M68KVSREF/D1

(M) moToROLA

&
Y=
¢ 3
> o)
v =
o = <
NS
S 2¢
-k
S0
- -

PERFORMANCE

PEOPLE

QUALITY

M68KVSREF,/D1

FEBRUARY 1984

VME/10
MICROCOMPUTER SYSTEM

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

RMS68K, TENbug, VERSAdos, and VME/10 are trademarks of Motorola Inc.

First Edition

Copyright 1984 by Motorola Inc.

PREFACE

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal
is low.

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur
on a high to low transition.

"Set" terminology referenced throughout this manual denotes placing
(writing) a logical one (high state) into a device.

"Clear" terminology referenced throughout this manual denotes placing
(writing) a logical zero (low state) into a device.

All hexadecimal references throughout this manual are preceeded by a
dollar sign ($).

TABLE OF CONTENTS

CHAPTER 1 REFERENCE MANUAL PHILOSOPHY
1.1 INTRODUCTION «evvees cecescas ceescesens cecescess escscccsscnse
CHAPTER 2 SYSTEM INFORMATION
2.1 INTRODUCTION ¢eesecevosccocscsocsasscvsecsesasscsossseasrsssnssses
2.2 SYSTEM MEMORY MAPS .ccvevsccscacccassssssscassssaccssssases
2.3 CONTROL AND STATUS REGISTERS ¢ecscevcccsscsccsssscscscscocsns
2.3.1 Control Register 0 (Location Address SFL1IF05) ..ceeecasee
2.3.2 Control Register 1 (Location Address SF19F07) cceeececeses
2.3.3 Control Register 2 (Location Address SF19F09) ceecsa
2.3.4 Control Register 3 (Location Address SF19F0B) ...vevveses
2.3.5 Control Register 4 (Location Address SF19F0D) .eeeceecessee
2.3.6 Control Register 5 (Location Address SF19F0F) .cevecceess
2.3.7 Control Register 6 (Location Address SF19F1l) ..ceeeeceen
2.3.8 Status Register (Location Address SF1I9F85) .ecececccsscce
2.4 VMEDUS INTERRUPTS veeeceoceccosvosscssassnsscssscssansasaan cee
2.5 SCM MPU INTERRUPTS cccceccecsscsccacccsscsscsscosascssscsaasccss
CHAPTER 3 GRAPHICS GENERATION
3.1 INTRODUCTION cvvcececossccsccasosnoscosssccsssasnsscscnsscssse
3.2 HARDWARE DESCRIPTION ccccececscccccsccscscacscecoscsnsosnsass
3.2.1 Graphics MEmMOTY .eeveeesscecnscccns cecesseseccsssssssrnnns
3.2.2 Graphics Control RegisSterveececeececeseranaccncas oo
3.2.3 Graphics CUrsor RegiSter .veceececccceccseccscsescccsccnnas
3.2.4 CRT Controller (CRTC) ecececsscscssocsssscosassosnccnssssss
3.2.5 Control Register 0 (Location Address SFL9F05) c.eecececsss
3.2.6 Control Register 1 (Location Address S$F19F07) ..ceevceeess
3.2.7 Graphics Offset Register (Location Address $F19F13)
3.3 SOFTWARE APPLICATION eceeccescascosossoscscscssossoacacsanssces
CHAPTER 4 CHARACTER DISPLAY GENERATION
4.1 INTRODUCTION e eeeccscocceccsocsossoscssscscccsosssscccsansss
4.2 HARDWARE DESCRIPTION ceccesscsccsvescsnssscsccccasosnsanoscs
4.2.1 Display RAM ..ccvveccccess csesecccacccssases ceseerssssses
4.2.2 ContrOl RegiSteIS eceeecesesscscsssesssossscsssscsasscnses
4.2.3 Character Generator RAM ...ceeecececcccecooscsscecsoscssasns
4.2.4 CRT Controller (CRTC) .cececcscccscsscsssscccnssscsscnncns
4.3 SOFTWARE APPLICATION scceececosssccessscscssscssoccacsssases

= WOWWWO O

[
o

WWwWwwwwwwww

FIGURE 2-1.

TABLE

2-2.
2-3.
2-4.
3-1.
3-2.
3-3.

2-1.
3-1.
3-2.
3-3.
4-1.
4-2.

TABLE OF CONTENTS (cont'd)

LIST OF ILLUSTRATIONS

System Mamory Map, NO GraphiCS ..ccceeseccceccscsscccsscsocs
System Memory Map, Low Resolution GraphiCsS .eceececcesscsse
System Memory Map, High ResolutionGraphicCS...cceccecececcecss
SCM I/0 Memory Map (2 SheetS) ceceseecsceccssococcscscncsns
Pixel Access (Low and High Resolution)ceeeececccccscse
Low Resolution Graphics MemOry Map secesccccssccccccsscnssa
High Resolution Graphics MemOry Map ccecececescecccccsccans

LIST OF TABLES

INnterrupt SOUXCES cecreccscscacccccccsscscccscscsscsssscsssse
COLOr/INtENSIitY ceeeecsscccssssesssscsscesssscssssssceassocss
Required Settings for GraphiCS .ceeeesescscescsccccccscnnss
Resolution VAluesS ..eeesssccrcscsccccssascssconcscacsancncos
Color CONLrOLl suveveesonsecsassesescscsscssccscnccscsssssns
Character Display CONtrOl ..ceeccecccecceccccccccccossccccans

ii

Page

CHAPTER 1

REFERENCE MANUAL PHILOSOPHY

1.1 INTRODUCTION

This reference manual provides both hardware and software information for the
VME/10 Microcomputer System (hereafter referred to as VME/10). Information in
this manual will permit the wuser to implement software to reconfigure
(customize) the VME/10 operation to a specific application or to perform the
VME/10 graphic capabilities.

The VME/10 contains a System Control Module (SCM) which is installed in the
control unit chassis. The SCM provides the central intelligence for the VME/10.
To understand the VME/10 operating environment, material in this manual is
organized as follows:

a. System information

b. Graphics generation

b. Character display generation

1-1/1-2

CHAPTER 2

SYSTEM INFORMATION

2.1 INTRODUCTION
This chapter provides system information that permits the user to implement
software to reconfigure (customize) the VME/10 operation to a specific
application or to perform the VME/10 graphic capabilities. Information provided
in this chapter is as follows:

a. System memory maps

b. Control and status registers

c. VMEbus interrupts

d. SCM MPU interrupts.

2.2 SYSTEM MEMORY MAPS

The system memory maps (Figures 2-1 through 2-4) identify all areas of memory
that are reserved for system use, as well as areas of memory that are available
for use by the user.

| UPPER DATA BYTE D15-D08 [LOWER DATA BYTE D07-D00 |

$000000 SYSTEM RAM AFTER UNSWAP BIT IS SET £000001

SOOFFFE SYSTEM ROM AFTER POWER ON RESET SOOFFEFF

$010000 $010001

SYSTEM RAM

SOSFFFE SOS5FFFF

$060000 $060001
RESERVED FOR RAM EXPANSION

S17FFFE $17FFFF

$180000 $180001

VMEbus
SDFFFFE SDFFFFF
SE00000 SE00001
GRAPHICS - PIXEL ACCESS ADDRESSING BLOCK

SEFFFFE SEFFFFF

$£00000 SYSTEM ROM AFTER UNSWAP BIT IS SET $F00001

SFOFFFE SYSTEM RAM AFTER POWER ON RESET SFOFFFF

SF10000 SF10001
SCM 1/0 (SEE FIGURE 2-4)

SF1BFFE SF1BFFF
SF1C000 SF1C001
ILLEGAL I/0 CHANNEL
SF1DFFE SF1DFFF
SF1E000 SF1E001
VMEbus

(SHORT I/O ADDRESS SPACE)
SFFFFFE SFFFFFF

FIGURE 2-1. System Memory Map, No Graphics

2-2

' UPPER DATA BYTE D15-D08 | LOWER DATA BYTE D07-D00 |

$000000 SYSTEM RAM AFTER UNSWAP BIT IS SET $000001

SOOFFFE SYSTEM ROM AFTER POWER ON RESET SOOFFFF

$010000 $010001

SYSTEM RAM

S047FFE S04 7FFF

$048000 $048001
LOW RESOLUTION GRAPHICS RAM

SO5FFFE SOSFFFF

$060000 $060001
RESERVED FOR RAM EXPANSION .

