APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FOREWORD

1. QUARTERLY REVIEW AND ABSTRACT
2. MATHEMATICS, CODING, AND APPLICATIONS 2. 1 Introduction
3. 2 Problems Being Solved
4. OPERATION OF WHIRLWIND I
3.1 Systems Engineering
5. 2 Terminal Equipment
6. CIRCUITS AND COMPONENTS 4.1 Vacuum Tubes
7. 2 Component Replacements
8. ACADEMIC PROGRAM
5.1 MIT Courses
5.2 TAC--A Three-Address Computer
5.3 Visitors
9. APPENDIX 6.1 Publications

FOREWORD

Project Whirlwind
Project Whiriwind at the Massachusetts Institute of Technology Digital Computer Laboratory is sponsored by the office of Naval Research under Contract
N5orito. The objectives of the $P_{\text {roject }}$ are (1) the application of an electrant
digital digital computer of large capacity and very high speed (Whirlwind 1) to problems in mathematics, science, engineering, simulation, and control, and (2) the study
nd development of component reliability in Whirlwind I.

The Whirlwind I Computer
Whirlwind 1 is of the high-speed electronic digital type, in which quantities
. are represented as ancerete numbers, and complex problems are solved by the
repeated use of fundamental arithmetic and logical (i.e., control or selection)
operations. Computa
 two vacuum tubes so connected that one tube or the other is conducting, but not
both; (2) the gate or coincidence circuits (3) inary digits are stored as one of two directions of magnetic mux within ferromagnetic cores.
digits). Whirlwind I uses numbers of 16 binary digits (equivalent to about 5 decimal
permits permits the computation of many simulation probiems. Calcultations size, but it greater number length are handided by the use ofroblems. Cultiple-length numbers. Requiring
access magnetic-core memory has a capacity of
 to about 20,00 multiplications per second. This speed is shigherent, equivivalent
scientific compulat
control and simulation demandion studies. at the present state of the art, but is needed for

1. QUARTERLY REVIEW AND ABSTRACT

Du.ing the past quarter 46 problems made use of the computer time allocated to the Scientific and Engineering Computation (S\&EC) Group. A procedure was developed to eliminate most of the need for manual intervention in reading in the tapes for different problems during a compuning period, new routines for automatic curve plotting were intro

IWo simulated computers were developed, a three-address computer (TAC) and described in Summary Report No. 35.

Work on the central computer by the systems group included modernization of the f the terminal equipment, and equipment of the power-supply control for a large portio hon of two drum groups of auxiliary storage has increased the capacity from about 31,000 6 about 36,000 registers
Life tests involving tungsten-nickel A31 Cathaloy cathode sleeves, being run on 5887 s and some special GE Z -2177's, show that there is more interface impedance presen on the conducting sections than on the cutoff section. This is the reverse of experience an active alloys in which silicon is the impurity.

Of the 35 special programs given by MIT during the summer of 1954, two were field of computer application. These courses, of several others were of interest in the the benefit of people from busineas and industry.

2. MATHEMATICS, CODING, AND APPLICATIONS

2.1 Introduction

During the period covered by this report 46 problems made use of the computer time allotted to the Scientific ard Engineering Computation ($\$ \& E C$) Group. Progress reports as submitted by the various programmers are presented in numerical order in Section 2.2. 206, 208, 209, and 211) represent new problems that 19re being, 200, 201, 202, 204, 205, Thirteen problems (147, 149, 169, 174, 175, 185, 190, 192, 196, 197, 198, 202 have been completed. One problem (143), previously reported as completed, actually ontinued into the present quarter

Two simulated computers were developed for use in the 2 -week summer session course "Digital Computers: Business Applications." The first, a three-address computer called TAC, is described in Section 5.2 of this report. The other, a single-address computer called SAC, is a modification of the Summer Session (SS) Computer described in Sec-
tion 5.4 of Summary Repler 196 in Section 2.2 of this report. 6 in Section 2.2 of this report.

A procedure has been developed to eliminate most of the need for manual intervendure is described under Problem 100. It makes use of a s a computing period. The proce which contains the necessary information and which communicates withared "director" tape a separate input reader.

New routines for automatic curve plotting have been introduced into the coll sive systin service routines. A description of these routines will also be found

2.2 Problems Being Solved

100 COMPREHENSIVE SYSTEM of SERVICE Routines
The comprehensive system of service routines has been developed by the Scientific and Engineering Computation (S\&EC) Group to simplify the process of coding for WWI. The Since the reader will find references in some of thary Reports No. 36, 37, and 38 , tem used in CS II, the following brief description is included reprts below to the number sys ence
6
(m, n) numbers shall mean numbers which are of the form $\mathrm{z}=\mathrm{x} \cdot 2^{y}$ where x is an $\mathrm{m}^{-b i n a r y}$-digit number and y is an \underline{n}-binary-digit number. For example, $(24,6)$ signifies two-register floating-point system deaing with numbers of a4 signincant binary digits (roughly seven decimal digits) with magnitudes between 2^{63} and 2^{-6}

Arithmetic involving these (m, n) numbers is carried out by means of (m, n) interpretive subroutines. These subroutines enable the programmer to write coded programs using (m, n) numbers as easily as, or even more easily than, he might write programs in he single-length fixed-point (15,0) number system which is built into Whirlwind 1 . $\frac{\text { Director Tapes }}{\text { During norr }}$
During normal operation of the comprehensive system of utility programs a programmer submits a performance request for each group of programs to be run on the computer. The performance request contains a complete description of the run Included among these are the following:
e,
fb100-0-0, Place the designated
electric tape designated tape in the input device (generally the photo
ri, $\quad \begin{aligned} & \text { Press the readin button. (This reads in a tape placed in the input } \\ & \text { device and erases core memory if the erase button has previously } \\ & \text { been pushed.) }\end{aligned}$
The tapes involved in a performance request are prepared and assembled by the Tape Preparation Room. Actual computer operation is performed by trained operators in accordance with the instructions contained on the performance request.

A partial mechanization of this process has been achieved with the introduction of director tapes. A director tape for a particular computer run is a punched paper tape which is obtained by typing the performance request for the run on a Flexowriter.

The comprehensive system of utility routines has been modified so that the major ly of computer runs can be made under the control of a director tape. Initially the direc ior tape and the run capes (spliced together in the proper order) will be placed in separate input devices. The complete run will require only a single pushing of the readin button. The introduction of director tapes should lead to a more efficient use of compute ime with less possibility of operator erro
$\frac{\text { Additional Automatic Cutput Featurcs }}{\text { Ten routines (five interpreted and five noninterpreted) have been written for use in }}$ automatic curve plotting.
be plotted: (i) FOC e plotted: (i) FOC 1, for use when the range of variables involved is symmetric, an (i) FOC 2 , for use when the range of variables is listed as program parameters.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
mathematics, coding, and applications

[^0]Point-by-point curve pletting is done by using the instruction (i)SOC al. The abscissa of the point is contained in register al, and the ordinate of the point is as sumed to be contained in the AC (or the MRA).

Calibrated axes can be plotted on the scope by using the instruction (i)scx. The coOrdinates of the origin and the calibration increments are listed as program parameters.
Uncalibrated axes can be ploted on the sone nates of the axies can be plotted on the scope by using the instruction (i)SUX. The coordi

106 mit seismic project
As discussed in various previous reports, Problem 106 is concerned with the in vestigation of the use of statistical-analysis techniques in seismic-record interpretations, and in particular in the separation of "reflections" from background interference on these in "Detection of complete description of the problem and the approaches used is contained son, Bryan, and Heln Oithers (Wadsworth, Robinson, Bryan, and Hurley--Geophysics. Vol. 18, No. 3, July 1953).
Because of the multiplicity of direction
gone recently, we shall describe the computational aspects of Problem above problem has first as they relate to these directions and secondly according Problem 106 in two ways, niques they represent. We shall then describe recent results and fine mathematical tech able course of future research.
According to the types
following categories: operators or linear filters;
2. Computations desig
ey behavior of a given input seismogram:
ear operators and linear electric filterst ear operators and linear electric filters;
4. Computations designce to simulate and sid
5. Computations for relating results from 1 and 2 with geologic structure The types of computations involved in these categories are varied and overlap con
siderably. They include: formation of auto-and crosscorrelation matrices, plication, eigenroot and eigenvector determination, discrete convolution, formation of autoand crosscorrelations by several different formulas, power-spectral estimates and ampliude and phase estimates according to various formulas, a variety of linear and quadratic putation, series genemerioal direrentiation and integration, frequency-distribution computation, series generation by moving summation, and others

Some of the specific results accomplished during the past quarterly period include he successful testing and use of new criteria mentioned under 1, above; the developmeni successtul testing of new probing techniques under 2 , above: the initiation of a noise generation and study project: and the beginning of direct structural interpretation program

Our plans for the future are to pursue research as indicated under all five catego ries above, probably putting special emphasis on the linear operator - linear filter rela tionship and statistical nolse models, categories 3 and 4

107 (a) Autocorrelation and (b) FOURIER Transform
Routines developed under this problem by D. T. Ross of the MIT Servomechanism Laboratory have been used by F . Raichlen of the MiT Hydrodynaic vestigation of turbulent -velocity fluctuations in open-channel flow measured by means of Pitot-tube pressure-cell combination.

