

KSHC is interpreted as follows:

——— - - -

—— ——— ————— . - . .

KSHC I 8IT I BIT 1 BIT I BIT 1 BIT 1 BIT I

LAYOUT I 5 I 4 1 3 1 2 I 1 I o 1
LEFT RIGHT TYPE MOCE DIRECTION

CONTROL CONTROL OO0 Circular 0 Single O Left
SWITCH SWITCH 01 Logical Double 1 Right
10 Arithmetic

(section 4.2.3.4) 11 Undefined

—

@M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0105

TIMING 3F ALU AND SHIFTER

Assume that the LAST trailing-edge operation that changes any input relevant to
an ALU/shift process is commanded in T-period Tn., Then the earliest T-period
tnet T-step) in which the datz outputs of that process are available as defined
for gating out by a trailing—edge nanoprimitive is given by Tn+x, where x
depends on the processy as follows (TEST OUTPUTS are also available in Tn+x,
and are discussed further in section 5.7.2)¢

- - - -—— - —— - - . o - . - W~ —————— i ——

Pass data through ALU (KALC = *"PASS LEFT"), then bypass the SHIFTER EXTENSION

to AOD (KSHC specifies single shift) ———————--cemm——mmmcc e e X = 2.
Pass data through ALU ("PASS LEFT"), then double shift ————=—m—eceeecce— X = 2,
ALY operation {not "PASS LEFT"™}, then bypass the SHIFTER EXTENSION --=== X = 2.
Any singte shift, or SID to SOD with no shift (KSHA = Q) ==e--ce—eeececea X = 2.
ALJ operation (not "PASS LEFT"}, then double shift (special case: SID and

shift control inputs not needed until Tn+l) —-—=—-ee—cemmcme e ccccee X = 3,

- —— — " — - —— i — ——— _— o——

—— o - -——— - -

The ALU and Shifter are not pipeline devices; inputs to a process must

be held stable for the duration of that process. (A new process is defined to
begin when any input changes; at that time, the result of the previous process
is considered invalid.) If this rule is not followed, outputs are undefined.

QM-1 HARDWARE LEVEL USER®S MARUAL NANGDATA CORPORATION PAGE 0107

5.5.4 D0OPERATION OF THE INDEX ALU

A special data manipulation unit, the INDEX ALU, is provided in order to
facilitate rapid indexing and logiceal opef%tions. In particular, this feature
of the machine is useful in computing addresses and in masking operations,
although it is not restricted to these tasks in any sense. Operation of the
INDEX ALU function can be accomplished in a single stretched T stepy or in 2
adjacent unstretched T-steps. The result is gated into local store with the
nanoprimitive "INDEX" (see 5.2.2), and is testable in the next T-Step as a
special test "R INDEX NGT ZERQO" (see 5.7)

The implementation of the function requires the dedicated use of the third F
transfer mechanism. Namely the following Control Matrix fields are used in any
T step in whjch the function is invoked.

AUX2 selects local store source register
FSELZ Selects arithmetic or togical function
AUX3 selects index register

GSPEC Selects local store destination register

Except for those fieids, the tunction operates independently and concurrent
with all other functions of the QM-1. The illustration below shows the data
paths that are involived. Note that a local store register always receives the
result of the operation.

GIGSPEC) —--=sm==————==——=————o————=
-------- >1 1
v I
Z=Z====Z=ITTSTSTZSIE== 1 Z====T=SSTITSTTZTIS=
I 28 I I 1 E 8 1
1 1 =22 =Z=====SISTTTESTXITFTEITET 1 thru 1
I Local 1 1 18 BIT I I E 19 1
I I I I I e 1
1 Store I 1 ARITHMETIC LOGIC I I MOD BUS I
1 I 1 I [—emmmmm———- I
I Registers I 1 UNIT I I cob BUS I
I A A I
cmemm D1 1 1 1 [{mmmmmmm—m
AUX(AUX2) V 1 FSEL2 I V AUX(AUX3)

—--—--—--——-—--—-——----) (o= = -

aM-1

HARDWARE LEVEL USER'S MANUAL

NANODATA CORPORATION PAGE 0108

The three register selection controls used in INDEX ALU operation are encoded
as fotlows:

AUX2

AUX3

- provides an indirect reference to a
local store register which will be used

as the left input to the INDEX ALU.

The field is decoded by the same

physical hardware used to decode AUX2

tn its primary capacity as an input

select for an F register transfer.
Therefore the values associated with

each value of AUX2 are the same as when

it is used to select an AUX to F transfer.

The selected field, A or B or KX etc. provides the
source selection. If used, GSPEC must be repeated

AUX2

NV PLWN O

local

FIELD SELECTED

A

B

KX

KA

KB
GIGSPEC)
Not Used
Not Used

store register

in the previous T-step.

— an indirect reference to AUX3 SELECTS CONTENTS SELECT "X" OPERAND

one of 16 possible sources

of an 18 bit index operand 0 A

which will be used as the 1 8

right input to the INDEX ALU. 2 XT
Twelve of these are External 3 KB
registerss two dre sources 4 F28=G8
of all ones; the remaining 5 F29=G9
two are the memory buses 5 F30=610
MOD and COD respectively. 7 F31=G11

GSPEC - an indirect reference to a local

store register to receive the result
of the INDEX ALU operation. The field
is decoded by the same hardware used
to decode GSPEC when it is used to
select an input for a F register
transfer. Thus the field selected by
GSPEC is the same as when it is used
to select an AJX to F transfer.

0] xx0000 E8
1 xx0001 E9
11 xx1011 El9
12 xx1100 ALL ONES
13 xx1101 ALL ONES
14 xx1110 MaD
15 xx1111 cob
GSPEC FIELD SELECTED
4] F20=G0
11 F31=G11
12 KSHA
13 B
14 KS
15 KX

The controls providing for selection of a local store register source and

destination and for selection of an index
directly from Main Store or Control Store

operand from either an E register or
have been described. There remains

the manner in which the specific function is selected by the FSELZ2 field.

QM~-1 HARDWARE

LEVEL USER®S MANUAL

NANODDATA CCRPORATION

PAGE 0109

ESEL2 - either a direct setection of one of 13 arithmetic and Iogical
functions, or an indirect specification of one of 18 possible 5 bit

fields containing one of the standard 48 function codes.

to a Local wxn refers to an External

Store registers

("L" refers
Store register,

MOD bus, or (0D buse.
FUNCTION QR FUNCTION
FSELZ FUNCTION SPECIFIED FSELZ SPECIFIED BY SPECIFIED

00 L -1 == > L 12 A

01 L +1 ——=——~ > L 13 B

a2 L XCR X -——=> L 14 KA

23 ALL ONES -—> L 15 KB

O? ALL ZERD --> L 16 Flé FMPC

a5 NCT X ===-- > L 17 F17 FIDX

06 L =X =-—==>1 18 L -—-> L

07 L AND X =—> L 19 L —-> 1L

08 L OR X =-—=> 1L 20 F2e GO

09 L + X === > L - - -

10 X —emmm———— > L 31 F31 Gil

11 NCT L =====> L
FUNCTION FUNCTION SPECIFICATION

CODE BIT 5 4 5 4% 5 4
317 1 - e e

32101 # 1 (#=DON'T CARE) 00 10
S p—— I - — — ——— ——— ———— . S T~ — ——— — ———— —————— ——— — - - - ————- -~ . o
00 C01 NOTL 1 L -1 I L
0 001 1 NOT (L AND X) I (L AND X) -1 1 L AND X
00101 NOTL ORX I (L AND NOT X) -1 1 L AND NOT X
00111 ALL ONES I -1 1 2's complement). I ALL ZERDS
01 COT1 NOT (LOR X) 1 L +(L OR NCT X) I L +(L OR NOT X}+ 1
01011 NOTX I (L AND X)} + (L DR NDT X) I (L AND X)+(L 3R NOT X)+1
01101 NOT(L XCR X3 I L =X -1 I L - X
01111 L CRNCGT X 1 L OR NOT X I (L OR NDT X} + 1
1 0001 NOT L AND X I L + (L DR X) 1 L + (L OR X) + 1
10011 L XIR X I L + X 1 L + X + 1
103101 X I (L AND NOT Xx)+{L OR X) 1 {L AND NOT X)+(L COR X)+1
10111 L GRX 1 L OR X 1 {L OR X} + 1
11001 ALL ZERED 1 L+ L I L +L +1
11011 L AND NOT X I (L AND X) + L 1 (L AND X) + L + 1
11101 L AND X 1 (L ANC NOT Xx) + L I (L AND NOT X)+ L + 1
11111 L 1 L 1 L +1

- .—.—-.——-———--_---—_-—--.—--—,-—————-_--—-—---——_“-—---—_—------_-----—---.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0113

5.6.5 MPC OPERATIONS

Four Local Store registers (R2%, R25, R26 and R27) have a special increment
capability to facilitate their use as Micro Program Counters. The register
currently desiognated as the MPC is determined by the contents of FMPC (mod 4).

The current content of the designated MPC is continuously being added to the
following four values:

+1
+2 :
8 (low order 6 bits of R31, sign extended, two's complement addition).

A5 (low order 11 bits of R31, sign extended, twc®s complement addition).

The results of these computations may be used as a Control Store address for
READ (S or WRITE €S, or they may be gated back into the designated MPC, using
the command INC MPC. The CS ADDR SELECT field is used to select the desired
value for Control Store operations. The GSPEC field is used to select the
desired result in INC MP(C operations. The encodings are as followss:

MPC RESULT CS ADDR SELECT GSPEC VALUE
MPC 010 (X=ignored)
MPC+1 011 XX00
MPC+2 100 XX01
MPC+B 101 . XX10
MPC+AB 110 XX11

All MPC operations involve 18 bit arithmetic; the high order bit is the ROCS
indicator bit. Thus incrementing 2%%17 - 1 by 1 produces a "negative"™ which
actually addresses ROCS(0).

The INC MPC Nanoprimitive is a trailing—edge operation; the incremented value
is loaded into the appropriate Local Store MPC (the one selected by FMPC) at
the end of the T-step in which the nanoprimitive is executed. The propagation
time through the adding circuits is such that if FMPC, MPC, A or AB is changed
by any trail ing-~edge command in the T-step prior to the one containing the INC
MP{ -command, the T-step containing the INC MPC command must be STRET(CHed.

d¥-1 HARDWARE LEVEL JSER®S MANUAL NANODATA CORPORATION PAGE 0111

5.6.6 INCREMENT F AND DECREMENT F DPERATIONS

A facility is available for incrementing or decrementing the contents of any

F recister. This is acomplished by selecting the desired F register for an

AUX to F transfer, selecting INCF or DECF as the AUX source and enabling the
trancsfer with the IN command. Since INCF and DECF are available as AUX sources
only in Group 1 and Group 2, at most two F-registers may be loaded with
(either) an incremented or decremented value in a T-step.

Trhe F register increment and decrement facility operates by continuously
performing an increnent and decrement operation on the contents of the F
registers selected by the FSEL1 and FSEL2 fields. Four values are available
as outputs:

FC(FSELL1) + 1 F(FSEL1) - 1 F{FSELZ) + 1 F(FSEL2) - 1

These values are selected by the corresponding AUX1 and AUX2 fields. The
ccmmands IN1 and IN2 cause the selected value to be gated back into the

F recister as a trailing—-edge F transfer. The F register increment and
decrement are unsigned six-bit operations. For example, incrementing 111111
produces 000000. The input to INCF/DECF(FSEL1]) is availavle for testing with
the F NOT ZERD test (see section 5.7.2.), where True indicates a non-zero
condition of F(FSEL1) at the LE of this T-step. '

Because of the propagation time of the adding circuits, an INCF or DECF must
be placed in a STRETCHed T-step in order to be completely self-contained.
However, it may be successfully placed in an unstretched T-step provided the
following two conditions are mete

1) The value in the F register is not changed by an F transfer in the
preceding T-step.

2) The same F register selection (FSEL1 or FSEL2) is specified in the
prrecedina T-step.

Note: Incrementing or Decrementing FIPH should be avoided since this connects
an adder's output directly tc one of its inputs and results in an
unstable condition.

@M-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CCRPCORATION PAGE 0112

5.6.7 ALUF DPERATIINS

A six-bit arithmetic logical facility, designated "ALUF", is available as a
QM-1 option. This facility provides full arithmetic and logical operations,
using the contents of two F registers as the two operands, Wwith the result
placed in any desired F register.

The ALUF output is transferred into an F-register by the normal AUX to F
trailing—edge nanoprimitives that load source AUX fields into an F-register;
these controls are presented in section 5.5.2. This transfer is only available
in Group O. FSELC determines the F register receiving the result.

The left data input is the contents of the F register selected by FSELl1. This
ic designated "F" in the table below. The right data input is from the F
register selected by FSEL2. This operand is referrenced as "R"™ in Table 5.6.7B.
Finally, the arithmetic or logical operation to be performed on these two
operands is indirectly determined by the contents of AUX3 as encoded in Table
5.6.7A and Table S5.6.78.

TABLE 5.6.7A FUNCTION Register Selected by AUX3

AUX3 SELECTS
0 A

1 B

2 KT

3 KB

4 F28=G8
5 F29=69
] F30=G10
7 F31=611

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CCRPORATION PAGE 0113

TABLE 5.6.78 ALUF FUNCTION ENCODING AND QUTPUTS

g8ITS 5 - O FUNCTICN

XX2300 NOT F

XX2301 N3T (F OR R}

XX3010 (NGT F) AND R

XX3011 ALL ZERDS

XXx0100 N3T (F AND R)

XX0101 F XGR R

XX0110 F MINUS R

XX0111 F AND NOT R

XX1900 (NCT F) OR R

XX1001 F PLUS R

XX1010 R :

XX1011 F AND R

Xx1100 F PLUS F

XX1101 ALL ONES #%%=%

XX1110C F OR R

XX1111 F

Notess: 2%s Complenent Arithmetic assumed.
FEFFTR Default condition when ALUF Option is not installed.

1f one of the F inputs selects FIPd, then the input to the ALUF
may originate from the AUX field transmitted to FIPH.

The ALUF unit is continuously operating, using the inputs and function as
specified by the FSEL1l, FSELZ, and AUX3 fields at the leading edge of each
T-Step. The output will be gated as 2 trailing edge AUX to F transfer only
when AUXC specifies ALUF and the INO control specifies an AUX to F transfer
in Group 0. Any T-step using the ALUF output must be STRETCHed in order for
the output to be stable, within one T-Step. An ALUF operation may also be
specified across two unstretched T-5Steps as long as all inputs remain stable.
ALUF and INO would only be specified in the second T-Step.

1f the ALUF Option is not installedy a source of all ones is available by
selecting the appropriate ALUF controls.

QM-1 HARDWARE LEVEL USER'®S MANUAL NANODATA CORPORATION PAGE 011%

S5.6.8 RMI OPERATIONS

A special unity designated the RMI unit, is available as a QM-1 options for
manipulating the data read from Main Store on the way into Local Store or
External Store. This unit permits selection among three sets of dynamically
variable ROTATE, MASK and INDEX operations on the Main Store data. It is
idealiy suited for emulation of various main store machines having a variety
of memory widths and formats.

A'preliminary déscription of the RMI unit is given is section 4.2.6.4. Further
specifications are available on request.

Q¥-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0115

5.7 CONDITIONAL FUNCTIONS
5.7.1 TEST FIELDS AND MASKS

Three classes of test conditions are available for decision making at the nano-
program level. These are?s

Local conditions — six current output conditions available from the ALU
and Shifter. '

Global conditions — six output conditions from the ALU and Shifter that
were previously saved in F register F1ST.

Special conditions — a set of six special machine status conditions that:
available for testing.

Within any class, one or more of the conditions may be simultaneously tested
for being present or absent. An individual six-bit mask field in the active
K-vector is provided for testing each class. The bits set in the mask select
the conditions to be tested.

KT masks the local conditionse.
KS masks the global conditions (FISTI):
KX masks the special conditions.

The arithmetic test fields and masks (KS, KT, and FIST) are formatted as
shown below. (The conditions are defined in section 4.2.3.5.]

————— e —— G WD W G G - S G W M- . G S P S Y G W g G e G N S P S S G- G G G G - G S G W W - S i G A S e -

1 Shifter 1 ALU I ALU I ALU I Combined I Shifter 1
I High Bit 1 Carry 1 Sign 1 Result I Overflow I Low Bit I

Bit S Bit & Bit 3 Bit 2 Bit 1 g8it D
The special test field and mask (KX) is formatted as follows?

—— . S e - T W e A - Gt G G . A e W S D e G G S G - G - W G G S ST S GG G G 4 W CE G- G0 S W S W - G -

I Not used I PROGRAM I R INDEX I MS I MS DATA 1 F NOT 1
I Reserved I CHECK 1 NOT ZERO I BUSY I INVALID 1 ZERD I
Bit 5 3it 4 Bit 3 Bit 2 Bit 1 Bit 9

@M-1 HARDWARE LEVEL USER®S MANUAL NANODATA CCRPORATION PAGE 0116

The remainder of the testing facility consists of two fields in the active
T-Vector, a one-bit ACTION selector and a three bit TEST SPECifier.

b4
(gh)
—y
—
[am}
=
o
[}

SKIP (inhibit all controls in next T-stepl.
GATE NS (ioad control matrix with nanoword last
accessed from nanostore).

(e
[}

TEST 000 (=0) - Do not execute ACTION.
001 (=11 Execute ACTION unconditionally.

Interpretation of other encodings is "EXECUTE ACTION IFz»

010 (=2) - FIST AND KS EQUAL ZERD

011 (=2) - FIST AND KS NOT EQUAL ZERQ

100 (=4) - LOCAL CONDS AND KT EQUAL ZERD

101 (=5) - LOCAL CONDS AND KT NOT EQUAL ZERO
110 (=6) - SPECIAL CONDS AND KX EQUAL ZERD

111 (=7) - SPECIAL CONDS AND KX NJIT EQUAL ZERO

(A test condition is "1» it true, "O" if falses the unused position in KX
matches against "Q".)

Hence at most one class of conditions may be tested in a T-step. However,

it is possible to take action upon combinations of conditions within a class;
for example, a useful test involves specifying both the S and R bits in KT,
thus testing for a full 18-bit or lé-bit arithmetic result.

dM-1 HARDWARE LEVEL USER'S MANUAL NANODDATA CCRPORATION PAGE 0117

5.7.2 TESTS

The execution of an action (SKIP or GATE NS) as the result of a test is
considered a tratling-edge event. However, the timing of conditional action
is such that all T-steps containing a conditional SKIP or GATE NS must be
STRET(Hed. 1In addition, the test condition must be stable at the time the
test. is made. This is assured by the rules belowe.

The local test conditions are stable at the time the output of the Shifter or
ALY ts stable for gating into Local Store. These times are covered in Section
5.6.3. C(onditional ACTIGN based on the local test conditions may occur in the
T-step immediately following the one in which the trailing-edge functions are
valid,s Alternatively, conditional ACTION fs valid in a STRETCHed T-step when
the gate functions would have been valid in the same unSTRETCHed T-step.

The gtobal test conditions are the six bits of FIST. This register can be
loaded with an ordinary six-bit transfer operation, or as follows?

If the “ALU STATUS ENABLE™ bit is on in the active K—-vector, then when
GATE ALU is executed:
a) The local conditions S, Ry and 0 are loaded into ther counterparts
in FIST (trailing~edgel.
b} The "C™ bit in FIST is loaded as follows (trailing-edge):
le If 2@ nanoprimitive is simultaneously executed to load COH, the value
loaded into CCH is also loaded into FIST-C.
2. If no such operation is simultaneously commanded, FIST-{ is loaded
from the current value of CGH (the current loca! CARRY condition).

If the "SH STATUS ENABLE" bit is on in the active K-vector, the two local
conditions SHB and SLB are loaded into the two corresponding bits of FIST
when GATE SH is executed (trailing-edge).

Conditional Action based on the Global test conditions is valid in the T-step
immediately following a T-step in which the state of FIST is changed.

The special conditions MS BUSY and MS DATA INVALID are syncronized by the

machine clock. Thus they may be tested in any STRETCHed T-step. Section 5.6.3
covers Main Store timing.

The special condition F NOT ZERO reflects the state of the F register specified
by FSEL1 at the leadina edge of the testing T-step. The special condition
R INCEX NOT ZERJ reflects the result of the last INDEX ALU operation prior to

QM~1 HARDWARE LEVEL USERT'S MANUAL NANCDATA CCRPORATION PAGE 0118

the teading edge of the testing T-step. The special condition PROGRAM CHECK
reflects the current combined state of all the PROGRAM CHECK conditions.
(See section 4.5.2.2).

Notes: Unconditiona! SKIP, GATE NS are simple trailino-edge operatians. They do
not require that the T-step be STRETCHed.

GM-1 HARDWARE LEVEL USER'S MANJAL NANODATA CORPODRATION - PAGE 0119

5.8 MISCELLANEOQUS FUNCTIONS
5.8.1 GENERATE INTERRUPT

. In order to facilitate using the External Interrupt structure from within a
nanoprogram, the GENERATE INTERRUPT command is provided. This command allows
the nanoprogrammer to generate or clear any interrupt internally.

The value of G(GSPEC) in T-period 1 selects the interrupt level to be

fatched or unlatched when the GENERATE INTERRUPT K-bit is set (see section
4‘5.2—.‘4).

When the high—order bit of G{(GSPEC} is 1, the low-order five bits of G(GSPEC)

sefect the interrupt level (2-31) to be cleared (values 0 and 1 specify no
action). :

When the hioh-order bit of G(GSPEC) is 0, the low-order five bits of G{(GSPE(C)
select the interrupt level (2-31) on which to generate an interrupt (values
0 and 1 specify no action}.

QM~1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0123

5.8.2 AUXILTARY ACTION

The AUXILIARY ACTION nanoprimitive uses the value found in F register FACT to
command special QM-1 control functions. In general, these auxiliary commands
will enable or disable various interrupt and control facilities.

Currently defined AUXILIARY ACTION commands are:

FACT €octal) Functiaon
00 No Operation. (All undefined commands are also treated
as No Operations.)
17 DISABLE interrupt levels 2-31. Overrides the ALLOW INTERRUPT

Bits in the active, and all subseguent, K-Vectors, until
rescinded by the Enable Interrupt command below.

76 ENABLE interrupts. Rescinds the action of the DISABLE
Interrupt command above, and restores the control of
interrupts to the ALLOW INTERRUPT bits. Note: Only those
interrupt levels masked "on"” by the Interrupt Enable Bits in
External Store registers 18 and 19 are enabled.

75 SET RELATIVE MS-— Atl Main Store operations not having DIRECT
MS on in the K-Vector are relative to MS Base Register and
are checked against MS Field Length.

74 SET DIRECT MS - All Main Store operations access Main Store
as though DIRECT MS were on in all K-Vectors executed.

64 - 60 Special CS Address Translation Actions. (see APPENDIX B)

57 LOAD ROTATE value - loads Rotate parameter of RMI(UNIT) from
the CCD bus output.

56 LOAD MASK value - loads Mask parameter of RMI(UNIT) from
the COD bus output. -

5% LOAD INDEX value - loads Index parameter of RMI(UNIT) from

the COD bus output.

40 PROGRAM STOP - if Program Step switch is on this Aux Action
will halt the QM-1 as described in section 5.8.3.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0121

Both the 10 Interrupt Disable and Enable commands become effective within 2
T-periods after execution of the T-step containing the AUXILIARY ACTION
nanoprimitive. If the nanoword containing this command allows interrupts,
it must not execute a READ NS using other than the priority branch address
during these two T-Periods. The result of a premature READ NS is undefined.

5.8.3 MISCELLANEOUS CONTROL FUNCTfDNS
The following external control buttons and switches apply to the QM-1 (CPU:

MASTER CLEAR - push button for setting the initial conditions for machine
start-upe. - .

START - push button for initiating CPU operation

SINGLE/RUN/DDOUBLE - a three position switch which selects either a SINGLE
T-stepy, DOUBLE T-step, or continuous operation mode when the
START button is depressed.

MICRO-STEP — a two position switch that causes continuous operation to be
stopped following each execution of the LOAD R31 command.

PROGRAM STEP SWITCH - a two position switch which allows an AUX ACTION 40
in a T-Step to stop the T—-Clock after 2 T-periods and one
T-Clock since the TE of the T-Step containing the AJUX ACTION.
When this switch is off any AUX ACTION 40 command is ignored.

QM-1 HARDWARE LEVEL USER'S MANUAL

5.9

REFERENCE LAYOUT AND MAPS

5.9.1

NANCODATA CORPORATION

CPU REGISTER ASSIGNMENT AND LAYODUT

LOCAL STORE

RO

R1

Re
R3

R&

R5

Ré&

R7

R8

R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30

MIR R31

The

tnd

MPC REG
MPC REG
MPC REG
MPC REG

"CA" ’ IIA L] v

icator lamp

EXTERNAL STORE

EC
El
E2
E3
E4
E>5
E6
E7
ES8
E9
ElC
Ell
El12
E13
Elq
E15
Elé
E17
E18
El¢
E20
E21
E22
E23
E2a
E25
E26
E27
E28
E2g
£E30

nBu E31

PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

~N O P W N

0

~NomSwWA~O

8+ MS BASE ADR.
9, MS FIELD LENGTH

10, INTERRUPT
11, BITS
INTERRUPT

ENA.

PEND.

FLAGS

INT ADR (2-4)

layout for all

C

(5-7)

(8-10)
(11-13)
{l4-16)
(17-19)
(20-22)
(23-25)
(26-28)
(29-31)

PU registers

is show

F STORE
FQ FMIX
F1 FMOD
2 FCIA
F3 FAIL
F4 FCID
F5 FAIR
Fé FCOD
F7 FAOD
F8 FSID
Fg FsS0D
F10 FEID
F11 FEOD
F12 FEIA
F13 FEOA
F14 FACT
F15 FLIV
F16 FMPC
F17 FIDX
F18 FIST
F19 FIPH
F20 GO
F2l G1
F2z G2
F23 63
F24 G4
F25 G5
F26 G6
F27 67
Fe8 G8
F29 G9
F30 610
F31

Gl1

PAGE 0122

in Figure 5.9.1A.

