
M68KVSGM/D1

VME/10
Microcomputer System

Command and Graphics Primitives
Reference Manual

QUALITY • PEOPLE • PERFORMANCE

M68KVSQ1/Dl

NOVEMBER 1983

VME/10

MICROCCMPtJrER SYSTEM

CXJ1MAND AND GRAPHICS PRIMITIVES

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. Ibwever, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

VERSAdos an::i VME/10 are trademarks of Motorola Inc.

First EtH tion

Copyright 1983 by Motorola Inc.

PREFACE

This reference manual (M68KVSG1/Dl) and source code on the VME/10 Winchester
drive is supplied for the sole purpose of familiarizing you with the graphics
capabilities of the VME/10 System. The source code was developed by Motorola
Inc. for internal use, such as product testing and writing of demonstration
programs for trade shows arrl other customer presentations. This package is
being given to you, the VME/10 Microcanputer System user, for your use and is
not to be considered a product fran Motorola Inc. arrl, as such, will not be
supported.

The proposed graphics software standards are currently being evaluated by
Motorola Inc. The user is cautioned not to expect compatibility of the enclosed
source program with future graphics packages or operating systems offered as
products by Motorola Inc.

Suggestions and recommerrlations regarding the formation of ·graphics essentials
will be appreciated and should be addressed to:

Motorola Microsystems
2900 s. Diablo Way
Tempe, AZ 85282
Attn: Gary Hughes

Included on the Winchester drive under user 1, Catalog GRAPHICS, are
approximately 50 files. A description of these files follows:

SERVER.LO - This is a graphics server which operates in the background
mode under VERS.Ados. It is invoked by typing @SERVER on the
ccnunarrl line. Several programs demonstrating graphics on the
VME/10 may now be run. This server may be terminated by
logging off, by depressing the BREAK key, or by giving the
VERS.Ados cornnarrl TERM SERV. The graphics server must be
invoked in the background mode before executing DEMO,
EXAMPLE!, EXAMPLE2, or EXAMPLE3.

DEMO.LO - This is a program, canplete with a menu, which allows the user

EXAMPLEl.SA

to select various graphics demonstration programs. The
graphics server must be running as a background task before
invoking this program. The user must also be logged in under
user 1, with the default catalog GRAPHICS, for DEMO to work
properly.

EXAMPLEl.LO - This is a very short and simple example of how to write a
program to run with the graphics server supplied. It draws
and fills a small circle in the center of the display.

EXAMPLE2.SA
EXAMPLE2.LO - This is

server.
another example of a program using the graphics
It uses scaling and rotation.

EXAMPLE3.SA
EXAMPLE3.LO - This program draws a filled triangle, rotates it, and uses the

exclusive-OR attribute. An assembly language subroutine is
called from the graphics primitive level.

SERVEQU.SA
SERVERl.SA
SERVER2.SA
SERVER3.SA
SERVER4.SA
SERVERS.SA - These files comprise the whole source to the graphics server.

CDFF.SA
GOFF.LO

They are assembled and linked by the use of a chain file
SERVER.CF.

- This is a utility used to turn off the high-resolution graphics
mode when using the server and an application program. It is
useful in restoring the display to normal character mode
without the necessity of rebooting the VME/10.

GRFEQU .SA - is an equate file useful in assembling application programs
using the graphics server.

SO suffix files are programs called by the DEMO.LO program. Most are used
in function key Fl demo.

PO suffix files are programs called by the DEMO.LO program.

PX suffix files are bitmap data files used in the DEMO.LO program for the
two "pictures" and the 68000 logo (1 pixel per nibble) •

TABLE OF CONTENTS

CHAPTER 1 GRAPHICS DRIVER DESCRIPTION

1.1
1.2
1.3
1.3.l
1.3.2
1.3.3

INTRODUCTION •
PHILOSOPHY
OVERVIEW •••

Primitives
Display Data Fonnats
Scaling

1.4 STRUCTURE ••
1.4.1
1.4.1.1
1.4.1.2
1.4.2
1.4.2.1
1.4.2.2
1.4.2.3
1.4.3
1.4.3.1
1.4.3.2
1.4.3.2.1
1.4.3.2.2
1.4.3.2.3
1.4.3.2.4
1.4.3.2.5
1.4.3.2.6
1.4.3.2. 7
1.4.3.2.8
1.4.4
1.4.4.1
1.4.4.2
1.4.4.3

Master Control Area
Error .Address
Display Status

Ccmnand Channel
Commarrl V«>rd
Comnarrl Status
Commarrl Prag ram Area

Display Segments
CMD/DSPLY and Status words
Display Attributes

Scale Factor
X and Y Center
Color
Color Fill
Character Size
Mask
CESP Pointer
Count Word

Option Area
Symbol Table
Bit-Map Area
Cornnon Subroutine Area

1.5
1.5.1
1.5.2

OPERATION ••

1.5.3
1.6
1.6.1
1.6.2
1. 7

CHAPTER 2

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.6.1
2.6.2

Graphics
Commarrls
Graphics

Server

CG1r1AND CHANNEL PROTOCOL •••••••••••••••••••• .' ••••••••••••
Access by the Application Program ••••••••••••••••••••••
Access by the Graphics Driver ••••••••••••••••••••••••••

MEDIA CONTENTS

USER SOFTWARE IMPLEMENTATION

INTRODUC'I1ION •••
DECLARE AND EQUATE STATEMENTS ••••••••••••••••••••••••••••
CREATE DISPLAY S~ENT CONTROL PACKETS •••••••••••••••••••
CLOSED PRIMITIVE SEC?1ENTS ••••••••••••••••••••••••••••••••

Segment Creation
Single Segment Execution
All Segment Execution

CREATE BLINK SEC?1ENTS ••••••••••••••••••••••••••••••••••••
CONTINUOUS EXECUTION S~ENTS ••••••••••••••••••••••••••••

Open Continuous Execution Segments •••••••••••••••••••••
Execute Continuous Execution Segments ••••••••••••••••••

i

1-1
1-1
1-1
1-1
1-2
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-5
1-7
1-7
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-9
1-11
1-12
1-13
1-13
1-13
1-14

2-1
2-2
2-3
2-4
2-4
2-5
2-5
2-6
2-7
2-7
2-8

APPENDIX A
APPENDIX B

FIGURE 1-1.
1-2.

TABLE OF CONTENTS (cont'd)

Ca1MAND PRIMITIVES
GRAPHIC PRIMITIVES

LIST OF ILLUSTRATIONS

Comnunications Interface Shared RAM Memory Map
Display Segment Memory Map •••••••••••••••••••••••••••••••

ii

A-1
B-1

1-4
1-6

CHAPTER 1

GRAPHICS DRIVER DES:RIPTION

1.1 INTRODUCI1ION

The graphics driver interprets canmarrls arrl displays data placed in the shared
RAM area by the application program to produce full color/monochrome
presentations on the screen of a color/monochrome CRT monitor. This chapter
provides a thorough description of the driver. Throughout this discussion, all
references to addresses are in hexadecimal ($) an::l are relative to the base
address of the shared RAM cannunications interface.

1.2 PHILOSOPHY

Most graphic CRT displays are stan::l-alone systems using a serial communication
link to the application program. Because of this, most features of the display
are designed-in an::l cannot be readily altered by the user. The display update
rate is limited by the sp:!ed of the serial corrmunications channel. This
approach offers a certain ease-of-use in some applications, many require a
significant software effort to implanent, while others cannot be realized at
all.

In order to provide the greatest application flexibility with the least amount
of required hardware and/or software effort, a user-oriented display system
should canbine all of the alphanumeric arrl graphic control hardware found in
most graphic displays with a highly flexible software package capable of direct
intervention by the user via the application program. A display system with
this degree of flexibility would impose strict disciplines on user-prepared
software. 'lb reduce this burden while still providing powerful software
features, the control software must have a regular structure with a well defined
user interface that is easy to use, exten::l, an::l debug.

Many common graphic figures (such as lines, circles, arcs, arrl rectangles)
should be readily available for the user program to position and display at any
location on the screen. Figures should be capable of being outlined or shaded
in any color or size by simply identifying an attribute for each.

1.3 OVERVIEW

The graphics driver incorporates a straightforward means of providing the
application program with overriding control of graphics operation. The driver
will accept canmarrls arrl graphic controls from the application program via the
corrmunications interface.

1.3.l Primitives

Primitives are machine code routines used to perform specific control and
display tasks. Residirg within the graphics driver are predefined primitives
that permit the application program to specify by primitive number each task to
be performed.

1-1

'!Wo classifications of primitives are used -- canmarrl and graphic. Generally,
comnand primitives are used to control the operation of the display systan
(i.e., systan configuration, operational status, define display segments, etc.),
while graphic pr imi ti ves describe the character or graphic figure for display
(i.e., alphanumerics, rectangles, figure placement, etc.).

Commarrl primitives are specified to the driver by the application program via
the comnand channel portion of the comnunications interface.

Graphic primitives are specified to the driver by a number stored in the display
segment. This primitive number is interpreted by a graphic interpreter to
produce the character or figure on the display screen. A control packet is also
used in conjunction with each display segment to determine the attributes of the
display produced by that segment (i.e., scale, color, size, etc.).