Previously autocorrelation curves obtained from the Digital Computer Labora ery had a delay-time spacing of 0.0015 second. This spacing diant give sufficientintor mation in the neighborhood of $\tau=0$. Therefore 1000 points were taken from these records with a time spacing of 0.000303 second, thus giving more information about the higher requencies present in the turbulent-velocity fluctuations.

The autocor relation curves and mean-intensity spectra previously obtained were an yzed to determine the longitudinal scale of turbulence, L_{x}, a length which is associated with the average eddy size.
$\begin{aligned} & \text { Since } L_{x} \text { is defined as } L_{x} \equiv U \int_{\text {where }}^{\infty} \mathrm{U}(\tau) d \tau, \\ &=\text { mean local velor }\end{aligned}$
where $\mathrm{U}=$ mean local velocity, and
$\mathrm{R}(\mathrm{T})=$ correlation function
would seem that the easiest way to arrive at these under the autocorrelation curve between the curve and the line of zero correlation. Be tion curve received from the Digital Computer Laboratory had periodicities superimposed on the autocorrelation curves for the randorn fluctuations. It would have been very difficult o average out these periodicities, with good precision, to arrive at the random part of the curve and hence the area between the random curve and the line of zero correlation. There ore, an alternate method was devised whereby the theoretical curve for the mean-inten sity spectrum,

$$
\mathrm{w}(\mathrm{f})=\frac{4 \mathrm{~L}_{\mathrm{x}} / \mathrm{U}}{1+\left(2 \pi \mathrm{f} \mathrm{~L}_{\mathrm{L}} / \mathrm{U}\right)^{2}} .
$$

mathematics, coding, and applications \qquad
was obtained from assuming the form of the autocorrelation curve, $R(\tau)=e^{-\tau U / L_{x}}$. By fitting the former curve to the experimentally determined spectra, a series of values of L_{τ} and L_{x} (since $L_{x}=U L_{\tau}$) for different depths was determined.

The problem then was to determine values of L_{x} directly from the autocorrelation curves to check the $\mathrm{L}_{\text {x }}$ values obtained from the mean-intensity spectra. Basically this
was done by realizing that the area under the mean-intensity spectrum and nate on the autocorrelation curve were the mean square of the turbulent-velocity forditions. By determining the percentage of the area in the power spectrum representing fe riodicities and reducing the $\tau=0$ ordinate of the autocorrelation curve by this percent. age, a starting point for the theoretical autocorrelation curve was obtained. Values of L_{T} and hence L_{x} were determined by fitting the curve $e^{-\tau U / L_{x}}$ to the data, using as the zero ordinate the one explained previously. The results obtained have been found to agree very well with results of other investigators,

120 Thermodynamic and pynamic efects of water injection into highTURE, HIGH-velocity gas streams

This problem is connected with the development of a potential gas-turbine compogas stream is brought about by the evaporation of liquid (water) injected intos hire of a hot region of the flow. The concepts underlying the operation of the aerothermopressor are a outgrowth of comparatively recent work in the field of gas dynamics, and its intended function in the gas-urbine cycle is analogous to that of the condenser in a steam power plant Further descriptions of this device may be found in earlier reports, beginning with Summary Report No. 32, Fourth Quarter 1952.

Because of the complexity of the thermodynarnic and dynamic processes whichoccur liquid carried by an accelerating the problem currently seven nonlinear, ordinary differential During the past 15 months, atial equations.
used satisfactorily for computing the performance of constant der various operating conditions. Recently, however, it was found that dures were encirely inadequate for treating ae rothermopressor s of varying cross-ection area, and the resulting truncation errors led to results which were difficult to interpret The work carried out during the past quarter was devoted almost entirely to the develop. ment of a more elaborate numerical procedure which would eliminate serious truncation error and at the same time allow the use of reasonable increment sizes so that the compu-
ation time would not be prohibitive.
Two basic methods were studied: (1) a forward-integration scheme involving backward differences in the fi-st derivatives of the dependent variables, and (2) the fourthion, was held tudies were deyance pending results from the alorementoned motho. Dend that he more elaborate procedures did indeed eliminate the aberrations brought about by trun cation error with the Euler method. The Runge-Kutta method proved to be superior from points of view of speed, accuracy, and convenience, since no special starting procedure is required. For an accuracy of about .J.

The importance of the variable-area
The importance oressor process has made it man gram is accordingly being written which, in addition to using the Runge-Kutta A new pro exploit all the latest facilities of the comprehensive conversion system of Whirlwind I . Since the writing of this program will take considerable time, it is planned to continue computa tions of aerothermopressor performance to a limited extent using the composite progran which was used for testing the various numerical procedures. This program suffers pri marily from inefficiency, since its basic logic was never intended for this purpose, nor was the auxiliary magnetic drum available at the time it was written.

The aerothermopressor development program is being carried out at MIT urder the sponsorship of the Office of Naval Research and is directed by Professor Ascher H. Shapiro Whirlwind I are being carried out by Dr. Bruce D. Gavil

22 Coulomb wave functions

Work was continued by A. Temkin of the MIT Physics Department on the Coulomb wave functions making use of their integral representation. It will be recalled that the regular solution is given by
$F_{L}(\eta, \rho)=C_{L}(\eta)_{\rho}{ }^{\mathrm{L}+1} \int_{0}^{\infty} \frac{\cos (\rho \tanh \xi-2 \eta \xi)}{(\cosh \xi)^{2}+2} d \xi$
$C_{L}(\eta)=\sqrt{\frac{1-e^{-2 \pi \eta}}{2 \pi \eta}}\left(\frac{1}{2^{L}}\right)$$\frac{1}{\sqrt{\left(1^{2}+\eta^{2}\right)^{\cdots\left(L^{2}+\eta^{2}\right)}}}$

A six-point recursion formula is being used for the integration, and our solution was tested against some known results. We found that the accuracy increased as we decreased the mesh size. but that extending the range of integration beyond a reasonable point did practically nothing. Some other con iderations al so give additional accuracy. Namely, near the origin the function tanh ξ varies roughly as ξ, whereas beyond $\xi=1, \tanh \xi$ is
practically constant. Thus the frequency of pracically constant. Thus the frequency of oscillations of the integrand a round the origin
is determined by $|\rho-2 \eta|$, whereas further out it is determined only by 2η since is determined by $|\rho-2 \eta|$, whereas further out it is determined only by 2η. Since the
mesh size should be inversely proportional to the frequency, we test to see if $|2 \eta-\rho|>2 \eta$, and if it is we use the mesh size corresponding to it in the region $\xi=0 \rightarrow 1$.

We are now testing for various values of the parameters to make sure
tine can handle them all. When this is done, we shall code the ir regular solution and the first derivatives of both. We hope to be done with the coding by the end of the next quarter.
123 earth resistivity interpretation
This problem is concerned with a means of analyzing earth-resistivity data. The procedure is to ft a theoretically derived Slichter kernel to an observed kernel by systematically relaxing the values of resistivities and thicknesses used in the theoretical kernel
(see Summary Report No. 37) (see Summary Report No. 37).

The program for this analysis is being modified in an effort to find, empirically, some optimum sequence of parameter-change muttipliers. It was found that, because of an
error in the program last used, the values of these parameters were increased only of error in the program last used, the values of these parameters were increased only once,
from 0.05 to 0.1 , after the 20 th iteration. In addition, it was found that the calculation of exponentials was not as accurate as desired for large arguments, and this is being improved.

Several more kernels have been run. The usual behavior has been convergence for a short while, and then rapid divergence, although one example converged rapidly and continued making small oscillations about the proper solution.

A hand check of the final result of the 91 -step analysis described in Summary Report No. 38 indicates that there is some question as to the validity of the final result, since
the actual error is greater than that calculated by wwI the actual error is greater than that calculated by WWI and is, in fact, slightly larger than
the step which gave the correct solution. The reason for this lies in the progra the step which gave the correct solution. The reason for this lies in the program and has
not been positively located as yet. This work is being carried.
physics under the sponsorship of the Project for Machine Metertont of Geology and Geo merical Analysis.

126 a data-reduction program
Problem 126 is a very large data-reduction program for use in the Servomechanisms Laboratory. The over-all problem is composed of many component sections which will be developed separately and then combined at a later date. Thus far, efforts have been focused on the development of utility-type programs. These programs, which have been described in previous Quarterly Reports, include a fully automatic program to fit polynomials to arbitrary empirical functions, a general-purpose Lagrange interpolation program, and a flex-
ible and fairly elaborate post-mortem routine. The programs are being developed by Doug las T. Ross and william M. Wolf with the assistance of Miss Dorothy A. Hamilton, Servomechanisms Laboratory staff members.

Three versions of the complete data-reduction program, each version an extension of the previous one, have been tested during this period. Most of the tests have been run curacy and logical checks. Since the optimum settings for certain paramptere are untnown, the facilities of the MDRare nearly indispensable, and the routine use of the MDR has aided the development of these programs considerably. The testing of the third version, called the basic data-reduction program, is nearly complete. When this basic version is complete the first two developmental versions will be discarded, and further elaborations of the basic version will be written.

