e,

UNIX™ SUPPORT FROM BERKELEY

NIX is a trademark of Bell Laboratories

INEWS (1) UNIX Programmer’s Manual ‘ INEWS (1)

NAME
inews — submit news articles

SYNOPSIS i p
inews [—h] —t title [—n newsgroups 1[—e expiration date 1 "

inews —p [filename]
inews —C newsgroup

DESCRIPTION
Inews submits news articles to the USENET hews network. It is intended as a raW mterface,
not as a human user interface. Casual users should probably use postnews (1) instead, .

The first form is for submitting user articles. The body will be read from the standard input.
A title must be specified as there is no default. Each article belongs to a list of newsgroups If

the —n flag is omitted, the list will default to something hmc general. (On ours, it is gen- -~ . ..

eral.) If you wish to submit an article in multiple newsgroups, the hewsgroups must be
separated by commas and/or spaces. If not specified, the expiration date will be set to.the local
default. The —f flag specifies the article’s sender. Without this flag, the sender defaults to
the user’s name. If —f is spec1ﬁed the real sender’s-name will be included as a Sender line.
The —h flag specifies that hedders dre- present at,the beginning' of the article, and these headers
should be included with the article header instead of as text. (This mechanism can be used to
edit headers and supply additional nondefault headers, but not to specify certain information,
such as the sender and article ID, that inews itself ggx;emt_ﬂeﬁs_.)’

When posting an article, the environment is checked for information about the sender. If
NAME is found, its value is used for the full name, rather than the system value (often in
/etc/passwd). This is useful if the system value cannot be set, or when more than one person
uses the same login. If ORGANIZATION is found, the value overndes the. system default
organization. This is useful when a person- uses guest login and is not primarily associated
with the organization owning the machine.

The second form is used for receiving articles.from other machines. If ﬁlename is given, the
article will be read from the specified file; otherwise the article will be read. from the stan-
dard input. An expiration date need not be present and a receival date, if present will be
ignored.

After local installation, inews will transmit the artlcle to all systems that subscribe to the
newsgroups that the article belongs to. ‘

The third form is for creating new newsgroups. On some systems, this may be limited to
specific users such as the super-user or news administrator. (This happens on ours.)

If the file /usr/lib/news/recording is present, it is taken as a list of ' recordmgs to be shown
to users posting news. (This is by analogy to the recording you hear when you dial informa-
tion in some parts of the country, asking you if you really wanted to do this.) The file con-
tains lines of the form:

newsgroups <tab> filename
for example:

net.all net.recording faall fa.recording

Any user posting an article to a newsgroup matching the patm on the left will be showest:

the contents of the file on the right. The file is found in the LIB directory (often
/ust/lib/news). The user is then told to kit DEL to abort or RETURN to proceed. The intent
of this feature is to help companies keep propnetary information from accidently leaking out.

FILES o
/usr/spool/news/sys.nnn temporary articles
/usr/spool/news/newsgroups /article_no.

7th Edition 1

INEWS (1) UNIX Programmer’s Manual INEWS (1)

Articles

/usr/spool/oldnews/ Expired articles

/usr/lib/news/active List of known newsgroups and highest local article numbers in
each.

/usr/lib/news/seq Sequence number of last article

/usr/lib/news/history List of all articles ever seen

/usr/lib/news/sys System subscription list

SEE ALSO
Mail(1), binmail(1), getdate(3), msgs(1), news(5), newsrc(5), postnews(1), readnews(1), rec-
news(1), sendnews(8), uucp(1), uurec(8),

AUTHORS
Matt Glickman
Mark Horton
Stephen Daniel
Tom R. Truscott

7th Edition 2

POSTNEWS (1) UNIX Programmer’s Manual POSTNEWS (1)

NAME

postnews — submit news articles

SYNOPSIS

postnews [article]

DESCRIPTION

FILES

Postnews is a shell script that calls inews(1) to submit news articles to USENET. It will
prompt the user for the title of the article (which should be a phrase suggesting the subject, so
that persons reading the news can tell if they are interested in the article) for the newsgroup,
and for the distribution.

An omitted newsgroup (from hitting return) will default to general.

general is read by everyone on the local machine. Other possible newsgroups include, but are
not limited to, btl.general, which is read by all users at all Bell Labs sites on USENET,
net.general, which is read by all users at all sites on USENET, and net.news, which is read by
users interested in the network news on all sites. There is often a local set of newsgroups,
such as uch.all, that circulate within a local set of machines. (In this case, uch newsgroups
circulate among machines at the University of California at Berkeley.)

The distribution can be any valid newsgroup name list, and defaults to the same as the news-
group. (If they are the same, the distribution will be omitted from the headers put into the
editor buffer.) A distribution header will, if given, be included in the headers of the article,
affecting where the article is distributed to.

After entering the title, newsgroup, and distribution, the user will be placed in an editor. If
$EDITOR is set in the environment, that editor will be used. Otherwise, postnews defaults to
vi(1).

An initial set of headers containing the subject and newsgroups will be placed in the editor,
followed by a blank line. The article should be appended to the buffer, after the blank line.
These headers can be changed, or additional headers added, while in the editor, if desired.

Optionally, the article will be read from the specified filename.

For more sophisticated uses, such as posting news from a program, see inews (1).

SEE ALSO

Mail(1), checknews(1), inews(1), mail(1), readnews(1).

3rd Berkeley Distribution 1

READNEWS (1) UNIX Programmer’s Manual READNEWS (1)

NAME

readnews — read news articles

SYNOPSIS

readnews [—a date][—n newsgroups 1[—t titles][—lprxhfuM][—c [mailer]]
readnews —s

DESCRIPTION

readnews without argument prints unread articles. There are several interfaces available:
Flag Interface

default A msgs(1) like interface.

—M An interface to Mail(1).

—c A /bin/mail(1)—like interface.

—c “mailer”
All selected articles written to a temporary file. Then the mailer is invoked. The
name of the temporary file is referenced with a “%”. Thus, “mail —f %” will
invoke mail on a temporary file consisting of all selected messages.

—p All selected articles are sent to the standard output. No questions asked.
—1 Only the titles output. The .newsrc file will not be updated.

The —r flag causes the articles to be printed in reverse order. The —f flag prevents any fol-
lowup articles from being printed. The —h flag causes articles to be printed in a less verbose
format, and is intended for terminals running at 300 baud. the —u flag causes the .newsrc
file to be updated every 5 minutes, in case of an unreliable system. (Note that if the newsrc
file is updated, the x command will not restore it to its original contents.)

The following flags determine the selection of articles.

—N newsgroups
Select all articles that belong to newsgroups.

—t titles Select all articles whose titles contain one of the strings specified by titles.

—a [date]
Select all articles that were posted past the given date (in getdate(3) format).

—X Ignore .newsrc file. That is, select articles that have already been read as well as
new ones.

readnews maintains a .newsrc file in the user’s home directory that specifies all news articles
already read. It is updated at the end of each reading session in which the —x or —I1 options
weren’t specified. If the environment variable NEWSRC is present, it should be the path
name of a file to be used in place of .newsrc.

If the user wishes, an options line may be placed in the .newsrc file. This line starts with the
word options (left justified) followed by the list of standard options just as they would be
typed on the command line. Such a list may include: the —n flag along with a newsgroup
list; a favorite interface; and/or the —r or —t flag. Continuation lines are specified by follow-
ing lines beginning with a space or tab character. Similarly, options can be specified in the
NEWSOPTS environment parameter. Where conflicts exist, option on the command line take
precedence, followed by the .newsrc options line, and lastly the NEWSOPTS parameter.

readnews —s will print the newsgroup subscription list.

When the user uses the reply command of the msgs(1) or /bin/mail(1) interfaces, the
environment parameter MAILER will be used to determine which mailer to use. The default
is usually /bin/mail.

7th Edition 1

READNEWS (1) UNIX Programmer’s Manual READNEWS (1)

If the user so desires, he may specify a specific paging progam for articles. The environment
parameter PAGER should be set to the paging program. The name of the article is referenced
with a ‘%’, as in the —c option. If no ‘%’ is present, the article will be piped to the program.
Paging may be disabled by setting PAGER to a null value.

COMMANDS
This section lists the commands you can type to the msgs and /bin/mail interface prompts.
The msgs interface will suggest some common commands in brackets. Just hitting return is
the same as typing the first command. For example, ‘lynq]” means that the commands “y”
(yes), “n” (no), and “q” (quit) are common responses, and that “y” is the default.

Command Meaning
y Yes. Prints current article and goes on to next.
n No. Goes on to next article without printing current one. In the /bin/mail interface,

P

this means “go on to the next article”, which will have the same effect as “y” or just
hitting return.

q Quit. The .newsrc file will be updated if —I1 or —x were not on the command line.
c Cancel the article. Only the author or the super user can do this.
T Reply. Reply to article’s author via mail. You are placed in your EDITOR with a

header specifying To, Subject, and References lines taken from the message. You may
change or add headers, as appropriate. You add the text of the reply after the blank
line, and then exit the editor. The resulting message is mailed to the author of the
article.

rd Reply directly. You are placed in $MAILER (“mail” by default) in reply to the
author. Type the text of the reply and then control-D.

f [title] Submit a follow up article. Normally you should leave off the title, since the system
will generate one for you. You will be placed in your EDITOR to compose the text of
the followup.

fd Followup directly, without edited headers. This is like f, but the headers of the arti-
cle are not included in the editor buffer.

N [newsgroup]
Go to the next newsgroup or named newsgroup.

s [file] Save. The article is appended to the named file. The default is “Articles”. If the first
character of the file name is ¥, the rest of the file name is taken as the name of a pro-
gram, which is executed with the text of the article as standard input. If the first
character of the file name is /’, it is taken as a full path name of a file. If §NEWSBOX
(in the environment) is set to a full path name, and the file contains no */’, the file is
saved in $NEWSBOX. Otherwise, it is saved relative to SHOME.

Report the name and size of the newsgroup.

Erase. Forget that this article was read.

Print a more verbose header.

Print a very verbose header, containing all known information about the article.
Unsubscribe from this newsgroup. Also goes on to the next newsgroup.

agm e e %

Read a digest. Breaks up a digest into separate articles and permits you to read and
reply to each piece.

w)

Decrypt. Invokes a Caesar decoding program on the body of the message. This is used
to decrypt rotated jokes posted to net.jokes. Such jokes are usually obscene or other-
wise offensive to some groups of people, and so are rotated to avoid accidental

7th Edition 2

READNEWS (1) UNIX Programmer’s Manual READNEWS (1)

decryption by people who would be offended. The title of the joke should indicate the
nature of the problem, enabling people to decide whether to decrypt it or not.

Normally the Caesar program does a character frequency count on each line of the article
separately, so that lines which are not rotated will be shown in plain text. This works well
unless the line is short, in which case it sometimes gets the wrong rotation. An explicit
number rotation (usually 13) may be given to force a particular shift.

v Print the current version of the news software.
! Shell escape.

number
Go to number.

+n] Skip n articles. The articles skipped are recorded as “unread” and will be offered to
you again the next time you read news.

— Go back to last article. This is a toggle, typing it twice returns you to the original

article.
X Exit. Like quit except that .newsrc is not updated.
X system

Transmit article to the named system.

The commands ¢, f, fd, 1, rd, e, h, H, and s can be followed by —’s to refer to the previous
article. Thus, when replying to an article using the msgs interface, you should normally type
“r—" (or “re-") since by the time you enter a command, you are being offerred the next article.

EX AMPLES

FILES

SEE ALSO)
checknews(1), inews(1), sendnews(8), recnews(8), uurec(8), msgs(1), Mail(1), mail(1), news(ST\

readnews
Read all unread articles using the msgs(1) interface. The .newsrc file is updated at
the end of the session.

readnews —c “ed %” —1
Invoke the ed (1) text editor on a file containing the titles of all unread articles.
The .newsrc file is not updated at the end of the session.

readnews —n all *fa.all —M —r
Read all unread articles except articles whose newsgroups begin with "fa." via
Mail(1) in reverse order. The .newsrc file is updated at the end of the session.

readnews —p —n all —a last thursday
Print every unread article since last Thursday. The .newsrc file is updated at the
end of the session.

readnews —p > /dev/null &
Discard all unread news. This is useful after returning from a long trip.

/usr/spool/news/newsgroup /number
News articles

/usr/lib/news/active Active newsgroups and numbers of articles
/usr/lib/news/help Help file for msgs(1) interface
"~ /newsrc Options and list of previously read articles

newsrc(5)

7th Edition 3

OML |

READNEWS (1)

AUTHORS
Matt Glickman
Mark Horton
Stephen Daniel
Tom R. Truscott

7th Edition

UNIX Programmer’s Manual

READNEWS (1)

NEWS (5) UNIX Programmer’s Manual NEWS(5)

NAME
news — USENET network news article, utility files

DESCRIPTION
There are two formats of news articles: A and B. A format is the only format that version 1
netnews systems can read or write. Systems running the version 2 netnews can read either
format and there are provisions for the version 2 netnews to write in A format. A format
looks like this:

Aarticle-1D

newsgroups

path

date

title

Body of article

Only version 2 netnews systems can read and write B format. B format contains two extra
pieces of information: receival date and expiration date. The basic structure of a B format file
consists of a series of headers and then the body. A header field is defined as a line with a cap-
ital letter in the 1st column and a colon somewhere on the line. Unrecognized header fields
are ignored. News is stored in the same format transmitted, see “Standard for the Interchange
of USENET Messages” for a full description. The following fields are among those recognized:

Header Information

From: user @nost.domain(.domain ..] (Full Name)
Newsgroups: Newsgroups

Message-ID: <Unique Identifier >

Subject: descriptive title

Date: Date Posted

Date-Received:
Date received on local machine

Expires: Expiration Date
Reply-To: Address for mail replies
References: Article ID of article this is
Control: Text of a control message
Here is an example of an article:

Relay-Version: B 2.10 2/13/83 cbosgd UUCP
Posting-Version: B 2.10 2/13/83 eagle. UUCP
Path: cbosgd!mhuxjimhuxtleagleljerry

From: jerry @eagle.uucp (Jerry Schwarz)
Newsgroups: net.general

Subject: Usenet Etiquette — Please Read
Message-ID: <642@eagle.UUCP >

Date: Friday, 19-Nov-82 16:14:55 EST
Followup-To: net.news

Expires: Saturday, 1-Jan-83 00:00:00 EST
Date-Received: Friday, 19-Nov-82 16:59:30 EST
Organization: Bell Labs, Murray Hill

The body of the article comes here, after a blank line.

7th Edition 1

NEWS (5) UNIX Programmer’s Manual NEWS (5)

A sys file line has four fields, each seperated by colons:

Of these fields, o

The system name is the name of the system being sent to. The subscriptions is the list of
newsgroups to be transmitted to the system. The flags are a set. of letters describing how the
article should be transmitted. The default is B. Valid flags include A (send in A format), B
(send in B format), N (use ihave/sendme protocol), U (use uux -c and the name of the stored
article in a %s string).

system-name:subs¢riptions: flags:transmission command
&he system-name and subscriptions need to be present.

The transmission command is executed by the shell with the article to be transmitted as the
standard input. The default is uux — —z —r sysnametrnews. Some examples:

xyz:net.all

oldsys:net.all,fa.all,to.oldsys:A
berksys:net.all,ucb.all::/usr/lib/news/sendnews —b berksysrnews
arpasys:net.all,arpa.all::/usr/lib/news/sendnews —a rnews@arpasys
old2:net.all,fa.all:A:/usr/lib/sendnews —o old2rnews
user:fa.sf-lovers::mail user

Somewhere in a sys file, there must be a line for the host system. This line has no flags or
commands. A # as the first character in a line denotes a comment.

The history, active, and ngfile files have one line per item.

SEE ALSO
inews(1), postnews(1), sendnews(8), uurec(8), readnews(1)

7th Edition 2

NEWSRC (5) UNIX Programmer’s Manual NEWSRC (5)

NAME
newsrc — information file for readnews(1) and checknews(1)

DESCRIPTION
The .newsrc file contains the list of previously read articles and an optional options line for
readnews(1) and checknews(1). Each newsgroup that articles have been read from has a line
of the form:
newsgroup: range
The range is a list of the articles read. It is basically a list of no.’s separated by commas with
sequential no.’s collapsed with hyphens. For instance:
general: 1-78,80,85-90
fa.info-cpm: 1-7
net.news: 1
fa.info-vax! 1-5

If the : is replaced with an ! (as in info-vax above) the newsgroup is not subscribed to and
will not be shown to the user.

An options line starts with the word options (left-justified). Then there are the list of
options just as they would be on the command line. For instance:

options —n all fa.sf-lovers !fa.human-nets —r

options —c —r

A string of lines beginning with a space or tab after the initial options line will be considered
continuation lines.

FILES
"~ /newsrc options and list of previously read articles

SEE ALSO
readnews(1), checknews(1)

7th Edition 1

RECNEWS (8) UNIX Programmer’s Manual RECNEWS (8)

NAME

recnews — receive unprocessed articles via mail
SYNOPSIS

/usr/lib/news/recnews [newsgroup [sender 1]
DESCRIPTION

Recnews reads a letter from the standard input; determines the article title, sender, and news-
group; and gives the body to inews with the right arguments for insertion.

If newsgroup is omitted, the to line of the letter will be used. If sender is omitted, the sender
will be determined from the from line of the letter. The title is determined from the subject
line.

SEE ALSO
inews(1), uurec(8), sendnews(8), readnews(1), checknews(1)

7th Edition 1

SENDNEWS (8) UNIX Programmer’s Manual SENDNEWS (8)

NAME

sendnews — send news articles via mail
SYNOPSIS

sendnews [—o][—a][—b][—n newsgroups] destination
DESCRIPTION

sendnews reads an article from it’s standard input, performs a set of changes to it, and gives it
to the mail program to mail it to destination.

An ‘N’ is prepended to each line for decoding by uurec(I).
The —o flag handles old format articles.

The —a flag is used for sending articles via the ARPANET. It maps the article’s path from
uucphost!xxx to xxx@ar pahost.

The —b flag is used for sending articles via the Berknet. It maps the article’s path from
uucphost!xxx to berkhost:xxx.

The —n flag changes the article’s newsgroup to the specified newsgroup.

SEE ALSO
inews(1), uurec(8), recnews(8), readnews(1), checknews(1)

7th Edition 1

P a4 |
('% / N ‘
7. L Uﬂ/ L

User Contributed Software

Note: This ““User Contributed Software” is part of the standard Berkeley 4.2BSD release. It is included
as part of MORE/bsd for the use of our customers, but it is not supported in any way by MT XINU. NO
WARRANTY, EXPRESS OR IMPLIED, OF ANY KIND, IS MADE REGARDING THIS SOFTWARE.

Ci(1) UNIX Programmer’s Manual CI(1)

NAME
ci — check in RCS revisions

SYNOPSIS
ci [options] file ...

DESCRIPTION
Ci stores new revisions into RCS files. Each file name ending in *,v’ is taken to be an RCS
file, all others are assumed to be working files containing new revisions. Ci deposits the
contents of each working file into the corresponding RCS file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example section
of co (1)).

1) Both the RCS file and the working file are given. The RCS file name is of the form
pathl/workfile,v and the working file name is of the form path2/workfile, where pathl/ and
path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is assumed to be in the current direc-
tory and its name is derived from the name of the RCS file by removing pathl/ and the
suffix ,v".

3) Only the working file is given. Then the name of the RCS file is derived from the name
of the working file by removing path2/ and appending the suffix “,v".

If the RCS file is omitted or specified without a path, then ci looks for the RCS file first in
the directory ./RCS and then in the current directory.

For ci to work, the caller’s login must be on the access list, except if the access list is empty
or the caller is the superuser or the owner of the file. To append a new revision to an exist-
ing branch, the tip revision on that branch must be locked by the caller. Otherwise, only a
new branch can be created. This restriction is not enforced for the owner of the file, unless
locking is set to strict (see res (1)). A lock held by someone else may be broken with the
rcs command.

Normally, ¢i checks whether the revision to be deposited is different from the preceding
one. If it is not different, ci either aborts the deposit (if -q is given) or asks whether to
abort (if -q is omitted). A deposit can be forced with the -f option.

For each revision deposited, ¢i prompts for a log message. The log message should summar-
ize the change and must be terminated with a line containing a single “." or a control-D. If
several files are checked in, ci asks whether to reuse the previous log message. If the std.
input is not a terminal, ¢i suppresses the prompt and uses the same log message for all files.
See also -m.

The number of the deposited revision can be given by any of the options -r, -f, -k, -1, -u, or
-q (see -r).

If the RCS file does not exist, ci creates it and deposits the contents of the working file as
the initial revision (default number: 1.1). The access list is initialized to empty. Instead of
the log message, ci requests descriptive text (see -t below).

—r{rev] assigns the revision number rev to the checked-in revision, releases the
corresponding lock, and deletes the working file. This is also the default.

If rev is omitted, ci derives the new revision number from the caller’s last lock.
If the caller has locked the tip revision of a branch, the new revision is appended
to that branch. The new revision number is obtained by incrementing the tip
revision number. If the caller locked a non-tip revision, a new branch is started
at that revision by incrementing the highest branch number at that revision. The
default initial branch and level numbers are 1. If the caller holds no lock, but he

Purdue University 6/29/83 1

oo acyy : UNIX Programmer’s Manual , CI(1)

is the owner of the file and locking is not set to strict, then the revision is
appended to the trunk.

If rev indicates a revision number, it must be higher than the latest one on the
branch to which rev belongs, or must start a new branch.

If rev indicates a branch instead of a revision, the new revision is appended to
that branch. The level number is obtained by incrementing the tip revision
number of that branch. If rev indicates a non-existing branch, that branch is
created with the initial revision numbered rev.l.

Exception: On the trunk, revisions can be appended to the end, but not inserted.

—flrev] forces a deposit; the new revision is deposited even it is not different from the
preceding one.

—Xkl[rev] searches the working file for keyword values to determine its revision number,
creation date, author, and state (see co (1)), and assigns these values to the depo-
sited revision, rather than computing them locally. A revision number given by
a command option overrides the number in the working file. This option is use-
ful for software distribution. A revision that is sent to several sites should be
checked in with the -k option at these sites to preserve its original number, date,
author, and state.

—Il[rev] works like -r, except it performs an additional co -I for the deposited revision.
Thus, the deposited revision is immediately checked out again and locked. This
is useful for saving a revision although one wants to continue editing it after the
checkin.

—ufrev] works like -1, except that the deposited revision is not locked. This is useful if
one wants to process (e.g.. compile) the revision immediately after checkin.

—qfrev] quiet mode; diagnostic output is not printed. A revision that is not different
from the preceding one is not deposited, unless -f is given.

—mmsg uses the string msg as the log message for all revisions checked in.

—nname assigns the symbolic name name to the number of the checked-in revision. Ci
prints an error message if name is already assigned to another number.

—Nname same as -n, except that it overrides a previous assignment of name.

—sstate sets the state of the checked-in revision to the identifier state. The default is
Exp.

—tlextfile]
writes descriptive text into the RCS file (deletes the existing text). If ¢xtfile is
omitted, ci prompts the user for text supplied from the std. input, terminated
with a line containing a single °." or control-D. Otherwise, the descriptive text is
copied from the file txtfile. During initialization, descriptive text is requested
even if -t is not given. The prompt is suppressed if std. input is not a terminal.

DIAGNOSTICS
For each revision, ¢i prints the RCS file, the working file, and the number of both the depo-
sited and the preceding revision. The exit status always refers to the last file checked in,
and is O if the operation was successful, 1 otherwise. ’

FILE MODES
An RCS file created by ci inherits the read and execute permissions from the working file. If

the RCS file exists already, ci preserves its read and execute permissions. Ci always turns
off all write permissions of RCS files.

Purdue University 6/29/83 .2

CI(1) UNIX Programmer’s Manual CI(1)

The caller of the command must have read/write permission for the directories containing
the RCS file and the working file, and read permission for the RCS file itself. A number of
temporary files are created. A semaphore file is created in the directory containing the RCS
file. Ci always creates a new RCS file and unlinks the old one. This strategy makes links to
RCS files useless.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
co (1), ident(1), res (1), resdiff (1), resintro (1), resmerge (1), rlog (1), resfile (5), scestores
(8.
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,” in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
Sept. 1982.

BUGS

Purdue University 6/29/83 3

co(1) UNIX Programmer’s Manual co(1)

NAME
co — check out RCS revisions

SYNOPSIS
co [options] file ...

DESCRIPTION
Co retrieves revisions from RCS files. Each file name ending in “,v’ is taken to be an RCS
file. All other files are assumed to be working files. Co retrieves a revision from each RCS
file and stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example sec-
tion).

1) Both the RCS file and the working file are given. The RCS file name is of the form
pathl/workfile,v and the working file name is of the form path2/workfile, where pathl/ and
path2/ are (possibly different or empty) paths and workjile is a file name.

2) Only the RCS file is given. Then the working file is created in the current directory and
its name is derived from the name of the RCS file by removing pathl/ and the suffix ",v".

3) Only the working file is given. Then the name of the RCS file is derived from the name
of the working file by removing path2/ and appending the suffix “,v'.

If the RCS file is omitted or specified without a path, then co looks for the RCS file first in
the directory ./RCS and then in the current directory.

Revisions of an RCS file may be checked out locked or unlocked. Locking a revision
prevents overlapping updates. A revision checked out for reading or processing (e.g.. com-
piling) need not be locked. A revision checked out for editing and later checkin must nor-
mally be locked. Locking a revision currently locked by another user fails. (A lock may be
broken with the rcs (1) command.) Co with locking requires the caller to be on the access
list of the RCS file, unless he is the owner of the file or the superuser, or the access list is
empty. Co without locking is not subject to accesslist restrictions.

A revision is selected by number, checkin date/time, author, or state. If none of these
options are specified, the latest revision on the trunk is retrieved. When the options are
applied in combination, the latest revision that satisfies all of them is retrieved. The
options for date/time, author, and state retrieve a revision on the selected branch. The
selected branch is either derived from the revision number (if given), or is the highest
branch on the trunk. A revision number may be attached to one of the options -1, -p, q, or
-r.

A co command applied to an RCS file with no revisions creates a zero-length file. Co always
performs keyword substitution (see below).

—I1frev} locks the checked out revision for the caller. If omitted, the checked out revi-
sion is not locked. See option -r for handling of the revision number rev.

—plrevl prints the retrieved revision on the std. output rather than storing it in the
working file. This option is useful when co is part of a pipe.

—qlrev] quiet mode; diagnostics are not printed.

—ddate retrieves the latest revision on the selected branch whose checkin date/time is
less than or equal to date. The date and time may be given in free format and
are converted to local time. Examples of formats for date:

22-April-1982, 17:20-CDT,

2:25 AM, Dec. 29, 1983,

Tue-PDT, 1981, 4pm Jul 21 (free format),
Fri, April 16 15:52:25 EST 1982 (output of ctime).

Purdue University 6/29/83 1

Co(1) UNIX Programmer’s Manual co(1)

Most fields in the date and time may be defaulted. Co determines the defaults
in the order year, month, day. hour, minute, and second (most to least
significant). At least one of these fields must be provided. For omitted fields
that are of higher significance than the highest provided field. the current values
are assumed. For all other omitted fields, the lowest possible values are
assumed. For example, the date "20, 10:30" defaults to 10:30:00 of the 20th of
the current month and current year. The date/time must be quoted if it con-
tains spaces.

—rfrev] retrieves the latest revision whose number is less than or equal to rev. If rev
indicates a branch rather than a revision, the latest revision on that branch is
retrieved. Rev is composed of one or more numeric or symbolic fields separated
by °.". The numeric equivalent of a symbolic field is specified with the -n option
of the commands ci and res.

—sstate retrieves the latest revision on the selected branch whose state is set to state.

—wllogin] retrieves the latest revision on the selected branch which was checked in by the
user with login name login. If the argument login is omitted, the caller’s login is
assumed.

—jjoinlist generates a new revision which is the join of the revisions on joinlist. Joinlist is
a comma-separated list of pairs of the form rev2:rev3, where rev2 and rev3 are
(symbolic or numeric) revision numbers. For the initial such pair, rev! denotes
the revision selected by the options -1, ..., -w. For all other pairs, revl denotes
the revision generated by the previous pair. (Thus, the output of one join
becomes the input to the next.)

For each pair, co joins revisions revl and rev3 with respect to rev2. This means
that all changes that transform rev2 into revl are applied to a copy of rev3.
This is particularly useful if revl and rev3 are the ends of two branches that
have rev2 as a common ancestor. If revl < rev2 < rev3 on the same branch,
joining generates a new revision which is like 7ev3, but with all changes that
lead from revl to rev2 undone. If changes from rev2 to revl overlap with
changes from rev2 to rev3, co prints a warning and includes the overlapping sec-
tions, delimited by the lines <<<<<<<revl, = and
>>>>>>>rev3.

For the initial pair, rev2 may be omitted. The default is the common ancestor.
If any of the arguments indicate branches, the latest revisions on those branches
are assumed. If the option -1 is present, the initial rev1 is locked.

KEYWORD SUBSTITUTION
Strings of the form $keyword$ and $keyword:..$ embedded in the text are replaced with
strings of the form $keyword: value $, where keyword and value are pairs listed below.
Keywords may be embedded in literal strings or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co replaces these
strings with strings of the form $keyword: value 3. If a revision containing strings of the
latter form is checked back in, the value fields will be replaced during the next checkout.
Thus, the keyword values are automatically updated on checkout.

Keywords and their corresponding values:

$Author$ The login name of the user who checked in the revision. qms. Class$

$Date$ The date and time the revision was checkeci in.

$Header$ A standard header containing the RCS file name, the revision number, the

Purdue University 6/29/83 2

co(1) . ' UNIX Programmer’s Manual co(1)

. date, the author, and the state.
$Locker$ The login name of the user who locked the revision (empty if not locked).

Log The log message supplied during checkin, preceded by a header containing the
RCS file name, the revision number, the author, and the date. Existing log
messages are NOT replaced. Instead, the new log message is inserted after
$Log:...$. This is useful for accumulating a complete change log in a source
file.

$Revision§ The revision number assigned to the revision.
$Source$ The full pathname of the RCS file.
$State$ The state assigned to the revision with rcs -s or ci -s.

DIAGNOSTICS
The RCS file name, the working file name, and the revision number retrieved are written to
the diagnostic output. The exit status always refers to the last file checked out, and is O if
the operation was successful, 1 otherwise.

EXAMPLES
Suppose the current directory contains a subdirectory ‘RCS’ with an RCS file ‘io.c,v’. Then
all of the following commands retrieve the latest revision from ‘RCS/io.c.v’ and store it
into ‘io.c’.

co io.c; co RCS/io.c,v: co io.c,v;
co io.c RCS/io.c,v; co io.c io.c,v;
co RCS/io.c,v io.c; co io.c,v io.c;

FILE MODES
The working file inherits the read and execute permissions from the RCS file. In addition,
the owner write permission is turned on, unless the file is checked out unlocked and locking
is set to strict (see rcs (1)).

If a file with the name of the working file exists already and has write permission, co aborts
the checkout if -q is given, or asks whether to abort if -q is not given. If the existing work-
ing file is not writable, it is deleted before the checkout.

The caller of the command must have write permission in the working directory, read per-
mission for the RCS file, and either read permission (for reading) or read/write permission
(for locking) in the directory which contains the RCS file.

A number of temporary files are created. A semaphore file is created in the directory of the
RCS file to prevent simultaneous update.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci (1), ident(1), res (1), resdiff (1), resintro (1), resmerge (1), rlog (1), resfile (5), scestores
(3).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, 1IEEE, Tokyo,
Sept. 1982.

LIMITATIONS
The option -d gets confused in some circumstances, and accepts no date before 1970. There
is no way to suppress the expansion of keywords. except by writing them differently. In

Purdue University 6/29/83) 3

co(1) UNIX Programmer’s Manual co(1)

nroff and troff, this is done by embedding the null-character \&’ into the keyword.

BUGS
The option -j does not work for files that contain lines with a single °.".

Purdue University 6/29/83 4

COMP (1) UNIX Programmer’s Manual COMP (1)

NAME
comp — compose a message
SYNOPSIS
comp [—editor editor] [—form formfile] [file] [—use] [—nouse][—help]

DESCRIPTION :
Comp is used to create a new message to be mailed. If file is not specified, the file named
“draft” in the user's MH directory will be used. Comp copies a message form to the file
being composed and then invokes an editor on the file. The default editor is /bin/ned,
which may be overridden with the ‘—editor’ switch or with a profile entry “Editor:”. The
default message form contains the following elements:

To:
cc:
Subject:

If the file named “components™ exists in the user’'s MH directory, it will be used instead of
this form. If ‘—form formfile is specified, the specified formfile (from the MH directory)
will be used as the skeleton. The line of dashes or a blank line must be left between the
header and the body of the message for the message to be identified properly when it is sent
(see send(1)). The switch ‘—use’ directs comp to continue editing an already started mes-
sage. That is, if a comp (or dist, repl, or forw) is terminated without sending the message,
the message can be edited again via “comp —use"".

If the specified file (or draft) already exists, comp will ask if you want to delete it before
continuing. A reply of No will abort the comp, yes will replace the existing draft with a
blank skeleton, list will display the draft, and use will use it for further composition.

Upon exiting from the editor, comp will ask “What now?”’. The valid responses are list, to
list the draft on the terminal; quit, to terminate the session and preserve the draft; quit
delete, to terminate, then delete the draft; send, to send the message; send verbose, to
cause the delivery process to be monitored; edit <editor>, to invoke <editor> for
further editing; and edit, to re-edit using the same editor that was used on the preceding
round unless a profile entry ““ <lasteditor >—next: <editor>"" names an alternative editor.

- Comp does not affect either the current folder or the current message.