1.3.2 Display Data Formats

Either of two data formats can be used to store display data in memory -
bit-map and coordinate. The bit-map format permits the user to specify the
on/off state of each individual pixel on the screen, arrl is particularly useful
in producing special, fine-grain displays. The coordinate format permits the
user to express any location on the screen in terms of its X (horizontal) and Y
(vertical) coordinate. Coordinate values may be either positive or negative
integer numbers expressed in absolute or relative terms. Absolute coordinates
specify an actual pixel location using · X and Y values, whereas relative
coordinates specify the X and Y displacanent between the current coordinate and
the next location. Positive X values indicate all locations to the right of the
current position, while positive Y values indicate all locations above.
Negative x and Y values indicate all locations left and below the current
position, respectively.

W1en the driver is initialized, the point at which the X and Y axis intersect
(0,0) is located in the lower left-hand side of the display screen. If this
point of intersection is not changed, then any X arrl Y position can be expressed
in absolute terms using only positive integer numbers. However, if the point of
intersection (0,0) is changed (i.e., move:i to the center of the screen), then
both positive and negative integer numbers will be needed to specify every
screen location. Positive and negative values are also used when specifying
coordinates in relative terms.

Due to the large number of pixels on the display screen (800 x 600 maximum), two
16-bi t binary numbers are require:i to define a primitive requiring X and Y
coordinates. These coordinates are each represented by a single word {16-bit)
two's complement number. Since the maximum range capable of being defined by
16-bits (0 to 65,535) excee:is the maximum range of the display, the
responsibility for limiting the range lies with the user (no hardware exists to
limit this parameter). If the value is exceeded, two faults can occur:

a. An excessive X value will wrap-around, causing a change in the Y value.

b. An excessive Y value or an excessive X + Y value can cause an address to
be generated -that will be outside of the display memory range, resulting
in generation of a bus-trap error.

1-2

1.3.3 Scaling

Scaling is the process used to control the size of the displayed figure. When
the driver is initialized, the 0,0 coordinate is placed at the lower left-hand
corner of the screen, arrl no enlargement or reduction in size will be performed.
This size is referred to as Scale 0 and permits the X and Y coordinates of any
location on the screen to be expressed with two 16-bi t 2 's canplement words,
using only the ten least significant bits and the sign. Although Scale 0 offers
the shortest processing time, both the X and Y coordinate values may be exceeded
by the prograrcmer. When specifying coordinates in absolute values, the user can
easily prevent the limits from beiIXJ exceeded. When relative values are used,
preventing the display limits fra:n being exceeded becanes more difficult, since
the point being related to moves about the screen.

Scale 1 is software selectable by the user and provides X and Y coordinates
having 15 significant bits instead of the ten bits of Scale O. This permits the
application program to operate with an external peripheral device (such as a
plotter) capable of using full 15-bit X and Y coordinate resolution, while still
maintaining the 10-bit resolution requirements of the CRT display. Instead of
using the ten least significant bits of the word (as done in Scale 0), Scale 1
uses the ten most significant bi ts of the word (excluding sign bit, which
occupies the most significant bit position) for CRT display operations. This
penni ts the lower six bi ts to be used for increased X and Y resolution. Before
the driver processes coordinates with Scale 1 for CRT display, the lower six
bi ts are removerl arrl the upper ten bi ts are shifted right six places for
standard coordinate processing (as performed for Scale 0). The original
user-specified coordinates are not changed, thus permitting those coordinates to
be accessed by a user-prepared peripheral driver routine (such as a plotter).
Because of these shift operations, Scale 1 specified coordinates require a
longer time to process than coordinates using Scale O. Note that the screen
limits may still be exceeded using Scale 1.

The driver can also provide Full Scaling of the display (enlarge and reduce) by
using the multiply instruction of the resident MC68000 processor to perform a
full 2's complement multiply of the coordinate values by a user-specified scale
factor (scale factor must be a positive number). This results in a 32-bit sum
in which the lower ten bits of the upper word represent the scaled coordinates.
The lower word is discarded. This scaled coordinate is then used in place of
the coordinate originally specified in the display segment, thus permitting
scaling up or down in size. Once again, it is possible to exceed the screen
limits if the Large scale factor is used. The following formula provides the
means of calculating Full Scale coordinate positions.

Coordinate Number X Scale Factor
65,536

NOTE

= Scaled Coordinate

Scaling only applies to relative values.
Absolute values will not be scaled.

1-3

1.4 STRUCTURE

The canmunications interface is divided into four main areas, each providing a
specific systan function (refer to Figure 1-1) •

j<--16-BIT WORD------->j

MASTER ERROR ADDRESS $00000 - $00001
CONTROL

AREA DISPLAY STATUS $00002 - $00003

COMMAND WORD $00004 - $00005

COMMAND STATUS $00006 - $00007
COMMAND

AREA $00008
CCM-1AND PROGRAM

_J __ AREA

DISPLAY DISPLAY SECMENT
SECMENTS ---------------------

0-63 DISPLAY SECMENT

OPTION AREA

FIGURE 1-1. Communications Interface Shared RAM Memory Map

1.4.1 Master Control Area

The master control area provides the means of overriding driver operation. It
contains two words, which are described in the following paragraphs.

1.4.1.1 Error Address. This word will contain the address (relative to the
start of the share:l segment) of any error detected during canmand or graphics
primitives execution.

1.4.1.2 Display Status. If an error occurs during execution of any display
segment, a non-zero value will be stored in the display status word (00002).
After the error in the display segment has been found and correcte:l, the display
status word MUST be reset to a logic 0 value to permit further execution of
display segments.

1-4

1.4.2 Conmarrl Area

All canmarrls issued by the application program to the driver are received
through the carmarrl area and processed by the carmand processor • The corrmarrl
area consists of a ccmmarrl word, a canrnand status, arrl a ccmmand program area.
The following paragraphs describe each of these sections.

1.4.2.1 Commarrl Word. During polli~, the ccmmarrl processor checks the ccmmarrl
word (00004 and 00005) for a non-zero value. When a non-zero is found,
execution control is p:tssed to the canmarrl interpreter to initiate
interpretation arrl execution of the carmarrls in the corrmand program area.

1.4.2.2 Commarrl Status. The canmarrl status word (00006 arrl 00007) indicates
whether or not corrmand primitives in the ccmnand program area are being
executed. If the canrnarrl status word contains a logic 1 value, then canrnand
primitives are NOT being executed and the carmand program area can be accessed
by the application program. If the canmarrl status word is cleared to a logic 0
value, then previous comnand primitives are still being executed and the corrmarrl
program area is not yet available. After execution of all ccmmarrl primitives, a
logic 1 value is set into the carmand status word. If an error occurred during
primitive execution, the most significant bit of the canrnarrl status word will be
set to a logic 1 (negative value).

1.4.2.3 Conmarrl Program Area. The application program enters canrnarrl
primitives in the canmand program area (00008 and Up) for interpretation and
execution by the canrnarrl interpreter. These canrnarrl pr imi ti ves control the
sequence of execution, the configuration of the shared RAM corrmunications
interface, arrl the creation arrl execution of display segments. Unlike other
canmarrl words, the size of the carnnand program area is determined by the number
of canmarrl primitives used by the application program. A thorough description
of each predefined canmand primitive within the graphics driver can be found in
Apperrlix A.

1.4.3 Display Segments

Display segments are the control structure used by the application program to
display graphic figures arrl alphanumeric characters on the CRT screen. Up to 64
display segments can be specified by the application program, with each having
its own control packet arrl program area containing graphic primitives (refer to
Figure 1-2) •

1-5

DISPLAY SEG1ENT
CX>NTROL PACKET

DISPLAY SEXlMENT
PROORAM AREA

1<--16-BIT ~RD------->I

CMD/DSPLY

STATUS ~RD

DISPLAY ATTRIBUTES

GRAPHIC
PRIMITIVES

FIGURE 1-2. Display Segrrent Manory Map

Display segment control packets consist of 32 words (16 bits each) containing
segment control flags, segnent type, arrl segrrent attributes. A display segrrent
is identified to the driver by the application program's use of cormnand
primitives issued through the ccmnarrl area. Four different types of display
segments can be specified:

a. Visible
b. Non-visible
c. Blink
d. Continuous execution (as new primitives are added)

The following paragraphs describe each of the control words and their offset
from the starting address of the display segment used by· the application
program. Additional allocations have been reserved within the control packet
for parameters supplied by the driver. These allocations are not identified in
this manual.

1-6

1.4.3.1 CMD/DSPLY arrl Status Words. The CMD/DSPLY word (display segment
address + 0) and the status word (display segment address + 2) perform two
different functions, deperrling on the type of display segment defined.

When a continuous execution segment has been specified (indicating all graphic
primitives within this display segment are to be continuously executoo) , the
graphic processor interprets the CMD/DSPLY word arrl the status word as handshake
controls similar to those providoo by the carmarrl word and cannand status word
in the camnarrl channel. In this case, a zero value in the status word indicates
to the application program that graphic primitives within the display segment
program area are being executed arrl that additional primitives cannot be
accepted. Execution begins with the graphic primitive whose starting address is
storErl in the CESP pointer (part of the display attributes) • After all current
graphic primitives have been executerl, the graphic processor stores a non-zero
value in the status word to irrlicate to the application program that additional
graphic primitives will be accepted. The application program may then store
these additional primitives into the display segment program area. After
completing this task, the application program must then set the CMD/DSPLY Word
to any non-zero value to irrlicate to the graphic processor that new graphic
primitives may be executoo.

When continuous execution is not specified, the 010/DSPLY word is interpreted as
being a visible/non-visible flag (non-zero = visible/O = non-visible) • If
non-visible, the graphic interpreter does not execute the graphic primitives in
the display segment program area. If visible, the interpreter will change the
status word to a zero value (indicating the display segment program area is in
use); will execute the graphic primitives within this display segment; and will
then set the status word back to a non-zero value to indicate canpletion. The
graphic processor DOES NOT change the CMD/DSPLY word in the non-continuous
execution mode.