Work is progressing on another phase of this problem, using auxiliary in-out equip ment both as an integral part of the data-reduction programs for monitoring purposes and _ as an aid to experimenting with improved computational techniques. Intervention registers and scopes will constitute the working parts of this system with efforts being made to pro cerned with the development of routines to decode intervention-register inputs and to util ize various specialized scope outputs. After merging these routines with the data-reduction programs, an elaborate logging scheme, using magnetic-tape output, will be written for permanent records of ali operations and interventions during an experimental run.

131 special problems (Staff training, demonstrations, etc.) This problem has been set aside to account for the wWI time expended in demonstrating the computer to visitors at the Digital Computer Laboratory, in developing routines to be used in these
ing of new staff members.

During the past 3 months, 15 groups visited the Laboratory. The affliations of some of the larger groups are given in Section 5.3.
subroutines for the numerically controlled mlluing machine During the first part of this quarter, debugging of a program for preparing millingmachine tape for airfoil templates was completed by J. H. Runyon of the MIT Servomechanisms Laboratory. Much of the remainder of the programming and computer time was devoted to the development of programs for checking milling-machine tapes. These programs are based on a library subroutine for reading, decoding, and detecting errors in the
tapes. The programs are for obtaining printouts of decoded milling-machine tapes. The programs are for obtaining printouts of decoded milling-machine orders, cum7500 milling-machine blocks have been successfully checked.

141 stec subroutine study
Several subroutines in the library have been replaced or modified.
These are
Exponential Subroutine. New version is 55 registers long and uses one doubletength or one buffer register for temporary storage. The first eight terms of the power series for exp xare used to evaluate the function. The subroutine can be used with any ($30-\mathrm{j}, \mathrm{j}$) PA.
LSR FU 2 Square-Root Subroutine. Two versions are now in the library. The first, LSR FU 2 a , is 34 registers long and uses two double-length or two buffer registers
for temporary storage. ${ }^{1}$ The square root is formed by for temporary storage. The square root is formed by Newton's method. It-
eration continues until the relative cerror between the last two iterates is less eration continues until the relative error between the last two iterates is less
than 2^{-13}. This program uses $(24,6)$ arithmetic. The second subroutine, LSR than 2^{-13}. This program uses (24, 6) arithmetic. The second subroutine, LSR
FU 2b, is 27 registers iong, with the same temporary storage requirement as FU 2 b , is 27 registers iong, with the same temporary storage requirement as
FU 2 a. in this subroutine, the square root is also found by Newton's method, FU 2a. In this subroutine, the square root is also found by Newton's method,
going through four iterations for all positive numbers. This subroutine can be going through four iterations for all positive numbers. This subroutine can be
used with any ($30-\mathrm{j}, \mathrm{j}$) PA. In both subroutines, if x is ± 0, control is transferred back to main program with x in MRA. If x is less than -0 , the computer stops. Hyperbolic Functions. This subroutine calculates $\sinh \mathrm{x}$ or $\cosh \mathrm{x}$ according to where entered. The new version is 89 registers long and uses one double-
tength or one buffer register for temporary storage. length or one buffer register for temporary storage.
LSR MA 4 Symmetric Matrix Diagonalization. This is a shorter and faster version of the program described in Summary Report No. 35, pp. 19-21

1. Specified by preset parameter.

The auxiliary buffer routine (SP 1) has been discarded, since it is nolonger useful. Two subroutines hav been added to the library:
$\begin{array}{lll}\text { LSR SP } 3 & 30 \times 30 \text { Divide. With a dividend of the form } \mathrm{a}+\mathrm{b} \cdot 2^{-15} \text { and a divisor } \mathrm{c}+\mathrm{d} \\ 2^{-15}\end{array}$

$$
\left(\frac{a}{c}\right)+\frac{1}{c}\left(b-\frac{d a}{c}\right) 2^{-15}+\frac{1}{c}\left(-\frac{b d}{c}+\frac{a^{2}}{c^{2}}\right) 2^{-30} .
$$

Because of roundoff in the subroutine and truncation in the series, there will be a maximum error affecting the last three binary digits, with a normal error of
two digits being affected. two digits being affected.
LSR SP 430×30 Divide. The method of the subroutine is roughly that of the $\$ S$ divide where the magnitude of the divisor is multiplied by increments, and the results are subtracted from the magnitude of the dividend (or remainder). Smaller and smaller increments are used until $1(\times 2,1) \times$ divisor cannot be extracted; then he quolien and dienter. The results of this subroutine are accurate to the las cond
digit.

143 the vibrational frequency spectrum of a copper crystal
The vibrational frequency spectrum for $a-$ iron has been calculated from the secular equation given below, using the atomic-force constants determined by H. Curien. ${ }^{1}$ This, calculation was performed for 1784 wave vectors uniformly distributed throughout $1 / 48$ of the Brillowin zone. The WWI arithmetic program developed previously for the spectrum solutions for the body-centered cubic (B. C.C.) secular determinant of a-iron.
$\left|\mathrm{D}(\mathrm{q})-\mathrm{I} \omega^{2}\right|=0$
$D_{11}(q)=\frac{4}{m}\left\{2 a\left(1-\cos u_{1} \cos u_{2} \cos u_{3}\right)+a^{\prime} \sin ^{2} u_{1}+\beta^{\prime}\left(\sin ^{2} u_{2}+\sin ^{2} u_{3}\right)\right.$
$\left.+a^{\prime \prime}\left(1-\cos 2 u_{2} \cos 2 u_{3}\right)+\beta^{\prime \prime}\left(2-\cos 2 u_{1} \cos 2 u_{2}-\cos 2 u_{1} \cos 2 u_{3}\right)\right\}$
$\mathrm{D}_{23}(\mathrm{q})=\frac{4}{\mathrm{~m}}\left\{\sin u_{2} \sin u_{3}\left(2 \beta \cos u_{1}+4 \gamma^{\prime \prime} \cos u_{2} \cos u_{3}\right)\right\}$

1. Curicn, H., Thesis, L'Université de Paris, 1952.

MATHEMATICS, CODING, AND APPLICATIONS

1st neighbor:	$a=1.17 \times 10^{4}$ dynes $/ \mathrm{cm}$	$\beta=1.19 \times 10^{4}$ dynes $/ \mathrm{cm}$
2nd neighbor:	$j^{\prime}=1.16 \times 10^{4}$ dynes $/ \mathrm{cm}$	$\beta^{\prime}=-0.25 \times 10^{4}$ dynes $/ \mathrm{cm}$
3 rd neighbor:	$a \prime=0.08 \times 10^{4}$ dynes $/ \mathrm{cm}$	$\beta^{\prime \prime}=\gamma^{\prime \prime}=0.26 \times 10^{4}$ dynes $/ \mathrm{cm}$

The composite spectra for the F.C.C. and B.C.C. cases exhibit the same general leatures. However. it is interesting to note that the two "transverse" branches for the B.C. C. case of a-iron show a somewhat Gaussian-like distribution, whereas for the F.C.C. at the high-frequency end. One suspects that such behavior is caused primarily by the crys-tal-lattice symmetry rather than by the particular values of atomic-force constants.

This present calculation for a body-centered cubic and the latter calculation for a face-centered cubic ${ }^{1}$ contain no assumptions regarding the atomic forces. The force constants are tensor quantities and were experimentally determined from the ermal diffuse x -ray scattering experiments. All previous spectrum calculations assumed central forces and considered only first and second nearest neighoor interaction. However, the vibrational -spectra calculated from such a model, which is a rather special case, show no "ssentially rent features from the general cases treated by this investigator

47 energy bands in crystals
Dr. D. Howarth of the MIT Solid State and Molecular Theory Group has calculated the lower energy levels of copper for all typical symmetry points in reciprocal space; he has done this three times, once for each of three different one-electron potentials for cop-
per. The results of these ralculations are still being examined, so detailed conclusions cannot yet be drawn. However, the results do show that the energy value of a level depends more strongly than one might suppose upon the choice of the potential. It has aiso been shown that with the method used calculation of the energy at points of no symmetry in reciprocal space is possible although not practical; such a calculation requires over an hour of computer time.

1. Summary Report No. 38, Digital Computer Laboratory, MIT.

A somewhat surprising result was the disagreement of the present method with Dr. Howarth's previous application of the cellular method to copper. ${ }^{1}$ "t was found that the reline positions of the twofold and threetold degenerate tevels of "av-hke sym therty wer workers. ${ }^{2}$ Since the present method demands a slightly different form of the potential than does the cellular method, one may assume that this is the origin of the discrepancy. To est this assumption a program was written to calculate these energy levels by the cellular scheme but using the modified potential of the present method. Unfortuna
had to return to England before the program had been completely tested.

149 digital methods of detecting signal from noise
The study of digital methods of detecting sigral in noise has been completed by Dr . G. P. Dinneen of Lincoln Laboratory. A small amount of computer time was used at the beginning of this quarter to complete the study. No significant changes in the results described in Summary Report No. 38 were made. It is interesting to note that in the one case, that of the success-run observer, where partial theoretical results are obtainable, the calculations obtained by the
these theoretical results.