PAGE 0123

NANGDATA CORPORATION

aM-1 HARDH‘RE LEVEL USER*S MANUAL

INTERRUPTS

EXTERNAL STORE

LOCAL STORE

LAMP LAYOUT I

I CPU INDICATOR 1

I

E REGISTERS
24725726727
17<-Bits->0

Mo

N O
N
NN
nNo
- O
-0
—
- N

RRRRRRRRR

R

o O w
o OD
e O
o O
X OO

1 Figure 5.9.1A 1

Bits 0 - 5

E REGISTERS
28/29/20/31 .
17<-Bits->0

R
3
1

R R
2 2
709

o N W
o N ™
o N 4
o~ Oh
or e~
OF e AN\
o - M
OF ed 4
o O,
o O M~
o O Wn
® o m
o O e

A F STORE
FFFFFFFFFFFFFFF
| 1
4

OO

E REGISTERS.
16/17/18/19
17<-Bits->0

R RRRRRRRRRR
: 2
0

W o~
w oo
w oy~
W NN
ey m™m
W O\ e
W o~ o
w. e~~~
W vt N
W v (N

Bits 0 - 5

L et -

w o o

FFFF
0000
1357

E REGISTERS
20/21/22/23
17<-Bits->0

R
3
1

oz N O
o N~
o N N
o N ™
o N e
— o e~ O
b o e I~
O o i N
0o —t
+

- e
o OO,
o~
o O N
o O™
o O

S

GEN C
INT

K S S K
X

K REGISTERS
A

X O N

CIH

£ REGISTERS
08/08/10/11
17<¢-Bits->0

[~ S N =]
o N ©

o N
& NN
o NO
o 4 O
oL =4 N
[~ N
o~
o O o
- =)
ol O
o ON
o OO0

g

]

Bi

Bits 12 - 17

[Q- 4

SKP

Nl

T <O W
T OV Nt dO
e

K
B

[AaJEN T3}

CCH

17<-Bits=>0

E REGISTERS
12/13/14/15

R
03
1

@ N O
o o~
a NN
& NN
o (N —
oz 4 Oh
o e~
of =t N
of = O
LY et -
@ O o
e O M~
a O N
& O M

g O

T3

346456T1
<--Bits 0 - 71--> T4

ERATOR
2 08 6 4 T2

EN
2
4

T6

01

8 6
01233¢465¢67
7531975231

0
0

> D2

Z U

K
'

A
U
X
A
C
T

E REGISTERS
60/01/02/03
17¢-Bits->0
E REGISTERS
04/05/06/07
17<-Bits=->0

CM-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CORPORATION PAGE 0124

5.9.2 NANOSTORE MAP

K SEGMENT LAYCUT

BYTE 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 BITS

6o ILE/BR/AN/AM/DA/HI/SS/AS/ KN - I 17-00
et e ————————— I

01 ISM/GI/AL/*‘/ */H2/ KA / KB I 35-18
[e e e e e L 1

02 1 KSHC / KALC / KSHA I 53-36
e T ———

03 1 KS / KX / KT I 71-54

LE LEGAL MICRO ENTRY H1 HGLD AS ALU STATUS ENABLE

SM SUPERVISOR H2 HOLD 2 SS SH STATUS ENABLE

BR BRANCH AM ALLOW MICRO INTERRUPT GI GENERATE INTERRUPT

AL ALTERNATE AN ALLCW NANO INTERRUPT DA DIRECT MS ACCESS

T SEGMENT LAYDUT

T1 T2 13 T4 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 GO BITS

e (- i i o St . . (e e e o s e . s i S St ——— — . —_——— - —_——— ——

04 08 12 16 IMG/MR/GM/ RMI /RN/WN/IM/10/ AUXO /00/ FSELO I 17-00
o e e]

05 09 13 17 IXI/RI/LE/GE/TX/GU/31/6S/11/ AUX1 /01/ ESEL1 1 35-18
= o e e e e]

06 10 14 18 ICARR CTL/TEST SPC/TA/GA/12/ AUX2 /02/ FSEL2 I 53-36

07 11 15 19 IRC/WC/GC/CS A SEL/LNPC /ST/ AUX3 /AA/IN/ GSPEC I 7154

o o T B o e e e . e o e . . o e e 2t . o e e e S e e . e . e . . ot e o e o

MG - MSGO RC -~ READ (¢S LE - LOAD ES CARR CTL - CARRY CTL

MR — MSRS WC - WRITE CS GE - GATE ES TEST SPEC- TEST SPECIFIER
GM - GATE MS 6C - GATE CS GS - GATE SH CS A SEL - CS ADDR SELECT
RMI- RMI SELECT IM — INC MPC GA — GATE ALU TX = T STOP ; LNPC - LOAD NPC
RN - READ NS XI - XIO 31 - LOAD R31 GU - GATE NS UNZONDITIONLLY
WN = WRITE NS RI - RIO TA - TEST ACTICN 10, Il, I2 - IND, INl, IN2-

ST = STRETCH . IN = INDEX AA - AUX ACTION co, C1, 02 - GUTO,0UTL1,0UT2

QM-1 HARDWARE LEVEL USER'S MANUAL ' NANODATA CORPORATION PAGE 0125

6 NANOPROGRAMMING LANGUAGE SPECIFICATION
6.1 GENERAL

Nanoprogramming is the process of defining @M-1 hardware control sequences and
implementing their definitions by programming the contents of words in QM-1
Nanostore. A nanoprogram, or logically complete control sequencey can be
invoked from one of three sources: Machine Start, interrupt entry, or ‘
microinstruction entry. Since it is plausible to regard microinstruction
control as the "typical”™ mode of QM-1 operation, most nanoprogramming can be
considered to be the process of defining microinstructions and implementing
their definitions by programming the appropriate nanoprimitives in sequences
of Nanostore words. Such a sequence of nanowords is called the "nanoprogram"”
corresponding to the defined ™microinstruction”.

While nanoprogramming is the most elementary level of programming possible in
the @M-1 and has many unique characteristics dependent on 89M-1 hardware, it
has much in common with any type of programming. In particulary, it shares the
need for a symbolic language to relieve the programmer of having to remember
the details of actual bit locations and absolute codes. This section defines
a nanoprogramming language to meet the needs of the nanoprogrammer, much as an
assembly language meets the needs of programmers on a more conventional
computer. o

Although some implenentation standards are described, the intent of this
section is to present a language specification only, generally avoiding
elements (such as assembler directives}) that more properly belong in an
assembler user's manual.

We would like to acknowledge the efforts of Dr. Bob Nash, at the
Department of Computer Science, State University of New York at Buffalo.
The Nano-Assembler is based on his definition of the "Nanocode Symbolic
Assembhler”, developed at the university.

[Notes appearing within this chaptery enclosed in brackets, denote temporary
restrictions or features found only in the basic Nano-Assembier (Version 1,
Level 2). 1

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATION PAGE 0126

6.2 ELEMENTS
6.2.1 SOURCE STATEMENTS

Source statements consist of single records that are either:
al Comment Statements
b) Label Statements
¢) Command Statements
d} Control Statements (briefly discussed in this document)

Each type of statement is complete on a single record. There is no provision
for continuation of a statement.

Sets of command statements actually define nanowords. These sets are preceded
by a label statement to locate and name the nanoword so defined.

‘Comment statements are used only to annctate the listing and are otherwise
ionored. Control statements provide information and direction for the
processor that translates the nanoprograms into absolute bit strings in a form
suitable for loading and execution on the GM-1.

All statements, excluding comments, may be subdivided into fields. Any number
of fields may occur on label, command, and control statements; as warranted by
their immediate applications. Fields are separated by field delimiters, as
described below (6.2.4.1).

Each type of statement will be defined in more detail in subsequent sections.

6.2.2 CHARACTER SET

The character set available for writing nanoprograms is a subset
of beth ASCII and the IBM 029 keypunch. It includes the following
characters:

Ay By «eey Z upper case alphabet
Oy 1y seey 9 decimal digits
non blank
period
comma
colon
equal

QM-1 HARDWARE LEVEL USER®S MANUAL NANGDATA CORPORATION PAGE 0127

greater-than-sign
plus

minus

slash

. star

" quotation mark

PN+ WV

This character set will be expanded as the ne - or t

6.2.3 SYMBOLIC NAMES

Symbolic names are strings of letters, digitss periods, and single
occurrences of the blank character preceded by any non-blank character.
A symbolic name may begin with a letter or period. Leading blanks are
tgnored. These strings may be of any length, but only the first 10
characters are used for recognition of symbolic names. If the 10-th
character of a name is a blank it is also ignecred.

6.2.4 DELIMITERS
6.2.4.1 FIELD DELIMITERS

Labely Commandy and Controf statements may, optionally, be divided into
fields. 7Two field delimiters are defined. The comma (,) is most frequently
used to separate fields, and is treated as a field delimiter on all statement
types. 1t is ignored within comment fields (6.2.5.2) and on comment
statements. The blank () may also be used as a field delimiter, but only
when two or more blanks immediately follow a legal symbolic name; and where
the following field begins with a symbolic name. The reasons for this

alternate delimiter are discussed below, in the section on Pseudo (ommands
(6.3.2.11.

[version 1, Level 2 restriction; any ocurrence of two or more blanks
following a2 symbolic name will be treated as a field delimiter,
regardiess of-the first component of the following field.]

@M-1 HARDWARE LEVEL USER'®'S MANUAL : NANGDATA CCRPORATION PAGE 0128

~

6.2.442 SYMBOLIC NAME DELIMITERS (OPERATORS)

Symbolic names may be delimited by either field delimiters (6.2.4.1) or
operators. The basic arithmetic operators + (addition), - (subtraction]),
* (multiplication)y, / (division)ly, and = (assignment) are recognized only
within command or control fields where aritnmetic expressions are legal.
One additional operator is definedy and consists of the character pair
n-> (transmit). This operator may be used only where data transfer
commands are legal. Finally, the quotation mark (") may follow a symbolic
name acting as both a comment field delimiter (see 6.2.5.2 below) and a
symbolic name del imiter.

6.2.5 COMMENTS
6.2.5.1 COMMENT STATEMENTS

Any statement that has * in column one of the statement will be treated
as a comment statement. It will be printed on the source listing but
will have no other effect on the translation.

6.2.5.2 COMMENT FIELDS

Comments may be included within fields on label, command, and control
statements by simply enclosing the comment between a pair of quotation
marks ("). Comment fields may be placed before or after symbolic names.
A comment field that is in effect is terminated upon encountering the end
of a statement. A new comment field must be declared on the next state-
ment, in order to continue that comment.

6.2.6 BLANKS

Aside from their use in symbolic names (6.2.3) and as field delimiters
(6.2.4.1) strings of blanks are ignored.

@M-1 HARDWARE LEVEL USER*S MANUAL NANODATA CGRPGRATIDN PAGE 0123

6.3 NANOWORD DEFINITION
6.3.1 LABEL STATEMENT

A tabel statement is defined as a statement that contains eithgr a symbolic
or null label declaration.

A symbolic label is indicated by a field containing a2 symbolic name followed
by a colon. :

A null label consists of a field containing only a colony with no preceding
characters.

The colon terminates the label field, but not the label statement. Additional
fields containing Pseudo Commands {see section 6.3.2.1} may be included on
the statement.

A symbolic label is used specifically to pass the symbclic name, and
corresponding nanostore location, of a micro-instruction to the Micro-
Assembler {(described in ancther document); for use as an actual operation code.

[In Version 1, Level 24 this label cannot be used for reference by any other
nanowordsy instead a variable symbol name may be equivalenced to the same
nanostore location (see example belowl.]

The occurrence of a label field indicates the end of the preceding nanoword
(¢f any} and begins a new word definition.

Examples of label statements:

1. Beginning of an ADD instruction.
ADD: “MICRD INSTRUCTICN FORMAT ATTRIBUTES GO HERE"

2e Complex operation code name and attributes.
DECODE X.R: MICRO = ABSOLUTE + AB RELATIVE + WORD 2
("MICRO" is explained in section 56.3.2.1)

3. Variable name used for reference to this nanoword; through
KN fields of other nanowords. The special symbolic name
"N." is used to access the current nanoword address
{see section 6.3.2.11).
ADD: ADD.OPR = N., MICROD = A B ABSOLUTE.

QM-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CORPORATION PAGE 013D

[Version 1, Level 2, may use only the method in example 3 to
reference other nanowords.]

6.3.2 COMMAND STATEMENTS

Command statements serve to actualty define the nanoprimitives desired in a
nanoword, and to show in which T-Vector they should appear. Each statement
consists of one or more command fieldsy which are order independent within
each T-Vector [not so in Version 1, Level 2} see section 6.3.2.4 1.

There are three classes of commands: Pseudo Command Gperators, Nanoprimitive
Commands, and 6 bit Data Transfer Commands. Pseudo Command Operators are
used to declare assembly time functions and attributes, affecting the nanoword
currently being assembled. Nanoprimitive Commands each define values for up
to two K-Vector or T-Vector fields. These commands explicitly identify
nanoword fields to be included in the generated nanoprogram, binary output
file. The 6 bit Data Transfer Commands are effectively macroscopic nano-
primitive commands, and define nanoword fields affecting transfers between

& bit AUX fields and F registers. A single transfer command may implicitly
define up to 5 nanoword fields. All three command classes are discussed in
more detail in the following sections. '

6.3.2.1 PSEUDO COMMAND DPERATORS

Pseudo Command Operators are required to specify assembly time attributes of
the nanoword currently being processed. These attributes include external
micro-indtruction format indicators, for use by the Micro-Assembler, and
selection of the appropriate T-Vectors to receive specific nanoprimitive
commands. There are three types of pseudo commands supported in the

Version 1 Nano-Assembler: Nancstore location counter, Micro-instruction
attr ibutes, and position declarations.

All pseudo command operators may be delimited by a comma, or at least two
blank characters (as described in section 6.2.4.1 above). Use of blanks as
the delimiter allows pseudo commands to take on the appearance of operators,
as found in more conventional assemblers, where blanks denote separation
between operator and parameter fields. :

QM-1 HARDWARE LEVEL USER'S MANUAL - NANGDATA CORPORATION PAGE 0131

NANDODSTIORE LOCATION COIJUNTER

The Nanostore location counter may be accessed, OF modified, using arithmetic
expressions. This capability permits the assignment of the current nano-
location-counter to another symbolic name. This csymbo! may then be referenced
through KN fields of other nanowords, permitting symbolic nano-branch
declarztions. Continuation nanowords, in the larger nanoprograms, need not
have symbolic labels (are not known to the Micro-Assembler) and must therefore
be referenced through this alternate means.

¢ SEARCH.2 = N. nLABEL STATEMENT WITH NULL LABEL FIELD"

It #s legal to modify the nano-location-counter, as 2 method of altering the
normally sequential order of code generation. Care must be taken when using
this method since the vailue of N. must be set to one less than that of the
next desired nanoword location.

WMAKE THE ADD INSTRUCTION MICRO-CPERATION CODE 40" N. = 40-1
ADD: ADD LOC = N. "ADD LOC = LOCATICN OF ADD"

{ The basic Version 1 assemblers have certain predefined variable symbol
namesy to simplify declaration of functional unit actions (such as ADD,
SUB, OVERFLOW, RESULT, etc.l. The temporary differentiation between
symbolic labels and symbolic names permits use of alternate nanoword
reference names, where the predefined symbolic name value must be retained. |

MICROD-INSTRUCTICCN ATTRIBUTE DECLARATIONS

Oniy a limited set of micro-instruction formats are credefined within the
Version 1 Micro-Assembler. Selection of the format to be used by that
assembler, when encountering specific micro-instruction operation codes, is
provided by the "MICRD" pseudo command at nano-assembly time. Selections may,
optionally, be made during micro-assemblies.

Version 1 format selection is provided by a format index numbery passec
between the two assemblers. The actual format declaration should be made on
the label statement, following the symbolic label fields The "MICRO" pseudc
command appears as followss

MICRO = <expression>

QM-1 HARDHAREVLEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0132

Where <expression> may be any legal arithmetic expression (as discussed in
section 6.3.2.2). The list below describes some of the formats supported by
the Version 1 Micro-Assembler. A zero valued MICRO declaration (or no
declaration) causes the Micro-Assembler to select a default format.

MICRC VALUE FORMAT ATTRIBUTES

--{octat)~ e ——————
200 "O0P M,N" 18 bit, with absolute (*) instruction paraneters.
M is the 5 bit A fieldy N is the 6 bit B field.
201 "OP M,N* 1& bit, with parameter M as a 5 bit absolute A

fielde N is the 6 bit B fieldy, with a micro-location-
counter relative value.

207 "OP MN» 18 bity with parameter MN representing an 11 bit,
micro-location-counter relative value.
300 "OP My,V,N" 36 bit, with M representing the 5 bit A field

(absolutel. V represents the 18 bit signed value of the
second word of the instruction. N is the 6 bit B field
{absoiute}.
303 “OPp MN,y" 36 bity, with MN representing an 11 bijt absolute
. value (AB field). V represents the 18 bit signed value
of the second word.

* In the above table; location-counter relative values are all signed, two's
complement, with leftmost bit indicating the sign. The term "absofute®
refers to non-relocatable address expressions, as relocatable expressions
are illega!l within those parameters.

PCSITION DECLARATTION COMMANDS

The Position Declaration Commands determine whether the commands that follow
specify K-Vector or T-Vector fields, and in the case of T-Vector specifications
also select the T-Vector position. A position declaration must appear prior to
any T-Vector commands. K-Vector commands may appear anywhere following the
tabel statement, although it is recommended that they be placed following the
K-=Vector position declaration, to avoid possible programming errors. FEach
position declaration consists of a single symbolic name, which may be term-
inated by either a comma or multiple blank delimiter (see section 6e2.ba1,
Field Delimiters). The allowed forms of these declarations are:

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATICN PAGE 0133

cesne Only K commands allowed in statement.

Xeaeo 811 T commands apply to T-vector 1 of the current nanoword.
eXae All T commands apply to T-vector 2 of the current nanoword.
eeXe All T commands apply to T-vector 3 of the current nanoword.
R 4 AllL T commands apply to T-vector 4 of the current nanoword.

Any statements not containing a position declaration will take on the same
position attributes as the most recently encountered position declaration.
A label statement positions the new nanoword in its K-Vector.

Position declarations may also specify that the T-Vector be stretched. In the
list above,y, the appearence of an X indicates that the STRETCH nanoprimitive is
not specified. If the "X* is replaced with an "S", the STRETCH nanoprimitive
is specified to be active in the declared T-vector.

For the prototype system only, the letter "X" may be replaced with the letter
npr specifying an automatic hardware stretch is being activated by another
nanoprimitive functions and therefore an explicit stretch is required only on
production machines.

eSee ALTL T commands‘apply to T-Vector 2, and the STRETCH nanoprimitive is
selected. :)
P All T commands apply to T-vector %, the STRETCH nanoprimitive will not

be selected on the prototype QM-1.

6e3.2.2 NANDPRIMITIVE COMMANDS

The Nano-Assembler provides commands for the specification of all defined
nanoprimitive fields in QM-1. These are divided into two classes, K commands
and T commands, to correspond to the K-Vector and T-Vector portions of a
nanoword. 1In general, each nanoprimitive command specifies the value of one,
or more, fields in a K or T-Vector. K-Vector fields and T-Vector fields are
summarized in sections 5.3.6 and 5.3.7, respectively, of this manual.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCGRPORATION PAGE 0134

In the Version 1 Nano-Assembler, a nancprimitive command may appear in one of
four possible formats. These are:

NANOPRIMITIVE NAME

NANOPRIMITIVE NAME=<PRIMARY FIELD EXPRESSION>

NANOPRIMITIVE NAME (<SECONDARY FIELD EXPRESSION>)

NANJPRIMITIVE NAME (CSECONDARY EXPRESSIDN>)=<PRIMARY EXPRESSIOND

Expressions are supported in the Version 1 assembler by a simple left -to right,
arithmetic evaluation. There is no defined operator precedence. Care must be
taken in the coding of expressions, since the Version 2 assembfers wWwill intro-
duce basic multiplication and division precedence. All results are in two's

complement, signed format. Version 1 does not check for field value overfiow.

In many cases nanoprimitive functions require at least one associated nano-
primitive specification, in order to completely describe the action to be
performeds For this reason provision is made for the primary nanoprimitive
command name to specify both its own field value and, where necessary, a
secondary field value. An example of this is:

READ CS (CS ADDRESS SELECT)

Where "READ CS" sets the value 1 into-the READ CS fieldy and the value of the
expression in the secondary field (parenthesized) is placed into the corres-
ponding CS ADDRESS selection field.

The Version 1 Nano-Assembler maintains a set of predefined variable symbol
names, and values, within its symbol table (further discussed in section
6.3.2.3). These predefined symbols are provided for use within nanoprimitive
expressions, and provide the corresponding valfues for most freguently used
symbolic names (such as FCOD, G2, B, MPC, ADD, CARRY, etc.). The following
tables describe the supported nanoprimitive commands, identify. their secondary
fields, and list those predefined symbolic names and values specifically
provided for reference use in those fields.

The K-Vector nancprimitive commands may appear following any K-Vector, or T-
Vectory position declaration.

QM-1 HARDWARE LEVEL USER®S MANUAL

NANGDATA CORPORATION PAGE 0135

COMMAND NAME FUNCTIONS

- A W - e w m
TES SIS SISSEs=Ss —_---_—.-------—_—--_-_-----......_-.--_—...-_-_.—...-._...--

{Operating state control fields)

LEGAL MICRO OP ENTRY bit.
ALLOW NAND INTERRUPT bit.
ALLOW MICRO INTERRUPT bit.

both Allow Interrupt bits.

LEGAL MICRO OP - Sets the
ALLOW NANDO INTERRUPT - Sets the
ALLOW MICRO INTERRUPT - Sets the
ALLOW INTS - Sets
DIRECT MS ACCESS - Sets the
HOLD - Sets the
HOLD 2 - Sets the
SH STATUS ENABLE - Sets the
ALY STATUS ENABLE - Sets the
SUPERVISOR - Sets the
GENERATE INTERRUPT - Sets the
bit.
(Nano-Branch contro! fields)
KN=<Expression> - Sets the

BRANCH(<Expression>} - Sets

the

optional
KN field

ALT BRANCH(<Expression>) - Sets

the

Direct Main Store Access bit.

HOLD bit (KALC, KSHC, KSHA, KS).

HOLD 2 bit (KAy KB).

Shifter status enable bit.

ALY status enablie bit.

Supervisory Instruction bit.

Generate / Clear Interrupt activation

KN field to the value of <Expression>.
NANOBRANCH bit. Also allows the
secondary field specification of the
to the value of <Expression>.
ALTERNATE BRANCH Condition bit. Also

allows KN specification as in BRANCHA above.
PREP BRANCH - Sets both the NANCBRANCH bit (BRANCH} and the
ALTERNATE BRANCH Condition bit (ALT BRANCH).

(6 Bit data and function control

fields)

The following 8 fields may each refer to any of the predefined symbols

which are specifically oriented toward only one or two of those fieldse.
This permits the placement of values, destined for a control fieldy into
temporary holding fields for dynamic transfer during program execution.

KA=<Expressicn> - Sets KA to the value of <Expression>.
KB=CExpression - Sets KB to the value of <Expression>.
KALC=<Expression> - Sets KALC to the value of <Expression>.

ALU Control reference symbols provided are: ADD (11), SUB (6),
DBL (14), INCR LEFT (17), DECR LEFT (C), PASS LEFT (371),

QM-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CCORPORATION PAGE 0136

PASS RIGHT (32), DECIMAL (40), AND (36), OR (33), XOR (31),
NOT LEFT {20), NOT RIGHT (25), ZERDO (34}, DONES (23).
KSHC=<{Expression> - Sets KSHC to the value of <Expression>.
Shifter Control reference symbols provided ares LEFT (0), RIGHT (17,
SINGLE (C)y COUBLE (2)s CIRCULAR (0}, LOGICAL (43, ARITHAMETIC (10},
RIGHT CTL (20}, LEFT CTL (40).

K$S=<Expression> - Sets KS to the value of <Expression>.
References same as KT below.
KT=<Expression> - Sets KT to the value of <Expression>.

Arithmetic /7 Shift condition (FIST) test mask reference symbols
provided ares SLB (1), CVERFLOW (2),y RESULT (&), SIGN (10},
CARRY (20), SHB (&40).
KX=<Expression> - Sets KX to the value of <Expression>.
Machine state test condition reference symbols aret F ZERD (1),
MS DATA (2), MS BUSY (4), PROGRAM CHECK (10), INDEX ZERO (20}.

The T-Vector nanoprimitive commands may appear only after T-Vector position
declarations.

COMMAND NAME FUNCTIONS

-—— e o m o a B T T T T T D e D O O O O Tt ES
SIS E= SSSI2TTTSTITTTIFTERS=

{Nanostore Control commands)

READ NS - Sets READ NS bit.
WRITE NS - Sets WRITE NS bit.

The following 3 commands may all reference the same test conditions.

TEST=<Expression> ~ Sets the Test Specifier field to the value of
{Expression>.

Test condition reference symbols aret S (2}, NBT S (3), T (4},
NOT T (5), X (6)s NOT X (7). .

SKIP({<CExpression>) - Sets the GATE NS / SKIP raction" bit to zero.
If the secondary parameter is provided, sets
the Test Specifier field to the value of
{txpression>. If no parameter is specified
(ie. SKIP,) a default value of 1 is used
(unconditional SKIP).

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0137

GATE NS(<LExpression>) - Sets the GATE NS / SKIP maction” bit to 1.

The secondary parameter is processed as for the
SK1P nanoprimitive, above. .

Sets the GATE NS UNCGNDITIONAL bit (overrides
the conditional GATE NS function).

GATE NS UNCONDITIGNAL

STRETCH - Sets stretch bit of the T-Vector. May be used
in place of (or along with) the § type position
declaration. -

LOAD NPC(<Expression>) — Sets the NPC (Nano Program Counter}) control
field to the value of <Expression>. If the
secondary field is not specified the value 1
{CS) is used.

NPC control reference symbols are: CS (1), KN (2), SEQ (3).

{Control Store access commands)
The following 3 commands may all reference the same (S addressing names.

READ (S(<Expression>) - Sets the READ CS bit. The secondary field
specifies the CS ADDRESS selection code. If
, not specified the value 0 is used (CIA}.
CS ADDRESS selection reference symbols ares CIA (0}, COD (11},
MPC (2), INDEX (7). Selection of MPC relative addresses is
accomplished through arithmetic expression by:s MP(+1 (3),
MPC+2 (4), MPC+3 “B" (5}, and MP(C+4 "AB" (6}.

WRITE CS{<Expression>) - Sets the WRITE €S bit. The secondary field is
the same as in READ CS, above.

CS ADDRESS=<Expression> - Sets the CS Address Selection field to the
value of <Expression>. See READ (S, above.

GATE CS - Sets the GATE (CS bit.

INC MPC(<Expression>) - Sets the INC MPC bit. Sets the G SPEC field

to the value of <Expressicn>. If the secondary
field is not specified a default value 14
(MPC PLUS 1) is used.
There are no predefined INC MPC reference names at this time. The
following 4 commands set both the INC MPC bit and the proper value
: into the G SPEC field for the desired function.
MPC PLUS 1 - Sets INC MPC and G SPEC

= 14.
MPC PLUS 2~ - Sets INC MPC and G SPEC = 15.
MPC PLUS B - Sets INC MPC and G SPEC = 16.
MPC PLUS AB - Sets INC MPC and G SPEC = 17.

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATION PAGE 0138

LOAD R31 | - Sets the LDAD R31 bit.

{Main Store access commands)

MSGO - Sets the MSG0 bit.

FETCH MS - Sets the MSGO bit.

MSRS — Sets the MSRS bit.

WRITE MS ~ Sets the MSRS bit.

READ MS - Sets both MSGO and MSRS bits.

RMI=<(Expression> — Sets the, RMI field to the value of
<Expression>,

GATE MS(<Expression>) - Sets the GATE MS bit. 1f the secondary

field is specified, sets the RMI field to
the value of <Expression>.

(18 Bit data control commands)

LJOAD ES - Sets the LOAD ES bit.

GATE ES - Sets the GATE ES bit.
GATE SH - Sets the GATE SH bit.
GATE ALU - Sets the GATE ALU bit.
INDEX(<Expression>) -~ Sets the INDEX ALU gate bit. If the secondary

field is specifiedy, the value of <Expression>
is placed into the FSELZ2 field (for INDEX ALU
function selection).

INDEX ALY function reference symbols are: SUB (6), ADD (11).

INDEX REG{<Expression 2>)=<{Expression 1> _

- Sets the value of the primary field
<Expression 1> into the AUXZ2 field (Local store
register selection) and the value of the
secondary field <Expression 2> into the AUX3
{Index register selection). FEither one or
both parameters may be specified.

CARRY CTL=<Expression> - Sets the Carry Control field to the value of
{Expression>. Specification of the desired
carry control functions may be accomp!ished
with any of the 7 following commands.

CLEAR CIH - ~ Sets the CARRY CTL- field to the value 1.

SET CIH - [l " " " " " " " 2.

ALJ Tg BDTH CI..| AND CCH ”n (1] " " " " " " 3.

ALU TD CBH - " 11 ”" ”» ” " " " 4.

QM-1 HARDWARE LEVEL USER*S MANUAL

SET COH - " "
CLEAR (COH - " "
SH 70 COH . - " "

{6 Bit data control commands)

IND - Sets the
guTo - Sets the
AUXO{<Expression 2>)}=<Expression 1>

- Sets the

<Expressi

specified

of <Expre

only a 0

FSELG(<Expression 2>)=<Expression 1>
- Sets the

<Expressi

specified

of <Expre

enly a 0

INT - Sets the
guT1 - Sets the
AUX1(<Expression 2>)=<Expression 1>
: - Sets the
FSEL1(<Expression 2>)=<Expression 1>
- Sets the
above.
F(<Expression>) 4 - Sets the
{Expressi
for speci
tested un
nF ZERG"

IN2 -~ Sets the
pute - Sets the
AUX2 {KExpression 2>)=<Expression 1>
- Sets the
FSEL2(<Expression 2>)=<{Expression 1>
' - Sets the
above.
AUX3=<Expression> - Sets the

NANODATA CORPORATION PAGE 0139
" " L] " " " 5.
" [" " " " 6.
" " " " ”" L] 7 .

IND bit €¢AUX to F register).
OUTO bit (F register to AUX).

AUXO field to the value of

on 1I>. If the secondary field is
the INO field is set to the value
ssion 2>. The INO field may contain

or 1l.

FSELO field to the value of
on 1>. If the secondary field is

the BUTC field is set to the value
ssion 2>. The OUTO field may contain
or 1l.

IN1 bit.
guTl bit.

AUX1 and INI fields as in AUXO above.
FSEL1 and OUT1 fields as in FSELOD
FSEL1 field to the value of

on>. This command format is provided
fication of the F register to be

der the conditional GATE NS / SKIP on
{KX test condition).

IN2 bit.
gute bit.

AUX2 and INZ2 fields as_in AUX0O above.
FSEL2 and OUT2 fields as in FSELO

AUX3 field to the value of

av-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0140

<Expressiond>.

Several of the above 6 bit data control fields are used in support of
other functions, such as INDEX ALU, and may also be set as primary or
secondary fields of other nanoprimitive commands.