FILES
/etc/mh/components The message skeleton
or <mh-dir>/components Rather than the standard skeleton
$HOME/mh__profile The user profile
<mh-dir>/draft The default message file
/usr/new/send To send the composed message
PROFILE COMPONENTS
Path: To determine the user’'s MH directory
Editor: To override the use of /bin/ned as the default editor
<lasteditor>—next: editor to be used after exit from <lasteditor>
DEFAULTS

‘file’ defaults to draft
‘—editor’ defaults to /bin/ned
‘—nouse’

4th Berkeley Distribution 3 August 1983 1

DIST (1) UNIX Programmer’s Manual DIST (1)

NAME
dist — redistribute a message to additional addresses

SYNOPSIS
dist [+folder][msg][—form formfile] [—editor editor] [—annotate] [—noannotate] [
—inplace] [—noinplace] [—help]

DESCRIPTION

Dist is similar to forw. It prepares the specified message for redistribution to addresses that
(presumably) are not on the original address list. The file “distcomps™ in the user’s MH
directory, or a standard form, or the file specified by “—form formfile’ will be used as the
blank components file to be prepended to the message being distributed. The standard form
has the components “‘Distribute-to:” and “Distribute-cc:”. When the message is sent,
“Distribution-Date: date”, “Distribution-From: name”, and “Distribution-Id: id” (f
‘—msgid’ is specified to send;) will be prepended to the outgoing message. Only those
addresses in “Distribute-To™, “Distribute-cc”, and “Distribute-Bcc™ will be sent. Also, a
“Distribute-Fcc: folder™ will be honored (see send;).

Send recognizes a message as a redistribution message by the existence of the field
“Distribute-To:", so don't try to redistribute a message with only a ““Distribute-cc:™.

If the ‘—annotate’ switch is given, each message being distributed will be annotated with
the lines:

Distributed: date
Distributed: Distribute-to: names

where each “to” list contains as many lines as required. This annotation will be done only
if the message is sent directly from dist. If the message is not sent immediately from dist
(i.e., if it is sent later via send;), “comp —use” may be used to re-edit and send the con-
structed message, but the annotations won'’t take place. The ‘—inplace’ switch causes anno-
tation to be done in place in order to preserve links to the annotated message.

See comp for a description of the ‘—editor’ switch and for options upon exiting from the
editor.

If a +folder is specified, it will become the current folder, and the current message will be
set to the message being redistributed.

FILES
/etc/mh/components The message skeleton
or <mh-dir>/components Rather than the standard skeleton
$HOME/mh_profile The user profile
<mh-dir>/draft The default message file
/usr/bin/send To send the composed message
PROFILE COMPONENTS
Path: To determine the user’s MH directory
Editor: To override the use of /bin/ned as the default editor
<lasteditor>—next: editor to be used after exit from <lasteditor>
DEFAULTS

‘+folder’ defaults to the current folder
‘msg’ defaults to cur

‘—editor’ defaults to /bin/ned
‘—noannotate’

‘—noinplace’

4th Berkeley Distribution 3 August 1983 1

FILE(1) UNIX Programmer’s Manual ' FILE(1)

NAME

file — file message(s) in (an)other folder(s)

SYNOPSIS

file [—src +folder] [msgs] [—link][—preserve] +folder ... [—nolink] [—nopreserve][
—file file] [—nofile] [—help]

DESCRIPTION

File moves (mv(1)) or links (In(1)) messages from a source folder into one or more destina-
tion folders. If you think of a message as a sheet of paper, this operation is not unlike filing
the sheet of paper (or copies) in file cabinet folders. When a message is filed, it is linked
into the destination folder(s) if possible, and is copied otherwise. As long as the destination

-folders are all on the same file system, multiple filing causes little storage overhead. This

facility provides a good way to cross-file or multiply-index messages. For example, if a
message is received from Jones about the ARPA Map Project, the command

file cur +jones +Map

would allow the message to be found in either of the two folders ‘jones’ or ‘Map'.

The option “—file file’ directs file to use the specified file as the source message to be filed,
rather than a message from a folder.

If a destination folder doesn’t exist, file will ask if you want to create one. A negative
response will abort the file operation.

‘—link’ preserves the source folder copy of the message (i.e., it does a In(1) rather than a
mv(1)). whereas, ‘—nolink’ deletes the “filed” messages from the source folder. Normally,
when a message is filed, it is assigned the next highest number available in each of the desti-
nation folders. Use of the “—preserve’ switch will override this message “renaming”, but
name conflicts may occur, so use this switch cautiously. (See pick for more details on mes-
sage numbering.)

If ‘—link’ is not specified (or “—nolink’ is specified), the filed messages will be removed (
unlink(2)) from the source folder.

If “—src +folder’ is given, it will become the current folder for future MH commands. If
neither “—link’ nor ‘all’ are specified, the current message in the source folder will be set to
the last message specified; otherwise, the current message won't be changed.

FILES
$HOME/mh_profile The user profile
PROFILE COMPONENTS
Path: To determine the user’'s MH directory

Current-Folder: To find the default current folder
Folder—Protect: To set mode when creating a new folder

DEFAULTS

‘—src +folder’ defaults to the current folder
‘msgs’ defaults to cur

‘—nolink’

‘—nopreserve’

‘—nofile’

CONTEXT

If “—src +folder’ is given, it will become the current folder for future MH commands. If
neither ‘—link’ nor ‘all’ are specified, the current message in the source folder will be set to
the last message specified; otherwise, the current message won't be changed.

4th Berkeley Distribution 3 August 1983 1

FOLDER (1) UNIX Programmer’s Manual FOLDER (1)

NAME

folder — set/list current folder/message

SYNOPSIS

folder [+folder] [msg] [—all] [—fast] [—nofast][—up][—down] [—header] [
—noheader] [—total][—nototal] [—pack] [—nopack] [—help]

folders <equivalent to ‘folder —all'>

DESCRIPTION

Since the MH environment is the shell, it is easy to lose track of the current folder from
day to day. Folder will list the current folder, the number of messages in it, the range of
the messages (low-high), and the current message within the folder, and will flag a selection
list or extra files if they exist. An example of the output is:

inbox+ has 16 messages (3— 22); cur=5.

If a “+folder’ and/or ‘msg’ are specified. they will become the current folder and/or mes-
sage. An ‘—all’ switch will produce a line for each folder in the user's MH directory,
sorted alphabetically. These folders are preceded by the read-only folders., which occur as
mh_profile “cur—" entries. For example,

Folder # of messages(range);cur msg (other files)
/fsd/rs/m/tacc has 35 messages(1— 35); cur=23.
/rnd/phyl/Mail/EP has 82 messages(1—108); cur= 82.
ff has 4 messages(1— 4);cur= 1.
inbox+ has 16 messages(3— 22);cur= 5.
mh has 76 messages(1— 76); cur=70.
notes has 2 messages(1— 2);cur= 1.

ucom has 124 messages(1—124); cur= 6; (select).

TOTAL= 339 messages in 7 Folders.

The “+" after inbox indicates that it is the current folder. The “(select)” indicates that the
folder ucom has a selection list produced by pick. If “others™ had appeared in parentheses
at the right of a line, it would indicate that there are files in the folder directory that don’t
belong under the MH file naming scheme.

The header is output if either an “—all’ or a “—header’ switch is specified; it is suppressed by
‘—noheader’. Also, if folder is invoked by a name ending with “s™ (e.g., folders), ‘—all’ is
assumed. A ‘—total’ switch will produce only the summary line.

If ‘—fast’ is given, only the folder name (or names in the case of ‘—all’) will be listed.
(This is faster because the folders need not be read.)

The switches “—up’ and “—down’ change the folder to be the one above or below the current
folder. That is, “folder —down" will set the folder to “ <current—folder>/select”, and if
the current folder is a selection-list folder, “folder —up’ will set the current folder to the
parent of the selection-list. (See pick for details on selection-lists.)

The ‘—pack’ switch will compress the message names in a folder, removing holes in message
numbering. :

FILES
$HOME/mh_profile The user profile
/bin/ls To fast-list the folders
PROFILE COMPONENTS
Path: To determine the user’'s MH directory

4th Berkeley Distribution 3 August 1983 1

FOLDER (1) UNIX Programmer’s Manual FOLDER (1)

Current-Folder: To find the default current folder

DEFAULTS
‘+folder” defaults to the current folder
‘msg’ defaults to none ‘
‘—nofast’
‘—noheader’
‘—nototal’
‘—nopack’
CONTEXT
If “+folder’ and/or ‘msg’ are given, they will become the current folder and/or message.

4th Berkeley Distribution 3 August 1983 2

FORW (1) UNIX Programmer’s Manual FORW (1)

NAME
forw — forward messages

SYNOPSIS
forw [+folder][msgs] [—editor editor] [—form formfile] [—annotate] [—noannotate]
[—inplace] [—noinplace] [—help]

DESCRIPTION
Forw may be used to prepare a message containing other messages. It constructs the new
message from the components file or ‘—form formfile’ (see comp (1)), with a body composed
of the message(s) to be forwarded. An editor is invoked as in comp, and after editing is
complete, the user is prompted before the message is sent.

If the ‘—annotate’ switch is given, each message being forwarded will be annotated with the
lines

Forwarded: date
Forwarded: To: names
Forwarded: cc: names

where each “To:” and “cc:™ list contains as many lines as required. This annotation will be
done only if the message is sent directly from forw. If the message is not sent immediately
from forw, “comp —use” may be used in a later session to re-edit and send the constructed
message, but the annotations won't take place. The ‘—inplace’ switch permits annotating a
message in place in order to preserve its links.

See comp for a description of the ‘—editor’ switch.

FILES
/etc/mh/components The message skeleton
or <mh-dir>/components Rather than the standard skeleton
$HOME/mh_profile The user profile
<mh-dir>/draft The default message file
/usr/bin/send To send the composed message
PROFILE COMPONENTS
Path: To determine the user’'s MH directory
Editor: To override the use of /bin/ned as the default editor
Current-Folder: To find the default current folder
<lasteditor>—next: editor to be used after exit from <lasteditor>
DEFAULTS
‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘—editor’ defaults to /bin/ned
‘—noannotate’
‘—noinplace’
CONTEXT

If a +folder is specified, it will become the current folder, and the current message will be
set to the first message being forwarded.

4th Berkeley Distribution 3 August 1983 1

ICONC(1) UNIX Programmer’s Manual ICONC (1)

NAME

iconc — compile and link Icon programs
SYNOPSIS

iconc [option ...] file ...
DESCRIPTION

Iconc is a compiler for Version 5 of the Icon programming language. Compilation consists
of four phases: translation, linking , assembling, and loading. During translation, each Icon
source file is translated into an intermediate language; during linking, the intermediate
language files are combined and a single assembly code output file is produced which is then
assembled:; during loading, the assembled program is loaded with the Icon runtime system
libraries, producing an executable file. Unless the —o option is specified, the name of the
resulting executable file is formed by deleting the suffix of the first file named on the com-
mand line.

Files whose names end in “.icn’ are assumed to be Icon source programs; they are translated,
and the intermediate code is left in two files of the same name with ".ul’ and ".u2’ substi-
tuted for “.icn’. The intermediate code files are normally deleted when compilation has
finished. Files whose names end in “.ul’ or “.u2’ are assumed to be intermediate code files
from a previous translation (only one should be named — the other is assumed); these files
are included in the linking phase after any ".icn’ files have been translated. Files whose
names end in “.c’ or “.0" are assumed to be external functions. Any °.c’ file is compiled using
cc (1) to produce a “.0° file. A “.ul’, “.u2’, “.c’, or .o file that is explicitly named is not
deleted.

The following options are recognized by iconc.

—c Suppress the linking and loading phases. The intermediate code files are not deleted.
Preprocess each “.icn’ source file with the m4 (1) macro processor before translation.

—o0 output
Name the executable file output .

—s Suppress any informative messages from the translator and linker. Normally, both
informative messages and error messages are sent to standard error output.

—t Arrange for &trace to have an initial value of —1 when the program is executed. Nor-
mally, &trace has an initial value of O.

—u Issue warning messages for undeclared identifiers in the program. The warnings are
issued during the linking phase.

When an Icon program is executed, a number of environment variables are examined to

determine certain execution parameters. The values assigned to these variables should be

numbers. The variables that affect execution and the interpretations of their values are as
follows:

TRACE
Initialize the value of &trace. If this variable has a value, it overrides the
translation-time —t option.

NBUFS
The number of i/o buffers to use for files. When a file is opened, it is assigned an i/o
buffer if one is available and the file is not a tty. If no buffer is available, the file is not
buffered. &input, &output, and &errout are buffered if buffers are available. On
VAX systems, ten buffers are allocated initially; on PDP-11 systems, five buffers are
allocated initially.

NOERRBUF

The University of Arizona 2 March 1983 1

ICONC (1) UNIX Programmer’s Manual ICONC (1)

If set, &errout is not buffered.

STRSIZE
The initial size of the string space, in bytes. The string space grows if necessary, but it
never shrinks. On VAX systems, the string space is initially 51,200 bytes; on PDP-11
systems, 10,240 bytes initially.

HEAPSIZE
The initial size of the heap, in bytes. The heap grows if necessary, but it never shrinks.
On VAX systems, the heap is initially 51,200 bytes; on PDP-11 systems, 10,240 bytes
initially.

NSTACKS
The number of stacks initially available for co-expressions. On VAX systems, four
stacks are initially allocated; on PDP-11 systems, two stacks are initially allocated.
More are automatically allocated if needed. It is unwise to set NSTACKS to 1.

STKSIZE
The size of each co-expression stack, in words. On VAX systems, stacks are normally
2000 words; on PDP-11 systems, stacks are normally 1000 words.

PROFILE
Turn on execution profiling of the runtime system. The value of this variable specifies
the sampling resolution, in words. If the value is zero, profiling is not done. When a
profiled program finishes, a file named ‘mon.out’ is created containing the results of the
profile. The program prof (1) can be used to examine the results. This produces a
profile of the runtime system, not the user program.

mon.out results of profiling
v5g/cmp/bin/utran icon translator
v5g/cmp/bin/ulink icon linker
vSg/cmp/bin/libi.a icon runtime library

SEE ALSO

BUGS

The Icon Programming Language, Ralph E. Griswold and Madge T. Griswold, Prentice-Hall
Inc., Englewood Cliffs, New Jersey, 1983.

Installation and Maintenance Guide for Release 5g of Icon, Department of Computer Sci-
ence, The University of Arizona, March 1983.

cc(1), icont (1), 1d (1), m4 (1), prof (1), monitor(3)

Because of the way that co-expressions are implemented, there is a possibility that pro-
grams in which they are used may malfunction mysteriously.

Integer overflow on multiplication is not detected.

If the —m option is used, line numbers reported in error messages or tracing messages are
from the file after, not before. preprocessing.

The University of Arizona 2 March 1983 2

ICONT (1) UNIX Programmer’s Manual ICONT (1)

NAME

icont — translate Icon programs for interpretive execution
SYNOPSIS

“icont [option ...]1file ... [—-x arg ...]
DESCRIPTION

Icont is a translator for Version 5 of the Icon programming language, which produces a file
suitable for interpretation by the Icon interpreter. Translation consists of two phases:
translation and linking. During translation, each Icon source file is translated into an inter-
mediate language: during linking, the intermediate language files are combined and a single
output file is produced. The output file from the linker is referred to as an interpretable
file. Unless the —o option is specified, the name of the resulting interpretable file is formed
by deleting the suffix of the first input file named on the command line. If the —x argument
is used, the file is automatically executed by the interpreter and any arguments following
the —X are passed as execution arguments to the Icon program itself.

Files whose names end in “.icn" are assumed to be Icon source programs; they are translated,
and the intermediate code is left in two files of the same name with “.ul’ and ".u2’ substi-
tuted for “.icn’. The intermediate code files normally are deleted when compilation has
finished. Files whose names end in “.ul’ or “.u2’ are assumed to be intermediate code files
from a previous translation (only one should be named — the other is assumed); these files
are included in the linking phase after any “.icn’ files have been translated. A “.ul’ or “.u2’
file that is explicitly named is not deleted. Icon source programs may be read from stan-
dard input. The argument — signifies the use of standard input as a source file. In this case,
the intermediate code is placed in ‘stdin.ul’ and ‘stdin.u2’ and the interpretable file is
‘stdin’.
The following options are recognized by icont.
—c Suppress the linking phase. The intermediate code files are not deleted.
—m

Preprocess each “.icn’ source file with the m4 (1) macro processor before translation.
—o output

Name the interpretable file owtpuz.

—s Suppress any informative messages from the translator and linker. Normally, both
informative messages and error messages are sent to standard error output.

—t Arrange for &trace to have an initial value of —1 when the program is executed. Nor-
mally, &trace has an initial value of 0.

—u Issue warning messages for undeclared identifiers in the program. The warnings are
issued during the linking phase.

The interpretable file produced by the Icon linker is directly executable. For example, the
command

icont hello.icn
produces a file named hello that can be run by the command

hello
The method used to make interpretable files appear to be directly executable is system
dependent. See the Icon installation guide for complete details. For most intents and pur-

poses, interpretable files are executable programs in the same sense that files produced by
Id (1) are executable programs.

The University of Arizona 2 March 1983 1

ICONT (1) UNIX Programmer’s Manual ICONT (1)

Arguments can be passed to the Icon program by following the program name with the
arguments. Any such arguments are passed to the main procedure as a list of strings.

When an Icon program is executed, a number of environment variables are examined to
determine certain execution parameters. The values assigned to these variables should be
numbers. The variables that affect execution and the interpretations of their values are as
follows:

TRACE
Initialize the value of &trace. If this variable has a value, it overrides the
translation-time —t option.

NBUFS
The number of i/o buffers to use for files. When a file is opened, it is assigned an i/o
buffer if one is available and the file is not a tty. If no buffer is available, the file is not
buffered. &input, &output, and &errout are buffered if buffers are available. On
VAX systems, ten buffers are allocated initially; on PDP-11 systems, five buffers are
allocated initially.

NOERRBUF
If set, &errout is not buffered.

STRSIZE
The initial size of the string space. in bytes. The string space grows if necessary, but it
never shrinks. On VAX systems, the string space is initially 51,200 bytes; on PDP-11
systems, 10,240 bytes initially.

HEAPSIZE
The initial size of the heap, in bytes. The heap grows if necessary, but it never shrinks.
On VAX systems, the heap is initially 51,200 bytes; on PDP-11 systems, 10,240 bytes
initially.

NSTACKS
The number of stacks initially available for co-expressions. On VAX systems, four
stacks are initially allocated; on PDP-11 systems, two stacks are initially allocated.
More are automatically allocated if needed. It is unwise to set NSTACKS to 1.

STKSIZE
The size of each co-expression stack, in words. On VAX systems, stacks are normally
2000 words:; on PDP-11 systems, stacks are normally 1000 words.

PROFILE
Turn on execution profiling of the runtime system. The value of this variable specifies
the sampling resolution, in words. If the value is zero, profiling is not done. When a
profiled program finishes, a file named ‘mon.out’ is created containing the results of the
profile. The program prof (1) can be used to examine the results. This produces a
profile of the runtime system, not the user program.

FILES
v5g/int/bin/utran icon translator
vSg/int/bin/ulink icon linker
v5g/int/bin/iconx icon interpreter
mon.out results of profiling
SEE ALSO

The Icon Programming Language, Ralph E. Griswold and Madge T. Griswold, Prentice-Hall
Inc., Englewood Cliffs, New Jersey, 1983.

Installation and Maintenance Guide for Release 5g of Icon, Department of Computer Sci-
ence, The University of Arizona, March 1983.

The University of Arizona 2 March 1983 2

ICONT (1) UNIX Programmer’s Manual ICONT (1)

BUGS

iconc (1), m4(1), prof (1), monitor (3)

Downward compatibility of interpretable files will not be maintained in subsequent releases
of Icon. No checks are performed to determine if the interpretable file and the interpreter
are compatible. Peculiar program behavior is the only indication of such incompatibility.

Interpretable files do not stand alone; the Icon interpreter must be present on the system.
This implies that an interpretable file produced on one system will not work on another
system unless the Icon interpreter is in the same place on both systems and that the inter-
preter is of the same version of Icon as the translator that produced the interpretable file.

Because of the way that co-expressions are implemented, there is a possibility that pro-
grams in which they are used may malfunction mysteriously.

Integer overflow on multiplication is not detected.

If the —m option is used, line numbers reported in error messages or tracing messages are
from the file after, not before, preprocessing.

The University of Arizona 2 March 1983 3

IDENT (1) UNIX Programmer’s Manual IDENT (1)

NAME

ident — identify files
SYNOPSIS

ident file ...
DESCRIPTION

Ident searches the named files for all occurrences of the pattern $keyword:...$, where key-
word is one of

Author
Date
Header
Locker
Log
Revision
Source
State

These patterns are normally inserted automatically by the RCS command co (1), but can
also be inserted manually.

Ident works on text files as well as object files. For example, if the C program in file f.c
contains

char rcsid[] = "$Header: Header information $";
and f.c is compiled into f.o, then the command

ident f.c f.o
will print

f.c

$Header: Header information $
f.o:

$Header: Header information $

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 82/12/04 .
Copyright @ 1982 by Walter F. Tichy.

SEE ALSO
ci (1), co (1), res (1), resdiff(1), resintro (1), resmerge (1), rlog (1), resfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
Sept. 1982.

BUGS

Purdue University 6/29/83 1

INC(1) UNIX Programmer’s Manual INC(1)

NAME

inc — incorporate new mail
SYNOPSIS

inc [+folder] [—audit audit-file] [—help]
DESCRIPTION

Inc incorporates mail from the user’s incoming mail drop (mail) into an MH folder. If
‘+folder’ isn’t specified, the folder named “inbox™ in the user’s MH directory will be used.
The new messages being incorporated are assigned numbers starting with the next highest
number in the folder. If the specified (or default) folder doesn’t exist, the user will be
queried prior to its creation. As the messages are processed, a scan listing of the new mail
is produced.

If the user’s profile contains a ““Msg—Protect: nnn" entry, it will be used as the protection
on the newly created messages, otherwise the MH default of 664 will be used. During all
operations on messages, this initially assigned protection will be preserved for each message,
so chmod(I) may be used to set a protection on an individual message, and its protection
will be preserved thereafter.

If the switch ‘—audit audit-file’ is specified (usually as a default switch in the profile), then
inc will append a header line and a line per message to the end of the specified audit-file
with the format:

inc date
<scan line for first message>
<scan line for second message>
<etc.>

This is useful for keeping track of volume and source of incoming mail. Eventually, repl,
forw, comp, and dist may also produce audits to this (or another) file, perhaps with
“Message-Id:” information to keep an exact correspondence history. “Audit-file” will be in
the user’'s MH directory unless a full path is specified.

Inc will incorporate even illegally formatted messages into the user’s MH folder, inserting a
blank line prior to the offending component and printing a comment identifying the bad
message.

In all cases, the mail file will be zeroed.

FILES
$HOME/mh_profile The user profile
$HOME/mail The user’s mail drop
<mh-dir>/audit-file Audit trace file (optional)
PROFILE COMPONENTS
Path: To determine the user's MH directory
Folder—Protect: For protection on new folders
Msg—Protect: For protection on new messages
DEFAULTS
‘+folder” defaults to “inbox”
CONTEXT

The folder into which the message is being incorporated will become the current folder, and
the first message incorporated will be the current message. This leaves the context ready
for a show of the first new message.

4th Berkeley Distribution 3 August 1983 1

JoT(1) UNIX Programmer’s Manual JoT (1)

NAME
jot — print sequential or random data

SYNOPSIS
jot [options][reps [begin[end [s1]1]]

DESCRIPTION
Jot may be used to print out increasing, decreasing, random, or redundant data, usually
numbers, one per line. The options are understood as follows.

—r Generate random data instead of sequential data, the default.

—b word
Just print word repetitively.

—w word
Print word with the generated data appended to it. Octal, hexadecimal, exponential,
ASCII, zero padded, and right-adjusted representations are possible by using the
appropriate printf(3) conversion specification inside word, in which case the data
are inserted rather than appended.

—C This is an abbreviation for —w %c.

—s string
Print data separated by string. Normally, newlines separate data.

—p precision
Print only as many digits or characters of the data as indicated by the integer preci-
sion. In the absence of —p, the precision is the greater of the precisions of begin and

end. The —p option is overridden by whatever appears in a printf(3) conversion
following —w.

The last four arguments indicate, respectively, the number of data, the lower bound, the
upper bound, and the step size or, for random data, the seed. While at least one of them
must appear, any of the other three may be omitted, and will be considered as such if given
as —. Any three of these arguments determines the fourth. If four are specified and the
given and computed values of reps conflict, the lower value is used. If fewer than three are
specified, defaults are assigned left to right, except for s, which assumes its default unless
both begin and end are given.

Defaults for the four arguments are, respectively, 100, 1, 100, and 1, except that when ran-
dom data are requested, s defaults to a seed depending upon the time of day. Reps is
expected to be an unsigned integer, and if given as zero is taken to be infinite. Begin and
end may be given as real numbers or as characters representing the corresponding value in
ASCII. The last argument must be a real number.

Random numbers are obtained through rand(3). The name jot derives in part from iota, a
function in APL.

EXAMPLES
The command

jot 21 —1 1.00

prints 21 evenly spaced numbers increasing from —1 to 1. The ASCII character set is gen-
erated with

jot — 128 0
and the strings xaa through xaz with
jot —w xa%c 26 a

4th Berkeley Distribution 15 May 1983 1

JOoT (1) UNIX Programmer’s Manual JoT (1)

while 20 random 8-letter strings are produced with
jo —r — 160 a z | rs —g 0 8

Infinitely many yes's may be obtained through
jot —b yes 0

and thirty ed (1) substitution commands applying to lines 2, 7, 12, etc. is the result of
jot —w %ds/old/mew/ 30 2 — 5

The stuttering sequence 9, 9, 8, 8, 7. etc. can be produced by suitable choice of precision and
step size, as in

jot 0 9 — —5
and a file containing exactly 1024 bytes is created with
jot —b x 512 > block

Finally, to set tabs four spaces apart starting from column 10 and ending in column 132,
use

expand —'jot —s, — 10 132 4
and to print all lines longer than 90 characters,
grep ‘jot —s "™ —b . 90'.\s=

SEE ALSO
rs(1), ed(1), yes(1), printf(3), rand(3), expand(1)

AUTHOR
John Kunze

BUGS

4th Berkeley Distribution 15 May 1983 2

LAM(1) UNIX Programmer’s Manual LAM(1)

NAME

lam — laminate files

SYNOPSIS

lam [—{fp] min.max][—s sepstring] file ...

DESCRIPTION

Lam copies the named files side by side onto the standard output. Input lines from each file
become fragments which are assembled into long output lines. The name ‘—' means the
standard input, and may be repeated.

Normally, each option affects only the file after it. If the option letter is capitalized it
affects all subsequent files until it appears again uncapitalized. The options are described
below.

—f min.max
Print line fragments according to min.max, where min is the minimum field width
and max the maximum field width. If min begins with a zero, zeros will be added

to make up the field width, and if it begins with a "—’, the fragment will be left-
adjusted within the field.

—Pp min.max
Like —f, but pad this file's field when end-of-file is reached and other files are still
active.

—s sepstring
Print sepstring before printing line fragments from the next file. This option may
appear after the last file.

To print files simultaneously for easy viewing use pr(1).

EXAMPLES

The command
lam filel file2 file3 filed
joins 4 files together along each line. To merge the lines from four different files use

lam filel —S "\
* file2 file3 file4

Every 2 lines of a file may be joined on one line with
lam — — < file

SEE ALSO

pr(1), join(1), printf(3)

AUTHOR

BUGS

John Kunze

_4th Berkeley Distribution 14 June 1983 1

MERGE (1) UNIX Programmer’s Manual MERGE (1)

NAME

merge — three-way file merge
SYNOPSIS

merge [-p] filel file2 file3
DESCRIPTION

Merge incorporates all changes that lead form file2 to file3 into filel. The result goes to std.
output if -p is present, into filel otherwise. Merge is useful for combining separate changes
to an original. Suppose file2 is the original, and both filel and file3 are modifications of file2.
Then merge combines both changes.

An overlap occurs if both filel and file3 have changes in a common segment of lines. Merge
prints how many overlaps occurred, and includes both alternatives in the result. The alter-
natives are delimited as follows:

<< <KL <K<K <L filel
lines in filel
lines in file3
>>>>>>> filed

If there are overlaps, the user should edit the result and delete one of the alternatives.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 82/11/25 .
Copyright @ 1982 by Walter F. Tichy.

SEE ALSO
diff3 (1), diff (1), resmerge (1), co (1).

Purdue University 6/29/83 1

NEXT (1) UNIX Programmer’s Manual NEXT (1)

NAME

next — show the next message
SYNOPSIS

next [+folder] [—switches for] [—help]
DESCRIPTION

Next performs a show on the next message in the specified (or current) folder. Like show, it
passes any switches on to the program [, which is called to list the message. This command
is exactly equivalent to “‘show next™.

FILES
$HOME/mh_profile The user profile

PROFILE COMPONENTS
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder

CONTEXT
If a folder is specified, it will become the current folder, and the message that is shown (i.e.,
the next message in sequence) will become the current message.

4th Berkeley Distribution 3 August 1983 1

PICK (1) UNIX Programmer’s Manual ' PICK (1)

NAME
pick — select messages by content
SYNOPSIS
pick [—cc [—src +folder] [msgs] [—help] [—scan] [—noscan]
—date [—show] [—noshow] [—nofile] [—nokeep]
—from
—search pattern
—subject
—to [—file [—preserve] [—link] +folder ... [—nopreserve] [—nolink]]
——component [—keep [—stay] [—nostay] [+folder ...]]
typically:
pick —from jones —scan
pick —to holloway
pick —subject ned —scan —keep
DESCRIPTION

Pick searches messages within a folder for the specified contents, then performs several
operations on the selected messages.

A modified grep(I) is used to perform the searching, so the full regular expression (see
ed(I)) facility is available within ‘pattern’. With ‘—search’, pattern is used directly, and
with the others, the grep pattern constructed is:

““component:pattern”

This means that the pattern specified for a “—search’ will be found everywhere in the mes-
sage, including the header and the body, while the other search requests are limited to the
single specified component. The expression ‘——component pattern’ is a shorthand for
specifying ‘—search “component:pattern” "; it is used to pick a component not in the set [cc
date from subject to]. An example is ““pick ——reply—to pooh —show"".

Searching is performed on a per-line basis. Within the header of the message, each com-
ponent is treated as one long line, but in the body, each line is separate. Lower-case letters
in the search pattern will match either lower or upper case in the message, while upper case
will match only upper case.

Once the search has been performed. the selected messages are scanned (see scan) if the
‘—scan’ switch is given, and then they are shown (see show) if the ‘—show’ switch is given.
After these two operations, the file operations (if requested) are performed.

The ‘—file’ switch operates exactly like the file command, with the same meaning for the
‘—preserve’ and ‘—link’ switches.

The ‘—keep’ switch is similar to ‘—file’, but it produces a folder that is a subfolder of the
folder being searched and defines it as the current folder (unless the ‘—stay’ flag is used).
This subfolder contains the messages which matched the search criteria. All of the MH
commands may be used with the sub-folder as the current folder. This gives the user con-
siderable power in dealing with subsets of messages in a folder.

The messages in a folder produced by ‘—keep’ will always have the same numbers as they
have in the source folder (i.e., the ‘—preserve’ switch is automatic). This way, the message
numbers are consistent with the folder from which the messages were selected. Messages
are not removed from the source folder (i.e., the ‘—link’ switch is assumed). If a ‘+folder’
is not specified, the standard name “select” will be used. (This is the meaning of “(select)”
when it appears in the output of the folder command.) If “+folder’ arguments are given to
‘—keep’, they will be used rather than “select” for the names of the subfolders. This

4th Berkeley Distribution 3 August 1983 1

PICK (1)

UNIX Programmer’s Manual PICK (1)

allows for several subfolders to be maintained concurrently.

When a ‘—keep’ is performed, the subfolder becomes the current folder. This can be over-
ridden by use of the ‘—stay’ switch.

Here's an example:

VOIS W=

23
24

% folder +inbox
inbox+ has 16 messages (3— 22); cur= 3.
% pick —from dcrocker
6 hits.
[+inbox/select now current]
% folder
inbox/select+ has 6 messages (3— 16); cur= 3.
% scan
3+ 6/20 Dcrocker Re: ned file update issue...
6 6/23 Dcrocker removal of files from /tm...
8 6/27 Dcrocker Problems with the new ned...
13 6/28 dcrocker newest nned I would ap...
15 7/ 5 Dcrocker nned Last week I asked...
16 7/ 5 dcrocker message id format I re...
% show all | print

[produce a full listing of this set of messages on the line printer.]
% folder —up

inbox+ has 16 messages (3— 22); cur= 3; (select).
% folder —down
inbox/select+ has 6 messages (3— 16); cur= 3.
% rmf
[+inbox now current]
% folder
inbox+ has 16 messages (3— 22); cur= 3.

This is a rather lengthy example, but it shows the power of the MH package. In item 1, the
current folder is set to inbox. In 3, all of the messages from dcrocker are found in inbox
and linked into the folder “inbox/select”. (Since no action switch is specified, ‘—keep’ is
assumed.) Items 6 and 7 show that this subfolder is now the current folder. Items 8
through 14 are a scan of the selected messages (note that they are all from dcrocker and are
all in upper and lower case). Item 15 lists all of the messages to the high-speed printer.
Item 17 directs folder to set the current folder to the parent of the selection-list folder,
which is now current. Item 18 shows that this has been done. Item 19 resets the current
folder to the selection list, and 21 removes the selection-list folder and resets the current
folder to the parent folder, as shown in 22 and 23.

FILES ’
$HOME/mh_profile The user profile
PROFILE COMPONENTS
Path: To determine the user’s MH directory

Folder—Protect: For protection on new folders
Current-Folder: To find the default current folder

DEFAULTS

‘—src +folder’ defaults to current
‘msgs’ defaults to all
‘—keep +select’ is the default if no ‘—scan’, ‘—show’, or ‘—file’ is specified

4th Berkeley Distribution . 3 August 1983 2

PICK (1) UNIX Programmer’s Manual PICK (1)

CONTEXT
If a “—src +folder’ is specified, it will become the current folder, unless a “—keep’ with O or
1 folder arguments makes the selection-list subfolder the current folder. Each selection-list
folder will have its current message set to the first of the messages linked into it unless the
selection list already existed, in which case the current message won't be changed.

4th Berkeley Distribution 3 August 1983 3

PREV (1) UNIX Programmer’s Manual PREV (1)

NAME

prev — show the previous message
SYNOPSIS

prev [+folder][—switches for I] [—help]
DESCRIPTION

Prev performs a show on the previous message in the specified (or current) folder. Like
show, it passes any switches on to the program [, which is called to list the message. This
command is exactly equivalent to “show prev”.

FILES
$HOME/mh_profile The user profile

PROFILE COMPONENTS
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder

CONTEXT
If a folder is specified, it will become current, and the message that is shown (i.e., the previ-
ous message in sequence) will become the current message.