1.4.3.2 Display Attributes. Words within the display attributes area are used
to provide additional p:irameters for display primitives. Each of the attributes
that can be specifierl by the application program are described in the following
paragraphs in the order in which they must be specified.

1.4.3.2.1 Scale Factor - The scale factor word (display segment address + 4)
provides the means by which the application program signifies to the driver
whether the original display segment coordinate values will be used or whether
the original values will be increasoo or roouced in size. When the scale factor
word contains a zero value, Scale 0 is selected and no scaling is performed.
When the scale factor contains a 1, Scale 1 is selected. When the scale factor
is any positive number greater than 1, full scaling operations are performed.
The scale factor may also be specified using the SCALEF graphic primitive. Once
the scale factor has been specifierl, it will not change until another SCALEF
primitive is encountered, or the scale factor word within the display segment
control packet is changed.

NOTE

Scaling only applies to relative values.

1.4.3.2.2 X arrl Y Center - The X arrl Y Center words (display segment address +
6 and +8, respectively) permit the application program to change the location of
the 0,0 coordinate to the coordinate specified by the values contained in the
words.

1-7

1.4.3.2.3 Color - The color word (display segment address+ 10) pennits the
application program to specify one of eight display colors used to draw
graphics figures. Color may also be specified using the COLOR graphic
primitive. Once the color has been specified, it will not change until another
COLOR primitive is encountered, or the color word within the display segment
control packet is changed.

1.4.3.2.4 Color Fill - The color fill word (display segment address + 12)
permits the application program to specify the color to be used to fill closed
figures. Color fill may also be specified using the FILL graphic primitive.
Once the color of the fill has been specified, it will not change until another
FILL primitive is encountered, or the color fill word within the display segment
control packet is changed.

1.4.3.2.5 Character Size - The character size word (display segment address +
14) allows alphanumeric display characters to be enlarged. Eight enlarganent
ratios are available, from 1:1 through 1:8. The application program specifies
the size desired by storing a value (0 through 7, respectively) into the
character size word. Character size may also be specified using the CHSIZE
graphic primitive. Once the character size has been specified, it will not
change until another CHSIZE primitive is encountered, or the character size word
within the display segment control packet is changed.

1.4.3.2.6 Mask - The mask word (display segment address + 16) specifies the
bi t-plane(s)~ be written. The bi t-plane(s) may also be specified using the
MASK graphic primitive. Once the bit-plane(s) has been specified, it will not
change until another MASK primitive is encountered, or the mask word within the
display segment control packet is changed.

000 = no bit-plane
001 = red bit-plane
010 = blue bit-plane
011 = red and blue bit-planes
100 = green bit-plane
101 = green and red bit-planes
110 = green and blue bit-planes
111 = all bit planes

1.4.3.2. 7 CESP Pointer - The CESP pointer (display segment address + 18) is
used whenever the display segment is to be executed in the continuous execution
mode. When the 01.D/DSPLY word is set to any non-zero value, the CESP pointer
must contain the starting address of the first graphic primitive to be executed
within a group of graphic primitives in the display segment program area. This
pointer (a 32-bi t long word) can be changed by the application program to
identify any graphic primitive as the first to be executed.

1.4.3.2.8 Count word - The count word (display segment address + 22) is used to
specify the blink rate for a blink display segment. To determine the proper
value, divide the desired blink rate by one-half second. For example, a count
word with value 1 yields a blink rate of one-half second, while a count word of
value 10 yields a blink rate of five seconds.

1-8

1.4.4 Option Area

The following areas within the canmunications interface are optionally used, as
determined by the graphic display software package in the application program.

1. 4. 4 .1 Symbol Table. The Symbol Table area is available to the user for
building special display symbol sets for use with the SYM graphic primitive.

1.4.4.2 Bit-Map Area. The bit-map Area permits the user to directly control
the color of any or all pixels within the display screen area. This is
particularly useful when specifying a special, high-resolution symbol (i .e,
logo, special title, etc.) for display.

1.4.4.3 Conmon Subroutine Area. The canmon subroutine area permits space for
user-prepared programs using conmon subroutines of primitives normally used to
define canmon display subpictures (pictures using less than the full display
area). If these subpictures are prepared using relative X and Y coordinate
values, this subroutine of primitives can be used to display the subpicture in
multiple areas of the screen. The GJSR graphic primitive is used to call
subroutines in this area, while the GRTS graphic primitive is used to terminate
all subroutines in this area.

1.5 OPERATION

The following paragraphs provide an operational description of the graphics
driver.

1.5.1 Graphics Server

The VME/10 graphics server is structured as a VERS.Ados server task. The server
is run as a background task and is invoked under VERSA.dos by placing the
canmercial "at" sign (@) before the server's name.

Example:

=@server
=

Note that the VERSAdos pranpt returns with nothing apparent happening. Also
note that it is assumed (and vi tally important) that no other user tasks are
active when the server is loaded. Conmunication between the application program
arrl the server is via TRAP #8 server calls and a shared segment. The type of
server call is placed into register DO.

The server may be terminaterl (that is, the task may be terminated) by =TERM SERV
or by the "break" key. It is terminated also by logging off.

Since the server task is loaded, there may not be enough memory remaining in the
system for other large programs to be loaded at the same time. Otherwise the
server may be left running in the background during a session.

1-9

The following are the calls which may be made to the graphics server:

~n server

Close server

Execute graphics

Request 100%
duty cycle

Request 50%
duty cycle

DO = 0
AO = size of shared segment
return DO = 0 normal

DO = 1 already open
DO = 2 video RAM not available

DO = 1
return DO = 0 normal

DO = 3 invalid request

DO = 2
return DO = 0 normal

DO =' 4 error in conunand execution

DO = 3
return no parameters

DO = 4
return no parameters

Note that the open server call will cause the VME/10 display to go into
high-resolution mode, arrl will enable the display of graphics. A subsequent
close server call will disable the display of graphics, and will return the
VME/10 display to normal. Therefore, it is highly recomnended that after
displaying graphics, but before terminating the server, that a close server call
be made. Otherwise, the user may be left with the VME/10 display in
high-resolution mode and with graphics enabled.

The following is an example of the 68000 code required to open, execute, and
close the graphics server.

*

*

LP!

*

*

*

CLR.L
MOVE.L

TRAP
BNE.S

LEA
MOVE.L
TRAP
BNE.S

LEA
LEA
MOVE.W
CMP.L
BNE.S

MOVE.L
TRAP

MOVE.L
TRAP

DO ~n graphics directive
#$1000,AO Size of shared segment required for this

application
#8
ERROR

PARBK,AO Attach the segment for graphics conunand
#4,DO
#1
ERROR

CNDS,Al Move the comnands to the segment
CNDSEND,A2
(Al)+, (AO)+
Al.,A2
LP!

#2,DO
#8

#1,DO
#8

Execute the carmands & primitives

Close the graphics server

1-10

EXIT

*
ERROR

*

M:>VE.L
TRAP

MOVE.L
TRAP

#15,DO
#1

#14,DO
#1

Stop

Error, abort this program

* Graphics comnand & primitives
*
CMOS

*

DC.W
DC.W
DC.L
DC.W
DC.W
oc.w

O,O,O,O MASTER ETC.
OPENS,! Open segment one
DSPSl-CMDS segrrent address
CLOSES,! Close segment one
EX~,l Execute segrrent
CEND End

* DISPLAY SEGMENT ONE
*
DSPSl

*
*
*

*

oc.w 1 COMMAND/DISPLAY
oc.w 0 STATUS
oc.w 0 SCALE FAcrOR
oc.w 0,0 X,Y CENTER
DC.W 1 COLOR
oc.w 2 FILL
DC.W 0 CHARAcrER SIZE
DC.W 7 MASK
DC.L 0 CESP
DC.W 0 COUNT WORD
DC.W O,O,O,O RESERVED
OC.L O,O,O,O,O,O,O,O

DISPLAY SEGMENT -----

Graphics Primitives

DC.W PEND

CMDSEND EQU *
*
PARBK OC.L 0,0,$20002000,'&VDM',0,0

1.5.2 Comnands

When enabled by a TR¥> #8 call with DO = 2 (execute) , the comnand processor
polls the corrmand channel Cornnand Word to determine whether or not new comnands
have been issued by the application program. If new comnands are found (Comnand
Word= non-zero value), the comnand processor transfers execution control to the
comnand interpreter to interpret and execute the new comnand primitives. If the
comnaoo channel is not active, the corcmand processor will then check for any
additional active display segments to be executed. If no active display
segments are found and none are currently being executed, the comnand processor
will repeat the polling process.

1-11

The driver maintains a bit representation of all segments currently ready to be
executed called an active list. The corrmand processor checks this list and if a
segment is ready to be executed, execution control is transferroo to the graphic
processor. If continuous execution is not specified, the corresponding bit in
the active list is cleared to logic O. After all display segments have been
checked, the corrmand processor will repeat the polling process.