155 synoptic climatology
During the past quarter, progress has been made, under the direction of Professor T. F. Malone of the MIT Meteorology Department, along six avenues of research which follow directly or indirectly from the statement of the problems given in Summary Report No. 38. Each of these six points will be discussed below.

1. Matrix Programming

The project has advanced to a point where the solution of large-sized matrices is necessary. A program that will handle a symmetrical matrix, using the Crout method, has been written and used extensively during the past ew weeks. This is a general program will handle is determined by the drum storage available for holding the elements of the ma-

1. Howarth, D. J., Proc. Roy. Soc. (London), A 220,513 (1953)
. Fletcher, G. C., Proc. Roy. Soc. (London), A 65, 192 (1952)
mathematics, Coding, and application \qquad
trix. The program has already been used for matrices up to order 36 , and it is expected that it will be used on matrices of the order of 78 ; the largest matrix that is presently pos-
sible appears to be of order 100 . sible appears to be of order 100 .
2. Pressure Prediction on New Data

The use of the linear operitors derived for pressure prediction was discussed in Report No. 38. Complete pressure predictions have been made for the month of January 1953; this month was not used for the derivation of the linear operator. Twenty-four-hour
predictions were made for each of the 91 points on a grid covering most of North America Analysis of the results of these predictions has not been completed, but a preliminary examination indicates that the accuracy is rather good. This method appears to offer an objective procedure for pressure prediction on a routine basis.
3. Study on Extended Rain Forecasting

Considerable work was done during the past quarter in an atiempt to assess the information available in five-day mean circulation patterns concerring the associated fiveday mean anomalies of temperature and the five-day accumulation of rainfall. This is es-
sentially an attempt to adapt the techniques embraced in this work to methods of five-day forecasting, as now practiced. In addition to the association of actual weather with circulation patterns, an effort is being made to determine the predictability of the weather elements. It is expected that this work will be completed during the next quarter.

4. Precipitation

Considerable machine time has been used in an attempt to see if it is possible to replace a large number of circulation parameters by a relatively smaller number of parameters which characterize the humidity distribution. The purpese of this work is to pre-
dict areal averages of 24 -hour accumulation of precipitation. The dict areal averages of 24 -hour accumulation of precipitation. The work has been proceed
ing by successively more difficult stages, and a final answer tribution should be introduced explicitly or implicitly, in the whermer ine moisture dis eters, has not yet been answered
5. Four-Dimensional Climatological Model

This work has been proceeding along the lines indicated in Summary Report No. 38 , Essentially it involves putting together upper-level circulation patterns with surface pattern and taking account of the time variation in these patterns to predict rainfall and tempera
fure. A good deal of time has been spent in preparing parameter tapes for this work, but no actual runs have been made.
6. Extension of Grid Size

It has seemed worthwhile to investigate the feasibility of extending the present grid Which is now bounded by laritudes 30° and 60° North and longitudes 65° and 125° West. The necessary data to do this have been obtained from the U.S. Weather Bureau in Washington, and the work has now advanced far enough to expect that actual machine work will be under way during the next quarter.
159 Water use in a hydroelectric system
The balk of the work on this problem has been completed and has been written up by J. D. C. Little as part of a doctoral thesis in the MIT Physics Department. A few more alculations may be made during the preparation of papers for publication.

The problem has guestion are based on analyses of reservair oneration with an assumed future flow. The pproach used here is to characterize future fiow by probabiiity distributions and determine the water use which minimizes the expected cost of operation,

The Whirlwind computations consist of three parts: the calculation of the probabilihies from the historical record of flows, the calculation of tables of best water use, and the calculation of the operation of the bystem with the historical flows as input.

During the past quarter, the optimization program has been considerably improved, new scope-output routine has been added to the historical-flows program, and the majo production runs have been made. The scope output has been very successful. Originally, it was planned to bring out of the machine on magnetic tape certain results of system opera tause of the amount of the hand labor required, There fore, a scope routine was written which displays a set of four (actually, any number) curves on the scope. For a given method of determining water use and for a given year in the his. torical record, curves were displayed to show the historical flow, recommended storagewater use, required supplemental generation, and reservoir elevation, all as functions of the time through the year. Although too gross to show up fine differences of operation, the curves give an excellent feeling for how the system is behaving macroscopically.

Operation as determined by the expected-value method has been compared to a more onventional operation an a -imple model of a hydro system idealized from the Grand Corlee plant on the Columbia River. Differences between various kind of operation were found to
be small. However, the expected-value method gives a sensible stable operation with an average cos: comewhat lower than that of conventional operation.
166 construction and testing of a delta-wing flutter model
The problem and computational procedures of designing a delta-wing flutter model to simulate a given set of flexibility influence coefficients of a full-scale wing were de scribed in Summary Reports 37 and 38 by M. M. Chen and S. I. Gravitz of the MIT Aeroelastic and
Structures Research Laboratory. The entire programming
been completed ar. 1 is now in working order. Four basic tapes are involved in the computas tion. The first one is a Flexo tape which is designed for the direct readin of the given influence cuefficients and the first cstumates of the stiffnesses of each individual member. The second tape is in binary (556) form and contains the geometry of the system. The third tape is also in binary form and corresponds to the calculation of $\triangle \mathrm{C}$'s. The influence coefficients are computed on the basis of the first estimates of the stiffesses, and the differences are printed out. The last tape, in binary form, corresponds to the formulation of
$\Delta \mathrm{X}$'s. If the trial influence coefficients are notcose $\Delta \mathrm{X}$'s. If the trial influence coefficients are not close enough to the given ones, corrections The program works as follows. For
nputer. The preliminary output from each cycle is stored on the drum read into the computer. The preliminary output from each cycle is stored on the drum right over the only the last two computational tapes need be repeated.

The last step of the fourth tape makes use of Crout's matrix-inversion routine which solves the set of linear simultaneous algebraic equations to yield the corrections. Unfortunately, the principal difficulty in the iterative procedure arises in this routine; unreasonable arswers were obtained because of the ill-conditioned matrix of coefficients. At present satisfactory results for a three-bay model were obtained by a trial and error scheme.
The total deviation of the flexibility iny The total deviation of the flexibility influence coefficients from the given ones is on the average about 7%, and the error of the influence coefficients of the diagonal element runs from
0.1% to 5.8%. to 5.8%.
During
During this period, a three-bay, $5 / 32$-inch aluminum model was built and tested The experimental results agreed fairly well with the theoretical influence coefficients, and
the average error is about 3%.

167 transient effects in distillation

Work has been continued by J. F. O'Donnell of the MIT Chemical Engineering De
partment on two basic problems which have been described in preceding reports. The re-
sults will form a part of his Sc. D. thesis, which is being done under the supervision of Pro fessor E. R. Gilliland. Each of these problems involves transient effects of column holdup in binary batch distillation. The problems are: batch distillation, product takeoft at constant reflux ratio, and trarsients in continuous distillation.

One new program has been developed and operated successfully on Whirlwind dur ing the past quarter. It solves the equation for the limiting case of product takeoff in binary batch distillation at constant reflux ratio, assuming the holdup in the column is neglig. ibly small.

$$
\begin{align*}
& \text { The basic relationship for this case is: } \tag{1}\\
& \qquad w=\exp \left\{\int_{x_{w} .}^{x_{w}} \frac{\mathrm{dx}_{\mathrm{w}}}{\mathrm{x}_{\mathrm{D}}-\mathrm{x}_{\mathrm{w}}}\right.
\end{align*}
$$

where W is the fraction of the charge not yet distilled, X_{D} is the distillate composition, and X_{W} is the still-pot composition. From a combination of material and energy balances and equilibrium relationships, X_{w} can be expressed explicitly in terms of X_{D}. However, the only way X_{D} can be obtained from X_{w} is by iteration. The initial value of X_{D} correspond-
 resulting increments in x_{w} are unevenly spaced. One of the problems was the question of how to carry out the integration.

Initially it was hoped that by using the trapezoidal rule for the integration, solutions of sufficient accuracy could be obtained with reasonable machine time. Two sample cases
were run on the machine, each with at least three different increment sizes. Then it was were run on the machine, each with at east three different increment sizes. Then it was
determined that a plot of the result, w, for any value of X_{w} against h^{2}, where h is the increment size, was a straight line. This implied that Richardson's h^{2} extrapolation might be used.

Briefly, the following procedure is used for the integration. Starting at one point, values of W are calculated using two different increment sizes alternately witio one equaling half the other. That is, two steps are taken using the smaller inc rement size and then one step with the larger. Thus, at that new point there are available, at a single value of X_{w}, values of w calculated using the two increment sizes. Then the mathematical equivalent of Richardson's h^{2} extrapolation is done, giving a corrected value of W . This is printed out.
were used than would have been necessary if the two calculations had been done sep arately (because it was not necessary to calculate X_{w} from X_{p} again foc the larger step). Alsoless machine time was used than would have been necessary if each case had been done
 made each time the extrapolation was carried out to sce that it was not too large.

Using this program a series of cases has been solved, giving the product composition as a function of the fraction of the charge distilled. These cases with holdup neglig ible include all the sets of parameters which had been used previously to obtain solutions ior the same operation as suming varying amounts of holdup present. Comparison of the two types of results has been valuable in gaining an understanding of the effects of holdup.

