
VME/10
Microcomputer System

Overview Manual

M68KVSOM/D1

QUALITY • PEOPLE • PERFORMANCE

M68KVSOM/Dl

FEBRUARY 1984

VME/10 MICROCOMPUTER SYSTEM

OVERVIEW MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

DEbug, I/Omodule, RMS68K, SYMbug, TENbug, VERSAdos, VMEbus, VMFmodule, and
VME/10 are tradercarks of Motorola Inc.

SAS! is a tradercark of Shugart Associates.

The computer program stored in the Read Only Memory of this device contains
material copyrighted by Motorola Inc., first published 1983, and may be used
only under a license such as the License For Computer Programs (Article 14)
contained in Motorola's Terms and Conditions of Sale, Rev. 1/79.

WARNING

THIS EQUIPMENT GENERATES, USES, AND CAN RADIATE RADIO
FREQUENCY ENERGY AND, IF NOT INSTALLED AND USED IN
ACCORDANCE WITH THE INSTRUCTION MANUAL, MAY CAUSE
INTERFERENCE TO RADIO COMMUNICATIONS. AS TEMPORARILY
PERMITTED BY REGULATION, IT HAS NOT BEEN TESTED FOR
COMPLIANCE WITH THE LIMITS FOR CLASS A COMPUTING
DEVICES PURSUANT TO SUBPART J OF PART 15 OF FCC RULES,
WHICH ARE DESIGNED TO PROVIDE REASONABLE PROTECTION
AGAINST SUCH INTERFERENCE. OPERATION OF THIS EQUIPMENT
IN A RESIDENTIAL AREA IS LIKELY TO CAUSE INTERFERENCE,
IN WHICH CASE THE USER, AT HIS OWN EXPENSE, WILL BE
REQUIRED TO TAKE WHATEVER MEASURES MAY BE REQUIRED TO
CORRECT THE INTERFERENCE.

First Edition

Copyright 1984 by Motorola Inc.

PREFACE

Unless otherwise specified, all address references are in hexadecimal
throughout this manual.

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal
is low.

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur
on a high to low transition.

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6
1. 7
1. 7 .1
1. 7 .2
1. 7 .3
1. 7 .4
1.8
1.8 .1
1.8.2
1.8.3
1.8 .4
1.8 .5
1.8.6
1.9

CHAPTER 2

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.6

CHAPTER 3

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.2.l
3.4.2.2
3.4.2.3
3.4.2.4
3.4.3
3.4.3.1
3.4.3.2
3.4.3.3
3.4.4
3.4.4.1
3.4.4.2
3.4.5
3.4.6

TABLE OF CONTENTS

GENERAL INFORMATION

INTRODUCTION
FEATURES
SPECIFICATIONS
EQUIPMENT SUPPLIED
I/O aIANNEL AND VME EQUIPMENT OPTIONS ••••••••••••••••••••••
SYSTEMS DEVELOPMENT AND INTEX;RATION ••••••••••••••••••••••••
GENERAL DESCRIPTION •.•.•••.•.•..•.•..•••.••.••••••••••..•••

Control Unit Chassis
System Control Module
Display Unit
Keyboard

VERSAdos OPERATING SYSTEM AND DEVELOPMENT TOOLS
VERSAdos Operating System ••••••••••••••••••••••••••••••••
Resident Structured Assembler ••••••••••••••••••••••••••••
Symbolic Debugger
CRT Text Editor
Linkage Editor
Diagnostic Package

SYSTEM MEMORY MAP

HARDWARE/SOFTWARE SYSTEM STARTUP

INTRODUCTION
SYSTEM POWER-UP ••
POWER-UP/RESET SELF-TEST
SYSTEM INITIALIZATION ••••••••••••••••••••••••••••••••••••••

VERSAdos Operating System ••••••••••••••••••••••••••••••••
TENbug ...

DISK-RESIDENT MODULE DIAGNOSTICS •••••••••••••••••••••••••••
BACKUP PROCEDURE

ffiNTROLS AND INDICATORS

INTRODUCTION
aIASSIS
DISPLAY UNIT
KEYBOARD CONSOLE •••

Mode Keys
Typewriter Keyboard

Numerics (0-9)
Alphabetic Characters (a-z) ••••••••••••••••••••••••••••
Symbol Characters
Special Characters

Cursor Control Keypad
Cursor Control
Functions (CLEAR/BREAK, RESET) •••••••••••••••••••••••••
Special Character (ESC)

Hex/Edit Keypad ••
Hexadecimal Mode
Edit Mode ••••.•.••••.••••••••••••••••••••••••••••••••••

User Function Keys (Fl-Fl6)
ASCII Character Set ••••••••••••••••••••••••••••••••••••••

i

1-1
1-1
1-4
1-5
1-6
1-7
1-8
1-8
1-9
1-14
1-14
1-15
1-15
1-15
1-17
1-17
1-17
1-17
1-18

2-1
2-1
2-1
2-2
2-2
2-4
2-4
2-5

3-1
3-1
3-2
3-2
3-4
3-5
3-5
3-5
3-5
3-5
3-9
3-9
3-10
3-10
3-10
3-10
3-10
3-12
3-13

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.5
4.2.5.1
4.2.5.2
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.4
6.5
6.6
6.7

TABLE OF CONTENTS (cont'd)

SOFrWARE DEg::RIPTION

INTRODUCTION•••
VERSAdos

Functional Overview ••••••••••••••••••••••••••••••••••••••
<::perational Overview •••••••••••••••••••••••••••••••••••••
VERSAdos File Name Format ••••••••••••••••••••••••••••••••
Session Management •••••••••••••••••••••••••••••••••••••••

Sessions •••
Security
Examples •••

Utilities
Descriptions
Examples ...

SOE'TWARE DEVELOPt1EN'T •••••••••••••••••••••••••••••••••••••••
Designirg a System •••••••••••••••••••••••••••••••••••••••
SYSGEN Canmand Set •••••••••••••••••••••••••••••••••••••••

OPTIONAL SOFTWARE••
Pascal ...
E'ORTRAN •••••••••••••••••••••••••••••••••••• • •• • • • • • • • • • • •
Cross Products •••
PROM PrCXJr amner ..
Independent Software •••••••••••••••••••••••••••••••••••••

CRT TEXT EDITOR

INTRODUcrION ••
Corrmand Line ••
E Cornrnarrls ••
Examples ••

ASSEMBLER

INTRODUCTION••
SOURCE PR(X;RAMS •••

Coding ..
Symbols and Expressions •••••••••••••••••••••••••••••••••
Registers ...
Macros ••

INVOKING THE ASSEMBLER••••••••••••••••••••••••••••••••••••
DIREcrIVES ••
ASSEMBLER OOTPUT ••
LINKAGE •••
EXA1"1PLES ••

ii

4-1
4-2
4-2
4-3
4-4
4-5
4-5
4-7
4-8
4-11
4-12
4-18
4-20
4-21
4-22
4-23
4-23
4-23
4-24
4-24
4-24

5-1
5-1
5-3
5-6

6-1
6-1
6-1
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.3
7.3.l
7.3.2
7.3.3
7.3.4
7.3.5

CHAPTER 8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.3.3
8.4
8.4.1
8.4.2
8.5
8.6
8.7

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.3
9.3.l
9.3.2
9.4
9.4.1
9.4.2

TABLE OF CDNTENTS (cont'd)

LINKAGE EDITOR

INTRODUCTION
INVOKING THE LINKER•••••••••••••••••••••••••••••••••••••••

COilllllClrrl Line ••
User Canrna I1d. s •

LINKER aJTPur •••
Listing Types •••
Relocatable Object Module Format ••••••••••••••••••••••••
Load Module Format ••••••••••••••••••••••••••••••••••••••
&-Record File Format ••••••••••••••••••••••••••••••••••••
Debug File Format •••••••••••••••••••••••••••••••••••••••

PASCAL COMPILER

INTRODUCTION ••
SOURCE PROORAr-1 ••

Pascal Source Pr~rams ••••••••••••••••••••••••••••••••••
Pascal Subprograms ••••••••••••••••••••••••••••••••••••••
Assembly Language Subroutines ••••••••••••••••••••••••••••
Runtime Libraries •••••••••••••••••••••••••••••••••••••••

INVOKING THE COMPILER •••••••••••••••••••••••••••••••••••••
Phase
Phase
Phase

1 - PASCAL
1. 5 - OOPTIM ••••••••••••••••••••••••••••••••••••••
2 - PASCAL2

COMPILER aJTPur •••
Relocatable Object Modules ••••••••••••••••••••••••••••••
Psuedo Assembly Listin:J Description •••••••••••••••••••••

LINKAGE •••
LC>A.D MODULES • • ••
EXAMPLES ••

DEBUG CAPABILITY

INTRODUCTION••
TENbug •••••••••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • • •

Canrnarrl Set •••
TENbug Examples •••

DE bug ...
Carrnand Line ••
Primitive Commarrls ••••••••••••••••••••••••••••••••••••••

S'Y'Mbug ••
Symbol Table Creation •••••••••••••••••••••••••••••••••••
Comnand Line ••

iii

7-1
7-2
7-2
7-6
7-8
7-8
7-9
7-10
7-11
7-12

8-1
8-1
8-1
8-3
8-4
8-4
8-5
8-5
8-6
8-7
8-8
8-9
8-9
8-10
8-10
8-11

9-1
9-1
9-1
9-3
9-4
9-4
9-5
9-6
9-7
9-8

FIGURE 1-1.
1-2.
1-3.
1-4.

1-5.
1-6.

1-7.
1-8.
1-9.
1-10.
1-11.
3-1.
3-2.
4-1.

TABLE 1-1.
1-2.
1-3.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
9-1.
9-2.
9-3.

TABLE OF CONTENTS (cont Id)

LIST OF ILLUSTRATIONS

VME/10 Microcanputer System ••••••••••••••••••••••••••••••••
Typical VME/10 Microcomputer System Development Integration
Control Unit Chassis •••••••••••••••••••••••••••••••••••••••
VME/10 Microcanputer System Block Diagram ••••••••••••••••••

Display Memory Word Format Definition ••••••••••••••••••••••
Pixel Access Word Fonnat Definition ••••••••••••••••••••••••

VMEbus and I/O Channel Module Expansion Card Cage Options ••
VERSAdos Operating System arrl Related Utility PrCXJrams •••••
VME/10 System Memory Map •••••••••••••••••••••••••••••••••••
High arrl Normal Resolution Graphics ••••••••••••••••••••••••
VME/10 I/O Memory Map (2 sheets) •••••••••••••••••••••••••••
Operator Panel ...
Keyboard Assembly ••
VERSAdos Structure •••

L !ST OF TABLES

VME/10 Microcanputer System Specifications •••••••••••••••••
Starrlard System Configuration ••••••••••••••••••••••••••••••
Optional Ek;{uipnent ••••••••••••••••••••••.•••••••••••••••••••
Mode Keys ••••••••••••••••••••••••••. • •••••••••••••••••••••••
Standard Typewriter Keyboard Character Code ••••••••••••••••
Cursor Control Keys ••
Edit Mode Keys •••
User Function Key Character Code •••••••••••••••••••••••••••
ASCII Character Set ••
Session Control Comrnar:rls •••••••••••••••••••••••••••••••••••
TENbug Canmands by Type ••••••••••••••••••••••••••••••••••••
DEbug Primitive Cornrnar:rls •••••••••••••••••••••••••••••••••••
SYMbug Primitive Carmands ••••••••••••••••••••••••••••••••••

iv

1-2
1-7
1-8
1-9

1-11
1-12

1-13
1-16
1-18
1-18
1-19
3-1
3-3
4-2

1-4
1-5
1-6
3-4
3-6
3-9
3-11
3-12
3-13
4-5
9-2
9-5
9-9

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual provides general information, control and indicator descriptions,
initialization procedures, and software-related information for the VME/10
Microcomputer System (hereafter referred to as VME/10). Before unpacking the
system, powering it up, and performing any software operations described in this
manual, refer to the VME/10 Microcomputer System Installation Guide, M68KVSIG.

The VME/10 provides the single user with 8- and 16-bi t hardware/software and
instrumentation development support and, eventually, 32-bit support. It
incorporates the extended performance of the MC68010 MPU, the MC68451 Memory
Management Unit (MMU), VMEbus compatibility, and full VERSAdos multitasking
real-time operating system support, including high-level languages such as
Pascal.

The VME/10 is comprised of a chassis, a keyboard, and a display unit. Refer to
Figure 1-1.

1.2 FEATURES

The features of VME/10 are as follows:

• MC68010 16/32-bit Microprocessor Unit (MPU) •

• MC68451 Memory Management Unit (MMU).

• Industry-standard VMEbus interface with full bus arbitration logic and
software controllable interrupter.

• I/O Channel interface for adding off-board resources such as A/D
converters, serial and parallel I/O ports, etc •

• 384K bytes RAM (triple-ported between graphics controller, local bus, and
VMEbus) •

• Static RAM for storage of user-definable character sets and display
attributes •

• Two 28-pin sockets for RCM/PRCM/EPRCM storage of up to 64K bytes for
custom applications •

• Battery backed-up time-of-day clock with 50 bytes of CMOS RAM storage.

• 15-inch video display having the following software-controllable display
formats:

a. 25 lines by 80 characters -- 8 x 10 characters with descenders
(10 x 12 font).

b. 800 x 300 pixel for normal resolution graphics.

1-1

AA MOTOROLA

FIGURE 1-1. VME/10 Microcanputer System

1-2

c. 800 x 600 pixel for high resolution graphics.

d. Pixel graphics with overlaid character displays •

• Monochrane video display starrlard, with 7-level gray scaling (color
optional).

• Detached full ASCII character set keyboard with cursor control keys,
hexadecimal pad, arrl 16 function keys •

• Mass storage subsystem providing both 5-1/4" floppy disk and 5-1/4"
Winchester disk storage units.

Floppy disk

lM-byte unfonnatte:l capacity (655K-byte formatte:l)

Winchester disk

Choice of: (a) 6.38M-byte unformatte:l capacity (SM-byte formatted)

(b) 19.lM-byte unformatte:l capacity (15M-byte formatted)

• Card cage options for feature expansion capability.

Choice of: (a) Five I/O Channel card cage slots (with 6.38M-byte
Winchester option)

(b) Five VMEbus card cage slots with VMEbus backplane,
plus four I/O Channel slots (with 19.lM-byte
Winchester option)

• Conformance to ergonanic starrlards applicable to video display arrl
keyboard •

• TENbug firmware-resident debug/monitor package •

• Firmware-resident power-up/reset arrl disk-resident module diagnostic
self-test •

• VERSAdos real-time multitasking operating system with M68000 macro
assembler, plus tools and utilities •

• Capability of hosting hardware development tools.

- HDS-400 for M68000 family 16/32-bit anulation

- HDS-200 for M6800 family 8-bit anulation

- Bus state analyzer for logic analysis functions

1-3

1.3 SPECIFICATI(!.IS

Table 1-1 lists the specifications for the VME/10.

TABLE 1-1. VME/10 Microcomputer System Specifications

CHARACTERISTIC SPECIFICATION

Microprocessor MC68010

MPU clock frequency 10 MHz

Word size

Data

Address

Memory address capability

Bus standard

Clock frequency

Bus cycle time

Interrupt control

Bus arbitration

Data

Address

Control

Temperature

Operating

Storage

1-, 8-, 16-bit

24-bit

16M bytes (8 bits/byte)

VMEbus

16 MHz

200 ns (min.)

7-level priority

4-level daisy-chained

16-bit

24-bit

Asynchronous

10° to 40° C

-400 to 600 C

Relative humidity 20% to 80% (non-condensing)

Physical dimensions

Length

Width

Height

Chassis & monitor

22.8 in. (57.9 cm)

19.0 in. (48.3 cm)

20.0 in. (50 .8 cm)

Keyboard

8.3 in.

19.0 in.

2.0 in.

(21.l cm)

(48.3 cm)

(5.1 cm)

Weight 50 lbs. (23 kg) 5 lbs. (2.3 kg)

Power requirements
(switching power supply) 90-132 vac, 47-63 Hz, 500 W

180-264 vac, 47-63 Hz, 500 w

1-4

1.4 EQUIPMENT SUPPLIED

Table 1-2 lists the part number and description for the standard system
configurations.

TABLE 1-2. Standard System Configuration

PART NUMBER DESCRIPTION

M68Kl01-l

M68K102Bl

M68Kl01-2

M68K102B2

VME/10 Microcomputer System, including the MC68010 Microprocessor
Unit, MC684Sl Manery Management Unit, 384K bytes dynamic RAM,
6SSK-byte (formatted) S-1/4" floppy disk unit, SM-byte
(formatted) S-1/4" Winchester disk unit, lS-inch monochrome video
display, and full ASCII keyboard with cursor control keys,
hexadecimal keypad, and 16 user functional keys. For llS Vac, 60
Hz operation.

Expansion card cage incorporates five slots for single wide
I/Qnodule cards, plus ribbon cable and connectors to provide the
I/O Channel interface functions to each card slot.

System software includes the VERSAdos operating system, plus
M68000 Family Structured Macro Assembler, Symbolic Debugger, CRT
Editor, and Linkage Editor. A comprehensive diagnostics package
is also included. The software is resident on the Winchester
hard disk.

System firrrMare incorporates (a) power-up self-test function,(b)
disk bootstrap loader, and (c) TENbug Debug/Monitor package.

Same as M68Kl01-l, except as follows:

• Expansion card cage provides five slots for double format
VManodule cards, plus S-posi tion VMEbus backplane at the
rear of the card cage. Also includes four slots for single
wide I/Omodule cards, with necessary cabling and
connectors to provide the I/O Channel interface to each
card slot •

• lSM-byte (formatted) S-1/4" Winchester disk unit replacing
SM-byte unit in M68K101-l).

Same as M68Kl01-l, but for 230 Vac, SO Hz operation.

Same as M68K102Bl, but for 230 Vac, SO Hz operation.

1-S

1.5 I/O CHANNEL AND VME EQUIPMENT OPTIONS

Table 1-3 lists the part number and description for the optional equipment.

TABLE 1-3. Optional Equipment

PART NUMBER DESCRIPTION

Modular expansion options - VMEbus

MVME200

MVME201

MVME210

MVME300

64K dynamic RAM with byte parity

256K dynamic RAM with byte parity

Static ROM/RAM module

High perforrr~nce IEEE-488 GPIB Controller with OMA

J.Vbdular I/O expansion options - I/O Channel

MVME400

MVME410

MVME420

MVME435

MVME600

MVME601

MVME605

MVME610

MVME615/616

MVME620

MVME625

MVME935

Dual RS-232C serial port

Dual 16-bit parallel port (see NOTE)

SAS! adapter

Buffered 9-track magnetic tape adapter

12-bit analog input module

16-channel expander for MVME600

12-bit analog output module

Opto-isolated 120V/240V ac input

Opto-isolated 120V/240V ac output

Opto-isolated 60- Vdc input

Opto-isolated 60 Vdc output

Remote I/O Channel extender cable connection module

Remote I/O Channel modules

M68RAD1 Remote intelligent analog conversion module

M68RI01 Remote I/O solid state relay module

NOTE: This module recomnended for parallel printer interface port
applications with the VME/10 system.

1-6

1.6 SYSTEMS DEVELOPMENT AND INTEGRATION

The initial stages of developing a microprocessor-based system normally involve
two parallel, rather independent, efforts. One is the hardware design -- the
other the software design.

The VME/10, when used as the host in conjunction with Motorola's line of
hardware developnent stations, simplifies the design process because of its
ability to unite the hardware and software develoµnent processes throughout the
develoµnent cycle.

'Ihe hardware developnent station provides a complete hardware and software
develoµnent system for Motorola's families of microprocessors. Two major
factors contribute to the usefulness of the hardware develoµnent station as a
systems developnent tool. The first is its ability to serve as a fully
functional substitute for the selected microprocessor or microcomputer in the
target system. When plugged into the socket on the prototype hardware, the
hardware develoµnent station provides efficient testing of hardware as wei1 as
software. The second factor is its ability to interface with Motorola's
Real-Time Bus State Analyzer (BSA), which speeds the debugging process and
allows program code optimization. See Figure 1-2.

The BSA is a develoµnent tool which allows simultaneous monitoring of different
points in a system. Interfacing through the system bus or the MPU bus, the BSA
tracks events occurring on each line of the bus, storing the information for
later analysis and interpretation.

The emulator can be configured and software run prior to availability of
prototype target system hardware. This allows an early start on the debugging
process. As hardware changes occur, software updating and debugging are readily
accomplished. !Vbreover, with the hardware develoµnent station, it becomes
economically feasible to test alternate design approaches to determine the best
solution.

FIGURE 1-2. Typical VME/10 Microcomputer System Developnent Integration

1-7

1.7 GENERAL DESCRIPTION

'Ihe VME/10 basic system consists of three assemblies:

• Control unit chassis

• Display unit

• Keyboard

1.7.1 Control Unit Chassis

'l:he control unit chassis, as shown in Figure 1-3, provides the housing for:

• System control module

• Mass storage subsystem, consisting of floppy and Winchester disks

• Expansion card cage

• Power supply

• Coo ling fan

• Operator panel

MINI
WINCHESTER

DRIVE

WINCHESTER/FLOPPY
CONTROLLER

MODULE

POWER
SUPPLY

FIGURE 1-3. Control Unit Chassis

1-8

VMEmodule
..,__ __ CARD CAGE

1.7.2 System Control f.tt>dule

The system control module, which contains the central intelligence of the
VME/10, consists of two boards the processor/MMU board and the
graphics/interface board. See Figure 1-4.

KEYBOARD

* USABLE AS SYSTEM
DRAM IF GRAPHICS
NOT BEING USED

r------------ ----------------------------,
SYSTEM CONTROL

MODULE GRAPHICS
DRAM*

SYSTEM
DRAM

DISPLAY
CONTROLLER

MC6845

I
I
I
I
I
I
I

:384K I
BYTES

MC68010
MPU

MC68451
MMU

1/0
CHANNEL

INTERFACE

KEYBOARD
CONTROLLER

MC68661

BOOTSTRAP,
SELF-TEST,

DEBUG ROM

TIME-OF
DAY CLOCK
W/BATTERY

BACKUP

CHARACTER
DISPLAY

RAM

PIXEL
GRAPHICS
CONTROL

VMEbus
INTERFACE

l/Omodule I VMEmodule
CARD CAGE I CARD CAGE

FIGURE 1-4. VME/10 Microcomputer System Block Diagram

Processor/MMU Board

The combination of the MC68010 MPU and MC68451 MMU provides processing power
sufficient to permit several develo:µnent tasks to proceed simultaneously -
editing, program develo:µnent, system debugging -- with full protection for each
task. This fundamental processor/memory architecture also provides designers
with the protection features required in multitasking OEM systems where security
and protection of both programs and data are essential. '!he Processor/MMU board
contains one MC68451 MMU device which provides up to 32 separate program/data
segments and three extra sockets into which additional MMU devices may be
optionally installed to allow up to 96 additional segments.

1-9

Graphics/Interface Board

The graphics/interface board (VMECl) contains the major elements of high-spea:i
semicorrluctor memory in the system, plus the graphics subsystem and interfaces
to various off-board devices. The graphics/interface board incorporates the
following features:

a. 384K bytes RAM - utilizing 64K X 1 HMOS RAM technology for operating
system, support software, user programs, arrl graphics subsystem display
buffer storage. (See item i for detail on the graphics subsystem.) For
increased performance arrl minimum contention, the on-board RAM is
multi-ported to allow shared access from the local on-board bus, the
VMEbus, arrl the graphics controller.

b. 16K bytes ROM/PROM/EPROM - used for bootload arrl test arrl diagnostic
routines for debugging and system start-up arrl control.

c. Interrupt harrller - allows 22 sources of interrupts to the MC68010
Microprocessor.

d. Time-of-day clock (MC146818) - an 8-bi t real-time clock including 50
bytes of general-purpose RAM for saving critical information. Both the
clock am RAM are battery backed up, allowing up to five days of data
retention with fully charged batteries at power down.

e. Keyboard interface (MC68661) - uses RS-422C type buffers (multi-drop,
5-volt, differential canmunication line) to communicate with the
keyboard.

f. Local on-board bus - provides carmunication between the MPU, ROM, RAM,
CRT controller, keyboard interface, battery backed-up time-of-day clock,
I/O Channel, and the VMEbus. This architecture allows the on-board
processor to continue operating at full speoo, while other (optional)
VMEbus masters operate simultaneously.

g. I/O Channel interface - links the local on-board bus to the I/O Channel
cable for communication to the mass storage subsystem arrl any optional
I/O cards installoo.

h. Irrlustry-standard VMEbus ccmpatibility - is supportoo by three functions:

1. The VMEbus interface which provides the data and address path from
the on-board MPU via the local bus to the VMEbus to allow VMEbus
use in a system requiring additional off-board resources such as
additional memory, processors, or intelligent device controllers.

2. The VMEbus arbiter which arbitrates all four bus request priority
levels, with operation transparent to software.

3. The VMEbus requester which is used to gain access to the resources
on the VMEbus. Bus requests can be made either irrlirectly
(software transparent) or directly by specific request through
corresporrling status arrl control registers under program control.
The associated VMEbus interrupter logic permits the MPU to place
an interrupt on one of the seven VMEbus interrupt request lines.
The related interrupt harrller can be software configured to
resporrl to any subset of the seven VMEbus interrupt request lines,
thus allowing several boards with interrupt handlers to respond to
different interrupt levels frcm the VMEbus.

1-10

i. Graphics Subsystem - provides efficient graphics support hardware at low
cost.

The video graphics subsystem generates all video arrl display synchronization
signals required. by both monochrane arrl color display units. Initially, the
VME/10 incorporates a monochrome video display.

Furrlamentally, the VME/10 displays characters in a 25-line by 80-column format,
or high resolution pixel graphics in an 800 x 600 pixel matrix, or a specialized
combination display of both character and pixel graphics simultaneously. Within
this basic framework, additional capabilities are provided for (a) alternate
normal resolution pixel graphics within an 800 x 300 point field, and (b) user
definition through software of specialized character sets, fonts, arrl display
attributes. An MC6845 CRT controller device is used by software to define the
video screen.

The 384K-byte RAM in the system control module has the dual purpose of general
software storage arrl graphics data storage. If no pixel graphics capability is
being used, all of the RAM on the system control module is available as system
RAM. If graphics is being used in the normal resolution mode, the graphics
display RAM is located. in the high addressed 96K bytes of RAM. Alternately, in
the high resolution mode, the high addressed 192K bytes of RAM are dedicated to
graphics.

