
"Creative Electronics"

SOFTWARE AGREEMENT

This software is copyrighted and the property of MITS, Inc.,

6328 Linn Avenue, NE, Albuquerque, New Mexico, and has been

supplied by MITS to you. This software is furnished subject

to the following restrictions: It shall not be reproduced

or copied without express written permission of MITS, Inc.

To do any of the above without approval by MITS, Inc., will

make you liable and open for MITS, Inc. to take legal action

against you.

This agreement shall be considered, accepted, and binding upon

your receipt of this and any software.

MITS/6328 Linn, N.E., Albuquerque, N.M. 87108,505/265-7553 or 262-'1951

~[Lu~~[ffi

~~~~~ . 



MITS ALTAIR BASIC 

REFERENCE MANUAL 

Table of Contents: 

INTRODUCTION .....•.........•.•.. ~ ..•... " ••••...••..... I 

GETTING STARTED WITH BASIC ••••••••••••••••• ~ •••••••••• 1 . 

REFERENCE MATERIAL •••••••••••••••••••••••• ; ••••••••• 23 

APPENDICES ........................... . _ ••...•• ~' ..•••. ... 45 
A) HOW TO LOAD BASIC •••••••••••• ; •••••••••••• 46 
B) INITIALIZATION DIALOG ••••••••••••••••••••• 51 
C) ERROR MESSAGES •••••••••••••••••••••••••••• 53 
D) SPACE HINTS ........ e .••••••••••• ~ •••••••••• "56 
E) SPEED HINTS ••••••••••••••••••••••.•• ~ •••••• 58 
F) DERIVED FUNCTIONS ••••••••••• ~ ••••••••••••• 59 
G) SIMULATED MATH FUNCTIONS •••••••••••••••••• 60 
H) CONVERTING BASIC PROGRAMS NOT 

WRITTEN FOR THE ALTAIR •••••••••••••••••• 62 
I) USING THE ACR INTERFACE ••••••••••••••••••• 64 
J) BASIC/MACHINE LANGUAGE INTERFACE •••••••••• 66 
K) ASCII CHARACTER CODES ••••••••••••••• '.' •••• 69 
L) EXTENDED BASIC •••••••••••••••••••••••••••• 71 
M) BAS I C TEXTS......... ~ ........ '. . .. e- • : • e .•••• 73 

© MITS, Inc., 1975 

PRINTED IN U.S.A. 
"Creative Electronics" 

P.o. BOX 8636 
ALBUQUERQUE, NEW MEXICO 87108 



The following are additions and corrections to the ALTAIR BASIC REFERENCE 
MANUAL. Be sure to read this over carefully before continuing. 

1) If you are loading BASIC from paper tape, be sure your Serial I/O 
board is strapped for eight data bits and no parity bit. 

2) On page 53 in Appendix C, the meaning for an "OS" error should read: 

Out of String Space. Allocate more string space by using 
the "CLEAR" command with an argument (see page 42), and then 
run your program again. If you cannot allocate more string 
space, try using smaller strings or less string variables. 

3) On page 42, under the "CLEAR" command, It is stated that "CLEAR" with 
no argument sets the amount of string space to 200 bytes. This is in
correct. "CLEAR" with no argument leaves the amount of string space 
unchanged. When BASIC is brought up, the amount of string space is 
initially set to 50 bytes. 

4) On page 30, under the "DATA" statement, the sentence "IN THE 4K VERSION 
OF BASIC, DATA STATEMENTS MUST BE THE FIRST STATEMENTS ON A LINE," 
should be changed to read, "IN THE 4K VERSION OF BASIC, A DATA STATE
MENT MUST BE ALONE ON A LINE." 

5) If you desire to use a terminal interfaced to the ALTAIR with a 
Parallel I/O board as your system console, you should load from the 
ACR interface (wired for address 6). Use the ACR load procedure de
scribed in Appendix A, except that you should raise switches 15 & 13 
when you start the boot. The Parallel I/O board must be strapped to 
address O. . 

6) If you get a checksum error while loading BASIC from a paper tape or a 
cassette, you may be able to restart the boot loader at location 0 with 
the appropriate sense switch settings. This depends on when the error 
occurs. The boot loader is not written over until the last block of 
BASIC is being read; which occurs during approximately the last two 
feet of a paper tape, or the last 10 to 15 seconds of a cassette. If 
the checksum error occurs during the reading of the last block of BASIC, 
the boot will be overwritten and you will have to key it in again. 

7) The number of nulls punched after a carriage return/line feed does not 
need to be set >=3 for Teletypes or >=6 for 30 CPS paper tape terminals, 
as described under the "NULL" command on page 23 of the BASIC manual. 
In almost all cases, no extra nulls need be punched after a CR/LF on 
Teletypes, and a setting of nulls to 3 should be sufficient for 30 CPS 
paper tape terminals. If any problems occur when reading tape (the 
first few characters of lines are lost), change the null setting to 1 
for Teletypes and 4 for 30 CPS terminals. 



8) If you have any problems loading BASIC, check to make sure that your 
terminal interface board (SIO or PIO) is working properly. Key in the 
appropriate echo program from below, and start it at location zero. 
Each character typed should be typed or displayed on your terminal. If 
this is not the case, first be sure that you are using the correct echo 
program. If you are using the correct program, but it is not function
ing properly, then most likely the interface board or the terminal is 
not operating correctly. 

In the foll-owing program listings, the nwnberto the left of the slash 
is the octal address and the number to the right is the octal code for that 
address. 

FOR REV 0 SERIAL I/O BOARDS WITHOUT THE STATUS BIT MODIFICATION 

o I 333 
3 I 040 
6 I 000 

11 I 323 
14 I 000 

1 I 000 
4 I 312 
7 I 333 

12 I 001 
15 I 000 

2 I 346 
5 I 000 

10 I 001 
13 I 303 

FOR REV 1 SERIAL I/O BOARDS (AND REV a MODIFIED BOARDS) 

o I 333 
3 I 332 
6 I 333 

11 I 001 
14 I 000 

FOR PARALLEL I/O BOARDS 

o / 333 
3 I 002 
6 I 000 

11 I 323 
14 I 000 

1 I 000 
4 I 000 
7 I 001 

12 I 303 

1 / 000 
4 I 312 
7 / 333 

12 I 001 
15 / 000 

2 I 017 
5 I 000 

10 I 323· 
13/ 000 

2 I 346 
5 I 000 

10 I 001 
13 I 303 

For those of you with the book, MY COMPUTER LIKES ME when i speak in 
BASIC, by Bob Albrecht, the following information may be helpful. 

1) ALTAIR BASIC uses "NEW" instead of "SCR" to delete the current 
program. 

2) Use Control-C. to stop execution of a program. Use a carriage
return to stop a program at an "INPUT" statement. 

3) You don't need an "END" statement at the end of a BASIC program. 

8/25/75 



:J:::n. "Ii rod "U.ctio:n. 

Before a computer can perform any useful function, it must be "told" 
what to do. Unfortunately, at this time, computers are not capable of 
understanding English or any other "human" language. This is primarily 
because our languages are rich with ambiguities and implied meanings. 
The computer must be told precise instructions and the exact sequence of 
operations to be performed in order to accomplish any specific task. 
Therefore, in order to facilitate human communication with a computer, 
programming languages have been developed. 

ALTAIR BASIC* is a programming language both easily understood and 
simple to use. It serves as an excellent Itoo1" for applications in 
areas such as business, science and education. With only a few hours of 
using BASIC, you will find that you can already write programs with an 
ease that few other computer languages can duplicate. 

Originally developed at Dartmouth University, BASIC language has 
found wide acceptance in the computer field. Although it is one of the 
simplest computer languages to use, it is very powerful. BASIC uses a 
sma 11 set of common Eng1 ish words as its II commands II. Des i gned specifi
cally as an "interactive ll language, you can give a command such as 
"PRINT 2 + 211 , and ALTAIR BASIC will immediately reply with 114". It 
isn't necessary to submit a card deck with your program on it and then 
wait hours for the results. Instead the full power of the ALTAIR is lIat 
your fingertipsll. 

Generally, if the computer does not solve a particular problem the 
way you expected it to, there is a "Bug" or error in your program, or 
else there is an error in the data which the program used to calculate 
its answer. If you encounter any errors in BASIC itself, please let us 
know and weill see that it's corrected. Write a letter to us containing 
the following information: 

1) System Configuration 

2) Version of BASIC 

3) A detailed description of the error 
Include all pertinent information 
such as a listing of the program in 
which the error occurred, the data 
placed into the program and BASIC's 
printout. 

All of the information listed above will be necessary in order to pro
perly evaluate the problem and correct it as quickly as possible. We 
wish to maintain as high a level of quality as possible with all of our 
ALTAIR software. 

* BASIC is a registered trademark of Dartmouth University . . ::a: · 



We hope that you enjoy ALTAIR BASIC, and are successful in using it 
to solve all of your programming needs. 

In order to maintain a maximum quality level in our documentation, 
we will be continuously revising this manual. If you have any sugges
tions on how we can improve it, please let us know. 

If you are already familiar with BASIC programming, the following 
section may be skipped. Turn directly to the Reference Material on 
page 22. 

NOTE: MITS ALTAIR BASIC is available under license or purchase 
agreements. Copying or otherwise distributing MITS software out
side the tePms of such an agreement may be a violation of copyright 
laws or the agreement itseZf. 

If any immediate problems with MITS software are encountered, feel 
free to give us a call at (505) 265-7553. The Software Department 
is at Ext. 3; "and ihejoint authors of the ALTAiR BASIC Interpreter, 
Bill Gates, Paul Allen and Monte Davidoff, will be glad to assist you. 



1 . 



This section is not intended to be a detailed course in BASIC pro
gramming. It will, however, serve as an excellent introduction for those 
of you unfamiliar with the language. 

The text here will introduce the primary concepts and uses of BASIC 
enough to get you started writing programs. For further reading sugges
tions, see Appendix M. 

If your ALTAIR does not have BASIC loaded and running, follow the 
procedures in Appendices A & B to bring it up. 

We recommend that you try each example in this section as it is pre
sented. This will enhance your "feel" for BASIC and how it is used. 

Once your I/O device has typed" OK ", you are ready to use ALTAIR 
BASIC. 

NOTE: AU aorronands to ALTAIR BASIC shou'ld end with a aarr-iage 
return. The adrriage return te'l'ls BASIC that you have finished 
typing the aorronand. If you make a typing error, type a baak
arrow ( -+- ), usuaUy shift/a, or an underUne to eUminate the 
'last aharaater. Repeated use of " -+- " wiU eUminate previous 
aharaaters. An at-sign ( @ ) wi'l'l e'liminate the entire 'line 
that you are typing. 

Now, try typing in the following: 

PRINT 10-4 (end with carriage. return) 

ALTAIR BASIC will immediately print: 

6 

OK 

The print statement you typed in was executed as soon as you hit the 
carriage return key. BASIC evaluated the formula after the "PRINT" and 
then typed out its value, in this case 6. 

Now try typing in this: 

PRINT 1/2,3*10 ("*" means muUip'ly, "/" means divide) 

ALTAIR BASIC will print: 

.5 30 

As you can see, ALTAIR BASIC can do division and multiplication as 
well as subtraction. Note how a II , II (comma) was used in the print com
mand to print two values instead of just one. The comma divides the 72 
character line into 5 columns, each 14 characters wide. The last two of 
the positions on the line are not used. The result is a II , II causes 
BASIC to skip to the next 14 column field on the terminal, where the 
value 30 was printed. 

2 



Commands such as the "PRINT" statcments you have jllst typed ill ;ITe 
called Direct Commands. There is another type of command calJ ed an J 11-

direct Command. Every Indirect command begins with a Line Numbcr. 1\ 
Line Number is any integer from 0 to 65529. 

Try typing in the following lines: 

10 PRINT 2+3 
20 PRINT 2-3 

A sequence of Indirect Commands is called a "Program". Instead of 
executing indirect statements immediately, ALTAIR BASIC saves Indirect 
Commands in the ALTAIR's memory. When you type in RUN ,BASIC will 
execute the lowest numbered indirect statement that has been typed in 
first, then the next highest, etc. for as many as were typed in. 

Suppose we type in RUN 

RUN 

ALTAIR BASIC will type out: 

5 
-1 

OK 

now: 

In the example above, we typed in line 10 first and line 20 second. 
However, it makes no difference in what order you type in indirect state
ments. BASIC always puts them into correct numerical order according to 
the Line Number. 

If we want a listing of the complete program currently in memory, 
we type in LIST Type this in: 

LIST 

ALTAIR BASIC will reply with: 

10 PRINT 2+3 
20 PRINT 2-3 
OK 

Sometimes it is desirable to delete a line of a program altogether. 
This is accomplished by typing the Line Number of the line we wish to 
delete, followed only by a carriage return. 

Type in the following: 

10 
LIST 

3 



. ALTAIR BASIC will reply with: 

20 PRINT 2-3 
OK 

We have now deleted line 10 from the program. There is no way to 
get it back. To insert a new line 10, just type in 10 followed by the 
statement we want BASIC to execute. 

Type in the following: 

10 PRINT 2*3 
LIST 

ALTAIR BASIC will reply with: 

10 PRINT 2*3 
20 PRINT 2-3 
OK 

There is an easier way to replace line 10 than deleting it and then 
inserting a new line. You can do this by just typing the new line 10 and 
hitting the carriage return. BASIC throws away the old line 10 and re
places it with the new one. 

Type in the following: 

10 PRINT 3-3 
LIST 

ALTAIR BASIC will reply with: 

10 PRINT 3-3 
20 PRINT 2-3 
OK 

It is not recommended that lines be numbered consecutively. It may 
become necessary to insert a new line between two existing lines. An in
crement of 10 between line numbers is generally sufficient. 

If you want 
type in II NEW ". 
to read in a new 
done in order to 

to erase the complete program currently stored in memory, 
If you are finished running one program and are about 

one, be sure to type in II NEW II first. This should be 
prevent a mixture of the old and new programs. 

Type in the following: 

NEW 

ALTAIR BASIC will reply with: 

OK 

4 



Now type ill: 

LIST 

ALTAIR BASIC will reply with: 

OK 

Often it is desirable to include text along with answers that are 
printed out, in order to explain the meaning of the numbers. 

Type in the following: 

PRINT "ONE THIRD IS EQUAL TO",1/3 

ALTAIR BASIC will reply with: 

ONE THIRD IS EQUAL TO .333333 

OK 

As explained earlier, including a II , " in a print statement causes 
it to space over to the next fourteen column field before the value fOl
lowing the " , " is printed. 

If we use a " ; " instead of a comma, the value next will be printed 
immediately following the previous value. 

NOTE: Numbers are always printed with at least one trailing space. 
Any text to be printed is always to be enclosed in double quotes. 

Try the following examples: 

A) PRINT "ONE THIRD IS EQUAL TO";1/3 
ONE THIRD IS EQUAL TO .333333 

OK 

B) PRINT 1,2,3 
1 2 3 

OK 

C) PRINT 1;2;3 
1 2 3 

OK 

D) PRINT -1;2;-3 
-1 2 -3 

5 



OK 

We will digress for a moment to explain the format of numbers in 
ALTAIR BASIC. Numbers are stored internally to over six digits of ac
curacy. When a number is printed, only six digits are shown. Every 
number may also have an exponent (a power of ten scaling factor). 

The largest number that may be represented in ALTAIR BASIC is 
1.70141 *10 38 , while the smallest posi~~ve number is f!_~3874*lO""39 

When a number is printed, the following rules are used to determine 
the exact format: 

1) If the number is negative, a minus sign (-) is printed. 
If the number is positive, a space is printed. 

2) If the absolute value of the number is an integer in the 
range 0 to 999999, it is printed as an integer. 

3) If the absolute value of the number is greater than or 
equal to .1 and less than or equal to 999999, it is printed 
in fixed point notation, with no exponent. 

4) If the number does not fall under categories 2 or 3, 
scientific notation is used. 

Scientific notation is formatted as follows: SX.XXXXXESTT. 
(each_~being some integer 0 to ~ 

The leading "S" is the sign of the number, a space for a 
positive number and a " - " for a negative one. One non
zero digit is printed before the decimal point. This is 
followed by the decimal point and then the other five digits 
of the mantissa. An "E" is then printed (for exponent), 
followed by the sign (S) of the exponent; then the two 
digits (TT) of the exponent itself. Leading zeroes are 
never printed; i.e. the digit before the decimal is never 
zero. Also, trailing zeroes are never printed. If there 
is only one digit to print after all trailing zeroes are 
suppressed, no decimal point is printed. The exponent 
sign will be " + " for positive and II - " for negative. 
Two digits of the exponent are always printed; that is 
zeroes are not suppressed in the exponent field. The 
value of any number expressed thus is the number to the 
left of the "E" times 10 raised to the power of the number 
to the right of the "E". 

No matter what format is used, a space is always printed following 
a number. The 8K version of BASIC checks to see if the entire number 
will fit on the current line. If not, a carriage return/line feed is 
executed before printing the number. -

6 



The following are examples of various numbers and the output format 
ALTAIR BASIC will place them into: 

NUMBER 

+1 
-1 
6523 
-23.460 
lE20 
-12.3456E-7 
1.234567E-10 
1000000 
999999 
.1 
.01 
.000123 

OUTPUT FORMAT 

1 
-1 
6523 

-23.46 
1E+20 

-1. 23456E-06 
1. 23457E-10 
1E+06 
999999 
.1 
1E-02 
1.23E-04 

A number input from the terminal or a numeric constant used in a 
BASIC program may have as many digits as desired, up to the maximum length 
of a line (72 characters). However, only the first 7 digits are·signifi
cant, and the seventh digit is rounded up. 

PRINT 1.2345678901234567890 
1.23457 

OK 

The following is an example of a program that reads a value from the 
terminal and uses that value to calculate and print a result: 

10 INPUT R 
20 PRINT 3.14159*R*R 
RUN 
? 10· 
314.159 

OK 

Here's what's happening. When BASIC encounters the input statement, 
it types a question mark (?) on the terminal and then waits for you to 
type in a number. When you do (in the above example 10 was typed), execu
tion continues with the next statement in the program after the variable 
(R) has been set (in this case to 10). In the above example, line 20 
would now be executed. When the formula after the PRINT statement is 
evaluated, the value 10 is substituted for the variable R each time R ap
pears in the formula. Therefore, the formula becomes 3.14159*10*10, or 
314.159. 

If you haven't already guessed, what the program above actually does 
is to calculate the area of a circle with the radius "R". 

7 



If we want(.~d to calculate the area of various circles, we eouid keep 
re-running the program over each time roreach successive cirdo. But, 
there I s an easier way to do .i t simply oy <Jddi ng another 1 inc .totho pro
gram as follows: 

30 GOTO 10 
RUN 
? 10 

314.159 
? 3 

28.2743 
? 4.7 

69.3977 
? 

OK 

By putting a " GOTO " statement on the end of our program, we have 
caused it to go back to line 10 after it prints each answer for the suc
cessive circles. This could have gone on ind·efinite1y, but we decided 
to stop after calculating the area for three circles. This wasaccom
plished by typing a carriage return to the input statement (thus a blank 
line) . 

NOTE: Typing a caPriage return to an input statement in the 4K 
version of BASIC will cause a SN error (see Reference Material). 

The letter "R" in the program we just used was termed a "variable". 
A variable name can be any alphabetic character and may be followed by 
any alphanumeric character •. 

. In· the 4K version of BASIC, the second character must be numeric 
or omitted. In the 8K version of BASIC, any alphanumeric characters 
after the first two are ignored. An alphanumeric character is any let
ter (A-Z) or any number (0-9). 

Below are some examples of legal and illegal variable names: 

LEGAL 

IN 4K VERSION 

A 
Zl 

IN 8K VERSION 

TP 
PSTG$ 
COUNT 

ILLEGAL 

% (1st character must be alphabetic) 
ZlA (variable name too long) 
QR (2nd character must be numeric) 

TO (variable names cannot be reserved 
words) 

RGOTO (variable names cannot contain 
reserved words) 

8 



The words used as BASIC statements are "reserved" for this sped fi c 
purpose. You cannot use these words as variable names or inside of any 
variable name. Por instance, "PEND" would be illegal because "I.:N[)" j s a 
reserved word. 

