APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

MACHINE METHODS OF COMPUTATION and
NUMERICAL ANALYSIS
QUARTERLY PROGRESS REPORT NO. 17 SEPTEMBER 15, 1955
and
PROJECT WHIRLWIND
SUMMARY REPORT NO. 43
THIRD QUARTER 1955

Submitted to the
OFFICE OF NAVAL RESEARCH
Under Contract N5ori60
Project NR 044-008

Project Nos. DIC 6915 and 6345

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge 39, Massachusetts

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FOREWOFD

Project on Machitne Methods of Computation and Numerical Analys 13

 computing machines and the ir appleatio
for computation and numertcal aralysis.
People from several departments of the Institute are taking part in the project.
In the Appendix will be found a 11 st of the personnel active in thls program.
Project whtriwind

The Whrriwind I Computer
Whrliwind 1 Is of the high-speed electrontc digital type, 1 ln which quantities ar
eitepresented as discrete numbers, and complex problems are soived by the repeated use of

Whis inind I uses numbers of 16 binary digits (equivalent to about 5 decimal digits)

PART I
Machine Methods of Computation and Numerical Analysis

1. GENERAL COMMENTS
summer quarter marks a turning point in the activities of the Project. In place of the personnel who reported their final results at the end of the last quarter, new personnel are being introduced to the computing facilities of the Institute. As always, these new members have special in terests in various sciences and common interest in the techhiques of modern computing machinery

Most of the reports in the following pages represent projects that continued in progress over the summer in the fields of mathematics and physics. One new and one final report on projects initiated in the engineering and mathematics departments are also included. The common objective of each of these 1 s to extend the techniques of numerical analysis and computing into some field of application. In achieving this objective, the techniques themselves are enriched with useful sub-routines which then become available to other workers

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
2. GRaduate school research

Eigenvalues in a Spheroidal Square Well 7
Atomic Wave Functions and Energies 8
Energy Bands in Graphite 9
Coulomb Wave Functions 10
Crack Growth in a Ductile Material 11
Theory of Stochastic Processes
Calculation of Numbers of Structures of 14
2.2 Progress Reports

EIGENVALUES IN A SPHEROIDAL SQuare WELL
It will be recalled [1] that this problem is concerned with the solution of the matrix equations

$$
\sum_{\nu} A_{\mu \nu}(h) a{ }_{\nu}=0
$$

where the $A \mu \nu$ depend upon the energy parameter h through combinations of spheroidal wave functions. The eigenvalues h are determined by the usual condition that the infinite deter minant

$$
\operatorname{det} A_{\mu \nu}(h)=0
$$

The procedure that was followed was to find the "eigenvalues" of a set of $n \times n$ determinants of increasing size in the hope that the successive approximations $h_{k}^{(n)}$ would converge rapidily as a function of n.

The result was unexpected
the well dien for for distance/major axis) the values $(\epsilon \sim \sim \cdot \overrightarrow{(n)}$ where $\epsilon=$ interfocal than a per. cent or the values of $h_{k l}^{(n)}$ did not change by more than a per. cent or two for $1 \leqslant n \leqslant 4$. Here $h_{k l}^{(1)}$ is the ℓ 'th
zero of the diagonal element $A_{k k}$.
Since it took better than fifteen minutes for Whirl wind to find a typical $h_{k \ell}^{(4)}$ as contrasted with 4-5 minutes for the corresponding first-order approximation, I decided to be content with the lesser accuracy in the hundred or so eigenvalues which were required.

Computations are about 80 per cent complete for a nucleus of $A=160$, well-depth 40 mev , and nuclear radius $1.5 \mathrm{~A}^{1 / 3} \times 10^{-13} \mathrm{~cm}$. Five different eccentricities are being used, ranging from $\epsilon=.5$ oblete to $\epsilon=.8$ prolate. The energies thus obtained will be used to compute the variation

GRADUATE SCHOOL RESEARCH

In the total energy as a function of the distortion.

Jack L. Uretsky

Reference:

[1] Machine Methods of Computation and Numerical Analysis, Quarterly Progress Report No. 15, March 15 (1955) p. i9. Quarterly Progress Report No. 15, March 15
Also Report No. 16, June 15 (1955) p. 21.

ATOMIC WAVE FUNCTIONS AND ENERGIES

The program outlined in Quarterly Progress Report No. 16 has been abandoned and the computation of energies has been completed using a lengthier but more straightforward and accurate procedure.

The method mentioned in the preceding Progress Report gives six significant figures for the first term of nonisoelectronic sequence but loses accuracy rapidly for the higher terms. The method used in its place consists simply of first, holding " b " and " c " constant and finding the best value of "a" to within _0.02 and then doing similarly for "b" and " c " wi.th $\Delta " \mathrm{~b} "= \pm{ }_{-}^{-} .02$ and $\Delta " \mathrm{c} "={ }_{-}^{+0.003 \text {. This process }}$ is then 1terated as many times as is necessary to give six significant figures. The process for one atom takes about one minute of machine time. The computation of the energy is div1ded up into an "a" dependent part, a "b" dependent part, etc. so that we need not go through the full energy evaluation procedure each time as we go along one of the parameter axes. Listed below are some results which are compared to previous computation done on I.B.M. W = energy in atomic units, $\left(1 s^{2} 2 s^{2} 2 p^{2}\right){ }^{3} p$
I.B.M. Results

	a	b	c		
	3.51	3.18	0.965		
$\mathrm{C}_{\text {I }}$	3.256				
$\mathrm{~N}_{\text {II }}$	3.24	2.892	1.027	107.655	
$\mathrm{O}_{\text {III }}$	3.01	2.55	1.003	146.080	

GRADUATE SCHOOL RESEARCH

			hriwin	
	a	b	c	W
${ }^{\text {c }}$ I	3.44	3.10	0.942	75.257
$\mathrm{N}_{\text {II }}$	3.20	2.81	1.007	107.657
${ }^{0}$ III	3.00	2.53	1.023	146.081

The programming of the variational procedure ha taught the writer of this report one major lesson--namely, that it is usually best to use the most straightforward pro edure possible instead of more elaborate ones whose value s evident only in special cases. A glance at the value pogress reports on this problem will ber out.

Arnold Tubis

ENERGY BANDS IN GRAPHITE

The tight-binding calculation of a two-dimensional graphite model is being continued. As was described in previous report [1], three-center integrals were found to be necessary and these are being evaluated. These integrals are being done by the method of expanding the orbitals around another center and expressing the result as a series of Gegen bauer polynomials with numerical integrals as coefficients. For several cases the series were found after ten terms to be only moderately convergent. By empirically observing that the coefficients in a given series are roughly in a geometric progression, it is possible to greatly enhance the convergence by approximately summing the infinite tail of the series using expressions derived from the generating function of the Gegenbauer polynomials. To avold numerical errors, a computer program has been written to accomplish this latter process and is currently being tested.

Fernando J. Corbato

Reference:

[1] F. J. Corbato, Quarterly Progress Report, Solld-State and Molecular Theory Group, M.I.T., July 15, 1955, p. 8.

COULOMB WAVE FUNCTIONS
The methods of getting the regular and irregular Coulomb wave functions outlined by Abramowitz (Phys. Rev. 98 1955) requires a knowledge of the irregular function g_{L} for $L=0$. Up to now the problem has been one of computing the

$$
g_{0}=\frac{1-\ell^{-2 \pi n}}{2 \pi \eta} \int_{0}^{1}\left\{l^{2 \geqslant \tan ^{-2}\left(\frac{\log \frac{1}{t}}{\rho}\right)}-\rho \sin \left[\rho t-\eta \log \frac{1+t}{1-t}\right]\right\} d t
$$ with sufficient accuracy to be useful in any iterative or interpolative procedure for finding other Coulomb wave functions. To this end new subroutines were written for all the functions which occur in the above integrand. These routines are accurate to 8 and 9 places for almost all relevant values of the argument. One additional difficulty is the fact that the second term in the integrand is not well behaved as $t \rightarrow 1$ It oscillates more and more rapidly in this limit, and the question arises, how to get a good estimate of its contribution to the whole integral. Dr. Abramowitz, when he was at M.I.T. during the summer for a week, suggested the following device, which we think largely eliminates this difficulty. From the second term of the integral (taken along the transition line $\rho=2 \eta$ for convenience, and this can be done for any value of ρ and η) subtract and add the limiting form of the integrand.

$$
\begin{aligned}
& \text { ie. } \begin{aligned}
& \lim _{t \rightarrow 1}\left[t-\frac{1}{2} \log \frac{1+t}{1-t}\right]=1-\frac{1}{2} \log \frac{2}{1-t} \quad \text { Thus } \\
& \int_{0}^{1} \sin \left\{2 \eta\left[t-\frac{1}{2} \log \frac{1+t}{1-\tau}\right]\right\} d t= \\
& \int_{0}^{1}\left\{\sin \left(2 \eta\left[t-\frac{1}{2} \log \frac{1+t}{1-t}\right]\right)-\sin \left(2 \eta\left[1+\frac{1}{2} \log \frac{1-t}{2}\right]\right)\right\} d t \\
&+\int_{0}^{1} \sin \left(2 \eta\left[1+\frac{1}{2} \log \frac{1+t}{2}\right]\right) d t
\end{aligned}
\end{aligned}
$$

The second integral can be done analytically

$$
\begin{aligned}
& \int_{0}^{1} \sin \left(2 h\left[1+\frac{1}{2} \log \frac{1+t}{2}\right]\right) d t= \\
& \frac{\sin 2 \eta}{1+n^{2}}[\cos (\eta \log z)-\eta \sin (\eta \log z)] \\
& \quad-\frac{\cos 2 n}{1+n 2}[\sin (\eta \log z)+\eta \cos (\eta \log z)]
\end{aligned}
$$

expression numerically to evaluate the integral in the above oscillations the two sines in the vanish near the end point $t=1$, for the two sines in the integrand approach each other. Thus, although the above integral has a somewhat more complicated analytic form, it is much better behaved than the original integral and one should be able to get a much better numerical 11. all

The numerical technique we have in mind is a Gaussian quadrature. But it must be kept in mind that all these methods are severely handicapped on Whirlwind where the maximum one can store is ten decimal digits.

> Zoltan Fried Aaron Temkin Arnold Tubis

CRACK GROWTH IN A DUCTILE MATERIAL

The stress pattern within a bar with an axial crack under torsional loading must be found as an initial step in investigating the processes by which cracks grow in a ductile material. Due to the complexity of the problem because of the deviation from linearity in the plastic region, the use of a high-speed computing method is necessary. The problem is being studied in nrder that it may be presented in a form adaptable to the Whirlwind machine.