A set of predefined reference symbols is provided for use by all
F select fields. These symbols are:
FMIX (0), FMOD (1), FCIA (2), FAIL (3), FCID (4), FAIR (5),
FCOD (5), FADD (7)), FSID (10}, FSOD (11), FEID (12), FEOD (13),
FEIA (l14), FECA (15), FINV (16}, FACT (16), FLIV (17)s FMPC (20),
FIDX (21), FIST (22), FIPH (23}, GO (24), G1 (25}, G2 (26},
G2 (27), G4 (30), G5 (31), G6 {32}, G7 (33), 68 (34),
G9 (35), G10 (36), G11 (37}.

A set of predefined reference symnbols is provided for specific
source and destination AUX-select fields. These symbols ares
A (0)y B (1), Cl2) for AUX1 source and all destinationsy KX (2) for
AUX2 source, KA (3}, KB (&) for AUX0 and AUX2 source and all dest-
inationss KT (4) for AUXI source, GSPEC (5) for all sourcey
ALUF (6) for AUXO source, 10 ID (7) for AUXO sourcey INCF (&) for
AUX1 and AUXZ2 source, DECF (7)) for AUX1 and AUX2 sources KSHC (5)
for AUXD and AUX3 destination, KALC (6) for AUX0O and AUX1 destin-
ationy KSHA (7) for AUX1 and AUX3 destination, KS. (7) for AUXOC
destination, KX. (5) for AUX1 destination, KT. (6) for AUX3 dest-
ination.

These explicit 6 bit data transfer controls may be used as follows:

1. Transfer B field (of R31) to FSID.
x.-. AUXO(I)zB' FSELOzFSID’ L A0 B IR N B N

2. Transfer KX to KALC (ALU control} through FIPH (phantom F]).
.S.. AUX2‘1)=KX) FSEL2(1,=F1PHQ AUX3=KALC’ S 2 696 &0 000800

More concise command declarations may be obtained using the implicit
6 bit data transfer commands, as described in section 6.3.2.4.

aM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION - PAGE 0141

(General Control and Input / GCutput Commands)

G(<{Expression>) - Sets the G SPEC field to the value of
CExpression>. This format is provided for
support of 6 bit data transfer commands
({see section 6.3.2.41).

Special G SPEC selection reference symbols ares G KSHA (14),
G B (15), G KS {16}, G KX (17).

G SPEC=<Expression> - Same as G{<Expression>} above.
XIO(<Expression>) -~ Sets the XIO bit. If the secondary field is
specifiedy, sets the value of <Expression> in
G SPEC.
RIO(<Expression>) - Sets the RIO bit. If the secondary field is
specified, sets the vaiue of <Expression> in
: G SPEC.
AUX. ACTION - Sets the AUX ACTION bit. (Activates external

" commands via use of F register "FACT"}.

£.3.2.3 VARIABLE SYMBOLS AND CONSTANTS

A variable symbol table is provided, in the Nano-Assembler, to permit user
definition of their own symbolic representations for most reference symbols
(see section 6.3.2.2 for lists of reference symbols). In addition many
parameters may be specified using user selected variable names in place of
constants, permitting easy modification of source programs. A user variable
may be redefined at any point in the assembly. Specification is accompl ished
through arithmetic assignment statements.

The variable symbol! to be defined {or redefined) appears as a symbolic name,

to the left of an equal (=) sign. This name must not be the same as any
currently defined nanoprimitive command name. The value to be placed into the
variable is computed from a simple arithmetic expression, to the right of the
equal siogn. The Version 1 Nano-Assembler supports four arithmetic operators.
All multiplication (%) and division (/) operations are performed before any
additions (+) or subtractions (-). [Version 1, Level 2, recognizes no
operator precedence. 1 Expressions may consist of any other variable names and
censtants.

dM-1 HARDWARE LEVEL USER*S MANUAL "NANODATA CORPORATION PAGE 0142

Constant vatues may be specified in octal or decimal notation. A decimal
constant consists of a string of digits followed by a decimal point (.}. An
octal constant consists of a string of octal digits (0 through 7) followed
by an operator or delimiter. Trailing blanks are ignored.

Decimal constants: 1., 20., -30790., O.

Octal constants: 1, 20, 37707y -77077, O
All negative values are represented in two's complement notation. Care must
be taken in setting up mask values, since -0770 is not the true complement of
the value 7007 (-0770 appears as 777010 in 18 bit sioned notation}. The
Version 1 assembler supports numeric values between +32,767 and -32,768.
Variable assignment expressions may be placed within their own fields on any
type of statement, excluding comment statements, or on their own statements.
The following are some examples of variabie symbol use.
l. Variable name for use in CS ADDRESS seiection:

Se.. B FIELD = 3, READ CS (MPC + B FIELD), GATE CS

2e Setting up alternate names for special purpose F or G register references

F.ZERD GO "SOURCE OF CONSTANT 6 BIT ZEROD AS AN F REGISTER SELECT"

G.ZERD G0-20 "SOURCE OF CONSTANT ZERO FOR G SPEC SELECTION"

eeS5. G(G.ZERO), AUXO(1)=GSPECs FSELO=FIST, "CLEAR FIST™
FSEL1(1)=F.ZERO, AUX1=A, "CLEAR A OF R31"

3. Selecting address referencess

NEXT.INSTR = N. + 1 "N. == CURRENT NANO-LOCATION-COUNTER"
eeses BRANCH (NEXT.INSTR)
*or optionally" :
esse. BRANCH (N. +# 1)} “SETS KN = N. + 1"

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0143

6.3.2.4 & BIT DATA TRANSFER COMMANDS

Specification of 6 bit data transfers between AUX fields and F registers,
and direct F register modificationsy requires the use of a minimum of 3
T-¥ector nanoprimitive fields. 1In addition, only the A, B, and KA fields
are uniformly accessible as sources and destinations in all 3-6 bit control
groups. -

The nanoprogrammer has the responsibility of knowing how many occurrences of
each AUX exist in a T-Vector, but the assembler can determine which control

group to use for each & bit data operation. This automatic selection is in

effect when using the 6 bit data transfer commands. There are four formats

available for stating these commands, as follocws.

1. (SOURCE AUX NAME)->{Expression) .

2. (SOURCE AUX NAME)=>(Expression)-=>{DESTINATION AUX NAME)
3. {SODURCE AUX NAME)->(DESTINATION AUX NAME}

4. (Expression}=>(DESTINATICN AUX NAME)

[Version 1, tLevel 25 is not compatible with the above definition. Transfer
command declarations must be stated, by the nancprogrammer, in the best fit,
left to righty ordery for correct placement into contro! groups. |

[Version 14 Level 2, (Expression) may not be used, as only a single variable
symbol name will be recognized in these fields. See example below.]

(Expression} is equivalent to all legal arithmetic expressions allowed in the
explicit F-select field commands, as described in section 6.3.2.2. B8oth the
(SCURCE AUX NAME) and (DESTINATICN AUX NAME) components must be one of those
listed in the tables below. Format 1 specifies an AUX field to F register
transfery, or direct F register modification (ie. increment F). Format &
specifies an F register to AUX field transfer. Format 2 specifies a replace-
ment operation, where the AUX transfer paralliels the F transfer, usually
exchanaging the two fields. 1t may also indicate a pass operation, when the
value of (Expression) is FIPH, where the source AUX field is transfered dir-
ectly to the destination AUX field. Finally, format 3 is equivalent to format
2y specifically invoking the use of FIPH to pass one AUX field to another.

Q-1 HARDWARE LEVEL USER*®*S MANUAL NANODATA CCRPORATION PAGE 014%

The following table lists all source AUX names and their actual control group
osccurrencess

SCURCE AUX NAME VALUE GROUP NJUMBERS

A 0 0 1 2
B 1 0 1 2
C 2 1

KA 3 0 1 2
KB 4 0 2
KX 2 2
KT 4 1

INCF 6 1 2
DECF 7 1 2
12 1D 7 0

ALUF 6 0 -
G 5 0 1 2

Tre foliowing table lists all destination AUX names and their actual control
grouf occurrencess

DESTINATION AUX NAME VALUE GROUP NJMBERS
A 0 0 1 2
B 1 0 1 2
¢ 2 0 1 2
KA& 3 4] 1 2
KB 4 0 1 2
KS 7 4]

KX 5 1
KT 6 2
KSHC 5 0 2
KALC 6 0 1
KSHA 7 1 2

Examples of transfer commandes:

1. Transfer the A field of R31 to FMOD.
A-DFMOD "Ecquivalent to: AUXC(1)=A, FSELO=FMQOD"
2. Exchange the contents of the B field with FIST.

"QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATIOKR PAGE 0145

B->FIST->B "Equivalent to: AUXO({(1)=B, FSELO(1)=FIST"
3. Transfer KT to G2, while transfering G2 to KSHA. --
KT=>G2->KSHA "Equivalent to: AUX1(1)=XT, FSELI=GZ, "
o FSEL2(1)=6G2, AUX3=KSHA"
4, Transfer KX directly to KALC.
" KX=D>KALC m"Same as KX->FIPH->KALC"
5. Transfer an F register one greater than F.WORK to KX.
F.WORK+1->KX "Equivalent to: FSELO(1)=F.WORK+1, AUXO=KX."

[version 1, Level 2 restriction, (Expressions) may not be used in & bit
transfer commands. Only single symbolic names may be referenced. In order
to accomplish that shown in example 5, a temporary name must be used to
hold the F register value. (ie. TEMP=F WORK+1, TEMP->KX}). I

6.3.3 CONTROL STATEMENTS

Control statements consist of one or more control fields. Though all control
field operators will be recognized on other statement types, the following
ceution should be observed. All control fields terminate the nanoword current-
ly being assembled. 1In addition, statements containing some of the control

fields will not be listed. Two classes of control statements are defined for
Version 15 Assembly controly, and listing control.

6.3.3.1 ASSEMBLY CONTROL STATEMENTS

Only one assembly control statement is defined for Version 1. The "END"»
control operator indicates the end of the last source statement of the
current assembly. It should be placed by itself on a source statement.
It will always be |listeds, recardless of listing controls specified.

dM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 01456

6.3.3.2 LISTING CONTROL STATEMENTS

There are 4 listing control statements defined for Version 1. Each terminates
e h | on
&

LIST OFF No parameters. Remainder of statement is processed. The state-
ment containing "LIST OFF" will not be listed, as well as all
following statements until one with a "LIST ON" control command
is encountered. Lines in error will be listed unconditionally.

LIST ON No parameters. Remainder of statement is'processed. Reverses the
effect of a previous "LIST OFF" command.

"o {Single period) No parameters. Remainder of statement is process-
ede "." simply indicates the end of the current nanoword. It is
used optionaily to trigger normal assembly generated end of word
listing information. This permits insertion of extra |ines and
comments ahead of the next word definition. When not terminated
by command, the label statement of the next nanoword triggers the
generated tisting information.

EJECT No parameters. Remainder of statement is ignored. "EJECT" is
never listed but will cause an eject to top of next page, while
"LIST ON" is in effect.

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0147

6.4 DOPERATION [VERSION 1, LEVEL 2, UNDER NCS ONLY 1
6.4.1 INVOCATION

The Nano-Assembler is initiated by command at the system conscle. Entering

the name “NA," will begin assembler execution. The reaquest for input file

name will be displayed as "INPT="., Respond with the disk data file name,
followed by a comma. The request for binary output file name will be displayed
next as "BIN=". Respond with either the file name to be used, followed by a
periody, or just a period to indicate that no output file is desired. The
escape key (ESC) may be used to cancel a partially entered file name, in order
to correct keyine mistakes.

If any errors are detected during the assembly .the message "ASSEM. ERRORSY" will
be displayed at the end of processinge.

6.4.2 ERRJIR FLAGS

Errors are indicated through use of single character codes placed on the line
immediately following the line in error. Each code will appear directly under
the symbol or character in error. There are three classes of error detection:
LEXICAL, SYNTACTIC, and GENERAL.

Lexical errors are detected during initial scan over the source statements.
Any illegal characters or unrecognized character sequences are flagged with a
digit as follows:

CCGDE DESCRIPTIDON

C Illegal first character in a field.

1 Itlegal character within a symbolic name.

2 Illegal character within a numeric string.

3 Illegal octal number.

4 Internal error in lexical znalyzer. Bt
5 Expected operator or field delimiter missing.

6 Syntax table full (Expression overly complex) L oEEE

L+
&
A

Report these errors to: The Systems Software Division,

NANODATA CORPIORATICN, 2457 Wehrle Drivey, Williamsvillie, New York 14221.
Please provide as much supporting material as possible {(within reason),
listingsy, decks, dumps, etc.

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATION PAGE 0148

Lexical errofs cause a skip to the next comma, or end of statement, whichever
oceurs first. This skip is indicated by a string of hyphens from the error
code to the end of the skipy, on the error flag line.

Syntactic errors are detected while the assembler is attempting to classify
each field (nanoprimitive, label, arithmetic expression, control, etc.). Each
errofr receives a letter code as follows?

CODE DESCRIPTIDON

A Improper first element in a field.

B First element improperly terminated.

C Improper first element in a nanoprimitive secondary field.

D Improper first element in an arithmetic expression. .

E Illegal element, or improper termination, in a nanoprimitive

secondary field.

Improper element in secondary field.

Secondary field not foliowed by legal delimiter.
Improper element within an arithmetic expression.
Improper arithmetic operator within an expression.
Iliegal component in a 6 bit data transfer command.

" st "non n ” " ”" "

”n 1 1] " " " " " ” "

Improperly formatted, three element, 6 bit data transfer conmand.

ErXacw—TITOmM

General error flags are set by various statement class, and field type,
processes. These are listed belows ’

CODE DESCRIPTION

? Unrecoanized nanoprimitive command, control operator, or pseudo
command operator. .

= Warning: that a redefinition of one of the predefined reference
variables has occurred. _

$ Internal assembler control error. #x% (above)

M Multiply defined symbolic label name, or multiply declared
nanoprimitive field.

T T-Vector nanoprimitive declared within K-Vector statement range.

QM-1 HARD

0 x

— X

Generals

BINAR
RROR =

o

A
¥

Consocle e

BAD NAME
FILE NOT

MALFURNCTI
SYMBCOL TA

WARE LEVEL USER*S MANUAL NANODATA CORPORATION PAGE 0149

Nanoprimitive declared outside the range of a nanoword.

& bit data transfer command will not fit in the current T-Vector.

All acceptable groups in use.

Jndefined variable name in arithmetic expression.

Unnecessary primary or secondary naneprimitive command specification.
Incomplete nanoprimitive specification. A required primary or
secondary field declaration is missing.

listable error messages:

Y QUTPUT FILE FULL #==* -~ Specify a larger output file.
- Left side of all error flag linese.

Tror messagess

-~ Itlegal disk file name entered.

FOUND - Try another name, disk or volume.
N - Usually are hardware failure during assembliy.
BLE OVERFLOW — Assembly requires more memory spacee.

ASSEM. ERRORS - One or more errors during assembly,

@M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 015D

7 NANOPROGRAMMING EXAMPLES
7.1 BASIC MCDEL NANOPROGRAMS

One of the most basic nancprograms that can be actuaiiy used is iliustrated
below. This nancprogram implements a WAIT microinstruction that cycles until
an interrupt occurse.

WALT:

eses LEGAL MICRO OP ENTRY, ALLOW NANDO INTERRUPT, ALLOW MICRO INTERRUPT
X...

«Xee READ NS

«eXe GATE NS

..-x

The K-vector commands specify that this is a legal microinstruction and
that all interrupts are allowed foliowing execution of this nanoword.

In the second T-step, nanostore is read using the address that remains in the
NanoProgram Counter (NP(C) foilowing the beginning of execution of the nano-
word. In the third T-stepy the nanostore word read is gated into the control
matrixe. It will begin execution following the third T-step (the last T-step
is unused.)

Since the successive nanostore words read are the same as the first one
triggered by execution of the WAIT microinstruction, this nanoprogram cycles
repeatedly until an interrupt occurs.

When an interrupt occurs (and is accepted by the machine), the above sequence
ts suspended. The next nanoword read and placed into execution is the one
addressed by the particular interrupt that has occurred.

The first T-step is not used for the READ NS nanoprimitive, in the example,
since interrupts are allowed following the execution of this nanoword.
Interrupt address selection requires at least one T-period, and cannot begin
until at least one of the allow interrupt K-Vector nanoprimitives is recog-
nized. The earliest interrupt allow recognition time is at the leading edae
of Tl. Since READ NS address selection is also a leading edge function it
may not be executed in T1l, unless it is selecting a nanobranch (KN) address.

In the example above, no access is made to control store since the same nano-
word is repeatedly read. C(onsequently, nothing has to be done to change the

QM-1 HARDWARE LEVEL USER*®*S MANUAL NANODATA CCRPORATION PAGE 0151

microproaram counter. Its current value still indicates the control store
WAIT instruction that initiated the nanoprogram. In the more typical
situation, successive control store instructions would be read and used to
address different nanoprograms that implement the successive instructions.
The next example shows the implementation of a No-OPeration microinstruction
that includes reading the next microinstruction from control store and
updating the microprogram counter.

NOP:

e... LEGAL MICRD OP ENTRY, ALLOW NANO INTERRUPT, ALLOW MICRO INTERRUPT
Xeoe READ CS(MP(C+1)

.Xe. LOAD NPC(CS)y, MPC PLUS 1 "INC MPC +1; THIS IS A COMMENT"

.+Xe READ NS

.««X GATE NS, LCAD R31

In this nanoprogram, the convention has been established that at nanoprogram
entry, the MPC (one of & available local store registers) points to the
currently executing microinstruction in control store. The actual MP(C in use
is determined by the contents of FMPC when the nanoprogram is executed. It is
further defined that the NCP microinstruction is one word long. (This is a
reasonable assumption since no parameters are needed in a NOP!} Thus during
T1, control store is read at the address one greater than the current contents
~of the MicroProgram Counter. Thus the next microinstruction in sequence is
being read.

During T2, the MicroProgram Counter is updated. This assures that it will
point to the next microinstruction when that microinstruction begins exe-
cution. Simultaneously, this new microinstruction from control store (along
with the contents of the page register in FIDX) is used to load the
NanoProgram Counter (NPC).

From this point on, the nanoprogram is similar to the first example. The
nanostore word that begins the implementation of the next microinstruction is
read and gated into the control matrix. Simultaneous with this last action,
the A and B parameters of the new microinstruction are loaded into R31. The
new nanoprogram then begins execution.

This example is shown as a model since it consists of a basic set of nano-
primitives that will be common to many nanoprograms. It forms a basis for all
one word nanoprograns that implement one-word microinstructions under the
nanoprogramming conventions mentioned. The next example will illustrate
another of the many possible sets of conventions that may be selected.

GM-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CCORPORATION PAGE 0152

One possible nanoprogramming convention which can be established is that each
nanoprogram would expect the next sequential word from control store to be
available at the beginning of its execution ton the COD bus) and that each
nanoprogram would be responsibie for maintaining this prefetch convention for
the next nanoprogram. The following exampie shows a possibie form of the NOP
when proarammed accordine to this new convention.

NOPLA 2

eees LEGAL MICRO OP ENTRY, ALLOW INTS
Xeee LOAD NPC(CS)

«X<. READ NS, READ CS(MPC+2), INC MPC
«eX. GATE NS, LOAD R31

Since the next word from control store is already available, we can immediate-
ly load the NanoProgram Counter in Tl. At the same time, we start the oper-
ations necessary to set up a similar situation at the end of the nanoprogram
by reading control store. The address used is MPC+2 since we need to read the
word ahead by two from the currently executing microinstruction.

The remainder of the example proceeds as before. At the end of T3, we are
ready to execute the next nanoprogram and the next sequential word from
control store is available on the COD bus. As before, the MicroProgram
Counter points to the currently executing microinstruction.

This example has been given for illustrative purposes only; the advantages of
a Control Store prefetch are not explored here. It does tllustrate, however,

some of the possible freedom available to the nanoprogrammer in selecting the
conventions that best suit his purposes.

Now an example will be given showing a very simple nanoprogram which actually
uses the microinstruction parameters. This is an implementation of the
MOV A,B microinstruction that causes the contents of local store register B

to be moved to local store register A, where A and B are the parameters in the
MOV microinstruction.

QM-1 HARDWARE LEVEL USER®'S MANUAL NANGDATA CCRPORATION PAGE 0153

MOV :

«ee. LEGAL MICRC 0P, ALLOK INTS

cees KSHA=0, KSHC=D

Xeee READ CS(MPC+1), A->FSOD, B->FSID
+Xe. LOAD NPCICS), MPC PLUS 1

«eX. READ NS, GATE SH

-eeX GATE NS, LOAD R31

This nanoprogram uses the shifter as a path to accomplish the move. Thus the
main part of the program is the setting of the shifter bus controls FSID and
F50D, followed by the gating of the shifter to actually cause the transfer.
Note that the controls are set up in Tl but the gate operation is deferred
until T3. This is necessary in order for the shifter output to be stable.

Since the shifter is used merely as a path to accomplish the move, No shifting
is required. The shift amount is explicitly set to zero with KSHA=0. This is
done to meke the example cleary it is unnecessary,y, as is KSHC=0, since the
default value for these fields is zero when they are not mentioned.

Nete that all of the nanoprimitives of the NOP nanoprogram are included in the
example MOV nanoprogram. This is done since some scheme for fetching and
sequencing of microinstructions is necessary. The scheme illustrated in the
NCP nanoprogram is one such scheme and is satisfactory for the instruction
presented. The prefetch scheme would work as well as is shown below.

MOVLA:
eeee LEGAL MICRO, ALLOW INTS

eee. KSHA=0, KSHC=0

Xeee LOAD NPC(CS), A-DFSGD, B->FSID. V
«Xe. READ NS, READ CS (MPC+2), MPC PLUS 1
.«X. GATE NS, GATE SH, LOAD R31

In fact, this also illustrates a possitle advantage of the prefetch since the
nanoprogram is shorter by one period.

At this point, it is useful to introduce a shorthand notation to simplify
writing sets of nanoprograms. By predefining a set of nanoprimitives that
appear frequently, they may be invoked by name when needed. This is
illustrated in the next section.

QM-1 -HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 015%

7.2 USE OF PREDEFINED NANDWORDS

[NOTE: In current versions of the Nano-Assembler no support is provided)
[for fetching predefined nanowords. It is likely that this support will be]
[added in later versions. Until then, predefined nanowords are described in]
[this document strictly for illustrative purposes.

It is useful to have a way to condense the description of sets of nanoprograms
having frequent repetition of the same nanoprimitive sequences. This is done
by reference to predefined nanowords. Any nanoword previously defined and
labeled may be invoked to cause all of the predefined bits to be set in the
nanoword in which the label of the predefined nanoword is mentioned.

For example, the MOV nanoprograms of the previous section may be writtens:

MOvV:

casme NUP, KSHA=0' '(SHC=0
Xeeoe A->FSOD, B->FSID
.«X. GATE SH

Here the fetch sequence is invoked by reference to NOP, provided the NOP
nanoword has been defined as shown in the previous section. All of the bits
on in that nanoword will be set on in this nanoword.

Simitarly, the prefetch sequence can be invoked instead by changing NOP to
NOPLA. h

MOVLA:

eewe NOPLA, KSHA=0, KSH(C=0
Xeeoe A-D>FS0OD, B-D>FSID

«eXe GATE SH

This notation will be used extensively in the examples that follow. It makes
the examples shorter and allows one to concentrate on the parts of each nano-
program that are novel to each new example. Considerable care must be
exerted, however, to avoid combinations that are not consistent.

QM-1 HARDWARE LEVEL USER®'S MANUAL NANODATA CORPORATION PAGE 0155

The simple fetch procedure, described in the beginning of this chapter, will
be used in most of the examples. It is formally coded as follows:

FETCHS :

eeee LEGAL MICRD OP ENTRY, ALLOW NANO INTERRUPT, ALLOW MICRO INTERRUPT
Xeee READ CS (MPC+1)

«Xae LOAD NPC (CS)

«.«X. READ NS, MPC PLUS 1

.«=X GATE NS, LOAD R31

The INC MPC nanoprimitive (MPC PLUS 1) has been placed in T3 so that the

ptevious contents of MPC may be used during Tl, T2 or T3 in nanoprograms that
use FETCH.

To illustrate the use of this predefined nanoword, the following nanoprogram
implements a LD A.B microinstruction that loads-from control store, into
local store register A, the word addressed by the contents of local store
register Be.

LDz

coeoe FETCH

Xo.o A‘)FCDD’ B")FCIA
««X. READ CS (CIA)
«eeX GATE CS

In this example, the essential but previously discussed parts of the nano-
program are condensed into the reference to FETCH. Then, the parts of the
nanoprogram important to make the LD work can more clearly be seen.

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATICON PAGE 015%

7.3 CONTROL STORE ACCESS NANOPROGRAMS

The previous example shows how One may implement an instruction to load a word
from control store inte a local store register, using an address already in a
local store register. The examples in this section will illustrate other ways
in which control store may be addressed and accessed.

The address of the desired control store data location may itself be fetched
from control store. Two simple access technigues can be implemented. First of
ally one could treat the lower 64 {(decimal} locations of control store as a set -
of directly accessed special registers. Second, the data address could be

found at some control store location relative to the load instruction itself.
The most accessible location, in this case, would be the next sequential

control store word.

The following example illustrates a microinstruction that reads the control
store location identified by the value of By, into local store register A.

LDCSR=:

saes FETCH, KA=31.

Xeao A->FCOD, KA-D>FCIA, FIPH->A
eXae

.«X. READ CS (CIA)

«eeX GATE CS

The Load-Via-Control-Store-Register instruction uses the predefined FETCH pro-
cedure to accomplish its next microinstruction access.. Care must be taken not
to interfere with that logic, especially since both FETCH and the instruction
execution logic access control store.

Tl of our example sets up the F-registers for the data access. Local store
register A is connected to the COD bus, register 31 (decimal) is connected to
the CIA bus, and the original content of the A field is zeroed leaving only
the B field remaining in R31. FIPH is a source of zeroes when no source AUX
s transmitted to ity within the same T-step. Note that the C field of R31
does not need to be clearedy, as the conventional microinstruction initiation
sequence clears C while loading A and B (LOAD R31 nanoprimitivel.

Tl and T2 are used by the FETCH sequence to access control store. We may use
control store for our data access beginning in T3. Local store register 31 is
now used for addressing control store. Note also that we are accessing both
nanostore and control store simultaneously during T3 and T4. The FETCH

QM-1 AARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0157

sequence is reading the next nanoprogram while the LDCSR logic is reading the
data word.

To be able to address any control store location the Load-Via-Next-Word
instruction may be defined. 1In this case the microinstruction may be consider-
ed as being two words in length, where the second word contains the absoclute,
18 bit control store address. The data is loaded into the local store register
identified by the A field of the first word of the instruction.

There are many ways of organizing this nanoprogram. In order to use the FETCH
predefinition we must define an additional programming convention. If we
enforce the rule that any nanoprogram that uses FCOD must restore it to the
value 31 (decimal) prior to completion, we may then execute a GATE (S nano-
primitive in Tl with the knowledge that the (OD bus is already connected to
R31.

LONuW® "WITH FCOD=31 CONVENTION”
eees FETCH, KA=31.

See. GATE CS, A->FCOD,s KA->FCIA
«Sa. READ CS (MPC+2), MPC PLUS 1
««X. READ CS (CIA)}

- eeaX GATE (S, KA-D>FCOD

The FETCH sequence normally initiates the read of CS location MPC+l1 in T1, then
loads NPC with the results of the read in T2. By stretching Tl the READ CS§
(MPC+1) is completed within T1, and our GATE €S will place the content of MPC+1
into local store register 31 (by our FCOD convention). Thus, by the end of Tl
our data address resides in R31. Since we have changed R31 by the end of Tl we
must extract all necessary A and B field information during Tl1. B is not used,
but A must be transfered to FCOD (we have now altered FCOD]}.

The FETCH sequence expects the next instruction to be available on the COD bus
by the end of T2. We can provide this by stretching T2, and executing a

READ CS(MP(+2) at the beginning of that T-step. T3 and T4 now can function the
same as in the LDCSR instruction above. The only difference will be our rest-
oration of FCOD to the value 31, as required by our new convention.

It is possible to define an LDNW instruction without the above convention, but
the FETCH definition may not be applied. We also will require two additional
T-periods as follows. ’

«¥-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0158

LDNN = "WITH NO CONVENTIONS® .
= INSTRUCTION EXECUTION CODE " INSTRUCTION FETCH CODE

S<e. READ CS(MPC+1), A->FCOD o

.S5-.. READ CS(COD), GATE CS e

ssSe *» READ CS(MPC+2), MPC PLUS 2, LOAD NPC(CS)
cesd »» READ NS, GATE NS, LOAD R31

In T1 above we read the word from MPC+1 onto the C0OD busy but we do not gate it
into local store. W®We also set up FCOD. Then, in T2, we point the control
store address select directly at the data on the (0D bus, and use this as our
data address. T2 must complete the data access in order to free control store
for a third ready, which must begin in T3 if we are going to complete this nano-
program within one nanoword.