The following is a list of the reserved words in ALTAIR BASIC: 

4K RESERVED WORDS 

ABS CLEAR DATA DIM END FOR GOSUB GOTO IF INPUT 

INT LET LIST NEW NEXT PRINT READ REM RESTORE 

RETURN RND RUN SGN SIN SQR STEP STOP TAB( THEN 

TO USR 

8K RESERVED WORDS INCLUDE ALL THOSE ABOVE, AND IN ADDITION 

ASC AND ATN CHR$ CLOAD CONT COS CSAVE DEF EXP 
• 

FN FRE INP LEFT$ LEN LOG MID$ NULL ON OR NOT 

OUT PEEK POKE POS RIGHT$ SPC( STR$ TAN VAL WAIT 

Remember, in the 4K version of BASIC variable names are only a letter 
or a letter followed by a number. Therefore, there is no possibility of 
a conflict with a reserved word. 

Besides having values assigned to variables with an input statement, 
you can also set the value of a variable with a LET or assignment state
ment. 

Try the following examples: 

A=5 

OK 

PRINT A,A*2 
5 10 

OK 
LET Z=7 

OK 

PRINT Z, Z-A 
7 2 

OK 

9 



As can be seen from the examples, the "LET" is optional in an assign
ment statement. 

BASIC "remembers" the values that have been assigned to variables 
using this type of statement. This "remembering" process uses space in 
the ALTAIR's memory to store the data. 

The values of variables are thrown away and the space in memory 
used to store them is released when one of four things occur: 

1) A new line is typed into the program or an old 
line is deleted 

2) A CLEAR command is typed in 

3) A RUN command is typed in 

4) NEW is typed in 

Another important fact is that if a variable is encountered in a 
formula before it is assigned a value, it is automatically assigned the 
value zero. Zero is then substituted as the value of the variable in 
the particular formula. Try the example below: 

PRINT Q,Q+2,Q*2 
o 2 o 

OK 

Another statement is the REM statement. REM is short for remark. 
This statement is used to insert comments or notes into a program. When 
BASIC encounters a REM statement the rest of the line is ignored. 

This serves mainly as an aid for the .programmer himself, and serves 
no useful function as far as the operation of the program in solving a 
particular problem. 

Suppose we wanted to write a program to check if a number is zero 
or not. With the statements we've gone over so far this could not be 
done. What is needed is a statement which can be used to conditionally 
branch to another statement. The "IF-THEN" statement doe~ just that. 

Try typing in the following program: (remember, type NEW first) 

10 INPUT B 
20 IF B=O THEN 50 
30 PRINT "NON-ZERO" 
40 GOTO 10 
SO PRINT "ZERO" 
60 GOTO 10 

When this program is typed into the ALTAIR and run, it will ask for 
a value for B. Type any value you wish in. The ALTAIR will then come to 
the "IF" statement. Between the "IF" and the "THEN" portion of the state
ment there are two expressions separated by a relation. 

10 



A relation is UIW or the following six symbols: 

RELATION MEANING 

= EQUAL TO 
> GREATER THAN 
< LESS THAN 
<> NOT EQUAL TO 
<= LESS THAN OR EQUAL TO 
=> GREATER THAN OR EQUAL TO 

The IF statement is either true or false, depending upon whether the 
two expressions satisfy the relation or not. For example, in the pro
gram we just did, if 0 was typed in for B the IF statement would be true 
because 0=0. In this case, since the number after the THEN is 50, execu
tion of the program would continue at line 50. Therefore, "ZERO" would 
be printed and then the program would jump back to line 10 (because of 
the GOTO statement in line 60). 

Suppose a 1 was typed in for B. Since 1=0 is false, the IF state
ment would be false and the program would continue execution with the 
next line. Therefore, "NON-ZERO" would be printed and the GOTO in line 
40 would send the program back to line 10. 

Now try the following program for comparing two numbers: 

10 INPUT A,B 
20 IF A<=B THEN 50 
30 PRINT "A IS BIGGERII 
40 GOTO 10 
50 IF A<B THEN 80 
60 PRINT IITHEY ARE THE SAME" 
70 GOTO 10 
80 PRINT "B IS BIGGERII 
90 GOTO 10 

When this program is run, line 10 will input two numbers from the 
terminal. At line 20, if A is greater than B, A<=B will be false. This 
will cause the next statement to be executed, printing "A IS BIGGER" and 
then line 40 sends the computer back to line 10 to begin again. 

At line 20, if A has the same value as B, A<=B is true so we go to 
line 50. At line 50, since A has the same value as B, A<B is false; 
therefore, we go to the following statement and print "THEY ARE THE SAME". 
Then line 70 sends us back to the beginning again. 

At line 20, if A is smaller than B, A<=B is true so we go to line 50. 
At line 50, A<B will be true so we then go to line 80. "B IS BIGGER" is 
then printed and again we go back to the beginning. 

Try running the last two programs several times. It may make it 
easier to understand if you try writing your own program at this time 
using the IF-THEN statement. Actually trying programs of your own is 
the quickest and easiest way to understand how BASIC works. Remember, 
to stop these programs just give a .carr~_age return to the input state
ment. 

11 



One advantage of computers is their ability to perform repetitive 
tasks. Let's take a closer look and see how this works. 

Suppose we want a table of square roots from 1 to 10. The BASIC 
function for square root is "SQR"; the form being SQR(X), X being the 
number you wish the square root calculated from. We could write the pro
gram as follows: 

10 PRINT 1.SQR(1) 
20 PRINT 2.SQR(2) 
30 PRINT 3.SQR(3) 
40 PRINT 4.SQR(4) 
50 PRINT 5.SQR(5) 
60 PRINT 6.SQR(6) 
70 PRINT 7,SQR(7) 
80 PRINT 8.SQR(8) 
90 PRINT 9.SQR(9) 
100 PRINT 10,SQR(10) 

This program will do the job; however, it is terribly inefficient. 
We can improve the program tremendously by using the IF statement just 
introduced as follows: 

10 N=l 
20 PRINT N.SQR(N) 
30 N=N+l 
40 IF N<=lO THEN 20 

When this program is run, its output will look exactly like that of 
the 10 statement program above it. Let's look at how it works. 

At line 10 we have a LET statement which sets the value of the vari
able N at 1. At line 20 we print N and the square root of N using its 
current value. It thus becomes 20 PRINT l,SQR(l),and this calculation 
is printed out. 

At line 30 we use what will appear at first to be a rather unusual 
LET statement. Mathematically. the statement N=N+l is nonsense. However, 
the important thing to remember is that in a LET statement, the symbol 
'I = " does not signify equality. In this case " = " means "to be replaced 
with". All the statement does is to take the current value of N and add 
1 to it. Thus, after the first time through line 30, N becomes 2. 

At line 40, since N now equals 2, N<=lO is true so the THEN portion 
branches us back to line 20, with N now at a value of 2. 

The overall result is that lines 20 through 40 are repeated, each 
time adding 1 to the value of N. When N finally equals 10 at line 20, 
the next line will increment it to 11. This results in a false state
ment at line 40, and since there are no further statements to the pro
gram it stops. 

This technique is referred to as "looping" or "iteration". Since 
it is used quite extensively in programming. there are special BASIC 
statements for using it. We can show these with the following pro
gram. 

, 12 



10 FOR N=l TO 10 
20 PRINT N,SQR(N) 
30 NEXT N 

The output of the program listed above will be exactly the same as 
the previous two programs. 

At line 10, N is set to equal 1. Line 20 causes the value of Nand 
the square root of N to be printed. At line 30 we see a new type of 
statement. The "NEXT N" statement causes one to be added to N, and then 
if N<=lO we go back to the statement following the "FOR" statement. The 
overall operation then is the same as with the previous program. 

Notice that the variable following the "FOR" is exactly the same as 
the variable after the "NEXT". There is nothing special about the N in 
this case. Any variable could be used, as long as they are the same in 
both the "FOR" and the "NEXT" statements. For instance, "Zl" could be 
substituted everywhere there is an "N" in the above program and it would 
function exactly the same. 

Suppose we wanted to print a table of square roots from 10 to 20, 
only counting by two1s. The following program would perform this task: 

10 N=lO 
20 PRINT N,SQR(N) 
30 N=N+2 
40 IF N<=20 THEN 20 

Note the similar structure between this program and the one listed 
on page 12 for printing square roots for the numbers 1 to 10. This pro
gram can also be written using the "FOR" 10·op just introduced. 

10 FOR N=lO TO 20 STEP 2 
20 PRINT N,SQR(N) 
30 NEXT N 

Notice that the only major difference between this program and the 
previous one using "FOR" loops is the addition of the "STEP 211 clause. 

This tells BASIC to add 2 to N each time, instead of 1 as in the 
previous program. If no "STEP" is given in a "FOR" statement, BASIC as
sumes that one is to be added each time. The "STEP" can be followed by 
any expression. 

Suppose we wanted to count backwards from 10 to 1. A program for 
doing this would be as follows: 

10 1=10 
20 PRINT I 
30 1=1-1 
40 IF 1>=1 THEN 20 

Notice that we are now checking to see that I is greater than or 
equal to the final.value. The reason is that we are now counting by a 
negative number. In the previous examples it was the opposite, so we 
were checking for a variable less than or equal to the final value. 

13 



The "STEP" statement previously shown can also be used with negative 
numbers to accomplish this same purpose. This can be dOne using the same 
format as in the other program, as follows: 

10 FOR 1=10 TO 1 STEP -1 
20 PRINT I 
30 NEXT I 

"FOR" loops can also be "nested",· An·example of this procedure fol
lows: 

10 FOR 1=1 TO 5 
20 FOR J"l TO 3 
30 PRINT I,J 
40 NEXT J 
50 NEXT I 

Notice that the "NEXT J" comes before the "NEXT I". This is because 
the J-loop is inside of the I-loop .. The following program 1S incorrect; 
run it and see what happens. 

10 FOR 1=1 TO 5 
20 FOR J=l TO 3 
30 PRINT I,J 
40 NEXT I 
50 NEXT J 

It does not work because when the "NEXT I" is encountered, all know
ledge of the J-loop is lost. This happens because theJ-loop is "inside" 
of the I-loop. 

It is often convenient to be able to select any element in a table 
of numbers. BASIC allows this to be done through the use of matrices. 

A matrix is a table of numbers. The name of this table, called the 
matrix name, is any legal variable name, "A" for example. The matrix 
name "A" is distinct and separate from the simple variable "A", and you 
could use both in the same program. 

To select an element of the table, we subscript "A" : that is to 
select the I' th element, .. we enclose I in parenthesis "(I)" and then fol
low "A" by this subscript. Therefore, "A(I)" is the I'th element in the 
matrix "A". 

NOTE: In this section of the manuaZ we wiZZ be concerned with 
one-dimensionaZ matrices onZy. (See Reference MateriaZ) 

"ACI)" is only one element of matrix A, and BASIC must be told how 
much space to allocate for the entire matrix. 

This is done with a "DIM" statement, using the format !'DIM A(15)". 
In this case, we have reserved space for the matrix index "I" to go from 
o to 15. Matrix subscripts always start at 0; therefore, in the above 
example, we have allowed for 16 numbers in matrix A. 

14 



If "A(l)" is used in a program before it has been dimensioned, BASIC 
reserves space for 11 elements (0 through 10). 

As an example of how matri.ces arc used, try the following program 
to sort a list of 8 numbers with you picking the numbers to be sorted. 

10 DIM A(8) 
20 FOR 1=1 TO 8 
30 INPUT A(I) 
50 NEXT I 
70 F=O 
80 FOR 1=1 TO 7 
90 IF A(I)<=A(I+l) THEN 140 
100 T=A(I) 
110 A(I)= A(I+l) 
120 A(I+l)=T 
130 F=l 
140 NEXT I 
150 IF F=l THEN 70 
160 FOR 1=1 TO 8 
170 PRINT A(I), 
180 NEXT I 

When line 10 is executed, BASIC sets aside space for 9 numeric values, 
A(O) through A(8). Lines 20 through 50 get the unsorted list from the 
user. The sorting itself is done by going through the list of numbers and 
upon finding any two that are not in order, we switch them. "F" is used 
to indicate if any switches were done. If any were done, line 150 tells 
BASIC to go back and check some more. 

If we did not switch any numbers, or after they are all in order, 
lines 160 through 180 will print out the sorted list. Note that a sub
script can be any expression. 

Another useful pair of statements are "GOSUB" and "RETURN". If you 
have a program that performs the same action in several different places, 
you could duplicate the same statements for the action in each place with
in the program. 

The "GOSUB"-"RETURN" statements can be used to avoid this duplication. 
When a "GOSUB" is encountered, BASIC branches to the line whose number fol
lows the "GOSUB". However, BASIC remembers where it was in the program 
before it branched. When the "RETURN" statement is encountered, BASIC 
goes back to the first statement following the last "GOSUB" that was exe
cuted. Observe the following program. 

10 PRINT "WHAT IS THE NUMBER"; 
30 GOSUB 100 
40 T=N 
50 PRINT "WHAT IS THE SECOND NUMBER"; 
70 GOSUB 100 
80 PRINT "THE SUM OF THE TWO NUMBERS IS",T+N 
90 STOP 
100 INPUT N 

15 



110 IF N = INT(N) THEN 140 
120 PRINT "SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN." 
130 GOTO 100 
140 RETURN 

What this program does is to ask for two numbers which must be inte
gers, and then prints the sum of the two. The subroutine in this pro
gram is lines 100 to 130. The subroutine asks for a number, and if it 
is not an integer, asks for a n1imber again. It will continue to ask until 
an integer value is typed in. 

The main program prints II WHAT IS THE NUMBER", and then calls the 
subroutine to get the value of the number into N. When the subroutine 
returns (to line 40), the value input is saved in the variable T. This 
is done so that when the subroutine is called a second time, the value 
of the first number will not be lost. 

" WHAT IS THE SECOND NUMBER " is then printed, and the second value 
is entered when the subroutine is again called. 

When the subroutine returns the second time, ., THE SUM OF THE TWO 
NUMBERS IS " is printed, followed by the value of their sum. T contains 
the value of the first number that was entered and Ncontains the value 
of the second number. 

The next statement in the program is a "STOP" statement. This causes 
the program to stop execution at line 90. If the "STOP" statement was not 
included in the program, we would "fall into" the subroutine at line 100. 
This is undesirable because we would be asked to input another number. If 
we did, the subroutine would try to return; and since there was no "GOSUB" 
which called the subroutine, an RG error would occur. Each "GOSUB" exe
cuted in a program should ,have a matching "RETURN" executed later, and the 
opposite applies, i. e. a j'RETURN" should be encountered only if it-is 
part of a subroutine which has been called by a "GOSUB". 

Either "STOP" or "END" can be used to separate a program from its 
subroutines. In the 4K version of BASIC, there is no difference between 
the "STOP" and the "END". In the 8K version, "STOP" will print a mes
sage saying at what line the "STOP" was encountered. 

Suppose you had to enter numbers to your program that didn't change 
each time the program was run, but you would like it to be easy to change 
them if necessary. BASIC contains Special statements for this purpose,' 
called the "READ" and "DATA" statements. 

Consider the following program: 

10 PRINT "GUESS A NUMBER"; 
20 INPUT G 
30 READ D 
40 IF D=-999999 THEN 90 
50 IF D<>G THEN 30 
60 PRINT "YOU ARE CORRECT" 
70 END 
90 PRINT "BAD GUESS, TRY AGAIN." 
95 RESTORE 

16 



100 GOTO 10 
110 DATA 1,393,-39,28,391,-8,0,3.14,90 
120 DATA 89,5,10,15,-34,-999999 

This is what happens when this program is run. 
statement is encountered, the effect is the same as 
But, instead of getting a number from the terminal, 
from the "DATA" statements. 

When the "READ" 
an INPUT statement. 
a number is read 

The first time a number is needed for a READ, the first number in 
the first DATA statement is returned. The second time one is needed, 
the second number in the first DATA statement is returned. When the en
tire contents of the first DATA statement have been read in this manner, 
the second DATA statement will then be used. DATA is always read se
quentially in this manner, and there may be any number of DATA statements 
in your program. 

The purpose of this program is to playa little game in which you 
try to guess one of the numbers contained in the DATA statements. For 
each guess that is typed in, we read through all of the numbers in the 
DATA statements until we find one that matches the guess. 

If more values are read than there are numbers in the DATA state
ments, an out of data (OD) error occurs. That is why in line 40 we check 
to see if -999999 was read. This is not one of the numbers to be matched, 
but is used as a flag to indicate that all of the data (possible correct 
guesses) has been read. Therefore, if -999999 was read, we know that the 
guess given was incorrect. 

Before going back to line 10 for another guess, we need to make the 
READ's begin with the first piece of data again. This is the function of 
the "RESTORE". After the RESTORE is encountered, the next piece of data 
read will be the first piece in the first DATA statement again. 

DATA statements may be placed anywhere within the program. Only 
READ statements make use of the DATA statements in a program, and any 
other time they are encountered during program execution they will be 
ignored. 

THE FOLLOWING INFORMATION APPLIES TO THE BK VERSION 
OF BASIC ONLY 

A list of characters is referred to as a "String'!. MITS, ALTAIR, 
and THIS IS A TEST are all strings. Like numeric variables, string 
variables can be assigned specific values. String variables are distin
guished from numeric variables by a "$" after the variable name. 

For example, try the following: 

A$="ALTAIR 8800" 

OK 
PRINT A$ 
ALTAIR 8800 

OK 

17 



In this example, we set the string variable A$ to the string value 
"ALTAIR 8800". Note that we also enclosed the character string to be as
signed to A$ in quotes. 

Now that we have set A$ to a string value, we can find out what the 
length of this value is (the number of characters it contains). We do 
this as follows: 

PRINT LEN(A$),LEN("MITS") 
11 . 4 

OK 

The "LEN" function returns an integer equal to the number of chara
cters in a string. 

The number of characters in a string expression may range from 0 to 
255. A string which contains 0 characters is called the "NULL" string. 
Before a string variable is set to a value in the program, it is initial
ized to the null string. Printing a null string on the terminal will 
cause no characters to be printed, and the print head or cursor will not 
be advanced to the next column. Try the following: 

PRINT LEN(Q$);Q$;3 
o 3 

OK 

Another way to create the null string is: Q$='III 
Setting a string variable to the null string can be used to free up 

the string space used by a non-null string variable. 

Often it is desirable to access parts of a string and manipulate 
them. Now that we have set A$ to "ALTAIR 8800", we might want to print 
out only the first six characters of A$. We would do so like this: 

PRINT LEFT$(A$,6) 
ALTAIR 

OK 

"LEFT$" is a string function which returns a string.composed of the 
leftmost N characters of its string argument. Here's another example: 

FOR N=l TO LEN(A$):PRINT LEFT$(A$,N):NEXT N 
A 
AL 
ALT 
ALTA 
ALTAI 
ALTAIR 
ALTAIR 
ALTAIR 8 
ALTAIR 88 

18 



ALTAIR 880 
ALTAIR 8800 

OK 

Since A$ has 11 characters, this loop will be executed with N=1,2, 
3, ..• ,10,11. The first time through only the first chatacter will be 
printed, the second time the first two characters will be printed, etc. 

There is another string function called "RIGHT$" which returns the 
right N characters from a string expression. Try 5ubstfiuting-iIRiGHT$" 
for "LEFT$" in the previous example and see what happens. . . 

There is also a string function which allows us to take characters 
from the middle of a string. Try the following: 

FOR N=l TO LEN(A$):PRINT MID$(A$,N):NEXT N 
ALTAIR 8800 
LTAIR 8800 
TAIR 8800 
AIR 8800 
IR 8800 
R 8800 

8800 
8800 
800 
00 
o 

OK 

"MID$" returns a string starting at the Nth position of A$ to the 
end (last character) of A$. The first position of the string is posi
tion 1 and the last possible position of a string is position 255. 

Very often it is desirable to extract only the Nth character from 
a string. This can be done by calling MID$ with three arguments. The 
third argument specifies the number of characters to return. 

For example: 

FOR N=l TO 
A 
L 
T 
A 
I 
R 

8 
8 
o 
o 

OK 

LEN(A$):PRINT MID$(A$,N,1),MID$(A$,N,2):NEXT N 
AL 
LT 
TA 
AI 
IR 
R 

8 
88 
80 
00 
o 

19 



See the Reference Material for more details 6n the workings of 
"LEFT$", "RIGHT$"· and "MID$". 

Strings may also be concatenated (put or joined together) through 
the use of the "+" operator. Try the following: 

B$="MITS"+11 "+A$ 

OK 
PRINT B$ 
MITS ALTAIR 8800 

OK 

Concatenation is especially useful if you wish to take a string apart 
and then put it back together with slight modifications. For instance: 

C$=LEFT$(B$,4)+"-"+MID$(B$,6,6)+"-"+RIGHT$(B$,4) 

OK 
PRINT C$ 
MITS-ALTAIR-8800 

OK 

Sometimes it is desirable to convert a number to its string repre
sentation and vice-versa. "VAL" and "STR$" perform these functions. 