THEORY OF STOCHASTIC PROCESSES
The purpose of this report is to present a theorem which has arisen in the theory of enchained stochastic processes. Some 1deas relating to this theorem have been presented previously in these reports [1] and have found application in the theory of cosm1c ray showers $[2,3]$.

Let $\left(\Omega, \Im_{\Omega}, P\right)$ be a probability space and let $\left(\Gamma, \digamma_{\Gamma}\right)$, ($\gamma, \mathcal{\zeta}_{\gamma}$) be measurable spaces. The symbols Ω, Γ, γ represent some general spaces made up of points ω, G, g, respectively. For each real $x \geqslant 0$, let $(\mathcal{K}(x), \mathcal{F}(x)$ be measurable functions defined Ω to Γ, γ, respectively. The collections $B \equiv\{\mathcal{B}(x), 0 \leq x<\infty\}$ $\zeta \equiv\{\zeta(x), 0 \leq x<\infty\} \quad$ will be called stochastic processes.

In order to state the theorem of interest in this
paper, it will be necessary to make the following assumptions:
(1) \nprec is a Markovian process.
(2) The σ-field of ω events induced by $\mathcal{F}(x)$ is contained in that induced by $\mathcal{G}(x)$ for all $x \geqslant 0$.
(3) For all $x, y, x \geqslant 0, y \geqslant 0$, $\mathcal{F}(x)=\sigma(y)$ if and only if $\mathcal{G}(\mathrm{x})=G(\mathrm{y})$.
(4) For all $x, y, x \geqslant y \geqslant 0, \mathcal{F}(x)=\mathscr{G}(y)$ if and only if for all $z, x \geqslant z \geqslant y \geqslant 0, \mathcal{G}(x)=\mathcal{G}(z)$.
(5) The space γ to which $\sigma_{\mathcal{F}}(x)$ is defined is denumerable and $g \in \beta_{\Gamma}$ for all $g \in \mathcal{Y}$
(6) Corresponding to the process (8) there exists for all $x, y, x>y \geqslant 0$, a transition function, $P_{1}\left(B_{\Gamma}, x \mid G, y\right)$, such that (1) as a set function of $B_{\Gamma} \in S_{\Gamma} 1 t$ is non-negative and completely additive, (2) as a point function of $G \in \Gamma$ it is measurable with respect to β_{Γ} and (3) for each set $B_{\Gamma} \in \beta_{\Gamma}$ and each $x, y, x>y \geqslant 0, P_{1}\left(B_{\Gamma}, x \mid \mathcal{G}(y), y\right)$ is the conditional probability of the event $\mathcal{G}(\mathrm{x}) \in \mathrm{B}_{\Gamma}$ given $\mathcal{G}(y)$ with probability 1
(7) $P_{1}\left(B_{\Gamma}, x \mid G_{0} 0\right)$ satisfies the linear, temporally homogeneous diffusion equation,

$$
\frac{\partial}{\partial x} P_{1}\left(B_{\Gamma}, x \mid G_{0}, 0\right)=\int_{\Gamma} P_{1}\left(d \Gamma_{G}, x \mid G_{0}, 0\right) \pi\left(G \rightarrow B_{\Gamma}\right)
$$

$$
\int_{B_{\Gamma}} P_{1}\left(d \Gamma_{G}, x \mid G_{0}, 0\right) \alpha(\sigma)
$$

GRADUATE SCHOOL RESEARCH

$B_{\Gamma} \in \mathcal{B}_{\Gamma}, G_{0} \in \Gamma, \sigma<x<\infty$, where

$\pi\left(G \rightarrow B_{\Gamma}\right)=\lim _{(x-y) \rightarrow 0} P_{1}\left(B_{\Gamma}, x \mid G, 4\right) /(x-y), \quad G \notin B_{\Gamma}$ $\pi(G \rightarrow G)=0, \quad \alpha(G)=\pi(G \rightarrow \Gamma)$.

From these assumptions it follows that there is a transition function, $P_{2}(g, x \mid g ; y)$, corresponding to the process \mathcal{F}, which plays the analytical counterpart of the conditional probability of the event $\xi(x)=g$ given $\xi(y)$. The purpose of the theorem of this report is to establish that a certain condition on the function $\alpha(G)$ is sufficient for insuring that $P_{2}\left(g, x \mid g_{0}, 0\right)$ has a specified analytical form.
process. It is necessary to define a special stochastic process. This process is simply a tool for computing the it did so by passing through the state g for some $x>0$, then 1t did so by passing through a certain specified sequence of points of the denumerable space γ. Let $\pi(g)$ represent the space of all finite sequences of distinct points in γ ending with g. That is, if $p \in \pi(g)$, there is some finite sequence $g_{0}, g_{1}, \ldots, g_{N-1}, g$ (where N may be different for different p) such that $p \equiv\left(g_{0}, g_{1}, \ldots, g_{N-1}, g\right)$. For each $g \in \mathcal{V}$, define a random variable $\rho(g)$ such that $\rho(g)=p=\left(g_{0}, g_{1}, \ldots\right.$, $\left.g_{N-1}, g\right)$ if and only if (1) for some set $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$, $x_{k}>x_{k-1}>0$, $\mathcal{F}(0)=g_{0}, \mathcal{F}_{\mathcal{F}}\left(x_{1}\right)=g_{1}, \ldots \mathcal{F}_{(}\left(x_{N-1}\right)=g_{N-1}$, ${ }_{\mathcal{F}}\left(x_{N}\right)^{k}=g$ and (2) for all $x, x_{N} \geqslant x \geqslant 0$, $\mathcal{F}(x)=g_{k}$ for some $k=0,1, \ldots, N, g_{N}=g$. In words, $P(g)=P$ when the sequence of points which \mathcal{F} has passed through in getting to g is p. To complete the definition it is necessary to impose the normalizing condition

$$
\sum_{p=\pi(g)} P[S(\xi)=p]=1
$$

Now define the process
with the statement

$$
\rho F(x) \equiv(\rho[F(x)], F(x)), x \geqslant 0 .
$$

QF (x) is thus a random variable defined to the space of all pairs $(p, g), p \in \pi(g), g \in \gamma$. $\rho \mathscr{F}(x)=(p, g)$ is the event that at $x \mathcal{F}(x)=g$ and the process \mathcal{F} arrived at g by passing through the sequence p. It is clear that for all $g \in Y$

$$
P(\xi(x)=g)=\sum_{p \in \pi(g)} P(S \rho(x)=(p, g)) .
$$

The theorem can now be stated. In the statement of the theorem " *" represents the operation of convolution. Theorem: Suppose assumptions (1)-(7) hold. If for each $g \in Y$ $\alpha(\mathrm{G})=$ const. $=\alpha(\mathrm{g})$ for all $G \in \mathrm{~g}$, then $\rho \mathcal{F}$ is Markovian and $P_{2}\left(g, x \mid g_{0}, 0\right)=\sum_{p \in \pi(g)}\left[\prod_{k=1}^{N} \frac{\bar{\pi}\left(g_{k-1} \rightarrow g_{k}\right)}{\alpha\left(g_{k-1}\right)}\right] \alpha\left(g_{0}\right) e^{-x \alpha\left(g_{0}\right)} * \cdots * \alpha\left(g_{N}\right) e^{-x \alpha\left(g_{N}\right)}$, $g_{\mathrm{N}}=g$, where for each fixed $g^{\prime} \in \gamma, \bar{\pi}\left(g^{\prime} \rightarrow g\right) / \alpha\left(g^{\prime}\right)$ is a probability measure over the space γ

The proof of this theorem will be contained in a paper yet to be published entitled, "The Concept of Enchainment--A Relation Between Stochastic Processes."

Bayard Rankin
References:
[1] Machine Methods of Computation and Numerical Analysis,
[2] Quarterly Progress Report No. 14, December 15 (1954), p. 45
[2] ibid. Report No. 13, September 15 (1954), p. 48
[3] ib1d. Report No. 14, December 15 (1954), p. 11.
2.3 Final Reports

CALCULATION OF NUMBERS OF STRUCTURES OF RELATIONS ON FINITE SETS
A table of numbers of structures of dyadic relations has been calculated on Whirlwind I. The problem was taken up
primarily to test a multi-register arithmetic program for manipulating numbers of arbitrary length. Thus, we obtained exact integer answers to this problem, even though these results are as high as 10^{60}. The results are given here completely written out, although they have primarily curiosity value

The problem, as described in a previous report, [2], concerns dyadic relationships holding among a set of n objects. A complete relationship is specified by an $n \times n$ matrix of l's and 0 's, a one in the 1 j place 1 ndicating that element 1 bears the relationship to element f while a zero indicates the absence of such a relationship. Counting the number of structures of relations amounts simply to counting the admissable arrays of I's and 0 's in the incidence matrix , With no further restrictions, we see that the answer is $2^{n^{2}}$, but in this figure we have included many "orbits" of 1somorphic structures which can be permuted into one another by renumbering the objects of the set. The task at hand is to find how many orbits of nonisomorphic structures exist. Davis [1] has shown that this number is
(1) $\quad \operatorname{str}_{n}=\frac{1}{n!} \sum_{\tilde{\pi}} b(\pi) 2^{d(\pi)}$
where the summand is to be evaluated for one permutation, $\tilde{\pi}$, from each conjugate class of the symmetric group of permutations on n objects. Every member of a conjugate class has the same distinct disjoint cycle scheme specified by

$$
\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$

where p_{k} is the number of cycles of length k in the permutation. The total number of conjugate classes is the number of partitions of n into integral summands. The quantity $\mathrm{b}(\pi)$ is the redundancy, or number of member permutations in one conjugate class and is given by

$$
\mathrm{b}(\pi)=n!\left(1^{p_{1}} p_{1}: 2^{p_{2}} p_{2}!\ldots \ldots n^{p_{n}} p_{n}!\right)^{-1}
$$

GRADUATE SCHOOL RESEARCH

The quantity $\mathrm{d}(\pi)$, known as the number of "degrees of freedom" connected with the permutation π, is defined by

$$
\begin{aligned}
d(\pi) & =\sum_{h=1}^{n} \sum_{k=1}^{n} p_{h} p_{k}(h, k) \\
& =2 \sum_{h<k} p_{h} p_{k}(h, k)+\sum_{k=1}^{n} k p_{k}^{2}
\end{aligned}
$$

$(h, k)=$ greatest common divisor of h, k
Davis has developed other formulas for enumerating specialized classes of relation:

Non-1somorphic reflexive (or irreflexive) relations

$$
\begin{aligned}
& \text { ref }_{n}=\frac{1}{n!} \sum_{\pi} b(\pi) 2^{d_{r e f}(\pi)} \\
& d_{r e f}(\pi)=d(\pi)-\sum_{k=1}^{n} p_{x}
\end{aligned}
$$