Note that in both of the LDNW examples we perform three READ CS operations.

One is required to read the data address, another to access the data, and the
third to fetch the next instruction. Only the order of events has changed
between the two methods. A LDNWLA (look ahead) instruction sequence could also
be written in a similar fashion, saving at least one T-period. Wwe leave the
oroof of this as an exercise for the reader.

The following example illustrates the writing of control store. The STCSR
instruction is the counterpart of LDCSR, and will store the local store
register identified by the A fieldy, into the control store location ident-
ified by the absolute value of B.

STCSR:

reoe FETCH' KA=31¢

Xees A=-DFCID, KA-DFCIA, FIPH->A
.X.'

«eXe HWRITE CS (CIA)

...X

That'!s all tﬁere is to that. FCID is set up in T1, and the WRITE (S is
performed during T3 and T4. Everything else is the same as in the LD{SR
instruction, above.

dM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0153

7.4 MICRDINSTRUCTION BRANCH NANOPRCOGRAMS

There are several GM-1 hardware functions that simplify the definitions aof
branch, or jump, instructions. Only those basic instructions wil! be explored
in this section. More advanced instruction formats (ie. branch and link) will
be di¥scussed in section 7.6. Three branching examples are shown below.
Although all of the nanoprimitives of the FETCH sequence are used-in one of
the examples, the functional meanings of the use of each primitive differs
extensively, therefore no predefinitions are used in that example.

The ability to increment the micro-program-counter by the values 1 or 2, and
to add the two's compliement values of either the & bit B field or 11 bit A and
B field concatenation to the MP(C, simplify the definitions of some forms of
branch instructions. The first example executes a branch that is relative to
the address of the branch microinstruction itself. BPREL (Branch Program-
Counter Relative) allows a forward branch of up to 1,023 (decimal) locations,
and a backward branch of up to 1,024 locations. The AB field concatenation
hardware permits the following encoding. '

BPREL:
Xeeeo "SETTLING TIME FOR COMPLETION OF MPC+AB CIRCUIT COMPUTATION."
~+S«. READ CS (MPC+AB "AB=4")}, LOAD NPC (CS)s MPC PLUS AB '
..X. READ NS

The A and B fields of R31 receive the new microinstruction parameters at the
start of T1, therefore some time must be allowed for the new AB value to be
arplied to the MPC+AB addition circuit. Following T1 the proper value is
available for use as a control store address and for gating into the MP(C reg-
ister. T2 is used to read the next microinstructiony and to route its address
into MPC. NPC is also loaded with the nanostore address. T3 and T4 then read
and gate the new nanoprogram, as in most previous examples.

Frequentiy the branch address will be found in a register. For example} entry
into a subroutine may leave the return address in a register, requiring a
simplie transfer of control to the instruction at that address upon subroutine
exite A BR (Branch-Via-Register) instruction can be defined as follows.

M =1

3R:

x...
.x..
--S.
.l-S

dARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION

KA=LS.MPC

KA->F500, A->FSID, A->FCIA

"ALLOW CIA AND SHIFTER SETTLING TIME."
READ CS (CIA), LOAD NPC ({CS}),y GATE SH
READ NS, GATE NS, LOAD R31

PAGE 0160

Ir this example the MPC local store register has been symbolically named
LS.MPC, and is defined in the KA field. Should the actual MPC be a variable
(remember, there are 4 possible MPC registers) a convention may be specified
whereby the current MP{ register number could be found within a specific G-
register. In that case it could be coried from the G holding register to FSOD
as followse.

S..O

G(G.MPC)y G->FSOD, A->FSID, A-DF(CIA

The shifter is being used to pass the actual address from the local store
register, defined by A, into the current MP{. Contro! store address sel-
ection requires that the actual address be available at least one T-period -

prior to the actual READ (S operation. The address will not be stable,

in

the MPC, soon enough to be referenced by a READ CS (MPC), especially in a

one nanoword procram. We do, though, have the address available

original local store register, and may reference that register for (S address—

ing via the CIA bus. Therefore A-D>FCIA in T1 sets up the appropriate connect-
ion soon enough to allow our READ CS (CIA) in T3.

The complete control store access is done in a stretched T3, allowing NPC to
be set up for use by the READ NS in T4. T4 is also stretched, allowing both
inttiation and completion of the nanostore access.

Another form of branching allows programmed decision making.

shows a conditional branch instruction. In this case no address

the

instruction, as it requires no operands. Our instruction will

The next example
is passed to
"skip" over

the next sequential instruction if the result of the last arithmetic operation

instruction was positive, or zero. The Skip-On-Plus instruction will
indicator of F-register FIST. 1If the SIGN indicates a zero
skip the next instruction. If SIGN is a one (negative) it will

SIGN
will

the next sequential instruction.

test the
{positive) it
execute

QM-1 HARDWARE LEVEL USER®S MANUAL NANCDATA CCORPORATION PAGE 0161

SKIP ON PLUS:

sees KS = SIGN

* FIRST READ THE NEXT SEQUENTIAL INSTRUCTION.
Seee READ CS (MPC+1), LOAD NPC (CS)e SKIP (NOT $)
¥ SKIP OVER T2 IF (FIST .AND. KS) ARE NOT ZERO.
«S.. READ CS (MPC+2), LOAD NPC (CS}, MPC PLUS 1
.+«S. READ NS, MPC PLUS 1
eeeX GATE NS, LDAD R31

Tl, above, reads the next sequential instruction (MPC+1l) and prepares the NPC
in case T2 is skipped. 1If T2 is not skipped it will read the microinstruction
at MPC+2, and execute an extra increment MPC cperation. The LOAD NPC (CS) in
T2 will replace the value set into the NPC in Tl. The conditional skip tests
the result of the logical "AND" operation between the KS field of the nano-
program and FIST. The skip will take effect If the result of the "AND"™ is
"ROT» zero.

At T3 the MPC will be incremented once, unconditionally. If T2 had not been
skipped the MPC will be 2 greater than at the beginning of the Skip-On-Plus
instruction. T3 and T4 complete the access to the appropriate nanoword, as
selected during Tl and T2.

QM-1 HARDWARE LEVEL USER*®*S MANUAL NANODATA CORPORATION PAGE 0162

7.5 ARITHMETIC NANOPROGRAMS (SHIFTS)

This section will illustrate several examples of ALU, INDEX ALU, SHIFTER, and
F register increment / decrement facilities. Although it is not shown in any
one exampie, all of these functional units may be used simuitaneously and
independently. Cnly the standard ALU and SHIFTER may be used for combined
functions, in support of double precision shifts and related ALU / shift
operations.

The independence of the ALU and SHIFTER may be shown in the SWAP instruction.
SWAP simultaneously exchanges the contents of the local store register ident-
ified by the A field with the register identified by the B field. The ALU is
used to transfer R{B) to R(A) while the SHIFTER is used to transfer R(A) to
R(B). The ALU operation command is PASS LEFT, which uses only tne left ALU
tnput and transmits the input data to the AOD bus without modification.

SKAP A,B I RUAY=R(B)s R(BI=R(A)]
SWAP: "SWAP THE CONTENT OF THE A AND B LOCAL STORE REGISTERS®
eees FETCH, KALC = PASS LEFT
Xeae A->FSID, B-D>FS50Ds B->FAIL
eXae A->FAOD
-«X. GATE SH,y GATE ALU
.-.x

No KSHC field declaration was needed as the default SHIFTER condition (0) is
SINGLE, LEFT, CIRCULAR. A zero shift amount is also the KSHA field default,
and will always result in an unmodified SHIFTER output. Tl is used to set up
both input F registersy in order to begin the propagation of the data through
the functional units as early as possible. Two T-periods are required before
the data is stable on the output buses. The output F values are set during T1
and T2, the only requirement being that they be set prior to the T-step that
gates their outputs. The ALU and SHIFTER outputs are stable at the end of T3,
where both are simultaneocusly agated. 1If a look-ahead microinstruction fetch
was in use, in place of FETCH, the entire instruction could complete execution
in only 3 T-periods.

The ALU may be used for a full assoriment of arithmetic and logical operations.
Most arithmetic operations require use of carry-in and carry-out logic, while
logical operations normally do not. In standard 18 bity twot*s complement
addition and subtraction the ALU carry-in must be cleared or set, respectively.
Use of the opposite carry-in will result in a value one greater than the

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0163

correct result for add operations, and one less for subtract operations. This
may be used to advantage in multiple precision operations where low order
additive carry-outs, or subtractive borrows, require corrective actions in the
higcher order results. : :

The next example is a simple single precision add. The carry-in hold must be

cleared before the ALU will begin to compute a2 correct two's complement add-
ttion.

ADD A,B [RtA)=R(A}+R(B])] '
ACD2 “ADD LOCAL STORE REGISTER A 70O B, RESULT IN A"
eees FETCHy, KALC = ADD, ALU STATUS ENABLE
Xeee A-DFAIL, B->FAIR, A->FAQD, CLEAR CIH
.X..
...x

All tnputs are defineds inclucding the carry-in-hoid, in Tl. The ALU results
are avatlable for gating at the end of T3. The K-Vector bit "ALU STATUS
ENABLE"” will normally be used in arithmetic and logical microinstructions,
permitting the ALU status bits in FIST to be updated upon GATE ALU. This
allows future instructions to test the results of this operation. The ALU
carry-out must be manually transfered to FIST through the ALU T0O CO4H command,
which also saves that condition bit in the carry-out-hold register. 1If this
instruction is a low order component of a multiple precision add then carry-
out equal to 1 will indicate that the result was a 19 bit value, and will
require an addition of 1 tec the next higher order element. As stated above,
this extra 1 addition may be accomplished during the next add operation by
setting the carry-in-hold.

The next example illustrates a double precision subtract instruction. DSUB
will subtract one pair of local store registers from another. Unlike some
conventional double precision instructions, where the register numbers in the
instruction operands point to the hiah order registers, our instruction oper-
ands point to the low order registers (for simplification of exampie). In this
example the propagation of the carry-out from the lower precision result to the
carry—in of the higher precision operation is accomplished through an internal
carry command, "ALU TO BOTH CIH AND COH".

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0l64

DSUB A,B [R{A-1).R(A)=R(A-1).R(A)-R(B-1).R(B)}]
DSsuBz: "SUBTRACT REGISTER PAIR B FROM REGISTER PAIR A"
seee FETCH, ALU STATUS ENABLE, KALC = SUB, KA = RIGHT CTL

Xeeo A-DFAIL, B->FAIR, A->FAQGD, SET CIH

<S-. DECF->FAIL, DECF->FAIR, A->FSID, GATE ALU, ALU 70 BOTH CIH AND COH
eeSe KA=>KSHC, DECF->FADD

esaX GATE ALU, ALU TO COH

Tl sets all ALU local store pointers and the initial carry-in-hold as recquired
for a subtract operation. The low order subtract proceeds during T2. At the
end of T2 the low order result is gated, the carry-out required for the higher
order subtract is passed back to the carry-in-hold, and the ALU inputs are
decremented by one to point to the high order data local store registers., T3
is now used to decrement the ALU output pointer, and to set the SHIFTER control
to right-control mode. This shift mode, along with FSID pointing to the low
order result register (set in T2}, will enable proper detection of the 35 bit
“RESULT ZERO" condition. Finally T4 gates the high order result and sets the
fast carry-out indication into the carry-out-hold. Upon complietion of this
nanoprogram the CARRY, OVERFLOW, and SIGN bits of FIST accurately depict the
final value of the double precision operation. The FIST “RESULT" bit shows
the condition of the low order 35 bits of the AOD and SOD buses, as detected
by recycling the low order result through the SHIFTER during the GATE ALU.

The INDEX ALU operates without the requirement for any associated F register
to be preset. All INDEX actions must be stated, and completed, within two
consecutive T-Periods. The following exampie modifies the LDCSR instruction,
see section 7.3, to access a contro! store register relative to a base address
instead of ustng an absolute address. The base address is maintained in an

X register named X.BASE. :

LDCSRB A,B [RCAY=CS(B+X(BASE)) |
LOCSRB: "LOAD REGISTER FROM CONTROL STORE REGISTER PLUS BASE"
eees FETCHy KB = X.BASE, KX = 31., X KB = 3"CONSTANT INDEX REG SELECTION"
Xeae A->FCOD, KX-D>FCIA, FIPH=>A
«S-.. INDEX (ADD), INDEX REG (X KB) = KX, G(G KX)
eeXe
«ee5 READ CS (CIA), GATE CS

The final address consists of the original B field content plus the base
address value from X.BASE. This address is ready at the end of T2, and may be
used by the READ CS nanoprimitive at the beginning of T4. 1In this example the

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0165

ADD operation is commanded directly within the FSEL2 field of T-vVector T2.
Optikonally, the FSEL2 field may be used as a pointer to a command in one of
the F registers. The index register is pointed to by the content of the KB
field of the K-Vector, and the local store register is pointed to by the KX
fielde These register selections may only be made through indirect pointers,
untike the command selection field.

The SHIFTER may be used for either single length (18 bit) or double length (36
bit) shift operations. When used for single length shifts only the SID and SOD
busses are used, with the KSHC and KSHA fields specifying the type of shift and
shift amount, respectively. Double length shifts require use of the SID bus
and one or both ALU busses (AIL and AIR) for input, and the SOD and AQD busses
for output. If the ALU is not used for a combined ALU function and shift oper-
ation it may essentially be bypassed through use of the PASS LEFT ALU function.
This allows the double length shift to complete in 2 T-periods. Use of most
other ALU commands requires an extra T-period for completion of the ALU phase
of the operation, before its output is ready for the high order action of the
SHIFTER, The following example performs a double length shift, where the ALU
is used strictly to pass the high order 18 bits to the shifter extension.

SRDAT A,B [R{A)RUA+1)=R(A).R(A+1}->B]
SRDAI: “SHIFT RIGHT DOUBLE ARITHMETIC IMMEDIATE®
eewe FETCH, KSHC=RIGHT+DOUBLE+ARITHMETIC+RIGHT CTL, SH STATUS ENABLE
KALC=PASS LEFT, ALU STATUS ENABLE
Siee A-DFAIL, A->FSID, B->KSHA, CLEAR CIH
«S<. A->FAOD, INCF-D>FSID, A->FS0D
eeSe. INCF->FSQOD
eeeX GATE ALU, GATE SH, ALU TO COH

In a similar fashion to the ADD example above, the K-Vector SH STATJUS ENABLE
bit allows FIST to be updated at GATE SH time with the SHIFTER high bit and
low bit status. These bits though are strictly the outputs of bits 0 and 17
on the 50D bus. The ALU STATUS ENABLE allows the setting of the SIGN, CARRY,
OVERFLCW, and RESULT bits of FIST, upon GATE ALU execution. In the case of a

- right shift operation OVERFLOW will always be zero. CARRY should also be zero,
and the CLEAR CIH operation in T1 will guarantee this. SIGN will be set to the
correct 36 bit resultant sign. The RESULT bit of FIST will be set zero if all

of the low order 35 bits (0 through 34) on the AOD and SOD busses are zero, as
detected by "RIGHT CTL" mode.

QM-1 HARDWARE LEVEL USER®*S MANUAL NANCDATA CGRPORATION PAGE 0166

This instruction is defined to shift the registers A and A+l. Therefore the
low order shift operations will require that FSID and FSOD be set one greater
than the value in the A field. This is accompliished by tranferring the value
of A to all required F registers, and then incrementing that value directly in
FSID and FSOD with the 6 bit increment functions in T2 and T3 respectively.
Both inputs are stable immediately after T2, which would allow the results to
be gated in a stretched T3 or at any time after T3. Faster techniques for
setting up the final F register values may be worked out, with the INDEX ALU
for example, reducing the overall time require for the SRDAI instruction.

As discussed aboves; when the ALU and SHIFTER are used for a combined function
the time required for the passage of data through both the ALU and SHIFTER
extension is 3 T-periods. An example of a combined operation where this
capabdlity may be used is in the extraction of subfields of data words. To
extract a subfield and right justify the extracted result in a register we
need several pieces of information. First the actual data source and the
destination registers must be identified. Second the actual subfield width
and position must be described in some form. For our next example we will
simplify these items as follows. The source and destination data registers
will be the same, as identified by the A field of our microinstruction. The

actual original field width and situation will be found as a predefined mask
in the local store register symbolically named LS.MASK. Finally, the right
justification will be described by a shift amount specified as the micro-

instruction B field.

MASK.SHIFT A,B [REAI=(R{AIER(LS.MASK)I=>B |
MASK .SHIFTz “MASKED-SHIFT REGISTER"
eees FETCH, KSHC = RIGHT+DOUBLE+LOGICAL, KALC = AND, KA = LS.MASK
Sees KA->FAIR, A->FAIL, B->KSHA, CLEAR COH
eXee A-D>FAQD
..XQ
«eeX GATE ALU

Although the SHIFTER is actually involved in our instruction operation only the
high order input and output component affect our result. Therefore FSID and
ESOD are not referenced, nor is a GATE SH needed. The ALU inputs are set up in
Tl. The right input points to the fixed register LS.MASK and the left input
points to the A field selected input. The shift amount is also set in T1,
permitting the entire operation to begin immediately following Tl. The CLEAR
COH primitive is necessary to avoid the propagation of an extra high order bit
into the result during the logical shift operation. The ALU output setting may

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0167

be made any time preceding the GATE ALU. The ALU functions as follows. First
the logical product of the content of register A and the mask register is
computed. Then that result is shifted righty with left zero fill, and placed
-onto the AQUD bus. This normally two step operation is now complete in one
extended ALU-SHIFTER operation.

QM-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CCRPORATION PAGE 0168

7.6 MULTIWNORD NANOPROGRAMS

When the algorithm for a nanoprogram requires more than 4 T-steps additional
nanowords must be used. There are several alternative methods that may be used
in transferring contro! between nanowords. Selection of the appropriate method
requires knowledge of the programming conventions in use within the set of
resident nanoprograms making up the active nanostore environment. The most
simple nanostore environment would be one where there are no nanowords shared
by different nancprograms. In most nanoprogramming the programmer tries to
identify all common sets of procedures. If there exists frequently repeated
exit codey from several nanoprograms, it may be possible for all to use the
same last nanowords (referred to in the future as common tail nanowords). 1In a
similar manner, if there exists frequentiy repeated sets of nanocode within
different nanoprograms then it may be possible to set up a common body nano-
subroutine. :

Initial entry into the first nanoword of a microinstruction initiated nancprog-
ram uses "LOAD NPC(CS)" to set the entry address into the Nanoprogram Counter.
The NPC may be modified from other sources. The KN field of the current nano-
word may be transferred intoc NPC, using LOAD NPC(KN). NPC may be incremented
by one, for each use of LOAD NPC(SEQ). Control may also be transferred without
modifying the current NPC, using the NANOBRANCH selection mechanism. In this
case the KN field is used directly to read the next nanostore location.

An example of the entry / exit procedure for calling on a nano-subroutine may
be to require the calling nanoprogram to set the return nanostore address into
the NPC prior to enterring the subroutine. This may be accomplished by either
incrementing the NPC, with LOAD NPC(SEQ), or by actually setting up the entry
address of the next nanoprogram using the ‘next microinstruction operation code,
with LOAD NPC(CS). Transfer to the subroutine would then be via NANOBRANCH
address selection, with the BRANCH(address) nanoprimitive. The subgputine
itself may transfer to multiple nanowords using only the NANOBRANCH mechanism.
This subroutine would exit by simply reading nanostore without any alteration
of NPC. The focation read will be that originally desired for the return, by
the calling nanoprogram. For examples

CALLER (1 SUBROUTINE
[1
BRANCH (SUBROUTINE)]
TIN) - LOAD NPC(SEQ) (1 TMM) READ NS, GATE NS
T(N+1) READ NS, GATE NS [1 "RETURNS TO CALLER + 1°v

QM-1 HARDWARE LEVEL USER*S MANUAL NANODATA CORPORATION PAGE 01693

The following example defines the BALTNW (Branch And Link on True to Next Word)
instruction. This instructicn requires two nanowords. The technique used for
nanostore address modification is increment NPC. The Branch and Link operation
takes place only when at least one of the bits selected in the B field is also
set in FIST. 1If none of the selected bits are set control proceeds to the next
sequential instruction. ‘

BALTNW A,V,8
i IF (B .AND. FIST) THEN R(A)=MPC+2, MPC=V, ELSE MPC=MPC+2 |
BALTNW: "BRANCH AND LINK TG CS(V) ON TRUE"
-ees LEGAL MICRO 0P ENTRY, KB = LS.MPC

Seae B=-2KS, KB->FSID, MPC PLUS 2, LOAD NKPC (SEQ)

«S«« KB->FCOD, A->FSCD, READ CS (MPC+1), READ NS, GATE NS (NOT S)
««S. READ CS (MPC), LOAD NPC (CS)

«e««S READ NS, GATE NS, LOAD R31

bl
L J

eeae ALLCW INTS

Xeee GATE SH, GATE €S
«Se.. READ CS (COD), LOAD NPC (CS)
««5. READ NS, . GATE NS, LOAD R31

In the first word, Tl and T2 set up the "S" test condition from the B field and
execute the test. If the result indicates "false" then control stays within
this word, fetching the next sequential microinstruction. Otherwise, control
transfers to the next segquential nanoword where the return MPC address is

saved in R(A) and MPC is set to the value of the second word of the BALTNMW
instruction itself. The SHIFTER is used to pass the old MPC to R(A). Control
store output data bus is used to supply the address for the READ CS in T2 of
word 2, and for the new MPC value via GATE CS in T1 of word 2.

The first READ NS in word 1 reads word 2. This address is selected in Tl via
the LOAD NPC (SEQ). If not used, NPC is reloaded from the microinstruction
selected nanostore address in T3.

Note that although it appears that the original MPC value is incremented by 2,
in T1 of word 1, the READ CS (MPC+1) in T2 still uses the original MPC value.
This occurs because MPC PLUS 2 is a trailing edge operation and READ CS is a
leading edge operation. Data propagation delay times guarantee that the MP(C
value cannot change before the control store address is completely decoded.

d¥-1 HARDWARE LEVEL USER'S MANUAL NANGDATA CGRPORATION PAGE 0172

The next example describes an unsigned, 18 bit multiply instruction. The
algorithm used in this exampld uses the conventional repetitive addition
technique. In this nanoprogram the actual multiplication is done in a single
nanoword. One initialization word and one completion word are also defined.
The ALU and SHIFTER are connected during the operation, and as each condition-
ally selected addition is performed the result is shifted right one place from
the ALU toward the SHIFTER. Upon completion the product has replaced the
multiplier and multiplicand, in their original registers. The following
diagram shows the ALU-SHIFTER organization for this program.

ADD/PASS TEST BIT

I\
PRODUCT QUTPUT (AOD) PRIDUCT///MULTIPLIER »»
A QUTPUT (SOD) ~un

'CARRY! ' 3 ! Wy
! QUT '==>' SHIFTER LEFT HALF t—=>! SHIFTER RIGHT HALF wrr
tHOLD . ¢ H ' ! Wy

A VA o SV SR & S IV S A A A

' VA B S A & Y & L (SID) OFFSET MULTIPLIER INPUT

! EEEZ TSI SIS ESTETEISESTSTSSSSSEST

t CARRY! 4

t{=====t A L U (ADD or PASS) ¢

puT ! !
A H A

PRODUCT INPUT (AIL)} ¢ (AIR) MULTIPLICAND INPUT

The above illustration shows the actual ALU-SHIFTER connections during the
second word execution, UMULTZ2, only. Following each addition operation the
AtU carry-out is placed into the carry-out-hold register. This carry value is
then transfered into the AOD high bit during the right shift by 1 operation.
The decision whether to add the multiplicand into the current result or only
to pass the current result through the ALU to the SHIFTER is made by testing
the carry-out-hold register value after the shift operation. This value will
be set from the value of the SHIFTER low bit (SOD bit C) at the end of each
cycle.

<M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CGRPORATION PAGE 0171

UMULT A8 [RCA).R{BI=R{A}*R(B}]

JMULT:s "MULTIPLY A TIMES B®
«coe. LEGAL MICRO 0P ENTRY, BRANCH (UMULTZ2}), KA = ZERO, KB = LS.WORK,

KT = 18.y KX = PASS LEFT, KALC = PASS LEFT,

KSHC = RIGHT+SINGLE+LOGICAL+RIGHT CTL
X... A=->FAIL, KB->FAOD, B->FSID, CLEAR CIH
«See KB=-D>FAIR, A->FADOD, B->FSOD, GATE ALJ, READ CS (MPC+1), MPC PLUS 1,

LOAD NPC (CS)

ceS. KA-DKALC, KX->F.PASS, SH TO COH, READ NS
«eeS KT->F.COUNT, GATE ALJ, GATE NS

¢ UMULTZ = N. "CONTINUATION OF UNSIGNED MULTIPLY"®

eees BRANCH (N.+1)y KALC = PASS LEFT, KSHC = RIGHT+DOUBLE+LOGICAL, KSHA = 1,
KT = CARRY, KX = F ZERO, KB = ADD '

Seee KB-=>KALC, SKIP (NOT T)

sXee FoPASS-DKALC '

..S5. ALU TO COH, READ NS, GATE NS (X), DECF->F.COUNT -

..«X SH TO COH, GATE ALU, GATE SH

: "COMPLETION OF UNSIGNED MULTIPLY™

«see ALLOW INTS, KSHC = LEFT+DOUBLE+LOGICAL+RIGHT CTL, KALC = PASS LEFT
, ALU STATUS ENABLE

x...

.S.. ALU TO COH, GATE ALU, GATE SH, READ NS, GATE NS, LOAD R31

The following discussion will cover the action of each nanoword in the above
example. In the initialization word, T1 prepares the ALU to pass the multi-
pl'icand to local store register LS.WORK for use as the multiplicand source
during additions. Carry-in-hold is also cleared for the add operations that
will follow. T2 executes the GATE ALU, saving the multiplicand. The ALU and
SHIFTER bus connections are completed. Al! microinstruction fetch actions are
completeds READ CS (MPC+1)s LOAD NPC (CS)y and MPC PLUS 1. The next nanopro-
gram address is now selected, but will not be referenced until the READ NS in
the completion word. T3 changes the ALU function to ZERO, which will clear
the initial product value in R{A). An F register named F.PASS is initialized
with the value of -the ALU pass function. COH is set to the value of the

right most bit of the multiplier, taken from SID bit 0 using the "RIGHT (TL"
function of the SHIFTER. Nanostore location UMULT? is read. Finally, T4 sets
an F register named F.COUNT to the value 18 (decimal), which will be used by
UMULTZ2 as a counter during its 18 loops. Register R(A) is zeroed via the ALU,
and control is transfered to T1 of UMULTZ.

dv-1 HARDWARE LEVEL USER'®S MANUAL NANGCDATA CCRPORATION PAGE 0172

UMULTZ performs the actual multiplication. This requires it to repeat its
full & T-steps 18 times. T1 is used to set the ALU control to ADD mode, and
to determine whether to change the function to PASS LEFT. If the current
right-most bit of the multiplier is a 1 then T2 will be skipped, leaving the
ALU set for an add operation. If a 0 then T2 is executed and the ALU wilil

not alter the result during this loop cycle. T3 transfers the ALU carry-out
condition to the carry—out-hold, as required before the actual GATE ALU is
performed, to preset carry-out-hold with the correct value to be propagated
into the SIGN bit position of AOD. T3 also reads the next nanostore focation,
and makes the decision to terminate the multiplication when F.COUNT is decre-
mented to zero. T4 now completes the cycle by gating the new partial product
into R{A) and R(B) along with the shifting of the multiplier right one bit
position. The SH TO CDH operation sets COH to the value of the new right-most
bit on SOD, to be used for the ADD/PASS decision in Tl for the next loop cycle.

The completion word is required only if it is desired to set FIST to accurately .
portray the SIGN and RESULT of the final 36 bit product. Tl is empty, alliowing
for interrupt address selection and for ALU-SHIFTER propagation. T2 gates the
ALU and SHIFTER back into their current registers, unmodified, only tc cause

the correct setting of SIGN, RESULT, ODVERFLOW and CARRY in FIST. CARRY and
OVERFLOW are meaningless in an unsigned multiply operation.

Since UMULT? is actually a complete multiply routine any nanoprogram requiring
a multiplication operation as its last procedure may use it as a common tail.

With minor alterations, UMULTZ may also be used as the final phase 2f a signed
multiply routine. .