Try the following: 

STRING$="567.8" 

OK 
PRINT VAL(STRING$) 
567.8 

OK 
STRING$=STR$(3.l415) 

OK 
PRINT STRING$,LEFT$(STRING$,5) 
3.1415 3.14 

OK 

"STR$" can be used to perform formatted I/O on numbers. You can 
convert a number to a string and then use LEFT$, RIGHT$, MID$ ani con
catenation to reformat the number as desired. 

"STR$" can also be used to conveniently find out how many print 
columns a number will take. For example: 

PRINT LEN(STR$(3.l57)) 
6 

20 



OK 

If you have an application where a user is typing in a question such 
as "WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1 
FEET?II you can use "VAL" to extract the numeric values 5.36 and 5.1 from 
the question. For further functions "CHR$" and "ASC" see Appendix K. 

The following program sorts a list of string data and prints out 
the sorted list. This program is very similar to the one given earlier 
for sorting a numeric list. 

100 DIM A$(15):REM ALLOCATE SPACE FOR STRING MATRIX 
110 FOR 1=1 TO 15: READ A$ (I) : NEXT I: REM READ IN STRINGS--
120 F=O:I=l:REM SET EXCHANGE FLAG TO ZERO AND SUBSCRIPT TO 1 
130 IF A$(I)<=A$(I+l) THEN l80:REM DON'T EXCHANGE IF ELEMENTS 

IN ORDER 
140 T$=A$(I+l):REM USE T$ TO SAVE A$(I+l) 
150 A$CI+l)=A$(I):REM EXCHANGE TWO CONSECUTIVE ELEMENTS 
160 A$(I)=T$ 
170 F=l:REM FLAG THAT WE EXCHANGED TWO ELEMENTS 
180 1=1+1: IF 1<15 GOTO 130 
185 REM ONCE WE HAVE MADE A PASS THRU ALL ELEMENTS, CHECK 
187 REM TO SEE IF WE EXCHANGED ANY. IF NOT, DONE SORTING. 
190 IF F THEN l20:REM EQUIVALENT TO IF F<>OTHEN 120 
200 FOR 1=1 TO l5:PRINTA$(I):NEXT I: REM P-RINT SORTED LIST 
210 REM STRING DATA FOLLOWS 
220 DATA APPLE,DOG,CAT,MITS,ALTAIR,RANDOM 
230 DATA MONDAY,"***ANSWER***"," FOO" 
240 DATA COMPUTER, FOO, ELP , MILWAUKEE ,SEATTLE ,ALBUQUERQUE 

21 



22. 



~~u® 
"Creative Electronics" 

23 



COMMANDS 

A command is usually given after BASIC has typed OK. This is called 
the "Command Level". Commands may be used as program statements. Certain 
comntand~, Such as LIST, NEW and CLOAD will terminate program execution 
wh~n they finish. 

NAME 

CLEAR 

LIST 

NULL 

RUN 

EXAMPLE PURPOSE/USE 

*(SEE PAGE 42 FOR EXAMPLES AND EXPLANATION) 

LIST 
LIST 100 

NULL 3 

RUN 

Lists current program 
optionally starting at specified line. 
List can be control-C'd (BASIC will 
finish listing the current line) 

(Null command only in 8K version, but 
paragraph applicable to 4K version also) 
Sets the number of null (ASCII 0) charac
ters printed after a carriage return/line 
feed. The number of nulls printed may 
be set from 0 to 71. This is a must for 
hardcopy terminals that require a delay 
after a CRLF~ It is necessary to set the 
number of nulls typed on· ,CRLF to 0 before 
a paper tape of a program is read in from 
at~letype'(TELETYPE is a registered 
trademark. of the TELETYPE CORPORATION). 
In the 8K version, use the null command 
to set the number of nulls to zero. In 

. the 4K version', this is accomplished by 
patching location 46 octal to contain the 
number of nulls to be typed plus 1. 
(Depositing a 1 in location 46 would set 
the number of nulls typed to zero.) When 
you punch a paper tape of a program using 
the list command, null should be set >=3 
for 10 CPS terminals, >=6 for 30 CPS ter
minals. When not making a tape, we recom
mend that you use a null setting of 0 or 1 
for Teletypes, and 2 or 3 for hard copy 
30 CPS terminals. A setting of 0 will 
work with'TeJetype compatible CRT's. 

Starts execution of the program currently 
in memory at the lowest numbered state
ment. Run deletes all variables (does a 
CLEAR) and restores DATA. If you have 
stopped your program and wish to continue 
execution at some point in the program, 
use a direct GOTO statement to start 
execution of your program at the desired 
line. *CRLF=carriage return/line feed 

24 



NEW 

CONT 

r~UN 200 

NEW 

t8K vcrsion only) uptiullally startilli'. 
at thcspcl:ificJ line number 

Ueletes current program and all variables 

THE FOLLOWING COMMANDS ARE IN THE BK VERSION ONLY 

CONT Continues program execution after a 
control/C is typed or a STOP statement 
is executed. You cannot continue after 
any error, after modifying your program, 
or before your program has been run. 
One of the main purposes of CONT is de
bugging. Suppose at some point after 
running your program, nothing is printed. 
This may be because your program is per
forming some time consuming calculation, 
but it may be because you have fallen 
into an "infinite loop". An infinite loop 
is a series of BASIC statements from 
which there is no escape. The ALTAIR will 
keep executing the series of statements 
over and over, until you intervene or 
until power to the ALTAIR is cut off. 
If you suspect your program is in an 
infinite loop, type in a control/C. In 
the 8K version, the line number of the 
statement BASIC was executing will be 
typed out. After BASIC has typed out OK, 
you can use PRINT to type out some of the 
values of your variables. After examining 
these values you may become satisfied that 
your program is functioning correctly. 
You should then type in CONT to continue 
executing your program where it left off, 
or type a direct GOTO statement to resume 
execution of the program at a different 
line. You could also use assignment (LET) 
statements to set some of your variables 
to different values. Remember, if you 
control/C a program and expect to continue 
it later, you must not get any errors or 
type in any new program lines. If you 
do, you won't be able to continue and will 
get a "CN" (continue not) error. It is 
impossible to continue a direct command. 
CONT always resumes execution at the next 
statement to be executed in your program 
when control/C was typed. 

25 



(LOAD 

(SAVE 

THE FOLLOWING TWO COMMANDS ARE AVAILABLE IN THE 8X CASSETTE 
VERSION ONLY 

(LOADP 

(SAVE P 

OPERATORS 

Loads the program named P from the 
cassette tape. A NEW command is auto
matically done before the CLOAD com
mand is executed. When done, the CLOAD 
will type out OK as us~al. Theone
character program designator may be any 
printing character. CSAVE and CLOAb 
use I/O ports 6 & 7. 
See Appendix I for more information. 

Saves on cassette tape the current pro
gram in the ALTAIR's memory. The pro
gram in memory is left unchanged. More 
than one program may be stored on cassette 
using this command. CSAVE and CLOAD use 
I/O ports 6 & 7. 
See Append~x I for more information 

SYMBOL SAMPLE STATEMENT PURPOSE/USE 

= A=100 
LET Z=2.5 

B=-A 

Assigns a value to a variable 
The LET is optional 

Negation. Note that O-A is subtraction, 
while -A is negation. 

+ 130 PRINT X+3 Exponentiation (BK version) 
(usuaLLy a shift/N) (equal to X*X*X in the sample statement) 

0+0=1 0 to any other power = 0 

* 
I 

+ 

140 X=R*(B*D) 

150 PRINT X/1.3 

160 'Z=R+T+Q 

170 J=100-I 

A+B, with A negative and B not an integer 
gives an FC error. 

Mul tiplication 

Division 

Addition 

Subtraction 

RULES FOR EVALUATING EXPRESSIONS: 
1) Operations of higher precedence are performed before opera
tions of lower precedence. This means the multiplication and 
divisions are performed before additions and subtractions. As 
an example, 2+10/5 equals 4, not 2.4. When operations of equal 
precedence are found in a formula, the left hand one is executed 
first: 6-3+5=B, not -2. 

26 



2) The order in which operations are performed can always be 
specified explicitly through tile use of parentheses. For in
stance, to add 5 to 3 and then divide that by 4, we would use 
(5+3)/4, which equals 2. If instead we had used 5+3/4, we 
would get 5.75 as a result (5 plus 3/4). 

The precedence of operators used in evaluating expressions is as 
follows, in order beginning with the highest precedence: 

(Note: Operators listed on the same line have the same precedence.) 

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST 

2) t 

3) NEGATION 

4) * / 

5.) + 

EXPONENTIATION (BK VERSION ONLY) 

-X WHERE X MAY BE A FORMULA 

MULTIPLICATION AND DIVISION 

ADDITION AND SUBTRACTION 

6) RELATIONAL OPERATORS: 
(equal precedence for 
aU six) 

= EQUAL 
<> NOT EQUAL 

< LESS THAN 
> GREATER THAN 

<= LESS THAN OR EQUAL 
>= GREATER THAN OR EQUAL 

(BK VERSION ONLY) (These 3 below are Logical Operators) 

7) NOT LOGICAL AND BITWISE nNOT Il 

LIKE"-NEGATION, -NOT" TAKES-ONLY "tHE 
FORMULA TO ITS RIGHT AS AN ARGUMENT 

8) AND LOGICAL AND BITWISE nAND Il 

9) OR LOGICAL AND BITWISE nOR n 

In the 4K version of BASIC, relational operators can only be used 
once in an IF statement. However, in the 8K version a relational ex
pression can be used as part of any expression. 

Relational Operator expressions will always have a value of True (-1) 
or a value of PaIse (0). Therefore, (5=4)=0, (5=5)=-1,(4>5)=0, (4<5)=-1, 
etc. 

The THEN clause of an IF statement is executed whenever the formula 
after the IF is not equal to O. That is to say, IF X THEN ••• is equivalent 
to IF X<>O THEN.--.• --. 

21 



SYMBOL 

= 

<> 

> 

< 

<=,=< 

>=,=> 

AND 

OR 

NOT 

SI\MI'LL S'J'I\TLMI:NT I'Ul{POSL/lJSI: ----. -- ---"----

10 IF A=15 THEN 40 Expression Equals Expression 

70 IF A<>O THEN 5 Expression Does Not Equal Expression 

3D IF 8>100 THEN 8 Expression Greater Than Expression 

160 IF 8<2 THEN 10 Expression Less Than Expression 

180 IF 100<=8+( THEN 10 Expression Less Than Or Equal 
To Expression 

190 IF Q=>R THEN 50 Expression Greater Than Or Equal 
To Expression 

2 IF A<5 AND 8<2 THEN 7 (BK Version only) If expression I 
(A<5) AND expression 2 (B<2) are both 
true, then branch to line 7 

IF A<l OR 8<2 THEN 2 (BK Version only) If either expres
sion I (A<l) OR expression 2 (8<2) is 
true, then branch to line 2 

IF NOT Q3 THEN 4 (BK Version only) If expression 
"NOT Q3" is true (because Q3 is 
false), then branch to line 4 
Note: NOT -1=0 (NOT true=false) 

AND, OR and NOT can be used for bit manipulation, and for performing 
boolean operations. 

These three operators convert their arguments to sixteen bit, signed 
two's, complement integers in the range -32768 to +32767. They then per
form the specified logical operation on them and return a result within 
the same range. If the arguments are not in this range, an "Fe" error 
results. 

The operations are performed in bitwise fashion, this means that each 
bit of the result is obtained by examining the bit in the same position 
for each argument. 

The following truth table shows the logical relationship between bits: 

OPERATOR ARG. I ARG. 2 

AND 1 
o 
1 
o 

(oont. ) 

1 
1 
o 
o 

RESULT 

1 
o 
o 
o 

28 



OPI:1tA'J'OR I\IU; • .I I\IH;. • I{L~;IJLl 
~ ,-~.-.-.----

OR 1 1 1 
1 0 1 
0 1 1 
0 0 0 

NOT 1 0 
0 1 

EXAMPLES: (In all of the examples below, leading zeroes on binary 
numbers are not shown.) 

63 AND 16=16 

15 AND 14=14 

-1 AND 8=8 

4 AND 2=0 

4 OR 2=6 

10 OR 10=10 

-lOR -2=-1 

NOT 0=-1 

NOT X 

NOT 1=-2 

Since 63 equals binary 111111 and 16 equals binary 
10000, the result of the AND is binary 10000 or 16. 

15 equals binary 1111 and 14 equals binary 1110, so 
15 AND 14 equals binary 1110 or 14. 

-1 equals binary 1111111111111111 and 8 equals binary 
1000, so the result is binary 1000 or 8 decimal. 

4 equals binary 100 and 2 equals binary 10, so the 
result is binary 0 because none of the bits in either 
argument match to give a 1 bit in the result. 

Binary 100 ORld with binary 10 equals binary 110, or 
6 decimal. 

Binary 1010 ORld with binary 1010 equals binary 1010, 
or 10 decimal. 

Binary 1111111111111111 (-1) ORld with binary 
1111111111111110 (-2) equals binary 1111111111111111, 
or -1. 

The bit complement of binary 0 to 16 places is sixteen 
ones (1111111111111111) or -1. Also NOT -1=0. 

NOT X is equal to -(X+1). This is because to form the 
sixteen bit twols complement of the number, you take the 
bit (one's) complement and add one. 

The sixteen bit complement of 1 is 1111111111111110, 
which is equal to -(1+1) or -2. 

A typical use of the bitwise operators is to test bits set in the 
ALTAIR's inport ports which reflect the state of some external device. 

Bit position 7 is the most significant bit of a byte, while position 
o is the least significant. 

29 



Por instance, suppose bit 1 of I/O port ~j is () whcn the door to Room 
X js closed, and 1 if the door is open. The following program will print 
"Intruder Alert" if the door is opened: 

10 IF NOT (INP(5) AND 2) THEN 10 This line. will execute over 
and over until bit 1 (mask-
ed or selected by the 2) be
comes a 1. When that happens, 
we go to line 20 . 

20 PRINT "INTRUDER ALERT" Line 20 will output "INTRUDER 
ALERT". 

However, we can replace statement 10 with a "WAIT" statement, which 
has exactly the same effect. 

10 WAIT 5,2 This line delays the execution of the next 
statement in the program until bit 1 of 
I/O port 5 becomes 1. The WAIT is much 
faster than the equivalent IF statement 
and also takes less bytes of program 
storage. 

The ALTAIR's sense switches may also be used as an input device by 
the INP function. The program below prints out any changes in the sense 
switches. 

10 A=3oo:REM SET A TO A VALUE THAT WILL FORCE PRINTING 
20 J=INP(255):IF J=A THEN 20 
30 PRINT J;:A=J:GOTO 20 

The following is another useful way of using relational operators: 

125 A=-(8)C)*8-(8<=C)*C This statement will set the variable 
A to MAXCB,C) = the larger of the two 
variables Band C. 

STATEMENTS 

Note: In the following description of statements, an argument of V 
or W denotes a numeric variable, X denotes a numeric expression, X$ de
notes a string expression and an I or J denotes an expression that is 
truncated to an integer before the statement is executed. Truncation 
means that any fractional part of the number ~s lost, e.g. 3.9 becomes 
3, 4.0l becomes 4. 

An expression is a series of variables, operators, function calls 
and constants which after the operations and function calls are performed 
using the precedence rules, evaluates to a numeric; or string val;ue. 

A constant is either a number (3.14) or a string literal; ("POO"). 

30 



NAME 

DATA 

I:XI\MI'I.L I'IJl{I'OSI:jIlSI: 
. "- .~. 

10 DATA 1,3,-1E3,.04 Spedfies data, read from leFt to rlghL. 

20 DATA II FOOII,ZOO 

Information appears in data statements 
in the same order as it will be read in 
the program. IN THE 4K VERSION OF BASIC, 
DATA STATEMENTS MUST BE THE FIRST STATE
MENTS ON A LINE. Expressions may also 
appear in the 4K version data statements. 

(8K Version) Strings may be read from 
DATA statements. If you want the string 
to contain leading spaces (blanks), colons 
C:) or commas C,), you must enclose the 
string in double quotes. It is impossible 
to have a double quote within string data 
or a string literal. (""MITS·'" is illegal) 

DEF 100 DEF FNACV)=V/8+C (8K Version) The user can define functions 

110 Z=FNA(3) 

like the built-in functions (SQR, SGN, ABS, 
etc.) through the use of the DEF statement. 
The name of the function is "FN" followed 
by any legal variable name, for example: 
FNX, FNJ7, FNKO, FNR2. User defined 
functions are restricted to one line. A 
function may be defined to be any expres
sion, but may only have one argument. In 
the example B & C are variables that are 
used in the program. Executing the DEF 
statement defines the function. User de
fined functions can be redefined by exe
cuting another DEF statement for the same 
function. User defined string functions 
are not allowed. "V" is called the dummy 
variable. 
Execution of this statement following the 
above would cause Z to be set to 3/B+C, 
but the value of V would be unchanged. 

DIM 113. DIM A(3),8(10) Allocates space for matrices. All matrix 
elements are set to zero by the DIM state
ment. 

114 DIM R3(5,5),D$(2,2,2) (8K Version) Matrices can have more 
than one dimension. Up to 255 dimen
sions are allowed, but due to the re
striction of 72 characters per line 
the practical maximum is about 34 
dimensions. 

115 DIM Q1(N),Z(2*I) Matrices can be dimensioned dynamically 
during program execution. If a matrix 
is not explicitly dimensioned with a DIM 
statement, it is assumed to be a single 
dimensioned matrix of whose single subscript 

31 



END 

FOR 

117 A(8)=4 

999 END 

lIlay l'<tngc 1'1'0111 () to jO (eleven elements). 
If this st:l1cment wa:, encoUlltered beron' 
a VIM statcmcllt 1'01' 1\ was foulld in the 
program, jt would be as if a DIM 1\(10) 
had been executed previous to the execu
tion of line 117. All subscripts start 
at zero (0), which means that DIM X(lOO) 
really allocates 101 matrix elements. 

Terminates program execution without 
printing a BREAK message. (see STOP) 
CONT after an END statement causes exe
cution to resume at the statement after 
the END statement. END can be used any
where in the program, and is optional. 

300 FOR V=l TO 9.3 STEP .6 (see NEXT statement) V is set 
equal to the value of the expres
sion following the equal sign, in 
this case 1. This value is called 
the initial value. Then the state
ments between FOR and NEXT are 
executed. The final value is the 
value of the expression following 
the TO. The step is the value of 
the expression following STEP. 

310 FOR V=l TO 9.3 

When the NEXT statement is encoun
tered, the step is added to the 
variable. 
If no STEP was specified, it is 
assumed to be one. If the step is 
positive and the new value of the 
variable is <= the final value (9.3 
in this example), or the step value 
is negative and the new value of 
the variable is => the final value, 
then the first statement following 
the FOR statement is executed. 
Otherwise, the statement following 
the NEXT statement is executed. 
All FOR loops execute the statements 
between the FOR arid the NEXT at 
least once, even in cases like 
FOR V=l TO O. 

315 FOR V=10*N TO 3.4/Q STEP SQR(R) Note that expressions 

32 

(formulas) may be used for the tn
itial, final and step values in a 
FOR loop. The values of the ex
pressions are computed only once, 
before the body of the FOR .... NEXT 
loop is executed. 



GOTO 

GOSUB 

If ... GOTO 

If •• ; THEN 

320 fOR V=9 TO 1 STEP -1 When the statement after the NEXT 
is executed, the loop variable is 
never equal to the final value, 
but is equal to whatever value 
caused the FOR ... NEXT loop to ter
minate. The statements between 
the FOR and its corresponding NEXT 
in both examples above (310 & 320) 
would be executed 9 times. 

330 fOR W=l TO 10: fOR W=l TO :NEXT W:NEXT W Error: do not 

50 GOTO 100 

10 GOSUB 910 

use nested FOR ... NEXT loops with 
the same index variable. 
FOR loop nesting is limited only 
by the available memory. 
(see Appendix D) 

Branches to the statement specified. 

Branches to the specified statement (910) 
until a RETURN is encountered; when a 
branch is then made to the statement 
after the GOSUB. GOSUB nesting is limited 
only by the available memory. 
(see Appendix D) 

32 If X<=Y+23.4 GOTO 92 (8X Ve~sion) Equivalent to IF ... THEN, 
except that IF ... GOTO must be followed 
by a line number, while IF ... THEN can 
be followed by either a line number 
or another statement. 

IF X<lo THEN 5 Branches to specified statement if the 
relation is True. 