Non-1somorphic symmetric relations

$$
\operatorname{sym}_{\mathrm{n}}=\frac{1}{\mathrm{n}!} \sum_{\underset{\pi}{\pi}} \mathrm{b}(\pi) 2^{d_{\text {sym }}(\pi)}
$$

$$
d_{s y m}(\pi)=\sum_{k=1}^{n} p_{k}\left\{\left[\frac{k}{2}\right]+1+k\left(p_{k}-1\right) / 2\right\}
$$

$$
+\sum_{h<k} p_{h} p_{k}(h, k)
$$

$\left[\frac{k}{2}\right]=$ greatest integer function
Nonisomorphic irreflexive (or reflexive) symmetric relations

$$
\begin{aligned}
& 1 r \mathrm{~s}_{\mathrm{n}}=\frac{1}{\mathrm{n}!} \sum_{\underset{\pi}{r}} b(\pi) 2^{d_{1 \mathrm{rs}}(\pi)} \\
& d_{1 r \mathrm{~s}}(\pi)=d_{\text {sym }}-\sum_{k=1}^{n} p_{k}
\end{aligned}
$$

Non-1somorphic ant1-symmetric relations

$$
\begin{aligned}
\operatorname{asym}_{n}=\frac{1}{n!} & \sum_{\widetilde{\pi}} b(\pi) 3^{d_{\text {asym }}(\pi)} \\
d_{\text {asym }}(\pi)= & \sum_{k=1}^{n} p_{k}\left\{\left[\frac{k-1}{2}\right]+k\left(p_{k}-1\right) / 2\right\} \\
& +\sum_{h<k} p_{h} p_{k}(h, k)
\end{aligned}
$$

Incidentally, note that ref ${ }_{n}$ is the number of directed graphs on n nodes and irs $_{n}$ is the number of non-directed graphs.

All these formulas have been evaluated for n ranging up to 16 and the values are given in the accompanying tables. Asymptotic Formulae - Inspection of the various enumeration formulae given above shows that the dominant contribution to the total number of structures is due to just one of the par titions. This partition is the one consist one of the par and corresponds to the 1dentity transform consing of n l-cycles transforms of the thensform of the group of each of the incidence matrix. Taking this term from each of the formulas we have

$$
\begin{aligned}
\operatorname{str}_{n}^{2} & \sim 2^{n^{2}} / n! \\
\operatorname{ref}_{n} & \sim 2^{n(n-1)} / n! \\
\operatorname{sym}_{n} & \sim 2^{(n+1)^{\frac{n}{2}} / n!} \\
\operatorname{lrs}_{n} & \sim 2^{\frac{n}{2}(n-1)} / n! \\
\operatorname{asym}_{n} & \sim 3^{\frac{n}{2}(n-1)} / n!
\end{aligned}
$$

To show the accuracy of these approximations, we give Table VI as a representative table. It appears that the asymptotic formulae are good to about one per cent if the true structure number is of the order of 10^{10} and are (naturally) better for larger structure numbers.

> M. Douglas McIlroy

References:

[1] R. L. Davis, Proc. Am. Math. Soc. 4(1953) 486 [2] M. D. McIlroy, Machine Methods of Computation and Numerical
Analysis, Quarterly Progress Report No. 15 (1955) p. 10
TABLE I Numbers of Structures of Relationsh1ps

			sym	symmetric	
1	2	1	2		
2	10	3	6	2	2
3	104	16	20	4	7
4	3044	218	90	11	42
5	2.919710^{5}	9608	544	34	582
6	$9.6929 \cdot 10^{7}$	$1.5409 \cdot 10^{6}$	5096	156	21480
7	$1.1228 \cdot 10^{11}$	$8.8203 \cdot 10^{8}$	79264	1044	$2.1423 \cdot 10^{6}$
8	$4.5830 \cdot 10^{14}$	$1.7934 \cdot 10^{12}$	2.208610^{6}	12346	$5.7502 \cdot 10^{8}$
9	$6.6666 \cdot 10^{18}$	1.3028×10^{16}	1.1374.10 ${ }^{8}$	$2.7467 \cdot 10^{5}$	$4.1594 \cdot 10^{11}$
10	3.4939.10 ${ }^{23}$	3.4126×10^{20}	$1.0926 \cdot 10^{10}$	$1.2005 \cdot 10^{7}$	8.160110^{14}
11	$6.6603 \cdot 10^{28}$	$3.2523 \cdot 10^{25}$	$1.9564 \cdot 10^{12}$	$1.0190 \cdot 10^{9}$	$4.3744 \cdot 10^{18}$
12	$4.6557 \cdot 10^{34}$	$1.1367 \cdot 10^{31}$	$6.5234 \cdot 10^{14}$	$1.6509 \cdot 10^{11}$	$6.4540 \cdot 10^{22}$
13	9.016910^{40}	$1.4669 \cdot 10^{37}$. $4.0540 \cdot 10^{17}$	$5.0502 \cdot 10^{13}$	2.637810^{27}
14	$1.1521 \cdot 10^{48}$	$7.0316 \cdot 10^{43}$	4.705710^{20}	$2.9054 \cdot 10^{16}$	$3.0037 \cdot 10^{32}$
15	4.1233.10 55	$1.2583 \cdot 10^{51}$	$1.0231 \cdot 10^{24}$	$3.1426 \cdot 10^{19}$	$9.5773 \cdot 10^{37}$
6	$5.5343 \cdot 10^{63}$	$8.4446 \cdot 10^{58}$	$4.1788 \cdot 10^{27}$	$6.4001 \cdot 10^{22}$	$8.5888 \cdot 10^{43}$

TABLE II Numbers of Structures of Dyadic Relations

n				$\mathrm{str}_{\mathrm{n}}$
1				2
2				10
3				104
4			2	31968
5			969	28992
6			22829	08928
7		4582	71000	61728
8		62157	21539	27936
9	6666			3493
10				
	90545	49349	98391	61856
11			6660	34219
	85078	18075	85386	36288
12		46557	45648	25869
	89066	03112	66511	04256
13	901685	91267	11300	76041
	19117	62528	96061	48096
14			1152	05015
	57604	74157	55389	34617
	43236	77230	31424	28672
15	4	12334	41401	68606
	79295	18834	69376	48648
	20973	59863	65854	35136
16				5534
	25727	62971	20722	05192

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

GRADUATE SCHOOL RESEARCH
TABLE III Numbers of Structures of Reflexive (or 1rreflexive) Dyadic Relations
6
7
8
9
10
12
13
14
16

GRADUATE SCHOOL RESEARCH
TABLE IV Numbers of Structures of Symmetric Dyadio

1					$\mathrm{sym}_{\mathrm{n}}$
2					2
3					6
4					20
5					90
6					544
7					5096
8					79264
9				22	08612
10				1137	43760
10			1	09262	27136
11			195	63634	35360
12			65233	50845	92096
13		405	40227	34209	96800
14	4	70568	64216	11199	63904
15	10230	63423	47118	94310	54720
16	41788492	03082	02323	60582	29792

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

GRADUATE SCHOOL RESEARCH
TABLE V Numbers of Structures of Irreflexive (or reflexive) Symmetric Dyadic Relations
n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
16
640
3142648596
0101570452

GRADUATE SCHOOL RESEARCH
TABLE VI $\begin{aligned} & \text { Numbers of Structures of Antisymmetric } \\ & \text { Dyadic Relations }\end{aligned}$

n				
1 (
2				
3				
4				
5				
6 (582				
7 21480				
8 21 42288				
8			5750	575016219
		41	59392	
		81600	74490	11040
$\begin{array}{lllll}11 & 4374 & 40620 & 99707 & 47314\end{array}$				
13	39836	93872	07497	39356
			263	77967
	35571	22500	90533	73136
14		300	36589	61589
	80530	05349	84908	93399
15	957	72686	34898	11549
	49990	83757	92075	81003
16				8588
	84182	49161	16546	12893
	38402	27902	32471	44414

GRADUATE SCHOOL RESEARCH
TABLE VII Comparison of Asymptotic Structure Formulae with True Formulae
$\mathrm{n}=7 \quad \mathrm{n}=10$

approx. value	true value	approx. value	true value	approx. value	$\left\lvert\, \begin{aligned} & \text { true } \\ & \text { value } \end{aligned}\right.$
str ${ }_{\text {n }}^{2} 1.11710^{11}$	1.12310^{11}	$3.49310{ }^{23}$	$3.494 \quad 10^{23}$	4.12310^{55}	4.12310^{55}
ref ${ }_{n}$		3.41110^{20}	$3.41310{ }^{20}$	1.25810^{51}	1.25810^{51}
sym_{n}		$.99310^{10}$	$1.09310{ }^{10}$	1.01610^{24}	1.02310^{24}
$1 \mathrm{rs}{ }_{n}$. $97010{ }^{7}$	1.20110^{7}	3.10210^{19}	3.14310^{19}
asym ${ }_{\text {n }}$		8.14010^{14}	8.16010^{14}	9.57710^{37}	9.57710

PaRT II
Project Whiriwind
REVIEN and problem index
run operations not logged to spectric probiems.
$\begin{aligned} & \text { TWo tables are provided as an Index to the problems for which progress reports } \\ & \text { have been sumbited In the first table the problems are arranged according to the fiel } \\ & \text { of application, and the source and the amont }\end{aligned}$

Table 2-1 Current problems arranged According to Pield of App1ication

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
whirlwind coding and applications
2.1 Introduction

Progress reports as submitted by the various programners are presented in numer1
cal order 10
Section
2.