Display segments have their own primitive interpreter with its own table of
primitives, called graphic primitives. These types of primitives are used to
describe a graphic figure to be drawn on the display screen. Each primitive
word consists of two parts: a code (lower byte) indicating the primitive type
and an attribute (upper byte) •

The code indicates the type of graphic operation -- DOT, MOVETO, DRAwro, CIRCLE,
etc. The attribute describes additional modifiers to the primitive -- shading,
XOR figure to screen, 90 degree character rotation, absolute or relative of X,Y
coordinates, line pattern, etc. These modifiers are bit represented in the
upper byte as follows:

Bit 0-2 - Line Pattern (0-7, 0 =solid line)
Bit 3 - 0
Bit 4 - Absolute = O, Relative = 1
Bit 5 - Character Rotation

(0 deg. = O, 90 deg. = 1)
Bit 6 - XOR ~ 1
Bit 7. - FILL = 1

How these bits are interpreted depends on the type of primitive. Thus, the FILL
bit is not valid in a MOW.W primitive because there is no figure to fill. Only
the absolute/i;elative- bit is valid. for the MOVETO primitive. Appendix B
provides a ccmplete description of all predefine] graphic primitives available
within the graphics driver.

When a di$play segment is executec;l by the graphic processor, all graphic
primitives within the program area are interpreted, with the corresponding
graph~c routines used to produce the display data stored in the display menory
bit-planes. Since the bit-plane data is continuosly being sent to the CRT
monitor for display, the data iri the bit-planes produces figures on the screen.

1.5.3 Graphics

Graphic operations are controlled by the graphic processor checking each display
segment for graphic primitives to execute. If the comnarn word in the display
segment contains a non-zero value, the graphic interpreter executes the graphic
primitives within the display segment.

1-12

1.6 COMMAND CHANNEL PROTOCOL

The following protocols are used by the driver and application program to avoid
contention during accesses of the carmand area (required for use with continuous
execution arrl blink segments) •

1. 6.1 Access by the Application Program

The following steps indicate the sequence used by the application program to
access the camnarrl segment.

a. Checks if the camnarrl program area in the canmarrl channel is currently
being used. If the ccmnand status word contains a logic 1 value, then
the camnarrl program area is NOT being used. If a zero value, it is in
use and is not yet available to the application program. If the carmand
status word is negative (most significant bit set to logic 1), an error
has occurred during processing of the previous carmand primitive.

b. Updates or changes ca.nmand primitives in the carmand program area.

c. Clears the ccmnand status word in the carmand channel to a zero value to
irrlicate the channel is being used.

d. Sets the ca.nmarrl word to any non-zero value. This causes the graphics
driver to begin interpreting the carmarrls in the carmand program area.

1.6.2 Access by the Graphics Driver

The following steps irrlicate the sequence used by the driver to access the
carmarrl channel.

a. Checks the state of the ca.nmarrl word before executing carmands in the
Comnarrl Prcqram Area. If the canmand word value is non-zero, execution
proceeds to step b. If zero, execution control is returned to the
canmarrl processor.

b. Clears the camnarrl word to a zero value and proceeds to interpret and
execute carmand primitives in the ccmnand program area.

c. Upon canpleting a single execution of all ccmnand primitives in the
camnarrl program area, the canmarrl status word is set to a logic 1 value
if no errors were encountered. If an error occurred, an error code will
be stored ONLY in the canmarrl status word with the most significant bit
set (negative sign).

d. Execution control is returned to the ccmnand processor to execute any
active display segments.

1-13

1.7 MEDI~ CONTENTS

The soft~re for 'the VME/10 graphics :;;erver is ~tipplied iq source form to permit
tailoring to specific applications. - It mc;ly be "Supplied as pa~t of system
re~e~se on the Winchester disk in catalog "GRAPH!~", or on a separate floppy
diskette. ·

The catalog contains· the ._source. code fo.r tpe-.- ·\1ME/10 graphics server, pl_us an
appli9atfon progr.ant· using. the ser;ver., ·

a. SERVER~ this program provides a graphics Segin:en:t and primitives handler-.

The_modules that make up the server are:

1. SERVEQU.SA - an equ.ate fil.e U$ed in the assembly of -the other
modules.

2. SERVERl.SA - the main program. It allocates manory and accepts
messages fran applicatiOn programs, directing their requests to
the actual graphics han:Her. ·

3 -~ SERVER2. SA, · SERVER3. SA, SERVER4. SA SERVERS. SA - these modules
contain the code to process the segment and graphics primitives.

4. SERVER.CF - a chain file that assembles and links the server.·

'!he server may be assembled and linked with the following:

=SERVER.CF

b. DEMO.LO - This is a ·program, canplete with a menu, which allows the user
to select various graphics danonstration programs. The graphics server
must be running as .a background task before invoking this program. The
user 'must also be logged in under user 1, with the default catalog
GRAPHICS, for DEMO to V?Ork properly.

c. EXAMPLEl.SA - this program is a very simple application that uses several
different graphics primitives. It opens a single segment and executes
it. This program is asse:nbled and linked with the following:

=ASM EXAMPLE!
=LINK ~PLEl

EXAMPLEl is then executed with the following:

=@SERVER
=EXAMPLEl

Note that executing EXAMPLE! will leave the \1ME/10
high-resolution mode and with graphics display erased.
return the display to normal.

display in
Use GOFF to

d. EXAMPLE2.SA, EXAMPLE3.SA - these are two other example progr~ which uae
the graphics server. They are assemble;l aD3 linked the same as EXAMPLE!.

1-14

e. CDFF.SA - This program is an application that simply closes the server,
thus disabling graphics display aoo returning the VME/10 display to
normal. This program is assembled aoo linked with the following:

=MM CDFF
=LINK CDFF

GOFF is then executed with the following:

=GOFF

Note that the execution of CDFF does not tenninate the server. It only
closes the server, thus returning the display to normal.

f. GRFEQU.SA - A file of equates that may be included into graphics
applications programs. The equates are those for the graphics and
canmaoo primitives aoo their attributes.

1-15/1-16

CllAPTER 2

USER SOFI'WARE IMPLEMENTATION

2.1 INTRODUcrION

This chapter provides examples of typical software modules that must be prepared
by the user to create and execute various types of conmand and display segments
as part of his graphic application package. Throughout these paragraphs, the
processor registers indicated herein are provided as examples of the type of
information needed to be specified prior to beginning execution:

AS = Display Segment Starting Address
A6 = Starting Address of the Shared Segment
DO = Display Segment Number

2-1

2.2 DOCIARE AND EQUATE STATEMENTS

Software programs contain a group of canmon names and descriptions usually
identified at the beginning of each program or module arrl referred to as
deelaration and equate statanents. · · These statanents pemdt the programmer to
allocate manory for program variables and to identify label names conrnonly used
thro'.Ughout the program. The follow.ing examples provide three types of tables
used to allocate. manory for display segment tables, conrnand area offsets, and
display· segment offsets. These tables are referenced throughout the examples
presented in this chapter and may also be incorporated in the user's program.

*. DISPLAY SEG1ENT TABLE
SEGTABLE EQU *

. DC.W 0
DC.W 1
oc.w 0
DC.W 0
DC.W 0
oc.w 7
oc.w 7
DC.W 0
DC.W 7
DC.L SF.GTABLE+$40
oc.w 2

* Cat11\ND AREA OFFSET EQUATE TABLE
MASTER
PSPSTAT
CMOWD.
~TAT
OIDPROG

EQU.
EQU
EQU
EQU
EQU

0
+2
+4
+6
+8

*.DISPLAY SEQ1ENT OFFSET EQUATE TABLE
P01D EQU
PSTAT EQU
SCALEF EQU
XCENTER EQU
YCENTER EQU
COLOR EQU
COLORFIL EQU
CHSIZE EQU
MASK EQU
C~P EQU
COUNT EQU

0
2
4
6
8
10
12
14
l6
18
22

2-2

C<M1AND WORD
STATUS WORD
SCALE FACTOR
X CENTER
Y CENTE~
COLOR=WHITE
FILL COLOR
1:1 CHARACTER SIZE
MASK-ALL COLORS ENABLED
CONTINUOUS EXEX:::UTION POINTER
BLINK RATE (1 S:OC)

MASTER WORD
D~SPLAY STATUS
CCJv1MAND WORD
C<M1AND STATUS
C<M1AND PROGRAM AREA

C<M1AND WORD
STATUS WORD
SCALE FACTOR
X CENTER
Y CENTER
COLOR
COLOR FILL (RATIO/S:OC/PRI)
CHARACTER SIZE
BIT-PLANE MASK
CONTINUOUS EXEX::UT PTR
BLINK RATE COUNT

2.3 CREATE DISPLAY SECMENT CONTROL PACKETS

Prior to o~ning a display segment through the canmarrl area, the application
program must store a segment control packet beginning at the display segment's
starting address as s~cifioo in processor address register AS. Upon opening
the display segment, additional information is stored in the packet by the
graphics driver. If the first word in the packet is a zero value (non-visible
OR not active-continuous execution) , the display segment will not be executed if
closed, blinked, or established as a continuous execution segment. The
following example illustrates the manner in which a display segment control
packet should be create). Upon completing execution of the program in this
example, the following processor registers will contain the data indicated:

A4 = Starting Address of Display Segment Program Area
AS = Starting Address of Display Segment
A6 = Starting Address of the share) segment
DO = Display Segment Number
Dl = Offset to Display Segment Address

SEX3CPKT EQU
MOVE.L
LEA.L
MOVE.W

SEGCPKTl MOVE. W
DBF
MOVE.L
LEA.L
MOVE.L
SUB.L
MOVE.L
SUB.L
RTS

*
AS,- (A7)
SEX:.;TABLE(PC) ,A4
#ll,D7
(A4)+,(AS)+

D7 ,SEGCPKTl
(A7)+,AS
64(AS) ,A4
A4,Dl
A6,Dl
Dl,CESP(AS)
#64,Dl

2-3

SAVE S:&;MENT START ADDR
SEGMENT TABLE ADDRESS
NUMBER OF WORDS - 1
MOVE TO Ca1M INTERFACE
LOOP COUNT
RESTORE STARTING ADDRESS
GET PROG AREA START ADDR

CALC. SHARED RAM OFFSET
IF CONT. EXEC. SEG.
OFFSET STARTING ADDRESS

2.4 CLOSED PRIMITIVE SEX:}1ENTS

The following paragraphs describe the method of creating primitives within a
closed display segment that can then be executed singly by the EXECS comnand
primitive or sequentially by the EXEC.AS conmarrl primitive.

