

Part 1. Machine Methods of Computation and Numerical Analysis

1. general comaents
2. graduate school research
2.1 Index to Reports
2.2 Progress Reports

Part 11. Project Whirlwind

1. review and probleg index
2. whirlmind coding and applications
2.1 Introduction
${ }^{28}$
2.2 Progress Reports

Appendices

1. Systems Engineering
2. Visitors

- 3. Academic

65
Personnel of the Projects

```
POREWORD
```



```
Project on Machine Methods of Computation and Numerieal Analys13
Masmatmen
In
Project whiriwind
```



```
The Whiriwind I Computer
Mht1w1nd I 1s of the high-speed eleetronedc dig1tal type, In whioh quant1t1es are
*)
*)
WhirlwInd I uses numbers of 16 binary d1gits (equivalent to bout 5 deotmal dig1ts).
*)
*)
```


Machine Methods of Computation and Numerical Analysis

1. osngral comagnts

Since the 1ast report, arrangements have been made with the International
Business wachines Corp. (IBM) for the installation of a type 704 machine at the Instit Business Machinos Corp. (IBW) for the Installation of a type 704 machine at the Institute
in the spring of 1957 and for the organization of the educational and general scientific

 port for this program. Whirlwind vill eventually be turned baok to Lincoln Laboratory
about July 1, 1957, and the 704 and other equipment in the Computation Center will make about July 1,1957 , and the 704 and other equipment in the Computation Center will make
possible an expanded program of research and training in the use of electronic computers.

This expanded program will 1nvolve the participation of the other colleges and
ies in New England, and a Planning Comittee, with representatives from 23 in-
 stitutions, has been set up to work out dota11s of the joint prograan. IBM has provided
funds for the appointment of part-time research assistants and associates, from MIT and
 Aso homed the
search staff.

The coming academic year, therefore, will be a transitional one changing from the oNR-supported procect which has been reported in the previluos quartery heports, to
the new program, supported by IBK and NSF and participated in by other Now Rngland col-
 of Computation; by Soptember 1956 all oNR part-time research assistantships will be to
inated and the new IBM awards will take their place. The Digital Computer Laboratory and the use of mirivind 1 will continue during the next academic yearr, but the staff of project minimind will be gradually transferred to the payroll of the computation Center so that, by July 1, 1957, owk-supportod work will have ceased.

The scientific research, reported in this and the preceding Reports, will not cease, however. It will continue at an increased pace, and the only difference will be
in the source of financial support. In 11ne with this continuity of research into the in tilization of computing equippont in science and engineering, we propose to continue reporting the activities of both the older Project Whirivind and the newor Computation
Center in the one quarterly Report. This 1 isuue will have the same form as bofore, with Center in the one Quarterly Report. This issuu will have the same form as berore, with
reports from the Project on Machine Methods of Computation and from Project Mirlimind.
 and also from the MIT Computation Center; after that the reports, will be sololy frow
Computation Center. D1stribution of the Reports will, of course, change as the new ctivitios develop.
2. graduate school research
2.1 Index to Reports

Titie
Deterministic Processes and Stochastic Processes
A Calculation of the Energy Bands of the Graphite Crystal
by Means of the Tight-Binding Method
The Growth of Fatigue crack
Coulomb Wave Punctions
First Approximation Solution on Ore Body
pynam1c Response of Shear walls
Response of a Five-Story Frame Building to Dynamic Loading
Calculations for Spheroidal Nuclei
Pinite Bending of Thin, Shallow Spherical Sholls
The Number Distribution of Electrons and Photons
Assmptotic Solution of a Differential Equation
in Application of Monte Carlo Methods to Neutron Diffusion $\quad 22$
Condonsation in Tubes Subject to the Effects of Variable
Vapor Volocity
Response of a Single Story Reinforced Concrete Bullding to
Djnamic Blast Loading

### 2.2 Progress Roports

detrrainistic processes and stochustic procksses
In this report wo sumarize work that has been in progress during most of the yoar concerning doterrinistio processos and probability. This 1 s an area of research
that begins in statistical mochanics and is directed toward the interpretation and use of probability theory. The results could be usoful for coapputation techniques because of what they mply about psoudo-random numbers and Monte Carlo techn1ques.
contained in definition and theorem form and $w 111$ be published el seviero.
parameter group of transformations $\begin{aligned} & \text { dynal sense can be represented mathomaticaliy by a one- }\end{aligned}$

$$
\left\{\mathrm{r}^{\mathrm{t}},-\infty<\mathrm{t}<\infty\right\}
$$

 statistical mechanics wo take $\Omega$ to be phase space and $T$ to be the Hamiltonian dynamice Liouville's theorem says that any set of points in $\Omega$ aro transformed by T in such a way for $T$ is given the mathematical name "measure-preserving " Por timo. Such a propint a one-parameter group of measure-preserving transformations a deterministic process.
a knowiedge of the state of a physical system at any fixed $t$ time together with the knowledge or a de
and past states.

Contrast the idea of a deterministic process with the idea of a sequence of Independent and Identically distributed random variables. Por simplicity lot a random 1 inks the various sample values of these random vartables. ${ }^{1}$. On the other hand, we will show that a deterministic process with speccial propertios can be incorporated into the
def inition of random variables nistic interprotation can be given. Both probability and statistical independence become asymptotic properties of determin1stic processes. We thus conclude that abstract
probability theory may be useful solely because of the relative orders of magnitude of things measured and things measurable and because of the order of magnitude of the t 1 m
In ordor to gain more insight into these ideas it is necessary to use two basic theorems in statistical mechanics that were postulated by physicists and later
proved (in modif1ed form) by mathematicians. The mathomatical condition that it has bee found necessary to imposio on a group of transformations $\mathrm{T}^{\mathrm{t}}$ in order that both of these (modified) thoorems hold is called "mixing". It 18 a group of transformations satisfying this condition that we wish to incorporate into a dofinition of random var
bles. The two theorems, themselves, are designated "ergodic" and "mixing" and are roughly doscribed as follows. In the ergodic case, we consider a single trajectory "orbit" of a point in phase space obta1ned by operating on this point by a group of
measure-preserving tramsformations. The ergodic theorem asserts that if a measurable se
 set of measure zero ultimately onter the measurable set infinitely many times and spend,
all told, an average amount of time there that is oqual to the measure of the set. In all told, an average amount of time there that 18 equal to the measure of the sot. In
the mixing case, we must consider a ocollection of trajectorise. The woak mixing theorem states that for any measurable collection of trajectories the shts of points that the trajectorios occupy at time $t=0$ and at large time $t$ are such that the measure of their
intersection is approximately equal to the product of their measures. Th1s result $r$ reintersection is approximately equal to the product of their mensures. This result re-
quires that large $t$ is chosen outside of a temporal set of density zero. We see in the
first of these two theorems the gorm of an 1nterpretation for probability, for proba-
bility can be dof ined as the measure of a set in phase space. In the second of these bility can be defined as the measure of a set in phass apace.
theorems we see an interpretation for statistical independenco.
Any definition of random variables requires a basic space of events $\Omega$, a
Borel field, B , of sets on this space and a probability measure P defined for ali set
 phase space, and the Lebesque measure. We can show that there exists a countably dens
field $F$ of sets in $B$ in the sense that the number of sets in F is countable and every
 sets in $F$. Sinco $P$ is countable, the ergodic theorem, stated with the same exceptional
set of noasure zero, applies to all sets in $F$. Thus if the dynamics $T$ satisfles the set of moasure zero, applies to all sets in $P$. Thus if the dynamics , satisfies the
mixinn, condition so that the ergodic theorem is true, there exists a trajectory that
miters all sets of $F$ and spends in each set an average amount of time that tis equal to enters all sets of $F$ and spends in each set an average amount of time that is equal to
the measure of the set. We can then consider the intersection of this trajectory with phase space. For each set tn $F$ there 1 s a set within the trajectory and we can arrb1-
trarily transfer the measure from one to the other. With this device wo can then viow trarily transfor the measure from one to the other. With this device we can then viow
the trajectory $\phi$ as a new space of points, the sots P' $^{\prime}$ so manufactured as composing a the trajectory $\Phi$ as a nev space of points, the sots $\mathrm{P}^{\prime}$ so manufactured as composing a
field of sets within $\Phi$, and the new neasure $\mathrm{P}^{\prime}$ as dof dined on $F^{\prime}$. If necossary wo can

customary, $\begin{aligned} & \text { Instead of dof 1nng a random variable on the measure space ( } ~ \\ & \text { we }\end{aligned}$



$$
\Phi=\left\{\mathrm{r}^{\mathrm{t}},-\infty<\mathrm{t}<-\infty\right.
$$



 $r$ rational

1) Por any real Borel set $b_{1}$, any rational $r$, and for all $t$

$$
\mathrm{P}[\mathrm{X} \in \mathbb{\AA}]=\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{\mathrm{k}=0}^{N} \psi_{\mathrm{B}_{1}}\left[x_{k r}\left(\mathrm{r}^{\mathrm{t}}\right)\right]
$$

where

$$
\psi_{B_{1}}(\mathbf{x})= \begin{cases}1 & x \in B_{1} \\ 0 & \text { otherwise } .\end{cases}
$$

2) For any $\varepsilon>0$ and any real Borel sots $B_{1}, B_{2}$ there oxists a rational $r$ such that

$$
\left\lvert\, P^{\prime}\left[\mathbf{X} \in B_{1}, Y_{r} \in B_{2}\right]-P^{\prime}\left[\left.\begin{array}{lll}
X & 6 & \left.B_{1}\right]
\end{array} P^{\prime}\left[X_{r} \in B_{2}\right] \right\rvert\,<\varepsilon\right.\right.
$$

$\qquad$ a calculation
binding method
The computation of enorgy bands in a two-dimensional model of graph1te by
 of the basis of the calculation and the major results which wore obtalned

The graphite energy band cal culations wero carried out assuming a structure of
an infinite twodimensional hexagonal lattice of Carbon atomes. The atomic orbitals used to make up the one-electron Bloch wives were the Hartroe-Fook atomic orbitalis of the
ground state neutral Carbon ${ }^{3} \frac{\mathrm{P}}{\mathrm{p}}$ configuration calculated by Jucy $\mathrm{s}^{1}$. The 1 s and 2 p orb1 tals wore each fitted by a 1 inear comblnation of three corresponding analytic slater a
 calculation of the many integrals. In the sense that the energy band calculation made was a ono-electron approximation, it was necessary to choose an offective potential for
the crystal. The crystal potential was taken to be a super-position of spherically the crystal. The crystal potential was taken to be a super-position of spherically
symmetric atomic potentials. The atomic potential in turn was assumed to bo the coulo bic potential arising from the offective nuclear chargo function, $z_{p}(r)$, centered on the atomic nucleus. The $\mathrm{Z}_{\mathrm{p}}$ function for the $\mathrm{P}_{\mathrm{p}}$ configuration has been calculated by
Freeman ${ }^{3}$, and it was because of this conventence that the particular configuration
 solutions gave any other conclusive choice. For computational convenience, the
function was also fitted, a linear combination of four exponentials bolut used.

All the one-electron, two-center integrals (overlap, kinotic enorgy and poten tial) wore done by the use of the usual prolate spheroidal coordinate analytic integra-
tion techniques suitabie for slater atomic orbitals ${ }^{4}$. Thus these integrals required the evaluation of auxiliary functions ${ }^{5,6}$ followed by combinations of many terms. All the
one-electron, three-center potential integrals (and also the two-center potential inte one-electron, three-center potential integrals (and also the graiks) wore evaluated by the spherical coordinate expansion-about-another-contor tec
nique, similar to that used by Limdin $^{7}$, and Barnett and Coulson ${ }^{8}$, which was describe
extensively in a previous report ${ }^{9}$.

It is perhaps illuminating to give some of the computational perspective in-
volved in the over-all calculation. Inasmuch as the magnitude of numerical work involved was such that accuracy would have been difficult to maintain in any hand calcula tion, most of the computational work was done on the high-speed electronic computer Whiriwind I. The nearly total mechanization of the problem, although oliminating almost
entirely any possible random mistakes, had the disadvantage of tonding to obscure possientirely any possinle random mistakes, had the disadvantage of tonding to obscure poss
ble systematic mistakes. The latter shift of emphasis 18 one of the principle reasons that make the progranming of a computer a non-trivial affair. A consequence 1 is that logical simplicity of the computational procedure becomes a goal which is often in
opposition to computational efficiency. There is also a great deal of difficulty in vising adoquate test procedures for computer programs, since ca necossity they must be tailored to the program 1 tselif. The ability of the programmer to cope vith theso compute
problems develops mostiy with experience. A large fraction of the time spent on the
prosent calculation was thus used learning how to obtain the full potentiality of a highIn carrying out the calculation, the work foll into stages for each of which
special computor programs were written. These were: $a$ a program for the semi-automathc special computor programs were written. These were: a program for the sem1-automatic
fitting of the atomic orbitals and the $z_{p}$ function ${ }^{2}$; a program for generating the twoconter intogral auxiliary functions and then automatically combining terms to give the integrals between Hartree-Fock orbital $5^{5}$; a program for generating the atomic orbital ex-
pansion functions necessary for the three-center potential integrals ${ }^{9}$; a program for performing the basic numerical quadratures of the throe-conter potential integra1s ${ }^{\text {s. and }}$ a
requantization and requantization and summation program for forming the appropriate three-center integrals
from the basic numerical quadratures ${ }^{9}$. The foregoing computer programs were suffictent machinery to prepare the basic two-centor Ham1ltontan and overlap integrals which served
as input for the final master program which performed the energy band calculation. Exas input for the final master program which performed the energy band calculation. Ex-

$$
\begin{equation*}
u_{i j}\left(\overrightarrow{\vec{p}}_{\mathrm{a}}\right)=\int \psi_{1}^{*}\left(\vec{r}-\vec{p}_{\mathrm{a}}\right) M(\vec{r}) \psi_{j}(\vec{r}) \mathrm{d} \tau \tag{1}
\end{equation*}
$$

Where the $\psi$ are atomic orbitals. $\overrightarrow{\mathrm{p}}_{\mathrm{a}}$ is the nelghbor-vector, and

$$
\mathbf{u}(\vec{r})=\left\{\begin{array}{l}
s(\vec{r})=1 \\
H(\vec{r})=-1 / 2 \nabla^{2}-\sum_{\vec{P}_{\mathrm{b}}} \frac{\left.z_{\mathrm{p}}(\overrightarrow{\mathrm{r}})-\overrightarrow{\mathrm{p}}_{\mathrm{b}}\right)}{\left|\vec{r}-\vec{F}_{\mathrm{b}}\right|}
\end{array}\right.
$$

(Overlap)
(Hamiltonian)
 tion, the three-conter potential terms were negl
the fourth neighbor-distance in the sum over $\dot{P}_{\mathrm{b}}$

The oporation of the master energy band program then proceeded as follows. Por a givon value of the reducod wave vector, $k$, the program computed the Hamlitontion and
overlap matrix elements arising from the Bloch waves constructed from the ato These matrix eloments woro made real thy taking muves onstructed from the atomic orbitals,
waves as basis states, and had the form

$$
\mathbf{x}_{1 j}(\overrightarrow{\mathbf{k}})=\sum_{\overrightarrow{\mathrm{p}}_{\mathbf{a}}} \pm \mathbf{u}_{1 j}\left(\overrightarrow{\mathrm{p}}_{\mathbf{a}}\right) \quad\left\{\begin{array}{l}
\cos \left(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathrm{p}}_{\mathbf{2}}\right) \\
\sin \left(\overrightarrow{\mathbf{k}}_{\mathbf{k}} \cdot \overrightarrow{\mathrm{p}}_{\mathbf{a}}\right)
\end{array}\right.
$$

Where the torms 1 in which $\stackrel{\$}{\text { g }}$ excoeded the ninth netghbor-distance wore nogiectod. The

$$
\sum_{j} H_{1 j}(\vec{k}) v_{j k}(\vec{k})=E_{1}(\vec{k}) \sum_{j} s_{i j}(\vec{k}) v_{j k}(\vec{k})
$$

and stored for later use the olgenvalues $\mathrm{E}_{\mathrm{o}}(\mathrm{d})$. A new value of the wave vector was then
solocted and the generation and soolution of the socular equation ropeated until the presot values of the wave vector wore exhaustod. Finally, For convenilenco, the progran
displayed graphically on a photographic oscilioscope crosss-sectional views on displayed graphically on a photographic osccilloscope crosss-sectional viows of the enorgy
bands, $E_{1}(\mathbb{K})$ vs. $\bar{k}$, for valuos of the mave voctor along the edges of a basic non-


As has been impliod, the secular equation mich was considered had as basis
 cause of the reflection symmetry in the hamiltonian operator of the two-dimensional
graphite lattice, the secular oquation one obtaing from these ton states
 motric Bloch vaves (sigma statos), and the othor of order two from roflection antisymnotric Bloch waves (pi states). Thus the master computor program was arranged to inde-
pondently calculate the energy band solutions arising from oach of these socular equapondontly calculate the onergy band solutions arising from
tions, but the final rosults wero graphically suporimposed

The major physical significance in a two-dimensional energy band calculation
te is the size of the gap between the tive lowest (ocupied) of graph1te is the size of the gap between the five lowest (occupied) and the higher
(excited) sigma bands, and in particular whether or not the two lower pi bands (valance (excited) sigma bands, and in particular whether or not the two iower pl bands (valance
and conduction), which are degenerate at one value of the wave vector, have their point and conduction), which are degenerate at one value of the wave vector, have their point
of degeneracy in the sigma band gap. If such a sigma band gap 1 s large enough to in-
clude all of the pi bands, then 1t follows that a reasonable approximation for computing clude all of the pi bands, then it follows that a reasonabie approximation for computing
the conduction properties of a three-dimensional graphite would be to 1 gnore the sigma the conduction properties of a three-dimensional graphite would be to 1 gnore the sigma
states; (in the three-dimensional crystal the sigma and pi are no longer "good" symmetry designations since the sigma and p1 Bloch waves of alternate graph1te layers interact,
but the terminology 1 s still used.)
starting from the original work of Wallacelo but the terminology 18 stil1 used.) Starting from the original work of Wallacelio, this
approximation has been the basis of all graphite energy band calculations with the exception of that of Lomer who has also considered a two-dimensional graphite with sigma bands ${ }^{\text {II }}$. As will be seen later, the numerical work of Lomer is believed to have a very
serious approximation.
$\qquad$ The energy band solution of the present calculation 18 shown in fig . 2 where the horizontal dimensions are the edges of the basic triang1e of the first Brillouli
zone as show in 1 tg. 1 . Energy values of interior points of the triangle were also found, but for brevity these values are not given here, since it was found that the in-
terior energy bands vary smoothly from the edge band values. Purthermore the two 1 iwes
 sigma bands arising almost entirely from the 1 s Bloch waves, are omitted from fig. ${ }^{2}$.
since the bands are nearly independent of the wave vector and at an average value of -15.75 Rydbergs. It 10 observed that the highest occupied point in the $s$ Igma bands oc-
curs at pt. 0 , $(\vec{k}=0)$, with a value of +.430 Rydbergs. The lowest excited sigma band has roughly a constant minimum value for wave vector values forming an approximate circle about pt. O, the minimum value being about +1.158 Rydbergs. The degeneracy point of the
pi bands fails at +.570 Rydbergs, a value representing the Formi level for zero tempera pi bands falls at t.570 Rydbergs, a value representing the Pormi 1evel Yor zero tempera
ture. Thus it is clear that these results support to some extent the usual approxma-
tion of neglecting the sigma states in calcoulation of graphite conduction properties. tion of neg1ecting the sigma states in calculations of graphite conduction propertios.
Moreover this calculation shows by virture of the overlapping of the sigma and p1 bands Moreover this calculation shows by virture of the overlapping of the sigma and p1 ba
that for a conesive energy calculation, which depends on energy values for all wave
vectors of the Brillouis zone, the sigma states must be included.