The major part of the work done on transients in continuous distillation has been on the problems of quantitative correlation of the data for the case of a step change in feed composition. Two correlations were developed for the data obtained previously. Then additional solutions were made using Whirlwind to determine the effectiveness of the correlacorrelations were quite successfut for conditions within the range previon showed hed ever, some extreme sets of parameters gave results that were not predicted by the cor relation satisfactorily for engineering purposes. J. I. Jordan has subnitted a Master's thesis to the Chemical Engineering Department on this phase of the subject. ${ }^{1}$ A considerable improvement in understanding of the situation has been achieved,

Work is continuing on the over-all project. Though some additional data will be saken, the major effort will be on the utilization of available data to reach qualitative and

169 UTILIZING A GENERAL-PURPOSE DIGITAL COMPUTER IN Witching-CIRCuIt design
As this is the final report on this problem, a brief review of the problem and the that have been obtained will be given.
The problem undertaken by E. C. Hoy of the MIT Electrical Engineering Department involves the simplification of Boolean functions or switching functions, which are Bool ean functions interpreted as representations of series-parallel switching circuits. Becaus Boolean functions may be interpreted as switching-circuit representation, the problem of their simplification is of more than academic interest. The arbitrary criterion for simplicity is the fewness of independent variable appearances in a function form. ${ }^{2}$ In general for a given function there is no unique form of any chosen degree of simplicity. Thus there one such simplest form A program for simplifying switching functions has been developed based ob the ap

1. Jordan, J. I., Jr., "Transient Conditions in Continuous Distillation Columns, " s.M.
Thesis, Chemical Enginering Department, MII (1154).
2. Other criteria may be mosen
3. Other criteria may be chosen, e.g., fewness of the number of variable appearances
plus terms.
pication of several logical (or Boolean) identities. In the course of the programming, methods for adapting the digital computer to Eoolean algebra were developed, including a method for representing the function in storage and methods for performing the three major logaperations. Input and output to the program are made in notations familiar to those orking in the switching-circuit field. Delayed outpur by means of magnetic tape is used to save computer time. The program requires 506 registers of fast storage in addition to the storage required for the statement of the particular problem. At present the program can ffectively handie any function of nine variables. A function of any number of variables up to and including 15 can be handed providing its statement does not exceed the storage avaires, the program can be revised to handle more functions than it does at present. Providng the rumber of variables does not exceed 15 , the number of variables does not directly affect the operating time of the program. Starting with standard normal forms, ${ }^{2}$ the proram required less than 23 seconds to simplify 26 functions averaging over 10 terms each. However, although the computer simplifies functions much faster (about 100 times faster) and more accurately than people using the same simplification method, the simplification method that has been programmed does not insure simplest solutions and does not indicate ine nature of the soiution

Various methods for modifying the existing simplification method were studied, an different approaches to the problem were sought. The most promising of the methods in estigated is that proposed by w. V. Quine (see reference below). His method has a prod dicating the nature of the solution.

The answer to the question of whether it is feasible touse a general-purpose digital computer to simplify switching functions is necessarily a subjective one, depending upon he particular engineering problem of the designer and the equipment available to him a reasonable cost.

For a more complete discussion of this work than presented here, one may refer to aforthcoming Electrical Engineering S.M. thesis by E. C. Hoy entitled, "Simplifying Switch ing Functions Using a General Purpose Digital Computer
References: Shannon, C. E., "A Symbolic Analysis of Relay and Switching Circuits," Trans
Quine, w. V., "The Problem of Simplifying Truth Functions, "American Math-
ematical Monthly, Vol 59, pp 521-531, 1952

[^1]172 overlap integrals of molecular and crystal physics The routines developed by F. J. Corbató of the MIT Physics Department and des cribed in Summary Report No. 38 have been used to obtain the integrals arising in the tight-binding calculation of graphite. These integral values are the input data for a combined generation/secular-equation program which for a series of reciprocal lattice vectors.
\vec{k}. generates the dependent matrix elements of the equation.

$$
\sum_{j} H_{i j} X_{j m}=\sum_{j} S_{i j} X_{j m} E_{m m} .
$$

and solves for the eigenvalues, $E_{m m}$, and eigenvectors, $\mathrm{X}_{\mathrm{j} m}$. This program was used and solves for the eigenvalues. $E_{m m}$, and eigenvectors, X_{jm}. This program was used
for several sets of possible integral values. The results revealed that the secular-equation solutions were sensitive to inaccuracies in the S_{ij} matrix and that a greater number of integrals than had been suspected heretofore were required for the necessary accuracy in the $S_{i j}$ matrix elements. Inasmuch as the present generation/secular-equation program is not easily extended to a greater number of initial integral values, the entire program is
currently being rewritten. currently being rewritten.

During the latter part of this quarter, time was spent consolidating and partially generalizing the integral-evaluation program. In addition. on the basis of the experience
gained from the present work, several improved subroutines wcre offered to the subroutine gained from the present work, several improved subroutines were offered to the subroutine
library.

173 COURSE 6.537 -- digital COMPUTER APPLICATION PRACTICE
Two of the studeuts who were enrolled in the MIT Electrical Engineering course 6. 537, entitled "Digital Computer Application Practice," given by Professor C. w. Adams, have continued to work on special problems.

The time spent on Whirlwind by H. C. Kreide has been used to develop a date demonstration routine as a special problem for course 6.68. The purpose of the demonstration routine is threefold: (1) to supply the day of the week that specific dates fall on; (2) to supply all of the dates in a particular month upon which a given weekday falls; and
(3) to supply the date of Easter for any desired (3) to supply the date of Easter for any desired year.

The routine is based on the Gregorian Reform and handles all dates between 1600 and 16,000 A. D. Calculations are based on the theory of congruences. Basis for correct
dates and weekdays has been Cunninghani's " 250 Year Calengr." dates and weekdays has been Cunninghan's " 250 Year Calendar." Basis for correct dates
of Easter has been the 1954 World Almanac. All tests made on the final routine have vielded correct results (only the years between 1753 and 2100 are given in publications).

As it presently stands, the routine consists of four tapes, the last of which contains
dates when given in proper form. A few revisions will be made to allow the information given on Flexowriter tape to be more flexible and to reduce considerably the possibility of misinterpreting it. Also, some revisions will be made in information that is printed ou when illegal or nonexisting dates are given the compurer. Any further sevisions will be to eliminate redundancies. Even without revisions, the program is in good operating order

The problem considered by S. Petrick was the adaptation of a form of the game "battleship" to regular WWI code. The user of the program decides on how he wishes to place his five "ships" on a 16×16 grid. The ships have lengths from two to six square place his five "shps" on a 16×16 grid. The ships have lengths from two to six squares
long and must he either horizontally or vertically. In addition, no two ships can be adjacent along a line.

The machine picks a square and then consults a stored table to see if a hith has been made. If so, control is transferred to a polishing-off routine. The method used is the following: Consider square $x_{i j}$. Determine the number of different ways in which a class two ship can be placed on the board at this time. Repeat this process for class-three, -four, -five, and -six ships. Add the six resulting quotients to give an "index of shootability" for square $\mathrm{x}_{\mathrm{i} j}$. Repeat this process for all other squares, and then pick the squar whose index is greatco
 off routine on a class-six ship. It is hoped that this error can be found and that no other of the polis shing-off routine will turn up.
Only one case which worked satisfactorily has been tried, and the same distribution of ships was given to several human players. While Whirlwind did not take fewer guesses than the best human
average human score.

174 tight-binding calculations in crystals

The unperturbed wave function for a crystal is approximated by a linear combination of atomic functions. A Hamilto.aian matrix is set up between these functions; the eigenvalues of this matrix are the energy levels of the electrons. The diagonalization of the Hamiltonian has been done on wwI.
in particular, this program has now been carried out for the nickel metal. This involved the diagonalization of 680 five by five matrices. The matrix elements were calculated in the machine instead of Just reading in the matrix elements aver compuing them
by hand. This calculation has now been completed and the results have been processed to by hand. This calculation has now been completed, and the results have been processed to
supply a density of states for nickel. This density of states represents the number of energy levels in the nickel metal which are in a given energy range and is important in
studies of magnetism and specific heat in solids. The results are now being prepared fo publication in The Physical Review by Dr. G. Koster of the MIT Solid State and Molecular Theory Group
175 impurity levels in crystals
The calculation of impurity levels in crystals involves the solution of difference equations which are solved by a Green's function method. This involves finding the invers of matrices ($H-E$) where H is the unperturbed Hamiltonian and E is the energy of the impurity level. The inversion is being done on Whirlwind 1 by Dr. G. Koster of the MIT Solid The routine for inverting the
The routine for inverting the difference of the Hamiltonian matrix and the energy E has been applied to chromium in order to study the energy levels of impurities in this metal, For each Hamiltonian matrix $H, 16$ different E values were subtracted from it before in
version. The total number of Haniltonian matrices which were considered was 220 . (The method of determining the energy levels of the impurity atom in the solid from the inverses of (H-E) is described by G. F. Koster and J. C. Slater in Phys. Rev. 95, 1167 :1954). A knowledge of the impurity levels in chromium is useful in studying the tariation of the saturation magnetic moment in the transition elements as it varies with. ,impurily calculation. The work on this problem, which was to be carried out on Whirlwind, and the results of the co

179
transient temperature of a box-type beam
The time histories of temperature and stress at several points along the peripher of a thin-walled rectangular cross section have been calculated on WWI by L. Schmit of the cross section (of 63 X -Th aluminum alloy), the joint contact admittance problem has been avoided. The heat input is constant with time but varies chordwise. All spanwise offecto are neglected. The temperature gradient across the thin wall thickness is assumed to be negligible. The specinc heat, thermal conductivity, and weight density are assumed no to vary with temperature. However, the modulus of elasticity and the thermal coefficient of expansion are assumed to vary with temperature. The temperature distribution is carried out by an uncoupled finite-difference procedure. The physical grid employed con $s i$ ist) of $541 / 8$-inch square eiements. A time increment of 0.02 second is selected ($M=1$.
$(\Delta S)^{2}$
$=6.25$). Upon completion of every 50 time cycles the $\frac{d}{a} a^{\tau}=6.25$). Upon completion of every 50 time cycles the stress distribution is deterbased on an extension of the elementary-beam theory to include thermal effects. Both
. MAN temperature and time histories obta
compared with experimental results.

