APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FOREWORD

This is a combined report for the two projects at the Massa
sponsored by the office of Naval Research under Contract NSoribo.
Project on Machine Methods of Computation and Numerical Analysis
This Project is an outgrowth of the activities of the Institute Committee on Machine Methods of Computa-
established in November 195s. The purpose o the Proect is (1) to inte grate the efforts of all the Hon, established in November 1950. The purpose of the Project is (1) To integrate the efforts of all the
departments and groups at MIT who are working with modern compting machines and their applications, and departments and groups at MIT who are working with modern computing machines and
(2) to train men in the use of these machines for computation and numerical analysis.

People from several departments of the Institute are taking part in the project. In the Appendix will be
ound a list of the personnel active in this program.
onnel active in this program.

Project Whirlwind
This Project makes use of the facilities of the Digital Computer Laboratory. The principal objective of the Project is the application of an electroncic digital computer of large capacity and
wind i) to problems in matiematics, science, engineering, sfimulation, and control.

The Whirlwind I Computer
Whirlwind I is of the high-speed electronic digital type, in which quantities are represented as discrete

 that one tube or the other is conducting, wut not both; (2) the gate or coincidencec circuitit (3) the magnetic-co
nemory, in which binary digits are stored as one of two directions of magnetic flux within ferro-magnetic cores.

Whirliwind 1 uses numbers of 16 binary digits (equivalent to about 5 decimal digits). This length was elected to limit the machine to a practical size, but it permits the computation or many simulation problems.
Calculations requiring greater number length are handled by the use of muttiple-length numbers. Rapid-acce

 general
studies.

Part
Machine Methods of Computation and Numerical Analysis

1. General comments

During the fall and winter the contacts between the project staff and others working in the field or
. sion Group on Numerical Analysis to be mentioned in section 3 , has stimulated the interest and particicpation of a number of members of the Mathematics Department. Other research projects finding a need tor machine calculation, have come to depend on this project for help in finding how best to use computing equipment.
Solid-State and Molecular Theory Group under Profeessor J. C. Slater, has been using Whirlwind and other computing equipment to an increasing extent, Corbato, a member of the Machine Project, has been spending
much of his time with Slater's Group, helping various members code their problems and working out appro much of his time with Slater's Group, helping various members code the ir probiems and working out Tappro
primete computing methods. Uretsky, Sortori and Rotenberg have been working with members of the Theoretical priace computing methods. Oretsky, Sartori and Rotenberg have been working with members of the Theoretical
Group of the Research Laboratory for Nuclear Science and Engineering, applying machine tecchniques to numerous in this fiele.

There has also been close contact with the staff of the Operations Research Project, particularly in the
of problems of Linear Programming and techniques for their solution. Joint seminars have been held.

 project 1ast year, completed the solution to a dynamic programming problem this fall, using whirlwind to obe
numericol numerical results. Other groups, both in engineering and in
connection with their computing or data handing problens.

The research projects reported in the following pages, represent a wide variety of subjects; their our experience in the techniques of such application; many of them have resulted in useful sub-routines, which are now in the whirlwind library, avallable to other workers

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
2.1 Index to Reports

Title
A Study of the Basic Problem of Numerial Analysis Expressed in the Language of
-
Evaluation of the Explicit Difference Formula for a Parabolic Differential Equation
Calculation of number of Structures of Reiations on Finite Sets
The Stability of Thin, Shallow Elastic Shells
Machine Solution of the Diffusion Equation
Multi-center Integrals
Eigen values for a Spheroidal Square Well
Variational Determination of Atomic Wave Functions
Neutron-Deuteron Scattering
Nuclear Constitution
Coulomb Wave Functions
Computation of Chemical Engineering Problems of Multistage Distillation, Absorption,
and Extraction
Response of a Five-Story Frame Bullding to Dynamic Loading
Analysis of a Two Story Steel Frame Building Under Dynamic Loadio
Reactor Runaway Prevention
Newton Analysis of Earth Resistivity Measurements
2.2 Progress Reports

A study of the basic problem of numerical analysis expressed in the language of
The following report introduces a new project that has developed partly out of the discussion group on numerital analyssis referred to under Group Activities in the last quatterly report. The discussion group is
still continuing las recorded in section 3 of the present quarterly) and will be used as a place to work over and still continuing tas recorded in section 3
extend the ideas that are presented here,

The question of what aspects of numerical analysis are most important for improving machine methods
much difterent from the question of what are the essential aspects of numerical nunlyysis. The reason for
 problems that ultimately yield numbers, and as such is directed toward computing machines. Of course, the
mathematician need not distinguish between a calculational procedure that is carried out by hand and one thit mathematician need not distinguish between a calculational procedure that is carried out by hand and one that
is carried out mechanically or electronically; both are procectures for a machine. Therefore, it seems only realistic that numerical analysis should be studied dn conjunction with the logic of computing machines and that
the problems of numerical analysis should be couched in the tanguage of the computing machines for which they the problems
are destined.
This observation should be balanced with the realization that the language of mathematics as opposed
to the language of machines, is not highly adapted to computational procedures - except in the most simple to the language of machines, is not highly adapted to computational procedures - except in the most simple
cases of arithmetic. The lannuage of mathematics in which most numerical analysis is done acoe cases of arithmetic. The language of mathematics in which most numerical analysis is done accomodates
concepts of limits, for example, which are present in computations only in an approximate sense. On the other
hand, the concept of time required to carry out a mathematical operation or the concent of hand the concept of time required to carryy out a mathemptical operation, or the concept of decition (so es
tial to teration procedures) are only indirectly accomodatec by the usual tools of mathematics and at hest tial to iteration proceduress) are only indirectly accomodated by the usual orols of mathematics and at best
carry a very different significance in the fields of abstract and applied mathematics.

Thus, while numerical analysis has an affinity for computing machines, the language in which it is studied is in some ways foreign to them. There are two unfortunate results: first, the basic problems of numerical
analysis are at times obscured or complicated, and, second, all results must be translated tit analysis are at times obscured or complicated, and, second, all results must be translated into the languag
machines. In the present paper there is an attempt to rectify this situation by defining in the language of machines. In the present paper there is an attempt to rectify this situation by defining in the language of
machines the most basic problem of numerical analysis. We will later attempt to outline some techniques for
solving the problem. Such an outline can only be tentative solving the problem. Such an outline can only be tentative and any ideas in it can at best be exxemplary. It should
also be emphasized that the "basic problem or numerical analysis" is to some extent born of a subjective ald
judgement.

In the language of computing machines, a numerical solution to a mathematical problem is a collection of parameter values and a sequence of instructions. The parameters and instructions determine an output in
the form of a set of number. the form of a set of numbers. The numerical solution to a particular problem solved on a particular machin
has, of course, the same ingredients, but the instructions must be specialized to the machine and the output
 to o des ired set of numbers, because only in rare cases can a numerical solution be an exact solution to a
problem.) Having defined a numerical solution, it is clear that there are many such for each mathematical problem, because there are many sequences of instructions with outputs that are within a certain degree of closeness to a desired set of numbers. The flexibility that permits a multiplicity of numerical solutions comes.
first, from the fact that many sequences of instructions give the same output and, second, from the fact that the same output is not even required in order for two numerical solutions to satisty a given problem. Thus if one attaches a measure of time to each sequence (the lenth of time for the machine to perform the sequence)
and a teasure of accuracy (the coseness of the output to desired set of values) there will be two quantitative
ways to compare the many numerical solutions to a given problem.

It is proposed here that numerical analysis is not chiefly concerned with finding a possible numerical solution among a great multiplicity. The basic problem of numerical nnalysis is to find the fastest and mo
accurate out of a set of possible numerical solutions. This statement will now be made more precise.

It is first necessary to define mathematicelly what is meant hy a machine, M . Let P - (i) $\mathrm{P}_{1}, \mathrm{P}_{2}, \quad \mathrm{P}_{\mathrm{n}}$ be a sequence chosen from the space, P. of sequences of real valued parameters, Prepresents the inp
data or other parameters initilly held in the memory of the machine. Let $I=\left(1_{1}, I_{2} \ldots \ldots, I_{m}\right)$ be a sequen data or other parameters initially held in the memory of the machine. Let $1=\left(I_{1}, i_{2}, \ldots,{ }_{m}\right.$, be a sequence

 completely specifie

$$
m \equiv(\rho \times \theta, 0, T) .
$$

 ant to say in what sense a possible numerical solution is optimal for a particular mathematical problem. Therefore, we must now define an entity which characterises each mathematical problem for the machine

$$
D\left(P, D=\delta\left[O\left(P, D, O\left(P_{0}, 1_{0}\right)\right]\right.\right.
$$

It is necessary to assume that (P, , is known in order to state the basic problem of numerical analysis
the language of machines. This assumption is justified because numerical analysis is chienty concerned with in the language of machines. This assumpoon is Jutined, because numericial analysis is chieny concerned with
 instructions which yield numbers closely approximating an integral of a function, the deerivative of of funce of tion, the
solution of an integral equation, or the solution of a differential equation, Thus, (P, I) may be viewed as the solution of an integral equation, or the solution of a differential equation. Thus, (P) , 1) may be viewed as the
solution toa mathematical probolem transilated into machine language without any regard for practicality, such

After these considerations, the basic problem of numerical analysis appears to have the following two

the minimums do not exist or are not unique, of course the above forms must be slightly modified.
 tane rical analyst when he attempts his problem of optimizing. Nevertheless, it will 8 e shown later how $D(P, 1)$ Sproximately. It is also true, proctically, that the time $T(P$, 1$)$ will not be known, though ordering relatione , nd numerical analysis.

Bayard Rankin

Evaluation of the explict difference formula for a parabolic differential equatio
presand
(1)
$\frac{\partial \psi}{\partial x^{*}}=\frac{\partial \psi}{\partial t}$ $\leqslant x \leq 1$ and $0 \leq t$
in the form of
(2) $\psi_{j, k+1}=r_{f} \psi_{j, j, t}+\left(1-2 r_{j}\right) \psi_{j, n}+r_{\xi} \psi_{j+1, k}$
where r_{f} is the ratio $\Delta t / \sigma \bar{x}^{2}$ for the formula which may be different from the real time ration. The exaci
(3) $\psi_{x, t}=\psi_{x, \infty}+\sum_{i=}^{\infty} c_{n} e^{-\alpha_{-}^{2} t}\left(\tan \alpha_{n} \sin \alpha_{n} x+\cos \alpha_{n} x\right)$
and that for equation (2) is
(4) $y_{j, k}=Y_{j, \infty}+\sum_{n=1}^{M_{1}+1} D_{n} \lambda_{n}^{k}\left(\tan _{2} M_{\beta-} \sin \rho_{0} \beta_{j}+\cos \rho_{n} j\right)$
where $\begin{aligned} \lambda_{k} & =1-2 r\left(1-\sigma_{x} \beta_{k}\right) \\ k & =t / \Delta c\end{aligned}$
and $\beta^{1}=\frac{x}{}$ and $\alpha \Delta x$
A method to optimize the explicit approximation for characteristic values depending on the boundary conditions.
in the in the Quarterly Progress Report No.
boundary conditions are $\frac{\partial}{\partial x} \psi_{1, c}=0$
and (1) $\psi_{0, r}=$
(II) $\frac{\partial}{\partial x} \psi_{0}=-1$
(II) $\psi,-a \partial \psi_{0}=1$ where $Q=\frac{1}{3}, 1$, and 3 .

For case III, the second order difference form for the boundary condition is
(5) $\psi_{0, k}-\frac{Q M}{2}\left(\psi_{1, k}-\psi_{-1, k}\right) \doteq 1$

The β^{\prime}, s in (4) have all the $M+1$ values instead of M . The characterionc vilues are ne
(6) $M Q_{f} \tan ^{2 n} \beta_{n}, \sin \beta_{n}=1$

The $\mathrm{M}^{\text {th }}$ value is $\beta_{\mathrm{M}+1}=\mathbb{m}+i \boldsymbol{i} \quad$ which is complex. Similarily, the $\alpha \mathrm{n}^{\prime} \mathrm{s}$ in (3) are the roots of the tran
cendental equation
(7) $Q \alpha_{1} \tan \alpha_{4}=1$

Since $\alpha^{\prime} \mathrm{n}^{\prime} \mathrm{s}$ from (7) and β_{n} 's from (6) have no simple relationship, direct comparison of (3) and (4) shows
that not
λ / t are different but that not only the excitation modes, $C_{\text {, and }}$, and the decaying modes,
also the space modes are different. The optimization scheme is to make

$$
\text { (1) } \mathrm{D}_{1}=\mathrm{C}_{1} \text { by choosing } \psi_{-,, 0}
$$

(2) $\lambda_{n}^{k}=e^{-\alpha_{k}^{\prime}+k / m^{2}}$ for $n=1$ and 2 by choosing r and r
and (3) $M \beta_{1}=\alpha_{1} \quad$ by choosing Q_{1} different from Q in equations (6) and (7)
The merits of this optimization method are evaluated by comparing results of the same candittor with

Results of the erases 1 and n so far show that the excitatign modes are more important when r is in ihe neighborhood of $\frac{1}{6}$. Both the present method and the $r=\frac{1}{6}$ with a corner value adjustment yield
vimiturly good resuits and are both superior to cases where is choosen to be other values. For case ill with $Q=\frac{1}{3}$, the present method gives many times better results.
Results are still being completed and studied. Investigation also includes application of the step response
and to varying boundary conditions, such as $y_{\text {a }}^{\text {a }}=\sin 2 \pi t$. by the method of
complete results will be available in the tinal report in the coming Quarterly.

Stability criterion can be shown by equation (4), the explicit formula will decay toward the steady state
value when 8)
$t=1 /(1-\cos \beta)$
The critical value lies on the highest mode. Thus, for case 1 where ψ is prescribed.
$\beta_{M}=\left(1-\frac{1}{2 M}\right) \pi \quad$ and $\quad r \leqslant \frac{1}{2}$
for case Il where $\frac{\partial \psi}{\partial x}$ is prescribed,
$\beta_{\mathrm{M}}=\pi$ and $\mathrm{r} \leqslant \frac{1}{2}$
and $-Q \partial \nu x$ is prescribed,
$\beta_{\mathbf{M}+1}=\pi+i \gamma \quad$ and $r \leq \frac{1}{1+\cosh \gamma}=\frac{1}{2}$
In the Limit where $M \rightarrow \infty$, stability criterion for all cases $\rightarrow \frac{1}{2}$
In the case of heat transfer in a finite slab $0 \leqslant x \leq 1$ when temperature, is prescribed on the boundary he explicit formula of finite grid network is stable for r values greater than $\frac{1}{2}$ depending on the grid, sile
fut when a heat transter film coefticient tis present, the formula is stable only
for r values less than
This latter result checks with Fowler [2] who derived the similar result by contour integration less than
Andrew T. Ling
References:
 calculation of numbers of structures of relations on finite sets

In group theoretic studies, the question has arisen, given a set of objects how many structures of relationships may be defined among members of the set? A general formula which yields, in principle
the answer to this problem is available, but even for small sets this forma phe answer to his problem is available, but even for small sets this formula involves extended calculations,
practically demanding a high-speed machine for the ir accomplishment. Whirlwind 1 is at present be being used
to evaluate the formula for small sets.

To specify the problem precisely, consider a set of n objects. A dyadic relation among members of the he relationship to element f while a zero indicates the absence of sue is place indicating that element i bear tructures of relations amounts simply to counting the admissable arrays of $11 \mathrm{~s} s$ and 0 o's in in such a matrix. With no further restrictions, we see that the answer is $2 \mathrm{n}^{2}$, but in this fig figure of 22^{2} we have included many Somorphic structures which can be permuted into one another simply by renumbering the objects of the sel.

Most of the p are zero. The total number of conjugate classes, or terms in the summation for str ${ }^{\mathrm{m}}$, th the

 to a particular permutation. The number of degrees of freedom is the number of elements of the array A
one may choose at random and still be able to have $T_{\mathrm{n}} \mathrm{A}=\mathrm{A}$. This number is definitely limited since in
 in entire cycle returning to a_{1}. In the particular case of dyadic relations, $\mathrm{m}=2$, the computing formula for
$\mathrm{a}_{2}(\mathbb{T})$ includes a term for degrees of freedom in the off-diagonal elements and one for the degrees of freedo in the diagonal elements. Other formulas are available for special classes of dyadic relations, symmetric reflexive, or antisymmetric.

This probiem is interested large integers, far exeeding the 15 -bit capacity of Whirlwind re very large integers, far exceeding the 1 -bit capacky or wept. The program is arranged to conduct he position schemes (p, \ldots, p) in logical order. From each partition follows $b(T)$ and d d $(\mathbb{})$) each or se of the logical orders is neceessary in the partition developments, and in efficient calculation of the sums for use or the logical orders is necessary in the partititon developments, and din efricicent calculation of the sur.
$\mathrm{d}_{\mathrm{m}}(\pi)$ which, as written contains about $\mathrm{n}^{2} / 2$ terms for an nxn matrix, but at most about n non-zero terms.

Because of the necessity of carrying very large numbers exactly and because upper bounds for the
 multiplication, division, and shifting of multi-register positive numbers of arbitrary length. Operation with this routine will be very slow for two-register numbers, but unfortunately numbers as long as 8 registers m

Thd will be carresented to sets sets as large as time will permit; ; hope to $\mathrm{n}=15$. The necessary routinas are now being and will be carried to
tested on Whirlwind L
Reference: [1]R. L. Davis, Proc. Am, Math. Soc. 4. 488 (1953)
Douglas Mellr
the stability of thin, shallow elastic shells
The problem under consideration is that of the stability of a hyperbolic paraboloidal shell loaded by its
own weight. Specifically we wish to find that load, p_{o}, which causes the shell to buckle. The equation of the shell
(1) $z=\operatorname{c} \frac{x}{a} \quad \frac{y}{b}$
and the assumption of shallowness is that $\left(\frac{\partial z}{\partial x}\right)^{2},\left(\frac{\partial z}{\partial \zeta}\right)^{2} \ll 1$
The precise conations of he problem being studied ar
a) The shell is uniformly loaded by p_{0}.
b) The edges of the shell at $\mathrm{x}=0, \mathrm{a}$ and $\mathrm{y}=0, \mathrm{~b}$ are assumed to have moment free support.
c) The edge stiffeners of the shell are assumed to be rigid in the direction of their axes and to
sing these conditions a complete solution of the general equations of shallow shell theory is [1]
(2) $w=0 \quad F=\frac{p_{0} a b}{2 c}$ xy
where wiv dencection in the 2 dite eclion and \bar{F} is the stress function. To test the stability of this solution we
(3) $w=0+\bar{w} \quad F=\frac{p_{0} a b}{2 c} \quad x y+\Phi$

Substitute these into the differ
The equations *hich hcld are
al equations and linearize the
(4) $\nabla^{2} \nabla^{2} \Phi=\frac{F h z c}{a b} \frac{\partial^{2} \bar{\sigma}}{\partial \times \partial y}$
$D \nabla^{2} \nabla^{2} \bar{\omega}=-\frac{2 c}{a b} \frac{\partial^{2} \bar{\sigma}}{\partial x \partial y}+p_{0} \frac{a b}{c} \frac{\partial^{2} \bar{\sigma}}{\partial x}$
where h is the uniform thickness of the shell, E is the Modulus of Elasticity and D is the modulus of Flexur
Ripiditit. The boundary conditions are

```
(5) }\begin{array}{l}{x=0,a}\\{y=0,b}\end{array}}\quad\overline{w}=\mp@subsup{\nabla}{}{2}\overline{w}=\mp@subsup{\Phi}{xx}{}=\mp@subsup{\Phi}{yy}{}=
```

(4) and (5) then repreesent a characteristic value problem for p_{0}, the bucking load.
To find the buckling load we assume series expansions for w and ϕ, satisfying the boundary conditions,
as follows
$\bar{\omega}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n m_{y}}{6}$
$\Phi=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}+B_{00} x y$
Substitution of (6) into (4) leads to a doubly infinite set of linear homogenous equations in the A_{m} and B , ${ }_{\mathrm{m}}^{\mathrm{n}}$, is a parameter in this doubly infinite set. We desire to find the smallest value of P_{o} Which permits solution
${ }_{0}{ }_{0}$ is a parameter by non-zero A dound B infinie so statan approximations to the desired p othe series (6) will be terminated

References:

[1]
E. Reissner, "On Some Aspects of the Theory of Thin Elastic Shells," Journal of the Boston Society of
Civil Engineers
(In Press
machine solution of the diffusion equation
The one dimensional diffusion (or heat) equation of the type
(1) $\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[k(x) \frac{\partial u}{\partial x}\right] ; k(x)>0$ in $0 \leq x \leq L$
with initital and boundary conditions

$$
\begin{array}{rll}
-\left.k(x) \frac{\partial u}{\partial x}\right|_{x=0}=Q, & 0<t \\
\left.\frac{\partial u}{\partial x}\right|_{x=L}=0, & 0<t \\
u(x, 0) \equiv 0 & , 0<x<L
\end{array}
$$

Where U is concentration (or
Which can be put into the form
(2) $u(x, t)=\frac{Q}{L}\left[\int_{0}^{x} \frac{2-L}{k(n)} d x+t\right]+c-\sum_{n=0}^{\infty} c_{n} e^{-x_{n} t} X_{n}(x)$

Where $c=\frac{1}{L} \int_{0}^{L}\left(\int_{0}^{2} \frac{1-z_{i}}{k\left(z_{1}\right)} d z_{1}\right) d z$
and $\quad C_{n}=-\frac{Q}{L} \int_{0}^{L} X_{n}(z)\left(\int_{0}^{z} \frac{L-L_{i}}{K(z)} d z\right) d z / \int_{0}^{L} X_{n}^{2}(z) d z$

The X_{n} are a complete set of orthogonal functions belonging to the associated Sturm-Liouville system
$\frac{d}{d x}\left[k(x) \frac{d X_{n}}{d x}\right]+\lambda_{n} X_{n}=0$
(3)
$\frac{X_{n}}{x}=\frac{d X_{n}}{d x}$
This solution is found by using the separation of variables method. First, assume the form
$U^{(1)}=\mathrm{R}(\mathrm{x})+\mathrm{S}(\mathrm{t})+\mathrm{C}$ and satiofy the first two boundary conditions of (1). This will serve to determine
a constants except T This is the steady-state solution (that part of the solution which does not die out with
 ume). Next use 0 This product form yields the solutiontions for (3) above plus the condition on
$\varliminf_{t \rightarrow \infty} T(t)=$

These two solutions are then fitted together (using a type of Fourier expansion of $\mathrm{R}(\mathrm{x})$
to satisty the initial condition at $\mathrm{t}=0$. The constant c is determined from the fact that
$\int u(z, e) d z=q t$
(See Quarterly Progress Report No. 14).
Equation (2) is valuable for two reasons. First, it displays the steady state solution and second, it
surgests when the transient has become insignificant. A simple approximate calculation showed this occurred
when $\mathrm{t}=\mathrm{O}$ (L).
A number of cases have been solved analytically in the literature ${ }^{[1,2]}$
sines and cosiness when K is linear in x, X_{n} are given in terms of modified Bessel Functions of zero order. Corresponding forms of K will produce Legendre polynomials, Legarre polynomials, etc.
An interesting case is when $K(0)=0$. For instance $K(x)=x$. Thus, by the Laplace transform with
respect to t equation 1 becomes
$x \frac{x+}{2 x^{4}}+\frac{\frac{\pi}{x}}{4 x}-s \bar{u}=0$

$\overline{\mathrm{v}}=\frac{2 Q}{s} K_{0}\left(2 \sqrt{s \bar{x}}\right.$) where K_{o} is the modified Bessel Function of zero
order. The inverse transform then gives

Two cases of $\mathrm{K}(x)$ were solved on the IBM Card Programmed Calculator. The first wair
$U(x, t+k)=r v(x+h, t)+(1-2 r) U(x, t)+r v(x-h, t)$
where $r=\frac{K k}{h^{2}}, k=t$ spacing, $h=x$ spacing. The h and k were started very small, then, as the calculation
proceeded, h was doubled and k increased by a factor of 4 so as to keep the same difference equation throughout.
The h was doubled in this manner 8 times. The final solution agreed with the steady state solution to within 0.1%.
The second case was solved using a K as shown in figure 1 .