20 IF X<O THEN PRINT "X LESS THAN 0" Executes all of the 
statements on the remainder of the line 
after the THEN if the relation is True. 

25 IF X=5 THEN 50:Z=A WARNING. The "Z=A" will never be 
executed because if the relation is 
true, BASIC will branch to line 50. 
If the relation is false Basic will 
proceed to the line after line 25. 

26 IF X<O THEN PRINT "ERROR, X NEGATIVE": GOTO 350 
In this example, if X is less than 0, 
the PRINT statement will be executed 
and then the GOTO statement will 
branch to line 350. If the X was 0 or 
positive, BASIC will proceed to 
execute the lines after line 26. 

33 



INPUT 

LET 

NEXT 

ON· •• GOTO 

3 INPUT V,W,W2 

5 INPUT "VALUE";V 

300 LET W=X 
310 V=5.1 

340 NEXT V 
345 NEXT 

350 NEXT V,W 

RCljucsts Jata CnJlII the tl'l"min;1I (Lo he 
typeJ :in). Laclt value must be separ<Jtcd 
from the prececJ ing value by a conulln (,). 
The last value typed should be followed 
by a carriage return. A "?" is typed as 
a prompt character. In the 4K version; a 
value typed in as a response to an INPUT 
statement may be a formula, such as 
2*SIN(.16)-3. However, in the 8K version, 
only constants may be typed in as a re
sponse to an INPUT statement, such as 
4.SE-3 or "CAT". If more data \vas re-· 
quested in an INPUT statement than was 
typed in, a "??" is printed and the rest 
of the data should be typed in. If more 
data was typed in than was requested, 
the extra data will be ignored. The 8K 
version will print the warning "EXTRA 
IGNORED" when this happens. The 4K ver
sion will not print a warning message. 
(8K Version) Strings must be input in the 
same format as they are specified in DATA 
statements. 
(8K Version) Optionally types a prompt 
string ("VALUE") before requesting data 
from the terminal. If ,c~rriage return 
is typed to an input statement, BASIC 
returns to command mode. Typing CONT 
after an INPUT command has been inter
rupted will cause execution to resume at 
the INPUT statement. 

Assigns a value to a variable. 
"LET" is optional. 

Marks the end of a FOR loop. 
(8K Version) If no variable is given, 
matches the most recent FOR loop. 
(8K Version) A single NEXT may be used 
to match multiple FOR statements. 
Equivalent to NEXT V:NEXT W. 

100 ON I GOTO 10,20,30,40 (BK Version) Branches to the line 
indicated by the 1'th number after 
the GOTO. That is: 
IF 1=1, THEN GOTO LINE 10 
IF 1=2, THEN GOTO LINE 20 
IF 1=3, THEN GOTO LINE 30 
IF 1=4, THEN GOTO LINE 40. 

34 



If 1=0 or I attempts to select a non
existent line (>=5 in this case), the 
statement after the ON statement is 
executed. However, if I is >255 or 
<0, an FC error message will result. 
As many line numbers as will fit on 
a line can follow an ON ... GOTO. 

105 ON SGN(X)+2 GOTO 40,50,60 
This statement will branch to line 40 
if the expression X is less than zero, 
to line 50 if it equals zero, and to 
line 60 if it is greater than zero. 

ON ••• GOSUB 

OUT 

POKE 

PRINT 

110 ON I GOSUB 50,60 

355 OUT I,J 

357 POKE I,J 

.360 ·PRINT X. YiZ 
370 PRINT 

(8K Version) Identical to "ON ... GOTO", 
except that a subroutine call (GOSUB) is 
executed instead of a GOTO. RETURN from 
the GOSUB branches to the statement after 
the ON ... GOSUB . 

(8K Version) Sends the byte J to the 
output port I. Both I & J must be >=0 
and <=255. 

(8K Version) The POKE statement stores 
the byte specified by its second argu
ment (J) into the location given by its 
first argument (I). The byte to be stored 
must be =>0 and <=255, or an FC error will 
occur. The address (I) must be =>0 and 
<=32767, or an FC error will result. 
Careless use of the POKE statement will 
probably cause you to "poke" BASIC to 
death; that is, the machine will hang, and 
you will have to reload BASIC and will 
lose any program you had typed in. A 
POKE to a non-existent memory location is 
harmless. One of the main uses of POKE 
is to pass arguments to machine language 
subroutines. (see Appendix J) You could 
also uSe PEEK and POKE to write a memory 
diagnostic or an assembler in BASIC. 

Prints the value of expressions on the 
terminal ~ If the list of values to be 
printed out does not end with a comma (,) 380 PRINT X,Yi 

390 PRINT "VALUE 
400 PRINT A2,B. 

IS";A or a semicolon (;), then a carriage 
return/line feed is executed after 'all the 
values have been printed. Strings enclosed 
in quotes (") may also be printed. If a 
semicolon separates two expressions in the 
list, their values are printed next to 
each other. If a comma appears after an 

35 



READ 

REM 

RESTORE 

expression .in the list, and the print head 
is at print position 56 or more, then a 
carriage return/line feed is executed. 
If the print head is before print position 
56, then spaces are printed until the car
riage is at the beginning of the next 14 
column field (until the carriage is at 
column 14, 28,42 or 56 ... ). If there is no 
list of expressions to be printed, as in 
line 370 of the examples, then a carriage 
return/line feed is executed. 

410 PRINT MID$(A$,2); (BX Version) String expressions may be 
. printed. 

490 READ V,W Reads data into specified variables from 
a DATA statement. The first piece of data 
read will be the first piece of 'dat'a list-:
ed in the first DATA statement of the pro
gram. The second piece of data read will 
be the second piece listed in the first 
DATA statement, and so on. When all of 
the data have been read from the first 
DATA statement, the next piece of data to 
be read will be the first piece listed in 
the second DATA statement of the program. 
Attempting to read more data than there 
is in all the DATA statements in a pro
gram will cause an 00 (out of data) error. 
In the 4K version, an SN error from a READ 
statement can mean the data it was at
tempting to read from a DATA statement was 
improperly formatted. In the 8K version, 
the line number given in the SN error will 
refer to the line number where the error 
actually is located. 

500 REM NOW SET V=O Allows the programmer to put comments in 
his program. REM statements are not exe
cuted, but can be branched to. A REM 
statement is terminated by end of line, 
but not by a":". 

505 REM SET V=O: V=O In this case the V=O will never be exe
cuted by BASIC. 

506 V=O: REM SET V=O In this case V=O will be executed 

510 RESTORE Allows the re-reading 'of DATA statements. 
After a RESTORE, the next piece of data 
read will be the first piece listed in 
the first DATA statement of the program. 
The second piece of data read will be 
the second piece listed in the first DATA 
statement, and so on as in a normal 
READ operation. 

36 



RETURN 

STOP 

WAIT 

50 RETURN 

9000 STOP 

805 WAIT I,J,K 
806 WAIT I,J 

4K INTRINSIC FUNCTIONS 

ABS(X) 120 PRINT ABS(X) 

INT(X) 140 PRINT INT(X) 

RND(X) 170 PRINT RND(X) 

Causes <I :;uilrlluLillc to I'vturn to tl\e 
statement after the must recontly exe
cuted GOSUB. 

Causes a program to stop execution and to 
enter command mode. 
(BK Version) Prints BREAK IN LINE 9000. 
(as per this example) CONT after a STOP 
branches to the statement following the 
STOP. 

(BK Version) This statement reads the 
status of input port I, exclusive ORis 
K with the status, and then ANDis the re
sult with J until a non-zero result is 
obtained. Execution of the program con
tinuesat the statement following the 
WAIT statement. If the WAIT statement 
only has two arguments, K is assumed to 
be zero. If you are waiting for a bit 
to become zero, there should be a one in 
the corresponding position of K. I, J 
and K must be =>0 and <=255. 

Gives the absolute value of the expression 
X. ABS returns X if X>=O, -X otherwise. 

Returns the largest integer less than or 
equal to its argument X. For example: 
INT(.23)=0, INT(7)=7, INT(-.l)=-l, INT 
(-2)= -2, INT(l.l)=l. 
The following would round X to D decimal 
places: 

INT(X*10tD+.5)/lOtD 

Generates a random number between 0 and 1. 
The argument X controls the generation of 
random numbers as follows: 

X<O starts a new sequence of random 
numbers using X. Calling RND. with 

. the same X starts the same random 
number sequence. X=O gives the last 
random number generated. Repeated 
calls to RND(O) will always return 
the same random number. X>O gener
ates a new random number between 0 
and 1. 
Note that (B-A) *RND (1) +A will gener
ate a random number between A & B. 

31 



SGN(X) 

SIN (X) 

SQR(X) 

TAB (I) 

USR(I) 

230 PRINT SGN(X) 

190 PRINT SIN (X) 

180 PRINT SQR(X) 

240 PRINT TAB (I) 

200 PRINT USR(I) 

Gives 1 jf X/O, 0 if X=O, anu -1 if X<O. 

Gives the sine of the expression X. X is 
interpreted as being in radians. Note: 
COS (X)=SIN(X+3.14l59/2) and that 1 Radian 
=180/PI degrees=57.2958 degrees; so that 
the sine of X degrees= SIN(X/57.2958). 

Gives the square root of the argument X. 
An FC error will occur if X is less than 
zero. 

Spaces to the specified print position 
(column) on the terminal. May be used 
only in PRINT statements. Zero is the 
leftmost column on the terminal, 71 the 
rightmost. If the carriage is beyond 
position I, then no printing is done. I 
must be =>0 and <=255. 

Calls the user's machine language sub
routine with the argument I. See POKE, 
PEEK and Appendix J. 

8K FUNCTIONS (Includes aU those listed under 4K INTRINSIC FUNCTIONS 
plus the following in addition.) 

ATN(X) 210 PRINT ATN(X) 

COS (X) 200 PRINT COS (X) 

EXP (X) 150 PRINT EXP(X) 

FRE(X) 270 PRINT FRE(o) 

INP(I) 265 PRINT INP(I) 

Gives the arctangent of the argument X. 
The result is returned in radians and 
ranges from -PI/2 to PI/2. (PI/2=1.5708) 

Gives the cosine of the expression X. X 
is interpreted as being in radians. 

Gives the constant liE" (2.71828) raised 
to the power X. (EtX) The maximum 
argument that can be passed to EXP with
out overflow occuring is 87.3365. 

Gives the number of memory bytes currently 
unused by BASIC. Memory allocated for 
STRING space is not included in the count 
returned by FRE. To find the number of 
free bytes in STRING space, call FRE with 
a STRING argument. (see FRE under STRING 
FUNCTIONS) 

Gives the status of (reads a byte from) 
input port I. Result is =>0 and <=255. 

38 



LOG (X) 160 PRINT LOG (X) 

PEEK 356 PRINT PEEK(I) 

POS(I) 260 PRINT POS(I) 

SPC(I) 250 PRINT SPC(I) 

TAN (X) 200 PRINT TAN (X) 

STRINGS (BX Version OnZy) 

Gives the naturaL (Base I:) Joguri thm of 
its argument X. To obtain the Base Y 
logarithm of X use the formula LOG(X)/LOG(Y). 
Example: The base 10 (common) log of 
7 = LOG(7)/ LOG(lO). 

The PEEK function returns the contents of 
memory address I. The value returned will 
be =>0 and <=255. If I is >32767 or <0, 
an FC error will occur. An attempt to 
read a non-existent memory address will 
return 255. (see POKE statement) 

Gives the current position of the terminal 
print head (or cursor on CRT's). The 
leftmost character position on the terminal 
is position zero and the rightmost is 71. 

Prints I space (or blank) characters on 
the terminal. May be used only in a 
PRINT statement. X must be =>0 and <=255 
or an FC error will result. 

Gives the tangent of the expression X. 
X is interpreted as being in radians. 

1) A string may be from 0 to 255 characters in length. All string 
variables end in a dollar sign ( $ ); for example, A$, 89$, K$, 
HELLO$. 

2) String matrices may be dimensioned exactly like mimeri~. matrices. 
For instance, DIM A$(10,10) creates a string matrix of 121 elements, 
eleven rows by eleven columns (rows 0 to 10 and columns 0 to 10). 
Each string matrix element is a complete string, which can be up to 
255 characters in length. . 

3) The total number of characters in use in strings at any time during 
program execution cannot execeed the amount of string space, or an 
OS error will result. At initialization, you should set up string 
space so that it can contain the maximum number of characters which 
can be used by strings at anyone time during program execution. 

NAME EXAMPLE 

DIM 25 DIM A$(10,10) 

PURPOSE/USE 

Allocates space for a pointer and length 
for each element of a string matrix. No 
string space is allocated. See Appendix D. 

3.a 



LET 

= 
> 
< 
<= 
>= 
<> 

+ 

INPUT 

READ 

PRINT 

27 LET A$="FOO"+V$ 

30 LET Z$=R$+Q$ 

40 INPUT X$ 

50 READ X$ 

60 PRINT X$ 
70 PRINT "FOO"+A$ 

Assigns the value of a string expression 
to a string variable. L~T is optional. 

String comparison operators. Comparison 
is made on the basis of ASCII codes, a 
character at a time until a difference 
is found. If during the comparison of 
two strings, the end of one is reached, 
the shorter string is considered smaller. 
Note that "A " is greater than "A" since 
trailing spaces are significant. 

String concatentation. The resulting 
string must be less than 256 characters 
in length or an LS error will occur. 

Reads a string from the user's terminal. 
String does not have to be quoted; but if 
not, leading blanks will be ignored and 
the string will be terminated on a "," or 
":" character. 

Reads a string from DATA statements within 
the program. Strings do not have to be 
quoted; but if they are not, they are 
terminated on a "," or II:" character or 
end of line and leading spaces are ignored. 
See DATA for the format of string data. 

Prints the string expression on the user's 
terminal. 

STRING FUNCTIONS (8K Version OnZy) 

ASC(X$) 300 PRINT ASC(X$) 

CHR$(I) 275 PRINT CHR$(I) 

FRE(X$) 272 PRINT FRE("") 

Returns the ASCII numeric value of the 
first character of the string expression 
X$. See Appendix K for an ASCII/number 
conversion table. An FC error will occur 
if X$ is the null string. 

Returns a one character string whose single 
character is the ASCII equivalent of the 
value of the argument (I) which must be 
=>0 and <=255. See Appendix K. 

When called with a string argument, FRE 
gives the number of free bytes in string 
space. 

LEFT$(X$,I) Gives the leftmost I characters of the 
310 PRINT LEFT$(X$,I) string expression X$. If 1<=0 or >255 

an FC error occurs. 



LEN (X$) 220 PRINT LEN(X$) 

MID$(X$,I) 
330 PRINT MID$(X$,I) 

Gives the length of the string expression 
X$ in characters (bytes). Non-printing 
characters and blanks are counted as part 
of the length. 

MID$ called with two arguments returns 
characters from the string expression X$ 
starting at character position I. If 
I>LEN(I$), then MID$ returns a null (zero 
length) string. If 1<=0 or >255, an FC 
error occurs. 

MID$(X$,I,J) MID$ called with three arguments returns 
340 PRINT MID$(X$,I,J) a string expression composed of the 

characters of the string expression X$ 
starting at the Ith character for J char
acters. If l>LEN(X$), MID$ returns a null 
string. If I or J <=0 or >255, an FC 
error occurs. If J specifies more char
acters than are left in the string. all 
characters from the Ith on are returned. 

RIGHT$(X$,I) Gives the rightmost I characters of 
the string expression X$. When 1<=0 
or >255 an FC error will occur. If 
I>=LEN(X$) then RIGHT$ returns all of 
X$. 

320 PRINT RIGHT$(X$,I) 

STR$(X) 290 PRINT STR$(X) 

VAL (X$) 280 PRINT VAL(X$) 

Gives a string which is the character 
representation of the numeric expression 
X. For instance, STR$(3.l)=" 3.1". 

Returns the string expression X$ converted 
to a number. For instance, VAL(13.l")=3.1. 
If the first non-space character of the 
string is not a plus (+) or minus (-) sign, 
a digit or a decimal point C.) then zero 
will be returned. 

SPECIAL CHARACTERS 

CHARACTER 

@ 

+ 

USE 

Erases current line being typed, and types a carriage 
return/line feed. An 1I@1I is usually a shift/P. 

(baakarrow or underZine) Erases last character typed. 
If no more characters are left on the line, types a 
carriage return/line feed. "+" is usually a shift/D. 

4" 



CARRIAGE RETURN A carriage return must end every line typed in. Re
turns print head or CRT cursor to the first position 
(leftmost) on line. A line feed is always executed 

.a.tteiacarriage return. 

CONTROL/C Interrupts execution of a program or a list command. 
ControllC has effect when a statement finishes exe
cution, or in the case.of interrupting a LIST com
mand, when a complete line has finished printing. In 
both cases a return is made to BASIC's command level 
and OK is typed. 

(colon) 

(8X Version) Prints "BREAK IN LINE XXXX" , where 
XXXX is the line number of the next statement to 
be executed. 

A colon is used to separate statements on a line. 
Colons may be used in direct and indirect statements. 
The only limit on the number of statements per line 
is the line length. It is not possible to GOTO or 
GOSUB to the middle of a line. 

(8X Version Only) 

CONTROL/O Typing a Control/O once causes BASIC to suppress all 
output until a return is made to command level, an 
input statement is encountered, another control/O is 
typed, or an error occurs. 

? 

. MISCELLANEOUS 

Question marks are equivalent to PRINT. For instance, 
? 2+2 is equivalent to PRINT 2+2. Question marks can 

. also be used in indirect statements. 10? X, when 
listed will be typed as 10 PRINT X . 

1) To read in a paper tape with a program on it (8K Version), type a 
control/O and feed in tape. There will be no printing as the tape 
is read in. Type control/O again when the tape is through. 
Alternatively, set nulls=O and feed in the paper tape, and when done 
reset nulls to the appropriate setting for your terminal. 
Each line must be followed by two rubouts, or any other non-printing 
character. If there are lines without line numbers (direct commands) 
the ALTAIR will fall behind the input coming from paper tape, so 
this in not recommending. 

Using null in this fashion will produce a listing of your tape in 
the SK version (use control/O method if you don't want a listing). 
The null method is the only way to read in a tape in the 4K version. 

To read in a paper tape of a program in the 4K version, set the 
number of nulls typed on carriage return/line feed to zero by patch
ing location 46 (octal) to be a 1. Feed in the paper tape. When 

·42 



the tape has finished reading, stop the CPU <lllli l'L'patch .locat:ion tlh 

to be the appropriate number of null characters (usually 0, so Je
posi tal) . When the tape is finished, BAS I C Iv i II print SN ERROR 
because of the !10K" at the end of the tape. 

2) To punch a paper tape of a program, set the number of nulls to 3 for 
110 BAUD terminals (Teletypes) and 6 for 300 BAUD terminals. Then, 
type LIST; but, do not type a carriage return. 
Now, turn on the tenninal's paper tape punch. Put the terminal on 
local and hold down the Repeat, Control, Shift and P keys at the same 
time. Stop after you have punched about a 6 to 8 inch leader of 
nulls. These nulls will be ignored by BASIC when the paper tape is 
read in. Put the terminal back on line. 
Now hit carriage return. After the program has finished punching. 
put some trailer on the paper tape by holding down the same four 
keys as before, with the terminal on local. After you have punched 
about a six inch trailer, tear off the paper tape and save for 
later use as desired, 

3) Restarting BASIC at location zero (by toggling STOP, Examine loca
tion 0, and RUN) will cause BASIC to return to commapd level and 
type !lOKI!, However, typing ControllC is preferred because Controll 
C is guaranteed not to leave garbage on the stack and in variables, 
and a Control C'd program may be continued. (see CONT command) 

4) The maximum line length is 72 characters~* If you attempt to type too 
many characters into a line, a bell (ASCII 7) is e.xec~te~, and the 
character you typed in will not be echoed. At this point you can 
either type backarrow to delete part of the line, or at-sign to delete 
thewhole line, The character you typed which caused BASIC to type 
the bell is not inserted in the line as it occupies the character 
position one beyond t.he end of the line. 

"'CLEAR CLEAR 
(LEAR X 

10 CLEAR 50 

Deletes all variables. 
(8K Version) Deletes all variables. When 
used with an argument "X", sets the amount 
of space to be allocated for use by string 
variables to the number indicated by its 
argument "X", 
(8K Version) Same as above; but, may be used 
at the beginning of a program to set the exact 
amount of string space needed, leaving a maxi
mum amount of memory for the program itself. 

NOTE: If no argument is given, the string 
space is set at 200 by default. An OM error 
will occur if an attempt is made to allocate 
more string space than there is available 
memory. 