S17FFFE S17FFFF
$180000 $180001
VMEbus
SDFFFFE SDFFFFF
SE00000 SE00001
GRAPHICS - PIXEL ACCESS ADDRESSING BLOCCK
SFFFFFE SEFFFFF
$F00000 SYSTEM ROM AFTER UNSWAP BIT IS SET $E00001
SFOFFFE SYSTEM RAM AFTER POWER ON RESET SFOFFFF
SF10000 $SF10001
SCM I/0 (SEE FIGURE 2-4)

SF1BFFE SF1BFFF
$F1C000 SF1C001
ILLEGAL I/0 CHANNEL
SF1DFFE SF1DFFF
SF1E000 SF1E001
VMEbus

(SHORT I/0 ADDRESS SPACE)
SFFFFFE " | SFFFFFF

FIGURE 2-2, System Memory Map, Low Resolution Graphics

UPPER DATA BYTE D15-D08 l LOWER DATA BYTE D07-D00 '

$000000 SYSTEM RAM AFTER UNSWAP BIT IS SET $000001
SOOFFFE SYSTEM ROM AFTER POWER ON RESET SOOFFFF
$010000 $010001
SYSTEM RAM
SO02FFFE S0 2FFFF
$030000 $030001
HIGH RESOLUTION GRAPHICS RAM
SOSFFFE SO5FFFF
$060000 $060001
RESERVED FOR RAM EXPANSION
$S17FFFE S17FFFF
$180000 $180001
VMEbus
SDFFFFE SDFFFFF
SE00000 SE00001
GRAPHICS - PIXEL ACCESS ADDRESSING BLOCK
SEFFFFE SEFFFFF
SF00000 SYSTEM ROM AFTER UNSWAP BIT IS SET $F00001
 SFOFFFE SYSTEM RAM AFTER POWER ON RESET SFOFFEFF
SF10000 SF10001
SCM I/0 (SEE FIGURE 2-4)

SF1BFFE SF1BFFF
SF1C000 SF1C001
ILLEGAL 1/0 CHANNEL
SF1DFFE SF1DFFF
SF1E000 SF1E001
VMEbus

(SHORT I/0 ADDRESS SPACE)
SFFFFFE SFFFFFF

FIGURE 2-3. System Memory Map, High Resolution Graphics

2-4

$F10000

SF13FFE
SF14000

SF14FFE
SFF1500

SF15FFE
$F16000

SF16FFE
$F17000

SF18FFE
SF19000

SF19EFE
SF19F00

$F19F02
SF19F04
SF19F06
SF19F08
$F19F0A
SF19F0C
SF19FOE
SF19F10

SF19F12
SF19F20

SF19F82
SF19F84
SF19F86

SF1A01lE

UPPER DATA BYTE D15-D08 | LOWER DATA BYTE DO7-D00

ILLEGAL
CHARACTER GENERATOR
ILLEGAL RAM
ATTRIBUTE GENERATOR
RAM
ILLEGAL
DISPLAY AND ATTRIBUTE RAM
ILLEGAL
VERTICAL GRAPHICS CURSOR REGISTER
HORIZONTAL GRAPHICS CURSOR REGISTER

ILLEGAL CONTROL REGISTER 0
ILLEGAL CONTROL REGISTER 1
ILLEGAL CONTROL REGISTER 2
ILLEGAL CONTROL REGISTER 3
ILLEGAL CONTROL REGISTER 4
ILLEGAL CONTROL REGISTER 5
ILLEGAL CONTROL REGISTER 6
ILLEGAL GRAPHICS OFFSET REGISTER

RESERVED
ILLEGAL STATUS REGISTER

RESERVED

FIGURE 2-4. SCM I/0 Memory Map (Sheet 1 of 2)

SF10001

SF13FFF
SF14001

SF14FFF
S$F15001

SF15FFF
SF16001

SF16FFF
S$F17001

SF18FFF
$F19001

SF19EFF
SF19F01

SF19F03
S$F19F05
SF19F07
SF19F09
SF19F0B
SF19F0D
SF19FOF
SF19F11

SF19F13
SF19F21

SF19F83
SF19F85
SF19K87

SF1A01F

S$F1A020
S$F1A022
SF1A024

SF1A02E
SF1A030
SF1A032
SF1A034
SF1A036
SF1A038

SF1AQ7E
SF1A080
SF1A082
SF1A084
SF1A086
$F1A088
SF1A08A
SF1A08C
SF1A08E
SF1A090
SF1A092
SF1A094
SF1A096
SF1A098
SF1A09A
$F1A09C

SF1AOFE
$SF1A100

SF1A7FE
$F1A800

SF1AFFE
SF1B000O

SF1BFFE

UPPER DATA BYTE D15-D08 | LOWER DATA BYTE D07-D00

ILLEGAL MC68A45 ADDRESS REGISTER

MC68A45 INTERNAL REGISTER FILE

ILLEGAL

MC2661 TX/RX DATA REGISTERS
MC2661 STATUS REGISTER
MC2661 MODE 1 AND MODE 2 REG.
MC2661 COMMAND REGISTER

ILLEGAL

ILLEGAL

MC146818 SECONDS REGISTER
MC146818 SECONDS ALARM REG.
MC146818 MINUTES REGISTER
MC146818 MINUTES ALARM REG.
MC146818 HOURS REGISTER

MC146818
MC146818
MC146818

HOURS ALARM REGISTER
DAY OF THE WEEK REG.
DAY OF THE MONTH REG.

MC146818 MONTH REGISTER
MC146818 YEAR REGISTER
MC146818 REGISTER A
MC146818 REGISTER B
MC146818 REGISTER C
MC146818 REGISTER D

BATTERY BACKED UP RAM
ILLEGAL
TIME-OF-DAY CLOCK (MC146818)

ILLEGAL

DMA/MMU

ILLEGAL

FIGURE 2-4. SCM I/0 Memory Map (Sheet 2 of 2)

2-6

$F1A021
SF1A023
SF1A025

$F1A02F
SF1A031
SF1A033
$F1A035
SF1A037
SF1A039

SF1A07F
SF1A081
SF1A083
SF1A085
SF1A087
SF1A089
SF1A08B
SF1A08D
SF1A08F
SF1A091
SF1A093
SF1A095
SF1A097
SF1A099
SF1A09B
SF1A09D

SF1AQFF
SF1A101

SF1A7FF
$F1A801

SF1AFFF
$F1B0O1

SF1BFFF

2.3 CONTROL AND STATUS REGISTERS

The SCM has seven control registers and one status register. Individual address
locations of these registers are listed in the memory maps. Control registers 0
and 2 through 6 are cleared by any of the reset conditions occurring. Control
register 1 is cleared only by the power-on-reset condition occurring. All
control registers are writable by the MPU in both supervisory and user states.

NOTE

In VME/10's manufactured prior to 2/15/84 - all control
registers are writable by the MPU in the supervisory
state; only control registers 0 and 1 are also writable
in the user state. Writing to control register 1 through 6
in the user state will cause the MPU readable image to
change, but not the actual control register.

All control registers are readable by the MPU in any state. However, the data
read is not reliable unless each control register has been written to by the MPU
at least once since the last reset condition occurred. Bit definitions of the
control registers are as follows:

2.3.1 Control Register 0 (Location Address $F19F05)

7

6 5 4 3 2 1 0

| CDIS3 | CDIS2 | CDIS1 | CURBK | DUTYCYCLE | IVs |TIMIMSK*|DMAIMSK*|

CDIS3-CDIS1

CURBK

DUTYCYCLE

IVS

TIMIMSK*

DMAIMSK*

Character Disable - Used to disable a color bank from being
displayed to the monitor (this affects character mode only). When
set, CDIS1 through CDIS3 disables colors one through three,
respectively. When cleared, CDIS1 through CDIS3 enables colors
one through three, respectively.

Cursor Blink - When set, causes character cursor to blink on ard
off. When cleared, CURBK has no effect on character cursor.

Duty Cycle - When set, corrects BX syndrome by not displaying
every other dot on each line. This prevents horizontal lines,
such as those in the uppercase letter B, from standing out more
than nonhorizontal 1lines such as those in the letter X. When
cleared, DUTYCYCLE has no effect on display.

Invert Video Screen - When set, video inversion is performed.
When IVS is cleared, all characters are normal.

Timer Interrupt Mask - When cleared, inhibits interrupts caused by
the real-time clock (MC146818) 1low IRQ* signal. When set,
TIMIMSK* performs no masking function.