4th Berkeley Distribution 3 August 1983 1

PRMDIR (1P) UNIX Programmer’s Manual PRMDIR (1P)

NAME

prmdir — remove a project directory
SYNOPSIS

prmdir [—fru] [{+—]T typel.type ...]] pdirname ...
DESCRIPTION

Prmdir deletes a project directory called pdirname. The directory must be empty.

If the —r option is specified, prmdir recursively deletes the entire contents of a project
directory, and the directory itself. The user is asked to confirm the generated rm —r com-
mand before the directory is deleted. Subdirectories that are project root directories must be
removed using rmproject before attempting to remove pdirname. Write permission is
required in all subdirectories.

Prmdir may also be used to convert an existing project directory to a regular directory
using the —u option.

OPTIONS

—f Stands for force. No questions are asked. This option overrides any mode restric-
tions.

—r Recursively remove project directories.
—u Undefine a project directory and convert it to a regular directory.

—T type
Remove a type label from a project directory.

FILES

Project link directory.

...__temp Temporary project link directory.
SEE ALSO

pmkdir(1P), rm(1), rmdir(1), rmproject(1P)
DIAGNOSTICS

The error message, “prmdir: project/... temporarily unavailable™, indicates that a "...__temp’
temporary project link directory exists. This could be because another user is altering the
project link directory, or because a system crash terminated prmdir prematurely. If the
latter case, then removing the temporary file will fix the problem.

Exit status O is normal. Exit status 1 indicates an error.

AUTHOR
Peter J. Nicklin
BUGS
If a project directory has already been removed by the rmdir or rm -r commands, that

directory must be recreated using mkdir before prmdir will remove the directory from the
project.

. 4th Berkeley Distribution 22 June 1983 1

PROMPTER (1) UNIX Programmer’s Manual PROMPTER (1)

NAME

prompter — prompting editor front end
SYNOPSIS

prompter [—erase chr] [—kill chr] [—help]
DESCRIPTION

This program is not called directly but takes the place of an editor and acts as an editor
front end. Prompter is an editor which allows rapid composition of messages. It is particu-
larly useful to network and low-speed (less than 2400 baud) users of MH. It is an MH
program in that it can have its own profile entry with switches, but it can’t be invoked
directly as all other MH commands can; it is an editor in that it is invoked by an “—editor
prompter” switch or by the profile entry “Editor: prompter”, but functionally it is merely
a text-collector and not a true editor.

Prompter expects to be called from comp, repl, dist, or forw, with a draft file as an argu-
ment. For example, “comp —editor prompter” will call prompter with the file “draft”
already set up with blank components. For each blank component it finds in the draft, it
prompts the user and accepts a response. A <RETURN> will cause the whole component
to be left out. A “\" preceding a <RETURN> will continue the response on the next line,
allowing for multiline components.

Any component that is non-blank will be copied and echoed to the terminal.

The start of the message body is prompted by a line of dashes. If the body is non-blank,
the prompt is “ Enter additional text”. Message-body typing is terminated with a
<CTRL-D> (or <OPEN>). Control is returned to the calling program, where the user is
asked “What now?"". See comp for the valid options.

The line editing characters for kill and erase may be specified by the user via the arguments
“—Xkill chr” and “—erase chr”, where chr may be a character; or “\nnn", where nnn is the
octal value for the character. (Again, these may come from the default switches specified
in the user’s profile.)

A during message-body typing is equivalent to <CTRL-D> for compatibility
with NED. A during component typing will abort the command that invoked
prompter.

PROFILE COMPONENTS
prompter-next: editor to be used on exit from prompter

4th Berkeley Distribution 3 August 19383 1

RCS(1) UNIX Programmer’s Manual RCS(1)

NAME
rcs — change RCS file attributes

SYNOPSIS
res [options] file ...

DESCRIPTION
Rcs creates new RCS files or changes attributes of existing ones. An RCS file contains mul-
tiple revisions of text, an access list, a change log, descriptive text, and some control attri-
butes. For rcs to work, the caller’s login name must be on the access list, except if the
access list is empty, the caller is the owner of the file or the superuser, or the -i option is
present.

Files ending in °,v’ are RCS files, all others are working files. If a working file is given, rcs
tries to find the corresponding RCS file first in directory ./RCS and then in the current
directory, as explained in co (1).

—i creates and initializes a new RCS file, but does not deposit any revision. If the
RCS file has no path prefix, rcs tries to place it first into the subdirectory ./RCS,
and then into the current directory. If the RCS file already exists, an error mes-
sage is printed.

—alogins appends the login names appearing in the comma-separated list logins to the
access list of the RCS file.

—Aoldfile appends the access list of oldfile to the access list of the RCS file.

—e[logins] erases the login names appearing in the comma-separated list logins from the
access list of the RCS file. If logins is omitted, the entire access list is erased.

—cstring sets the comment leader to string. The comment leader is printed before every
log message line generated by the keyword Log during checkout (see co). This
is useful for programming languages without multi-line comments. During rcs
-i or initial ci, the comment leader is guessed from the suffix of the working file.

—1frev] locks the revision with number rev. If a branch is given, the latest revision on
that branch is locked. If rev is omitted, the latest revision on the trunk is
locked. Locking prevents overlapping changes. A lock is removed with ¢i or
res -u (see below).

—urev] unlocks the revision with number rev. If a branch is given, the latest revision
on that branch is unlocked. If rev is omitted, the latest lock held by the caller
is removed. Normally, only the locker of a revision may unlock it. Somebody
else unlocking a revision breaks the lock. This causes a mail message to be sent
to the original locker. The message contains a commentary solicited from the
breaker. The commentary is terminated with a line containing a single "." or

control-D.

—L " sets locking to strict. Strict locking means that the owner of an RCS file is not
exempt from locking for checkin. This option should be used for files that are
shared.

—U sets locking to non-strict. Non-strict locking means that the owner of a file need

not lock a revision for checkin. This option should NOT be used for files that

are shared. The default (-L or -U) is determined by your system administrator.
—nname(:rev]

associates the symbolic name name with the branch or revision rev. Rcs prints

an error message if name is already associated with another number. If rev is

omitted, the symbolic name is deleted.

—Nname[:rev]

Purdue University) 6/29/83 1

RCS(1) UNIX Programmer’s Manual RCS(1)

same as -n, except that it overrides a previous assignment of narme.

—orange deletes ("outdates") the revisions given by range. A range consisting of a single
revision number means that revision. A range consisting of a branch number
means the latest revision on that branch. A range of the form revI/—rev2 means
revisions revl to rev2 on the same branch, —rev means from the beginning of
the branch containing rev up to and including rev, and rev— means from revi-
sion rev to the end of the branch containing rev. None of the outdated revisions
may have branches or locks.

—q quiet mode; diagnostics are not printed.

—sstate|:rev]
sets the state attribute of the revision rev to state. If rev is omitted, the latest
revision on the trunk is assumed; If rev is a branch number, the latest revision
on that branch is assumed. Any identifier is acceptable for state. A useful set
of states is Exp (for experimental), Stab (for stable), and Rel (for released). By
default, ci sets the state of a revision to Exp.

—t[txtfile] writes descriptive text into the RCS file (deletes the existing text). If txtfile is
omitted, rcs prompts the user for text supplied from the std. input, terminated
with a line containing a single °." or control-D. Otherwise, the descriptive text is
copied from the file ¢xtfile. If the -i option is present, descriptive text is
requested even if -t is not given. The prompt is suppressed if the std. input is
not a terminal.

DIAGNOSTICS

The RCS file name and the revisions outdated are written to the diagnostic output. The exit
status always refers to the last RCS file operated upon, and is O if the operation was suc-
cessful, 1 otherwise.

FILES
The caller of the command must have read/write permission for the directory containing
the RCS file and read permission for the RCS file itself. Rcs creates a semaphore file in the
same directory as the RCS file to prevent simultaneous update. For changes, rcs always
creates a new file. On successful completion, rcs deletes the old one and renames the new
one. This strategy makes links to RCS files useless.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright @ 1982 by Walter F. Tichy.

SEE ALSO
co (1), ci (1), ident(1), resdiff (1), resintro (1), rcsmerge (1), rlog (1), resfile (5). scestores
(8.
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo.
Sept. 1982.

~ BUGS

Purdue University 6/29/83 2

RCSDIFF (1) UNIX Programmer’s Manual RCSDIFF (1)

NAME
resdiff — compare RCS revisions

SYNOPSIS ‘
resdiff [-b][-cefhn][-rrevi][-rrev2]file ...

DESCRIPTION
Resdiff runs diff (1) to compare two revisions of each RCS file given. A file name ending in
v’ is an RCS file name, otherwise a working file name. Resdiff derives the working file
name from the RCS file name and vice versa, as explained in co (1). Pairs consisting of both
an RCS and a working file name may also be specified.

The options -b, —, -e, -f, and -h have the same effect as described in diff (1); option -n gen-
erates an edit script of the format used by RCS.

If both rev! and rev2 are omitted, resdiff compares the latest revision on the trunk with the
contents of the corresponding working file. This is useful for determining what you
changed since the last checkin.

If revl is given, but rev2 is omitted, resdiff compares revision revl! of the RCS file with the
contents of the corresponding working file.

If both rev! and rev2 are given, rcsdiff compares revisions revl and rev2 of the RCS file.
Both rev! and rev2 may be given numerically or symbolically.

"EXAMPLES
The command

resdiff f.c

runs diff on the latest trunk revision of RCS file f.c,v and the contents of working file f.c.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 83/01/15 .
Copyright ® 1982 by Walter F. Tichy.

SEE ALSO
ci (1), co (1), diff (1), ident (1), res (1), resintro (1), resmerge (1), rlog (1), resfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
Sept. 1982.

BUGS

Purdue University 6/29/83 1

RCSINTRO (1) UNIX Programmer’s Manual RCSINTRO (1)

NAME
resintro - introduction to RCS commands

DESCRIPTION
The Revision Control System (RCS) manages multiple revisions of text files. RCS auto-
mates the storing, retrieval, logging, identification, and merging of revisions. RCS is useful

for text that is revised frequently, for example programs, documentation, graphics, papers,
form letters, etc.

The basic user interface is extremely simple. The novice only needs to learn two commands:
ci and co. Ci, short for "checkin", deposits the contents of a text file into an archival file
called an RCS file. An RCS file contains all revisions of a particular text file. Co, short for
"checkout”, retrieves revisions from an RCS file.

Functions of RCS

(] Storage and retrieval of multiple revisions of text. RCS saves all old revisions in a
space efficient way. Changes no longer destroy the original, because the previous
revisions remain accessible. Revisions can be retrieved according to ranges of revi-
sion numbers, symbolic names, dates, authors, and states.

° Maintenance of a complete history of changes. RCS logs all changes automatically.
Besides the text of each revision, RCS stores the author, the date and time of chec-
kin, and a log message summarizing the change. The logging makes it easy to find
out what happened to a module, without having to compare source listings or hav-
ing to track down colleagues.

° Resolution of access conflicts. When two or more programmers wish to modify the
same revision, RCS alerts the programmers and prevents one modification from cor-
rupting the other.

° Maintenance of a tree of Revisions. RCS can maintain separate lines of development
for each module. It stores a tree structure that represents the ancestral relationships
among revisions.

° Merging of revisions and resolution of conflicts. Two separate lines of development
of a module can be coalesced by merging. If the revisions to be merged affect the
same sections of code, RCS alerts the user about the overlapping changes.

[Release and configuration control. Revisions can be assigned symbolic names and
marked as released, stable, experimental, etc. With these facilities, configurations of
modules can be described simply and directly.

° Automatic identification of each revision with name, revision number, creation time,
author, etc. The identification is like a stamp that can be embedded at an appropri-
ate place in the text of a revision. The identification makes it simple to determine
which revisions of which modules make up a given configuration.

° Minimization of secondary storage. RCS needs little extra space for the revisions
(only the differences). If intermediate revisions are deleted, the corresponding deltas
are compressed accordingly.

Getting Started with RCS

Suppose you have a file f.c that you wish to put under control of RCS. Invoke the checkin
command

ci f.c

This command creates the RCS file f.c,v, stores f.c into it as revision 1.1, and deletes f.c. It
also asks you for a description. The description should be a synopsis of the contents of the

Purdue University 6/29/83 1

RCSINTRO (1) UNIX Programmer’s Manual RCSINTRO (1)

file. All later checkin commands will ask you for a log entry, which should summarize the
changes that you made.

Files ending in ,v are called RCS files ("v’ stands for ‘versions’), the others are called work-
ing files. To get back the working file f.c in the previous example, use the checkout com-
mand

co f.c

This command extracts the latest revision from f.c,v and writes it into f.c. You can now
edit f.c and check it back in by invoking

ci f.c
Ci increments the revision number properly. If ¢i complains with the message
ci error: no lock set by <your login>

then your system administrator has decided to create all RCS files with the locking attri-
bute set to ‘strict’. In this case, you should have locked the revision during the previous
checkout. Your last checkout should have been

co -1 f.c

Of course, it is too late now to do the checkout with locking, because you probably modified
f.c already, and a second checkout would overwrite your modifications. Instead, invoke

res -1 f.c

This command will lock the latest revision for you, unless somebody else got ahead of you
already. In this case, you'll have to negotiate with that person.

Locking assures that you, and only you, can check in the next update, and avoids nasty
problems if several people work on the same file. Even if a revision is locked, it can still be
checked out for reading, compiling, etc. All that locking prevents is a CHECKIN by any-
body but the locker.

If your RCS file is private, i.e., if you are the only person who is going to deposit revisions
into it, strict locking is not needed and you can turn it off. If strict locking is turned off,
the owner offthe RCS file need not have a lock for checkin; all others still do. Turning
strict locking off and on is done with the commands

rcs -U f.c and rcs -L f.c

If you don’t want to clutter your working directory with RCS files, create a subdirectory
called RCS in your working directory, and move all your RCS files there. RCS commands
will look first into that directory to find needed files. All the commands discussed above
will still work, without any modification. (Actually, pairs of RCS and working files can be
specified in 3 ways: (a) both are given, (b) only the working file is given, (c) only the RCS
file is given. Both RCS and working files may have arbitrary path prefixes; RCS commands
pair them up intelligently).

To avoid the deletion of the working file during checkin (in case you want to continue edit-
ing), invoke
ci -1 f.c or ci -u f.c

These commands check in f.c as usual, but perform an implicit checkout. The first form also
locks the checked in revision, the second one doesn’t. Thus, these options save you one
checkout operation. The first form is useful if locking is strict, the second one if not strict.
Both update the identification markers in your working file (see below).

You can give ci the number you want assigned to a checked in revision. Assume all your
revisions were numbered 1.1, 1.2, 1.3, etc., and you would like to start release 2. The com-
mand

Purdue University 6/29/83 2

RCSINTRO (1) UNIX Programmer’s Manual RCSINTRO (1)

ci -r2 fc or ¢i -r2.1 fc

assigns the number 2.1 to the new revision. From then on, ¢i will number the subsequent
revisions with 2.2, 2.3, etc. The corresponding co commands

co -r2 f.c and co -r2.1 f.c

retrieve the latest revision numbered 2.x and the revision 2.1, respectively. Co without a
revision number selects the latest revision on the "trunk”, i.e., the highest revision with a

. number consisting of 2 fields. Numbers with more than 2 fields are needed for branches.
For example, to start a branch at revision 1.3, invoke

ci -r1.3.1 fc

This command starts a branch numbered 1 at revision 1.3, and assigns the number 1.3.1.1
to the new revision. For more information about branches, see rcsfile(5).

Automatic Identification

RCS can put special strings for identification into your source and object code. To obtain
such identification. place the marker

$Header$

into your text, for instance inside a comment. RCS will replace this marker with a string
of the form

$Header: filename revision_number date time author state $

With such a marker on the first page of each module, you can always see with which revi-
sion you are working. RCS keeps the markers up to date automatically. To propagate the
markers into your object code, simply put them into literal character strings. In C, this is
done as follows:

static char rcsid[] = "$Header$";

The command ident extracts such markers from any file, even object code and dumps.
Thus, ident lets you find out which revisions of which modules were used in a given pro-
gram.

You may also find it useful to put the marker Log into your text, inside a comment. This
marker accumulates the log messages that are requested during checkin. Thus, you can
maintain the complete history of your file directly inside it. There are several additional
identification markers; see co(1) for details.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 83/05/11 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci(1), co(1), ident(1), merge(1), res(1), resdiff(1), resmerge(1), rlog(1), resfile(5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,” in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
Sept. 1982.

Purdue University 6/29/83 3

RCSMERGE (1) UNIX Programmer’s Manual RCSMERGE (1)

NAME

rcsmerge — merge RCS revisions

SYNOPSIS

rcsmerge -rrevl [-rrev2][-p] file

DESCRIPTION

Rcsmerge incorporates the changes between revl and rev2 of an RCS file into the
corresponding working file. If -p is given, the result is printed on the std. output, otherwise
the result overwrites the working file.

A file name ending in °,v’ is an RCS file name, otherwise a working file name. Merge derives
the working file name from the RCS file name and vice versa, as explained in co (1). A pair
consisting of both an RCS and a working file name may also be specified.

Revl may not be omitted. If rev2 is omitted, the latest revision on the trunk is assumed.
Both revl and rev2 may be given numerically or symbolically.

Rcsmerge prints a warning if there are overlaps, and delimits the overlapping regions as
explained in co -j. The command is useful for incorporating changes into a checked-out
revision.

EXAMPLES

Suppose you have released revision 2.8 of f.c. Assume furthermore that you just completed
revision 3.4, when you receive updates to release 2.8 from someone else. To combine the
updates to 2.8 and your changes between 2.8 and 3.4, put the updates to 2.8 into file f.c and
execute

rcsmerge -p -r2.8 -r3.4 f.c >f.merged.c

Then examine f.merged.c. Alternatively, if you want to save the updates to 2.8 in the RCS
file, check them in as revision 2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.c
co -r3.4 -j2.8:2.8.1.1 f.c

As another example, the following command undoes the changes between revision 2.4 and
2.8 in your currently checked out revision in f.c.

rcsmerge -12.8 -r2.4 f.c

Note the order of the arguments, and that f.c will be overwritten.

IDENTIFICATION

Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 83/01/15 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO

BUGS

ci (1), co (1), merge (1), ident (1), res (1), resdiff (1), rlog (1), resfile (5).

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
Sept. 1982.

Rcsmerge does not work for files that contain lines with a single “.".

Purdue University 6/29/83 1

REPL (1) UNIX Programmer’s Manual REPL (1)

NAME

repl — reply to a message

SYNOPSIS

repl [+folder] [msg] [—editor editor] [—inplace] [—annotate] [—help] [—noinplace]
[—noannotate]

DESCRIPTION

Repl aids a user in producing a reply to an existing message. In its simplest form (with no
arguments), it will set up a message-form skeleton in reply to the current message in the
current folder, invoke the editor, and send the composed message if so directed. The com-
posed message is constructed as follows:

To: <Reply-To> or <From>

cc: <cc>, <To>

Subject: Re: <Subject>

In-reply-to: Your message of <Date>
<Message-Id >

where field names enclosed in angle brackets (< >) indicate the contents of the named field
from the message to which the reply is being made. Once the skeleton is constructed, an
editor is invoked (as in comp, dist. and forw). While in the editor, the message being replied
to is available through a link named “@". In NED, this means the replied-to message may
be “used” with “use @", or put in a window by “window @"".

As in comp, dist, and forw, the user will be queried before the message is sent. If ‘—anno-
tate’ is specified, the replied-to message will be annotated with the single line

Replied: Date.

The command “comp —use” may be used to pick up interrupted editing, as in dist and
forw; the “—inplace’ switch annotates the message in place, so that all folders with links to
it will see the annotation.

$HOME/mh_profile The user profile
<mh-dir>/draft =~ The constructed message file
/usr/bin/send To send the composed message

PROFILE COMPONENTS

Path: To determine the user’'s MH directory
Editor: To override the use of /bin/ned as the default editor
Current-Folder: To find the default current folder

DEFAULTS

‘+folder’ defaults to current
‘msgs’ defaults to cur
‘—editor’ defaults to /bin/ned
‘—noannotate’

‘—noinplace’

CONTEXT

If a “+folder’ is specified, it will become the current folder, and the current message will be
set to the replied-to message.

4th Berkeley Distribution 3 August 1983 1

RLOG (1) UNIX Programmer’s Manual RLOG (1)

NAME
rlog — print log messages and other information about RCS files

SYNOPSIS
rlog [options] file ...

DESCRIPTION
Rlog prints information about RCS files. Files ending in °,v" are RCS files, all others are
working files. If a working file is given, rlog tries to find the corresponding RCS file first in
directory ./RCS and then in the current directory, as explained in co (1).

Rlog prints the following information for each RCS file: RCS file name, working file name,
head (i.e., the number of the latest revision on the trunk), access list. locks, symbolic
names, suffix, total number of revisions, number of revisions selected for printing, and
descriptive text. This is followed by entries for the selected revisions in reverse chronologi-
cal order for each branch. For each revision, rlog prints revision number, author, date/time,
state, number of lines added/deleted (with respect to the previous revision), locker of the
revision (if any), and log message. Without options, rlog prints complete information. The
options below restrict this output.

—L ignores RCS files that have no locks set; convenient in combination with -R, -h,
or -1
—R only prints the name of the RCS file; convenient for translating a working file

name into an RCS file name.

—h prints only RCS file name, working file name, head, access list, locks, symbolic
names, and suffix.

—t prints the same as -h, plus the descriptive text.

—ddates prints information about revisions with a checkin date/time in the ranges given
by the semicolon-separated list of dates. A range of the form d1<d2 or d2>dl
selects the revisions that were deposited between d/ and d2, (inclusive). A range
of the form <d or d> selects all revisions dated d or earlier. A range of the
form d< or >d selects all revisions dated d or later. A range of the form d
selects the single, latest revision dated d or earlier. The date/time strings d, d1,
and d2 are in the free format explained in co (1). Quoting is normally necessary,
especially for < and >. Note that the separator is a semicolon.

—1[lockers]
prints information about locked revisions. If the comma-separated list lockers of
login names is given, only the revisions locked by the given login names are
printed. If the list is omitted, all locked revisions are printed.

—Trevisions
prints information about revisions given in the comma-separated list revisions of
revisions and ranges. A range revl—rev2 means revisions revl to rev2 on the
same branch, —rev means revisions from the beginning of the branch up to and
including rev, and rev— means revisions starting with rev to the end of the

- branch containing rev. An argument that is a branch means all revisions on that

branch. A range of branches means all revisions on the branches in that range.

—sstates prints information about revisions whose state attributes match one of the states
given in the comma-separated list states.

—wllogins]
prints information about revisions checked in by users with login names appear-
ing in the comma-separated list logins. If logins is omitted, the user’s login is
assumed.

Purdue University 6/29/83 1

RLOG (1) UNIX Programmer’s Manual RLOG (1)

Rlog prints the intersection of the revisions selected with the options -d, -1, -s, -w, inter-
sected with the union of the revisions selected by -b and -r.

EXAMPLES
rlog -L -R RCS/»,v
rlog -L -h RCS/*,v
rlog -L -1 RCS/s,v
rlog RCS/s,v

The first command prints the names of all RCS files in the subdirectory ‘RCS’ which have
locks. The second command prints the headers of those files, and the third prints the
headers plus the log messages of the locked revisions. The last command prints complete
information.

DIAGNOSTICS
The exit status always refers to the last RCS file operated upon, and is O if the operation
was successful, 1 otherwise.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.2 ; Release Date: 83/05/11 .
Copyright @ 1982 by Walter F. Tichy.

SEE ALSO

ci (1), co (1), ident(1), res (1), resdiff (1), resintro (1), resmerge (1), resfile (5), scestores
(8).

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
Sept. 1982.

BUGS

Purdue University 6/29/83 2

RMF (1) UNIX Programmer’s Manual RMF (1)

NAME

rmf — remove folder

SYNOPSIS

rmf [+folder] [—help]

DESCRIPTION

Rmf removes all of the files (messages) within the specified (or default) folder, and then
removes the directory (folder). If there are any files within the folder which are not a part
of MH, they will not be removed, and an error will be produced. If the folder is given
explicitly or the current folder is a subfolder (i.e., a selection list from pick), it will be
removed without confirmation. If no argument is specified and the current folder is not a
selection-list folder, the user will be asked for confirmation.

Rmf irreversibly deletes messages that don’t have other links, so use it with caution.

If the folder being removed is a subfolder, the parent folder will become the new current
folder, and rmf will produce a message telling the user this has happened. This provides an
easy mechanism for selecting a set of messages, operating on the list, then removing the list
and returning to the current folder from which the list was extracted. (See the example
under pick.)

The files that rmf will delete are cur, any file beginning with a comma, and files with
purely numeric names. All others will produce error messages.

Rmf of a read-only folder will delete the “cur—"" entry from the profile without affecting
the folder itself.

FILES
PROFILE COMPONENTS
$HOME/mh_profile The user profile
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder
DEFAULTS
‘+folder’ defaults to current, usually with confirmation
CONTEXT

Rmf will set the current folder to the parent folder if a subfolder is removed; or if the
current folder is removed, it will make “inbox’ current. Otherwise, it doesn’t change the
current folder or message.

4th Berkeley Distribution 3 August 1983 ' 1

RMM (1) UNIX Programmer’s Manual RMM (1)

NAME
rmm — remove messages
SYNOPSIS
rmm [+folder] [msgs] [—help]
DESCRIPTION
Rmm removes the specified messages by renaming the message files with preceding commas.
(This is the Rand-UNIX backup file convention.)
The current message is not changed by rmm, so a next will advance to the next message in
the folder as expected.
FILES
$HOME/mh_profile The user profile

PROFILE COMPONENTS
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder

DEFAULTS
‘+folder’ defaults to current
‘msgs’ defaults to cur

CONTEXT
If a folder is given, it will become current.

4th Berkeley Distribution 3 August 1983 1

RS(1) UNIX Programmer’s Manual RS(1)

NAME
rs — reshape a data array

SYNOPSIS
rs [{csCSIxITkKgGwINkTeEnyjhHm][rows [cols 1]

DESCRIPTION
Rs reads the standard input, interpreting each line as a row of blank-separated entries in an
array, transforms the array according to the options, and writes it on the standard output.

With no arguments it transforms stream input into a columnar format convenient for ter-
minal viewing.

Given positive integers for rows and cols, the program produces output with the
corresponding shape, truncating surplus data and supplying missing data as necessary. If
only one of them is a positive integer, then rs computes a value for the other which will
accomodate all of the data.

The options are described below.

—cx Input columns are delimited by the single character x. A missing x is taken to be
“T.

—sx Like —c, but maximal strings of x are delimiters.

—Cx Output columns are delimited by the single character x. A missing x is taken to be

—Sx Like —C, but maximal strings of x are delimiters.

—t Fill in the rows of the output array using the columns of the input array,. that is,
transpose the input while honoring any rows and cols specifications.

—T Print the pure transpose of the input, ignoring any rows or cols specification.
—KkN Ignore the first N lines of input.

—KN Like —k, but print the ignored lines.

—gN The gutter width (inter-column space), normally 2, is taken to be N.

—GN The gutter width has N percent of the maximum column width added to it.
—e Consider each line of input as an array entry.

—n On lines having fewer entries than the first line, use null entries to pad out the line.
Normally, missing entries are taken from the next line of input.

—Yy If there are too few entries to make up the output dimensions, pad the output by
recycling the input from the beginning. Normally, the output is padded with
blanks.

—h Print the shape of the input array and do nothing else. The shape is just the number
of lines and the number of entries on the first line.

—H Like —h, but also print the length of each line.

—j Right adjust entries within columns.

—wN The width of the display, normally 80, is taken to be the positive integer V.
—m Do not trim excess delimiters from the ends of the output array.

With no arguments, rs behaves as if given —et. Option letters which take numerical argu-
ments interpret a missing number as zero unless otherwise indicated.

EXAMPLES
Rs can be used as a filter to convert the stream output of several programs (e.g.., spell, du,
file, look , nm, who, and wc(1)) into a convenient “window™ format, as in

4th Berkeley Distribution 14 June 1983 1

RS(1) UNIX Programmer’s Manual RS(1)

who | rs

This function has been incorporated into the Is(1) program, though for most programs with
similar output rs suffices.

To convert stream input into vector output and back again, use

rs 1 01l rs 01
A 10 by 10 array of random numbers from 1 to 100 and its transpose can be generated
with

jot —r 100 | rs 10 10 | tee array | rs —T > tarray

In the editor ex(1), a file consisting of a 3-column table that has undergone insertions and
deletions can be neatly reshaped into 3 columns with

L8rs 0 3
Finally, to sort a database by the first line of each 4-line field, try
rs —IC 0 4 | sort | rs — 0 1

SEE ALSO
jot(1), ex(1), sort(1), pr(1).

AUTHOR
John Kunze

BUGS
Handles only two dimensional arrays.

Fields cannot be defined yet on character positions.
Re-ordering of columns is not yet possible.

There are too many options.

4th Berkeley Distribution 14 June 1983 2

SCAN (1) UNIX Programmer’s Manual SCAN(1)

NAME

scan — produce a one-line-per-message scan listing

SYNOPSIS

scan [+folder][msgs] [—ff] [—header][—help][—noff][—noheader]

DESCRIPTION

Scan produces a one-line-per-message listing of the specified messages. Each scan line con-
tains the message number (name), the date, the “From™ field, the “Subject™ field, and, if
room allows, some of the body of the message. For example:

" #Date”~ From “Subject [Body]

“15+7"7/ 5 "Dcrocker nned Last week I asked some of
“16 — "7/ 5 "dcrocker “message id format I recommend
“18"""7/ 6 Obrien™ Re: Exit status from mkdir

"19™77/ 7" Obrien™ "scan" listing format in MH

The ‘+’ on message 15 indicates that it is the current message. The ‘—’ on message 16 indi-
cates that it has been replied to, as indicated by a “Replied:” component produced by an
‘—annotate’ switch to the repl command.

If there is sufficient room left on the scan line after the subject, the line will be filled with
text from the body, preceded by . Scan actually reads each of the specified messages and
parses them to extract the desired fields. During parsing, appropriate error messages will be
produced if there are format errors in any of the messages.

The ‘—header’ switch produces a header line prior to the scan listing, and the "—ff’ switch
will cause a form feed to be output at the end of the scan listing.

FILES
“$HOME/mh_profile" The user profile
PROFILE COMPONENTS
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder
DEFAULTS
‘+folder’ defaults to current
‘msgs’ defaults to all
‘—noff’
‘—noheader’
CONTEXT

If a folder is given, it will become current. The current message is unaffected.

4th Berkeley Distribution 3 August 1983 1

SCCSTORCS (8) UNIX Programmer’s Manual SCCSTORCS (8)

NAME

scestorcs — build RCS file from SCCS file

SYNOPSIS

scestorces [—t] [—v] s.file ...

DESCRIPTION

Scestores builds an RCS file from each SCCS file argument. The deltas and comments for
each delta are preserved and installed into the new RCS file in order. Also preserved are the
user access list and descriptive text, if any, from the SCCS file.

The following flags are meaningful:

—t Trace only. Prints detailed information about the SCCS file and lists the commands
that would be executed to produce the RCS file. No commands are actually exe-
cuted and no RCS file is made.

—v Verbose. Prints each command that is run while it is building the RCS file.

For each s.somefile, Sccstorcs writes the files somefile and somefile,v which should not
already exist. Sccstorcs will abort, rather than overwrite those files if they do exist.

SEE ALSO

ci (1), co (1), res (1). .

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
Sept. 1982.

DIAGNOSTICS

BUGS

All diagnostics are written to stderr. Non-zero exit status on error.

Scestores does not preserve all SCCS options specified in the SCCS file. Most notably, it
does not preserve removed deltas, MR numbers, and cutoff points.

AUTHOR

Ken Greer

Copyright © 1983 by Kenneth L. Greer

4th Berkeley Distribution 29 June 1983 1

SEND (1) UNIX Programmer’s Manual SEND (1)

NAME

send — send a message

SYNOPSIS

send [file] [—draft] [—verbose] [—format] [—msgid] [—help] [—noverbose] [
—noformat] [—nomsgid]

DESCRIPTION

FILES

Send will cause the specified file (default <mh-dir>/draft) to be delivered to each of the
addresses in the “To:", “cc:”, and “Bec:”™ fields of the message. If “—verbose’ is specified,
send; will monitor the delivery of local and net mail. Send with no argument will query
whether the draft is the intended file, whereas ‘—draft’ will suppress this question. Once
the message has been mailed (or queued) successfully, the file will be renamed with a lead-
ing comma, which allows it to be retreived until the next draft message is sent. If there are
errors in the formatting of the message, send; will abort with a (hopefully) helpful error
message.

If a “Bece:” field is encountered, its addresses will be used for delivery. but the “Bee:™ field
itself will be deleted from all copies of the outgoing message.

Prior to sending the message, the fields “From: user”, and “Date: now™ will be prepended
to the message. If ‘—msgid’ is specified, then a “"Message-Id:" field will also be added to the
message. If the message already contains a “From:" field, then a “Sender: user” field will be
added instead. (An already existing “Sender:” field will be deleted from the message.)

If the user doesn't specify ‘—noformat’, each of the entries in the “To:"" and “cc:” fields will
be replaced with “standard™ format entries. This standard format is designed to be usable
by all of the message handlers on the various systems around the ARPANET.

If an “Fcc: folder” is encountered, the message will be copied to the specified folder in the
format in which it will appear to any receivers of the message. That is, it will have the
prepended fields and field reformatting.

If a “Distribute-To:" field is encountered, the message is handled as a redistribution message
(see dist for details), with “Distribution-Date: now” and “‘Distribution-From: user’ added.

$HOME/mh_profile The user profile

PROFILE COMPONENTS

Path: To determine the user’s MH directory

DEFAULTS

‘file” defaults to draft
‘—noverbose’
‘—format’
‘—nomsgid’

CONTEXT

Send has no effect on the current message or folder.

4th Berkeley Distribution 3 August 1983 1

SHOW (1) UNIX Programmer’s Manual SHOW (1)

NAME .
show — show (list) messages

SYNOPSIS
show [+folder][msgs][—pr][—nopr][—draft][—help][{ or pr switches]

DESCRIPTION
Show lists each of the specified messages to the standard output (typically, the terminal).
The messages are listed exactly as they are, with no reformatting. A program called [is
invoked to do the listing, and any switches not recognized by show are passed along to L.