A 1 mplies the problem 1 N Nor for academic credit, is UNsponsored.
B 1 mplites the problem IS for academic credit, is unsponsored.
C 1 mplites the problem 1s NOT for academic credit, IS sponsored.
$1 \mathrm{mpl1es}$ the problem IS for academ1c credit, IS sponsored.
1 mp11es the problem 1s sponsored by the office of Naval Research
Implies the problem 18 sponsored by Lincoin Laboratory
The absence of a letter indicates that the problem originated within the S and EC Group.
whiriwind codina and applications
2.2 Problems Being Solved
100. COMPREHENSive system of service routines

Juring the past moduricteations proposed in the preceding Sumary, Report were made and tested Work 1 s presently proceeding on a manual which will descrite in some detall the
structure of the comprenensive system.
P. C. Helwig
Digital
Compute \qquad
. 06 c. MIT SEISMIC PRoject

No. 41) for The reader recent 1 approached to the March 25, 1955 quarterly report (Surnary Report

 the conversion or these results difecct1y into structural 1nformation about the tront. and

The program has been checked out and 1s now betng run on actual records with
different value or ane aver and
suits are very encouraging.

who programmers during the surmer

$$
\begin{aligned}
& \text { S. M. Simpan, Jry } \\
& \text { Geology and Geophy } 1 \text { ice }
\end{aligned}
$$

 Ther some

 tion 1 in the gas turbine cycle 18 anelogous to that of the condenser in a steam power fur
plant.

d1 scharging it to the atmos phere. At the entrance of the duct, spectal injectors
minute jets of water which are in turn atomized by the rapidiy moving gas stream. multaneous the changes 1 state within the aerothermopressor are brount about by the (bi)

 Quarter, 1952.
Is 1 Thtimately colle or whiniwind I in the successful development of the aerothermopressor
 sis of the process. Th18 analys18
f1rst-order differential equations.

to dengn ${ }^{3}$. A study or ontcal diffusers with different angles or divergence in
Laboratory. ${ }^{\text {better experimental aerothermopressor for testing in the Gas Turbine }}$
Th1p of the aerothermopressor program 18 betng carried out at M.I.T. Under the sponsor-

A. J. Erickson
Mechanical ${ }_{\text {Eng ineering }}$

whirluind codina and applications
126 d . Data reduction

 ont Laboratory through DIC Project 7138 .

The nature or the problem requires extreme automatic1ty and efrictency in the
actual
and reason extens1ve use is made of output oscil1oscopes so that the computer can communicat

 on succeeding steps

D. T. Ross
Servomechan 1 sms Laboratory
whirlwind codina and applications
(132 D. SUbroutines por the numerically controlied millina machine
The following work was done during the past quarter under Problem ${ }^{132}$
Numer 1 cally-Contrompleted punched paper tape was used to cut a mach1ne cam using the
thesis report.
Chandler-Evans A completed punched paper tape was used to cut out a pror11e catm for
funyon in a theorporation, reoort.
under the sponsorship of the Navy has resumed work on this. the hydromatio Laboratory
roblem 132 1s now terminted win mat

$$
\begin{aligned}
& \text { T. Nag 1e } \\
& \text { Servomechan 1 sms Laboratory }
\end{aligned}
$$

(41 SUbroutine study op the scientipic and encineerino computations ($\mathrm{s} \& \mathrm{EC}$) group Pactorization of Polynomalals

 Tayior seritas il routine no

Iterative Solutions

M. Jacobs

 only enough ine iterative approach

[^0]
APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

whirluind codino and applitations

H1stogram P1otter

Written and A eneral reatine for piotting h1stograns on the osct110scope race has been
 routine ta
puar rapid sine-cosin
M. D. McI1roy

 exactry the same a.
temporary storage.
os scope mra decimal pormat
M. D. McI1roy

 sequentraty ither or program p
programer by means or
registers of temporary storage.
M. D. McIlroy
5. oss scope mra decimal outpur

Printout subroutines
The foliowing subroutines have been added to the subroutine 11brary:
a. OD 6 Delayed Single Length Decimal Integer Print
b. 057
c. OD 8 Single Register Block Print (program parameters)
d. od 9 Single Register Block Print (preset parameters)
($30-\mathrm{J}, \mathrm{J}$) Decimal cs Print
f. OD 11 (30,15) Decimal Print (cs or ww)
g. $O D 12 \quad \mathrm{CS}(30-\mathrm{J}, \mathrm{j})$ Block Print (preset parameters)
h. OD 13 CS ($30-\mathrm{f}, \mathrm{J}$) Block Print (program parameters)

 naracters. These panke 11e at the en
eleted, thus shortening the routine.
bers. The or the four block print routines provide for printing single register num
(two are for double reglster numbers. The paraneters for the block
coutines are: (1) The initlai high-speed address of the block of numbers to be printed.
whirluind coding and applications
(2) The address of the subroutine printing the number (OD $6,7,10$, or 11)
(3) The number of numbers in the blo
(5) The
(5) The terminatine charstar between numbers on a une.

> gu rapid square root
R. watson

144 N. SELf-Consistent molecular orbital
Several rev1stions were made in subroutines developed under this problem in
onnection with the work on Problem 288 .

$$
\begin{aligned}
& \text { R. K. Nesbet } \\
& \text { Sord Molecular Theory } \\
& \text { Groate and Mole }
\end{aligned}
$$

155 N. synoptic climatoloay

 The rirst phase has dealt with the prediction of 24 hour prec.1pitation amount
and duration at Boston, Massachusetts. The analysis has been extended to 1 1nclude the

methods to the an extension of the above, it is ppecianed to apply essentially the same
United States.
The second phase has dealt with the specirication, prediction, and verificatio
of forecasts of
of 5 day

Elizabeth A. Kork 1 As be ink performed by wr. W. D. Seliers on the rirst phase, and by Miss E112abeth A. Kelley on the second phase,
Houghton, and Dr. Edward N. Lorenz, Department or Meteorology
W. D. Sellers
Meteorology

779 c. transient temperature of a box-type beam

 be corre lated with experimental Work recent.
elastic and Structures Research Laboratory.

Luctien A. Schmit
Aerolastic and Structures
Research Laboratory
93 L. etoenvaiue problen por propagation or electromagnetic waves The previous report on this probiem applies at the present time. A set or
practicar results wnich can be compared with the experimental results will be obtained in $\underset{\substack{\text { H. B. D. Ditight } \\ \text { Lincoin Laboratory }}}{ }$
194. B,N. an auamented plane wave method as applied to sodium

Mr. M. Sarfran of the Soild state and Molecular Theory Group continues to test
the programs mentioned in the previous summary Report.
It has been found that the matrix element generation routine which has been
used 15 overly siow and largely inaccurate; therefore, a new routine 15 being written
M. M. Sarfren
Sortad
Group

199 n. Lamtinar boondary layer of a steady, compressible flow in the entrance reaton of a In connection with the research on heat transfer to a stream or atr flowing at
speeds in a round tube, a theoretical invost1gation of the character $1 \mathrm{st1cs}$ of

0111's method 18 used in the numerical solution of these equations

 Programg are being prepared for the oolution or the dirferential equations for
the oase where temperature dependence of the fluld viscoeity and thermal conduct1vity
taken 1isto consideration.

36
T. Y. Toong $\begin{aligned} & \text { Wechanical Engineering }\end{aligned}$
whirluind coding and applications 204 N . Exchange integrals between real slater orbitals

```
As 1s usualyy reported the test1ng or th1s program cont1nues. However, with
the ingert1on or an adequate set or constants for a surf1ciently accurate guassian
M,
    The program that nas been developed was envisioned as a step in the calculatio
    of molecula wave runmtitons, and wnte meapingul alone, has 1ts primary use in thls con-
    text. Porth18 reason the projected succedding step 1s a program den1gned to compute s1] 
    lol
\[
\begin{aligned}
& \text { P. Merryman or molecular structure } \\
& \text { Laboratory }
\end{aligned}
\]
\[
\begin{aligned}
& \text { and seetra Chcago } \\
& \text { University of chicago }
\end{aligned}
\]
```

216 c. ultrasontc delay lines
a polygonal Th1s problem 18 concerned with maximization of the reflection path aperture or

The aperture then is given by $A=$ min $H_{1}{ }^{T}-\max H_{1}{ }^{\mathrm{B}}$. The H_{1}, and hence, alsc

 determined by changes, $\Delta \mathrm{R}_{\mathrm{y}}$ and $\boldsymbol{d}_{\mathrm{y}}$, from the old ones
The equations for H^{T} and H^{B}.

$$
\begin{aligned}
& H_{1}{ }^{T}=o_{H_{1}}{ }^{T}+\sum_{j=0}^{n-1} a_{1 j} \Delta R_{j}+\sum_{j=0}^{n-1} a^{\prime}{ }_{1 j} d_{j}, \quad, 1=0, \ldots, p \\
& H_{1}{ }^{B}={ }_{H_{1}}{ }^{B}+\sum_{j=0}^{n-1} b_{1 j} \Delta R_{j}+\sum_{j=0}^{n-1} b^{\prime}{ }_{1 j} d_{j}, \quad, 1=0, \ldots, p
\end{aligned}
$$

 the problem.
Since we want to maximize A with respect to ony the shape or the polygon, we
must 1 impose other conditions on the variables. A180, certain physioal requirementa are

79 c. transient temperature of a box-type beam
In Sumary Report No. 39 a program for computing the transsient temperature and
stress response at one orosa section in asin simpe thin walled beam, exposed on one surface

 be corre lated with experimental work recent1)
elastic and Structures Research Laboratory.

Luclen A. Schmit
Aeroedatitit and structures
Research Laboratory
193 L. etgenvalue problen por propagation of electromanetic waves
The previous report on this problem applies at the present time. A set of
practical $\begin{aligned} & \text { reunts } \\ & \text { the near future. }\end{aligned}$ which can be compared with the experimental results w111 be otal ined in

194 b,N. an auganented plane wave method as applied to sodium
Mr. M. Sarfran of the Solld state and Molecular Theory oroup continues to test
the programs mentioned in the previous sumnary Report. It has been found that the matrix element generation routine which has been
used is overy siow and largely inacurate; therefore, a a new routine is being written.
M. M. Sarfren
Solid
Orowp
State and Molecular Theory
and

199 N. Laminar boundary layer of a steady, compressible flow in the entrance reaton of a

a111's method 1s used in the numerical solution of these equations.
 Initial conditions is satisfactory.
Programs are being prepared for the solution of the different1al equations for
the case where temerature dependence of the fluld viscosity and thermal conductivity
taken 1s
T. . Y. . Toong
Mechanical
Eng1neering

36

204 N . Exchanae inttgrals between real slater orbitals

```
#,
M,
```



```
*)
O\mp@code{The program that has been developed was env1sioned as a step in the calculation}
*)
*)
*)
\({ }_{\text {Paboratory }}^{\text {P. Merryman }}\) of Molecular structure
and Spectra
University of chicago
```

226 c. ultrasonic delay lines

 $\left(\mathrm{H}_{0}{ }^{T}, \mathrm{H}_{1}{ }^{\mathrm{T}}, \ldots, \mathrm{H}_{\mathrm{p}}{ }^{\mathrm{T}}\right)$, and ($\left.\mathrm{H}_{0}{ }^{\mathrm{B}}, \mathrm{H}_{1}{ }^{\mathrm{B}}, \ldots, \mathrm{H}_{\mathrm{p}}{ }^{\mathrm{B}}\right)$.
 A, are functions of the size, shape, and position or the polygon in a doordinate system.
 the x-ax1s. These variablea are given Initial valus
determined by changes, $\Delta \mathrm{R}_{\mathrm{f}}$ and $\boldsymbol{d}_{\mathrm{j}}$, from the old ones.

$$
\begin{align*}
& H_{1}{ }^{T}={ }_{H_{1}}{ }^{T}+\sum_{j=0}^{n-1} a_{1 j} \Delta R_{j}+\sum_{j=0}^{n-1}{ }^{\prime}{ }_{11} \delta_{j} \quad, \quad 1=0, \ldots, p \\
& H_{1}^{B}={ }_{H_{1}}{ }^{B}+\sum_{j=0}^{n-1} b_{1 j} \Delta R_{j}+\sum_{j=0}^{n-1} b^{\prime}{ }_{1 j} \delta_{j} \quad, 1=0, \ldots, p \tag{}
\end{align*}
$$

matrices of coerfrictents $\left\{a_{\text {, }}\right\}$
$\left\{a_{1,}\right\},\left\{b_{1}\right\},\left\{b^{\prime},\right\}$ are computed by a program on whiriwind 1 as the initial step of the problem.