180 crosscorrelation of blast-furnace input-output data
A combined program which will compute and piot for any given functions a corre lation function and its Fourier transform is now being optimized and tested. The progran is designed to minimize the tape-preparation time, operating complexity, and total com puter time involved in correlating a pair of functions and computing the transform of the correlation function. In addition, the program eliminates all intermediate hand computation and tape preparation, since a single continuous rut completes all computation.

A further aid in operating the program is the use of only the oscilloscope camera as the output device; the problem of efficiently

The program will handle functions up
 transform program developed under Problem 171 by D. T. Ross. This program has the
feature of automatically reducing spurious Gibbs ripples in the spectra. Both cosine leazure of automatically reducing spurious gibbs ripples in the spectra. Both cosine and
sine transforms are computed. However, when a function is autocorrelated, only the co sine transform is required, and the program may be stopped after this result is obtained thus eliminating a lengthy and unnecessary computation.

It is hoped that the availability of such a program in the Laboratory fies will materially reduce the programming effort involved in many types of problems, since the processing which this program automatically carries out has very wide applications in scientific and engineering computation. This work was initiated by R. G. Mills for an S. B.

183
blast response of aircraft
During this past quarter, three new phases of the blast loading problem have been programmed, and test runs have been made on wwi.

The problem, being programmed by Y , Shulman of the MIT Aero-Elastic and Struc tures Research Laboratory, is to determine the dynamic response of an idealized airplane upon encountering a symmetric blast gust. The airplane is approximated by one fuselage mass and two wing masses connected by two uniform massless beams. The method of solution is, in general, similar to that of the cantilever-beam problem reported earlier.

Unlike the cantilever-beam case studied earlier, the structural characteristics of the uniform beam, which represents the wing structure, are represented by a momentvs. - curvature curve having a discontinuity in bending moment at the instant that the wifg
increases. In view of this consideration, the programming of the problem provides an additional feature: namely, the maximum response of the structure is defined either as The blast force art of curvature at which the resistance of the beam is zero. theor, and lumped at the mass stations. The exponential form of Wagner's function is used, and hence the subroutine for e^{x} is used in the program,

In addition to the blast force and inertial force, the airplane is also subjected because of motion to damping forces which were neglected in the cantilever-beam case. For one phase of the present problem, the damping force is formulated according to unstead force is assed quasiforce is as sumed quasi-steady, and the
fied.
\qquad
Tapes of the above two phases of the problem have been tested and checked with desk solutions. Results of the runs also show that the as sumption of quasi-steady damping, in the post-buckling ran

Furthermore, the test runs of the tape also indicate that the machine time needed for the automatic reduction of the time increment is longer than desirable. Consequently, a convergence test has been made for a set of parameters of practical interest without automatic reduction. It was found that for a nondimensional time increment of 0.1 the 1:gible.
\qquad A third phase of the problem is to determine the peak blast-gust velocity which will cause a given wing structure to fail at various altitudes and airplane velocities. For a set of parametric values, the problem thus involves a cut-and-try procedure so that the peak vision of is equal to the given failure curvature. A tape has been prepared with the pro being tested on $W W_{1}$.

The production runs scheduled for the near future consist of 50 runs for the first tape and 40 runs for the third tape. The machine time needed for the first tape is esti mated at about 3 minutes per rin. No estimate can be made at this time for the thi

184 SCATtERING OF ELECTRONS FROM HYDROGEN

The calculation of the two-dimen nional integrals described in Summary Report No. 38 has been largely completed. Each integral corresponds to a probability of a virtual 38 has been largely completed. Each integral corresponds to a probability of a virtual
transition to an excited state of the hydrogen atom. These expressiens were cvaluated fur
\qquad
three values of the energy of the incident electron and five values of the scattering angle. It was possible to perform the integrations analytically when the scattering argle was zero degree. This exact sults checked to the desired accuracy (three significant figures).

In the case of the virtual transitions to the continuum states, it had been planned to reduce what were originally three-dimensional integrals to a two-dimensional form and then perform the numerical quadrature, as in the case of the transitions to the discrete states. However, it finally had to be conceded that the approximations that led to this reduction were unsatisfactory, and a program was constructed to perform the original three-dimen sional integrals numerically. These terms are also being checked against the results of simpler calculations for zero scattering angle.

This work is being carried out by M. C. Newstein of the MIT Physics Department will be included in his Ph. D. thesis

185 a scale of turbulence
The correlation of eddy velocities or fluctuations between two points within a turbulent flow will generally vary inversely with the magnitude of the distance between the points. This offers a method by which eddy size may be defined, the length or
ing that separation of the points at which the correlation becomes insignificant,

Atmospheric turbulence covers a wide range of motions with a ssociated length scales
varying from large disturbances containing most of the energy of the motion to those smallest eddies which dissipate energy as heat by action against viscosity. J. W. Tukey states that the minimum resolution of fluctuations is fixed by the sampling interval on a stationary stochastic process. An upper limit is set by the length of the sample.

Tukey's analytic filter was applied to seven sets of wind-velocity data. These data were simultaneous observations or wind speed at a height of about 2.5 meters made by four anemometers were aligned either parallel or normal to the mean wind flow with a separa tion of 1,2, and 4 meters between individual units on five of the observations and 3,6 , an 12 meters on the remainder. The sampling periods were from 392 to 510 seconds long. The sampling interval was 1 second.

The analytic filter operates on the sequence

by forming the following differences
mathematics, coding, and applications
a. First-order differences of the j -th probe

$$
d_{j}^{(1)}=\left(x_{2 i}-x_{2 i-1}\right), \quad i=1,2, \ldots, \quad[N / 2]
$$

b. Second-order differences for the j-th probe.

$$
d_{j}^{(2)}=\left\{\left(x_{4 i}+x_{4 i-1}\right)-\left(x_{4 i-2}+x_{4 i-3}\right)\right\}, \quad i=1,2, \ldots,[N / 4]
$$

c. Third-order differences for the j-th probe

$$
d_{j}^{(3)}=\left\{\left(x_{8 i}+\ldots+x_{8 i-3}\right)-\left(x_{8 i-4}+\ldots+x_{8 i-7}\right)\right\}, i=1,2, \ldots,[N / 8]
$$

where $\left[\mathrm{N} / 2^{\mathrm{p}}\right]$ $\left[\mathrm{N} / 2^{\mathrm{p}}\right]$ represents the integral part of $\mathrm{N} / 2^{\mathrm{p}}$. in which maximum spectral power is concentrated near periods of 2^{p} seconds per per where p is the order of the difference. The fitter is only a rough one since it lacks sharp cutoff characteristics. In this problem, only the first three differences are considered. Other investigators have shown that the sums of squares of the differences defined above are proportional to the variance and energy at their associated frequencies.

Seven parameter tapes were prepared for presentation to Whirlwind using the observed wind-speed reading. A program was then prepared in which the differences previously defined were formed A parmedately without pintout. For each difference, for each

$$
\text { where } d_{i j} \text { is the } i \text {-th difference in the sequence of differences for the } j \text {-th probe. Thus } 630
$$ numbers were printed by Whirlwind.