Direct Memory Access Interrupt Mask - When cleared, inhibits

interrupts caused by the low DMAIRQ* signal. When set, DMAIMSK*
performs no masking function.

2-7

2.3.2 Control Register 1 (Location Address $F19F07)

6 5 4 3 2 1 0

Ss1 | SO IHIGH RES| GRE3]GREZ l GRE1 IUNSWAPI

s1,S0

HIGH RES

GRE3,GRE2,GRE1

UNSWAP

Reserved for future enhancements. Must be kept cleared at all
times.

Select - Selects one of four optional character cursors which
are user-definable.

High Resolution - Affects SCM system RAM mapping.

Graphic Enable - Enables and disables the display of individual
graphics memory banks. When set, enables a bank; when cleared,
disables a bank. GREl controls bank 1 (red/low intensity), GRE2
controls bank 2 (blue/medium intensity), and GRE3 controls bank
3 (green/high intensity). When all three bits are cleared, no
graphics are displayed; when all three bits are set, graphics of
all colors/intensities are displayed. It should be noted that
these bits do not affect the user's ability to read/write to the
graphic banks.

Unswap - When a power-on-reset (or chassis reset and abort
reset) cordition occurs, SCM memory map is swapped so that ROM
appears at locations $000000-S007FFF. The system RAM which
would normally appear at those 1locations ($000000-SO07FFF)
appears where ROM would normally appear (locations SF00000-
SFOFFFF) .

These sections of RAM and ROM may be restored to normal
positions by setting the UNSWAP bit. After this action, UNSWAP
bit has no affect on the memory map. Clearing the UNSWAP bit
again does not cause RAM and ROM to swap nommal positions in the
memory map. The only conditions that swap RAM and ROM out of
the normal positions are the reset conditions described above.

2-8

2.3.3 Control Register 2 (Location Address $F19F09)

7

6 5 4 3 2 1 0

| RXRDYMSK* | SYSFMSK* lWPTC’T* | KBDRST* |VMEAVMSK* | BCLRMSK* l TXRDYMSK* | MMUIMSK* |

RXRDYMSK*

SYSFMSK*

WPTCT*

KBDRST*

VMEAVMSK*

BCLRMSK*

TXRDYMSK*

MMUIMSK*

Receiver Ready Mask - When cleared, inhibits interrupts caused by
the EPCI low RXRDY* signal. When set, RXRDYMSK* performs no
masking function.

System Fail Mask - When cleared, inhibits interrupts caused by the
VMEbus low SYSFAIL signal. When set, SYSFMSK* performs no masking
function.

Write Protect - When cleared, disallows all write operations to
SCM RAM by other VMEbus devices. When set, WPTCT* allows these
write operations.

Keyboard Reset - When cleared, sends a reset signal from the
keyboard interface, and continually resets the MC2661. When set,
KBDRST* performs no function.

VMEbus Available Mask - When cleared, inhibits interrupts caused
by the VMEbus becoming available.

Bus Clear Mask - When cleared, inhibits interrupts caused by the
VMEbus low BCLR* signal when the SCM requester is holding the
VMEbus in the release never mode. When set, BCLRMSK* performs no
masking function.

Transmit Ready Mask - When cleared, inhibits interrupts caused by
the EPCI low TXRDY* signal. When set, TXRDYMSK* performs no
masking function.

Memory Management Unit Interrupt Mask - When cleared, inhibits
interrupts caused by the low MMUIRQ* signal. When set, MMUIMSK*
performs no masking function.

2.3.4 Control Register 3 (Location Address SF19F0B)

7

6 5 4 3 2

1

0

| IRQ7MSK* | IRQ6MSK* | IRQSMSK* | IRQ4MSK* | IRQ3MSK* | IRQ2MSK* | IRQLMSK* | VBIAMSK* |

IRQ7MSK*

IRQ6MSK*

IRQ5MSK*

IRQ4MSK*

IRQ3MSK*

IRQ2MSK*

IRQIMSK*

VBIAMSK*

Interrupt Request 7 Mask - When cleared,
interrupts caused by VMEbus low IRQ7* signal.
performs no masking function.

Interrupt Request 6 Mask - When cleared,
interrupts caused by VMEbus low IRQ6* signal.
performs no masking function.

Interrupt Request 5 Mask - When cleared,
interrupts caused by VMEbus low IRQ5* signal.
performs no masking function.

Interrupt Request 4 Mask - When cleared,
interrupts caused by VMEbus low IRQ4* signal.
performs no masking function.

Interrupt Request 3 Mask -~ When cleared,
interrupts caused by VMEbus low IRQ3* signal.
performs no masking function.

Interrupt Request 2 Mask - When cleared,
interrupts caused by VMEbus low IRQ2* signal.
performs no masking function.

Interrupt Request 1 Mask - When cleared,
interrupts caused by VMEbus low IRQl* signal.
performs no masking function.

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

SCM MPU
IRQ7MSK*

SCM MPU
IRQOMSK*

SCM MPU
IRQSMSK*

SCM MPU
IRQ4MSK*

SCM MPU
IRQ3MSK*

SCM MPU
IRQ2MSK*

SCM MPU
IRQ1IMSK*

VMEbus Interrupt Acknowledge Mask - When cleared, inhibits SCM MPU

interrupts caused by an
occurred for the
interrupter.

interrupt request

2-10

interrupt acknowledge cycle having
initiated by the

SCM

2.3.5 Control Register 4 (Location Address $F19F0D)

7 6 5 4 3 2 1 0

| IDC7 | IDC6 | IDCS | IDC4 | IDC3 | IDC2 | IDCL | IDCO |

This register is the vector register. During a VMEbus interrupt acknowledge
cycle, if the SCM initiates the interrupt request that is acknowledged, contents
of this register (Identification Codes (IDC) bits 0 through 7) are placed on the
VMEbus data lines as follows:

IDC7 - DO7
IDC6 — DO6
IDC5 - D05
IDC4 - D04
IDC3 - DO3
IDC2 - DO2
IDC1 - DOl
IDCO - DOO

2-11

2.3.6 Control Register 5 (Location Address S$F19F(F)

6 5 4 3 2 1 0

| BROFAIL* | AMA | VMETOEN | LTOEN | BRCL | BRCO | BRL1* | BRLO* |

BRDFAIL*

VMETOEN

LTOEN

BRC1,BRCO

BRL1* ,BRLO*

Board Fail - When cleared, causes the VMEbus low SYSFAIL* signal,
which indicates a board failure. When set, BRDFAIL* does not
drive the SYSFAIL* signal line low.

Address Modifier A - Alters the way address modifier lines are
driven by the SCM during VMEbus access. The AMA effect on the
address lines is programmable in PROM.

VME Time-out Enable - When set, enables VMEbus time-out circuitry
to operate (causes low BERR* if DS0* or DS1* is low for 64
microseconds or longer). When cleared, VMETOEN disables VMEbus
time-out circuitry.

Local Time-out Enable -~ When set, enables local resource time-out
circuitry to operate. (If [UDS*] or [LDS*] 1is low for 64
microseconds or longer, LTOEN causes low MPU [BERR*] signal. When
cleared, LTOEN disables VMEbus time-out circuitry.

Bus Request Clear - Control the requester operating mode. Bit to
mode correspondence is as follows:

BRC1 BRCO MODE
0 0 Release on request
0 1 Release on bus clear
1 0 Release when done
1 1 Release never

Bus Request Level - Control the level at which the requester
operates. This level should be set one time only, immediately
after a reset condition.

2-12

2.3.7 Control Register 6 (Location Address $F19F11)

7

6 5 4 3 2 1 0

|IMASK*|INT4MSK*|INT3MSK*|INT2MSK*|INTlMSK*| IL2 | IL1 | ILO I

IMASK*

INT4MSK*

INT3MSK*

INT2MSK*

INTIMSK*

1L2,1L1,ILO0

Interrupt Mask - When cleared, inhibits all SCM MPU interrupts
under all conditions. When set, IMASK* masks no interrupts.

Interrupt 4 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I/0 Channel low INT4* signal. When set, INT4MSK*
provides no masking function.

Interrupt 3 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I1I/0 Channel low INT3* signal. When set, INT3MSK*
provides no masking function.

Interrupt 2 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I/0 Channel low INT2* signal. When set, INT2MSK*
provides no masking function.