W. D. Sellers
Meteorology

79 c. transient temperature of a box-type beam

 be orre lated writh experimental work recent1y
elast1c and Structures Research Laboratory.

193 L. eigenvalue problem por propagation or electromagnetic waves
The previous report on th1s problem applies at the present time. A set or
practical resurts mhich can be compared with the experimental results will be obtalined 1 in

H. B. Dw1.ght
Lincoln
Laboratory

194 B,N. aN audmented plane wave method as applied to sodium
Mr. M. Sarfran of the Solld State and Molec
the prokrams mentioned in the previous summary Report.
It has been found that the matrix element generation routine which has been
used 1 s overiy siow and largely inacourate; therefore, a new routine is being written.
M. M. Sarfren
Soldid St
Soroup
State and Molecular Theory
N. Laminar boundary layer op a steady, compressible flow in the entrance reaion of a In connection with the research on heat transfer to a stream or alr flowing at
supersonic speeds in a round tube, a theoretical investigation of the characteristics of

0111's method 1s used in the numerical solution of these equations.
 nitial conditions 18 satisfactory.
nel

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

whirimind codina and applications
 1near inequalities, rather than equalities, for which we wish to maximize the quantity

$$
\varepsilon_{1}-\sum_{c_{1,}} u_{j}-2 d_{1, j} v_{j} \leq{H_{1}}_{1}, 1 * 0, \ldots, p
$$

We must make further subst 1 tutions, since the s1mplex method of 1 near programm 1 ng 18 to
be used, and this method requires that the variabies and the constant part of the inequal

 results pack to the oriz1nal variabies. The output of the results may then be provided
ror and an teration of the ent1re proces may be set up in case the of are large enoug
so that they no longer can be treated as 11near variables. The second step of th1s process actually
symmetric case and one for the non-symmetr1; case.
 symmetric The flist or the programs mentioned above, as well as the program for the

$\xrightarrow[\text { Arenberg Laboratory }]{\text { R. Bishop }}$
218 N . TRanspormation of integrals for diatomic moiecules
Several revistions were made 1 n , subroutines developed under this problem in
connection with the work on problem No. 288 .

$$
\begin{aligned}
& \text { R. K. . Nesbet } \\
& \text { Goroup Mole State and Molecular Theory } \\
& \text { Group }
\end{aligned}
$$

219 Comparison op simplex and relaxation methods in linear programuing
the stepping itrogram has been written to soive the classical transportation probiem by

whirluind couina and applications
Thus the problem may be stated mathematically as $\operatorname{minimize} \quad c=\sum_{1, j} c_{1 j} X_{1,}$ (1)
subject to the constraints
$\sum_{j} x_{1 j}=D_{j}$
$\sum_{1} x_{1 j}=s_{1}$
$x_{1 j} \geq 0$
programming problem.

The process of solution consists of

1) generating a feasible solution having exactiy $m+n-1$ non-zero $X_{1 j}$
2) $\begin{aligned} & \text { rinding a zero } \\ & \text { decrease } 1 \mathrm{in} c \text {. }\end{aligned}$ non-zero $x_{1 J}$ must go to zero 1 order that equations a and 3 remann
satisfled
$m+n-1$ non-zero $x_{1 j}$.

$m n \leqslant 7000$. The whiriwind program wil1 handie problems for $m \in 128, m+n \leq 400$, and
In the next quarter debugging will be completed and the program will be put in
convenient form for users. Production runs will be perrormed with a number of sets of data
 ooring Assistant, in the Departmen Carbide and Carroon prodect has been supported in part by a grant-in-ald from the Union

224 N . Computation op the pields op vehtical velocity and horizontal diveraence Report No. The nature of the problem has been presented in Project Whiriwind Summary

J. M. Austin
Meteorology
whirluind coding and applications
226 D. $\begin{gathered}\text { Investiantion op the vortictity pield in the aeneral circulation of the } \\ \text { ATMOSPRERE }\end{gathered}$
 parameter, non-11near, quas1-geostroph10 model or or atmos sherlic flow The model makes twe

If the relaxation program proves satisfactory, it may replace the matrix in in
version program in determining the inverse of the finite difference operators used in the
probliem.
4. Personne1s Th1s research 1 s belng carried out under the sponsorsh1p of the A1r Porce
Cambridge Research Center by the foliowin persons:

R1chard L. Pferfer
Geophysics
Researc
buane S. Cooley
Geophysics Resear
General circulation Project, MII
Kırk Bryan, Jr.
Ceneral
c1ruulation Project, MII
Mr. Martin Jacobs of the Digital Computer Laboratory has been assisting them. problem.
D. S. Cooley
Meteorology

234 N. atomic intearals
whirluind codino and applications

```
\(\left[V_{n}\right]=\) evaluates integrals of the type
```



``` R. K. Nesbet
Sold
Oroup
```


\qquad The results of th1s program are now being analyzed and several more runs are
H. Parechanian
Aeroelastic and
eroe aastic and Structures Research
239 c. guidance and control
No work was done on this problem during the past quarter that was not classified J. H. Laning, Jr
Instrumentation

241 B, N. transients in continuous distillation systems
 caused to go A column at equilitritum operating under oertain conditions 1 s suddenty
conditions.

S. H. Davis, Jr.
Chemical Engineering
24.i.c. Dmma reviction por x-1 pire control

 ered a terminating report.
The problem was coded by Dr, J. M. Stark of the M. I.T. Instrumentation Labora
Ory. Resulta are clasairited information.
S. M. Stark
Instrumentation Laboratory
4. N. theory of neutron reactions

program. Several Logical errors have been uncovered and eliminated in this master

The energy band solutions for one-electron wave function 1 face-centered and
ered 1ron 1s proceeding v1a the APW (augmented plane wave) method. (Ref. 1.)
 dalled Eve. Eo curves. (Rer. $1,2$. .) These curves are currenty betne produced for the
Tace-centered structure, using programs developed by Howarth and saffen. the one-elect progroan is bave bunctions. written which will form the electronic charge density from S. H. Wood
Soroup State and Molecular Theory
Group

References

D. J. Howarth, Phys. Rev. 99, 469 (1955)

256 c. Wwi-1103 transLation prooram

Such urathlation programs as wel1 as to enlarge the vocabulary of the input language
Jumary report on the progran will be written in the next quarter. $\underset{\substack{\text { J. Mital } \\ \text { Digal } \\ \text { Prankovich } \\ \text { Computer } \\ \text { Laboratory }}}{ }$
wnamic analysis op an aircraft intercepton

 The eompletion or the present erites of runs brings to an end the whiriwind
Results or this phase and of the analosue sudy completed on the

THE MEDIUM Prequency Ionospheric propocatton study
durtny the Thast probiem was deacribed in Summary Report No. 42. Data processing continued
D. O. Brennan
Lincoln Laboratory
$260 \mathrm{~N} . \operatorname{elbctronic~eneray~of~the~oh~molecule~}$

 \rightarrow. x.

261 c. Fourier sympesis por crystal structures

Profesaor M. J. . Buerger
Geology and ozophyics

262 c . EVALuATION of two-center molecular intearals

 hundred and ikent,

Th1s proviem was desory in sery

$$
\begin{aligned}
& \text { H. A. Agna Jan1an } \\
& \text { soind } \\
& \text { Thatate and Molecular } \\
& \text { Theoup }
\end{aligned}
$$

264 c. optimization op aitrernator control system In the last progress report for th1s problem, it was suggested that the prob-

 $\underset{\text { Eiectrical Engineering }}{\text { J. }}$

265 L. ELECTHoN DIPpusion in an electromanetic pield
work ort this proilem was described in some detall in Sumnary Report No. 42 , on a subsequent set of parameter values it developed that a smalier interval
size was requirrod. Partial resuits were obtalined for this set of parameters and the prob-
jem wao terminated. D. N. Arden
Digital Compute \qquad
266 A. CALCULATIONS FOR THE MIT REACTOR
In reactivity prograan to calculate the reactor behavior for siow but suatained ohanges
port wes wise

coding was done by M. Troost.
This program is being carried out for the Nuclear Reactor Project.

$\underset{\text { Chemical }}{\text { Troost }}{ }^{\text {Engineering }}$

267 B. numerically controlued millina machine turbine blade

ding and tralling edges.