With the results from Whirlwind, certain statistical tests were made on the data in order to a scertain the degree of validity of the assumption that the d_{ij} are normally distributed with mean of zero and with homogeneous variances for synoptic observations. periods separately as a subject for the following battery of tests. First, the homogeneity of variances was tested by using the test described by Hoel for this purpose. Then an Analysis of Variance was performed to test the hypothesis that the means from each of the four probes were essentially the same, and the Student's "t" Test was applied to show that this mean was not significantly different from zero. Finally, a Chi-square Goodness of Fit Test was applied to the $d_{i j}$ to determine if they zould he considered an having a normal distribution with monn zetio a...i \& vartance equai to the arithmetic mean of the variances

$$
\begin{aligned}
& \begin{array}{l}
\text { bution to the solution of the problem } \\
\left.\left[\mathrm{N} / 2^{\mathrm{P}}\right] \mathrm{N}^{\mathrm{N}} / \mathrm{N}^{\mathrm{p}}\right] \quad\left[\mathrm{N} / \mathrm{P}^{\mathrm{P}}\right]
\end{array} \\
& \sum_{i=1} d_{i j} \quad \sum_{i=1} d_{i j} d_{i k^{\prime}} \sum_{i=1}^{N} d_{i j}-d_{i k^{\prime}} \sum_{i=1} d_{k j}{ }^{2} d_{i k^{k}}{ }^{2}, j, k=1,2,3,4
\end{aligned}
$$

of the four individual probes.
For each of the differences for each sampling period, the correlation coefficients for the six possible combinations of the probes were computed. These coefficients were plotted against distance, and the indicated length at which the coefficient becomes sensibly zero was noted. Thus, an eddy with a predetermined frequency will have a length, scale of turbulence, as sociated with it.

In addition to the usual correlation coefficient, the $d_{i j}$ were first squared (by Whirl. wind) and then a hion porfed agains probe separation. Also, the quantuues $\sum_{i j} \mathrm{~d}_{\mathrm{ij}}-\mathrm{d}_{\mathrm{i}} \mid$ were plotted against probe separa
tion. The last two plotted figures will be compared to the plotted correlation coefficient to determine the degree of agreement between them.

Production runs have been satisfactorily completed on all seven sets of data. The results have been described in an S.M. thesis written jointly by J. Howcroft and J. Smith for the MIT Meteorology Department.
186 tracking response characteristics of the human operator
A series of power-density and cross-power-density spectra has been computed for J. I. Elkind of the Lincoln Laboratory at MIT by WWI. These spectra were computed by taking the Fourier transform of the auto- and crosscorrelation functions of stimulus and response. The spectra that have been computed were obtained from an experiment designed to measure (1) the variability in the response characteristics of particular subjects, and (2) the variability in response characteristics among several subjects

Only a few of the spectra have been used to obtain human operator transfer functions and noise power-density spectra. Most of the results already computed by wWI have not
yet been reduced to this form. The transfer functions that have been obtained show that yet been reduced to this form. The transter functions that have been obtaned show that
the human operator acts like a low-pass filter of band width about as great as the band width of the stimulus he is tracking.

190 zeeman and stark effect in positronium
Positronium, the transient electron-positron atom, annihilates from S -states, with the transfer of the rest mass energy to the free radiation field. From the S_{1} states the annihilation process yields 3 quanta, from ${ }^{1} \mathrm{~S}_{0}$ states two. The gross energy structure of the atom is the same as that of hydrogen save for a constant factor of $1 / 2$ arising from the reduced mass of the "nucleus." The fine and hyperfine structure is entirely different.

In the $n=2$ group of states the fine structure pattern perturbed by magnetic and elec arelds has been computed by dagonalizing the hamionian for he system. The elec.
\qquad
field in which it is formed. :he Hamiltonian matrix is 14×14 and has been diagonalized for values of the magnetic field of $500,1000,2000,3000,4000$, and 5000 gausses and for the values of the motional energy of $0,0.025,0.25$, and 0.5 electron-volt.

The states of $\mathrm{n}=2$ all have finite lifetimes (2 - or 3 -quantum annihilation or optical
ion), and an approximation to the reciprocal lifetimes of the perturbed states Γ Total emission). and an approximation to the reciprocal lifetimes of the perturbed states $\Gamma_{i}^{\text {Total }}$
$(\mathrm{i}=1, \ldots, 14)$ may be found from the unperturbed reciprocal lifetimes $\gamma_{k}(k=1, \ldots, 14)$ by computing

where $a_{i \mathrm{i}}$ is the perturbed eigenvector.
The branching ratiof for 2 - to 3 -quantum anrihilation of the atom may be found by
forming the partial sums forming the partial sums

$$
\begin{aligned}
& \Gamma_{\mathrm{i}}=\sum\left(\mathrm{a}_{i k}\right)^{2} \quad \text { and } \quad \text { triplet } \\
& \Gamma_{\mathrm{i}}=\sum_{\substack{\mathrm{k} \\
\text { singlet only }}}\left(\mathrm{a}_{\mathrm{ik}} \gamma^{2}\right. \\
& \text { and } \\
& \Gamma_{\mathrm{i}}=\sum_{\mathrm{j}}\left(\mathrm{a}_{\mathrm{ij}}\right)^{2} \gamma \mathrm{j} \\
& \underset{\text { triplet only }}{ }
\end{aligned}
$$

> total reciprocal lifetime were also found.

The present program of computations is now completed. The study was carried out by H. W. Kendall of the MIT Radioactivity Group. The routines for diagonalizing the Hamiltonian and for computing the partial and total reciprocal lifetimes were developed by Dr.
A. Meckler of the MIT Solid State and M M eular Theory Group.

192 frequency and phase spectrum analysis of seismograms
The following constitutes a brief resume of the work accomplished under Problem 192 by William P. Walsh. A more detailed account of the work may be found in the author's Ph.D. thesis submitted to the Department of Geology and Geophysics, 16 August 1954. by means of exact the existence of seismology surprisingly little has been done to a scertain son to the theoretical work which has taken place in this regard. The U.S. Coast \& Geodetic Survey has, we understand, revently carried out a good deal of work in this direction. Their attention was confined to strong-motion earthquakes, however. Many investigators in the petroleun, industry have recently become interested in the frequency analysis of remental research that has been projected in this direction in the fields of exploxper earthquake seismology.
n. much as possible MIT's WWI computer to that end.

Our purpose was not only to devise a means of seismogram spectrum analysis but also to apply such analysis in several cases in order to obtain useful information concerning surlace-wave dispersion, microseisms, and direct, refracted, and reflected energy of quakes and explosions.

Te prncedure we devised consisted of computing spectra (à la Tukey) from hundreds of successive overiapping intervals and displaying them in the fashion of a contour map -- called here traveling spectra.

Application oi the aforementioned process to several earthquake records obtained from the observatory in Weston, Massachusetts, revealed some interesting dispersion
curves for both Rayleigh and Love wavesover Allantic and continental paths. Thosecurves for surface waves which traveled the Atlantic path were strikingly similar, whereas those curves for surface wavestraveling over the continent were most dissimilar. This probably indicated a fair degree of lateral inhomogeneity in the continental portion of the earth's crust by way of comparison to the oceanic portion. It appears that exact comparison of our observed curves with models which more clearly delineate the complexities of the earth's crusı must await the calculation of theoretical curves obtained from at least a five-layered model (because of difficulties in these calculations only curves of two-layered models have thus far been determined).

Similar tec hniques were also applied to some mic roseisms (seismograms recorded at Weston) due to a storm which existed over the Atlantic near the coast of New England. Our analysis revealed the existence of a resonance phenomenon (i.e., the depth of water uncies of the microseism spectrum) and further corroborated the theory of the origin of microseisms proposed by Longvet-Higgins

Since the analysis of earthquake seismograms suggested the use of traveling spectra as a means of determining the travel time of reflections, several trials were made on
three prospecting records where reflections were both visible and invisible. The results were rather encouraging, for all types of reflections were put into evidence quite well.
193 eigenvalue problem for propagation of electromagnetic waves The field radiated from a Hertzian dipole to points well beyond the horizon over a perfectly reflecting earth through an atmosphere whose index of refraction decreases linearly with height (constant gradients) can be conveniently calculated as an eigenvalue problem. The eigenvalues of the allowed modes are determined by the boundary conditions at

MATHEMATICS, CODING, AND APPLICATIONS
the earth's surface, at the air-vacuum interface at height g , and at heights above the air The real parts of the eigenvalues determine the phase velocities of the allowed modes, and
the imaginary parts give the attenuation rate with horizolal distance around the earth. Th earth radius and wavelengths considered, of the order of a few meters or centimeters, en ter also into the numerical values of s and g, the index of refraction gradient and air-laye thickness, respectively. The first step, finding the eigenvalues wof the propagation modes consistent with the boundary conditions, leads to the problem of finding the complex roots of the following equation

$$
\begin{equation*}
\frac{h_{1}(w-s g)}{h_{2}(w-s g)}=\frac{8 s^{3}}{1-s^{3}} e^{-i \pi / 3} w^{3 / 2} \text { expon }\left[i \frac{4}{3} w^{3 / 2}\right] \tag{1}
\end{equation*}
$$

where w is a complex quantity, and s and g are nume rical, real constants. The functions h_{1} and h_{2} aredescribed and tabulated in the book, "Tables of the Modified Hankel Functions of Order One-third and of their Derivatives," published by the Harvard University Press. Cambridge, Massachusetts, in 1945 .