Consideration can also be made of the potential function used in the present calculation. The potential, which was formed by superposition of the $z_{\mathrm{z}}$ function, mate exchange potent1al correction within the framework of the one-electron approxima${ }^{\text {mion }}{ }^{12}$. This exchange potential correction, if app11ed, would be proportional to the cube root of the charge density of the occupted crystal wave functions. Consequently
one would expect the occupied bands to be lowered more in energy than the unoccupiod one would expect the occupled bands
bands since the unoccupled wave functions are orthogonal to the occup1ed wave func-
tind tions. Thus it is plausible that a more careful consideration of exchange effocts in
the present calculation would only broaden the sigma and energy gap and would leave the the present calculation would only broad
present results qualitatively unchanged.

One of the more striking fatures of the present results is the smoothness of
the enorgy bands. In fact these bands are sim1 Koster interpolation procecture wherein the $\mathrm{tight-binding} \mathrm{method} \mathrm{is} \mathrm{used} \mathrm{with} \mathrm{neglect} \mathrm{of}$
 tability of the present results in view of the several possible simplifying approxima

Onission of the 1 s Bloch waves was found to bave an over-all lowering and warping offect on the sigmaa bands in such a way that the sigma band gap was roughly re-
duced by half. Thus the often-recognized importance of orthogonality is again emphasized,
A second possible approximation made was the omission of all the three-center potential integrals. This left the pi bands nearly the same but made a very pronounced
change in the sigma bands, again closing the sigma band gap dow to about half but also lowering the gap so far that the p1 band Fermi level no longer was included.

Pinally the solutions were examined vith respect to the approximation of omitting the higher neighbor integrals. The stable solution, which included up to ninth neighbor integrals, was found to be only slightly warped when only up to fifth neighbor
integrals were included in the sigma bands and when only up to third neighbor integrals integrals were included in the sigma bands and when only up to third neighbor integrals
were included in the pi bands. However, further truncation of the noighbor 1ntegrals of the sigma bands caused violent changes. (It 1s for th1s reason that the calculation made
by Lomer which 1ncluded only first neighbor integrals, 18 not believed to be valid.) In by Lamor which included only first neighbor integrals, 18 not believed to be valid.) In
addition, the effects of truncating only Hamiltonian or only overlap neighbor integrals wartion, the effects of truncating only ham11tonian or only overlap notghbor integra1a
were investigated. It was found that the solution was sensitive to both Hamiltonian a overlap neighbor truncation to roughly the same extent and that the two effects were essentially additive.

Thus the results of all the approximation tests indicate clearly that the tight-binding method when used in a non-empirical way must be carried out with con-
siderabie mathematical rigor in order that a meaningful solution will be obtained. References

1. A. Jucys, Proc. Roy. Soc. (London) Al73, 59 (1939).
2. P. J. Corbato, Quarterly Progress Report, Solid-State and Molecular Theory Group,
u,
3. A. J. Preeman, Phys. Rev. 쓰, 1410 (1953)
4. R. S. Mulliken, C. A. Rieke, D. Orloff and H. Orioff, J. Chem. Phys. 17, 1248 (1949),
5. P. J. Corbató, Quarterly Progress Report, Solid-State and Molecular Theory Group,
.
6. P. J. Corbato, J. Chem. Phys. 24, 452 (1956)
. P. O. Löwdin, Ph. D. Thes1s, Uppsala (1948).
. M. P. Barnett and C. A. Coulson, Ph11. Trans. A243, 221, (1951)

- P. J. Corbató, Quarterly Progress Report, Solid-State and Molecular Theory Group,

10. P. R. Wallace, Phys. Rev. 71, 622 (1947)
11. W. Y. Lomer, Proc. Roy. Soc., A227, 330 (1955),
12. ... .. Lomer, Proc. Roy. Soc., ${ }^{\text {A227, }}$, 330 (12. J. c. Slater, Phys. Rev. B1, 385 (1951).
13. J. C. Slater and G. P. Koster, Phys. Rev. 94, 1498 (1954),

Pernando J. Corbato

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
graduate school research
graduate school ressarach
the growth op fatioue cracks
An exact solution to the problem of determining the rate of propagation of An exact solution to the problem of determining the rate of propagation tained only by approximating the exact formulation, even for simple loading modes and specimen conf1gurations. The specific case chosen for study here is the torsion of a long cylindrical bar of rectangular cross section when the crack is adva
through the axis of the cylinder. The following assumptions are made:

1) The material 1 s perfectiy plastic, homogeneous, and 1sotropic;
2) The bar has been strained
ver virtually the entire cross section
3) The crack propagates in the following manner
a) The bar 1 s twisted until the material a distance, Xs, in front the fracture strain, $\gamma_{\mathrm{s}}$.
b) The crack length, $\boldsymbol{f}$, then increases by the distance $\mathrm{d} \boldsymbol{\xi}$
be increased by de before the fris advance relife cones stresses and the angle of twist, $\theta$, must
Within the 1 imitations of theso assumptions, the rate of crack growth, $\varnothing$, when

$$
g(x)=\frac{x_{\mathrm{s}}{ }^{2}}{1+x_{\mathrm{s}}{ }^{2}}\left[1+\frac{1}{\left(x+x_{\mathrm{s}}\right)^{2}}\right]+\frac{x_{\mathrm{s}}}{1-x_{\mathrm{s}}{ }^{2}} \int_{0}^{\mathrm{x}}\left[1+\frac{1}{\left[\xi^{-\left(x+x_{s}\right.}\right)^{2}}\right] \rho(\xi) \mathrm{d} \xi
$$

where the variables have been non-dimensionalized.
A steady-state solution to this equation may be obtaired

$$
\left.\phi_{\mathrm{ss}}=-\frac{2}{\ln x_{\mathrm{s}}^{2}-\left(1-x_{\mathrm{s}}\right)}{ }^{2}\right)
$$

Using this result, the problem may be re-formulated as

$$
\begin{gathered}
\Phi(x)=\frac{\phi(x)-\varnothing_{s s}}{1-\phi_{s s}}=\frac{1}{1-\sigma_{s s}}\left[\left(\frac{x_{s}}{x+x_{s}}\right)^{2}-\Phi_{s s}\left(\frac{x_{s}}{x+x_{s}}\right)\right] \\
\quad+x_{s} \int_{0}^{x}\left[1+\left[\xi-\left(\frac{1}{\left.x+x_{s}\right)}\right]^{2}\right] \Phi(\xi) d \xi\right.
\end{gathered}
$$

when $\Phi(\mathbf{x})$ goes from 1 to 0 . Terms of the order $\mathbf{x}^{2}$ are small compared with one and have wheen ${ }_{\text {Wiscarded. }}(x)$ trial solution of the form

$$
\phi(x)=\left(\frac{c x_{\mathrm{s}}}{c x_{\mathrm{s}}+x}\right)
$$

Inserted with the equation and iterated once to evaluate the constant C yields the re-

finite differevce evaluate the integral equation numerically, the equation is written in fore evaluate the integral equation n
forence form with spactng, $h$, where

$$
\begin{aligned}
\mathrm{x} & =\mathrm{nh} \\
\boldsymbol{E} & =\mathrm{vh}
\end{aligned}
$$

If the integral is approximated by a straight 1 ine between intervals, the equation take

$$
\Phi(n h)=\frac{1}{1-\phi_{s s}}\left[\left(\frac{x_{s}}{n h+x_{s}}\right)^{2}-\varphi_{s s}\binom{x_{s}}{n h+x_{s}}\right]+x_{s} \sum_{v=0}^{n} A(n, v) \phi(v h)
$$

where

$$
\begin{array}{ll}
A(n, 0)=\frac{h}{2} K(n, 0), \\
(A(n, v)=h K(n, v) & \begin{array}{c}
v \neq 0 \\
v \neq n
\end{array} \\
A(n, n)=\frac{h}{2} K(n, n), &
\end{array}
$$

$$
\text { and } \quad K(Q, m)=1+\left(\frac{1}{2 n-m b+x_{s}}\right)^{2}
$$

When the summation is evaluated at $\mathrm{v}=0$ and $\mathrm{v}=\mathrm{n}$, the difference equation becomes for $\mathrm{n}>1$
$\Phi(n h)=\frac{2 x_{s}}{\frac{1+2 x_{s}}{s}}\left\{\left(\left[\frac{x_{s}}{n h+x_{s}}\right)^{2}+x_{s}{ }^{2}\left(\frac{n h}{\left(n h+x_{s}\right.}\right)\right]\left[1-\frac{\theta_{s g}}{1-\phi_{s s}} \quad \frac{n h}{x_{s}}\right]\right.$
$\left.+\frac{h}{2 x_{s}}\left(\frac{x_{s}}{n h+x_{s}}\right)^{2}\right\}+2 x_{s}^{2} \frac{h}{n+2 x_{s}} \sum_{v=1}^{n-1} K(n-v, 0) g(v h)$
A calculation carried out by hand using $\mathrm{X}_{\mathrm{s}} / \mathrm{h}=3$ and $\mathrm{X}_{\mathrm{s}}=.05$ shows close agree-
ment with previously calculated approximate solution. The equation in the form above

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

## graduate school resbazch

has been programed for whiriwind, The first results which agree with the hand calculated curve were recently obtained.

Joseph B, walsh
coulone wave punctions
The programs for both the regular and 1 regegular coulomb wave functions for $\mathrm{L}=0$ re now complete and an output routine 1 is now boing written. Since this 1s the last fornal progress report for the Profict, we will summarize in some detalil the nature of
the computations involved, reviewing some of the work previously reported.

The ranges of parameters $\rho, \eta$ and $L$ w11l be

$$
\begin{aligned}
& \mathrm{L}=0 \\
& 0 \leq \zeta \leq 12.5 \\
& 0 \leq \rho \leq 25
\end{aligned}
$$

1th intervals

$$
\Delta \rho=\Delta \eta=0.2
$$

$\Delta\rangle$ might possibly be changed to 0.1 but this involves only a trivial modification of
the present program.

## erthons of computation

a) Regular Punction

For the interval $0 \leqslant \rho \leqslant 1$, the power sories is used
$P_{o}(\eta, \rho)=c_{o}(\eta) \rho \sum_{n=0}^{\infty} B_{n}$
$c_{0}^{2}(\eta)=\frac{2 \pi \eta}{e^{2 \pi \eta}-1}$
$B_{0}=1, B_{1}=\rho \rho$
$(n+1)(n+2) B_{n+1}=2 \rho \rho_{B_{n}}-\rho^{2} B_{n-1} ; n \geqslant 1$.
dout twonty torms are needed to give eight digit accuracy for the range of $\rho$ and
1ven above. In the interval $1<\rho \leqslant 25$, we use numerical integration of the differential equation $F^{\prime \prime}+\left(\frac{\left.1-\frac{2 p}{\rho}\right)}{\rho}{ }^{2}=0\right.$
graduate school resbarch

$P\left(\rho_{i}+\Delta \rho\right)=P\left(\rho_{i}\right)+\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}!} F^{\mathrm{n}}\left(\rho_{i}\right)\left(\Delta \rho^{\mathrm{n}}\right.$
For machine computation, it is more conventent to use the notation

$$
\begin{aligned}
& \sigma^{n}\left(\rho_{i}, \Delta \rho\right)=\frac{1}{n!} r^{n}\left(\rho_{i}\right)(\Delta \rho)^{n} \\
& F\left(\rho_{i}+\Delta \rho\right)=\sum_{n=0}^{\infty} \sigma^{(n)} ; F^{\prime}\left(\rho_{i}+\Delta \rho\right)=\frac{1}{\Delta \rho} \sum_{n=0}^{\infty} n \sigma^{(n)} \\
& \sigma^{(0)}=F\left(\rho_{i}\right) \\
& \sigma^{(1)}=F^{\prime}\left(\rho_{i}\right) \\
& \sigma^{(2)}=-\frac{1}{2}\left(1-\frac{22}{\rho}\right) P\left(\rho_{i}\right)(\Delta \rho)^{2} \\
& \rho^{n(n+1)} \sigma^{(n+1)}+\delta^{2}\left(n^{2}-n\right) \sigma^{(n)}+(\rho-2 \zeta) \delta^{2} \sigma^{(n-1)} \\
& \quad+\delta^{3} \sigma^{(n-2)}=0 ; n \geqslant 2 .
\end{aligned}
$$

Enough terms in (3) are taken so the number of significant figures in the new $F$ and $F$, is the same as that in the old $F$ and $F^{\prime}$. of course, near a zero of $P$ or $F^{\prime}$, merely
taking a lot of terms is not sufficient to preserve the number of significant digits. taking a lot of torms
To show this we write

$$
\begin{aligned}
& F\left(\rho_{i}+\Delta \rho, h\right)=A\left(\rho_{i}, \Delta \rho, \eta\right) P\left(\rho_{i}, \eta\right) \\
&+B\left(\rho_{i}, \Delta \rho, \eta\right) P^{\prime}\left(\rho_{i}, \eta\right) \\
& A=1-\frac{1}{2}(\Delta \rho)^{2}\left(1-\frac{2 h}{\rho}+\cdots ; B=(\Delta \rho)+\right.
\end{aligned}
$$

where A and B are infinite series determined by (3). Let us assume that A and B are known exactly and that $F$ and $F^{\prime}$ are related to the true values of the functions, $F_{t}$ and ${ }^{F_{t}}{ }^{\prime}$, by

$$
\begin{aligned}
& \mathbf{F}=\boldsymbol{F}_{\mathrm{t}}\left(1+\epsilon_{1}\right) \\
& \mathbf{F}^{\prime}=\boldsymbol{F}_{\mathrm{t}}^{\prime}\left(1+\epsilon_{2}\right) \\
& \left|\epsilon_{1}\right|=\left|\epsilon_{2}\right|=\epsilon
\end{aligned}
$$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
graduate scheol assenach

```
    F
Where }\mp@subsup{F}{C}{}\mathrm{ stands for the calculated value of P. Since A P P and B P P' are of the order of
\mp@subsup{P}{t}{}(\rho+\Deltaf) is cossideras1y smaller in magnitude than AF(\rho) or BF'( (\rho) because of
strong subtraction, ve vili evidently lose some significant figures. In the computations
```






```
b) Irregular Punction
```



```
*)
    G
    G
                            (6)
    A
    g
```

Caussian quadrature is used to evaluate the definite integrals with the cut-off in $\xi$
chosen so as to give seven to eight significant $f 1$ 俍 chosen so as to give seven to eight significant figures.
Por $\rho=2, \quad, y \geqslant 6$ we may use the method or steepest descent to evaluate the
1ntegrals and obtaln a rapidy
 fraction, namely that near the zeros of the functions the number of significant digits
accurately retained and the first significant digit

## salple computations

a) Regular Punction

$$
\boldsymbol{\rho}=10
$$

$$
y=5
$$

$$
P_{\mathrm{o}}=+0.91794503
$$

$$
P_{0}=+0.33103219
$$

umerical integratior

$$
\text { from } \eta=5, \rho=1 \text {. }
$$

## $P_{0}=+0.91794506$

 Integral representation$P_{O_{0}}{ }^{\prime}=+0.33103212$
or steepest descent

$$
\begin{aligned}
& \rho=20 \\
& y=5 \\
& g_{0}=+1.1657166
\end{aligned}
$$

Numerical integration from

## $G_{o}=+1.1657160$

Asymptotic
eferences

1. Abramowitz and Rabinowttz, Phys. Rev. 96, 77 (1954)
2. Newton, Atomic Energy of Canada, Limited, CRT-526 (1952).

$$
\begin{aligned}
& \text { Arnold Tub1s To } \\
& \text { Aaron Tembkin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Aaron Temkin } \\
& \text { Zoltan Fried }
\end{aligned}
$$

first approximation solution on ore body
Proceeding from the favorable results reported in the previous Quarterly
Progress Report No. 19, the investigation of the first approximation soiution was directed towards the determination of the optimum size and shape of the ore body to ob used
in the tinverse problem of interpretation of field data. Hower, certain diteficulties in the inverse problem of interpretation of f1eld data. Hopever, certain dilf iculties
were met which have not been completely solved, specifically: the physically modeled re were met which have not been completely solved, specifically: the physically modeled re-
sults have been found to be somewhat unreliabie, and a paradox has been met in the detersination of the size and shape of the fundamental bullding block (optimum ore body) for the inverse problem. The character of the modeled results is always consistent but the
numerical values are not, and hence more accurate experimental work will have to be done numerical values are not, and henae more accurate experimental work will have to eb done
before a final decision can be made concerning the feasibility of the first approximation solution.
and shape.
The first approximation solution does have 1ts merits and as such will be of possible miniseralized area,