**For inputting only. 
43 



44 



~~~~~[Q)~~~~ 
~~~. 

45 



APPENDIX A 

HOW TO LOAD BASIC 

When the ALTAIR is first turned on, there is random garbage in its 
memory. BASIC is supplied on a paper tape or audio cassette. Somehow 
the information on the paper tape or cassette must be transfered into the 
computer. Programs that perform this type of information transfer are 
called loaders. 

Since initially there is nothing of use in memory; you must toggle 
in, using the switches on the front panel, a20 instruction bootstrap 
loader. This loader will then load BASIC. 

To load BASIC follow these steps: 

1) Turn the ALTAIR on. 

2) Raise the STOP switch and RESET switch simultaneously. 

3) Turn your terminal (such as a Teletype) to LINE. 

Because the instructions must be toggled in via the switches on the 
front panel, it is rather inconvenient to specify the positions of each 
switch as "up" or "down". Therefore, the switches are arranged in groups 
of 3 as .indicated by the broken lines below switches 0 through 15. To 
specify the positions of each switch, we use the numbers 0 through 7 as 
shown below: 

3 SWITCH GROUP 

LEFTMOST MIDDLE RIGHTMOST 

Down Down Down 
Down Down Up 
Down Up Down 
Down Up Up 
Up Down Down 
Up Down Up 
Up Up Down 
Up Up Up 

So, to put the octal number 315 
would have the following positions: 

7 6 5 4 3 

UP UP DOWN DOWN UP 

3 1 

OCTAL 
NUMBER 

o 
1 
2 
3 
4 
5 
6 
7 

in switches 0 through 7, the switches 

2 1 o ~SWITCH 

UP DOWN UP ~POSITION 

5 .... .r~- OCTAL NO. 

46 



Note that switches 8 through 15 were not used. Swjtches a throu~l 
7 correspond to the switches labeled UATA on the front panel. A memory 
address would use all 16 switches. 

The following program is the bootstrap loader for users loading from 
paper tape, and not using a REV a Serial I/O Board. 

OCTAL ADDRESS 
000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 

OCTAL DATA 
041 
175 
037 (for 8K; for 4K use 017) 
061 
022 
000 
333 
000 
017 
330 
333 
001 
275 
310 
055 
167 
300 
351 
003 
000 

The following 21 byte bootstrap loader is for users loading from a 
paper tape and using a REV 0 Serial I/O Board on which the update changing 
the flag bits has not been made. If the update has been made, use the 
above bootstrap loader. 

OCTAL ADDRESS 
000 
001 
002 
003 
004 
005 
006 
007 
010 
all 
012 
013 
014 
015 
016 
017 
020 

47 

OCTAL DATA 
041 
175 
037 (for BK; for 4K use 017) 
061 
023 
000 
333 
000 
346 
040 
310 
333 
001 
275 
310 
055 
167 



OCTAL ADDRESS 

021 
022 
023 
024 

(cont.) 
OCTAL DATA 

300 
351 
003 
000 

The following bootstrap loader is for users with BASIC supplied on 
an audio cassette. 

OCTAL ADDRESS 
000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 

To load a bootstrap loader: 

OCTAL DATA 
041 
175 
037 (for 8K; for 4K use 017) 
061 
022 
000 
333 
006 
017 
330 
333 
007 
275 
310 
055 
167 
300 
351 
003 
000 

1) Put switches 0 through 15 in the down position. 

2) Raise EXAMINE. 

3) Put 041 (data for address 000) in switches a through 7. 

4) Raise DEPOSIT. 

5) Put the data for the next address in switches 0 through 7. 

6) Depress DEPOSIT NEXT. 

7) Repeat steps 5 & 6 until the entire loader is toggled in. 

8) Put switches 0 through 15 in the down position. 

9) Raise EXAMINE. 

10) Check that lights DO through 07 correspond with the data that should 

48 



be in address 000. A light on means the switch was up, a light off 
means the switch was down. So for address 000, lights Dl through D4 
and lights D6 & D7 should be off; and lights DO and DS should be on. 

If the correct value is there, go to step 13. If the value is wrong, 
continue with step 11. 

11) Put the correct value in switches 0 through 7. 

12) Raise DEPOSIT. 

13) Depress EXAMINE NEXT. 

14) Repeat steps 10 through 13, checking to see that the correct data is 
in each corresponding address for the entire loader. 

15) If you encountered any mistakes while checking the loader, go back 
now and re-check the whole program to be sure it is corrected. 

16) Put the tape of BASIC into the tape reader. Be sure the tape is 
positioned at the beginning of the leader. The leader is the section 
of tape at the beginning with 6 out of the 8 holes punched. 

If you are loading from audio cassette, put the cassette in the re
corder. Be sure the tape is fully rewound. 

17) . Put switches 0 through 15 in the down position. 

18) Raise EXAMINE. 

19) If you have connected to your terminal a REV 0 Serial I/O Board 
on which the update changing the flag bits has not been made, raise 
switch 14; if you are loading from an audio cassette, raise switch 
15 also. 

If you have a REV 0 Serial I/O Board which has been updated, or have 
a REV 1 I/O Board, switch 14 should remain down and switch 15 should 
be raised only if you are loading from audio cassette. 

20) Turn on the tape reader and then depress RUN. Be sure RUN is depres
sed while the reader is still on the leader. Do not depress run be
fore turning on the reader, since this may cause the tape to be read 
incorrectly. 

If you are loading from a cassette, turn the cassette recorder to 
Play'~-Wali15 s-econdsandth-en-depress -RliN~ • 

21) Wait for the tape to be read in. This should take about 12 minutes 
for 8K BASIC and 6 minutes for 4K BASIC. It takes about 4 minutes 
to load 8K BASIC from cassette, and about 2 minutes for 4K BASIC. 

Do not move the switches while the tape is being read in. 

49 



22) If a C or an 0 .is printcJ on the termjnal <IS the lape reads in, Ill(' 
tape has been mis-reaJ and you shoulJ start over at step l·on page 
46. 

23) When the tape finishes reading, BASIC should start up and print 
MEMORY SIZE? See Appendix B for the initialization procedure.· 

24) If BASIC refuses to load from the Audio Cassette, the ACRDemodulator 
may need alignment. The flip side of the cassette contains 90 seconds 
of l25's (octal) which were recorded at the same tape speed as BASIC. 
Use the Input Test Program described on pages 22 and 28 of the ACR 
manual to perform the necessary alignment. 

50 



APPENDIX B 

INITIALIZATION DIALOG 

STARTING BASIC 

Leave the sense switches as they were set for loading BASIC (Appen
dix A). After the initialization dialog is complete, and BASIC types OK, 
you are free to use the sense switches as an input device (I/O port 255). 

After you have loaded BASIC, it will respond: 

MEMORY SIZE? 

If you type a carriage return to MEMORY SIZE?, BASIC will use all 
the contiguous memory upwards from location zero that it can find. BASIC 
will stop searching when it finds one byte of ROM or non-existent memory. 

If you wish to allocate only part of the ALTAIR's memory to BASIC, 
type the number of bytes of memory you wish to allocate in decimal. This 
might be done, for instance, if you were using part of the memory for a 
machine language subroutine. 

There are 4096 bytes of memory in a 4K system, and 8192 bytes in an 
8K system. 

BASIC will then ask: 

TERMINAL WIDTH? This is to set the output line width for 
PRINT statements only. Type in the number 
of characters for the line width for the 
particular terminal or other output device 
you are using. This may be any number 
from I to 255, depending on the terminal. 
If no answer is given (i.e. a carriage 
return is typed) the line width is set 
to 72 characters. 

Now ALTAIR BASIC will enter a dialog which will allow you to delete 
some of the arithmetic functions. Deleting these functions will give 
more memory space to store your programs and variables. However, you will 
not be able to call the functions you delete. Attempting to do so will 
result in an FC error. The only way to restore a function that has been 
deleted is to reload BASIC. 

The following is the dialog which will occur: 

4K Version 

WANT SIN? Answer II Y II to retain SIN, SQR and RND. 
If you answer \I N ", asks next question. 

WANT SQR? Answer II Y " to retain SQR and RND. 
If you answer " N ", asks next question. 

51 



WANT RND? 

8K Version 

Answer" Y II to retain RNI>. 
Answer II N II to <laleta RND. 

WANT SIN-COS-TAN-ATN? Answer " Y " to retain all four of 

Now BASIC will type out: 
'xxxx BYTES FREE 

the functions, II N II to delete all four, 
or II A " to delete ATN only. 

ALTAIR BASIC VERSION 3.0 
[FOUR-K VERSION] "XXXX" is the number of bytes 

available for program, variables, 
matrix storage and the stack. It 
does not include string space. 

(or) 
[EIGH1-K VERSION] 

OK 

You will now be ready to begin using ALTAIR BASIC. 

52 



APPENDIX C 

ERROR MESSAGES 

After an error occurs, BASIC returns to command level and types OK. 
Variable values and the program text remain intact, but the program can 
not be continued and all GOSUB and FOR context is lost. 

When an error occurs in a direct statement, no line number is printed. 

Format of error messages: 

Direct Statement ?XX ERROR 

Indirect Statement ?XX ERROR IN YYYYY 

In both of the above examples, "XX" will be the error code. The 
"YYYYY" will be the line number where the error occured for the indirect 
statement. 

The following are the possible error codes and their meanings: 

ERROR CODE 

4K VERSION 

BS 

DD 

Fe 

MEANING 

Bad Subscript. An attempt was made to reference a 
matrix element which is outside the dimensions of the 
matrix. In the 8K version, this error cah occur if 
the wrong number of dimensions are used in a- matrix 
reference; for instance, LET A(I,I,I)=Z when A has 
been dimensioned DIM A(2,2). 

Double Dimension. After a matrix was dimensioned, 
another dimension statement for the same matrix was 
encountered. This error often occurs if a matrix 
has been given the default dimension 10 because a 
statement like A(I)=3 is encountered and then later 
in the program a DIM A(lOO) is found. 

Function Call error. The parameter passed to a math 
or string function was out of range. 
FC errors can occur due to; 

a) a negative matrix subscript (LET A(-l)=O) 

b) an unreasonably large matrix subscript 
(>32767) 

c) LOG-negative or zero argument 

d) SQR-negative argument 

53 



ID 

NF 

OD 

OM 

OV 

SN 

RG 

us 

/0 

0) AtB wi til A negal i.vl' and B not all illtegel" 

f) a call to USR before the address of the 
machine language subroutine has been 
patched in 

g) calls to MID$, LEFT$, RIGHT$, INP, OUT, 
WAIT, PEEK, POKE, TAB, SPC or ON.- .. GOTO 
with an improper argument. 

Illegal Direct. You cannot use an INPUT or (in BK Version) 
DEFFN statement as a direct command. 

NEXT without paR. The variable in a NEXT statement 
corresponds-to no previously executed FOR statement. 

Out of Data. A READ statement was executed but all of 
the DATA statements in the program have already been 
read. The program tried to read too much data or insuf
ficient data was included in the program. 

Out of Memory. Program too large, too many variables, 
too many FOR loops, too many GOSUB's, too complicated 
an expression or any combination of the above. (see 
Appendix D) 

OverflOW. The result of a calculation was too large to 
be represented in BASIC's number format. If an underflow 
occurs, zero is given as the result and execution continues 
without any error message being printed. 

Syntax error. Missing parenthesis in an expression, 
illegal character in a line, incorrect punctuation, etc. 

RETURN without GOSUB. A RETURN statement was encountered 
without a previous GOSUB statement being executed. 

Undefined Statement. An attempt was made to GOTO, GOSUB 
or THEN to a statement which does not exist. 

Division by Zero. 

8K VERSION (Includes all of the previous codes in addition to the 
f 0 l lowing. ) 

eN Continue error. Attempt to continue a program when 
none exists, an ·error occured" or after a new line 
was typed into the program. 

54 



LS 

os 

ST 

TM 

UF 

Long String. Attempt was made by use of the concatenation 
operator to create a string more than 255 characters long. 

Out of String Space. Save your program on paper tape or 
cassette, reload BASIC and allocate more string space 
or use smaller strings or less string variables. 

String Temporaries. A string expression was too complex. 
Break it into two or more shorter ones. 

Type Mismatch. The left hand side of an assignment 
statement was a numeric variable and the right hand 
side was a string, or vice versa; or, a function which 
expected a string argument was given a numeric one or 
vice versa. 

Undefined Function. Reference was made to a user defined 
function which had never been defined. 

55 



APPENDIX D 

SPACE HINTS 

In order to make your program smaller and save space, the following 
hints may be useful. 

1) Use multiple statements per line. There is a small amount of 
overhead (5bytes) associated with each line in the program. Two of these 
five bytes contain the line number of the line in binary. This means 
that no matter how many digits you have in your line number (minimum line 
number is 0, maximum is 65529), it takes the same number of bytes. Put
ting as many statements as possible on a line will cut down on the number 
of bytes used by your program. 

2) Delete all unnecessary spaces from your program. For instance: 
10 PRINT X, Y, Z 
uses three more bytes than 
10 PRINTX,Y,Z 

Note: All spaces between the line number and the first non-
blank character are ignored. 

3) Delete all REM statements. Each REM statement uses at least 
one byte plus the number of bytes in the comment text. For instance, 
the statement 130 REM THIS IS A COMMENT uses up 24 bytes of memory. 

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of 
memory including the colon before the REM. 

4) Use variables instead of constants. Suppose you use the constant 
3.14159 ten times in your program. If you insert a statement 

10 P=3.14159 
in the program, and use P instead of 3.14159 each time it is needed, you 
will save 40 bytes. This will also result in a speed improvement. 

5) A program need not end with an END; so,. an END statement at 
the end of a program may be deleted. 

6) Reuse the same variables. If you have a variable T which is used 
to hold a temporary result in one part of the program and you need a tem
porary variable later in your program, use it again. Or, if you are asking 
the terminal user to give a YES or NO answer to two different questions 
at two different times during the execution of the program, use the same 
temporary variable A$ to store the reply. 

7) Use GOSUB's to execute sections of program statements that per
form identical actions. 

8) If you are using the 8K version and don't need the features of 
the 8K version to run your program, consider using the 4K version in-
stead. This will give you approximately 4.7K to work with in an 8K machine, 
as opposed to the 1.6K you have available in an 8K machine running the 
8K version of BASIC. 

56 



9) Use the zero elements of matrices; for instance, A(O}, B(O,X). 

STORAGE ALLOCATION INFORMATION 

Simple (non-matrix) numeric variables like V use 6 bytes; 2 for the 
variable name, and 4 for the value. Simple non-matrix string variables 
also-use 6 bytes; 2 for the variable name, 2 for the length, and 2 for a 
pointer. 

Matrix variables use a m1n1mum of 12 bytes. Two bytes are used for 
the variable name, two for the size of the matrix, two for the number of 
dimensions and two for each dimension along with four bytes for each of 
the matrix elements. 

String variables also use one byte of string space for each character 
in the string. This is true whether the string variable is a simple string 
variable like A$, or an element of a string matrix such as Ql$(S,2). 

When a new function is defined by a DEF statement, 6 bytes are used 
to store the definition. 

Reserved words such as FOR, GOTO or NOT, and the names or the 
intrinsic functions such as COS, INT and STR$ take up only one byte of 
program storage. All other characters in programs use one byte of pro
gram storage each. 

When a program is being executed, space is dynamically allocated on 
the stack as follows: 

1) Each active FOR ... NEXT loop uses 16 bytes. 

2) Each active GOSUB (one that has not returned yet) uses 6 bytes. 

3) Each parenthesis encountered in an expression uses 4 bytes and 
each temporary result calculated in an expression uses 12 bytes . 

. 57 



SPEED IlLNTS 

The hints below should improve the execution time of yo,Ur BASIC pro
gram. Note that some of these hints are the same as those used to decrease 
the space used by your programs. This means that in many cases you can 
increase the efficiency of both the speed and size of your programs at 
the same time. 

1) Delete all unnecessary spaces and REM's from the program. This 
may cause a small decrease in execution time because BASIC would otherwise 
have to ignore or skip over spaces and REM statements. 

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10. 
Use variables instead of constants. It takes more time to con

vert a constant to its floating point representation than it does to fetch 
the value of a simple or matrix variable. This is especially important 
within FOR ... NEXT loops or other code that is executed repeatedly. 

3) Variables which are encountered first during the execution of 
a BASIC program are allocated at the start of the variable table. This 
means that a statement such as 5 A=O:B=A:C=A, will place A first, B second, 
and C third in the symbol table (assuming line 5 is the first statement 
executed in the program). Later in the program, when BASIC finds a refer
ence to the variable A, it will search only one entry in the symbol table 
to find A, two entries to find B and three entries to find C, etc. 

4) (8K Version) NEXT statements without the index variable. NEXT 
is somewhat faster than NEXT I because no check is made to see if the 
variable specified in the NEXT is the same as the variable in the most re
cent FOR statement. 

5) Use the 8K version instead of the 4K version. The 8K version 
is about 40% faster than the 4K due to improvements in the floating point 
arithmetic routines. 

6) The math functions in the 8K version are much faster than their 
counterparts simulated in the 4K version. (see Appendix G) 

~58 



APPENDIX F 

DERIVED FUNCTIONS 

The following functions, while not intrinsic to ALTAIR BASIC, can be 
calculated using the existing BASIC functions. 

FUNCTION 

SECANT 
COSECANT 
COTANGENT 
INVERSE SINE 
INVERSE COSINE 
INVERSE SECANT 
INVERSE COSECANT 
INVERSE COTANGENT 
HYPERBOLIC SINE 
HYPERBOLIC COSINE 
HYPERBOLIC TANGENT 
HYPERBOLIC SECANT 
HYPERBOLIC COSECANT 
HYPERBOLIC COTANGENT 
INVERSE HYPERBOLIC 

SINE 
INVERSE HYPERBOLIC 

COSINE 
INVERSE HYPERBOLIC 

TANGENT 
INVERSE HYPERBOLIC 

SECANT 
INVERSE HYPERBOLIC 

COSECANT 
INVERSE HYPERBOLIC 

COTANGENT 

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS 

SEC (X) = 1/COS(X) 
CSC(X) = 1/SIN(X) 
COT (X) = 1/TAN(X) 
ARCSIN(X) = ATN(X/SQR(-X*X+1)) 
ARCCOS (X) =-ATN (X/SQR (-X*X+ 1)) + 1. 5708 
ARCSEC(X) ~ ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708 
ARCCSC(X) = ATN(1/SQR(X*X-1))+(SGN(X)-1)*1.5708 
ARCCOT(X) = -ATN(X)+1.5708 
SINH(X) = (EXP(X)-EXP(-X))/2 
COSH (X) = (EXP(X)+EXP(-X))/2 
TANH (X) = -EXP(-X)/(EXP(X)+EXP(-X))*2+1 
SECH(X) = 2/(EXP(X)+EXP(-X)) 
CSCH(X) = 2/(EXP(X)-EXP(-X)) 
COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+1 

ARGSINH(X) = LOG(X+SQR(X*X+l)) 

ARGCOSH(X) = LOG(X+SQR(X*X-l)) 

ARGTANH(X) = LOG((1+X)/(1-X))/2 

ARGSECH(X) = LOG((SQR(-X*X+l)+l)/X) 

ARGCSCH(X) = LOG((SGN(X)*SQR(X*X+l)+l)/X) 

ARGCOTH(X) = LOG((X+l)/(X-l))/2 

59 



APPENDIX G 

SIMULATED MATH FUNCTIONS 

The following subroutines are intended for 4K BASIC users who want 
to use the transcendental functions not built into 4K BASIC. The cor
responding routines for these functions in the 8K version are much faster 
and more accurate. The REM statements in these subroutines are given for 
documentation purposes only, and should not be typed in because they tq.ke 
up a large amount of memory. 

The following are the subroutine calls and their 8K equivalents: 

. 8K EQUIVALENT SUBROUTINE CALL 

P9=X9tY9 
L9=LOG(X9) 
E9=EXP(X9) 
C9=COS(X9) 
T9=TAN(X9) 
A9=ATN(X9) 

GOSUB 60030 
GOSUB 60090 
GOSUB 60160 
GOSUB 60240 
GOSUB 60280 
GOSUB 60310 

The unneeded subroutines should not be typed in. Please note which 
variables are used by each subroutine. Also note that TAN and COS require 
that the SIN function be retained when BASIC is loaded and initialized. 