In gene-al, the solution U has a singularity at $X=-b$ which causes considerable difficulty in approximating the radius of conver gence. This seemed to suggest a variable spacing in the x dire etion (and consequently in the t direction). The difference equation corresponding to the point pattern in figure $2 i$

fig. 2
(4) $u_{m, m+1}=A_{n} u_{n-1, m}+B_{n} u_{n,-}+C_{n} u_{n+1}$,
where $A_{n}=k_{n}\left(2 k_{n}-h_{n} k_{n}^{\prime}\right) / h_{n-1}\left(h_{n}+h_{n-1}\right), \quad C_{n}=k_{n}\left(2 k_{n}+h_{n} k_{n}^{\prime}\right) / h_{n}\left(h_{n}+h_{n-1}\right)$,
and $B_{n}=1-k_{n}\left[2 k_{n}-k_{n}^{\prime}\left(h_{n}-h_{n-1}\right)\right] / h_{n} \cdot h_{n}$,
where $K_{n}=k\left(x_{n}\right), x_{n}=\sum_{i=0}^{n} h_{i} ;\left.\quad \frac{d k(x)}{d x}\right|_{x=x_{n}}=\left.k^{\prime}(x)\right|_{x=x_{n}}=k_{n}^{\prime}$
It will be noticed that $\mathrm{An}+\mathrm{Bn}+\mathrm{Cu}=1$ and for local stability, all coefficients should be positive, consequently are
equal to or less than one. Thus, we have the two conditions: 12 wull be noticect that $\mathrm{An}+\mathrm{Bn}+\mathrm{Cu}=1$ and for local stability
equal to or less than one. Thus, we have the two conditions:
(5) $\quad h_{n} \leq 2 K_{n} / k_{n}^{\prime}, k_{n} \leq h_{n} h_{n-1} /\left[z k_{n}-k_{n}^{\prime}\left(h_{n}-h_{n-1}\right)\right.$.

For constant K and constant spacing these reduce to the well known stability condition
$k_{n} k_{n} / b_{n}^{2}=k k / h^{2} \leqslant 1 / 2, k>0$

The first one in (5) places the limitation on $h_{n_{n}}$ while the second, for given h_{n} and h_{n-1} gives the restriction on k
(6) $x_{n}=a\left(2^{n}-1\right)$ for $0 \leq x_{n} \leq L / 2$ and $2<b$ (in ig $\left._{1} t\right)$
will conform to the first condition in (5) very well. Certainly, such a pattern is not unique and would depend on problem as well as the inclinations of the individual. This particular one worked very well for the KQ that was
used. For the rest at the interval $(1 / 2) \mathrm{L} \leqslant \mathrm{x}_{\mathrm{n}} \leqslant \mathrm{L}$ constant spacing was used. Thus, tor the first half
used. For the rest at the interval
interval
$h_{n}=2 h_{n-1}$
The $k n$ spacing was chosen such that $k_{n}-2 k_{n-1}$ for the first half of the x -interval and constant k was used $\left.x_{n}>1 / 2\right)_{1}$ The following tigure 3 gives an abberiated version of the overall point thereatter, Le.
pattern used.

The dotted line represents the maximum extent one may predict into the region from the points on the bottom row (solid dots). The points calculated from the row are shown in open dots. The rest of the points are calcu-4
ited using more immediate points the open dots and previous crosses) and a completed line of points is eventually ated using more immediate points (the open dots and previous crosses) and a completed line of points is eventualis
obtained across the entire interval (O, L).

Nen wint this short-cut of variable spacing the calculation time is very large due to the relatively dense
In of points for $\mathrm{n}=0,1,2$. This is especially true when relation (6) holds for a dozen or so points before olumns of points for $n=0,1,2$, This is especially true when relation (6) holds for a dozen or so points before
constant spacing is is pplied as was she case actually yused and described by figure 1 . A further reduction in time

 as one likes. The coefficients will always be in terms of sums of products of preceding coefficients and the

A good checking device may be had when calculating these coefficients if it will be noticed that al oefficients for each $\mathrm{U}_{\mathrm{n}} \mathrm{m}$. muast sum to unity waith the exception of the constant term which man be present).

 equations in this way
reciuced by 20 foid.

A word or two is in order concerning the boundary condition near the singularity, The solution U change A worrd or two is in order concerring the boundary conition near the singularity. The eolution UC C
 onstant negative err
oo that the condition:

$$
\int_{0}^{L} u(z, e) d z / a t=1
$$

was not fulfiled. The ratio was consistantly less than unity but essentially constant. The boundary condition (s) was used in calculating the coefficic
was calculated from the condition
$\int u_{(\partial, t)} d_{2}=Q_{t}=M_{0} u_{0, m}+M_{1} u_{y, m}+\cdots+M_{N} U_{N_{1}, m}$
 error introduced by the tumerical integration was smaller than thantint the sidferencec form of the eoundary
conditions (8) at $\mathrm{X}=\mathrm{o}$ Also, in this integral form the errors tended to be self correcting as the calculation

This method of combining the difference equations is subject to considerable generality and applicability
to other problems. It combines the higher accuracy of very fine mesh spacings (provided finer meshes provide higher accuracy to begin with) with shorter solution time found in more coarse meshes. The number of numeri
 with difficult $\mathrm{K}(\mathrm{X})$'s to handle, thus reducing the ever present danger
limitation to this procecture is that of calculating the coeflicients.

When the solution time of the given problem has been reduced to the point where it is roughly equal to the
erequired for the computer itself to generate the coefficients, it is felt that this is probably the point of time required for the computer itsell
maximum efficiency for the method

Philip L. Phipps
References:
[1] Carslaw, H. S., and J. C. Jaeger: Conduction of Heat in Solides, Oxford, The Clarendon Press, 1944
[2] Churchill, R. V., Modern Operational Mathematics in Engineering, McGraw-Hill Book Co., 1944 .
multi-center integrals
Teport will review briefly the status of dicentor integrals of atomic orbitals is still fairly difficult. The following M.L.T. For general references the reader should con sult a recent review article by Dalgano ci1].

 $\mathrm{B}_{\mathrm{n}}(\mathrm{X})$, which are only sparsely tabulated. The Latter functions, however, can be generated for arbitrary arguments by means of a high-speed computer and such a gener eation subroutine has been writter anded for artatitrary argament
for convenience, a production-torm pro (In addition,

 Group and is currently being tested. Thus all the two-center integrals will soon be fairly easy to compute.

There are two major limitations, though, to the method just described. The first is the requirement that
tals be Slater AO' s. For Hartree-Foch orbitals, this problem can be circumvented by fitting the function

A seond method of calculating multicenter integrals exists which does not have these two drawbacks.

 (In addition, $\frac{1}{\frac{1}{2}}$ and $\frac{1}{r_{k}}$ can be expanded in the usul series of spherical harmonics and powers of r.) Now
when $f\left(\mathrm{r}_{\mathrm{a}}\right)$ if
numerically

 found for easily generating these functions on a high-speed computh, and such a generation suburoutine has been
prepared for Whiriwind. In any case, the expansion functions, g , may be systematically prepared. Furthermor
 angular coordinates can all be performed, a process which greaty reduces the various summations introducca
by the expansions. Thus the basic integral is expressed in a series of terms each containing a radial integral
which will be either of the one or two electron form: ch will be either of the one or two electron form:
$\int_{0}^{\infty} r^{n} a(r) b(r) d r$
or $\int_{0}^{\infty} a\left(r_{1}\right) b\left(r_{1}\right) \frac{d r_{1}}{r_{1}^{n+1}} \int_{0}^{r_{2}^{\pi}} r_{2}^{n} c\left(r_{2}\right) d\left(r_{2}\right) d r_{2}$
where a, b , c , and d are, in general. numerically given functions about one of the centers. Because, in a complete
calculation one may require several hundred of these integrals, a Whirlwind program for doing these numerical quadratures has been written and tested. In the interest of program speed, Simpson's rule is used for the Integrations, but the mesh size can be essentially arbitrarily small and with as many scale doublings as desire
To give a very rough notion of the computation time required, a basic 2 -outer exchange integral might involve

Thus the method of expanding all functions about one-center appears very attractive for the three and Your-certer integrals. The writer plans to use this
occurring in a tight-binding calculation of Graphite.

References

Ott. 15 , 1954, Quarterly Progress Report, Solid State and Molecular Theory Group, M,L,
3] K. 15, 1954, p. 25, and July 15, 1954, p. 49.
K. Ruedenberg. J. Chem. Pyys., 19, 1459, (1951).
 gen values for a spherotdal square well

For conciseness the description of the problem will be restricted to the case of the oblate espheroid (1).
We define the co-ordinates μ, η, Q which are defined in the regions $\left\{\begin{array}{cc}-1 \leqslant & =1 \\ -1\end{array}\right\}$ The problem is to

```
find the eigen values of the time-Independent Schroedinger equation
(1) }[\mp@subsup{\nabla}{}{2}+\mp@subsup{k}{}{2}-V(\mu)]\psi(3,\mu,\phi)=
where V is a step function
    r v(\mu)}=0,\mp@code{v, <<a
Now if d is the focal distance for the spheroid, and if one defines
        h}\mp@subsup{\textrm{h}}{}{2}=\mp@subsup{\textrm{d}}{}{2}\mp@subsup{\textrm{k}}{}{2}:\mp@subsup{g}{}{2}=\mp@subsup{d}{}{2}(\mp@subsup{\textrm{k}}{}{2}-\mp@subsup{\textrm{v}}{\textrm{o}}{}
then the solutions inside and outside the spheroid, respectively may be written
(2a) }\mp@subsup{\psi}{i}{}=\sum,\mp@subsup{d}{i}{-}\mp@subsup{S}{m\rho}{}(h,g)j\mp@subsup{e}{m,}{}(h,\mu)\mp@subsup{e}{}{im\varphi
(2b) }\mp@subsup{\psi}{0}{}=\mp@subsup{\sum}{\lambda}{}\mp@subsup{b}{\lambda}{m}\mp@subsup{S}{m,}{\prime}(q,))h\mp@subsup{e}{n\lambda}{}(g,\mu)\mp@subsup{e}{}{im\varphi},\mu>
\mu<d
l
M=\alpha. In order that the \psi which is of the form (2a) for }\mu<\alpha\mathrm{ and of form (2b) for }\mu>2\mathrm{ be a solution of (1) at
\mu=\alpha. it is necessary that
[垪(\mp@subsup{v}{i}{}-\mp@subsup{v}{i}{\prime})]\mp@subsup{]}{\mu+\alpha}{}=0
Deffining the function of g and h
```



```
where
\int{ S
the eq
(4)
        A}\cdot\vec{a}=
Where }\vec{A}\mathrm{ is a vector with components as}\mathrm{ and }\textrm{A}\mathrm{ is an infinite square matrix with elements
```



```
In the usual way it is seen that a non-trivial solution of equation (4) may be found by requiring that
and the values of
        det A = 0
    #)
    If one chooses to think of the C}\mp@subsup{C}{\lambda,}{}\mathrm{ in terms of their role as expansion coefficients, i.e.
    Smb
ithen
    On the other hand the differential equation for }\mp@subsup{S}{n}{}\mathrm{ , which is
    {\frac{d}{dy}(1-\mp@subsup{y}{}{2})\frac{d}{b}+\mp@subsup{A}{m,}{}-\frac{\mp@subsup{m}{}{2}}{1-\mp@subsup{y}{}{2}}-\mp@subsup{h}{}{2}\mp@subsup{b}{}{2}}\mp@subsup{S}{me}{m}=0
Indicates that (since Am', is a monotonic increasing function of }\rho\mathrm{ ) [2] that for A A 
```



```
20
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
graduate school research
    Inq\alpha\alpha
(2) = 年 (2n+m
The function SS
    S_\alpha
S
Mhe central problem has been to obtain, using the shortest possible amount of machine time, the energy
M, Thefrrst minimization scheme tried was a seoond order Lagrangian interpolation. It proved to be highly
    During the past three weeks, a new approach has been tried. The technique, commonly referred to as the
ethod of steepest descent, may be summarized as follows. An initial guess of the parameters (a, borroc,o) as the
made and the valve of the energy and the partial derivatives }\frac{\partialw}{\partial\alpha},\frac{\partialW}{\partialW},\partialW\mathrm{ are determined. }\mp@subsup{}{}{\circ}\mathrm{ From the
lol
Mostrapidy. Since we are lookng for a minimum, we take the next point along a line parallel to the gradient
Tmam.
Mor the actual machine computation, we first estimate the maximum distance of our initial point from
    \mp@subsup{a}{1}{}}=\mp@subsup{a}{0}{
    b
    c}=\mp@subsup{c}{0}{}-\mp@subsup{\Delta}{0}{}\operatorname{cos}\mp@subsup{\varphi}{c}{
where }\operatorname{Cos}\mp@subsup{\varphi}{2}{2}\mathrm{ ,etc. are the direction cosines of the gradient. After that four more points are calculated
*)
    (\trianglea) pont with the maximum uncertainties in the parameters given by
    (\Deltad\mp@subsup{)}{\mathrm{ max }}{}\approx\mp@subsup{\Delta}{0}{}(\operatorname{cos}\mp@subsup{\phi}{d}{}\mp@subsup{)}{\mathrm{ min}}{l/16}
    (\Deltab) max }\approx\mp@subsup{\Delta}{0}{}(\operatorname{cos}\mp@subsup{\varphi}{b}{}\mp@subsup{)}{\mathrm{ min }}{}/1
where the direction cosines are evaluated at the
    are evaluated at the point of minimum calculated value,
    The partial derivatives are calculated by taking first differences of w for parameter increments of o.o
My using the generalized conrentm of dstance,gratient, etc. in N dimensional
                                    graduate school research
graduate school research
The method has been tried for the ground state \(\left(1 s^{2} 25^{2} 2 p\right)^{2} p\) of Boron, and the results appear to be correct to one unit in the third decimal place. Several further chec ks are being made by starting at different
points and using different values for \(\Delta\). If the re eults are satisfactory, a evstematic program for calcull points and using different values for \(\Delta_{o}\). It the re sults are satisfactory, a aystematic program for calculia
ting the energies of the states not yet computed in previous hand and IBM calculations will be set up. nd
The possibility of adding a 35 function to the present scheme is now be ing investigated by two seniors
隹 Robert Papa and Alfred Finn who are doing a Joint B.S. thesis in the Physics Department on the calculation
of the ground state of sodum and several other states involving a 3 orbitul. They are working with thre
parameter form tor the 3 S function with the hope that they might dectuce a rule for fixing one or two of the parameter fo
parameters.

\section*{Finally, proprams for calculating the contiguration interaction integrals involved
correction terms \({ }^{2}\) Iare being written for substitutions involving 35 , \(3 P\), and \(3\{\) orititals.}

References
[1] Morse, Young, and Haurwitz, Phy. Rev. 48, 948 (1935)
Meptember ho tha of Computation and Numerical Anilysis, Quarterly Progress Report No. 13.
-
We indicate here an outline of the theorytate phase shifts in neutron-deuteron scattering is nearing completion.
Assuming two-body central forces of arbitrary ecter
system of three particles of equal mass takes the form
(1) \(\left[\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}+\frac{2 m}{\hbar^{2}}(E-V)\right] \Psi=0\)
where
```

v= v
(2) }\quad\mp@subsup{\textrm{v}}{\textrm{ij}}{}=\mp@subsup{U}{ij}{}(w+m\mp@subsup{M}{ij}{}+b\mp@subsup{\textrm{B}}{\textrm{ij}}{}+h\mp@subsup{M}{ij}{}\mp@subsup{\textrm{B}}{\textrm{ij}}{

```
\(M_{i j}\) and \(B_{i j}\) being the operators which exchange the space and spin coordinates, respectively, of particles \(i\)
and \(j\). \(\mathrm{U}_{1 j}\) is a s scalar function of the distance \(r_{\text {ij }}\) and \(\mathrm{w}, \mathrm{m}, \mathrm{b}\), h are numerical coefficients whose sum is unity.
Atter the motion of the center of mass is separated off, there remain six coordinates to describe the system. For the scattering problem in question the appropriate choice in trom the incident neutron to the center of
where mass of the deuteron. (Fig. 1 it it is assumed that particles 2 and 3 form the ori ininal deuteron pair). It can mas that the magnitudes \(r\) and \(q\), together with \(\alpha\), the angle between the two vectors, are sufficient to


Fig. 1
Fig 2
determine the relative position of the three particles in their plane. The remaining three coordinates then describe the oriestation of this plane. For low energy ( \(\$\)-state) scattering, the wave function will be independent
of this orientation and will thus be a function only of
\(G\) and \(\alpha\). These ccoordinates are of course expressible of this orientation and will thus be a function only of \(\gamma, q\) and \(\alpha\). These coordinates are of course expressible
in terms of the interparticle distances, which furnish an analogous spectication of the relative location of three in terms of the interparticle distances, which
particles in their plane. The relations are:
(3a)
(3b) \(q=1 / 2 \sqrt{12} 2\left(r_{12}^{2}+r_{13}{ }^{2}\right)-r_{23}{ }^{2}\)
(3c) \(\left.\quad \cos \alpha=\left(r_{12}^{2}-r_{3}^{2}\right) / r_{23} \sqrt{ } \backslash 2\left(r_{2}^{2}+r_{13}^{2}\right)-r_{23}{ }^{2}\right\}\)
Instead of \(d\), we shall eventually use as a third coordinate the distance S , the third side of the triangle formed by and \(\vec{q}\). This is given by
(3d) \(\left.S=\sqrt{( } r^{2}+q^{2}-2 r q \cos \alpha\right)=\sqrt{ }\left(\frac{1}{2} r_{23}^{2}+\left(\frac{1-\sqrt{3}}{2}\right) r_{2}^{2}+\left(\frac{1+\sqrt{3}}{2}\right) r_{13}^{2}\right)\)

(4a) \(r^{\prime}=\frac{1}{2} \sqrt{\left(q^{2}(3-\sqrt{3})+r^{2}(1-\sqrt{3})+\sqrt{3} s^{2}\right)}\)
(4b) \(q^{\prime}=\frac{1}{2} \sqrt{ }\left(q^{2}(1+\sqrt{3})+r^{2}(3+\sqrt{3})-\sqrt{3} s^{2}\right)\)
(4c) \(s^{\prime}=\sqrt{ }\left(q^{2}\left(\frac{1-\sqrt{3}}{2}\right)+r^{2}\left(\frac{1+\sqrt{3}}{2}\right)+\frac{1}{2} s^{2}\right)\)
Writing equation (1) in the \(\vec{r}\). \(\vec{l}\) system and expanding in partial waves, we have for the S -wave part of
The resulting equation:
(5) \(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\frac{\partial \psi}{\partial r}\right)+\frac{1}{q^{2}} \frac{\partial}{\partial q}\left(\frac{\partial \psi}{\partial q}\right)+\left(\frac{1}{r^{2}}+\frac{1}{q^{2}}\right) \frac{1}{\sin \alpha} \frac{\partial}{\partial \alpha}\left(\sin \alpha \frac{\partial \psi}{\partial \alpha}\right)+\frac{4 m}{3 \hbar^{2}}\left(E_{k}-E_{d}-V\right) \Psi=0\)
where \(E_{K}\) is the kinetic energy of the incident neutron in the center of mass system \(\left(=\frac{2}{3}\right.\) the energy in the lab
system) and \(E_{d}\) is the binding energy of the deuteron. The wave function \(\bar{\psi}\) in (5) is a combination of spatial and spin functions, and must be antisymmetric in
the two neutrons to satisty the Pauli principle. 1
We therefore write explicity, for the quartet and doublet pin states (S = \(3 / 2,1 / 2\) respectively)
(6a) \(\psi_{a}=\chi_{a}\left(\psi_{a}-\psi_{a}^{\prime}\right)\)
(bb) \(\psi_{D}=\chi_{D 1}\left(\psi_{D}-\psi_{D}^{\prime}\right)+\chi_{D 2}\left(\psi_{D}+\psi_{D}^{\prime}\right)\)
We do oot utilize the isotopic spin formalism, as we find it more convenient to label each particle explicity as
neutron or proton.

Here \(\psi\) as the (totally symmetric) quartet spin function; and in therefore multiplted by a spatial function anti
symmetric in the neutrons \((\psi=M, \psi)\). In the doublet state there are two independent spin functions for each symmetric in the neutrons \(\left(\psi=M_{2} \psi\right.\) ). In the doublet state there are two independent spin functions ffor each
 multiply each by the appropriate space function so as to antisymmetrize the total wave function. We now put ( 6 a)
and ( (bb) into (5), introduce the notation \(\psi=\frac{\pi}{r-g}\) and sum over apin coordinates. The reviling equation for the quartet scattering is:
```