The VME/10 graphics subsystem combines separate character arrl graphic display
memories. The character display memory is 16 bits wide and 2K (4K optional)
deep ($Fl7000-$Fl8FFF). The 16 bits of each word are defined in Figure 1-5.

lbl5 lbl4 lbl3 lbl2 lbll lblO I b9 I b8 I b7 I b6 I b5 I b4 I b3 I b2 I bl I bOI

One of 128 displayable
characters

Software bit 1

Red (Intensity in Monochrane)

Blue (Intensity in Monochrome)

Green (Intensity in Monochrane)

Inverse Video

Underline

Blink

Non-Display

Software bit 2

FIGURE 1-5. Display Memory Word Format Definition

1-11

The character generator RAM is initialized with the ASCII character definitions,
but can be modified by the user to define alternate special symbols required by
the application. The font is 8 X 16 in a 10 X 24 character field for the high
resolution monochrome display, and 8 X 10 in a 10 X 12 character field for the
normal resolution/color display.

'l\\o modes of pixel graphics operation are available on the VME/10 -- the group
access mode and the pixel access mode. The application determines the most
appropriate mode to use. The group access mode utilizes three separate
contiguous banks of memory. Each bank represents a primary color for color
applications, or an intensity level for monochrome applications. The graphics
display buffer RAM block in the memory map is organized so that the first third
of the graphics RAM location is bank 1, the second third is bank 2, and the
third is bank 3. This organization allows the MPU to change 8 or 16 contiguous
pixels on the screen at one time in one color/intensity bank. This mode is
particularly useful for drawing bar graphs, color filling an object, or blanking
the screen.

The graphics RAM is accessible in another mode called the pixel access mode. In
this mode, read/write hardware exists to allow the processor the ability to
change one pixel at a time (per memory cycle) in all three banks. In this mode,
the processor uses only word accesses, and writes a special "pixel access word".

'!he organization of the pixel access word is as shown in Figure 1-6. The
address range is $EOOOOO-$EFFFFF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMASKllMASK2IMASK31 IBANKllBANK2IBANK31

FIGURE 1-6. Pixel Access Word Format Definition

The pixel access mode is oriented toward drawing lines or changing a portion of
a display. The mask bits allow the user to avoid disturbing the contents of a
given plane(s) while changing the contents of another plane(s). This technique
minimizes the software design effort required and improves system performance.
It further eliminates the necessity to rewrite data into bank addresses when the
data remains unchanged.

Mass Storage Subsystem

The mass storage subsystem consists of a disk controller board, plus one 5-1/4
inch floppy disk drive unit and one 5-1/4 inch Winchester disk drive unit. The
floppy disk drive provides storage of l.OM bytes unformatted (655K byte
formatted) capacity, incorporating reliable dual-density, dual-sided 96
tracks/inch (TPI) technology. The associated Winchester disk drive unit is
available in either of two storage capacities, depending on the specific VME/10
model:

Option #1 - 6.38M bytes unformatted capacity (SM bytes formatted)

Option #2 - 19.lM bytes unformatted capacity (15M bytes formatted)

1-12

Expansion Card cage

An expansion card cage is provided with card plug-in access fran the rear panel
of the control unit chassis. Either of two card cage options is installed,
deperrling on the specific VME/10 model:

Option #1 - 5-slot single wide card cage with connectors arrl ribbon cable
installed to make the I/O Channel available in each of the five
card locations. This card cage is starrlard with the 6.38M-byte
Winchester disk model of the VME/10.

Option #2 - Combination VMEbus and I/O Channel card cage, with 5-slot VMEbus
backplane, accanmodating up to five double wide VMDnodule
boards, plus up to four single wide I/Qnodules. All necessary
I/O Channel cabling arrl connectors are installed to serve the
four I/O Channel card slots. This card cage is standard with
the 19.lM-byte Winchester disk model. Refer to Figure 1-7.

These card cage options permit convenient system expansion arrl customization
through addition of I/O Channel and/or VMEbus canpatible cards. Camnon
applications are additional global system memory, serial arrl parallel ports,
analog conversion functions, and an IEEE-488 interface to intelligent
instrumentation.

-----------VMEmodules

------- l/Omodules

FIGURE 1-7. VMEbus and I/O Channel Module Expansion card Cage Options

1-13

1.7.3 Display Unit

The starrlard video display is a 15-inch (diagonal} monochrcme unit with
antiglare, P39 (green} phospor screen. The standard ASCII character set with
8 X 10 characters with lowercase descerrlers in a 10 X 12 font is used over a 25
line X 80 character display in normal mode. Optionally, 800 X 600 pixel high
resolution graphics, 800 X 300 pixel normal resolution graphics, or a
combination of characters arrl graphics may be displayed.

The character set arrl attributes displayerl can be changerl by altering the
contents of the character/attribute static RAM. Characters or irrlividual pixels
can be displayed in any of seven levels of the gray scale on the monochrcme
display.

A color display monitor of the same size is a plannerl option.

The display unit is accommodaterl by a tilt arrl swivel starrl that is mounterl to
the top of the control unit chassis. The screen is tilted by pressing down at
the bottom edge of the screen enclosure; therefore, it cannot be inadvertently
moverl by leaning on the front top of the screen. This configuration conforms to
all ergonanic starrlards in order to increase user ccmfort arrl productivity.

1.7.4 Keyboard

The keyboard is connected to the control unit chassis by a serial link, using a
coiled telephone cable with quick disconnect "modular" connectors. The keypad
consists of a full ASCII character set with interchangeable keycaps, 16 function
keys, a 7-key cursor/tab control pad, arrl a hexadecimal keypad. The keyboard is
also designed to conform to all ergonomic design principles.

1-14

1.8 VERSAdos OPERATI~ SYSTEM AND DEVELOPMENT TOOLS

To achieve most efficient use of the varierl sys tan resources provided by the
VME/10, efficient systan control arrl management software is requirerl. This need
is met by the VERSAdos operating system aoo its relaterl family of development
tools and utilities for the M68000 arrl M6800 MPU families. VERSAdos
incorporates a modular, multilayer design supporting a variety of application
environments, and is especially well suited to real-time control system and
applications. Because it provides a convenient, frieooly interface between the
user and the system resources, including a wealth of development support
software, VERSAdos has ernergerl as the operating system environment of choice for
increasing numbers of systan developers who are incorporating the Motorola 8-
arrl 16-bit microprocessor families into various end applications. VERSAdos is
particularly well suited to providing a common host/target envirornnent, thereby
minimizing the task of system integration.

As packaged with the VME/10, the canplete basic VERSAdos operation environment
includes, in addition to the basic operating system, an M68000 family structured
macro assembler, symbolic debugger, CRT-orienterl text Erlitor, aoo M68000 linkage
family editor. A diagnostics package is also provided for use in helping to
isolate suspecterl hardware system problems. This software is resident on the
Winchester hard disk.

Figure 1-8 illustrates the VERSAdos operating system and related utility
pr o;:Jr ams •

1.8.1 VERSAdos O{:erating Systan

VERS.Ados is a multitasking, multiprogranuning system executing on the MC68010 MPU
in the VME/10. Programs execute in dynamically-assigned, variable-length
segments with read/write privileges. Instructions and data are located in
separate memory segments.

The heart of VERSAdos is the ™868K Real-Time Executive which provides task
services and supports memory management. It also allows inter-task
canmunication, provides exception rconitor facilities, aoo haooles system
interrupts.

The Input/output (I/O) subsystem of VERSAdos supports device independence, logic
I/O, overlapped canputation, aoo physical I/O. Both sequential and raooan
record access are supporterl by VERSAdos.

The powerful VERS.Ados file management systan supports three file structures -
contiguous, sequential, arrl irrlexed sequential. Other file system features
include disk and file protection, shared file access, dynamic file allocation,
arrl fixed or active protection.

1.8.2 Resident Structurerl Assembler

The M68000 resident structurerl macro assembler translates source statements into
relocatable machine code, assigns storage locations to instructions and data,
performs auxiliary assembler actions designaterl by the progranmer, and
optionally produces a cross reference listing. The M68000 resident assembler
includes macro arrl conditional asserrbly capabilities, plus certain "structurerl
progranmingn control structures such as "for, repeat, while" loops and "if-then,
if-then-else" conditional branches.

1-15

......
I

O'\

VERS.Ados OPERATING ENVIRONMENT
I
I

VERSAdos
REAL-TIME

MULTITASKI~

OPERATING SYSTEM*

Optional
Utilities

M68000 Symbolic
Macro Debugger*

CRT
Editor*

Linkage
Editor*

Optional
Language
Support

Diagnostics
Package*

Assembler*

- M6800 Assembler
- M6804 Assembler
- M6805 Assembler
- M6809 Assembler
- Data I/O PROM Programmer Interface
- M68000 Fast Floating Point
- HDS200 Interface
- HDS400 Interface
- BSA Interface
- PDP-11 to M68000

Assembly Language Translator

*Included on mass storage media.

Pascal
Compiler

for
M68000

FORTRAN
Compiler

(Planned)

~68000/68010 BASIC
Independent Compiler
Software (Planned)

FIGURE 1-8. VERS.Ados Operating System and Related Utility Programs

1.8.3 Symbolic Debugger

The symbolic debugger (SYMbug) program is used to debug other programs whose
source code is written in Motorola's Structured Macro Assembler for execution on
the M68000 Family MPU' s. The language processors, in cooperation with the
linkage editor, supply information to SYMbug. This permits the user to describe
the debugging requirements to SYMbug in terms close to the language in which the
source program was written. SYMbug allows the user to debug in symbolic
terminology. SYMbug allows the user to perform the following:

• Examine, insert, and modify program elements such as instructions, numeric
values, and coded information (i.e., data in all its representations and
formats) •

• Control execution, including the insertion of breakpoints into a program
and request for breaks or changes in elements of data.

Trace execution by displaying information at designated points in a
program •

• Search programs and data for specific elements and sub-elements •

• Create macro comnarrls allowing user-defined formats and conmands.

1.8.4 CRT Text Editor

The CRT-oriented Text Editor provides the capability to create and modify source
programs. The editor supports both command and page editing, utilizing the
cursor control keys, control characters, and function keys of the VME/10
keyboard chassis to insert, alter, or delete characters and lines within a user
text file.

1.8.5 Linkage Editor

The Linkage Editor provides the capability of converting one or more separately
compiled object units into a loadable object module file. The editor determines
segment attributes, calculates address space, searches libraries, resolves
external references, relocates object code, and issues error messages. At the
errl of a linkage process, the editor prints a report that contains a module map,
a table of externally defined symbols, and any unresolved or multiply defined
symbols.

1.8.6 Diagnostic Package

The diagnostic package verifies the overall functionality of the VME/10 by
exposing it to a set of off-line tests. The package provides two levels of
diagnostics. The first level is the firnMare-resident, power-up/reset test.
The second level is comprised of disk-resident diagnostics for more extensive
hardware testing. The governing guideline for diagnostics is to provide a
comprehensive test package that will isolate a malfunction to a functional block
and at least down to the faulty_ module. For detailed information, refer to the
VME/10 Microcomputer System Diagnostics Manual (M68KVSDM) •

1-17

1.9 SYSTEM MEMORY MAP

Figure 1-9 depicts the 16-megabyte system memory map.

ADDRESS
=======+==
$000000 SYSTEM RAM AFI'ER UNSWAP GOES FROM 0 TO 1
$00FFFF SYSTEM ROM AFrER POWER ON RESET
-------+--
$ 010000 SYSTEM RAM AND GRAPHICS RAM
$05FFFF (SEE FIGURE 1-10)
-------+--
$ 060000
$17FFFF RESERVED FOR RAM EXPANSION

-------+--
$180000
$DFFFFF VMEbus (see NOTE)

-------+--
$ EOOOOO
$EFFFFF GRAPHICS - PIXEL ACCESS ADDRESSING BLOCK

-------+--
$FOOOOO SYSTEM ROM AFTER UNSWAP BIT GOES FROM 0 TO 1
$FOFFFF SYSTEM RAM AFI'ER POWER ON RESET
-------+--
$Fl O O OO
$FlDFFF I/0 (SEE FIGURE 1-11)

-------+--
$FlEOOO
$FFFFFF VMEbus

-------+--
NOTE: The RAM (384K bytes) on the System Control Module can be accessed

by off-board devices via the VMEbus. The base address of the dual
ported RAM on the VMEbus is $DOOOOO-D5FFFF.

FIGURE 1-9. VME/10 System Memory Map

HIGH RESOLUTION GRAPHICS
-------+--
$ 010000
$02FFFF SYSTEM RAM

-------+--
$ 030000
$05FFFF GRAPHICS AND SYSTEM RAM

-------+--
NORMAL RESOLUTION GRAPHICS

-------+--
$ 010000
$047FFF SYSTEM RAM

-------+--
$ 048000
$05FFFF GRAPHICS AND SYSTEM RAM

-------+---~------------------------

FIGURE 1-10. High and Normal Resolution Graphics

1-18

ADDRESS Dl5-D08 UPPER DATA D07-DOO LOWER DATA
=======+==
$Fl0000
$Fl3FFF

$Fl4000
$Fl4FFF

ILLEGAL

CHARACTER GENERATOR
RAM

-------+--
$ Fl5000 I A'ITRIBUTE GENERATOR
$Fl5FFF I RAM
-------+ ILLEGAL l---------------------------------------
$Fl6000
$Fl6FFF ILLEGAL

-------+--
$Fl 7000
$Fl8FFF DISPLAY MEMORY

-------+---
$ F 19000
$Fl9EFF ILLEGAL

-------+--
$ F 19 FOO VERTICAL GRAPHICS CURSOR REGISTER
-------+--
$Fl 9F02 HORIZONTAL GRAPHICS CURSOR REGISTER
-------+--
$ F 19F05 ILLEGAL I CONTROL REGISTER 0
-------+--
$Fl 9 F07 ILLEGAL I CONTROL REGISTER 1
-------+--
$ Fl9 F09 ILLEGAL I CONTROL REGISTER 2
-------+--
$ F 19 FOB ILLEGAL I CONTROL REGISTER 3
-------+--
$ Fl9 FOD ILLEGAL I CONTROL REGISTER 4
-------+--
$Fl 9 FO F ILLEGAL I CONTROL REGISTER 5
-------+--
$ F 19 Fl l ILLEGAL I CONTROL REGISTER 6
-------+--
$ Fl9Fl3 ILLEGAL I GRAPHICS OFFSET REGISTER
.-------+--
$Fl9F20
$Fl9F7F RESERVED

-------+--
$Fl 9F85 ILLEGAL I STATUS REGISTER
-------+--
$ F 19 FAO
$FlAOlF RESERVED

-------+--

FIGURE 1-11. VME/10 I/O Memory Map (Sheet 1 of 2)

1-19

ADDRESS Dl5-D08 UPPER DATA I D07-DOO LOWER DATA
=======+==
$FlA021 I ADDRESS REGISTER MC68A45
$FlA023 ILLEGAL INTERNAL REx:;ISTER FILE

-------+--
$ FlA025
$FlA02F ILLEGAL

-------+---
$FlA03 l TX/RX DATA REGISTERS
$FlA033 ILLEx:;AL STATUS REx:;ISTER MC2661
$FlA035 MODE 1, MODE 2 REGISTERS
$FlA037 CDMMAND REX3ISTER
-------+--
$F 1A039
$FlA07F ILLEGAL

-------+---
$FlA081
$FlA083
$FlA085
$F1A087
$FlA089
$FlA08B
$FlA08D
$FlA08F
$FlA091
$FlA093
$FlA095
$FlA097
$FlA099
$FlA09B

SECONDS REGISTER
SECONDS ALARM REGISTER
MINUTES REGISTER
MINUTES ALARM REGISTER
HOURS REGISTER
HOURS ALARM REX3ISTER
DAY OF THE WEEK REGISTER MC146818
DAY OF THE MONTH REx:;ISTER
MONTH REX3ISTER
YEAR R&;ISTER
REGISTER A
REx:;ISTER B
REGISTER C
REx:;ISTER D

-------+--
$FlA09D ILLOOAL I BATTERY BACKED UP RAM MC146818
$FlAOFF TIME OF DAY CLOCK
-------+--
$F1Al 00
$FlA7FF ILLEX;AL

-------+--
$FlA800
$FlAFFF
-------+---
$FlBO O O
$FlBFFF ILLOOAL

-------+--
$FlCOOO I I/O CHANNEL
$FlDFFF ILLEGAL (SEE NOTE)

-------+--
NOI'E: The standard SYSGEN program dictates that if a printer is included,

the MVME410 module should be addressed at $FlC1El-$FlClFF. Similarly,
if there are serial ports, the MVME400 module should be addressed at
$FlC1Cl-$FlClDF. These are recomnended addresses reserved for the
modules.

FIGURE 1-11. VME/10 I/O Manory Map (Sheet 2 of 2)

1-20

CHAPTER 2

HARDWARE/SOFI'WARE SYSTEM STARTUP

2.1 INTRODUCTION

This chapter provides system initialization, media backup procedures, and system
performance verification for the VME/10. Comnands and other input/output (I/O)
are presented in this manual in a modified Backus-Naur Form (BNF) syntax.
Certain symbols in the syntax are not to be typed; their usage is restricted to
the syntactic structure. These symbols and their meanings are as follows:

< > The angular brackets enclose a "syntactic variable", that is
replaced in a corrmand line by one of a class of items it represents.

This symbol indicates that a choice is to be made. One of several
items, separated by this symbol, should be selected.

[] Square brackets enclose an optional item. The enclosed item may
occur zero or one time.

[] ••• Square brackets followed by periods enclose an item that is
optional/repetitive. The item may appear zero or more times.

Operator entries are shown underscored for clarity (the underscore is not
typed}, and are to be followed by pressing the carriage return key (<-- 1

). When
a carriage return is the only required entry, it is shown as (CR).

2.2 SYSTEM POWER-UP

After the VME/10 has been correctly installed as directed in the VME/10
Microcomputer System Installation Guide, M68KVSIG, turn on the system by setting
the 0/1 rocker switch on the chassis to the 1 position.

2.3 POWER-UP/RESET SELF-TEST

When the VME/10 is powered up, a firrcMare-resident power-up/reset {PWRT}
self-test is performed to verify the functionality of the system resources
necessary to boot and initiate the operating system. During the self-test,
messages regarding the progress and results of the self-test are displayed. The
PWRT takes about 5 seconds to execute, but note that an additional several
seconds is required for the Winchester media to spin up to speed before the PWRT
1s performed. The total length of time required may be up to a minute.

Upon completion of the PWRT after power-up, control of the system is given
either to TENbug or to VERSAdos, depending upon the position of the KYBD LOCK
switch (key vertical = locked = VERSAdos, key horizontal = unlocked = TENbug)

The PWRT self-test may also be initiated by the operator with the RESET and
ABORT pushbuttons {provided the KYBD LOCK key switch is in the horizontal,
unlocked position) when used in the following sequence:

a. Press and hold RESET pushbutton.

b. Press and release ABORT pushbutton.

c. Release RESET pushbutton.

The VME/10 then enters TENbug.

2-1

2.4 SYSTEM INITIALIZATION

The VME/10 may be initialized in either of two modes:

a. VERSAdos operating system
b. TENbug (operating system media not required)

NOTE

The VERSAdos operating system and supporting software is
resident on the Winchester hard disk. After the system
has been initialized, backup copies of this software should
be made and stored for safekeeping. This procedure is given
in paragraph 2.9, Backup Procedure.

Prior to performing these procedures, refer to Chapter 3 for identification and
function of the VME/10 switches and keys.

2.4.1 VERSAdos Operating System

The VERSAdos operating system may be entered by either of two methods. Method 1
is used when the system is initially powered up. Method 2 is used after the
system has entered TENbug.

Method 1 (enter VERSAdos operating system at system initial power-up)

NOTE

When using the power-up boot process, described as follows,
VERSAdos is booted from device 0, controller 0. To boot a
different file or boot fran a different device/controller,
the boot must be initiated from TENbug. Refer to TENbug's
BO commarxl described in Chapter 9.

a. On chassis operator panel, set the KYBD LOCK key switch to the locked
(vertical) position. (Note that the chassis operator panel pushbutton
switches RESET and ABORT are inoperative.)

b. Set the power switch to the on position (1). When power is applied, the
power-up/reset self-test (PWRT) is initigted. It may require up to one
minute for the disk drive to attain running speed and to perform the
self-test. The following messages are displayed on the monitor:

Power-up test in progress
Waiting for disk to spin up

c. After the self-test concludes, assuming no errors have been indicated,
the following is displayed:

Power-ug test conplete

2-2

d. The VME/10 boots the VERSMos operating system into memory from the
Winchester disk media and VERSAdos identifies itself. Unlock the
keyboard (KYBD LOCK switch in horizontal position) and press the
"uppercase lock" key ((U) on the keyboard. Make the responses
indicated, using current date and time:

VERSADOS VERSION: n.nn mm/dd/yy xxxxxxxxxx
ENTER DEFAULT SYSTEM VOLUME:USER NO.=SYS:O
ENTER DATE (MM/DD/YY) =3/31/83
ENTER TIME (HR:MIN)=7:00
7:00:01 3/31/83 START SESSION 0001 USER 0

Two informative chain files, which may be modified by the user, are
executed and their messages displayed.

The operating system may have been generated with an automatic logon as
volume SYS:, user O, and session 0001. In this case, current time and
date are displayed. They may be changed by the user, with the DATE and
TIME comnands.

e. To exit the VERS.Ados operating system, enter one of the following on the
keyboard:

=Lex; OFF
14:00:00 3/31/83 END SESSION 0001 USER 0

or

=OFF
14 :00 :00 3/31/83 END SESSION 0001 USER 0

or

=BYE

f. If the power has not been turned off, VERSAdos can be reentered after
logoff by pressing the CLEAR/BREAK key and responding to the system
prompts.

Method 2 (enter VERS.Ados operating system from TENbug)

a. When TENbug is running on the VME/10, ensure that the VERSMos operating
system media is available and that the KYBD LOCK switch is in horizontal
position.

b. Enter BO conrnand from keyboard to load VERS.Ados from the fixed hard disk.

TENbug x.x > BO

Go to step d. of Method 1.

NOTE

When booting operating system from floppy disk drive,
enter BO 2 or BO 2,0 [<filename>]. Refer to TENbug
BO comnand described in Chapter 9.

2-3

2.4.2 TENbug

TENbug may be entered by either of two methods. Method 1 is used when the
system is initially powered up, and method 2 is used to return to TENbug from
VERSAdos.

Method 1 (enter TENbug at system initial power-up)

a. Set the KYBD LOCK key switch to the unlocked (horizontal) position.

b. Set the power switch to the on position (1). When power is applied, the
PWRT self-test is initiated.

c. If PWRT self-test indicates no errors, and there is no MVME400 (Dual
RS-232C Serial Port) present in the VME card cage, the following will be
displayed on the monitor:

TENbug x.x >

d. If PWRT self-test indicates no errors, and there is an MVME400 present,
the following is displayed on the monitor:

TENbug

e. Select the terminal to serve as the default console device, and depress
any key on its keyboard. The following will be displayed:

TENbug x.x >

Method 2 (enter TENbug from VERSAdos operating system)

a. When the VERSAdos operating system is running on the VME/10, TENbug is
entered by pressing the RESET pushbutton (provided the KYBD LOCK key
switch is in the unlocked (horizontal) position and the vectors in
location 0-7 have not been destroyed).

b. Go to step c. of Method 1.

2.5 DISK-RESIDENT MODULE DIAGNOSTICS

After the VME/10 has been powered up, extended tests can be performed on the
system by executing the disk-resident module diagnostics (DRMD) package. It is
recomnended that the first-time user perform these extended tests to verify
system performance. For detailed information, refer to the VME/10 Microcomputer
System Diagnostics Manual, M68KVSDM.

2-4

2.6 BACKUP PROCEDURE

The software supplied on the fixed Winchester hard disk should not be exercised
unti 1 the following procedure has been performed to create a complete backup
copy. The backup version should be labeled and stored for safekeeping. Note
that when backing up from the fixed disk to floppy diskettes, several diskettes
will be required.

The following steps initialize arrl configure diskettes arrl create backup
diskettes from the fixed hard disk. User-entered responses are shown underlined
and are to be followed by a carriage return.

a. After entering VERSAdos as shown in paragraph 2.7.1, insert a
double-sided blank or scratch diskette in the floppy drive.

b. Call the !NIT program and make the entries shown below:

=!NIT #FD02;V
OK TO INITIALIZE #FD02 (Y/N) ? Y
Data Density of media (S-single,D-double) D > C
00 YOU WANT TO FORMAT DISK (Y/N) ? Y
START FORMAT
ENTER NEW VOLUME NAME VMEl
ENTER USER NUMBER 0
ENTER DESCRIPTION (MAX 20 CHARACTERS) VME/10 BACKUP
DO YOU WANT THE BOOT STRAP (Y/N) ? Y
FILE NAME IS: SYS:OOOO •• IPL.SY -
ENTER NEW NAME IF NEEDED (CR)
THE CURRENT LOAD ADDRESS IS $00000EOO
ENTER NEW LOAD ADDRESS $EOO
DO YOU WANT A DUMP AREA (Y/N) ? N
DO YOU WANT TO VALIDATE SECTORS (Y/N)? Y

VALIDATI~ SECTORS ••••
0 BAD SECTORS ENCOUNTERED

=

NOTE

Because this first diskette must be bootable, the V option must be
entered on the !NIT corrmand line. When the bootstrap question is
answered with a Y, the user will be allowed to enter a LOAD address.
(The LOAD address for the VME/10 is $EOO).

c. Call the BACKUP program to copy files from the hard disk to the floppy.
The file names are listed as the files are copied:

=BACKUP #HDOO,#FD02
STARTING FILE-BY-FILE BACKUP PROCESS
COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q) ? A
OOPLICATE FILE - OK TO COPY (Y/N/Q) ? VMEl:OOOO •• IPL.SY N
VMEl:OOOO •• ARESTRRG.HT

.
VMEl:<user no.>.<catalog>.<file name>.<ext>
** OUTPUT DISK FULL ** CONTINUE (Y/N) ? N
=

2-5

d. Note the full user number, catalog, file name, and extension of the last
file copied.

e. Remove the diskette, label it, and set it aside.

f. Use the DISMOUNT utility:

= DI~OUNT #FD02
DISMOUNT version xxxxxx x
=

g. Insert another double-sided blank or scratch diskette into the floppy
drive.

h. Initialize and format the floppy and continue backing up the hard disk
as follows. (Note that BACKUP's S option must be used to back up these
successive floppies.).

=!NIT #FD02
OK TO INITIALIZE #FD02 (Y/N) ? Y
Data Density of media (S-single,D-double) D > C
DO YOU WANT TO FORMAT DISK (Y/N) ? Y
Sl'ART FORMAT
ENTER NEW VOLUME NAME VME2
ENTER USER NUMBER 0
ENTER DESCRIPTION (MAX 20 CHARACTERS) VME/10 BACKUP
DO YOU WANT THE BOOT STRAP (Y/N) ? N
DO YOU WANT A DUMP AREA (Y/N) ? N -
DO YOU WANT TO VALIDATE SECTORS (Y/N)? Y

VALIDATING SEcrORS • • • • -
0 BAD SEcrORS ENCX>UNTERED

=BACKUP #HD00,#FD02;S
STARTING FILE-BY-FILE BACKUP PROCESS
COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q) ? A
ENTER RESTART FILENAME (INCLUDING USER NUMBER)
<user no.>.<catalog>.<filename>.<ext>
VME2:<user no.>.<catalog>.<filename>.<ext>

(Enter full file name of
last file copied to
previous diskette, but
do not enter the volume
name. The files wi 11 be
listed as they are
copied.)

i. Each time the ** OUTPUT DISK FULL ** message appears, enter N and repeat
the procedure from step d. above until all files are cop:Led from the
hard disk (system will return to the VERSAdos "=" prompt without issuing
the** OUTPUT DISK FULL** message). Use a different volume n~ for
each diskette.