60000 REM EXPONENTIATION: P9=X9iY9 
60010 REM NEED: EXP, LOG 
60020 REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,Y9 
60030 P9=1 : E9=0 : IF Y9=0 THEN RETURN 
60040 IF X9<0 THEN IF INT(Y9}=Y9 THEN P9=1-2*Y9+4*INT(Y9/2) X9=-X9 
60050 IF X9<>0 THEN GOSUB 60090 : X9=Y9*L9 : GOSUB 60160 
60060 P9=P9*E9 : RETURN 
60070 REM NATURAL LOGARITHM: L9=LOG(X9) 
60080 REM VARIABLES USED: A9,B9,C9,E9,L9,X9 
60090 E9=0 : IF X9<=0 THEN PRINT "LOG FC ERROR":' :. STOP 
60095 A9=1 : B9=2 : C9=.5 : REM THIS WILL SPEED UP THE FOLLOWING 
60100 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 60100 
60110 IF X9<C9 THEN X9=B9*X9 : E9=E9-A9 : GOTO 60110 
60120 X9=(X9-.707107)/(X9+.707107) : L9=X9*X9 
60130 L9=(((.598979*L9+.961471)*L9+2.88539)*X9+E9-.5)* .693147 
60135 RETURN 
60140 REM EXPONENTIAL: E9=EXP(X9) 
60150 REM VARIABLES USED: A9,E9,L9,X9 
60160 L9=INT(1.4427*X9)+1 :IF L9<127 THEN 60180 
60170 IF X9>0 THEN PRINT "EXP OV ERROR":, : STOP 
60175 E9=0 : RETURN 
60180 E9=.693147*L9-X9 : A9=1.32988E-3-1.41316E-4*E9 
60190 A9=((A9*E9-8.30136E-3)*E9+4.16574E-2)*E9 
60195 E9=(((A9-.166665)*E9+.5)*E9-1)*E9+1 : A,.2 
6Q197 IF L9<=0 THEN A9=.5 : L9=-L9 : IF L9=0 THEN RETURN 

60 



60200 FOR X9=1 TO L9 : E9=A9*E9 : NEXT X9 : RETURN 
60210 REM COSINE: C9=COS(X9) 
60220 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME 
60230 REM VARIABLES USED: C9,X9 
60240 C9=SIN(X9+1.5708) : RETURN 
60250 REM TANGENT: T9=TAN(X9) 
60260 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME) 
60270 REM VARIABLES USED: C9,T9,X9 
60280 GOSUB 60240 : T9=SIN(X9)/C9 : RETURN 
60290 REM ARCTANGENT: A9=ATN(X9) 
60300 REM VARIABLES USED: A9,B9,C9,T9,X9 
60310 T9=SGN(X9): X9=ABS(X9): C9=0 : IF X9>1 THEN C9=1 : X9=1/X9 
60320 A9=X9*X9 : B9=((2.86623E-3*A9-1.61657E-2)*A9+4.29096E-2)*A9 
60330 B9=((((B9-7.5289E--2)*A9+.106563)*A9-.142089)*A9+.199936)*A9 
60340 A9=((B9-.333332)*A9+1)*X9 : IF C9=1 THEN A9=1.5708-A9 
60350 A9=T9*A9 : RETURN 

61 



APPENDIX II 

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR TilE ALTAIR 

Though implementations of BASIC on different computers are in many 
ways similar, there are some incompatibilites which you should watch for 
if you are planning to convert some BASIC programs that were not written 
for the ALTAIR. 

1) Matrix subscripts. Some BASICs use \I [ 1\ and \I ] "to denote 
matrix subscripts. ALTAIR BASIC uses \I ( " and \I ) ". 

2) Strings. A number of BASICs force you to dimension (declare) 
the length of strings before you use them. You should remove all 
dimension statements of this type from the program. In some of 
these BASICs, a declaration of the form DIM A$(I,J) declares a string 
matrix of J elements each of which has a length I. Convert DIM 
Statements of this type to equivalent ones in ALTAIR BASIC: DIM A$CJ). 

ALTAIR BASIC uses 1\ + " for string concatenation, not " , II or " & II 

ALTAIR BASIC uses LEFT$, RIGHT$ and MID$ to take substrings of 
strings. Other BASICs use A$CI) to access the Ith character of 
the string A$, and A$(I,J) to take a substring of A$ from charac
ter position I to character position J. Convert as follows: 

OLD 

A$(I) 

A$ (I ,J) 

NEW 

MID$ CA$ , I, 1) 

MID$CA$,I,J-I+l) 

This assumes that the reference to a substring of A$ is in an expres
sion or is on the right side of an assignment. If the reference to 
A$ is on the left hand side of an assignment, and X$ is the string 
expression used to replace characters in A$,convert as follows: 

OLD 

A$CI)=X$ 

A$(I,J)=X$ 

NEW 

A$=LEFT$CA$,I-l)+X$+MID$(A$,I+l) 

A$=LEFT$CA$,I-l)+X$+MID$CA$,J+l) 

3) Multiple assignments. Some BASICs allow statements of the 
form: 500 LET B=C=O .. This statement would set the variables B 
& C to zero. 

In 8K ALTAIR BASIC this has an entirely different effect. All the 
\I ='s II to the right of the first one would be interpreted as logical 
comparison operators. This would set the variable B to -1 if C 
equaled O. If C did not equal 0, B would be set to O. The easiest 
way to convert statements like this one is to rewrite them as follows: 

62 



sao C=O:B=C. 

4) Some BASICs use " '\ " instead of " : " to delimit multiple 
statements per line. Change the" \'s II to " :is " in the program. 

5) Paper tapes punched by other BASICs may have no nulls at the end 
of each line, instead of the three per line recommended for use with 
ALTAIR BASIC. 

To get around this, try to use the tape feed control on the Teletype 
to stop the tape from reading as soon as ALTAIR BASIC types a car
riage return at the end of the line. Wait a second, and then continue 
feeding in the tape. 

When you have finished reading in the paper tape of the program, be 
sure to punch a new tape in ALTAIR BASIC's format. This will save 
you from having to repeat this process a second time. 

6) Programs which use the MAT functions available in some BASICs 
will have to be re-written using FOR .•. NEXT loops to perform the 
appropriate operations. 

63 



APPENDIX I 

USING THE ACR INTERFACE 

NOTE: The cassette features~ CLOADand CSAVEj are onty 
present in BK BASICs which are distributed on cassette. 
BK BASIC on paper tape witt give the user about 130 more 
bytes of free memory~ but it witt not recognize the CLOAD 
or CSA VE commands. 

The CSAVE command saves a program on cassette tape. CSAVE takes one 
argument which can be any printing character. CSAVE can be given directly 
or in a program. Before giving the CSAVE command start your audio recorder 
on Record, noting the position of the tape. . 

CSAVE writes data on chamiel 7 and expects the device status from 
channel 6. Patches can .easily be made to change these channel numbers. 

When CSAVE is finished, execution will continue with the next state
ment. What is written onto the tape is BASIC's internal representation 
of the program in memory. The amount of data written onto the tape will 
be equal to the size of the program in memory plus seven. 

Variable values are not saved on the tape, nor are they affected by 
the CSAVE command. The number of nulls being printed on your terminal 
at the start of each line has no affect on the CSAVE or CLOAD commands. 

CLOAD takes its one character argument just like the CSAVE command. 
For example, CLOAD E. 

The CLOAD command first executes a "NEW" command, erasing the cur-:
rent program and all variable values. The CLOAD command should be given 
before you put your cassette recorder on Play. 

BASIC will read a byte from channel 7 whenever the character ready 
flag comes up on channel 6. When BASIC finds the program on the tape, 
it will read all characters received from the tape into memory until it 
finds three consecutive zeros which mark the end of the program. Then 
BASIC will return to command level and type "OK". 

Statements given on the same line as a CLOAD command are ignored. 
The program on the cassette is not in a checksummed format, so the pro
gram must be checked to make sure it read in properly. 

If BASIC does not return to command level and type "OK", it means 
that BASIC either never found a file with the right filename character, 
or that BASIC found the file but the file never ended with three con
secutive zeros. By carefully watching the front panel lights, you can 
tell if BASIC ever finds a file with the right name. 

Stopping the ALTAIR and restarting it at location 0 will prevent 
BASIC from searching forever. However, it is likely that there will 
either be no program in the machine, or a partial program that has errors. 
Typing NEW will always clear out whatever program is in the machine. 

Reading and writing data from the cassette is done with the INP, OUT 
and WAIT statements. Any block of data written on the tape should have 
its beginning marked with a character. The main thing to be careful of 
is allowing your program to fall behind while data passes by unread. 

Data read from the cassette should be stored in a matrix, since 
64 . 



there isn't tim~ to process data as it is being read in. You will pro
bably want to detect the end of data on the tape with a special character. 

65 



APPENDIKJ 

BASIC/MACHINE LANGUAGE INTERFACE 

In all versions of BASIC the user can link to a machine language 
subroutine. The first step is to set aside enough memory for the sub
routine. When BASIC asks "MEMORY SIZE?", you shouldn't type a return, 
because BASIC would then write into all of memory trying to find out 
how much memory your machine has and then use whatever memory it finds. 

The memory that BASIC actually uses is constantly modified, so you 
cannot store your machine language routine in those locations. 

BASIC always uses memory starting at location 0 and as high upwards 
as you let it. BASIC cannot use non-contiguous blocks of memory. There
fore, it is best to reserve the top locations of memory for your machine 
language program. 

For example, if you have a 4K machine and want to use a 200 byte sub
routine, you should set memory size to 3896. Remember, BASIC always ac
cepts numbers in decimal and that 4K is really 2+12=4096 rather than 4000. 
Now BASIC will not use any location >= 3896. 

If you try to allocate too much memory for your machine language pro
gram, you will get an OM (out of memory) error. This is because there is 
a certain amount of memory that BASIC must have or it will give an OM 
error and go back to the "MEMORY SIZE?" question. 

The starting location of your routine must be stored in a location 
known as "USRLOC". The exact octal location of USRLOC will be given with 
each distributed version of BASIC. It is not the same for the 4K and 8K 
versions. 

USRLOC for Version 3.0: 8K (both paper tape & cassette) = lll(octal) 
4K = 103(octal) 

Initially USRLOC is set up to contain the address of "ILLFUN", which 
is the routine that gives an FC (function call) error. USRLOC is the two 
byte absolute address of the location BASIC calls whenUSR is invoked. 

USR is a function just like ABS or INT and is- called as follows: 
10 X=USR(3). 

When your routine is called the stack pointer 
allowed to use up to 8 levels of stack (16 bytes). 
more, you have to save BASIC's stack pointer (SP), 
restore BASIC's before you return back to BASIC. 

is set up and you are 
If you want to use 

set up your own, and 

All of the registers (A, B, C, D, E, H, Land PSW) can be changed. 
It is dangerous to modify locations in BASIC itself unless you know what 
you are doing. This is unlikely unless you have purchased a source copy 
of BASIC. Popping more entries off of the stack than you put on is almost 
guaranteed to cause trouble. 

To retrieve the argument passed to USR, you must call the routine 
whose address is given in location 4 and 5 (DEINT). The low order 8 bits 
of an address are always stored in the lower address (4 in this case), and 
the high order 8 bits are stored in the next (higher) memory address (5 
in this case). 

_, 66 



The argument to USR is truncated to an integer (calling USR with 3.8 
is the same as calling it with 3). If the argument is greater than 32767 
or less than -32768, an FC error will result. When DEINT returns, the 
two byte signed value of the argument will be in registers D & E. The 
high order byte would be in D, the low order byte in E. For instance; 
if the argument to USR was -1, D would equal 255 and E would equal 255; 
if the argument was 400, D would equal 1 and E would equal 144. 

To pass back a value from USR, set up a two byte value in registers 
A & B and call the routine whose address is given in locations 6 and 7. 
A & B should be set up in the same manner that D & E are when a value is 
passed to USR (A should contain the high order byte and B tHe low order 
byte). 

If the routine whose address is given in locations 6 and 7 is not 
called, the function USR in the user's program will be an identity func
tion. That is, USR(X) will equal X. 

At the end of the USR routine a RET must be done to get back to 
BASIC. The BASIC program is completely stopped while USR is being exe
cuted and the program will not be continued until USR returns. 

In the 4K version, the USR routine should not enable interrupts from 
a device. 4K BASIC uses the RST 7 location (56 decimal, 70 octal) to store 
a subroutine. If an interrupt occurs, this subroutine will be called which 
will have an undetermined and undesirable effect on the way BASIC behaves. 

In the 8K BASIC, locations 56, 57 and 58 decimal have been set aside 
to store a JMP to a user-provided interrupt service routine. Initially 
a RET instruction is stored at location 56, so until a user sets up the 
call to his interrupt service routine, interrupts will have no effect. 

Care must be taken in interrupt routines to save and restore the 
stack pointer, (A, B, C, D, E, H & L) and the PSW. Interrupt routines 
can pass data using PEEK, and can receive data using POKE. 

The interrupt service routine should re-enable interrupts with an EI 
instruction before it returns, as interrupts are automatically disabled 
when the interrupt occurs. If this procedure is not followed, the inter
rupt service routine will never "see" another interrupt. 

Though there is only one way of calling a machine language subroutine, 
this does not restrict the user to a single subroutine. The argument pas
sed to USR can be used to determine which routine gets called. Multiple 
arguments to a machine language routine can be passed with POKE or through 
multiple calls to USR by the BASIC program. 

The machine language routine can be loaded from paper tape or cassette 
before or after BASIC is loaded. The checksum loader, an unchecksummed 
loader, the console switches, or more conveniently the POKE function can be 
used to load the routine. 

A common use of USR for 4K users will be doing IN's and OUT's to 
special devices. For example, on a 4K machine a user wants USR to pass 
back the value of the front panel switch register: 

Answer to MEMORY SIZE? : 4050 
USRLOC patched to contain I17,322]=7722 Base 8=4050 decimal 

67 



At location 4050=7722 Base 8 put: 

7722/333 IN 255 ;(255 Base 10=377 Base 8) Get 
7723/377 ;the value of the switches in A 
7724/107 MOV. B,A ;B gets low part of answer 
7725/257 XRA A ;A gets high part of answer 
7726/052 LHLD 6 jget address of routine 
7727/006 
7730/000 j that floats [A,S] 
7731/351 PCHL jgo to that routine which will 

jreturn to BASIC 
;with the answer 

MORE ON PEEK AND POKE (BK VERSION ONLY) 

As mentioned before, POKE can be used to set up your machine language 
routine in high memory. BASIC does not restrict which addresses you can 
POKE. Modifying USRLOC can be accomplished using two successive calls to 
POKE. Patches which a user wishes to include in his BASIC can also be 
made using POKE. 

Using the PEEK function and out statement of 8K BASIC, the user can 
write a binary dump program in BASIC. Using INP and POKE it is possible 
to write a binary loader. 

PEEK and POKE can be used to ,store byte oriented information. When 
you initialize BASIC, answer the MEMORY SIZE? question with the amount of 
memory in your ALTAIR minus the amount of memory you wish to use as stor
age for byte formatted data. 

You are now free to use the memory in the top of memory in your ALTAIR 
as byte storage. See PEEK and POKE in the Reference Material for a further 
description of their parameters. 

68 



APPENDIX K 

ASCII CHARACTER CODES 

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR. 

000 NUL 043 + 086 V 
001 SOH 044 I 087 W 
002 STX 045 088 X 
003 ETX 046 089 Y 
004 EOT 047 / 090 Z 
005 ENQ 048 0 091 [ 
006 ACK 049 1 092 \ 
007 BEL 050 2 093 ] 
008 BS 051 3 094 t 
009 HT 052 4 095 + 

010 LF 053 5 096 .. 
011 VT 054 6 097 a 
012 FF 055 7 098 b 
013 CR 056 8 099 c 
014 SO 057 9 100 d 
015 SI 058 101 e 
016 DLE 059 102 f 
017 DC1 060 < 103 g 
018 DC2 061 = 104 h 
019 DC3 062 > 105 i 
020 DC4 063 ? 106 j 
021 NAK 064 @ 107 k 
022 SYN 065 A 108 1 
023 ETB 066 B 109 m 
024 CAN 067 C 110 n 
025 EM 068 D 111 0 

026 SUB 069 E 112 P 
027 ESCAPE 070 F 113 q 
028 FS 071 G 114 r 
029 GS 072 H 115 5 

030 RS 073 I 116 t 
031 US 074 J 117 u 
032 SPACE 075 K 118 v 
033 076 L 119 w 
034 II 077 M 120 x 
035 # 078 N 121 Y 
036 $ 079 0 122 z 
037 % 080 P 123 { 

038 & 081 Q 124 I 
039 ~ 082 R 125 } 

040 ( 083 S 126 '" 041 ) 084 T 127 DEL 
042 * 085 U 

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout 

69 



CHR$ is a string functiOn ~hichreturns a one character string which 
contains the ASCII equivalent of the argument, according to the conversion 
table on the preceeding"pa.ge." ASC takes the .first character of a string 
and converts it to its ASCII decimal value. 

One of the most common uses of CHR$ is to send a special character 
to the user's terminal. The most often used of these characters is the 
BEL (ASCII 7). Printing this character will cause a bell to ring on some 
terminals and a "beep" on many CRT's. This may be used as a preface to 
an error message, as a novelty, or just to wake up the user if he has 
fallen asleep. (Example: PRINT CHR$(7);) 

A major use of special characters is on those CRT's that have cursor 
positioning and other special functions (such as turning on a hard copy 
printer). . 

As an example, try sending a form feed (CHR$(12)) to your CRT. On 
most CRT's this will usually cause the screen to erase and the cursor to 
"home" or move to the upper left corner. 

Some CRT's give the user the capability of drawing graphs and curves 
in a special point-plotter mode. This feature may easily be taken advan
tage of through use of ALTAIR BASIC's CHR$ function. 

;\ ' 

70 



APPENDIX L 

EXTENDED BASIC 

When EXTENDED BASIC is sent out, the BASIC manual will be updated 
to contain an extensive section about EXTENDED BASIC. Also, at this time 
the part of the manual relating to the 4K and 8K versions will be revised 
to correct any errors and explain more carefully the areas users are hav
ing trouble with. This section is here mainly to explain what EXTENDED 
BASIC will contain. 

INTEGER VARIABLES These are stored as double byte signed quantities 
ranging from -32768 to +32767. They take up half as much space as normal 
variables and are about ten times as fast for arithmetic. They are denoted 
by using a percent sign (%) after the variable name. The user doesn't 
have to worry about conversion and can mix integers with other variable 
types in expressions. The speed improvement caused by using integers for 
loop variables, matrix indices, and as arguments to functions such as 
AND, OR or NOT will be substantial. An integer matrix of the same dimen
sions as a floating point matrix will require half as much memory. 

DOUBLE-PRECISION Double-Precision variables are almost the oppo
site of integer variables,-requiring twice as much space (8bytes per value) 
and taking 2 to 3 times as ~ong to do arithmetic as single-precision 
variables. Double-Precision variables are denoted by using a number sign 
(#) after the variable name. They provide over 16 digits of accuracy. 
Functions like SIN, ATN and EXP will convert their arguments to single
precision, so the results of these functions will only be good to 6 digits. 
Negation, addition, subtraction, multiplication, division, comparision, 
input, output and conversion are the only routines that deal with Double
Precision values. Once again, formulas may freely mix Double-Precision 
values with other numeric values and conversion of the other values to 
Double-Precision will be done automatically. 

PRINT USING Much like COBOL picture clauses or FORTRAN format 
statements, PRINT USING provides a BASIC user with complete control over 
his output format. The user can control how many digits of a number are 
printed, whether the number is printed in scientific notation and the 
placement of text in output. All of this can be done in the 8K version 
using string functions such as STR$ and MID$, but PRINT USING makes it 
much easier. 

DISK I/O EXTENDED BASIC will come in two versions, disk and non
disk. There will only be a copying charge to switch from one to the 
other. With disk features, EXTENDED. BASIC will allow the user to save and 
recall programs and data files from the ALTAIR FLOPPY DISK. Random ac
cess as well as sequential access will be provided. Simultaneous use of 
multiple data files will be allowed. Utilities will format new disks, 
delete files and print directories. The,se will be BASIC programs using 
special BASIC functions to get access to disk information such as file 
length, etc. User programs can also access these disk functions, enabling 
the user to write his own file access method or other special purpose 

71 



disk routine. The file format can be changed to allow the use of other 
(non-floppy) disks. This type of modification will be done by MITS under 
special arrangement. 

OTHER FEATURES Other nice features which will be added are: 

Fancy Error Messages 
An ELSE clause in IF statements 
LIST, DELETE commands with line range as arguments 
Deleting Matrices in a program 
TRACE ON/OFF commands to monitor program flow 
EXCliANGE statement to switch variable values (this will speed 

up string sorts by at least a factor of two). 