In conjunction with course 6.538 (Electronic Computational Laboratory) a complete theoretical and numerical solution to the three-vertical-layered earth has been done utilizing the IBM Type 650 Magnetic Drum Computer. That 1 s to say, the apparent re
sistivity profiles for a vertically layered earth have been obtalned for both pole and sistivity profiles for a vertically layered earth have been obtained for both pole and
dipole senders for a large number of geometries and resistivity contrasts. The program for these calculations are available for further work, and the results obtained are pr sented in the report VERTICAL LAYERING IN GBOPHYSICAL PROBPECTING submitted as a term
project in course 6.538 . The rosults obtained have been of assistance in the evaluat 1 project in courpe 6.538 . The rosults obtained have been of assistance in the evaluation
of the first approximation solution and also as a tabulation of resistivity profilies fo certain 1dealized geological situations. These can be used to assist in the 1 interpreta
dYnamic response of shear malls
length of the shear wall" carries loads applied in the plane of the wall parallel to the length of the wall. Walls in actual buil
blast, earthquake, otc.) in this manner
In this investigation the actual wall is replaced by a dynamic model consisting The propertios of the springs are obtaned by equating the deformations of the actual wall and dynamic model under similar stress conditions. With the spring properties leawn, the equations of motion are obtained for both horizontal and vertical motion of

Three different size walls are being studied for two difforent load conditions
and two different sized grids for a total of twelve solutions. The solutions are reand two different sized grids for a total of twelve solutions. The solutions are re-
stricted to the elastic range. The number of equations varies with the wall size and stricted to the elastic range. The number of equations varies with the wall size and
fineness of grid; the minimum number is is for a wall $4^{\prime \prime-}-0^{\prime \prime}$ square with a $2^{2-1}-0^{\prime \prime}$ square
 equations of motion are solved by numerical integration. Equations of the form

$$
x_{n+1}=2 x_{n}-x_{n-1}+x_{n}(\Delta t)^{2}
$$

where $\mathrm{x}_{\mathrm{n}+1}=$ d1splacement at $\mathrm{n}+1$ st t 1me interval
$\dot{x}_{n}=$ velocity at $n$th time interval
$\ddot{x}=$ acceleration at nth time interval
and $\Delta t=$ length of $t i m e$ interval
are used to predict deflection at $t 1 m e t_{n+1}$. A second equation of the form

$$
x_{n+1}=x_{n}+\dot{x}_{n}(\Delta t)+\frac{\ddot{x}_{n}(\Delta t)^{2}}{3}+\frac{\ddot{x}_{n+1}(\Delta t)^{2}}{6}
$$

1s used to correct the previous ostimate. An iterative procedure 1 s required to obtain
a stable solution since $\tilde{x}_{\text {in }}$ is involved. After a set of consistent displacement
 points $^{\mathrm{n}+1} \mathrm{l}$ the actual wall are calculated. These are conpared with the cracking stre of reinforced concrete. II cracking has not yet ocurred, the process 18 repeated. At
the end of each time interval, horizontal and vertical displacements, stresses the end of each time interval, hor1
actions are displayed on the scope.
The proper value of $\Delta t$ is obtained by comparing solutions using several differ-
ent values of $\Delta \mathrm{t}$. The program is currently in production.


## agsonse of a pive-story prane building to dyuutc loading

The object 18 to determine the response of actual multistory rectangular
rigid-frame buildings subjected to blast loads. A more complete description may be 181d-frame bulldings subyected to blast
found in the March 1956 Progress Report,

The control program is written and being $\qquad$
$\qquad$ sged". The load program 18 Written and debugged, as is the integration program. The resistance program 1 s in two
parts. The first part, the solution of a matrix of the slope-defiection equations, is currentiy being tested in conjunction with the second part, which reviows the matrix solution for changes from elastic-to-plast1c or vice-versa and modifies the matrix ac-
cordingly. This last part has been successfully tested by 1tself. On completion of this cordingly. This last part has been successfully tested by itself. On complet
test, the various programs will be combined and tested for complete solutions.

Ralph G. Gray
caiculations for sphrroidal nuclei
The computations which were originally projected under these problem numbers
is now complete. Before submitting a final report, however, two additional investiga1s now complete. Before
tions will be undertaken.
a) Problem 235, Bound States in a Spherot dal Well. It would be desirable to try to include the effect of a spin-orb1t coupling term upon the energy elgenvalues.
Such a calculation will be carried out if it does not involve any substantial revision of the existing programs.
b) Problem 319, Scattering from a Sphero1dal Square-Well of Zero Energ Neutrons. There is a relatively simple way of approximating the case where the scatter-
ing potential is complex. In essence it involves the calculation of the integral of the期 square of the wave function (for a re
program to do this has been written.

Jack L. Uretsky
pinite bending of thin, shallow spherical shelles
Computations of the bending of a uniformly loaded shallow spherical shell have been completed in the case of simply supported edge. In particular, buckiling loads for very shallow shel1s have been obta1ned. The results show that the convergence of the employed power serles method as outined in the last progress Report is surficientiy
rapid as oto give fairly accurate solutions for stable and unstable equilibrium positions
in the n the post buckling region, provided the shell 1 s sufficientiy shal1ow. Calculations for less shallow shel1s indicate, on the other hand, that solutions can be obtained in
this framework only for loads below the buck1ing load and in some cases also approximate solutions beyond buckling. The power series method seems to be able to reveal equiliorium states close to the buckling region in the latter case. Similar phenomena were bserved in the case of clamped odge. Two corcumstanees may eo mentioned here that
esponsible for the break-dow of the method. In the region of bucking the vertical eflections of the shell show a compl1cated pattern which cannot be approximated by a polynomial of sufficiently low degree. The second reason 18 that the initial estimate
1s not sufficiently close to the actual solution; hence the number of iterations to be
carrited out to obtain a solution would be extremely high.

The results obtained during this quarter are now being evaluated and analyzed omewhat more deta11 with respect to some special solutions that have been obtained itherto for th1s problem
the next Progress Report

## graduate school ressearch

## condensation in tubes subjbct to the effects of variable vapor velocity

and con Two runs at different conditions of entrance vapor flow but with the same vapor and condensate properties (those of water at $212^{\circ} \mathrm{F}$ ) appear to give reasonable resul
However, there has not yet been $t 1 \mathrm{me}$ to check these results with existing dat

The stopping criterion in these cases was the transition of the condensate from
laminar to turbulent flow. The program for the turbulent vapor - turbulent condensate case is be tug case is being completed in order to continue the the
where all the vapor in the tube has condensed.
It appears that the turbulent vapor-turbulent condensate case analysis cannot be simplified to contain only three dimensionless parameters describing the geometry,
initial conditions and vapor and condensate properties as was possible with the turbulent vapor-1 cominar condensate cise
response of a single story reinforced concrete building to dynamic blast loading
The object is to study the dynamic response of the roof of a sing1e story
concrete building for various loading functions. The roof is a system of reinforced concrote finite degrees of freedom consisting of a one-way slab supported on relatively stiff Ceams. This is resolvod into a two-degree system by assuming deflection shapes for one-way slab and its supporting beams and using LaGrange's equation to obtain two dynamic
equations for acceleration of the beam and slab. These are integrated for deflections by equations for acceleration of the beam and siab. These are integrate
an "acceleration tmpulse method" which ut11 izes backward differences.

The program is currently in production.


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

2. whirumind codima and applications
2.1 Introduction

Progress reports as subu1tted by the various programmers are prosented in
order in Section 2.2. Since this sumary report presents the combined effort numerical order in section 2.2. Since this sumary report presents the combined efforte
of DIC Projects 6345 and 6915 , reports on problems undertaken by members of the Machine of DIC Projects 6345 and 6915, reports on problems undertaken by mombers of the Mach1
Methods of Computation (mac) Group have been oaltted from section 2.2 of Part II to avold duplication of Part 1. For reference purposes, a list of the mac Group problems
appears below. appears belov

Letters have been added to the problem numbers to indicate whether the
The letters have the problem 1 s for academ
following stgntel

A implies the problem 1s NOT for academic credit, is UNsponsored
B implies the problea IS for academic credit, is UNsponsored.
c implies the problem is wor for academic credit, is sponsored.
D mplies the problem $\underline{\text { IS }}$ for academic credit, $\underline{\text { IS }}$ sponsored.
N implies the problem 1 s sponsored by the office of Naval Research.
Limples the problem 1s sponsored by Lincoin Laboratory.
The absence of a letter indicates that the problem originated within the susc Group.

Lhst of Machine Methods of Computation Group Reports
The following problems used whiriwind I computer time during this quarter,
$122 \mathrm{~N} . \quad$ Coulomb Wave Punctions
A. Temkin
Z. Pried
F.J.Corbato
R.g.Gray
M. Troost
B. Rankin
J. Uretsky
N.F.Nes
н. Weinitschke
J.B. Walsh
J. Lehtinen
100. COMPRBhensivg systek op skryice routings
progran. For the most and obscure errors have been detected in the cs conversion $\begin{aligned} & \text { Sever these, the necessary corrections al ready have be }\end{aligned}$ progran. For the most important of these, the necessary corrections already have been
incorporated in the progran. This corrects the situation in which the current address 1ndicator could be set "definite" even though it was set by a word contanning the syllable
" r "hen r 1s "indefinite" (see C.s.Manual, Chapter XIV). The conversion post-morter "r" when ris "indefinite" (see C.s.Manual, Chapter XIV). The conversion post-mortom
has been printing out the wrong register as the address for "Prograil too long at then has been printing out the wrong register as the address for Program too 1 ong at the
a ditto brock runs beyond the beginning of the PA. The necessary changes have been di covered and checked out, but due to the difficulty of re-recording magnetic tape unit 0

 and a correction has been checked out.
are being checked out. Most of the errors have been discovered and corrected. The ne prograil will display momory on the scope at a rate comparable to that of the scope postmortem in the Utility Control Prograa, a considerabil advantage in speed over the present program. Bosides, not only zeros, but any block of identical 1 nes 1 s suppressed and
only the

The ip tape reading program and the flad modes will be checked out after the
manual modes are operating satisfactorilly. As the Utility Control Program must be manual modes are operating satisfactorily. As the Utility Control Progran must be
modified to accommodate the new eveneralized Post-Mortem and some other changes seem modified to accommodate the new Generalized post-Mortem and some other changes seem
desirabee to take advantage of new in-out equipment, etc., a large number of revisions
seem necessary. The new system will be working in the near future.
$\underset{\text { Digital Compute }}{\substack{\text { M. R }}}$
$120 \mathrm{~B}, \mathrm{M}$. ThE AEROTHERMOPRBSSOR
During the past quarter, computations were carried out to check with the experimental results obtained from the Aerothermopressor in the Gas Turbine Laboratory,
The agreement is very good. Hore experiments and theoretical computations are to be carried out in the next quarter.

## A. Brickson

26 c. data reduction
Problem 126 is a very large data reduction program for use in the Servomechan 1 sms Laboratory. The overall probitem composed of many couponent sections wich have been eveloped separately and are now being combined into complete prototype prograns. Dos-
riptions of the various component sections have appeared in past quarterly reports. After he development and testing of the prototype whiriwind programs is completed, the prograns H11 be re-coded for other, comanercial1y avallable, large scale computers, (probably the
ERA 1103, IBM 701 and IBM 704 computers), for use by interested agencies for actual data kRA 1103, IBM 701 and IBM 704 computers), for use by interested agencies for actual data
eeduction at other locations. To programs are currently being developed by Douglas $T$.
 Servomechanisms Laboratory staff members with the assistance of John P. Walsh. Thi
is sponsored by the Air Porce Feapons Guidance Laboratory through DIC Project 7138 .

The nature of the problem requires extreme automaticity and efficiency in the
 reason extensive use 1 made of output oscilloscopes so that the computer can comanuicate
Vith the human, and manual intervention registers so that the human can communicate with The computer in terns of broad 1deas, while the computer 1s running, and have the computer
the con
program translate these ideas into the detalled steps necessary for program modification program translate these 1deas 1nto the detailed stops necessary for program modificatio
to conform to the human operator's decision. The program which does this translation to conform to the human operator's decision. The program which does this translation
and modification tis called the Manual Intervention Program (ulv). The most recent version
of the prototype data reduction program 1s called the Basic Evaluation Program.
MIV Systems during the past quarter work has continued on the Evaluation Program and the Moen used to make several test runs for comparison against previously conputed values
beor The elaborate scope plot witch was described in the past quarterly report has been written within the evaluation progran may be plotted for any range specified by throwing appropriate switches.
As mentioned in previous quarterly reports, the programs which are belng devel
oped on the mirivind Coumputer are prototype programs which are to serve oped on the Whirlwind Computer are prototype programs which are to serve as models for
production Univac--cientific 1103 computer programs. Several meetings have been held
 purpose of coordinating these efforts with their 1103 installation. Besides the design
of these programs, procedures have beeen initiated for the procurement of additional input-
out output equipment for the 1103 computer for the use of this and other probleas. In particula a Charactron display tub for visual and photographic facilities, and a complete manual
intervention system have been ordered for the 1103 .

A proposal has been made and accepted for the addition of a Plexowriter ke
 well. The modification, which is scheduled for completion in July, consists of assigning
new si addresses to the Plexowriter keyboard in test control (and also an auxilary new 81 addresses to the Plexowiter keyboard in test control (and also an auxiliary Plexo-
writer at the manual intervention console used by problem 126) so that the Plexomriter keyboard may be used in the same way that a photoelectric or mechanical tape reader now operates. In this mode arbitrary alpha-numeric information may be typed directly into
the computer through the in-out system, and arbitrary interpretation of this information programmed into the computor. The Comprehensive system will be modified so that this facillty may be used for ordinary cs input when the occasion warrants. Due to the low
time efficiency and reliability of this mode of input it is expected that its use will be restricted to applications of a manual intervention nature. Applications of interest
to the general user, however. will be to operate the Director to the general user, however, will be to operate the Director Tape Pragram for program
manipulations and operating demonstration programs. Of major interest to problem 126 1s the fact that individual keys on the typewriter may be treated as separated intervention
switches so that this new facility in effect will add a switches to the present system, in addition to the more general flexibility mention switche
above.

In the past quarter, a brief study was made of the possiblitity of incorporating a new instruction into the whirlwind repertoire to allow a type of microprograinuming on
the Whirlwind Computer. The proposed instruction, mi, would allow referencing of indil command pulse output (cPo) 11nes so that special purpose 1nstructions could be manufactured
by the programnere. The study was restricted to consider
minimum of additional hardware be added to the Whiriwind Computer and that the normal
operation of the computer would be unaffected. These conditions reaulred that the neal facility be bullt out of existing cpo units and consist primarily of a rewiring of certal parts of the control element. Since the program register, PR, is still a part of the ardware of the computer although it is not used at present, this register was chosen as the focal point for the mi instruction and an assignment of CPo units to the 48 gate tubes
associated $w i$ th the PR circuitry was made. It was found that a simple, logical circult could be made to 1oad the program register from arbitrary core memory 1ocations and use
the word thus obtained in PR to energize gate tubes to control individual cPo units on he word thus obtained in PR to energize gate tubes to control individual CPO units on
elected time pulses. It is also possible to have an arbitrary number of addresses in he mi instruction, the meanings of the addresses being controlled by the selection of he proper CPO units. The design which evolved calls for the execution of one $m 1$ ore memory address locations into pr for execution ane ant atime. In this way, arbit

Aster the design was completed, however, it was found that the flexibility which
appears to result $f$ rom the system is in fact quite illusory due to the very tight desigit of the Whirlwind 1ogical-arithmetic element. A major dramback seems to be that the only access to the accumulator in the wiriviwind arithmetic element is through the A register o that the AR 1 s always tied inflexibly to the AC. The net affect of this is to reauire an inordinately large amount of extraneous shuffling of information in order to use
mi facility so that the system is extremely 1 nefficient. Although one of the basic premises upon which th1s study was undertaken was that the system would not be required
to be efficient time-wise, it turns out that 1 it 1 almost al ways easier and faster to obe efficient time-wise, it turns out that it is almosi al ways easier and faster to manufacture an mi minstruction sequence to do it.
not be given consideration for an actual proposal

At this time it is very difficult to estimate how much this picture could be aproved by allowing the addition of several new and more general cpo units, but $1 t$ seems from the choice of a fer appropriate additional CPO units. The detalis of the present study will appear in a Servomechan 1 sms Laboratory memorandum, and a supplementary study to consider alternat 1 ves may be made in the future. It is felt quite strong1y that not
enough information 1 s know at this time about what a microprograming facility should consist of nor how one would be used if avaliable, so that some inexpensive facility should be designed and used before consideration 18 given to bullding an actual micro-
program computer. It may be, however, that such an experimental facility can best be program computer. It may be, hovever, that such an experimental facility can best be
achieved by simulation on existing computers rather than reviring of oxisting computers D. T. Ross
Servomechan 1 sus
Laboratory

162 N . NUClear scattring phask shipts
This quarter has seen further work in fitting the phase shift combinations to the experimental curve at the f1rst minimum. It has been necessary to take
mesh in this region because of the sensitivity of the phase shift equation.
Puture plans include further work along the same 1 ines to f1t the curve beyond
俍 the first minimum in such a way that the rem.
values of the entire curve at high energles.

Programmers working on this problem are B. Mack and E. Campbell
uclear science Laboratory

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

whirluind codimg akd applications
168 d. indicial dommash behind a two-dinensiokal wing
Th1s problem 1 s nov completed. The results will be found in an Sc. D, thes 1 s ,
Indicial Dowwash and Its Structural Effect on the Horizontal Tall,
entitied "Indicial Downash and Its structural Effect on the Horizontal Tail", subaitte by N. P. Hobbs to the MIT Aeronautical Eng Ineering Departinent, June 1956. The results
of the problem will also be published as a Wright Air Development Center Technical Report of the
$56-164$.
N. P. Hobbs
AGroel astic and Structures Research Lab

179 c . TRANSIENT TEMPRRATURES AND STREGSES in A box-typg beam
responses The programs have been modified to obtain transient temperature and stress
(
During the next quartor, the prograll will be repeated for additional therna
J. c. Lor 1 n

Aeronautical Engineering
193 l. bigervalus problek por propagation op electromanemtic maves
as described previtiousily at $410 \mathrm{Mc}_{\mathrm{c}}$ and $3000 \mathrm{Mc}_{\mathrm{c}}$ using the bilinear model have been continued, -
$\begin{gathered}\text { Bigenvalues have been obtained for the inverse-square model at } 50 \mathbf{u}_{\mathrm{c}} \text { using }\end{gathered}$
power series expansions. Work has been done tovard similar calculations using asyaptotic powor series expansions. Work has been done tovard s1milar calculations using asymptotic
expansions and the calculation of normalized eigenfunctions by asymptotic and power series
methods.