Another program was written to so solve the value of y at each of the 2233 inter-
sections for both the concave and convex surfaces of the blade. The method used was

at each of third program was written which evaluates the normal the the concave surfaoe

 soquenee so that the tool center, when passing through oonsecutive points. will penerate
the convex surface of a d1e block that 18 in contact with the concave surface or the

Th1s problem has been the subject of a bachelor's thenss entitied Numerical
whiruwind codina and applications

$$
\begin{aligned}
& \text { a. .rompitild } \\
& \text { Businems and Enginering } \\
& \text { hoministration }
\end{aligned}
$$

270 B. CRITTCAL MASS CALCULATTIONS POR CYLINDRICAL GEOMETRY The two-group, two-region method mentioned 1n the prevyus Summary Report has
been used to calculate critical masses for urantum-alium numm-heavy-water cores surrounded

 group model does not take into account all the fast leakage

 to cyllindrical case

J. R. Powell
Chemical Engineoring

271 B. EvaLuation op a beam Splitytina technique

$\underset{\text { Piectrical }}{\text { P. Engel }}{ }_{\text {Engineering }}$

Whirluind codino and applications
272 L. aeneral raydist solwtion
proceeds to $\begin{gathered}\text { A program which derives the coerficients of an elgth degree polynom al and then } \\ \text { find a real } \\ \text { root of the }\end{gathered}$ oting stag
M. Rotenberg
Digital computer Laboratory

273 N. ANALYSIS op air shower data
 B13. During the past three months the major errors 10 the program have been oor
rected and some testing has been cone with an art1ricial a1r shower and a real one. Culties have beent processing and timing analysis work sat igractorily. The main diffi-

 denote by 61 the numer rical value
there 15 an equation or the form

$$
f_{1}(\alpha, \beta, x, y)=g_{1}+\delta_{1}, \quad 1=1,2, \ldots, N_{e q}
$$

$f_{1}(\alpha, \beta, X, Y)=f\left(\alpha, \beta, X, Y, X_{1}, y_{1}\right)$

 Finitely many soiutions. Acoorning to the methoo of Neast
the one for which the foliowing expression 1 a a minimum:

$$
\psi(\alpha, \beta, x, y)=\sum_{1=1} w_{1} \delta_{1}^{2}=\sum_{1=1}^{n} w_{1}\left(r_{1}-g_{1}\right)^{2}
$$

were w_{1} is a welgnt which expresses the reliability of the observed value g_{1}

 process. If $\vec{F}_{n}=\left(a_{n}, \beta_{n}, X_{n}, y_{n}\right)$ is the position vector after the $n^{\text {th }}$ iteration, \vec{F}_{n+1}

$$
\vec{F}_{n+1}=\vec{F}_{n}-\lambda \frac{\stackrel{\rightharpoonup}{\operatorname{grad}} \psi\left(\vec{F}_{n}\right)}{\left|\stackrel{\rightharpoonup}{\operatorname{grad}} \psi\left(\vec{r}_{n}\right)\right|}
$$

$n=0,1,2$,

whirluind codino and applications
the time can be reduced to one minute An efrort will be made to speed up the evaluation

 References

a. W. Clark
P. Scher.
Phy ices Department

274 n. multiple scattering or waves prom a spatial array op spherical scatterers During the third quarter troubleshooting has continued on th1s problem. Pro-

$$
\begin{aligned}
& \text { M. Karakaanian } \\
& \text { Joint Computing aroup }
\end{aligned}
$$

277 c. horizontal stabilizer modes, shapes and prequencies

$$
\begin{aligned}
& \text { L. Sehmidt } \\
& \text { Aerenationt and struuctures } \\
& \text { Research Laboratory }
\end{aligned}
$$

278 N . ENEROY LEVELS OF DThtomic MoLecuiss (Lih)

 solving the resulting secul
matrices which are formed.

 the two-eleo tron confliguration interaction probeem to several other internuciear distances,

whirlimind codino and applications
280 в. correlation punction

 programs and the program for single sertes factorization. Program work remaining in-
olides maitiple summation of multiple serles, a recuration formula, and the prectiction
and error formulae.
$\underset{\substack{\text { P. Hanna } \\ \text { Meteorology }}}{ }$
285 N . auomented plane wave method as applied to chromium crystal

M. Sarfren

Solid State and Molecular
Theory oroup
288 n . atomic wave punctions

R. K. Neabet
Sol
Sheory State and Molecular

291 b. DYnamic bucklina

 equations. A program has been written and two successrul runs have been made. Two add1
tional runs are planned to complete th1s phase of the work.

 $\underset{\text { fivii }}{\text { R. }}$ R. Jones

296 c . System analysis

$$
\begin{aligned}
& \text { W. B. Keh1 } \\
& \text { Instrumentation Laboratory }
\end{aligned}
$$

297 B. DIPPUSION BoUNDAFY LayER

tions reduce means of blasius and porodnitzyn type transformations, the system of equa-
neglected):

$$
\begin{aligned}
& \left(A f^{\prime \prime}\right)^{\prime}+f f^{\prime \prime}=0 \\
& c_{1}^{\prime \prime}+\left[f+\left(\mathrm{a}^{-1}\right)^{\prime}\right] a c_{c_{1}}=0 \\
& \overline{\mathrm{~T}}^{\prime \prime}+\mathrm{t}_{1} \mathrm{~T}^{\prime}+t_{0} \bar{T}^{\bar{T}}-t_{\mathrm{m}}
\end{aligned}
$$

which describe cont1nu1ty of momentum, mass, and energy ${ }^{\mathrm{f}}$, c , and $\overline{\mathrm{T}}$ represent velocity,
fractional concentration by welght, and temperature, while λ relates the proaucts of

whirlumd codino and applications

 the inmits for injection rates.

$$
\begin{aligned}
& \text { J. R. R Raron } \\
& \text { Navai } 1 \text { Supersonic Laboratory }
\end{aligned}
$$

298 A. the electronic eneroy or the helium molecular ion

$\boldsymbol{\Psi}=\sum_{\{, 2,3}\left[u\left(r_{r_{1}} \mid z\right) \phi\left(r_{B 2}, r_{B 3}\right) \mp u\left(r_{r_{1}} \mid z\right) \phi\left(r_{12}, r_{A 3}\right)\right] x^{-(a, 2,3) \ldots}$ (1)
where x^{-1} - a doubiet spin function given by
and $\begin{aligned} u(r \mid z)=\sqrt{{ }^{3}}{ }^{3} & -z r \\ \phi\left(r_{1}, r_{2}\right) & =u\left(r_{1} \mid z^{1}\right) u\left(r_{2} / z^{2}\right)\end{aligned}$
the surfixes A and B referring to the two helium nuclel and 1,2,3, to the three electrons
of the system.

 We inoaum's calculations correspond to using (4) as the unperturbed hellum wave
$\begin{gathered}\text { function } \\ \text { the expression }\end{gathered}$ arge internuclear separation. In the present work (4) has been replaced by $\phi\left(r_{1}, r_{2}\right)=u\left(r_{1} \mid \alpha\right) u\left(r_{2} \mid \beta\right)+u\left(r_{2} \mid \alpha\right) u\left(r_{1} \mid \beta\right) \quad$ (5)

In conclusion, it is a pleasure to express my thanks to Professor Morse,
rofessor Slater, and Mr. Corbato for their assistance and interest in th1s work
References
.ailng, L., J. Chem. Phys. 1, 56, (1933).

$$
\begin{aligned}
& \text { B. L. Molselwistach } \\
& \text { Solid State and Molecu1 } \\
& \text { Theory Group }
\end{aligned}
$$

299 c. heat transper in tubbulent plow
The physical situation analysed was that of a fluld flowing in weol-developed
furbulent flow iria mooth oy indrical pipe. The fluid initialiy at a uniform temperalare T_{1} enters a heated section having a constant wall temperature T_{w} greater than T_{1} It was desired to determine a relation between the heat transfer coerricient at any
distane domatream and the physical and dymamic properties of the flowing fluid as charao
disized py distance downstream and he prys icat ond d.
terized by the Prandt1 and Reynolds number

In order to generalize the solution, the following reduced variables are defined: fraction of possible temperature change

$$
\theta=\frac{\mathrm{T}_{\mathrm{w}}-\mathrm{T}_{1}-\mathrm{T}_{1}}{}
$$

reduced radius

$$
y=r / R
$$

and number of diameters downstream
$x=z / D$
(3)

The heat transfer coerricients are given in a generalized form in terms of Nusselt
Numbers by the foliowing expressions:

$$
N u=\frac{(\mathrm{Re})(\mathrm{Pr})}{4\left(1-\theta_{0}\right)} \cdot \frac{d \theta_{0}}{d x}
$$

(4)
and the 10 g mean Nusselt Number

$$
N u_{M}=\frac{-(\mathrm{Re})(\mathrm{Pr})}{4 \times \theta_{0}}-\ln \left(1-\theta_{0}\right)
$$(5)

\circ_{0} is the mixing cup mean θ at distance $\times g^{1}$ ven by

$$
\theta_{0}=\frac{\int_{0}^{1} y u \theta d y}{\int_{0}^{y u d d y}}
$$

(6)

Where 418 the velocity at a reduced radius y. The fractional temperature change at any
position 18 given by the partial dirrerential equatinn

B and W are functions of y only, as given by the following:
$W=($ (Re $)($ Pr $) \sqrt{\sqrt{8 / 2}} u^{+}$
$B=1+\left(\frac{\mathrm{E}}{\epsilon}\right)($ Pr $)\left[\frac{y}{d u^{+} / d y^{+}}-1\right]$

1n which u^{+}is a function of y^{+}, a function or y

$$
\mathrm{y}^{+}=(1-y)\left(\frac{\mathrm{ke}}{2}\right) \sqrt{\mathrm{r} / 2}
$$

(14)
approximated by friction factor, f, is a function of Reynolds number and may be

$$
\underline{f}=0.023(\mathrm{Re})^{-.2}
$$(15)

be unity.

$$
\text { The } u^{+}, y^{+} \text {relation used was as follows: }
$$

$$
\mathrm{y}^{+}<21.995 \quad \mathrm{u}^{+}=13.5645 \tanh \left(\frac{\mathrm{y}^{+}}{13.5645}\right) \quad \text { (16) }
$$

$$
y^{+} \neq 21.995 \quad u^{+}=5.5+2.510 y^{+}-\frac{15}{y^{+}} \quad \text { (17) }
$$

finite difference metnod. (7) was accomp 11shed by means of a f1rst order non-1terative

stream. Th1s calculation would take about 15 nours on the computer. If a ateady state Nu
18 too be determined, approx mately 70 to 100 d lameters distance down-stream must be calcu-
lated.
a complete solution) were made. One with the starting conditions speecified of o 0 o; three-quarters of the way throush the ealoulation.
 A. Turano
Chemical
Engineering

300 L . TROPOSFHERTC PROPAOMTION
 Values of a Preanel integral have been oomputed, using a convergent power
sertes with a comples argument. A number of satisfactory values have been obtained. H.B.DNIght
Lincoin Laboratory

$\mathrm{B} \dot{\mathrm{H}} \mathrm{H}$ 로

 and

303 b. PREDICTION OP Chromatooraphic sEParations

 tives:
hs an extension of Hawthorn's work, th1s thes1s proposes the following objec-
posed numerical ${ }^{2}$. Solution of the equations derived by hawthorn through the use of the pro experimenta1 ${ }^{2}$. Comparison of these solutions, which have a theoretical basis, with the
3. Preparation of tables and graphs predicting elutriation curves ror onroma-
tograph10 separations for various parameters, 18 objective number 2 shows good agreement. objective number 2 Rexamination of the basis for agrement. derivation of the differential equations, if In order to achieve the above objectives, a program or 1 nstruction with be
 that $\quad \frac{\partial v}{\partial y}$ or $\frac{\partial u}{\partial x}$
1s constant over the respective increment. Convergene and stab111ty of the solution wil
be checked by varying the increment size. If the calculated values show good agreement
 be reftined, 1 l neceasary
sign tabies and graphs.
 culated results with experimenta
used in the equation derivations.