(7) [T+\frac{\mp@subsup{k}{}{2}-\mp@subsup{k}{d}{2}}{rq}](u-%5Coverline%7Bu%7D)+rq\Omega(u-\overline{u})/rq}=

```
where we have introduced the following additional notation:
(8) \(T \equiv \frac{1}{r q}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial q^{2}}+\left(\frac{1}{r^{2}}+\frac{1}{q^{2}}\right)\left(\frac{\partial^{2}}{\partial \alpha^{2}}+\cot \alpha \frac{\partial}{\partial \alpha}\right)\right]\)
(9) \(\bar{u} \equiv \frac{r q}{r^{\prime} q^{\prime}}, M_{12} u\)
(10a) \(k^{2}=\frac{4 m}{3 \hbar^{2}} E_{k}\)
(10b) \(k_{d}^{2}=\frac{4 m}{3 \hbar^{2}} E_{d}\)
(10c) \(\Omega=-\frac{4 m}{3 \hbar^{2}} \mathrm{~V}\)
For the doublet scattering we obtain instead of (7) the two equations
(11a) \(\left[T+\frac{k^{2}-k_{d}^{2}}{r q}\right](u-\bar{u})+r q\left[\Omega_{22} \frac{(u-\bar{u})}{r q}+\Omega_{2 b} \frac{(u+\bar{u})}{r q}\right]=0\)
(11b) \(\left[T+\frac{k^{2}-k_{d}^{2}}{r q}\right](u+\bar{u})+r q\left[\Omega_{b 2} \frac{(u-\bar{u})}{r q}+\Omega_{b b} \frac{(u+\bar{a})}{r q}\right]=0\)
where
(12a) \(\Omega_{\text {da }}=U_{12}\left[w+b+(m+h) M_{12}\right]+V_{13}\left[\left(\omega-\frac{b}{2}\right)+\left(m-\frac{h}{2}\right) M_{13}\right]\)
    \(+V_{23}\left[\left(\omega-\frac{b}{2}\right)+\left(m-\frac{h}{2}\right) M_{23}\right]\)
(12b) \(\Omega_{2 b}=\Omega_{b 2}=U_{13}\left[\frac{\sqrt{3}}{2}\left(b+h M_{13}\right)\right]+U_{23}\left[-\frac{\sqrt{3}}{2}\left(b+b M_{23}\right)\right]\)
(12c) \(\Omega_{b b}=V_{12}\left[\omega-b+(m-h) M_{12}\right]+V_{13}\left[\left(\omega+\frac{b}{2}\right)+\left(m+\frac{h}{2}\right) M_{13}\right]+V_{23}\left[\left(\omega+\frac{b}{2}\right)+\left(m+\frac{h}{2}\right) M_{23}\right]\)

We shall prosed the the doublet gives terger equitions but proceeds We shall pro
analogously.

The boundary conditions on \(\Psi\) and \(\psi\) are the following:
a) \(\Psi\) must be everywhere finite; hence \(«=0\) when either \(r=0\) or \(q=0\)
(13) b) when \(q+\infty, \psi \rightarrow F(r) \sin (k q+\delta) / \rho \sin \delta\)
```

were}F(r)\mathrm{ is the deute ron ground state wive function, and }\delta\mathrm{ is the phase sin which describes the scattering
*)
(14) u}->rF(r)\operatorname{sin}(kq+\delta)/\operatorname{sin}\delta\equivw=\mp@subsup{w}{1}{}+\mp@subsup{w}{2}{}cot
(15a) where w
(15b) }\quad\mp@subsup{W}{z}{}=rF(r)\operatorname{sin}(kq
w
(16a)
Together with (1) and (14), we have the boundary condition for exchange scattering., q}->\infty,\mp@subsup{r}{}{\prime}<
117a) \psi
(17b) }\overline{u}->rqF(\mp@subsup{r}{}{\prime})\operatorname{sin}(k\mp@subsup{q}{}{\prime}+\mp@subsup{\delta}{}{\prime})/\operatorname{sin}\delta\equiv\overline{w}=\mp@subsup{\overline{w}}{1}{}+\mp@subsup{\overline{w}}{2}{}\operatorname{cot}
where now F(r) is the deuteron function in the exchange coordinates, and w
(18a) }\mp@subsup{W}{1}{}=\frac{rq}{q}F(r)\operatorname{cos}(kq
(18b) }\mp@subsup{\overline{W}}{2}{}=\frac{rq}{q}F(\mp@subsup{r}{}{\prime})\operatorname{sin}(k\mp@subsup{q}{}{\prime}
w
{
M, The actual boundary conditions are of course on the total wave function of the system, which is \psi-

```

```

\$,
At this point we introduce the inside wave functions }y,\overline{y}\mathrm{ . defined by
(20a)
l
产=\overline{\omega}-\overline{u}
From (7), (16) and (19) we obtain the differential equation for y-y
(21) [T+\frac{\mp@subsup{k}{}{2}-k}{rq}
-26

```
```

(22a)}\quady(q=0)=rF(x
(22b) y(r=0)=0
(22c) y(q=\infty)}=
(22d) }y(r=\infty)=
\starting from equation (21) many variational principles for the phase shift \delta can be constructed, as
The general procedure is as follows: from (21) (16a) and (19a) we write the differential equation for
(23)}[T+\frac{\mp@subsup{k}{}{2}-\mp@subsup{k}{d}{\prime}}{rq}](y-%5Coverline%7By%7D-%5Cmp@subsup%7B%5Comega%7D%7B1%7D%7B%7D+%5Cmp@subsup%7B%5Coverline%7Bw%7D%7D%7B1%7D%7B%7D)+rg{\Omega(y-\mp@subsup{\omega}{1}{}-\overline{y}+\overline{\mp@subsup{w}{1}{\prime}})/rq-\operatorname{cot}\delta[\Omega(\mp@subsup{w}{2}{}-\overline{\mp@subsup{w}{k}{\prime}})/r
23}\mp@subsup{w}{2}{}/rq+\mp@subsup{\Omega}{13}{}\mp@subsup{\overline{w}}{2}{}/rq]

```

```

pace (dr}=\mp@subsup{r}{}{r}\mp@subsup{q}{}{2}drdq\mathrm{ sined d) we obtain, after a partial integration or the second derivatives.
(24)}B(k\mp@subsup{c}{0}{}\delta\delta)=C+\mp@subsup{L}{2}{
(25a) Bh=\frac{1}{k}\mp@subsup{\int}{0}{\infty}dr\mp@subsup{\int}{0}{\infty}dq\mp@subsup{\int}{0}{\pi}\operatorname{sin}\alphad\alpha+q{(y-\mp@subsup{\omega}{1}{}-\overline{y}+\mp@subsup{\overline{w}}{1}{\prime})[(\Omega-\Omega,\mp@subsup{\Omega}{2}{})
C= \int}\mp@subsup{\int}{0}{\infty}ir\mp@subsup{\int}{0}{\infty}q\mp@subsup{\int}{0}{m}\operatorname{sin}\alphad\alpha{-[\frac{\partial}{\partialr}(y-\overline{y})\mp@subsup{]}{}{2}-[\frac{\partial}{\partialq}(y-\overline{y})\mp@subsup{]}{}{2}-(\frac{1}{r}++\frac{1}{q})[\frac{\partial}{\partial\alpha}(y-\overline{y})\mp@subsup{]}{}{2

```

```

L}=\mp@subsup{\int}{0}{\infty}dr\mp@subsup{\int}{0}{\pi}d\alpha\operatorname{sin}\alpha{[(y-\overline{y}-\mp@subsup{\omega}{1}{}+\mp@subsup{\overline{\omega}}{1}{})\frac{\partial}{\partialq}(y-\overline{y})+(y-\overline{y})\frac{\partial}{\partialg}(\mp@subsup{\omega}{1}{}-\mp@subsup{\overline{\omega}}{1}{})]\mp@subsup{]}{g=0}{y=0}
(25c) + similar derivatives in r and }
Again, on multiplying (23) by (w
(26)}B+\mp@subsup{L}{1}{}=Akct
where
(27a) }A=\frac{1}{\mp@subsup{k}{}{2}}\mp@subsup{\int}{0}{\infty}dr\mp@subsup{\int}{0}{\infty}dq|=|\mp@code{sin}\alphad\alpharq{{(\mp@subsup{v}{2}{}-\mp@subsup{\overline{w}}{k}{\prime})[(\Omega-\mp@subsup{\Omega}{23}{})\mp@subsup{w}{2}{}/rq-(u-\mp@subsup{v}{13}{})\mp@subsup{w}{2}{}/rqq]
(27b) LL}\mp@subsup{L}{1}{}=\mp@subsup{\int}{0}{\infty}dr\mp@subsup{\int}{0}{\pi}\operatorname{sin}\alphad\alpha{[(\mp@subsup{\omega}{2}{}-\mp@subsup{\overline{w}}{2}{})\frac{\partial}{\partialq}(y-\overline{q})-(y-\overline{y})\frac{\partial}{\partialg}(\mp@subsup{\omega}{2}{}-\mp@subsup{\overline{w}}{2}{})\mp@subsup{]}{g.C}{\infty}
similar derivatives in }r\mathrm{ and
L
Hion (24) nor (26) is stationary, but suitable combinations may be taken which will have the deiाred property of
*)
(28) }(B+\mp@subsup{L}{1}{})kcot\delta=C+\mp@subsup{L}{2}{}+\mp@subsup{L}{1}{}(kc+\delta

```
graduate school research
6y the fact, previously mentioned, that we do not know whether we are looking for a true minimum or a saddle
oomt. The plot of \(k<\alpha\) versus for \(\mu\) fo (no polarization) shows a fairly sharp minimum, correspondin Co a positive scatter ing length of reasonable magnitude. However. prelim inary calculations show, that the integral.
are extremely sensitive to the value of \(\mu\), and lead one to suspect that the desired stationarity is quite likely are extremely sensitie

```

331 M. Verde, Helv Phys Acta XXII, 339 (1949), 100 (1953)

```
nuclear constitution
Hartree-Foch calculation for a nucleus.

The Hartree-Foch equations are
\((k E) \psi_{i}(r)+\left(\sum_{j} \int \psi_{j}^{*}\left(r^{\prime}\right) v\left(r^{\prime}-r^{\prime}\right) \psi_{j}\left(P^{\prime}\right) \Delta r^{\prime}\right) \psi_{i}(r)\) \(-\left(\sum_{j} \int \psi_{j}^{*}(r) V\left(r-r^{\prime}\right) \psi_{i}^{( }(r) d r\right) \psi_{j}(r)=E_{i} \psi_{i}(r)\) \(V\left(r-r^{\prime}\right)\) is the internuclear potential.
It is the third term in this equation which is awkward because it is not in operator form and it changes for
and each particle. The nucleus we a.
present quite a formidable task.

Fortunately, the third term can be put into operator form and averaged over all particles, so each particle
seems to be traveling in the same effective potential, or ' pot'. The equations then take the form
\(\left[K E_{1}+\sum_{1} \int \psi_{f}^{*}\left(r^{\prime}\right) V\left(r-r^{\prime}\right) \psi_{j}\left(r^{\prime}\right) d r\right.\)
is obvious now that the pot is formed by the last two torms on the left, the classical and the exchange
potential.

The integrations have been carriecour for \(\mathcal{V}\). It has been found that the exchange potential is about \(15 \%\) of the depth of the classical potential.
Ior the \(\psi\) s. It has been found that the exchange potential is about \(15 \%\) of the depth of the classical potential
The shape of the two is similar, the tail of the total pot being about the same as the tail of the internuclear
potentiai. This sast remark was verinied by carrying out a calculation using a Yukawa interaction which has a
long tail compared to the Gaussian interaction. compared to the Gaussian interactio.
It is to be noted that there is nothing self-consistent about the calculations so far. The next step is to
 (r) exchanges \(r\) and \(r\) ' i.e., attracts for symmetric and repels for antisymmetric states, and \({ }^{5}\) is the
trength of the exchange force, \(\xi\) will be varied until the binding energy of the last particle in the 'pot' is the same as it was in the square well.
M. Rotenber

Substivting for \(k\) cot from (26) we obtain
(29) heot \(S=\frac{1}{L_{1}}\left[\left(B+L_{1}\right)^{2} / A-\left(C+L_{2}\right)\right]\)

It may be verified that (29) is stationary with respect to variations in 4 and 4 . which satisfy the boundary
conditions (22). The problem now consists of choosing a suitable tria function \(\%\), dependent on a number variational parameters, and "minimizing" with respect to the parameters. Since we are deailing with phases. Which are not positive de
or a point of inflection.

The integrals which appear in expressions (25) and (27) are in general extremely complicated, mainly as a
reesult of the exchange operators and the mixture of primed and unprimed coordinates. Ang fuction linear in one set of coordinates is a sum of radicals in the sther set, and the exchange operators introduce various sets of such radicals. The best chance of obtaining a reasonable solution lies in the use of Gaussian forms for both the
potentials and the trial functions, since linear forms in the squares of one set of coordinates will again be linear
in the other set. Accordingly we choose for the spatial dependence of the two-body potentials.
(30)

Where we have taken the range of the force as our unit of length. (All the calculations are performed in dimensionless form). The depth \(v_{o}\) is a compromise between the values required to find the deuteron and the triton
correctly: in the absence of tensor forces especially, these two data are at variance: a well deep enough to give
 \(\underset{\substack{w, \text { m. }, ~ \\ \text { relation }}}{ }\)
(31) \(w+m-b-h=1-2 g \approx . b\)

For our trial function we take
(32)

Which satisfies the boundary conditions provided \(2+\sim\) is a constant determined by the deuteron wave function
We therefore have essentially a two-parameter trial function. Putting \(\mu=\) o ocorresponds to the no polarization

 importance of polarization in the low-energy scattering.
acattering length, as usually defined, and the coefficient of t \(\mathrm{k}^{2}\) will be half the effective renge . ties which can be compared with experiment. The exenansion is e effected by performing an analogeous expansion
for each of the quantities \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{L}_{1}, \mathrm{~L}_{2}\) appearing in (24) and (26). ,
With the trial function (32), al the integrals are tractable, using methods which will be discussed in
 these can only be reduced to one dimensional integrals which must then be performed numerically. The remainder


 \({ }^{28}\)

\section*{coulomb wave functiuns}

The irregular solution together with the derivatives of bott and regular and irregular solutions has bee
and successtully p
are given by:
```