If no “msgs™ are specified, the current message is used. If more than one message is
specified, [will prompt for a <return> prior to listing each message.

1 will list each message, a page at a time. When the end of page is reached, ! will ring the
bell and wait for a <RETURN> or <CTRL-D>. If a <return> is entered, [will clear the
screen before listing the next page, whereas <CTRL-D> will not. The switches to [are
‘—p#’ to indicate the page length in lines, and ‘—w#’ to indicate the width of the page in
characters.

If the standard output is not a terminal, no queries are made, and each file is listed with a
one-line header and two lines of separation.

If “—pr’ is specified, then pr(I) will be invoked rather than [, and the switches (other than
‘—draft’) will be passed along. “Show —draft” will list the file <mh-dir>/draft if it

exists.
FILES
$HOME/mh_profile The user profile
/bin/1 Screen-at-a-time list program
/bin/pr pr(1)
PROFILE COMPONENTS
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder
DEFAULTS
‘+folder’ defaults to current
‘msgs’ defaults to cur
‘—nopr’
CONTEXT

If a folder is given, it will become the current message. The last message listed will become
the current message.

4th Berkeley Distribution 3 August 1983 1

MH

A Mail Handling System
for UNIX

October, 1979

Bruce Borden

The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

(213) 399-0568 x 7463

PREFACE

This report describes a system for dealing with messages transmitted on a
computer. Such messages might originate with other users of the same computer
or might come from an outside source through a network to which the user’s
computer is connected. Such computer-based message systems are becoming
increasingly widely used, both within and outside the Department of Defense.

The message handling system MH was developed for two reasons. One was
to investigate some research ideas concerning how a message system might take
advantage of the architecture of the UNIX time-sharing operating system for
Digital Equipment Corporation PDP-11 and VAX computers, and the special
features of UNIX's command-level interface with the user (the “shell”). The
other reason was to provide a better and more adaptable base than that of con-
ventional designs on which to build a command and control message system. The
effort has succeeded in both regards, although this report mainly describes the
message system itself and how it fits in with UNIX. The main research results
are being described and analyzed in a forthcoming Rand report. The system is
currently being used as part of a tactical command and control “laboratory,”
which is also being described in a separate report.

The present report should be of interest to three groups of readers. First, it
is a complete reference manual for the users of MH (although users outside of
Rand must take into account differences from the local Rand operating system).
Second, it should be of interest to those who have a general knowledge of
computer-based message systems, both in civilian and military applications.
Finally, it should be of interest to those who build large subsystems that inter-
face with users, since it illustrates a new approach to such interfaces.

The MH system was developed by the first author, using an approach sug-
gested by the other two authors. Valuable assistance was provided by Phyllis
Kantar in the later stages of the system's implementation. Several colleagues
contributed to the ideas included in this system, particularly Robert Anderson
and David Crocker. In addition, valuable experience in message systems, and a
valuable source of ideas, was available to us in the form of a previous message
system for UNIX called MS, designed at Rand by David Crocker.

This report was prepared as part of the Rand project entitled “Data Auto-
mation Research’, sponsored by Project AIR FORCE.

CONTENTS

PREFACE

SUMMARY

...................................

Section

1. INTRODUCTION

2. OVERVIEW

..............

3. TUTORIAL

..........

.....

...............

4. DETAILED DESCRIPTIONcooeiieiniiiiniiinannninessssseesssssssesesnssnesas

THE USER PROFILE ...

MESSAGE NAMING

........................

OTHER MH CONVENTIONS .

...........

MH COMMANDS

600). |

DIST

.........

FILE

FOLDER

FORW

INC et

.............

......

NEXT

PICK

PREV

PROMPTER

REPL

RMF

RMM

SCAN

SEND

.....

..................

SHOW

Appendix
A. Command Summary

...........

...........

B. Message FOrmat ...t tecteestee e snresnne et s s e ne s nneens

C. Message Name BNF

........

D. Example of Shell Commands

10
11

12
13
15
17
19
21
22
24
25
28
29
30
32
33
34
35
36

37
38
39
40

REFERENCES ..

......

41

SUMMARY

Electronic communication of text messages is becoming commonplace.
Computer-based message systems—software packages that provide tools for deal-
ing with messages—are used in many contexts. In particular, message systems
are becoming increasingly important in command and control and intelligence
applications.

This report describes a message handling system called MH. This system
provides the user with tools to compose, send, receive, store, retrieve, forward,
and reply to messages. MH has been built on the UNIX time-sharing system, a
popular operating system developed for the DEC PDP-11 and VAX classes of
computers.

A complete description of MH is given for users of the system. For those
who do not intend to use the system, this description gives a general idea of what
a message system is like. The system involves some new ideas about how large
subsystems can be constructed. These design concepts and a comparison of MH
with other message systems will be published in a forthcoming Rand report.

The interesting and unusual features of MH include the following: The user
command interface to MH is the UNIX “shell” (the standard UNIX command
interpreter). Each separable component of message handling, such as message
composition or message display, is a separate command. Each program is driven
from and updates a private user environment, which is stored as a file between
program invocations. This private environment also contains information to
“custom tailor”™ MH to the individual's tastes. MH stores each message as a
separate file under UNIX, and it utilizes the tree-structured UNIX file system to
organize groups of files within separate directories or “folders.” All of the UNIX
facilities for dealing with files and directories, such as renaming, copying, delet-
ing, cataloging, off-line printing, etc., are applicable to messages and directories of
messages (folders). Thus, important capabilities needed in a message system are
available in MH without the need (often seen in other message systems) for code
that duplicates the facilities of the supporting operating system. It also allows
users familiar with the shell to use MH with minimal effort.

-v—

1. INTRODUCTION

Although people can travel cross-country in hours and can reach others by
telephone in seconds, communications still depend heavily upon paper, most of
which is distributed through the mails.

There are several major reasons for this continued dependence on written
documents. First, a written document may be proofread and corrected prior to
its distribution, giving the author complete control over his words. Thus, a writ-
ten document is better than a telephone conversation in this respect. Second. a
carefully written document is far less likely to be misinterpreted or poorly
translated than a phone conversation. Third, a signature offers reasonable
verification of authorship, which cannot be provided with media such as
telegrams.

However, the need for fast, accurate, and reproducible document distribu-
tion is obvious. One solution in widespread use is the telefax. Another that is
rapidly gaining popularity is electronic mail. Electronic mail is similar to telefax
in that the data to be sent are digitized, transmitted via phone lines, and turned
back into a document at the receiver. The advantage of electronic mail is in its
compression factor. Whereas a telefax must scan a page in very fine lines and
send all of the black and white information, electronic mail assigns characters
fixed codes which can be transmitted as a few bits of information. Telefax
presently has the advantage of being able to transmit an arbitrary page, including
pictures, but electronic mail is beginning to deal with this problem. Electronic
mail also integrates well with current directions in office automation, allowing
documents prepared with sophisticated equipment at one site to be quickly
transferred and printed at another site.

Currently, most electronic mail is intraorganizational, with mail transfer
remaining within one computer. As computer networking becomes more com-
mon, however, it is becoming more feasible to communicate with anyone whose
computer can be linked to your own via a network.

The pioneering efforts on general-purpose electronic mail were by organiza-
tions using the Defense Department’s ARPANET.[1] The capability to send mes-
sages between computers existed before the ARPANET was developed, but it was
used only in limited ways. With the advent of the ARPANET, tools began to be
developed which made it convenient for individuals or organizations to distribute
messages over broad geographic areas, using diverse computer facilities. The
interest and activity in message systems has now reached such proportions that
steps have been taken within the DoD to coordinate and unify the development
of military message systems. The use of electronic mail is expected to increase
dramatically in the next few years. The utility of such systems in the command
and control and intelligence environments is clear, and applications in these areas
will probably lead the way. As the costs for sending and handling electronic
messags continue their rapid decrease, such uses can be expected to spread rapidly
into other areas and, of course, will not be limited to the DoD.

A message system provides tools that help users (individuals or organiza-
tions) deal with messages in various ways. Messages must be composed, sent,
received, stored, retrieved, forwarded, and replied to. Today’s best interactive

-2-

3

computer systems provide a variety of word-processing and information han-
dling capabilities. The message handling facilities should be well integrated with
the rest of the system, so as to be a graceful extension of overall system capabil-
ity.

The message system described in this report, MH, provides most of the
features that can be found in other message systems and also incorporates some
new ones. It has been built on the UNIX time-sharing system.[2] a popular
operating system for the DEC PDP-11 and VAX classes of computers. A
“secure” operating system similar to UNIX is currently being developed.[3] and
that system will also run MH.

This report provides a complete description of MH and thus may serve as a
user’s manual, although parts of the report will be of interest to non-users as
well. Sections 2 and 3, the Overview and Tutorial, present the key ideas of MH
and will give those not familiar with message systems an idea of what such sys-
tems are like.

MH consists of a set of commands which use some special files and conven-
tions. Section 4 covers the information a user needs to know in addition to the
commands. The final section, Sec. 5, describes each of the MH commands in
detail. A summary of the commands is given in Appendix A, and Appendixes B
and C describe the ARPANET conventions for messages (we expect that many
users of MH will be using the ARPANET) and the formal syntax of such mes-
sages, respectively. Finally, Appendix D provides an illustration of how MH
commands may be used in conjunction with other UNIX facilities.

A novel approach has been taken in the design of MH. The design concept
will be reported in detail in a forthcoming Rand report, but it can be described
briefly as follows. Instead of creating a large subsystem that appears as a single
command to the user, (such as MS[4]) MH is a collection of separate commands
which are run as separate programs. The file and directory system of UNIX are
used directly. Messages are stored as individual files (datasets), and collections
of them are grouped into directories. In contrast, most other message systems
store messages in a complicated data structure within a monolithic file. With the
MH approach, UNIX commands can be interleaved with commands invoking the
functions of the message handler. Conversely, existing UNIX commands can be
used in connection with messages. For example, all the usual UNIX editing,
text-formatting, and printing facilities can be applied directly to individual mes-
sages. MH, therefore, consists of a relatively small amount of new code; it makes
extensive use of other UNIX software to provide the capabilities found in other
message systems.

2. OVERVIEW

There are three main aspects of MH: the way messages are stored (the
message database), the user’s profile (which directs how certain actions of the
message handler take place), and the commands for dealing with messages.

Under MH, each message is stored as a separate file. A user can take any
action with a message that he could with an ordinary file in UNIX. A UNIX
directory in which messages are stored is called a folder. Each folder contains
some standard entries to support the message-handling functions. The messages
in a folder have numerical names. These folders (directories) are entries in a par-
ticular directory path, described in the user profile, through which MH can find
message folders. Using the UNIX “link™ facility, it is possible for one copy of a
message to be “filed” in more than one folder, providing a message index facility.
Also, using the UNIX tree-structured file system, it is possible to have a folder
within a folder. This two-level organization provides a “selection-list” facility.
with the full power of the MH commands available on selected sublists of mes-
sages.

Each user of MH has a user profile, a file in his SHOME (initial login) direc-
tory called “. mh_profile”. This profile contains several pieces of information
used by the MH commands: a path name to the directory that contains the mes-
sage folders, information concerning which folder the user last referenced (the
“current” folder), and parameters that tailor MH commands to the individual
user’s requirements. It also contains most of the necessary state information con-
cerning how the user is dealing with his messages, enabling MH to be imple-
mented as a set of individual UNIX commands, in contrast to the usual approach
of a monolithic subsystem.

In MH, incoming mail is appended to the end of a file called . mail in a
user’'s $HOME directory. The user adds the new messages to his collection of MH
messages by invoking the command inc. Inc (incorporate) adds the new messages
to a folder called “inbox™, assigning them names which are consecutive integers
starting with the next highest integer available in inbox. Inc also produces a scan
summary of the messages thus incorporated.

There are four commands for examining the messages in a folder: show,
prev, next, and scan. Show displays a message in a folder, prev displays the mes-
sage preceding the current message, and next displays the message following the
current message. Scan summarizes the messages in a folder, producing one line
per message, showing who the message is from, the date, the subject, etc.

The user may move a message from one folder to another with the com-
mand file. Messages may be removed from a folder by means of the command
rmm. In addition, a user may query what the current folder is and may specify
that a new folder become the current folder, through the command folder.

A set of messages based on content may be selected by use of the command
pick. This command searches through messages in a folder and selects those that
match a given criterion. A subfolder is created within the original folder, con-
taining links to all the messages that satisfy the selection criteria.

A message folder (or subfolder) may be removed by means of the command
rmf.

-4

-5-

There are five commands enabling the user to create new messages and send
them: comp, dist, forw, repl, and send. Comp provides the facility for the user to
compose a new message; dist redistributes mail to additional addressees: forw
enables the user to forward messages; and repl facilitates the generation of a
reply to an incoming message. If a message is not sent directly by one of these
commands, it may be sent at a later time using the command send.

All of the elements summarized above are described in more detail in the
following sections. Many of the normal facilities of UNIX provide additional
capabilities for dealing with messages in various ways. For example, it is possible
to print messages on the line-printer without requiring any additional code
within MH. Using standard UNIX facilities, any terminal output can be
redirected to a file for repeated or future viewing. In general, the flexibility and
capabilities of the UNIX interface with the user are preserved as a result of the
integration of MH into the UNIX structure.

3. TUTORIAL

This tutorial provides a brief introduction to the MH commands. It should
be sufficient to allow the user to read his mail, do some simple manipulations of
it, and create and send messages.

A message has two major pieces: the header and the body. The body con-
sists of the text of the message (whatever you care to type in). It follows the
header and is separated from it by an empty line. (When you compose a message,
the form that appears on your terminal shows a line of dashes after the header.
This is for convenience and is replaced by an empty line when the message is
sent.) The header is composed of several components, including the subject of the
message and the person to whom it is addressed. Each component starts with a
name and a colon; components must not start with a blank. The text of the com-
ponent may take more than one line, but each continuation line must start with a
blank. Messages typically have “to:”, “cc:”, and “subject:” components. When
composing a message, you should include the “to:"” and “subject:” components;
the “cc:” (for people you want to send copies to) is not necessary.

The basic MH commands are inc, scan, show, next, prev, rmm, comp, and
repl. These are described below.

inc

When you get the message “You have mail”, type the command inc. You
will get a ““scan listing™” such as:

7+ 7/13 Cas revival of measurement work
8 10/ 9 Norm NBS people and publications
9 11/26 To:norm question << Are there any functions

This shows the messages you received since the last time you executed this
command (inc adds these new messages to your inbox folder). You can see this
list again, plus a list of any other messages you have, by using the scan com-
mand.

scan

The scan listing shows the message number, followed by the date and the
sender. (If you are the sender, the addressee in the “to:” component is displayed.
You may send yourself a message by including your name among the “to:” or
“cc:” addressees.) It also shows the message's subject; if the subject is short, the
first part of the body of the message is included after the characters <<.

show

This command shows the current message, that is, the first one of the new
messages after an inc. If the message is not specified by name (number), it is gen-
erally the last message referred to by an MH command. For example,

show 5 will show message 5.
You can use the show command to copy a message or print a message.

-6-

-7-

show > x will copy the message to file x.
show | print will print the message, using the print command.

next will show the message that follows the current message.
prev will show the message previous to the current message.
rmm will remove the current message.

rmm 3 will remove message 3.

comp

The comp command puts you in the editor to write or edit a message. Fill in
or delete the “to:”, “cc:”, and “subject:” fields, as appropriate, and type the body
of the message. Then exit normally from the editor. You will be asked “What
now?”’. Type a carriage return to see the options. Typing send will cause the
message to be sent; typing quit will cause an exit from comp, with the message
draft saved.

If you quit without sending the message, it will be saved in a file called
/usr/ <name>/Mail/draft (where /usr/<name> is your $HOME directory).
You can edit this file and send the message later, using the send command.

comp —editor prompter

This command uses a different editor and is useful for preparing “quick and
dirty” messages. It prompts you for each component of the header. Type the
information for that component, or type a carriage return to omit the component.
After that, type the body of the message. Backspacing is the only form of editing
allowed with this editor. When the body is complete, type a carriage return fol-
lowed by <CTRL-D> (<OPEN> on Ann Arbor terminals). This completes the
initial preparation of the message:; from then on, use the same procedures as with
comp (above).

repl
repl n

This command makes up an initial message form with a header that is
appropriate for replying to an existing message. The message being answered is
the current message if no message number is mentioned, or n if a number is
?peciﬁe)d. After the header is completed, you can finish the message as in comp

above).

This is enough information to get you going using MH. There are more
commands, and the commands described here have more features. Subsequent
sections explain MH in complete detail. The system is quite powerful if you
want to use its sophisticated features, but the foregoing commands suffice for
sending and receiving messages.

There are numerous additional capabilities you may wish to explore. For
example, the pick command will select a subset of messages based on specified cri-
teria such as sender or subject. Groups of messages may be designated, as
described in Sec. V, under “Message Naming™. The file “. mh_profile” can be used
to tailor your use of the message system to your needs and preferences, as
described in Sec. V, under “The User Profile”. In general, you may learn addi-
tional features of the system selectively, according to your requirements,’ by
studying the relevant sections of this manual. There is no need to learn all the
details of the system at once.

4. DETAILED DESCRIPTION

This section describes the MH system in detail, including the components of
the user profile, the conventions for message naming, and some of the other MH
conventions. Readers who are generally familiar with computer systems will be
able to follow the principal ideas, although some details may be meaningful only
to those familiar with UNIX.

THE USER PROFILE

The first time an MH command is issued by a new user, the system prompts
for a “path™ and creates an MH “profile”.

Each MH user has a profile which contains current state information for the
MH package and, optionally, tailoring information for each individual program.
When a folder becomes the current folder, it is recorded in the user’s profile.
Other profile entries control the MH path (where folders and special files are
kept), folder and message protections, editor selection, and default arguments for
each MH program.

The MH profile is stored in the file “. mh_profile” in the user's $HOME
directory. It has the format of a message without any body. That is, each profile
entry is on one line, with a keyword followed by a colon (:) followed by text
particular to the keyword.
ow This file must not have blank lines.

The keywords may have any combination of upper and lower case. (See Appen-
dix B for a description of message formats.)

For the average MH user, the only profile entry of importance is “Path™.
Path specifies a directory in which MH folders and certain files such as “draft”
are found. The argument to this keyword must be a legal UNIX path that names
an existing directory. If this path is unrooted (i.e., does not begin with a /), it
will be presumed to start from the user’s $HOME directory. All folder and mes-
sage references within MH will relate to this path unless full path names are
used.

Message protection defaults to 664, and folder protection to 751. These
may be changed by profile entries “Msg-Protect”™ and “Folder-Protect”, respec-
tively. The argument to these keywords is an octal number which is used as the

UNIX file mode.}

When an MH program starts running, it looks through the user’s profile for
an entry with a keyword matching the program’s name. For example, when
comp is run, it looks for a “‘comp’ profile entry. If one is found, the text of the
profile entry is used as the default switch setting until all defaults are overridden
by explicit switches passed to the program as arguments. Thus the profile entry
“comp: —form standard.list” would direct comp to use the file “standard.list™
as the message skeleton. If an explicit form switch is given to the comp com-
mand, it will override the switch obtained from the profile.

1See chmod(1) in the UNIX Programmer’s Manual[5]

-8-

9

In UNIX, a program may exist under several names, either by linking or
aliasing. The actual invocation name is used by an MH program when scanning
for its profile defaults. Thus, each MH program may have several names by
which it can be invoked. and each name may have a different set of default
switches. For example, if comp is invoked by the name icomp, the profile entry
“icomp” will control the default switches for this invocation of the comp pro-
gram. This provides a powerful definitional facility for commonly used switch
settings.

The default editor for editing within comp, repl, forw, and dist, is
“/bin/ned”.2 A different editor may be used by specifying the profile entry “Edi-
tor: . The argument to “Editor” is the name of an executable program or shell
command file which can be found via the user's $PATH defined search path,
excluding the current directory. The “Editor:” profile specification may in turn
be overridden by a “—editor <editor>" profile switch associated with comp,
repl, forw, or dist. Finally, an explicit editor switch specified with any of these
four commands will have ultimate precedence.

During message composition, more than one editor may be used. For exam-
ple, one editor (such as prompter) may be used initially, and a second editor may
be invoked later to revise the message being composed (see the discussion of comp
in Section 5 for details). A profile entry “<lasteditor>-—next: <editor>"
specifies the name of the editor to be used after a particular editor. Thus
“comp: —e prompter” causes the initial text to be collected by prompter, and the
profile entry “prompter—next: ed” names ed as the editor to be invoked for the
next round of editing.

Some of the MH commands, such as show, can be used on message folders
owned by others, if those folders are readable. However, you cannot write in
someone else’s folder. All the MH command actions not requiring write permis-
sion may be used with a “read-only” folder. In a writable folder, a file named
“cur” is used to contain its current message name. For read-only folders, the
current message name is stored in the user’s profile.

Table 1 lists examples of the currently defined profile entries, typical argu-
ments, and the programs that reference the entries.

Table 1

PrOFILE COMPONENTS

MH Programs that
Keyword and Argument Use Component
Path: Mail All
Current-Folder: inbox Most
Editor: /bin/ed comp, dist, forw, repl
Msg—Protect: 644 inc
Folder—Protect: 711 file, inc, pick

<program>: default switches All

2See Ref. 6 for a description of the NED text editor.

-10-

cur—<read-onlyfolder>: 172 Most
prompter—next: ed comp, dist, forw, repl

Path should be present. Folder is maintained automatically by many MH
commands (see the “Context™ sections of the individual commands in Sec. V).
All other entries are optional, defaulting to the values described above.

MESSAGE NAMING

Messages may be referred to explicitly or implicitly when using MH com-
mands. A formal syntax of message names is given in Appendix C, but the fol-
lowing description should be sufficient for most MH users. Some details of mes-
sage naming that apply only to certain commands are included in the description
of those commands.

Most of the MH commands accept arguments specif ying one or more fold-
ers, and one or more messages to operate on. The use of the word “msg” as an
argument to a command means that exactly one message name may be specified.
A message name may be a number, such as 1, 33, or 234, or it may be one of the
“reserved” message names: first, last, prev, next, and cur. (As a shorthand, a
period (.) is equivalent to cur.) The meanings of these names are straightfor-
ward: “first” is the first message in the folder; “last™ is the last message in the
folder; “prev” is the message numerically previous to the current message;
“next” is the message numerically following the current message; “cur” (or . ™)
is the current message in the folder.

The default in commands that take a “msg’" argument is always “cur’".

The word “msgs™ indicates that several messages may be specified. Such a
specification consists of several message designations separated by spaces. A mes-
sage designation is either a message name or a message range. A message range is
a specification of the form namel—name2 or namel:n, where namel and name2
are message names and n is an integer. The first form designates all the messages
from namel to name2 inclusive; this must be a non-empty range. The second
form specifies up to n messages, starting with namel if namel is a number, or
first, cur, or next, and ending with namel if namel is last or prev. This interpre-
tation of n is overridden if n is preceded by a plus sign or a minus sign; +n
always means up to n messages starting with namel, and —n always means up to
n messages ending with namel. Repeated specifications of the same message have
the same effect as a single specification of the message. Examples of specifications
are:

157—1122
first 6 8 next
first—10
last:5

The message name “all” is a shorthand for “first—last”, indicating all of the
messages in the folder.

The limit on the number of messages in an expanded message list is gen-
erally 999—the maximum number of messages in a folder. However, the show

-11-

command and the commands ‘pick —scan’ and ‘pick —show’ are constrained to
have argument lists that are no more than 512 characters long. (Under Version 7
UNIX this limit is 4096.)

In commands that accept “msgs’™ arguments, the default is either cur or all,
depending on which makes more sense.

In all of the MH commands, a plus sign preceding an argument indicates a
folder name. Thus, “+inbox™ is the name of the user’s standard inbox. If an
explicit folder argument is given to an MH command, it will become the current
folder (that is, the “Current-Folder:” entry in “. mh_profile” will be changed to
this folder). In the case of the file and pick commands, which can have multiple
output folders, a new source folder (other than the default current folder) is
specified by “—src +folder™.

OTHER MH CONVENTIONS

One very powerful feature of MH is that the MH commands may be issued
from any current directory, and the proper path to the appropriate folder(s) will
be taken from the user’s profile. If the MH path is not appropriate for a specific
folder or file, the automatic prepending of the MH path can be avoided by begin-
ning a folder or file name with /. Thus any specific full path may be specified.

Arguments to the various programs may be given in any order, with the
exception of a few switches whose arguments must follow immediately, such as
“—src +folder” for pick and file.

Whenever an MH command prompts the user, the valid options will be
listed in response to a <RETURN>. (The first of the listed options is the default
if end-of-file is encountered, such as from a command file.) A valid response is
any unique abbreviation of one of the listed options.

Standard UNIX documentation conventions are used in this report to
describe MH command syntax. Arguments enclosed in brackets ([]) are optional;
exactly one of the arguments enclosed within braces ({ }) must be specified, and
all other arguments are required. The use of ellipsis dots (...) indicates zero or
more repetitions of the previous item. For example, “+folder ...” would indicate
that one or more “+folder” arguments is required and “[+folder ...]"” indicates
that O or more “+folder” arguments may be given.

MH departs from UNIX standards by using switches that consist of more
than one character, e.g. “—header”. To minimize typing, only a unique abbrevia-
tion of a switch need be typed; thus, for “—header”, “—hea™ is probably
sufficient, depending on the other switches the command accepts. Each MH pro-
gram accepts the switch “—help” (which must be spelled out fully) and produces
a syntax description and a list of switches. In the list of switches, parentheses
indicate required characters. For example, all “—help” switches will appear as

“—(help)”, indicating that no abbreviation is accepted.

Many MH switches have both on and off forms, such as “—format™ and
“—noformat”. In many of the descriptions in Sec. V, only one form is defined;
the other form, often used to nullify profile switch settings, is assumed to be the
opposite.

MH COMMANDS

-12-

The MH package comprises 16 programs:

comp
dist

file
folder
forw

inc

next

pick

prev
prompter
repl

rmf

rmm
scan

send
show

Compose a message

Redistribute a message

Move messages between folders

Select/list status of folders

Forward a message

Incorporate new mail

Show the next message

Select a set of messages by context

Show the previous message

Prompting editor front end for composing messages
Reply to a message

Remove a folder

Remove messages

Produce a scan listing of selected messages
Send a previously composed message
Show messages

These programs are described below. The form of the déscriptions conforms
to the standard form for the description of UNIX commands.

COMP(1) -13- COMP(1)

NAME

comp — compose a message

SYNOPSIS

comp [—editor editor] [—form formfile] [file] [—use] [—nouse] [—help]

DESCRIPTION

Files

Comp is used to create a new message to be mailed. If file is not specified, the file named
“draft” in the user’'s MH directory will be used. Comp copies a message form to the file
being composed and then invokes an editor on the file. The default editor is /bin/ned,
which may be overridden with the ‘—editor’ switch or with a profile entry “Editor:”. (See
Ref. 5 for a description of the NED text editing system.) The default message form contains
the following elements:

To:
cc:
Subject:

If the file named “components™ exists in the user’'s MH directory, it will be used instead of
this form. If ‘—form formfile’ is specified, the specified formfile (from the MH directory)
will be used as the skeleton. The line of dashes or a blank line must be left between the
header and the body of the message for the message to be identified properly when it is sent
(see send;). The switch ‘—use’ directs comp to continue editing an already started message.
That is, if a comp (or dist, repl, or forw) is terminated without sending the message, the
message can be edited again via “comp —use”".

If the specified file (or draft) already exists, comp will ask if you want to delete it before
continuing. A reply of No will abort the comp, yes will replace the existing draft with a
blank skeleton, list will display the draft, and use will use it for further composition.

Upon exiting from the editor, comp will ask ““What now?”". The valid responses are list, to
list the draft on the terminal; quit, to terminate the session and preserve the draft; quit
delete, to terminate, then delete the draft; send, to send the message; send verbose, to
cause the delivery process to be monitored; edit <editor>, to invoke <editor> for
further editing: and edit, to re-edit using the same editor that was used on the preceding
round unless a profile entry “ <lasteditor >—next: <editor>"" names an alternative editor.

/etc/mh/components The message skeleton

or <mh-dir>/components Rather than the standard skeleton
$HOME/. mh_profile The user profile

<mh-dir>/draft The default message file
/usr/bin/send To send the composed message

7th Edition UNIX/32V(Rand)

COMP(1) -14- COMP(1)

Profile Components
Path: To determine the user's MH directory
Editor: To override the use of /bin/ned as the default editor
<lasteditor > —next: To name an editor to be used after exit from <lasteditor>
Defaults

‘file’ defaults to draft
‘—editor’ defaults to /bin/ned
‘—nouse’

Context
Comp does not affect either the current folder or the current message.

7th Edition UNIX/32V(Rand)

DIST(1) -15- DIST(1)

NAME
dist — redistribute a message to additional addresses

SYNOPSIS
dist [+folder] [msg] [—form formfile] [—editor editor] [—annotate] [—noannotate]

[—inplace] [—noinplace] [—help]

DESCRIPTION
Dist is similar to forw. It prepares the specified message for redistribution to addresses that
(presumably) are not on the original address list. The file “distcomps™ in the user’'s MH
directory, or a standard form, or the file specified by ‘—form formfile’ will be used as the
blank components file to be prepended to the message being distributed. The standard form
has the components “Distribute-to:” and “Distribute-cc:””. When the message is sent,
“Distribution-Date: date”, “Distribution-From: name”, and “Distribution-Id: id” (if
‘—msgid’ is specified to send:;) will be prepended to the outgoing message. Only those
addresses in “Distribute-To"”, “Distribute-cc”, and “Distribute-Bcc™™ will be sent. Also, a
“Distribute-Fcc: folder™ will be honored (see send;).
Send recognizes a message as a redistribution message by the existence of the field
“Distribute-To:", so don’t try to redistribute a message with only a “Distribute-cc:™.
If the ‘—annotate’ switch is given, each message being distributed will be annotated with
the lines:

Distributed: <<date>>
Distributed: Distribute-to: names

where each “to” list contains as many lines as required. This annotation will be done only
if the message is sent directly from dist. If the message is not sent immediately from dist
(i.e., if it is sent later via send;), “comp —use” may be used to re-edit and send the con-
structed message, but the annotations won't take place. The ‘—inplace’ switch causes anno-
tation to be done in place in order to preserve links to the annotated message.
See comp for a description of the ‘—editor’ switch and for options upon exiting from the
editor.

Files

‘ /etc/mh/components The message skeleton

or <mh-dir>/components Rather than the standard skeleton
$HOME/. mh_profile The user profile
<mh-dir>/draft The default message file
/usr/bin/send To send the composed message

Profile Components
Path: To determine the user’s MH directory
Editor: To override the use of /bin/ned as the default editor
<lasteditor >—next: To name an editor to be used after exit from <lasteditor>

7th Edition UNIX/32V(Rand)

DIST(1) -16- DIST(1)

Defaults
‘+folder’ defaults to the current folder
‘msg’ defaults to cur
‘—editor’ defaults to /bin/ned
‘—noannotate’
‘—noinplace’

Context
If a +folder is specified, it will become the current folder, and the current message will be
set to the message being redistributed.

7th Edition UNIX/32V(Rand)

FILE(1) -17- ' FILE(1)

NAME
file — file message(s) in (an)other folder(s)

SYNOPSIS
file [—src +folder] [msgs] [—link] [—preserve] +folder ... [—nolink] [—nopreserve]

[—file file] [—nofile] [—help]

DESCRIPTION
File moves (mv(D)) or links (In(I)) messages from a source folder into one or more destina-
tion folders. If you think of a message as a sheet of paper, this operation is not unlike filing
the sheet of paper (or copies) in file cabinet folders. When a message is filed, it is linked
into the destination folder(s) if possible, and is copied otherwise. As long as the destination
folders are all on the same file system, multiple filing causes little storage overhead. This
facility provides a good way to cross-file or multiply-index messages. For example, if a
message is received from Jones about the ARPA Map Project, the command

file cur +jones +Map

would allow the message to be found in either of the two folders “jones’ or ‘Map'.
The option ‘—file file" directs file to use the specified file as the source message to be filed,
rather than a message from a folder.
If a destination folder doesn’t exist, file will ask if you want to create one. A negative
response will abort the file operation.
‘—link’ preserves the source folder copy of the message (i.e., it does a In(I) rather than a
mv(I)), whereas, ‘—nolink” deletes the “filed” messages from the source folder. Normally,
when a message is filed, it is assigned the next highest number available in each of the desti-
nation folders. Use of the ‘—preserve’ switch will override this message “renaming”, but
name conflicts may occur, so use this switch cautiously. (See pick for more details on mes-
sage numbering.)
If “—link’ is not specified (or ‘—nolink’ is specified), the filed messages will be removed
(unlink(II)) from the source folder.

Files
$HOME/. mh_profile The user profile

Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder
Folder—Protect: To set mode when creating a new folder

Defaul ts

‘—src +folder’ defaults to the current folder
‘msgs’ defaults to cur

‘—nolink’

‘—nopreserve’

‘—nofile’

7th Edition UNIX/32V(Rand)

FILE(1) -18- FILE(1)

Context
If “—src +folder’ is given, it will become the current folder for future MH commands. If
neither ‘—link’ nor “all’ are specified, the current message in the source folder will be set to
the last message specified; otherwise, the current message won't be changed.

7th Edition UNIX/32V(Rand)

FOLDER(1) -19- FOLDER(1)

NAME
folder — set/list current folder/message

SYNOPSIS

folder [+folder] [msg] [—all] [—fast] [—nofast] [—up] [—down] [—header] [—noheader]
[—total] [—nototal] [—pack] [—nopack] [—help]

folders <equivalent to ‘folder —all'>

DESCRIPTION

Since the MH environment is the shell, it is easy to lose track of the current folder from
day to day. Folder will list the current folder, the number of messages in it, the range of
the messages (low-high), and the current message within the folder, and will flag a selection
list or extra files if they exist. An example of the output is:

inbox+ has 16 messages (3— 22); cur= 5.