The following tapes have been left on f11e at the Digital Computer Laboratory:
$\left.\begin{array}{c}\text { fo } \\ \text { foc } \\ \text { 303-232-232-20 }\end{array}\right\}$ Convergence test
$\left.\begin{array}{l}\text { fo } \\ \text { fo } \\ \text { 303 } \\ 303-2332-606\end{array}\right\}$ Blutriation curve prediotion

304 A. CALCULATTONS IN THE THEORY OP ATOMIC HYYRRPINE STRUCTURE

The equations to be solved are:
$\left(\frac{d}{d x}-\frac{K}{x}\right) f=\left[1-\frac{a^{2}}{4}(\epsilon-2 v)\right] g$
$\left(\frac{d}{d \mathrm{dx}}+\frac{K}{\mathrm{x}}\right) \mathrm{g}=[\epsilon-2 \mathrm{v}] \mathrm{f}$
Where K, \mathbb{C} are constants; $f(x), g(x)$ are the elgenfunotions; $\in 18$ the elgenvalue; and $v(x)$
15 the potential seen by one electron in the atom. Por this potential we use (Ref. 3): $v(x)=\frac{1}{x}\left[\frac{\left.\frac{2-1}{(1+\beta x)^{2}}+1\right]}{}\right.$

$$
g\left(x_{0}\right), f\left(x_{0}\right) \sim c_{1} h^{(1)}\left(1 k x_{0}\right)+c_{2} h^{(2)}\left(1 k x_{0}\right)
$$

where the order of the Hanke1 functions depends on the constant κ and $k \cong \sqrt{\epsilon}$
Since the asymptotic value or these functions 18:
$h^{(1)}(1 k x) \rightarrow e^{-k h}$
${ }^{(2)}(1 k x) \rightarrow e^{k h}$

 $f\left(x_{0}\right) / g\left(x_{0}\right), f^{\prime}\left(x_{0}\right) / f\left(x_{0}\right), c_{2} / c_{1}$, ete .

Here the width of the interesting region 18 extremely amall ($\sim 10^{-7}$ in our probiems).

$$
\int_{0}^{\infty}\left(r^{2}+\varepsilon^{2}\right) d x, \quad \int_{0}^{\left(r^{2}+g^{2}\right)} x^{-3} d x, \quad \int_{0}^{\infty} \operatorname{rgx}-2 d x, \quad \int_{0}^{\infty} r_{g x}-4 d x,
$$

are computed with the elgenfunctions using fourth-order integration.

 1 th experimental data 1 s exp
V1thin a very sma 11 per cent.
References

1. C. Schwartz, Phys. Rev. If, 380 (1955)
2. H. B. G. Casimir, on the Interactions Between Atomic Nucle1 and Electrons,
3. T. Thetz, J. Chem. Phys. 2ㅡ, 2094 (1954).
4. D. Combelic, Project Whiriwind Summary Report No. 30, Problem No. 60, page 17 (1952) Charles Schwartz
Research Laboratory of Electronte

305 A. COURSE 6.25, Machine-atded analysis
 ential equation, was deaignea to 121ustrate the use of an actual somption of a oirfer-
 $\underset{\text { Eiectrical Engineering }}{\mathrm{W} . \mathrm{J} \text {. Eciles }}$

306 D . SPECTRaL ANALYSIS OF ATMOSPHERIC DATA
Recent theoretical, observationa1 and experimental studies (concuoted at M. I.T.
and other institutions) have demontrated that the wave 1 . 1 ke disturbances (eddies)
 motion. To a large degree the form of these eodies charaterize the otate or the genera
whirluind coding and applications
scales or these atmospheric disturbances and the contrititiou which the darfrerent scales
of daturanoes maxe to certain dynamicaliy signiflcant processes such as the transport of
oeat and momentum.

${ }^{2}$. Teating the results of certaln theoretical models or the atmosphert A
regarding the staalility properties of disturbancea
3. Relating changes in the kinetic energy spectral distritution to other

500,300 , and more concrete terms, it 200 mo pressure surfaces at latitudes to obtain the spectra $300,45^{\circ}$, and 60 N .

$p(n)=p_{1}(n)+1 p_{2}(n)$
$p_{1}(n)=\frac{1}{72} \sum_{1}^{72} q(\lambda) \cos n \lambda$
$P_{2}(n)=\frac{1}{72} \sum^{72} q(\lambda) \sin n \lambda \quad\left(\lambda=0^{\circ}, 5^{\circ}, 10^{\circ}, \ldots 355^{\circ}\right)$
Here λ represents longitude and n is the wave number.
By sultaily combining the Pourier coerficients for the helghts of the pressure
surfaces, temerature ihe zonal whind water vapor and vertical motion $1 t$ is possible to
obtain ail of the deaired transport
 the spectra, function, T(n), for the meridional
1atitude φ, pressure p, and time t, 13 given by

$$
{ }^{T} \varphi, p, t(n)=n\left[b_{2}(n) a_{1}(n)-b_{1}(n) a_{2}(n)\right] \varphi, p, t
$$

where a_{2} and a_{2} are the real and imaginary parts, respectively, of the pressure-height
spectrum, flow 1s given simply by function for the geostroph10 kinetic energy of the north-south

$$
k_{\varphi, p, t}(n)=n^{2}\left[a_{1}(n)^{2}+a_{2}(n)^{2}\right]
$$

58
whirlimind codina and applications

> J. . . Raron Miai Sapersontc Laboratory

308 a. Frequency analysis or apshiodic punctions
 J. Roseman
$309 \mathrm{~B}, \mathrm{~N}$. PURE AND ImPURE KC1 CRYSTAL

whirlimind coding and applications
states of exottation of the hole can be determined by solution of a finite secular equal
tions
Because of the iocalized nature of the impurity, the secular equation need only
 transition energies for the bound hole and compare the results to recent experimental
obervat
In both the pure and impure crystal probiems descrited above, we must solve
set or simultaneous eigenvalue equations of the following form: $\sum_{m}\left(H_{n m}-\epsilon \Delta_{n m}\right) a_{m}=0$

\qquad K - The order of calculation is as follows. The Hartree-Pock radial functions for

thererore expected
have been completed

$$
\begin{aligned}
& \text { L. P. P. Howland Mata Molecular } \\
& \text { Theory Group } \\
& \text { That }
\end{aligned}
$$

310 c . trajectory caiculations por a rocket during powered pliaht

 the rocket, namely the forces of drag and 11rt. The equat ons of mot to or or rocket
dur nog powered flight, taking 1nto consideration ail the forces that nave been mentioned,
are then

$$
\begin{aligned}
& \frac{d^{2} n x^{2}}{d \tau^{2}}-\Omega\left(\frac{d \Phi}{d t}\right)^{2}=\frac{F}{M} \sin (\theta-\delta)-\frac{D}{M} \sin \gamma+\frac{L}{M} \cos \gamma-\frac{E}{n^{2}} \\
& n \frac{d^{2} \Phi}{d t^{2}}+2 \frac{d \sim}{d t} \frac{d \Phi}{d t}=\frac{F}{M} \cos (\theta-\delta)-\frac{D}{M} \cos \gamma-\frac{L}{M} \sin \gamma
\end{aligned}
$$

where the equations are written with reference to axes aligned with the local vertical.
(P1gure 1 def1nes the nomenclature used in the above equations.)

a - angle of attack

PIGURE

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
in the following non porpimensional form this inestigation the equations of motion were written

$$
\begin{aligned}
& \frac{d^{2} n_{N}}{d \tau^{2}}-\Omega_{N}\left(\frac{d \Phi}{d \tau}\right)^{2}=\bar{E}\left\{n_{F} \frac{F_{N}}{M_{N}} \sin (\theta-\delta)-n_{D} \sin \gamma+n_{2} \cos \gamma\right\}\left(\frac{g_{s}}{g_{R}}\right)-\frac{\bar{E}}{n_{N}^{2}} \\
& \Omega_{N} \frac{d^{2} \Phi}{d \tau^{2}}+2 \frac{d n_{N}}{d \tau} \frac{d \Phi}{d \tau}=\bar{E}\left\{n_{E} \frac{F_{N}}{M_{N}} \cos (\theta-\delta)-n_{D} \cos \gamma-n_{N} \sin \gamma\right\}\left(\frac{g_{N}}{g_{R}}\right)
\end{aligned}
$$

where

$$
n_{N}=\frac{n}{R}
$$

$$
\bar{E}=\frac{E}{V_{s}^{2} R}=1
$$

$$
n_{e_{L}}=\frac{E_{A}}{W_{z}}=\frac{\bar{f}_{2} I_{p}}{T_{b}}
$$

$$
M_{x}=\frac{M}{M_{1}}=1-\frac{R \bar{s}_{i}}{V_{t_{i}} \bar{t}_{t_{1}}} \int_{\tau_{1}}^{\tau_{t_{1}}} d \tau
$$

$$
\bar{j}_{i}=\frac{\dot{m}_{i} t_{i}}{M_{i}}
$$

$$
n_{0}=\frac{D}{W}=\frac{V_{\frac{1}{2}}^{2}\left(\frac{\rho_{\mu}}{\mu}\right)\left(\frac{\rho}{\rho_{1}}\right) \frac{c_{0}}{\rho_{w}} \bar{V}^{2} .}{}
$$

$$
n_{L}=\frac{L}{W}=\frac{v_{L}^{2}}{2}\left(\frac{\rho_{L}}{\mu}\right)\left(\frac{\rho}{\rho_{L}}\right) \frac{c_{0}}{M_{\nu}} \bar{v}^{2}
$$

$$
\bar{v}=\frac{v}{V_{1}}=\frac{d x_{2}}{d r} \sin \gamma+n_{n} \frac{d \Phi}{d \tau} \cos \gamma
$$

```
\frac{A}{E}
```



```
C}={\sqrt{}{[\frac{2\mp@subsup{h}{}{2}}{A-1}(\frac{2}{l+1}\mp@subsup{)}{}{\frac{L+1}{L-1}}][1-(\frac{\mp@subsup{P}{e}{}}{\mp@subsup{P}{e}{\prime}}\mp@subsup{)}{}{\frac{k-1}{A}}]}+(\frac{\mp@subsup{P}{e}{\prime}}{\mp@subsup{P}{c}{}}-1)(\frac{\mp@subsup{A}{e}{\prime}}{\mp@subsup{A}{t}{}})
C}=\sqrt{}{h(\frac{2}{l+1}\mp@subsup{)}{}{\frac{h+1}{l-1}}
C
\gamma= Tan -1 \frac{d\mp@subsup{R}{N}{}}{d\tau}
\tau=\frac{\piV}{R}
    0}=\mathrm{ forcing function
```

A typical trajectory 18 shown in P1gure 2 . In order to optimize the trajectory,
rameters must be varied, such as the tength of time apent in verticai flignt,