F
GL}=\mp@subsup{C}{L}{}(\eta)\mp@subsup{\rho}{}{L+1}\mp@subsup{g}{L}{(\eta,\rho)
F}\mp@subsup{L}{\mp@subsup{L}{}{\prime}}{\prime}=\frac{\partial\mp@subsup{F}{L}{}}{\partial\rho}=\mp@subsup{C}{L}{}(\zeta){(L+1)\rho\mp@subsup{\rho}{}{L}\mp@subsup{\Phi}{L}{}+\mp@subsup{\rho}{}{L+\prime}\mp@subsup{\Phi}{L}{\prime}
G}\mp@subsup{L}{}{\prime}=\mp@subsup{C}{L}{}(\eta){(L+1)\rho\mp@subsup{\rho}{}{L}\mp@subsup{g}{L}{}+\mp@subsup{\rho}{}{L+1}\mp@subsup{g}{L}{\prime}

```
the integrals being
\[
\Phi_{i}(0, \rho)=\int_{0}^{\infty} \cos [\rho \operatorname{conh} \xi-2 h \xi] /[\cosh \xi]^{2 L+2} d \xi
\]

The only essentially new integral is the one
\[
\int d \xi\left(1-\xi^{2}\right)^{L} e^{-\rho \xi+2 h \tan ^{-1} \xi}
\]

\section*{Everything else being done by a simple modification of the program for \(\Phi_{L}\) ( \(\eta, \rho\)}
om the National Bureau of Standards Table
present we are trying to improve the accuracy by making more use of buffers and adjusting the mesh siz
Aaron Temkin
Arnold Tuble
Computation of chemical engineering problems of multistage distillation,
absorption and extraction
The last quarterly period has been devoted primarily to interpretation and presentation of results obtained eariier by machine computation on Whirlwind. No new ma
results have been obtained, largely to refine some details.

It is concluded that this approach is very worthwhile for study of problems in this area, particularly thone

\[
g_{L}(\eta, \rho)=\int_{0}^{\infty}\left\{\left(1+\xi^{2}\right)^{L} e^{-\rho \xi+2 \xi 2 \sin ^{-1} \xi}-\sin [\rho \cos b \xi-2 \xi \xi] /[\cosh \xi\}^{2 L+2}\right\} d \xi
\] in the near future. Consequently they wiis not be dissucused further at this time. There are still a substantial
number of unsolved problems in this field however. It is rece his method of approach.

John F. O' Donnell
response of a five-story frame bullding to dynamic loading Work has been completed on a new program which should more nearly represent the behavior of this
butiting. Our orivinal program assumed infiniely tatifg girdera and thus the formation of all phastic hinges was
limized to the columns. A hand analysis which is now avileble indicates that the tirders in this particular type
 of structure are relatively weak and thus permit the formation of plastic hinges. Our new procedure allows for
some plastic action in the girders and also computes the column resistances in each story as a function of all some plastic action in the girders and also computes the column resistances in each story a
five floor deflections instead of limiting the influence to the two adjacent floor deflections.

Our origigni program has been used for four loading conditions which will be checked with the modified
am. The two programs will then be used to compute the response of the structure for
 loadings which re now being calculated. By using both programs we hope to be able to investigate the effe
on the structure of plastic hinge formation in the girders. A number of hand solutions will be carried out to
check our results.
analysis of a two story steel frame bullding under dynamic loading
The upper story of the two story steel frame building is connected to the lower story by both column The uper story of the two story steel frame building is connected to the lower story by both columni
and diagonals while the lower story ts supported by column only we are interested in determing the dyyamte load which will cause a ppecilied deflection and tuus result in the collappe of the structure.
want to find the effect on the values of the critical load of varying the resistance characteristics.
\[
\begin{aligned}
& F_{L}=+2,898959(10)^{-2} \\
& V_{L}^{\prime} G_{L}-G_{L}{ }^{\prime} F_{L}=+1,000027
\end{aligned}
\]

The bullding is approximated by a two mass aystem as shown below


The upper and lower masses are connected by a plastic resistance \(\mathbf{R}_{12}\) which prevents relative movements between
the two masses until ( \(\mathrm{R}_{12}\) is reached (see below).


FIG. 2

Thereafter ( \(\mathbf{R}_{12}\) ) max. \({ }^{\text {is considered to be the resistance to relative motion. The lower mass is supported by }}\) a spring which supplies a resistance proportional to the deflection of the lower mass but the resistance must
be less than \((\mathbb{R}\)


The building response for each load is carried out to determine the maximum deflection of the lower mass and the maximum relative denection betwen the two masses. New values of the load are calculated and
tried until he eload that causes the required deflections is found. We have devised a trial

 Whether the calculated deflection is too high or too low. The procedure continuous to select middede values of the
increasingly smaller groups untll the critical loading is selected.

The program has been run for six different resistance values and has been checked by hand calcula-
The data for the main part of the program is now being compiled and the problem should be completed tions. The data for the
by the end of March.
reactor runaway prevention
In the past three months considerable progress has been made with calculations pertinent to the safety
of the proposed \(\mathrm{M}, \mathrm{L}\). Nuclear Reactor.
To meet a deadline some undesirable approximations had to be made, but since the calculations have
been reorganized, it is expected that the more precise answers will be obtained soon.
During the next three months a new method will be developed which will make the calculations more
useful and give more accurate answers.

Little progress was made on the relaxation calculation, mentioned in the last report, due to the urgency
of the calculations mentioned above.
M. Troost
2.3 Final Reports
newton analysis of earth resistivity measurements
Very little has been published on direct interpretation of earth electrical measurements. This has prob ably been one of the major reasons for the periodic nuctuations of interest and activity which electrical work
has undergone. In general, the problem of analysis of apparent resistivities to give actual resistivity distribu has undergone. In general, the problem of analysis of apparent resistivities to give actual resistivity dis
titons is a dificicult one because the relations between the parameters of the distribution and the apparent
Trest tionsis a dificiul one because the relations beween the parameters of the distrivutiton and the apparent
resisitivities are not only non-algebraic, they are non-linear as well. All existing interpretation methods, to the extent of this writer's knowledge contain assumptions which simplify the physical situation and, therefor
the algebra. The analysis presented here is no exception. Some methods also contain assumptions of linearity Itter assumptions can be, thert very exceptional cases:

The only published paper relating to direct, practical interpretation is that of Pekeris (1940), in which
phical technique is developed for analysis of the Slichter kernel Stetanesco, 1930) under the assumptions of any finite number of horizontal layers, each homogeneous, isotropic, and thicker than the one above it (Roger 1952). Thumber of horizontal hayers, each hom ogeneous, isotropic, and thicker than the one above it (Roger 1952). This method appears to work quite well in practical cases in which the assump.
are satisfiod. It should be noted that the number of layers is yielded by this analysis.

The method presented here assumes a given (finite) number of horizontal layers, each isotropic and
homogeneous, with no restrictions (other than those imposed by the physicas) on the values of thicknesses and homogeneous, with no restrictions (other than those imposed by the physics) on the values of thicknesses and
reesistivities. Mathematically, it is an iterative solution to sets of non- - inear algebraic equations in several
 Herations may be required for a solution .omis mel think of this no more than an exerchise in algebra. However
high-speed digital computer. Even now some would ligh-speed digtital computer. Even now some would tink or this no more than an exercise in alyebra.. However,
only by utilizing to the fullest these rapidly increasing computing faccilites will progress in geophysical analysi
be made. be mad

The advantage of direct interpretation, as opposed to indirect approaches such as visual curve matching
model study, is seldom fully appreciated. 1 a stems from the excessive sensitivity of the solutions of the kind or model study, is seldom fully appreciated. As stems from the excessive sensitivity of the solutions of the kind
boundary value problem considered here to small changes in the boundary conditions. Stated inversely, this is


\section*{APPROVED FOR PUBLIC RELEASE. CASE 06-1104.}

Morse ( 1953 , p. . 899 . Thus, a very amall difference between curves of, say, apparent resistivity can mean very
great differences in actual conductivity d dithe



The physical situation, as mentioned above, consists of the hall-space \(Z \geqslant 0\). (circular-cylindrical
coordinates) made up of a given finite number of turata paralle to the surface \(z=0\). Each stratum has thicl

 \(\mathrm{R}=\left(\mathrm{r}^{2}+\mathrm{s}^{2}\right)^{1 / 2}=\infty\). The quantity analyzed
is the potential as a function of distance along the
surface from the point current source, \(\phi(r)\).


In any given field situation, the validity of the assumptions of parallel horizontal layering, homogeniety and
isotropy, if not obvious, can be tested. There are certainly areas where these hold. The assumption of some lsotropy, if not obvious. can be tested. There are certainly areas where these hold. The assumption of some
given number of layers is not much of a limitation, since an excessive number can be easumed. The enalysis



Mathematical Analysis
In the case, as here, that resistivity is a function only of depth
-
(1) \(\varphi(r)=\int_{0}^{\pi} k(\lambda) J_{0}(\lambda r) d \lambda\)

Where \(k(\lambda)\) is a function determined by the way in which the resistivity varies with \(z\), and \(\lambda\), for the pur-
poses of this description, can be called a parameter of integration. The function \(k(\lambda)\), is called the Slichter
 the parameters of the function (Stefanesco, 1930; Slichter, 1933; Langer, 1933, 1936; Pekeris, 1949; Sunde, 1949,
King, 1933). This King, 1933. This is the case for stepwise variations, such as ours, and for real or imaginary exponential varia-
tions, among others., A Aystemic representation of \(k_{n}^{\prime}(2)\), the kernel for \(n\) layers, appears in Sunde (1949, p. 54).
(2) \(k_{1}(\lambda)=\left[1-\mu_{12} \ldots, t_{1}\right] /\left[1+\mu_{12} \ldots, t_{1}\right.\)

\[
\mu_{(m-1) m-n}=\frac{\rho_{m i 1}-\rho_{m} k_{m(m+1)}, n}{p_{m-1}+\rho_{m} m_{m}(m+1) \cdots n} \quad, t_{m}=e^{-2 \lambda d_{m}}
\]

This expression is obviously non-linear in all parameter
Fortunately, equation (1) is a Hankel transforpy, and can be inverted to give
(3) \(k(\lambda)=\lambda \int_{0}^{\infty} r \varphi(r) J_{0}(\lambda r) d r\)

This relation permits the evaluation of a slichter kernel from a set of field measurements.

Numerical Analysis

\[
\begin{aligned}
m & \geqslant 2 n-1 \\
j & =1,2, \ldots, m
\end{aligned}
\]

We then have \(m\) non-linear algebrate equations in \((2 n-1)\) unknowns, and the remaining probiem is purely numerical. General methods for handling this problem are described in the literature (see, for example, von Sanden, 1923 , or
Householder, 1953). The method first used, and described here, is a combined Newton-Least Square solution.

Let the field kernel \(k(\lambda)\) calculated for \(\lambda=\lambda_{i}\), \({ }^{\text {be }} k\left(\lambda_{i}\right)=k_{1}\). Assuming an \(n\)-layered structure,
\(k_{n}\left(\lambda_{i}, X_{i}^{(0)}\right)-K_{i}=k_{n_{i}}^{(0)}-K_{i}=\epsilon_{i}^{(0)}\)
\(k_{n}\left(\lambda, x_{1}\right)-k_{i}=k_{n}-k_{i}=0\)
Here the \(X_{\ell}\) are the \(\rho_{1}\) and \(\mathrm{d}_{1}\), with \(\ell=1,2, \cdots, 2 \mathrm{n}-\mathrm{i}^{*}\). Likewise, for a second approximation to the parameters.
(1)
\(x_{i}^{(i)}, \quad k_{n}^{(1)}-k_{i}=\epsilon^{(1)}\)
\[
\begin{aligned}
& k_{n_{i}}-K_{i}=\epsilon_{i} \\
& \epsilon_{i}^{(1)}-\epsilon_{i}^{(0)}=\Delta \epsilon_{i}^{(1)}=k_{n_{i}}^{(1)}-k_{n_{i}}^{(0)}=\Delta k_{n_{i}}^{(1)}
\end{aligned}
\]

The further assumption is made that the kernel can be expanded in a Taylor Series about the value from any
\[
k_{n}\left(\lambda_{i}, x_{l}^{(0)}+d x_{l}\right)=k_{n_{i}}^{(0)}+\sum_{i=1}^{2 n-1}\left[\frac{\partial k_{n_{i}}}{\partial x_{\rho}} x_{j}^{(0)} d x_{l}+\frac{\partial^{2} k_{n^{2}}}{\partial x_{j}^{2}}\right)\left(d x_{l}\right)^{2}
\]
\(\qquad\)
In particular
\(\left.K_{i}=k_{n_{i}}^{(0)}+\sum_{l=1}^{2 n-1}\left[\frac{\partial k_{n_{i}}}{\partial x_{l}}\right)_{x_{l}^{(0)}}\left(x_{l}-x_{l}^{(0)}\right)+\frac{\partial^{2} k_{n_{i}}}{\partial x_{l}^{2}}\right)_{X_{l}^{(0)}}\left(x_{l}-x_{l}^{(0)}\right)^{2}+\) cross terms and higher \(\quad\) derivatives
The Newton Method of first approximation then states
\(\left.k_{n_{i}}^{(1)}=k_{n_{i}}^{(0)}+\sum_{l=1}^{2 n-1} \frac{\partial k_{n_{i}}}{\partial x_{l}}\right)_{x_{l}^{(0)}} \Delta x_{l}^{(i)}\)
It is seen that this is an approximation which becomes more nearly exact as the second and higher derivatives, and cross derivatives, dimiminsh in magnitude relative to the first derivivives, and that the statement is exact onil the case that the function is Linear in its variables. Such is definitely not the case with the Slichter kernel, as
seen from equation 2 . However, within a very small range even exponentiale can be epproximated by straight
 to the true values \(X_{f}\).
-See the Appendix, or Mooney and Wetzel (1955). The latter is especially well sulted to hand calculations. Actually, the values of , Mooney and
and there are only \((2 n-3)\) unknowns

Then

(4) \(\left.\quad\left[a_{\rho f}^{(s)}\right]\left\{\Delta x_{f}^{(s+1)}\right\}=\left\{b_{f}^{(s+1)}\right\}, d_{f f}^{(s)}=\sum_{i=1}^{m} \frac{\partial k_{n j}}{\partial x_{j}}\right)_{x_{f}^{(s)}} \frac{\partial k_{n}}{\partial x_{j}} x_{l}^{(r)}\),
evaluated at \(X_{f}^{(n)}, X_{f}^{(1)}\)
36

The question arises as to the behavior of the solution at minimum error, when this minimum value is
er than zero, and when, in particular, tue targest portion of the error is due to a single point. Reterence to squation 4 shows what will occur in this situation. The partial derivatives change very hittle over a small range
 parameter changes. As the error due to the erratic point is decreased, the errors due to the other poimts (whit

Computation Procedure
The fore going was a rather complete statement of the problem and the attempted solution. A program was
written for the Whiriwind 1 computer to handle the three-layer case. As mentioned in a footnote, in the practical written for the Whirlwind 1 computer to thandle the three-layer case. As mentioned in a fotuote in the pract
case both \(\rho_{1}\) and \(\rho_{3}\) are known, hence the unknowns remaining are \(\rho_{2^{\prime}}\). \(d_{1}\), and \(d_{2}\). The input data were:
a) the number and values of \(\lambda\)
b) the values \(\rho_{1}\) and \(\rho_{3}\), and the estimates of \(\rho_{2}, d_{1}\) and \(d_{2}\)
and c) the \(K\)
For most cases, ten values of \(\lambda_{1}\) were used, in the range from \(\lambda=1,0\) to \(\lambda=0.006\). All resistivities were
reduced to \(\rho=1.0\), and \(\rho_{2}, d_{1}\) and \(d_{2}\) were estimated from the kernel behavior or from apparent resistivities. Theoretical three and four-layer kernels and field kernels were analyzed. Several hundred theoretical kernels were calculuated, with seven to eight place accuracy, on Whirlwind. Field kernels were integrated
Whirlwind, as described in the Appendix Whirlwind, as described in the Appendix.

The machine calculated all the elements of the matrix, solved the matrix using Crout's method (Hulde-
 until the solution blew up, indicatinge of several situations, to be discussed in the following sections
\begin{tabular}{l}
\(\begin{array}{c}\text { Several practical computational difficulties should be mentioned. First, the kernel for the three layer } \\
\text { case is (using the notation of Sunde, 1949, p. } 55 \text { ) }\end{array}\) \\
\hline
\end{tabular}
\(k_{3}(\lambda)=\left(1-\mu_{i 27} t_{1}\right) /\left(1+\mu_{12 T} t_{1}\right)\)
\(\mu_{123}=\left(\rho_{1}-\rho_{2} k_{23}\right) /\left(\rho_{1}+\rho_{2} k_{23}\right)\)
\(k_{27}=\left(1-\mu_{23} t_{2}\right) /\left(1-\mu_{23} t_{2}\right.\)
\(\mu_{23}=\left(\rho_{2}-\rho_{3}\right) /\left(\rho_{2}+\rho_{3}\right)\)
and \(t_{1}=e^{-2 \lambda d_{1}}\)
\(t_{2}=e^{-2 \lambda d_{2}}\)
The algebra was simplified by using throughour
\(\left.f_{3}(\lambda)=1\right)\)



calculation, increasing to 1.0 near the end. If a solution begni to diverge after an increase of \(M\), the next smaller
value of \(M\) wan brought
The Crout solution was used because it is economical of machine storage. It does not take advantage of the symmetryy of the matrix, and thus woutd not be used in the case of more variables. Alsoo, the accuraceg 1s
especially sensitive to the range of vartation of the diagonal elements, and it was found quite important in some cases

Another suggestion, although it was not followed in these calculations, is that once the solutions stop changing
rapiday the derivatives need not be calculated at each iteration, but rather, the same values may be used for sev-
eral titeratione.
It is important to note that the kernels for very large and very small values of \(\lambda\) need not be considered,
since these values will be monopolized by \(\rho\) and \(\rho\). respectively, which are treated as knowns.
Results

The three layer kernele were all known to seven place accuracy. However, the analyses were done on data rounded off to three place accuracy, as would be the case for field data. In addition, several of the same
cases were teted with more places of accuracy to observe the improvement in the solution. Runding off the data
in this fashon


 to any degre
- sion for \(k_{\mathrm{p}}\)
the first estimate of the cases presented, this procedure was unable to give a solution which was any better than proceedingt, ande. This is probably due to irregularities on the error "surface", along which the titeration is a modified "steepest descent" method was tried, Preliminary results indicate that this will help this hypothe pis done in this direction.
It will be noted in the results which follow that some kernels have been analyzed more than once. This
a) changing the first estimates
b) changing the accuracy of the kerne
and c) changing the size of M , the parameter change multiplier
With regard to a), it was found that there exists a certain range, about true value, for each of the variables, within Which the solution will be substantially the same regardess of the firat estimates. Qualitative investigation of the size of this range leads us first to the question of uniqueness of the solution. It is the author's s belief, although
it has not been proven, that for completely accurate data only one physically allowable solution exists (excluding
 obvious for the many- layered cases. Conver gence of this analysis from any starting point whatever, as stated
above, would require e smoth error "surface" (the multi-dimensional surface generated by the curves traced
out ty the error
 the larger the allowatle M and the more rapid the conver gen
make machine solution of the problem much more difficult.
Increasing the accuracy of the kernel data in every case improved the quality of the solution, as expected.
The amount of improvement catt bc zeen in case \(8,13,14,17\) and 19 .
 nterpolating. Since the error calculation is the most time-consuming portion of each teration, it is seen that wech a procedure would be impractical. Instead, it was found empirically that a small M was required at the
peginning of the solution, but that after about 15 Herations the process had stabilized sufficiently to ollow much
 \(M=1\). In the event that a step gave a arge increas
the previous step and the next smaller value of \(M\).
As a test of the stability of the procedure, three four-layer kernels were analyzed with the three-layer
 layer kernels. The same general tendencles might be expected of field kernel analyses. A
result tis that this analysisis (in these three cases) tends to ignore the thirc of the four layers.
The ultimate test of the method, of course, Is what it will do with field data. Five such cases were tested,

Case A did not satisfy the assumptions in two respects. First, the \(r\) \(\phi\left(\begin{array}{rl}\text { ()did not reach a constant value }\end{array}\right.\) urve (see Fig 2) and by another thken in andirection perpenditicular to that of the one the apporn. Drilling estivivity cood conductor at 6.2 units of depth and below. Note that the solution is degenerate.
Case B a
depth and below.
Case C Crom the apparent resistivity curves, would seem to be at least a four-layer case, No drill hole
xisted in the aren
Case D from the
but no drill holes exist.
Case E appears to be at least a four-layer case, however, the solution obtained degenerates to a two-layered
Case
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{First Estimate} & \multicolumn{4}{|c|}{Solution} \\
\hline \[
\begin{aligned}
& P_{1} \\
& d_{1}
\end{aligned}
\] & \[
\begin{aligned}
& p_{2} \\
& d_{2}
\end{aligned}
\] & \(\rho_{3}\) & \[
\sum_{i=1}^{00} \epsilon_{i}^{2}
\] & \[
\begin{aligned}
& p_{1} \\
& d_{1}
\end{aligned}
\] & \[
\begin{aligned}
& p_{2} \\
& d_{2}
\end{aligned}
\] & \(p_{3}\) & \(\sum_{i=1}^{10} \epsilon_{t}^{2}\) \\
\hline \({ }^{1 .} 15\) & \({ }_{7.0}^{2.0}\) & 1.48 & \(8.5 \times 10^{-2}\) & \({ }^{1.145}\) & \({ }_{271.3}^{1.53}\) & 1.48 & \(2.4 \times 10^{-4}\) \\
\hline \({ }^{1 .} .2\) & 4.6 & . 2 & \(1.7 \times 10^{-3}\) & \({ }^{1} .152\) & \({ }_{2.68}^{\text {.641 }}\) & . 2 & \(1.2 \times 10^{-5}\) \\
\hline \({ }^{1 .} 5\) & 4.4 & . 21 & \(3.7 \times 10^{-2}\) & \({ }^{1} .271\) & \[
\frac{.252}{5.72}
\] & . 21 & \(1.77 \times 10^{-4}\) \\
\hline \({ }^{1}\). & 2.95 & . 175 & \(1.2 \times 10^{-2}\) & \({ }^{1.243}\) & .708
.882 & . 175 & \(3.1 \times 10^{-7}\) \\
\hline \({ }^{1 .}\). & 5.2 & . 147 & \(1.2 \times 10^{-2}\) & \({ }_{-1.70}\) & \[
\begin{gathered}
1.00 \\
+23 \\
+23
\end{gathered}
\] & . 147 & \(2.1 \times 10^{-5}\) \\
\hline
\end{tabular}



\section*{EIBLIOGRAPHY}

Hildebrand, F. B., Advanced Calculus for Engineers, Prentice-Hall, Inc., 1949 ,
Methods of Applied Mathematics, Prentice-Hall, Inc., 1952
Househer A S. Principles of Numerical Analysio, McGraw- Hell 1953
King, L. v... "On the flow of electric current in semi-infinite stratified media", Proc. Roy. Soc. A-139
Langer. R. E. "An inverse problem in differential equations", Bul. American Mathematical Society, series
39. pp. 14-820, 1933.

Mathematical Society, series 2,42 , pp. 747 - 754 , 1936 . Mathematical Society, series 2, 42 , pp. 747-754, 1936 .
Mooney. H. M., and wetzel, w. w.. "The potentials about a point electrode and apparent resistivity curves for
Mooney. H. M. and Wetzel, W. W. ". "The potentials about a point
Sour-layer earth", to be pubished in Mining Engineering.
Morse, P. M., and Feshbach, H., Methods of Theoretical Physics, McGraw- Hill, vol. 1. 1953.
Pekeris, C. L., "Direct method of interpretation in resistivity prospecting", Geophysics, vol. 5. pp. 31-42, 194. Rogers, G. R., Personal communication, 1952.
von Sanden, H., Practical Mathematical Analysis, Methuen 1923
Slichter, L. .,." "Interpretation of resistivity prospecting for horizontal structure", Physics, vol. 4, pp. 307-322
also erratum, p. 407, 1933.
Stefanesco, S., Schlumberger, C., and Schlumberger, M., "Sur la distribution electrique potentielle autour d' une

Sunde, E. D., Earth conduction effects in transmission systems, Van Nostrand, 1949.
Acknowledgments
The writer is deeply grateful to Mr. Theodore R. Moden, who suggested the approach to the problem and


The procedure used to integrate
```

 k(\lambda)=\lambda\mp@subsup{\int}{0}{\infty}r\varphi(r) J J (\lambdar)dr
    ```
was as follows. The potential data \(r \phi(r)\) were given for a finite number of poinsts, \(r\). These are usually at
30 , 50 o or 100 foot intervals, depending on the electrode send
that beyond a cert inervals, depending on the electrode spread used. The assumption br three layers dictate

Mectium of resistivity \(P_{3}\), and should there tore van
value of this constant is determined in this fashion
    \(\frac{\varphi\left(r_{1}\right)}{r_{i+1}}=\frac{\varphi\left(r_{+1}\right.}{r_{r}}\)
    \(\varphi\left(r_{1}\right)-\varphi\left(r_{1}\right)=\Delta \varphi_{j}\)
The quantities \(r_{j} \cdot r_{j+1}\), and \(\Delta Q_{j}\) are measured, and
    \(\phi\left(r_{j}\right)=\frac{r_{1}}{\gamma_{j}}\left[\phi\left(r_{j}\right)-\Delta \phi_{j}\right]\)
\(\phi_{\text {was extrapolated to }}=-\frac{r_{i+1}}{t} \Delta \phi_{j} /\left[1-\frac{r_{1}+1}{r_{1}}\right]\)

one fitted to the last 15 points, the other to the first 6 points, where changes were more rapid. These then gave
one neer to the last 15 points, the other to the first 6 points, w
two series which represented the \(r \varphi(r)\) in the intervals named
        \(r_{j} Q\left(r_{j}\right) \approx c_{0}+c_{1} P_{s}^{\prime}+c_{2} P_{s}^{2}+\cdots+c_{s} P_{s}^{s} \equiv P_{1} \quad, j=0,1,2,3,4,5\)
    \(r Q(r) \approx d_{0}+d_{1} P_{s}^{\prime}+d_{2} P_{s}^{2}+\cdots+d_{s} P_{s}^{s} \equiv P_{2} \quad, j=5,6, \cdots 19\)
    Rearranging by powers of \(r\)
    \(p_{1}=g_{0}+g_{1} r+g_{2} r^{2}+\cdots+q_{5} r^{5}, \quad j=0, j, b\)
    The integral becomes
\(K(\lambda) \approx \lambda \int_{0}^{r_{5}} p_{1}(r) J(\lambda r) d r+\lambda \int_{r_{5}}^{r_{19}} p_{2}(r) J_{0}(\lambda r) d r+\lambda r_{1+} \phi\left(r_{1+}\right) \int_{r_{i}}^{\infty} J(\lambda r) d r\).
    where, of course, it is assumed that \(r \varphi(r)\) is constant beyond
    \(k(\lambda)=2 \sum_{i=0}^{5} g_{\rho} \int_{0}^{r_{s}} r^{\rho} J_{0}(\lambda r) d r+2 \sum_{f=5}^{19} n_{r} \int_{r_{t}}^{r_{1+}}+\rho_{J_{0}}(\lambda t) d r+\lambda r_{1 T} \varphi\left(r_{t+}\right) R_{i q}\)
    \(\underset{\text { But the integrai }}{R_{i}}=\int_{r_{i}}^{\infty}\)
    \(\int_{a}^{b} r J_{0}(\lambda r) d r\)
```

can be evaluated analtyically, viz:
\int}\mp@subsup{\int}{b}{b}\mp@subsup{J}{0}{\prime}(\lambdar)dr=\frac{2}{\lambda}[J(\lambdat)+\mp@subsup{J}{3}{}(\lambdar)+\mp@subsup{J}{5}{}(\lambdar)+\cdots\mp@subsup{]}{2}{b
\mp@subsup{\int}{a}{b}r\mp@subsup{J}{0}{}(\lambdar)dr=\frac{1}{\mp@subsup{\lambda}{}{2}}\mp@subsup{J}{1}{}(\lambdar)\mp@subsup{]}{a}{b}

```





```

 etc.
 The Jowere calculated by the machine using, at most, thirty terms of the series. It was found important
lol
functions.

```



. 1 Institute Courses and Seminar
machine-aided analysis
Sixty-one students attended the electrical engineering course 6.25 entitled Machine-Aided Analysis which
cas offered dirst semester, 1954. The course, under the Electrical Engineering, was given jointly by Prots. Linvill, R.C. Booton, and C. W. Adame

Both analog and digital computational techniques were studied, as well as the numerical analysis and the
of engineering problems by numerical methods. Athough the emphasis was on typical engineering solution of engineering problems by nume rical method
problems, some business problems were taken up also.
As practice in analog computational techniques, the facilities of REAC (Reeves Electronic Amalog Computer
of the Servomechanisms Laboratory at MIT were used by the students for the solution of an ordinary differential of the Se

In connection with the study of digital computational techiquus, a problem (see Problem 1221 in Part II ot the present report) was proyammed by each student for TAC, the summer session Three Address Computer
The faccilities of the Digital Computer Laboratory were used by the student for the preparation of tor The faccilities of the Digital Computer Laboratory were used by the students for the preparation of their routitnes
Time was made available for each student to be present at the running of his routine, tor the correction of mis-
takes, and for the re-running of the routine.
introduction to digital computer coding and logic
Sixty-five students are enrolled in course 6.535. Introduction to Digital Computer Coding and Logic,
. seing given second semester, 1955, by Mr. D. N. Arden, Staff member of the Scientific and Engineering Compu-
tation Group of the Digital Computer Laboratory. The course will survey arithmetical algorithme used by highation Group of the Digital Computer Laboratory. The course will survey arithmetical algorithms used by high.
peed digital computers and a discussion will be given concerning representation of numbers using an arbitrary speed digital computers and a discussion will be given concerning represestation of numbers using an arrit simplified computer, practice in writing subroutines, and the design of an inter pretive code will aloso be given, Also be consididered. The students will be given practice in the practical apping of some of these techniques by
vumerical analysi
This year. for the first time. Professor Hildebrand is giving a second semester course in Numerical
is, M412. This semester the content of the course is made up of the following topics: Least-squares Analysis, M412. This semester the content of the course 18 made up of the following topics: Least-squares
approximation, smoothing of data, quadrature formulas of Gauss and Chebyshev types, harmonic analysis, expo approximation, smothing of data, quadrature formulas of Gauss and Chebyshev types, harmonic analysis, exponen
(ial and trimonometric apporimation, determination of periodicities, Chehyshev vapproximation, continued fraction expansions and rational -function approximation, numerical solution of partial differential equations.
machine methods of computation and numerical analysis
The biweekly seminar for the project reported in Part I of the present report has contimued into the second semester of the academic year. Its purpose and place in the educational
in the past quarterly report under the section headed Group Activities.
3.2 Group Activities
numerical analysis discussion group
A group made up of (1) numerical analysis representatives of the Committee on Machine Methods of Computation and (2) nameematciuns of the Digital Computer Latoratory hive continued to meet informaly as wis
eported last time. Some of the discussions have been a continuation of last semester's topics (see previous
 urther new Ideas or results that the group might contribute to, discuss, or criticize will be published in inter
rogress reports under the same title, "A Study of the Basic Problem of Numerical Analysis Expressed in the Language of Computing Machines".
academic procram
coulomb wave functions
The programming of Coulomb Wave Functions, being carried out jointly by some physics department
. members of the Commire 1.
report, section 2.2, Part.
numerical analysis laboratory
The supervision of the Numerical Analysis Laboratory, which is open approximately 8 hours a week
ction with Professor tildebrand's course M412, and the grading of the homework problems are being conjunction with Professor Hildebrand's sourse M412, and the gradin
done by M. Dooghis Mcllioy, Phlip M. Phipss, and Anthony Ralston.