Note that in the preceding examples, the utility DISMOUNT is not required.
However, for most routine operations with diskettes that have been initialized
previously (have a volume name), the diskettes must be MOUNTed and DISMOUNTed.
For examples of using BACKUP, !NIT, MOUNT, and DISMOUNT for routine copying of
files on the fixed disk to floppy diskettes, arrl from floppy diskettes to the
fixed disk, refer to Chapter 4 or to the VERSAdos System Facilities Manual,
M68KVSF.

2-6

CHAPTER 3

CONTROLS AND INDICATORS

3.1 INTRODUcrION

This chapter provides control and indicator descriptions for the VME/10 chassis,
display unit, and keyboard.

3.2 CHASSIS

The chassis has an operator panel (Figure 3-1) located at the bottom left corner
on the front of the chassis.

KYBD LOCK RESET ABORT

® 0 0

FIGURE 3-1. Operator Panel

The controls perform the following functions:

a. I 0 I 1 I - The power on/off rocker-arm switch is used to turn on power
to the VME/10. The '0' represents the off position; the 'l' represents
the on position.

b. KYBD LOCK - The KYBD LOCK key switch controls a bit in a register which
is monitored by TENbug. When the key switch is in the locked position,
the VME/10 enters the VERSAdos operating system. When the key switch is
in the unlocked position, the VME/10 enters TENbug. Also, when the key
switch is in the locked position, the keyboard keys and the front panel
pushbutton switches RESET and ABORT are inoperative. This feature
provides protection from inadvertent interrupts during system usage.

c. RESET - When this momentary-action pushbutton switch is pressed, it
resets the VME/10 logic circuits. If the VME/10 is in the VERS.Ados
operating system, TENbug is entered by pressing RESET (provided the KYBD
LOCK key switch is in the unlocked position).

d. ABORT - When this momentary-action pushbutton switch is pressed, the
VME/10 enters TENbug, but the VME/10 logic circuits are not reset. After
an abort, the user can enter 'G' to continue execution of the current
program prior to the abort.

There are two indicators located at the front of the chassis. When either the
Winchester or floppy disk drive is accessed, the respective indicator becomes
illuminated.

3-1

3.3 DISPLAY UNIT

'lhe display unit has a rear panel which contains a rotary adjustment control
c=o) used for varying the screen intensity.

3.4 KEYBOARD CONSOLE

The keyboard console is partitioned into four basic functional groups:

a. Typewriter keyboard
b. cursor control keypad
c. Hex/edit keypad
d. user function keys {Fl-Fl6)

'lhe exact action taken when a key is depressed depends upon
the port configuration and the program conmunicating to the
keyboard display unit. Refer to the Data Management
Services Manual {RMS68KIO) for detailed information.

Refer to Figure 3-2 for keyboard assembly.

3-2

w
I
w

lJ. MOTOROLA VME/10

FIGURE 3-2. Keyboard Assembly

3.4.1 Mode Keys

There are six mode keys on the keyboard console. The mode keys arrl their
functional respective locations are defined as follows:

a. CTRL
b. SHIFI'
c. CAPS LOCK
d. ALT

Located on the typewriter
keyboard keypad

e. PAD/FUNCTION
f. CLACKER ffiNTROL _j- Located on the cursor control keypad

The six rrode keys an:1 their functions are defined in Table 3-1.

FUNCTION KEY

Control (1) CI1RL

Shift (1)

Uppercase (1) ~,
lock \..!)

Alternate ALT

Pad/function PAD/FUNC
control

Clacker
control

TABLE 3-1. Mode Keys

FUNCTION PERFORMED WHEN DEPRESSED

Enables keyboard generation of ASCII control
characters. Depress and hold the control key, then
depress the specified key. This action generates a
control character code which perfonns the
respective function.

Enables typewriter keyboard generation of shifted
characters (including uppercase alphabetic
characters) • Also is involved in generation of
character codes for the 16 user function keys, and
the CLEAR/BREAK arrl RESET/ESC function keys located
on the cursor control keypad. Depress and hold the
shift key, then depress the selected key. This
action generates the shifted character code.

Enables the typewriter keyboard generation of all
capital letters. Depress the uppercase lock key
(ranains down), then depress the selected
alphabetic key. The uppercase lock key remains
down until it is again depressed.

Not implanented.

Controls the mode for the hex/edit keypad (refer to
p:tragraph 3.4.3). When the key is depressed
(remains down), the hex/edit_ keypad functions in
the hexadecimal mode. The PAD/FU~ key ranains down
until depressed again. When the key is not
depressed, the hex/edit keypad functions in the
edit mode.

When released (remains up), a 'soft click' is
generated each time a key is depressed. The
clacker control key ranains up until it is
depressed again.

NOTE: (1) If none of the above modes is activated, the keyboard is con
sidered to be in the normal mode, as referenced in Table 3-2.

3-4

3.4.2 Typewriter Keyboard

The typewriter keyboard contains the following numerics, alphabetic, symbol arrl
special character selection:

a. Numerics (0-9)
b. Alpha characters (A-Z)
c. Symbol characters
d. Special characters (delete, carriage return, arrl forward tab)

Table 3-2 lists the characters arrl codes generated when a key is depressed when
the typewriter keyboard is in a specific or multi-mode of operation.

3.4.2.1 Numerics (0-9). Numerics are obtained by depressing the respective
numeric key when in the normal mode. Refer to Table 3-2.

3.4.2.2 Alphabetic Characters (a-z). Lowercase alphabetic characters are
obtainerl by depressing the respective alphabetic key when in the normal mode.
To obtain uppercase characters, depress the CAPS LOCK key (ranains down) or
depress arrl hold the shift key, then depress the respective alpha key. Refer to
Table 3-2.

3.4.2.3 Symbol Characters. Symbols are obtained by depressing the respective
syni:>ol key when rn the normal or shift mode. Refer to Table 3-2.

3.4.2.4 Special Characters. The special character keys are definerl as follows:

a. The DEL (delete) key erases the last character typed on the line.

b. The<--' (carriage return) key moves' the cursor to the beginning of the
next line and signals the errl of a line typed to the canputer.

c. The -->I (forward tab) key moves the cursor to the next tab position in
certain programs (e.g., the editor).

3-5

TABLE 3-2. Standard Typewriter Keyboard Character Code

MODE

CAPS
KEY DESCRIPI'ION NORMAL LOCK SHIFT CTRL

A Alphabetic A a A A $01

B Alphabetic B b B B $02

c Alphabetic C c c c $03

D Alphabetic D a D D $04

E Alphabetic E e E E $05

F Alphabetic F f F F $06

G Alphabetic G g G G $07

H Alphabetic H h H H $08

I Alphabetic I i I I $09

J Alphabetic J j J J $0A

K Alphabetic K k K K $OB

L Alphabetic L 1 L L $0C

M Alphabetic M m M M $OD

N Alphabetic N n N N $OE

0 Alphabetic O 0 0 0 $OF

p Alphabetic P p p p $10

Q Alphabetic Q q Q Q $11

R Alphabetic R r R R $12

s Alphabetic S s s s $13

T Alphabetic T t T T $14

u Alphabetic U u u u $15

v Alphabetic V v v v $16

w Alphabetic W w w w $17

x Alphabetic X x x x $18

y Alphabetic Y y y y $19

z Alphabetic Z z z z $1A

3-6

TABLE 3-2. Standard Typewriter Keyboard Character Code (cont'd)

KEY

1

@

2

3

DESCRIPTION

Tilde

Grave accent

Exclamation point

Digit 1

Comnercial at

Digit 2

Number sign

Digit 3

MODE

CAPS
NORMAL LOCK SHIFT CTRL

1 1

@ $00

2 2

3 3

-----------------------------·--
$

4

%

5

6

&

7

*
8

9

0

+

=

DEL

-->I

Dollar sign

Digit 4

Percent sign

Digit 5

Circumflex

Digit 6

Ampersand

Digit 7

Asterisk

Digit 8

Opening parenthesis

Digit 9

Closing parenthesis

Digit 0

Underline

Hyphen (mi nus)

Plus sign

Equals

Delete

Fqrward tab

4

5

6

7

8

9

0

=

$7F

$09

4

5

6

7

8

9

0

=

$7F

$09

$

%

&

*

+

$7F

$09

$1E

$1F

--
{ Opening brace

Opening bracket

3-7

{ $1B

TABLE 3-2. Standard Typewriter Keyboard Character Code (cont'd)

KEY

}

\

DESCRIPTION

Closing brace

Closing bracket

Apostrophe

Backward slant

Colon

; Semicolon

"

<--'
<
I

>

?

I

Double quotation

Single quotation

Carriage return

Less than

Comna

Greater than

Period

Question mark

Forward slant

NORMAL

\

$OD

I

CAPS
LOCK

\

$OD

I

MODE

NOTE: A blank entry indicates no character generated.

SHIFT CTRL

} $1D

$1C

II

$OD

<

>

?

There are four other multi-modes available.
their respective character sets generated:

Following are the multi-modes and

MODE

CAPS LOCK AND SHIFT
CAPS LOCK AND CI'RL
CAPS LOCK, SHIFT, CTRL
SHIFT AND CONTROL

3-8

CHARACTER SET

Same as SHIFT
Same as crRL
Same as CTRL
Same as CI'RL

3.4.3 cursor Control Keypad

The cursor control keypad provides the following:

a. cursor control
b. Functions: CLFAR/BRFAK, RESET
c. Special character: ESC

3.4.3.1 Cursor Control. The cursor control keys are used in special programs
(e.g., the Erli tor) • Table 3-3 imicates the cursor control keys and their
respective character codes and functions.

KEY

<--

-->

i
t
l<--

-->I
SEL

CLR
TAB
SET

\

~TION

Cursor left

Cursor right

Cursor up

Cursor down

Backward tab

Forward tab

Home

TABLE 3-3. Cursor Control Keys

CHARA er ER
CODE FUOCTION PERFORMED WHEN DEPRESSED

$08 Moves cursor left one column.

$0C Moves cursor right one column.

$OB Moves cursor up one line in same column.

$0A Moves cursor down one line in same column.

$DB Moves cursor left to previous tab position.

$09 Moves cursor right to next tab position.

Not implementoo.

Not implanented.

$CO Moves cursor to left-most column in top line.

3-9

3.4.3.2 Functions (CLEAR/BREAK, RESET). The function keys are described as
follows:

a. The shifted value of the CLEAR/BREAK key (CLEAR) causes all positions in
the display to be filled with spaces. The cursor moves to the bane
position.

b. The non-shifted value of the CLEAR/BREAK key (BREAK) generates a 'special
condition' signal which is recognized by the VERS.Ados operating systan
and allows the user to log on.

c. The shifted value of the RESET/ESC key (RESET) initializes the screen to
the power-on condition.

3.4.3.3 Special Character (ESC). The non-shifted value of the RESET/EOC key
(ESC) generates an ASCII escape character ($1B).

3.4.4 Hex/Filit Keypad

The hex/edit auxiliary keypad performs two modes -- hexadecimal keyboard entry
and editing functions -- which are controlled by the PAD/FUNC key (refer to
paragraph 3 .4 .1) • The ENTER key (carriage return) generates a character code
$OD which moves the cursor to ~he beginning of the next line (left margin) • The
ENTER key is not affected by the PAD/FUNC key.

3.4.4.1 Hexadecimal Mode. When the PAD/FUNC key is depressed, the keypad can
be used as a hexadecimal keypad utilizing characters 0-F and also a conma (,)
and a period(.).

3.4.4.2 Filit Mode. When the PAD/FUNC key is in the normal position (not
depressed), the keypad can be used for editing purposes when in special programs
(e.g., the editor). Table 3-4 defines the editing notations and the character
codes generated.

3-10

FUNCTION

Delete character

Delete line

Erase to
end of line

Erase to
end of page

Insert character

Insert line

TABLE 3-4. rui t Mode Keys

CHARAcrER
KEY CODE FUNCTION PERFOR-1ED

OCHR $Dl The delete character key deletes the
character on which the cursor is
positioned. The characters to the right of
the cursor on that line are moved left one
coltnnn. The right-most column becomes a
blank.

OLINE $D7 The delete line key deletes the line on
which the cursor is positioned. The lines
below the cursor are moved up. The last
line becomes blank.

PM ODE

EOF

EOL $05

EOP $04

EAU

ICHR $DO

!LINE $06

TEST

HELP

Not implemented.

Not implemented.

The end of line key erases all positions
from the cursor position to the end of the
line.

The end of page key erases all positions
from the cursor position to the end of the
display.

Not implemented.

The insert character key moves the
character under the cursor and all
characters to the right on the same line
right one column. The character position
under the cursor becomes blank.

The insert line key moves all lines,
starting with the line on which the cursor
is positioned, down one line. The line the
cursor is on becomes blank.

Not implemented.

Not implemented.

3-11

3.4.S User Function Keys (Fl-Fl6)

There are 16 user function keys on the keyboard. A program may be written to
monitor the character values generated by these function keys and perform
corresporxling functions. Refer to Table 3-S for character values generated by
the user function keys during the normal and shift modes.

TABLE 3-S. User Function Key Character Code

FUOCTION
KEY NORMAL SHIFT

1 $AO $BO
2 $Al $Bl
3 $A2 $B2
4 $A3 $B3
s $A4 $B4
6 $AS $BS
7 $A6 $B6
8 $A7 $B7
9 $A8 $B8

10 $A9 $B9
11 $AA $BA
12 $AB $BB
13 $AC $BC
14 $AD $BD
lS $AE $BE
16 $AF $BF

3-12

3.4.6 ASCII Character Set

Table 3-6 lists the As:II character set arrl the methods by which each As:II
character can be generated from the keyboard.

TABLE 3-6. ASCII Character Set

CHARACTER COMMENTS

NUL Null or tape feoo

SOH Start of Heading

STX Start of Text

ETX Errl of Text

EOT End of Transmission

ENQ Enquire (who are you, WRU}

ACK Acknowledge

BEL Bell

BS Backspace

HT

LF

VT

FF

RETURN

so
SI

OLE

DCl

DC2

DC3

DC4

NAK

SYN

E'IB

CAN

EM

SUB

ESC

FS

GS

RS

us
SP

Horizontal Tab

Line Feoo

Vertical Tab

Form Feed

Carriage Return

Shift Out

Shift In

Data Link Escape

Device Control 1

Device Control 2

Device Control 3

Device Control 4

Negative Acknowlooge

Synchronous Idle

Errl of Transmission Block

Cancel

Errl of MErlium

Substitute

Esca~, prefix

File Separator

Group Separator

Record Separator

Unit Separator

Space or Blank

3-13

KEYBOARD IMPLEMENTATION
OF CHARACTER (1)

2c

Ac

BC

cc
oc
Ee

FC

Ge

<-- or HC

-->I or Ic

i or JC

j or Kc

--> or Le

<--I ' ENTER, or Mc

NC

0C

pc

QC

Re

SC

TC

uc
vc

xc
ye

zc
ESC or [C

\C

le
6C

_c (hyphen}

Sp:tce bar

HEX VALUE

00

01

02

03

04

05

06

07

08

09

QA

OB

oc
OD

OE

OF

10

11

12

13

14

15

16

17

18

19

lA

lB

lC

10

lE

lF

20

TABLE 3-6. ASCII Character Set (cont'd)

KEYBOARD IMPLEMENTATION
CHARACTER COMMENTS OF CHARACTER (1) HEX VALUE

Exclamation point is 21
II Q.iotation marks (dieresis) •s 22

Number sign 3s 23

$ Dollar sign 4s 24

% Percent sign 5s 25

& Ampersam 7s 26

Apostrophe (acute accent, 27
closin:J single quote)

O~ning parenthesis gs 28

Closing parenthesis os 29

* Asterisk as 2A

+ Plus sign :S 2B

, (2) Carma (cedilla) , 2C

Hyphen (minus) 2D

. (2) Period (decimal point) 2E

I Slant I 2F

0 (2) Digit 0 0 30

1 (2) Digit 1 1 31

2 (2) Digit 2 2 32

3 (2) Digit 3 3 33

4 (2) Digit 4 4 34

5 (2) Digit 5 5 35

6 (2) Digit 6 6 36,_

7 (2) Digit 7 7 37

8 (2) Digit 8 8 38

9 (2) Digit 9 9 39

Colon .s 3A ,
; Semicolon . 3B ,
< Less than s 3C ,
= F,quals = 3D

> Greater than s 3E .
? Q.lestion mark ;s 3F
@ Ccmnercial at 2s 40

3-14

CHARACTER

A (2)

B (2)

c (2)

D (2)

E (2)

F (2)

G

H

I

J

K

L

M

N

0

p

Q

R

s
T

u
v
w
x
y

z
[

\

TABLE 3-6. AOCII Character Set (cont'd)

COMMENTS

Uppercase letter A

Uppercase letter B

Uppercase letter C

Uppercase letter D

Uppercase letter E

Uppercase letter F

Uppercase letter G

Uppercase letter H

Uppercase letter I

Uppercase letter J

Uppercase letter K

Uppercase letter L

Uppercase letter M

Uppercase letter N

Uppercase letter O

Uppercase letter P

Uppercase letter Q

Uppercase letter R

Uppercase letter S

Uppercase letter T

Uppercase letter U

Uppercase letter V

Uppercase letter W

Uppercase letter X

Uppercase letter Y

Uppercase letter z
Opening bracket

Reverse slant

Closing bracket

Circumflex

Underline

3-15

KEYBOARD IMPLEMENTATION
OF CHARACTER (1)

[

\

6S

_s (hyphen)

HEX VALUE

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

so
Sl

S2

S3

S4

SS

S6

S7

S8

S9

SA

SB

5C

SD

SE

SF

TABLE 3-6. ASCII Character Set (cont'd)

KEYBOARD IMPLEMENTATION
CHARACTER COMMENTS OF CHARACTER (1) HEX VALUE

Quotation mark 60

a Lowercase letter a A 61

b Lowercase letter b B 62

c Lowercase letter c c 63

a Lowercase letter a D 64

e Lowercase letter e E 65

f Lowercase letter f F 66

g Lowercase letter g G 67

h Lowercase letter h H 68

i Lowercase letter i I 69

j Lowercase letter j J 6A

k Lowercase letter k K 6B

1 Lowercase letter 1 L 6C

m Lowercase letter m M 6D

n Lowercase letter n N 6E

0 Lowercase letter o 0 6F

p Lowercase letter p p 70

q Lowercase letter q Q 71

r Lowercase letter r R 72

s Lowercase letter s s 73

t Lowercase letter t T 74

u Lowercase letter u u 75

v Lowercase letter v v 76

w Lowercase letter w w 77

x Lowercase letter x x 78

y Lowercase letter y y 79

z Lowercase letter z z 7A

{ Opening brace [S 7B

I Vertical line \S 7C

} Closing brace]S 7D

Tilde 'S 7E

DEL Delete DEL 7F

NOTES:
(1) For implementation on keyboard, c = Control; s = Shift
(2) This key is located on the main typewriter keyboard and also on the

hex/edit keypad. On the hex/edit keypad, this key is activated when
the PAD/FUNC key is depressed (ranains down).

3-16

CHAPTER 4

SOFTWARE DEOCRIPTION

4.1 INTRODUCI'ION

The VME/10 Microcomputer System package includes the VERSAdos operating system
arrl associaterl developnent system software furnished on the fixed Winchester
media. VERSAdos consists of a powerful set of file-harrllinJ utilities, security
capability, real-time multi taskinJ kernel, a system generation facility, an
M68000-family assembler arrl linkage editor, a CRT-oriented text editor,
diagnostics, arrl both symbolic arrl non-symbolic debuggers.

Optionally available are Pascal arrl FORTRAN canpilers arrl various cross
assemblers, cross linkers, arrl a cross Pascal canpiler; the latter make it
possible to assemble or canpile arrl link programs for 8-bi t "target" systems
using the VME/10 as the "host" design station.

The VME/10 finnware contains a resident monitor/debugger, TENbug, useful not
only as the "bootstrap" of the operating system or other program, but as a
simple, easy-to-use debug tool.

This chapter arrl those that follow provide not only general descriptions of the
features and functions of various canponents of the VME/10 software, but
step-by-step examples which can be performed by the new user for familiarization
with the system.

NOTE

Before using the software furnished on the Winchester disk,
a backup copy should be made arrl stored for safekeeping,
as directed in Chapter 2.

System firmware error messages are listed in the TENbug Debugging Package User's
Manual, M68KTENBG. Operating system error messages are described in the
VERSAdos Error Messages Manual, M68KVMSG.

4-1

4.2 VERSAdos

4.2.1 Functional Overview

VERSAdos is .a modular, multilayera] operating system that provides a convenient
and frien:Uy interface between the user and system hardware. It provides a
solution to general-purpose program generation requirements associated with the
developnent of microprocessor-based systems, as well as the execution
requirements of dedicaterl, real-time, multitasking application systems. The
modular nature of the operating system permits configuration of the VME/10 for a
variety of host/target applications. This flexibility reduces the costs and
problems normally encountererl during system integration by permitting extensive
debugging to be performed on a canp:itible hardware/software configuration prior
to the integration process.

VERSAdos operations are task oriented. A task is a program, canplete with its
associaterl data area, that performs a functional unit of work. Application
programs are performed as tasks and are executed according to their priorities,
scheduling requirements, and availability of requirerl resources.

VERSAdos is responsible for accepting, checking, interpreting, arrl exp:diting
user application requests. During execution of a task, the operating system may
request assistance fran various operating system support routines not directly
accessible to the application program. These support routines assist in
operator control, memory management, task segmentation, arrl input/output control
for various hardware subsystems. This permits execution of more than one task
at a time, thereby allowing several application programs to be operating
independently on the system. This also relieves the application program fran
the necessary chore of direct interaction with the system hardware. Instead,
application programs canmunicate their input/output requests to the system via
the operating system using an established protocol.

The operating system is divided into four major layers, with each layer further
subdivided into other layers. The four major layers are: the Real-Time
Multitasking Executive (RMS68K) layer, the I/O layer, the File Management layer,
and the Session Management layer. This structure is shown in Figure 4-1.

FIGURE 4-1. VERSAdos Structure

4-2

RMS68K, the Executive, is the nucleus of the VERSAdos operating system. It has
responsibility for servicing all hardware and software generated interrupts and
dispatching the interrupts to the proper tasks for processing. RMS68K also acts
as the arbiter to resolve conflicts that result when canpeting tasks vie for
processor time. Facilities that permit inter-task canmunications arrl task
synchronization are also supported. RMS68K protects user applications while
providing diagnostic feerlback during error corrlitions. Refer to the M68000
Family Real-Time Multitasking Software User's Manual, M68KRMS68K.

The layererl design of VERSAdos provides a degree of system flexibility, while
maintaining a straight-forward structure that is easy to understand and use.
The layered structure also provides the unique ability of combining the normally
di verse functions of time-sharing software development with real-time system
control or else tailoring an operating system to the user's requirements. The
high degree of modularity inherent with the major programs of VERSAdos permits
each user to add specific functions for his individual requirements with a
minimum of time arrl effort. With the incorporation of Intelligent Peripheral
Controllers to optimize I/O functions, CPU overhead is significantly reducerl,
thereby providing more canputing power for each system user arrl permitting
connection of higher data rate I/O devices.

Real-time I/O processing capabilities are provided that allow directly connected
or processing-generated interrupts to be serviced. In addition, multi
prograrrmi ng of real-time tasks can be accamnodated. All tasks can be scheduled
on a priority basis. Inter-task canmunications are included to pass parameters
and/or control between tasks and/or the operating system. A special control,
the semaphore, is used to provide task synchronization arrl to coordinate the use
of sharerl resources. Operating system I/O operations are device independent;
that is, they refer to the logical properties of operation rather than to the
physical characteristics or file formats. I/O operations are performed by the
Input/Output Services (IOS) portion of VERSAdos. File management services
provide transfer control between memory an:l logical devices or files.
Contiguous, sequential, arrl indexed sequential files are supporterl. File
handling operations are performed by the File Handling Services (FHS) portion of
VERSAdos. For further information on IOS am FHS, refer to the VERSAdos Data
Management Services and Program Loader User's Manual, RMS68KIO.

4.2.2 Operational Overview

Fran the user's stampoint, VERSAdos is made up of a collection of utility
programs used to manipulate files, directories, and peripherals; a versatile
CRT-orienterl text erlitor for the creation arrl editing of A&::II files; a set of
"session control" canmarrls for direct canmunication with the system; batch and
chaining capabilities which allow operation in an interactive, on-line,
foregroun:l mode as well as in backgroum mode; a job spooling function; a
multi-level security package; an M68000 Family structured macro assembler am
module linker; two software debugging programs, DEbug (non-symbolic) am SYMbug
(symbolic); arrl a "system generation" program, SYSGEN, which simplifies
user-modification of the operating system to suit a particular hardware/software
configuration.

4-3

4.2.3 VERSAdos File Name Format

All files used under VERSAdos, including those program files (or load modules)
which canprise the O:I;erating system, are fully described as follows:

<volume>:<user number>.<catalog>.<file name>.<extension>(<protection>)

where:

volume

user number

catalog

file name

extension

protection

is the name of the media on which the file resides (e.g., the
fixed disk might be named SYS, FIX, VOLO, etc.; floppies
might be named VOL!, VOL2, FLl, FL2, etc.). Up to four
alphanumeric characters may be used (first character must be
alpha) •

is fran one to four decimal digits, arrl establishes
"ownership" of catalogs and files. User 0 is referred to as
the system acininistrator; user 0 validates numbers assigned
to other users of the system.

is a name of up to eight alphanumeric characters, or it may
be null (blank) • A volume. may contain many catalogs, and
many files may be grou:I;ed under the same catalog name. For
instance, files :I;ertaining to a particular project may share
the same catalog name.

is up to eight alphanumeric characters.
particular file.

It identifies a

is an extension of two alpha characters which further
identifies a file by ty:I;e. Certain extensions have meaning
to VERSAdos; for instance, SA identifies ASCII source files,
SY identifies o:I;erating sys tan files, LO identifies
executable load modules, XX and NW identify news files.

is an optional user-selectable access :I;ennission code
consisting of two, three, or four of the characters A-P. If
specified when the file is created, it must be matched
whenever the file is accessed. If not S:I;ecified, it defaults
to PPPP (any user may read or write to the file).