Programmors working on this problem are Professor H. B. Dwight and Dr. R. M. Ring.
R. M. Ring
Lincoln La
${ }^{\mathrm{g}} \mathrm{m}$ aratory
199 m . stbady lahimar flow of a comprbssible fluid in the entrance region of a tube
Solutions for the first and second sets of the differential equations were obtained for the case where temperature dependence of the viscosity and thermal conductivity of the compressibie fluid is taken into consideration

More solutions are to be obtained for different entrance Mach numbers and
thermal conditions at the tube wall.

$$
\begin{aligned}
& \text { T. Y. Toong } \\
& \text { Mechantical Engineering }
\end{aligned}
$$

219. transportation problek
problem changes have been made in the program to solve the classical transportatio problem by the stepping-stone method, (see Sumary Report "45) which wirn allow the
storage of cost data without specifically storing costs for shipping route which are

## whirlwind coding and applictions

known to be impractical or absurd. Also, provision has been made for storing the program known to be impractical or absurd. Also, provision has been made for storing the progr
and basis table on the buffer drum, thus making the whole aux antary drum avaliable for
sid storage of cost data. With these improvemen
up to approximately 10,000 significant costs.

In the course of trying to solve a large problem ( $m=60, \mathrm{n}=291$ ), a number
of coding errors showed up that had not been detected earlier.
These have been tracked of coding errors showed up that had not been dotected earlier. These have be
down and the $60 \times 291$ problem has been solved in 30 minutes of computer time.
J. B. Denn1s
Biectrical

Electrical Engineoring
226 d. circulation of the atwosphere
by relaxation the equation

$$
G \nabla_{s}^{2} \frac{\partial h^{\prime}}{\partial t}-H^{H} \frac{\partial}{\partial y}\left(\frac{\partial h^{\prime}}{\partial t}\right)-1 \frac{\partial h^{\prime}}{\partial t}+\alpha=0
$$

here $G$, H, and I are known functions of the initial conditions and $\alpha$ is a unit impulso unction. This program is nearly checked out, With this form of the equation the
solution will be a Green's function which can be used in obtaining iterated solutions of the original equations.
Preparations are being made to combine the various parts of the program which ave been successfully checked out

$$
\begin{aligned}
& \text { Programmers working on this problem are P. Castillo, M. Jacobs and D. Cooley. } \\
& \text { D. s. Cooiley } \\
& \text { Heteorology }
\end{aligned}
$$

234 n. Atomic integrals
$\underset{\text { arising from matrix elements of }}{\substack{\text { A subprogram has been witten and tested which evaluates the radial integrala }}}$ $\frac{\partial}{\partial \mathrm{B}} \frac{1}{\mathrm{r}_{\mathrm{x}}}$
Where $r$ is distance measured from a point $X$ itself at distance $R$ from the origin of
coordinates. The radial integrals involve products of two normalized atomic orbital

$$
\eta_{\mathrm{a}}(\mathrm{r})=\mathrm{N}_{\mathrm{a}} 0^{-\mathrm{J}_{\mathrm{a}} \mathrm{r}} \underset{\mathrm{r}}{\mathrm{~A}+\ell_{\mathrm{a}}}
$$

and the radial operator

$$
g_{L}(r, R)=\left\{\begin{array}{ll}
\frac{(L+1) r^{L}}{R^{L}+2} & , r<R \\
-\frac{L^{L}-1}{r^{L+1}} & , r>R
\end{array}\right\}
$$

whirluind coding and applications

These integrals are evaluated by s
for the operator $1 / \mathrm{r}_{\mathbf{x}}{ }^{\prime}$ described el semhere.*

$$
\begin{aligned}
& \text { R. . K. . Kesbet } \\
& \text { Solid State and Molecular Theory Group }
\end{aligned}
$$

* Quarterly Progress Report, Solid State and Molecular Theory Group, October 15, 1955

236 C . thansient response of Aircmaft to hiatima
During the past quarter the wri has been primarily used to evaluate character1stic values and charactoristic vectors for matrix equations of the form AX $=\lambda B x$. The progr
employed.
The work accomplished is reported in wright Air Development Center Technical Report $56-287$, entitied, "App1cation of the Variational Hethod, the Galerkin Technique,
and Normal Coordinates in a Transient Teaperature Distribution Problem", which is soon to be published.

At th1s time, it appears that future use of the Wri Computer on th1s problem W111 be 1 imited to a) production runs of existing programs; b) deternination of character
istic values and vectors for matrix equations; c) inversion and multiplication of matrices

$$
\begin{aligned}
& \text { L. A. Schanit } \\
& \text { Aeronatical }
\end{aligned}
$$

systens
A study of 1 inear approximations in solution of control problems and problems involving the rate of change from one equilibrium state to another has been expanded Correlations based on these approximations have been developed for deteraining the approximate of a column as the time after a sudden change in operating variables beco
targe.

A final report on this problem should be coupleted shortiy

$$
\begin{aligned}
& \text { s. H. Davis, Jr. } \\
& \text { Chemical Engineering }
\end{aligned}
$$

244 C. DATA REDUCTION FOR X-1 FIRE Control
This problem is concerned ت1th computing from fire control signals hov far fictitious project11es miss an observed target. The program tape was ready prior to
this quarter. Work during this quarter consisted in continuing to reduce nev target run data by use of the program tape

Puture plans for the problem again call for still more data reduction, perhaps
supplementary prograns (yet to be prepared) for clearer presentation of also using supplementary prograns (yet to be prepared) for clearer presentation of the
reduced data.

$$
\begin{aligned}
& \text { J. M. Stark } \\
& \text { Ins trumenta }
\end{aligned}
$$

Instrumentation Laboratory
$245 \mathrm{~N} . \quad$ theory or neutron reactions
 $8=\frac{c}{X_{0}}$ Where C 1s a constant. Several cases with $x=0$ and $c$ and $\}$ as parameters were run
On the basis of these a complete case vas done for $c=1.65$ and $\mathcal{J}=.08$. For this
same $c$ and $\}$ cases wore done varying $X$ and letting same $c$ and 3 cases were done varying $x_{0}$ and lettine
$\frac{x_{0}^{2}}{x^{2}}=42$.
Prom these, angular distributions were calculated in order to make comparisons with experimental values.

Puture plans are to do more cases in the vicinity of the present C and 3
E. Campbell

246 b,N. SCATtrRing FROM oxyok
This problem is nov terminated. The results can be found in a Ph.D. thesis entitied "Poolarization and Exhange Effects in the Scattering of Electrons From Atomic
Oxygen" subitted by Aaron Temkin to the MIT Physics Department, May, 1956.
A. Temkin
Physics Department

253 n . an augiented plane wave nethod for iron
on a few
Littie machine time has been used during the past quarter. That used has been

1ron.
Future plans are to obtain the energy band structure of face- and body-centered
J. H. Wood

Ste Molecular Theory Group
256 c. Whirlmind I- univac scientific 1103 input translation progran
During the past quarter, work described in Sumnary Report No, 45 on the wwi103 Input Translation Program to enlarge the vocabulary of the systom has been coapleted Numbers of the general form

$$
\pm 12.3456 \cdot 10^{5} \cdot 2^{-3}
$$

ay be written where integer numbers only were previously allowed
A Digital Computer Laboratory report describing the entire system will be during the next quarter.
J. Y. Frankovich
Lincoln Laborator

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

whirluind coding and applications
260 N . ENERGY Levegis op datomic hydides
Results of the work to date have been submitted as a thesis to the Physics
at Department at MIT. Yor deta118 see the Quarterly
Molecular Theory Group, MIT, July 15, 1956. p. 8.

The problem is being continued with the hope of calculating other molecular
such as dipole moment.
quantities, such as dipole moment.

> A. J. Freeman Solid State an

261 c. pourigr synthesis for crystal structures
During the past quarter, Professor Buerger continued with the refinement of
the structure of Wollastonite. the structure of Wollastonite.
The structures of Dig1ycinhydrochloride and -bromide are completely solved.
very accurate solution has been obtalined for the chloride. Both structure deternination A very accurate solution has been obtained for the chloride. Both structure determination
are now prepared for publication.

Programers working on this problem are Professor M. J. Buerger and T. Hahn.

$$
\begin{aligned}
& \text { м. J. Buerger } \\
& \text { T. Hahn } \\
& \text { Geology }
\end{aligned}
$$

262 N . Evaluation of two-center intigrals
Some of the exchange and hybrid 1 integrals which were evaluated by Merryman's program were found to be inaccurate. These integra1s have been recalculated by
F. J. Corbato's routine. The minlivind time per integral \&verages about 80 seconds.
H. A. Aghajanian
Solid State and Molecular Theory Group

264 c. optimization of aircraft alternator rbgulating systek
The program for minimizing a function of in variables in the presence of equality constraints by means of the method of steepest descent has been rerritten in order to
utilize the secondary storage units of the computer. Thus, it is no possible to solve utilize the secondary storage units of the computer. Thus, it is now possible to solve
problems of relatively targe mannitude. Changes in the order of computations have been
made to reduce the time required to achieve a solution. This nex program has been test problems of relatively large magnitude. Changes in the order of computations have been
made to reduce the time required to achivee a solution. This nev program has been tested
and proven capable of handiling a 27 variable problem.
In the next quarter, the optimization of an aircraft alternator with respect
to weight will be run. In addition, work on fimproving the methods of computation $\mathbf{w i l l}$ continue.

Programmers working on th1s problem are R. R. Brown and J. B. Dennis.
R. R. Brom

Bnergy Conversion Laboratory
Blectrical Engineering
whirlwind coding and applications
266 A. calculations por the mit reactor
Por th1s past quarter, the most work has been done on improving the 1 nput
$\begin{aligned} & \text { data to } \\ & \text { sumer. }\end{aligned}$ refine answers. Puture plans are to continue this luprovement throughout the sumaer.

> T. Cantwell Chemical Engineering

270 B. CRItical massbs in $\mathrm{D}_{2}$ o modrrated reactors
During the past quarter, the following prograns were completed and production runs finished: 1) Serber W11son sphere, 2) Pourier 3 -group sphere, 3) Two-group
cy11nder, 4) Fourier 3 -group (approximate) cy1 inder, 5) Fourier 3-group (oxact) cy1nder
The data is consistent vith theory for the most part.

Puture plans include further debugging of the sulti-group trangport program
for spherical reactors.

$$
\begin{aligned}
& \text { J. R. Powoll } \\
& \text { Chemical Engineoring }
\end{aligned}
$$

272 L. GENERAL Raydist solution
T1s problean was soived satisfactorily by the nethod described in previous
Sumanary Reports. A full doscription of the method and program can be found in Lincoln Laboratory Memorandum $2 \mathrm{M}-0508$, "Solution of General Reydist Equations on Whirlvind $I^{\prime \prime}$.
A. Zabludowsky

273 n. cosuic ray air showrrs
In the last Sumary Report we mentioned that ve were going to change the empirical function that 18 used in the least-squares curve-fitting part of the progran. This has been done and now there is a unique value of each parazoter of the fit for a
iven fit. The resolution of the method ve use vili be deternined by a Monte Carlo type

 shower is about 45 seconds and any change
purpose of further reduction of the time

Most of the computer tine used by us in the past quarter was devoted to
air shower data. This vill be the main effort in the noxt quarter. There is analyzing air shower data. Th1s will be the maat
a backlog of over 1000 showers to be analyzed.

## Y. Scherb Cosmic Ray Phy

278 N . ENRRGY Levvils of diatomic molzcules (Lit)
Wo are continuing with the self-consistent field molecular orbital traatment
of the electronic energy. The binding emergy for the ground state has been obtained for
five internuciear distances. The molecular orbital approach, however, becomes increas 1ngly poor as the internuciear separation 1ncreases, and Work is continuing at more extended internuciear distances using the conventional con Work is continuing at more ertiscussed in previtous reports.

Programmers working on this problem are A. M. Karo and A. R. Olson
A. .1. Karo
Solid State and Molecular Theory Group

288 n . Atomic mave punctions
Carchor
progress.
Calculations on 4 -electron molecules by the one-center mothod are atill in
Pe and for $\begin{gathered}\text { Approximate wave fur } \\ \mathrm{m}_{n}^{++}\end{gathered}$, and Cr ${ }^{++}$

> R. K. Nesbet R. E. Matson R.

Solid State and Molecular Theory Group
290 n . polarization bypbcts in the fluorine ton
The numerical integration of the equations for the perturbed functions $V_{l \rightarrow l^{\prime}}$
considerable sensitivity to the smoothness of the potential and the
 Held case ve have obtained a coaplete check on the perturbed functions of d-11ke
symmetry and considerable 1mprovement in the p- and s-1ike ones. Recently we have symatry and considerable improvemont in the p- and s-1ike ones. Recently we has
obtained the v function of d-1ike symetry for the dipole term of a point charge perturbing potential at a finite distanco, R, from the origin. Por $\mathrm{R}=1.76$ atomic unit
the V function for Ne has a behavior near the origin very similiar to the corresponding the $V$ function for Ne has a behavior near the origin very similiar
uniform f1eld $(R=\infty)$ case and A maximum at approximately $r=R$.

Because of the delays and difficulties in obtaining our distorted functions wo Because of the delays and difiriculties in obtaining our distorted
have undertaken a calculation for the HP molecule based on a small set of unperturbed tunctions to describe the $P^{-}$1on and nocluding a d-11ke distorted function similar to the one described above. To carry through this problem we have used R. K. Nesbet's

L. C. Allen
Solid State and Molecular Theory Group

293 c. rolling bearing
Progress has boen held up while a nev routine for non-1inear equations is
estigation. If this new routine 1 s proved usoful, it winl be appliod to the under investigation
bearings equations.
A. J. Shashaty
$\underset{\text { Mechanical Engineoring }}{\text { Labrication }}$

297 c. DIPFUSIon boundary laykr
The effects of mass transfer have been studied numericalily in connection with
an analysis of the binary-mixture boundary layer. A syatemen of equations describing mass
 integrated to yoleld "sinilarity" solutions for the case of relatively large and samil densitios for the injected mixture component. Beneficial alteration of the heat transt
rate, skin iriction, and ultimate equilibriuan ("recovery") teaperatures at supersonic rate, skin Xriction, and ultimate equilibrium ("recovery") tomperatures at supersonic
velocitios were shom to result upon employing 1ov density "coolants" such as, for example, helium. Primarily, the thermal offect is a consequence of the relatively 1 arge
thermal capacity for such gases and a major requirement of the diffusion analysis is the thermal capacity for such gases and a major requirement of the
determination of the specific heat variation through the layor
solution of the dill-Kutta procedure was used for integration purposes. Slmultaneous solution of the differential equations (of a total order of 7 ) with two-point boundary
conditions was completed with the ald of a linear influence coefticient routin Successive integrations wire programed vith initial estimates being self-corrected Successive integrations wore progranaed vith 1 initial est imates betng self-correct
as to y yeld proper end-point conditions. For a majority of the cases considered. approximation of the conditions was surficientiy reliable as to result in convergenc Within a time
exact values.
This problem is now terminated. A more complete description of the results will
be found in a doctoral thesis submitted by the author to the MIT Aeronautical Engineering be found in a doctoraa
Department, June 1956

$$
\begin{aligned}
& \text { J. R. Baron } \\
& \text { Naval Supers }
\end{aligned}
$$

300 L . troposphiric propagation
The last Sumary Report on Problem 300 stated that tables of values of the Fressol integrals for complex arguments had been computed using a convergent power series. or
of the power series is too slow for machine computation. These tables are to be extended in the coming quarter.

To siaplify progranning, closed subroutines using program paramoters have been
oritten and tested witch carry out the common arithmetic operations on complex numbers The use of these subroutines permits a program to be written in which real and namarinary The use of these subroutines pernits a program to be written in which real and immaginary
parts of complex quantities do not need to be considered separately. It is planned to construct interpretive subroutines for complex numbers, using a comilex uRA, so that ingle operation may be packed into one register.
closed subroutine has been rritten which obtains all the ordinates and
of abscissae of the extrene of a real sing1e-value
a specified range of the independent variable.

The autocorrelation function and pover density spectrum of several samples taken from sHF slgnal strength records have been couputed. Kxamination
ndicates that improved methods of statistical analysis must be employed.
A number of matrices, ranging in order from six to twenty-five, were solved
for their 1 argest Eigenvalue and Elgenvector. The result of these computations are to

| Y. Kason |
| :--- |
| Lincoln Laboratory |

306 D . spgctral analysis op atuosphiritc data
The program for th1s problem has been successfully checked out and during the
quarter, the routine use of this prograan vas begun.
It is anticipated that during the next quarter the extensive computations fo
which the progran vas written will be conpleted.

$$
\begin{aligned}
& \text { B. Saltzman } \\
& \text { Meteororology }
\end{aligned}
$$

309 b,N. PRefgct and almost pripgct kci
and the energy the perfoct crystal the calculation of matrix elements was completed, Independent values of the one-electron propagation constant k . Thus for each of thes
values values of $k$ an $8 \times 8$ secular equation with overlap terras was solved, using a program
vritten by $P$. J. Corbal and or free by ${ }^{\text {P. } \text {. J. Corbato; this order results from }}$ inclusion of elght different types
of
 k space and a maximum of very littie curvature at the same point. The matrix element compared well with experiments and with previous calculations done in the same general coappare
manner.