\section*{part il}
Project Whirlwind
1. review and problem index

This report covers the specific period of December 26, 1954 to March 20, 1955. During this time 66 pro Cems made use of 326,27 hours of the 461 hours of Whirlwind icomputer time allocated to the ccientific and
Engineering Computation (S\&EC) Group. These problems cover some 15 differen fields of applications. The results of 22 of the problems have been or will be inclusded in academic theses. Ot these, 19 represent doctora
theses, two master's, and one Electrical Engineering. Thirty-seven of the problems have originated from Theses, two master's, and one Electrical Engineering. Thirty-seven
research projects sponsored at MIT by the Office of Naval Research.
Two tables are provided as an index to the problems for which progress reports have been submitted. The first table arranges the problems according to the field of application indicating the source of each
problem and the percent of the WWI machine time consumed. The second table attempts to arrange problem and the percent of the wwi machine e ime consumed. The second table attempts to arrange the
reports according to the principal mathematical probem involved in each, In each table lettere have bee
added to the problem number to indicate whether the problem is for academic credit and whether the prob. added to the proble
lem is sponsored.

It is interesting to note that no programmer has reported difficulties due to maching
Even though nomat Even though no major modifications were introduced into the compre hensive system of service routines
edevelopment of new coding techniques by the S\&EC Group was extended by the development of translation programs for MIT's Numericaly Controlled Milling Machine and for the use of members of the Servomechanisms
Laboratory in coding for the Univac Scientific 1103 computer.
problem index

\begin{tabular}{|c|c|c|c|c|}
\hline note & Dencrution & Probem & \(\xrightarrow{\text { swm }}\) & saves \\
\hline Sersmutical & Low ampect ratio flutter
Blast response of aireraft & imic & ais & \(\underset{\text { mar }}{\text { mar }}\) \\
\hline & Matajer raur numuy & me.c & & \%er \\
\hline \multirow[t]{2}{*}{Comberer} & Six-componenit diatillation variable enthalpy and *quilibrium data
Tranaient effects in diatillation & Hine & 3 & err \\
\hline &  &  & 1,38 & arr \\
\hline \({ }_{\text {cove }}^{\text {creme }}\) &  & \% \(3020 . \mathrm{c}\) & i, 17 & \(\underset{\text { ant }}{\text { ant }}\) \\
\hline netrial &  &  & is & \(\stackrel{\text { mir }}{\text { wir }}\) \\
\hline \multirow[t]{2}{*}{cheme} & Coephival ata momou & ,10e c & \({ }_{2}^{2,38}\) & mir \\
\hline & & P12.c & 1.48 & sir \\
\hline \multirow[t]{3}{*}{Lutamation} &  &  & \% & mir \\
\hline &  & \(323 . \mathrm{c}\) & 2, 315 & \({ }_{\text {mir }}^{\text {mir }}\) \\
\hline &  & \({ }_{30}^{30 . c}\) & 318 & mir \\
\hline Autamome tat &  & \(\pm\) & \% & \(\stackrel{\text { arr }}{\text { arr }}\) \\
\hline Lhatersers, &  &  & 1.27 & \(\underset{\text { mir }}{\text { mir }}\) \\
\hline \multirow[t]{2}{*}{} & poor compromate notat & 120 & 1.70 & mar \\
\hline &  & .120. c & 1.96 & mar \\
\hline \multirow[t]{3}{*}{moterotoce} & Somer &  & en & \(\underset{\substack{\text { and } \\ \text { ant }}}{\text { ant }}\) \\
\hline &  & & & \\
\hline & Sutheoprouro preaction &  & & mir \\
\hline \multirow[t]{8}{*}{} &  & (ita &  & , \\
\hline &  &  & , & , mir \\
\hline &  & \% & , & mir \\
\hline &  &  & 3, 30 & Nor \\
\hline & Ctiomic meruir & cismex & \({ }_{\text {L }}^{12.07}\) & \(\underset{\text { mar }}{\substack{\text { mar } \\ \text { ent }}}\) \\
\hline &  & cise &  &  \\
\hline &  & 26, & : 8 & mir \\
\hline &  & cosmen & ,18 & \(\underset{\substack{\text { mart } \\ \text { nar }}}{\text { mar }}\) \\
\hline &  & & . 12 & \(\stackrel{\text { mir }}{\text { mir }}\) \\
\hline  & mamime & \({ }_{23}^{350} \mathrm{c}\) & .10 & marr \\
\hline  & Minem merceter arral & \({ }_{30}^{20 . c}\) c. & * & \\
\hline Satreem Nowert &  & \({ }_{23,} 38\) & . 21 & mirr \\
\hline  &  &  & & \({ }_{\text {nur }}^{\text {mar }}\) \\
\hline &  & -191 & (inco & \\
\hline & & 108, c & \% & \\
\hline & Sombersem & \({ }^{196}\) & . \(n\) & art \\
\hline & programming
Course 6.25 , Machine-aided analyais
WWI-EHA 1103 tranalation srogram &  & \[
\stackrel{\leftrightarrow}{i n}
\] & \(\stackrel{\text { mir }}{\text { mar }}\) \\
\hline
\end{tabular}

\subsection*{2.1 Introduction}

Progress reports as submitted by the various programmers are presented in numerical order in
Sectton ?.2. Sifce thts summary report tresents the combined efforts of DIC Projects 6345 and 6915 , reporit on problems undertaken by members of the Machine Methods of Computation Group have been omitted from
section 2.2 of Part II to avoid duplication of Part 1 Suitable cross reference has been included in Section 2.2 of
Part II for completeness.
 (185, 186, 211, 222, 254, and 249) have been completed.
Tables \(2-1\) and \(2-I I\) have been set up to provide the reader with a convenient index to various interesting
aspects of the problems. Table \(2-\mathrm{I}\) lists the problems according to their fields of application and indicates the
 The mathematical problems and procedures involved in the various current problems are tabulated separately
in Table 2 -. It In pot tables. problem unimers prefixed by basterisks represent work being pertormed by mem-
bers of the Machine Methods of Computation Group.

Letters have been added to the problem numbers to indicate whether the problem is for academic credit
A implies the problem is NOT for academic credit, is UNsponsored.
B implies the problem is for academic credit, is UNsponsored.
\(c\) implies the problem is NOT for academic credit, IS sponsored.
D implies the problem is for academic credit, is sponsored.
N implies the problem is sponsored by the onk
\(L\) implies the problem is sponsored by Lincoln Laboratory,
The absence of a letter indicates that the problem originated within the S\&EC Group. No major changes have been introduced into the comprehensive system of service routines (Problem 100),
However, cerrain conveninencs such as the inclusion of program annotations on the Flexowriter tape, optional
supression of the foatinced sowever, certain conveniences such as the inclusion of program annotations on the Flexowitier tape, optional
sogering procecedures hoating addavess been tincore usporate of automatic scope output requests, and improvements in the

Members of the StEC Group have been active in the development of special pseudo codes and translation
nes for the MiT Numerically Controlled Milling Machine (Probiem 250) and the Univac Scientific Model 1103 routines for
(Problem 256)
2.2 Problems Being Solved
100. COMPREHENSIVE SYSTEM OF SERvice routines

The comprehnsive system of service routines has been developed by the Scientific and Engineering,
mputation (SAEE) Group to simpliy the process of coding for WWL. The system now in use, called CS II, Computation (SAEC) Group to simplify the process of
was described in Summary Reports No. 36,37 , and 38 .

CSI provides for: 11 the direct read-in of Flexowriter-coded perforated paper tapes; 2) the logging of natruction tucluding interpretive programmed-arithmetic (with an optionaly floring reaad-in of a a oo several hundred cycle counters (B-boxes), output routines, error detection, and auntomatic post-mortem, up
Routines are normally coded with mnemonic operations, symbolic addresses, relative addre sses, progran
a preset parameters, special pseudo-codes, and special control words. The service and preset parameters, special pseudo-codes, and special control words, The service rovitines are permane progra
stored on magetic tape and are transferred to a magnetic drum for automatic selection during read-in.
No major revisions wer
a have been incorporated.

The CS conversion program has been modified so that commenta can be typed on a Flexowriter tape along with the words in the coded program, A comment must be preceded by a vertical bar
carriage return. Comments are ignored by the conversion program. For example.
```

 si 78 |select magnetic tape unit
    ```

Revision of Automatic Output Routines
The automatic output routines DIB, DOB, iDIB and iDOB have been rewritten and sho
The programs have been modified to include recording on and reading from the buffer drum.
Flad Table Suppression
Printing of a floating address (nad) table as a result of a cs conversion can now be suppressed at the
. option of the programmer. This can be done either by using the e
number in the selector panel and using the manual read-in mode.
Modification of the Logging Program
The logging program has been modified so that time entries are made in the log both at the beginning of magnetic tape search for a a utility programa and at the terminition of tha e ead--in of the tuthity program. The
esulting time increment will be subtracted from the total run-time for a problem by the automatic biweekly resulting
program.

Modification of the Stop Instruction
The STOP instruction has been modified to make a time entry in the log whenever one is executed, The
Modification of the Title Recording Program
 Lapes or post-mortem request (fp),
The reference date and time are recorded on the buffer drum by the operators at the beginning of the
omputer operating period. An automatic indexing of the date occurs if the operating period extends beyond computer ope
2400 hours.
atomatic Biweekly Progran
An automatic biweekly program has been written which will process all logging tapes produced during a
oiweekly period and produce a typed summary of computer operation for that period.
The typed summary consists on
1. time used by each probiem
2. lost time due to machine malfunction
3. accumulation of all the time used by all the problem
4.time used for checking auxiliary equipment
. number of problems run
6. number of programs run
unused time (time between runs).

This program wil automatically deduct time due to operator's errors, tape room errors, etc. It will
also deduet tume used for searching purposes, tor instance searching for CS II or the scope post-mortem on also deduet tume used for searching purposes, for instance searching for CS II or the scope post- -mortem on
magetic tape. This program will print on the direct Flexowriter the date and initiol time each logging tape
atarted.

The use of loging tapes has reduced the time needed to prepare the SAEC biweeky report from more than 15 hours to about 20 minutes. This new procedure e has eliminatrot dme
that was necced to prepare the records pertinent to the biweekly statistics.
The time used in preparing the biweekly program is logged under problem 100. The loging routines will
continue to be studied with regard to increasing their flexiblity and functions. In particular it is pinnoed to continue to be studied with regard to increasing the ir flexiblity and functions. In particul.
include in these routines the actual billing for non-ONR, non-Lincoln sponsored projects.
Automatic Scope Output Requests
 programmers uing in
introduced. A detailed description of these instructions may be found in Memorandum DCL-48.
106 C. MIT SEISMC PROJECT
As discussed in various previous reports, Problem 106 is concerned with the investigation of the use of



The most recent approach to our problem has been a study of the statistical nature of the interference
mentioned above and its relation to the physical mechanisms of generation. The hope is that this study should
provide a basis for developing and tor evalunting existing procedures of did
Computationally we are dealing with the finctions of genoralized harmonic analysis - correlation, spectrin mary reports. Estimates of these quantities on actual data are compared with theoretical and experimental
estimates on truly estimates on truly stationary series, and interpreted in the light of various types of decomposition.
"ity" "mey have a a wide range of type rangine frem abee approximates stationary series, but that the "station nearly step function behavior of the spectrum, An observed example of this latter extre power spectrum to
 in terms of decomposition. We have also been abbe to explain certain problems in noise removal, and develop
new techniques from the understanding we have gained.
Research reports are sent to a restricted group of supporting companies, but reproductions may be
obtand through the specinal collection division of the M.L.T. Hayyen Library, six months after the reports are
sent to the companies. Occasionally papers are published in GEOPHYSICs. GEOPHYSICS.
The programming has been done by s. Simpson, D. Grine, S. Treitel, and I. Calnan, all of whom are
ussociated with the MiT Department of Geolog and Geophysices.
io8 c. an interpretive program
This problem is aimed at the development of a set of algebraic routines for Whirlwind I; i.e., a set o routines permitting the translation by Whrriwind of a protlem stated in algebratc notation. Principal programn
are at present \(J\). H. Laning, Jr, and C. Alock of the MIT Instramentation Laboratory. are at present J. H. Laning, Jr. and C. Block of the mit Instrumentation Laboratory.
Due to the pressure of other more urgent work, small progress has been mate on this problem during
the past quarter. At present. proprtain have been writen for the execcution of two preliminer sese of 54
algebraically coded tape, in order to screen out details and leave the way open for a reasonably straight-
 120 b, n. thermodynamic and dynamic effects of water injection into high biture high-velocity gas streams
This problem is connected with the development of a potential gas turbine component, called an "aerothermopressor", in which a net rise in stagnation pressure of a hot gas stream is brought about by the
evaporation of liquid water injected into a hight-velocity region of the flow. The concepts underlying the oper


The device consists of a converging nozzle which accelerates the exhaust gases from the turbine int a Circular duct of varying diameter terminated by a conventional conical diffuser, which recovers the kinetic
energy of the flow betore discharging it to the atmosphere. At the entrance of the duct, special tijectors energy of the flow before discharging it to the atmosphere. At the entrance of the duct, special injectors
deliver minute jets of water which are in turn atomized by the rapidiy moving gas stream.

The changes in state within the aerothermopressor are brought about by the simultaneous thermodynamic phases, (c) friction, and (d) variations in cross-sectional area of the duct. Under proper circumstances, these effects bring about \(a\) net rise in stagnation pressure across the device. Further descriptions of this device \(m\) may
be found in earlier reports, begingng with Sumary Report \(\mathrm{No}, 32\). Fourth huarter, 1952.

The role of Whirlwind I In the successful development of the aerothermopressor is intimately connected
hthe determination of pertormance charscteristics of the device under all conditions of operation by means of a comprerensinive onee-dimensmioncl canarysis of the proccess. This analysis involves the simultaneous solution
of seven non-linear, first-order differential equations. seven non-linear, first-order differential equations.
During the past quarter, a completely revised Whirlwind program treating the aerothermopressor analyand required approximately ten weeks, involves the use of 5370 registers. The speed of computation, compared with the original program, written in early 1953 , has been increased from four tos six-fold, the latter figure for
the situations in which a special wet-bulb temperature computation is required. This has been accomplished the situations in which a special wet-bulb temperature computa
by elimination of interpretive programming wherever possible.

This program is directed by a single parameter tape, which will eventually be prepared by filling out S standard form, pnd therefore represen
1) Inclusion of five different numerical methods for solving the differential equations. These are (a)
Euler method, (b) backward differences, (c) second-order Runge-Kutta, (d) fourth-order Runge-Kutta Euler metrod
and (e) forward and successive differences. The computations may be dire cted to change from one
method to and (e) forward and successive
method to another arbitrarily.
2) Provision for automatic change of increment (according to an arithmetic progression) at each step
if desired.
3) Automatic detection and elimination of oscillations in Hiquid velocity
4) Determination of singular solutions of the equations by a completely yutomatic iterative procedure. (This procedure, which requires aboumputations). Early stages of the teration ure the Euler method with an automatic change to tourth-order Runge-Kutta when more accuracy is require dium-scale aerothermopressor test facility is now availabie for corthermopressor and for studying the effect variations in droppet : apectrum await oxplotitation

The aerothermopressor development program is being carried out at M.I.T. under the sponsorship of
he orfice of Naval Rescarch and is dirceted by PA Stessor Ascher H , Shapiro of the Department of Mechanical Engineering. The theoretical aspects of the problem treated by Whirlwind I I are being carried out by
Dr. Bruce D. Gavril.
122 N. coulomb wave functions
A report on this problem is given in section 2,2 of Part 1 .
123 N. Earth resistivity interpretation
\(A\) report on this problem 1s given in section 2.2 of Part I.
126 C. Data reduction
Problem 126 is a very large data-reduction program for use in the Servomechanisms Laboratory. The
verall problem is composed of many component sections which have been developed separately and are now being combined into complete prototype programs. Descriptions of the evaicous component sections have
appeared in past quarterly reports. After the develoment and testing of the prototype whirluidd proge appecrempleted the quarterly reports. After the development and testing of the prototype Whirlwind program
are conm will be re-coded for other, commercially available large scale computers.

 ponsored by the Air Force Armanent Laboratory through Dic Project 7138 .
The program, but also the problem requires not only extreme automaticity and efficiency in the actual running of Jecision making and program modification, For this reason extensive use is madte of outrot the purpose of computer to operator communication and manual intervention registers so so that the operator can con cosmosopes for with the computer. The intent is to allow the human operator to communicate with the computer in termus of
broad ideas, while the computer is running, and have the computer prourram transslate these ideas it detailed steps neecessary for program modification to conform to the human operator's deise disions. The pro


On March 8,9 and 10, 1955, a Fire-Control Symposium was held at M.I.T. by the Servomechanisms Representatives of thirty- -two interested ind wotrial concerns and nine government agencieses attended Center. About 150 March nitht the agenda included a des eription and demonontration of the workentes done on Problem 126 . Manual Intervention programs, and some of the other programs of Problem 126. The abse and helpful assis
of many Digital Computer Lab persomel is tratefuluy
- Tivy monstrations. Is be ing expanded to include e new additional set of equatione sansic and the MIV programs. The basic program
and expanded so that more extensive operations will be prosity Program is being redesigned logically
 new logic will be limited only by the drum capacity of the computer and will be more efficient as well. tility programe for use on Problem 126. These routines, some of which hort term development of several Toutine, a logging and editing routine to give records of all actions taken during a runn and a modified a scope of the Director Tape program, These routines will be incluced in the new prototype program and will be describe
in later quarterly reports. In preparation for the future re-coding of these programs for the ERA 1103 compter. Prolem 256 initated by the sponsors of Problem 126 (DDC 7138). A description of the problem and current progress appears
elsewhere in this quarterly report. 56
i30 b, N. SIX-COMPonent distllations, variable enthalpy and equlibrium data
A report on this problem is given in section 2.2 of Part 1 .
131. special problems (staff training, demonstrations, etc)

This problem has been set aside to account for the wWI time expended in demonstrating the computer
itors at the Digital Computer Labooratory, in developing routine to be used in these demonstrations. to visitors at the Digital Computer Laboratory, in developing routines to
in testing routines written as part of the training of new staff members.

During the past 3 months, 13 groups visited the Laboratory. The affliaitions of some of the larger groups
fiven in Appendix 2.
A calendar routine was prepared and tested by R. J. Hamlin, MTT Staff member in the School of Industrial
nagement and \(E\). Raiffa, of the SAEC Group tor use in demonstrations, Given any date from March 1.0001 to
 December 31, , 9999, the program calculates and prints on the direct typewriter the day of the week on which it
falls. If the given date should fall on a holiday, the name of the holiday will also be printed. In addition, the falls. If the given date should fall on a holiday, the name of the holiday will also be print
program calculates the date of Easter Sunday for any given year within the above range.
132 d. Subroutines for the numerically controlled milling machine
At present, milling-machine tape- preparation programs for two different types of cams are being developed, One program has apparentiy been tested successfully and should produce a usefult tape during the
next run. The program for the other cam is nearing completion. Writing and testing of additional subroutines
is continuing.

John Runyon of the MIT Servomechanisms Laboratory is using his study of methods of milling-machine
preparation which included the development of the subroutine library to facilitate the tape-preparation data preparation which included the development of the subroutine library to facilitate the tape-preparation
process as research for an Electrical Engineer degree.. The thesis is expected to be completed this term.
141. SaEe subroutine study

Gill's modification of the classical Runge- Kutta fourth-order method of solution of systems of fic order differential equations, described in detail by S. Gill, Proceedings of the Cambridge Philosophical Society,
47 (1950) \(96-108\), has been coded and put in subroutine form. The subroutine finds the solution at the end of on interval of the system
\[
\begin{aligned}
& \frac{d y_{1}}{d x}=f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right), \quad 1=1(1) n \\
& y_{1}\left(x_{0}\right) \text { given } \\
& x_{0} \leq x \leq x_{0}+h
\end{aligned}
\]

An auxiliary subroutine to evaluate the functions \(f_{1}\) must, of course, be written for each different system.
A subroutine to find a relative minimum of a function \(f\) of n var iables has been written. The method is
to start from an initial estimate \(\times\) and proceed in the direction of the negative of the gradient for a distance \(\lambda\)
 the previous value of \(\lambda\) according as the cosine of the angle between the gradients of corresponding values of
tis between 0 and .9 , negative, or between, 9 and 1 . The process continues until successive values of \(f\) differ at most by some preassigned \(\epsilon\).
A method of economization of power series, by means of Chebyshev polynomials has been coded. The
procedure, described more fully (e.g., by C. Lanczos, Tables of Chebyshev Polynomials, NBS Applied

Mathematices Series, no, in is srienty as follows: a power series \(\sum_{\mathrm{n}=0}^{\infty} a_{0} \mathrm{n}^{\mathrm{n}}\) is truncated and then expressed in
terms of Chebyshev polymomials:
\[
t_{N}(x)=\sum_{n=0}^{N} \sum_{k=0}^{n} a_{n} i_{n k} T_{k}=\sum_{k=0}^{N}\left(\sum_{n=k}^{N} \quad a_{n} t_{n k}\right)^{T_{k}}
\]
where the coefficients t . may be found in the NBS publication mentioned above. Now the \(\mathrm{T}_{\mathrm{K}}\), may be omitted
one by one until the uniformerror so made reaches a desired margin. The polynomial approximation may then be rearranged in powers of x agin giving in general a short polynomial which approximates the original function
more closely than the power series if cut off after the sume
144 n. SELF-CONSISTENT MOLECuLaR orbital
The program represents a mechanization of the Roothan scheme for solving the many electron sell-con-
nt field problems within the framework of linear combinations of specified functions. The block diagram sietent field problems within the frame work of Inear combinations of specified functions. The block diagram and details of the program have been given in a previous S Summary Report. There is no mathematical guarantee that
the procedure should convere and the current difficulty has seemingly arisen from using input data not possessinin
 155 n. SYNoptic climatology

The work of the Synoptic Climatology Group of the MIT Meteorology Department over the past quarter has
confined mostly to evaluating cloud seeding experiments. The statistical approach used for the past years by this project was adopted as the method of analysis. It was of interest to determine how much additional infor by hits project was adopted ds the method of analysis. . . was of interest to determine how much additional info
mation was contained in the circulation pattern regarding precipitation over and above the amount usually

162 N. determination of phase shifts from experimental cross-sections
A phase shift analysis is being made by Dr. F. J. Eppling of the Laboratory of Nuclear Science of the
elastic ceatering of protons by \(\mathrm{ol}^{16}\) over a range of bombarding energies from about 5 Mev to 4.6 Mev. Cross



A program has been writen by Miss E. Campoll which will find the S
ares of the errors between the observed and computed d \(\sigma\) 's a minimum
is that make the sum of the squares of the errors between the observed dand computed do 1 s a minimum. This program has been designed
oo work for any number of phase shifts from 2 to 7 and for

\(167 \mathrm{~b}, \mathrm{~N}\). products of batch distillations with holdup
ls of molecular and crystal physics
A report on this problem is given in section 2,2 of Part
177 c. Low aspect ratio flutter
An over-all outline of the problem is given in Summary Report No. 38, Second Quarter, 1954.
At present, work is progresing on collecting the coefficients of the simultaneous equations which will
determine the pressure distribution on a fat plate of aspect ratio unity for rigid body translation and pitching. This involves the multiplication of five complex matrices by five real matrices and the addition of the fiveresulting matrices. The tinal complex matrix is an eighteen by eighteen matrix which results in a syyt.
thirty-six real simultaneous equations. Coding for the solution of these equations is now in progress.
This study is being conducted by John R., Martuccelli of the M.L.T. Aero-Elastic and Structures Researci
Laboratory. 183 d. bLast response of aircraft

Since the writing of the last quarterly report, it was found that the MIIne's method of numerical integra-
may couse instablity in the solution if the structural discontinuity at bucking is severe. For some paration may cause instabiity in the solution if the structural dibcontinuity at bucking
metric values, even an additional titeration cycle could not overcome the difficulty.
As a consequence, the problem was reprogrammed by Y. Shulman of the M.LT, Aeroolastic and Stru
tures Research Laboratory using the Runge- Kutta method. The two simultancous second-ordet equation tures writen into four simultaneous A test run was made for a quasi-steady damping case. The results agree with those obtained by an analytical
solution to five significant tigures.

The peak responses for a given set of parametric values were computed for 200 cases to examine the
ts of various parameters invclved in the problem. The lethal criteria for two fictitious airplanes were


This work was carried out by H. Lin of the M.L.T. Aeronautical Engineering Department and will be
teluded in his Sc.D. thesis. A modified version of the study is to be pubbished as a U.S.A.F. technical report at a later date.
186 b,L. tracking response characteristics of the human operator
This problem seeks to determine the response characteristics of the human operator as a component in
in sytem. A more detailed description of the problem may be found in Summary Report No. 38 . The


The Fourier transtorms of several more correlation functions of human operator inputs and response
were obtained on WWI. These transforms complete the work to be pertormed on WWL. The ivvestigation of human operator characteristics continues, however, but the power-density spectra required to determine human
operator character inctin operator characteristicer will be co
been constructed for this purpose

189 C . distribution of gustiness in the free atmosphere
The statistics of radar weather echoes are related to the statistics of atmosphere turbulence. (Researction
Report 22 A and B , Weather Radar Project). The precipitation is here being used as tracers of the motion.
The first probability density of the gustiness is obtained from the transtorm of the square root of the auto-correlation function. Six such transforms were computed on Whiriwind using a program devised by Douglia
Ross under Problem 171 (see Summary Report No. 38). The computations were entirely satisfactory, and for the Ross under Problem 171 (see Summary Report No,
present no more of these are being contemphated.
193 L . eigenvalue problem for propagation of electromagnetic waves
This problem was described in Summary Report No. 39, July - Sept, 1954. It arose at Lincoln Labora
.


Program tapes have been made, based on both the power series and the asymptotic series for the Bessel

Unctions. These are being used to give numerical results at three different frequencies. It is expected that
nough results will soon be computed to give a comparison with practical measurements that have becen made. 194 b,n. an augmented plane wave method as applied to sodium

The program which generates the wave vector groups of vectors of the reciprocal lattice for the bodyWive vectors equivaient to the reduced wave vector for a a given set of neighbors in reciprocal space. Only those wave vectors which cannot be carried into one another by operations of the wave vector group are generated.
The projection operators for the various irreducible representations of the crystal types named above are also enerated on demand of a simply encoded set of numbers. If projection onto an irreducible manifold is desired Thout regard to a particular basis, the routine will generate that projection operator which leads to the least Inction to be symmetrized.

A program is being written which will take quantities generated by the radial function routine and incor Thate them into a tape which will represent in a sense the subspace in which the tamiltonian matrix is to be agonalized. This tape is then fed into the matr ix diagonalization routine along with the particular symmetry
 he band to which the wave functions belong; each successive block on a particular group represents a success
helembor in reciprocal space. To generate the tape to be read into the matrix routine a tape is read into high veed storage which contains the bands desired, each preceded by a ne gative number whose magnitude is

Production has begun on sodium and the results obtained are being studied by Mr. M. M. Saffren of the
ont and Molecturar Theory Group.
and is being tested. 95 C. intestinal mothity
Dr. J. T. Frrrar of the Gastroenterological Section of the Evans Memorial Hospital is studying the effect
radiation upon the motility of the small intestine in the rabbit. The analysis of the records is being performe ing autocorrelation and Fourier transform, both performed on W. W.
wsing scope program. Insufficient resultts are availihble to draw evenen tentatitive conclususions ploted photographically It is planned toperform Frourier transform on all autocorrelations, The evaluation of irradiation effect on
motility will be based upon differences in: (1) the mean square value. ( \(\mathbf{x}^{2}\) ), and (2) relative power contribution if various frequencies as derived from the frequency spectrum.
96. single address computer

Since the 1953 Summer Session (SS) and SAC programs were written, several changes have been made in ddresses when SS or SAC problems are run, SS and SAC are being modified to conform to the new addresses of flip-fiops, The corrected SS has been tested and SAC is now being tested
199 n. Laminar boundary layer of a steady, compressible flow in the entrance
Theoretical tinvectition wition of the research on heat-transfer coefficients for supersonic flow of air in a tube, a carried out bye Proot T., Y. Toong of the Mechanical Engineering Department. Partial differential equations of
continuity, momentum. and ener wer were developed tor
 into a series of ordinary differential equations, to be solved for specific entrance Mach numbers and thermal
onditions at the tube wall.

во

Solution of the third set of the differential equations for the case of constant viscosity and thermal con-
 the steration scheme use
improve this situation.

The algebraic program developed by Dr. J. H. Laning in problem 108 has been used in the numerical negrassully for the solution of the first set of differential equations. The pubrouting for the Gill's method w co developed by Dr. Laning. This new progran Iependent viscosity and thermal conductivity.
Jutions of the bounary-layer equations for the case of constant viscosity
being prepared for pubiication in some scientific

201 N . study of the ammonia molecule
Due to inconsistencies in the original self-consistent field solution, the self-consistent field part of the
mmonia molecule calculation has been redone. In addition, the matrix diagonalitzations mentioned in the last
 solutions is now being carried out by Prof. Harvey Kaplan at the Univers
along by members of the M.LTT, Solid State and Molecullar Theory Group.
203 n. response of a five story frame bullding under dynamic loading
Areport on this problem is given in section 2.2 .of part
204 N . exchange integrals between real slater orbital.
This problem is being studied by members of the Laboratory of Molecular Spectra and Structure of the niversity of Chicago in cooperation with the Mir Solid State and Molecular Theory its. 1 . eveloped by \(P\). Mer ryman of the Chicago group for evaluating two center exchange integrals. A more detaile
discussion of this routine was given in Summary Report No. 39. The routine is still being tested.
C servo response to a cosine pulse
A description of the original problem may be found in Summary Report No. 39 for the Third Quarter,
In Summary Report No. 40 there is a terminating report for the original problem under this number a 1954. In Summary Report No. 40 there is a terminating report for the original problem under this number as
well as a description of a related problem, During the past quarter, some work was done on the related probwell as a description or a r
lem, described as follows.
\(0.01 \leq S \leq 5, \begin{aligned} & \text { It is desired to find numerically the } \\ & 0.1 \leq T_{p} / T_{n} \leq 10 \text { in the equation }\end{aligned}\)
```