2.4.1 Segment Creation

The example in this paragraph illustrates a method of progranming a closed
can:narrl primitive.

* CCl1MAND PRIMITIVES EQUATES
OPENS EQU 2
CLOSES EQU 3
CEND EQU 1

Ll
BSR
TST.W
BMI
BNE
LEA.L
MOVE.W
MOVE.W
MOVE.L
MOVE.W
CLR.W
MOVE.W

SEGCPKT
CMDSTAT (A6)
CMDERR
Ll
OIDPROG(A6) ,A3
#OPENS, (A3) +
DO, (A3) +
Dl, (A3) +
#CEND, (A3)
CMDSTAT (A6)
#l,CMDWD(A6)

PUT CNTRL PCKT IN SHRD RAM
CK CMD STA'IUS
IF NEX;.-CMD ERROR
NOT YET AVAIL.
GET PROG AREA STRT ADDR
OPEN 010 PRIMITIVE
GET SEGMENT #
GET Sill. OFFSET
END OF a.ID PRIMITIVES
CLOSE CMD CHANNEL
ACTIVATE CMD CHANNEL

Store graphic primitive(s) in display segment program area

MOVE.W #1, (AS) MAKE SEGMENT VISIBLE
L2 TST.W CMDSTAT(A6) CK CMD STATUS

BM! CMDERR
BNE L2 NOT YET AVAILABLE
LEA.L CMDPROG(A6) ,A3 GET PROG. AREA ADDR
MOVE.W #CLOSES,(A3)+ CLOSE THE SEG1ENT
MOVE.W DO, (A3) + SEG1ENT #
MOVE.W #CEND, (A3) END OF CMD PRIMITIVES
CLR.W CMDSTAT (A6) CLOSE CMD CHANNEL
MOVE.W #l,CMDWD(A6) ACTIVATE CMD CHANNEL

2-4

2.4.2 Single Segment Execution

The example in this paragraph illustrates the method of executing a single
closed display segment.

* COMMAND PRIMITIVE EQUATES
EXECS EQU 5
CEND EQU 1

Ll TST.W Q1DSTAT(A6) TEST CMD STATUS
BMI Q1DERR
BNE Ll NOT YET AVAIL.
LEA.L CMDPROG(A6),A3 GET START OF CMD PRIMS
MOVE.W #EXEX:S,(A3)+ GET PRIMITIVE
MOVE.W #SEGNMBR,(A3)+ GET SECMENT #

* EXOCS CAN BE USED MULTIPLE TIMES TO EXOCUTE OTHER SEGIBNTS
MOVE.W #CEND,(A3) END OF CMD PRIMITIVES
CLR.W 01DSTAT(A6) CLOSE CMD CHANNEL
MOVE.W #l,Cl1DWD(A6) ACTIVATE CMD CHANNEL

2.4.3 All Segment Execution

The example in this paragraph illustrates the method of executing all closed
display segments.

* COMMAND PRIMITIVE EQUATES
EXOCAS EQU 5
CEND EQU 1

Ll TST.W 01DSTAT (A6) TEST CMD STATUS
BMI CMDERR
BNE Ll NOT YET AVAIL.
LEA.L CMDPROG(A6) ,A3 GET START OF CMD PRIMS
MOVE.W #EXOCAS, (A3) + EXOCUTE ALL SEGIBNTS
MOVE.W #CEND, (A3) END OF CMD PRIMITIVES
CLR.W CJ.1DSTAT(A6) CLOSE CMD CHANNEL
MOVE.W #1,CMDWD (A6) ACTIVATE CMD CHANNEL

2-5

2.5 CREATE BLINK SEGMENTS

The example provided in this paragraph demonstrates the method used to create a
blink segment.

* COMMAND PRIMITIVE EQUATES
OPENS EQU 2
BLKS EQU 7
CEND EQU 1

BSR SEOCPKT
MOVE.W #2,BLKRATE(AS)

PUT CNTRL PCKT IN SHRD RAM
1 SEC BLINK RATE

Place graphic primitives in display segment. For blinking, the XOR display
attribute should be used.

Ll TST.W
BMI
BNE
LEA.L
MOVE.W
MOVE.W
MOVE.L
MOVE.W
MOVE.W
MOVE.W
CLR.W
MOVE.W

CMDSTAT (A6)
CMDERR
Ll
CMDPROG(A6),A3
#OPENS, (A3) +
DO,(A3)+
Dl, (A3) +
#BLKS,(A3)+
DO, (A3) +
#CEND, (A3)
Q1DSTAT (A6)
#l,CM™D(A6)

TEST om STATUS

NOT YET AVAIL.
GET PROG AREA START
OPEN SEGMENT
GET SEGMENT #
GET SEGMENT START OFFSET
BLINK SEGMENT
GET SEGMENT #
END OF om PRIMITIVES
CLOSE CMD CHANNEL
ACTIVATE CMD CHANNEL

Place a 1 in the 010/DSPLY word of the display segment to make it visible when
neErlErl arrl a 0 to turn the blink segment off.

MOVE.W #1, (AS) TURN ON VISIBLE SEGMENT

2-6

2.6 CONTINUOUS EXECUTION SEGMENTS

The following paragraphs describe opening and executing continuous execution
segments.

2.6.1 Open Continuous Execution Segrcents

The continuous execution segrrent is continuously checked and activated by the
01D/DSPLY and status words. When the segment is activated, the graphics driver
uses the Continuous Execution Segrrent Pointer (CESP) to obtain the starting
execution address. The example in this paragraph describes the method used to
open a continuous execution segrrent.

* Ca1MAND PRIMITIVE EQUATES
OPENCES EQU $FF02
CEND EQU 1

Ll
BSR
TST.W
BM!
BNE
LEA.L
MOVE.W
MOVE.W
MOVE.L
MOVE.W
CLR.W
MOVE.W

S&:;CPKT
01DSTAT (A6)
CMDERR
Ll
01DPROG(A6) ,A3
#OPENCES, (A3) +
DO, (A3) +
Dl, (A3) +
#CEND, (A3)
01DSTAT (A6)
#l ,01DWD(A6)

2-7

FF ATTRIBUTE TO OPENS

STORE CONTROL PACKET
CK COMD STATUS

NOT YET AVAIL.
GET START OF 010 PRG AREA
OPEN CONT. EXEC. SEG.
GET SEGMENT #
GET SEG. OFFSET
END OF 010 PRIMITIVES
CLOSE CMD CHANNEL
ACI'IVATE 010 CHANNEL

2.6.2 Execute Continuous Execution Segments

This µ3.ragraph provides an example of the method used to execute a continuous
execution segment.

* GRAPHIC PRIMITIVE EQUATES
MOVETO EQU 3
DRAWTO EQU 4
RECT EQU $1007
COLOR EQU 12
CIR EQU 8
GENO EQU 1

Ll TST.W PSTAT(AS)
BEQ Ll
MOVE.B #l,(A4)+
MOVE.B #COLOR,(A4)+
MOVE.W #MOVETO, (A4) +
MOVE.W #30,(A4)+
MOVE.W #60, (A4) +
MOVE.W #RECT,(A4)+
MOVE.W #40,(A4)+
MOVE.W #40,(A4)+
MOVE. W #CEND, (A3)
CLR.W 01DSTAT{A6)
MOVE.W #l,CMDWD(A6)

* THE CGP MODULE USES THE CURRENT CESP
* EXECurION OF PRIMITIVES
L2 TST.W PSTAT(AS)

BMI SEGERR
BEQ L2
MOVE.L A4,DO
SUB.L A6,DO
MOVE.L DO,CESP(A5)
MOVE.W #CIR,(A4)+
MOVE.W #40, (A4) +
MOVE. W #GENO, (A4)
CLR. W PSTAT (AS)
MOVE.W #1,PCMD(AS)
MOVE.L #2,DO
TRAP #8

L3 TST.W DSPSTAT(A6)
BNE ERROR
TST.W PSTAT(A5)
BEQ L3

2-8

NOT YET AVAIL.
ATTRIBUTE - RED = 1
PRIMITIVE
PRIM IT IVIE
ABSOLUTE X ADDRESS
ABSOLUTE Y ADDRESS
RECT. PRIMITIVE
LENGTH IN X
HEIGHT IN Y
END OF 010 PRIMITIVES
CLOSE CMD CHANNEL
ACTIVATE CMD CHANNEL

POINTER TO START

NOT YET AVAIL.
LAST PRIMITIVE ADDR
GET OFFSET
NXT EXECurION ADDR
CIRCLE PRIMITIVE
RADIUS OF CIRCLE
END OF GRAPHIC PRIMITIVES
CLOSE DISPLAY SEX3MENT
ACTIVATE DISPLAY SEGMENT

EXECUTE GRAPHICS
CHECK FOR ERROR

WAIT UNTIL DONE

APPENDIX A

COMMAND PRIMITIVES

This appendix provides a description of each predefined comnand primitive within
the graphics driver. Refer to Chapter 1 for a description of how these
primitives are used.