For the imperfect crystal the calculation of additional matrix elements 1 almost complete and preliminary secular equations for energy levels have been solved
Th1s work will be completed during the coming quarter.
. P. Howland
Solid State and Molecular Theory Group
312 L . brbor amalysis
The following modification has been made on this problem, as first describe
Report No. 43. A three dimensional system in space rather than a two 1n Sumary Report No. 43. A three dimensional system in space rather than a two


Programmors working on th1s problem are L. Peterson and E. Autcheson
L. Peterson
Lincoln Laboratory

317 c. extraction of stabllity derivatives from rlight test data
The non-1inear pitching moment and lift coefficients have been succossfully eto +0.25 radians. A three second response and a time increment of 1 socond betwoen data points wore used. Programs are now belng written which will perait the extraction
of the derivatives over all angles of attack of interest and also for the extraction of of the derivatives over ar angles
the lateral stability derivatives.
$A$ prograin written by Miss Katherine Kavanagh of the Mir Dynamic Analysis and
Contron Control Laboratory has boen used to obtain the sinulated responses for the above stud
and also has been used to verify analytic studies of the cross coupl ing between the ateral and longitudinal modes of a high-speed $f 1$ ghter al rcraft
$\begin{gathered}\text { Programars morking on this problem are T. M. Carney, L. L. Mazzola } \\ \text { M. N. Springer, and L. E. Wikie. }\end{gathered}$

> L. L. Mazzola Aorophysics Research Group

326 c. Production por transportation problek
problem 219
dhe past quarter has been reported on 13
$\square$

$$
\begin{aligned}
& \text { Biectrical Engineering } \\
& \text { B. Sovell }
\end{aligned}
$$

327 L. PREDICTION ANALYSIS
The problem, as described in Sumary Report No. 45 , 1 is in working ordur.
one modification completed, with respect to alternate methods of computing There was one modification completed, with respect to alternate methods of computing
certain functions. During the past quarter the major activity has been production runs certain functions. During the past quarter the major activity has been production
Por the future, the main body of this problem will be incorporated in a much larger Por the future,
systems study.

Programers working on this problem are L. Peterson and E. Hutcheson,

$$
\begin{aligned}
& \text { L. Peterson } \\
& \text { Lincoln Laboratory }
\end{aligned}
$$

330 c . postrallure response of Aircraft structure
Numerical solutions for the postraliure response of a beam represented by four
Nes have been obtained using a finite difference solution of the equations of lumped massos have been motion. Seviral simplitications have selution. In addition, the wri solution has shown agreement with the exact numerrcal soinition. Ye
satusfactory correlation with some experimental result it contemplated that this
study will be extended to include the postfallure response of structures that are characterized by plate-1ike deformation patterns.
R. D'Amato
and Structures Research Lab

## APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

vhitheind coding and applications
333 a. boundary-laykr characteristics of a stady laminur flow of a combustible mixture over a hot surpace
Solutions were obtained for two specific values of the surface temperature
The effect of activation energy is to he studied in the future.
Programers working on this proble= are Professor T. Y. Toong and A. Shashaty

## 

334 C. PARANETRIC STUDY OF WODAL COUPLING AND DAMPING
Previously a prograil had been formulated which would yleld the simultaneou solution of three coupled vibratory equations. This program gave the modal response neghe of the three modes for one set of initial conditions. During th18 quarter, the
program was altered to yield solutions for five sets of intial conditions in a single prog
run.

Two production runs, each for a specific airplane altitude, have been run
successfully on a given a1rplane for five airplane velocities. Future plans are to run successfully on a given airplane for five airplane velo
similar parametric studies on several other aitrplanes.
X. Wetmore
Aeroelastic and Structures Research Lab.

338 c. optimization of ran-Air cooling systek
During this quarter, work on problem 338 vas completed. The results of the project, whic.a. will be published in a wright Air Development Center Technical Report entitied: "Cool ing and Materials Investigations for Aircraft Generator Equipment",
are sumarized as follows:
 and a1r compreasors have been developed; 3) The variation of loss of an aircraft
enerator, as the machine weight 1 s changed, was computed.

$$
\begin{aligned}
& \text { R. Moroney } \\
& \text { Energy Conversion Group } \\
& \text { Blectrical Bngineering }
\end{aligned}
$$

339 A. vibrating beam
A recurrence formula for integrating
$\frac{\partial^{4} \psi}{\partial x^{4}}+\frac{\partial^{2} \psi}{\partial t^{2}}=0$
was experimentally found to be unstable. A program for finding the eigenvalues of the recurrence fornula was written and run. The results of this explained the instab111t
and indicated hov the recurrence formula should be 1mproved. It is hoped to further

$$
\begin{aligned}
& \text { s. H. Crandal1 } \\
& \text { Mochanical Engineoring }
\end{aligned}
$$

341 c. statistical and dymamic porbcastimo nethods
As explained in the previous Sumary Report, the major effort is boing devoted
toward the systematization of a method for multiple 1inear prediction. The programs tovard the systematization of a method for multiple 1inear prediction. The programs
for computing the covariances and pertorming the diagonalization vere completed. The programs wore applied successfully to sea level pressures over a notwork of 64 stations. In the future it is expected that these programs will be applied to other sets of data teaperature, pressure change, ot
C1matology project. The functions chosen were these computed for the 700 mb 5 -day Climatology project. The functions chosen were those computed for the 700 mb 5 -da
mean height anomalies. This approach to 5 -day prediction will be expanded by the incorporation of temperature parameters. A- A final expression for the prediction equation will then be formed.

Processing of climatological data for multiple 1inear prediction by these
has demanded continued use of whirivind 1 .

 ticularly useful in investigating properties of

The work betng done 1 s under the supervision of Professor Bdward N. Lorenz, Noteorology Department

Programmers working on this problem are B. A. Kelley, B. Shorr and X.Bryan.

## $\underset{\text { Bete A. Kelley }}{\substack{\text { g. } \\ \text { Meteorology }}}$

342 B. transiget hiating op solids
When a slab having a constant intilial temperature is sudaenly brought into contact with another medur an an will occur within the slab with accompanying temperature changes. The problem of what the temperature 18 at any specific point demands knowledge of the period of heat flow, physical properties of the material, the initial slab temperature and surrounding
Law of Heat Conduction, or

$$
\frac{\partial^{2} t}{\partial x^{2}}=\frac{\partial t}{\partial \theta}
$$

While the boundary conditions specify the resistance to heat flow

$$
\left.\mathrm{k} \frac{\partial \mathrm{t}}{\partial \mathrm{x}}\right|_{\mathrm{b}}= \pm \mathrm{L}=\operatorname{th}\left(\mathrm{t}_{\mathrm{a}}-\mathrm{t}_{\mathrm{s}}\right)
$$

## hirluind coding and applications

This probiem 1 s solved using the simplified assumptions associated $\mathbf{n}$ ith son11nfinite and finite 1sotropic, homogeneous solids with un1-d
physical properties are constant 1 rrespective of temperature

虽 $x=0$
Without a surface resistance to heat flow $(\mathrm{b}=\boldsymbol{\infty}, \mathrm{m}=0)$, a solid immediately
act with the surrounding medium assumes the external tomperature upon 1 ts faces so that $t_{s}=t_{a}$.
During the past quartor val
also for the $f 1$ rst root of $m \beta=\cot \beta$

$$
\begin{aligned}
& Y_{\mathrm{m}}=\frac{4}{\pi} \sum_{1=0}^{\infty} \frac{(-1)^{1} e^{-(21+1)^{2} \frac{\pi^{2}}{4} x}}{(21+1)} \\
& Y_{\text {avg }}=\frac{8}{\pi^{2}} \sum_{1=0}^{\infty} \frac{e^{-(21+1)^{2}} \frac{\pi^{2}}{4} x}{(21+1)^{2}}
\end{aligned}
$$



$$
\begin{equation*}
x= \pm L \quad y_{s}=2 \sum_{i=1}^{\infty} \frac{m}{\left(m^{2} \beta_{1}^{2}+m+1\right)} e^{-\beta_{1}^{2} x} \tag{3.}
\end{equation*}
$$

$$
x=0 \quad Y_{m}=2 \sum_{i=1}^{\infty} \frac{m}{\left(m_{1}^{2} \beta_{1}^{2}+m+1\right) \cos \beta_{1}} e^{-\beta_{1}^{2} x}
$$

$$
q_{\text {avg }}=2 \sum_{1=1}^{\infty} \frac{e^{-\beta_{1}^{2} x}}{\beta_{1}^{2}\left[m^{2} \beta_{1}^{2}+m+1\right]}
$$

whirlwind coding and applications

## 343 c. WRATHER PREDiction

phases of Weathenger the current $\begin{gathered}\text { Prediction. }\end{gathered}$
$\begin{gathered}\text { Data for Docember and January } 1948-52 \text {, 1nclusive, were ut1112ed to classify }\end{gathered}$
weather maps into three classes, according to the vertical structure of the weather systems. Linear prediction equations were developed for each class of the weather of pressure change. An interesting and unexpected result was obtained. It was found that the accuracy of the prediction differed. markediy between classes. At Atention 18 now
being directed toward an explanation of this result since being directed toward an explanation of thi
weather prediction by statistical methods.
The research on the development of nev predictors has been completed. With the
new predictors it is now possible to work directly with data new predictors it is now possible to work directly with data from reporting stations.
It is no longer necessary to draw weather maps and read off grid-point values. Further these new predictors make it possible to represent the maximum amount of vartance of a 1eld with a mininum number of predictors.
In the future it 1 s planned to pursue the work on linear prediction for various
casses of weather systems. Data 1 s being processed at the National Weather Records classes of wather systems. Data 18 being processed at the National Weather Records
Center in Asheville, N.c. ior inclusion in this program. The results to date indicate that this line of approach is a fruitful one
Work on th1s
Meteorology Department.
R. Huschke.

$$
\begin{aligned}
& \text { Programmers working on this problem are E. A. Kelley, B. Shorr, H. Brun and } \\
& \text { ke. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { E. A. Kelley } \\
& \text { Meteorology }
\end{aligned}
$$

345 b. wataix multiplication
The portion of the probiem which was used for a doctoral thesis is now
The thesis was subultted by R. R. Archer to the MIT Mechanical Eng1neering completed.
pepartment.
In the future, enempar this problem for pub1ication.

Programmers working on this problem are D. Grine and R. Archer

$$
\begin{aligned}
& \text { R., R. Archer } \\
& \text { Hechanical Eng }
\end{aligned}
$$

R. R. Archer
Hechanical Eng1neering

346 B. ANALYSIS OP COMPLEX SPECTRA
The object of the analysis of the spectrum of an atom is to determine the spacing and quantum numbers of the energy levels of the atom. In principle, this can be
one by measuring the wave length of all the spectral 11nes emitted by the atome convert ing these wave lengths to vacuum wave numbers, and then performing all possible subtractions of these wave numbers and looking for repeated differences.

A complex spectrum such as 18 emitted by the rare earth elements centains several
thousand spectral innes. 8 ince none of the wave lengths can be meaured exactly thousand spectral 11nes. Since none of the wave longths can be measured exactly, many
repeated differences will be obtained when perforaing the subtractions which do not
correspond to true energy 1evel separations in the atom. Por this reason, additional
data must be obtained. These data are usually obtained by means of Zeeani which the sample is excited in a magnetic f1eld. The field will cause the spectral 1ines to split into many coaponents. TTe pattern tho obta ined enables one to measure
two euantum rumbers of the enorgy levels involved in the transition. The consistency two quantum numbers of the energy levels involved in the transition. The cons1stency
of these quantum numbers in the various transitions whil separate the true energy level of these $\begin{aligned} & \text { yuantum numbers in in } \\ & \text { spacings from the false ones. }\end{aligned}$.

The midrivind I computer will be used in this problem to convert the measured wave lengths to vacuum wave numbers by solving a three term polynomial equation, perform all the subtract1ons, search for repeated dirferences, and check the cons1stancy of the Zeeman data. This will be done for Rrblum which has approximately 2500 spectral 11 nes
in the visible and near-ultraviolet. Once the program has been set up, it can be used In the visible and near-ultraviolet. Once the
for the analysis of any other complex spectrum.

During the past quarter, the analysis of the spectra of two elements, Br and Pr, was started. The computer was used to search the Zeeman data of these spectra for repeated values. Then the difference in the wave numbers for these 11 nes vas computed
The energy differences which are needed to complete the analysis are found by searching for repoated wave number difterences. None of these vere obtained in the initial analys1s.
This is believed to be due to the fact that the data availiable at this time 1 not not comh1s is belleved to be due to the fact that the data available at this time is not c
plete enough to give the desired results. The corputer was then used to search the piote enough to give the desired results. The corputer was then used to search the
complete 11st of wave numbers for these elements for sel ected repeated differences several repeated differences were found which appear to be significant.

The next step in the analysis consists in obtaining additional zeeman data
nd searching for any additional energy level differences. It now appears as if the desired results will be obtained in the near futurg.

$$
\begin{aligned}
& \text { J. W. Lindner } \\
& \text { spect roscopy Laboratory } \\
& \text { Physics }
\end{aligned}
$$

350 D. Long-range porbcasting
The 30 -day forecast ing problem 1 s to be attached by means of a mothod for
(or reconstructing) month2y mean pressure anomaly maps in a pecifying (or reconstruching) monthly mean pressure anomany maps in a completely object The mothod involves the use of "emplrical orthogonal functions",
deterninined from an long series of past data, which will perform analogously to (but more oficientiy than) analytical orthogonal functions such as sphorical hasmonics. The cooflicients of the omplirical functions will be put into 1east-squares 11 near regression
forecasting equations. Aside from forecasting possibilities, this approach will give forecasting equations. Aside from forecast ing possibilities, this approach will
us much valuable information about the characteristios of long-period mean maps.

The original description of the problem stated that wri will compute as a
and 1rst step a network of covariances; y later 1 t will be used to diagonalize the matrix of
these covariances--a matrix which may be as large as 100 x 100. Th1s matrix has been
 be partitioned and diagonalized in sections, only the major elgenvectors and elgenvalues
being retained.

The three sets of variances and covariances required in the original statement $90 \times 90$ matrix of correlations. The diagonal lzation of partitioned sections hand into matrix has been complend. The recombination of the matrix sections and final diagonal zation will occupy the next fev woeks. The set of elgenvectors so obtained will
constitute the "empirical orthogonal functions" mentioned in the original problem state-
ment. The determination by matrix multiplication of the amplitude coefficients of these nent. The dotermination by matrix multiplication of the
functions is the next major task for machine computation.

Progranmers working on this problem are E. Kelley, B. shorr, and D. L. Gilman

## D. L. G11man meteorology

351 b. non-uniporm pusi distaibution
A general computational program based on the finite differences approximation
of simultaneous differential equations for a 2 -group, multi-region reactor (Age-Diffusior equations) has been succossfully set up. Past gnd thernal distributions of modified
fluxes ( $r \times$ Plux) for various critical spherical asembli es have been computed and fluxes ( $r$ x Priux) for various ort
checked with analytical solutions.
In order to obtain a uniform volume powor density in the core, the concentration
of the fuel is deliberately non-uniformized in various zones of the core. The calculations
 critical mass and thickness or composition of reflectors

## A. Sutter Muclear Kng ineering

354 d. response of a single story concretr building to dynuic Loadinc The object is to study the dynamic response of th
reinforced concrete building for various loading functions.

The roof is a system of infinite degree of freedom consisting of a one wh slab supported on relatively stirf beans. hae oor sys one may slab and its supporting of freedoan system by assuuing deflection shapes for the one way suab ans
beams and uaing Lagrange's equation to obtain the two dynamic equations

$$
\begin{aligned}
& \ddot{y}_{\mathrm{b}}=\frac{c_{1} p+c_{2} y_{s}-c_{3} y_{b}}{x_{1}} \\
& \ddot{y}_{s}=\frac{p-c_{4} y_{s}-c_{5} \ddot{y}_{b}}{y_{2}}
\end{aligned}
$$

There $\ddot{y}_{\mathrm{b}}$ and $\ddot{\mathrm{y}}_{\mathrm{s}}$ are the accelerations of the center of the bean and slab respectively
$y_{b}$ is the deflection of the center of the beal
is the deflection of the center of the slab relative to the center of the beal
$p$ ts the total load on the slab area
$K_{1}$ and $\mu_{2}$ are masses, and
$c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are constants depending on the assumed deflected shapes and resistance characteristics of the systen.
of the beam and slab for successive tiane intervals by utilizing the backward difference equat 1 Io

$$
y_{(t+1)}=2 y_{(t)}-y_{(t-1)}+\ddot{y}(\Delta t)^{2}
$$

$\begin{gathered}\text { Proen these delfections now resistances are computed and the process repeated. }\end{gathered}$ This numerical procedure 1s repeated approximately 100 times per trial loading. ser trial loading
The loading portion of the program is an empirical curve with is a function
of the shock wave characteristics (1.e., square wave, triangular wave, etc. and shock strength).
The control portion of the program consists of choosing a nev shock strength
for the next trial loading on the basis of the maximum deflections of the slab previousiy obta1ned

During the past quarter, the program has been entirely written and debugged
and is now running. A great many more runs will be made this sumer with smaller pro And 1 s now running. A great many more russ will be gade this summer with smaller pro-

$$
\begin{aligned}
& \text { B. Landry } \\
& \text { Civ11 Eng1neering }
\end{aligned}
$$

355 B . quantization error
 Rough Amplitude quantization by Means of Nyquist Aampling Theory." He, developed there-
in a theoretical proof that quantization error is statistically random and independent of quantizer input when Nyquest's restriction, applied to amplitude sampling (quantization)
 uency component of the probabilitity distribution.

Kxperimental check on this theory can be obtained by deternining the effect of oy the WII coaputer, using the autocorrelation program dov1sed by Mr. Dugh las T. Ross
of the MIT Servomechanisms Laboratory, and a supplementary program causing repeated The critical sampling rate thus determined can then be compared roundoft, one bit at a t 1 me , The critical sampling rate thus determined can then be compared vith that predicted by

This problem was concluded after determination of the autocorrelation functions computed functions of the data before and after roundoff, agreed with Mr. Widrow's theory correlated and of flattop probability distribution. The results Eng ineering.

$$
\begin{aligned}
& \text { H. Pople } \\
& \text { Electrical Engineoring }
\end{aligned}
$$

## 357 b. PROPAGATLON OF ROUNDOFY RRROR

The flow graph for the gecond order difference equation to be studied is is 1 ntroduced by means of the shift orders. The input supplies random numbers, to obtain statistics for the output. An unquantized solution is obtained for each step, in addition to the quantized solution. The difference betweon the unquantized and the uantized solution 1 s formed. The mean and second-moment for th1s difference 1 s obtaine the 50 th step error 1 s kept.