Default values for <volume>, <user number>, arrl <catalog> are those established
at logon, although they can be changed by the user. Default file name extension
varies according to the utilities that use the file. For example, ASM, E, arrl
LIST assume an extension of SA; LOAD, PATCH, and SYMbug assume an extension of
LO; arrl LINK ex:I;ects an extension of RO or RX. Default values need not be
typed. For example, assuming that the logon values are a volume identification
of VOLO, user number O, arrl a catalog name of TEST, the following ASCII source
file names are generally equivalent:

VOLO:O.TEST.FILEOl.SA
TEST.FILEOl
FILEOl

4-4

4.2.4 Session Management

When the VME/10 System is bootErl up, the Session Control task is initiated.
This task enables several useful functions which are executErl with a set of
corrunarrls (see Table 4-1).

Functions perforrnErl as part of the Session Control task include batch arrl chain
file processing, user identification, system security, system date and time
setting, arrl dissemination of system news. Certain of the Session Control
capabilities can be deleted from the operating system arrl a new system created
with SYSGEN, if the functions are not neErled.

4.2.4.1 Sessions. At power-up, the operator will typically log on as user
number 0. User 0, also referrErl to as the system administrator, is allowed
several "privileged" activities, including the establishing of a system password
arrl the assigning of user numbers to other authorized personnel. The first
session after booting is session number 0001. Each logon after a logoff
initiates another sequentially numberErl session, until the system is rebootErl.

The values established at boot-up for volume identification, user number, arrl
catalog remain in effect until changErl with the Session Control USE carmarrl, or
by logging off the system arrl logging back on with different values. The DEF
ccmnand is usErl to display current defaults.

TABLE 4~1. Session Control Commarrls

COMMAND DESCRIPI'ION

OFF

LOO OF[F]

LOGOF [F]

BYE

BA'IC[H]

~AOC[EL]

ELIM [!NATE]

QUER[Y]

CHAI[N]

RETR[Y]

PROC[EED]

OP!' [ION]

Terminate session.

Terminate session.

Terminate session.

Terminate session.

Suhni t batch job.

)
)
) IDENTICAL SESSION TEIMINATION
)
)

Cancel select Erl or all batch jobs •

Cancel all batch jobs (privilegErl).

Request status of batch job.

Execute chain file.

Restart execution of abortErl chain file at current record.

Restart execution of abortErl chain file at next record.

Set chain conditional processing option.

4-5

TABLE 4-1. Session Control Ccmman:ls (cont'd)

COMMAND DES::::RIPTION

R?

END

ST.?-\R[T]

CONT[INUE]

STOP

TEIM [!NATE]

BSTO [P]

BTER[M]

USE

DEF [AULTS]

ARG [UMENTS]

NOARG [UMENTS]

DATE

TIME

PASS[WORD]

SWORD

SOC URE

Display contents of chain conditional processing pseudo
registers.

Terminate chain processing.

Call the loader.

Begin execution of user task.

Restart execution of user task.

Stop execution of user task.

Terminate execution of user task.

Stop all tasks on Break.

Terminate all tasks on Break.

Enter file descriptor defaults.

Display default values.

Enter/display new arguments.

Clear argument list.

Display time an:l date or (privileged) change date.

Display time an:l date or (privileged) change time.

Place the session control task in the dormant state.

Specify or change user password.

Specify or change system security word (privileged).

Specify level of system security (privileged).

During session 0001, the system clock is set with the correct date arrl time, if
necessary, with the DATE and TIME carmarrls.

4-6

Three furnished information files can be Erliterl by user 0 to convey appropriate
messages to users. The files and their functions are as follows:

SYS:O.PRIV.BULLETIN.NW

SYS:O.PRIV.REJE.Cr.NW

SYS:O.PRIV.NEWS.NW

This file's contents are displayed at
successful logon, arrl provide pertinent
information to system users.

This file announces an unsuccessful logon
attempt, when system security is in effect.

This file is designoo to contain information
of interest to system users, and is accessed
by any user by entering the session control
canmarrl, NEWS. This causes the file's
contents to be scrolled on the screen.

Two chain files can also be created/Erli ted by the administrator so that a
previously selected set of processes can be performed autanatically at logon.
They are:

SYS:O.PRIV.UPSYSTEM.CF

SYS:O.PRIV.USER.CF

This chain file may optionally be activated at
the canpletion of session 0001. A typical use
of this file is to establish security levels
for the system (paragraph 4.2.4.2).

This chain file may be created to perform any
desired functions, arrl to be activated any
time a user logs on as user O. Additionally,
any user may create his own. PRIV.USER.CF under
his own user number to contain desired
canmarrls to be activated whenever he logs on.

4.2.4:2 Security. VERSAdos' security package can be SYSGEN'd into the
operating system or excluded fran it. When part of the system, there are four
levels of security available:

LEVEL SECURITY

O None. 'Any user number may be entered at logon at any session.

1 System security. A system password has been installed by the
system administrator. No one may log on to the system without
entering the security word.

2 User number/password security. A list of valid user numbers, with
or without irrlividual passwords, has been entered into a password
file maintainerl by the adninistrator. Only valid user numbers may
be entera:l at logon, arrl if a password has been established for a
particular user number, it must also be enteroo.

3 Both system and user number/password security. At logon, a valid
user number, a sys tern security password, arrl (if established) an
irrlividual password must be entered.

4-7

As supplied, the boot load file VERSADOS.SY establishes level 0 security.
During session 0001, the system administrator can select any other level for
himself or for all other users with the session control cormnarrls S:OCURE am
SWORD. User 0 can also change the contents of the chain file executoo when
VERSAdos is booterl, PRIV.UPSYSTEM.CF, to automatically establish security levels
for all subsequent sessions.

Levels 2 and 3 are de:p=ndent upon a password file having been created by the
system administrator, using the Acer utility prCXJram. Acer arrl the VALID,
NOVALID, and PASS utilities are used to maintain these security levels. Refer
to the VERSAdos System Facilities Manual, M68KVSF, for the use of these
utilities.

4.2.4.3 Examples. The following examples assume that the VME/10 has just been
powererl up, VERSAdos is running, arrl that the default logon values established
are the volume identification of SYS:, a user number of O, and a null catalog,
arrl it is session 0001.

=DEF
SYSTEM VOLUME = SYS:
USE DEFAULT VOLUME= SYS:O ••
USER NUMBER = 0
USER TASK =
SESSION = 0001
TEI«INAL = CNSL
OPTION(S) SET =

=DATE
14:21:52 9/8/83
ENTER DATE (.MM/DD/YY) = 09/15/83

=TIME
14:22:05 9/15/83
ENTER TIME (HR:MIN) = 07:25

=

If date arrl time do not neerl to be charged, the CLEAR/BREAK key can be used to
return to the VERSAdos pranpt. If the user is logged on as other than user O,
no invitation to enter the date or time is issued.

4-8

=USE O.PRIV
SYSTEM VOLUME = SYS:
USE DEFAULT VOLUME = SYS:O.PRIV.
USER NUMBER = 0
USER TASK =
SESSION = 0002
TER1INAL + CNSL
OPTION(S) SET =

=E BULLETIN. NW
VERSADOS EDITOR RELEASE x.xx
COPYRIGIT BY MOTOROIA xxxx

> DEL 0-9999

(call the editor utility; the present
contents of the file are displayed
on the screen, arrl the editor wil 1
accept direct cannands.)

(Delete all lines of text in the
file.)

(Press the Fl key to enter the CRT page edit mode. The cursor appears at the
top of the screen.)

> (CR)
> (CR)
> (CR)
> (CR)
> WEfcOME TO THE VME/10 MICROCOMPUTER SYSTEM.
> (CR)
> -
(Press the Fl key to return to ccmnarrl mode. The cursor appears at the bot tan
of the screen.)

> QUIT
EDIT OONE

=

(Exit the editor pr<:xjram.)

The following example edits the O.PRIV.UPSYSTEM.CF chain file to install a
system security word. Note, however, that the security level established in
this chain file will not be in effect for "session 0001" -- in other words,
whenever VERSAdos is rebooted. Security level will be in effect only in
subsequent sessions after 0001 -- when VERSAdos has not been rebooted. For
security level 1, 2, or 3 to be in effect at system boot time, the IPL.SY file
must be modified (refer to the VERSAdos System Facilities Reference Manual).

=E UPSYSTEM.CF
(Edi tor identifies itself arrl the present contents of the chain file are
displayed.)
> DEL 0-9999
(Press the Fl key
> =SECURE
> 1
>T
> =SIDRD
> SECRET

> =END

to enter CRT page edit mode.)

(Establish security level 1.)

(Enter sys tern security word "SOCRET"
or other password of your choice.)

(Press Fl function key to return to canmarrl mode.)

4-9

> QUIT
EDIT DONE
=E REJECT.NW
(Editor identifies itself, and the present contents of the chain file are
displayed. Press the Fl key to enter CRT page edit mode.)
> DEL 0-9999
(Press the uppercase lock key to return to uppercase and lowercase mode.)
> So sorry, you are not an authorized user.
> Please see your system administrator for the logon procedure.
>
(Press the Fl key to return to comnand mode.)
> QUIT
EDIT DONE
=OFF

07:45:20 9/15/83 END SESSION 0001 USER 0
(Press the CLEAR/BREAK key.)

VERSAdos VERSION x.xx
ENTER USER NO. = 21
ENTER SECURITY WORD XX
ENTER SECURITY WORD YY
ENTER SECURITY WORD ZZ

xxxxxxxxxx

(Entries are not echoed to the screen.)

So sorry, but you are not an authorized user.
Please see your system administrator for the logon procedure.

LOOON REJECI'ED, LOOGED OFF

(Press CLEAR/BREAK.)

VERSAdos VERSION x.xx
ENTER USER NO. = 10
ENTER SECURITY WORD SECRET

xxxxxxxxxx

(Or other security password selected
when editing the UPSYSTEM.CF file;
security word is not echoed to the
screen.)

07:58:15 9/15/83 START SESSION 0002 USER 10

WELCOME TO THE VME/10 MICROCOMPUTER SYSTEM.

=NEWS
*--
*
*

FILE: PRIV.NEWS.NW

This file is similar to the PRIV.BULLETIN.NW file in that it can be used to
provide important information to the user; however, unlike PRIV.BULLETIN.NW, the
user must request the PRIV.NEWS.NW file if one desires to read its contents.
=LOGOFF
07:59:00 9/15/83 END SESSION 0002 USER 10

4-10

4.2.5 Utilities

The VERSAdos utility prCXJram set is used for physical manipulation of files,
storage media, and intersystem data transfer.

VERSAdos utilities are invoked by simply entering the name of the load image
file (a file with an extension of .LO) which performs the function. The Session
Control Task calls the loader to create a task and load the file, and then
starts the function. Because user-created files of type LO can also be loaded
and started by simply specifying their names, any which perform a useful
function may also be considerErl utility commarrls. These are created through use
of the LINK ccmnand (linkage editor) on a program which has been typed into a
file using the Editor, arrl then assembled or compiled.

It is sometimes useful to load a utility but, rather than have execution begin
autanat ically, start execution manually at the desired time. For example, this
two-step operation will allow a diskette to be chao.;Jed between loadio.;J arrl
execution, which can be helpful in a two-drive system. The session control
commarrl LOAD, used in conjunction with the session control commarrl START, allov,s
this to be done. If the utility to be loaded requires arguments, these must be
specifiErl on the LOAD commarrl line.

Most VERSAdos utilities allow variation in their functions by the specification
of options. Many also are "interactive"; i.e., they allow a subset of ccm:narrls
which enable the system operator to supply parameters or otherwise control
operation of the utility "on-line".

The general format used to load arrl run a utility program is:

=<utility name> <input field>,<output field>;<options>

Paragraph 4. 2. 5.1 lists the VERSAdos utilities alphabetically arrl gives brief
descriptions of their functions. Paragraph 4.2.5.2 provides a set of examples
of several of the more camnonly used utilities. These examples can be performerl
as practice exercises by new VERSAdos users.

Full descriptions of most of the utilities can be found in the VERSAdos System
Facilities Reference Manual, M68KVSF. Those not covered in the facilities
manual -- the &litor, Assembler, Linker, DEbug, SYMbug, arrl SYSGEN, as well as
the optional Pascal arrl FORTRAN canpilers and the TENbug monitor -- are
described in Chapters 5 through 9 of this manual, arrl more extensively in
individual manuals.

Additionally, the VERSAdos Reference card, MVDOSCARD, is available for both new
arrl experiencerl VERSAdos users.

4-11

4.2.5.1 Descriptions. VERSAdos utilities are listed alphabetically, with
descriptions of their usage, in the following paragraphs.

ACCT

The Account utility may be used by the system administrator to open a
p:issword file arrl an accounting file, arrl then to monitor individual and
collective usage of the system. This utility will probably not be needed
when the VME/10 is used as a single-user system.

BACKUP

BACKUP provides two methods of transferring data from one disk to another:
track-to-track mode and file transfer mode. Since track-to-track mode
requires that the source and destination disks be of the same type, the file
transfer mode will be used for the standard configuration VME/10. File
transfer mode must be specifierl with BACKUP options A or R. Sub-options
allow several variations in copying. Individual files or families of files
can be selected for transfer. File descriptor fields information can be
st:ecifierl on the destination disk. Indexed sequential files can be p:icked
to reclaim internal file space. Files can be packed together to reclaim
disk sp:ice. A starting point at which file transfer should begin can be
specified on the source disk. Files can be selected by date range and/or
file/family, or can be selecta:1 one at a time. When source data exceeds
capacity of the destination disk, the file transfer mode permits insertion
of additional destination disk (s) • All destination disks must have been
initialized previously with the !NIT utility.

BUILDS

The BUILDS utility transforms a binary load module into a file of
ASCII-encode] information which may then be transported to another system
for further use. The format of the records in the file is Motorola
S-record, so calla] because each record begins with a byte containing the
code for an ASCII "S" -- for start of record.

CONNECT

The CONNOCT utility allows the user at a terminal on a VERSAdos system to
communicate with a secorrl computer which is connected to a second port. It
produces the same effect as physically disconnecting the terminal from the
VERSAdos system arrl connecting it to the second computer, without having to
move any cables. When the L=n option is specified, CONNECT performs the
following functions on the terminal fran which it was invoked before
connecting the terminal to the other port:

a. Resets the display screen.

b. Sets u~ the virtual screen (the area which scrolls while in CONNOCT
mode) as lines 1 through 1-n.

c. Displays the message irrlicating successful connection.

4-12

COPY

DEL

DIR

The COPY utility copies a file onto the same volume under a new file name,
or onto another volume under the same or a new name. Options allow a file
to be apperrled to the errl of an ex is ting file, packing of data in an indexed
sequential file, character-by-character canparison of existing files with
display of byte differences within records, arrl character-by-character
canparison of a copied file and the original with display of byte
differences within records. Output can be sent to a printer if part of the
system, or to the display terminal for a quick look at the contents of a
file.

The Delete utility removes a file name from a disk directory and frees all
sp:tce allocaterl to that file. Options allow a list of files or a "family"
of files with like p:trameters (e.g., same catalog or same extension) to be
deleterl with one camnarrl, arrl/or to direct a list of files deleted (normally
displayerl on the CRT) to an output file or to a printer.

Each VERSAdos disk contains a Volume Identification Directory (VID),
establisherl when the disk was initialized. Information describing the disk
sp:tce allocation, location, arrl attributes of each file contained on the
disk is storerl in this directory. Part or all of the information entered
for each file can be obtained by using the DIR utility. Options provide
greater detail.

DISMOUNT

This utility, used in conjunction with the MOUNT utility, enables the VME/10
to harrlle disks of unlike formats. DI910UNT performs the canplanentary
function of the MOUNT utility. It forces VERSAdos to release .. control of a
mounted floppy disk and to reject input/butput requests to a new disk until
the MOUNT conunarrl has been reissued. Before using DISMOUNT, the floppy must
be off-line -- i.e., the floppy drive door must have been opened.

DISPATCH

DUMP

The use of this utility is privileged; i.e., only logon user 0 may use it.
It is userl in conjunction with BATCH job processing, to change dynamically
the number of batch jobs that are able to execute.

DUMP is a utility that allows examination and/or modification of one or more
sectors of disk data. The basic canmarrl provides a display of the contents
of a disk, a file, or a portion of a file, in hexadecimal; alternatively,
the dump may be directerl to a printer or into another file. Specifying the
interactive option allows certain sectors of the disk or file to be read
into a change buffer in memory; bytes may be individually examina:l, charged,
arrl read back to the disk to replace the original version.

4-13

EMFGEN

This utility allows the user to add error messages arrl/or alter existing
messages in the error message file, ERRORMSG.SY, which is used by VERSAdos'
error message harrller to issue most system messages.

FREE

Knowledge of unallocated space on a disk is often needed for file creation
or editing, or before copying a file. The FREE utility determines arrl
displays the total number of available sectors and the size of the largest
available block of contiguous sectors in decimal arrl hexadecimal
representation for a specified volume.

INIT

LIB

All blank diskettes for use on the VME/10 must be formatted and initialized
with the INIT utility before their first use. Formatting establishes a
sector/track fattern on the diskette which is canfatible with the VME/10 arrl
VERSAdos. Initializing creates a Volume Identification Block (VID) on the
diskette which can be recognized by VERSAdos. The VID includes a
user-supplied volume I.D., description, and ownership. A disk file
directory is also created by !NIT. If directed to do so, !NIT will check
the disk for bad sectors; if any are found, !NIT will write their locations
into the Sector Lockout Table (SLT) so data cannot be written to them.

Used diskettes can also be initialized with !NIT to clear the file
directory. (Disks containing wanted files should not be initialized, as
their directory entries will be altered so as to be unrecognizable by
VERSAdos, arrl new data will overwrite their contents.) The formatting
function need not be :r;:erformed when initializing a used VERSAdos disk.
(Note: Formatting destroys all data on a disk.)

An option allows specification of the address of the bootstrap file. For
the VME/10, the VERSAdos bootstrap file is named SYS:O •• IPL.SY, arrl it must
be located at location $EOO.

Although !NIT can be used on hard disks, the fixed hard disk furnished with
the VME/10 was formatted arrl initialized at the factory and contains all
o:r;:erating system files. It should not be re-initialized unless these files
are to be replaced.

The Library utility makes useful software routines available for use by more
than one program or more than once in a program. These routines, or program
modules, are created in assembly or high-level language; put into a file
using the editor; assembled or canpiled; arrl canbined into a "library" file
or files with the LIB utility. These user-created library files, along with
those supplied with the system arrl with optional high-level languages, can
then be linked arrl made accessible to application programs. LIB offers
several interactive canmarrls to aid in manipulation of the modules while
creating library files.

4-14

LIST

Using the LIST utility, all or part of an ~II disk file can be displayed,
written to a separate file, or (if a printer is part of the system) printed.
Selectable options allow specification of beginning and/or errling lines;
numberiD:J of lines; pranpt for wider or narrower line length and longer or
shorter page leD:Jth specification; pranpt for heading; and interactive mode.
In interactive mode, if the heading pranpt option or non-standard leD:Jth and
width pranpt option were specified, these parameters can be supplierl. Lines
to be listerl can also be specified while in interactive mode.

MBLM

Object files which were assembled using the M68000 Family Cross Macro
Assembler are in S-record fonnat. These files cannot be linked in to load
modules, but can be transported to the VME/10 arrl then converted to loadable
arrl executable files by means of the MBLM utility.

MIGR

ASCII programs filed on MOOS-format diskettes can be converted to VERSAdos
format with the MIGR utility. MOOS is the resident operating system for
Motorola's EXORciser canputer. Because EXORciser' s standard drives are
typically EXORdisk 8" floppies, and VME/lO's floppy drive is 5-1/4", an
EXORdisk must be available to the VME/10 in order to use MIGR.

MOUNT

MOUNT allows VERSAdos to access disks of differing media fonnats. It must
be used before performing I/O operations to a floppy diskette on the VME/10
(except for the first diskette accessed after powerup). In turn, the
DISMOUNT utility must be used after the diskette has been taken off line, to
release the device. If the diskette is of VERSAdos fonnat (contains a
VERSAdos V.I.D.), entering the MOUNT canrnarrl and the device designation is
all that is required. If the diskette is of foreign fonnat, however, it may
be accessed after MOUNTing vtien configuration data has been supplied by the
user duriD:J MOUNT 's interactive dialog.

NOVALID

If system security level 2 or 3 is in effect, arrl a user password file
exists, NOVALID is used to delete specified user number records fran the
file.

PATCH

Changes can be made to executable load module files with the PATCH utility.
Interactive subcanrnarrls allow the display and chan:Je of portions of a file
after it has been read into memory. This makes it possible to make changes
to a program without having to chaD:Je the source arrl reassemble it. PA'ICH
includes a one-line disassembler and a one-line assembler.

4-15

PRTDMP

The Print Dump utility, PR'IDMP, allows dumping part or all of memory to a
file after an abort of a load module. The file or a portion of it can then
be displayed or routed to a printer for examination. To use this utility,
the load module must have been linked with the linker's D option.
Interactive commarrls vary the type of output.

RENAME

This utility is used to change the name of a file and/or its catalog name.
The system administrator (logon user 0) may also change a file's user
number. User 0 or the volume owner may change a file's protection key.

REPAIR

REPAIR is an interactive utility used to repair the
structures of disks and files if they have becane damaged.
include:

VID Volume I.D. block
SAT Sector allocation table
CFGA Configuration area (media format)
SOB Secondary directory block (catalog list)
SOE Secorrlary directory entry (catalog entry)
PDB Primary directory block (file name list)
PDE Primary directory entry (file name entry)
FAB File allocation block (list of data blocks)
DB Data block (list of sequential records)
HDR Header
SLT Sector lockout table
DTA Diagnostic test areas

various logical
These structures

REPAIR can be used to recover a deleted file, if the file's DB arrl FAB have
not been reallocated.

SCRATCH

This utility quickly erases the VID of a used diskette so that it can be
reused. Only the disk's owner or logon user 0 can OCRATCH a disk. The disk
also may be refonnatted with OCRATCH. After using this utility, the disk
must be reinitialized by !NIT.

SESSIONS

The SESSIONS utility is used to detemine the current online sessions and the
batch jobs in queue for execution. Information is displayed by device
number (tenninal) and sessions number for online sessions arrl by user number
arrl session number for batch jobs.

4-16

SPL/SPOOL

VERSAdos offers a spooling capability whereby a particular volume can be
designated as storage mErlia for a queue of files awaiting time-consuming
background tasks such as batch arrl chain processing and printing. This
frees the system for foreground o:perations. The o:perating system must be
SYSGEN'd to add a printer or an auxiliary storage device. SPL must be
installoo in session 0001. srooL may then be accessErl whenever neerled in
subsequent sessions. SR>OL includes a list of subcanrnarrls for initiating,
monitoring, arrl cancelling spooling functions.

SYSGEN

The SYSGEN facility makes it possible to customize the o:perating system,
deleting unwanted parameters and adding others to accanmodate additional
:peripheral equipment. Furnished with VERSAdos are SYSGEN canmarrl files arrl
chain files for several s:pecific system types which facilitate this process.
The files for a particular system are identifiErl by their catalog name;
e.g., the canmand file for the VME/10 is named VMESlO.SYSCMD.SA. This file
reflects the exact configuration of the VERSAdos software furnished for
VME/10 uses. By examining this file, the user can detennine whether any of
several system attributes should be rErlefinErl. If changes are made to
SYS01D, SYSGEN must then be userl on the file to ceate a usable system.

SYSANAL

SYSANAL is an interactive o_p=rating system debugging utility. It provides a
means of examining system tables in RMS68K, the nucleus of VERSAdos, and at
any p:irt of memory while VERSAdos is running. Output is to the display
screen or to a printer if one is available.

TRANSFER

The AOC!! file transfer utility allows up- or downloading of files such as
source code or S-records between the VME/10 and another system. The systems
may be connectoo directly between serial ports, or by phone lines/modems.
Both systems must be configured for the same baud rate arrl character makeup.
TRANSFER uses two associated programs, ULOAD arrl DLOAD.

UPLOADS

UPLOADS is used to migrate S-records fran sane external source to a VERSAdos
system. The S-records must be receiverl through an MVME400 dual port serial
module or the VME/10 I/O Channel which is connected to the source system via
a direct RS-232: hardware configuration.

4-17

4.2.5.2 Examples. Following are some typical examples of some frequently-used
utilities. They may be used for familiarity with the system.

Boot VERSAdos as described in Chapter 2. Insert a blank diskette in the floppy
drive, arrl make the following entries:

=INIT #FD02
OK TO INITIALIZE #FD02 (Y/N) ? Y
Data Density of maUa (S-single-;D-double) D > C
DO YOU WANT TO FORMAT DISK (Y/N) ? !
START FORMAT
ENTER NEW VOLUME NAME VOLl
ENTER USER NUMBER 0
ENTER DESCRIPI'ION (MAX 20 CHARACTERS) PRACTICE ONE
(prints only for user 0)

DO YOU WANT THE BOOTSTRAP (Y/N) ? N (Prints only for user 0)
DO YOU WANT A DUMP AREA (Y/N) ? N -
DO YOU WANT TO VALIDATE SECTORS (Y/N) ? Y

VALIDATING SOCTORS ••••
0 BAD SOCTORS EOCOUNTERED

=COPY O •• PATCH.LO,VOLl:O •• PATCH.LO
=

Remove the diskette arrl dismount it by entering:

=DISMOUNT #FD02
DISMOUNT Version xxxxxx x

Insert another blank diskette, repeat the INIT #FD02 sequence above, giving this
diskette a volume name of VOL2 arrl a description of PRACTICE TVK).

At the VERSAdos pranpt, enter:

=COPY O.*.*.XX,VOL2:0.*.*.XX
COPY ALL OR SELECT FILES (A/S) ? A

FILES COPIED = n

=COPY O.*.*.NW,VOL2:0.&.&.NW
COPY ALL OR SELECT FILES (A/S) ? A

FILES COPIED = n
=

These canmarrls will copy various news arrl instructional files to the diskette.
The asterisk, or "wild card", selects all files on the default volume (the
Winchester) with a blank catalog name arrl extensions of XX arrl NW. The files
are listerl as they are copierl.

4-18

=DIR #FD02
DEVICE FD02 IS VOLUME VOL2
USER NUM= 0000 DES> VOLUME '!WO
=DIR VOL2:0.*.*.*;S
DIR VERSION xxxxxx x mn/dd/yy hh:mm:ss

All files on the diskette are listed alphabetically on the CRT screen.

Change default volume to the floppy with the USE session control camnand:

=USE VOL2:
SYSTEM VOLUME =SYS:
USE DEFAULT VOLUME = VOL2:0 ••
USER NUMBER = 0
USER TASK =
SESSION = 0001
TER1INAL = CNSL
OPTION(S) SET =
=DIR ;E
DIR VERSION xxxxxx x mn/dd/yy hh:mm:ss

Each file on VOL2 is listed, with all directory information as to file type,
size, location, and protection.