3M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0173

£ Q@M-1 I/0 SYSTEMS

5.1 GENERAL

The QM-1 has 8 independent I/0 ports (see Section 4.6, External Interfacel.
Any or all of these ports may be used for concurrent data transfers and device
control operations. A QM-1 port may be interfaced directly to a user*s own
equipment or to NANODATA standard peripheral devices through the QM-1'Channel
Ccntroller. Refer to Appendix—A for a description of actual QM-1 port inter-
facing. :

Figure 8.1A is a block diagram of the standard QM-1 1/0 System. No more than
one channel controller may be attached to each CPU port. Up to 64 standard
device controllers may be connected to each channel controller. More than 64
actual I/0 devices can be placed on a single channel! due to many forms of
device controllers supporting more than one device (ie. tape drives, telecom-
munications devices). For connection of user owned equipment to a dM-1 Channel
Controller, refer to the document "NANGDATA STANDARD CHANNEL CONTROLLER".

Data transfers are maintained on a word to word basis. All devices on the
same channel! may be transferring data simultaneously, as long as their
combined data rates do not exceed the destination memory access speed. Up
to 18 bits at a time are transferred between the port and device, over each
active channel. When data is being passed directly to a CPU port the CPU
is interrupted periodically, in order to route each datum between the 1/0
port and appropriate QM-1 memory. The standard QM-1 device controllers
maintain data routing information for the duration of the full data block
transfer. This consists of automatic storage and updating of the memory
address pointer and block length word counter. In addition, the CPJ is
notified at the end of operation or of other programmably selected condit-
ions; such as device errors, device ready state change, word count reach-
ing zero, etc.

QM-1 systems equipped with the optional multiport main store interface may
take advantage of the Direct Memory Access (DMA) path. With the addition

of the appropriate DMA channel controllers, 1/0 data transfers may proceed
without CPU intervention. In DMA operating mode the CPU is usually involved
in the data transfer operation only at initiation, and following termination.
This permits devices with high speed data transmission rates to be active
without adding any direct CPU overhead. Low speed devices may also utilize
the CMA path, at the installation's option.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 017%

The standard QM-1 multiport memory consists of up to 8 external ports. At
teast one of these ports must be connected to the normal CPU main storage
access bus. An additional port is required for each CPU within a multi=-
processor environment. All remaining main store ports may be connected to
individuai DMA controllers, permitting up to seven DMA connections. When
main store is configured as a four way interleaved memory (750 nanoseconds

full cycley, 18 bit access) an aggregate data rate of over 10 million bytes
per second may be realized.

The following sections describe the individual components of the QM-1 1/0
System in full detail. For a thorough understanding of QGM-1 I/0 it is
recommended that the reader_also be familiar with the QM-1 External Inter-
rupt Mechanism (sections &.5.2) and 4.5.4.2), External Store (section 4.2.5),
and the External Interface/organization (sections 4.6 and 5.4.4).

4504

OO0 zZ>»—0n

Z0———TVDOX

QM-1 HARDWARE LEVEL USER*®S MANUAL NANOGDATA CORPORATION PAGE 0175

8 STANDARD
- ,
PORT O |PORT | PORT 2 |FPORT 3 |PORT 4 |PORT S | PORT @ | PORT 7 I/O FORTS
CHANNEL CHANNEL
CONTROLLER CONTROLLER
/_'_—_— v
DEVICE et CARD DEVICE DEVICE | LINE
CONTROLLER ORIVE READER. CONTROLLER - |CONTROLLER. PRINTER
DMA DMA
CONTROLLER CONTROLLER CPU MAIN STORE
INTERFACE
cPu & (OPTIONAL)
-
PORT O | PORT | | PORT 2 | PORT 3 | PORT 4 | PORT & |PORT @ | S o DMA PORTS

QAM-1 MAIN STORE

(DMA: DIRECT MEMORY ACCESS PATH)

FIG &.1A- OM-| STANDARD 1/0 SRSTEM

QM-1 HARDWARE LEVEL USER®S MANUAL NANCDATA CORPORATION PAGE
8.2 QM-1 1/0 OPERATION

8.2.1 GENERAL

The QM-1's 1/0 System, being consistent with the design of QM-1, consists
of individual functions which may be utilized in numerous ways to move
information into and out of the QM-1 CPU. The following section is a des—
cription of the relationships between the various I/C support functions and
their overall operation relative to the rest of the CPU. Section 8.2.2 is
concerned with the data routing support facilities of QM-1 I1/0, available

0175

at the ports, while section 8.2.3 discusses the interrupt related operations.

QH;I HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE

8.2.2 QM-1 PORT OPERATICN

Section 4.6 describes a QM-1 port and the facilities and controls availabile
for 1/3 support. This section is therefore devoted to the relationship of
these controls to each other and to overall CPU timinge.

The first piece of information necessary for any port operation is "KA",
The low three bits of "KA"™ select the port at which an operation will be
performed. "KA™ must be stable on the leading edge of the T-Period in
which an 1/0 operation is to take place. The following program seghents
all try to send an XIO signal to port three (3). The first two are valid
while the third fails.

1. :
ceee KA = 3 “SELECTS PORT 3¢
Xeos X1o

2. : "ASSUME FLIV CONTAINS 3»

x.-. FLIV-)KA
sXee “"WAIT FOR PORT SELECTION"

eeXe X10
3. H "ASSJUME FLIV CONTAINS 3n
Xo.o FLIV’}KA

eXeo X10 "FAILS BECAUSE KA WAS NOT DEFINED IN TIME"

These three examples hold for RI0O as well.

0177

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPDORATION PAGE 0178

The relationship of loading a port register to an operation on the port
is very important. The following program seoment gates main store into
port register 3 (External store 3 via FMOD = 32 + 3, see section 4.2.6)
and then sends XIO to port 3. The data will be valid at the time of XIO.

eeee KA = 3 "SELECTS PORT 3", KB = 43 "0CTAL, 35. DECIMAL™
Xeea KB=>FMOD ©"POINT MOD TO ES(3)"

eXee GATE MS “GATES MOD TO ES(3)"

«oX. XIO "SENDS DATA TO DEVICE"®

If XIO had been in T2 instead of T3 the old value in ES(3) would have been
at the port when XIJ occurred.

The same timing holds when the external store register is being loaded from
local store via the LOAD ES nanoprimitive. :

Data being read into the CPU has much the same timing as the LOAD ES func-
tion. The RIO primitive causes the data at the "KA" selected port to be
loaded into the associated port register. This function is leading edge
with "trailing edge results”. This means that the transfer is started on
the leading edge and completed on the trailing edoge of the T-Pericd. This
is important as shown in the following program segment.

: "ASSUME FEOA = 3 AND FEOD = 1"
s aee KA = 3
S... RIO "READ THE DATA FROM PORT 3 INTO PORT REGISTER 3, ES(3)"

See. GATE ES "GATE THE SAME DATA INTO LOCAL STORE REGISTER 1"

The GATE ES is valid, since the RID was completed by the trailing edge of
the first T-Period of the stretched T-Step. The GATE ES then took place
at the trailing edge of the second T-Period of the same T-Step.

The 6 bit transfer primitive "I0 ID -> F REG" is a standard trailing edge
function which gates the contents of the I/0 ID lines of the "KA"™ selected
port into the specified F-Register. Timing is the same as XIO and RIO
with respect to "KA" port selection, however it is a true trailing edge
function while XIO and RIO are leading edge with trailing edge timing.

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CCRPORATION PAGE 0173

The two six bit buses from the QM-1 to the ports are the "G-Bus" and the
*"Phantom-Bus" (see section 4.6}. All following text will refer to these
busses as the "Device Selection” and "CPU Command"™ busses respectively.

These terms represent suggested uses of these two six bit data paths, and in
no way limits their use for any other purpose. NANODATA Standard QGM-1 /0
equipment uses the six bits of the "G-Bus” to select one of sixty four (64)
device controllers on a channel while the "Phantom-Bus® is used to specify
one of sixty four (64) Commands to be performed when an XIO signal is sent to
a channele.

The timing of the Command and Selection lines is such that they are stable
at XI0 time if they are specified within the same T-Step as the XIO signal.
The following program segment places the value "4% on the Command lines, the
value "75" on the Device Select linesy and sends XIO to port 3.

eeee Ka =3 "PIRT NUMBER", KS = 75, KX = &

Xeee GI(G KS) "VALUE OF KS (=75) QUTPUT ON DEVICE SELECT LINES"
KX=>FIPH "VALUE OF KX (=04) QUTPUT ON CPU COMMAND LINES"®
X10 "XI0 IS SENT TO PORT 3"

Section 4.6 describes a number of signals used for timing and interrupt
purposes as well as a special signal called "Master Clear". The Master
Clear signal is generated when the (PU is powered on, or when the "System
Reset" button is depressed. The signal is available at the port so any
external devices may be initialized along with the CPU.

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATION PAGE 0180

8.2.3 QM-1 INTERRUPT OPERATION

This section discusses the QM-1 interrupt system in terms of program timing
and sequences rather than the actual hardware units involved, hence a thorough
understanding of sections 4.5.2 and 5.8.2 is necessary before geing further.

The starting point for an external QM-1 interrupt is an interrupt from some
externa! source. The interrupt is now in the latched state. There is no

way, within the CPU, to prevent an interrupt from latching. O0Once fatched,

the interrupt remains latched until acknowledged in the normal manner or
cleared by the Generate/Clear Interrupt mechanism (see section 5.8.1) or
Master Clear. The latched interrupt must be enabled by the programmer in
order to become pending. A latched interrupt becomes pending following the
first GATE NS primitive after the corresponding enable bit is set. Similarly,
an enabled interrupt becomes pending on the first GATE NS after it is latched.
1f an interrupt is pending when its corresponding enable bit is turned off the
interrupt remains pending until the next GATE NS. This means that the nano-
word which clears any enable bits should not allow interrupts!

Once an interrupt is pending it becomes available for priority selection.

As mentioned in section 4.5.2, the priority selection mechanisms are activ-
ated/deactivated by the ALLOW NANO and ALLON MICRC interrupt nanoprimitives.
A timing conflict arises when READ NS (of NPC) occurs in Tl and either Allow
interrupt control is also specified. The result of the READ NS is undefined
since the read is leading edge and the priority mechanism was activated on
the same leading edge. The obvious rute of thumb is not to READ NS (of NP(C)
in T1 of any nanoword which also allows interrupts..

The overall timing of an interrupty from latching to acknowledgement, is a
function of the executing nanocode. The three operaticns necessary to have
a latched interrupt acknowledged (assuming it is enabled and allowed) are:

l. GATE NS Causes the interrupt to become pending.

2. READ NS (of NPC) Reads the interrupt selected nanocode.
3. GATE NS ’ Gates the interrupt nanocode and clears the
interrupt latch and pendinag flags.
An interrupt may also be cleared by Generate/(Clear Interrupt (section 5.8.1).
The Clear Interrupt function clears both the latched and pending flags of an
interrupt. The function is completed by the trailinc edge of T1l.

QM—1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0181

8.3 STANCARD CHANNEL CONTROLLER

8.3.1 GENERAL

The behavior of the standard QM-1 1/0 Channel is similar to that known through-
out the computer industry as a "Multiplexor” channel. This means that several
independent 1/0 devices may be concurrently transferring data over the same
1/0 channel, without knowledge of each others existence. 0Of major interest at
this point is the fact that unlike a conventional muitiplexor channel, which
supports either low speed devices only or high speed devices when the low
speed devices are inactive, the QM-1 standard channel will support an active
mixture of both classes of devices. This is feasibie as long as their aggreg-
ate data rates dc not exceed the access speed of the destination memory. For
example, a high speed disk transfer of 800,000 bytes per second, a tape drive
transfer of 90,000 bytes per second, and several low speed unit record devices
(ie. printers, punches) could be active together over the same DMA path to
main store without encountering loss of data due to interference within the

- channel. Of course the system designer should be aware that there is always
the hazard of lost data due to one or more of the desired memory banks being
tied up through activity from other storage ports. The above mixture warrants
being assigned to the highest priority main store port. .

The QM-1 Channel Controller coordinates the communication between the QM-1

CPU and 1/0 device controllersy, and synchronizes the demands for data and
status interrupts to the CPU. The relationship of the channe! controller to
the other elements of the 1/0 system is shown in figure 8.3.1A. MWhenever the
CPU sends an XIO signal the controller will either respond to the command or
will immediately pass the command to the device controller indicated. 1I/0
commands are divided into two categories, channel commands and device
commands. Each command is recognized as a six bit quantity, found on the CPU
command lines during an XIO signal (command lines originate on the Phantom
Bus, see section 8.2.2). C(ommands with values in the range of 00 - 67 (octal)
are considered device commands and are passed directly to the device control-
ler identified by the six bit guantity on the device select lines (originating
from the G Bus, see section 8.2.2). Commands with values 70 - 77 (octal) are
channel commands and result in immediate channel controller action. The
specific channel commands are discussed in section 8.3.2.

Ciru

ONE O° 8
QW= PPRTE

QM-1 HARDWARE LEVEL USER'®S MANUAL

NANGDATA CORPORATION

PAGE 0182

ONE OF 8 MEMOER FORTS

EXTERNAL EXTER A-
DEVICE |- =---—-=——-~— DEVICE
o o2
C DEVICE DEVICE
CHANNEL CONTROLLER JEes DEes
XIO SIGNAL S s - = - = - - @3
T HA!! O CHAIM
RIO SIGNAL PRIORVTY CHAIN PRIORITY \;5‘.
CPuU OATA/ STATUS LINES CPU DATA/STATUS LINES o |
- i
CPU DATA/STATUS INTERRUPTS
CPU DATA/Z STATUS INTERRUPTS INTERRUPT SvhC @ Y
CPU COMMANDS CPU COMMAND S
L CUHANNEL COMMAND CHANNEL COMMANDS e
GENERATOR Y
DEVICE SELECT DEVICE SELECT e
2 J
I/0 10 1/0 ID
£S5 —
! | DMA DATA /ADDRESS LINES e
' PTION ™ —
MAIN MEMORY ACCESS LINES DVA OPTION | Owa DATA REQUEST .

i
Py
hau]

FIG 8.3.1A - CHANNEL CONTROLLER

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION - PAGE 0183

The channel may be considered to have three modes of operation: direct
request, data, and status. The actual mode of operation is maintained
jointly by the channel controller and each device controller {discussed

in section 8.4}. Direct request mode is a momentary channel state which
exists between the time of issuance of a direct request command (via XIO)

and the gating of the desired datum {(via RIO}. An example of an actual
direct request command is "read word cocunt® register. This command is trans-
mitted to a specific device controller. The channel controller locks

itself into this operation until an RIC signal is received from the CPU,
sating the requested information into the appropriate 1/0 port (ES) registere.
It is the responsibility of the requesting CPU program te allow for the
propagation time of the original command to reach the specified device
controller and for the desired information to return to the port data lines.
For standard I/0 cable lengths (up to 75 feet from the CPU to the channel

and device controllers) a 300 nanosecond round trip is required. The
following is an example of a direct request procedure, followed by 2 timing
diagram.

GET STATUS: "FROM CHANNEL A, DEVICE B"

soes KA = %= “PORT SELECTION", KB = RD.WORDCT "STATUS COMMAND VALUE™
come HOLD 2 “RETAIN KA AND KB", BRANCH(READ PORT 1 "NEXT NANOW3RD"
Seee A->KA "SET PORT NUMBER INTO PORT SELECT (KAI"

eXao “PORT SELECTION SETTLING TIME"

eeS. G(G B} "DEVICE SELECTION NUMBER FROM B PARAMETER JgF R31"
«sSe KB=>FIPH "COMMAND VALUE TO COMMAND LINES®

eeSe. XI10 "INITIATE COMMAND TRANSMISSION"

"AT LEAST 5 T-PERIODS.SHOULD ELAPSE FROM LEADING EDGE OF XIO®

READ PORT: "PORT NUMBER PASSED VIA KA, USING HOLD 2"
x.‘. READ NS
eXae RIO "PLACE DESIRED COUNTER INTO PDRT REGISTER"

Xeo GATE NS "EXIT THIS PROCEDURE™"™

%% Indicates an undefined value, to be set up during program execution.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 018%

” e

I I 1
x10 I - - I
1 H : —_—
I H H I 1
RIO i _—— I | (.
I H H
T-PERIOD I 1 / 2 /23 [/ & [/ S5 [/ 52/t 1T [t 8 [9 7

_SET PORT SELECT. _DEVICE CONTROLLER
TRANSMITS STATUS REGISTER.

While direct request mode is initiated by the CPU, both data and status
modes are selected from demands of the device controllers. The actual
notifitcation at the CPU, of channel entry into one of these modes is
through data or status interrupts. A status interrupt originates at an

1/C device, and indicates either a change of state within the device or

an end of operation condition. All conditions capable of triggering

status interrupts may be masked, under programmed control, as to whether
their occurrence may request the interrupt or only set a status indicator.
The channel controller is continually interrogating its device controllers
for the presence of a status interrupt request flag. This interrogation
proceeds from the channel controller, down the priority chain line, through
each device controller, in the order of their connection on the priority
chain. 0Once a status interrupt request flag is recognized the channel
controller locks out further status request analysis and transmits a status
interrupt to the CPU. At this time the device identification (IO ID} of
the interrupting device, and its interrupt status register, is retained
until called for by the CPU. No further status requests will be accepted
by the channel controller until the CPU has completed the handling of this
interrupt.

The issuance of a status interrupt to the CPU prepares the channel to enter
status mode. This mode is not actualiy entered until the CPU processes the
status interrupt. Status mode may be considered a momentary channel state,

as described for direct request mode above. It is entered following issuance
of the channel command "Status Request” (described in section 8.3.2) and is
terminated with the next RI0O signal. Timing is the same as for direct request
(above). The status interrupt, "Status Request", sequence is the onily method
provided for accessing an Interrupt Status Recister (see section 8.4.2.2).

QM-1 HARDWARE LEVEL USER'®S MANUAL NANDODATA CORPORATION PAGE 0185

Data interrupt processing is handled independently of status interrupts.

Using the same priority ordered interrcgation procedure defined for status
interrupt requests (abovel, the channel controller searches for the occur-
rence of a data interrupt request. This interrogation is not affected by

the presence of a pending status interrupt, nor will the interrogation for
status requests be affected by a pending data interrupt. As soon as a data
interrupt request is recognized the channel is placed immediately into data
mode. The search for any other data interrupt requests is inhibited until

the CPU has processed this data interrupt. The channel remains in data mode
untit the active datum is passed between the CPU and 1/0 device. Prior to the
actual! processing of a data interrupt, data mode may be temporarily suppressed
by CPU action to place the channel into either direct request or status mode.
when the momentary channel operation is completed the channel will return to
its previous data state. '

Data interrupt processing varies, depending on the direction of data flow
requested. A device controller processing an output operation will make
data-out interrupt requests of the channel, while input operations Will make
data—in interrupt recuests. Khen the channel controller is processing a
data—in interrupt it will remain in data mode until exactly twc (2} RIG
signals have been sent by the CPU. The first R10 indicates that the CPU is
beginning to handle the current interrupt. The information present on the
port data lines, since entering data mode, is the memory address at which
the following data word is to be stored. This address originates from a
register within the device controller involved in this data mode operation,
and is described in section 8.4.3 (Data Routing Support). The RIO gates the
address into the port register and then allows the channel controller to
fetch the actual data word from the device controller. The second RIGC gates
the data word into the port register, and releases the channel controller
from data mode. Interrogation for the next data interrupt request can ncow
begin. The CPU program handling the input data operation must allow for
propagation time between the two RIO signals. 1t takes approximately 300
nanoseconds for the first signal to reach the device controllier and for the
actual data to return to the port data lines (75 foot cable lengthsl}.

Data-out interrupt processing differs slightly from data-in operation.
Exactly .two signals are required to release the channel from data mode. In
this case an RID signal will gate a memory address into the port register,

as with data-in above, and as soon as the specified data word has been

placed into the port register the channel command "Data Availablte" (described
in section 8.3.2) is issued with an XIO signal. This command transmits the
datum to the 1/0 device and releases data mode.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0185

During status mode and data mode operations the CPU need not provide device
selection information on the G-Bus tines. This is due to the channel con-
troller unconditionally locking into the device controller associated with

the interrupt. 0n the other hand, the CPU usually does need to know the
tdentity of tne device causing an interrupt. For this reason each device
controller will present its unique device selection number to the channel's
"I0 ID" lines during status mode. The correct "IC ID" will be available 300
nanoseconds after the issuance of the "Status Request® command, and will
remain stable until after the RID refease signal. During data mode interrupts
the device ID is normally unnecessary, since the presence of the memory add-
ress is all that is needed to complete the data transfer cycle. When using
QM-1 virtual memory options an additional identifier, called the "task ID",

is required to select the appropriate storage partition. The "task 1D" re-
places the device ID on the 10 ID" linesy, and is criginally preset by the
Operating System under programmed control (see section 8.4.2.1, Device Control
Word).

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0187

2.3.2 CHANNEL COMMANDS

seven of the eight possible channel commands are currently assigned. Their
tunction and usaae are described below. Command code values are shown in
octal. Transmission of a channe! command requires placement of the command
value on the Phantom bus lines during issuance of the XIC signal. The com-
mand is then sent to the channel controller on the "KA" selected 1/J port.

17G RESET (70) - Resets the Channe! Controller and all Device
Controllers on that channel. Each controller is set to
its initial state. All internal registers are cleared to
zero, and all interrupt flags and status indicators are
reset. This command should be used only during system
initialization.

DATA AVAILABLE (71) - Used only during DATA-OUT mode channel operation,
following the memory address gate RID signal. Data Available
is issued followinag placement of the actual data into the
appropriate port register. DATA-OUT mode is cleared immedi-
ately following this command. ‘

{72) - ‘ Unassigned at present.

ENABLE DATA INTERRUPTS (73) - Allows data interrupt requests to be generated
at the device controllers and to be issued to the CPJ. Since
initial channel conditions inhibit interrupts this command
must be used prior to data transfer operationss following a
“Disable Data Interrupts™ command (741}, an "1/0 Reset" command
{70), or System "Master Clear"” manual operation.

DISABLE DATA INTERRUPTS (74) - Blocks the posting of data interrupts by the
device controllers. This is an initial state condition (I/C
Reset), and may be cleared with an "Enable Data Interrupts"”
command (73).

QM-1 HARDWARE LEVEL USER*S MANUAL NANODATA CORPORATION PAGE 0188

ENABLE STATUS INTERRUPTS (75) - Allows status interrupt requests to be accept-
ed by the Channel Controller and to be issued to the CPU.
Since initial channel conditions inhibit interrupts this com-
mand must be used prior to normal channel activity; following
a "Disable Status Interrupts™ command (76}, an “1/0 Reset"
command (70), or a System ™Master Clear” manual operation.

DISABLE STATUS INTERRUPTS (76) - Blocks the selection of status interrupts
by the Channel Controller. This is an initial state condi-
tion (I/0 Reset), and may be cieared with an "Enable Status
Interrupts™ command (75).

STATUS REQUEST (77) - Used only following a status interrupt, in order tc
place the channel into STATUS mode. Following issuance of
this command the interrupting Device Controller places its
interrupt status register onto the port data lines (up to 18
bits of information) and its device identification on the
"I0 ID" lines (6 bits). Following appropriate command/data
propagation delay (usually 300 nanoseconds}) an RIO signal
will gate the interrupt status register data into the 1/0
port register and release the channe! from status mode.

QM~1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0189
8.4 STANDARD DEVICE CONTROLLER

8.4.1 GENERAL

The standard device controller maintains control over one or more physical
1/0 units, and acts as the interface between these units and the standard
channel controller. The device controller is designed to allow generalized
socftware to handle a vast array of very different 1/0 equipment. It contains
a number of features which may, or may not, be used by the software, allowing
a varying degree of hardware support. Figure 8.4.1A shows the relationship
of the device controller to the standard CPU, Direct Memory Access channels
and the external 1/3 devices. This figure also shows the major hardware
features of the device controlier. These features are divided into two major
categories; device control support and data transfer support.

Within the device controller some of the control support units can be classif-
ied as "static controls". These are the "device control! words", the “"status
register”, and the "interrupt status register". These are referred to as
"static" controls since they all contain residual information to be used by
the rest of the 1/0 system, usually beyond the scope of one device operation.

The remaining control support units are classified "dynamic controls". These
are the units which respond directly to commands from the CPU, the channel
controller or the device itself. :

Additional uniis are provided for data routing support. These are the Buffer
Address Register (BAR), which serves as a memory address pointer, and the Word
Count register (WC), which can be used to count the number of words, or char-
acters, to be transferred. WC can be decremented and BAR can be incremented
or decremented automatically during data transfers. These registers may be
applied to data transfers over the data path to the actual QM-1 port register,
or directly to main store when the Direct Memory Access option is installed in
the channel controller. Finally, a "data chaining” facility is provided which
allows the software to combine disjoint blocks of memory into one logically
continuous I/0 buffer, with minimal software intervention. The device control-
ler also contains the hardware necessary to recognize and precess interrupt
requests from the device, as well as to generate special interrupts on device
controller status or DMA channel status conditions.

T4 TPU ROkT
P —

TO Main STRE
FORT

QM-1 HARDWARE LEVEL USER'®S MANUAL

NANODATA CORPORATION

EXTERNAL DEVICE

PAGE 0190

DEVICE -
DEVICE DATA STATIC MDEVICE DATA/STATUS DEVICE
CWTQOLP(COMMANDS DEMAND S STATUS
)) &
D - - — - - - = - -_ - _ - b - — _ - __'_— P e B — el - —1
[[DEVICE CONTROLLER | |
| l
‘> — DEVICE | WORD BUFFER
P
! DATA vpllinvy CoUNT | ADDRESS o Smus e L |
[BUFFERS (Dcw N REGISTER REGISTER REGISTER PEGISTER |
l — oCW®e — 6NC) (BAQ) I
t ‘_____._.__
| !
| I
| I
| 1 1 ‘] 1 |
UPDATE WC:=O
PRIORITY =
CHAIN 1N l S\ENS‘;STROL CELECT DELECTOR |
| cpu DEVICE DMA | « PRIORITY
| INTERRUPTS IO OHTA REQUEST 2 CHAIN OUT
|))) '
Lo b . - e = —mf s m - —m o — — — - -
CHANNEL CPU DATA/STATJE LINES !)
CCUTRALLER >
CPU DATA /STATUS INTERRUPTS ~
CPL COMMANDS -
TO LOWER
DEVvL SE . PRICRITY DEVICE
EVICE SELEC 5 [conTROLLER
CHANNEL COMMANDS
7
DEVICE ID To CPU S
| ! DMA DATA REQUEST \/
, DMA OPTIONf TO OTHER DEVICE
l DMA DATA /ADDRESS LINES N CONTQOLLER,

FIG 8.4.1A-DEYICE CONTROLLER

QM-1 HARDWARE LEVEL USER®*S MANUAL ~ NANODATA CORPORATION PAGE 0191
8.4.2 DEVICE CONTR3IL

8.4.2.1 DEVICE CONTROL WORDS

The Device Control Words consist of two registers containing "static" control
information, such as "select DMA operating mode™, "activate data transfation®,
etc. The two registers are referred to as DCWA and DCWB. Their content varies
depending on the devices attached to the controller. The DCW allows the pro-

grammer to select the functional units of the device controller that will be
utilized in an operation. For examples DCWA allows the programmer to select
events on which status interrupts will occur.

DCWA and DCWB are loaded by specific device commands (see sections 8.4.2.5 and

8.5.3)s and are accessible to the programmer at any time via the direct request
mechanism {sections 8.3.1y B8.4.2.4y and 8.5.6)Y. NANCDATA has assigned standard
{device independant) functions to several D{WA and DCWB bit positionsy that are
cemmon to a wide range of external devices. The following lists describe their
functions.

Bit Identity Description

. B

DATA MAPPING CONTROLS

DCKA 02 TRANSLATE ~-Controls character code transiation within
the device controiller. This feature is
optional in some devices.

Examplet Translate lower case ASCII to
upper case ASCII for printing.

DCWA 03 PACK/UNPACK ‘ -Controls the mapping of characters (bytes)
into the standard @GM-1 18 bit word. In
*packed” operating mode most device controi-
lers treat the WC register as a character
counter, and decrement by two for each QM-1

- word transferred.

STATUS INTERRUPT ENABLE MASKS

DCWA 04 COMMAND REJECT -See sections B8.4.2.2 and 8.4.2.5 for
complete information on "command reject".

aM-1 HARDWARE LEVEL USERT'S MANUAL NANODATA CCRPORATION PAGE 0192

DCwWA 05 ANY ERROR CONDITIDN _See section 8.4.2.2 for a description of
the "error” status bit controls.
DCWA 06 DEVICE READY _Allows interrupt on device state changing

from ready to not readys OF not ready to
ready, condition. See section 8.5.2.2.