The problem will be solved, using different levels of quantization. The experimental results will be compared witn the theoretical predictions of B. Widrow's
Doctoral Thesis Proposal, "A study of Rough Amplitude ouantization by Means of Nyquis


$z=\epsilon^{-s T}$
$\mathrm{T}_{\mathrm{T}}$ is pericd betwoen samples

Pig. 1 Second Order Difference Equation
The problem was completed during this quarter. The results compared favor ably with theoretical predictions based on B. Widrow's dooteral thesis. The results of

the problem, together with the analysis, appeared in my bachelor's thesis ("Propagation of ouantization Error", s.B. Tteesis, MTT, Department of Electrical Engineoring, June | of of ount1 |
| :--- |
| $1956)$. | roblem.

$$
\begin{aligned}
& \text { A. I. Green } \\
& \text { Electrical Kngineering }
\end{aligned}
$$

358 a. vertical tail hans dug to roluing pulu-ur
The purpose of this problem is to find the londs in the vertical tall of $y$ 6.72 alrplane design. The critical maneuver to for this rolling pull-up will then be compared with that value found by neglecting nonInear and quasi-111near terms of the system. From th1s comparison we ghould be able to determi
load.

The Letoral equations of motion of the airplane are
${ }^{0} 0263 \ddot{\varphi}+.0322 \dot{\varphi}+.00101 \ddot{\varphi}-.0255 \dot{\varphi}+.026 \beta=.002298_{\mathrm{a}}(\mathrm{t})$
$.00101 \ddot{\boldsymbol{\varphi}}-.00991 \dot{\varphi}+.0115 \ddot{\varphi}+.0116 \dot{\varphi}-.063 \beta=-.00063 \delta_{a}(t)$
$-.272 \sin \varphi+2.03 \dot{\varphi}+.4 \beta+2.03 \dot{\beta}=0$
Applying the trapezoldal rule we have in finite difference form: $\left[.00263+.0322 \frac{h}{2}\right] \ddot{\varphi}_{n}+\left[.00101-.0255 \frac{h}{2}\right] \ddot{\varphi}_{n}+.026 \frac{h^{2}}{4} \ddot{\beta}_{n}=.002298_{a}(t)$

$$
-.0322\left[\dot{\varphi}_{n-1} \frac{h}{2} \ddot{\varphi}_{n-1}\right]+.0255\left[\dot{\varphi}_{n-1}+\frac{h}{2} \ddot{\varphi}_{n-1}\right]-.026\left[\beta_{n-1}+\dot{\beta}_{n-1}+\frac{n^{2}}{4} \ddot{\beta}_{n-1}\right]
$$

$\left[00101-.00991 \frac{\mathrm{~h}}{2}\right] \ddot{\varphi}_{\mathrm{n}}+\left[.0115+.116 \frac{\mathrm{~h}}{2}\right] \ddot{\varphi}_{\mathrm{n}}-.063 \frac{\mathrm{~h}^{2}}{4} \ddot{\beta}_{\mathrm{n}}=-.000638_{\mathrm{a}}(\mathrm{t})$
$+.00991\left[\dot{\varphi}_{n-1}+\frac{n}{2} \ddot{\varphi}_{n-1}\right]-.0116\left[\dot{\varphi}_{n-1}+\frac{n}{2} \ddot{\varphi}_{n-1}\right]+.063\left[\beta_{n-1}+\dot{h}_{n-1}+\frac{h^{2}}{4} \ddot{\beta}_{n-1}\right]$
$2.03 \frac{\mathrm{~h}}{2} \ddot{\varphi}_{\mathrm{n}}+\left[.40 \frac{\mathrm{~h}^{2}}{4}+2.03 \frac{\mathrm{~h}}{2}\right] \ddot{\beta}_{\mathrm{n}}=.272 \sin \varphi_{\mathrm{n}-1}-2.03\left[\ddot{\varphi}_{\mathrm{n}-1}+\frac{\mathrm{h}}{2} \ddot{\varphi}_{\mathrm{n}-1}\right]$
$-.4\left[\beta_{n-1}+\dot{\beta}_{n-1}+\frac{\dot{h}_{4}^{2} \ddot{\beta}_{n-1}}{}{ }^{2}\right]-2.03\left[\dot{\beta}_{n-1}+\frac{h}{2} \ddot{\beta}_{n-1}\right]$
Then the tall load:
$L_{v}=\mathrm{a} \dot{\boldsymbol{\varphi}}-\mathrm{b}_{\mathrm{B}}$
The alleron angle will increase linearly from zero to maximum deriection in two-tenths of a second: from then on 1 t will remain constant. The program will be stopped after
the peak tail load is reached. For the rirst run an increment of . 01 second willi be the peak tail toad 15 reached. Por the rirst run an increment of 01 second will be
used at early time and a coarser increment of 11 second at later time. There will be approximately 200 cycles.
quarter. The work on this problem has been succossfully completed during the past
quarter. A complete description of th1s problem has been
submitted to the Department of Aeronautical Engineering.
Noaenclature
$\varphi=$ angle of bank
$=$ angle of yaw
$\beta=$ sidesilip angle
$\mathrm{o}_{\mathrm{a}}=$ time
h = increment of time
$L_{v}=$ vertical tall load
$\mathrm{a}, \mathrm{b}=$ constants

359 b. computation of stresser in a transverse web prane
A transverse web frame with non-symmetrical loading can be approximated by a closed ring of variable cross-section. A closed ring is a structure of three degrees of indeterminancies. A web frame has in addition two vertical pin ended stanchion supports which complicate the problem by introducing 2 additional dogrees of indeter-
loads, weight loads and shoar loads) were converted into horizontal Lind vertical coaponents
 castigiano's method of loast work was used to solve for the 5 redundants. Stresses due
Castater to bending and direct loads were computed
values of these stresses at each station.

| $\Delta x=\left(x_{n}-x_{n-1}\right)$ | $\Delta y=\left(y_{n}-y_{n-1}\right) \quad \Delta s=\sqrt{\overline{\Delta x}^{2}+\overline{\Delta y}^{2}}$ |
| :--- | :--- |
| $\sin \theta=\Delta_{y / \Delta s} \quad \cos \theta=\Delta x / \Delta s$ |  |
| $(\sin \theta)_{a y}=\frac{(\sin \theta)_{n-1}+(\sin \theta)_{n}}{2} \quad(\cos \theta)_{n y}=\frac{(\cos \theta)_{n-1}+(\cos \theta)_{n}}{2}$ |  |

$\mathrm{p}_{\mathrm{w}}=\gamma \times \mathrm{h} \times \Delta_{\mathrm{s}} \quad$ (Porce due water pressure)
$\mathrm{V}_{\mathrm{w}}=F_{\mathrm{w}}(\cos \theta)_{\mathrm{av}} \quad \mathrm{H}_{\mathrm{v}}=\mathrm{F}_{\mathrm{w}}(\sin \theta)_{\mathrm{av}}$
${ }_{d_{N, A}}=\frac{M(\text { about shel1) }}{A(\text { area of section) }} \quad{ }^{1}{ }_{\mathrm{N}, \mathrm{A}}=1$ (about shel1) $-\mathrm{A} \mathrm{d}_{\mathrm{N}, \mathrm{A}}{ }^{2}$
$u_{0}, P_{0}, Q_{0}, R$ and $S$ are values of redundants.
$u_{\text {(at each station) }}=M_{0}+P_{o y}-Q_{o x}+R_{x t}+s_{x}+\sum M_{1}$
$\sum_{M_{1}}=u_{w}+u_{L}-m_{B}-u_{v} \pm u_{s(\text { ghear })}=$

$$
=\sum_{1}(H)_{n-1} d s_{n-1}+\sum(v)_{n-1} d_{n-1}
$$

```
and deflection.
O}\mathrm{ Bruhn's Bquations
\int }\frac{y}{i
\int0
```




Hethod of Integratio
Trapezoldal Rule $\left.=\sum_{n=1}^{49}[\text { (Ord. })_{n}+(\text { Ord. })_{n-1}\right] \frac{d s_{n}}{2}$
The above integrations formed a matrix of 6 columns and 5 rows. The matrix existing horizontal and vertical loads.

$$
\begin{aligned}
& \text { Direct loads }=\mathrm{P}=\boldsymbol{\Sigma} \mathrm{H} \cos \theta+\Sigma \mathrm{V}_{\sin \theta} \\
& \text { Shear loads }=Q=\sum H \sin \theta+\Sigma V \cos \theta \\
& \text { where } \sum H=P_{0}+\sum H_{w} \quad \sum v=-Q_{0}+R+s+\sum v_{w}+w_{t} \\
& \begin{array}{l}
\text { Direct stress }=\mathrm{P} / \mathrm{A} \quad \text { Bending stress }=\mathrm{M}_{\mathrm{y}} / \mathrm{I}, ~ \\
\text { Shear stress }=\mathrm{A}
\end{array} \\
& \begin{array}{l}
\text { Shear stress }=\mathrm{Q} / \mathrm{A} \\
\sigma_{\mathrm{B}}=\mathrm{P} / \mathrm{A}+\mathrm{My} / \mathrm{I}
\end{array}
\end{aligned}
$$

A rational engineering stress allowance was used to compare with computed ectron altered to conform to allowable stress .
During this past quartor, the problem was completed and satisfactory results
The results of the problem will be were obtained. The results of the problem will be found in a Naval Engineering thesi submitted by Brandt, Snyder and Thompson to the Department of Naval Architecture. The
title of the thesis 1 A "Applications of Digital Computers to Naval Architecture Problems"

```
C. R. Brandt 
M. R. Thompson
```

363 A. हrPECT of pressurg on the bending of curvgd tube
governed by the equations a thin walled toroidal shell under internal pressure 1
s" $\quad-\mathrm{xT}=1$
and the boundary conditions
$T(0)=0$
$s^{\prime}(0)=0$

$$
\left.\begin{array}{r}
x^{\mathrm{T}} \rightarrow-1 \\
\mathrm{x}^{2} \mathrm{~s} \rightarrow-\mathrm{q}
\end{array}\right\}
$$

as $x \rightarrow \infty$

Numerical solutions have been obtained by Clark and Reissner (Advances in Applied
Mechanics II, Academic Press, N. Y., 1951, pp, 3 -122. corresponds to zero internal pressure. We plan to obtain numerical solutions for several values of the pressure parametor, q. An iterative mothod based on a finite
difference approximation will be employed difference approximation winl be employed. Starting from initial trial values of
T ' ( 0 ) and $\mathrm{S}(\mathrm{O}$ ) the solution will be marched out with the desired behavior. Errors here will be used to determine new initial trial
 be provided by an $0\left(\mathrm{~h}^{2}\right)$ process using 100 subdivisions or less

A for program has been written and corrected and has been used to calculate $T$ and
and (for $q=0$ ) avallable in the 11terature,
Plans for the future are to use the established program to calculate T and $s$ for cases where $q \neq 0$.
N. C. Dah1. Prograners working on this phen

$$
\begin{aligned}
& \text { N. C. Dah1 } \\
& \text { Mechanical Engineering }
\end{aligned}
$$

364 c. blast response of rotor blade
This problem involves the determination of the stresses and the flapping of The c.g.es of a helicopter rotor which while in 11 ight is enveloped by a blast wave. The c.g. of the helicopter 1s permitted to move in a direction parallel to the rotor
shaft; non-uniform mass and stiffness distributions of the flexible rotor blades are taken into account. In the interest of simplicity, quasi-steady rather than unstead
tand airforces due to the blast are used in the analysis. Later the influence on unsteady
 $\mathrm{nm}+\mathrm{n}+1$ simultaneous differential equations having variable coefticients, where in
the number of blades on the rotor and n 1s the number oof normal moodes of each rotating blade. The unknowss are the nim modal amplitudes, $\mathrm{n} \beta$-flapping motions, and the vertica translation of the c.g. By taking advantage of previous studies on blast respons
fixed-wing aircraft, a somewhat simpler formulation of the above problem can be accomplished. This 1s done by negiecting mass coupling and airforce coupling terms betwe the rigid-body response and the flapping and/or the modal vibrations, as previous
studies have shown to be pernissible. In th1s way the vertical translation equation studies have shom to be perrissiole. In th
becomes a single-degree-of-freedom equation with the blast forces acting as the forcing
 The flapping equations involve the flapping response and the proviously-computed rigid-
body response; they are then solved. To compute the modal vioration, the proviouslybody response; they are then solved. To compute the modal
omper

Whirlwind I is used to goive for the normal modes, shapes and frequacies of
the hinged, rotating, non-uniform (mass, stiffness, chord) blade. Whirivind is also

## mhrumind coding and applications

used to numerically integrate the equations of motion; integrations with respect $t$ o -uring the past quarter, programs have been written to coapute the difference equations and matricos required to find the elgenvalues and eigenvectors which will be to calculate the normal nodes and frequencies desired
quarter

```
The f1rst phase of th1s problem will be completed sometime in the next
```

This probleaw was

## M. . . Callaghan <br> igital Computer Laboratory

365. pinding eigerivalugs of an amyouetric matrid

This problem 18 concerned with finding el genvalues of an asymetric matrix,
Ve Will be using LSR MA 1 which finds the largest and smallest elgenvalues. A routine
 The characteristic equation will be solved by Hitchcock's method if possible. particular, we have four $9 \times 9$ matrices to solve
does find the charing the past quarter, Prame's method has been written and debugged, and does $f$ ind the characteristic equations of the $9 \times 9$ matrices. However,
trouble solving the characteristic equations using Hitchcock's method.
During the next quarter, we will try to find a better method of finding eigen-
values of asymetric matrices in factoring polynomials.
This problem is being done in close connection with the mit office of statistle


> J. Roseman Dig1tal

Digital Computer Laboratory
367 b. detrraination or critical mass in a cylindrical reactor
The problem is to apply two-group diffusion theory to the prediction of
critical masses for finite cylindrical reactors which are completely reflectec. The procedure is to write the dirfusion equation $\nabla^{2} \Theta_{1 j}+\mu_{1 j}^{2} g=0$
for the group of therral neutrons and the group of fast neutrons. The resulting tw equations containing average values of the
appropriate boundary conditions applied.
Por the coapletely reflected cylinder being considered, exact solutions are not possem and top or bottom reflectors. Instead, a method of superposition is used to give
side
two solutions which are then converged. Pirst, a cylindrical reactor with only a radial reflector 1s assumed and the exact solutions are solved. Second, a cylinder with only end reflectors is assumed, and a second set of exact solutions are obtained. The two
sets of solutions are then made to sets of solutions are then made to converge.
This problem differes from number $270-43$ because of the 1 ew enrichment 1 n the
uranium used as fuel. Allownce is made for the presence of U 238 by putting into the program fictit1 prograin $\mathrm{v}^{235}-\mathrm{v}^{238}$ mixture.
The following equations vill be used:

These four boundary conditions result in 4 equations in four unknoms.
by cramer's rule, for non-trivial solutions, the determinant of the coorficien
zero.
$\Delta_{1}=\left|\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & - & - & - \\ a_{31} & - & - & - \\ a_{41} & - & - & -\end{array}\right| \quad=0$


This deterainant will be solved by mairlvind 1
core mux:
Fast: $\phi_{1 \mathrm{c}}=\left[\mathrm{A}^{\prime} \theta+\mathrm{BV}+\mathrm{C}^{\prime} \mathrm{V}+\mathrm{EV}\right] \mathrm{J}_{\mathrm{o}}\left(\mu_{\mathrm{r}} \mathrm{r}\right)$
slow: $\mathscr{g}_{2 \mathrm{C}}=\left[\mathrm{s}_{1}\left(\mathrm{~A}^{\prime} \theta+\mathrm{BV}\right)+\mathrm{S}_{2}\left(\mathrm{C}^{\prime} \mathrm{V}+\mathrm{EV}\right)\right] \mathrm{J}_{\mathrm{o}}\left(\mu_{\mathrm{r}}{ }^{\mathrm{r}}\right)$
Reflector Plux:
Fast: $\mathscr{\rho}_{1 \mathrm{r}}=\left[\mathrm{P}_{1} \mathrm{~F}^{\prime}\right] \mathrm{J}_{\mathrm{O}}\left(\mu_{\mathrm{r}}{ }^{\mathrm{r}}\right)$
slow: $\boldsymbol{g}_{2 \mathrm{r}}=\left[\mathrm{s}_{3} \mathrm{P}_{1} \mathrm{~F}^{\prime}+\mathrm{a}^{\prime} \mathrm{P}_{2}\right] \mathrm{J}_{\mathrm{o}}\left(\mu_{\mathrm{r}} \mathrm{r}\right)$ Bottom
Fast: $\boldsymbol{\varphi}_{1 r}=\left[\omega_{1}\right] \quad J_{o}\left(\mu_{r} r\right)$
slow: $\varnothing_{2 \mathrm{r}}=\left[\mathrm{s}_{3} \mathrm{mO}_{1}+\mathrm{NQ}_{2}\right] \mathrm{J}_{\mathrm{o}}\left(\mu_{\mathrm{r}} \mathrm{r}\right)$
and $\theta=\sin \left(\mu_{z} z^{z}\right.$
$\left(\mu_{z} z\right) \quad P_{1}=\sinh j_{1 z}\left[\frac{\mathrm{H}}{2}+T_{z}-z\right]$

## End Reflectors only



whikumind coding and applications

$$
\begin{array}{ll}
v=\cos \left(\mu_{z} z\right) & P_{2}=\sinh \xi_{2 z}\left[\frac{H z}{2}+T_{z}-z\right] \\
v=\sinh \left(\nu_{z} z\right) & Q_{1}=\sinh \xi_{2 z}\left[\frac{z_{z}}{2}+T_{z}-z\right] \\
V=\cosh \left(\nu_{z} z\right) & Q_{2}=\sinh \xi_{2 z}\left[\frac{H_{z}}{2}+r_{z}^{\prime} z-z\right]
\end{array}
$$

## Radial Reflector only

Core plux

Ref1eotor Plux

$$
\text { Past: } g_{1 r}=\mathrm{Pz}_{1} \cos \left(\mu_{z} z\right)
$$

$$
\text { slov: } \mathbb{g}_{2 \mathrm{r}}=\left[{ }_{3}{ }_{3} \mathrm{p}_{z_{1}}+\mathrm{o}_{z_{2}}\right] \cos \left(\mu_{z} z\right)
$$