The comnand primitives are organized in this appendix as follows:

CG1MAND PRIMITIVE CODE PAGE NUMBER

BI'IMPTR 13 ($OD) A-2
BLKS 7 ($07) A-3
CCUR 26 ($1A) A-4
CEND 1 ($01) A-5
CLOSES 3 ($03 A-6
CS ETD 18 ($12) A-7
CU ROFF 25 ($19) A-8
CU RON 24 ($18) A-9
DELAY 20 ($14) A-10
DELS 4 ($04) A-11
EXEC AS 6 ($06) A-12
EXECS 5 ($05) A-13
NCOP 0 ($00) A-14
OPENS 2 ($02) A-15
RBLKS 8 ($08) A-16
SCFN 21 ($15) A-17
SYMPTR 12 ($0C) A-18

A-1

BITMPTR - BITMAP POINTER

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

13 ($OD)

None

Long Address (relative to beginning of shared memory segment)

Establishes the starting address of a bit-mapped display to the
graphics driver. Since each pixel is defined in 4 bits, one word
will define 4 pixels.

A-2

BLKS - BLINK SEGMENT

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

7 ($07)

None

Display Segment Number

Adds the previously opened display segment to the blink list.
The internal timer service routine will decrement the counter in
the display segment control packet arrl, if zero, will add the
segment to the active list and move the count to the counter. If
the di splay segment is visible , it will be executed in the
display page. If not visible, the display segment will NOT be
executed.

DISPLAY SEGMENT CONTROL PACKET:

- Commarrl word used for visibility
(0 =non-visible, non-zero= visible).

- Count must be set to desired blink rate
(1 count= 1/2 sec., total on/off time).

A-3

CCUR - MOVE CCMMAND CURSOR TO X,Y

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

26 {$1A)

ABSOLUTE/RELATIVE - Absolute or relative

X-; Y-Coordinates

Move the corrmand {vertical and horizontal) cursors to
x-,Y-coordinates. The coordinates may be specified absolutely or
as relative to the current screen pointer. cursor must be ON to
be visible {activate/deactivate cursor using ccmnand primitives
CURON/CUROFF) •

A-4

CEND - END OF C<Jv1MAND PRIMITIVE LIST

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

1 ($01)

None

None

This comnand must be the last comnand primitive within a group of
command pr imi ti ves within the canmand program area. It causes
the comnand interpreter to halt execution and to return control
to the command processor. A positive value is placed in the
command status word to indicate a normal (no error) completion.
A negative value indicates that an error has occurred. Error
data can then be obtained fran the error data table. Errors
normally occur only during display system debug.

A-5

CLOSES - CLOSE A DISPLAY SE(}1ENT

CODE:

ATTRIBUTES:

OPERANDS:

DESCRI PT! ON:

3 ($03)

None

Display Segment Number

Adds a display segment to the valid segment list arrl allows it to
be made active through the EXOCS or EXOCAS primitives. Before
the segment can be closerl, it must be opened to obtain its
address. The display segment canmarrl word is used to indicate
the segments visability (0 = non-visible, non-zero = visible).

A-6

CSETD - SET CCM1AND DISPLAY PAGE

CODE: 18 ($12)

ATTRIBUTES: COLOR - Specified in Upper Byte

OPERANDS: None

DESCRIPTION: Set the entire display page to the specified color. Note that a
CSETD with color = 0 (conunand word = $0012) will clear the entire
display.

COLORS:

Black = 0
Red = 1
Blue = 2
Magenta = 3
Green = 4
Yellow = 5
Cyan = 6
White = 7

A-7

CUROFF - TURN OFF CURSORS

CODE: 25 ($19)

ATTRIBUTES: None

OPERANDS: None

DESCRIPTION: Disable the horizontal and vertical cursors.

A-8

CURON - TURN CURSOR ON

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

24 ($18)

None.

None

Enable the horizontal and vertical cursors.

A-9

DELAY - DELAY PROCESSING

CODE: 20 ($14)

ATTRIBUTES: None

OPERANDS: Delay Time - ~rd

DESCRIPTION: Delay a specified period of time before proceeding to process the
next commarrl primitive.

DELAY TIME VALUE:

1 = 1/10 Sec.
10 = 1 Sec.

EXAMPLE: DC. W DELAY
DC.W 10 DELAY 1 SOC.

A-10

DELS - DELETE A S~NT

CODE: 4 ($04)

ATTRIBUTES: None

OPERANDS: Display Segment Number

DESCRIPTION: Completely remove ~ display segment. The graphics server will no
longer recognize this segnent.

A-11

EXOCAS - EXECUTE ALL DISPLAY SEG1ENTS

CODE: 6 ($06)

ATTRIBUTES: None

OPERANDS: None

DESCRIPTION: Places all display segments within the valid segment list into
the active list. Once each display segment is executed, it is
removed from the active list. The conmand word is valid for
visibility (0 =non-visible, non-zero= visible).

A-12

EXECS - EXEX::UTE ONE DISPLAY SEX3MENT

CODE: 5 ($05)

ATTRIBUTES: None

OPERANDS: Display Segment Number

DESCRIPTION: Place the display segment into the active list. Once executed,
the segrrent is raooved from the list. The comnand primitive
interpreter will check the COillnand word for visibility
(0 =non-visible, non-zero= visible).

A-13

NCDP - NO COMMAND OPERATION

CODE: 0 ($00)

ATTRIBUTES: None

OPERANDS: None

DESCRIPTION: No operation occurs. The comnand primitive interpreter moves to
the next comnarrl primitive word.

A-14

OPENS - OPEN A DISPLAY SEGMENT

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

2 ($02)

OPEN ONLY - $00 Upi;er Byte

CONTINUOUS EX:E:X:UTION - $80 Upi;er Byte

Display Segment Number arrl Address (long word address of display
segment, relative to beginning of shared memory segment).

'Ihis ccmmarrl places the display segment address in the internal
segment table for later reference to that address by its segment
number. Before execution of this pr imi ti ve, the application
program must place the display segment control packet into the
shara:i RAM area. If the segment is of the continuous execution
type, the segment is made active to the graphics driver arrl will
be constantly polled. The segment corrunand word and status are
usa:i by the application program to control actual execution of
the graphic primitives. When the corrunand word is non-zero, the
graphics driver will use the Continuous Execution Segment Pointer
to start graphic primitive interpretation.

DISPLAY SEGMENT CONTROL PACKET:

'Ihe application program must set the following attributes/
flags:

- Camnarrl Word

- Status

- Scale Factor

- X Center

- Y Center

- Color

- Fill Color

- Character Size

- Mask

- Continuous Execution Segment Pointer (if continuous)

- Blink rate (if blink segment)

A-15

RBLKS - REMOVE/DELETE BLINK S:mMENT

CODE: 8 ($08)

ATTRIBUTES: None

OPERANDS: Display Segment Number

DESCRIPTION: Completely removes a previously defined blink display segment.

A-16

SCFN - SET DISPLAY SEGMENT SCALE FAcrOR NUMBER

CODE:

ATTRIBUTES:

OPERANDS:

DESCRITPION:

21 ($15)

NONE

Segment Number; Scale Factor Number

Set the scale factor of a segment after opening or while in use.

See section 1.3.3 for a discussion of scale factors.

A-17

SYMPTR - SYMBOL TABLE POINTER

CODE: 12 ($QC)

ATTRIBUTES: None

OPERANDS: X-Size; Y-Size; arrl Address

DESCRIPTION: Identifies a symbol table stored in shared RAM for use by the
symbol (SYM) primitive.

WHERE:

X-Size = Word defining number of horizontal pixels/4.
(A symbol is modulo 4) •

Y-Size = Word defining number of vertical pixels.

Address = Lorg word pointing to symbol table start (relative
to the start of the shared memory segment) •

EXAMPLE: oc.w SYMPTR
oc.w 52 52 x 4 = 208 horizontal pixels per

symbol
oc.w 192 192 vertical pixels per symbol
DC.L $18000 .Address of the symbol table

A-18

APPENDIX B

GRAPHIC PRIMITIVES

This apperrlix provides a description of each predefine:] graphic primitive within
the graphics driver. Refer to Chapter 1 for a description of how these
primitives are use:l.

The graphic primitives are organized in this appendix as follows:

GRAPHIC PRIMITIVE CODE PAGE NUMBER

ACT SN 30 ($1E) B-2
ARC 9 ($09) B-3
BI'IMAP 11 ($OB) B-4
CALLA~ 32 ($20) B-5
CHARS 18 ($12) B-6
CHMARK 17 ($11) B-7
CHMARKS 29 ($1D) B-8
CHSIZE 14 ($OE) B-9
CIRCLE 8 ($08) B-10
COLOR 12 ($0C) B-11
CURSPTR 15 ($OF) B-12
DO~ 2 ($02) B-13
DRAW'IO 4 ($04) B-14
FILL 13 ($OD) B-15
GCUR 19 ($13) B-16
GE NAB 20 ($14) B-17
GEND 1 ($01) B-18
GJMP 21 ($15) B-19
GJSR 22 ($16) B-20
GRTS 23 ($17) B-21
GSE'ID 28 ($1C) B-22
LINES 5 ($05) B-23
MASK 27 ($1B) B-24
MOVE TO 3 ($03) B-25
~p 0 ($00) B-26
PIE 26 ($1A) B-27
POLYG 6 ($06) B-28
REC!' 7 ($07) B-29
ROTATE 31 ($1F) B-30
SCALEF 16 ($10) B-31
SYM 10 ($0A) B-32
SYMARK 24 ($18) B-33
SYMARKS 25 ($19) B-34

B-1

AcrSN - AcrIVATE DISPLAY SEG1ENT NUMBER

CODE: 30 ($1E)

ATTRIBUTES: None

OPERANDS: Display Segment Number

DESCRIPTION: Activate a closed segment.