Multi-Argument, user defined functions with string arguments 

and values allowed 

Other features contemplated for future release are: 

A multiple user BASIC 
Explicit matrix manipulation 
Virtual matrices 
Statement modifiers 
Record I/O 
Paramaterized GOSUB 
Compilation 
Multiple USR functions 
"Chaining" 

EXTENDED BASIC will use about 11K o:f memory for its own code (10K 
for the non-disk version) leaving 1K free on a 12K machine. It will take 
almost 20 minutes to load from paper tape, 7 minutes from cassette, and 
less than S seconds to load from disk. 

We welcome any suggestions concerning current features or possible 
additions of extra features. Just send them to the ALTAIR SOFTWARE 
DEPARTMENT. 

72 



APPENDIX M 

BASIC TEXTS 

Below are a few of the many texts that may be helpful in learning 
BASIC. 

1) BASIC PROGRAMMING, John G. Kemeny, Thomas E Kurtz, 1967, p145 

2) BASIC, Albrecht, Finkel and Brown, 1973 

3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A Dwyer 
and Michael S. Kaufman; Boston: Houghton Mifflin Co., 1973 

Books numbered 1 & 2 may be obtained from: 

People's Computer Company 
P.O. Box 310 
Menlo Park, California 

94025 

They also have other books of interest, such as: 

101 BASIC GAMES, Ed. David Ahl, 1974 p250 

WHAT TO DO AFTER YOU HIT RETURN or PCC' s FIRST 
BOOK OF COMPUTER GAMES 

COMPUTER LIB & DREAM MACHINES, Theodore H. Nelson, 1974, p186 

13 





eRE A T 1 V E 

L 

E 

_--_·~LT~J" C 

75 

T 

R 

o 

N 

1 

C 

S 



ALTAIR EXTENDED BASIC 

PRELIMINARY DOCUMENTATION 

THE FOLLOWING PAGES CONTAIN A CONDENSED VERSION OF THE 
COMPLETE "ALTAIR EXTENDED BASIC" DOCUMENTATION. 

In order to get this software to our customers with a 
minimum of delay, it was decided to print this prelim
inary documentation. This will help to expedite the 
deliveries. The complete manual will be printed at a 
later date, and will be in much the same format as the 
previous existing BASIC documentation. 

READ THESE PAGES OVER CAREFULLY. SOME OF THE INFOR
MATION CONTAINED HERE ALSO APPLIES TO THE 4K AND 8K 
VERSIONS OF BASIC. 

This is meant to be an additional section to the 
"ALTAIR BASIC REFERENCE MANUAL", and not a sepa
rate manual in itself. 

"Creative Electronics" 
76 

December '75 



ALTAIR EXTENDED BASIC 

ALTAIR EXTENDED BASIC includes all of the features found in the 8K 
version of BASIC, with some variations. There are also a large number of 
additional features making this version one of the most powerful BASICs 
available. 

The following section contains the EXTENDED BASIC features and its 
variations from the 8K BASIC. 

NAME 

DELETE 

LIST 

COMMANDS 

EXAMPLE 

DELETE X 

DELETE -X 

DELETE V-X 

PURPOSE/USE 

Deletes line in a program with 
the line number "X". "ILLEGAL 
FUNCTION CALL II error occurs if 
there is no line "XII. 

Deletes all lines in a program up 
to and including line number "X". 
IIILLEGAL FUNCTION CALL II if no line 
IIXII. 

Deletes all lines in a program from 
the line number equal to or greater 
than lIyll up to and including the 
first line equal to or less than 
\IX II • 1\ ILLEGAL FUNCTION CALL II if no 
line UXII. 

If deletion is performed, all variable values are lost. 
Also continuing is not allowed, and all "FORlls and IGOSUB"s 
are made inactive. (This is the same effect caused when
ever a program is modified.) 

LIST X 

LIST or L1ST

LIST X-

LIST -x 

LIST V-X 

71 

Lists line IIX" if there is one. 

Lists the entire program. 

Lists all lines in a program with a 
line number. equal to or greater than 
"X". 

Lists all of the lines in a program 
with a line number less than or equal 
to "XII. 

Lists all of the lines within a pro
gram with line numbers equal to or 
greater than "V", and less than or 
equal to "X". 



NAME 

ERASE 

SWAP 

TRON 

TROFF 

STATEMENTS 

EXAMPLE 

ERASE J% 

ERASE X%,I# 

ERASE A$ 

ERASE O#,NMS% 

SWAP I%,J% 

SWAP B$(7), T$ 

SWAP 0#(1),0#(1+1) 

TRON 

TROFF 

PURPOSE/USE 

Eliminates an array. If no such 
array exists an IIILLEGAL FUNCTION 
CALL II error will occur. ERASE must 
refer to an array, not an array ele
ment [ERASE B(9) would be illegal]. 
The space the array is using is freed 
up and made available for other uses. 
The array can be dimensioned again, 
but the values before the ERASE are 
lost. 

Exchanges the value of two variables. 
(If X=l & Y=5, after SWAP X,Y the 
values would be switched; that is, 
now X=5 & Y=l.) Both, one or neither 
of the variables may be array elements. 
If a non-array variable that has not 
been assigned a value is referenced 
an IIILLEGAL FUNCTION CALL II error will 
occur. Both variables must be of 
the same type (both integers, both 
strings, both double precision or 
both single precision), otherwise a 
IITYPE MISMATCH II error will occur. 

Turns on the trace flag. 

Turns off the trace flag. 

TRON & TROFF can be given in either 
direct or indirect (program) mode. 
When the trace flag is on, each time 
a new program line is started, that 
line number is printed enclosed in 
II[]II. No spaces are printed. For 
example: 

TRON 
OK 
10 PRINT 1: PRINT IIAII 
20 STOP 
RUN 
[10] 1 
A 
[20] 
BREAK IN 20 

IINEWII will also turn off the trace 
78 flag along with its other functions. 



IF-THEN-ELSE 

STATEMENTS 

(Similar to 8K version IF-THEN state
ment, only with the addition of a new 
II ELSE" clause.) 

IF X>Y THEN PRINT IIGREATERII ELSE PRINT IINOT GREATER II 

In the above example, first the 
relational condition would be tested. 
If it is true, the THEN clause would 
be executed (IIGREATERII would be 
printed). If it is false, the ELSE 
clause would be executed {IINOT GREATER II 
would be printed). 

10 IF A>B THEN PRINT IIA>BII ELSE IF B>A THEN PRINT IIB>AII ELSE PRINT IIA=BII 

The above example would indicate 
which of the two variables was the 
largest, or if they were equal. 
As this example indicates, IF state
ments may be nested to any desired 
level (regulated only by the maximum 
line length). An IF-THEN-ELSE state
ment may appear anywhere within a mul
tiple-statement line; the THEN clause 
being always mandatory with each IF 
clause and the ELSE clause optional. 
Care must be taken to insure that IFs 
without ELSE clauses do not cause an 
ELSE to be associated with the wrong 
IF. 

5 IF A=B THEN IF A=C THEN PRINT IIA=C II ELSE PRINT IIA<>C II ELSE PRINT "A<>BII 

79 

In the above example, the double 
under-lined portion of the line is 
an IF-THEN-ELSE statement which is 
all a part of the THEN clause of the 
first IF statement in the line. The 
second ELSE (single under-lined) is 
part of the first IF, and will be 
executed only if the first relational 
expression is false (A<>B). If a 
line does not contain the same number 
of ELSE and THEN clauses, the last 
ELSE is matched with the closest THEN. 



TYPING 

Normally, numbers used in BASIC operations are stored and acted upon as single 
precision floating point numbers. This allows fo~ 7 digits of accuracy. 

In the extended version of BASIC greater accuracy may be obtained by typing 
numbers as double precision. This allows for 16 digits of accuracy. In 
cases where speed is critical, it is, however, slower than single precision. 

The greatest advantage, in both speed and storage space can be obtained by using 
integer operations whenever possible. These fall within the rage <=32767 to 
>=-32768. 

Examples: 

(single precision) PRINT 1/3 
.3333333 

(double precision) PRINT 1/3D 
.3333333333333333 

(integer) PRINT 1/3% 
o 

PRINT 2.76% 
2 

The use of these types of numbers will become clearer further on in the 
text. 

Examples: 

1%(10) uses (11 * 2) + 6 + (2 * 1) = 30 

I (5,5) uses (6 * 6 * 4) + 6 + (2 * 2) = 154 

80 



TYPING 

There are four types of values used in EXTENDED BASIC programming: 

NAME 

STRINGS (0 to 255 
characters) 

INTEGERS (must be 
-32768 and =< 
32767) 

DOUBLE PRECISION 
(exponent: -38 
to +38) 16 digits 

SINGLE PRECISION 
(exponent: -38 
to +38) 7 digits 

SYMBOL 

$ 

% 

# 

# OF BYTES/VALUE 

3 

2 

8 

4 

The type a variable will be is explicitly declared by using one of the 
four symbols 1isted above. Otherwise, the first letter of the variable is 
used to look into the table that indicates the default type for that letter. 
Initially (after CLEAR, after RUN, after NEW, or after modifying a program) 
all letters are defaulted to SINGLE PRECISION. 

The following four statements can be used to modify the DEFAULT table: 

STATEMENT 

DEFINT r 
DEFSTR r 
DEFDBL r 
DEFSNG r 

DEFAULTS VARIABLE TO 

INTEGER 
STRING 
DOUBLE PRECISION 
SINGLE PRECISION 

r above indicates the position for the range to be given. This 
is to be of the following format: letter or letter 1 - letter 2. 
(In the second format, the "_" indicates from letter 1 through 
letter 2 inclusive.) 

In the above four statements the default type of all of the letters within 
the range is changed, depending on which DEF "type" is used. Initially, 
DEFSNG A-Z is assumed. Care should be taken when using these statements 
since variables referred to without type indicators may not be the same after 
the statement is executed. It is recommended that these statements be used 
only at the start of a program, before any other statements are executed. 

The following will illustrate some of the above information: 

81 



10 1%=1 
20 I!=2 
30 1#=3 
40 I$=IIABC II 
50 PRINT I 
60 01:FINT I 
70 PRINT I 
80 OEFSTR I 
90 PRINT I 

100 DEFDBL I 
110 PRINT I 

TYPING OF CONSTANTS 

The example on the left would 
print out: 

2 at line # 50 
1 at line # 70 
ABC at 1ine # 90 
3 at line # 110 

The type that a particular constant will be is determined by the following: 

1) if it is more than 7 digits or 110" is used in the exponent, 
then it will be DOUBLE PRECISION. 

2) if it is >32767 or <-32768, a decimal point (.) is used, 
or an II Ell i sused, then it is SINGLE PRECISION. 

3) otherwise, it is an integer. 

When a + or * operation or a comparison is performed, the operands are 
converted to both be of the same type as the most accurate operand. There
fore, if one or both operands are double precision, the operation is done 
in double precision (accurate but slow). If neither is double precision 
but one or more operands are single precision floating point, then the 
operation will be done in single precision floating point. Otherwise, 
both operands must be integers, and the operation is performed in integer 
representation. 

If the result of an integer + or * is too big to be an integer, the oper
ation will be done in single precision and the result will be single preci. 
sion. Division (I) is done the same as the above operator, except it is never 
done at the integer level. If both operands are integers, the operation is 
done as a single precision divide. 

The operators AND, OR, NOT, \, and MOD force both operands to be integers 
before the operation is done. If one of the operands is >32767 or <-32768, an 
overflow error will occur. The result of these operators will always be an 
integer. (Except -32768\-1 gives single precision.) 

No matter what the operands to t are, they will both be converted to single 
precision. The functions SIN, COS, ATN, TAN, SQR, LOG, EXP, arid RND also 
convert their arguments to single precision and give the result as such, ac
curate to 6 digits. 

Using a subscript >32767 and assigning an integer variable a value too 
large to be an integer gives an overflow error. 

82 



TYPE CONVERSION 

When a number is converted to an integer, it is truncated (rounded down). 
For example: 

1%=.999 
PRINT 1% 
o 

A%=-.Ol 
PRINT A% 
-1 

It will perform as if the INT function was applied. 

When a double precision number is converted to single precision, it is 
rounded off. For example: 

0#=77777777 
I!=D# 
PRINT I! 
7.77778E+07 

I 

No automatic conversion is done between strings and numbers. See the STR$, 
NUM, ASC, and CHR$ functions for this purpose. 

NEW FUNCTIONS 

CINT Convert the argument to an integer number 

CSNG Convert the argument to a single precision number 

CDBL Convert the argument to a double precision number 

Examples: CDBL(3)=3D 

CINT(3.9)=3 

CINT{-.Ol )=-1 

CSNGl312456.8)=312457 

NOTE: if X<=32767 and =>-32768 then CINTlX)=INT(X) 
otherwise, CINT will give an overflow error 

NEW OPERATORS 

\(backslash=shift L) 
Integer Division 

Examples: 1\3=0 
7\2=3 
-3\-1=3 
300\7=42 
-8\3=-2 
-1\3=0 

83 

The integer division operator forces 
both arguments to integers and gives 
the integer value of the division 
operation. (The only exception to this 
is -37268\-1, which results ina value 
too large to be an integer.) 
NOTE: A\B does not equal INT(A/B) 

(if A=-l & B=7, 0 does not 
equal -1) 

Integer division is about eight times 
as fast as single precision division. 
Its precedence is just below that of 
* & I. 



NEW OPERATORS (cont.) 

MOU 

Examples: 4 MOD 7=4 

The MOD operator forces both arguments 
to integers and returns a result 
according to the following formula: 

13 MOD 3=1 
7 MOD -11=7 
-6 MOD -4=-2 

USER-DEFINED-FUNCTIONS 

A MOD B = A - [B * (A\B)] 

If 8=0 then a division by zero error 
will occur. MODs precedence is just 
below that of integer division and 
just above + and -. 

In the Extended version of BASIC, a user-defined function can be of any 
type and can take any number of arguments of any type. 

Examples: DEF FNRANDOM%=lO*RND(l)+l 

DEF FNTWO$(X$)=X$+X$ 

DEF FNA(X,Y,Z,I%)=XtZ+I%*Y 

The result of the function will be forced to the function type before 
the value is substituted into the formula with the function call. 

FOR LOOPS (Integer) 

The loop variable in a FOR loop can be an integer as well as a single 
precision number. Attempting to use a string or double precision vari
able as the loop variable will cause a Type Mismatch error to occur. 
Integer FOR loops are about three times as fast as single precision FOR 
loops. If the addition of the increment to the loop variable gives a 
result that is too big to be an integer, an overflow error will occur. The 
initial loop value, increment value and the final value must all be in the 
legal range for integers or an overflow error will occur when the FOR is 
executed. 

Example: 

84 

1 FOR 1%=20000 TO 30000 STEP 20000 
2 PRINT 1% 
3 NEXT 1% 
RUN 
20000 
OVERFLOW IN 3 
OK 



NEW ERROR MESSAGES 

These messages replace the old error messages listed in APPENDIX C (p. 53) of 
the BASIC manual. 

Examples: 

NEXT WITHOUT FOR 
SYNTAX ERROR 
RETURN WITHOUT GOSUB 
OUT OF DATA 
ILLEGAL FUNCTION CALL 
OVERFLOW 
OUT OF MEMORY 
UNDEFINED STATEMENT 
SUBSCRIPT OUT OF RANGE 
REDIMENSIONED ARRAY 
DIVISION BY ZERO 
ILLEGAL DIRECT 
TYPE MISMATCH 
OUT OF STRING SPACE 
STRING TOO LONG 
STRING FORMULA TOO COMPLEX 
CAN'T CONTINUE 
UNDEFINED USER FUNCTION 

10 GOTO 50 
RUN 
UNDEFINED STATEMENT IN 50 
OK 
PRINT 1/0 
DIVISION BY ZERO 
OK 

ADDITIONAL NOTES ON EXTENDED BASIC 

PEEK & POKE In the 8K version of BASIC you can't PEEK at or POKE 
into memory locations above 32767. In the Extended 
version this can be done by using a negative'argument. 
If the address to be PEEKed or POKEd is greater than 
32767, subtract 65536 from it to give the proper 
argument. 

Examples: to PEEK at 65535 

to POKE at 32768 

PEEK(-l) 

POKE -32768,1% 

INT the INT function will work on numbers both 
single & double precision which are too large to 
be integers. Double precision numbers maintain 
full accuracy. (see CINT) 

Examples: INT(lE38)=lE38 

INT(123456789.6)=123456789 

85 



ADDITIONAL NOTES (cont.) (miscellaneous) 

Extended BASIC uses 10.2K of memory to reside. . . 

String space is defaulted to 100 in the Extended version. 

A comma before the THEN in an IF statement is allowed. 

USR eass routine [4,5] passes in [H,L] not [D,E], and the pass back routine 
[6,7j receives in [H,Lj not [A,BJ. 

Files CSAVEd in BK BASIC cannot be CLOADed in EXTENDED BASIC, nor the opposite. 

UPDATE TO EXISTING MATERIAL 

In cassette BASICs (both BK* and Extended), CLOAD? some character fil e name, 
reads the specified file and checks it against the file in core. If the 
files do not match, the message "NO GOOD" is printed. If they do match, 
BASIC returns to command level and prints "OK". 

In the Extended version of BASIC, active FOR loops (integer or single 
precision) require 17 bytes. 

Each non-array string variable uses 6 bytes. 

integer 5 

double 11 
precision 

single 7 
precision 

This is because. it takes 3 bytes to store the name of a vari
ab1 e. 

Each array uses: 

Examples: 

(# of e1ements)* ~NT=~ 
DBL=B 
STR=3 
SNG=4 

+6+2*{# of dimensions). 

I%(JO} uses (11*2)+6+{2*1)=30 bytes 

1(5,5) uses (6*6*4)+6+(2*2)=154 bytes 

Stored programs take exactly the same amount of space as in the BK version of 
BASIC, except the reserved word ELSE takes 2 bytes instead of 1 byte as with 
the other reserved words. 

86 



UPDATE TO EXISTING MATERIAL 
(Applies to BK Versions 3.2 and later.) 

In both Extended & BK* BASIC, if a number is between >=lE-2 and <lE-1, 
the number will be printed as: 

.OXXXXXX (trailing zeros suppressed) 
instead of X.XXXXXXE-2 

An BK BASIC program should run exactly the same under Extended BASIC. 
No conversion should be necessary. 

USRLOC in extended is: 

EXTENDed: 

101 octal=65 decimal, 
still 111 in BK and 4K to load. 

(Non-disk) location 002 in the BOOT 
should be 57 (8K=37, 4K=17) 

UPDATE TO EXISTING MATERIAL 
(Applies to page 57 of version 3.2 and later.) 

Each active GOSUa takes 5 bytes. 

Each active FOR loop takes 16 bytes. 

87 



EDIT COMMAND 

The EDIT command is for the purpose of allowing modifications and additions 
to be made to existing program lines without having to retype the entire 
line each time. 

Commands typed in the EDIT mode are, as a rule, not echoed. Most commands 
may be preceded by an optional numeric repetition factor which may be used 
to repeat the command a number of times. This repetition factor should be 
in the range 0 to 255 (0 is equivalent to 1). If the repetition factor is 
omitted, it is assumed to be 1. In the following examples a lower case 
IInll before the command stands for the repetition factor. 

In the following description of the EDIT commands, the "cursor" refers to 
a pointer which is positioned at a character in the line being edited. 

To EDIT a line, type EDIT followed by the number of the line and hit the 
carriage return. The line number of the line being EDITed will be printed, 
followed by a space. The cursor will now be positioned to the left of 
the first character in the line. 

NOTE: The best way of getting the "feel ll of the EDIT command is to try 
EDITing a few lines yourself. Commands not recognized as part of 
the EDIT commands will be ignored. 

MOVING THE CURSOR 

A space typed in will move the cursor to the right and cause the character 
passed over to be printed out. A number preceding the space (nS) will 
cause the cursor to pass over and print out the number (n) of characters 
chosen. 

I 

INSERTING CHARACTERS 

Inserts new characters into the line being edited. After the 
I is typed, each character typed in will be inserted at the 
current cursor position and typed on the terminal. To stop 
inserting characters, type lIescape" (or Alt+fllode on some ter
minals). 

If an attempt is made to insert a character that will make 
the line longer than the maximum allowed (72 characters), 
a bell will be typed (control G) on the terminal and the 
character will not be inserted. 