OCWA 07 NOT BUSY _Allows interrupt on device state changing
from busy (performing an operation} to
not busy (device inactivel. See section
8.4.2.2 for additional discussion.

DCWA 08 UNIT AVAILABLE) ~Allows interrupt to indicate that the Device
is ready to receive commands for its next
operating cycle. See section 8.4.2.2.

CCwA 09 WORD COUNT ZEROD _Allows interrupt on word count register
being decremented tc zero. Terminates
current I/0 transfer. See 8.4.2.2.

IDENTIFICATION
>CwB 00 TASK ID O _Task ID is simply a six bit field, the
2Cwd 01 " o1 content of which is placed onto the device
J(WB 02 " n 2 ID lines during data interrupts,y, by the
ZCwWB 03 " " 3 device controller., Its purpose is to
JCWB 04 " L provide additional data routing information
DCWB 0S5 " "5 for the system utilizing the device. See

section 8.4.3.3 for additional details.
DATA ROUTING SUPPORT CQNTRULS

DCXB 06 DECREMENT WORD COUNT (WC)_Permits the content of the W(C register to
be decremented following each data transfer
o cycle. See sections 8.4.3.2 and 8.5.4.
DCWB 07 INCREMENT BUFFER _Permits the content of BAR to be incremented

ADDRESS REGISTER (BAR) following each word transfer cycle. See
sections 8.4.3.1 and 8.5.4
DCWB 08 DECREMENT BUFFER _Same as DCWB 07, except decrements register
ADDRESS REGISTER (BAR) value. See sections 8.4.3.1 and 8.5.4
DCWB 09 DMA MODE _Switches the device to DMA operating mode.

DMA option is required. See 8.4.3.5.

NOTE: DCWA and DCWB are cleared (zeroed}) by Master Clear, I/0 reset, and
Clear Device commands. :

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CGRPORATION PAGE 0193

8.4.2.2 STATUS

Each device controller is provided with two status registers that inferm the
1/0 processing program of the state of the device and its associated control -
ler. These two registers are called the "Status Register™ (SR) and the "Inter-
rupt Status Register” (ISR). The Status Register contains full and detailed
information on the condition of the device and controller. The Status Register
is accessible to the program at any time via the "direct request” mechanism
(described in sections 8.3.1 and 8.4.2.4).

The Interrupt Status Register (ISR) differs from the Status Register (SR} in
the nature of its bit content and operation. The ISR contains a more sparse
form of SR information bits. One bit of ISR may represent a class of bits in
SR. For example, the general "error” bit of ISR represents all error condi-
tions of the device and device controller: lost data, bad parity, etc. 1In a
complicated devices where more than one Status Register may be required, ISR
is used as a pointer to the Status Register that contains the detailed infor-
mation on the reason for the status interrupt. The primary purpose of the ISR
ts to inform the 1/0 process of which status conditicn(s] caused the status
interrupt currentiy being handled (such as normal end of operation, a device
efror, etce.)

The setting of an ISR bit always occcurs along with a status interrupt. In
order for an ISR bit to set it must first be enabled by the prior setting of
tts correcponding DCW bit (see section 8.4.2.1, device control word). The
setting of an ISR bit occurs only during change of the related state, while
the condition is enabled. For example, the device "not busy" bit will set,
and generate a status interrupt, only on the change of device state from
"busy" to “not busy" while DCWA bit 07 (enable interrupt on "not busy") is
set. If the device is already nct busy when, bit 07 of DCWA is changed to
enable the interrupt (made a one), no interrupt will occur. The device must
change state from "busy" to "not busy", while the interrupt is enabled, to
trigger the interrupt.

In order for the active 1/0 processing program to read the ISR it must issue a
"status request” command. It may issue this command only after the receipt of
a status interrupt. Since the channel controller "remembers" the identity of
the device controller currently requesting the status interrupt, the "status

request" command will be routed directly to that device. This function is
described in more detail in the following section on interrupts. Upon receipt
of a "status request” the device controller will put the content of its ISR,

and its device selection number, on the channel data, and device ID, lines to

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION "PAGE 0194

the CPU. A time delay of 300 nanoseconds is required between the "status
request” command and the RIO that reads the status data into the port register.
The device controller does not allow any additional ISR bits to set following
its receipt of the "status request®, until completion of status interrupt
processing by the next RIG. All ISR bits set, and their corresponding inter-
rupt requests, prior to a "status request™ Wwill be considered as fully acknow—
tedged following the response to just one status interrupt. Therefore several
enabled status interrupt conditions, occurring within close proximity of each
other, can be processed as a single status interrupt. All ISR bits set prior
to the interrupt will be cleared automatically following the transfer of the
ISR to the CPU.

There are three methods by which status bits may be reset (cleared or zeroed).
The first type of status information may be referred to as "real time". This
means that the device condition itself has control over the state of the status
bit. "Device ready", for example, belongs to the wreal time"™ category, since
it will change state every time the device ready condition changes. The second
type of status are the "error® condition bits. They are cleared through issu-
ance of the "clear error™ command, which is described in the section on device
commands (8.4.2.5 below). Finally, the status bits which are related to word
count going zero are cleared by the loading of a new value into the wWord Count
register. All status bits, except for wreal time", are cleared with "Master
Clear", "1/0 Reset” (see section 8.3.2, channe! commands), "Clear device”
(8.6.2.5)y as well as "Clear error” (B.4.2.5).

The positions of most ISR bits correspond to those bits within SR having the
same general meaning. For this reason only one status bit description list
appears below. All status indicators described appear in the same postitions
in both ISR and SR. The following list specifies standard Interrupt Status,
and Statussy register bits assigned by NANODATA to cover a wide range of
external devices. Bit position numbers are shown in decimal. All ISR indicat-
ors, described below, will be set only if enabled in the corresponding DCH.

BIT POSITION & IDENTITY DESCRIPTION OF STATUS

e ——— - A — T — W S —— — . - T . - M - S

0 - DEVICE READY _(Real time controlled in SR}
w[SR" Status interrupt generated, and bit
is set, whenever a change occurs in the
device ready condition.
nSR* A 1 indicates that the device is
currently "ready"”, O indicates "not ready".

dM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0195

1 - DEVICE NOT BUSY ~-(Real time controlled in SR)

»ISR* Status interrupt generated, and bit
is sety, when the device changes state from
“busy" to "not busy".

"SR® A 1 indicates device currently "not

busy"s 0 indicates device in operation.

2 — ERROR CONDITION ~“ISR"™ Status interrupt generated, and bit
is sety, whenever any . error. condition occurs
in the device or controller. E'rror condi-
tions setting this bit include any of those
listed under status bits 12 through 17, as
well as any additional device dependent
errors in bits 6 through 11.

"SR*" A 1 indicates unclearedy or unresolved,
error conditions. A O means no outstanding
error conditions.

3 — UNIT AVAILABLE -{Real time controlled in SR)

~ - “ISR" Status interrupt generated, and bit
is set, when the device becomes ready for
a new data transfer cycle. For example,
the data buffer of the device is released
from its previous operation.
"SR" A 1 indicates unit is now available
for the start of the next data transfer
operation. A 0 means the device is in full
operation and is not available for any new
commandse.

4 — WORD COUNT REACHED ZERO ~-Status interrupt generated, and bit is set,
when the Word Count register reaches zero.
This bit is cleared by loading a new value
into the Word Count register.

5 - DATA CHAINING , -Status interrupt generated, and bit is set,
(in place of bit 4) when the Word Count
register reaches zeroc in data chaining mode.
This occurs only if bit 16 of the preceding
Word Count register load was a 1. (leared
when loading a new value into WC.

6 — 11 DEVICE DEPENDENT -Errors and condition indicatcrs unigue to
different devices (see example in section
8.6). Appearance of these bits within ISR
as well as SR is also device dependant.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0195

Bits 12 through 16 appear, as described, only in SR. These bositions have
device dependent functions within ISR.

12 - DMA ADDRESSING ERROR ~-DMA reference attempted outside of memory
space instaiied on system. For Virtual
main store systems, DMA reference to a non-
resident page. Sets the "Error” bit (2).
Reset by the "Clear Error" command.

13 - DMA EXCEPTION -DMA encountered a main store parity error,
or other hardware malfunction. Sets the
“Error" bit (2). Reset by the "Clear Error”
command.

ILLEGAL DATA ~An illegal data character or pattern has
been received by the device controller from
the device. For example, a card reader may
have encountered a non-EBCDIC Hoilerith
code when operating in EBCDIC mode. Sets
the "Error"™ bit (2). Reset by the "(Clear
Error" command.

TRANSLATGR ERRIR —Transiator malfunction has occurred in a
device controller equipped with a data
translator. Sets the "Error" bit (2).

Reset by the "Clear Error" command.

LOST DATA -Lost data occured due to latency of the CPU
or overloading of the DMA path. Sets the
“"Error” bit t2). Reset by the “(Clear Error™
command.

COMMAND REJECT ~Illegal command sent to the device control-
ler. Usually an unrecognized command or a
command issued too early or out of sequence.
Sets the "Error” bit (2). Reset by the
"Clear Error” command. This error indicator
appears in SR.

14

15

16

17

dM-1 HARDWARE LEVEL USER®*S MANUAL NANODATA CORPORATION PAGE 0197

8elta2e3 INTERRUPT MECHANISM

Interrupts are signals which notify an active CPU process that some change of
state has occurred, usually at an 1/0 device. There are five phases in the
interrupt sequence. These phases are called: requestedy, latched, pending,
acknowledged, and released (these names should not be confused with the CPU
interrupt terminology described in sections 4.5.2 and 5.8.2}. Three flags are
involved with this sequence, these are the “"request flag” and the "latch
flag", located within the device controller, and the “pending flag"”, which is
located within the channel controlier. Status and data interrupts must be
enabled at the device controller before this sequence can start.

The interrupt becomes "requested" when a device signals its device controlier
of a condition that has been enabled to trigger an interrupt. An interrupt
may also be "requested” when a condition within the device controller itself
requires an interrupt. This action is asynchronous and independent of the
controlier state.

When the channel controller interrogates device controllers for interrupts, it
searches for *"request flags". Upon encountering one it sets the appropriate
interrupt "latch flag™ (one exists for each data-in, data-out, and status
interrupt}. The interrupt is now in the "latched® phase. After the interrupt
has been [atched, the "pending flag” in the channel controller will be set.
The setting of the "pending flag" is immediately followed by a signal to the
associated CPU interrupt line (see section 8.3.1, for further discussion}.

Since more than one interrupt may be "iatched" simultaneously it is necessary
for the channel controller to select the one with the highest priority. 1In
the time interval between the "latched" and “"pending" states the channel
controller has searched the "priority chain" connected device controllers and
has selected the highest priority (closest connection to the channel control -
ler} ®»latched” device. Now the selected interrupt is "acknowledged" by the
channel controller. The selected device is given use of the channel until the
interrupt is "released” by the CPU I/0 process or the DMA controiler,
whichever is involved with the active interrupt.

QM-1 HARDWARE LEVEL USER®S MANUAL NANGDATA CCRPORATION PAGE 0198

The data interrupt and status interrupt méchanisms are fully independent. Any
of the phases of the interrupt sequence, of either type of interrupt, can be
maintained regardless of the phase of the other.

The »release” of an interrupt is necessary to reactivate the scan for another
interrupt of the same type, by both the channel controlier and device control-—
fer. The "release” is caused by different command sequences, based on the type
of interrupt.

Following a: The interrupt is releaseds
Data-in interrupt -after exactly two RIO signals have been transmitted
to the channel.
Data—out interrupt -by RIO followed by a "Data available™ channel
command (see section 8.3.2).
Status interrupt -by the first RIO following a "Status Request"”

channel command (see section 8.3.2}).

The device controller recognizes the appropriate sequence, and produces the
release signal which clears its "request flag"™ and "latch flag", and the
"pending flag” within the channel controller.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION . PAGE 0199

8.4.2.4 LCIRECT REQUEST MECHANISM

The direct request mechanism allows an active CPU process to read the content
of the device controliler registers. A "direct request” may be made at any time
except when the channel is in the middle of one of the following operarions.

Data—in interrupts between the first and second RIO signal.
Data-out interrupt: between the RIO and "data available" command.
Status. interrupt: between "Status request™ and the next RIQO.

"Direct request" is accomplished by executing any of the following device
commands

11 Read Status register.

2} Read Word Count register (I/11).

31 Read Buffer Address Register (I/II).
4} Read Device Control Word A.

5} Read Device Contro! Word B.

6) Read DIB / Read 0Odd.
Device ID will be supplied along with each Direct Request. (Refer to section
8.5.3 for complete information on the use of these commands.)

After sending a "Direct Request" the program must wait for the two way delay
along the channel cables (300 nanoseconds for 75 foot standard lengths). This
means that if an XIJ, executing a "direct request", is issued at T-period T(0)
the RIO which gates the data returned must not be specified before T-period
T(5). Completion of the "direct request” sequence will return the channe! to
exactly the state which existed prior to "direct request mode". An additional
time delay, equivalent to that required for a "direct request” operation, must
be allowed by the program following the sequence before allowing any new inter-
rupts to take effect (ie. if there is an interrupt pending, BAR may not be read
before 30C ns. after RIOD of Direct Request). This is required in order to
guarantee the return of any previous information to the channel data and 1D
lines. Refer to section 8.5.6 for an example of "direct request".

24-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE

8.4.2.5 DEVICE COMMANDS

Fach device controller has a control unit which recognizes and executes
wcommands® from the CPU, when accompanied by the matching *tdevice select”
code assigned to the controiier. Device commands may be used tc clear a
device, start an operation, read device control registers, etc.

The following list specifies standard device commands, as assigned by
NANODATA to cover most external device control functions?

CCDE (Octal) COMMAND DESCRIPTION

1 Clear Device _Clears (zeroes) all registers, resets all
interrupt flags, and disables further
interrupts within the device controller.
Stops any activity within the devices

attached. Also results in the same effect

as the "Disable Interrupts” command
(05, below).
O Enabie Device _Enables the generation of interrupts,y of

Interrupts any of the three types (data-in, data-out,

status)y by the device controller. If an

interrupt is in the "requested” condition,

0200

at the time of this command, it will be
generated.
0s Disablie Device _Inhibits generation of any device interrupts.
Interrupts This does not stop interrupt "requests" from

occurring at the device, but does block the

*latching" of any interrupts.
07 Read Status _A Direct Request command (see sections
Beho2.4 and 8.5.6) to read the Status

Register (SR} of the specified device con-

troller on the selected channel.

10 Decrement Waord _Decrements Word Count Register if the Allow
Count Decr WC bit is set in DCWB
11 Load Word Count _Loads the value on the selected channel data

lines into the Word Count Register (WC) of

the specified device controller.

12 Load Buffer _Loads the value on the selected chapnel data
Address Register lines into the Buffer Address Register (BAR)

of the specified device controller.

QM-1 HARDWARE LEVEL USER®'S MANUAL

21

22

26

25

30

31

34

35

41

46

Read Word Count

Read Buffer

Address Register

Read ISR

Read DIB

Load Device
Control Word A

Load Device
Control qud B

Read Device
Control Word A

Read Device

Control Hord B

Start Operation

Clear Error

NANCDATA CORPORATION PAGE 0201

_A "direct request" command to read the Word
Count register (WC) from the specified device
contrtoller on the selected channel.

_A "direct request” command to read the Buffer
Address Register (BAR) from the specified’
device controlier on the selected channel.

_A "direct request" command to read the ISR
without altering its contents.

_A "direct request” command to read the Data
In Buffer; undefined results for devices
without a DIB.

_Loads the value on the selected channel data
lines into Device Cantrol Word "A" (DCWA} of
the specified device controller.

_Loads the value on the selected channel data

"lines into Device Control Word "B" (DCWB)} of
the specified device controller.

_A "direct request™ command to read Device
Control Word "A" (DCWA) from the specified
device controller on the selected channel.

_A ndirect request” command to read Device
Contro! Word "B"™ (DCWB) from the specified
device controller on the selected channel.

_Starts the device operation, generating the
first data interrupt cycle, if appropriate. .

_Clears al!l error bits in the Status Register
(SR} and Interrupt Status Register (ISR} of
the specified device controller.

2¥-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0202
8.6.3 DATA ROUTING SUPPORT

8.4.3.,1 BUFFER ADDRESS REGISTER (BAR)

The Buffer Address Register serves as a memory pointer for data transfer
operations. It is an 18 bit wide register which is loaded by the "Load
Buffer Address Register” device command (see section 8.4.2.5). The Buffer
Address Register has been incorporated into the device controller in order
tc remove CPU overhead during data transfers. The content of the BAR will
be placed on the channel data lines for use by the CPU, or DMA controller,
on the occurrance of any data interrupts. The register may be incremented,
or decremented, automatically at the complietion of each data word transfer.
The C(PU program can request this action by enabling the corresponding DCWB
bits (see section 8.4.2.1). BAR may also be read at any time, through a
"direct request" command (see section 8.4.2.4).

QM~1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0203

Bet#e3.2 WORD COUNT REGISTER (WC)

Word Count ts another register designed to minimize CPU overhead during data
transfer operations. NKC will normally contain the value representing the
length of the memory block (buffer) addressed by BAR. It is loaded using the
»lLoad Word Count” device command (see section 8.4.2.5). If enabled by the
appropriate DCWB bit (section 8.4.2.1) WC will be decremented, automatically,
every time a word transfer has been complieted. Upon decrementing to zero the
"Word count reached zero* Status Register {SR) bit is set. The equivalent bit
in the Interrupt Status Register (ISR) will be sety, and a status interrupt
generated, if the "Word Count Zero Interrupt” condition is enabled in DCHWA
(see section 8.4.2.1). Further data interrupts are inhibited once HC reaches
Zero. Many devices may also be enabled to complete their operating cycle
automatically, upon WC reaching this condition. WC may be read at any time
by a "direct request” command {(section 8.4.2.4).

The Kord Count Register #s 16 bits wide. It may contain values between 0 and
(2#*16)-1. The next higher bit {bit position 16) is used to indicate a "data
chaining” mode of operation, on the current data block (see section 8.4.3.4).

An 1/0 device may be operated without using the Word Count register by simply
leaving the "decrement word count® control (DCWB bit 6) reset (0). The Word
Count register itself must be loaded with a non-zero value, if data interrupts
are to be allowed to occur. The programmer must be aware that this becomes a
hazardous mode of operation, as there is now no hardware protection against a
data transfer overrunning its memory buffer boundary.

Q@M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0204

8.4.3.3 DATA TRANSFERS

Data transfers are maintained on a word by word basis. All of the units
described so far, in section 8.4, establish a system which allows data
transfers to be performed with little CPU overhead. At the same time that

a data interrupt signal is being sent to @M-1, the Buffer Address Register
and Task ID are being presented to the 1/0 channel. The program responding

to the interrupt need not know which device actually generated the interrupt.

The nanostore location to which the data interrupt is associated determines
the operation to be performed for that interrupt. Separate nanostore locat-
ions are required for each data-in and data-out interrupt possible. The data
routing procedure applied may simply ignore the Task ID and route the data
word to or from the main store location identified by the content of the BAR
presented to the channel. The procedure may optionally use the Task ID to
determine to which of the QM-1 memories the current data word should be routed
(such as main store, control storey etc.l.

On data-out interruptsy where data is to be routed from the CPU to the device,
the program immediately issues RIG thereby reading BAR into the port registere.
This RI0 also switches the device controller to a "waiting for data™ condition.
When the "data available” channel command (section 8.3.2) is sent, the device
controller accepts the data then present on the data lines. There is no need

for any time delay between the RIO that reads BAR and the "data available"
command.

In the case of data—in interrupts, the channel controller expects two consecu-
tive RIO signals to complete the transfer. The first RID gates BAR into the
port register and signals the device controller to place the data word onto
the channel data lines. The channel needs about 300 nanoseconds (for a 75
foot cable} to respond to the first RID before the data is available for the
second RIO. This means that if the first RIO is sent at T-period T{(0) the
second cannot be issued before T-period T(5).

QM~1 HARDWARE LEVEL USER'S MANUAL - NANODATA CORPORATION PAGE 0205

8.4.3.4 DATA CHAINING

Data chaining is a mechanism that assists the I/0 process in combining
separate blocks of data in memory into one logically consecutive buffer
space. In order to invoke this mode of operation bit 16 of the Word Count
Register (section 8.4.3.2) must be set to a one. This is accomplished at

the same time the actual word count value, describing a data segment length,
is loaded into the lower 16 bit positions of WC using the "Load Word Count®
device command (section 8.4.2.5). With the proper interrupt enables allowed,
when W(C reaches zero it will generate a status interrupt and will set the
"data chaining” bit in the Status Register (SR) and Interrupt Status Register
(ISR). The "data chaining® status bit replaces the normal setting of the
"word count reached zero™ bit in the ISR.

Fcllowing a "data chaining” status interrupt the 1/0 control process must
fetch both the BAR and WC information that identifies the next buffer segment.
This new data routing information is transferred to the device controller
using the "lLoad Buffer Address Register" and "Load Word Count" commands. As
soon as this is accomplished a "start operation™ command (section B8.4.2.5) is
issued to activate the continuation of the data transfer, using the new BAR
and WC values. The transfer of the last buffer segment, of a set, is indicat-
ed by the presence of a "zero" data chaining mode bit in the WC register. See
section 8.5.7 for additional discussion.

QM-1 HARDWARE LEVEL USER®S MANUAL - NANDDATA CORPORATION PAGE 02056

8.6.3.5 DIRECT MEMORY ACCESS (DMA)

Direct Memory Access (DMA) mode of operation permits direct data transfer
between I/0 devices and QM-1 main store. No CPU intervention is required for
the duration of direct memory transfers. This reduces data handling overhead
for the CPU, and also permits the attachment to the system of very high speed
1/0 devices that would otherwise be too fast for normal CPU data interrupt
response. DMA also permits highly efficient nanocoding of non-interruptable,
long duration, computational processes; since the CPU is not required to handle
frequent data interrupts.

Any standard device controller may be switched to OMA mode, as long as the
channel is equipped with the DMA option and a multi-port main store system.

To utilize a DMA data path, device operation is initiated in the same manner as
for regular CPU data transfers. All device controller registers should be
loaded to initialize the transfer as if it were to be via a CPU port. The only
difference is that bit 9 of DCWB must be set to "one® (DMA mode bit, see
section 8.4.2.1). When the device and controller have been prepared for the
data transfer the program should issue the appropriate "start operation" device
command (see section 8.4.2.5). From this point on, the device controllier com—
municates directly with the memory access controller.

Switching a device to DMA mode does not disconnect it from the QM-1 channel.
Afl of the facilities to "measure the pulse” of, or to override, the current
1/0 operation remain active. For example, "direct request mode™ may be applied
at any time to sample an active register such as BAR or WC. Any enabled status
interrupt may occur as usual. The normal termination of the DMA data block
transfer will usually occur when WC reaches zero. The CPU may be asynchronous-
ly notified of this event through the "Word count reached zero" status inter-
rupty as indicated by the corresponding bit being set in the Interrupt Status
Register. Abnormal termination will occur as a result of any preselected error
interrupt condition. Two "error" status indicators are associated with DMA
mode (also refer to section 8.4.2.2).

DMA ADDRESSING ERRDR - indicates an attempted reference beyond the memory space
installed on the computer system. For those systems equipped with the Virtual
Main Store option this bit indicates that a reference to a non-resident user
page was attempted.

DMA EXCEPTION - indicates that DMA encountered a main store parity error, or
some other hardware malfunction.

QM-1 HARDWARE LEVEL USER®S MANUAL NANGDATA CORPORATION PAGE 0207

8.5 1/0 SYSTEM OPERATIONS
8.5.1 GENERAL

This section discusses actual 1/0 System operations and procedures. Several
actual nanocode examples are included as an illustration of the various coding
techniques applicable in 1/0 programming.

8.5.2 INITIALIZATION

Channel initialization is usually performed only when the state of either the
channel or its devices is unknown. This normally will be required following

a system power up, or after a channel has been deactivated for maintainance
activity. Initialization will! be performed by Operating Systems during system
initial program loading and by stand alone processes at the start of execution.

This section describes several aspects of initializing a channel or a device.
It is more suggestive than imperitive since this operation can be performed in
several ways. :

The first step of initialization is to clear the channels and devices. Three
means of generating the clear signal are availables

1. MASTER CLEAR (see section 8.2.2) clears all channels and devices along
with the entire (PU.

2. 1/0 RESET (see section B8.3.2) clears the channel and all devices on
the "KA" selected port.

3. CLR COMMAND (see section 8.4.2.5) will clear the device controller to
which it is sent.

Two device commands "enable all device interrupts"™ and "disable all device
interrupts” (see section B.4.2.5) act as "connect device to the channel™ and
"disconnect device from the channel" respectively. Following a channel or
device clearing operation device interrupts are left disabled. Disabling the
device interrupts removes the device from the priority chain and does not
allow any device originated activity. However it is still possible to load
any register of the device controller as well as to read any register and to
check status, through direct request commands (see section 8.5.56).

a¥-1 HARDWARE LEVEL USER?'S MANUAL NANGDATA CCRPORATION PAGE (208

It is recommended that each device control program clear the_ device controller
and load its initial control registers before issuing "enable device inter-
rupts® and "start operation” commands.

Qv-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0209

g2.5.

COMMAND EXECUTION

Ccrmands (channel and device, see sections B8.3.2 and 8.4.2.5) are generated
by setting the device number on the "device select” lines and the command

ccde on the "command” lines, and then executing XI0. The following are two
nanoprogram segments to generate "1/0 RESET" (channel command) and to "LOAD

I §.0

(device command).

$ SEND I/0 RESET (73) TO CHANNEL 2.
¢ "SINCE 1/0 RESET IS A CHANNEL COMMAND NO DEVICE SELECTION IS NECESSARY"

.x..

KA = 2 "PORT®, KB = 70 ™CODE FOR I/0 RESET FUNCTION"
KB=>FIPH =PLACE CODE ON COMMAND LINES™

X10 "TRANSMIT COMMAND™

READ NS ™FETCH NEXT NANOWORD"™
GATE NS ~"PROCEED TO NEXT NANODPROGRAM SEGMENT®™

LOAC DCWA OF DEVICE 17 ON CHANNEL 4.
¢ "ASSUME DATA TC BE LOADEC IS ALREADY IN PORT REGISTER 4"

.X-.

KA = 4 "PORT", KB = 30 “"CODE FOR LOAD DCWA"™, KX = 17 "DEVICE ID"
KB->FIPH "PLACE CODE ON COMMAND LINES"

GG KX) ™PLACE DEVICE ID ON DEVICE SELECT LINES (G-BUS)"

X10 "TRANSMIT COMMAND AND DATA"®

READ NS =FETCH NEXT NANOWORD®

GATE NS ~™PROCEED TO NEXT NANOPROGRAM SEGMENT"™

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATION PAGE 0213

8.5.4 DATA TRANSFERS

Data transfers are normally invoked by a data interrupt. On any data inter-
rupt the channe! will present the contents of BAR (Buffer address register)
for gating into the port. The issuing of an RIO on "data in" interrupts will
gate the BAR into the port register, switch the device to data mode, and then
cause the device to put its data on the data lines for later gating into the
port. The next (second) RIO then gates the data into the port register and
generates the release signal to the channel (see timing note belowl. In the
case of "data out™ interrupts a "data available" channel command replaces the
second RIO for releasing the channel. Updating of BAR and WC (word count)
occury if enabled, on the second RIO for the "in" case and on "data available"
for the "out" case.

TIMING NOTE: The following restriction must be observed. The RIO which gates
the data (the second RIO after a data-in interrupt) may not be issued
before the 5th T-Period after the first RIO.

SAMPLE DATA OUT INTERRUPT HANDLER

The foltowing code will read the BAR of the interrupting device, use that
value to address one word of main store, read that MS location and send the
data received to the interrupting device; thus releasing the channel and
satisfying the data-out interrupt.