=COPY TRANSFER.XX,#

The contents of the ASCII File Transfer instructional file are displayed on the
screen. To halt display, press the crRL arrl W keys. To resume display, type
any key.

=LIST TRANSFER.XX;L=l

The file contents are listed on the screen in LIST's format, with page heading
arrl line numbers.

=DEL TRANSFER.XX
DELETED VOL2:0000 •• TRANSFER.XX
=DIR

(Note that TRANSFER is no longer listed in the volume directory.)

Use the FREE utility to ascertain how much space is left on the diskette (dddd =
decimal, $hhh =hexadecimal):

=FREE
VOLUME VOL2:

dddd/$hhh
dddd/$hhh

xx%
=USE SYS:

'IDTAL SECTORS AVAILABLE
LARGEST CONTIGUOUS SOCTORS
OF SECTORS ARE AVAHABLE

4-19

Remove the diskette arrl dismount· it:.

=DISMOUNT VOL2:
DIEMOUNT Version xxxxxx x

Insert the diskette VOLl and mount it:

=MOUNT #FD02
MCXJNT Version xxxxxx x
VOLl has been mounted
Total Vdos sectors 2552
=DUMP VOLl:O •• PATCH.LO,#;I
DUMP VERSION xxxxxx x
>D $7,$8

The I option instructs DUMP to enter the interactive mode, and the # in the
output field calls for output to the console screen. In interactive mode, the D
subcamnarrl asks for a dump of sectors $7 and $8. They are displayed on the
screen in hexadecimal, with printable .N:CII characters at the right-harrl side.

>QUIT
=OFF
09:52:15 9/15/83 END SESSION 0001 USER 0

4.3 SOFTWARE DEVELOPMENT

A user may custom-configure an operating system to suit a particular application
by using the VERSAdos System Generation Facility (SYSGEN) to modify any of
several system attributes, including:

- Type arrl number of devices
- Number of logical units per user
- Amount of memory space for:

Global segment table
Trace table
Device connection queue

- Number of files

A file must be created to contain a series of camnarrls fran the SYSGEN camnand
set. In addition, utility pr<XJrams not containing interactive dialog may be
invoked fran within this "cannand file", allowing a utility or selected portions
of a utility to be run as if it had been called directly.

Furnished on the VERSAdos mErlia are canmarrl files which represent the
configurations of the furnished VERSAdos versions, alot"B with chain files which
can be used to perform the SYSGEN. These canmarrl files can be listed to
identify their parameters, and if a different configuration is required, the
canmarrl files can be modified arrl a new operating system generated with SYSGEN.

The following paragraphs contain concepts to be considered when designing an
operating system, arrl a brief listing of the SYSGEN carmand set. For full
information on the SYSGEN process -- the SYSGEN canrnarrl set, user-changeable
parameters, and the SYSGEN canmand syntax -- refer to the System Generation
Facility User's Manual, M68KSYSGEN, which includes a typical example of a SYSGEN
camnand file for the VME/10.

Refer also to the M68000 Family Real-Time Multi tasking Software User's Manual,
M68KRMS68K, for a more detailed discussion of design concepts.

4-20

4.3.1 Designing A System

The software development of an operating system can be broken into four phases.
These phases are not necessarily distinct phases carried out in a particular
sequence, but will probably overlap arrl be re-conceived as changes in one phase
impact the others.

Analysis Phase.

Many types of systems can be built using real-time operating system concepts,
including irrlustrial process control systems, operations control systems, data
acquisition systems, management infonnation sys tens, and development systems.
As the first step, the designer should consider some general questions such as:

- What are the basic functional requirements of the system?
- What basic type of system can satisfy these requirements?
- What basic hardware can:ponents are needed to satisfy these requirements?
- What basic software canponents are needed to satisfy these requirements?

The basic functional requirements of the system must be clearly defined at the
outset. Some common configurations are: (a) a canplete bootstrap-loadable
system, in which an entire user system is located in non-resident memory or on a
peripheral mass storage device, arrl is loaded into system RAM at start-up time;
(b) a ROM-resident initializer arrl RMS68K executive, which would load user tasks
into RAM during initialization; arrl (c) a canplete ROM-resident system, where
the initializer, the RMS68K executive, and the user tasks are all located in
ROM.

Design Phase.

In this phase, the basic can:ponents needed to satisfy the functional
requirements are defined.

A to~down structured methodol03y will typically be used to define the system
functions, making it easier to define the necessary tasks. Once a certain level
of functional modularity has been detennined, modules can be grouped together to
form tasks.

Implementation Phase.

After user tasks have been coded arrl assembled into relocatable object modules,
the final system can be creata:l. The three main steps involved are:

- Build the ta ilora:l RMS68K module. The canplete RMS68K package is very
extensive. A given application may not require its full set of
capabilities; therefore, unneeded functions may be anitted by deleting the
appropriate directives arrl reassembling arrl linking the selecta:l/modified
object modules.

- Build application modules, assemble, and link them into load modules. If
necessary, the supplied system initializer may also be modified,
reassembled, arrl linked.

- Use the SYSGEN utility to canbine the RMS68K load module and the
applications load modules.

4-21

Testing and Debugging Phase.

Use the TENbug program to test arrl debug the new operating system. TENbug, the
fintMare resident monitor, offers versatile carmands which facilitate debugging.
Refer to the TENbug Debugging Package User's Manual, arrl to the M68000 Family
Real-Time Multitasking Software User's Manual for helpful tables.

4.3.2 SYSGEN Cormnarrl Set

PARAMETER Contains the name of a SYSGEN parameter followed by its value.
The value is in ef feet throughout the remainder of the SYSGEN
process arrl cannot be redef inoo.

PC Adjusts the location counter maintainoo during SYSGEN execution.

TASK Defines the beginning of a task stream which is of the type that
results in a task being included in the output file. Also marks
the errl of the previous task or process if it was not completed
by an END statement.

PROCESS Defines the beginning of a process stream which is of the type
that results in a process being included in the output file.
Also marks the errl of the previous task or process if it was not
ccmpleterl by an END statement.

EXCLUDE Specifies a segment of a process or task that will not be loaded
with the process or task.

SEGMENT Defines the beginning of a segment strearn which is of the type
that results in a process being included in the output file.
Also marks the errl of the previous task or process if such was
not ccmpleterl by an END statement.

END Ends previous task or process.

MSG Causes an operator message to be displayed at the relevant
terminal.

PAUSE SYSGEN execution halts until any character is depressed.

SUBS Indicates source file (s) in which the actual values of SYSGEN
definerl parameters are substituted for the parameter names.

ASM Sp:cifies an assembler canmarrl line which causes ASM to be
invokoo.

LINK Specifies a source file that contains input to linkage editor,
arrl invokes LINK.

IFxx (Where xx is EQ, NE, Gr, LT, GE, or LE), will initiate
conditional processing.

ENDC Terminates the conditional processing associated with its
associatoo IFxx directive.

4-22

=<progname>[<legal args>]

*

Invokes a utility program (where <progname> is the name of the
utility and <legal args> represents any comnand line input
which is allowable for that utility). The utility cannot carry
on an interactive dialog. This capability is used in the
SYSGEN corrmand file to invoke the COPY utility with the append
option to produce a single listing of all assemblies and links.

Comment; everything following the asterisk is treated as a
corrment and will be listed but not processed.

4.4 OPTIONAL SOFTWARE

Currently available for use on the VME/10 are compilers for the high-level
languages, Pascal and FORTRAN. Also available are cross assemblers and linkers
which enable progranmers working at a VME/10 to assemble and link programs for
the MC6800, MC6804, .MC6805, and MC6809 microprocessors, as well as a cross
Pascal compiler which allows development on the VME/10 of Pascal programs for
Motorola's 8-bit microprocessors.

4.4.1 Pascal

Pascal is a high-level, user-oriented language for the MC68000 family of
microprocessors, based on the language as defined by Niklaus Wirth. Pascal is a
highly structured language which promotes good programming techniques, is
self-documenting, and its user-oriented statement forms simplify program
writing. Extensions provided by Motorola include address specification for
variables, alphanumeric labels, string types, exit, non-<lecirnal integers,
runtime error checking, runtime file assignment, and separate compilation and
linking. The optimizer produces compact efficient code. Library routines
include both IEEE floating point and a single precision fast (multiply:
44 microseconds) floating point.

4 .4. 2 FORTRAN

The FORTRAN compiler translates source programs written in FORTRAN into MC68000
Family machine language, object code. FORTRAN is a high-level prograrrming
language widely used for scientific and engineering problem solving with
features also useful for certain business-related applications. The FORTRAN
compiler is the 1977 ANSI subset standard. Also included are extensions
designed specifically for microprocessor applications such as bit manipulation
and assembly language interface capabilities.

4-23

4.4.3 Cross Products

The Motorola 8-Bi t Cross Macro Assembler Series provides assembly language
prograrrming capability for the Motorola MC6809, MC6805, MC6804, MC6801, and
MC6800 microprocessor families on the VME/10 System. The assemblers are
available to support the individual prograrnning requirements of each processor
family. Each assembler features macro instruction capability, evaluation of
complex expressions, and inclusion of input from . other disk files; and
high-level operators that allow the programmer to write structured assembly
language. In addition, the assemblers may optionally produce a symbol cross
reference listing.

The 8-Bi t Cross Linkage Edi tor also runs on the VME/10 System, arrl takes the
relocatable object module disk file produced by the 8-Bit Cross Macro Assembler
Series as its input. The output of the 8-Bit Cross Linkage Edi tor is an
absolute load module file in Motorola's S-record fonnat as well as a
canprehensive listing. The S-record load module file can then be transmitted to
Motorola EXORciser, EXORset, or Hardware Development Station products for system
integration.

The cross Pascal compiler allows Pascal programs for the MC6809 microprocessor
to be developed on the VME/10. It is similar to the resident M68000-family
Pascal canpi ler, processing code in two phases. Cross Pascal programs are
linkerl with furnisherl library routines by the cross linker, and may be linked
with assembly language subroutines.

4.4.4 PROM Programner

Interface software for programning PROM' s and EPROM 's is available that is
cornpatible with VERSAdos on the VME/10. This software is designed to be used
with Data I/O's System 22 PR<l1 Programner.

With this hardware/software combination, almost any PROM or EPROM in 16-, 18-,
20-, 24-, or 28-pi n sizes can be programmerl. The Data I/O programmer can be
connected to the VME/10 through an RS-232C cable.

4.4.5 Indeperrlent Software

A broad range of irrleperrlent software suppliers support Motorola's 16/32-bi t
microprocessors. See the latest issue of the "Motorola Microprocessor Software
Catalog" for a list of applicable software and addresses of independent
suppliers.

4-24

CHAPI'ER 5

CRT TEXT EDITOR

5.1 INTRODUcrION

VERSAdos provides a CRT text erlitor pr03ram, E, to simplify the creation of
ASCII text files - such as program source - and modify these files.

Two simple-to-use modes of operation are offered by the editor - CRT screen
editing arrl line editing. In CRT mode, page editing is accomplished by
positioning a cursor by means of the cursor keys and special function keys,
arrl/or by an extensive arrl versatile set of commarrls. In line mode, insert and
cannand levels are userl.

Multiple files may be merged using the editor, and portions of files may be
written to new files while erliting, arrl/or copied to other locations within the
file, either saving or deleting the original text.

The output of the editor may be in "indexed sequential" files (type ID), or
"sequential" files (type S). The default file type when creating a new file is
indexed sequential, but sequential can be selecterl by specifying the S option on
the comman:l line. When editing an old file, its type determines the type of the
output file, except when otherwise specifierl by the S or I option.

Sequential files to be edited are placed in a temporary scratch file, and saved
to disk after erliting by using the erlitor's QUIT command.

If an erliterl version of a sequential file is not to be saverl on disk, specifying
the A option after typing QUIT will delete it from the scratch file, leaving
only the original, unerliterl version on the disk. If no changes are made to the
contents on an existing file after it has been openerl by E, only the original
file is saverl. Because indexed sequential files are erlited directly, the A
option after typing QUIT has no effect.

5.1.1 Corrman:l Line

The erlitor is called fran VERSAdos as follows:

E <fnamel>[,<fname2>] [;<options>]

where:

fnamel Is a VERSAdos file descriptor (explained in paragraph 4.3.3).

It either describes an old (existing) file or a new (non-existing)
file. A default value of .SA is assumed for the extension.

If existing, <fnamel>'s contents are made available for editing.
If <fname2> is not specifierl, the contents of the edit file will
be stored under <fnamel> on canpletion (upon issuing a SAVE or
QUIT commarrl with no arguments), overwriting its previous
contents.

If non-existing, <fnamel> is newly created to receive the contents
of the erlit file on completion.

5-1

f name2 Is a VERB.Ados file descriptor of a new (nonexisting) file.

If <fname2> is specified, <fnamel> must be an existing file.
<fname2> will receive the contents of the edit file upon
completion, and the contents of <fnamel> will be left unchanged.

A default value of .SA is assuned for the <extension>.

options Is one or more of the following options (multiple options are
entered with no intervening spaces):

L Enter the line mode of operation. All other options
described below are valid for use in the line mode.

The default condition is the CRT mode, except when E is
called from a chain file.

Line mode is the normal corrli tion for chain file editing;
i.e., the L option need not be specified on the ·corrmand line
within a chain file.

K This option allows the viewing of a file but allows no
changes to be made. Records greater in length than 79
characters are not trucated as would be the case without the
K option. Viewing of the first 79 characters in each record
is provided. Although no changes to a file can be made, the
edito·r scroll functions and the DOWN, FIND, LIST, QUIT,
RANGE, UP, arrl VERIFY canmands are available. The K option
may only be used alone or in combination with the L option.

I Creates the output file (<fname2> or new <fnamel>) in indexed
sequential format.

s Creates the output file (<fname2> or new <fnamel>) in
sequential format.

A Sets assanbler tabs (columns 11, 18, 37).

C Sets COBOL tabs (colunns 6, 9, 12).

F Sets FORTRAN tabs (column 7) •

P Sets Pascal tabs (columns 4, 7, 10, 13, 16, 19, 22, 25, 28,
31, 34, 37 I 40, 43, 46, 49, 52, 55, 58, 73) •

NOTE

When no tab option is specified, a default
format of tab stops every 10 columns is assuned.

5-2

5.1.2 E Commarrls

The camnarrls available for use when erliting, arrl a surmnary of their functions,
follows. Note that the following terms are equivalent:

line = record
current line = line at which cursor is positionerl
column = character position
page = full screen display

Conmarrls to E may be in upp:rcase or lowercase.

CRT & LINE MODE

ADUP

M10V[E]

C [HANGE]

DEL[ETE]

Duplicate records (lines) fran the file arrl place them in
the XTRACT buffer, app:nding them to any records already in
the buffer. The records still remain in the file. A
vertical range may be specified in the format ADUP 1-10
(lines 1 through 10). If range is not sp:cifierl, default
is the current record only. Vertical range may also be in
the format ADUP *-100, where * is current line arrl 100 is
the next 100 lines. If number of lines is not specified,
only the current line is used.

Move records fran the file arrl place them in the XTRACT
buffer, app:nding them to any records already in the
buffer. The records moverl are deleted fran the file. A
vertical range may be specified in the fonnats N!iOV 60-100
(line numbers specifierl) or M10V *-100 (number of records
specified), with defaults as specified for ADUP. The
XTRACT comrnarrl is used to copy the deleterl data back into
the file.

Change strings within records. The following may
optionally be specifierl: vertical range of records,
horizontal range with each record (number of characters
within each line), a "transparent" charcter (to be inserterl
in the new string to cause any characters in the old string
in the same columns to be ignorerl, or left unchangerl) ,
occurrence within a record in which the change is to be
made, old string and new string, arrl number of lines in
which the change will be made. For example, C 5-9:10-12;
a/JMP/JSR/a changes the characters JMP to JSR every time
they appear in columns 10 through 12 in lines 5 through 9
in the file being edited.

Delete records or parts of records fran the Erl.it file.
Vertical and horizontal ranges may be specifierl, with
defaults as specifierl for ClfANGE. For example, DEL deletes
the line at which the cursor is pointing. DEL~20:10-50
deletes all data in columns 10 through 50 fran the next 20
lines, beginning with the current line.

5-3

D[OWN]

DUP [LICATE]

EX[TEND]

F[IND]

LINE

MERGE

MOVE

Move the record pointer downwards. For example, D 50 moves
the cursor from its current location to the 50th line
following.

Duplicate records am place them a newly created XTRACT
buffer, replacing any previous XTRACT buffer. The records
still ranain in the file. A vertical range may be
specified. For example, DUP copies only the current line
into the XTRACI' buffer; D~*-15 copies the next 15 lines,
beginning with the current line.

Appeoo data to the em of records. Any string may be
appeooed, arrl a vertical range may be specified. For
example, EX 20-29 "HDS400" ap~rrls the string HDS400 to the
errls of the 10 lines beginning with line 20.

Fini a string, or position record pointer at a record, the
format of the FIND carmand is the sample as for the CHANGE
canmarrl, except that only one string may be s~cified. For
example, F 3-5: 2-7;a/HDS400/a locates every occurrence of
the string HDS400 in character positions 2 through 7 of
records 3 through 5 and displays them on the screen. F 0
moves the cursor to the beginning of the file; F 200 moves
the cursor forward to the 200th line in the file.

Display the line number of the current record. After LINE
is entererl, the number of the record at which the cursor is
positioned is displayed at the bottom of the screen. For
example, CURRENT LINE IS 18.

Copy a file or a portion of a file resident on disk into
the file being edited. This allows combining files or
copying of data within a vertical range fran another file
to the desired location in the edit file. For example,
MERGE VOLl: •• TEST .SA inserts the entire contents of the
file TEST.SA on a disk named VOL!, into the edit file above
the current record. MERGE 1-3 OLDFILE.SA copies lines 1
through 3 from the file OLDFILE.SA on the default disk, to
the edit file above the cursor location.

Move records into a newly created XTRACT buffer, replacing
any previous XTRACT buffer. The records moved are deleted
fran the file. This canmarrl works exactly as AM.CV, except
that the records moved replace any previously stored XTRACT
buffer contents. Records moved are deleted fr an their
current location am can be restored to the desired
location with the XTRACT canmaoo. For example, MOV 5-10
deletes 6 records from their current location; after the
cursor is moved to the desired location, typing XTRACT
copies them from the XTRACT buffer to the edit file above
the cursor location.

5-4

PRINT

QUIT

R[ANGE]

SAVE

TAB

Output records to the pr inter. A vertical range of records
may be specified; default is the entire file. The records
may optionally be printed out double- or triple-spaced by
specifying the option D or T. For example, PRINT prints
the entire edit file, single-spaced, on printer #PR.
PRINT 100-199 #PR2 D prints records 100 through 199,
double-spaced, on printer #PR2.

Save the Erlit file in a VERSAdos file, terminate the edit
session, arrl return control to VERSAdos. For example, QUIT
closes the edit file arrl writes it to the disk under the
output file name. If no changes were made during editing,
no output file is created. If, after editing, the changes
made are not wanted, exiting with QUIT A prevents the
output file fr an being created. Note, however, that the A
option on QUIT is only valid if the output file was to have
been sequential (either because the input file was
sequential or because the S option was specified on the E
conunarrl 1 i ne) •

Establish default values for the vertical arrl horizontal
ranges of the CHANGE, FIND, PRINT, arrl SAVE carmarrls. The
original defaults are entire record and/or entire file.
RANGE is used to change these defaults • For example, R
1-100 changes the vertical range for the FIND, CHANGE-;
PRINT, and SAVE canmarrls. R :10-30 leaves the vertical
range unchanged, but sets the default horizontal range to
columns 10 through 30. Entering R or RANGE alone returns
defaults to entire record/entire fI'le.

Save part or all of the edit file in a VERSAdos file,
arrl continue editing. For example, SAVE *-100
VOL1:0.CAT1.FILE2.SA creates a new file named CAT1.FILE2.SA
on VOL!, and copies 100 lines into it from the edit file,
beginning at the current line. SAVE FILEDUP.SA copies the
entire edit file into a new file namErl FILEDUP on the
current volume.

Specify tab stops. The default tab stops are set at every
10th column. The column numbers of desired tab locations
to be added to ex is ting settings can be specified, or an
option letter (A, C, F, or P) can be specified to set tabs
at locations co'nvenient for Assembler, COBOL, FORTRAN, or
Pascal source programming. When an option letter is
speci fiErl, previous tab settings are cleared. Specifying
TAB with no tab stops or option letter sets tabs at the
default settings, or at settings specified on the E conunarrl
line, if any. For example, TAB 25,35 adds stops at columns
25 through 35, but does not change any settings already in
effect. TAB A sets tab stops at columns 11, 18, and 37,
convenient for Assembly language source code.

5-5

U [P]

X[TRACT]

Move the record pointer uJ:)Wards. For example, U 25 moves
the cursor to the 25th line preceding the current line.

Copy the records from the XTRACT buffer placed there by
ADUP, DUP, 'AMOV, or MOVE, and insert them above the current
record in the file.. The records still remain in the
buffer. XTRACT may al so be used simply to empty the
buffer. For example, XTRACT or X copies the contents of
the buffer into the edit file, -above the current line.
XTRACT A or X A does not copy the contents of the buffer
into the Erlit file, but deletes them from the buffer.

LINE MODE ONLY (;L OPTION OR WITHIN CHAIN FILES)

mLM Display the ruler of column spacirgs.

DTAB Delete tab stops.

I [NSERT] Enter insert level, for adding records to the edit file.

L [!ST] List records in the edit file.

STAB Specify tab stops.

V[ERIFY] Display records that are altered or record pointer changes.

5.1.3 Examples

The following simple examples are intended to illustrate various functions of
the Erl i tor.

With VERSAdos runnirg, insert the diskette VOLl created in the example in
Chapter 4 (or use another fonnattErl, initializErl diskette) and enter:

= MOUNT #=FD02

=

Change defaults to the diskette (if volume name is not VOLl, substitute the
actual volune name for VOLl) :

= USE VOLl:O

=

5-6

Create a new file on the diskette:

= E TESTFILE.SA

The new file is o~nerl arrl the a:H tor is in CRT p:ige erli t mode. Fill four lines
with rarrlom text, beginning with an asterisk and a tab {*-->I) such as the
following:

* KL..JLKSDF AJFLKSDJK SJFKDJFJS WlJROEURIXS SJLKWUIOSKFLDKJA SDFJLSJSKJ
* SDFLKJKJAF SJFLKDKA LKJKJE SAJLJKJ;LLLFS AKJLJ AJDLFJKD E UOULF
* DSJFLSDJK ADJFLDJKF ADFJLDJF AADFJLKJA FJSLFKJ ADFJLJ A SFJDLJ A
* SFJKDJFKLA A FSJFLJ AJDLFJSK A FSLJFJA SJFLDJF A

Press \ key to move cursor to up~r left hand corner. Press the Fl key to
enter canmarrl mode. Make the following changes to the file:

> C *-999;a/F/$/a

{In all lines fran the cursor location to the errl of the file, change all
occurrences of F to $.)

KLJLKSDS AJSLKSDJK SJKDJJS WUROEURIXS SJLKWUIOSK$LDKJA SD$JLSJSKJ
k SD$LKJKJA$ SJ$LKDKA LKJKJE SAJLJKJ;LLL$S AKJLJ AJDL$JKD E UOUL$
* DSJ$LSDJK AOJ$LDJK$ AD$JLDJ$ AAD$JLKJA JSLKJ AD$JLJ A S$JDLJ A
* SFJKDJFKLA A FSJFLJ AJDLFJSK A FSLJFJA SJFLDJF A

> DEL 1-4:2-9

(In lines 1 through 4, delete all data in character positions 2 through 9. Note
that the spaces inserted by the tab key are deleted.)

*KLJLKSDS AJSLKSDJK SJKDJJS WUROEURIXS SJLKWUIOSK$LDKJA SD$JLSJSKJ
*SDSLKJKJAS SJ$LKDKA LKJKJE SAJLJKJ;LLL$S AKJLJ AJDL$JKD E UOUL$
*DSJSLSDJK ADJSLDJK$ AD$JLDJ$ AADSJLKJA JSLKJ AD$JLJ A S$JDLJ A
*SFJKDJFKLA A FSJFLJ AJDLFJSK A FSLJFJA SJFLDJF A

Press Fl to return to page edit mode. Note that the cursor is still positioned
at line 4.

Press the EOL key on the right harrl key p:id. Line 4 is deleted. Press the
carriage return key (<--') 6 times, moving the cursor to line 10. Verify this
by pressing the Fl key, then typing:

> line
CURRENT LINE IS 10
>

Press Fl, then fill 2 lines with dollar signs (hold $ arrl i} keys down until 2
lines are filled.)

$$$$$$$$$$!f$$
$$$
$$$$$$$$$$

5-7

Press Fl to return to conunand mode. Enter:

> DUP 10-11
> XTRACT
> XTRACT
> XTRACT
> XTRACT

(Fill XTRACT buffer with contents of lines 10 and 11,
then copy the contents of the XTRACT buffer to the file,
inserting it at the cursor location, four times.
As the lines are added, the display is scrolled up.vards.)

$$$

$$$$1SSSS$$$$$S$S$$S$S$$$$$$$$$$$S$$$$$$$$$$$$$S$$$$!S~!t$SSS•Sl$$$$$$SI$~$$!

$$$.$$$
$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$.$$
$$$
$$$
$$$
$$$
$$$
$$$'$$$$$'.f;$

> find 10

Move the cursor to the last full line of dollar signs with the i key and
ask for line number:

> line
CURRENT LINE IS 19

Change all occurrences of $ in columns 25 through 50 in lines 10 through end of
file to dots:

> c 10-999:25-50;a/$/./a

(This takes several seconds, and then the display changes.)

$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$, $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$(,$

Change those dots in columns 30 through 45 in lines 12 through 17 to asterisks:

> C 12-17:30-45;a/./*/a

$$$$$$$$$$$!p$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$\p$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$!p$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$~$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
!S$$S$5SSS

5-8

Copy part of the file to a new file arrl exit the editor.

> save 10-19 NEWFILE.SA
> quit
EDIT DONE
=

Open the newly created file. The editor is in comnand mode, and the lines
copied to this file are displayed.

= E NEWFILE.SA

Press Fl to enter page edit mode. Using the cursor arrow keys, move the cursor
through the display arrl make a few changes to the file by typing over the
existing characters; e.g.:

$$$$$$$$$$$$$$$$$$$$$$$$ VME/10 $$$$$$$$$$$$$.$$$$$$$$$$$$$$$
•SS$$$$$$$$$$$$$$$$$$$$$ $$$$$$5$$$S$iS$$$$$$$$,$$S$$S

$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$.$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$SSSS$SSSS$SSSS
$$$$t$SS•SS$$S$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$.$$$$$.$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$~$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$ MICROCOMPUTER $$$$$$$$$$$$$$$$$$$$$5$$$$$$$

Note that in page edit mode, characters entered replace those over which they
are typed. To insert space for new text, use the !CHAR and !LINE keys to insert
character space and insert line space. Use the DCHAR and OLINE keys to delete
characters and lines.