If a “+folder’ and/or ‘msg’ are specified, they will become the current folder and/or mes-
sage. An ‘—all’ switch will produce a line for each folder in the user’s MH directory,
sorted alphabetically. These folders are preceded by the read-only folders, which occur as .
mh_profile “cur—" entries. For example,

Folder # of messages(range); cur msg (other files)
/fsd/rs/m/tacc has 35 messages(1— 35); cur=23.
/rnd/phyl/Mail/EP has 82 messages(1—108); cur= 82.
ff has 4 messages(1— 4);cur= 1.
inbox+ has 16 messages(3— 22); cur= 5.
mh has 76 messages(1— 76); cur= 70.
notes has 2 messages(1— 2);cur= 1.

ucom has 124 messages(1—124); cur= 6; (select).

TOTAL= 339 messages in 7 Folders.

The “+ after inbox indicates that it is the current folder. The “(select)” indicates that the
folder ucom has a selection list produced by pick. If “others” had appeared in parentheses
at the right of a line, it would indicate that there are files in the folder directory that don’t
belong under the MH file naming scheme.

The header is output if either an ‘—all’ or a “—header’ switch is specified; it is suppressed by
‘—noheader’. Also, if folder is invoked by a name ending with “s” (e.g., folders), "“—all’ is
assumed. A ‘—total’ switch will produce only the summary line.

If ‘—fast’ is given, only the folder name (or names in the case of “—all’) will be listed.
(This is faster because the folders need not be read.)

The switches ‘—up’ and “—down’ change the folder to be the one above or below the current
folder. That is, “folder —down" will set the folder to “* <current—folder>/select”, and if
the current folder is a selection-list folder, “folder —up™ will set the current folder to the
parent of the selection-list. (See pick for details on selection-lists.)

The ‘—pack’ switch will compress the message names in a folder, removing holes in message

7th Edition UNIX/32V(Rand)

FOLDER(1) -20- FOLDER(1)

numbering.

Files
$HOME/. mh_profile The user profile
/bin/l1s To fast-list the folders

Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder

Defaults
‘+folder’ defaults to the current folder
‘msg’ defaults to none
‘—nofast’
‘—noheader’
‘—nototal’
‘—nopack’

Context
If “+folder’ and/or ‘msg’ are given, they will become the current folder and/or message.

7th Edition UNIX/32V(Rand)

FORW(1) -21- FORW(1)

NAME
forw — forward messages
SYNOPSIS
forw [+folder] [msgs] [—editor editor] [—form formfile] [—annotate] [—noannotate]
[—inplace] [—noinplace] [—help]
DESCRIPTION
Forw may be used to prepare a message containing other messages. It constructs the new
message from the components file or ‘—form formfile' (see comp), with a body composed of
the message(s) to be forwarded. An editor is invoked as in comp, and after editing is com~
plete, the user is prompted before the message is sent.
If the ‘—annotate’ switch is given, each message being forwarded will be annotated with the
lines
Forwarded: <<date>>
Forwarded: To: names
Forwarded: cc: names
where each “To:” and “cc:” list contains as many lines as required. This annotation will be
done only if the message is sent directly from forw. If the message is not sent immediately
from forw, “comp —use’” may be used in a later session to re-edit and send the constructed
message, but the annotations won't take place. The ‘—inplace’ switch permits annotating a
message in place in order to preserve its links.
See comp for a description of the ‘—editor’ switch.
Files
/etc/mh/components The message skeleton
or <mh-dir>/components Rather than the standard skeleton
$HOME/. mh_profile The user profile
<mh-dir>/draft The default message file
/usr/bin/send To send the composed message
Profile Components
Path: To determine the user’s MH directory
Editor: To override the use of /bin/ned as the default editor
Current-Folder: To find the default current folder
<lasteditor >—next: To name an editor to be used after exit from <lasteditor>
Defaul ts
‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘—editor’ defaults to /bin/ned
‘—noannotate’
‘—noinplace’
Context

If a +folder is specified, it will become the current folder, and the current message will be
set to the first message being forwarded.

7th Edition UNIX/32V(Rand)

INC(1) -22- INC(1)
NAME
inc — incorporate new mail
SYNOPSIS
inc [+folder] [—audit audit-file] [—help]
DESCRIPTION
Inc incorporates mail from the user’s incoming mail drop (. mail) into an MH folder. If
‘+folder’ isn't specified, the folder named “inbox™ in the user’'s MH directory will be used.
The new messages being incorporated are assigned numbers starting with the next highest
number in the folder. If the specified (or default) folder doesn’t exist, the user will be
queried prior to its creation. As the messages are processed, a scan listing of the new mail
is produced.
If the user's profile contains a “Msg—Protect: nnn” entry, it will be used as the protection
on the newly created messages, otherwise the MH default of 664 will be used. During all
operations on messages, this initially assigned protection will be preserved for each message,
so chmod(I) may be used to set a protection on an individual message, and its protection
will be preserved thereafter.
If the switch “—audit audit-file’ is specified (usually as a default switch in the profile), then
inc will append a header line and a line per message to the end of the specified audit-file
with the format:
Xinc>> date
<scan line for first message>
<scan line for second message>
<etc.>
This is useful for keeping track of volume and source of incoming mail. Eventually, repl,
forw, comp, and dist may also produce audits to this (or another) file, perhaps with
“Message-Id:” information to keep an exact correspondence history. “Audit-file” will be in
the user’s MH directory unless a full path is specified.
Inc will incorporate even illegally formatted messages into the user's MH folder, inserting a
blank line prior to the offending component and printing a comment identifying the bad
message.
In all cases, the . mail file will be zeroed.
Files
$HOME/. mh_profile The user profile
$HOME/. mail The user’s mail drop
<mh-dir>/audit-file Audit trace file (optional)
Profile Components
Path: . To determine the user’s MH directory
Folder—Protect: For protection on new folders
Msg—Protect: For protection on new messages

7th Edition UNIX/32V(Rand)

INC(1) -23- INC(1)

Defaults
‘+folder’ defaults to “inbox”

Context
The folder into which the message is being incorporated will become the current folder, and
the first message incorporated will be the current message. This leaves the context ready
for a show of the first new message.

7th Edition UNIX/32V(Rand)

NEXT(1) -24- NEXT(1)

NAME
next — show the next message

SYNOPSIS
next [+folder] [—switches for {] [—help]

DESCRIPTION

Next performs a show on the next message in the specified (or current) folder. Like show, it
passes any switches on to the program I, which is called to list the message. This command
is exactly equivalent to ““show next".

Files
$HOME/. mh_profile The user profile

Profile Components

Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder

Defaults

Context
If a folder is specified, it will become the current folder, and the message that is shown (i.e.,
the next message in sequence) will become the current message.

7th Edition UNIX/32V(Rand)

PICK(1) -25- PICK(1)

NAME
pick — select messages by content
SYNOPSIS
pick |—cc [—src +folder] [msgs] [—help] [—scan] [—noscan]
—date [—show] [—noshow] [—nofile] [—nokeep]
—from
—search pattern
—subject
—to [—file [—preserve] [—link] +folder ... [—nopreserve] [—nolink]]
——component [—keep [—stay] [—nostay] [+folder ...]]
typically:
pick —from jones —scan
pick —to holloway
pick —subject ned —scan —keep
DESCRIPTION

Pick searches messages within a folder for the specified contents, then performs several
operations on the selected messages.

A modified grep(I) is used to perform the searching, so the full regular expression (see
ed(I)) facility is available within ‘pattern’. With ‘—search’, pattern is used directly, and
with the others, the grep pattern constructed is:

o * .
component.. pattern

This means that the pattern specified for a “—search’ will be found everywhere in the mes-
sage, including the header and the body. while the other search requests are limited to the
single specified component. The gxprwsion ‘——component pattern’ is a shorthand for
specif ying ‘—search “component:. “pattern” °; it is used to pick a component not in the set
[cc date from subject to]. An example is “pick ——reply—to pooh —show"".

Searching is performed on a per-line basis. Within the header of the message, each com-
ponent is treated as one long line, but in the body, each line is separate. Lower-case letters
in the search pattern will match either lower or upper case in the message, while upper case
will match only upper case.

Once the search has been performed. the selected messages are scanned (see scan) if the
‘—scan’ switch is given, and then they are shown (see show) if the ‘—show’ switch is given.
After these two operations, the file operations (if requested) are performed.

The “—file’ switch operates exactly like the file command, with the same meaning for the
‘—preserve’ and ‘—link’ switches.

The “—keep’ switch is similar to ‘—file’, but it produces a folder that is a subfolder of the
folder being searched and defines it as the current folder (unless the ‘—stay’ flag is used).
This subfolder contains the messages which matched the search criteria. All of the MH
commands may be used with the sub-folder as the current folder. This gives the user con-
siderable power in dealing with subsets of messages in a folder.

7th Edition UNIX/32V(Rand)

PICK(1) -26- PICK(1)

Files

The messages in a folder produced by ‘—keep’ will always have the same numbers as they
have in the source folder (i.e., the ‘—preserve’ switch is automatic). This way, the message
numbers are consistent with the folder from which the messages were selected. Messages
are not removed from the source folder (i.e., the ‘—link’ switch is assumed). If a ‘+folder’
is not specified, the standard name “'select”” will be used. (This is the meaning of ““(select)”
when it appears in the output of the folder command.) If “+folder’ arguments are given to
‘—keep’, they will be used rather than “select” for the names of the subfolders. This
allows for several subfolders to be maintained concurrently.

When a ‘—keep’ is performed, the subfolder becomes the current folder. This can be over-
ridden by use of the “—stay’ switch.

Here's an example:

1 % folder +inbox

2 inbox+ has 16 messages (3— 22); cur= 3.

3 % pick —from dcrocker

4 6 hits.

5 [+inbox/select now current]

6 % folder

7 inbox/select+ has 6 messages (3— 16); cur= 3.

8 % scan

9 3+ 6/20 Dcrocker Re: ned file update issue...
10 6 6/23 Dcrocker removal of files from /tm...
11 8 6/27 Dcrocker Problems with the new ned...
12 13 6/28 dcrocker newest nned <<I would ap...
13 15 7/ 5 Dcrocker nned <<Last week I asked...
14 16 7/ 5 dcrocker message id format <<Ire...

15 % show all | print

16 [produce a full listing of this set of messages on the line printer.]
17 % folder —up

18 inbox+ has 16 messages (3— 22); cur= 3; (select).

19 % folder —down

20 inbox/select+ has 6 messages (3— 16); cur= 3.

21 % rmf

22 [+inbox now current]

23 % folder

24 inbox+ has 16 messages (3— 22); cur= 3.

This is a rather lengthy example, but it shows the power of the MH package. In item 1, the
current folder is set to inbox. In 3, all of the messages from dcrocker are found in inbox
and linked into the folder “inbox/select”. (Since no action switch is specified, ‘—keep’ is
assumed.) Items 6 and 7 show that this subfolder is now the current folder. Items 8
through 14 are a scan of the selected messages (note that they are all from dcrocker and are
all in upper and lower case). Item 15 lists all of the messages to the high-speed printer.
Item 17 directs folder to set the current folder to the parent of the selection-list folder,
which is now current. Item 18 shows that this has been done. Item 19 resets the current
folder to the selection list, and 21 removes the selection-list folder and resets the current
folder to the parent folder, as shown in 22 and 23.

$HOME/. mh_profile The user profile

7th Edition UNIX/32V(Rand)

PICK(1) -27- PICK(D)

Profile Components
Path: To determine the user’'s MH directory
Folder—Protect: For protection on new folders
Current-Folder: To find the default current folder
Defaul ts

‘—src +folder’ defaults to current
‘msgs’ defaults to all
‘—keep +select’ is the default if no “—scan’, ‘—show’, or "—file’ is specified

Context
If a “—src +folder’ is specified, it will become the current folder, unless a “—keep’ with O or
1 folder arguments makes the selection-list subfolder the current folder. Each selection-list
folder will have its current message set to the first of the messages linked into it unless the
selection list already existed, in which case the current message won't be changed.

7th Edition UNIX/32V(Rand)

PREV(1) -28- PREV(1)

NAME
prev — show the previous message

SYNOPSIS
prev [+folder] [—switches for I] [—help]

DESCRIPTION

Prev performs a show on the previous message in the specified (or current) folder. Like
show, it passes any switches on to the program I, which is called to list the message. This
command is exactly equivalent to “show prev".

Files
$HOME/. mh_profile The user profile

Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder

Defaul ts

Context
If a folder is specified, it will become current, and the message that is shown (i.e., the previ-
ous message in sequence) will become the current message.

7th Edition UNIX/32V(RaI_1d)

PROMPTER(1) -29- PROMPTER(1)

NAME

prompter — prompting editor front end

SYNOPSIS

This program is not called directly but takes the place of an editor and acts as an editor
front end.

prompter [—erase chr] [—kill chr] [—help]

DESCRIPTION

Files

Prompter is an editor which allows rapid composition of messages. It is particularly useful
to network and low-speed (less than 2400 baud) users of MH. It is an MH program in that
it can have its own profile entry with switches, but it can’t be invoked directly as all other
MH commands can; it is an editor in that it is invoked by an “—editor prompter’ switch or
by the profile entry “Editor: prompter”, but functionally it is merely a text-collector and
not a true editor.

Prompter expects to be called from comp. repl, dist, or forw, with a draft file as an argu-
ment. For example, “comp —editor prompter” will call prompter with the file “draft”
already set up with blank components. For each blank component it finds in the draft, it
prompts the user and accepts a response. A <RETURN> will cause the whole component
to be left out. A “\" preceding a <RETURN> will continue the response on the next line,
allowing for multiline components.

Any component that is non-blank will be copied and echoed to the terminal.

The start of the message body is prompted by a line of dashes. If the body is non-blank,
the prompt is “ Enter additional text””. Message-body typing is terminated with a
<CTRL-D> (or <OPEN>). Control is returned to the calling program, where the user is
asked “What now?”". See comp for the valid options.

The line editing characters for kill and erase may be specified by the user via the arguments
“—Xkill chr” and “—erase chr”, where chr may be a character; or “\nnn"’, where nnn is the
octal value for the character. (Again, these may come from the default switches specified
in the user’s profile.)

A during message-body typing is equivalent to <CTRL-D> for compatibility

with NED. A during component typing will abort the command that invoked
prompter.

None

Profile Components

Defaults

Context

prompter-next: To name the editor to be used on exit from prompter

None

7th Edition UNIX/32V(Rand)

REPL(1) -30- REPL(1)

NAME

repl — reply to a message

SYNOPSIS

repl [+folder] [msg] [—editor editor] [—inplace] [—annotate] [—help] [—noinplace]
[—noannotate]

DESCRIPTION

Files

Repl aids a user in producing a reply to an existing message. In its simplest form (with no
arguments), it will set up a message-form skeleton in reply to the current message in the
current folder, invoke the editor, and send the composed message if so directed. The com-
posed message is constructed as follows:

To: <Reply-To> or <From>

cc: <cc>, <To>

Subject: Re: <Subject>

In-reply-to: Your message of <Date>
<Message-1d>

where field names enclosed in angle brackets (< >) indicate the contents of the named field
from the message to which the reply is being made. Once the skeleton is constructed, an
editor is invoked (as in comp, dist, and forw). While in the editor, the message being replied
to is available through a link named “@". In NED, this means the replied-to message may
be “used” with “use @", or put in a window by “window @"".

As in comp, dist, and forw, the user will be queried before the message is sent. If “—anno-
tate’ is specified, the replied-to message will be annotated with the single line

Replied: <<Date>>.

The command “comp —use” may be used to pick up interrupted editing, as in dist and
forw; the “—inplace’ switch annotates the message in place, so that all folders with links to
it will see the annotation.

$HOME/. mh_profile The user profile
<mh-dir>/draft The constructed message file
/usr/bin/send To send the composed message

Profile Components

Defaults

Path: To determine the user’'s MH directory
Editor: To override the use of /bin/ned as the default editor
Current-Folder: To find the default current folder

‘+folder’ defaults to current
‘msgs’ defaults to cur
‘—editor’ defaults to /bin/ned
‘—noannotate’

‘—noinplace’

7th Edition UNIX/32V(Rand)

REPL(1) -31- REPL(1)

Context
If a “+folder’ is specified, it will become the current folder, and the current message will be
set to the replied-to message.

7th Edition UNIX/32V(Rand)

RMF(1) -32- RMF(1)

NAME
rmf — remove folder

SYNOPSIS
rmf [+folder] [—help]

DESCRIPTION
Rmf removes all of the files (messages) within the specified (or default) folder, and then
removes the directory (folder). If there are any files within the folder which are not a part
of MH, they will not be removed, and an error will be produced. If the folder is given
explicitly or the current folder is a subfolder (i.e., a selection list from pick), it will be
removed without confirmation. If no argument is specified and the current folder is not a
selection-list folder, the user will be asked for confirmation.
Rmf irreversibly deletes messages that don’t have other links, so use it with caution.
If the folder being removed is a subfolder, the parent folder will become the new current
folder, and rmf will produce a message telling the user this has happened. This provides an
easy mechanism for selecting a set of messages, operating on the list, then removing the list
and returning to the current folder from which the list was extracted. (See the example
under pick.)
The files that rmf will delete are cur, any file beginning with a comma, and files with
purely numeric names. All others will produce error messages.
Rmf of a read-only folder will delete the “cur—" entry from the profile without affecting
the folder itself.

Files
$HOME/. mh_profile The user profile

Profile Components
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder

Defaul ts]
‘+folder’ defaults to current, usually with confirmation

Context

Rmf will set the current folder to the parent folder if a subfolder is removed; or if the
current folder is removed, it will make “inbox™ current. Otherwise, it doesn’t change the
current folder or message.

7th Edition UNIX/32V(Rand)

RMM(1) -33- RMM(1)

NAME
rmm — remove messages
SYNOPSIS
rmm [+folder] [msgs] [—help]
DESCRIPTION
Rmm removes the specified messages by renaming the message files with preceding commas.
(This is the Rand-UNIX backup file convention.)
The current message is not changed by rmm, so a next will advance to the next message in
the folder as expected.
Files
$HOME/. mh_profile The user profile
Profile Components
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder
Defaul ts
‘+folder’ defaults to current
‘msgs’ defaults to cur
Context

If a folder is given. it will become current.

7th Edition UNIX/32V(Rand)

SCAN(1) -34- SCAN(1)

NAME
scan — produce a one-line-per-message scan listing
SYNOPSIS
scan [+folder] [msgs] [—ff] [—header] [—help] [—noff] [—noheader]
DESCRIPTION
Scan produces a one-line-per-message listing of the specified messages. Each scan line con-
tains the message number (name), the date, the “From™ field, the “Subject” field, and, if
room allows, some of the body of the message. For example:
Date From Subject [<<Body]
15+ 7/5 Dcrocker nned <<Last week I asked some of
16— 7/ 5 dcrocker message id format <<I recommend
18 7/ 6 Obrien Re: Exit status from mkdir
19 17/ 17 Obrien "scan" listing format in MH
The ‘+" on message 15 indicates that it is the current message. The ‘—' on message 16 indi-
cates that it has been replied to, as indicated by a “Replied:” component produced by an
‘—annotate’ switch to the repl command.
If there is sufficient room left on the scan line after the subject, the line will be filled with
text from the body, preceded by <<. Scan actually reads each of the specified messages and
parses them to extract the desired fields. During parsing, appropriate error messages will be
produced if there are format errors in any of the messages.
The ‘—header’ switch produces a header line prior to the scan listing, and the ‘—ff’ switch
will cause a form feed to be output at the end of the scan listing. See Appendix D.
Files
$HOME/. mh_profile The user profile
Profile Components
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder
Defaults
Defaults:
‘+folder’ defaults to current
‘msgs’ defaults to all
‘—noff’
‘—noheader’
Context

If a folder is given, it will become current. The current message is unaffected.

7th Edition UNIX/32V(Rand)

SEND(1) -35- SEND(1)

NAME

send — send a message

SYNOPSIS

send [file] [—draft] [—verbose] [—format] [—msgid] [—help] [—noverbose] [—noformat]
[—nomsgid]

DESCRIPTION

Files

Send will cause the specified file (default <mh-dir>/draft) to be delivered to each of the
addresses in the “To:"”, “cc:™, and “Bee:™ fields of the message. If “—verbose’ is specified,
send; will monitor the delivery of local and net mail. Send with no argument will query
whether the draft is the intended file, whereas ‘—draft’ will suppress this question. Once
the message has been mailed (or queued) successfully, the file will be renamed with a lead-
ing comma, which allows it to be retreived until the next draft message is sent. If there are
errors in the formatting of the message, send; will abort with a (hopefully) helpful error
message.

If a “Bee:™ field is encountered, its addresses will be used for delivery, but the “Bec:” field
itself will be deleted from all copies of the outgoing message.

Prior to sending the message, the fields “From: user”, and “Date: now™ will be prepended
to the message. If ‘—msgid’ is specified, then a “Message-Id:" field will also be added to the
message. If the message already contains a “From:" field, then a “Sender: user™ field will be
added instead. (An already existing ““Sender:” field will be deleted from the message.)

If the user doesn’t specify ‘—noformat’, each of the entries in the “To:™ and “cc:” fields will
be replaced with “standard” format entries. This standard format is designed to be usable
by all of the message handlers on the various systems around the ARPANET.

If an “Fcc: folder™ is encountered, the message will be copied to the specified folder in the
format in which it will appear to any receivers of the message. That is, it will have the
prepended fields and field reformatting.

If a “Distribute-To:" field is encountered, the message is handled as a redistribution message
(see dist for details). with “Distribution-Date: now" and “Distribution-From: user’ added.

$HOME/. mh_profile The user profile

Profile Components

Defaults

Context

Path: To determine the user’'s MH directory

‘file” defaults to draft
‘—noverbose’
‘—format’
‘—nomsgid’

Send has no effect on the current message or folder.

7th Edition UNIX/32V(Rand)

SHOW(1) -36- SHOW(1)

NAME
show — show (list) messages

SYNOPSIS
show [+folder] [msgs] [—pr] [—nopr] [—draft] [—help] [or pr switches]

DESCRIPTION
Show lists each of the specified messages to the standard output (typically, the terminal).
The messages are listed exactly as they are, with no reformatting. A program called [is
invoked to do the listing, and any switches not recognized by show are passed along to l.
If no “msgs™ are specified, the current message is used. If more than one message is
specified, { will prompt for a <return> prior to listing each message.
! will list each message, a page at a time. When the end of page is reached, [will ring the
bell and wait for a <RETURN> or <CTRL-D>. If a <return> is entered, [will clear the
screen before listing the next page, whereas <CTRL-D> will not. The switches to [are
‘—p#’ to indicate the page length in lines, and ‘—w#" to indicate the width of the page in
characters.
If the standard output is not a terminal, no queries are made, and each file is listed with a
one-line header and two lines of separation.
If “—pr’ is specified, then pr(I) will be invoked rather than [, and the switches (other than
‘—draft’) will be passed along. “Show —draft” will list the file <mh-dir>/draft if it
exists.

Files
$HOME/. mh_profile The user profile
/bin/1 Screen-at-a-time list program
/bin/pr pr(D

Profile Components
Path: To determine the user’'s MH directory
Current-Folder: To find the default current folder

Defaults
‘+folder’ defaults to current
‘msgs’ defaults to cur
‘—nopr’

Context

If a folder is given, it will become the current message. The last message listed will become
the current message.

7th Edition UNIX/32V(Rand)

Appendix A
COMMAND SUMMARY?3

comp [—editor editor] [—form formfile] [file] [—use] [—nouse] [—help]

dist [+folder] [msg] [—form formfile] [—editor editor] [—annotate] [—noannotate] [—inplace]
[—noinplace] [—help]

file [—src +folder] [msgs] [—link] [—preserve] +folder ... [—nolink] [—nopreserve] [—file file]
[—nofile] [—help]

folder [+folder] [msg] [—all] [—fast] [—nofast] [—up] [—down] [—header] [—noheader] [—total]
[—nototal] [—pack] [—nopack] [—help]

forw [+folder] [msgs] [—editor editor] [—form formfile] [—annotate] [—noannotate] [—inplace]
[—noinplace] [—help]

inc [+folder] [—audit audit-file] [—help]

next [+folder] [—switches for] [—help]

pick (—cc [—szc +folder] [msgs] [—help] [—scan] [—noscan]
—date [—show] [—noshow] [—nofile] [—nokeep]
—from ’
—search pattern
—subject
—to [—file [—preserve] [—link] +folder ... [—nopreserve] [—nolink]]
——component [—keep [—stay] [—nostay] [+folder ...]]

prev [+folder] [—switches for 1] [—help]

prompter [—erase chr] [—kill chr] [—help]

repl [+folder] [msg] [—editor editor] [—inplace] [—annotate] [—help] [—noinplace] [—noannotate]
rmf [+folder] [—help]

rmm [+folder] [msgs] [—help]

scan [+folder] [msgs] [—ff] [—header] [—help] [—noff] [—noheader]

send [file] [—draft] [—verbose] [—format] [—msgid] [—help] [—noverbose] [—noformat] [—nomsgid]

show [+folder] [msgs] [—pr] [—nopr] [—draft] [—help] [7 or pr switches]

3All commands accept a —help switch.

-37-

Appenciix B
MESSAGE FORMAT

This section paraphrases the format of ARPANET text messages given in
Ref. 6.

ASSUMPTIONS

(1) Messages are expected to consist of lines of text. Graphics and binary data
are not handled.

(2) No data compression is accepted. All text is clear ASCII 7-bit data.

LAYOUT

A general “memo’’ framework is used. A message consists of a block of informa-
tion in a rigid format, followed by general text with no specified format. The
rigidly formatted first part of a message is called the header, and the free-
format portion is called the body. The header must always exist, but the body is
optional.

THE HEADER

Each header item can be viewed as a single logical line of ASCII characters. If the
text of a header item extends across several real lines, the continuation lines are
indicated by leading spaces or tabs.

Each header item is called a component and is composed of a keyword or name,
along with associated text. The keyword begins at the left margin, may contain
spaces or tabs, may not exceed 63 characters, and is terminated by a colon (:).
Certain components (as identified by their keywords) must follow rigidly defined
formats in their text portions.

The text for most formatted components (e.g.. “Date:” and ““Message-1d:") is pro-
duced automatically. The only ones entered by the user are address fields such as
“To:”, “cc:”, etc. ARPA addresses are assigned mailbox names and host computer
specifications. The rough format is “mailbox at host™, such as “Borden at Rand-
Unix”. Multiple addresses are separated by commas. A missing host is assumed
to be the local host.

THE BODY

A blank line signals that all following text up to the end of the file is the body.
(A blank line is defined as a pair of <end-of-line> characters with no characters
in between.) No formatting is expected or enforced within the body.

Within MH, a line consisting of dashes is accepted as the header delimiter. This is
a cosmetic feature applying only to locally composed mail.

-38-

Appendix C

MESSAGE NAME BNF
msgs = msgspec I
msgs msgspec
msgspec = msg |
' msg-range I

msg-sequence

msg = msg-name |
<number>

msg-name = “first”
“last”
“cur”
“next”
“prev"

msg-range = msg”-""msg I
“all”

msg-sequence msg*:"'signed-number

signed-number = “+" <number> I
“—"<number> |
<number >

Where <number> is a decimal number in the range 1 to 999.

Msg-range spéciﬁes all of the messages in the given range and must not be
empty.

Msg-sequence specifies up to <number> of messages, beginning with “msg"”
(in the case of first, cur, next, or <number>), or ending with “msg” (in the case
of prev or last). +<number> forces “starting with msg”, and —<number>
forces “ending with number”. In all cases, “msg’" must exist.

Appendix D
EXAMPLE OF SHELL COMMANDS

UNIX commands may be mixed with MH commands to obtain additional
functions. These may be prepared as files (known as shell command files or shell
scripts). The following example is a useful function that illustrate the possibili-
ties. Other functions, such as copying, deleting, renaming, etc., can be achieved in
a similar fashion.

HARDCOPY
The command:

(scan —ff —header; show all —pr —f) | print

produces a scan listing of the current folder, followed by a form feed, followed
by a formatted listing of all messages in the folder, one per page. Omitting
“—pr —f” will cause the messages to be concatenated, separated by a one-line
header and two blank lines.

You can create variations on this theme, using pick.

-40-

- REFERENCES

. Crockar, D.HL 373 Vittal, Ko T. Pogran, and D. A. Henderson, Jr., “Standard

‘for.the Format of ARPA Network Test Messages,” Arpanet Request for
 Comments, No. 733, Network Information Center 41952, Augmentation
Resean‘n Lem«.n Jovrd Research Ins'xi.ute. November 1977.

iz ang bies The \J\I’X Txme—sharmg System,” Comn-
f i ACM, Vol. 17, Tuly 1974, pp. 365-375.

McCauley, E. I si4f--Drongowski. “KSOS—The Design of a Secure
Operating- System. FIPS .m’efe*ence Proceedings, National Comgputer
Conferefxrr Wol.48, 19/9 Pp.-343-3930

Crocker, David H., Framew:i arid Functions of the “MS" Personal Message
System, Tlhie Rand Corporatxon. R—2134-ARPA Decenzber 1977.

‘Thompsori; ¥, and D; M thch‘e UTHX Z’rogrammers Manual, 61:{, ed.,
W estern Electric Comp Lay k9’75 (available only to UNIX licensees).

Bxlofsky Waiter, The. GRT Text Editor - NFD—Introductwn and Refcrence
- Meanal, Th.e Rand Corporation, R<2176=ARPA, Decembizr 1977.

-41-

UNIXt Assembler Reference Manual

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

0. Introduction

This document describes the usage and input syntax of the UNIX PDP-11 assembler as.
The details of the PDP-11 are not described.

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler
PAL-11R, although its internal workings and output format are unrelated. It may be useful to
read the publication DEC-11-ASDB-D, which describes PAL-11R, although naturally one must use
care in assuming that its rules apply to as.

As is a rather ordinary assembler without macro capabilities. It produces an output file
that contains relocation information and a complete symbol table; thus the output is acceptable
to the UNIX link-editor /d, which may be used to combine the outputs of several assembler runs
and to obtain object programs from libraries. The output format has been designed so that if a
program contains no unresolved references to external symbols, it is executable without further
processing. b

1. Usage
as is used as follows:

as [—ul [—oourpur] file, ...

If the optional ‘“—u’’ argument is given, all undefined symbols in the current assembly will be
made undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs
may be written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.our in the current directory;
the ‘“—0”’ flag causes the output to be placed on the named file. If there were no unresolved
external references, and no errors detected, the output file is marked executable; otherwise, if
it is produced at all, it is made non-executable.

2. Lexical conventions

Assembler tokens include identifiers (alternatively, ‘‘symbols’’ or ‘‘names’’), temporary
symbols, constants, and operators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ‘.,
underscore ‘"', and tilde ‘“~’" as alphanumeric) of which the first may not be numeric. Only
the first eight characters are significant. When a name begins with a tilde, the tilde is discarded
and that occurrence of the identifier generates a unique entry in the symbol table which can
match no other occurrence of the identifier. This feature is used by the C compiler to place

+ UNIX is a Trademark of Bell Laboratories.

names of local variables in the output symbol table without having to worry about making them
unique.

2.2 Temporary symbols

A temporary symbol consists of a digit followed by ““f*’ or ‘‘b’’. Temporary symbols are
discussed fully in §5.1.

2.3 Constants

An octal constant consists of a sequence of digits; ‘*8"" and ‘9>’ are taken to have octal

value 10 and 11. The constant is truncated to 16 bits and interpreted in two’s complement
notation.

A decimal constant consists of a sequence of digits terminated by a decimal point ‘..
The magnitude of the constant should be representable in 15 bits; i.e., be less than 32,768.

A single-character constant consists of a single quote ‘“’*” followed by an ASCII character
not a new-line. Certain dual-character escape sequences are acceptable in place of the AscCIll
character to represent new-line and other non-graphics (see Siring siatements, §5.5). The
constant’s value has the code for the given character in the least significant byte of the word
and is null-padded on the left.)

A double-character constant consists of a double quote ‘“"’" followed by a pair of ASCl
characters not including new-line. Certain dual-character escape sequences are acceptable in
place of either of the AsCIHl characters to represent new-line and other non-graphics (see String
statements, §5.5). The constant’s value has the code for the first given character in the least
significant byte and that for the second character in the most significant byte.

2.4 Operators
There are several single- and double-character operators; see §6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used
within tokens (except character constants). A blank or tab is required to separate adjacent
identifiers or constants not otherwise separated.

2.6 Comments

The character *“/ " introduces a comment, which extends through the end of the line on
which it appears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The text segment is the one in which the assembler begins, and it is the
one into which instructions are typically placed. The UNIX system will, if desired, enforce the
purity of the text segment of programs by trapping write operations into it. Object programs
produced by the assembler must be processed by the link-editor /@ (using its ‘‘—n’’ flag) if the
text segment is to be write-protected. A single copy of the text segment is shared among all
processes executing such a program.

The data segment is available for placing data or instructions which will be modified dur-
ing execution. Anything which may go in the text segment may be put into the data segment.
In programs with write-protected, sharable text segments, data segment contains the initialized
but variable parts of a program. If the text segment is not pure, the data segment begins
immediately after the text segment; if the text segment is pure, the data segment begins at the
lowest 8K byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. The length of the

-3

bss segment (like that of text or data) is determined by the high-water mark of the location
counter within it. The bss segment is actually an extension of the data segment and begins
immediately after it. At the start of execution of a program, the bss segment is set to 0. Typi-
cally the bss segment is set up by statements exemplified by

lab: . = .+10

The advantage in using the bss segment for storage that starts off empty is that the initialization
information need not be stored in the output file. See also Location counter and Assignment
statements below.

4. The location counter

LR}

One special symbol, *“.", is the location counter. Its value at any time is the offset
within the appropriate segment of the start of the statement in which it appears. The location
counter may be assigned to, with the restriction that the current segment may not change;
furthermore, the value of ‘‘.”’ may not decrease. If the effect of the assignment is to increase
the value of *“.”, the required number of null bytes are generated (but see Segments above).

5. Statements

A source program is composed of a sequence of sratements. Statements are separated
either by new-lines or by semicolons. There are five kinds of statements: nuil statements,
expression statements, assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a
name followed by a colon (:). The effect of a name label is to assign the current value and
type of the location counter ‘“.’’ to the name. An error is indicated in pass 1 if the name is
already defined; an error is indicated in pass 2 if the *‘.” value assigned changes the definition

of the label.