Interrupt 1 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I/0 Channel low INT1* signal. When set, INTIMSK*
provides no masking function.

Interrupt Level - Generate VMEbus interrupts. For further
details, see the interrupter section.

2-13

2.3.8 Status Register (Location Address S$F19F85)

The status register monitors several signal lines on the SCM. Bit definitions
of the status register are as follows:

7

6 5 4. 3 2 1 0

|SWITCH2 |SWITCHL |SWITCHO |KYBDLOCK* |IOCHEN |SYSFAIL|VBIACK* |VMEAV|

SWITCH2

SWITCH1

SWITCHO

KYBDLOCK*

IOCHEN

SYSFAIL

VBIACK*

VMEAV

Switch 2 - Factory-configured to a set state.
Switch 1 - Factory-configured to a set state.
Switch 0 - Factory-configured to a set state.

Keyboard Lock - When cleared, KYBDLOCK* switch is in the lock
position. Software should respond accordingly to this condition.
When set, KYBDLOCK* switch is in the unlock position.

I/0 Channel Enable - Factory-configured to a set state.

System Fail - When set, VMEbus SYSFAIL* signal line is driven low.
When cleared, SYSFAIL* signal line is not driven low.

VMEbus Interrupt Acknowledge - When cleared, indicates that the
interrupt generated by the SCM interrupter has been acknowledged.
When set, indicates that either the SCM interrupter is not
generating a VMEbus interrupt or that the generated VMEbus
interrupt has not been acknowledged.

VMEbus Available - When cleared, indicates that the SCM does not

have VMEbus mastership; when set, indicates that SCM does have
VMEbus mastership.

2-14

2.4 VMEbus INTERRUPTS

The SCM has an interrupter circuit which is capable of generating VMEbus
interrupts. The interrupt VMEbus level and the status ID byte during the
interrupt acknowledge cycle are both software programmable. To use the
interrupter circuit to interrupt the VMEbus, the following sequence is required:

A

b.

d.

e,

Ensure that control register 6 interrupt bits (bits 0-2) are cleared.

Initialize status ID byte (control register 4) to the desired
value. The VMEbus interrupt handler normally shifts the status ID byte
left twice and uses the result as the address in its exception table for
handling the VMEbus interrupt.

Set interrupt bits (bits 0-2) to the desired interrupt level. This
causes the appropriate IRQ to be generated on the VMEbus. The bit level
to interrupt level correspondence is as follows:

BIT 2 BIT 1 BIT 0 IRQ
0 0 0 NONE
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Wait for the VMEbus interrupt acknowledged bit (status register bit 1)
to be cleared, indicating that the interrupt has been acknowledged.

Clear control register 6 interrupt bits (bits 0-2).

NOTE
It is possible to set up the interrupt acknowledged condition
to cause a level 1 interrupt to the MPU. If this option is
used, it is important to account for the fact that the VMEAV*
interrupt has the same level and shares the same exception
table location as does [VBIACK*].

2-15

2.5 SCM MPU INTERRUPTS

There are 22 sources of interrupts on the SCM. Bach one is capable of
interrupting the MPU on one of seven levels (1-7). All of the interrupt
sources have an assigned distinct priority. For example, if three interrupt
sources occur on the same level at the same time, they are serviced in the order
of priority. The interrupt sources, levels, and priorities are as follows:

PRIORITY WITHIN LEVEL

LOWEST MEDIUM HIGHEST

IRQ7* (from VMEbus) ACFAIL* Software abort

System fail

IRQ5* (from VMEbus) I/0 Channel INT3* Time-of-day interrupt

IRQ4* (f£rom VMEbus) I/0 Channel INT2* MMU interrupt

|
|
IRQ6* (from VMEDbus) | I/0 Channel INT4*
|
!

IRQ3* (from VMEbus) | RXRDY* interrupt TXRDY* interrupt

IRQ2* (from VMEbus) I/0 Channel INT1* DMA interrupt

o e e e b

F— F— F— F— F— F—

+— +

[
=l NN w oINS O\\lg

IRQ1* (from VMEbus) Bus clear interrupt VMEbus available
(or VMEbus interrupt
acknowledged)

Each interrupt source (except for those from the VMEbus) is serviced through a
different vector in the MC68010 MPU exception table. The interrupt source to
exception table correspondence is shown in Table 2-1.

There are three methods by which interrupt sources may be masked. The first
method is via control register 6 bit 7 (IMASK*). When this bit is cleared, it
masks all interrupts; when set, it does not mask any interrupt. From a reset
condition, this bit comes up cleared, masking all interrupts. Another method of
masking interrupts is that of using the mask bit associated with each interrupt.
The interrupts and corresponding mask bits are also listed in Table 2-1. Each
of these bit masks its corresponding interrupt when it is cleared but does not
when it is set. All of these mask bits come up masking at reset time. The
third method of masking interrupts is that of using the MPU status register
internal mask bits (see MC68010 data sheet for details).

2-16

TABLE 2-1. Interrupt Sources

| CORRESPONDING MASK BIT |

81-¢/L1-T

INTERRUPT SOURCE | CONTROL REGISTER # | BIT NUMBER LﬁEXCEPTION TABLE ADDRESS

IRQL* | 3 | 1 | Vector passed by interrupting board .
shifted left twice

Bus clear interrupt | 2 | 2 | $100

VMEbus available | 2 | 3 | $120

Interrupt acknowledged | 3 | 0 | $120

IRQ2* | 3 | 2 | Same as IRQL*

I/0 Channel INT1* | 6 | 3 | $104

DMA interrupt | 0 | 0 | $124

IRQ3* | 3 | 3 | Same as IRQ1*

RXRDY* interrupt | 2 | 7 | $108

TXRDY* interrupt | 2 | 1 | $128

IRQ4* | 3 | 4 | Same as IRQ1*

I/0 Channel INT2* | 6 | 4 | $10C

MMU interrupt | 2 | 0 | $12C

IRQ5* | 3 | 5 | Same as IRQ1*

I1/0 Channel INT3* | 6 | 5 | $110

Time-of-day interrupt | 0 | 1 | $130

IRQ6* | 3 | 6] Same as IRQ1*

I1/0 Channel INT4* | 6 | 6 | $114

System fail | 2 | 6 | $134

IRQ7* | 3 | 7 | Same as IRQL*

ACFAIL* |No mask exists for this interrupt| $118

Software abort |No mask exists for this interrupt| $138

CHAPTER 3

GRAPHICS GENERATION

3.1 INTRODUCTION

This chapter describes the VME/10 graphic capabilities. SCM graphics hardware
description is first presented, followed by a software description required to
drive the graphics hardware. Software application programs are also provided.

3.2 HARDWARE DESCRIPTION

This section describes the applicable hardware circuits that control the
graphics generation capabilities of the VME/10. These circuits are as follows:

a. Graphics memory

b. Graphics control registers
c. Graphics cursor register
d. CRT Controller (CRTC)

e. Control register 0

f. Control register 1

g. Graphics offset register

3.2.1 Graphics Memory

The VME/10 implements bit-mapped raster graphics using three bit planes. This
means that the display monitor is organized as a matrix of dots called pixels.
The VME/10 supports a low-resolution mode (800 horizontal pixels x 300 vertical
pixels) and a high-resolution mode (800 horizontal pixels x 600 vertical
pixels). Graphical images that appear on the monitor are the result of directly
mapping bits in system RAM to pixels on the dislay. For this purpose, there are
three bit planes (banks) of memory, each of which contains one bit for each
pixel. Each pixel is the result of combining three bits -- one from each of the
three memory banks -- which allows for a total of eight values for each pixel on
the display.

In color systems, each bank represents one of the primary colors -- red, green,
or blue. Therefore, a pixel with corresponding bits set in the red and blue
banks appears as magenta, while a pixel with correspording bits set in all three
color banks appears as white.

In monochrome systems, each bank represents an intensity level, which provides
an 8-level gray scale fram black (no banks enabled) to brightest (all banks
enabled).

Table 3-1 lists the colors/intensities for each color/intensity bank and the
results of combining banks.