Position the cursor at the last character in the last line in the file and press
<--1, then press Fl.

Merge part of the old file with this file:

> Merge 10-19 TESTFILE.SA

5-9

The contents of lines 10 through 19 of the old file are insertErl at the cursor
position arrl displayed.

Change the last line:

> C 20:34-39//SYSTEM/

$$$$$$$$$$$$$$$$$$$$$$$$ VME/10 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$~$-~$$$$$!

$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$1$$$$!$S$$S$$S
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$S$$1$$$$$$5S$ff!SSE$$$$
$$$$$$$$$$$$$$$$$1$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$.$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$.$$$$$$$$.$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$1$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ MICROCOMPUTER $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$S$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$1$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ·****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$ ****************· $$$$$$$$$$$$$$$$$$$$$1$$$1$$1
$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$.~$$

$$$$$$$$$$$$$$$$$$$$$$$$ SYSTEM $$$$SS$S$$$$$f S$$$$$$$$SSSSr$

If part of the display has scrollErl off the top of the screen, press the F4 key
to view p:ige 1, or press F6 repreatedly until the first line in the file can be
seen ("BOF OR EOF EOCOUNTERED" appears at the bottom of the screen).

Four of the function keys (Fn) can be used to advance or reverse the display
through a file, as follows:

F3 Display next p:ige
F4 Display previous pa.ge
FS Move display up one line at a time
F6 Move display down one line at a time

In all cases, the display will advance or retreat only until BOF or EOF is
reached.

If a printer is part of the system, get a printout of the file's contents, then
return to VERSAdos:

> PRINT #PR
> QUIT
EDIT DONE
=

5-10

CHAPTER 6

ASSEMBLER

6.1 INTRODUCTION

VERSAdos' assembler, the M68000 Family Resident Assembler, is used to translate
M68000 family assembly language source programs into relocatable object code
which, after linking, is "machine-readable" by the MC68010 microcanputer. The
assembler's capabilities include handling the following:

• Structured syntax
• Complex expressions
• Macros
• Conditional assembly
• Absolute or relocatable code generation
• Symbol table listing
• Cross-referencing

Source programs are written in MC68000-family assembly language, entered into a
file on disk using the VERSAdos CRT Text Editor, assembled, then linked with the
VERSAdos linkage editor and assigned absolute memory addresses or relocatable
addresses. The output file produced by the linker may be a load module (an
executable program) or a relocatable object module, which can then be linked
with other assembly, Pascal, or FORTRAN programs.

6.2 SOURCE PROGRAMS

MC68000 family assembly language source programs consist of a series of
statement lines arranged in a logical way to perform predetermined tasks.
Source statement lines may be any of the following:

• Executable instructions
• Assembler directives
• Macro invocation
• Comnent

6.2.1 Coding

Source statement lines are canprised of four fields, separated by a space or
spaces:

• Label
• Operation
• Operand
• Conunent

If the first character (column 1) in a statement is an asterisk (*) , the entire
line is treated as a comnent -- ignored by the assembler, but printed in
listings for documentation of the program.

6-1

Source statement lines must not be numbera]. The assembler will number the
lines while assembling the program.

Label. The first field of a source statement is the label field. A label is
generally a symbolic name representing a numerical value or an address
(location) in memory. Labels are allowed on all instructions and directives
which define data structures (FOR, IF-THEN). Labels are require] in the
assembler directives which define symbol values -- SET, EQU, REG. Labels also
are require] on MACRO definitions and on the IDNT directive.

Operation. This may be any of the following:

• Instruction -- the MC68000 instruction set, with the following additions
for the MC68010:

MOVE CCR,<effective address>

MOVEx::: Rc,Rn, or Rn,Rc

MOVES <effective crldress>,Rn
or Rn,<effective address>

RTD #<displacement>

Move from condition codes register
to effective address.

Move fran control register Re to
register Rn or from register Rn to
control register Re.

Move fran effective address to
register Rn or from register Rn to
effective address.

Return fran subroutine with
displacement (2's canplement 16-bit
integer, sign extenda] to 32 bits).

Certain instructions allow a "quick" and/or an "imma]iate" form when
imna]iate data within a restricted size range app:ars as an operand.
These abbreviate:] forms are normally chosen by the assembler, when
appropriate. However, it is possible for the progranmer to "force" such a
form by app:nding a "Q" or "I" to the mnemonic opcode (to indicate "quick"
or "imna]iate", resp:cti vely) • The instructions are: ADDI, ADDQ, CMPI,
EORI, MOVEQ, ORI, SUB!, SUBQ.

Some instructions also have "address" variant forms (which refer to
address registers as destinations) ; these variants append an "A" to the
instruction mnemonic. This variant will be chosen by the assembler
without prograrre:ner specification, when appropriate to do so; the
prograrrmer nee] specify only the general instruction mnemonic. However,
the programmer may "force" such a variant form by app:nding the "A". They
are ADDA, CMPA, MOVEA, SUBA.

The CMP instruction also has a memory variant form (CMPM) in which both
op:rands are a special class of memory references. The CMPM instruction
requires postincrement addressing of both op:rands. The CMPM instruction
will be selecta] by the assembler, or it may be specifia] by the
programmer.

6-2

• Directive -- pseudo-operation codes for controlling the assanbly process •

• Macro call -- invocation of a previously described macro.

Some instructions and directives can operate on more than one data size. Size
is specified by one of the following suffixes to the operation mnenonic:

.B = Byte (8-bit data)

.W = Word (16-bit data; usually default)

.L = Long word (32-bit data)

Examples:

LEA 2 (A,O) ,Al

ADD Dl,D2

ADD.L A3,D3

DC.B 10,5,7

Long word size is default; loads effective address of
first operarrl into register Al.

Word size is default; adds low order word of Dl to low
order word of D2.

Long word size; adds entire 32-bit contents of A3 to D3.

Byte size; defines constants 10, 5, and 7 (decimal) in
three contiguous bytes of menory.

Operand. When used, specified generally in the format <opcode source>,<opcode
destination>; e.g., MOVE Dl,D2 moves the contents of Dl to D2.

Comnent. This optional field is used to document the code.
listings, but otherwise is ignored by the assanbler.

6.2.2 Symbols and Expressions

It appears in

Symbols recognized by the assembler consist of one or more valid characters, the
first eight of which are significant. The first character must be an uppercase
letter (A-Z) or a period (.) • Each ranaining character may be an uppercase
letter, a digit (0-9), a dollar sign ($), a period (.), or an underscore (_).

Numbers recognized by the assembler include decimal, hexadecimal, octal, and
binary values. Decimal numbers are specified by a string of decimal digits
(0-9); hexadecimal numbers are specified by a dollar sign ($) followed by a
string of hexadecimal digits (0-9, A-F); octal numbers are specified by an "at"
sign (@) followed by a string of octal digits (0-7); binary numbers are
specified by a percent sign (%) followed by a string of binary digits (0-1).

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as irrmediate operarrls. This left justification will be
to a word boundary if one or two characters are specified, or to a long word
boundary if the string contains more than two characters.

Expressions are canposed of one or more symbols, which may be canbined with
unary or binary operations. Legal symbols in expressions include:

a. User~defined labels and their associated absolute or relocatable values.

b. Numbers and their absolute values.

6-3

c. The special symbol "*" always identifies the value of the program counter
at the beginning of the DC directive, even when multiple arguments are
specified (e.g., DC.B 1,2,3,*-3). The program counter may be either
absolute or relocatable.

Operators recognized by the assanbler include the following:

Operator Definition Operator precedence

+ Addition 6
Subtraction 6

* Multi plication 5
I Division 5

Unary minus 2
» Shift right 3
<< Shift left 3
& Logical AND 4

Logical OR 4
() Parentheses 1

6.2.3 Registers

The following MC68010 register mnenonics are recognized by the assanbler:

D0-D7

AO-A7

A7, SP

USP

CCR

SR

PC

Data registers.

Address registers.

Either mnenonic represents the systen stack pointer of the active
systen state.

User stack pointer.

Condition code register (low 8 bits of SR).

Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (CCR) may be modified in user state.

Program counter. Used only in forcing program counter-relative
addressing.

VBR Vector base register. supports multiple vector table areas
during exception processing. Accessed by the MOVEC instruction.

SFC Alternate function code source register. Accessed by the MOVEC
instruction.

DFC Alternate function code destination register. Accessed by the
MOVEC instruction.

6-4

6.2.4 Macros

A set of instructions that are to be repeated can be defined as "macros"; values
of variables within the macro routines can be specified later when the macro is
called into use. When the macro is called, the generated instructions that
comprise the macro are "expanded" -- executed inline in the normal flow of the
program.

A macro definition consists of header, body, and terminator:

<label> MACRO header; <label> must be a unique identifier, the
<name> by which the macro is called.

<statement> body; may be instructions, directives, calls to
other macros; parameter arguments may be included.

<statement>

ENDM terminator.

Statements within the macro can call out argument substitution, using the
designations \0 through \9 and \A through \Z, e.g., MOVE.L \3,LOCATN. When the
macro is expanded after being invoked, the third parameter specified on the
macro call will be moved to LOCATN.

Macros are invoked from a program in the following form:

[<label>] <name>[.<qualifier>] [<parameter list>]

where:

label

name

.qualifier

parameter list

is another unique label.

is the <label> defined with the MACRO directive.

is the \0 size/displacement qualifier, such as .B, .w, or
.L.

is the list of parameters to be substituted into the
macro, separated by conmas. Null parameters must also be
set off by corrmas --e.g. , <paraml>, <param2>,,, <param5>.
Up to 36 parameters may be specified.

6-5

6.3 INVOKI~ THE ASSEMBLER

The canmarrl line format for the assembler is:

ASM <source file>[,[<object file>] [,<listing file>]] [;<options>]

Only the <source file> is requirerl. The default extension on the <source file>
is SA. If the <object file> and/or <listing file> are not specified, they will
default to the same file name as the <source file>, but with extensions of RO
and LS, respectively.

Multiple source files may be assembled by separating these input files with a
slash (/). In the case of multiple source files, the first file name is used
for the default object arrl listing file names. The listing may be output to the
CRT or the printer during assembly by specifying the appropriate mnemonic in
place of the listing file; e.g., the canmand ASM TEXT,,#PR will print the
listing.

The assembler recognizes the following options on the commana line:

OPTION DEFAULT FUNCTION

C C Produce object code.

D D Produce symbolic debug symbol table file; file name
will be same as that of the relocatable object
file, with an extension of RS.

L L Produce listing.

M M Li st macro expansions.

P=<processor> P=68000 Accept M::68000 instruction set. P=68010 is
required for VME/10, unless OPT P=68010 is used
within program.

R -R Inhibit production of cross-reference.

S -S Inhibit listing of structurerl control expansions.

W W Enable warning messages during assembly (default).

Z=n Z=37 Increase data area size to n Kbytes.

If the P=<processor> or Z=n option is followed by another option, a separating
camna must be used. Otherwise, separating canmas are not required for multiple
options. For all options except P=<processor> arrl Z=n, a minus sign before the
option letter produces the opposite effect.

6-6

6. 4 DIRE.CT IVES

Assembler directives (pseudo.;,..ops), with the exception of DC arrl OCB, are
instructions to the assembler rather than instructions to be translated into
object code. Following the descriptions and examples of the basic forms of the
most frequently used assemblea directives.

ASSEMBLY CONTROL

ORG
IOCLUDE
SECTION
OFFSET
MASK2
END

SYMBOL DEFINITION

EQU
SET
REG

DATA DEFINITION/
STORAGE ALLOCATION

COMLINE
DC
DS
DCB

LISTit-X:; CONTROL
AND OPTIONS

PAGE
LIST
NOLIST or NOL
FORMAT
NOFORMAT
SPC n
NOPAGE
LLEN n
TTL
NOOBJ
OPT
FAIL

LINKAGE EDITOR CONTROL

IDNT
XDEF
XREF

STRUCTURED CONTROL

ELSE
ENDF
ENDI

ENDW
FOR
IF

Absolute origin
Include second file as if it was inline
Relocatable program section
Define offsets
Assembler for Mask2 (R9M, MC68000 mask)
Program errl

Assign permanent value to label
Assign temporary value to label
refine register list for MOVEM instructions

Cc.mnand line
refine constants
Define storage
Define constant block

Top of page
Enable the listing
Disable the listing
Enable the automatic formatting
Disable the automatic formatting
Skip n lines
Disable paging
Set line lengths 72 < n < 132
Up to 60 characters of tTtle
Disable object output
Assembler options
Prograrmner-generated error

Relocatable identification record
External symbol definition
External symbol reference

REPEAT
UNTIL
WHILE

6-7

6.5 ASSEMBLER OOTPUI'

Assembler outputs include an assembly listing, a synibol table, a symbolic debug
symbol table file, and a relocatable object program file.

The assembly listing includes the source program, as well as additional
information generatErl by the assembler. Most lines in the listing correspond
directly to a source statement. Lines which do not correspond directly to a
source line include:

• Page header arrl title
• Error arrl warning lines

Expansion lines for instructions over three words in length

The last page of the assembly listing is the symbol table. Symbols are listed
in alphabetical order, along with their values arrl an indication of the
relocatable section in which they occur (if any). Symbols that are XDEF, XREF,
REX;, in namErl conunon, or multiply defined are flagged. If option CRE has been
specified in the program, the cross-reference listing will identify the source
lines on which the symbol was definErl or referenced (definitions appear first,
flagged with a"-").

LISTING CONTROL
AND OPTIONS

PAGE
LIST
NOLIST or NOL
FORMAT
NOFORMAT
SPC n
NOPAGE
LLEN n
TTL
NOOBJ
OPT
FAIL

LINKAGE EDITOR
CONTROL

IDNT
XDEF
XREF

Top of page
Enable the listing
Disable the listing
Enable the autanatic formatting
Disable the automatic formatting
Skip n lines
Disable paging
Set line lengths 72 < n < 132
Up to 60 characters of tTtle
Disable object output
Assembler options
Programmer-generated error

Relocatable identification record (label required)
External symbol definition
External symbol reference

6-8

6.6 LINKAGE

The relocatable object module produced by the assembler must be processed by the
M68000 family linkage editor, or linker, in order to resolve relocation and
cross referencing needs. The output of the linker, in turn, can be another
relocatable object module, a file in "S-record" format which can be transmitted
to another canputer, or a "load module" which can be executed directly on the
VME/10. A relocatable object module may be linked with other assembly language
pr03rams, as well as FORTRAN arrl Pascal pr03rams; in these cases, the user
should be aware of FORTRAN and Pascal requirements. Libraries of canmonly used
routines may also be linked with assembly language programs.

"Relocation" refers to the process of birrling a pr03ram to a set of memory
locations at a time other than during the assembly process. For example, if
subroutine "ABC" is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of repositioning
the subroutine in memory is to change the "ORG" directive operand field at the
beginning of the subroutine, and then to re-assemble the routine. A
disadvantage of this method is the expense of re-assembling ABC. An alternative
to multiple assemblies is to assemble ABC once, producing an object module which
contains enough information so that another pr03ram (the linkage editor) can
easily assign a new set of memory locations to the module. This scheme offers
the advantages that re-assembly is not required, the object module is
substantially smaller than the source program, relocation is faster than
re-assembly, arrl relocation can be harrlled by the linkage editor (rather than
editing the source program and changing the ORG directive).

In addition to program relocation, the linkage editor must also resolve inter
pr03ram references. For example, the other programs that are to use subroutine
ABC must contain a jump-to-subroutine instruction to ABC. However, since ABC is
not assembled at the same time as the calling program, the assembler cannot put
the address of the subroutine into the operand field of the subroutine call.
The linkage editor, however, will know where the ·calling program resides and,
therefore, can resolve the reference to the call to ABC. This process of
resolving inter-program references is called "linking".

Pr03ram sections provide the basis of the relocation and linking scheme. Each
of these sections may also have a variable number of named comnon sections
associated with it, with each camron section having a unique name. These
relocatable sections are passed on to the linkage editor, which concatenates all
sections with the same number in the different modules to be linked. Each of
the 16 relocatable sections may contain data and/or code; in addition, named
common sections may be defined within any relocatable section.

Absolute sections are unnumbered (arrl, therefore, unlimited in number); they are
specified by the ORG directive.

6-9

6.7 EXAMPLES

Following is an example of creating an absolute load module using the assembler
and the linkage editor.

a. At the VERSAdos prompt (=), invoke the CRT text editor by entering the
following:

=E PROGNAME

PROGNAME represents the name of the source file being created; SA is the
default extension, and is usually used for ASCII source files.

After the user program has been entered, depress the Fl function key to
return the erlitor prc.mpt (>) to the lower left portion of the screen,
and exit the editor as follows:

b. Assemble the program:

=ASM PROGNAME

The relocatable object module created by the assembler will be written to
a file named PROGNAME, with the default extension of RO. A list of the
source with the hex representation will be written to PROGNAME.LS.

c. Link the program. In this example, an assembly language subprogram
(created and assembled as above) is linked with the main program into an
executable load module (the file PR<X;NAME.LO):

=LINK PROGNAME/SUBPROG

RO is the default extension for the input files.

An assembly language program may also be linked with a Pascal or FORTRAN
program which is to call it.

d. Alternatively, a chain file such as the following could have been used to
assemble (step b.) and link (step c.) the assembly program.

First, call the editor:

=E CHAINASM.CF

Then enter the following canmand lines into the edit file:

=ASM PROGNAME
>=ASM SUBPROG
>=LINK PROGNAME/SUBPROG
>=END

NOTE

The VERSAdos prc.mpt (=) is required on a
chain file canmand which calls a utility.

6-10

Exit the Erlitor by depressing the Fl key and typing:

'Ihe chain file is executerl by entering its name to VERS.Ados:

=CHAINASM.CF

e. The user has the option of either listing the program on the screen or
printing hard copy to investigate and correct errors.

1. To list the program on the screen, enter:

=LIST PROGNAME.LS

The entire program will scroll on the screen (line by line) and
the canpilation errors will be indicaterl as they occurrerl. To
stop the scrolling in order to investigate an error, press crRL-W
(hold the crRL key, then press the W key). To continue scrolling,
press any key.

2. To list the program on the printer, enter:

=COPY PROGNAME.LS,#PR

The entire program will be printerl, indicating the total number of
errors and also where each error appeared in the program listing.

f. Use the text erli tor to correct the errors, then call the chain file
again. When no assembly errors exist, a valid absolute load mcxlule will
automatically be creatErl, provided the linkage editor encounters no
problems.

g. The absolute load module is now ready to be examined or modified by
utilizing one of the two debuggiIXJ programs -- DEbug or TENbug. To use
DEbug, refer to the SYMbug/A and DEbug Monitors Reference Manual for the
procedure to load an absolute load module into memory. To use TENbug,
refer to the BO carmand in the TENbug Debugging Package User's Manual for
the procedure to load an absolute load module into memory.

h. A canpletely debugged load module can be executed by entering only its
name to the VERSAdos pranpt (=) :

=PROGNAME

6-11/6-12

CHAPrER 7

LINKAGE EDITOR

7.1 INTRODUCTION

After user-written source files have been asseni>led (if assembly language) or
canpiled (if high-level language such as Pascal or FORTRAN) into "relocatable
object module" files, they must be "linked" by the VERSAdos Linkage F.di tor (the
"linker") to convert them to absolute binary load modules. These load modules
are programs which are executable under VERSAdos. Furnished or user-created
library files may also be linked with the object modules, if their routines are
to be utilized.

One or two other forms of output files may be selected instead of a load module:
relocatable object modules can be linked to form a larger relocatable object
module, or they can be converted to Motorola S-record format modules, which can
easily be downloaded fran the VERSAdos system to another ccmputer. During the
downloading to a target system, the S-records are converted to machine-readable
code. An apperrlix to the VERSAdos System Facilities Reference Manual, MM68KVSF,
describes Motorola S-records.

The task of the linker is to examine arrl gather information frcm the relocatable
object module (s) associated with irrleperrlently ccmpiled or assembled source code
module(s) arrl, based upon this information, to allocate memory to code and data,
to relocate according to this allocation, arrl to resolve all references to
symbols assumed to be global to one or more modules.

The linker requires two passes (the input is read twice) before it can create an
output module. During the first pass, the linker gathers information about
externally referenced arrl externally defined symbols, building a symbol table in
the process. It also keeps track of what sections are assigned -- their names,
lengths, and starting addresses. Finally, it determines what modules fran the
library file(s) are requirerl. During pass one, no attention is paid to the
actual code/data in the relocatable object modules that are input.

After pass one, if an S-record module or absolute load module is being
generated, the linker assigns each section to an absolute address in memory.
This address is where the section will be loaderl when the absolute load module
is executerl. After allocation of memory, it is known how much space is require:]
for the resulting load module or S-record module. At this time, the output file
is allocaterl.

If a relocatable object module is being generated, the linker simply ccmputes
the total size of each section in use; it opens the output file and outputs the
necessary information about each section arrl symbol to it. (Note: Each section
will always be starte:l on a word boundary.)

The linker then proceeds to pass two, where the relocatable object modules read
in pass one are re-read in the same order. However, at this time, the data/code
in each module is relocate:] arrl reference resolution is performed, and the
data/code is then written to the output file. If a relocatable object module is
being produced, however, the input is not relocaterl, but any references between
the input modules are resolverl.

At the ccmpletion of pass two, the linker outputs its final listings. The
listings produced deperrl on which options were specified in the invoking carmand
line.

7-1

7. 2 INVOKING THE LINKER

Vhen the linker is called fran VERSAdos, several variations in processing can be
specified as options on the carmarrl line. Alternatively, certain parameters and
options may be specifierl interactively by user conunarrls after the linker has
been started. The opt ions are described in paragraph 7. 2 .1 and the user
canmarns are described in paragraph 7.2.2.

7.2.1 Cannand Line

VERSAdos will bring the linker into memory and begin its execution in response
to a LINK camnarn. Parameter or option information provided with the LINK
canmarrl line is saved for use by the linker. The format for this cannarrl line
is as follows:

LINK [<input file>] [,[<output file>] [,<list file>]] [;<options>]

<input file> is the name of a disk file containing one or more relocatable
object modules. As many input files as desired may be specified on the ccmnand
line, separated by a slash. Extensions, if not given, default to RO. These
files are processed first before any files specified by INPUT canmarrls.

If input files are not specified, the A option is forced on to allow entry of
user camnarns. Files may then be specifierl by means of the INPUT camnand.

<output file> is the name of the disk file which will be used to contain the
output of the linker. This will be a file containing a load module, a
relocatable object module, or an S-record mcrlule (depending on what option(s)
are used) • If a load module or an S-record module is being created, this file
name need not be specified, in which case the linker will assume the name of the
first input file processed, but with an extension of LO or MX, respectively. If
a relocatable object mcrlule is being created, an output file name that is
different fran the input file name(s), must be specified. The default extension
for this file name is LO, RO, or MX, depending upon whether a load mcrlule,
relocatable object module, or S-record module is being producerl, respectively.

<listing file> is the name of the disk file, with default extension of LL, which
will be used to contain the listings produced by the linker.

If # or #PRn is specified instead of <list file>, the listings will be directerl
to the user's console or line printer, respectively.

If no list file or device is specified, but options requesting listings are, the
listing will be directed to the default output file/device (usually the user's
console).

<options> may be one or more of the following options.

7-2

OPTION

A

B

D

H

DEFAULT FUNCTION

-A Accept user canmarrls fran the canmarrl input device. If no
input files are specified in the cannarrl line, this option
is forced on.

-B In the listing produce:! by the assembler, each relocatable
section in a mcrlule starts at relative address zero.
However, each actual starting address (offset) is wherever
the linker locates a section within a manory segment.
Therefore, to form actual addresses for a section, this
offset must be added to each relative address in the
listing.

-D

-H

The B option forces each relocatable section fran each
module to start on a page ($100-byte) boundary. The offset
then appears as $xxxx00, which -- being a multiple of $100
- makes it easier to work with and remember. This option
does not affect an absolute section, which is always placoo
at the address indicated by its ORG directive.

If a START user carmand -- following after a B option -
defines a starting address that is not on a page boundary,
the particular section or sections will start at the first
page boundary after that address.

This option may be used only if a load module or an
S-record file is being created.

Create a symbolic debug file. It will have the same name
as the first file processed for input, with an extension of
DB.

Include in the listing file the info:rmation found in the
header record of each input object module.

I -I List the canmarrl line arrl all user canmarrls, if any, on the
listing file.

L=<libfile> -L

M -M

0 -0

Search the specifioo library files in the order listed if
any references are unresolved at the errl of pass 1.
Process any modules which contain definitions satisfying
any unresolved references. More than one <libfile> may be
specifioo, separaterl by a slash.

If this is not the last option in the carmarrl line, it must
be followe:I by a camna.

List a map of the resulting module on the listing file.

Create an absolute binary load module. If no output file
name was specified in the carmarrl line, the load module
will have the same name as the first file processed for
input, but with an LO extension. Note that this option arrl
the R arrl Q options are mutually exclusive.

7-3

OPTION DEFAULT FUNCTION

P P or -P Search default libraries at the errl of pass 1 if unresolved

Q -Q

R -R

s -S

external references. There is one default library file
supplied for each language supported by VERSAdos (e.g.,
O.&.FORTLIB.RO or O.&.PASCALIB.RO).

'!his option defaults to on (P) if a load module or an
S-record module is being created (O or Q option is on) •
Otherwise, it defaults to off (-P).

The L option, if specified, is executed first, in order to
load any user-written modules before default library
modules.

Create an S-record output module. If the output file name
is not s~ci fierl, its name defaults to that of the first
input file, plus the MX extension. When Q is specified,
the user comrnarrls TASK, MONITOR, PRIORITIES, OPTIONS,
ATTRIBurES, arrl CCMLINE may not be used, but the !DENT
comrnarrl may be used to specify identification to the SO
record. Note that this option and the O and R options are
mutually exclusive.

Create a relocatable object module. This option requests
that the relocatable object modules input be combined to
create another relocatable object module, rather than an
S-record module or an absolute load module. All references
between the modules input will be resolved. Only those
external references that cannot be resolved among the input
modules will be included in the output module. All the
external symbol definitions encountered in the input
modules will be included in the output module unless an
XDEF user carmand is specified. When the R option is used,
an output file name, different fran the input file name(s),
must be specified on the corrmand line; otherwise, an error
will result. Note that this option and the 0 and Q options
are mutually exclusive.

When the S option is used on the LINK cannand line,
segments without user-specified starting addresses are
allocated sequentially, on page boundaries, after the
segment having a user-s~cifierl starting address.
Allocation occurs in the order segments are defined in
SEGMENT comrnarrls.

For example, \\hen only one segment is given a
user-specified starting address, that segment will be
allocaterl at that address, arrl all remaining segments will
be allocated imnediately after it.