A numeric label consists of a digit 0 to 9 followed by a colon (:). Such a label serves to
define temporary symbols of the form *‘nb’’ and “‘nf’’, where n is the digit of the label. As in
the case of name labels, a numeric label assigns the current value and type of *“.”’ to the tem-
porary symbol. However, several numeric labels with the same digit may be used within the
same assembly. References of the form ‘‘nf’’ refer to the first numeric label ‘‘n:’" forward
from the reference; ‘“nb’> symbols refer to the first ‘‘n :”* label backward from the reference.
This sort of temporary label was introduced by Knuth [The Arr of Computer Programming, Vol I:
Fundamental Algorithms]. Such labels tend to conserve both the symbol table space of the
assembler and the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement (which may, however, have labels). A nuil state-
ment is ignored by the assembler. Common examples of null statements are empty lines or
lines containing only a label.

5.3 Expression statements

An expression statement consists of an arithmetic expression not beginning with a key-
word. The assembler computes its (16-bit) value and .places it in the output stream, together
with the appropriate relocation bits.

5.4 Assignment statements

An assignment statement consists of an identifier, an equals sign (=), and an expression.
The value and type of the expression are assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1, nor is it an error to redefine any symbol by
assignment.

Any external attribute of the expression is lost across an assignment. This means that it
is not possible to declare a global symbol by assigning to it, and that it is impossible to define a
symbol to be offset from a non-locally defined global symbol.

"

As mentioned, it is permissible to assign to the location counter ‘. It is required, how-
ever, that the type of the expression assigned be of the same type as ‘‘.’’, and it is forbidden
to decrease the value of **.”". In practice, the most common assignment to ‘*."" has the form
‘.= .+ n" for some number n; this has the effect of generating » null bytes.

5.5 String statements

A string statement generates a sequence of bytes containing ASCH characters. A string
statement consists of a left string quote ‘<’ followed by a sequence of ASCII characters not
including newline, followed by a right string quote ““>’". Any of the ASCII characters may be
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol-
lows:

\n NL (012)
\s SP (040)
\t HT 011
\e EoT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \

\> >

The last two are included so that the escape character and the right string quote may be
represented. The same escape sequences may also be used within single- and double-character
constants (see §2.3 above).

5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instruc-
tions are of this sort. A keyword statement begins with one of the many predefined keywords
of the assembler; the syntax of the remainder depends on the keyword. All the keywords are
listed below with the syntax they require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is missing
on the left, a 0 of absolute type is assumed. Arithmetic is two's complement and has 16 bits of
precision. All operators have equal precedence, and expressions are evaluated strictly left to
right except for the effect of brackets.

6.1 Expression operators
The operators are:

(blank) when there is no operand between operands, the effect is exactly the same as if a ““+ "
had appeared.

+ addition

- subtraction

* multiplication

\/ division (note that plain ‘‘/*’ starts a comment)
8 bitwise and

| bitwise or

\> logical right shift

\< logical left shift

% modulo

! a'bis a or (not b); i.e., the or of the first operand and the one’s complement of the
second:; most common use is as a unary.

result has the value of first operand and the type of the second; most often used to
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets ‘“‘[]’. (Round parentheses are
reserved for address modes.)

6.2 Types

The assembler deals with @ number of types of expressions. Most types are attached to
keywords and used to select the routine which treats that keyword. The types likely to be met
explicitly are: ‘
undefined

Upon first encounter, each symbol is undefined. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an undefined
expression in pass 2; in pass 1, it is not (except that certain keywords require operands
which are not undefined). ‘

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor /4 must be used to
load the assembler’s output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text seg-
ment of the program. If the assembler output is link-edited, its text symbols may
change in value since the program need not be the first in the link editor’s output.
Most text symbols are defined by appearing as labels. At the start of an assembly, the
value of ““.” is text 0.

data The value of a data symbol is measured with respect to the origin of the data segment
of a program. Like text symbols, the value of a data symbol may change during a sub-
sequent link-editor run since previously loaded programs may have data segments.
After the first .data statement, the value of *“."" is data 0.

bss The value of a bss symbol is measured from the beginning of the bss segment of a
program. Like text and data symbols, the value of a bss symbol may change during a
subsequent link-editor run, since previously loaded programs may have bss segments.
After the first .bss statement, the value of *‘.”" is bss 0.

external absolute, text, data, or bss .
symbols declared .globl but defined within an assembly as absolute, text, data, or bss
symbols may be used exactly as if they were not declared .globl, however, their value
and type are available to the link editor so that the program may be loaded with others
that reference these symbols.

register
The symbols
r0 ... r5
fro ... frs
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the six general-purpose, six floating-point, and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of
the corresponding general register names; the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select. the routine
which processes the associated keyword statement. The behavior of such symbols
when not used as keywords is the same as if they were absolute.

6.3 Type propagation in expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules invoived are complex to
state but were intended to be sensible and predictable. For purposes of expression evaluation
the important types are

undefined
absolute

text

data

bss

undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If
both operands are absolute, the result is absolute. If an absolute is combined with one of the
‘“‘other types’’ mentioned above, or with a register expression, the result has the register or
other type. As a consequence, one can refer to r3 as “‘r0+3". If two operands of ‘‘other
type’’ are combined, the result has the numerically larger type An ‘‘other type’® combined with
an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external. the
result has the postulated type and the other operand must be absolute.

— If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand): or
the second operand may have the same type as the first (in which case the result is abso-
lute). If the first operand is external undefined, the second must be absolute. All other
combinations are illegal.

This operator follows no other rule than that the result has the value of the first operand
and the type of the second.

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations

The keywords listed below introduce statements that generate data in unusual forms or
influence the later operations of the assembler. The metanotation

[stuff]...

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are
literals, italic words are substitutable.

7.1 .byte expression [, expression] ...

The expressions in the comma-separated list are truncated to 8 bits and assermbled in suc-
cessive bytes. The expressions must be absolute. This statement and the string statement
above are the only ones that assemble data one byte at at time.

7.2 .even
. "

If the location counter
assembled at a word boundary.

is odd, it is advanced by one so the next statement will be

7.3 .if expression

The expression must be absolute and defined in pass 1. If its value is nonzero, the .if is
ignored; if zero, the statements between the .if and the matching .endif (below) are ignored.
.if may be nested. The effect of .if cannot extend beyond the end of the input file in which it
appears. (The statements are not totally ignored, in the following sense: .ifs and .endifs are
scanned for, and moreover all names are entered in the symbol table. Thus names occurring
only inside an .if will show up as undefined if the symbol table is listed.)

7.4 _.endif
This statement marks the end of a conditionally-assembled section of code. See .if above.

7.5 .globl name [, name | ...

This statement makes the names external. If they are otherwise defined (by assignment or
appearance as a label) they act within the assembly exactly as if the .globl statement were not
given; however, the link editor /d may be used to combine this routine with other routines that
refer these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbols.
As discussed in §1, it is possible to force the assembler to make all otherwise undefined sym-
bols external.

7.6 .text
7.7 .data

7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text,
data, or bss segment respectively. Assembly starts in the text segment. It is forbidden to

assemble any code or data into the bss segment, but symbols may be defined and **.”" moved
about by assignment.

7.9 .comm name , expression
Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name = expression ~ name

That is, the type of name is ‘‘undefined external’’, and its value is expression. In fact the name
behaves in the current assembly just like an undefined external. However, the link-editor /d
has been special-cased so that all external symbols which are not otherwise defined, and which
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the
symbol to hold expression bytes. All symbols which become defined in this way are located
before all the explicitly defined bss-segment locations.

8. Machine instructions

Because of the rather complicated instruction and addressing structure of the PDP-11, the
syntax of machine instruction statements is varied. Although the following sections give the
syntax in detail, the machine handbooks should be consuited on the semantics.

8.1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must have one
of the following forms, where reg is a register symbol, and expr is any sort of expression:

syntax words mode

reg 0 00+ reg
(reg) + 0 20+ reg
- (reg) 0 40+ reg
expr (reg) 1 60+ reg
(reg) 0 10+ reg
*reg 0 10+ reg
*(reg) + 0 30+reg
* — (reg) 0 50+ reg
*(reg) 1 70+ reg
*expr (reg) 1 70+ reg
expr 1 67

Sexpr 1 27

* expr 1 77

*Sexpr 1 37

The words column gives the number of address words generated: the mode column gives the
octal address-mode number. The syntax of the address forms is identical to that in DEC assem-
blers, except that **’” has been substituted for ““@’" and *‘$”’ for ““#°’; the UNIX typing con-
ventions make ‘@’ and ‘‘#’’ rather inconvenient.

Notice that mode ‘‘*reg” is identical to ‘“(reg)’’; that ‘‘*(reg)’” generates an index word
(namely, 0); and that addresses consisting of an unadorned expression are assembled as pc-
relative references independent of the type of the expression. To force a non-relative refer-
ence, the form ***Sexpr” can be used, but notice that further indirection is impossible.

8.3 Simple machine instructions
The following instructions are defined as absolute symbols:

cle
clv
clz
cin
sec
sev
sez
sen

They therefore require no special syntax. The PDP-11 hardware allows more than one of the
‘“‘clear’” class, or alternatively more than one of the ‘‘set’’ class to be or-ed together; this may
be expressed as follows:

cle | clv

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the
same segment as the reference. cannot be undefined-external, and its value cannot differ from

the current location ot ** .~ by more than 254 bytes:
br blos
bne bvc
beq bvs
bge bhis
bit . bec (= bec)
bgt bce
ble blo
bpl bes :
bmi bes (= bes)
bhi

bes (‘‘branch on error set’’) and bec (‘‘branch on error clear’’) are intended to test the error bit
returned by system calls (which is the c-bit).

8.5 Extended branch instructions

The following symbols are followed by an expression representing an address in the same
segment as ‘‘.”’. If the target address is close enough, a branch-type instruction is generated; if
the address is too far away, a jmp will be used.

jbr jlos
jne jve
jeq jvs
jge jhis
jit jec
jgt jee
jle jlo
jpl jes
jmi jes
jhi

jbr turns into a plain jmp if its target is too remote; the others (whose names are contructed by
replacing the ‘‘b™ in the branch instruction’s name by ‘*‘j"’) turn into the converse branch over
a jmp to the target address.

8.6 Single operand instructions

The following symbols are names of single-operand machine instructions. The form of
address expected is discussed in §8.1 above.

cir sbcb
clrb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adcb tst
sbc tstb

8.7 Double operand instructions

The following instructions take a general source and destination (§8.1), separated by a
comma, as operands.

mov
movb
cmp
cmpb
bit
bitb
bic
bich
bis
bisb
add
sub

8.8 Miscellaneous instructions

The following instructions have more specialized syntax. Here reg is a register name, src
and dst a general source or destination (§8.1), and expr is an expression:

jsr reg,dst

rts reg

sys expr

ash src. reg (or, als)
ashe src.reg (or, alsc)
mul src,reg (or, mpy) .
div src. reg (or, dvd)
xor reg, dst

sxt dst

mark expr

sob reg., expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is
required to be expressible in 6 bits. The expression in mark must be expressibie in six bits,
and the expression in sob must be in the same segment as ‘‘.’’, must not be external-

undefined, must be less than **."’, and must be within 510 bytes of ““.".

-11-

8.9 Floating-point unit instructions
The following floating-point operations are defined, with syntax as indicated:

cfce

setf

setd

seti

setl

clrf fdsi

negf fdsi

absf /fds:

tstf fsrc

movf fsrc, freg (= Idf)
movf freg, fdst (= stf)
movif src, freg (= Idcif)
movfi freg, dst (= stcfi)
movof fsrc, freg (= Idcdf)
movfo freg, fdst (= stefd)
movie src. freg (= ldexp)
movei freg, dst (= stexp)

addf fsrc. freg
subf fsrc. freg
mulf fsrc. freg
divf fsrc, freg
cmpf fsrc, freg
modf fsrc, freg

ldfps src
stfps dst
stst dst

fsre, fdst, and freg mean floating-point source, destination, and register respectively. Their syn-
tax is identical to that for their non-floating counterparts, but note that only floating registers
0-3 can be a freg.

The names of several of the operations have been changed to bring out an analogy with
certain fixed-point instructions. The only strange case is movf, which turns into either stf or
1df depending respectively on whether its first operand is or is not a register. Warning: ldf sets
the floating condition codes, stf does not.

9. Other symbols

9.1 ..

The symbol **..”" is the relocarion counter. Just before each assembled word is placed in
the output stream, the current value of this symbol is added to the word if the word refers to a
text, data or bss segment location. If the output word is a pc-relative address word that refers
to an absolute location, the value of *‘..”" is subtracted.

Thus the value of ‘“.."" can be taken to mean the starting memory location of the pro-
gram. The initial value of *“..” is 0.

The value of *“..”" may be changed by assignment. Such a course of action is sometimes
necessary, but the consequences should be carefully thought out. It is particularly ticklish to
change ‘‘..”" midway in an assembly or to do so in a program which will be treated by the
loader, which has its own notions of ““..”".

-12-

9.2 System calls
System call names are not predefined. They may be found in the file /usr/include/svs.s

10. Diagnostics

When an input file cannot be read, its name followed by a question mark is typed and
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which it occurred. Errors in pass |
cause cancellation of pass 2. The possible errors are:

) parentheses error !
] parentheses error

> string not terminated properly

indirection (*) used illegally

illegal assignment to **.”’

error in address

branch address is odd or too remote

error in expression

error in local (“‘f*” or *‘b’") type symbol
garbage (unknown) character

end of file inside an .if

multiply defined symbol as label

word quantity assembled at odd address
phase error— **.’" different in pass | and 2
relocation error

undefined symbol

syntax error

XCA®VOZT—OMmMm®» °

_ Reprinted from
Proceedings of the ACM SIGPLAN '82 Symposium on Compiler Construction
SIGPLAN Notices 17, 8 (June 1982), pp 120-128

gprof: a Call Graph Execution Profiler!

y
Susan L. Graham
Pater B. Kessler
Marshall K. MecKusick

Computer Science Division
Electrical Engineering and Computer Science Department
University of California, Berkeley
Berkeley, California 94720

Abstract

Large complex programs are composed of mnny'

small routines that implement abstractions for the
routines that call them. To be useful, an exescution
profiler must attribute execution time in a way that
is significant for the logical structure of a program
as well as for its textual decomposition. This data
must then be displayed to the user in a convenient
and informative way. The gprof profiler accounts
for the running time of called routines in the run-
ning time of the routines that call them. The design
and use of this profiler is described.

1. Programs to be Profiled

Software research environments normally
include many large programs both for production
use and for experimental investigation. These pro-
grams are typically modular, in accordance with
generally accepted principles of good program
design. Often they consist of numserous small rou-
tines that implement various abstractions. Some-
times such large programs are written by one pro-
grammer who has understood the requirements {or
these abstractions, and has programmed them
appropriately. More frequently the program has
had multiple authors and has evolved over time,
changing the demands placed on the implementa-
tion of the abstractions without changing the imple-
mentation {tself. Finally, the program may be
assemblad {rom a library of abstraction implemen-
tations unexamined by the programmer.

Once a large program is executable, it is often
desirable to increase its speed, especially if small
portions of the program are found to dominate its

This work was supported by grant MCS80-05144 from the
National Science Foundation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage. the ACM copyright notice and the title of the
publication and its dzte appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5/82/006/0120 $00.75

execution time. The purpese of the gprof profiling
tool is to help the user evaluate alternative imple-
mentations of abstractions. We developed this tool
in response to our efforis to improve a code genera-
tor we were writing [Graham82).

The gprof design takes advantage of the fact
that the programs to be measured are large, struc-
tured and hierarchical. We provide a proflle in
which the execution time for a set of routines that
implement an abstraction is collected and charged
to that abstraction. The profile can be used to com-
pare and assess the costs of various implementa-
tions.

The profiler can be linked into a program
without special planning by the programmer. The
overhead for using gprof is low; both in terms of
added execution time and in the voiume of proflng
information recorded.

2. Types of Proflling

There are several different uses for program
proflles, and each may require different information
{rom the profiles, or different presentation of the
information. We distinguish two broad categories of
profiles: those that present counts of statement or
routine invocations, and those that display timing
information about statements or routines. Counts
are typically presented in tabular form, often in
parallel with a listing of the source code. Timing
information could be similarly presented. but more
than one measure of time might be associated with
each statement or routine. For example, in the
framework used by gprol each profiled segment
would display two times: one for the time used by
the segment itsell, and another for the time inher-
ited {rom code segments it invokes.

Execution counts are used in many different
contexts. The exact number of times a routine or
statement is activated can be used to determine if
an algorithm is performing as expected. Cursory
inspection of such counters may show algorithms
whose complexity is unsuited to the task at hand.
Careful interpretation of counters can often suggest
improvements to acceptable algorithms. Precise
examination can uncover subtle errors in an

algerithm. At this level, profiling counters are simi-
lar to debugging statements whose purpose is to
show the number of times a piece of code is exe-
cuted. Another view of such counters is as boolean
values. One mey be interested that a portion of
code has executed at all, {or exhaustive testing, or
to check that one implementation of an abstraction
completely replaces a previous one.

Execution counts are not necessarily propor-
tional to the amount of time required to execute
the routine or statement. Further, the execution
time of a routine will not be the same for all calls on
the routine. The criteria for establishing execution
time must be decided. I a routine {mplements an
abstraction by invoking other abstractions, the time
spent in the routine will not accurately reflect the
time regquired by the abstraction it implements.
Similarly, #f an abstraction is implemented by
several routines the time required by the abstrac-
tion will be distributed across those routines.

Given the execution time of individual routines,
gyrof accounts to each routine the time spent for it
by the routines it invokes. This accounting is done
by assembling a call greph with nodes that are the
routines of the program and directed arcs that
represent calls {rom call sites to routines. We dis-
tinguish among three different call graphs for a pro-
gram. The complete call graph incorporates all rou-
tines and all potential ares, including ares that
represent calls to functional parameters or func-
tional variables. This graph contains the other two
graphs as subgraphs. The static call greph includes
all routines and all possible arcs that are not calls
to functional parameters or variables. The dynamic
call graph includes only those routines and arcs
traversed by the proflled execution of the program.
This graph need not include all routines, nor need it
include all potential arcs between the routines it
covers. It may, however, include ares to functional
parameters or variables that the static call graph
may omit. The static call graph can be determined
from the (static) program text. The dynamic call
graph is determined only by proflling an execution
of the program. The complete call graph for a
monolithic program could be determined by data
flow analysis techniques. The complete call graph
{or programs that change during execution, by
modifying themselves or dynamically loading or
overlaying code, may never be determinable. Both
the static call graph and the dynamic call graph are
used by gpraf, but it does not search for the com-
piete call graph.

S Gathering Proflle Data

Routine calls or statement executions can be
measured by having a compiler augment the code
at strategic points. The additions can bde inline
increments to counters {Knuth71] [Satterthwaite72]
[Joy78] er calls to monitoring routines [Unix]. The
counter increment cverhead is low, and is suitable
for profiling statements. A call of the monitoring
routine has an overhead comparable with a call of 2
regular routine, and is therefore only suited to
profiling on a routine by routine basis. However,

the monitoring routine solution has certain advan-
tages. Whatever counters are needed by the moni-
toring routine can be managed by the monitoring
routine itsell, rather than being distributed around
the code. In particular, & monitoring routine can
easily be called from separately compiled pro-
grams. In addition. different monitoring routines
can be linked into the program being measured to
assemble different profiling data without having to
change the compiler or recompile the program. We
have exploited this approach: our compilers for C,
Fortran77, and Pascal can insert calls to a menitor-
ing routine in the prologue for each routine. Use of
the monitering routine requires nec planning on part
of a programmer other than to rsquest that aug-
mented routine prologues be produced during com-

pilation.

We are interested in gathering three pieces of
information during program execution: call counts
and execution times {or each profiled routine, and
the ares of the dynamic call graph traversed by this
execution of the program. By pest-processing of
this data we can build the dynamic call zraph !or
this execution of the program and propagate times
along the edges of this graph to attribute times for
routines to the routines that invoke them.

Gathering of the profiling information .should
not greatly interfere with the running of the pro-
gram. Thus. the menitoring routine must not pro-
duce trace output each time it is invoked. The
volume of data thus produced would be unmeanage-
ably large, and the time required to record it would
overwhelmm the running time of mest programs.
Similarly, the monitering routine can not do the
analysis of the proflling data (e.g. assembling the
call graph. propagating times around it, discovering
cycles, ete.) during program execution. Our solu-
tion is to gather profiling data in memory during’
program execution and to condense it to a flle as
the profiled program exits. This flle is then pro-
cessed by & separate program to produce the listing
of the profile data. An advantage of this approach is
that the profile data {or several executions of a pro-
gram can be combined by the post-processing to
provide a proflle of many executions.

The execution time monitoring consists of three
parts. The first part allocates and initializes the
runtime monitoring data structures before the pro-
gram begins execution. The second part is the mon-
ftoring routine invoked from the prologue of sach
profiled routine. The third part condenses the data
structures and writes them to & file as the program
terminates. The monitoring routine is discussed in
detail in the following sections.

3 1. Execution Counts

The gprof monitoring routine counts the
number of times each profiled routine is called. The
monitoring routine also records the arc in the call
graph that activated the profiled routine. The count
is sssociated with the arc in the call graph rather
than with the routine. Call counts for routines can
then be determined by summing the counts on arcs
directed into that routine. In a machine-dependent

{ashion, the monitoring routine notes its own return
address. This address is in the prologue of some
profiled routine that is the destination of an arc in
the dynamic call graph. The monitoring routine
also discovers the return address for that routine,
thus identifying the call site, or source of the are.
The source of the arc is in the caller, and the desti-
nation is in the callse. For example, if a routine A
calls a routine B, A is the caller, and B is the callee.
The prologue of B will include a call to the monitor-
ing routine that will note the arc {rom A to B and
either initialize or increment a countgr for that are.

One can not afford to have the monitoring rou-
tine output tracing information as each arc is
identified. Therefore, the monitoring routine main-
tains a table of all the arcs discovered, with counts
of the numbers of times each is traversed during
execution. This table is accessed once per routine
call. Access to it must be as fast as possible 3o as
not {8 overwhelm the time rsquirsd to execute the
program.

Our solution is to access the table through a
hash table. We use the call site as the primary key
with the callee address being the secondary key.
Since each call site typically calls only one callee,
we can reduce (usually to one) the number of minor
lookups based on the callee. Anocther alternative
would use the callee as the primary key and the call
site as the secondary key. Such an organization has
the advantage of associating callers with callees, at
the expense of longer lookups in the monitoring
routine. We are fortunate to be running in a virtual
memory environment, and (for the sake of speed)
were able to allocate enough spece for the primary
hash table to allow a one-to-one mapping {rom call
site addresses to the primary hash table. Thus our
hash function is trivial to calculate and collisions
occur only {for call sites that call multiple destina-
tions (e.g. functicnal parameters and f{unctional
variables). A one level hash function using both call
site and callee would result in an unreasonably
large hash table. Further, the number of dynamic
call sites and callees is not known during execution
of the profiled program.

Not all callers and callees can be identified by
the monitoring routine. Routines that were com-
piled without the profiling augmentations will not
call the monitoring routine as part of their proio-
gue, and thus no arcs will be recorded whose desti-
nations are in these routines. One need not profile
all the routines in a program. Routines that are not
profiled run at {ull speed. Certain routines, notably
exception handlers, are invoked by non-standard
calling sequences. Thus the monitoring routine may
know the destination of an arc (the callee), but find
it difficuit or impossible to determine the source of
the arc (the caller). Often in these cases the
apparent source of the arc is not a call site at all.
Such anocmaious imvocaticns are declared “spon-
taneous’’.

32 Exscution Times

The execution times for routines can be .nth-
ered in at least two ways. One method measures

3

the execution time of a routine by measuring the
slapsed time {rom routine eantry to routine exit.
Unfortunstely, time measurement is complicated
on time-sharing systems by the time-slicing of the
program. A second method samples the value of
the program counter at some interval. and infers
execution time {rom the distribution of the samples
within the program. This technique is particularly
suited to time-sharing systems, where the time-
slicing can serve as the basis for sampling the pro-
gram counter. Notice that, whereas the first
method could provide exact timings, the second is
inherently a statistical approximation.

The sampling method need not require suppert
{rom the operating system: all that is needed is the
ability to set and respond to ‘‘alarm clock’ inter-
rupts that run relative to program time. It is
imperative that the intervals be uniform since the
sampling of the program counter rather than the
duration of the interval is the basis of the distribu-
tion. If sampling is done too often, the interrup-
tions to sample the program counter will overwhelm
the running of the profiled program. On the other
hand, the program must run f{for encugh sampled
intervais that the distribution of the samples accu-
rately represeats the distribution of time for the
execution of the program. As with routine call trac-
ing. the monitoring routine can not afford to output
information for each program counter sample. In
our computing environment, the operating system
can provide a histogram of the location of the pro-
gram counter at the end of each clock tick (1/60th
of a second) in which a program runs. The histo-
gram is assembled in memory as the program runs.
This facility is enabled by our monitoring routine.
We have adjusted the granularity of the histogram
so that program counter values map one-to-one
onto the histogram. We make the simplifying
assumption that all calls to 'a specific routine
require the same amount of time to execute. This
assumption may disguise that some calls (or worse,
some call sites) always invoke a routine such that
its execution is faster (or siower) than the average
time for that routine.

When the profiled program terminstes, the arc
table and the histogram of program counter sam-
ples are written to a flle. The arc table is condensed
to consist of the source and destination addresses
of the arc and the count of the number of times the
arc was traversed by this execution of the program.
The recorded histogram consists of counters of the
number of limes the program counter was found to
be in each of the ranges covered by the histogram.
The ranges themselves are summarized as 2 lower
and upper bound and a step size.

4. Post Processzing

Having gethered the arcs of the call graph and
timing information for an execution of the program,
we are interested in attributing the time for each
routine to the routines that call it. We build a
dynamic call graph with ares from caller to callee,
and propagate time {rom descendants to ancestors
by topologically sorting the call graph. Time

propagation is periormed {rom the leaves of the call
graph toward the roots, according to the order
assigned by a topelogical numbering algorithm. The
topological numbering ensures that all edges in the
graph go f{rom higher numbered nodes to lower
numbered nodes. An example is given in Figure 1.
I we propagate time from nodes in the order
assigned by the algorithm, execution time can be
propagated {rom descendants to ancestors after a
gingle traversal of each arc in the call graph. Each
parent receives scme fraction of a child's time.
Thus time is charged to the caller in addition to
being charged to the callee.

Let G, be the number of calls to some routine,
¢. and & be the number of calls {rom a caller » to a
callee ¢. Since we are assuming each call to a rou-
tine takes the average amount of time for all calis
to that routine, the caller is accountable for G5/ G,
of the time spent by the callee. Let the S, be the
selftime of a routine, ¢. The selitime of a routine
can be determined from the timing informaticn
gathered during profiled program execution. The
total time, 7,, we wish to account to a routine 7, is
then given by the recurrence equation:

,=S, + 2 rch'
rCALLS ¢ .

where r CALLS ¢ is a relation showing all routines ¢
called by a routine r. This relation is easily avail-
able from the call graph.

However, {f the execution contains recursive
calls, the call graph has cycles that cannot be topo-
logically sorted. In these cases, we discover
strongly-connected components in the call graph.
treat each such compenent as 8 single nede, and
then sort the resulting graph. We use a variation of
Tarjan's strongly-connected components algerithm
that discovers strongly-connected components as it
is assigning topological order numbers Fr.rj.n'rz].

Time propagation within strongly connected
components is a problem. For example, s self-
recursive routine (a trivial cycle in the call graph) is
accountable for all the time it uses in all its recur-
sive instantiations. In our scheme, this time should
be shared among its call graph pareats. The arcs
irom a routine to itsel! are of interest, but do not
participate in time propagation. Thus the simple

o ®
D)
o‘go
offo

Tepalogical crdering
Figure 1.

equation for time propagstion does not work within
strongly connecied components. Time is not pro-
pagated from one member of a cycie to another,
since, by definition, this involves propagating time

.from a routine Lo itself. In addition, children of one

member of a cycle must be considered children of
all members of the cycle. Similarly, parents of one
member of the cycle must inherit all members of
the cycle as descendants. It is for these reasons
that we collapse connected components. Our solu-
tion collects all members of & cycle together, sum-
ming the time and call counts for all members. All
calls into the cycle are made to share the total time
of the cycie, and all descendants of the cyecle wro-
pagate time into the cycle as 2 whole. Calls among
the members of the cycle do not propagats any
time, though they are listed in the call graph
profile.

Figure 2 shows a meodified version of the call
graph of Figure 1, in which the nodes labelled 3 and
7 in Figure 1 are mutually recursive. The ‘opalegi-
cally sorted graph after the cycls i3 collzpsed i3
given in Figure 3.

Since the technique describad absve cnly eol-
lects the dynamic call graph, and the program typi-
cally does not call every routine on each execution,
different executions can introduce different cycles
in the dynamic call graph. Since cycles often have
a significant effect on time propagation, it is desir-
able to incorporate the static call graph so that
cycles will have the same members regardless of
how the program runs.

Cycle to be collapsed.
Figure 2.

Topological aumbering after cycie collapsing.
Figure 3.

Y X3

The static call graph can be constructed {rem
the source text of the program. However, discover-
ing the static call graph {rom the source text would
require two moderately difficult steps: finding the
source text for the program (which may not be
available), and scanning and parsing that text,
which may be in any one of several languages.

In our programming system, the static calling
information is also contained in the executable ver-
sion of the program. which we already have avail-
able, and which is in langusge-independent form.
One can' examine the instructions in the object pro-
gram, looking for calls to routines, and note which
routines can be called. This technique allows us to
add ares to those already in the dynamic call graph.
1! & statically discovered arc already exists in the
dynamic call graph. no action is required. Statically
discovered arcs that do not exist in the dynamic
call graph are added to the graph with a traversal
count of zero. Thus they are never responsible for
any time propagation. However, they may affect
the structure of the graph. Since they may com-
plete strongly connected compenents, the static
call graph construction is done beiore topological
ordering.

5. Data Presentation

The data is preseanted to the user in two
different formats. The Arst presentation simply
lists the routines without regard to the armount of
time their descendants use. The second presenta-
tion incorporates the call graph of the program.

5.1. The Flat Profile

The flat profile consists of a list of all the rou-
tines that are called during execution of the pro-
gram, with the count of the number of times they
are called and the number of seconds of execution
time {or which they are themselves accountable.
The routines are listed in decreasing order of execu-
tion time. A list of the routines that are never
called during execution of the program is also avail-
able to verify that nothing important is emitted by
this execution. The flat profile gives a quick over-
view of the routines that are used, and shows the
routines that are themselves responsible for large
{ractions of the execution time. In practice, this
profile usually shows that no single function is
overwhelmingly responsibie {or the total time of the
program. Notice that for this profile, the individual
times sum to the total execution time.

8.2, The Call Graph Proflle

Ideally, we would like to print the call graph of
the program, but we are limited by the two-
dimensional nature of cur output devices. We can-
not assume that a call graph is planar, and even {f it
is, that we can print a planar version of it. Instead,
we choose to list each routine, together with infor-
mation about the routines that are its direct
parents and children. This listing presents a win-
dow into the call graph. Based on our experience,
both parent information and child information is
important, and should be available without

searching through the output.

The major entries of the call graph profile are
the entries {rom the flat profile, augmented by the
time propegated to each routine {rom its descen-
dants. This profile is sorted by the sum of the time
for the routine itself plus the time inherited from
its descendants. The profile shows which of the
higher level routines spend large portions of the
total execution time in the routines that they call.
For each routine, we show the amount of time
passed by each child to the routine, which includes
time for the child itsel! and {or the descendants of
the child (and thus the descendants of the routine).
We also show the percentage these times represent
of the total time accounted to the child. Similarly,
the parents of each routine are listed, along with
time, and percentage of total routine time, pro-
pagated to each one.

Cycles are handled as single entities. The cycle
as a whole is shown as though it were a single rou-
tine, except that members of the cycle are listed in
place of the children. Although the number of calls
of each member {rom within the cycie are shown.
they do not affect time propagation. When a child is
8 member of a cycle, the time shown is the
appropriate {raction of the time for the whole cycle.
Self-recursive routines have their calls broken down
into calls {rom the outside and self-recursive calls.
Only the outside calls affect the propagation of
time.

The following example is a typical fragment of a

GEED G
Gy

Csuzz> CSuB2D

Y

CsuBi>

The entry in the call graph profile listing for this
example is shown in Figure 4.

The entry is for routine EXAMPLE, which has the
Caller routines as its parents, and the Sub routines
as its children. The reader should keep in mind
that all information is given with respect to EXAM-
PLE. The index in the first column shows that EXAM-
PLE is the second entry in the profile listing. The
EXAMPLE routine is called ten times, {four times by
CALLER], and six times by CALLER2. Consequently
40% of EXAMPLE's time is propagated to CALLER], and
80% of EXAMPLE's time is propagated tc CALLERZ.
The self and descendant flelds of the parents show
the amount of self and descendant time EXAMPLE
propagates to them (but not the time used by the
parents directly). Note that EXAMPLE calls itself
recursively four times. The routine EXAMPLE calls
routine SUB1 twenty times, SUB2 once, and never
calls SUB3. Since SUB2 is called a total of five times,
207 of its self and descendant time is propagated to
EXAMPLE's descendant time fleld. Because SUBlis a

calied/total parents
index Stime self descendants called+sel! name index
called /total chiidren :
0.20 1.20 4/10° CALLER? 7
0.30 1.80 8/10 CALLER2 1
[2) 415 0.50 3.00 10+4 EXAMPLE 2
1.50 1.00 20/40 SUB1 <cyclel> |4
0.00 0.50 1/8 sus2 9
0.00 _0.00 0/5 SUB3 11]
Profile entry for EXAMPLE.
Figure 4.

member of cycle I, the self and descendant times
and call count fraction are those for the cycie as 2
whole. Since cycle 1 is called a total of forty times
{not counting calls among members of the cycle), it
propegates 50% of the cycle's self and descendant
time to EXAMPLE's descendant time fleld. Finally
sach name is {ollowed by an index that shows where
en the listing to find the entry for that routine.

6. Using the Profiles

The profiler is a useful tool for improving a set
of routines that.implement an abstraction. It can
be helpful in identitying poorly ccded routines, and
in evaluating the new algorithms and code that
replace them. Taking {ull advantage of the profiler
requires a careful examination of the call graph
profile, and 8 thorough knowledge of the abstrac-
tions underlying the program.