FIGURE 2
velocity, filght path ang1e, altitude, and distance from launsing point at burnout must
be those which will cause the following equation to become zero.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
vhirluind codino and applications
whirlimind codina and applications

$$
\begin{gathered}
\delta=\frac{E}{\Omega_{N}(\bar{V} \cos \gamma)^{2}}\left[1-\cos \left(\Phi_{T}-\Phi\right)\right]+\cos \left(\Phi_{T}-\Phi\right) \\
-\tan \gamma \sin \left(\Phi_{T}-\Phi\right)-\Omega_{N}
\end{gathered}
$$

where ϕ_{1} is the specified range.
The first routine written for CSII was one which evaluated $\frac{p_{e}}{p_{c}}, c_{1}, c_{A_{e}}$, and c_{3}
for various values of k and $\frac{A_{e}}{A_{t}}$. Since then all work has been concentrated on writing subroutines for the main program. Subrout Ines which have been written and checked are
determination of presure,
density,
and temperature at any arbitrary altitude from sea

The program thus far has bee. written by Granger a. Sutton, Research Eng inee
under the super1sion or John s. Prige, Jr, Pro.ect Leader of DIC Project 7246 , both
 ponsored by the U. S. Air porce under contract No. AP 33(616)-2392 and will eventually
e 1 Baued as a formal report. Derinition of Symbols
A area
C_{D} drag coerficient
$\mathrm{c}_{\mathrm{L}} \quad 11 \mathrm{ft}$ coerficient
D drag
E eartn's gravitational factor $=1.4086414 \times 10^{16} \mathrm{ft}^{3} / \mathrm{sec}^{2}$ thrust
absolute gravity at earth's surface $=32.28512 \mathrm{ft} / \mathrm{s}$
s gravitational conversion factor $=32.17405 \mathrm{ft} / \mathrm{sec}^{2}$
Isp specific thrust
k ratio of specific heat
lift
propellant mass flow
$M \quad$ mass
n load factor
load factor
pressure, absolute
pressure, gage
distance from center of earth to rocket
radus of earth $=20.888104 \times 10^{6} \mathrm{ft}$.
g gas constant
burning t1m
emperature, absolute
elocity
velocity or satel11te at eartn's surface }=\sqrt{}{\mp@subsup{8}{\mp@subsup{R}{}{R}}{R}}\cdot25.968730\times1\mp@subsup{0}{}{3}\textrm{rt}/\textrm{sec
weight
greek Letters
r f1gght path angle
rocket engine deflection
y pseudo propellant load factor
eff101ency
divergence loss of a nozzle
pitch angle

```

```

 dens1ty
 non-dimensional t1me
 polar angle measured from center of earth
 Superscripts
ambient value
non-dimensional (with exception of \overline{p}
Subseripts
chambe
exit
Inal value
thrust
ormalized with respect to initial value
ropellant
satellite
sea level value
throa

```

311 N . Solitary wave generating cam






 J. O. Housiey
Hydrodynamics \(\qquad\)

312 L . ERRor analysis
The errors in the knowledge of a set of six parameters descriptive of a system
are to be










 \({ }_{\text {Lincoin Ler Laboratory }}^{\text {I. }}\)

313 D. COURSE 6.601 , NUMERTCAL CONTROL OP MACHINE TOOLS
 or time 11mitations, they are not reaulred to carry the 1r computations to oomplectoo but
are permitted to stop at an intermediate point at which the remaining calculations are obvious.


A tour of the wWI computer, during which was demonstrated the NCMM translation
program developed under problem 250 , was arranged as part of the course.
A. Siege
Digital
Computer Laboratory

314 c. Pactoring hich order polynomials
Th1s problem concerns the analys18 of the effects of alrcraft flexure coupling
with aircraft automatic oontrol systems. The analy 18 results in two sets of six simulaneous difrerent 1a1 equations of motion. Whiriwind was used to determine the roots of
the resulting performance functions. Factorization of several polynomials of about the the resulting performance functions, Factorization or several polynomials or about
10th degree was done using Hitcheocis mme thod, for which programs were written by \(M\).
acobs of the Digital computer Laboratory

> A. W. Howard and Structures Research Laboratory

316 L. Radar correlation
that may be \({ }^{\mathrm{A}}\) method 1 s sound directiy by to correlate on a real time electronic computer the data
least inherent error and would allow high-speed computation.

 corficterts in a smplifled expression be varibile, we should be able to f1nd coerficients
that minimize the maximum error.
M. Weinstern
Digital Computer Laboratory
whiriwind coding and applications
note:
Reports on the following problems, done by members of the Machine Methods of
Computation group, may be found in \(\operatorname{section} 2.2\) or Part 1 .
122 N. CovLomb wave punctions
172 b,N. Eneray bands in oraphite
A. Temkin
2.
A. Trited
Tub1s
P. Corbato
\(235 \mathrm{~B}, \mathrm{~N}\). EIGENVALUES IN a SPHEROTDAL WELL
A. Tubls
caiculation of numaers ar J. Uretsky
D. McIIroy

CULATITN OP NUM
ON FINTTE SETS

Vacuum Tube Life

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube Type} & & \multicolumn{4}{|l|}{PAILIRE RATE, PER CENT 1000 hovrs} \\
\hline & \[
\begin{aligned}
& \text { Quantity } \\
& \text { now in } \\
& \text { Service } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1954 \\
& \text { Average }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Prast } \\
& \text { Cuarter } \\
& 1955
\end{aligned}
\] & \[
\begin{aligned}
& \text { Second } \\
& \text { Quarter } \\
& 1955
\end{aligned}
\] & \[
\begin{aligned}
& \text { Th1rd } \\
& \text { Quarter } \\
& \hline 1955
\end{aligned}
\] \\
\hline 7AD//SR1407/6145 & 4273 & 1.5 & 0.97 & 1.1 & 0.69 \\
\hline \({ }^{\text {cak7 }}\) & 3400 & 0.4 & 0.25 & 0.18 & 0.08 \\
\hline 5965 & 887 & 0.32 & 0.38 & 0.52 & 0.60 \\
\hline 6080/6080w \(/\) /6as7a & 712 & 1.1 & 0.4 & 2.0 & 3.5 \\
\hline slyot & 496 & 0.41 & 0.46 & 0.52 & 0.96 \\
\hline
\end{tabular}
 40, Pourth Quarter, 1954
The number of 5963 failures has been stead11y decreas 1 ngs. Th1s 18 because most
of the older tubes of the original complement have already failed due to cathode inter.
 and hence more tolerable of tube deterioration.








 were being operated considerably over plate disasipation rating, In the magnet 1 c core
memory ystem where operating conditions are much less severe, the fallure rate of th1s
type continue to be reasonably 1ow.
3. publications

Project whirlwind technlcal reports and memoranda are routine ly distritutad
0 only a restricted group known to have 2 particular interest in the Project and to

```

O

```
No.
DCL-81 \(\begin{aligned} & \text { Abstracts of memos on Automatic coding } \\ & \text { Techniques Used on WWI }\end{aligned}\) 6-22-55 J. M. Prankovich

DCL-83 Interpreted Instruction code or the MIT \(\quad\) 6-24-55 J. M. Frankovich

DCL-88 Normal \(\& E C\) Operating Procedures \(\quad 7-15-55 \quad\) P. C. Heiw1g
DCL-89 Recent Changes in the cs Conversion \(\quad 7-15-55 \quad\) J. M. Prankovic
\(\begin{array}{lllll}\text { DCL-90 } & \begin{array}{l}\text { Whirliwind D1splay Program: vibrations } \\ \text { in a Length of String }\end{array} & 6-17-55 & \text { D. N. Arden and } \\ \text { c. W. Patterson }\end{array}\)

DCL-92 \(\begin{aligned} & \text { Proposed AddItional Punction for the } \\ & \text { Read-In Button }\end{aligned} \quad 7-22-55 \quad\) P. C. Helw1g
DCL-94 Polynomial Pactorization \(\quad 8-1-55 \quad\) M. Jacobs
DCL-94-1 Revision in Polynomial Pactorization \(\quad 8-17-55 \quad\) M. Jacobs
\(\begin{array}{llll}\text { DCL-97 } & \begin{array}{l}\text { Whiriwind } 1 \text { Processing Routine for } \\ \text { Course } 6.601\end{array} & \text { 8-18-55 } & \text { A. Slege }\end{array}\)
\(\begin{array}{lllll}\text { DCL-101 } & \begin{array}{c}\text { Iterative Solution of Linear Systems } \\ \text { Having Sparse Matrices }\end{array} & \text { 9-12-55 } & \text { M. D. McIIroy }\end{array}\)

6-22-55 J. M. Prankovich
6-21-55 J. M. Prankovich

6-24-55 J. M. Prankovich
6-27-55 p c. He 1 lw 1 g
7-15-55 P. С. Heiw18
6-17-55 D. N. Arden and
7-19-55 A. Stege 1
7-22-55 P. C. Helw18
8-1-55 M. Jacoob
8-18-55 A. Stege
9-12-55 M. D. McI1ro.

\section*{appendix}

\section*{4. visitrons}



```

Moretgn students Summer Projec
Course in "Mach1ne-Alded Analys1s"
Wugust 3 WestInghouse Sclence Teachers Project
Rugust 29 Training course for Wh1r1wind i
August 31 Summer Session Course in "Numerical Contro)
Septenter - Mamine rools."
September 13 MIT Preshmen
September 22 Worcester Polytechnic Inst1tute Seniors

```
The procedure of holding open House at the Digital Computer Laboratory on the
f1rst muesday of each month has contine


During the past quarter there were 1 also 43 Individuals who made br fer tours of
the computer instanation at different times.
Represented

machine methods of computation and numerical analysis Paculty Supervisors:
\begin{tabular}{|c|c|}
\hline ph111p M. Morse, Chairman & Physics \\
\hline  &  \\
\hline Jay W. Porrester & Electrical Engineering \\
\hline pranc 1s A. B. H11debr
John 4 . Hrones &  \\
\hline George B. Thomas, Jr. & Mathematics \({ }^{\text {a }}\) \\
\hline octate: & \\
\hline sayard Rankin & Mathematics \\
\hline ststants: & \\
\hline Pernando J. corbat 6 & \\
\hline  & \(\underset{\substack{\text { Phys } 108 \\ \text { Physics }}}{ }\) \\
\hline Arno 2 d P Tubis & \({ }_{\text {Physics }}\) \\
\hline Jack L. Uretsky & \({ }_{\text {Physics }}\) \\
\hline
\end{tabular}
proosect whiriwind
Staff Members of the Scientific and Engineering Computation at an the Digital
Computer Laboratory:
```


[^0]: . D. Mcilroy