When more than one user-specified starting address is
given, segments without user-s~cifierl starting addresses
are allocated after the segment having the highest
user-s~cifierl starting address.

7-4

OPTION DEFAULT

u -u

FUNCTION

In the event that no user-specified starting addresses are
specifierl, the S option has no effect. The segments will
be allocated sequentially, starting at manory address O.

When -s is in effect, segments without user-specifierl
starting addresses are allocated sequentially in the order
in which they are encountererl by the linker, on a
"first-fit" basis.

'!his option may be userl only if a load module or an
S-record module is being created.

If any unresolverl references exist at the errl of pass 1,
list the references. Allow the user to specify additional
camnarrls to resolve the references. This option is forced
off if the ca:nnand input device is not the user console.

IMPORTANT: If this option is specifierl, the linker will
not proceerl to pass 2 until all unresolverl references are
resolverl.

W=n W=24 Valid <n> may be 24, 28, or 32. Specify the bit width of
the addressable manory space. Some target processors may
provide for a 28-bit or 32-bit memory space (e.g., the
M::68010 or the MC68020) • use of the W=28 or W=32 option
allows the user to create an S-record output module which
contains 28-bi t or 3 2-bi t addresses. Note that W=28 or
W=32 may be used only when the Q option is on.

X -X List the external definition directory on the listing file.

Z=n Z=35 Allocate a stack arrl heap segment of at least <n>K bytes
(lK = 1024) • This segment is used by the linker for
storage of the symbol table. If the linker aborts with a
Pascal runtime abort code of $1008, $1010, or $1011 (see
VERSAdos Messages Reference Manual or M68000 Family
Resident Pascal User's Manual) , it may be possible to
perform the link successfully by invoking it with a larger
z option.

7-5

7.2.2 user Commarrls

The linker will accept direct canmarrls when any of the following corrli tions
exist:

a. Input files were not specified on the carmarrl line.

b. The A option was specified on the ccmmarrl line.

c. External references were not resolved at the errl of pass 1, and the U
option was specified on the canmarrl line.

The linker pranpts for entry of a user canmarrl by displaying a right angle
bracket (>). After each carmarrl entry, the linker issues its pranpt until an
END, QUIT, or ABORT canmarrl is entererl. The linker then either continues
pranpting or returns control to VERSAdos, as appropriate.

The available corrmarrls are:

ABORT All open files are closerl arrl control is returned to
VERSAdos.

ATTR[IBurES] [<list>]
Used only when output file is a load module. Sets up task
attributes in resultant load mode. <list> may be zero,
any, or all of the following:
S = identifies task as a system task.
D = if task is aborterl, do a task dump.
F = assigns logical unit number 8 to task when loaded.
P = makes task position independent.

COML[INE] <name>[,<length>] I [(<segrnent>)]<address>[,<length>]
Specifies where in memory the canmarrl line used to invoke
the resultant user program will be stored. If linker
output will be· a relocatable object module, only <name>
(previously externally defined in input module) may be
specified. If linker output will be a load module, <name>
or <address> may be specified. COML may not be used if an
S-record module is being created.

DEF[INE] <symbol>,<valtE>

END

Places <symbol> name in external symbol definition table of
resultant relocatable object module. Ignored if the XDEF
carmand is also given.

Signals end of user ccmnand entry. During linkers first
p:iss, a search is made for unresolved external references.
If found and P option was specified, default libraries are
searched. If found arrl U option was specified, they are
displayed and the linker pranpts for further user entries.
If found arrl U option was not specified, the linker aborts.
If no unresolved references remain, pass 2 processing will
begin. The QUIT canmarrl also effects these results.

ENTRY <name> I [(<segment>)]<address>
Identifies entry point (beginning execution location) of
linker output module. Only <name> may be specified if
output will be relocatable object module. If output will
be load module or S-record module, <name> or <address> may
be specified.

7-6

!DENT <name>,<version>,<revision>[,<description>]
Identifies module name, version, arrl rev1s1on, arrl optionally
supplies a description, to a relocatable object module or
S-record mcrlule. If relocatable object module, this is the
name by which it will be referenced in any future linking.
If S-record module, the !DENT infonnation is put in the SO
record.

IN[Pur] (filename>[,<modnamel>[,<modname2>] •••]
Exterrls or replaces the input file name specification on the
canman:1 line. The term <modname> represents a module name
specified in assembler IDNT, Pascal PROGRAM or SUBPROGRAM, or
linker !DENT directives. More than one series of file name
arrl module name(s) can be specified on an IN directive line.

LIB[RARY] <libfile> [<libfile>] •••
Allows specifyin:J one or more library files, which will then
be searched in the order listed for unresolved external
references. LIB may be used in place of the L=option on the
carma rrl line.

LIST arrl <filename>j#j#PR[n]
LISTMIUIX The first fonn of the LIST canmarrl establishes whether, when

the second form of the carmand is userl, the listin:Js will be
output to a file, to the screen (#), or to a printer.
Default is to the screen. LIS'IM asks for an inmediate
listing of the load map; LISTU asks for an inmerliate list of
unresolverl references; and LISTX asks for an imnediate list
of external definitions.

MON[ITOR] <name>[,<session number>]
Used to specify name and session number for a monitor task
for the task being created (load modules only) •

OPT[IONS] [M] [P] Two directive options, specified in any order, are available
(load modules only) • M instructs the linker that a monitor
task is specifierl; P directs the linker to use the monitor of
the loading task (propagate the monitor).

PRIO[RITIES] <initial priority>,<limit priority>

QUIT

Establishes a task's initial priority arrl its limit priority
(load mcrlules only).

Errls input of interactive user canmarrls. Works exactly the
same as END.

SEG[MENT] <segname>[(<attributes>)]:<sec#>[,<sec#>] ••• [<start>[,<errl>]]
Allows defining a particular segment of the manory managanent
unit when the output or the linker is a load module or an
S-record module. Segment names may be up to four characters.
Attributes may be any of the followin:J: R=read only segment;
L=locally shareable segment; and G=globally shareable
segment. One section number or a ran:Je of section numbers
may be specified. Starting or starting and ending addresses
of the segment may be specifierl. Refer to the M68000 Family
Linkage Filitor User's Manual for a more detailerl explanation
of manory allocation.

7-7

START <section#>[,<section#>] ••• <start address>
Defines the starting address at which a particular section
or sections, or a rarge 1of sections of a segment will be
stored in memory. The linker's output must be a load
module or an S-record module.

TASK <name>[,<session number>]
When the output load mcrlule is to be executed as a "task",
this canmarrl is given to the linker to give the task a name
and, optionally, specify a session number. If TASK is not
used, the resulting load module's task name wil 1 be the
first four characters of its file name -- session number
defaults to zero.

XDEF <symbol>[,<symbol>] •••

7.3 LINKER OUTPUT

Specifies which externally defined symbols in the input
relocatable object module (s) that have already been
processerl will be externally defined in the relocatable
object module the linker is producing. If not used, all
externally defined symbols encounter Erl will be defined as
XDEF's in the new module.

The following paragraphs describe the listirgs produced by the linker, and also
the formats of the linker's output modules -- relocatable object modules, load
mooules, and S-record files. Additionally, the format of "debug files" created
optionally by the linker, which can then be accessed by VERSAdos' symbolic
debugger program, SYMbug, is described.

7.3.1 Listing Types

At the end of pass 1 when unresolvErl references still exist, at a fatal error,
at the end of pass 2, or inmediately in response to user listing carmands, the
linker will print listings. Sane of the listings at the end of pass 2, and at
fatal errors, occur only as a result of options specified in the LINK carmand
line. The listings are directe:l to the listing output file or device.

Fatal Errors

When the linker encounters a fatal error and cannot canplete the link, the
following information is generated: Linker version identification, options in
effect, unresolvErl external references, multiply defined symbols, error count,
arrl a statement that the output mooule has not been created. The carmand line
entere:l arrl any user canmands enterErl are also part of the listings if the I
option was specifiErl.

Inmediate Listings

The following information is immediately O\,ltput when the LIST directives are
given to the linker:

LISTM = Locrl map
LISTU = Unresolve:l external references
LISTX = Externally definErl symbols

7-8

End of Pass 1

If any unresolved references still exist after pass 1, they are listed.

End of Pass 2

The listing produced always includes: linker version identification, options in
effect, unresolved external references, multiply defined symbols, error count,
and a message as to whether a new output module has been created or a previous
one has been replaced by this module. Depending upon options specified, the
following may be part of the listing:

I = corrmand line and user directives
H = object module header information
M = load map

O,Q = length of segments and module, in bytes
X = externally defined symbols

7.3.2 Relocatable Object Module Format

Under the VERSAdos operating system, relocatable object modules are stored in
sequential files with fixed length records of 256 bytes.

Within each 256-byte record are stored a variable number of variable length
relocatable object records. Each one of these records consists of a one-byte
byte count followed by the actual data of the relocatable record. The byte
count indicates the number of data bytes that follow in that record. The byte
count may contain any value between 0 and 255, inclusive. A byte count of zero
indicates a relocatable object record with no data bytes (a record of this type
is ignored by the linkage editor). Thus, the length of one relocatable object
record is limited to a total of 256 bytes -- one byte for the byte count and a
maximum of 255 data bytes.

Each 256-byte fixed length record is totally filled before continuing on to the
next 256-byte record. Thus, it is possible for a variable length record to be
divided between two fixed lengths.

Any space not used in the last 256-byte fixed length record of a relocatable
object module file is filled with binary zeroes. This effectively fills out the
rest of the file with relocatable object records that have zero bytes of data
(which will be ignored by the linkage editor).

There are four basic types of relocatable object records. The type of a record
is indicated by the first byte of data (the byte inmediately after the byte
count) in the record. Record types may be: identification, external symbol
definition, object text, or end.

Each relocatable object module must contain an identification record as the
first record in the module. It is this record which indicates the beginning of
a relocatable object module. The identification record contains general
information about the reloctable object module, such as its name, version and
revision, what language processor was used to create the module, what source
files was used to create the module, the time and date the module was created,
and a description of the module.

7-9

Each external symbol definition record contains a variable number of external
symbol definitions (ESD 's) , each of which defines a relocatable sect ion, a
camnon section, an absolute section, an externally defined symbol, an externally
referenced symbol, or a coomand line address. The type of an ESD within an
external symbol symbol definition record is indicated by a one-byte value at the
beginning of the ESD.

Several ESD entries may be included in one ESD record.

In order that they may be easily referenced later in the relocatable object
module, each section (relocatable, canmon, arrl absolute) and each external
reference in a relocatable object module is assigned an index. This index is
called an external symbol definition index (ESDID).

ESD's which describe externally defined symbols arrl canmarrl line addresses are
not assigned indices. This is because these types of ESD's do not need to be
referred to later in the relocatable object module.

ESDID's are assigned anew for each relocatable object module processed.

Object text records define the actual code and data which is to be put in the
resulting load module (or relocatable object module). Each object text record
contains absolute code along with relocation data for canputing relocated code.
A bit map is employed to indicate what data is absolute code arrl what data is
relocation data.

An errl record indicates the errl of a relocatable object module arrl must be the
last record in every module. It also contains information about the starting
execution address of the module.

7.3.3 Loa::l Module Format

Under the VERSAdos operating system, load modules are stored in contiguous
files. Each load module consists of a header block followed by a variable
number of memory image blocks. Each block is 256 bytes long.

The first block in a load module is known as the Loader Information Block (LIB).
It is also sometimes called the header block. The LIB contains all the
necessary information about the load mcrlule except the actual data. The LIB
consists of three major sections: the header, the segment allocation
descriptors, and the memory image descriptors.

The header part of the LIB occupies the first 48 bytes of the LIB and contains
information about the task that is created men the load module is loaded into
memory by the VERSAdos loader.

Immediately following the header section of the LIB are the segment allocation
descriptors (SAD's). There are eight SAD's mere each one occupies 16 bytes.
This makes for a total of 128 bytes. The SAD's occupy the 49th through 176th
bytes in the LIB. Each SAD describes a memory management unit (MMU) segment
that is to be set up when the module is loaded. Currently, a task may have a
maximum of four ™CT segments allocated to it.

7-10

Inunediately after the segment allocation descriptors in the loader information
block are the memory image descriptors (MID's). There are 20 MID's in a LIB and
each MID occupies 4 bytes, which makes for a total of 80 bytes. The MID's
occupy the 177th through 256th bytes of the LIB. Each mercory image descriptor
defines a lcqical crldress space in memory into which data in the load module is
to be located.

For each memory image descriptor, there is a contiguous block of data in the
memory image blocks of the load module which corresporrls to the address space
defined by the MID. The data corresponding to the MID's appears in the load
module in the order in which the MID's appear.

Inunediately following the LIB in a load module are a variable number of
contiguous memory image blocks. Each memory image block contains 256 bytes of
code/data which is to b: loaded into memory, without alteration, when the task
is loaded. The number of memory image blocks in a load mcrlule depends upon the
number of memory image descriptors in the LIB arrl the address spaces defined by
them. Note that MID's define memory images in multiples of pages (256 bytes).
Therefore, all the data in any given memory image block belongs to one and only
one memory descriptor.

7.3.4 S-Record File Format

An S-record file consists of a sequence of specially formatted ASCII character
strings. There are several fields within these records in which groups of
characters must be interpreted as hexadecimal values of one to four bytes in
length. An S-record will be less than or equal to 70 bytes in length. Since
each S-record requires 10 to 14 bytes in fixed overhead for the type, byte
count, address arrl checksum fields, the variable length data field may be
allocateJ., at most, 60 bytes. This translates to 60 characters or 30 character
pairs or bytes of data per data record from the user viewpoint.

The order of S-records within a file is of no significance, and no particular
order may be assumed in the S-record file output by the linker.

S-record types output by the linker may be:

SO The type of record_ field is •SO• ($5330). The address field is unused
arrl will be f illeJ. with zeros ($30303030) • The header information
within the data field is supplied by the user by means of the
interactive user carmand !DENT.

Sl

S2

S3

The type of record field is 'Sl •
interpreteJ. as a two-byte address.
memory loadable data.

The type of record field is • S2'
interpreted as a three-byte address.
manory loadable data.

The type of record field is 'S3'
interpreteJ. as a four-byte address.
mercory loadable data.

7-11

($5331) • The address field is
The data field is canposed of

($5332). The address field is
The data field is canposed of

($5333) • The address field is
The data field is canposed of

S7 The type of record field is 'S7', 'S8', or 'S9' ($5337, $5338, or
S8 $5339), respectively. The address field contains the starting
S9 execution address specifierl by the user by means of the interactive

user cannand ENTRY. If no ENTRY cannand is specifierl, the first entry
point encmmtererl in the object module's input will be used. If no
starting address is encountererl, the beginning address of the first
segment will be used. If none of these methods is used to specify the
starting address, this field will be set to zeroes. The address field
of the 'S7', 'S8', am 'S9' records is four, three, am two bytes,
respectively. There is no data field.

7.3.5 Debug File Format

The format of debug files, used by the symbolic debugger SYMbug, is similar to
that of relocatable object module files in that they are stored in sequential
files with fixed leI)Jth records of 256 bytes. Records not completely filled
with information are padderl with $FF to fill 256 bytes.

A debug file contains information taken from three sources: the relocatable
object modules used as input to the linker, their associated .RS files (if they
exist), and the load module information block. This information is organizerl
into a .DB header record arrl one or more additional records per relocatable
object module included in the link. The module information is organized into a
module header record, zero or more module symbol records, arrl zero or more
module index records per module.

7-12

CHAPTER 8

PASCAL COMPILER

8.1 INTRODUCI'ION

Source programs written in Pascal for the VME/10 are compiled with the M68000
Family Pascal Compiler and then linked with applicable library routines by the
M68000 Family Linkage F.ditor to create an executable load module. They may be
linked, also, with other Pascal subprograms and assembly language subroutines.

The Pascal compiler consists of three separate programs which are run
sequentially. The first and third programs are required; the second program,
which is optional, is an optimizer which reduces code size and increases its
efficiency, thereby increasing the speed at which the finished Pascal program
executes. The three programs are named PASCAL, POPTIM, and PASCAL2, and are
also referred to respectively as Phase 1, Phase 1.5 (or optimizer), and Phase 2.
Each program processes its input file in a single pass and generates the input
file for the next program.

8.2 SOURCE PRCGRAMS

8.2.1 Pascal Source Programs

Various options can be specified from within the Pascal program that affect the
compiler 's source, 1 is ting, and object output, control runtime checks, change
stack and heap size, and call for fast floating point arithmetic.

These options are specified in the source file as a Pascal corrment, with an
additional symbol which informs the compiler that the comnent is an "option
corrment". Two forms may be used:

{$<option>} or (*$<option>*)

Options are specified as alphabetic characters, followed irrmediately by a plus,
minus, or equal sign. More than one option can be specified within the same
conment, separated by corrmas but not spaces. The option conments generally may
be specified anywhere a cornnent is normally allowed. ·

Many of the options may alternatively be specified on the Pascal cornnand lines
(paragraph 8.3). The option conment characters and their meanings are:

OPTION DEFAULT

A=n A=4

C- c+

FUNCTION

Specify the number of bytes used for integer
arithmetic.

Generate an input file for the optimizer or Phase 2.
Eliminating this file reduces the time necessary to
generate the listing and any errors.

8-1

OPTION DEFAULT

D+ D-

E none

F=<filename>

G+ G-

H=n H=4096

I- I+

K+ K-

L- L+

o+ 0-

P+ P-

Q+ Q-

R+ R-

S=n variable

w+ w-

FUNCTION

This combines the K and R options to (1) generate
code to perform runtime checks which verify that
array indices and subrange type variables are in
range, and (2) include executable unit numbers in the
executable object code.

Page eject for Phase 1 listings.

Include the file specified by <f ilenarne> in the
source. Immediately after the line which contains
this corrment option, Phase 1 will start obtaining its
source input from the file indicated by <filename>
(which must conform to the rules for specifying a
file name for the operating system). When the end of
the "include file" is encountered, Phase 1 will
return to getting its source from the original source
file at the point it left off.

Keep object files output by the compiler or optimizer
which contain errors (normally deleted).

Specify the size of the program heap in bytes.

Pass any external files specified on the command line
to the program at start-up.

Include executable unit numbers in the executable
object code. The executable unit numbers relate to
statements and are found on the source listing.

Generate a source listing in the Phase 1 listing
file, on the printer, or on the CRT.

Enter source statements as corrments in the Phase 2
input.

Include executable unit numbers in the executable
object code, but only at function/procedure entry and
exit points.

Use fast floating point.

Generate code to perform runtime checks which verify
that array indices and subrange type variables are
in range.

The value specified by n will be the default
stack/heap size in bytes used by the program. If
specified, n must be at least 768.

Generate a warning during Phase 1 processing if non
standard Pascal features are used. Standard Pascal
comprises only the language features proposed by
Jensen and Wirth.

8-2

In Motorola Pascal, program's code size and data size are limited only by the
amount of memory in the user's system. The size of a component of a file type
is limited to 32767 bytes due to the nature of the Pascal input/output
utilities.

Motorola extended data types include a dynamic string type which may include
character strings up to 32764 characters long. Extended floating point types
include double and extended precision reals in addition to the normal precision
reals.

String constants are limited to a maximum of 132 characters. Strings are
limited to 32766 bytes (32764 bytes of data and a two-byte current length word).
Sets are fixed at eight bytes.

The subranges of case statement index expressions and array index expressions
may be any subrange which can be expressed using four-byte integers.

8.2.2 Pascal Subprograms

Level one procedure and function declarations may have their declaration and
statement parts replaced by the Pascal directive forward, and then have their
specific program parts treated as external and compiled separately within a
subprogram. The subprograms· are linked to the main program when the load module
is created by the linker.

The form of a subprogram is similar to the form of a Pascal program. It
consists of a subprogram heading and declaration part. However, it does not
contain a statement part.

The subprogram heading contains, in the following order: (1) the symbol
subprogram, (2) a subprogram name identifier, and (3) a subprogram parameter
list. The subprogram parameters should be the same as the program parameters in
type, number, and order.

The declaration part of a subprogram consists of the declaration of variables,
procedures, and functions, and the definition of constants and types. In order
to preserve recognition of global identifiers, all variables in the subprogram
variable declaration part must agree in type, number, and order with those
appearing in the program's variable declaration part.

Constants and types declared in the Pascal program may be duplicated in a
subprogram.

Among the procedures and functions declared in the subprograms are those which
were declared as external (forward) in the Pascal program. These externally
referenced procedures and functions must be declared at level one.

The final end statement of the final procedure or function declared in the
subprogram is followed by a period (.) , which terminates the subprogram.

8-...3

8.2.3 Assembly Language Subroutines

An assembly language routine may be called externally.by a Pascal program using
normal Pascal argument passing. Such a routine may perform a function not
available in Pascal or a function to be used repetitively in a real-time
environment, a shorter and faster routine than might be possible in Pascal.

There are two requirements which must be satisfied in order to include an
assembly language subroutine in a Pascal program. The first is to declare the
external assembly language routine in the Pascal program. This is done by
declaring a level 1 procedure or function, contained in the main program or a
subprogram, using the forward directive. These declarations should appear
before the first non-external procedure heading.

For example:

FUNCTION SUMTHREE(I,J,K:INTEX3ER) :INTEX3ER; FORWARD;

The external assembly language subroutine may then be called just as any Pascal
procedure or function. Calling an assembly language routine is identical in
format -- and its runtime requirements are identical in system usage -- to a
regular function or procedure call in Pascal. The call might be:

BEGIN
A:=SUMTHREE(3,5,7);

The second requirement concerns the file which contains the assembly language
routine. This file must have an entry point, which has been declared external
with an XDEF, with the same name (truncated to 8 characters) as the procedure or
function in the Pascal program. The assembler must be informed that the
subroutine is to be included in section 9. A 'SECTION 9' directive at the
beginning of the assembly language subroutine file accomplishes this.

For example:

SUMTHREE

XDEF
SECTION
EQU

SUMTHREE
9

*
Control may be returned to the Pascal program by means of either a return from
subroutine instruction or a jump indirect through an address register which
contains the return address. Refer to the M68000-family Resident Pascal User's
Manual for stack requirements of the assembly language subroutine.

After it is assembled, an assembly language routine is linked with a Pascal
program and appropriate libraries by means of the linkage editor.

8.2.4 Runtime Libraries

When Pascal programs are linked, they are automatically linked also with the
default library of runtime routines, PASCALIB.RO. Libraries of routines written
by the user can be created by using the LIB VERSAdos utility, and then linked
with the Pascal programs. The name of the user library must be specified to the
linker, either on the LINK comnand line or with the interactive LIB comnand.

Other Pascal libraries are furnished for use with other Motorola computers, and
for use when only the VERSAdos kernel, RMS68K, is used. These are described in
the M68000-Family Resident Pascal User's Manual.

8-4

8.3 INVOKIOO THE COMPILER

Following are the canmarrl lines used to invoke the three Pascal compiler
programs, PASCAL (Phase 1), POPTIM (Phase 1.5), and PASCAL2 (Phase 2), and brief
descriptions of their operation. The output of Phase 1 may be input directly to
Phase 2, or it may be input to the optimizer, Phase 1.5. Phase 2 accepts the
output of either Phase 1 or 1.5, arrl produces a relocatable module, ready to be
linked.

8.3.l Phase 1 - PASCAL

Phase 1 processes a Pascal source program, checking the syntax of each statement
it encounters. If any errors are detected, they are brought to the attention of
the user. These errors should be eliminated and Phase 1 should again be invoked
to compile the modified program. When no errors are reported, Phase 1
processing is complete. The file output by Phase 1 is an intermediate file. If
errors are detected, this file is automatically deleted. A listing of the file
can optionally be requesterl; any errors found are flagged in the listing.

The camnarrl line to invoke the PASCAL Phase 1 program is:

PASCAL <source file [,[<output file>] [,<list file>] [;<options>]

More than one source file may be specified, separated by a slash (/) character.
If the output and/or list files are not specified, appropriate default filenames
will be createrl, based upon the first input filename. The listing may also be
directed to the CRT screen or a printer by specifying # or #PR, respectively,
instead of a file name. Options are similar to the source file option comments.
Except for the Q option, option comments override corrmand line options. Conmand
line options are:

OPTION DEFAULT

c c

D -D

E -E

G -G

I I

K -K

L L

0 -0

p -P

FUNCTION

Generate an intermediate code file.

Generate runtime range checking code;
executable unit nurribers in object code.

include

Disable progress counter updating during compilation.

Retain the intermediate code file in the event an error
is detecterl.

Pass external files from the canmarrl line.

Include executable unit numbers in object code.

Generate a Phase 1 listing.

Include source statements in Phase 2 input.

Include executable unit numbers in object code at
function/procedure entry and exit points.

8-5

OPTION DEFAULT

Q -Q

R -R

w -w

Z=n Z=40

FUNCTION

Use fast floating point. When using separate
canpilation, the same state of this option (Q or -Q)
must be used with each compilation.

Generate runtime range checking code.

Warn if non-starrlard Pascal features are used.

Set stack/heap (symbol table) size used by this
canpiler phase to nK. Value of n must be at least 40
(the default value, 40K bytes).

8.3.2 Phase 1.5 -- POPTIM

When an error-free intermediate file is produced by Phase 1, it can be input to
POPTIM, the optimizer, at the user's option, or skipped.

POPTIM provides machine-irrleperrlent optimization of the pseudo-code produced by
the compiler by reducing the number of pseudo-codes and providing more
information to the machine-deperrlent code generator about the program in general
and about variable usage.

The output file produced by Phase 1.5 becanes, in turn, the input file for
Phase 2. However, if the optimizer encounters errors, this file is
automatically deleted.

The optimizer is called from VERSAdos as follows:

POPTIM <intermediate file>[,<output file>] [;<options>]

Options may be:

OPTION

E

G

O=n

Z=n

DEFAULT FUNCTION

-E Disable progress counter updating during optimization.

-G Retain the optimized intermediate code file in the event an
error is detected.

O=l Perform levels of optimization up to n. The default level
is 1. (Levels 2 and 3 are not yet implemented.)

Z=32 Set stack/heap size used by this compiler phase to nK.
Value of n must be at least 32.

8-6

8.3.3 Phase 2 -- PASCAL2

Phase 2 of the canpiler processes the intermediate code produced by Phase 1 or
the optimized intermediate code produced by Phase 1.5, and generates an object
module that can be link edited to create a load module. It then generates, in
the form of a relocatable object rrodule, the machine code equivalent of the
corresponding group of intermediate instructions. One object module is
generated for the entire input file.

Phase 2 is called as follows:

PASCAL2 <intermediate file>[,[<object file>] [,<list file>]] [;;<options>]

Options may be:

OPTION

E

G

L

J

Z=n

DEFAULT FUNCTION

-E Disable progress counter updating during code generation.

-G Retain the relocatable object output file in the event an
error is detectErl.

-L

J

Z=48

This option enables generation of the listing file
specifierl by <list file>.