(1/\mp@subsup{\omega}{n}{2})\ddot{x}+(2\xi/\mp@subsup{\omega}{n}{\prime})\dot{x}+\textrm{x}=\textrm{G}(t),where
Tn}=2\pi/\mp@subsup{\omega}{n}{},\dot{x}=dx/dt,\&|=\mp@subsup{d}{}{2}\times/dt\mp@subsup{t}{}{2
G(t) = 1/2 [1-\operatorname{cos}(2\pit/\mp@subsup{T}{p}{})+2t/(\mp@subsup{T}{n}{}/\mp@subsup{T}{p}{})\operatorname{sin}(2\pit/\mp@subsup{T}{p}{})]
for 0\leq1\leqslantT
and G(t) = 0 for t> Tp

```

Coding of the problem using CS II was accomplished by Dr. J. M. Stark of the M.L.T. Instrumentation
Labor atery. For application of the results obtaned, , eeterence is made to pp. 704, T05 of INSTRUMENT ENGINEERING, Volume II, by Draper, McKay, and Lees, and to Volume III (yet to appear) of the same work.
\(212 \mathrm{~b}, \mathrm{~N}\). dispersion curves for selsmic waves: multilayered meda
The program for calculating dispersion curves of surface seismic waves on multi-Layered media is
and pperating natifuactorily. As mentioned in Summary Meport No. 40. the program was written to handie a five-
ayered medium. However, by resetting one constant, as many layers as desired can be handled. On the ever dge. one data point for a five layer case requires approximately 1.5 minutes. Reducing or increasing the
\(\qquad\) This method is merely a solution for the roots of an algebraic equation, the lowest of which correspon
to Rayleigh mode propagation. It has been used with no modification to solve for the large roots correspondin to normal modes of propagation. The method requires thc initine estimates of the phase velocity at each value of wave number for which a phase velocity is sought and the final solution is the root nearest to the first esti-
mates. Thus a Rayleigh or a normal mode velocity will be obtained depending on which is closer to the estimati"

The program has been checked with dispersion curves in literature and is being used to calculate new
It has been decided not to calculate group velocity curves since machine time would be better expended results. on phase velocities.

An interesting, but time -consuming, poss ble application was brought up in a discussion of the problem
with the head of the Lamont Geological Observatory at Columbia University, It is believeed that many with the hear onte Lamont Geological Observatory at Columbia Unive sity. It is believed that many unexplaine results of seismic measurements at sea are due to smooth changes in velocity and density with depth. This
nituation might be approximated by a large number of layers with small changes between each.

This work is being carr
215 b. dynamic behavior of industrial processes
The application of automatic control to industrial processes would be greatly facilitated if the dynamic
behavior of the proce se could be determined from measurements made during without shutting the process down or introducing inputs of a transient or periodic nature. An experimental measurement of the impulse response of a linear heat transter system subject only to random disturbances
its operating point has been carried out in the Process Control Laboratory with the cooperation of Professor
 were computed using programs developed under problem 107 by D. T. Ross. The frequency response computc
from the result of the correlation study agrees well with that measured on the same system by conventional
(ted tec hnique

A methoc which avoids the necessity of solving an integral equation to find the impuise response from the corre elation functions is described in a forthooming R.L.E. . Progress Report, covering the per iod December 1 st
to Feb. 28, 1955. An autocorrelation and Fourier transform to Feb. 28. 1955. An autocorrelation and Fourier transform required by this method have been carried out
usting Ross' s programs, but1.B.M. equipment will be used tor the less massive computations which remain to
be done.

Whirlwind I , as well as busine
 digttal machines offer higher the scuracy than the analog machines, and are free of timitations of available delay
time and frequency range time and frequency range

This work was carried out by S. Margolis of the Statistical Communication Theory Group of R.L.E. under
the suprvision of Professor Y. W. Lee.

217 n. varlation-perturbation of atomic wave function and energies
A report on this problem is given in section 2.2 of Part 1 ,
218 n. transformation of integrals for diatomic molecules
Adiscussion of this problem has been included by Dr. Nesbet in his report on Problem 234,
219. Comparison of simplex and relaxation methods in linear programming
rojections, \(\mathrm{A} \mathrm{Ax} \leq \mathrm{b}, \mathrm{A}\) an \(\mathrm{m} \times \mathrm{n}\) matrix, and X is an approximate solution, a better solution, X i+1

\[
x_{i+1}=x_{i}-\frac{\bar{r} \cdot e_{i \bmod m}}{\left(A^{T} e_{i \bmod m}\right)^{2}} \quad A^{T} e_{i \bmod m}
\]

Were \(\mathrm{e}_{\mathrm{K}}(0 \leq \mathrm{K} \leq \mathrm{m}-1)\) is the vector with \((\mathrm{K}+1)^{\text {th }}\) component 1 and all other components 0 , and
\[
\bar{r}_{i}=\max \left(r_{i}, 0\right), A x_{i}-b=r_{i}
\]

In spite of the computational speed of this technique, the convergence is so slow as to render it impra
tical. Various methods of accelerating the convergence have been proposed and are under consideration.
A program for the solution of linear programming problems by a method similar to one proposed by
Cooper, Charnes, and Henderson (An Introduction to Linear Programming, J. Wiley and Sons, New York, 1954)
Cooper, Charnes, and Henderson (An Introduction to Linear Programming, J. Wiley and So
has been written and is being checked. Other methods will be compared with this technique,
This probl
Laboratory Staff.
221 B. COURSE 6.25, mit
Sixty-one students enrolled in course 6.25 , MACHNE-ADDED ANALYSIS, given first semester, 195n,
yy the Electrical Engineering Department. The course was jointly given by Profs. W. K. Linvill, R. C. Boote by the Electrical Engineering Department. The course was Jointly given by Profs. W. . . Linvill, R. C. Booto
and C. W. Adams. Computational techniques of analog and digital computers, the solution of engineering prob nd C. W. Adams. Computational techniques of analog and digital computers, the so
ems by numerical methods, and numerical analysisis were studied during this course.

TAC, the summer session Three Address Computer, was used by the students for the solution of the
Consider the Van der Pol equations
\(y+\epsilon\left(y^{2}-1\right) y+y=0\), where
\(\dot{y}(0)=a\)
\(y(0)=b\)
For this equation, assumed values of \(\epsilon, \mathrm{a}\), and b are chosen so that \(\ddot{y}_{\max }<10, \dot{y}_{\max }<10\), and \(y_{\max }<10\).
 solution until the value of y has passed its seond positive
8 digita
are used. Use the rectanguar rule of inte gration
Each student programmed and prepared on punched tape his own program. Each solution took approxi
mately 3 minutes of WWI computer time and a total of 37 minutes was used by this problem during this report
period

222 C. helicopter rotor stablity
The transient response in the flapping of a helicopter rotor blade has been calculated by Y . Shulman of
MIT A croelastic and Structures Research Laboratory. These calculations involved the integration, using the MIT A Aroel lastic and structures Research Laboratory. These calculations invoived he inte gration, using
the fourth-order Runge- Kutta method, of two ordinary. linear second order differential equations with variable
coefficients. One ourpose of these calculations was to check the results obtained by an approximate analytical coofficients. One purpose of these calculations was to check the results obtained by an approximate analytical
solution to this problem which was dealt with by Y. Shulman in his Master's Thesis*. The other purpose was solution to this problem which was dealt with by Y. Shulman in his Master's Thesis** The other purpose was
to compare results obtained by assuming the blade to be flexible in bending to those for rigid blades and check to compare results obtaine
with experimental results.
\(\qquad\) (en
The results have shown conclusively that within the limits of the approximations, blade flexibility affect the tability regions of the motion considerably. The results of the analysis which include blade fexiblity
tend towardis better agreement with experimental results. The results of the analytical solution are uncon-
servative. servative.
A full description of the problem, and the results of these calculations were included in a paper delivered
by Y . Shulman at the 23 rd annual meeting of the Institute of Aeronautical Sciences, January 27 , 1955**. 223 b, n. investigation of turbulent flow

This project is sponsored by the Office of Naval Research under contract No. N5-ori-07874. It deals with the investigation of turbulent veloctity fluctuations in open channel flow by means of a Pitot tube-pressure cell

During the interim, the phase of this investigation concerning the measure ment of some turbulence characteristics in the wake of a circular cyinder in supercritical open channel now was completed. Auto-
correlation curves were obtained from the Digital Computer Laboratory for points near the centeriline of the wake at three stations 40 , so, and 70 diameters downstream from the test body. From these curves, by the
process explained in Summary Report No. 40 under problem 107 , the scale of macro-turbulence or the mean
 type of turbuilent decay present in the wake. The values computed dhowed an increase with the esquarer orot of
the distance downstream from the cylinder. This indicates that the rate at which the smaller eddies in the flow the distance downstream from the cylinder. This indicates that the rate at which the smaller edidies in the flow
are deacaying into heat must be greater than that at which the larger ones are breaking up. This same type of
variation has been observed by investigators in the wake of a grid and is indicative of the isotropic nature of the variation has been observed by investigators
turbulence present tin the core of the wake.

Adatitional runs are planned by F. Ratchlen of the MuT Hydrodynamics Laboratory for the near future to
certain the applicability of a piezoelectric ceramic transducer with impact tube attzchment to the turbulence ascertaim
problem.
224 N. Computations of the fields of vertical velocity and horizontal divergence
This problem was prepared for computation by Geirmundur Arnason and is being programmed by wiliam
Wolt. The results will be analyzed by the Pressure Change Project under the supervision of Professor James \(M\). Wolf. The results will be analyzed by the P
Austin of the MIT Meteorology Department.
 velocity by observing its effect on other measurable quantities, such as temperature. To date ourte the vertica velocity yb observing its effect in other measurable quantities, such as temperature. To date our information
on the fied oot vertical motion is very inndequate. It is the objective of the proposed set of computations to determine this field for a series of weather situations. The results should contribute to basic knowlegge
*Shulman, Y., "Stablity of a Flextble Helicopter Rotor Blade in Forward Filght", S. M. Thesis, Aeronautical
Engineering Department, Massachusetts
ty of a Flexible Helicopter Rotor Blade in Forward Fi.

concerning the behavior of the atmosphere. Furthermore, they should greatly nadd the continuming rescarch in the
field of numerical weather predtetion. Various modified forms of the equation for the change in the vertion held of numerical weather predicion. Various modirised forms of the equation for the change in the vertica
component of vorticicty are utilized to predict tomorrow's flow pattern. A Alack of kowlege of the relative component of vorticicty are utilized to predict tomorrow' ' flow pattern. A lack of knowledge of the relativy
importance of the vertical motion terms in the vorticity equation is hampering the research in the field of
numerical weather preciction. numerical weather prediction
The main problem is to determine the three-dimensional fields of vertical velocity (and horizontal
vergence) by means of the observed pressure field, For this purpose the adiabatic equation is integrated divergence) by means of the observed pressure field,
between the two pressures \(p\) " \(p_{1}\) and \(p=p_{2}\left(p_{1}>P_{2}\right)\).
(1) \(\quad \frac{\partial}{\partial t}\left(Z_{2}-z_{1}\right)+\frac{R}{g} \int_{\log p_{2}}^{\log p_{1}} v \cdot \nabla T d \log p+\frac{R \cdot s}{g} \int_{\log p_{2}}^{\log p_{1}} w d \log p=0\)

Wreover the horizontal divergence is determined from the continuity equation
(2)
\(\operatorname{div} \mathrm{v}=\mathrm{w}+\frac{\partial \mathrm{w}}{\partial \log \mathrm{P}}\)
where \(Z_{1}\) and \(Z_{2}\) are the heights of the pressure surfaces \(p_{1}\) and \(p_{2}\) respectively, \(R\) is the gas constant for dry
dir, \(g\) the acceleration of eravity \(V\) the geostrophic wind, T The temperature, \(\nabla T\) the horizontal nabla operat \(S\) the static stablity, and \(W\) the vertical velocity defined
(3) \(w=\frac{d \log p}{d t}\)
where \(\frac{d}{d t}\) is the total time derivative and \(\frac{\partial}{\partial t}\) the local time derivative.
Observed \(Z\) 's for \(p=1000,850,700\), , \(500,300,200\), and 100 mb are avallable 12 hours apart in time.
The first term in (1) is replaced by a 12 -hour change in \(Z\) and interpreted as a local time derivative at the The first term in 11 is replaced by a 12 -hour change in \(z\) and interpreted as a local time deri
midpoint of the time interval. The geostrophic wind V is related to the height \(Z\) by the equation
(4)
\[
v=\frac{g}{f} k \times \nabla z
\]

Observed temperatures are not available, but an approximate temperature field can be derived from the
heights (the \(z\)-field. This is done in part 1 of the proeram Since both \(V\) and \(\nabla T\) re thu term in (1) can be evaluated. The third term in equation (1) contains the only viknown quantity \(w\), since the term in (1) can be evaluated. The third term in equation (1) contains the only unknown quantity \(W\), since the
static stability S is derived from the \(Z\)-distritution (part 1 of the program). Nothing is known about the \(W\) -
 (5) \(w=w_{1}+\log \left(\frac{p_{1}}{p}\right) a(x, y)+\left[\log \left(\frac{p_{1}}{p}\right)^{2} b(x, y)\right.\)

Where \(a(x, y)\) and \(b(x, y)\) are two parameters to be determined from observations, \(x\) and \(y\) are the horizontal


 by conventional methods. Upon determination of a \((x, y)\) and \(b(x, y)\) the vertical velocity at 700 mb is obtained from
equation ( 5 . Starting anew with \(p_{1}=700 \mathrm{mb}\) and \(\mathrm{w}_{1}=\mathrm{W}_{700}\) known, the procedure is repeated \(\left(\mathrm{p}_{2}=500\right.\) and 300


\footnotetext{
aris horizontal divergence is mand
}

\section*{I}

\section*{APPROVED FOR PUBLIC RELEASE. CASE 06-1104.}
whirlwind coding and applications
whrlwind coding and applications
Part \(I \mathrm{I}\) of the program deals with the computation of the quantities W and div V . The fields of vertical
velocity and horizontal divergence being known besides the original Z -field, all the terms in the vorticity equal
(6) \(\quad \frac{\partial \eta}{\partial t}+v \cdot \nabla \eta-w \frac{\partial \eta}{\partial \log p}+\eta\) div \(v-\nabla w x \frac{\partial v}{\partial \log p} \cdot K=0\)
can be computed. Here \(\eta=\frac{g}{\rho} \nabla^{2} z+1\) is the absolute vorticity, t the Coriolis parameter, and \(\nabla^{2}\) the horizontal Laplace operator. Due to insufficient knowledge of the fields of vertical velocity and horizontal divergence, the
three last terms have frequently been neglected in the applications of equation ( 6 ).

The third and the last part of the program deals with the computations of the various terms in (6) and
gives a simple statistical measure for the relative orders of magnitude.
The programming of the problem is nearing completion. The program cycles through without alarms
but not and of tanswer are correct at present. It is expected that the conclusive checkout will be completed
at the begining of the pext quarter at the begining of the next quarter.
An interesting tacet of the programming is the use of the eymbol generator* as an autput device. This
special mode of scope output displays a coded combination of seven lines seomprising a rectangular figure eight
in approximately twice the time it takes to display a point. The usual type of number display being a coded in approximately twice the time it takes to display a point. The usual type of number display being a coded
combination of an 3 by 5 array of points, the use of the symbol generato effectively reduces the machine time
by a by a factor of four.

The coding employs the WW1 order code exclusively since the four simiticant digits required may be
carried in a WWw word. Where averages are performed a routine for combining the major and minor parts of
double formen carried in a wWi word. Where averages are performed d routine for combining the major and minor parts of a
double length register number is used which is similar to that used in the Programmed Arithmetic routine.
Written. Theneral, yet concise subroutine for treating the Auxiliary Drum as a continuous storage medium was
registers) is used during the since all ot the available Auxiliary Drum storage (with the exception of about 200 written.
registers) is used during the course of the program.
225 b,N. neutron-deuteron scattering.
A report on this problem is given in section 2.2 of Part 1
228 N . evaluation of difference diffusion equation
A report on this problem is given in section 2.2 of Part 1.
230 C . dynamic analysis of bridges
Saul Namyet of the MIT Civil and Sanitary Engineering Department is determining the dynamic response
arions types of simple span bridge structures. The purpose of the project is to determine of a parameter \(q\) that is required to cause a predetermined maximum response. The parameter q defines the
forcing function for any orient forcing function for any orier
For purposes of this investiggtion, a bridge is represented dynamicaly by a single-degree-or-freedom
system consisting of a concentrated mass and a spring, having various resistance-denection characteristics.
The solution is achieved by application of the second difference equation
\[
(\Delta t)^{2} x\left(t_{n}\right)=x\left(t_{n+1}\right)-2 x\left(t_{n}\right)+x\left(t_{n-1}\right)
\]

\footnotetext{
-For a detailed description see M-1623-2 "Programming for to Out Units",
}

66
to the differential equation
m X \(\left(t_{n}\right)=P_{n}-R_{n}\)
\(\ddot{x}\left(t_{n}\right)=\) acceleration at time ( \(t_{n}\) )
\(\mathrm{P}_{\mathrm{n}}=\) force applied at time \(\mathrm{t}_{\mathrm{n}} \mathrm{n}\)
\(\mathbf{R}_{\mathrm{n}}=\) resistance developed in spring at time ( \(\mathrm{t}_{\mathrm{n}}\) )
The overall program is advancing satisfactorily along the lines reported previously. \(231 \mathrm{~b}, \mathrm{~N}\). reactor runaway prevention

A report on this problem is given in section 2.2 of Part 1 .
232 b. energy levels in a spheroidal square well
The problem being studied by K . Gottried of the Laboratory for Nuclear Science is an investigation of
Bohr and Mattelson' \(s\) Model of Nuclei. A first step in such an analysis sis the computation of wave functions and energy levels for nucleons moving in a deformed potential. The investigation of this first step \({ }^{1}\) (which and energy levelis for nucleoons moving in a deformed potential. The investigation of this first step ( which
described in Summary Report No. 40) is virtually completed, and a final report will be submitted in the next Quarterly
\({ }^{233}\) C. UTLITY sTock pRICES
This project, which involves statistical regression analysis of utility stock prices, is being conducted
Durand of the School of Industrial Management with two distinct gools in mind In the first place, it is an

 heretofore encountered
fed electronic computer.

The problem entails a series of computations that can be classified into four groups, as follows;
1. Preliminary processing of data.
2. Summation of squares and products - \(\sum \mathrm{x}_{1}^{2}\) and \(\sum \mathrm{X}_{1} \mathrm{X}\)
3. Solution of simultaneous linear equations with concurrent operations required
4. Final processing.

Ot these, the nature of 1 . and 4 . is not yet decided. Possibly all or part of the operations required can be \(p\) p
formed by hand or with desk calculators. One preliminary poperation that is not well sulted for hand work Yormed by hand or with desk calculators. One preliminary operation that is not well suited for hand work
is the conversion of some five to ten thousand decimal numbers into logarithms. Group 2 is laborious for calculation but conceptually simple; a subroutine for doing this work on WWI may easily be set up. Group 3 presents the real challenge.

Although the literature on solving simultaneous equations is voluminous, there appears to be room for considerable development work. In statistical regression, it it inecessary to solve the so-callec normat
tions, which could be done by any of the alreaty developed methooss, but the problem does not end here. In

See also K. Gottrried and V. F. Weisskopf, Quarterly Progress Report, L.N.S., February 1955

\section*{APPROVED FOR PUBLIC RELEASE. CASE 06-1104.}
can be treated separately after the solution of the normal equations, they can also be incorporated direculy into
He colution of the normal equations. The scientific contribution, if any, will come from the effective integration the solution of the normal equations. The scientific contribution
of a number of computation steps into a single systematic routine.

Progress to date has consisted in writing an experimental program, which is now in the process of being
tested. At the name time we are thinking about possible improvements in this program that will make it more tested. At the name time we are thinking about possible improv
general and extend its usefuliness to a wider class of problems.
234 N. Atomic integrals
Electronic wave functions for atoms and molecules (or states of arbitrary symmetry) can be obtained
to arbitrary accuracy by a method which consists of three relatively independent stages of calculation.
calculation
Stage A - choice of some finite set of single-electron functions, \(\boldsymbol{\eta}_{\text {a }}\), and evaluation of all possible one-
nd two-electron integrals over this set. The integrals are matrix elements of operators occurring in the
and two-electron integrals on.
many-electron Hamitonian.
Stage B - calculation of expansion coefficients of a set of orthonormal single-electron functions \(\phi_{\alpha}\).
Stage \(C\) - calculation of configuration interaction effects and resolution of degeneracies in the variational
matrix for the many electron Hamiltonian.
If Stage B is carried out, with certain modifications which are too complicated to explain here. Stage C
is greatiy simplified. Techniques of group representation theory and perturbation methods an be used. The is greatly simplified. Techniques of group representation theory and perturbation
actual amount of calculation required is very small compared with Stages \(A\) and \(B\).
The essential difference between atomic and molecular calculation is that in the atomic case there exists
a set or basic ctunctions \(\eta_{a}\). the analytic Slater orbitals, which lead to rapid convergence in expansion of the a set of basic functions Ya. the analytic Slater orbitilas, which lead to rapidid convergence in expansion of the self-confistent t orbitals, and for which all integrals can be evaluated in closed form. No class of functions is
known which has both these properties in the molecular case.
Programs are available at present which carry out Stages A and B for atomic wave function. These are Dr. Yet in their most efficient form and some further programming is nee dod to join them into a single ennit,
D. Net of the solid State and Molecular Theory Group has programmed the calculation of integrals. Dr. R. . . Nesbet of the Solid State and Molecular Theory Group has programmed the calculation of integrals,
Stage A for toms and the program for transforming integrals under Stage B. These programs are described in
detail elsewhera. Stage \(A\) for atoms
detail else where. 1
The program for atomic integrals reads in a list of parameters ( \(\ell, \mathrm{A}, \mathrm{z}_{\mathrm{a}}\) ) specifying a set of Slater
\[
\eta_{\mathrm{a}}=\mathrm{r}^{\mathrm{A}+\ell_{\mathrm{a}}} \quad \text { e- }-\mathrm{Z}_{\mathrm{a}} \mathrm{x} \quad \mathrm{Y}_{\mathrm{l}_{\mathrm{a}}}^{\mathrm{m}} \quad(0, \theta),
\]
and prints out all independent one-and two-electron integrals (overlap, kinetic energy, and Coulomb potential
energy), for normalized \(\eta\) 's. The normalization constants are also printed out. Here A and \(\ell_{\text {are }}\) are any no energy), for normalized \(\eta\) 's. The normalization constants are also printed out. Here \(A\) and \(l_{\mathrm{a}}\) are any non-
negative integers and \(Z_{\mathrm{a}}\) is any positive number.
The tranaformation of integrals required in Stage B is essentinly the same in both atomic and molecular
problems. A two -electron integral \([\mathfrak{H j} \mid \mathrm{ke}]\), in Mulliken's notation, is invariant under interchange of indian

\(0_{\alpha}=\sum x_{\alpha_{1}} \eta_{1}\)
the transformation required for two-electron integrals is
R. K. Nesbet, Quarterly Progress Report, Solid State and Molecular Theory Group, MTT, April 1955 \({ }_{68}\)
\[
[\alpha, \mid \sigma \delta]=\sum_{i} \sum_{j} \sum_{k} \sum_{l} x_{\alpha_{i}} x_{\beta j} x_{\gamma_{k}} x_{\gamma l}[i j \mid k \ell]
\]

All functions and coefficients are assumed to be real. The corresponding transfor mation on two indices for one-
electron integrals is considerably more manageable.
 of the indices as welp as any symmetry cropertios of the basic erritas of (duee to to ppatial symmetry of the Hamiltonian) are taken into account to reduce the number of arithmetic vperations in this transformation as much as
posishle.

235 b,N. eigenvalies for a spheroidal square well
A report on this problem is given in section 2.2 of Part i.
236 C . transient response of aircraft structures to aerodynamic heatinc
The study of transient response of aircraff structures to aerodyummic heating was initiated on January 3,1955
A. Schmit of the MIT A Aero-elastic and Structures Research Laboratory. H, Parechanian has been respons. by L. A. Schmit of the MoT Aero-elastic and Structures Research Laboratory. H. Par
bie for a major portion of the programming during the latter hall of this report period.

The overall problem is that of investigating the infuence of aerodynamic heating on the structural design of high speed dircrart. One important step in the solution of the overall problem is to determine the transient temperature distributions in built-up aircraft structure. This first phase requires the solution in generalized forn
of two idealized heat flow problems. The first of these two idealized heat flow problems (Problem D has been of two Idealized heat fion
formulated and solved.
Problem \(I\) is that of determining the transient temperature response of a thin plate exposed to a time wise step function change in adiabatic
the heat transfer coefficient.


The problem is formulated in terms of the following symbol
he problem is formulated in terms of the following symbol
\(\mathrm{T}_{\mathrm{aw}}=\) adiabatic wall temperature
\(\mathrm{h}(\mathrm{x})=\) heat transter coefficient at x
\(\ell=\) plate length
\(\delta=\) plate thickness

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
whrlwind coding and applications