$\mathrm{x} \quad=J_{0}\left(\mu_{r} r\right)$


$\mu_{x}^{2}+\mu_{z}^{2}=\mu^{2}$
$v_{r}^{2}-\mu_{z}^{2}=\nu^{2}=\nu_{r}^{2}+\nu_{z}^{2}$
$\xi_{1 r}^{2}=\boldsymbol{K}_{1 \mathrm{r}}^{2}+\mu_{z}^{2}$
$\boldsymbol{F}_{2 r}^{2} \quad=\boldsymbol{K}_{2 \mathrm{r}}^{2}+\mu_{z}^{2}$
Boundary Conditions:

$$
\text { At } \mathrm{r}=\mathrm{R}_{\mathrm{c}}: \varnothing_{1 \mathrm{c}}=\varnothing_{1 \mathrm{r}} \text { and } \varnothing_{2 \mathrm{c}}=\Phi_{2 \mathrm{r}} \text { Plux Continuous }
$$

$$
\begin{aligned}
& \text { Past: } g_{1 c}=[a x+C y] \cos \left(\mu_{z} z\right) \\
& \text { Slov: } g_{2 c}=\left[\mathrm{s}_{1} \wedge \mathrm{X}+\mathrm{S}_{2^{\wedge}} \mathrm{Z}\right] \cos \left(\mu_{z}\right)
\end{aligned}
$$

$\mathrm{D}_{1 \mathrm{c}} \frac{\partial^{g}{ }_{1 \mathrm{c}}}{\partial \mathrm{r}}=\mathrm{D}_{1 r} \frac{\partial^{g}{ }_{1 r}}{\partial r}$
$\mathrm{D}_{2 \mathrm{C}} \frac{\partial^{\Phi}{ }_{2 \mathrm{C}}}{\partial r}=\mathrm{D}_{2 \mathrm{r}} \frac{\partial^{\Phi_{2 x}}}{\partial r}$
Neutron Current Continuous

Applying the same boundary conditions as before but in the $z$ direction;
at $\mathrm{z}= \pm \mathrm{H} / 2 \mathrm{Z} \quad \emptyset_{1 \mathrm{c}}=\varnothing_{1 \mathrm{r}}$ and $\emptyset_{2 \mathrm{c}}=\boldsymbol{\emptyset}_{2 \mathrm{r}}$
$D_{1 c} \frac{\partial \theta_{1 c}}{\partial z}=D_{1 r} \frac{\partial \theta_{1 r}}{\partial z}$
${ }_{D}{ }_{2 \mathrm{c}} \frac{\partial \mathscr{f}_{2 \mathrm{c}}}{\partial z}=\mathrm{D}_{2 \mathrm{r}} \frac{\partial \mathscr{f}_{2 z}}{\partial z}$
plus the additional condition that the flux equal zero at the outer surface of all reflectors, results in elght equations in eight unknowns. Again Cramer's rule is applied to secure a non-trivial solution.
for the reactor superposition to be valid both determinants must be satisfied simultaneously
The solution procedure 1 s to fix all the properties of the matertals and the reactor dimensions. A critical mass is assumed, and the values of total buckling ( ${ }^{2}$
and $\nu{ }^{2}$ ) are computed. Iteration continues until the 4 th order determinant is solv and ${ }^{2}$ are computed. Iteration continues until the 4th order determinant is solved
giving values of $\mu_{r}^{2}$ and $\nu \nu_{r}^{2}$. With these values $\mu_{2}^{2}$ and $\nu \nu_{z}^{2}$ can be obtained. Finally giving values of $\mu_{r}^{2}$ and $\nu_{r}^{2}$. With these values $\mu_{2}^{2}$ and $\nu_{2}^{2}$ can be obtained. Finally
all these values are substituted 1 nto the 8 th order determinant. If it does not equal and
zero, a new critical mass 1 s assumed and the calculations repeated until a predetermine
limit of convergence is reached.

The following symbols not elsewhere identified ere:
$\varnothing_{i j}=$ neutron flux $1^{\text {th }}$ energy group, $j^{\text {th }}$ region
$\mathrm{D}_{1 j}=$ diffusion coefficient
r $\quad=$ distance in radial direction
$z=$ diotance in longitudinal direction
$\mu_{z}^{2}=$ longitudinal buckitng
${ }^{2}=$ radial buckling

$\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}=$ constants which are coupling coefficients between fast and slow

$$
\begin{aligned}
& K_{1 r}^{2}=\frac{1}{\tau_{2}}=\frac{1}{A g e} \\
& \mathcal{K}_{2 r}^{2}=\frac{1}{L_{2 r}^{2}}=\frac{1}{(\text { (therma1 diffusion length) }}
\end{aligned}
$$

During the past quarter, a series of runs using three different programs have
made using data from an operational reactor to determine the success of each type been made using data from an operational reactor to determine the success of each type
of calculation in predicting the critical mass. As a resrit of these comparisons one program has been discarded. One of the remaining two 1 s undrrgoing corrections and odifications. The third program tried has given very accurate results to compare with the measured critical mass.Plans are to adopt the most satisfactory of the two remaining programs and to determine through its use the critical masses of soveral $\left.\begin{array}{c}\text { types of reactor cores over a }\end{array}\right\}$
range of uranium enrichment up to a maximum of $20 \% \mathrm{~V}^{235}$.
These results should permit election of the optimum design.
J. R. Powell.

Programmers working on this problem are J. W. .rrnett, M. Troost and

J. W. Barnett
Nuclear Eng
Ineering

This problem is concerned with the solution of a set of 30 non-1inear equations Which arose in connection with a study of heat transer in a cylindrical ring. First
order finite difference approximations were used to solve partial differential equations order $f$ inite difference approximat 1
which were present in th1s problem.

As part or this study the same problem was solved on the IBM Type 650 Magnetic orum calculator wiere the drum caiculator was used essentially as a desk calculator to or the overall problem was solved -- time evels. $0,1,40$ and 41 respectively. Time levels 40 and 41 were selected to overcome a common pittall encountered preparing test
solutions on a large-scale calculator, namely, that of using as a check-polnt values solutions on a large-scale calculator, namely, that of using as a check-point values
which are non-zero. Specifically, usual techniques for initiation of check solutions the beginning of a problem are dangerous becuuse a number of the values are ezero or non-zero. obviously, a zero result obtained by any correct or incorrect method gives
no measure of the correctness of the program. Selecting step 41 eliminated the non-zero 1 mitation

Rosults obtained on Whiriwind I and the 650 agree to 6 decimal digits which 1 s
quite good considering the differences in the two interpretive systems used on whiriwind
and the 650 respectively.
Programers working on this problem are A. Zabludowsky of the Digital Computer
Laboratory, and M. Hermann of the office of Statistical Services.
$\underset{\text { Office of Statistical Services }}{\text { P. M. Verzuh }}$

371 L. atmospheric propagation of radio waves
The problem consists of the investigation of the influence of the diolectric
itiles of the lower atmosphere and 1onosphere upon the propagation of electro Inhomogeneities of the 1ower atmosphere and lonosphere upon the propagation of electro stability of rays at low angles to the horizon will be investigated from solutions of
the non-1 inear differ the non-1inear differential equation

$$
\begin{equation*}
\frac{d h}{d R}-\frac{1}{n(h)}\left\{1-\left[\frac{r_{o_{0}} c_{0} \cos \epsilon_{0}}{n(h)\left(r_{0}+h\right)}\right]^{2}\right\}^{1 / 2}=0 \tag{1}
\end{equation*}
$$

where $R=c t, c$ is the velocity of radiation in a vacuum, $t$ is the time required for a
disturbance to reach a point ( $\mathrm{C}, \mathrm{h}$ ) on a ray trajectory whose angle with the horizon at $(0,0)$ is $\epsilon_{0}$. h is the height of a point ( $\mathrm{R}, \mathrm{h}$ ) on the trajectory and $\mathrm{n}(\mathrm{h})$ is the refract 1ve Index of the atmosphere given as a function of height. $\mathrm{r}_{\mathrm{o}}$ is the radius of the earth.
Equation (1) 1 s to be solved for a large number of functions n (h) corresponding to measure ments of refractive index in the lower atmosphere and lonosphere at various wavel engths,
These solutions are expected to provide en mortant intormation about radio These solutions are expected to provide important inforration about radio optics in th atmosphere. Seasonal daily
jectories will be obtained.
In the second phase of this problem, the astronomical refraction R of radio
$R\left(\boldsymbol{\epsilon}_{0}\right)=-\int_{0}^{\infty} \frac{1}{n} \frac{d n}{d h}\left\{\left[\left(1+\frac{h}{r_{0}}\right) \frac{n}{n_{0}} \sec \boldsymbol{\epsilon}_{0}\right]^{-2}{ }_{-1}\right\}^{-1 / 2} \mathrm{dh}$
Pluctuations of $R(\boldsymbol{\epsilon})$ will be obtained from the use
Additional phases of ${ }^{\circ}$ this work are to be specified.
Two methods for solving the refraction equation have been tosted, -- the Kutta Gill method and the Tchebyshev method of integration. The 1atter method was found to be
more rapid than the former and appears to provide a satisfactory degree of accuracy. The ${ }_{\text {more }}$ radio range versus hetght for elevation angles from $0^{\circ}$ to $5^{\circ}$ have been determined by thi method up to heights of 300 ,000 feet for different geasons of the year.
In the future we plan to: 1) extend the problem using the above method from heights of 300,000 feet on up througn the fonosphere at a number of frequencies; 2 )
investigate, using the above method, the hourly variations in atmospheric refraction
${ }_{\text {Vincoln }}$ Laboratory
whirlwind coding and applications
whitumind coding and applications
372 b. design of spherical shell skgarnts
The problem proposed for solution on Whirivind I 1s part of a doctoral thesis,
carried out under the supervision of Professor C. B, Norris, on the subject: "The design of precast domes". The general 1dea is to construct a reinforced concrete spherical hhell out of individual pio-shaped segwents, which are assembled by means of prestressing to form the complete dome. Each such precast segment will be hoist
position and be temporarily supported at 1 ts crown and bottom ring.
The present probiem, to be solved on Whiriwind, deals with the determination ocast spherical thang1o darlig construction. In shell thoery it is normally found, that an explicit solution in closed form
or the stresses in the shell can be obtained only for the simplest forms of shape and loading. However, for the given shape of a spherical triangle, where there is no rotat onal symmetry, one nust use series substitutions and numerical methods to evaluate the stresses.

The proposed method is based on the following theory: our object is to
the membrane stresses in a shell segment under its own load when suppor determine the membrane stresses in a shell segment under its own load, when supported
at its crown and bottom ring. This state of stresses will be the same as in a complet dome in which the vertical planes bordering the individual segment form planes of antisymmetry. For such a case of antisymmetric load, one can express the load and stresse
in terms of a Pourier series and can thus integrate the equilibrium equations. As a nerms of a Fourier series and can thus integrate the equilitrium equations. As a
esult of these expressions the shear stress, for example, can be expressed in the following form:

$$
\begin{aligned}
& N_{\theta \theta_{n}}=\left\{k_{1 n} \frac{\operatorname{tg}^{n}\left(\frac{\theta}{2}\right)}{\sin ^{2} \theta}+\mathrm{k}_{2 n} \frac{\operatorname{cotg}^{n}\left(\frac{\theta}{2}\right)}{\sin ^{2} \theta}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{2 n}{k} \frac{\operatorname{cotg}^{n}\left(\frac{\xi}{2}\right)}{\sin ^{2} \phi} \int_{0}^{\phi}\left[\operatorname{ncos} \phi+\cos ^{2} \phi+\sin \phi\right] \sin \phi \operatorname{tg}^{n}\left(\frac{(\xi)}{2}\right) d \theta\right\} \operatorname{sinn} \theta
\end{aligned}
$$

Th1s consists for each value of $n$ of throe terns, two of them proportional to a
constant of integration and one a numerical value. Expressions of this form must be Number of Segment

| $k=2$ | $n=1$ |
| :--- | :--- |
| $k=4$ | $n=2$ |
| $k=12$ | $n=6,18,30,42$ |
| $k=24$ | $n=12,36,60,84$ |
| $k=36$ | $n=18,54,90,126$ |

The range of $\emptyset$, the angle from the vertical axis of rotation should be $0 \leq \emptyset \leq \frac{\pi}{2}$ and
values should be determined in intervals close enough to give an accurate plot ${ }^{2}$ of the
funotion. funation

It 1 s obvious, that in view of the very high values of n numerical integration
must be used.
However, this expression for the moridiona1 stross given above still 18 a
function of two constants of integration. To determine them the equilibrium condit function of two constants of integration. To determine thee the equilibrium conditions
for the complete shell segment are used. for the complete shell segwent are
expressions of the following form:

which again must be evaluated by numerical procedures for each value of $n$ as detailed
above.
As a result of the integrations outlined above a series of curvos will be
plotted which will finally give all the necessary data for the determination of the membrane stresses in any segment of a spherical shell for any opening angle $\varnothing$.
During the past quarter, part of the program was developed and checked for a
particular case. The result obtained verified the numerical solution.
articular case. The result obtained verified the numerical solution
In the future, the program will be set up for the determination of stressos
in a more general form and with the results from the computer, graphs will be plotted to In a more general form and with the results from the computer, graphs
determine the membrane stresses at any segment of a spherical sholl.

Programmers working on the problem are B. Traum and Assistant Professor s. Namyet s. Namyet
Civil
Eng1

3 b. plux leveling in homogengous reactor - part i
Spatial distribution of neutrons in a nuclear reactor usually prevents full exploitation of the outer regions of the reactor, since heat generation, which follows
 probiems at the reactor center. Noutron distribution may be mad more medion in the reflector to increase
oy decreasing moderation in the core and allowing moderation in y decreasing moderation in the core and
eutron concentration in the outer core.

The diffusion equation, which describes neutron distribution, is solved for a
(one-dimensional) reflected reactor for the time independent case. Coefticient spherical (one-dimensional) reflected reactor for the time independent case. Coortit
of this equation, which vary with neutron energy, are replaced vith averaged constan
values by considering $n$ energy groups of neutrons, each of which then has 1 te own diffusion equation.

## whirluind coding and applications

These n diffusion equations are non-dimensionalized, converted to a standard the following form by trapezoldal integration:

$$
Y(x)=\exp \left(\int_{0}^{x} \frac{f d x}{a x^{2}},\left[\int_{1}^{x} \exp \left(-2 \int_{0}^{x} \frac{f d x}{a x^{2}}\right)\left\{\int_{0}^{x} \exp \left(\int_{0}^{x} \frac{f d x}{a x^{2}}\right) \frac{z d x}{a x^{2}}\right\} d x\right]\right.
$$


a is a material proparty of the core
$z$ is the source term, representing
Z is the source torm, representing fission neutrons, or neutrons moderated
to a lower energy group
f 1 s given by a finite difference recursion formula, and includes leakage
and absorption of neutrons. WWI also solves for
 iterations have proved sufficient in hand calculations. in an integrand. Three hand computations (not including time logt in errors) while wWI is estimated to requit
program. During the past quarter, three runs ( 13 minntes) were required to debug the program. On the fourth run, wri, gave a correct solution to the problem which had
previousiy been hand-cal

At present data are being collected to feed wif for final results.

## R. W. Kennedy Nuclear Engineering

377 L. coverage amalysis
Th1s problem 15 concerned with the study of radar coverage, and the propertie first part of the problem, trigonometric-al gebraic equat tactical situations. In the ation of parameters. The programin 18 designed to handle a maximum of 4096 combinations.
Each combination results in six assoch Each combination results in six associated functional values that will be stored on the
drum for accuracy requirements in order to make mandmumen will be reduced from double length words to single length and others to half register
lengths.)
functional values to analyze the mainly a data-handling problem using the cond observations. The problem is in the process of being programmed. Part of the first half has
been completed. Programmers working on this problem are E. Autcheson and L. Peterson.
$\xrightarrow[\substack{\text { L. Peterson } \\ \text { Lincoln Laborator }}]{ }$
appendix

## 1. systrus engineriing

Since 1954, the MIT Servomechanisms Labora techniques. In order for them to to expand developpment of high-speed data reduction
In then into vas essential that more versatile manual inputs be made availabple on the writ computer
 111 be to use spectally designed mnemonic languages and translation programs. In ord
o have this general language structure available on to have th1s general language structure availab1e on a manual intervention basis, it is
necessary to have a keyboard such as a Flexowriter for direct input to the conputer
The wit Scientific and Engineering Computations Group have contemplated the
ollowing applications for the new facility: (

1. Demonstration programs would be a great deal more effective if this form
 quest tapes. Short program modifications and post-mortem requests can presently be in
serted in the insertion registers. However, errors are easily made because the required vocabulary is awkward. A Aypewriter 1nput faci1ity would make ava11able a
normal memenic vocabulary for such purposes.
the comput
2. Experimental use of a typewriter facility for direct operator control pushings required of the operator during normal operations, vocabulary of director tapes and performance requests would be devised for these purposes. This could easily prove to be an extremely convenient and efficient method of computer opera
tion.

The new input installation will be avallable for use by 4 July 1956. Much of
the information to be inserted via the keyboard will be the same as 1 s now introduced
vion via a free running photoelectric tape reader using punched paper tapes. The keyboard
ver input will also be treated as a free running derice, 1.e., selection of the facility
by the computer may be followed by an arbitrary number of read instructions, each of by the computer may be followed by an arbitrary number of read instructions, each of
Which reads the next character which has been struck on the keyboard. The total equip. ment requirements amount to 15 relays and 20 tubes.