TABLE 3-1. Color/Intensity

COLOR MONITOR MONOCHROME MONITOR (SEE NOTE)

PRIMARY RESULTING GRAY SCALE RESULTING GRAY

BANK (S) COLOR(S) COLOR LEVEL (S) SCALE LEVEL
None None Black 0 0
1 Red Red 1 1
2 Blue Blue 2 2
1,2 Red, Blue Magenta 1,2 3
3 Green Green 4 4
1,3 Red, Green Yellow 1,4 5
2,3 Blue, Green Cyan 2,4 6
1,2,3 Red, Blue, Green White 1,2,4 7

NOTE: Gray scale levels are expressed as an integer from 0 (black) to
7 (brightest), inclusive.

Each color/intensity bank is arranged such that the first byte in a bank
corresponds to the left-most eight pixels on the top row of pixels on the
display, and the last byte in a bank corresponds to the right-most eight pixels
on the bottom row of pixels on the display. Within a byte, the high order bit
(bit 7) corresponds to the left-most pixel, and the low order bit (bit 0)
corresponds to the right-most pixel.

All bytes within a bank are used. Thus, in low-resolution mode, each bank
consists of 30,000 bytes ((800 x 300 pixels)/eight pixels per byte), and in
high-resolution mode, each bank consists of 60,000 bytes ((800 x 600
pixels) /eight pixels per byte).

The three graphics memory banks may be accessed in any of the ways in which
standard RAM may be accessed. (In fact, graphics memory is just standard RaM.)
This means that one may write to or read from 1, 8, 16, or 32 consecutive pixels
(in a given bit plane) at a time by using bit, byte, word, or long word
operations. This provides for a rapid way of setting a large number of
consecutive pixels (e.g., for drawing horizontal lines, for filling figures, or
for filling the entire screen with a given color).

3-2

The VME/10 has special hardware which allows the user to write to all three
color/intensity banks for a given pixel using a single instruction. This is
performed using the pixel access area of memory. This memory is arranged in
words, with one word per pixel. The first word in the pixel access area
corresponds to the pixel in the upper left-hard corner of the display, while the
last word correspords to the pixel in the lower right-hand corner of the
display. Within the area, the words are arranged in row-major order -- that is,
the second word corresponds to the second pixel on the top line of the screen,
the third word correspords to the third pixel on the top line, etc.

Each pixel access word contains three bits that map directly to the
corresponding bits in the three graphics memory banks -- bit 0 maps to bank 1,
bit 1 maps to bank 2, and bit 2 maps to bank 3. Thus, setting bits 0 and 2 in a
pixel access word results in setting the corresponding bits in graphics memory
banks 1 and 3. Also, each pixel access word contains three mask bits, again one
for each of the graphics banks -- bit 8 correspords to bank 1, bit 9 corresponds
to bank 2, amd bit 10 correspords to bank 3. These bits are used to enable and
disable the writing to particular banks. This is accomplished by setting or
clearing bit 0, 1, or 2 in a pixel access word, which causes the corresponding
bit in bank 1, 2, or 3 to be set or cleared only if the corresponding mask bit
in the pixel access word is set. Otherwise, the bank bit remains unchanged.
For example, if the value $0306 is written to a pixel access word, the
correspording bit in bank 1 is cleared, the correspording bit in bank 2 is set,
and the corresponding bit in bank 3 remains unchanged. See Figure 3-1.

The pixel access area does not consist of real memory, but is special hardware
that occupies a space in the memory map. Pixel access memory should be written
to and read from only a word at a time. Each time a pixel access word is
written, the mask must be included as well as the actual pixel data. Pixel
access words may be read, but only the low-order byte of each word will be
meaningful ard will contain the current values of the corresponding bits in the
three graphics memory banks.

The locations and lengths of the graphics memory banks and the pixel access area
in the VME/10 memory map differ, depending on the graphics resolution mode.
Figure 3-2 illustrates the graphics memory map when in low-resolution mode,
while Figure 3-3 illustrates high-resolution mode.

¢t

(DISPLAY
MONITOR
/ J
L 8 COLORS
) o
GRAY SCALE
z SHADES
GRAPHICS RAM ARRANGED
/ IN 3 BANKS FOR PRIMARY
\k COLORS (INTENSITIES
= IF MONOCHROME)
& 7N] 1
\// ~ Z\V —~J \f\‘ I 1
PIXEL ARRAY FIGH INTENSITY
800 HORIZONTAL x 300 VERTICAL (LOW RESOLUTION) H)

800 HORIZONTAL x 600 VERTICAL (HIGH RESOLUTION) BANK 2 - BLUE

> | (MEDIUM INTENSITY)
\\ BANK 1 - RED
‘.:D: (LOW INTENSITY)
\.llllllllllllll

l e d W

PIXEL ACCESS
WORD
(STARTING ADDRESS = $E00000)

NOTE: ASTERISK DENOTES GATES ENABLING THE SETTING (OR

CLEARING) OF A BIT IN A COLOR/INTENSITY BANK, IF
J CORRESPONDING MASK BIT ISSET. IF ABANKMASK BITIS
15 . 1w0l9ls 2 |1 0 CLEARED, THE BIT IN THE CORRESPONDING COLOR/
INTENSITY BANK WILL REMAIN UNCHANGED.
L 1 1 1 J
I 1 i |
NOT USED BANK NOT USED BANK
MASK PIXEL

FIGURE 3-1. Pixel Access (Low and High Resolution)

UPPER LOWER
DATA DATA
BYTE BYTE

$048000 $048001
BANK 3 - GREEN
(HIGH INTENSITY)

SO4F52E $S04F52F

$04F530 S04F531
UNUSED (1)

SOAFFFE $SOAFFFF

$050000 $050001

BANK 2 - BLUE
(MEDIUM INTENSITY)

$05752E $05752F

$057530 $057531
UNUSED (1)

S057FFE $O057FFF

$058000 $058001

BANK 1 - RED
(LOW INTENSITY)

SO5F52E SO5F52F
$S05F530 $05F531
UNUSED (1)

SO5FFFE SOSFFFF
)u’ AL
n ,1-/
SE00000 SE00001
PIXEL ACCESS AREA
SE752FE SE752FF
SE75300 $575301
UNUSED (2)

SEFFFFE SEFFFFF

NOTES:

(1) Areas of unused memory are regular RAM and are available for
use by the user.

(2) Area of unused memory is special RAM and is not available for
use by the user.

FIGURE 3-2. Low Resolution Graphics Memory Map

UPPER LOWER
DATA DATA
BYTE - BYTE

$030000 $030001
BANK 3 ~ GREEN
(HIGH INTENSITY)

SO3EASE $03EASF
S03EA60 S03EA61
UNUSED (1)

SO3FFFE SO3FFFF
$040000 $040001

BANK 2 - BLUE
(MEDIUM INTENSITY)

S04EASE S04EASF
S04EA60 SO5EA61
UNUSED (1)

SO4FFFE SO4FFFF
$050000 $050001
BANK 1 - RED
(LOW INTENSITY)

SO5EASE SOSEASF
S05EA60 SO5EA61
UNUSED (1)

SO5FFFE SO5FFFF
~ /L/

v T
SE00000 SE00001
PIXEL ACCESS AREA
SEEASFE SEEASFF
SEEA600 SEEA601

' UNUSED (2)
SEFFFFE SEFFFFF

NOTES:

(1) Areas of unused memory are regular RAM and are available for
use by the user.

(2) Area of unused memory is special RAM and is not available for
use by the user.

FIGURE 3-3. High Resolution Graphics Memory Map

3-6

3.2.2 Graphics Control Register

This section describes registers in the VME/10 that affect the operations of
VME/10 graphics. Several registers deal with switching between low-resolution
and high-resolution modes. The required register settings for each mode are
sumnarized in Table 3-2.

TABLE 3-2. Required Settings for Graphics

CRTC CONTROLLER CHIP (1) LOW HIGH
(MC6845) RESOLUTION RESOLUTION MONOCHROME COLOR
Register 0 $62 $62
Register 1 $50 $50
Register 2 $56 $56
Register 3 $11 s11
Register 4 819 $19
Register 5 $03 $02
Register 6 $19 $19
Register 7 $19 $19
Register 8 S00 $03
Register 9 SOB $le6
Control register 0
(SF19F05)
Bit 3 - Dutycycle 1 0
Control register 1
(SF19F07)
Bit 4 - High resolution (2) 0 1
Bits 3-1 -~ Graphics enable 7 7
Graphics offset register $00 $32
(SF19F13)
NOTES:

(1) Write register number into location $F1A021, then write corresponding
register value into location $F1A023.