```

or in matrix form
(7) {0, {0}}=[c]{\mp@subsup{0}{j-1}{}
with the initial condtion {00}={1 }

```

The final production program is based on a fitteen element physical grid ( \(n=15)\). Given numerical values
the parameters \(\beta\) and \(f(1)\) as well as a value of \(\Delta f\) the program computes the coefficients that make up the




The output display is cont-olled by the nondimensional temperature response \(\left(1-\phi_{1, j}\right)\) of the leading edge


 curves. magnetic tape. The final values of \(\varnothing_{i, j}\) are also typed out via magnetic tape and would serve as an initial
in the event that it ever became necessary to carry the calculation nearer to the steady state condition.
The selection of \(\Delta \overline{\mathrm{t}}\) in order to prevent divergent osciluation of the difference solution is a routine matter.
(Ref. F. B. Hildebrand, Method of Applied Mathematics, Prentice Hall, Inc., New York, 1952, pp. 323 . 345 ,.) The (Ref. F. B. Hildebrand, Methods of Applied Mathematics. Prentice Hall, Inc., New York, 1952, pp. \(323-2\),
maximum value of \(\Delta \overline{\mathrm{t}}\) that may be used for a given \(\boldsymbol{\beta}\) in the fifteen element program is given by eq, B ,
(8)
\[
\Delta \mathrm{i}_{\text {max }}=\frac{1}{450 \beta+1}
\]

It was found by trial that satisfactory damping of the conver gent osciluations, character istic or the finite difference solution at eariy times, could be insured by selecting \(\Delta\) such that appoximately four hundred time cycles are required for the no
value which is 1.0 .

The convergence of the fifteen element solution was examined by writing a forty-five element program and funning cases at the limits of the \(\mathcal{A}\) and \(f(1)\) parameter ranges. It was found that the maximum difference betwee the fifteen and forty-five element response occurred when f(1) was a minimum and \(\mathcal{A}\) was a maximum. (f(1) \(=\).
\(0.1, \beta=5 \times 10^{-2}\) ). As a result of the calculations made employing the forty-five element program it was decided 0.1. \(\beta=5 \times 10^{-2}\). As a result of the calculations made employing the forty-five element program.
that the fifteen element program yielded results satisfactory tor the purposes of the present work.

During the course of the work just discussed it became apparent that for certain values of \(\boldsymbol{\beta}\) and \(f(1)\) satisfactory results could be obtained by neglecting chordwise conduction. The no
response is obtained in simple closed form if chordwise conduction is ne gecected.
(9)
\(\frac{d \varphi}{d}+f(\bar{x}) \boldsymbol{\theta}=0, \boldsymbol{\theta}=1\) when \(i=0\)

Because of this fact the program has been augmented. For each case (世t1), \(\mathcal{P})\) there are 135 values of \(\boldsymbol{\phi}_{\text {i, }}^{\text {, in }}\)
storage juat prior to entering the output display portion of the program. The augmented program compute storage just prior to enter ing the output display portion of the program. The augmented program compuries the
135 ocrresponding values of 4, , when conduetion is neglected, according to eq, 10 , then computes and prints 130 corresponing vilues of \(f_{1, j}\), when conduction is neglected, according
out via magnetic tape 135 values of \(e\), where \(e\) is determined as follows:
\[
\text { (11) } \quad e=\frac{i, j-\left(\varphi_{i, j}\right) \text { conduction neglected }}{1-\varphi_{i, j}}
\]

As a result of running 32 cases employing the augmented program the following tentative conclusion has been
reached, is \(\beta<5 \times 10^{-2}\) and \(0.1<f(1)<1.0\), tess than \(5 \%\) difference in the nondimensional temperature respon renched. is \(\beta<5 \times 10^{-2}\) and \(\left.0.1<\mathrm{fl}\right)<1.0\), , ess than \(5 \%\) difference in the nondimensional temperature respon
results from neplecting chordwise conduction provided (12) \((1)>0.45716 \log \beta+1.42247\)

Work on Problem I Is essentinlly complete. It is intended to program Problem II, the web-plate temper ture response problem, during the next report period. Formulation and discussion of the results obtained for
Problem II will be presented in the next report.
237 C. autocorrelation function of submited data
This problem was concerned with finding the autcocorrelation function of data derived from work originating at the Instrumentation Laboratory at M..T.T. The problem used the subroutine developed by Douglas Rosss for
computing autocorrelations in problem 107, The autocorrelation function was derived and the problem was computing a
completed.
238 b,n. Self-consistent calculation of nuclear mass density
A report on this problem is given in section 2.2 of Part 1.
239 C. GUTDANCE AND CONTROL
This problem encompases a variety of caleulations relating to the gutdance and control of aircraft. De
tails ane for the most part classified, However, as incidental by-products of this investigation, standard suboutine library tapes have been prepared for:
1) the solution of an arbitrary number of ordinary first order differential equations using the method of
Gull; 2) the minimization of an arbitrary function of \(n\) variables by the method of stepet deacent

Further discussion of these subroutines may be found under problem 141 .
This investigation is being carried out under the supervision of Dr. J. H. Laning, Jr., of the Instrumenta-
\(241 \mathrm{~b}, \mathrm{~N}\). transients in distllation columns
In the past three years the availability of the Whiriwind Computer for thesis work has been used by members of the Chemical Engineering Department at M.I.T.T. to computy several problems in distillation which are
too complicated to solve by ordinary methods. Up to the present to complicited to solve by ordinary methods. Up to the present, work has seen done by Jack O' Donnell on the
solution of some complicated multicomponent problems and on batch distillation problems been done by Smith, Polk, and Jordan on unsteady state continuous distillatition systems.
1) A two-component system.
2) Constant molal overtiom above and below the feed plate
es represented by \(y=\frac{\alpha x}{1+(\alpha-1) x}\) where \(x\) and yare the mole fractions of the more volatile cornponent in the Hiquid and vapor phases respectively.
4) Arerage composititon of the tiquicid constant throughout the column, . on the plate.
6)
Holdup of all
Holdup of all the detes
7) Holoup of condenser anc rebooller ne niligible. add
8) Feed introduced into column as a saturated

The operation of such a system can be described by a set of non-linear. first-order differential equations. Such a set of equations can be eolved by any of a number of different types of finite--difference approximations almost any desired accuracy. The Runge-Kutta approximations have advantages which make them the easte
o use with a large scale digital computer. It has been found that by using a second-order Runge-Kutta approx
 insures convergence and at least \(0.05 \%\) accuracy for nearly all problems of this type.
Programs have been written for the CS II computer for a distillation column containing up to fitty plates
in which any one or more of the following variables have undergone a sudden change:
1) Feed composition
2) Reflux ratio

It is proposed to study how a column will react to such sudien changes and to attempt correlations for the Ength of time that it takes a column to approach his newe equilibrium condition. It is also proposed to write proSther variable., For eramplum the e e whux ration might be
so the tops composition remains

Finally it is proposed to write programs for and to study more compicicated unsteady-state distiluation
one or more of the above eight conditions are relaxed
These studies will bc carried out by S. H. Davis, Jr. of the Chemical Engineering Department.
242 N. number of structures of relations on finte set
A report on this problem is given in section 2.2 of Part 1 .
243 D. CRYSTAL FLLTERS
The data obtained from this problem is designed to provide a simple approximate solution to a phase of the
. design of filters using quartz crystals as elements. The part done on WWi, consisted of the systematic computhtion
 244 C . data reduction for X -1 fire control

This problem is concerned with computing from tire control signals how far fictitious projectiles miss an observed target, Because of the large emount of datat taken for each target rum, use is made of the grean storage capacity of the auxiliary drum. The main tape for
block at a time, for each cycle of computation
whirlwind coding and applications
as some searcultions where accuracy is a factor, in general, are carried out with programmed arithmetic, wher as ouxiliary drum, Begister numbers for needed ballistic data are computed in the basicic coode of WWI,
finding suitabbere corrections to apply to dial readings for the raw concerned withed with analyzing the main tapsem errors and
This work is being carried out by Dr. J. M. Stark of the M.LT. Instrumentation Laborator
245 N . theory of neutron reactions
Recent treatments of the theory of nuclear reactions have shown that as far as neutron reactions are co
the
 potential. . n the first treatment of this problem it was assumed that the potential was in the form of a rectangule
wen. This (ed ot relatively good agreement with the total cross-sections and to only rough agreement with the
inelastic. weil. This led to relatively good agreement with the total cross-sections and to only rough arreement with the
inelastic scattering and angular distribution of elastically scattered neutrons, The qualitative aerrement here however, has encouraged us to go on. It was felt that a potential well which was not as idealized as the squar
well, in particularara a well which hed
bring the experiment and the theory into closer agreemen
Preliminary analytical work has indicated that a well of the following form should be close to the correct
description
\[
\mathrm{v}=-\mathrm{v}_{\mathrm{o}}^{(1+15)}\left[1-\tanh \frac{\Gamma-\mathrm{R}}{\mathrm{~d}}\right] .
\]

The parameters describing the well are
\(\mathrm{v}_{\mathrm{o}}=\) the depth of the well
R = the approximate radius of the nucleus
d = the rate at which the square well falls off to zero
S a measure of absorption inside the nucleus
The use of this well has been encouraged by a later work of Saxon and Woods in which it was found that
well of into a nondimensional form by introducing the parameters with 18 mev protons. The problem was transformed
\[
K_{0}^{2}=\frac{2 m}{\hbar^{2}} V_{0} R^{2}, \delta=d / R, \text { and } x=k R
\]

It is desired to calculate the predicted scattering for a variety of values of these parameters to pick out
The best values of \(\int\) and \(\xi\) so as to give the best agreement with date.
The radial equation to be solved for the \(\mathrm{A}^{\text {th }}\),
```

 u}\mp@subsup{u}{l}{\prime\prime}+{1-\frac{l(l+1)}{\mp@subsup{y}{}{2}}+v(y)}\quad\mp@subsup{u}{\ell}{}=0\quad\mp@subsup{u}{\ell}{(0)=0
    ```
where the potential
74
\[
V(y)=1 / 2 \frac{x_{0}{ }^{2}}{x^{2}}\left(1+\left.1\right|^{\prime}\right)\left(1-\tanh \frac{y-x}{x \delta}\right)
\]

From \({ }^{4}\), the phase shift \(\delta_{\mathbb{R}}\) can be found by the equation
\[
\cot \left\{=\frac{\int_{0}^{\infty} y n(y) v(u) u_{\ell} d y-1,3 \cdots(2 \ell+1)\left(\frac{u_{\ell}}{y^{\ell+1}}\right)}{\int_{0}^{\infty} y=0}\right.
\]

From cot \(\oint_{\text {l }}\) can be found
\[
\eta_{l}=e^{2 i} \delta_{l}=\frac{\cot ^{2} \delta_{l}-1}{\cot ^{2} \delta_{l}+1}+2 i \frac{\cot \delta_{l}}{\cot ^{2} \delta_{l}+1}
\]
\(\eta_{l}\) will give all the \(l^{\text {th }}\) partial cross-sections (total, reaction, and elastic scattering).
\[
\begin{aligned}
& \frac{\sigma t}{\pi \mathrm{R}^{2}}=\frac{2 \ell+1}{x^{2}} 2 \mathrm{R}\left(1-\eta_{\ell}\right) \\
& \frac{\sigma_{c}}{\pi \mathrm{R}^{2}}=\frac{2 \ell+1}{x^{2}}\left(1-\left|\eta_{l}\right|^{2}\right) \\
& \frac{\sigma \mathrm{s} \ell}{\mathrm{R}^{2}}=\frac{2 \ell+1}{x^{2}}\left|1-\eta_{l}\right|^{2}
\end{aligned}
\]

A program has been written which finds the value of the wave function \(\mu_{\mathcal{L}}=v_{\mathcal{L}}+\) iw , by means of a power
 grasis in the expression for cot \(\delta\), will be computed. As sson as this program has been tetsed it will be combined
gith the first one in such a way that given any \(\mathrm{x}, \mathrm{x}\). S and \(\delta\) the cross sections will be found for \(\ell\) from 0 to 6 .
This problem is being programmed for Professor H. Festbach of the Physics Department by E. Campbell E. Mack of the Joint Computing Group.