GM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0211

A P G O e T e e i i E i b
® EQUATES FOR THIS FUNCTION *
PP e e e s e T T L D e e A Ll A L LAl S S kbt dds
PORT NUM = & "PORT &4 IDENTITY"
PORT PATH = PORT NUM + 32. "VALUE 36. FOR ADDRESSING ES(64) AS LS(36)"
DATAVAIL =71 "YALUE OF DATA AVAILABLE CHANNEL COMMAND™
i
¢+ DATA OQUT INTERRUPT HANDLER: *
+ ROUTES ONE DATA WORD FROM MAIN STORE TO CHANNEL 4 *
= RETURNS CONTROL TO THE INTERRUPTED PROCESS FOLLOWING TRANSFER =
G AEeAsE S HSIT LA S SR TRERST LTSS ST EEIIL LS LIILFGEETLTTAIBIBLLILTLIITIIT LI
: "DATA DQUT INTERRUPT LEVEL XX, ENTRY POINT"
csee BRANCH(N.+1), KA = PORT NUM, KB = PORT PATH, KX = M5 BUSY
Sewe GATE NS(NOT X} "AWAIT MAIN STORE NOT BUSY”
KB=D>FMIX, KB-D>FMOD *“SET MAIN STORE PATH TO EXTERNAL STORE"
eXeao RI1O "GATE BAR TO PORT REGISTER, ES(4}"
READ NS "PREPARE TO CONTINUE TC NEXT NANOWORD"
oeXe READ MS "FETCH NECESSARY MAIN STORE WORD"
GATE NS "CONTINUE IN NEXT NANOWORD"
: #COMPLETION OF DATA OUT INTERRUPT LEVEL XX"
coee 'ALLOW INTS "ON EXIT", KX = MS DATA, KB = DATAVAIL, KA = PORT NUM
Seesn GATE NS(NOT X} "AWAIT MAIN STORE DATA AVAILABLE"
GATE MS "GATE MS DATA EACH TIME UNTIL SUCCESSFUL"
eSes X10 »SIGNAL CHANNEL CONTROLLER OF INTENTIONS™
KB->FIPH "DATA AVAILABLE COMMAND"
READ NS "READ NEXT NANOWORD OF INTERRUPTED PROGRAM™

eeXe GATE NS "CONTINUE INTERRUPTED PROGRAM"

QM-1 HARDWARE LEVEL USER'®S MANUAL NANODATA CUORPORATION PAGE 0212

8.5.5 STATUS INTERRUPT HANDLING

The status interrupt mechanism of the device controller is described in
section 8.4.2.2. When the CPU senses a status interrupt it may issue a
rstatus request™ channel command. The interrupt status will be available for
gating into the port after the 5th T-Period following the status request. A
status request may not be issued in the middle of data interrupt handling,
je. after the RIO that read BAR into the port.

The following nanoword will read the interrupt status of the interrupting
device on channe! & into LS(G.STAT}. Where G.STAT represents a.G-register
that points to the local store register to receive the status. G.DEV is
used to represent another G-register which will itself receive the Device
ID returned by the interrupting device.

THE STATUS INTERRUPT HANDLER WILL TRANSFER CONTROL TO THE SYSTEM SUPERVISOR

-3
* TO ANALYSE THE STATUS RETURN, AND TO CHANGE THE OPERATING STATE IF NEEDED.
H »STATUS INTERRUPT LEVEL YY, ENTRY POINT®
coms BRANCH({SYSTEM INT) "SUPERVISOR TRANSFER ADDRESS"
KA = & "PORT", KB = 77 "STATUS REQUEST COMMAND"
Seee X100y KB=->FIPH “PLACE CHANNEL IN STATUS MODE"
«See G(G.STAT) "IDENTIFY G REGISTER"
G->FEDD, KA->FEQOA "SET UP EXTERNAL STORE TO LOCAL STORE PATH"
eeXe 10 ID->G.DEV “SAVE THE DEVICE 1D, WHICH IS NOW AT THE PORT"
ceed RIO, GATE ES “READ THE PORT AND PASS THE STATUS TO LS(G.STAT)"

READ NS, GATE NS *“TRANSFER CONTROL TO THE SYSTEM SUPERVISOR"

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0213

8.5.6 DIRECT REQUEST CCMMANDS

The direct request commands alfow a QM~1 program to examine all of the
control registers of a device without affecting the current state of the
channel or device. After sending a direct request command the CPU program
must wait for a minimum of 5 T-Periods before gating any expected data into
the port. The program must then send an RI0O to read the desired data into
the QM-1 port register. The RIO also returns the channel to whatever state
it was in prior to the direct request. For those direct request commands
that output data no time delay is required. In this case the direct request
transmits the command and any data immediately. An RIO is not allowed, and
is not expected by the channel. "

An additional timing note: Data interrupts occur at the moment when the BAR
data ts immediately available at the port data lines, and the "task ID” is
available on the device ID lines. This information is expected by the data
interrupt handlers. Therefore, when a direct request has temporarily
changed the information content on those lines (ie. an "input word count
register” command) the process in control must guarantee at least another
5 T-Periods (300 nanoseconds), after release of direct request mode, to
allow return cf the original data-mode information.

A simple nanoprogram to read the DCKWA register might be as follows.

RDCW "BCHA_ﬁF DEVICE B CON PORT 4 IS READ INTO THE PORT REGISTER"®
coes KA = &4 "PORT", KB = 34 "COMMAND TOD READ DCWA"

Seae X10, G(G B}y KB-D>FIPH "SEND DIRECT REQUEST TGO DEVICE B"
.SQ. '

S READ NS "WAIT AT LEAST 5 T-PERICODS"

eeeX RIO, GATE NS "READ INTO PORT REGISTER AND EXIT"

@M-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE G214

8.5.7 DATA CHAINING

Data Chaining is a facility which enables the proaram to connect separate
blocks of data in main memory as one "consecutive™ buffer. The device
controlfler contains basic logic to support this facility. Several optional
methods exist, each providing varying degrees of efficiency for effecting
data chainingy, though only the most elementary QM—1 method is described.

To permit data chaining the supporting program must provide a list of buffer
addresses and data lengths in advance of starting the chained operation.
Initially the first buffer segment starting address is loaded into the BAR,
and the word count plus data chaining indicator {(bit 16 of. the word count
value] s loaded into WC. The device controller will sence WC going zero
and generate a status interrupt. 1In this case the interrupt status register
will be found to have bit 5 {(data chaining in effect] set in place of the
usual bit 4 (word count going zerol. The status interrupt handler must then
fetch the next set of words identifying the following buffer segment, from
the buffer [ist, and transfer them to the BAR and WC. This is followed by

a “start" command which continues the original data transfer operation with
a data interrupt.

Data chaining procedures for devices with high transfer rates require more
automated methods of chaining. These methods are unique to each high speed

device, and are discussed indepenently within their respective device controi-
ler manuals.,

QM-1 HARDWARE LEVEL USER'S MANUAL NANOGDATA CORPORATION PAGE 0215
8.6 EXAMPLE OF AN ACTUAL DEVICE CONTROLLER

8.6.1 DEVICE SPECIFICATIONS

This section describes the device controller and operation of the NANODATA
LP135 line printer. The LP135 is a low speed device capable of outoutting hard
copy comprised of printed lines, up to 132 characters wide, at a rate of 135
lines per minute. There are 64 character codes available, corresponding to
USACII codes 40 to 137 (octal). The LP135 also has a four channe!l vertical
format tape.

The printer has a full 132 character line buffer. To print a line the charac—
ters are first loaded into the line buffer. Then, a print signal is issued
causing the line to be printed and the forms advanced to the next line. While
the forms are advancing the line buffer may be re-loaded, in order to be ready
for the next print cycle when the forms are in position. If less than 132
characters have been sent to the buffer, when the print signal #s issued, the
buffer is automatically filled out with blanks before the actual print oper-
atiton takes place.

The LP135 also has provision for form feed controls, and four format channel
indicators. The term "skew" is used, in this discussion, to indicate forms
motion through the printer. ®Skew mode"” represents the continuous forms motion
through the printer, beyond one integral line. The next sections describe the
control of the LP135 in conjunction with the standard device controller on the
QM-1.

dM-1 HARDWARE LEVEL USER*®S MANUAL NANODATA CCRPORATION PAGE 0215

8.6.2 CONTROLLER SPECIFICATIONS
The following lists are descriptions of the printer status registers, device
control words, and the printer device commands. The lists specify standard as
well as device dependent functions.
B.6.2.1 DEVICE STATUS

STATUS REGISTER USAGE (SR AND ISR}

Refer to section 8.4.2.2 for a general discussion of the status registers.

Appears
Bit posttion £ ident Description of status in I1SR/SR
0 Device Ready A "1*" indicates that power is applied to the BOTH

print unit, paper is properly installed, and
the ready button has been depressed. '
1 Device Not Busy -A "1" indicates the device is motionless, and BOTH
is not in operation on any computer issued
commands.

2 Error Condition -The logical =0OR" of status register bits 12, BOTH
13’ 16, and 17. .
3 Buffer Ready -The printer*s line buffer is ready for char- BOTH
' . acter loading (see section 8.4.2.2).
4 Word Count Zero ~{described in section 8.4.2.2). BOTH
5 Data Chaining —(described in section 8.4.2.2). BOTH
¢ Line Buffer Full -The 132 character line buffer is full. BOTH

A "real time™ indication of line buffer state.
This condition is prerequisite to an actual
physical print cycle, but is automatically
produced following a "print" command to the
device controller.

7 Line Count -A status interrupt produced, only if enabled, ISR
every time the printer passes the start of a
line position during forms motion. If the
printer is in "sleW mode” the program has one
millisecond to stop the "slew"” in order to stop
on the current fine. This bit is reset by the
"clear error" command (see section 8.4.2.5).

8 Format Channel 1 -A status interrupt produced, only if enabled. SR

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0217

10
11
12
13
14

16

17

SR bit indicates a Format Channel 1 punch was
encountered.

Format Channel 2 _-Same as abovey for channel 2. SR
Format Channel 3 _Same as above, for channel 3. SR
Format Channel % _Same as above, for channel 4. SR
DMA Addressing Error _Standard (see section 8.4.2.2) SR
DMA Exception _Standard (see section 8.4.2.2) SR

Format Channel

Lost Data

Command Reject

-The =0OR" of the SR(8,9,10,11} bits. A Format ISR

Channel interrupt is produced if enabled, when
a Format Channel is encountered on the forms
control tapes, during carriage motion. If in
nSiew" modey, the program has one millisecond to
stop the Slew on the desired line. The bit is
cleared when the next line is encountered.

_A status interrupt produced, only if enabled, SR

when an attempt has been made to load the line
buffer when the buffer is not yet ready for a
new character. This device doces not demand that
characters be transferred to its line buffer
within a limitted time frame. Therefore, this

error usually will indicate a hardware malfunc-
tion.
_A status interrupt is generated if "command BOTH

reject"” is enabled, when any of the following
conditions occur:
1) Any form feed command issued when the unit
is not available (see status bit 3, above]
or is not ready (status bit 0O).
2) An attempt to clear the line buffer while a
print cycle is in progress.
3) An attempt to print a line without one of
the following status conditions being trues
A) Buffer Ready (Unit Availablel.
or
B) Buffer Full.

GM=1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0218

8.6.2.2 DEVICE COMMANDS
PRINTER DEVICE COMMANDS

Refer to section 8.4.2.5 for a complete discussion on device commands. All
command code values are shown in octal.

CODE COMMAND DESCRIPTION
01 Clear Device -Standard (see section 8.4.2.5).
06 Enable Device -Standard.
‘ Interrupts
G5 Disable Device _Standard.
Interrupts
07 Read Status ~Standard.
11 Load Word Count _Standard.
12 Load Buffer ~Standard.
Address Register
21 Read Word Count _Standard.
22 Read Buffer -Standard.
Address Register
30 Load Device -Standard.
, Control Word A
31 Load Device -Standard.
Control Word B ‘
34 Read Device -Standard.
Control KWord A
35 Read Device ~Standard.
Control Word B
40 Start Operation _This command combines the functions of commands &1
and Print and 42, described below. It causes automatic
physical line printing to occur, as would be effect~

ed by command 42, immediately following the Word
Count register reaching zero. 1In general, this
command initiates one full line printer operating
cycle; from data transfer to completion of physical
line printing, and automatic advance to the next.

. , Refer to commands %41 and 42 for additional detail.

41 Start Operation _Assuming the printer is ready, and the device con-
troller registers are properly initialized, with WC
containing a non-zero value, a data block transfer

QM-1 HARDWARE LEVEL USER'®S MANUAL NANODATA CORPORATION PAGE 0219

42

45

46

Note:

50
51
52
53
54

64

65

Print

Ctear Buffer

Clear Error

will be started. "Start Operation®" triggers the
first data-out interrupt request to the CPU or DMA
(depending on DMA mode settingl, for the current
data biocke. s

_The printer wil! print the current contents of the
line buffer and then automatically advance to the
next litnes If the buffer is not full it will be
automatically blank filled. This command may not
be issued unless either the ®"buffer ready" or
»buffer full*™ condition is true (see status above).

_Blank fills the entire printer line buffer, and
sets the buffer to an empty condition. May be
issued only tf the "buffer ready™ status bit
is true.

-Standard (see section 8.4.2.5).

Afl of the forms motion (control) commands described below require the

“hbuffer ready"

Srace

{(Line Feed}
Skip To Format
Channel 1

Skip To Format
Channel 2

Skip To Format.

Channel 3

Skip To Format
Channel &
Start Slew

Stop Slew

status condition.

Causes the printer to advance the forms immediately
to the next line.

-Start forms "slew”. Stop when format channel 1 is
encountered.

~Same as 51, for channel 2.

_Same as 51, for channel 3.
.Same as 51, for channel 4.

_Starts "slew mode™ continuous forms motion. Motion
continues until a "Stop Slew” (651, "Clear Device"
(01}, or *1/0 Reset™ (70) command is issued.

~-Stops forms motion, previously issued by any of the
forms control commands (abovel.

aM-1

HARDWARE LEVEL USER'S MANUAL NANCDATA CCRPORATION PAGE 0220

8.6.2.3 DEVICE CONTROL WORDS

PRINTER DEVICE CONTROL HURDS (DCWA and DCWB)

Refer to section 8.4.2.1 for a discussion of standard DCW functions.

Bit Identity Description

DCWA

DCWA

DCHWA
DCWA
DCWA

DCWA

DCWA

DCHWA

- - - —— - - — —— . - ——— - ——

DATA MAPPING CONTROLS

02 TRANSLATE -If sety the printer controller will
translate lower case ASCII characters
to upper case.

03 PACK/UNPACK It set, the printer controller will

unpack two B-bit bytes from each 18
bit word transferred. The leftmost
character (bit positions 8 to 15) is
accessed first. The characters within
the 18 bit word are right justified.
The high order two bits are ignored.
If the Word Count register is being
employed during “"packed™ mode operation
it will be decremented by two for each
QM-1 data word transferred, thereby
becoming a character count.

STANDARD STATUS INTERRUPT ENABLE MASKS

04 COMMAND REJECT -Standard (see section 8.4.2.11).

05 ANY ERROR CONDITION -Standard.

06 DEVICE READY -Enables a status interrupt whenever the
printer ready or reset buttons cause a
change in the printer's ready condition.

07 NOT BUSY ~Enables a status interrupt whenever the

printer completes a full operating cycle.
Indicates an end of "slew mode" eperation
as well as an actual print cycle.

08 UNIT AVAILABLE -Enables a2 status interrupt when the line
(Buffer Ready) buffer becomes ready for character loading.
09 WORD COUNT ZEROC ~Standard.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0221

PRINTER DEPENDENT STATUS INTERRUPT ENABLE MASKS

DCWA 10 FORMAT CHANNEL 1 -Enables a status interrupt each time Format
channe!l 1 is encountered.

DCWA 11 FORMAT CHANNEL 2 ~Same as DCWA 10, for channel 2.

DCWA 12 FORMAT CHANNEL 3 -Same as DCWA 10, for channel 3.

DCWA 13 FORMAT CHANNEL 4 -Same as DCWA 10, for channel 4.

DCHA 14 LINE COUNT —Enables a status interrupt every time a new
line position is passed, during forms motion.

DCWA 15 BUFFER FULL -Enables a status interrupt when the printer

iine buffer becomes full.

Atl DCWB function for this device are standard. Refer to section 8.4.2.1 for
the discussion of the DCWB controlse.

QM-1 HARDWARE LEVEL USER'®S MANUAL NANCDATA CORPORATION PAGE 0222

8.6.3 OPERATION AND PROGRAMMING

The following briefly describes basic printer operations. Printer operations
can be grouped into four categories® Initialization, Status, Data transfer

and print, and Forms control. Due to the general flexibility o¢f the device
controllery, certain conventions must be set up to govern the specific forms

of operation desired. The rules listed below are enforced only for this
examplie, and by some of the characteristics expected from the device described.

1} Only upper case ASCII characters will be transmitted to the printer.
2} One character is accessed per 18 bit word, and is right justified.

3) One line, or fraction of a line, is considered to be a "data block".
41} Data routing support units, BAR and WC, will be incorporated in data

transfers, and WC will be used to terminate the "data block" transfer.
51} Data transfers will be from main store memory only.

6) Data chaining will not be incorporated in the data transfers described.

OM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION . PAGE 0223
8.6.3.1 DATA TRANSFER OPERATION

INITIALIZATION:

The general initialization procedure is described extensively in section
8.,5.2. The following is specific to this print operation. Assume that the
printer is known to be ready, and operational. The DCW Registers are loaded.

The foltowing DCWA status interrupt enable masks are sets
DCWA 05 Any Error Condition
DCWA 06 Device Ready
DCWA 07 Not Busy
DCWA 08 Buffer Ready
DCWA 09 Word Count Zero

The following DCWB data routing support controls are set:
DCWB 06 Decrement Word Count
DCWB 07 1Increment Buffer Address Register

All other DCW bits are left reset (zero). BAR is then loaded with the first
word address of the data block in main store. WC is loaded with the number
of words (characters) for the line to be printed. The printer is now ready
for the start of its first operation, which is described under data transfer
below.

STATUS:

——— et . -

The device status can be read at any time via the "direct request” mechanism
(see section 8.4.2.4). A status interrupt may occur on any of the conditions
enabled by DCWA and DCWB. Status information accessing operations are stan-
dard, and are extensively described in section 8.4.2.2.

DATA TRANSFERS:

After the printer controller has been initialized, as described above, the
status should be read to make sure that no abnormal condition exists and that

AM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0224

the printer ts ready for the transfer: device ready, not busy, buffer ready.
The program must issue an "enable device interrupts” (04) command which links
the device into the channel priority chain, and allows interrupts to be
transmitted to the CPU.

The “start operation” (41) command will generate the first data-out interrupt.
Data transfers are further described in sections 8.4.3.3 and 8.5.4. After each
word (character) has been received by the printer controller, and transferred
to the line buffer, the controller will update the values in BAR and W(C and
then will generate the next data-out interrupt. When WC reaches zero.a status
interrupt is generated and the corresponding SR and ISR bits are set.

Before the physical print cycle is initiated, the program should check whether
the printer is ready for the "print™ (42) command (see the command list in
section 8.6.2.2, abovel. The "print" command is then issued. The end of the
print cycle will result in both the ®“buffer ready” and "not busy"” status indic-
ations occurring together (unique to the LP135 printer). Following this status
interrupt the printer controller may be prepared for its next operation.

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CCRPORATION PAGE 0225

B.6.3.2 DEVICE CONTROL FUNCTIONS

Atl forms control commands may be issued only when the printer "buffer ready"”
status is set ("1"). Data transfers to the line buffer may be performed even
while a form feed, or other "slew mode", operation is in progress, in prepar-
ation for an immediately following print cycle.

A "space" (50) command will advance the printer exactly one line position.

A »Skip to format channel 1" (51) command will advance the forms until format
channel 1 is encountered. Similarly, commands for format channels 2, 3, and &
will have the same affect.

Another form feed operation is "slew mode". It is initiated by a "start slew"
(64) command. The program may control the amount of forms .advance by referenc-
ing either the format channels or the line count indicators (see section
8.6.2.1y abovel. The "slew" is limited to four conventional pages worth of
forms at a time, to avoid accidental waste of paper. An automatic "stop slew"
is issued by the controller on a runnaway forms condition. To stop the "slew"
the program must issue a "stop slew™ (65) command, or some form of device
clearing commande. To stop motion at the line position most recently indicated
the “stop slew” command must be issued within one millisecond of notificatione.

d¥-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 022%

9 INSTALLATION PLANNING =**PRELIMINARY INFORMATION FOR GUIDELINE USE ONLY=%#%2

B T T T E E T T T S T o o T o % = m S E oo e S A M S s o we e m em w
— - e s e TS S TS ET S ST ES S S rTE T TSz z=====

9.1 GENERAL
This section has been prepared to serve as guide for site pianning and site

preparation for the QM-1 Computing System. It contains the general information
for determining floor space, air conditioning and power requirements.

9.2 SPACE REQUIREMENTS

In the standard configuration; the QM-1 CPU consists of 3 bays. The 3 bays are
normally assembled into a "Y® configuration as shown below:

/\ /\ BAY I is 23.50" widey, 27" deep and 61.75" high
/ \ / \ BAY 2 and BAY 3 are bothe
/ \ / \ 27.715" wide, 27 deep and 61.75" high
/ \ / \ 4
/ BAY 3 /7 \ BAY 2
\ / \ / BAY 2 houses the central processor, control
\ / \ / store, and nanostore.
\ / \ 7/ BAY 3 houses main store and the power
N\ supplies.
i 1 '
I 1 BAY 1 is optional, and normally houses disk
1 BAY 1 1 drives, tape drives, and controllers.
1 1
FRONT

Access to the internal components of the system is through swing out doors on
each side of BAY 2 and BAY 3, and through the front of BAY 1.

BAY 1 may contain one disk drive and cohtroller (NANODATA DDS50), and two 12.5
IPS tape drives and controller (NANODATA TT12.5). Alternatively, BAY 1 may
contain two disk drives and controller. In either case, a pullout rack extends

23" for service. The remaining service requirements are handled by removing
the side panels.

The complete systemy, with swing out doors fully opened and the rack fully
extended, measures 124" wide and 112" deep.

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CCRPORATION PAGE 0227

9.3 ENVIRDNMENTAL REQUIREMENTS
TEMPERATURE

The ambient temperature of the installation site should be maintained between
60 degrees F and 80 dearees F. The recommended temperatiure is 70 degrees F.
Operation within the limits given will have no adverse effect on system
system performance.

HUMIDITY

A relative humidity of 40 - 60 percent at the instaliation site is recommended.
Humidity conditions must not allow condensation toc occur on any surface or
component within the system. Excessively low humidity (ie less than 25% RH)
may cause problems with printer paper and cards, due to static charges.

AIR CONDITIONING REQUIREMENTS

The requirements for air conditioning will vary coreatly with system configura-
tion, use, and local conditions. A typical installation will produce a thermal
load of 20,000 to 25,000 BTU/HR. :

9.4 POWER REQUIREMENTS

Neminal power requirements of the QM-1 Computing System are:
1207208 volts, 3 phase,
60 Hz @ 7 KVA. :
The system is also available (on special order) to operate on 50 Hz.

Unless other power cabling is reaguested, NANODATA will supply the system with
a power cable terminated in a male plug as followss:
’ 3 poley4 wire grounding,125/7250 volts.
Hubbellt Plug 14-30Py Model Number 9431 or 9432
The power cable may enter BAY 3 at either the bottom or top.

The customer's site should provide the following power?:
One liney, 3 phase, 120/208 volts, & wire @ 40 Amps, with
recepticle -~ Hubbel! 14-~30R, Model Number 9430 or equivalent.
Circuit Breaker Panel with
1 circuit--3 phase/30 Amps
9 single phase circuits (10 Amp Circuit Breakers — 3 per phase

eM—1 HARDWARE LEVEL USER'S MANUAL NANOCDATA CCRPORATION PAGE 0228

9.5 PERIPHERAL REQUIREMENTS

The space and power requirements for the peripherals housed in the computer
main frame are included with those for the CPU. A large variety of stand-
alone peripherals may be attached to the @M-1. The space and power required
for certain typical peripherais is listed below.

Line Printer - NANODATA P300
{inciuding paper stand and stacker)
38" deep x 30" wide x 41" high 120 VAC -~ AMPS

Card Reader - NANCDATA CRZ200
(top mounted on storage cabinet)

23" deep x 18.5%" wide x 43" high 120 VAC - AMPS
CRT - NANODATA DTZ2
{mounted on specially designed table)
30" deep x 48" wide x 43.5" high 120 VAC - AMPS
Tape Drive - NANODATA TT45
{individual cabinets not part of CPU)
21"deep x 26" wide x 58" high 120 VAC - AMPS

Contact NANODATA Marketing Department for requirements of peripherals not shown
here. '

UM-1 HARDWARE LEVEL USER®S MANUAL NANGDATA CORPORATION PAGE 0229

9.6 INSTALLATION LAYOUT —-— MEDIUM SCALE CONFIGURATION

< 20 e >
A
/\ /\ I I I
/N /N I LINE I 1
/N 7 \ I PRINTER I ————m e 1
/ \~/ \ I I I I I
\ BAY 3 BAY 2 / I . I I I 1
\ / —————— 1 TABLE I I
\ / I I
\ / I I 12¢
I I - I 1
I 1 I I CRT 1 I
1 BAY 1 1 I CARD I + | 1
I I 1 READER I TABLEI I
I I 1 I 1 1
......... - - - I
I
1
v

Customers should pian installation details with NANODATA service personnel at
least 30 days prior to delivery. This will assure proper cabling, circuit
protections grounding and noise control.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION
APPENDIX A — QM-1 PORT INTERFACE SPECIFICATIONS

A-1 GENERAL SPECIFICATIDNS

A-2 THE PORT SIGNALS
A-2.1 GENERAL
A-2.2 FUNCTIONAL DESCRIPTION OF THE PORT SIGNALS
A-2.3 ELECTRICAL SPECIFICATION OF THE PORT SIGNALS
A-2.4 TIMING OF THE PORT SIGNALS
A-2.5 PIN ASSIGNMENT OF THE PORT SIGNALS

A-3 THE INTERFACE CARD

PAGE 0230

QM-1 HARDWARE LEVEL USER'®S MANUAL NANODATA CORPORATION PAGE 0231

A-1 GENERAL SPECIFICATIONS

This section gives electrical specifications for the user desiring to
interface his equipment directiy to the QM-1 port. Because of the unique
architecture of the QGM-1, it is difficult to design external hardware
without understanding some of the machine concepts. The hardware designer
is particularly encouraged to. be familiar with the following sections of
the HARDWARE LEVEL USER?®S MANUAL:

4.2.5 EXTERNAL STORE

4.3 SIX-BIT CONTROL STRUCTURE

G.5.2.4 EXTERNAL INTERRUPTS

4.6 EXTERNAL INTERFACE

5.3 FUNDAMENTAL TIMING CONSIDERATIONS
5.5 DATA TRANSFER FUNCTIONS

8.1 QM-1 1/0 SYSTEM, GENERAL

8.2 QM-1 1/0 CONTROLS

8.3 STANDARD CHANNEL CONTROLLER

The port signals are available through the eight port connectors located

at the CPU. Interface cards that mate with the CPU port connectors are
available from NANODATA. These cards provide for termination of the user
cabling to the QM-1, and also have space for some logicy cable drivers,
receiversy etc. It is conceivable that a simple device might have all of
its interface logic mounted on the interface card. This limits the channel
to one such device. The interface card is described in detail in section
A-3. Section A-2 gives a full and detailed description of the port signals.

QM-1 HARDWARE LEVEL

QM-1
PORT

TDAT‘A
18
FOATA
T >
TIO
£
"%
FOS
i ~
I@ S
FRUNC
ya —_—
,@ s
FX10
-
FXIO STROBE
F&I10 >
F10 CuUK
7
¥\VC
7

TATN OATA OUT

TATTN DATA N

TATN STATUS

USER®S MANUAL

_)

NANODATA CORPORATION

PAGE 0232

USER'S EQUIPMENT (INTERFACE CARD)

M-1
~ Q
+oV.
RIO o l 300
D ot |
AN xHoa |
TDATA ! 6 “-T‘—— a<}
-
UNCC TOATA
SET I .
- PDATA a0z I AVAYAL
LINES _ ok -
= at FOATA < Kol ! m—
, l 330 ILT [t T
R VAVAVAS
(o l _
™)
> - I
74552 l
o l _ AN
~ o s ©S 2 FRuNC | R JES S [s >
330 A*T I .
[2N
| SVAYAYAL
..o ¢ JESSE [S
PAH04 3so~ 'I’ hd SRS
| NaVaVas
CONTROL _
SIGNALS e l _f\i\/;b
msel XIO STROBE. R oo —D N
EEEY e - Uil
AYAVAYAS
l ~AANS
-~ IO CLK li‘ -2
US40 0 —— - ¢ I S
- 3207 T4HCS
| VAVAVAS
N . MASTER. CLEAR I {> <
~ LA
ELToES l
VNV — ‘
> INTERRUPTS TATIN STATUS, DATA T & DATA O °<I
AHOS
I = GROUND
1 - .
e NOTE: RESISTCRS ARE JAw S/
* INSTALLED N CHANNEL 'O ONLY

FIG1 QM-I PORT SIGNALS

FIG 2 TERMINATION St PORT SIGNALS

Q4-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0233

A

A-2 THE PORT SIGNALS

A-2.1 GENERAL

Section A-2 is a detailed description of the functional, electrical and
timing characteristics of the port signals. The port signals are shown
tn figure 1.