(2) Changing the value of this bit totally remaps all of dynamic RAM in
the address space $000000 to SOSFFFF. Thus, any program or data in
this address space will probably be lost. It is recommended that the
VM command in TENbug be used to toggle between low resolution and high
resolution modes.

3-7

3.2.3 Graphics Cursor Registers

The VME/10 display supports a graphics cursor consisting of two cross hairs (a
vertical line and a horizontal line). The cross hairs appear inverse to the
color that is present on the display screen (e.g., no color - white cursor,
green screen - magenta cursor). Each cross hair is controlled separately by one
of the two graphics cursor registers, each of which is 12-bits in length.

The vertical graphics cursor (vertical cross hair) is controlled by the vertical
graphics cursor register at address $F19F00. By loading the vertical graphics
cursor register with any of the values $FCEQ-S$FFFF, the vertical graphics cursor
may be placed at any one of 800 positions on the display. The value SFCEQ puts
the vertical cursor at the far right-hand side of the display, while the value
SFEFFF puts the cursor at the far left-hand side of the display. The value $SFE70
puts the vertical cursor at the center of the display. Storing the value $0 in
the vertical graphics cursor register disables the display of the vertical
Cursor.

The horizontal graphics cursor (horizontal cross hair) is controlled by the
horizontal graphics cursor register at address SF19F02. This cursor may be
placed at any one of 300 positions on the display by loading the horizontal
graphics cursor register with any of the values $FED4-SFFFF. The value SFED4
puts the horizontal cursor at the far bottom of the display, while the value
SFFFF puts the cursor at the far top of the display. The value SFF6A puts the
horizontal cursor at the center of the display. Storing the value $0 in the
horizontal graphics cursor register disables the display of the horizontal
cursor.
NOTE

Both of the cursor registers are write-only. Reading
from either register will obtain meaningless values.

3.2.4 CRT Controller (CRTC)

To switch from low-resolution graphics display mode to high-resolution graphics
display mode (or vice-versa), the CRTC Controller (CRTC) chip MC6845 must be
reprogrammed. The CRTC has several byte-length internal registers, each of
which can be programmed separately. To change the value of an CRIC register,
first write the register number into location S$F1A021 and then write the new
register value into location $F1A023. Both of these writes must be byte
operations. These registers are write-only; their contents cannot be read.
Table 3-3 lists the required CRTC values for low- and high-resolution modes (the
low-resolution values are also used for standard text display):

TABLE 3-3. Resolution Values

LOW HIGH
REGISTER RESOLUTION RESOLUTION

0 $62 $62
1 $50 $50
2 $56 $56
3 $11 S11
4 $19 $19
5 $03 $02
6 $19 $19
7 $19 $19
8 $00 $03
9 $0B $16

3-8

3.2.5 Control Register 0 (Location Address SF19F05)

Bit 3 of control register 0 controls the display dutycycle. This bit should be
set when a monochrome monitor is being used. When a color monitor is being
used, this bit should be cleared for adequate display brightness.

3.2.6 Control Register 1 (Location Address SF19F07)

Bit 4 of control register 1 selects the proper memory mapping for low-resolution
and high-resolution modes. This bit must be cleared for low-resolution
graphics, and must be set for high-resolution graphics. Changing the value of
this bit totally remaps all of dynamic RAM in the address space $000000-SOSFFFF.
This would probably destroy any programs and/or data in this address space.
Therefore, it is recommerded that the VM command in TENbug be used to toggle
this bit. By default, this bit is set (high-resolution) whenever the VME/10 is
turned on.

NOTE
It is possible to switch between low- and high-resolution
under program controcl. To do so requires that bit 4 of
control register 1 already be set and remain set. To
select the resolution, set the graphics offset register to
the proper value (see section 3.2.7) and program the CRIC
accordingly (see table 3-2). When using this method, banks
3, 2, and 1 will always start at $30000, $40000, and $50000,
respectively. It is not possible to switch between low- and
high-resolution when bit 4 of control register 1 is clear;
only low-resolution is allowed.

Bits 1 through 3 of control register 1 are used to enable and disable the
display of individual graphics memory banks. A set bit enables a bank while a
clear bit disables a bank. Bit 1 controls bank 1 (red/low intensity), bit 2
controls bank 2 (blue/medium intensity), and bit 3 controls bank 3 (green/high
intensity). Thus, when all three bits are cleared, no graphics are displayed;
when all three bits are set, graphics of all colors/intensities are displayed.

NOTE

These bits do not affect the user's ability to write to
the individual graphics memory banks; they affect only
the displaying of those banks.

3.2.7 Graphics Offset Register (Location Address SF19F13)

The graphics offset register must also be altered when changing between
low-resolution and high-resolution modes. For low-resolution graphics, this
register must contain $00. For high-resolution graphics, this register must
contain $32.

NOTE

By default, this register contains $00 (when the VME/10
is powered up). Also, use of the TENBug VM command does
not change the value of this register.

3-9

3.3 SOFTWARE APPLICATION

This section presents several examples of programs that use the VME/10 graphics.
All of the programs presented assume the presence of VERSAdos.

One of the first problems encountered when attempting to use VME/10 graphics
under VERSAdos is having the application program loaded into graphics memory
($48000~S5FFFF in low-resolution; $30000-S$5FFFF in high-resolution). It 1is
almost impossible to use the same memory for graphics and for program execution
at the same time. One way to solve this problem is by always writing
position-independent application programs that relocate themselves if they get
loaded into graphics RaM. An easier method is to write 3just one
position-independent utility program that can relocate itself, if necessary, and
reserves graphics RAM for use by subsequent application progams. The graphics
RAM can be reserved by allocating a locally-shareable segment that encompasses
the graphics memory. Then the various application programs can simply attach to
that segment to gain access to graphics RAM. Also, there is no need for the
application programs to be position-independent and self-relocating because
there is no way they will be loaded into the already allocated graphics RAM.

Listing 1 is an example of such a utility program, called GRAF. When GRAF is
executed, it first relocates itself to ensure that it is not occupying any
graphics RAM. It then allocates the graphics memory in a locally-shareable
segment called GRAF. Furthermore, GRAF enables the display of graphics by
setting bits 1 through 3 in control register 1 (location address $SF19F07) and by
reprogramming the CRTC for the proper resolution.

When GRAF is finished, the program terminates. However, the locally-shareable
segment GRAF remains, as does the enabling of the graphics display. The segment
remains active until the session is temminated (i.e., the user logs off) or it
is deallocated by a call to RMS68K. The graphics display remains enabled until
bits 1 through 3 of control register 1 are cleared and the CRTC is reprogrammed.
Listing 2 is an example of a program that deallocates the graphics RAM segment
and disables the display of graphics. The program is called NOGRAF.

By using GRAF and NOGRAF, the user can develop application programs without
worrying about having to self-relocate, how to enable the graphics display, or
how to return the display to normal. All the user needs to do is run GRAF
before an application program and run NOGRAF afterwards. If there are several
application programs, invoke GRAF once at the beginning and NOGRAF once at the
erd.

Finally, listing 3 is an example of a simple application program called BARS.
BARS draws a color/intensity chart consisting of eight horizontal bars and eight
vertical bars. Each bar in a given axis is of a different color/intensity.
Where two bars intersect, the intersecting area is the exclusive-OR of the two
colors/intensities. Thus, where two bars of the same color/intensity intersect,
the result is black. The bars are displayed against backgrounds of each of the
eight possible colors/intensities. (The bars are also exclusive-OR'd with the
backgrourd.)

BARS creates its graphics both by writing directly to the three color/intensity
banks in graphics RAM and by writing to the pixel access area. The former is
used to draw the background, while the latter is used to draw the bars. To
access the graphics RAM, BARS attaches the shared segment created by GRAF. To
use the pixel access area, BARS has to allocate a segment at the proper spot in
the memory map. BARS determines if low-resolution or high-resolution graphics
are in use and adjusts to work equally well in both modes.

3-10

.
P e T D 00~ O L e G4 P e

[I OV T L B SR O |
~ O L el P

P

[g=]
]

30

3t

32

33

14

35

35

37

38

39

4

41

42 0 DOO0O0H00
43

44

45

44

47

48 o 00000000 41FADL34
49 § 40000004 7001
50 0 00000006 4E41
51 0 00000008 4704

TARY

e W e M W LX) ok Mk ds e e MR e ok e e e R e s o Nk a0 sk e MR e s s s Mt Mt o ik ok 3 ue R ok R ok SR dk N s We

a2 ¥
a3 ¥
i *
55 4
360 20000004 ERROR

57 0 0000000R TOOE
38 0 0000000C 4E4!