This option causes a JSR to an F-line trap simulator to be
generaterl before each floating point instruction generated
when the standard version of floating point is being used
(-Q). This is the default condition. Entering -J as a
canmand line option suppresses generation of the JSR' s to
the F-line trap simulator. If -J is used, the user must
supply his own floating point initialization routine,
F-line trap han:Her, arrl memory access routine at linkage
edit time. When using separate compilation, the same state
of this option, J or -J, must be used with each
compilation.

Set stack/heap size used by this compiler phase to nK.
Value of n must be at least 48.

8-7

8.4 COMPILER OUTPUT

The final output file of Phase 2 of the compiler is a relocatable object module
file that is compatible with the M68000 Family Linkage :Editor. Also produced at
this time, if requested with the L option on the PASCAL2 comnand line, is a
"pseudo assembly" listing which facilitates later debugging.

Following is a pseudo assembly listing of lines 55 through 66 of a Pascal
program. For comparison, the same lines from the Phase 1 listing of the program
are shown below it.

Phase 2 Output (Pseudo Assembly Listing)

00000092-0094 387C 0001 BlCA
00000098-009A 3B60 BlCE BlC2
0000009E-OOAO 60**
000000AO-OOA4

000000A0-00A4 4860 FFFO
000000A4-00A8 4EAB ****
OOOOOOAB-OOAC 0000
OOOOOOAA-OOAE
00000088-00BC 4267
OOOOOOBA-OOBE 4EAB ****
OOOOOOBE-OOC2 7203
OOOOOOCO-OOC4 3020 BlCA

OOOOOOC4-00C8 4E'.AB ****
OOOOOOC8-00CC 2F08
OOOOOOCA-OOCE 2F3C 00023A20
00000000-0004 4267
00000002-0006 4E'.AB ****

00000006-00I:Y\ 2F08
00000008-00DC 4E93
OOOOOOI:Y\-OOIE ********

OOOOOODE-OOE2 3020 BlCA
OOOOOOE2-00E6 ES40
OOOOOOE4-00E8 41ED BlCC
OOOOOOE8-00EX: 43FO 0000
OOOOOOEC-OOFO 41ED FFF8

OOOOOOFO-OOF4 4EAB ****
OOOOOOF4-00F8 4EAB ****
OOOOOOF8-00FC S26D BlCA
OOOOOOFC-0100 69**
OOOOOOFE-0104
OOOOOOFE-0104 3020 BlC2
00000102-0108 B06D BlCA
00000106-0lOC 6C**
00000108-0110

Phase 1 Output

S5
S6
57
58
59
60
61
62
63
64
65
66

O)C-
0)-
0)-
0)-

8 0)-
0)0-

9 0)-
10 0)-
11 0)-

0)-D
0)-
0)-

BEGIN

*
*
*
*
*

LS
*
*

*

*
*

L6

L7
*
*

BEGIN

{read in the nlJ!lbers, one by one}

FCR i := 1 TO array size IX>
MOVE tl,-20022(AS) -
MOVE -20018 (AS) ,-20030 (AS)
BRA L6
EOJ *

PFA
JSR
oc.w
OC.B
CIR
JSR
MOVEQ
MOVE

XREF
JSR
MOVE.L
MOVE.L
CIR
JSR

MOVE.L
JSR
DC.L

MOVE
ASL
IEA
I.FA
IEA
XREF
JSR
JSR
AlDQ
BVS
EOJ
MOVE
CMP
BGE
EOJ

BEGIN
write (output,'Input m.1nber ',i:3,': ');

-l6(AS)
.PLDCS-.PLJSR(A3)
13
'Input mmber '
-(A7)
• AtlRS-. Pl.JSR (A3)
t3,Dl
-20022(AS),DO
8: .FWRI
• PWRI-. PLJSR (A3)
AD,-(A7)
tl4S9S2,-(A7)
-(A7)
• EWRS-. PLJSR (A3)

force (output);
AO,-(A7)
(A3)
USERl-*

readln {input,nllllber array[i))
DID; {F~} -

-20022{AS),00
t2,DO
-20020{AS),AD
O(A0,00) ,Al
-8 {AS) ,AD
8:.PRnJ
.PRW'-.PLJSR {A3)
• PRI8-• PLJSR (A3)
tl,-20022 (AS)
L7
*
-20030{AS) ,DO
-20022(AS),DO
LS
*

{now sort the nllllbers - use a bubble sort}

{read in the nllllbers, one by one}

FOR i := 1 TO array size IX>
BJ:X>IN -

write (output,'Input nllllber ',i:3,': ');
force (output);
readln (input,nllllber_array[i])

END; {FCR}

{now sort the nl.lllbers - use a bubble sort}

8-8

55
56
57
58
59

60
61

62

63
64

65
66

8.4.1 Relocatable Object Modules

TJ)e relocatable module file contains information which, when extracted by the
linker, makes possible the combination of separate programs and the automatic
inclusion of necessary system routines. The location of every level 1 procedure
is recorded in the object file in an external definition record. A list of all
modules referenced by the program, either explicitly requested by the user or
determined by Phase 2 to be needed, is included in an external reference record.
An indication of the memory occupied by the program is provided, along with a
request for space to be used by the Pascal program for data storage in a
stack/heap.

The code itself is also stored in the object module. Phase 2 creates code that
is position independent, as well as relocatable. The linking process will
preserve the position-independence so that Pascal programs may theoretically be
loaded into any memory address space. A special feature of this code is that it
includes a pseudo long relative branch facility that enables any instruction to
be reached with six bytes of code. Routines obtained from the runtime library
may always be reached with a four-byte instruction.

8.4.2 Pseudo Assembly Listing Description

If a Pascal program does not perform as expected, debugging may be necessary.
The most convenient way to perform this activity is by including facilities in
the program to inform the user of its progress, reporting the values of critical
variables at appropriate times. Occasionally it might be desirable to conduct
debugging of individual machine instructions rather than source statements. The
pseudo assembly listing output at the end of Phase 2 processing greatly
facilitates this activity.

This listing contains the following information:

a. Pascal source statements are present if the 0 option was selected when
Phase 1 processing was requested. To the right of the source statement
appears a statement number that matches the statement number appearing at
the beginning of each line of the Phase 1 listing. This makes it easy to
find a specific source statement in the pseudo assembly listing.

b. Between source statements appears a representation of the code that was
stored in the object file. This appears in a similar format to that
which would be produced by an assembler. Machine code for instructions
which cannot be shown in final form (instructions containing forward
references and instructions requiring linkage for completion) is
indicated by asterisks (**).

c. An assembly language instruction equivalent to the machine code
representation appears on the right side of the pseudo assembly listing.
This code may serve as a basis for users desiring to modify code
generated by Phase 2, but will not, in general, assemble correctly.

d. In certain situations, addresses have not been determined at the time the
listing is generated. In the Phase 2 listing, unknown addresses jurrped
to or branched to are indicated by asterisks. Instruction addresses
which are uncertain at this time are shown as ranges in which they will
fall -- e.g., 00000054-00SC. This uncertainty results from forward
references to labels and Phase 2's attempt to reach the label using a
short branch. Phase 2 does not know whether a sho.rt branch will be
adequate until sometime after the pseudo assembly listing has been
output.

8-9

8.5 LINKAGE

The relocatable object module produced by Phase 2 of the Pascal compiler must
then be processed by the M68000 Family Linkage Editor. The output of the linker
may be either an executable Pascal program (a load module), a file that can be
downloaded to a target system for execution (an S-record module), or another
relocatable module, to be linked with other relocatable object modules (Pascal
or assembly) •

If procedures and functions in a Pascal program are written in assembly
languages, these subroutines must be linked with the program.

The linker also links the runtime library, PASCALIB, with the program so that
input/output routines called by the program can be accessed.

Pascal supports separate compilations so that the user may group one or more
procedures or functions into a subprogram. The linker can combine as many
subprograms as desired, and can resolve references between the program and
subprogram or between two subprograms. Modules using standard floating point
may not be linked with modules using fast floating point.

According to the linker's default processing, memory will be allocated in two
segments. Segment SEGl, the program segment, will contain the runtime routines,
the Pascal code section, and assembly language routines. Segment SEG2, the data
segment, will contain the Runtime Maintenance Area (RMA), Pascal stack/heap, and
the Pascal exception vectors.

8.6 LOAD MODULES

When the Pascal program has been finally linked with all necessary subprogram
modules, assembly language modules, and libraries into an executable load
module, it may then be run by typing its name to VERSAdos.

Filename assignments can be made on the comnand line when entering the program
name, and the Z=n option can be specified on the conmand line to extend the
stack/heap size.

The following comnand line to VERSAdos associates filenames with file variable
specifications on a program statement in a Pascal program named COMPUTE, and
enlarges the stack/heap size to 32K bytes:

= Ca1PUTE MATH.SA,TRIG.SA,ARITH.LS;Z=32

where the program statement was:

program compute(input,output,source,object,listing)

The input and output file specifications required by Pascal ("I=" and "0=") were
omitted on the co:rru.nand line, as they default to the user's terminal (I=#, 0=#).

8-10

8.7 EXAMPLES

Following is an example of creating an absolute load module using the Pascal
compiler and the linkage editor.

a. At the VERSAdos prompt (=), invoke the CRT text editor by entering the
following:

=E PROGNAME

PROGNAME represents the name of the source file being created; .SA is the
default extension, and is usually used for ASCII source files.

After the user program has been entered, press the Fl function key to
return the erlitor prompt (>) to the lower left portion of the screen, arrl
exit the editor as follows:

b. Compile the program into a relocatable object file and link the file with
other files called from the Pascal library to create an absolute load
module. Each Pascal phase (1, optional 1.5, and 2) and the linkage
erlitor can be called separately, or the user can create a chain file that
will automatically execute the two (or three) phases of Pascal and the
linking function to create the absolute load module, as in the following
example.

First, call the editor and create a new file:

=E CHAINPAS.CF

Then enter the following carmand lines into the edit file. The first
three lines call Phase 1, Phase 2, arrl the linker, in that order. The
Pascal library, PA~ALIB, is linked by default.

>=PASCAL \1
>=PASCAL2 \1
>=LINK \1
>=END

NOTE

The VERSAdos prompt (=} is requirerl on a chain
file carmarrl line which calls a utility.

Exit the erlitor by pressing the Fl key and typing:

>QUIT

c. The chain file can be called for compilation and linking by entering the
following:

=CHAINPAS.CF PROGNAME

Note that in this example, the program name is specified on the CHAIN
ccmmarrl line, rather than within the chain file.

d. When the execution of Pascal, Phase 1, is canpleted, the number of errors
is indicated.

8-11

e. The following events occur during execution of the chain file: Phase 1
creates an intermediate code file, PROGNAME.PC, and a listing file,
PROGNAME.PL; Phase 2 creates the relocatable object module, PR(X;NAME.RO;
the linker creates the absolute load module, PR<X;NAME.LO.

The user then has the option of either listing the program on the screen
or printing hard copy to investigate and correct errors.

1. To list the prQJram on the screen, enter:

=LIST PROGNAME.PL

The entire prQJram will scroll on the screen (line by line) and the
ccmpilation errors will be indicated as they occurred. To stop the
scrolling in order to investigate an error, press crRL-W (hold the
crRL key, then press the W key). To continue scrolling, press any
key.

2. To list the prQJram on the printer, enter:

=COPY PROGNAME.PL,#PR

The entire pr<:XJram will be printed, irrlicating the total number of
errors and also where each error appeared in the program listing.

f. Use the text editor to correct the errors, then cal 1 the chain file
again. When no compilation errors exist, a valid absolute load module
will automatically be created, provided the linkage editor encounters no
problems.

g. The absolute load module is now ready to be examined or modified using
either TENbug or DEbug. To use DEbug, refer to the SYMbug/A and DEbug
Monitors Reference Manual for the procedure to load an absolute load
module into memory. To use TENbug, refer to the BO corrunand in the TENbug
Debugging Package User's Manual for the procedure to load an absolute
load module into memory.

h. A ccmpletely debugged load module can be executed by entering only its
name to the VERSAdos pra:npt (=):

=PROGNAME

8-12

CHAPI'ER 9

DEBUG CAPABILITY

9.1 INTRODUCTION

A load mooule often requires debuggirXJ to overcome deficiencies which come to
light when the program runs in an actual application. Supplie:i with VERSAdos
are two debug monitor prC)Jrams -- DEbug arrl SYMbug. In addition to these, a
firmware-resident debug monitor program, TENbug, is supplied in the R<l1 of the
VME/10 System.

9.2 TENbug

TENbug is the resident firmware monitor arrl debugging package for the VME/10.
The 16K-byte firmware (store:i in two 8Kx8 ROM or EPROM devices) provides a
self-contained programming and operating environnent. TENbug may be entered
directly at system p:>wer-up or fran VERSAdos. These two methods are given in
Chapter 2.

TENbug interacts with the user through predefined carmarrls that are entererl via
the terminal. The comrnarrls fall into five general categories:

a. Corranarrls which allow the display or mooification of me:nory.

b. Corranarrls which allow the display or modification of the various internal
registers of the MC68010.

c. Ccmnarrls which allow execution of a program under various levels of
control.

d. Corranarrls which control access to the various input/output resources on
the board.

e. Ccmnarrls which allow selection of video graphics resolution.

An additional function called the TRAP #15 I/O handler allows the user program
to utilize various routines within TENbug.

For complete information on TENbug, refer to the TENbug Debugging Package User's
Manual, M68KTENBG.

9.2.1 Coounarrl Set

TENbug's debugging functions are performerl in resp:>nse to the entering of simple
"primitive" ca:ranarrls, with or without associated parameters and options.
Several of the canrnarrls are set arrl reset pairs -- the reset function is
specifierl by preceding the canmarrl with NO. The entry of a cannand line is
always followErl by pressing the carriage return key (<--'). TENbug checks each
entry for validity, returning an error message if incorrect, or processing the
canrnarrl arrl displaying an interpretation of the parameter values if correctly
entered.

9-1

Table 9-1 lists the primitive ccmmarrls supporterl.

TABLE 9-1. TENbug Commarrls by ~

<n1MAND
MNEMONIC DESCRIPTION

MD Memory display

MM Memory modify

.AO-.A7 Display/set address register

.DO-.D7 Display/set data register

.DFC Display/set destination function code

.PC Display/set program counter

.SFC Display/set source function code

.SR Display/set status register

.SSP Display/set supervisor stack pointer

.USP Display/set user stack pointer

.VBR Display/set vector base register

DF Display formatterl registers

.RO-.R6 Display/set relative offset register

OF Display off sets

BR Breakpoint set

NOBR Remove breakpoint

Execute program

Go until breakpoint

GD Go direct execute program

TR Trace

TT Trace to tanporary breakpoint

PA Printer attach

NOPA Detach printer

BH Bootstrap halt

BO Bootstrap operating syste:n

VM Video map

9-2

9.2.2 TENbug Examples

The following example assunes that the system has been initialized arrl the
furnished software has been backed up, as directed in Chapter 2.

a. Ensure that the KYBD LOCK key switch on the VME/10 chassis is in the
unlocked (horizontal) position.

b. Press the on/off switch to the "l" position arrl wait for the hard disk to
spin up.

c. Press arrl release the RESET pushbutton on the VME/10 chassis. TENbug
will take control arrl display its pranpt (if system includes an MVME400,
press any key on the keyboard after pressing RESET, to get the full
pranpt) :

TENbug x.y >

d. Display arrl alter the contents of MC68010 registers by typing in the
corrmarrls shown underscored (underscore is not to be typed), following
each entry with a carriage return. (The initial register values
displayerl will differ fran these.)

TENbug x.y > DF (Display formatted registers)
PC=OOF02C9E SR=2704=.S7 •• Z •• USP=FFFFFFFF SSP=000007C4 VBR=OOOOOOOO SFC=2 DFC=2
00-7 0030003b 00000804 00000000 00000000 4D505520 00000020 00000000 00000000
A0-7 OOF1A031 OOF0133C OOF008AA 00000458 0000049A 00000536 00000536 000007C4

PC=F02C9E

TENbug x.y > .Rl 3000 (Set register Rl offset to 3000)

TENbug x.y > OF (Display offset registers)
R0-7 oooooooo-00003000 00000000 00000000 00000000 0000000 00000000 00000000

TENbug x.y > .PC 40000 (Change value in program counter)

TENbug x.y > .SSP COO (Set su~rvi sor stack pointer)

TENbug x.y > DF (Display forrnatterl registers)
PC=00040000 SR=2704=.S7 •• Z •• USP=FFFFFFFF SSP=OOOOOCOO VBR=OOOOOOOO SFC=2 DFC=2
DG-7 00300030 00000804 00000000 00000000 4D505520 00000020 00000000 00000000
A0-7 OOF1A031 OOF0133C OOF008AA 00000458 0000049A 00000536 00000536 OOOOOCOO

PC=03DOOO+Rl

TENbug x.y >

e. Return to VERSAdos with the boot commarrl :

TENbug x.y > BO
=

9-3

9.3 DEbug

DEbug is a VERSAdos-resident monitor prCXJrarn, used to debug other programs whose
source code is written in assembly language for execution on the MC68010. The
language processor arrl the linkage editor suppy information to the DEbug
monitor.

DEbug allows the user to examine, insert, and modify program elements such as
instructions, numeric values, arrl coded data.

Execution can be controlled by DEbug, via the insertion of breakpoints into a
program.

DEbug uses an extensive set of primitive camnands for manipulation and
examination of foreground tasks. A set of task-level canrnarrls may be used on
foregrourrl or background tasks and are applicable to both the single and
multitasking modes of oi;eration.

9.3.1 Canmand Line

The DEbug program is invokErl as follows:

= DEBUG [<program name>]

Specifying the name of the load module to be debugged enters single task mode.
The first four letters of the prCXJrarn name are then included in the DEbug
pranpt. Typing DEbug without a program name enters multitask mode. The maximum
number of tasks to be debuggerl must then be specified, arrl either the LOAD or
ATTA carmand must be usErl before any of DEbug's primitive carmarrls can be used.

9-4

9.3.2 Primitive Commarrls

Table 9-2 lists DEbug's primitive canmarrls.

TABLE 9-2 DEbug Primitive canmarrls

COMMAND SYNTAX

AS[<address>] [<value>l
[NO]BR[<address>] •••

DE
DF
G [O]
HE [LP]

DESCRIPTION

Address stop
Set/reset breakpoint
Default to attach/detach printer
Display format
Execute target task
Display canmarrls

MD <address>
MS <address>

[<count>] Memory display
<byte l> [<byte 2> <byte 3>] •••

OF [<register) <value>]
Q[UIT]
T [R] [<count>]
ATTA <task name>[m<tenninal>I#*]
DETA [<task name>]
EVEN [<task name>] ,<exception #>
LOAD <file name>[<canmarrl line>]
MASK [<task name>] ,<exception #>
STAR [<task name>] !ALL]
STAT [<task name>] ,<status>]
STOP [<task name>] !ALL]
TASK <task name>[,<note level>]
TER1 <task name>
WAIT
.AO-.A7
.DO-.D7
.MC

.OP

.PC

.SR

.ST

.VA

.VL

.VM

.XM

BREAK
CTRL-S
CTRL-H
CTRL-W
CTRL-X
CR (Carriage Return)

Memory set
Off set
Quit (go to VERSJ.\dos)
Trace target task
Attach task
Detach task
Event definition
Load (task)
Mask exception
Start task(s)
Status definition
Stop task (s)
Task notify
Terminate task
Wait task
Display/change address register
Display/change data register
Display/change maximum count

(software register)
Display/change execution options

(software register)
Display/change program counter
Display/change status register
Display/change task state
Display/change value

(software register)
Display/change value location

(software register)
Display/change value mask

(software register)
Display/change execptionmask

Abort carmarrl
Redisplay line
Delete character
Susperrl output (See NOTE)
Cancel ccmnarrl line
Serrl line for execution

NOTE: After crRL-W has been used, the entry of any character
will cause the output display to continue.

9-5

9.4 SYMbug/A

SYMbug/A, referrErl to here as SYMbug, is a VERSAdos-resident multitasking
utility that allows a user to debug application program(s) in terms close to the
actual program itself. That is, unlike other debuggers that allow only absolute
manory accesses, SY.M'.bug generates information about the program that is
available to the user during debug. Information is kept concerning assembler
symbol names, module names, and section numbers. SYMbug will autanatically
evaluate this type of symbolic information to absolute addresses for user. It
is not necessary to reference a current link map to debug a program. Instead,
knowledge of module names arrl symbols is sufficient to calculate relative
offsets arrl debug the program by reference to an assembler listing. Without the
overhead of user responsible address resolution the task of debugging a program
becomes faster arrl easier with a rerluction in the chance for error.

To utilize the symbolic referencing capability of SY.M'.bug, a relocatable symbol
file (RS extension) is created during assembly by specifying the D option. The
RS file is then changed into a debug file (DB extension) during linking by
specifying the D option. This debug file is in optimized form to increase the
symbolic referencing speerl of SY.M'.bug.

At present, the Pascal canpiler does not provide the option of creating a
relocatable symbol (RS extension) file for input to the linkage editor.
Therefore, the symbolic referencing capabilities of SYMbug cannot be used to
access a point in a compiled module represented by a label in the source file.
However, provided the D option was set during assembly arrl linkage, symbolic
referencing can be used to access symbolic locations within assanbled modules of
a load module. Access to re la ti ve off sets within canpiled modules is also
provided.

SYMbug 's functional kernel is DEbug. SYMbug interfaces with the VERSAdos
operating system to provide canplete debug control to the user. User interface
is via a powerful set of "primitive" canmarrls. These commarrls allow the user
to:

a. Examine/modify registers arrl absolute and program relative manory
addresses specifiErl in a number of ways:

• Directly
• In an expression
• As an effective address
• Symbolically

(also allows control of display/modification formats)

b. Control program execution by allowing the user to:

• Insert breakpoints into the program
• Trace program execution
• Monitor data changes

c. Direct multitasking functions by allowing the user to:

• Modify task scheduling/information harXiling
• Modify task attributes/status

9-6

d. Expand debugger functions through user generation of:

• User "macros" built of a series of primitive ca:nmarrls
• In line carmand/camnand block repeat functions
• Default input/output format modifications

e. Access information outside of SYMbug so that the user may save and
restore previously defined information:

• Save arrl load program(s) to and fran disk
• Save arrl load symbolic information (macro names/local symbols) to

and fran disk
• Generate debug session echo to printer

SYMbug error messages are informative and precise. The SYMbug HELP carmand can
be used to display a brief syntax summary for all canmarrls.

9.4.1 Symbol Table Creation

In order to use SYMbug as a symbolic debugger, a symbol table must have been
created using the assembler's arrl the linker's D options when assembling and
linking each module.

For example, the program created in Chapter 6 might have been assembled as
follows:

= ASM PRcx:;NAME;D

Three files are created the relocatable object module PRcx:;NAME.RO, the
listing file PROGNAME.IS, and the relocatable symbol file, PROGNAME.RS.

The subprogram would also have to be assemblerl with the D option:

= ASM SUBPROG;D

Again, three files are created -- all with the same filename but with the
extension of RO, rs, arrl RS, respectively.

The files are then linked to create an executable load module. The D option
must be used on the linker's carmarrl line:

= LINK PRcx:;NAME/SUBPROG;D

The linker's output consists of a load module named PRcx:;NAME.LO, and a symbolic
debug file name:l PROGNAME.DB. This file is deperrlent upon the contents of the
RS files createrl during assembly, arrl contains the absolute address
specifications for the modules.

SYMbug may alternatively be used as an absolute debugger, similar to DEbug, if
the D option was not use:l when assanbling or linking.

9-7

9.4.2 Conunarrl Line

To use as a symbolic debugger, SYMbug is called as follows:

= SYMBUG [<filename>[<arguments>]]

If the name of the file to be debugged is not given on the camnarrl line, it can
be loadErl with the LOAD ccmnarrl after SYMbug is running. <arguments> are any
that are allowable for the file being debugged. For example, a new file-copying
program namErl CPY.LO might be loaded as a task perfonning a copying operation:

= SYMBUG CPY FILEA.SA,FL6:21.CAT1.FILEA.SA;B

SYMbug autanatically locates the corresponding symbolic debug file.

9-8

9.4.3 SYMbug Comrnarrls

SYMbug primitive commarrls are listed in the following table.

TABLE 9-3. SYMbug Primitive canmarrls

COMMAND SYNTAX DESCRIPTION

AS [<address> [<value>[;<mask>]]]
BF <addressl> <address2> <data> [;<length>]
BM <addressl> <address2> <address3>

[NO]BR [<address>[;<count>]] •••
BS <addressl> <address2> <data>
CR [<count>]
OC <expression>
DE [<default option>]
DF
FR <file name>
FS <file name>

G[O] [<address>]
HE [LP] [<corrmand>]
[NO]IT <addressl> <address2>
[NO]MA [<name>] •••

MD <address> [<count>] [;<option>]
MM <address>[;<option>]
MS <address> <data>
OF

[NO] OT <addressl> <address2>
Q [UIT]
[NO]SD [<local> [<value>]]

T[R] [<count>]
ATTA <task name>[,<terminal>I#*]
DETA [<task name>]
EVEN [<task name>] ,<exception #>
LOAD <file> [<carmand line>]
MASK [<task name>],<exception #>
STAR [<task name>IALL]
STAT [<task name>,<status>]
STOP [<task name>IALL]
'JASK <task name>[,<note level>]
TERM <task name>
WAIT

BREAK
CI'RL-S
CTRL-H
CI'RL-W
CTRL-X
CR (carriage Return)

Address stop
Block fill
Block move
Set/reset breakpoint
Block search
panmarrl repeat
Define constant or Data convert
Cefaults
Display formatted registers
File read
File save
Go (execute)
Display carmands
Set/reset inside trace
Set/reset macro define
Manery di'splay
Manery modify
Manery set
Display Off set register
Set/reset outside trace
Quit (go to VERSAdos)
Set/reset symbol define
Trace
Attach task
retach task
Event definition
Load (task)
Mask exception
Start task(s)
Status definition
Stop task (s)
Task notify
Terminate task
Wait task

Abort carmand
Redisplay line
Delete character
Susperrl output (See NOTE'
Cancel carmand line
Send line for execution

NOTE: After CTRL-W has been used, the entry of any character will cause
the output display to continue.

9-9/9-10

SUGGESTION/PROBLEM
REPORT QUALITY • PEOPLE • PERFORMANCE

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager
Mai Id rop DW164

Product:---------------

Please Print

Name _______________ ~

Company _____________ _

Street----------------

City _______________ _

Manual: ______________ _

Title----------------

Division---------------

Mail Drop _____ Phone ______ _

State _________ Zip ____ _

For Additional Motorola Publications
Literature Distribution Center

Four Phase/Motorola Customer Support, Tempe Operations
(800) 528-1908

616 West 24th Street (602) 438-3100
Tempe, AZ. 85282
(602) 994-6561 ® MOTOROLA

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	reply