247 C . SURFace pressure prediction
In the past a considerable amount of work has been done by Prot. Wadsworh s d.L.C. Statistical Laboratory M.1.T. in the prectiction of surface pressure by means of linear functions of present and past values of pres-
sure, taken over a network of points on the map. As a collateral study by Prof. Wadsworth's group, it was found hrat a large sector of the pressure map could be represented adequately as a geometrical surface, expressable analytically as a general polynomial in the coordinates of the points, regardod as yying on a plane, surface. By
amely, the coefficients of the polynomial expression. Using these orthogonal finctions in place of direct pres. Sure observetains. Profs of the polynom . Mane carried
encouragng results. (cf. problem

An entirely independent approach to this problem has been made by the so-called numerical forecasting
 nal equations, but in general the form of solution is in 1 gely lyinear in the pressure values. However it does con-
in certain quadratic terms. The results. of Prof, Malone proved to be at least as good as those obtained by the merical forecasting group, but it seemed desirable to exploit the idea of quadratic functions further.
The object of the present study by the D.1.C. Statistical Laboratory is to evaluate the introduction of the quadratic component into the general linear schene of Wadsworth and Malone. The pressure surface is repre.
sented by set of othogonal fuctions, and then the squares and prouducs of the most important of these functions
are incorporated as rupresentative of the peneral quadratic contributions.

249 C. Flight interceptor control
This problem is concerned with a systems-analysis investigation of the dynamics and control of an inter-


50 C . translation procran for the numerically-controlued mulvg machine
The M.LT. Numerically-Controlled Muling Machine (NCMM) is a standard milling machine modified so of motions of the cutting tool may be entirely specified in speed and direction on the punched tape, and no manual ntervention by a human operator is required during the cutting

The data punched in the control tape must appear in numerical form. This requires, in general, that the , The motion of the center of the cutting tool, while putting occurs at the peripure. The tape instructions spec
 center. These calculations, even for a relatively simple cutting job, are tedious and time- consuming. The task
of preparing a control tape is even further complicated by the fact that the tapes must be punched in an octal of preparing a contron tape is even further complicated by the fact that the tapes must be punched in an octal
code in which the final instructions take a form quite different from the numbers used during their calculation,

In order to reduce the time required for the preparation of NCMM tapes and to minimize tape errors. a procedure for utilizing a digital computer has been found feasible. A translation program is being written for
Whirlwind \(I\) which accepts a description of the work in symbolic torm and which \(h\) pooduces automatically the Whir wind 1 which accepts a description of the work in symbolic form and which produces automatically the
required NCMM control tape. The calculations and transformations which were described in the preceding paragraph are executed automatically by the Whirlwind I computer.

The first torm of the translation program has, for simplicity, been limited to curves consisting solely
of stright tines and circles in two dimensions. Straight-line motion in the third dimension has been included,
in a somewhat restricted form.
M.I.T. Alexiewriter expactly as the they appear in in the description. Tags

Points, straight lines, and circles will be tagged using a tag assignment of one of the forms given in the
table below. A tag' may not appear after the \(=\) symbol unless it has already been assimed.
A tag consists of the letter p(point), c(circle), or s(straight line), followed by any integer isuch that \(0 \leqslant 1 \leqslant 255\). \({ }_{76}\)

By convention, the positive direction on a straight line is specitied by the order of the two points used
ing it, and is the direction from the first point to the second point. The positive direction on a circle ways counter clockwise, Starting from the point of minimum \(x\) and proceeding along a curve in its positive irection, the first intersection wha a secon curve 1s the near
cction. Two circles, or a line and a circle are said to be tangent (T) when they have one and only one inter ection and their positive directions coincide at the point of intersection; they are antutangent (A) if their positive Points
Points
Typed Symbols
\(16=-2.734,6.2545\) p35 \(=812 \mid\) |s17 \(\left.\begin{array}{l}\mathrm{p} 12=\mathrm{N} \text { s1 } \mid c 12 \\ \mathrm{p} 12=\mathrm{Fs} \mid \text { cl } 15\end{array}\right\}\)
\(\mathrm{p} 15=\mathrm{Nc} 3 \mid \mathrm{cs}\) ?

\(\mathrm{p} 19=\mathrm{c} 17 \mid 82^{\circ}\)
Lines
\begin{tabular}{|c|c|}
\hline \(\mathrm{s}^{3}=\mathrm{pl} \mid \mathrm{p} 2\) & two points \\
\hline \(\mathrm{s} 2=\mathrm{pl} \mid \mathrm{Tc} 2 *\}\) & \multirow[t]{2}{*}{through point, tangent to circle} \\
\hline s2 2 pl| Ac \(^{\text {a }}\) & \\
\hline \(\mathrm{si}=\mathrm{Acl} \mid \mathrm{Ac} 3{ }^{\text {a }}\) & \multirow[t]{4}{*}{tangent to two circles} \\
\hline \(\mathrm{s} 2=\mathrm{Tc1} \mid\) Ac 31 & \\
\hline \(\mathrm{s} 3^{=} \mathrm{Ac} 1 \mid \mathrm{Tc} 3\) & \\
\hline \(\left.\mathrm{s}_{4}=\mathrm{Tc} 1 \mid \mathrm{Tc} 3\right)\) & \\
\hline \(\mathrm{s}^{5}=\left.\mathrm{p12}\right|^{73^{\circ}}\) & point, angle with positive x axis \\
\hline \(\mathrm{c}=\) = pl, 2.7405 & center, radius \\
\hline \(\mathrm{c} 2=\mathrm{pl} \mid \mathrm{Tc} 1\}\) & \\
\hline \(\mathrm{c} 2=\mathrm{pl} \mid\) Ac3 3 & center, tangent \\
\hline
\end{tabular}
\(c 2=\mathrm{pl} \mid \mathrm{Ac} 3\) )
\(\mathrm{c} 5=\mathrm{p} 5 \mid \mathrm{s} 2\)
center, tangent to line

Cutting Instructions
After the significant points, lines, and circles on the work have been tageed, the actual cuts requed will
aner me signicant points, IINes, win the the form:
 on the line.

Symbols Typed
7.5, p3, -6.214

15, +cl, p2, 0.3
7.5, - c3, p5
stop
End

Meaning move at 7.5 in/min feedrate in a straight
line to p3, at the same time lowering the
cutter 5.214 in. move at \(15 \mathrm{in} / \mathrm{m}\) move at 15 in/ \(/ \min\) along circle col in its
positive direction, to p , nt the same time
raising the cutter 0.3 in. raising the cutter 0.3 in. move at 7.5 in \(/ \mathrm{min}\) along circle e 3 in its
negative dir irection top p without vertical
motion of the cutter negative e irrection tor tor
motion of the cutter
stop the NCMM (punch feedout) signifies end of Flexowriter instruction
tape

The initiai cutting instruction assumes the tool is at \(x=0, y=0\). Subsequent cutting instructions assume the tool
to be where the preceding instruction left it. Special Words
Special words, used to provide information needed in calculating the NCMM instructions, must appear
on the input tape as follows:
\begin{tabular}{ll} 
RIGHT & Tool to right of cut \\
LEFT & Tool to left of cut \\
TOOL RADIUS \(=0.5\) & \\
TOLERANCE \(=0.0005\) &
\end{tabular}

The translation program is, at present, about \(75 \%\) complete. . It is expected that the routine will be
251 b. dynamics and control of packed distillation columns
of a fairly large nemment of data has been taken on a packed distililation column in order to determine which, out of a fairly large number of physical parameters, are those which can beotumn be used to to describe and predict the
dymamics of packed columns affecting the composition of the tower output.

In order to test out a set of difference equations which have been developed, Whirlwind I is being pro
One portion of the theoretical equations, concerned with the distributed mixing of liquids, has already
been tested out on the computer and checked against measured data, This has taken about two hours of computer
time.
The difference equations are concerned with the following physical effects.
1) mass transter
3) heat transerer;

All of these effects occur simultaneously in every section of the column. The numerical model involves 78 .

Time. The study is being carried pout by H. H . Teager of the Electrical Eng nineering Departments can be stated at thit 252 N . analysis of two story steel frame bullding

A report on this problem is given in section 2.2 of Part L.
256 C . Wwi-ERA 1103 translation program
A two pass input translation program has been written by members of the Digital Computer Laboratory at
M.L.T. to simplity the machine coding problem for programmers working on Problem 126 , It will allow them to M.LT. to simplify the machine coding problem for programmers working on Problem 126 . It will allow them to
code programs for the Univac Scientific Model 1103 in a mnemonic (two leter) operation code ad to or both symbolic and integer addresses. The translation program accepts Fiexo-coded punched paper tape input and produces a seventh-level bi-octal punched paper tape a aceptable as ininut to the en cheo computer. The
program operates on the Whirlwind 1 computer at M.LT. and was written under the sponsorship of the Digita. program operates on the Whir wind computer at M.LT. and was written under the sponsorship of the Digital
Computer Laboratory and Project Dic 7138 of the Servomechanisms taboratory
the coding of the li. 1 w will be used din the codidin of he elarge data reduction program which is being developed at the Servomechanisms Laboratory
under Problem 126 and wich is expected to be run on the Eglin Feldd 1103,

The 1103 computer is a large two address computer containing 1024 or 4096 registers of random access memory and 16384 registers of directly addressable drum memory. Each register censisters of of random binary digitio
of which, in most instructions, 6 bits are used to designate the operation and two sets of 15 bits designate the
 in the instruction. The registers in the arithmetice element of the computer are
hole punched paper tape and punched cards can be ueed for input and output.

The following is a brief summary of the vocabulary and syntax of the translation program:
A. Characters

The words in the vocabulary of the translation program wiul be composed of sultably punctuated and
nated syllables of letters and digits punched in atandard Flexowriter code on paper tape.
B. Words

Three classes of words are defined. The first class consists of all those words which occupy storage
isters in the translated program. These words are instructions, with zero to four addresses, or (integer) registers in the translated program. These words are instructions
numbers. We call this class of words polysyllabic storage words.

The second class, called polysyllabic control words, consists of current address asaigmments, symbolic
ess assigmments, and starting address assignents. These words influence the form, location, and operation address assignments, and starting address assignments. These words influence the form, location, and operation
of the translated program but do not themselves occupy registers of storage.
The third class of words, called special words, are used for miscella
poses. They are the title, the number base indicator, and the comment word.
The words of the first two classes are combinations of these syllables: operations, symbolic address tage The words of the first two classes are combinations of these syluabes: operations, symbolic address tage,
integers and the literal a addresses
terminal punctuation. These characters a," and \("\) ".". These words are
 c. Syllables
1. Operations. These are the mnemonic lower case two-letter pairs corresponding to the standard
2. Symbolic address tags. These are three character digit and letter combinations.
3. Literal addresses. The letters "q", "a", and "b" refer to the quotient, right accumulator and left

\section*{whrlwind coding and applications}
4. Integres. Integers may have any value up to \(2^{35}-1\), so long as the completely evaluated word, or part
of a word, of which the integer is a syluble, fits into the number of bits meaningtuly availlable in the translated
word.
D. Polyyyllabic Storage Words
1. Instructions. An instruction word always has the operation code as the initial syllable. Zero to four
addreses
may
follow; the translation program will decide where to word if a meaningtul number of addressegs is given, The and adresses are separated by commas and the last tion
terminated by a tob or carringe return. addresses, and integers, where the manner of summation is indicated by prefixing each sydlubbe of the edral by a plus or minus sign,
2. Numbers. A number has the form of an address of an instruction word and is terminated by a tab or
E. Polysyllabic Control Words
tion word except that here the terminating charracter is a veress assigigment has the form of an address of an instrue
 specined in the current address assigment. Sucessive storage worrds will therenfter gointo 10 ins is is the
registers of storage until ane

 cated as such by the translation program.

Flexowriter program tape. it has the fort A starting address assignment word must occur at the end of eac

F. Special Words
1. Titles. A title is used for identifying \(F\).
2. Number base indicator. This word is write an fose \(k\), whing \(k\) is any integer ing inter ser indicator occurs. A "base 10 " is assumed initially.
3. Comment word. This word is totally ignored by the tranest may appear on a progres ring initially and is terminated by a tab or carriage retare is printed. This word must have a perrical bar occur
G. Symbolic Addresses

If a programmer decides that he needs to modity a section of his prom

 section of the program to occupy the samen enmber of storage porotram, expanding or contracting the original
availabile to insert or delete words in a program by making modifications the replacement. The facility is thus

At the end of each program the the end of the tape.
At the end of each program tranhlation all the values for all the symbolic addresses assigned in the
program are listed. All unassigned and Incorrectly assigned symbolic addresses are also listed. Hence e
programmer has a complete \(r\).
modifications on the program.
H. Error Detection

Wegal combinations of characters are detected, and so recorded, by the translation program wherever
le. The locations of the errora are given in terms of the most recent symbolic address or current addres nssignment.
1. Present Status

The basic elements of the translation program are now working. Translated program tapes are complete,
 ranslation program to operate in the same automatic manner as CS and the other WWI systems. All of this work ill be completed in the nexx quarte.
258 C . DYNamic analysis of an aircraft interceptor
This problem involves systems analysis of an aircraft interceptor control system and is being conducted determine the adequacy of certain force and moment equations to des cribe the motion of an aircraft. The rent types of inputs to the control will be made by Whiriwind L. These solutions also will serve as a standard
or analogue computations to be performed on the M.LT. Fight Simulitor of the Cor analog

The general program for the first Whirlwind solution has been written and tested and is now ready to be run. The second and third solutions will use the same basic program with minor changes necessitat
changes of input. The fourth solution is being programmed separately and is now ready for testing.
60 N . energy levels of diatomic hydrides
A study of the electronic energy of the oH molecule including configuration interaction is under way. The
energy will be calculated as a function of internuclear distance, The ground state of the molecule is \(2 \pi\).
The basic set of one-electron orbitals are the hydrogen ly ground state function and the \(1 \mathrm{~s}, 2 \mathrm{~s}\), and sp
Tartree Fock
weve functions of oxygen. The notation
form:
Use is being made of the Whirlwind 1 digital computer to calculate one- and two-electron integrals of the
\[
\left(\mathrm{a}\left|\mathrm{f}_{1}\right| j\right)=\int \boldsymbol{\varphi}_{1}(1) r_{1} \phi_{j}(1) d \tau_{1}
\]
\[
\left(\text { (ij }\left|g_{12}\right| k\right)=\int \varphi_{i}^{*}(1) \varphi_{j}^{*}(2) g_{12} \varphi_{k}(1) \varphi_{l}^{(2) d \tau_{1} d \tau_{2} .}
\]
\[
\left.(i j)\left|g_{12}\right| k\right)=\int \varphi_{i}^{*}(1) \varphi_{j}^{*}(2) \quad g_{12} \varphi_{l}(1) \varphi_{k}(2) d \tau_{1} d \tau_{2}
\]
where the \(\varphi_{i}{ }^{\prime}\) s are the one-electron wave functions and \(f_{1}\) and \(g_{12}\) the one-and two-electron operators respectivel These integrals are easily calculated by using the program written by F. J. Corbato? The most difficult of the
D. R. Hartree, W. Hartree and B. Swicles, Trans. Roy, Soc. (London) A238,229 (1939)
2.F, J. Corbato, Quarterly Progress Report, Solid State and Molecular Theory Group, M., T. T., April 15 , 1955.

Whirlwind coding and applications
So far several hundred of these Integrals have been computed by Whirlwind. Many more will be done before
the taskis done. This work is being carried out by A. J. Freeman of the Solid State and Molecular Theory Coul 262 N . evaluation of two-center molecular integral.
The problem to be solved by Whirlwind is the numerical evaluation of different types of two-center integrals
between 15 and 25 , 2p atomic orbitals for the values of internuclear distance R . This study is being carried out tor
the hydrogen molecule.
for one-eleectron integral evaluation by \(F\). J. Corbat5 of the Mintegrals, has been completed. Routines developed
The results of this problem will be included in the Ph.D. thesits of H. A. Aghajanian of the M.I.T. Solid
Stante and Molecular Theory Group.
-a
an arcraft during pull-up
of velocity, patitude and angles, the flight path of an aircraft during pull-up. In addition, thirteen describe in termatites are to
be calcult od from each olutito of the ntial equations.
 the progrann used was the "George 1 " interpretive program devised under Problem 108 by J. H. Laning and
N. Zierlier of the Instrumentation Laboratory, This program trandutude
code code and requires no programming by the programmer, except a knowledge of certain logital procedures.

When it was decided to solve the problem for thirty sets of initial conditions, it became apparent that the
 tic was written by Charles Block of the Instrumentation Laboratory. With the aid of of amanal amount of hand
computation and the IM Card Program Calcumator at the Instrumentation Laboratory, the computational sec
tions of the CS program have been cleared of all programminu Hons of the CS proeram have beengram calculuator at the Instrumentation Laboratory, the computationand sed
completere run of the solutions for the thircty sets of intinl conditirrors. What remains to be done before the complete run of the solutions for the thirty sets of intial conditions can be made is to remove some progran
ming errors in a cycling routine. 285 B,N. APPLLCATION
aum crystal Problem 144 ) which obtains the curvess of energy versus plane wave enere
(or any ener in Summary Report No. 37 under prints potertiols and and 22 for morentum appear on the scontialse. A routine has betten seen written which calculates and
 of the Solid State and Molecullar Theory Group by Dr. Robert Parmenter or R.C. Aupplied to Mr. M. M. Saffren

\section*{publications}

Project Whirlwind technical reports and memorandums are routinely distributed to only a restricted
 Agency) Document

The following is a list of memoranda published by the Scientific and Engineering Computations Group
during the past quarter.
No.
DCL-41 An ERA 1103 -wwI Translation Program
DCL-47 Payroll Demonstration Routine
Automatic Scope Output Requests
\begin{tabular}{ll} 
DCL-49-1 & \(\begin{array}{l}\text { A Proposed Translation Program for the } \\
\text { Numerically Controlled Mulling Machine }\end{array}\) \\
\hline
\end{tabular}
DCL-57 Calendar Demonstration Routine Program for Solving Secular Equations Report on the WWI-ERA 1103 Input
Tranalation Program (Published in the ERA Tranalation Prog
1103 Newsiletter)
Report 18 January Meeting at MIT of WWI-1103 Annotated Prints of CS Flexo Program Tapes
\({ }^{1 \text { 1-4-55 }}\) J. M. Frankovich
\({ }_{1-13-55}^{1-55}\) B. Riskin
\({ }_{1-26-55}^{\text {A. Siegel }}\)
2-28-55 R. J. Hamlin and E. Raiffa
3-15-55 F. J. Corbató
3-15-55 J. M, Frankovic
J. M. Frankovic
J. M. Frankovic

Tours of the WWI installation include a showing of the film "Making Electrons Count," a computer demonstration, and an informal discussion of the major compute
the computer instalation, Included in these groupa were:

January 6 Prolessor Hansen's Chass, Civil Engineering Department, M.1.
January 14 Professor P. J. Rulon's Class, Mathematics Dept., Harvard
January 21 Reynolds Metal Company
February 4 Atlantic Gelatin Company
February 14 Union Carbide and Carton Company
February 23 American and New York Tel and Tel
March 22 Air Force Reserve Research and Development Group
The procedure of holding Open House at the Digital Computer Laboratory on the first Tuesday of each month has continued during this period. Three groups totalling 65 persons visited the Laboratory at the open House demonstrations. These persons represented members and friends of the M.L.T. community, the Reting
Foundation, the University of Minois and Harvard University. andion, the University of milinois and Harvard University.

During the past quarter there were also 15 individuals who made tours of the computer installation at different times. These individuals represented French Moroco Realis Elect., Raytheon Mrg Co., Electronice
Core Corp.,. A. . . Smmith Corp..
Harvard, Yale, and M.L.T.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
personnel of the projects
machine methods of computation and numerical analysis
Faculty Supervisors:
Philip M. Morse, Chairman
Samuel 1. Caldwell Samuel H. Caldwell
Sithey y. Drell
S. W W Forell Jay W. Forrester
Francis B, Hildebra John A A Hrones
George B. Thomas, Jr.
Research Associate:
Bayard Rankin
Research Assistants:
Fernando J. Corbató
Charles W., othnson
Andrew T. Ling

Andrew T. Ling
M. Dowgias sulroy
John \(F\). o' Donnell
John F. \({ }^{\circ}\). Donnell
Philip M. Phipes
Anthon Releto
Anthony Ralston
Manuel Rotenberg

Aaron Temkin
Marius Troost
Arnold Twoust
Arrol Truss
Ack L. Urett \(k\) ky
Jack L. Uretsky
Keeva Vozoff

\section*{Physics
Electrical \\ Physics \\ \({ }^{\text {Electrical Eng }}\) Nineering Machemancical Engineering
Mathematics Mathematics \\ Mathematics \\ Physics
Civil En \\ Civillen Enineering
Mechanical Engineerin \\ Mathematical Engineer \\ Chemical Enginee
Mathematics \\ Mathematics
Mathematics
Physics \\ Physics
Physics
Phes \\ Physics
Physics
Chemica \\ Chemical E
Physics \\ Physics
Physics
Geology \\ Geology and Geophysics}
project whrlwind
Staff Members of the Scientific and Engineering Computations Group at the Digital Computer Laboratory
\[
\begin{aligned}
& \begin{array}{l}
\text { Jack D. Porter, Head } \\
\text { Dean N. Arden } \\
\text {. }
\end{array} \\
& \begin{array}{l}
\text { Dean N. Arden } \\
\text { Sheldon Best (Abs } \\
\text { S. }
\end{array} \\
& \begin{array}{l}
\text { Shelloon Best (Abs.) } \\
\text { John M. Frankovich } \\
\text { Frank C. C. Helwigl }
\end{array} \\
& \begin{array}{l}
\text { Frank C. Helwig } \\
\text { Gerald E. Mahoney } \\
\hline
\end{array} \\
& \begin{array}{l}
\text { Gerald. E. Mal } \\
\text { Elliot Raiffa } \\
\text { Bernard Riakial }
\end{array} \\
& \begin{array}{c}
\text { Bernard Riskin } \\
\text { Arnold Siegel }
\end{array}
\end{aligned}
\]
```