A-2.2 FUNCTIONAL CHARACTERISTICS OF THE PORT SIGNALS

The following table describes the functional characteristics of the pbrt
signals. _

NOTES =

1} The logical level is the refative voltage when the signal is "true".
A "low"™ signal, for example,y, is a signal whose relative voltage is "low"
when it becomes "true". (See section A-2.3 for further discussion.)

2) Caution should be taken with the definitions of "pulse" and "level".
Because of the unigue architecture of QM-1 the program has full control
over the port signals. A “"pulse" is defined as a signal that is true for
a refatively short time. Programming cannot affect the width or appear-
ance of a m™pulse”. A signal that is defined as a "level” can be made to
took like a "pulse", by aliowing that level to remain constant for only
one T-period.

3) The port siaonals were determined with the NANODATA standard 1/0 scheme in
minde The term "“normally used”, that occurs fregquently in the table below,
refers to its use in NANODATA standard 1/0 channels. These designations
need not be followed by the user. The user may redefine the functions and
designations of port signals to his device.

4) 1t is a NANODATA convention that the names of outbound signals, those going
."from" the (PU, are prefixed by . an "F" and inbound signals, thaose "to" the
CPUy are prefixed by a "T».

dM-1 dARDHWARE

LEVEL USER*®S MANUAL

SIGNALS FROM THE CPU

" ————— T — — — ————— ———— - —

NANODATA CORPORATION

PAGE 0234

I LOGIC 1 I
SIGNAL NAME I LEVEL 1 SOURCE I
-] === 1 - - I NOTES
H OF LINES I SIGNAL I DESTINATION 1
I TYPE 1 I
FDSO-FDSS 1 HIGH 1 CPU G-BUS I Six data lines from the CPU normally
1 - -- 1 . - I used as a device selection code to
) I LEVEL I ALL PORTS I route a command to a device.
I T=TTSs=== ::.::::I::::::‘::l:::: :::::::::::I TSz ==s== ST S S TS TS ST T ssssTrT o= ===
FFUNCO-FFUNCS] HIGH 1 CPU PHANTOM I Six data lines from the CPU normaiiy
1 I BUS I used to specify a command.
-1 =] ————————eeee]
6 I LEVEL I ALL PORTS 1
:::::::::::::.:I: =ES=====z I :::::::::::::::I STz =o=== S S S SSES TS S CSS s TS o=s=====
FXI0 I LOW I XIO PRIMITIVE I "Transmit I1/0" is a programmable level
-1 ====--] ——=-=——weeee='1 Its length is determined by the number
1 I LEVEL I KA SELECTED I of consecutive T—periods in which the
I I PCRT I XIO primitive is active. It is nor-
1 1 I mally used to select the channel to
I i I which data or command is sent.
::::::::::::::I:::‘::::: I sS===s=s== =—======I S S F 2 4 4 5 T T A S+ F ¥ T N 4+ 2 & 4 3 5% S & 45 85 43
EXI0O STROBE I LOW I XIO PRIMITIVE I A strobe produced during every T-step
=1 === - - I in which the XIO primitive is speci-
1 I PULSE I ALL PORTS I fied. Normally used to strobe data/
I I I commands. Its timing is such that
I 1 I FBS, FFUNC, and FDATA are valid during
I I I XIO strobe.
sS===S=z==== ::::::I:::ﬁ:::::‘l Tz === ::::—::’:'I STSTTszT====== S S S T TETETs S-S =TS S==s====
FRIC I LOW I RIO PRIMITIVE I "Read I/0" is used to gate the TDATA
- I —————=1 - - = 1 lines of the KA selected port into its
1 I PULSE I KA SELECTED I port register and normally used to
I I PORT I notify the channel/device that data
I I I has been read.
:::’::==‘.:==:::'=I===‘==:=:I:::::‘::::::::::I SEESSsSss=szsz=zZ=== SSsSsSS=SSs =TTz =SZTETz====
FID CLK I LOW 1 CPU CLOCK 1 A synchronizing pulse produced once
- I -1 - - - 1 every T-step independent of any 1/0
1 I PULSE I ALL PQRTS I controls.
====:==::=::::I=::=::::1:::‘:::::‘:::: ::‘:.‘I ST TS =TT s sSEsS==s=sz=== =SS STssz=zms=z==

gM-1 HARDWARE LEVEL USER®*S MANUAL

zz=z=zz=zss=sss=s]s=======
FMC I LOW
I
- - I - ————
1 1 LEVEL
=zzzzzsszx==s====z]=====z= ==
FOATAD -~ I HIGH
FOATALY I
-— I ———————— -
18 I LEVEL

- e e o= =
3 S S X T a4 4

CPU "MASTER
CLEAR"™

ALL PORTS

—— e - w w w w ams an wm
S EZo oSS SSsS=TT

EACH PORT
REGISTER

———— - ———— —_—— a—— -

EACH PORT

Ll e B B B B B B B B

NANODATA CORPORATION PAGE 0235

P e T P T P T T T T T &
T r T T TS T T T I TS T T TS L L I T S SSETSSESsSSSsESFEE-

General master clear to all QM-1
hardware.

P e e T e T e T S T T TP X ¥
TN T T I T T T T S S T TS S T S ST TR IS T EE s s -~

The FDATA Tines are the direct outputs
of the port registers. There are
eight sets of FDATA lines, one set for
each separate port.

- ———— o — > e P = T e e e et A e S A W S W SN e e aE T T NN e e TSI

TEZTEZI SIS EIZS=E=S=

QM-1 HARDWARE LEVEL USER*S MANUAL NANODATA CORPORATION PAGE 0235

SIGNALS TO THE CPU

B e D S —

. I LOGIC 1 I
SIGNAL NAME I LEVEL I 1
-1 == I CESTINATION I NOTES
OF LINES I SIGNAL I 1
I TYPE 1 I
TDATAD - I LOW 1 EACH PORT I The TDATA lines connect to the preset
TDATA17 1 I REGISTER 1 inputs of a port register. There are
I -1 1 eight sets of TDATA lines, one set for
18 I LEVEL 1 I each individual port. The FRIO signal
I I I must be used by the port interface to
1 1 I gate data on these lines.
=== ::::z:::::l::::::::l:::::::: =‘======I E X S S 4 1 1 1T T T 2 T E T 1T Tt Tt X TR I T ¥ X N
TIDO-TIDS I LOW I 10 1D AU I Six data lines which may be read by
e ittt S b I the CPU with an AUX -> F REG transfer.
6 1 LEVEL I I There are eight sets of TID lines, one
1 H 1 set for each port. The low 3 bits of
1 1 I KA selects the actual port whose TID
I I I lines will be read. These lines are
I I I normally used as a device ID to iden-
I 1 1 tify the interrupting device.
T= == :.:::::::::I::::: :::I ::::::‘.:’::::::::I:::—: 2 >+ 2 4+ S 3+ 2+ S+ 2 A F IS X 4 F S ENF S EFS TS LI
TATTN DATA I LOW I ONE OF 30 1 A pulse on this line latches the
IN I I INTERRUPT I external interrupt level to which it
1 I FLAGS I is connected. Normally used to signal
------------ I ————==1 I that input data is available. O0One
1 I PULSE I I tine for each port.
TT====s== :‘-:::::1:‘.’.::: === I :.:.::::::::::::“:,I RS S22 2t R 2 T R Tt 2 T2 1 XTI
TATTN DATA I LOW 1 ONE OF 30 I Same as TATTN DATA IN. Normally used
ouT I I INTERRUPT I to request data to be output.
———————————— [-=—-— 1 FLAGS I
1 I PULSE 1 I
STz == ===::=‘I=‘======= I :::::::::‘::::::‘I S ST oIS S ST S S ST SsS - SsS==sDo==
TATTN STATUS I LOwW 1 ONE OF 30 I Same as TATTN DATA IN. GOne line for
I I INTERRUPT I each port. Normally used to signal a
———— I - -— I FLAGS 1 change in status of an external
1 I PULSE 1 I :

R R R R X 2 T 1 & 1 T T T 3 2 B T 1 F T T O
e e e R R S et R 4 S 2 3 2 B S s S 3+ P S T S E F T F 3 F SR E S F 5 P P 3

QM-1 HARDWARE LEVEL USER'S MANUAL NANCDATA CORPORATION PAGE 0237

A-2.3 ELECTRICAL SPECIFICATIONS OF THE PORT SIGNALS

All drivers and receivers used by NANODATA are standard TTL, H or § Series-
Figure 2 describes the termination of signals at the QM-1 port. All signals
must be buffered and terminated as shown by figure 1. Not more than one TTL
(H series) load (2 ma) may be drawn from any port output. Electrical signals
are defigned as follows:

"HI1GH" voltage - Greater than 2.7 V, less than S.SKV.
“LCW" voltage = Less than 0.4 V, not less than -1.0 V.

These are values supplied by the port drivers, and interface drivers must
ccnform to them. A space is provided for buffering logic on the interface
card described in detail in section A-3. ‘

Important note:

Resistor terminations shown in figure 2 with an asterisk must be instalied
on the port 0 interface card. They should not ke used on any other port.
If port 0 is not used, an interface card with terminating resistors must be
installed in the port 0 connector.

0238

PAGE

NANODATA CORPORATION

QM-1 HARDWARE LEVEL USER*®*S MANUAL

HIAGNVYHL A - QT'OT & .

914

CANL WVNDAS, 1 AT TN IS OT AL QIAONIAIAIY S INL G100 QTL w R

LNIONIAIO WVBD0RD A,
‘310N

ONTINIL LaNAHIINT A€

|

L Xowo9 |

W> LANUHATLINT.ANY
UNWA Ly -

ONINIL ANYWNWNO) e

3Q0LS O1IXA

—e] 32k
e e e _
T QIXH
e e
NIA UG o] e Jv" TlZSc.o_
|
[sa4
| _
£S5
NN SNoL —» |« JJ “Alzs MO\
{
| “ ONN4 A
O —
™MW Y0 —+ e SUOR———

_a__r

]
PR

Q31310343 on ||‘_»|

{)Y Hald« XNy
o»'ll_:m«ém_tf

NIW S0y —f=——= ke X9N *ho2 ONTNIL Q1 30130 3 N vivA QE
_ i
_ | w o124
" |
— fe— NIN NG|
| X Q1WA YLvAL
- _ ! e |
g NN | O
a._ SIN02 QI wAQLL
. . NIW **OF ¢
\ ?L.ﬁl _
| » LANYHIANI
|
| Fe— Sgg —™
| —
)l |
Rtk DU DU R PR R— et
SNIWIL LNO viva Ve
4 _ 33021S OIX4
e, -l Tz_s:oml
QlMvAYiIvYad
AVA e —

‘Il.lllw:ﬂvwlll'
! |

DME,Umawv

112050393
TI,IM(~.ro.u..vn V @NMFM avon me nm_‘l

Q-1 HARDWARE LEVEL USER®S MANUAL NANCDATA CORPORATION PAGE 0239

A-2.4 TIMING OF THE PODRT SIGNALS

Figure 3 describes the timing of the port signals related to the operations
the signals are invoived withe.

NDTES:

Figure 3A: T1 is the earliest T-step where XI0O can be specified if the data
loaded into the port register is to be valid.

Figure 3B: "Interrupt” in figure 3B may be DATA-IN, DATA-OUT, or STATUS.
Interrupt pulse timing is independent of CPU timing and may
occur at any time. Data and device ID must be valid 150 nano-
seconds from the trailing edge of the interrupt pulsey since that
is the minimum time required for the CPU to respond to the inter-
rupt. TDATA must remain valid for at least 5 nanoseconds after
the trailing edge of RIO. Since there is no indication at the
port that the ID is being read by th CPU, its hald time is
referenced to R10. Normally, RIO will release the data and ID.

Figure 3(C: FXIO STROBE timing is such that all 3 elements of the command
. {(function, device selects and XIOD} can be specified in a single

Figure 3D: An interrupt of any type can occur at any time {with relation to
the CPU timing). The pulse width must conform to the timing
limits shown.

dM-1 HARDWARE LEVEL USER*®*S MANUAL NANCDATA
A-2.5 PIN ASSIGNMENTS OF THE PORT SIGNALS
TCATA(L) O - A3 I FDATA 0 - A32 1 TID(L) O -
" 1 -0 1 " 1 ~(C32 1 " 1 -
" 2 - Al10 I " 2 = A33 1 " 2 -
- 3 - (101 » 3 -(033 1 " 3 -
" 4 - Al19 1 " 4 - A35 1 " 4 -
" 5 - (19 1 " 5 - (€35 1 " 5 -
" 6 - A27 1 " 6 — A42 1 FDS 0 -
» 7 - €271 " 7 - (€42 1 " 1 -
" 8 - A4 1 " 8 - A44e 1 " 2 -
" 9 - 04 1 " 9 - (46 1 " 3 -
" 10 - All 1 " 10 - A4S 1 " .4 -
" 11. - (11 1 . 11 - C45 1 " S -
" 12 - A20 1 " 12 - A36 1 FFUNC O -
" 13 - C20 1 " 13 - (36 1 " 1 -
" 14 - A28 1 " 14 -~ A37 1 " 2 -
" 15 - €28 1 " 15 - €37 1 » 3 -
" 16 = A5 1 " 16 - A38 1 " 4 -
" 17 - ¢ 1 " 17 - €38 1 " 5 -
FRIO(L) - A1l5 FXI0 STR - A31
ID SELECT(L) - Aleé FIO CLK - Al4
TATTN STATUS(L) - AlZ2 FMC(L)} - C14
TATTN DATA INC(L) - C1l2 TATTN DATA OUTHIL) - C23
+ 5V = A%, A26, AG3
-5V - A7, C7
GND - Cl, AlB,y A34, (52

CORPORATION

Cé

A6

€29
A29
c21
A2l
C39
A39
C48
A48
Ca7
A&7
C49
A4S
Cal
A4l
c40
A4D

PAGE 0240

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0241

A-3 THE INTERFACE CARD

The QM-1 CPU has eight, 156 pin, female connectors each representing a port.
The interface card is a NANODATA standard, UN series, wirewrap board with a

104 pin male connector designed to mate with a port connector in the CPU. This
card simplifies the user's task of interfacing to the port by allowing him to
put his drivers, receivers, and any logic directly in the Qm-1. The interface
card ks available in three different configurationss

UN 2 =~ Has space for up to 30 14-pin or lé6-pin DIPS and 8 24—pin
DIPS.

UN 3 - Has space for up to 12 1l4-pin or l6-pin DIPS and 16 24-pin
DIPS.

UN 5 - Has space for up to 48 14-pin or l16-pin DIPS.

Each configuration has a voltage plane, ground plane, 104 pin connector, and
room for 3 44-pin cable gonnectors (Continental, MMM 44). +5 volt and -5 voit
supplies are available at the port connector (see section A-2.5). Not more
than 2 Amps may be drawn from the +5 volt supply and not more than 400 ma from
the -5 volt supply. ‘

If the user desires, NANGODATA can supply interface cards completely assembledy,
wired, and tested to user specifications.

QM-1 HARDWARE LEVEL USER'S MANUAL NANODATA CCRPORATION PAGE 0242

7\ / N\ / N\
v e L r ot /===
'y ' e 1 1 (<K< CABLES TO USER'S EQUIPMENT
1ot vt L \ ===
L t LA
ot U T R
LY SUNUI W S N/ —_——\N -
1 1 I 1 I I 1 I
N I I
T 1 | U / 1
E 1 \ / I
R I v 1
F 1 44 PIN CABLE CONNECTORS 1
A 1 I
C] e - ——————— 1
E I I I 1
I 1 USERZ®*S BUFFERS I 1
C I 1 I 1
A I 1 ANGC I I
R 1 1 I 1
D I 1 LeecrlcC 1 1
I 1 1 1
L I 1 1 1
A I 1 I 1
Y I 1 1 I
o I I. - I 1
J I 1
T 1 104 PIN PORT CONNECTOR 1
I L] " " [" ” l

TTTTTTITTRTITTTITITITTITITIITITITITITONITNY

PAGE 0243

NANODATA CCGRPORATION

HARDWARE LEVEL USER®S MANUAL

av-1

PORT CONNECTOR POSITIONS ON QM-1 BACKPLANE

42 41 40 39 38 37

44

PCSITION #

SN NN NN SN
f

[e S e e N e e e e s R
|
|

bt et bt bt bt bt bt ey bt bt bt ped ey
| vt bt bt et it bed et b Bt et bt bt bt
|
| ot b bt ot ot b ed e Bt (et et b fmag
[oot ot bt gt bt it pt bk ot gt bnd et
|
|

| vt o bt ot pnd bt b bt Pod et et bt et

ot (ot Pt e Puod poned ped g et g pod e et

oyt P pf g e o) pond) e ol

e I I B I B B B Bl B B B o B

e i e B B B I B I B e e B e B e B e |

e R e B B B I I I B B I I]

L e B B T B B T B B B B]

I e e e N B B N e N)
|
|

.IIIIIIIIIIIII

.IIIIIIIIIIIII

e B R B N N R R]

L e T e e e I ettt i

——— e e v GR e eme W I e S e G W A W W - G

0

PORT #

QM-1 HARDWARE LEVEL USER*®*S MANUAL NANODATA CORPORATION

APPENDIX B — QM-1 CPU OPTIONAL FEATURES

B-1

ONTROL STORE ADDRESS TRANSLATION AND ACCESS PRBTECTIDN
«1 GENERAL DESCRIPTION

.2 DETAILED DESCRIPTION OF OPERATION

3 LOADING AUXILIARY MEMDRIES

4

C
B-
B~
B
B APPLICATIONS

N
1
1
1
1

PAGE 024%

QM~1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0245
B-1 CONTROL STORE ADDRESS TRANSLATIUN AND ACCESS PROTECTION

B~1.1 GENERAL DESCRIPTION

The standard Control Store of the QM-1 is a fully readable/writable 18-bit wide
store, implemented in semiconductor memory. It is available in blocks of 1K
wordsy up to a maximum of 16K words. Control Store is primarily used to hold
microprograms and their associated tables and work areas. It is, however, a
complietely general-purpose memory and may be used in any way appropriate to a
specific application. For examplie, Contro! Store is ideal for use as a scratch
pad or cache memory.

In normal operation, Control Store is addressed from zero to the maximum
installed memory address. Addresses beyond this range generate zeros for the
"READ CS" command, and cause a null operation for the "WRITE CS" command. Any
executing microprogram has access to the ful!l range of installed addresses.

All addresses must be absolute and no portion of control store may be excluded.
For many applications, this mode of Control Store operation is sufficient. In
particular, users executing a single microprogram stream will probably have no
need for a more powerful mode of Control Store operation. For applications
that do reguire a more powerful Control Store facility, the Control Store
Address Translation and Access Protection Option is available.

With this option installedy microprograms have available a Virtual Address
Space of 128K for Control Store. Translation hardware maps the address
supplied by an executing microprogram into the actual address space of 16K
(maximum) that corresponds to the Control Store physically installed on the
machine. The actual address space is divided into 512 word pages; 32 such
pages exist in the maximum configuration. The virtual address space is also

divided into 512 word pages; 256 such pages may be referred to by a micro-
program.

The translation between virtual page and actual page is accomplished by a

small high-speed associative memory called the Associative Page Selector. This
auxiliary memory is loaded by a contrel program when Control Store is initially
written prior to releasing control to the currently executing microprogram.

‘Now Control Store addresses are independent of the actual page address at which
the page is loaded into Control Store. An executing microprogram can reference
any of its currently loaded pages. No changes are necessary in the nano-
primitives used by the microprograme.

QM-1 HARDWARE LEVEL USER'S MANUAL NANDDATA CORPORATION PAGE 0245

Another auxiliary memory called the Page Access Control Memory is provided to
permit control over which pages are accessable to the currentiy executing
microprogram. This memory is also loaded by a control program prior to
initiation of microprogram execution. The Page Access Control Memory contains
a2 bit status code for each physical page of Controi Store ioaded and each of
16 possible partition numbers. The code may be set to specify:

No Access Allowed
Read Access Allowed
Write Access Al lowed
Full Access Allowed

In this way, Control Store may be "partitioned” as appropriate to the task now
being executed. By a change in the 4 bit partition no. in FUSR, the executing
environment may be completely changed.

Whenever Control Store access to the specified page is restricted for the
current partttion number, or whenever the Control Store Page referenced is not
physically present, an addressing exception is generated. This permits an
operating system to take the appropriate actione.

The next two sections treat the detailed operation of the Control Store Address
Translation and Access Protection COption.

a¥-1 HARDWARE LEVEL USER'S MANUAL NANODATA CORPORATION PAGE 0247

B-1.2 DETAILED DESCRIPTION OP OPERATION

The basic nanoprimitives for accessing Control Store are unchanged. Whenever a
“REAC CS" or "WRITE CS* command is encountered, the 18 bit CS address which

was generated by the (S Address Select Mechanism is actually loaded into the

S Address Buffer. The CS Address Translation Mechanism uses this buffer as
the Virtual address and forms the physical address with which it accesses
Control Store.

The 18-bit CS Address Buffer, along with a 4 bit "partition number”,

taken from the low order 4 bits of FUSR, provide the necessary inputs

to the Control Store Address Translation and Access Protection hardware.
Using these inputs, the hardware shown in Figure B-1.2a either permits access
toc the actual Controf Store location desired or generates a Control Store
addressing exception.

FUSR 18 8it Control Store Address Buffer
IX XI PART, 1 IX1 PAGE I DISPLACEMENT I
54 3 -0 Bit 11 v 00 v c
bits Numbers 7 5% 8 Bits g9 8 9 bits 0
v \ v v
.......................... v
I PAGE I I ASSOCIATIVE I Vv
I ACCESS 1 1 PAGE I v
T CONTROL 1 I SELECTOR I '
I MEMORY 1 1 1 v
1 1 1 32 X 8 I v
I 16 x 64 1 I I v
.......................... v
v V. e
64 Bits 32 Bits I CONTROL 1
v v I STORE 1
v . seemececc—co———- 1 I
v READ €S —-=---31 PAGE I 32 1 32 1
------ ——— cemmmme—me——==3] VALIDATION -I>>>>>]1 Pages 1
WRITE CS ----2>1I LOGIC I I of I
------ ———————— I 512 I
v I 18-Bit I
Figure B-1.2A CONTROL STORE ADDRESS Address I Words I

TRANSLATICN AND ACCESS PROTECTION Exception = —---e--——--

QM-1 HARDWARE LEVEL USER'S MANUAL NANODDATA CORPORATION PAGE 0248

The 4 bit partition number taken from the low order 4 bits of FUSR is input to
a Page Access Control Memory (PACM) consisting of 16 by 64 bits. The 64 bits
for each partition are actually 2, 32 bit registers, one READ Inhibit register
and one Write Inhibit register, each bit with a single line to its respective
physical Controi Store page. These 2 bits allow or inhibit access to each
page depending on their value as follows:
WRITE/READ

1/1 - No access allowed

1/0 - Read access allowed

0/1 - Write access allowed .

0/0 - Both Read and Write access al lowed

At the same time, the 8 bits of the Control Store Address shown in Figqure
B-1.2A are input to the Associative Page Selector (APS). These 8 bits specify
the Virtual Page number of one of the possible 256 virtual pages. The 32 by 8
bit assoctative memory provides a selection from onesy or more, of the 32
possible physical pages of control store or indicates that the page is not
availtable by sefecting no page.

Finally, the "READ CS" or "WRITE CS™ command, along with the 64 validation bits
from the PACM and the 32-page-select bits from the APS are input to the Page
Validation Logic Unit shown. If the validation bits show that the specified
access is allowed, the page select is sent to Control Store and the low order

9 bits of the Control Store Address simultaneocusly select the word within that
page. ‘

If the access is inhibited or if no page select is available (indicating that
the page is not present in Control Store), an addressing exception is
generated.

Three generel AUX ACTION Commands are associated with the Control Store
Address Translation Dption. They are as follows:

63 SET ASSDCIATIVE MODE - begins use of the associative transliation
and protection hardware.
64 SET DIRECT MODE = turns off the use of the associative

translation and protection hardware
: for the low 2K of physical Control Store.
€5 LOAD CS ADDR BUFF - loads the CS ADDRESS BUFFER with the 18
bit word pointed to by CS ADDR SELECT.

QM-1 HARDWARE LEVEL USER'®S MANUAL | NANGDATA CORPORATION PAGE 0249

B-1.3 LOADING AUXILIARY MEMORIES

Both auxiliary memories involved in this option are loaded by means of an
AUXTLTARY ACTION command (see section 5.8.2). This permits an effective-
contro! over those microprograms that should not have the ability to modify the
contents of the auxiliary memoriese.

The two main AUX ACTION commands are LOAD APS (60) and LBAD PAC(61). Both use
the DIRECT CS ADDR (the 18 bit word pointed to by the (S ADDR. SELECT in the
T-Vector) and LOAD APS(60) uses the contents of the (S ADDR. BUFFER. The
interpretation of each memory load command is shown belowe.

ASSOCIATIVE PAGE SELECT MEMORY

Specified by CS Addr Select Loaded by LOAD CS ADDR BUFF(AUX ACT 65)
- DIRECT CS5 ADDRESS CS ADDRESS BUFFER
1 Al 16/ LO 16/ BINARY - CELL Selectionl IX/ DATA /XXXXXXXXX!I
1 1 16 Bits 1 8 9

One or more cells of the 32 available cells are loaded with the 8 DATA bits
which are currentiy resident in the (S Address Buffer (placed there by the
LOAD CS ADDR BUFF - AUX ACTION 65, or the last READ or WRITE CS command]).
Which cells are loaded is decided by the 18 bits of data callied the

DIRECT CS ADDRESS (currently pointed at by the CS ADDR SELECT). Bit 17 on (1)
choses the HIGH 16 cellsy and bit 16 on (1) choses the LOW 16 cells; bits

15 thru 0 are a2 binary selection of cells 15 - 0 (mod 16).

For Example: 4000202 selects cell 17 3§ 200003 selects cells 0 and 1.
THAT 1St AUX ACTICON 60 causes 8 bits of data from the CS ADDR BUFFER to be
written to n cells (1 < n < 32) of the Assoc. Page Select Memory, selected
from the CIRECT CS ADDR pointed to by the (S ADDR SELECT.

AUX ACTION 62 - READ APS uses the DIRECT CS ADDR in the same way.

QM-1 HARDWARE LEVEL USER®S MANUAL NANODATA CORPORATION PAGE 0253

PAGE ACCESS CONTROL MEMORY

DIRECT CS ADDRESS (pocinted to by CS ADDR SELECT)

—— ——— —— ——— — ——— . ——— A —— . . ——— - - - -

I WRITE-READ /7 HIGH-LOW/ 16 bit INHIBIT(1) or ALLOW(O) I
I hatf pair 7/ half reg/ for 16 pages I

bits 17 16 15 0

The LOAD PAC Command (AUX ACTION 61) is used to load Page Access (Control flags.
LOAD PAC loads sixteen flags at a time, changing only one user's READ or WRITE
access authorization as identified by FUSR. The low 16 bits of the DIRECT CS
ADDRESS (pointed to by CS ADDR SELECT) are the flags to be loaded. Bit 17
specifies whether the access flags are for READ or WRITE autherization, while
bit 16 specifies the upper or lower half of 32 pages being given authorization?

00 = WRITE HIGH HALF
01 = WRITE LOW HALF
10 = READ HIGH HALF
11 = READ LOW HALF

THAT IS: AUX ACTION 61 LCADS PAC (one half of one register) belonging to
user (FUSR) from DIRECT CS ADDRESS inhibitingflor allowing) access to 16 pages
at once.

QM—1 HARDWARE LEVEL USER®'S MANUAL NANODATA CCORPORATION PAGE 0251

B-1.4 APPLICATIONS

The control Store Address Translation and Access Protection Option is designed
for those sophisticated applications that require a more powerful memory
capability at the microprogramming level. The option2

1. Permits sharing of re-entrant microcoding.

2. Atlows all concurrent micro—processes to have independent address
spaces. -

3. Provides basic Control Store Program Prctection.
4. Pravides Control Store Partitioning between 15 independent tasks.

5. Facilitates efficienty high speed, switching between resident
microprocessese.)

For those applications that either require, or can make effective use of, one
or more of these capabilitiesy the option should be instalied.

QM-1 HARDWARE LEVEL USER®'S MANUAL ' NANODATA CORPORATION PAGE 0252

Comments regarding errors, deficiencies, or omissions in this document will
be appreciated. Comments should be sent in writing to the Technical Services
Manager, NANODATA CORPORATION, 2457 Wehrle Drive, Williamsville, New York 14221.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252