B-2

ARC - DRAW AN ARC

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

9 ($09)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet

XOR - Exlusi ve-OR figure to display screen (with color, if
filled)

ABSOLUTE/RELATIVE - Absolute or relative

X1, Y11 X2, Y2

Draw an arc from X1/Y1 to X2/Y2 having a center point at
the current screen pointer position. Both X i/Y 1 and
X2/Y2 must be equidistant from the current screen pointer
position (refer to Example 1). The XOR attribute causes the arc
to be Exclusive-ORed with the current screen display and the FILL
attribute will shade the enclosed arc (Example 2) • Arcs are
always drawn in a counterclockwise direction from X1/Y1 to
X2/Y2. The screen pointer is left unchanged.

EXAMPLE 1:

(Xa,Y1)

EXAMPLE 2:

B-3

BI'IMAP - BIT MAP PICTURE TRANSFERRED

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

11 ($OB)

XOR - Exclusive-OR bit mapped picture to display screen

X-Dimension; Y-Dimension

Transfer a bit-mapped picture to the display screen at the
current screen pointer position.

WHERE:

X-Dimension =
Y-Dimension =

X pixels/4 (modulo 4)
Y pixels

The starting address of the bit-mapped picture in shared RAM is
established by the BI™PTR collUlland primitive via the command
channel. Since each pixel is represented by four bits, each word
contains four pixels. The smallest X-Dimension (horizontal)
represents four pixels (modulo 4). The screen pointer is left
pointing to the lower right-hand corner of the bit-mapped
picture.

EXAMPLE:

screen pointer
before BI'IMAP
operation

BIT-MAP
DISPLAY Y-SIZE

X-SIZE

B-4

screen pointer
after BI'IMAP
operation

•

•

CALLA91 - CALL ASSEMBLY LANGUAGE SUBROUTINE

CODE:

ATTRIBUTES:

OPERAND:

32 ($20)

None

Long Address of Subroutine (relative to the beginning of the
sharerl memory segment) •

DESCRIPTION: A JSR is made to a user-definerl assembly language subroutine. The
subroutine should return with an RTS instruction. Upon entry,
register A5 points to the graphics segment, arrl .A6 points to the
next primitive. Unless the user is familiar with the graphics
server code, this directive should not be used •

B-5

CHARS - CHARAcrERS

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

18 ($12)

XOR - Exclusive-OR characters to the display screen

90 DEG. - Rotate character string 90 degrees

COLOR - Defined in Display Segment Control Packet

CHSIZE - Defined in Display Segment Control Packet

Number of Characters followed by packeted ASCII characters.

Present multiple characters on the display screen at the current
screen pointer position. The screen pointer is changed to point
to the next character position.

EXAMPLE:

DC.W CHARS
DC.W 7
DC. B 'ABCDEFG '

screen pointer
before CHARS
operation

MUST BE EVEN #

E

B-6

F G

screen pointer
after CHARS
operation

CHMARK - CHARACTER MARKER

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

17 ($11)

XOR - Exclusive-OR marker to display screen

90 DEG. - Rotate marker 90 degrees

Color - Defined in Display Segment Control Packet

CHSIZE - Defined in Display Segment Control Packet

Marker character (in high byte of word)

A single character is displayed on the screen, centered on the
current screen pointer. The screen pointer is left unchanged.

EXAMPLE:

DC.W CHMARK,'H'

current screen pointer position

B-7

CHMARKS - MULTIPLE CHARAcrER MARKERS

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

29 ($1D)

XOR - Exclusive-OR markers to display screen

90 DEG. - Rotate markers 90 degrees

ABSOLUTE/RELATIVE - Absolute or relative

Color - Defined Display Segment Control Packet

CHSIZE - Defined in Display Segment Control Packet

Marker Character (in high byte of word); Number of Markers;
Starting X,Y Coordinates

Display multiple character markers centered at the specified
coordinates. The specified character is displayed on the screen
at one or more locations. The locations (coordinates) specified
are those of the center of the charater. The coordinates may be
specified absolutely or relatively, depending on the attribute
bit. In the case of relative coordinates, the first set of
coordinates is taken relative to the current screen pointer
position, while each of the remaining sets of coordinates is
taken relative to the immediately preceding set of coordinates.
The screen pointer is left pointing to the center of the last
character marker displayed.

EXAMPLE:

DC.W CHMARKS+$1000
oc.w '*' ,4

Use relative mode

oc.w o,o,o,100,100,0,o,-100
Character, number of markers
Coordinates

100 pixels

~

r 100
pixels

I
initial screen
pointer position

B-8

*

*

\
screen pointer
after operation

CHSIZE - SET DEFAULT CHARACTER SIZE

CODE: 14 ($OE)

ATTRIBUTES: SIZE - One of eight charater sizes entered in the Display Segment
Control Packet

OPERANDS: None

DESCRIPTION: Establish the default character size for CHARS, CMARK, or CMARKS
primitives. CHSIZE is entered in the Display Segment Control
Packet.

CHARACTER MATRIX
SIZE * (PIXELS) (PIXELS)

0 1 5 x 7 8 x 8
1 2 10 x 14 16 x 16
2 3 15 x 21 24 x 24
3 4 20 x 28 32 x 32
4 5 25 x 35 40 x 40
5 6 30 x 42 48 x 48
6 7 35 x 49 56 x 56
7 8 40 x 56 64 x 64

B-9

CIRCLE - DRAW A CIRCLE

CODE:

ATTRIBUTES:

8 ($08)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet

XOR - Exlusive-OR figure to display screen (with color, if
filled)

ABSOLUTE/RELATIVE - Relative Only

OPERANDS: Radius (in pixels)

DESCRIPTION: Present a circle on the display screen centered on the position
of the current screen pointer and with the radius specified in
the operand. (NOTE: The Relative Attribute bit MUST be set to a
logic 1 to interpret the operand as the radius.) The screen
pointer is left unchanged.

B-10

COLOR - DEFINE COLOR ATTRIBlJI'E

CODE: 12 {$0C)

ATTRIBUTES: COLOR - One of 8 colors

OPERANDS: None

DE~RIPTION: Changes the Color attribute in the Display Segment Control
Packet.

COLORS:

Black = 0
Red = 1
Blue = 2
Magenta = 3
Green = 4
Yellow = 5
Cyan = 6
White = 7

B-11

CURSPI'R - MOVE SCREEN POINTER TO CURSOR POSITION

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

15 ($OF)

None

None

Obtain the current X and Y (vertical and horizontal) cursor
coordinates and move the coordinates to the screen pointer (i.e.,
change the screen pointer to the current cursor coordinates) •

B-12

DOT - PLACE A DOT ON THE SCREEN

CODE: 2 ($02)

ATTRIBUTES: XOR - Exclusive - OR dot to display screen

ABSOLUTE/RELATIVE - Absolute or relative

OPERANDS: X-; Y-Coordinates

DESCRIPTION: Display a dot on the display screen at the specified coordinates
(X,Y). The color of the dot is provided by the Color attribute
in the Display Screen Control Packet. The X, Y coordinate is
either absolute or relative, deperrling on the attribute bit, with
scaling indicated by the Scale Factor Word also in the Display
Screen Control Packet.

B-13

DRAWTO - DRAW LINE TO X,Y

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

4 ($04)

XOR - Exclusive-OR line to display screen

ABSOLUTE/RELATIVE - Absolute or relative

LINE PATTERN - 0 (solid) - 7

X-; Y-Coordinate

Draw a 1 ine from the current screen pointer to the specified
coordinates (X,Y). The coordinate to be drawn to is absolute or
relative, depending upon the setting of the attribute bit. Color
is determined by the Display Screen Control Packet. The line
pattern is determined by the three least significant bits of the
attribute. The line may be Exclusive-ORed against any figure
currently existing on the display screen.

B-14

FILL - SPECIFY FILL COLOR

CODE: 13 ($OD)

ATTRIBUTES: None

OPERANDS: Color

DESCRIPTION: Designates the shade (color) to be used in filling a closed
figure by establishing the shade in the Display Screen Control
Packet.

COLORS:

Black = 0
Red = 1
Blue = 2
Magenta = 3
Green = 4
Yellow = 5
Cyan = 6
White = 7

B-15

GCUR - MOVE GRAffiIC CURSOR TO X,Y

CODE: 19 ($13)

ATTRIBUTES: ABSOLUTE/RELATIVE - Absolute or relative

OPERANDS: X-; Y-Coordinates

DESCRIPTION: Move the graphic cursor (vertical and horizontal cursors) to
x-,Y-coordinates. Cursor must be ON to be visisble
(activate/deactivate cursor using ca:nnand primitives
CURON/CUROFF). The coordinates may be specified absolutely, or
as relative to the current screen pointer position (as indicated
by the attribute bit) • Either way, the screen pointer is left
unchanged.

B-16

GENAB - GRAPHICS ENABLE

CODE: 20 ($14)

ATTRIBUTES: Pixel Memory Display Enable

OPERANDS: None

DESCRIPTION: Bi ts 8-10 determine which of the three pixel memory planes are
enabled for display. Bit set (1) = enable. Note that this does
not preclude read/write operations -- just display.