GRAF

7 December 1983

This program creates a locally shareable segment called GRAF.
It the VME/10 is in low-resalution graphics mode, this segment
begins at $48000 and extends thru $3FFFF. If the VME/10 is in
high-resolution graphics mode, this segment begins at $30000
and extends thru $SFFFF.

This program also "turns graphics on® by enabling the display
of graphics and reprograaeing the CRTC controller chip.

Tasks within the same session can attach to the segaent for the
purpose of accessing the graphics raa.

The segment can be de-allocated by either terminating the session,
or by invoking the program NDGRAF. Invoking the program NOGRAF
will also disable the graphics display and return the CRT dispiay
to normal.

The basic attack ic as follows:

This task has probably been loaded intp semory within the graphics
ram. The task will move itself out of there and de-allocate it's
original code segment, thus freeing up the graphics ras,

Then, it allocates the physical ram from $4B000 thru $SFFFF (for
low-resolution} aor from $30000 thru $3FFFF {for high-resolution)
and establishes that segment as locally shareable,

Then, it clears all graphics memory and enables the the display
of graphics,

Finally, it terminates, leaving the GRAF segment available for use,
as well as preventing further allecations in that area,

The beginning of the program is here:
Eau ¥
First, acquire a segaent to gain access to the hardware

registers so we can find out what reselution sode we are
in.

LEA.L PBI{PCY,AD Point to parameter block
HOVE.L #1,D0 HTSEE directive number
TRAP 3! Call RNSABK

BEB.S GOTREGS Successful call

What follows is the error handler, It sieply terminates
ourself.

Eou ¥
MOVE.L #14,D0 Terminate self directive nusber
TRAP # Call RMS&8K

3-11

59 ¥

60 # Bet starting address of graphics memory in A5,
L1 ¥
62 9 H000000E GOTREGS EBY ¥
A3 § O0G0O0GE 2A7CG0048000 MOVE.L #$48000,45 fissume low-res
A4 § 00000014 0B39000400F1 BTST.B #4,$F19F07 Really low-res?
9F7
65 0 D000G01IE 6704 BER.S BOTRES! Yes
64 O Q00000LE ZATCO0030000 MOVE.L #$30000,A5 No - set up for high-res
67 ¥
b8 £ fcguire a new segment to receive a copy of the code.
&9 #
IR 00000024 HOTRES! EGU ¥
71 0 00000024 41FADOED LEA PRE(PC),AD Point to the BTSEG paraseter block
72 0 00000028 Z14D0010 " MOVE.L AS,PRILOC-PRE(AD) Set up first address ...
73 0 D000002C 04ABOODHIN0Y SUB.L #$1000,FBILOC-PBLIAD) to try,
00140
74 0 00000034 7001 HOVE.L #1,D0 BYSEG directive nusber
73 0 00000036 4E41 TRAP # Call RMS48K
7o 0 0000038 A7DA BEG.S BOTCODE Branch it it worked
77 0 00000034 04ABNO0GO100 SUB.L 9%100,PBILOC-PBI{AG) Else try a little lower
2010
78 0 00000042 H0ED BRA.S BOTRES! Give it another shot
79 0 00000044 SOTCODE
80 ¥
Bl ¥ Move my code to the new segment
8z #
B3 0 00000044 2248 WOVE.L AD,AL Point to the beginning of the new ae
84 0 00000044 41FAFFEI LEA START{PL) (A0 Point to the beginning of the old me
85 O D0000D4K J03COLSE MOVE.® SEND-START,DO My approvimate length
84 0 2000004E 1208 HOVE HOVE.R {(AD)+, (AD)+ Hove a byte to the new place
87 0 00000050 SICBFFFC bBRA D0, MOVE Until I'm all there
88 0 00000054 227400C0 MOVE.L PBILOCPCY AL Point to the new START
B9 O 90000058 4EEFO0SC JHF HEN-START (A1) Juap to the new HEM
94
91 ¥ Here begins the code executed in the new code segment
92
93 9 D000005C NEW
94
95 ¥ De-allocate the old code segaent
9%
97 0 00000050 41FACOAB LEA PELIPL), A0 Point to the parameter block
98 0 00000060 217053454730 MOVE.L #'5EG0° ,PBINAME-PRI(AO) Old segaent name
H0OC
9% O H0000048 7002 MOVE.L #2,D0 DESEG directive nusber
100 0 00000046 4E41 TRAP # Call RMSA8K
101 0 0006004C 649C BAE ERROR Crash if it didn't work
102 *
103 ¥ Bequire the graphics rae
104
105 0 0000004E 41FAO0AE LEA PBZ{PL),AD Point to parameter block
104 0 00000072 21400010 MOVE.L AS,PB2LOC-PBZ(AD) Physical address desired
107 § 00000076 22700060000 MOVE.L ##60000,41 Calculate...
168 0 0000007 93CD SuB.L AS,AL segeent.,.
109 § H000O07E 21490014 MOVE.L Af,PB2LEN-PB2{AD) length.
110 ¢ 00000082 7001 MOVE.L #1,D0 6TSE6 directive nusber
111 © 90000084 4E41 TRAP # Call RMS48K
112 0 00000086 5482 BNE ERROR Crash if it didn't work

3-12

113

114

113

116 0 00000088 41FA0OT4

117 0 0000008C 317C90000008

118 9 00000092 31720000004

113 0 90000098 7007

120 0 00000094 4E41

124 0 0000009C ab600FFAC

122

123

124

125 & 00000080 224D

126 0 00000042 203C00060090

127 0 20000048 9089

128 0 900600AR £468

129 9 90O000AC 5340

130 ¢ 000000AE 4299

131 © 00000080 51C8FFFC

132 0 00000084 427900F19F00

133 0 0000008k 427900F19F02

134

135

136

137 9 00000000 D239007FOOFT
907

138 0 000000CE O03IF000E00F]
9F07

139 0 000000D0 423900F19F13

140 O 000000D4 43FAO0TS

141 O 000000DA 0839000400F1
ko7

142 & DOOOOOEZ 670C

143 0 000000E4 13FCO03200FL
9F13

144 0 0D0000EC 43FADNET

145 0 000000F0 43F900F1A021 GOTRES? LEA
CRTCLOOP MOVE.B

144 § 000000FS 1019

147 0 900000F8 aBO8

148 0 OO000DFA 1480

149 0 000000FC 15590002
130 0 00000100 80F4

131

152

153

154 0 00000102
135 0 90000102 TOOF

156 9 00000104 4E41

157

158

159

160

16t 9 00000106 000000000000
162 0 0000010E 01000000
163 0 00000112 434F4443
164 & 000001146 00000000
163 0 00000114 00000150
164

CLRLOOP

¥
¥
4

Make GRAF locally shareable

Point to parameter block

DELSHR directive number

LER PB2(PCI,AD

MOVE.N #$9000,PB20PT-PB2(A0) Options
MOVE.W #$2000,PB2ATTR-PB2(A0} Attributes
MOVE.L 47,00

TRAP # Call RMS&8K
BNE ERROR

Crash if it didn’t work

Clear out the graphics memory and disable the graphics cursor,

HOVE.L A5,Al
MOVE.L #$40000,D0
SUB.L A1,D0
LSR.L 42,00
SUB.N #1,D0
CLR.L (A4

DBRA DO,CLRLOOP
CLR.N $FI9F00
CLR.N $F19FD2

Al.L = address of graphics RAM

Ending address of graphics RAM

DO.L = # of bytes in graphics RAM

D0.W = ¥ of long words in graphics RAM
Adjust for lcop

£lear graphics RAM, a...

long word at a tiee.

Disahle vertical graphics cursar
Disable horizontal graphics cursor

Enable graphics and set up resolution mode

RND.B . 8$TF $F19F07
OR.B $$0E, $F19F07
CLR.B $FI9F13

LEA.L LOWRES{PC) Al
BTST.B #4,4F19F07
BER.S BOTRES?
MOVE.B ¥$32,$F19F13
LEA.L HIRES(PLH, Al

$F1021,A2

Disable fast access to systea RAM
Enable graphics display

fissume. ..

low-res.

Really low-res?