## WWI RELIABILITY

The following is the wrI Computer reliability for the past quarter
 computer components. During the past quarter, 10 groups totalling 190 people visited computor components. During the past quarter, 10 group
the computer instaliation, representing the following:

| April ${ }^{23}$ | University of New haupshire, Student branch of the A |
| :---: | :---: |
| April 27 | United Nations |
| nay 3 | mit Course entitied "Blectronic Computational Labora |
| May 3 | Class from Northeastern University |
| May 8 | U. S. Representatives of S.A.C.M., Prance |
| May 16 | Foxboro Corp |
| May 17 | MIT Class in Aeronautical Engineering |
| May 17 | MIT Class in "Machine-Aided Analysis" |
| May 29 | Gillette co. |
| May 31 | Ph1111ps E1nd |
| June 8 | Brit |

The procedure of holding open House at the Laboratory on the first and thirc House tours during the quarter, representing meanbers and friends of the MIT Comininity, Weston H1gh school, Hood Rubber, Mortheastern University, Purdue, Turts, the Massachusett Department of Commerce, Dunlop of France, Godrrey L. Cabot Co., Rand, Inc., M1crof 1ne
Instrument Co., Massachusetts General Hospital, Edvard Devotion School Raytheon wig. Co., Most tnghouse Electric Co., Remington Rand, Production Systens, Inc., E111ot Bros London office, Genoral Blectric, the U. s. Weather Bureau, Porsyth Dental school, Boston
Museuil of Fine Arts. her
of the computer nnstallation at different times. Represented by these individuals zore the office of Naval Research, kamanual College, nertrouth, General Radio Corp. Middilebury College, Seoul University, Dean witter \& Co., W. R. Grace Co., Institute or Ministry of Supply, Bell Telephone wfg. Co., Ramo-Woildridge Corp., Rutgers University
and the U.s. Patent orfice
3. acadomic

Introduction
analysis, There are number of graduate suby now automatic computation, numerical analysis, and now electronic data processing, offered at M.I.T. The pre
subjects directily related to machine computation includes the following

| Subject | Description | $\mathrm{Units}^{1}$ | Year | $\underline{\text { Instructor }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 6.25 | Machine-Aided Analysis | 3-6 | 4 | Linvill |
| 6.535 | Digital Computer Coding and Logic | 3-6 | c | Arden |
| 6.538 | Electronic Computational Laboratory Laboratory | 3-1 | G | Verzuh |
| 6.54 | Pu1sed-Data Systems | 3-6 | c | Linvill |
| 6.567 | Switching Circuits | 3-1-6 | a | Caldwoll |
| 6.568 | Switching Circuits | 3-1-6 | $\bigcirc$ | Caldwell |
| 2.215 | Methods of Engineering Analysis | 3-9 | 0 | Crandall |
| 15.542 | Management Information Systems | 3-6 | G | Gregory |
| м39 | Methods of Applied Mathematics | 3-9 | G | Hildebrand |
| 4411 | Numerical Analysis | 3-2-7 | G | H11 debrand |
| M412 | Numerical Analysis | 3-2 | $\checkmark$ | H11debrand |

It is apparent from the above list that these subjects are predominantly Graduate subjects -- which indicates that th1s subject is primarily for graduate students.
However, it is perfectly possible for undergraduate students in their senior year to take these subjects as an elective.

Machine-Aided Analysis - 6.25
Subject 6.25 -- Machine-Aided Analysis -- was offered for the first time during the fall term 1953-1954. This subject differs from other computational subjects in the following respects:

1. It is a fourth-year elective subject designed for the undergraduate
2. It is a survey subject which covers numerical analysis, analog computation,
3. It provides the student with a general moriedgo of soas of the numerical methode
necessary for machine computation.
Adm1ttedly, such a survey subject cannot be all 1nclusive, and because of the 1arge with any computer.

Since 1953, this subject has turned out to be crasingly popular, As a mattor of
 Term 1956. This subject offered at the undergraduate ioved caules seadents and if they are, thether they are interested
there are 10 graduate subjects in witch they may enroll.

Introduction to Digital Computer Coding and Logic - 6.535
This subject vas, as usual, again offered during the Spring Term 1956, and there vere 97 students enrolled. As a result, it was necessary to
two sections taught by $D$. Arden and $F$. Holvilg, respectively.
 ase of any computer. As a mattor of fact, the usual detailed coding for the Whirlvind
Computer was not presented, and students were not allowed to use the coanuter because Computer was not presented, and students were not allowed to use e the computer because
of the large size of the group. Since the departure of Professor Adams, the content of the large size of the group. Since the departure of Professor Adams, the conte
of the course has been changed someviat, and during the spring term considerable


B1ectronic Computational Laboratory - 6.538
The subject matter offered in 6.538 since 1947 provided the student with two basic
of material. Specifically, some $80 \%$ of the laboratory work was devoted to ${ }^{\text {a }}$ study appes of mater1al. Specif1cally, some $80 \%$ of the laboratory work was devoted to a stud

1. Time Measurement Equipment and Study of Synchroscopes and Oscilloscopes.
2. Pulse Generating Equipment
sharpening and squaring circuits oscillators, celay-1ine pulse generator
iII. Bistable Circults and Plip-Piops An experiment covering various f11p-flop circuits including Thyratron,
single-tube pentode circuits, Eccle-Jordan circuits, high-speed pentode circ sing1e-tuse pentode circuits,
and transistorized $111 \mathrm{p}-\mathrm{flops}$,
IV. Electronic Counters and Counting C1reuits

An experiment covering thyratron counters, binary decade counters, screencoupled counters, biquinary counters, respectively
v. Coincidence Circuits and Gate Circuits triodes, pentodes, and other multiple coincidence devices.
VI. Design of Bistable Circuits f1ip-flop to meet certain operating conditions, and tests his design by actual
construction of the flipp fiop, and testing its pertornance in the
VII. Magnetic Recording of Pulsed Information recording frequency, puise amplitude, tape velocity, are varied and the
resulting perto Time Pulse Distributo
pulse distribution of vol tage signals.
pulse distribution of voltage signals.
IX. $\frac{\text { Square-Hy teresis-Loop Maghet10 Storage R1ements }}{\text { An experiment on the use of magnetic coner }}$ turns on various windings, current amplitude of recording and sensing turns
aro

Detailed information regarding the above nine experiments mas given to the studentis
by means of a written set of notes (230 pages) which were written as roference notes and
experiment notes, respectively. In addition to the above nine experiments, two laboratory
experiments were devoted to the use of punched card equipment specificaliy, one on the experiments wore devoted to the use of punched card equipment. Specifically, one on the
card punch, sorter, and tabulator, and the second on the Card Programmed Calculator, respectively. The class fectures were primarily devoted to a discussion of basic construct
The
ren 1on of digital computers, and their use in the solution of scientific computations
encountered in the solution of simultaneous alkebraic equations, inversion of matrices, encountered in the solution of simultaneous alke
solution of ordinary differential equations, etc.

Because of the availability of the Type 650 Magnet1c Drum Calculator, it mas decided
the subject content of 6.538 should be revised considerably that the subject content of 6.538 should be revised considerably. Accordingly, during
the Spring Term 1956 all of the above-mentioned electron1c experiments were deleted the Spring Term 1956 all of the above-mentioned electronic experiments were deleted
froom the subject content and the subject was devoted entirely to the application and from the subject content and the subject was devoted entirely to the application and use
of divital computing equipment. The students were taught the basic principles of dikital
Thin computers by performing experiments on card punches sorters, accounting machines, the
Card Programmed calculator, and the Type 60 Manete Card Programmed Calculator, and the type 650 Magnetto Drum calculator. The principle
eaphasis was actually devoted to a study of the use of the 650 machine in the solution emphasis was actually devoted to a study of the use
of "scientific and business data procossing problems".

Students were taught to program the 650 by becoming familiar with the basic 650 language. After the
interpretive systems:

1. MITSS MIT Selective System
2. MITLLAC FLoATING DECiwal Interpretive-mnemonic coding (1600)
3. NoPI Fixed and Ploating Interpretive-numeric coding (600)
4. SOAP Symbolic optimal Assembly Program
5. FLimsy Floating interpretive Matrix system (815)
6. BTL
pixed and Ploating Interpretive-numeric coding (1000)
It is obvious that the students wore not able to become completely familiar with all of It 1 s obvious that the students wore not anie to become completely famirar with all or MrriLic. However, only certain students
depending upon their particular interest.

The following 11st of homework and experiments were performed during this subject

1. Problem 1 - Laboratory use of the Type 026 Card Punch and Type 082 Sortor The student spends two hours in the laboratory using the card punch and
orter to prepare and sort several hundred IBM punched cards, thus insuring sorter to prepare and sort several hundred IBM
couplete fam11 larity with these two machines.
II. Problem 2 - Design of Punched Card System to Handle Business Data Processing $\frac{\text { Hork at the Eastern Joint Computer Conference }}{\text { This problem teaches the importance of overall flow charts, the design of }}$ suitable IBM card layout forms, the proparation of accurate instructions for machine operating personnel, and the estimation of the personnel and mach1ne
time required to hendie the registration for 2,000 attendees at the conference
1II. Problem 3- The Solution of a First Order Differential Equation on the Type 650 Problem 3- The Solution
Kgnetic Drui Calculator

The student 18 given a block diagram of a 650 program used to solve an ordinary differential equation using fourth-order Runge-Kutta formulae. As
part of the assignment, the student prepares the actual coding of the 650
prograi using basic fow check points, debugug his prepares a test solution for this program, compute
fon the 650 , and finally carries out the solution of this probeem on the parchine. After coapleting this particular
experiment, the student has a very intimate the
iv. Problem 4 - Solution of an Ordinary Differential Equation on the 650
The student solves the 1dentical problem stated in the precedin using the Card Programmed Calculator. Problem stated in the preceding section the internally-stored program features of the 650 and the card-programmed
characteristics of the Card Programmed Calculator.
v. Proliem 5 - Evaluation of the Roots of a 98 degree

A 650 program using the Nootis system was prepared which evaluates the roots
Prether's method.
Probin $6-$ Computation of the Act iartal Life Insurance Tables
since a
high degree of accuracy in this computation was

vii. Problem 7 - $\frac{\text { Inversion of Matrices using Modified Elimination Procedure }}{\text { A }}$ basic
650 program was prepared which automatically 1 includes a ${ }^{\text {p }}$ p

viII. Problem 8 - Calculation of Nuclear Transformations and Radioactive Decay
A MITLLAC program was prepared which computes the number of atoms An mitiluc program was prepared which computes the number of atoms present in radioactive decay of a given target nuclide in a given neutron flux at any
time.

Problem $9-\frac{\text { Computation of Interest Calculations for Savings Banks }}{\text { A basic }} 650$ program was prepared which automatically
650 A basic 650 program was prepared which automatically handies any of the
six different methods for performing interest caicuiations arising in the
bank.
x. Prob Problem $10-\frac{\text { Computation of Bivariate Prequency Distributions on the } 650}{\text { A basic }} 650$ program was prepared which compute
diser biverine distribation by corresponding crepass inter which computes the bivariate frequency
also computes certain statist also computes certain statistics obtanined froon the above-mentioned distribution
An effective method of storage allocation 1 s employed which employs a neat for obtaining the desired arguments and functions in an internally -stored table
of values.
XI. Problem 11 - Study of optimum Programing on the 650 Calculator
A basic 650 program was prepared which studied various meth sem1-optimum data storage on the drum. A compact decimal system for word storage
and selection using the

of zircon and hafnium in the aqueous and organic phases.
xIII.

Problem $13-$ Solution of the Heat Plow Equation
A basic
equation program was prepared for the so
equation doscribing the heat plow problem using several different bounferential
conditions. conditions.
XIV. Problem $14-$ Iterative Method for Solving Simultaneous Equations on the 650 A basic 650 program was prepared which evaluates the convergence rate,
accuracy and solution 1 time using Craig's method, Conjugate Gradient method,
and Lanczos's method, respectively and Lanczos's method, respectively.
 arising in geophysical prospecting.
XVI. Problem 16 - Preliminary Analysis of an Inventory Control System
the overall inventory control problem. problems arising in a systems study of description is given of the nature of transactions involved, considerations invoriviption 1 s given of the
nol ine ine of data, rate
of information flow, need for rearrangement of computation of infornation flow, need for rearrangement of computational procedure, study
of the effects of errors, breakdown and of the effects of errors, breakdown, and interruptions, and finally a consid-
eration of problem areas of interest to management to provide better overall control.
xviI.

Problem 17 - $\frac{\text { Solution of a Payroll Problem on the } 650 \text { calculator }}{\text { A basic }} 650$ program was prepared for a hypothetical payroll

 hospitalization, 1ncome tax, union, dues, credit union, Community Chest, and
other miscellaneous deductions, were included.
xVIII. Problem 18 - Hitchcock's Method for Bvaluating the Roots of a Polynomial Articular emphasis was given to a consideration of polynomials which cannot by handled by th1s method.
xix. P Problem $19-\frac{\text { Study of Series-Parallel Switching Punctions }}{\text { A basic }} 650$ program was prepared for evaluating the sw

Aix or fewer variables. The program employed is a modificating functions Mccluskey Quine reduction procedure by means of which the preliminary 1 mpli
cants and mintume sum forms of cants and minimum sum forms of the switching functions were obtained. The
solutions of 86 different. problems were performed during the course of this
study. soluty.
study.
 A NoPI program was prepared for
Milne's predictor-corrector formulae,
xxı.

Problem $21-650$ Solution of the Production Scheduling Problem determined production curves which minimize costs for a single arbitrary
 cost function.
$\begin{aligned} & \text { XXII. Prohlem } 22-\text { - } \\ & \text { A basictic } \\ & 650 \text { pron of the Inventory Control Problem on the } 650 \text { calculato } \\ & \text { brepared for a simplified inventory control }\end{aligned}$ problem. Specifically, the program was designed to handle any number of stocknumbered 1 tems up to 34 -per-day 1 tems. The program was 1 imited to control and reporting of customer products only. No attempt was made to control the oom-
ponent parts for the items. similariy, no attempt was made to report the raw material requirements.
xxili. Problem 23 - Study of Brokerage Accounting Problem 23 - Study of Brokerage Accounting 650 program was propared for calculating the items appearing in
 1tems wore included in th1s study: 1) Comerctal postage and insur.
2) Pederal transfer taxes, 3) state transfer taxes, 4) s.E.C. fees. Naturally a program of this type cannot be all inclusive and a number
of thaplify ing assumptions had to be made to effect the solution of the of simplify ing assumptions had to be made
prograin in a reasonable amount of time.
A consideration of the above 11 ist reveals that a wide variety of problems were
 laborate reports were prepared describing the problem statement, the actual 650 progra
the results obtained, and a summary and evaluation of the paper. Al though the term paper was expected to require $30-40$ hours of home and taboratory work, the actual $t$ put in by the students varied enormously. Por example, this time ranged from 30 hours
to 360 hours, respectively. In the latter case, students intend to use th1s toplc as to 360 hours, respectively. In the latter case, students
a basis for their master's theses during succeeding terms.
It is apparent from the above course description that an attempt was made to cover oth scientific computing and electronic data procossing in the subbect. This can Indoed be done, particularily when Individual term papers are assignec. However, as t ime
goes on, it may be advisable to separate this subject into two distinct subjects, one goes on, it may be advisable to separate th1s subject into two distinct subjects, one
dealing solely with scientific computing and the other with business data processing.
This subject was taught by Dr. F. M. Verzuh, Director, office of Statistical Services. There were 26 students enrolled in Subbect 6.538 during the spring Term 1956 of which there were 12 Electrical Eng 1 neering students, 4 Chemical Eng ineering students, one
 mathematics students, respectively. This was the ef1rst time students were able to use
the 650 Calculator as part of their laboratory work. Judging by the large number of this group - 12 students -- who are now using the machine for the solution of their
thesis probiens, 1t appears that it appears that

In addition to the solution of scientific computing and business data processing
roblems, $a$ number of classroom lectures were devoted to the consideration and evaluation of the relative merits of the many commercially-available electronic data processing size drum computers and seven of the large-scale systems -- BIzMAC
 vere entering various large ebsiness, industrial, and government concerns, it was 1mportant that they have some knowledge of some of the relative merits of the 1ndividual
systems. Pinaly, several lectures were devoted to the IBM 704 calculator which w111 b
installed in the $M .1$.T. Coaputation Center in the near future.

Summary of Student Enroliment Statistics
A detalied description of the course content of the subjects listed in the intro-
duction is given in the M. I. T. Catalogue.

- $\rightarrow$

An indication of the interest in machine computation may be obtained by considering
he following enrollment in each of these subjects during the academic year 1955-1956:

| Subject | Nane | ${ }_{\text {Nall }}^{\text {No. }}{ }^{\text {P }}$ | Spring | Total |
| :---: | :---: | :---: | :---: | :---: |
| 2.215 | Mothods of Engineering Analysis | 18 | 0 | 18 |
| 6.25 | Machine-Alded Analysis | 106 | 47 | 153 |
| 6.535 | Digital Computer Coding and Logic | 0 | 97 | 97 |
| 6.538 | Electronic Computational Lab. | 0 | ${ }^{26}$ | ${ }^{26}$ |
| 6.54 | Pu1sed-Data Systems | 0 | 60 | 60 |
| 6.567 | switching Circuits | 48 | 0 | 48 |
| 6.568 | switching circuits | 0 | 30 | ${ }^{30}$ |
| 15.542 | Management Information Systems | 0 | 22 | 22 |
| мз9 | Methods of Applied Mathematics | 130 | 123 | 253 |
| 4411 | Numerical Analysis | 45 | 0 | 45 |
| m412 | Numerical Analysis | $\bigcirc$ | 16 | 16 |
|  | Total | 347 | ${ }_{421}$ | 768 |

$\underset{\text { office of Statictical services }}{\text { P. Verzuh }}$
maching methods of computation and nugerical analysis
Paculty Supervisors:
Ph11ip M. Morse, Cha1rman
Samuel H, Caldwoll Samuel H. Caldwol
Herman Peshbach
 Jay M. Yorrester
James B. Reswick
Chia Chio

Research Associate:
Bayard Rankin
Research Assistants:
Joseph Hershenov
M. Douglas Mcl1roy
M. Douglas Mcril roy
James W. Schlesinger

Harbertus $J$. Weinitschke
Hernando
Fernando J. Corbato
Harvey Fieids
Harvey Pields
Zoltan
Pried
Raymond F. Stora
Arnold Tub1s
Aaron Temkin
Aaron Temkin
Jack L.
Uretsky
Jukka A. Lehtinen
Joseph B. Wals
Marius Troost
Norman Norman F. Ness
Ralph G. Gray
Ralph G. Gray
proagct whtrlwind

Physics
 Physics
Electrical Eng1neering Mechanical Enic
Mathemineering
Matics Mathematics

Mathematics Mathematics
Mathematics
Mathematics
Mathematics
Physics
Physics
Physics
Physics
Physics
Physics
Physics
Physics
Mechanical Engineering
Mechanical Engineering
Chemical Engineering

Geology | Geology |
| :---: |
| Civ11 Engineering |

Starf Members of the Scientific and Engineering Computations Group at the
Digital Computer Laboratory:
Prank M. Verzuh, Head
Dean N. Arden
Dean $N$.
Sheldon $F$.
$F$
Frank C. HolwIg
Leonard. Robert
Jack Roseman
Jack Roseman
Arnold Slegel
Murray Watkins
Alexander Zabludowsky