"“The easiest optirmization that can be performed
is a small change to a control construct or data
structure that improves the running time of the
program. An obvious stariing point is a routine that
is called many times. For example, suppose an cut-
put routine is the only parent of a routine that {for-
mats the data. If this {ormat routine is expanded
inline in the sutput routine, the overhead of a func-
tion call and return can be saved for each datum
that needs to be {ormatted.

The drawback to inline expansion is that the
data abstractions ir the program may become less
parameterized. hence less clearly defined. The
profiling will ailso become less useful since the loss
of routines will make its output more granular. For
example, if the symbol table functions ‘‘lookup'’,
“insert”, and "‘delete” are all merged into a single
parameterized routine, it will be impossible to
determine the costs of any one of these individual
{unctions from the profile.

Further potential for optimization lies in rou-
tines that implement data abstractions whose total
execution time is long. For example, 8 lookup rou-
tine might be called only & {ew times, but use an
inefficient linear search algorithm, that might be
replaced with a binary search. Alternately, the
discovery that a rehashing function is being called
excessively, can lead to a different hash function or
a larger hash table. U the data abstraction function
cannot easily be speeded up, it may be advanta-
geous to cache its results, and eliminate the need to
rerun it for identical inputs. These and other ideas
for pi-ogram improvement are discussed in [Bent-
ley81).

This tool is best used in an iterative approach:
profiling the program, eliminating one bottleneck,
then finding some other part of the program that
begins to dcminate exescution time. For instance,
we have used gprof on itsel; eliminating, rewriting,
and inline expanding routines, until reading data
files (hardly a target for optimization!) represents
the dominating facter in its execution time.

Certain types of programs are not easily
analyzed by.gprof. They are typified by programs
that exhibit a large degree of recursion, such as
recursive descent compilers. The problem is that
mest of the major routines are grouped into a single
monolithic cycle. As in the symboi table abstrac-
tion that is placed in one routine, it is impossible to
distinguish which members of the cycle are respon-
zible for the execution time. Unfortunately there
are no easy modifications to these programs that
make them amenable to analysis.

A completely different use of the profiler is to
analyze the control flow of an unfamiliar program.
If you receive a program {rom another user that you
need to meodily in some small way, it is often
unclear where the changes need to be meade. By
running the program on an example and then using
gprof, you can get a view of the structure of the
program.

Consider an example in which you need to
change the output lformat of the program. For pur-
poses of this exampie suppose that the call graph of
the output portion of the program has the {ollowing
structure:

Initially you look through the gprof output for the
system call “WRITE”. The {ormat routine you will
need to change is probably among the parents of
the “WRITE" procedure. The next step is to look at
the profile entry for each of parents of “WRITE", in
this example either ' 'FORMAT1" or “FORMAT2"”, to
determine which one to change. Each format rou-
tine will have one or more parents, in this exampie
“CALCI", “*CALL2", and "CALC3''. By inspecting the
source code for each of these routines you can

determine which format routine generates the out-
put that you wish to modily. Since the gprof eatry
shows all the potential calls to the {ormat routine
you intend to change, you can determine if your
modifications will affect output that should be left
alone. ! you desire to change the output of
**CALC2"", but not “CALC3", then formatting routine
““FORMAT2'* needs to be split into two separate rou-
tines, one of which implements the new format.
You can then retarget just the call by ''CALC2'' that
needs the new format. It should be noted that the
static call information is particularly useful here
since the test case you run probably will not exer-
cise the entire program.

7. Conclusions

We have created a profiler that aids in the
evaluation of modular programs. For each routine

in the program, the profile shows the extent to-

which that routine helps support various abstrac-
tions, and how that routine uses other abstractions.
The profile accurately assesses the cost of routines
at all levels of the program decomposition. The
profiler is easily used, and can be compiled into the
program without any prior pianning by the pro-
grammer. [{ adds only five to thirty percent execu-
tion overhead to the program being profiled., pro-
duces no additicnal output until after the program
finishes, and allows the program to be measured in
its actual environment. Finally, the profiler runs on
2 time-sharing system using only the normal ser-
vices provided by the operating system and com-
pilers.

8. References

(Bentley81]
Bentley, J. L., "VWriting Efficient Code’, Depart-
ment of Computer Science, Carnegie-Mellon
University, Pittsburgh. Pennsylvania, CMU-CS-
81-116, 1881.

[GrahamB8?2]
Graham, S. L., Heary, R. R.. Schulman, R. A,
‘*‘An Experiment in Table Driven Code Generas-
tion", SIGPLAN °'82 Symposium on Compiler
Construction, June, 1982.

{Joy7s]
Joy, W. N,, Graham, S. L., Haley. C. B. "'Berkeley
Pascal User's Manual”, Version 1.1, Computer
Science Division University of California. Berke-
ley. CA. April 1978.

[Knuth?1]

Knuth. D. E. “An empirical study of FORTRAN

programs'’, Software - Practice and Experience,
1, 105-133. 1971

[Satterthwaite72)
Satterthwaite, E. "Debugging Tccls for Eigh
Level Languages'’, Soitware - Practice and
Experience, 2; 157-217, 1872

[Tarjan72]
Tarjan, R. E.. “Depth first sesrch and linear
graph algorithm.' SJAM J. Computing 1:2, 146-
160, 1972.

(Unix]
Unix Programmer’'s Manual, “prof command'’,
section 1, Bell Laboratories., Murray Hill. NJ.
January 1879.

Hints on Configuring YAX* Systems for UNIX?t

Revised for 4.2BSD: March 15, 1983

Bob Kridle

Computer Systems Support Group
U. C. Berkeley
kridle@berkeley, ucbvax'kridle

Sam Leffler

Computer Systems Research Group
U. C. Berkeley
sam@ berkeley, ucbvax!sam

ABSTRACT

This document reflects our experiences and opinions in configuring over thirty
VAXes to run UNIXt over the last five years.

Our prime considerations in choosing equipment are:
Cost

Performance

Reliability

Maintainability and maintenance cost

Delivery time

Redundancy of the system

Conservation of space, power, and cooling resources

We consider components individually and then describe several system pack-
ages built from these components, emphasizing independently single-source
systems, minimization of cost, and maximal expansion capability.

Copyright © 1983, Bob Kridle and Sam Leffler. Copying in whole for personal
use by sites configuring UNIX systems i; permitted. Reproduction in whole or
in part for other purposes is permitted only with the express written consent of
the authors. This paper is based on an earlier paper of the same name authored
by Bob Kridle and Bill Joy.

t+ UNIX is a trademark of Bell Laboratories.
* VAX, VMS, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.

Introduction «2- ® rjk/sjl March, 1983

DISCLAIMER

This documents reflects our personal opinions. We are responsible for software and hardware
support of VAX systems, and the recommendations we give reflect what we would do. We are
careful to note the equipment that we recommend but are not using, we recommend no
second-vendor equipment that is not known to be in use successfully at several UNIX sites. In
any case you may get a lemon, no matter what you buy. All we promise is that this is what we
believe. Let us know what you find out.

We have little familiarity with VMS. Recommendations made here should not be construed to be
applicable to any operating system other than UNIX. We have often adapted UNIX to these
devices in a way that may not be possible with other operating systems.

Finally, note that we have not written this document solely to share the knowledge we have
acquired with you; we have written it because we do not have the time to talk to everyone who
needs this information. Please do not call us to confirm the information here or to ask ques-
tions about our opinions. We would like to hear of your experiences, or learn of mistakes in
this document or products that we know nothing about, but do not have time to chat about the
information that is given here. We do welcome electronic mail sent to our addresses as shown
on the first page.

PREFACE TO 1983 REVISION

The VAX/UNIX Community has grown considerably since the last revision of this paper in
mid-1981. It is safe to say that 4BSD systems represent a substantial portion of all the VAXes
sold. Both the hardware available for building good VAX/UNIX systems and the support ser-
vices available to those doing the building have increased. A significant portion of the systems
now being built are teing used in business and private research environments in addition to
those in the traditional academic UNIX strongholds. Many of these systems are based on
binary licenses rather than the educational source license so familiar at universities.

We hope this document will be of use to a variety of potential VAX/UNIX users. Even the
purchaser who chooses to buy a complete system from DEC or a mixed vendor system integra-
tor should be assisted in making a better choice by an increased knowledge of the integration
decisions. In the area of hardware, you will find that the sections on disks, network interfaces,
and printers have been heavily reworked. In addition to the traditional emphasis on hardware
selection, in this revision we try to at least provide pointers to some of the other relevant ser-
vices available. A list of hardware integrators we are aware of who have developed expertise in
the UNIX area is included. In addition, some suppliers of 4BSD software are included.

This revision takes a different policy regarding the inclusion of specific prices for hardware: No
explict prices are included. We do ocassionally include derived costs such as the cost per Mega-

byte for a particular size disk system. The are only meant to be approximate and are calculated
from current quantity one list prices.

It has been our experience that the inclusion of prices made the release of this paper much
more difficult without significantly increasing its value. We were obligated to pass the paper by
every hardware vendor for price checking and even so the contents remained accurate for only
a brief period. In addition, regional pricing and discounting policys vary widely. We have
decided that rather than depend on us for prices, the reader should narrow their range of
choices as much as possible and then do scme hard bargaining with their suppliers. ‘‘Every-

Introduction -3- ® rjk/sjl March, 1983

body gets a discount.”

OVERVIEW

We first discuss components, listing the alternatives we have tried and sometimes a few we
have not, and then discuss system packages. We buy a substantial portion of our equipment
from vendors other than DEC. The reasons for choosing second vendor equipment are usually
some combination of more current technology, lower cost for equivalent equipment or shorter
delivery time.

We do not consider devices that have proven unreliable or whose performance we consider
inadequate.* In addition, there are many devices that we have no experience with. As a gen-
eral rule, every new peripheral has required a non-trivial amount of leg work to get up to speed.
We suggest using only peripherals that have been previously used successfully on the type of
VAX you are configuring (780, 750 or 730) or demanding a substantial (50-100%) discount for
being a guinea pig. Be especially careful of UNIBUSY interfaces. Almost every manufacturer
of a UNIBUS widget now includes the VAX as a machine on which his device will work. Some
of these devices have still not been well tested in this situation. These often will not work
without substantial modification.

System buyers without ready access to an in—house hardware staff should consider carefully the
option of buying as much DEC equipment as possible. If you have the money and time required to
do this, there are some strong advantages. Our DEC equipment has, in general, proven some-
what more reliable than the equivalent alternate vendor equipment. Time from equipment
delivery to running system is also usually shorter. DEC field service in our area is excellent.
Outside service available for non-DEC peripherals is spotty at best.

For smaller installations this option should be carefully considered. It is easier if you can call
one party for all your problems, if you can afford it. At Berkeley, we are well past the inven-
tory level where self maintenance begins to pay off even on all DEC systems, so this is not a
consideration. One of us (Kridle) manages our local hardware support group.

Unfortunately, the limited selection of configurations currently available sometimes make the
all-DEC choice difficult. This is especially true of the smaller configurations as DEC’s bottom
end peripherals are less satisfactory for UNIX. We say this not just for monetary reasons; func-
tionally and aesthetically we would prefer to have neither the RKO07 disk nor the TS11 tape unit
in any system we have to deal with.

We recommend getting field service at least on your CPU for the first year. It has paid off for
us in the cost of parts alone. You can drop the contract after the engineering changes have
tapered off and most of the infant failures have occurred. DEC requires a certain amount of its
peripheral equipment on the machine to qualify for field service. We understand that it is com-
pany policy not to provide a maintenance contract for a system without a DEC mass storage
peripheral. If you intend to purchase a maintenance contract, be certain that your local field

* An exception to this rule is made where we have yet to find any satisfactory devices in a particular category
In these instances we have indicated our reservations about the existing choices in the hopes that new pro-
ducts will address the problems we believe are important. The reader should realize that if a vendor's equip-
ment has been mentioned in a negative light it indicates we at least thought highly enough of it to evaluate it
seriously. We are not trying to damage any company’s reputation, merely insure that important information
is shared equally. .

Introduction -4- © rjk/sjl March, 1983

service is willing to support at least the DEC equipment you buy.

BANDWIDTH CONSIDERATIONS

Evaluation of the data transfer capacities between the various parts of VAX systems is a com-
plex task that plays a critical part in system configuration. Unfortunately, there is a tremendous
amount of misinformation available on this subject and little useful hard data. We have made
many measurements and are always in the process of making more. What we currently know
follows.

The 11/780 UNIBUS adapter is the device most frequently shrouded in confusion. DEC docu-
ments variously give the bandwidth at between 1.2 MB/sec and 1.5 MB/sec when transferring
through a buffered data path. We are not aware of any specifications for the unbuffered data
path but have not been able to use it with some devices as slow as 50 KB/sec. One experiment
we conducted involved examining the UNIBUS protocol lines with a scope while constantly
transferring from a disk drive. We observed that while the drive was transferring at an average
rate of about 1.2 MB/sec the UNIBUS was close to one hundred precent busy. This test was
conducted on an otherwise idle system. No other devices were active on the UNIBUS and large
disk transfers (cylinders) reduced any register set up time to a minimum. We conclude from
this that 1.2 MB/sec is the absolute maximum transfer rate possible through a 11/780 UNIBUS
adapter. Our observations showed that the largest delays while transferring data occurred while
the buffered data path was being loaded or unloaded from the SBI. Since the UBA is controlled
by a micro sequencer that is also involved in other UBA activities such as processing interrupts,
we suspect that on an active UBA this bandwidth may be somewhat reduced.

Measurements of the available throughput to and from the 4.2BSD file system indicate a
significant difference between disks running on the native processor bus (CMI or SBI) and
those running on the UNIBUS. Average data rates are consistently lower on disks residing on
the UNIBUS, even when the controller provides a few sectors of buffering. This leads us to
believe that when average reads are 4-8 Kilobytes (the average block size of a 4.2BSD file sys-
tem), most UNIBUS controllers will fall behind and eventually lose a revolution. This does
not, however, seem to occur with the UDASO UNIBUS controller as it has a much larger
amount (16 Kbytes) of bufferingt.

There are troublesome devices that cannot buffer enough data to guarantee that the maximum
size record can always be transferred (6250bpi tape drives), or do not buffer an adequate
amount of data (RKO07 disk controller). To handle these devices UNIX provides a software
interlock mechanism that prevents excess UBA contention.

The MASSBUS adapters are specified to have a higher potential bandwidth of 2.5 MB/sec.
Since they are selector channels that allow only one device to transfer data at a time, the real-
ized bandwidth is limited to the rate of the fastest device. The fastest devices currently avail-
able from DEC for 11/750 systems or 11/780 systems with a single memory controller transfer
at 1.3 MB/sec. Large 11/780 systems with two memory controllers and interleaved memory
may run RPO7 disk drives that then transfer data at 2.2 MB/sec.® An interesting bandwidth
limit may be established by the memory controller particularly on 11/780s. We suspect that the
CPU may be slowed considerably by memory contention when two disk channels are being used
simultaneously. This should be alleviated by using interleaved memory controllers.

The appendix to the VAX Hardware Handbook titled ‘‘System Throughput Considerations’
seems to bear out these impressions and should be read carefully by anyone hoping to under-
stand the consequences for VAX applications involving high bandwidth input or output. If we
had data intensive applications we would seriously consider the use of RP07 disks (and

t A few of the initial UDASO controllers were delivered with only 4 Kbytes of buffering. Avoid these.
* On machines with only one memory controller the RP07 hardware is arranged to transfer at 1.3 MB/sec.

Introduction -5- ® rjk/sjl March, 1983

interleaved memory controllers) because of the resultant higher burst transfer rate; this will be
discussed further below.

MEMORY

All VAXes are sold with at least the minimum amount of DEC memory adequate to run diag-
nostics. Additional memory is the lowest risk alternate vendor choice. We buy the remainder
of our 780 memory from Mostek, National Semiconductor or Trendata.* This area is extremely
price competitive and there are at least six possible vendors. By all means, ask for competitive
quotes. Assure yourself, however, that you are not the first customer for a new vendor.

Add in memory for the VAX 750 is a newer item and prices are not as low. However, this
memory is almost identical to the 11/70 MK11 memory and several vendors have managed to
build this product by modifying their previous 11/70 add-in product. Trendata also has 1
Mbyte 64K RAM modules for both 750s and 730s.

Small quantities (one to two megabytes) are usually available off the shelf. Large quantities (4
megabytes and up) have taken less than 30 days.

For the 11/780 memory, the RAM chips are socketed, and two replacement chips per board are
supplied by all vendors we mention; You can pull out the board and replace the chip at your
leisure. Since single bit errors are corrected this has never involved any unexpected down time
for us. There is at least a one year return to factory agreement on the boards, included in the
purchase price. Out of warranty repairs are said to typically cost less than $300. We have
returned only one board to the plant in about 30 board years.

When purchased from DEC, memory is much more expensive for any of the machines.
Maintenance on a 1 Megabyte DEC memory module is $179 per month with board replacement
through field service. The boards are not socketed. Delivery times on memory from DEC
have typically been substantially longer than times from second vendors.

If you are going to have more than 4 megabytes of memory on your 780 you will need a CPU
expansion cabinet and a second memory controller that includes a second half-megabyte of
DEC memory.

There are two models of 11/750 memory controllers and backplanes around. The one currently
being manufactured by DEC can be filled with either quarter Megabyte or full Megabyte
modules for a maximum capacity of 8 Megabytest. The older memory controller and backplane
can be populated with only quarter Megabyte modules for a total capacity of 2 Megabytes. To
make matters even more complicated, 750s exist which have the newer style backplane and the
older controller. These too will only hold 2 Megabytes of memory. The smaller capacity sys-
tem can be upgraded to the larger one, but this is quite expensive; check with DEC before
buying one, or be sure that you will be satisfied with a maximum of 2 Megabytes.

DISKSt

The area of disks and disk controllers is one which has seen a great deal of change since the last
revision of this paper in mid 1981. At that time we had no experience with Winchester tech-
nology disk drives. Now, after some painful experimentation, we have settled on a few Win-
chester products which fill our needs reliably. We no longer buy, or recommend, any

* A list of second vendors and their phone numbers is given at the end of the document.

$ It is important when mixing memory module sizes in VAX 11/750s to install the memory in consecutive
slots beginning with the first and starting with the 1 Mbyte modules.

t Disk sizes shown throughout this document are in bytes of formatted space available.

Components -6- © rjk/sjl March, 1983

removable media disk products.

The choice of available controllers is also wider and much improved. High quality controllers
are available which interface to the native busses of 750s and 780s as well as the UNIBUS. In
addition, DEC has introduced an entire new storage system architecture which places a great
deal more function in the controller, incorporates a new controller-drive interconnect, and uses
improved error correction algorithms.

First, we will discuss some of the major areas of change in disk/controller technology. We will
then explore how these improve, or otherwise affect, our methods of doing business. Finally,
we will consider some specific DEC and non-DEC products.

The availability of large capacity, low cost, high reliability Winchester technology disk drives
has had an enormous impact on us. The rack mountable, 300 Megabyte or bigger disk which
was always ‘‘just around the corner” is really here. It is hard to see how we got along without
it. We can now put about 2 Gigabytes of storage in the same footprint that previously held 256
Megabytes. In addition, we consume and dissipate about 25% of the energy we did with older,
removable media, drives. The prospective buyer should be warned, however, that not all *‘win-
nies’’ live up to expectations with respect to reliability. We are happy with the reliability of the
equipment we describe here. If you want to try something else, be sure and have some long
heart to heart talks with other users of the product.

Cost per Megabyte of disk storage is down significantly. Cost ranges from $30 to $110 per
Megabyte for disks, not counting the price of the controller(s). This value depends on the size
of the units purchased and the choice of vendor. Cost per unit storage in terms of both pur-
chase price and cost to operate are a stronger inverse function of the total drive capacity than
ever before. For example, the cost per Megabyte of the 456 Mbyte DEC RAB81 is about 35% of
that of the 121 Mbyte RA80. The reason for this becomes clear when the drives are examined:
many of the components are identical.

The higher recording densities of new disk drives has also been a strong motivator in controller
evolution. One technique for increasing the recording density of the drives has been to rely
more heavily on sophisticated error correction and block remapping schemes. No large Win-
chester drive can be depended on to be ‘‘error free.”” In fact, most the drives we use have
uncorrectable media defects. These locations must be remapped using some combination of
controller firmware and handler software. In addition, the higher bit rates of new disk drives
demand faster serial logic in the controller interface. Many older disk controllers are limited to
the burst transfer rate of 3330 style disks of about 1.25 Mbyte/sec.

Two types of controller have evolved for the newer, high bit density disks. The first is simply a
version of the traditional SMD or Storage Module Drive interface reengineered for higher data
rates. This type of interface characterizes all of the non-DEC controllers which have been pro-
duced for VAXes of the last few years. These controllers interface to the native busses of the
VAX (SBI or CMI) where possible to allow the higher data rates available to be passed all the
way through to memory. Where the controller must operate on a bus incapable of a continuous
transfer rate as high as the disk, some amount of internal buffering is provided to maximize the
amount of date transferred before the disk ‘‘blows a rev’’.*

Non-DEC controllers most often emulate the DEC RH11, RH750, or RH780 interface. Some
support for error correction is provided by the controller although a substantial assist is usually
required from the system driver. Remapping of uncorrectable media defects is entirely handled
by the driver. All 4.2BSD device drivers support bad block remapping. In addition, error
correction and remapping support is, optionally, available in the standalone utilitiest. The only

* * By “‘blowing a rev'’, we mean a data transfer can not be completed without extraneous disk revolu-
tions. This is mainly a function of the time required by a processor to service an interrupt, the bandwidth of
the bus, and the buffering in the controller. With the 4.2BSD file system, disk controllers are now being ex-
tended to their limitations, and beyond. This has significantly influenced our concern for the their limitations
as bandwidth suffers greatly when such an event takes place.

+ Due to limitations in the size of a binary image which may be placed on a boot cassette or floppy. the error

Components -7- ® rjk/sjl March, 1983

part of the system which does not gracefully handle errors or media defects is the first level
bootstrap code used on 750s.

DEC has produced a very different type of controller, partially to deal with the challenges of
higher density disk drives. This controller, the UDASO, is an example of DEC’s long range
plan for mass storage (this ‘‘plan’’ is called the Digital Storage Architecture, or DSA). One of
the fundamental goals of DSA is to provide a standard set of disk ‘‘operations’’ across a variety
of storage products. With DSA it should be possible to construct standard drivers which know
very little about the characteristics or geometry of the actual storage devices they are dealing
with. In order to meet this goal, error correction, bad block forwarding, and even the mapping
of logical blocks onto the physical disk are handled in the controller. Requests to the controller
typically consist of logical block addresses and counts, along with a memory transfer address.
Responses then contain either data or a failure message. The controller independently takes all
possible measures to recover data before returning failure.

In addition to increasing the functionality of the controller, DSA specifies a new controller to
drive interface. The Standard Disk Interface, or SDI, is capable of handling the transfer rates of
any drive which DEC may produce in the foreseeable future. This interface is implemented
using four electrically isolated radial mini-coax cables to each disk drive embedded in a tough
rubber-like umbilical.

On 750 and 780 systems we are, or will be, buying either large (404 Mbyte) Fujitsu disk drives
and Emulex SBI or CMI interfaced controllers, or DEC UDAS5O0 controllers with (456 Mega-
byte) RA81 disk drives. The choice here is not clear as the two packages are both attractive
and each has a different set of advantages. Although we do not currently have any
UDASO/RAS8Is at Berkeley, several users of 4BSD do have them, and are very satisfied. In
addition, we have visited Colorado Springs, where the drives are manufactured, and run bench-
marks on them using an early version of 4.2BSD. The preliminary measurements support our
optimism about the UDASO/RA81 combination, though we are not yet ready to publish these
results (they will be available at a later time).

It is important not to place too much emphasis on raw performance issues when comparing pro-
ducts as similar in capabilities as the large disk choices presented here. Reliability, freedom
from bugs, and ease of maintenance are equally if not more important to us. The value of the
product in future configurations is also important. For example, the UDAS50/RA81 disk system
represents an early implementation of a new architecture. It incorporates many new features
heretofore unavailable to us. In addition, it is expandable in the sense that the disk/controller
interface is designed to handle future density increases which are not likely to be useable with
the traditional SMD interface. On the otherhand, any implementation as new as the
UDASO/RAS81 is not as likely to be as bug free or as well understood as the traditional RH
style interface architecture.

Table 1 indicates some of the tradeoffs as we now understand them.

When searching for less storage for smaller smaller systems, or where two arms are needed for
performance and 800+ Megabytes of storage is overkill, another choice is required. Even at
$50/Mbyte, a 404 Megabyte drive is not cheap. One of the authors has had good experience on
a small 750 system with a 160 Mbyte Winchester disk drive from Tecstore and a National Sem-
iconductor HEX-3000 combination tape and disk controller. We also know of successful use of
the Spectra Logic combination controller on a 730 system. Using slightly less expensive disk
drives and a combination controller one can obtain cost effective (< $75.00/Mbyte) storage in

correction and bad sector forwarding code is not included in the standalone utilities by default.

Components

® rjk/sjl March, 1983

Criterion UDASO/RASI1 Emulex SC7?0/Fujitsu Eagle
Initial Purchase UDASO and 1st RA81 — SC750 and first Eagle —
Cost — 750 $57.00/Mbyte w/o additional $55.00/Mbyte

Initial Purchase
Cost — 780

Cost for Incre-
mental Addition

Performance

Maintenance
Costs

Mean Time
Berween Failure

Mean Time to
Repair

Sources of
Maintenance

Robustness of
Drive Intercon-
nect

Future Value

Cost to Integrate

UNIBUS adaptcr,
$70.00/Mbyte with UNIBUS
adaptor

UDASO and 1st RA81 —
$83.00/Mbyte with UNIBUS
adaptor

Additional RA81s —
$41.00/Mbyte

May be somewhat better in
mixed request, multi drive en-
vironment due to ordering op-
timizations possible in controll-
er; software handler at present
is suboptimal

Very low — $111/Mo. for 1st
drive and controller (compare
to $326 for RM05)

Too little experience available
yet; RMB8O is precursor of
RAS81 mechanically and has
been quite good

Designed for quick field remo-
val of HDA, easy to repair

DEC, maint. contract cheap,
real, and available

Incredible — electrical isolation
and you could run over cables
with a fork lift! Radial connec-
tion allows easy removal of a
single drive

Early implementation of new
architecture; if it pans out, like-
ly to be compatible with future,
high performance, products;
DEC resale high anyway

Handler is new; some initial
bugs likely; probably a bug or
two left in controller firmware
too

SC780 and 1st Eagle —
$65.00/Mbyte

Additional Eagles —

$32.00/Mbyte
Initial tests indicate 5-10%
better single file throughput

due to better sustained burst
rate

Unknown but believed very low

Not a lot of experience on
these yet either; initial experi-
ence looks excellent (smaller
Fujis are phenomenal; 30,000
MTBF!)

Not as easy;
disassembly

more complex

Not so clear; ask for exchange
contract from vendor

Same old SMD flat cables; daisy
chain

High performance (stretched to
limits) implementation of old
interface standard; not likely to
work again for next increase

Well known interface; much

more likely to be bug free

Table 1. Large Disk System Comparison

Components -9- © rjk/sjl March, 1983

smaller amounts and provide a tape interface to boot (so to speak.)

TAPES

We use Emulex TC-11/P UNIBUS tape controllers and Kennedy model 9300-3 800/1600 BPI
125 IPS transports. Cipher tape drives and Wesperco controllers are also widely used. When
purchasing second vendor equipment, one will also need cables and a rack in which to mount
the tape drive. The Kennedy transport comes with a 15 month factory warranty. Our distribu-
tor exchanges/repairs the cards in the controllers based on a local diagnostic mode in the tran-
sport. After the warranty period, card swaps cost about $75. For transport mechanical failures
the transport is returned to the factory in Monrovia, California, or we fix it ourselves.

George Goble at Purdue is using a 6250 tape system with UNIX. It includes a Telex 6253
drive (800/1600/6250 BPI) 125 IPS with a TELEX Formatter and an Aviv 1 board UNIBUS
interface. The UNIBUS interface has 4KB of buffering, to help with bus latency problems, and
it really appears to be necessary. The whole system cost him about three times what our 1600
bpi systems cost. The Aviv controller emulates a TUI0 which is similar to the Emulex
NRZ/PE controller. When heavy data transfer is done to the drive at 6250 bpi it uses the
entire bandwidth of the UBA. This forces UNIBUS access through the UBA to be arbitrated by
the operating system in order that the tape drive and a disk controller may coexist on the same
UBA. N.B.: The driver for this controller/transport combination is not currently included in
the standard 4BSD system but is trivially cloned from the TM11 handler which is a standard
part of the distribution. Aviv also has a TM-11 compatible controller, the TFC 822, which sup-
ports both Kennedy and Cipher transports. This controller has more internal buffering than the
Emulex TM-11 emulator and may be preferable for this reason.

Name Speed Densities

Kennedy 125ips 800/1600
Telex 125ips 800/1600/6250

Our original VAX system came in a package with a DEC TE16 on its own MBA. The TE16 is
reliable but slow. The DEC TU4S is faster, but fraught with problems as the high maintenance
cost reflects. The DEC TU77 is a good transport, but the auto-loading features do not seem to
work well, and it is expensive. Finally, there is a relatively new product from DEC, a
1600/6250bpi 125ips tape drive, the TU78. This is the same transport as the TU77. We have
two TU78s in use on campus with mixed results.

The UNIBUS tape drive, the TS11, is included in packages for the 11/750 except for the RKO07
package system. It does not have a vacuum column, and is thus hard on tapes. It is a problem
to load and has been found to be unreliable.

Name Speed Densities

TS11 45ips 1600 (Not recommended)
TE16 45ips 800/1600

TU45 75ips 800/1600 (Not recommended)
TU77 125ips 800/1600

TU78 125ips 1600/6250

Components -10 - © rjk/sjl March, 1983

TERMINAL INTERFACES

With a VAX you get 8 lines of DZ-11 that provide some modem -control but are not DMA.
We use the Able DH-11 emulator, the SuperMAX DH/DM, or one of the two Emulex DH-11
emulators— the CS-11 or CS-21. We also have tried the Intersil DH-11 emulator and know it
to function satisfactorily. All of these provide DMA on output and modem control. The CS-
11 is unusual in that it provides expansion of up to four 16 line DHs on a single UNIBUS hex
module by placing the RS-232 support and UARTS out on the distribution panels and bussing
these panels to the UNIBUS module with one ribbon cable. The CS-11 is an attractive solution
where a very large number of lines will be connected to one machine since it reduces the
number of cables, and UNIBUS backplane space and power required.

4BSD also provide support for the asynchronous serial portion of the the DEC DMF-32. This
is the standard communications interface for the VAX 11/730 and has an additional feature of
supporting both DMA and programmed interrupt operation for both input and output. The
4BSD driver currently does not use all this flexibility, treating it pretty much like a DH-11.
The DMF-32 driver also works with the Able DMZ-11, a product which emulates the asynchro-
nous serial portions of two DMF-32s.

In the area of non-DMA controllers from DEC, there are the DZ-11 and DZ-32 (a DZ-11 with
full modem control).

Both the DZ’s and the DH’s have input silo’s that UNIX can use to reduce interrupt load on
input. The DMA output of the DH emulators is especially important for graphics applications
where high-volume and continuous output occurs.

PRINTERS

One of the most exciting developments in the area of printers is the availability of desk top
laser printers. This paper was printed on an Imagen laser printer we have been using, quite
successfully, for several months now. The Imagen offers high resolution (240 dots/inch), uses
plain paper, and seems to require minimal hardware maintenance. It is interfaced to one of our
VAXes via a 19.2 Kbaud RS-232 line although a parallel interface is also available.

Among the problems with the Imagen are the small number of available fonts and the incom-
pleteness of some of those which are available. In addition, the Cannon LBP-10 printing
engine used has only a 200 sheet paper tray. Since the unit employs a wet process Xerography
and smells a bit, it is not located in the same room as a person who might be responsible for
refilling the tray. This inevitably results in print jobs backing up in a long queue until someone
notices paper is needed. The Imagen folks were initially TEX oriented and their troff support
contains glitches which are purported to go away with future releases of the software. We also
hope to eventually interface our printer directly to the Ethernet; as soon as Imagen provides the
necessary software to do so.

Another laser printer based on the Canon LBP-10 engine is produced by Symbolics. Symbolics
offers both RS-232 and parallel interfaces to the printer. The Symbolics software is known to
provide excellent software support for trofff We are are now evaluating a Symbolics printer.

QMS in Georgia has apparently solved the mysteries of the Xerox 2700 printer and is distribut-
ing an OEM version which might be a good choice. The major potential advantages here have
to do with Xerox’s size and extensive field support. The unit is dry process (unlike the Imagen
and Symbolics) and has 300 dots/inch resolution. With any luck, we will also be evaluating this
unit soon.

Components -11- ® rjk/sjl March, 1983

We have been using some Printronix 300 and 600 line per minute dot-matrix printers. The
Printronix printers do point-plotting at 60 points per inch. They are not outstandingly cheap,
but are ruggedly built.

The new Data Products B-600-1 is a 600 LPM band printer. We have one and are buying
another. Although we had some initial problems getting the first unit into service, it now runs
reliably and is our heaviest usage production printer.

PLOTTERS

Electrostatic printer/plotters that are capable of 200 dots/inch are usable both as plotters and as
output devices for rofff We have an old model Varian that requires considerable care and feed-
ing; newer models are said to be less of a headache. A new Versatec 11°’ model sells for about
$8,000. The objections to all these guys are that the paper tends to be wet sometimes, stinky.,
and more expensive than line printer ($20 per 1000 sheets). These are high maintenance items
as are all heavily used hardcopy output devices we are familiar with. For troff; we now vastly
prefer the Imagen laser printer mentioned above.

NETWORK INTERFACES

Networks can be categorized as local area networks (LANs) or long haul nerworks according to
their geographical limitations. The most widely publicized local area network is the Ethernet.
An example of a long haul network is the DARPA Internet which spans many continents and
includes devices such as communication satellites for connecting disjoint sub-networks.

Among local area networks there are several competing modulation schemes. The Ethernet
and several other networks uses baseband modulation techniques, while newer technologies,
such as broadband, are available from other vendors. Some of the major differences between
baseband and broadband technologies are maximum station separation, cable bandwidth, and,
currently, per station connection cost. At this time, the least expensive, and most readily avail-
able local area networking hardware use baseband modulation. However, given the limitations
inherent in baseband modulation schemes, companies are placing more work into developing
low cost parts for use in broadband networks.