Yes
No - set up...

for hi-res.
Load address of CRIC controller regs

fAL)+,D00 Reprograa the...
BM1.5 CRTCDONE CRTC controller...
MOVE.B DO, (A2} for the proper...
MOVE.B 1AL+, 2(A2) resolution..,
BRA CRYCLOOP mode,
Bood. This massive task is now finished. 5o I will go away.

CRTCDONE EBU]

MOVE.L #15,D0
TRAP #1

TERM directive nusber
Call RMSaBK

Acquire new code segaent
Physical address

Naze

fAddress

*
¥ Paraseter block to get new code segment.
¥ Also used to delete old code segment.

¥

PBi bL.L 0,0

PRIOPT DC.W 10000000100000900,0

PRINANE DC.L 'CODE”

PBILEC DC.L 0

PBILEN DC.L END-START+{

4

3-13

Length

167 * Parameter block used to get segaent at graphics RAM.
168 ¥

169 0 000001LE DO0D00000000 PBZ BE.L 0,0 Taskname and session
170 0 00000126 0000 FB20PT DC.W 0 Options

171 4 20000128 0000 PR2RTIR DL.W 0 Segement attributes

172 0 00000128 47524144 PHINAME [C.L ‘BRAF Segaent naee

173 0 000D012E 00000000 PR2LOC DC.L 0 Segment address

174 ¢ 00000132 00000000 PBALEN DC.L 0 Segment length

175 ¥

178 ¥ Parameter block to get segeent at hardware registers.
177 *

178 0 00000136 000000000000 PR3 bL.L 0,90 Taskname and session
179 0 0060013E 0000 PESOFT DC.¥] Gptions

180 0 00000140 080D PBIATTR DC.H $800 Attributes imemory mapped [/0)
181 0 00000142 52454733 PHINAME DC.L "REBS” Segment name

182 0 00000146 DOF19FO0 pR3LOC DC.L $F19F00 Segment address

183 & 00000144 00000200 PBEILEN DC.L $FLALOG-$FLI9F00 Segment length

184 ¥

185 ¥ The following are CRTC controller register values for
184 # both low- and high- resolution mades.

187 ¥

188 0 0000014E 050308000908 LONRES [DC.B 5,$03,8,$00,9,508,-1
189 0 00000155 DS0208030914 HIRES DC.B 5,$02,8,$03,9,$16,-1

190 *

194 £ Uh-duh-dee, uh-duh-dee, uh-duh-dee, that's all folks!
192 $

193 0 DOOOOISE END EQU ¥

194 , END

seeeek TOTAL ERRORS f--
reeied TOTAL WARNINGS O--

3-14

NOGRAF

7 Deceaber 1983

This progran de-allocates segment GRAF.

It also disables graphics and returns the CRT to normal.

The beginning of the program is here:

—
R - IS N L I S P R U
W W sk R e R de N uk

it
12 9 D0060000 START EQU #
13 ¥
14 ¥ First, acquire a segaent to gain access to the hardware
13 * registers so we can find out what resolution sode we are
16 ¥ in.
17 *
18 0 00000000 41FAGYT6 LEA.L PB3(PC},AD Point to paraseter block
19 0 40000004 7001 MOVE.L #1,D0 GTSEG directive number
20 0 00000006 4E41 TRAP £)| Call RM548K
21 0 00000008 6704 BER.S GOTREGS Successful call
22 *
23 ¥ What follows is the error handler. It simply terminates
24 # ourselt.
25 ¥
26 9 00000004 ERROR EBU *
27 0 000D00DK TOOE MOVE.L #14,D0 Terminate self directive nusber
28 0 00000000 4E41 TRAP i Call RMGABK
29 ¥
30 # Get starting address of graphics memory in Al
3t ¥
20 D06000DE GOTREBS EQU ¥
33 0 0000000F 227C00048000 NOVE.L #$48000,A1 Assume low-res
38 0 00000014 0B39000400F 1 BIST.B ¥4, $F19F07 Really low-res?
9F07
33 0 0000001C 4704 BER.S GOTRESH Yes
34 O Q000Q01E 227E00030009 MOVE.L #$30000,A1 No - set up for high-res
37 ¥
38 * httach to the segment GRAF, so's it's mine to delete
39 ¥
409 00000024 BOTRES! EBU ¥
41 0 00000024 41FADOSA LEA PBLLPC) A0 Point to the parameter block
42 1 00000028 7004 MOVE.L #4,D0 ATTSEE directive number
43 O 00000028 4E41 Thae L N Call RMS68K
44 0 0000002C 66DC BNE ERROR Crash if didn't work
45
L1 ¥ Clear out the graphics memory and disable the graphics cursor.
47
48 1 0000002E ZO3CO0040000 MOVE.L #$40000,D0 Ending address of graphics RAN
49 0 00000034 9089 SuB.L ALDD D0.L = ¥ of bytes in graphics RAM
0 0 00000034 E488 LSR.L #2,D0 BO.W = # of long words in graphics RAM
51 0 00000038 5340 SuB.W #1,D0 Adjust for loop
32 9 D000003A 4299 CLRLOOP CLR.L {AD)+ Clear graphics RAM, a...
a3 0 0000003C SICAFFFC DBRA Bo,CLRLOOP long word at a tise.
34 0 00000040 427900FL19F00 CLR.W $FI9FO0 Disable vertical graphics cursor
33 0 00000046 427900F19F02 CLR.W $F19F02 Disable horizontal graphics curser
b ¥
a7 ¥ Disable graphics and return CRT to noraal.

3-15

i

9 0 00000040 023900F100F1

9F0?

60 © 00000054 0039008000F 1

9F07
61 0 0000005C 43FA0052

62 9 00000060 43F900F1AG2L

63 0 00000046 1019

&4 9 00000068 4BOE

65 0 D0ODOODSA 1480

64 O 000000AC 13590002
67 & DO0ODOTO HOF4

L

b9

70

I H0000072
12 0 00000072 41FA000C
73 0 60000076 7002

T4 0 Q0000078 4E41

T3 O 00000078 6ABE

74

n

7

79 4 0000007C TOOF

80 0 0000007E 4E41

Bt

82

a3

B4 0 00000080 000H0N000300

83 0 00000088 28042000
8a 0 HODDDOBE 47524144
87 0 00000090 H00006000
B8 0 00000094 HO00000D
89
L]
91

92 0 00000098 000000000000

93 0 00000040 0000

94 0 000000R2 0800

93 0 000000A4 52454753
96 0 000D00AB HOFLFFO0
97 0 000000RC 00000200
98

99

100

10t

¥

CRTCLOOP HOVE.B

¥
¥
¥

AND.B #$F1,$F19F07
O0R.B 4380, $F19F07
LEA.L LONRES(PC),At
LEA $FLA021,A2

(A1)+,00
BM1.S CRTCDONE
MOVE.B DO, (A2)
HOVE.B (AL)+,2(A2)
BRA CRTCLOOP

Mow de-allocate segment GRAF,

CRTCOONE EBH H

¥

*

¥

PBi
PRIGPT
PRINAME
PRILOC
PBILEN
*

¥

¥

PR3
PE3OPT
PRIATTR
PBINAME
PE3LOC
PESLEN
*

¥

3

¥

102 9 00000080 050308000708 LOWRES

103
104
103
106 9 00000400
#heked TOTRL ERRORS
sheers TOTAL HARNINGS

(-
-

¥
¥
*

LER PBI(PC) ,AD
MOVE.L 42,00

TRAP 4

ENE ERROR

a1l done, so off [go

HOVE.L 415,00
R #

Disable graphics display
Enable fast access to system RAM

Load address of new CRTC reg values
Load address of CHIC contraller regs
Reprograa the...

CRIC controller...

for the proper...

resclution...

aode,

Point to parameter block
DESEG directive number
Call RNSaBK

Lrash if didn't work

TERM directive number
Call RNSABK

Attach and de-allocate parameter block

L 0,0
DC.H

BL.L GRAF
DL $00000
L0

Farameter block to get segaent

BLL 0,0
H 0

BN $800

BC.L REGS'

DL $FI9F00

DC.L $FLALOO-$FLIFOO

ficguire new code seqment

10010100000000000,$2000 Resove peraanance when DESEGing

Segment name
Address {n/a)
Length {(n/a)

at hardware registers.

Taskname and cession

fiptions

Attributes {memorv mapped [/0}
Segment name

Segaent address

Segment length

The following are CRTC controller register values for
low-reselution mode {also used for standard test display).

bc.B
That ‘s all she wrate.

END START

3-16

5,$03,9,$00,9, 50