ENABLE: 0 = None, no graphics displayed
1 = Red Only
2 = Blue Only
3 = Red/Blue
4 = Green Only
5 = Red/Green
6 = Green/Blue
7 = Red/Green/Blue

B-17

GENO - END OF GRARIIC PRIMITIVE LIST

CODE: 1 ($01)

ATTRIBUTES: None

OPERANDS: None

DESCRIPTION: Entered at the errl of a list of graphic primitives in the display
pr<XJram area to terminate execution of the segment.

B-18

GJMP - JUMP TO GRAPHICS PRIMITIVE

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

21 ($15)

None

Long Address (relative to the beginning of the shared rnanory
segment)

Jump to specified shared RAM long address and continue
interpreting graphic primitives.

B-19

GJSR - JUMP TO GRAPHICS PRIMITIVE SUBROUTINE

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

22 ($16)

None

Long Address (relative to the beginning of the shared menory
segment)

Jump to a specified graphic primitive subroutine and continue
interpreting graphic primitives. Use GRTS primitive to return.

B-20

GRTS - RETURN FROM GRAPHICS PRIMITIVE SUBROUTINE

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

23 ($17)

None

None

Provides return fran a graphic primitive subroutine. MUST be
used if the subroutine was accessed via the GJSR primitive.

B-21

GSETD - SET GRAPHIC DISPLAY PAGE

CODE: 28 ($1C)

ATTRIBUTES: COLOR - Specified in Upper Byte

OPERANDS: None

DESCRIPTION: Set entire display page to the specified color. Note that a
color of 0 (carmand word = $001C) will clear the entire display
page.

COLORS:

Black = 0
Red = 1
Blue = 2
Magenta = 3
Green = 4
Yellow = 5
Cyan = 6
White = 7

B-22

LINES - DRAW CONNECTING LINES

CODE: 5 ($05)

ATTRIBUTES: XOR - Exclusive-OR lines to display screen

ABSOLUTE/RELATIVE - Absolute or relative

LINE PATTERN - 0 (solid) - 7

OPERANDS: Number of lines; X- and Y-Coordinates of Each End Point

DESCRIPTION: Draw successive connecting lines starting from the current
position of the screen pointer. The first Operand must be the
number of lines to be drawn, followed by the X- and Y-coordinate
word pairs defining the errl of each line (and the beginning of
the next) • The screen pointer is left pointing at the errl of the
last line drawn.

B-23

MASK - SET MASK ATTRIBUI'E

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

27 ($lB)

MASK PLANES - Specify bit-planes

None

The mask specifies which of the three bit-planes will be written.
One or more bit-planes, in any canbination, can be enabled. This
primitive sets the Display Segment Control Packet attribute mask.

MASK: 0 = None - Cannot write to bit-planes
1 = Red Only
2 = Blue Only
3 = Red/Blue
4 = Green Only
5 = Red/Green
6 = Green/Blue
7 = Red/Green/Blue

B-24

MOVETO - MOVE TO X,Y

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

3 ($03)

ABSOLUTE/RELATIVE - Absolute or relative

X-; Y-Coordinates

Move the screen pointer, without drawing, to the specified
x-,Y-coordinates. These coordinates are absolute or relative
positions, depending upon the attribute bit and scaled to the
scale factor defined in the Display Segment Control Packet.

B-25

NGOP - NO GRAPHIC OPERATION

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

0 ($00)

None

None

No operation occurs. The graphic primitive interpreter moves to
the next graphic primitive word.

B-26

PIE - DRAW PIE-SHAPED FIGURE

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

26 ($1A)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet

XOR - Exlusive-OR figure to display screen (with color, if
filled)

ABSOLUTE/RELATIVE - Absolute or relative

Draw a pie-shaped segment of a circle having its center point at
the current position of the screen pointer. If the figure is to
be color filled, only one minimum X and one maximum X may exist
for each horizontally intersecting line. The arc of the
pie-shaped segment is always drawn counterclockwise from
X1/Y1 to X2fY2. The screen pointer is left unchanged.

EXAMPLE:

(X1.Y1)

(Xa.Ya)

(X,Y)

)
MOVETO. X,Y

B-27

POLYG - DRAW A POLYCDN FIGURE

CODE:

ATTRIBUTES:

OPERANDS:

6 ($06)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet.

LINE PATTERN - 0 (solid) - 7 (defines the outline of the polygon)

XOR - Exclusive-OR figure to display screen (either FILL or
PATTERN)

ABSOLUTE/RELATIVE - Absolute or relative

Number of Lines; X- and Y-Coordinates of Each End Point

Draw a polygon (programmer must close on starting point). The
number of sides (lines) must be indicated in the Operand field
followed by the X- and Y-coordinates of each end point (and
starting point of the next if not last) • The last coordinate
MUST be the same as the starting point to close the figure. The
screen pointer is left pointing to the last coordinate specified.

B-28

RECT - DRAW A RECTANGLE

CODE:

ATTRIBUTES:

7 ($07)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet.

XOR - Exclusive-OR figure to display screen (either FILL or
PATTERN)

ABSOLUTE/RELATIVE - Relative Only

OPERANDS: X length; Y length

DESCRIPTION: Draw a rectangle starting from the current position of the screen
pointer to the right (X-coordinate) and then up (Y-coordinate) •
The Relative attribute bit MUST be set. The screen pointer is
left unchanged.

B-29

ROTATE - ESTABLISH A ROTATION ANGLE

CODE: 31 ($1F)

ATTRIBUTES: ABSOLUI'E - Absolute rotation angle

RELATIVE - Angle relative to the previous angle

OPERANDS: Rotation angle in degrees. A positive value is a counter
clockwise rotation. A negative value is a clockwise rotation.

DE~RIPTION: Rotate all subsequent X,Y points relative to the starting point.
Only relative points will be rotated. The rotation affects only
the (X, Y) points arrl not subsequent patterns such as the
individual pixels of a text character. Note that rectangles may
not be rotated, while polygons may.

B-30

SCALEF - SET THE SCALE FACTOR

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

16 ($10)

None

Scale Factor Number

Set the scale factor in the Display Segment Control Packet. See
section 1.3.3 for a discussion of scale factors.

B-31

SYM - DISPLAY SYMBOLS

CODE: 10 ($0A)

ATTRIBUTES: XOR - Exclusive-OR symbol to display screen

OPERANDS: Number of Symbols to Follow; Packeted Symbol Offsets Into the
Table (one offset per byte)

DEOCRIPTION: Display symbols from the symbol table, starting at the current
screen pointer position. Symbol numbers (offsets) start at 0
(i.e., 0 =first symbol in symbol table, 1 =second symbol, etc.).
The symbol offsets are specified one per byte, with enough bytes
to make an integral number of words. The screen pointer is left
pointing at the lower right-hand corner of the last symbol
displayed.

EXAMPLE: DC. W SYM
DC.W $05
DC.B 1,3,4,0,2,0

!
screen pointer
before SYM operation

WHERE SYMBOL OFFSET:

1 Displayed First
3 Displayed Second
4 Displayed Third
0 Displayed Fourth
2 Displayed Fifth
O Last zero Is Ignored

Number of symbols
Symbol offset (one per byte)

0

screen pointer
after SYM operation

The size of the symbol and the location of the symbol table MUST
have been previously declared using the SYMPTR comnand primitive.

B-32

SYMARK - SYMBOL MARKER

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

24 ($18)

None

Symbol Number

Draw a symbol centered on X- and Y-coordinates. The symbol
indicated by the Operand is drawn, centered at the current screen
pointer position. The screen pointer is left unchanged.

EXAMPLE:

DC.W SYMARK,4

screen pointer

B-33

SYMARKS - MULTIPLE SYMBOL MARKERS

CODE: 25 ($19)

ATTRIBUTES: XOR - Exclusive-OR marker to display screen

ABSOLUTE/RELATIVE - Absolute or relative

OPERANDS: Symbol Number; Number of Symbols; X- and Y-Coordinates of Each

DESCRIPTION: Draw multiple symbols centered at each of the. specified X- and
Y-coordinate addresses. The specified symbol is displayed on the
screen at one or more locations. The locations (coordinates)
specified are those of the center of the symbol. The coordinates
may be specified absolutely or relatively, depending on the
attribute bit. In the case of relative coordinates, the first
set of coordinates is taken relative to the current screen
pointer position, while each of the renaining sets of coordinates
is taken relative to the imnediately preceding set of
coordinates. The screen pointer is left pointing to the center
of the last symbol marker displayed.

EXAMPLE:

DC.W SYMARKS+$1000
DC.W 2,4
DC.W 0,0,0,100,100,0,0,-100

Use relative mode
Symbol #2, 4 symbols
Coordinates

100 pixels

~

100
pixels

00

screen pointer
before SYMARKS
operation

B-34

screen pointer
after SYMARKS
operation

SUGGESTION/PROBLEM
REPORT QUALITY • PEOPLE • PERFORMANCE

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager
Maildrop DW164

Product:---------------

Please Print

Name _______________ _

Company _____________ _

Street----------------

City _______________ _

Manual: ______________ _

Title----------------

Division ---..,----------------

Mail Drop _____ Phone ______ _

State _________ Zip ____ _

For Additional Motorola Publications
Literature Distribution Center

Four Phase/Motorola Customer Support, Tempe Operations
(800) 528-1908

616 West 24th Street (602) 438-3100
Tempe, AZ. 85282
(602) 994-6561

®MOTOROLA

~ ltllOTOROLA Semiconductor Products Inc.
Q P.O. BOX 20912 •PHOENIX, ARIZONA 85036 •A SUBSIDIARY OF MOTOROLA INC.

16863·1 PRINTED IN USA (3/84) MPS 3M

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	reply
	xBack