Aside from the question of baseband versus broadband, selection of medium is an issue. Coax
cable is commonly used but types of coax vary. Broadband networks normally use the same
standard 75 ohm coaxial cable used for CATV, while baseband uses 50 ohm cable. This implies
that upgrading a network from baseband to broadband requires expensive installation of a new
cable unless one thinks ahead, or your site already has installed cabling for in-house CATV use.
Further, the best medium in terms of signal loss and noise immunity is fiber optic cable. How-
ever, due to problems such as tapping the cable, few vendors have selected this technology. If
you plan to consider broadband at some time in the future, while at the outset using baseband,
it is well worth the cost of the extra cable to run parallel 50 and 75 ohm coax.

In looking at network controllers, we will consider only the available local area networking
hardware; our experience with long haul networks is limited to the Internet and so is of
minimal interest.

There are at least four vendors with existing or announced Ethernet controllers, and with the
soon to be available ‘‘Ethernet chips’® more vendors may announce products. It is unlikely,
however, that the Ethernet chips will significantly influence the current prices as the price of an
Ethernet controller has already been driven down by the market competition. While the influx
of new technology may not lower controller prices, it is sure to improve their performance and
reliability.

Components -12- © rjk/sjl March, 1983

We currently use 10Mb/s UNIBUS Ethernet controllers from both Interlan and 3Com. The
two controllers have almost identical throughput characteristics with 4.2BSD, but neither have
proven entirely satisfactory. The 3Com controller is the less expensive of the two. Its design is
optimal for small PDP-11s and LSI-11s where the processor is resident on the same bus with
the controller. The design employs 16 or 32 Kbytes of dual-ported RAM which is directly
addressable as UNIBUS (or Q-bus) memory. While this is effective for machines such as the
PDP-11 or LSI-11 where no penalty is required when accessing the on-board memory, with a
VAX any memory access must be arbitrated by the intervening UNIBUS adaptor. The result of
this is that accesses to the on-board memory are heavily constrained by the characteristics of
the UNIBUS adaptor. '

In accessing memory through a UNIBUS adaptor, all accesses must be performed on even byte
boundaries and be no more than two bytes at a time. Consequently, one must either be very
careful about the coding of a network interface driver, or the contents of any on-board memory
must be copied into main memory before manipulating it. Due to the architecture of the net-
working subsystem included in 4.2BSD and the lack of control over the code generated by the
VAX C compiler, constraining memory fetches was infeasible and the second alternative was
taken. This implies that data must be block copied in to and out of the on-board memory a
word at a time. The VAX movc3 instruction is not usable in the UNIBUS address space, mak-
ing this an expensive operation.

A second problem with the 3Com controller is that it lacks an on-board timer for implementing
a backoff algorithm when accessing the Ethernet. This implies the host must perform a timing
loop when backing off from a congested Ethernet. When an Ethernet is heavily congested this
may prove to be very costly as no other processing may take place while the host timing loop is
executing.

A third problem with the 3Com controller is that it does not allow a host to receive its own
broadcast packets. This implies that broadcast packets must be captured in software. We con-
sider this a serious deficiency as it prevents hardware testing without an auxiliary echo server.

The second Ethernet controller we have used is made by Interlan. This controller provides
DMA access, as well as several desirable features such as on-board retransmissions. Unfor-
tunately, while the DMA interface should be expected to provide higher throughput than the
shared memory approach, using the Interlan interface we have been abie to attain only compar-
able transfer rates to those measured with the 3Com interface. In addition, the controller con-
sumes a significant amount of of +5 volt power. While broadcast packets are retrieved by the
interface, the Ethernet CRC calculation is not performed.

We know of two other Ethernet controllers, one from ACC and one from DEC. We have two
ACC controllers for evaluation, but have yet to gain any experience with them. The ACC con-
troller is based on the UMC-Z80 and provides a DMA host interface. The DEC Ethernet con-
troller was announced at the last DECUS meeting, but as of yet we know of none in customer
hands.

To summarize the Ethernet controller situation, it appears the best strategy to follow is to wait
for Ethernet chips to become widely available so the vendors can reengineer their existing con-
trollers with minimal cost. If you require Ethernet access from your VAX now, you may wish
to follow our approach: select the lowest priced product and treat it as ‘‘disposable’ in the
expectation that something better will eventually be available.

Other than Ethernet, the Proteon proNET 10 Mb/s ring network is also popular. This device is
also known as the Version II Ini ring network and is in heavy use at LBL and MIT with good
results. The Proteon proNET outperforms both the 3Com and Interlan controllers mentioned
above in throughput benchmarks run with the 4.2BSD networking support. Further, the ring
design eliminates the standard complaints about ring architectures by use of a star-shaped ring
configuration. The star-shaped ring allows easy addition and deletion of nodes without splicing
drilling or taping. Also, any node can fail without bringing down the ring because it is bypassed
at the star-shaped ring’s passive wire center. The major concern with a ring network is that it is

Components -13- © rjk/sjl March, 1983

incompatible with the de facto standard Ethernet. Cost per station is slightly higher than the
Ethernet, but startup costs are lower (unless you use a fiber optic wire center). Proteon has
announced they are working on an 80 Mb/s controller which should make the network even
more attractive.

SOFTWARE SUPPORT

There has been increasing demand for 4BSD at commercial installations in a form less expen-
sive and more digestible than a source license from Western Electric and an unsupported distri-
bution from Berkeley. A number of companies, licensed by Western Electric to sell and sup-
port UNIX in binary form, are now distributing 4BSD. Some of these companies support 4BSD
as an enhancement for their hardware offerings others deal only in software. Licenses from
these vendors normally cost much less than a UNIX source code license. These companies
usually try to make 4BSD more palatable to the non-academic community by providing more
first-time user documentation and specialized consulting addressing specific customer applica-
tions. More formal software support arrangements than those offered by U. C. Berkeley are
also available. 4BSD software sales and support vendors are included in the list at the end of
this paper.

Packages -14 - © rjk/sjl March, 1983

SYSTEM PACKAGES

We now present some sample system packages. Each represents a balanced system for
timesharing use under UNIX. People often ask us how many users can be supported UNIX in
these configurations. In the absence of specific information about applications to be run, this is
an unanswerable question. The amount of load presented to the system by different applica-
tions varies widely. We mention with each system the count of interactive users typically sup-
ported in our university research environment. '

We first present systems based on 11/750s and then systems based on 11/780s. With each
example we suggest functionally similar systems configured in at least two different ways: first
with as much equipment as possible from DEC and second with the best equipment known to
us. We will not consider the VAX 11/730 as we believe it is not a viable option for most
timesharing environments. Our experience with the 730 indicates it has approximately the raw
processing power of a PDP-11/34 size CPU. Thus, even though it is a reasonable choice for
people looking for an entry level VAX, we consider it mostly a single user machine.

Various measurements of the speed of the 11/750 and 11/780 indicate that the 11/750 executes
at roughly 60 percent of the speed of an 11/780. By comparison, an 11/70 runs at roughly 75
percent of the speed of an 11/780 using the same benchmarks, which involve no floating point.
no 32 bit arithmetic on the 11/70, and no system calls. For UNIX time sharing usage we
believe that the 11/750 has better performance than an 11/70. This is due mainly to additional
tuning and performance enhancements to the VAX kernel, and to the larger address space of
the VAX architecture.

The first system we consider is a small 11/750. This is followed by an expansion of the 11/750
into a larger system. We are fond of the VAX 11/750 as it provides the most computational
power per unit cost of the three VAX implementations.

The second base system is a small 11/780. We show how it can be built from a DEC
RUAS81/TU78 package svstem, and how to build it from mixed vendor equipment. We then
expand it in two increments.

The small systems we suggest start with a single disk and tape controller and some memory.
For time-sharing applications we configure our VAX systems allowing 256K bytes of memory
for the kernel and roughly an additional 100k bytes of memory per active user.®* Memory is
cheap, especially for the 11/780, so we don’t skimp on it.

With more than a few users, it is critical that more than one disk arm be present in the system.
Thus all but the smallest systems include more than one disk. As the active user count rises,
having more than one disk controller is also a good idea. The large system packages include
two disk controllers. For really large and i/o intensive systems we recommend high bit density
disk drives like the Fujitsu Eagle or the RP07 drive from DEC as they provide a higher transfer
rate than the 1.25 Mbytes typical of the remaining drives. Using this transfer rate effectively
requires running with interleaved memory.

It is desirable on all UNIX systems to have at least 100MB of disk space so that all the source
for the system and all the standard programs may be kept on line with some room for locally
developed programs. The amount of space required by user programs varies per installation:
we manage to run many of our instructional/research machines using about 300-600 megabytes
of space actively, although slightly more than this would be desirable.

Our large research machine runs with 1 Gigabyte of disk storage, with 2 disks on a UNIBUS
and 2 disks on MASSBUS adapters. The weakest point in this system is that it has only a 45ips
TE16 tape drive for backups. For even the smallest systems, 45ips will soon seem slow. We
therefore recommend starting with a 125ips 1600bpi tape drive. As full 2400 foot tape reels

* These numbers work reasonably well in an environment typical of University work (course work, paper
preparation, debugging programs, developing applications for microcomputers, etc.) More demanding applica-
tions could require substantially more memory per user.

Packages -15- © rjk/sjl March, 1983

hold only 30MB at 1600bpi, large systems should consider including at least one tape drive
capable of writing 6250bpi tapes.

VAX 11/750 PACKAGES

We want to put together a small 11/750 system capable of supporting about 8 time-sharing
UNIX users, and a larger 11/750 system for roughly 16-24 users. We need a minimum of 100
megabytes of space for the small system and a reasonable tape drive, preferably a 125ips unit so
that tape operations can be done in a reasonable amount of time; if the system is to include
only non-removable disks, we consider the faster tape system to be important. For the larger
system, we wish to add disk space to give the system a minimum of 250 megabytes of space,
and have more than one disk arm.

Small system

Small 750 System

DEC System Mixed Vendor System
11/750 from Broker or Integrator
CPU 11/750 with .50 Mbyte DEC Memory but 8

Mbyte capacity.
Memory 1 Mbyte DEC 1 Mbyte National/Trendata/Mostek

Disk System UDASO Unibus Controller Emulex SC750 RH750 Emulator
y RAS80 121 Mbyte Drive Fujitsu 134 Mbyte Drive
Emulex or Wesperco Controller

Tape System TGE16 45 ips Tape Sys. Cipher or Kennedy 125 ips tape

The small DEC system is based on the SV-BXGMB-CA package, and includes an RL02 in addi-
tion to the RA80. We basically ignore the RL02 which is of little use to us and use the package
because it is the cheapest way to get started. We add a TGE16 tape system as the best choice
among a myriad of evils. It is really too slow, but it is reliable and not too expensive. DEC
has been promising some better low cost tape units soon.

The mixed vendor system is as inexpensive as possible while retaining upward expandability. If
the builder were sure that this system was not going to be expanded much then a substantial
amount more could be shaved from the cost by making several substitutions. A National Sem-
iconductor or Spectra Logics UNIBUS combination disk and tape controller could be substituted
for the separate CMI disk controller and UNIBUS tape controller shown. A slower, perhaps 45
ips, tape unit with built in formatter could be substituted for the 125 ips tape drive. An older
CPU with 2 Megabyte maximum memory capacity could be used. These are available for sub-
stantially less than the CPUs equipped with the newer memory controller and backplane. Even
with these modifications, another disk and another Megabyte of memory could easily be added
to produce substantial performance improvement. One advantage of the mixed vendor system
as shown is that the Emulex SC750 controller keeps the disk drives off the UNIBUS. If an Eth-
ernet controllers is added to the system, they will not be contending for the bus.

Medium system.

To expand this basic system to support more users, we would add additional lines, disk storage
and memory. To the small all-DEC system we would add another RA80, another Megabyte of
memory and a DZ-11E. To the mixed vendor system we would add another Fujitsu 134 Mbyte

Packages -16 - ® rjk/sjl March, 1983

disk, an Able or Emulex DH-11 emulator and another Mbyte of memory:

Augmenting the Small 750 to a *“Medium’’ System
DEC System Mixed Vendor System
Additional Disk RASC 121 Mbyte Drive Fujitsu 134 Mbyte Drive

More Memory 1 Mbyte DEC 1 Mbyte National/Trendata/Mostek

More Serial Lines DZ-11E Able/Emulex “DH”

There are, of course, further expansion possibilities for the 11/750. These vary depending on
the application but could include a floating point accelerator, more memory up to 8§ Mbytes, and
an additional UNIBUS adaptor on the DEC system if other high speed devices like network
interfaces are to be on the UNIBUS along with the UDASO.

Packages -17 - © rjk/sjl March, 1983

VAX 11/780 PACKAGES

For a system with more growth possibilities than an 11/750, faster processing, and higher i/o
bandwidth, we recommend starting with a small 11/780. Our goal here is to start with a system
capable of supporting 8-16 timesharing users and expanding the system to be capable of sup-
porting roughly 24 users. We also consider a large expansion of this system, to a system that
might support 32 to 40 terminal users to the exhaustion of available CPU cycles.*

Small system

For our small system we use 400 Megabytes of disk storage and a 125ips 6250bpi tape drive
that will be capable of handling file backups if the system is eventually expanded. In our first
expansion of this small system, we wish to add to the available space to a minimum of 800
Megabytes of disk storage, acquire at least two disk arms, and add additional terminal lines. In
a large expansion of this system we include more terminals, an additional disk controller to get
at least two separate disk channels, and an additional 800 Megabytes of storage for a total of
1600 Megabytes.

To build a small system from all DEC equipment, we would start with the RUA81/TU78 based
system, the SV-AXECA-CA. This system includes 8 terminal lines, 4 Megabytes of memory, a
456 Megabyte disk drive and a 125ips 6250bpi tape. The system is equipped with two UNIBUS
adaptors so that the UDASO does not contend with other UNIBUS devices. To this we would
add a floating point accelerator.

On the mixed vendor system we would substitute a Fujitsu Eagle 404 Mbyte disk drive on an
Emulex SC780 SBI interfaced controller and an Aviv/Telex 6250 tape subsystem.

Small 780 System

DEC System Mixed Vendor System
11/780 from Broker or Integrator
CPU 11/780 with .25 Mbyte DEC Memory and

UNIBUS Adaptor Included
Memory 4 Mbyte DEC 4 Mbyte National/Trendata/Mostek

UDASO Unibus Controller Emulex SC780 RH780 Emulator
Disk System RA81 456 Mbyte Drive Fujitsu 404 Mbyte Drive

on own UBA

TEU78 125ips 6250 ips Aviv Controller
Tape System Tape Subsystem Telex Drive/Formatter
Serial Lines DZ-11A Able/Emulex “DH”
Other DEC Floating Pt. Acc. DEC Floating Pt. Acc.

Medium system

To expand this basic system to support more users and get additional disk space, we would add
additional lines and disk storage.

* Using systems similar to the largest shown here, in an environment consisting of small student program-
ming some sites have reported running up to 70 interactive users; CPU cycles are the critical resource with
this many users.

Packages -18 - ® rjk/sjl March, 1983

Augmenting the Small 780 to a ‘“‘Medium’’ System
DEC System Mixed Vendor System
Additional Disk RAS81 456 Mbyte Drive Fujitsu 404 Mbyte Drive

More Serial Lines DZ-11E Able/Emulex “DH”

Large system

To form a system with the emphasis on handling of data-intensive applications, and to
emphasize total growth of the system, we would add a second disk channel and interleave
memory to increase i/o throughput and reduce average CPU memory access as much as possi-
ble. In both the DEC and mixed vendor systems a CPU extension cabinet would be required
in addition to another DEC memory controller. We would fill out the second memory system
to 4 Megabytes.

For more disk throughput, we would add an REP07-AA 504MB disk drive on a MASSBLS
controller to the basic DEC system. This disk provides a very high burst data throughput and
could share the MASSBUS Adaptor of the Tape Unit with only minor performance loss while
the tape unit was being used.

To accomplish the same ends with the mixed vendor system, we would simply add a second
Emulex SC780 disk controller channel and at least one more Fujitsu Eagle 404 Mbyte disk
drive.

Augmenting ‘“‘Medium” 780 to ‘‘Really Big’* System

DEC System Mixed Vendor System
Additional Disk RPQ7 (516 Mbyte) on Fujitsu Eagle (404 Mbyte)
and Channel MASSBUS with tape sys. on another SC780 controller

Second Memory

Controller DEC DEC

and Cabinet

Additional Memory DEC Trendata/National Mostek

More Serial Lines DZ-11E Able/Emulex “DH"

SUGGESTIONS ON BUYING HARDWARE

The are a variety of ways in which you can acquire the systems we have suggested here,
whether they be all DEC or mixed vendor. Your choice of acquisition methods depends on a
number of factors including:

® How much can you afford to pay?
® How long can you wait?

® How much risk and responsibility are you willing to assume for integrating your own
hardware components?

® What kind of maintenance is available to you?
How much help you need in integrating 4BSD?

Packages -19- ® rjk/sjl March, 1983

Here is a simplified breakdown of the possibilities:
1. Buy as much as possible from your DEC marketing organization.

Although this solution, in our experience, takes the longest and costs the most, it has its
advantages. DEC is likely to ship you a well tested, integrated system, close to the time
initially promised. In most cases they will support you well through any initial start-up
problems with the hardware. The system bought this way will automatically be accepted
for a DEC maintenance contract. Of course, the can’t help you much with 4BSD (yet).
Also, they are not likely to be very flexible about adjusting their configuration to your
needs.

2. Buy an all-DEC system from a an OEM specializing in 4BSD

These OEMs are a relatively new phenomenon. They usually get a much better discount
from DEC on hardware and can pass part of this through to you in terms of UNIX exper-
tise as well as reduced cost. Sometimes they will be able to deliver hardware quickly
when DEC is telling you months. Since they sell largely DEC systems, you can still take
advantage of DEC Field Service and most systems sold this way are guaranteed acceptable
for a DEC maintenance contract.

3. Buy a mixed vendor system from a systems integrator

DEC has had a long love/hate relationship with people who specialize in building systems
which use DEC’s CPUs and other manufacturers peripherals. We think these integrators
serve many useful functions. First, and foremost, they often build a cheaper and better
system, frequently on short notice. Second, they keep DEC honest. Sometimes we feel
they should charge for their quotations, since these are often used advantageously to
encourage DEC to come down to a more reasonable price on a system.

Don’t assume mixed vendor systems are not maintainable. There is a whole spectrum of
maintenance possibilities for these systems, particularly in major metropolitan areas. If
you are considering this route, be sure and spend some time on the phone with the cus-
tomers of your prospective vendor. Insist on the names of long term customers, and talk a
lot about maintenance experience. The folks we mention on the last page of this paper
are known to have experience with 4BSD.

4. Integrate the mixed vendor system yourself

If you are qualified for this adventure, then you probably know who you are. We can’t
begin to tell you all the pitfalls. Start small. Buy a mostly integrated system and add
something you can afford to have not work for a while, such as more memory (almost too
easy), or a better tape drive, or more terminal interfaces. If you really want to do the
whole thing, finding the CPU is one of the harder parts. Get yourself a copy of Computer
Hot Line. You can probably get a complimentary copy by calling them at (800) 247-2244.
This is the social register of computer brokers and a substantial portion is dedicated to
folks selling new and used DEC. (Hot Line, Inc. also distributes the Farm Machinery Hot
Line and several other classified flea market variety publications. They can not be
expected to control the content of adds. Use at your own risk!)

We would like to make two more observations about buying equipment. It has been our
experience that the service you will receive from your source is directly proportional to the risk
in using that source. Further, the service often is inversely proportional to the sources size.
Loosely translated, little guys work harder.

Many who have dealt with DEC sales report disappointing experiences. Lack of product
knowledge and inability to bend to customer needs are typical complaints. This is not to say
that there are not excellent DEC sales people. There are. And you must remember, when you
finally close that deal with your DEC salesperson, it will be delivered, eventually.

On the other hand, the systems integrator who builds one or two systems a month typically
succeeds or fails based of the experiences of his small customer base. We have known many of
these folks to make superhuman efforts to pull together a customer system, often succeeding

Packages -20 - € rjk/sjl March, 1983

without half the resources available to DEC sales people. They are also much quicker to pick
up trends like an interest in 4BSD and start to mold their services to fit. Once again, there is
always the exception, the ‘“‘Unix Systems Integrator’” who couldn’t tell an inode from a tree
toad. If you go this route, you have a good selection to choose from. Spend time talking to
previous customers.

CONCLUSIONS

We have presented sample VAX systems over a wide performance range using both all-DEC
and the best available second vendor equipment, emphasizing, independently, minimal cost and
maximal expandability. Use this information wisely; price shouldn’t always be the bottom line.

Consider the all-DEC system if you can afford it. If not, the second-vendor equipment in the
packages here is all thought to work well on VAX hardware. You can reliably build and operate
such a system. When you have struggled through your particular set of difficulties and are up
and on the uucp network, be sure and write us about your experiences. Good luck!

ACKNOWLEDGEMENTS

This document represents a lot of work. It would have been easier, except for everyone who
sent us helpful hints and suggestions and, in general, kept us honest. In particular, we would
like to acknowledge all those vendors who were patient with us, especially those whose products
were ultimately not included. George Goble at Purdue made several helpful comments which
greatly improved the content of the document, and his experiences with Fujitsu Eagles has
made a significant impression on us. The DEC DSA engineering team in Colorado Springs.
including Paul Massiglia, Bill Grace and Chuck Hess were particularly generous with their time
and energies. Peter Weinberger of Bell Laboratories shared his experiences with the
UDASO/RA81 with us. Kirk McKusick spent time traveling to Colorado Springs to aid in
evaluating the DEC RAB8I1 disk drive. David Mosher has worked diligently as the purchasing
agent for CSRG and also contributed to our understanding of the subtler points of disk
manufacturing and operation. Jim Reeds gave the paper a careful proof reading and found
many oversights.

Vendor references

221 -

® rjk/sjl March, 1983

VENDOR REFERENCES

Manufacturer |Product Phone Vendor contact

3Com Ethernet Cont. (415) 961-9602 | 3Com (Mike Hallaburka)

Able Async. Mux (714) 979-7030 | Able Computer (Norm Kiefer)

Aviv Tape controllers (619) 247-6844 | Aviv (Ed Hagenbuch)

Data Products |Printers (415) 948-8961 | MQI Associates (Avery Blake)

Emulex Controllers (415) 820-2933 | Eakins Associates (Bob Sigal)

Fujitsu Disks (415) 969-5109 | Eakins Associates (Bob Sigal)

Imagen Laser Printers (415) 960-0714 | Imagen (Bob Wallace)

Interlan Ethernet Cont. (714) 752-4002 | Interlan (Gary Steadman)

Intersil Async. Mux (408) 743-4300 | Intersil (Alan Truscott)

Kennedy Tape Transports (408) 245-9291 | Electronic Marketing Specialists

Mt Xinu 4BSD Binary Sales | (415) 644-0146 | MtXinu (Bob Kridle)

National Memory (800) 538-8514 | National (Don Johnson)

National Disk/Tape Cont. | (800) 538-8514 | National (Don Rudolph)

NMS Disk/Tape Sys (415) 443-1669 | NMS(Bob Crippen)

Printronix Printers (408) 245-4392 | Group III Elect. (Scott Drzewiecki)

Proteon Network Cont. (617) 894-1980 | Proteon (Al Marshall)

Spectralogics |Disk/Tape Sys. (415) 443-1669 | Nat. Mem. Sys. (Bob Crippen)

Symbolics Laser Printer (415) 494-8081 | Symbolics (David Shlager)

Tecstore Disks (408) 732-2143 | Tecstore (Mel Feintuch)

Trendata Memory (714) 540-3605 | Trendata (Miles Efron)

Varian Plotters (408) 733-2900 | Varian (Ted Downs)

Versatec Plotters (415) 828-6610 | Versatec (Bruce Fihe)
SYSTEM INTEGRATION/SUPPORT

Name Phone Contact Notes

VLSI (415) 490-3555 | Joe Voelker Mixed Vendor Systems and Support

IDS (408) 738-3368 | Dick Cavanaugh | Specialize in All DEC Systems

Eakins Assoc.|(415) 969-4533 | Bob Sigal Mixed Vendor Systems and Support

IPS (713) 776-0071 Mixed Vendor Systems

Iverson Inc.
UNIQ

(415) 459-5665
(415) 362-0470

Jon Iverson

Mixed Vendor Integration
All DEC Systems

MORE/bsd Volume VI

System Management
Mail
Networking and Communications

Installing and Operating 4.2BSD on the VAX
Building 4.2BSD UNIX Systems with Config
4.2BSD System Manual

Hints on Configuring VAX Systems for UNIX
Disc Quotas in a UNIX Environment

4.2BsD Line Printer Spooler Manual

Fsck — The UNIX File System Check Program
On the Security of UNIX

Password Security: A Case History

The UNIX Time-Sharing System

UNIX Implementation

The UNIX I/O System _

Bug fixes and changes in 4.2BSD

A Fast File System for UNIX

Mail Reference Manual

A Dial-Up Network of UNIX Systems

Uucp Implementation Description
SENDMAIL — An Internetwork Mail Router
SENDMAIL Installation and Operation Guide
4.2BSD Networking Implementation Notes
A 4.2BSD Interprocess Communication Primer

MORE/bsd Volume III

UNIX Shells
Tools and Utilities
Ingres

(- An Introduction to the C Shell

.~An Introduction to the UNIX Shell

t “UNIX Programming — Second Edition

v+~-Make — A Program for Maintaining Computer Programs
L~A Tutorial Introduction to ADB

L. Yacc — Yet Another Compiler-Compiler

/Lex — A Lexical Analyzer Generator

Screen Updating and Cursor Movement Optimization: A Library Package
+ The M4 Macro Processor

“SED — A Non-interactive Text Editor
[~Awk — A Pattern Scanning and Processing Language (Second Edition)
{ DC — An Interactive Desk Calculator
;. BC — An Arbitrary Precision Desk-Calculator Language
/’ "An Introduction to the Source Code Control System
. h Source Code Control System User’s Guide

EARN — Computer-Aided Instruction on UNIX (Second Edition)
VA Guide to the Dungeons of Doom

i INGRES Version 7 Reference Manual

MORE/bsd Volume V

Editing
Document Preparation

#An Introduction to Display Editing with Vi
it: A Tutorial
Ek Reference Manual
Ek Changes — Version 3.1 to 3.5
Al Tutorial Introduction to the UNIX Text Editor
Agdvanced Editing on UNIX
ROFF/TROFF User’s Manual
A 'TROFF Tutorial
Writing Papers with NROFF Using —me
—me Reference Manual
Typing Documents on the UNIX System:
_ ing the —ms Macros with Troff and Nroff
A Revised Version of —ms
b/ Tbl — A Program to Format Tables
| Typesetting Mathematics — User’s Guide (Second Edition)
¥ ~—A System for Typesetting Mathematics
. "7Writing Tools — The STYLE and DICTION Programs
» ——Updating Publication Lists
Some Applications of Inverted Indexes on the UNIX System
, Refer — A Bibliography System
, 7 Berkeley Font Catalog

4 = 4 ‘ g

Sod b A ol T
R ; » . FA

[N S o g

i »* s d & y

v ! . \ /

~

Berkeley Font Catalog

October 1980

Introduction

This catalog gives samples of the various fonts available at Berkeley using
vtroff on our Versatec and Varian. We have them working 4 pages across in a 36
inch Versatec, and rotated 90 degrees on a Benson-Varian 11 inch plotter. The
same software should be adaptable to an 11 inch Versatec, and in fact is running
at several other sites, however, not having one here, it isn't part of this distribu-
tion. Such a driver is available from Tom Ferrin at UCSF.

To use these lonts:

(1) Hershey. This is the default font. The Hershey font is currently the oniy
complete font, with all 16 point sizes and all the special characters troff
knows about. To get it, use vtroff directly. To illustrate this with the —ms
macro package:

vtroff —ms paper.nr

(2) Fonts with roman, italic, and bold, such as nonie. You can load all three
fonts with, for example:

vtroff —F nonie —ms paper.nr

To get just one of these fonts, use (3) below, appending .r, .i, or .b to the
font name to specify which font you want mounted, e.g., to get italics in
delegate,

vtroff —2 delegate.i ~ms paper.nr

(3) To get a font without a complete set, choose which font (1, 2, or 3) you want
replaced by the chosen font. For example, to use bocklin as though it were
bold. since font 3 is bold, use:

vtroff —3 bocklin —ms paper.nr

To switch between fonts in trofl, use
g3
to switch to font 3, for example, or use
\f3word\f1

to switch within a line. For more information see the Nro2/Troff Users Manual.

Special note: troff thinks it is talking to a CAT phototypesetter. Thus, it
does all sorts of strange things, such as enforcing restrictions like 7.54 inches
maximum width, 4 fonts, a certain 16 point sizes, proportional spacing by point
size, ete.

In particular, the following glyphs will always be taken from the special
font. no matter what font you are using at the time:

01 #- ”- " ‘l <v >' \o En io ~ = a-nd—

This may explain what are otherwise surprising results in some of the subse-
quent pages.

In addition, the following Greek letters have been decreed by ¢roff as look-
ing so much like their Roman counterparts that the Roman version {font) is
always printed, no matter what font is mounted on font I at the time:

ABEZHILKMWLNOPTX

{See table II in the back of the Nrof/Troff Users's Manual {or details about what
glypis are in each font and how to generate the special glyphs.)

Font Layout Positions

Code Narmal Special
000

001 1 \N{fi | = NG
002 1 \@ | 2 \@
003 f \# | = \(pt
004 - \- = \(rh
005 - \fu| v \eu
006 - \(em | = \(m
007 . \(bu | @ \(bs
010 . \(zq | £ \(+
o11 | s \(<=
012 \@L [& \(>=
013 * \(de | v \(sr
014 T \Ndg | ¢ \s
018 ’ \Em | S \(s
018 L \ee | /7 \(si
017 L \@g | | \bv
020 L \et | | \(f
021 ¥ N4 |]\t
o2 % \N(12 | [\(e
023 T NG |1 \ee
o4 { \Qt
o2s Il \@
o028 1 \(
o? J \@b
030 { \@
031 Y \Ck
032 c \(ss
033 3 \(sp
034 N \(cs
035 - \(no '
038 - \@
a7 € \(mo
040 | space

041 |

o2 d

043 #

(27 3

o4 %

048 &

047 .

050 (v \e
081)

052 ’ x \(mu
083 + + \(pl
o“)

055 - - \(mi
068 .

os7 / + \(d
080 1] s \(==
061 1 x \(~=
082 2 ~ \(ap
063 3 » \(=
064 4 - \(<
oes 5 - \(->
0és 8 * \(ua
067 7 ¢ \({da
070 8 § \(sc
omn 9 N
o2 :

073 ;

o4 <

o7s =

078 ! >

77

100
101
102
103
104
105
108
107
110
1
112
113
114
118
118
117
120
121
122
123
124
123
128
127
130
131
132
133
134
135
138
137

141

143

NAHA<SECUIODUODH —KNwwiTR o AOTH

— AN A<CHNVOVOZRCRG—EQPMEAODNOW>

Code_ Normai

I~ B UEEXE€CEI1AVIOMIE >¥Aa eI vag I TWA |

Speciai

YO/N—+#HDEHSHAIMOVDIOAONMZES>R—OILNMD>IW> O

(A
\(*3
\(*G
\(*D
\(°E
\(*Z
(Y
\(*4
(%
\(*¥K
\(*L
\(*M
(N
\(*C
\(*0
\(°2
\(*R
\(*s
\(°T
\(*U
\(*F
\(*X
NQ
\(*W
\(dd |
\(br
\(ib

\e
\(ei

\(*=

APL FONT, 10 POINT ONLY

AxBLCnD\Ee¢ F_GuHaIN\J-XK' LUMINTO0Ps Q?ReSIT~UL VUW XY 1Zc 01234 56789

(’

"#lex2VALH s}l A _\NTQ@<+/\.>,<

!-o(z-o-&-u-'-t’(-ov)-o/\;.-og’-0#--.0:-.--[-.{]-.}[-.3'-»

’

IR A R

Baskerville font, roman, ibold, italic, 12 point only (Called “basker” on line.)

ABCDE FGHI] KLMNO PQRST UVWXYZ abede fghij kimno pqrst uvwxyz 01234 56789
1" $82%"()ia-allf]~~_N|@®;e/?2.>,<

If time be of all things the most precious, wasting time must be, as Poor Richard says, the greatest
prodigality; since, as he elsewhere tells us, lost time is never found again; and what we all time
enough, always proves little enough: Let us then up and be doing, and doing to the purpose; so by
diligence shall we do more with less perplexity.

ABCDE FGHI] KLMNO PQRST UVWXYZ abcde fghij himno pqrst uvwxyz 01234 56789
"8 ()ie-af)il a~n N|O®;+/2.>,<

If time be of all things the most precious, wasting time must be, as Poor Richard says, the greatest
prodigality; since, as Ae elsewhere tells us, lost time is never found cgain; and wAar we call time
enough, always proves lttle enough: Let us then up and be doing, and doing to the purpose; so by
diligence shall we do more with less perplexity.

ABCDE FGHI] KLMNO PQRST UVWXYZ abcde fghij kimno pqrst uvwxyz 01234 556789

P AST&E (Niaan [l Aa~_\I@*54+/2.>,<

If time be of ail things the most precious, wasting time must be, as Poor Richard says, the
greatest prodigality; sincs, as he elsewhere teils us, lost time is never found again; and what we

cail time enough, always proves little enough: Let us then up and be doing, and doing to the
purpose: so by diligence shall we do more with less perplexity.

Bocklin font, 14 and 28 point only.

14 point
ABCDE FGNLI] KLAINO PQRST WVWXYZX abede Ighij kRimno pgrst uvwxyz
01234 56789

T():==[1":/2.,

H time be ol all things the most precious, wasting time must be, as Poor
Richard says, the greatest prodigality; since, as he elsewhere tells us,
lost time is never found again; and what we call time enough, always
proves little enough: Let us then up and be doing, and doing to the
purpese; so by diligence shail we do more with less perplexity.

28 pO int mo punctuation except period.)

- ABCDE FGNRTII KLTRNO PORST
UVWXYZ abede ighij klmno pgrst
uvwxyz 01234 56789 .

II time be of all things the most
precious wasting time must be as
Poor Richard says the greatest
prodigality since as he el<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>