WARNING: It is possible using EDIT to create a line which, 

when listed with its line number, is longer than 
72 characters. Punched paper tapes containing such 
lines will not be read in properly. However, such 
lines may be CSAVEd and CLOADed without error. 

88 



~-

(or.J 

x 

H 

o 

INSERTING CHARACTERS (cont.) 

A backarrow (or under11ne) typed during an insert command will 
delete the character to the left of the cursor. Characters 
up to the beginning of the line may be deleted in this manner, 
and a backarrow will be echoed for each character deleted. 
However, if no characters exist to the left of the cursor, a 
bell is echoed instead of a backarrow. 

If a carriage return is typed during an insert command, it 
will be as if an escape and then carriage return was typed. 
That is, all characters to the right of the cursor will be 
printed and the tDITed line will replace the original line. 

X is the same as I, except that all characters to the right 
of the cursor are printed, and the cursor moves to the end 
of the line. At this point it will automatically enter the 
insert mode (see I command). 

X is very useful when you wish to add a new statement to the 
end of an existing line. For example: 

Typed by User 
Typed by ALTAIR 
Typed by User 

EDIT 50 (carriage return) 
50 X=X+l:Y=Y+l 

X :Y=Y+l (carriage return) 

In the above example, the original line #50 was: 

50 X=X+l 

The new EDITed line #50 will now read: 

50 X=X+l:Y=Y+l 

His the same as I, except that all characters to the ri ght 
of the cursor are deleted (they will not be typed). The insert 
mode (see I command) will then automatically be entered. 

H is most useful when you wish to replace the last statements 
on a line with new ones. 

DELETING CHARACTERS 

nO deletes n number of characters to the right of the cursor. If 
less than n characters exist to the right of the cursor, only that 
many characters will be deleted. The cursor is positive to the 
right of the last character deleted. The characters deleted are 
enclosed in backslashes (\). For example: 

Typed by User 
Typed by User 
Typed by ALTAIR 
Typed by User 

20 X=X+l:REM JUST INCREMENT X 
EDIT 20 (carriage return) 
20 \X=X+l:\ REM JUST INCREMENT X 

60 (carriage return) 

The new line H20 will no longer contain the characters which 
are enclosed by the backslashes. 

89 



S 

K 

C 

SEARCHING 

The nSy command searches for the nth occurance of the character 
y in the line. The search begins at the character one to the 
right ~f the cursor. All characters passed over during the 
search are printed. If the character is not found, the cursor 
will be at the end of the line. If it is found, the cursor will 
stop at that point and all of the characters to its left will 
have been printed. 

For example: 

Typed by User 
Typed by User 
Typed by ALTAIR 
Typed by User 

50 REM INCREMENT X 
EDIT 50 
50 REM INCR 
2SE 

nKY is equivalent to S, except that all of the characters 
passed over during the search are deleted. The deleted char
acters are enclosed in backslashes. For example: 

Typed by User 
Typed by User 
Typed by ALTAIR 
Typed by User 

TEXT REPLACEMENT 

10 TEST LINE 
EDIT 10 
10 \ TEST\ 

KL 

A character in a line may be changed by the use of the C command~ 
Cy, where y is some character, will change the character to the 
right of the cursor to y. The y will be typed on the terminal 
and the cursor will be advanced one position. nCy may be used 
to change n number of characters in a line as they are typed in 
from the terminal. (See example below.) 

If an attempt is made to change a character which does not exist, 
the change mode will be exited. 

Example: 

Typed by User 
Typed by User 
Typed by ALTAIR 
Typed by User 

ENDING AND RESTARTING 

10 FOR 1=1 TO 100 
EDIT 10 
10 FOR 1=1 TO 256 
2S1 3C256 

Carriage Return Tells the computer to finish editing and print the re
mainder of the line. The edited line replaces the original 
line. 

E E is the same as a carriage return, except the remainder 
of the line is not printed. 

90 



Q 

L 

A 

Quit. Changes to a line do not take effect until an E 
or carriage return 1s typed. Q allows the user to restore 
the original line without any changes which may have been 
made, if an E or carriage return has not yet been typed. 
"0K" will be typed and BASIC will await further commands. 

Causes the remainder of the line to be printed, and then 
prints the line number and restarts EDITing at the beginning 
of the line. The cursor will be positioned to the left of the 
first character in the line. 

L is most useful when you wish to see how the changes in a line 
look so that you can decide if further EDITs are necessary. 

Example: 

Typed by User 
Typed by ALTAIR 
Typed by User 
Typed by ALTAIR 

EDIT 50 
50 REM INCREMENT X 
2SM L 
50 

Causes the original copy of the line to be restored, and EDITing 
to be restarted at the beginning of the line. For example: 

Typed by User 
Typed by User 
Typed by ALTAIR 
Typed by User 
Typed by ALTAIR 

10 TEST LINE 
EDIT 10 
10\TEST LINE\ 
100 A 
10 

In the above example, the user made a mistake when he deleted 
TEST LINE. Suppose that he wants to type "10" instead of "100" 
By using A command, the original line 10 is reentered and is 
ready for further EDITing. 

IMPORTANT 

Whenever a SYNTAX ERROR is discovered during the execution of a source 
program, BASIC will automatically begin EDITing the line that caused the 
error as if an EDIT command had been typed. For Example: 

10 APPLE 
RUN 
SYNTAX ERROR IN 10 
10 

Complete editing of a line causes the line edited to be re-inserted. 
Re-inserting a line causes all variable values to be deleted, therefore 
you may want to exit the EDIT command without correcting the line so that 
you can examine the variable values. 

This can be easily accomplished by typing the Q command while in the EDIT 
mode. If this is done, BASIC will type OK and all variable values will 
be preserved. 

91 



PRINT USING 

The PRINT USING statement can be employed in situations where a specific 
output format is desired. This situation might be encountered in such 
applications as printing payroll checks or an accounting report. Other 
uses for this statement will become more apparent as you go through the 
text. 

The general format for the PRINT USING statement is as follows: 

(line number) PRINT USING <string>; <value list> 

The "string" may be either a string variable, string expression or a string 
constant which is a precise copy of the line to be printed. All of the char
acters in the string will be printed just as they appear, with the exception 
of the formatting characters. The "value list" is a list of the items to 
be pr'inted. The string will be repeatedly scanned until: 1) the string ends 
and there are no values in the value list 2) a field is scanned in the string, 
but the value list is exhausted. 

The string should be constructed according to the following rules: 

STRING FIELDS 

Specifies a single character string field. (The string itself 
is specified in the value list.) 

\n spaces\ Specifies a string field consisting of 2+n characters. Backslashes 
with no spaces between them would indicate a field of 2 characters 
width, one space between them would indicate a field 3 characters 
in width, etc. 

In both cases above, if the string has more characters than the field width, 
the extra characters will be ignored. If the string has less characters 
than the field width, extra spaces will be printed to fill out the entire 
field. 

Trying to print a number in a string field will cause a TYPE MISMATCH error 
to occur. 

Example: 10 A$="ABCDE":B$="FGW 
20 PRINT USING "!";A$,B$ 
30 PRINT USING "\ \";B$,A$ 

(the above would print out) 

AF 
FGH ABCD 

Note that where the "!" was used only the first letter of each string was printed. 
Where the backslashes were enclosed by two spaces, four letters from each string 
were printed (an extra space was printed for B$ which has only three characters). 
The extra characters in the first case and for A$ in the second case were ignored. 

92 



NUMERIC FIELDS 

With the PRINT USING statement, numeric prin-outs may be altered to suit almost 
any applications which may be found necessary. This should be done according 
to the following rules: 

# 

+ 

Numeric fields are specified by the # sign, each of which will 
represent a digit position. These digit positions are always 
filled. The numeric field will be right justified; that is, 
if the number printed is too small to fill all of the digit 
positions specified, leading spaces will be printed as necessary 
to fill the entire field. 

The decimal point position may be specified in any particular 
arrangement as desired; rounding is performed as necessary. 
If the field format specifies a digit is to precede the decimal 
point, that digit wi 11 always be printed (as 0 if necessary). 

The following program will help illustrate these rules: 

10 INPUT A$,A 
20 PRINT USING A$;A 
30 GOTO 10 
RUN 
? ##,12 
12 
? ###,12 
12 

? #####,12 
12 

1##.##,12 
12.00 
? ###.,12 
12. 

? #.###,.02 
0.020 
? ##.#,2.36 
2.4 

This sign may be used at either the beginning or end of the 
numeric field, and will force the + sign to be printed at 
either end of the field as specified, if the number is positive. 
If it is used at the end of the field, and the number is negative, 
a -sign will be forced at the end of the number. 

The - sign when used at the end of the numeric field designation 
will force the sign to be printed trailing the number, if it is 
negative. If the number is positive, a space is printed. 

NOTE: There are cases where forcing the sign of a number to 
be printed on the trailing side will free an extra space 
for leading digits. (See exponential format .. ) 

93 



** 

$$ 

**$ 

The ** placed at the beginning of a numeric field designation will 
cause any unused spaces in the leading portion of the number 
printed out to be filled with asterisks. The ** also specifies 
positions for 2 more digits. (Termed "asterisk fill") 

When the $$ is used at the beginning of a numeric field designation, 
a $ sign will be printed in the spaCe immediately preceding the 
number printed. Note that the $$ also specifies positions for 
two more di gits, but the $ itself takes up one of these spaces. 
Exponential format cannot be used leading $ signs, nor can nega
tive numbers be output unless the sign is forced to be trailing. 

The **$ used at the beginning of a numeric field designation 
causes both of the above (** & $$) to be performed on the number 
being printed out. All of the previous conditions apply, except 
that **$ allows for 3 additional digit positions, one of which is 
the $ sign. 

A comma appearing to the left of the decimal point in a numeric 
field designation will cause a comma to be printed every three 
digits to the left of the decimal point in the number being 
printed out. The comma also specifies another digit position. 
A comma to the right of the decimal point in a numeric field de
signation is considered a part of the string itself and will be 
treated as a printing character. 

tttt Exponential Format. If the exponential format of a number is 
desired in the print out, the numeric field designation should 
be followed by tttt (allows space for E±XX). As with the other 
formats, any decimal point arrangement is allowed. In this case, 
the slgnificant digits are left justified and the exponent is 
adjusted. 

% If the number to be printed out is larger than the specified numeric 
field, a % character will be printed and then the number itself 
in its standard format. (The user will see the entire number.) 
If rounding a number causes it to exceed the specified field, 
the % character will be printed followed by the rounded number. 
(Such as field= .##, and the number is .999 will print % 1.00.) 

If the number of digits specified exceeds 24, a FUNCTION CALL error will occur. 

Try going through the following examples to help illustrate the preceding 
rules. A single program such as follows is the easiest method for learning 
PRINT USING. . 

94 



Examples: Type the short program into your machine as it is 
listed below. This program will keep looping and 
allow you to experiment with PRINT USING as you 
go along. 

Program: 10 INPUT A$,A 
20 PRINT USING A$;A 
30 GOTO 10 
RUN 

The computer will start by typing a? Fill in the numeric 
field designator and value list as desired, or follow along 
below. 

? +#,9 
+9 
? +#,10 
%+10 
? ##,-2 
-2 
? +#,-2 
-2 
? #,-2 
%-2 
? +.###,.02 
+.020 
? ####.#,100 
100.0 

? ##+,2 
2+ 

? THIS IS A NUMBER ##,2 
THIS IS A NUMBER 2 
? BEFORE ## AFTER, 12 
BEFORE 12 AFTER 
? ####,44444 
%44444 
? **##,1 
***1 
? **##,12 
**12 
? **##,123 
*123 
? **##,1234 

·1234 
? **##,12345 
%12345 
? **,1 
*1 
? **,22 
22 
? **.##,12 
12.00 
? **####,1 
*****1 

95 



(note: not $) 

$) 

? 
$ 
7 • ## ,12 .. ',6 

? $$.##,1.23 
$1. 
? $$.##,12.34 
%$12.34 
? $$###,0.23 

$0 
? $$####.##,0 

$0.00 
? **$###.##,1.23 
****$1.23 
? **$.##,1.23 
*$1.23 
? **$###,1 
****$1 
? #,6.9 
7 
? #.#,6.99 
7 0 
'? ##-. f 2 
2 

? ##~f-2 

? ##+,2 
2+ 

? ##+,-2 
2-

? ##ttii,2 
2E+OO 

? ##tiit ,12 
1[+01 

7 #####.###i1't1',2.45678 
2456.780[-03 

? #.###1'1'1't,123 
0.123E+03 
? #.##1'ttt,-123 
-.12[+03 
? #####,###.#,1234567.89 
1,234,567.9 

96 



APPENDIX A SUPPLEMENT 

HOW TO LOAD BASIC 

For BASIC versions 3.2 and later, the load procedure has been updated to 
allow the use of the new I/O boards (2SIO & 4PIO), the old SS-PIO board, 
and more general channel assiqnments. 

Location 001 of the bootstrap loaders listed in APPENDIX A must be changed 
from 175 to 256 to load BASIC versions 3.2 and later. For the older ver
sions of BASIC, the location should be left at 175. 

For EXTENDED BASIC, location 002 (set at 017 for 4K & 037 for SK) should 
be set at 057. 

The checksum loader has a new error message "M" which indicates that the 
data that was loaded into memory did not read back prope:i1y (see step 22 
on page 50 of APPENDIX A). Loading into non-existent, protected or mal
functioning memory can cause this to occur. The new error message will 
also be sent repeatedly, instead of only once. The message is sent on 
channels 1, 21 and 23; so, if no terminal device is on one of these three 
channels, the panel lights must be examined to see if a checksum error has 
occured. 

Error Detection 

The new checksum loader (BASIC versions 3.2 & later) will display X7647 
on the address lights when running properly. (X above will be 0 for 4K 
BASIC, 1 for SK or 2 for EXTENDED.) 

When an error occurs (checksum "C"-bad tape data" memory "M"-data won't 
store properly, overlay "O"-attempt to load over top of the checksum 
loader) the address lights will then display X7637. The ASCII error 
code will be stored in the accumulator (A). 

More simply, AS should be on with A4 & A3 off during proper loading. 
When an error occurs, A5 will turn off and A4 & A3 will turn on. 

Load Options 
OCTAL 

LOAD DEVICE SWITCHES UP CHANNELS 

SIOA,B,C (not REV 0) none 0,1 

ACR A15 (and 6,7 
term.:l..nal opts J 

SIOA,B,C (REV 0) A14 0,1 

SS-PIO A13 0,1 

4PIO A12 20,21 

2SIO All (and Ala 20,21 
up=lstop bit 

down=2 stop bits) 97 

STATUS BITS 
ACTIVE 

low 

low 

high 

high 

high 

high 

OCTAL 
MASKS 

1/200 

1/200 

40/2 

2/1 

100/100 

1/2 



There are six different bootstrap loaderS, one for each of the six types 
of I/O boards listed in the Load Option chart. Be sure that you use the 
correct one for your particular board. 

If the load device is an ACR, the Terminal Options (see second chart) 
can be set in the switches (along with Al5) before the loading is done. 
If A15 is set, the checksum loader will ignore all of the other switches 
and BASIC will ignore A15. 

If the load device and the terminal device are not the same, and the load 
device is not an ACR, then only the load options should be set before the 
loading. When the load completes, BASIC will start-up and try to send a 
message to t;.he load device. STOP BASIC, EXAMINE LOCATION 0, SET THE TER
MINAL OPTION SWITCHES, AND THEN DEPRESS RUN. 

If the initialization dialog hasn't completed, every time BASIC is restarted 
at zero, it will examine the sense switches and reconfigure the terminal 
input/output options. Once the initialization dialog is complete, the 
sense switches are no longer examined and the I/O configuration is fixed 
until BASIC is reloaded. 

Terminal 

TERMINAL DEVICE 

SIOA,B,C (not REV 0) 

SIOA,B,C (REV 0) 

88-PIO 

4PIO 

2SIO 

Options 

SWITCHES 

none 

Al4 

Al3 

A12 

All 

UP OCTAL CHANNEL DEFAULT 

0,1 

0,1 

0,1 

20,21 (INPUT) 
22,23 (OUTPUT) 

20,21 (Ala up=l stop bit 
down=2 stop bits) 

The default channels listed above may be changed as desired by raising 
A8 and storing the lowest channel number (Input flag channel) in one 
of the following locations: 7777 (octal) for 4K BASIC 

17777 (octal) for 8K BASIC 
27777 (octal) for EXTENDED BASIC 

(non-disk version) 

NOTE: The "Input flag channel" may also be refered to as the "control 
channel" in other ALTAIR documentation. 

The above information is useful only when the load device and terminal 
device are not the same. During the load procedure A8 will be ignored; 
therefore, the board from which BASIC is loaded must be strapped for the 
channels listed in the Load Option chart. 

The following page contains three new bootstrap loaders for the 88-PIO, 
4PIO and 2SIO boards. The conditions for using the other loaders listed 
in APPENDIX A are given at the beginning of this supplement. 

98 



B8-PIO (for versions 3.2 & later only) 

OCTAr. ADDRESS 

000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 
024 

OCTAL CODE 

041 
256 
017 (for 4K, 037 for 8K, 057 for EXTENDED) 
061 
023 
000 
333 
000 
346 
040 
310 
333 
001 
275 
310 
055 
167 
300 
351 
003 
000 

NOTE: Switch A13 should be up; 
SS-PIO should be strapped 
for channels 0,1. 

2SIO (for versions 3.2 & later only) 

OCTAL ADDRESS OCTAL CODE OCTAL ADDRESS OCTAL CODE 

000 076 030 300 
001 003 031 351 
002 323 032 013 
003 020 033 000 
004 076 
005 021 (=2 stop bits, 
006 323 025=1 stop bit) 
007 020 
010 041 
011 256 
012 017 (for 4K, 037 for "SK, 057 for EXTENDED) 
013 061 
014 032 
015 000 NOTE: Switch All should be up; 
016 333 If the 2SIO also is the 
017 020 terminal device, set AlO 
020 017 up for 1 stop bit or: down. 
021 320 for 2 stop bits. The 2SIO 
022 333 should be strapped for 
023 021 channels 20,21. 
024 275 
025 310 
026 055 
027 167 99 



4PIO (for versions 3.2 & later only) 

OCTAL ADDRESS 

000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 
024 
025 
026 
027 
030 
031 
032 
033 
034 
035 
036 

OCTAL CODE 

257 
323 
020 
000 
323 
021 
076 
004 
323 
020 
041 
256 
017 (for 4K, 037 for 8K, 057 for EXTENDED) 
061 
035 . 
000 
333 
020 
346 
100 
310 
333 
021 
275 
310 
055 
167 
300 
351 
015 
000 

NOTE: switch A12 should be up. 

The following three programs are echo programs for th$ 88-PIO, the 4PIO 
and the 2SIO boards. 

If you wish to test a device that does Input only, dump the echoed 
characters on a faster device or store them in memory for examination. 

For an Output only device, send the data in the sense switches or some 
constant for the test character. Make sure to check the ready-to-receive 
bit before doing output. 

If the echo program works, but BASIC doesn't; make sure the load device's 
UART is; strapped for 8 data bits and that the ready-to-receive flag gets 
set properly on the terminal device. 

100 



E:CHO P HOGRAMS : 

88-PIO 

OCTAL ADDRESS OCTAL CODE OCTAL ADDRESS OCTAL CODE 

000 333 007 333 
001 000 010 001 
002 346 011 323 
003 040 012 001 
004 312 013 303 
005 000 014 000 
006 000 015 000 

2SIO 

OCTAL ADDRESS OCTAL CODE OCTAL ADDRESS OCTAL CODE 

000 076 013 322 
001 003 014 010 
002 323 015 000 
003 020 (flag ch.) 016 333 
004 076 017 021 (data ch.) 
005 021 (1 st. bt., 020 323 
006 323 025 for 2) 021 021 
007 020 022 303 
010 333 023 010 
011 020 024 000 
012 017 

4PIO 

OCTAL ADDRESS OCTAL CODE OCTAL .ADDRESS .' OCTAL,CODE. 

000 257 024 :n~ 
001 323 025'" 020 
002 020 026 000 
003 323 027 333 
004 021 030 022 
005 323 031 .~~6 
006 022 032 lOP ... 
007 .057 033 312 
010 323 034 027 
011 023 035 000 
012 076 036 333 
013 004 037 021 
014 323 040 323 
015 020 041 023 
016 323 042 303 
017 022 043 020 
020 333 044 000 
021 020 
022 346 
023 100 101 



I jj ii ] .... 
2450 Alamo SE 
Albuquerque, NM 87106 