The values of ware uniformly sepa rated, and approximate values are kncwn or can be obtained by extrapolation from those already computed. Starting with an approximate value or w, an accurate value in the plications of a computing procedure.
plications of a computing procedure.
For each accurate value of w
of factors:

$$
\begin{aligned}
& \pi^{3 / 2} x^{1 / 2} 12^{-1 / 3}\left(\frac{1-s^{3}}{16 s^{2} w^{2}}\right) \\
& h_{1}\left(w-s g+s z_{1}\right) h_{1}\left(w-s g+s z_{2}\right) \\
& \left\{1-\frac{h_{2}\left(w-s g+s z_{1}\right)}{h_{1}\left(w-s g+s z_{1}\right)} \cdot \frac{h_{1}(w-s g)}{h_{2}(w-s g)}\right\} \\
& \left\{1-\frac{h_{2}\left(w-s g+s z_{2}\right)}{h_{1}\left(w-s g+s z_{2}\right)} \cdot \frac{h_{1}(w-s g)}{h_{2}(w-s g)}\right\} \\
& \text { expon }\left[i x s^{2} w-i \frac{4}{3} w^{3 / 2}+i \frac{4 \pi}{3}\right]
\end{aligned}
$$

1. For the derivation of (1) and (2) see Lincol)
Carroll, R. M. Ring, February 12, 1954).

Where Z is the distance of transmission muluplied by a known constant factor, and z_{1} and z_{2} are the heights of the transmitting and receiving antennas, respectively, multiplied by a known constant factor

It is possible tofind all the values of w for which Expression (2) has an appreciable size. The corresponding values of (2) are added together as complex quantities, the sun being the signal strength. A curve of signal strength as a function of X , or distance, may be plotted, and, if desired, a curve of signal strength as a function of Z_{2}, or height of re ceiving antenna, may be plotted.

Numerical computation covering about nine-tenths of the work of calculating Expresion (2) has been performed on the Whirlwind digital computer and checked by a calculation sing a desk machine. A program tape for calculating Expression (2) has been prepare and is being tested

Measurements of signal strength from the lite rature will be compared with the com puted values.

This work is being carried out by Professor H. B. Dwight of the Lincoln Laboraat

194 an augmented plane wave method as applied to sodium
In selecting a set of approximate wave functions of a periodic crystal potential to form the basis functions of the space in which the energy is to be diagonalized, one must first decide from which bands these functions are to be chosen and secondly from which set of neighbors surrounding the central cell in reciprocal space they are to be chosen. A customary and physically motivated method of choosing the latter is this:

The cells of reciprocal space are divided into rings of increasingly distant neighbors of the central cell, all cells of a ring being equidistant from the origin. Each enlargemen of the space in which the energy is to be diagonalized whichdoes This sace an firs of all be divided int invariat
This sped by a particular value of wave vector. Each of these spaces each subspace bein and is characterized by the wave vector of the functions which form the intersection of the subspace with the central cell. This wave vector is referred to as the reduced wave vector of the set of functions which compose the subspace. For certain wave vectors the subspace can in turn be reduced into invariant subspaces each of which is characterized by a ring and by the manner in which it transforms under the operations which leave the subspace in variant. This set of operations commutes with the energy, of course, and is called the group of the wave vector of the space. It can now be arranged that in each subspace of the same symmetry, but of different rings, the basis functions be chosen so that any operation
the earth's surface, at the air-vacuum interface at height g, and at heights above the air. The real parts of the eigenvalues determine the phase velocities of the allowed modes, and the imaginary parts give the attenuation rate with horizontal distance a round the earth. The earth radius and wavelengths considered, of the order of a few meters or centimeters, enthickness, respectively consistent with the boundary conditions, leads to the problem of finding the complex roots of the following equation:

$$
\begin{equation*}
\frac{h_{1}(w-s g)}{h_{2}(w-s g)}=\frac{8 s^{3}}{1-s^{3}} e^{-i \pi / 3} w^{3 / 2} \operatorname{expon}\left[i \frac{4}{3} w^{3 / 2}\right] \tag{1}
\end{equation*}
$$

where w is a complex quantity, and s and g are numerical, real constants. The functions h_{1} and h_{2} are described and tabulated in the book, "Tables of the Modified Hankel Functions of Order One-third and of their Derivatives," published by the Harvard University Press, Cambridge, Massachusetts, in 1945.

The values of ware uniformly separated, and approximate values are known or can be obtained by extrapolation from those already computed. Starting with an approximate value of w, an accurate value in the r
plications of a computing procedure.
plical For each accurate value of w of factors:

$$
\begin{aligned}
& \pi^{3 / 2} x^{1 / 2} 12^{-1 / 3}\left(\frac{1-s^{3}}{16 \mathrm{~s}^{2} w^{2}}\right) \\
& \mathrm{h}_{1}\left(\mathrm{w}-\mathrm{sg}+\mathrm{sZ}_{1}\right) \mathrm{h}_{1}\left(\mathrm{w}-\mathrm{sg}+\mathrm{sz} \mathrm{z}_{2}\right) \\
& \left\{1-\frac{h_{2}\left(w-s g+s z_{1}\right)}{h_{1}\left(w-s g+s z_{1}\right)} \cdot \frac{h_{1}(w-s g)}{h_{2}(w-s g)}\right\} \\
& \left\{1-\frac{h_{2}\left(w-s g+s z_{2}\right)}{h_{1}\left(w-s g+s Z_{2}\right)} \cdot \frac{h_{1}(w-s g)}{h_{2}(w-s g)}\right. \\
& \text { expon }\left[i X_{s^{2}}^{2} w-i \frac{4}{3} w^{3 / 2}+i \frac{4 \pi}{3}\right]
\end{aligned}
$$

1. For the derivation of (1) and (2) see Lincoln Laboratory Technical Report No. 38 (T. J.
Carroll, R. M. Rang, February 12 , 1954).
where X is the distance of transmission multiplied by a known constant factor, and z_{1} and z_{2} are the heights of the transmitting and receiving antennas, respectively, multiplied by a known constant factor.
ize. The possible tofind all the values of w for which Expression (2) has an appreciable being the signall strength. A curve of signal strength as a function of X , or distance, may ie p.otted, and, if desired, a curve of signai strength as a function of Z_{2}, or height of receiving antenna, may be plotted.
Numerical computation covering about nine-tenths of the work of calculating Expression (2) has been performed on the whirlwind digital computer and checked by a calculation using a desk machine. A program tape for calculating Expression (2) has been prepare nd is being tested.
Measurem
puted values.
puted values
This
This work is being carried out by Professor H. B. Dwight of the Lincoln Labora-
194 an augmented plane wave method as applied to sodium
In selecting a set of approximate wave functions of a periodic crystal potential to orm the basis functions of the space in which the energy is to be diagonalized, one mus first decide from which bands these functions are to be chosen and secondly from which sel of neighbors surrounding the central cell in reciprocal space they are to be chosen. A cus tomary and physically motivated method of choosing the latter is his:

The cells of reciprocal space are divided into rings of increasingly distant neighbors of the central cell, all cells of a ring being equidistant from the origin. Each enlargemen of the space in which the energy is to be diagonalized which does no increase the num This space can first of all be divided in
This space can hirst of all be divided into invariant subspaces, each subspact being characterized by a particular value of wave vector. Each of these spaces cuts across rings subspace with the central cell. This wave vector is referred toas the reduced wave vecto of the set of functions which compose the subspace. For certain wavevectors the subspace can in turn be reduced into invariant subspaces each of which is characterized by a ring and by the manner in which it transforms under the operations which leave the subspace in variant. This set of operations commutes with the energy, of course, and is called the group of the wave vector of the space. It can now be arranged that in each subspace of the
same symmetry, but of different rings, the basis functions be chosen so that any operation

MITRE CORPORATION
 BOMITHIDN
 PREVIOUS DOCUMENT REPHOTOGRAPHED TO ASSURE LEGIBILITY

MICROFILMED BY THE MITRE PRPMT ROOM
 Z_{2} are ${ }_{2}$. he heights of the transmitting and receiving antennas, respectively, multiplied known constant factor.
It is possible tofind all the values of w for which Expression (2) has an appreciable size. The corresponding values of (2) are added together as complex quantities, the sum
being the signal strength. A carve of signal strength as a function of X, or distance, may being the signal strength. A curve of signal strength as a function of X, or distance, may
be plotted, and, if desired, a curve of signal strength as a function of Z_{2}, or height of receiving antenna, may be plotted.

Numerical computation covering about nine-tenths of the work of cal culating Expression (2) has been performed on the Whiriwind digital computer and checked by a calculation using a desk machine. A program tape for calculating Expression (2) has been prepared and is beirg tested.

Measurements of signal strength from the literature will be compared with the com-
values. puted values.
This work is being carried out by Professor H. B. Dwight of the Lincoln Labora tory at MIT

194 an augmented plane wave method as applied to sodium
In selecting a set of approximate wave functions of a periodic crystal potential to form the basis functions of the space in which the energy is to be diagonalized, one must first decide from which bands these functions are to be chosen and secondly from which set
of neighbors surrounding the central cell in reciprocal space they are to bechosen. A customary and physically motivated method of choosing the latter is this:

The cells of reciprocal space are divided into rings of increasingly distant neighbors of the central cell, all cells of a ring being equidistant from the origin. Each enlargement of the space in which the energy is to be diagonalized which does not increase the number of bands represented requires adding an entire ring of neighbors.

This space can first of all be divided into invariant subspaces, each subspace being characterized by a particular value of wave vector. Each of these spaces culs across rings
and is characterized by the wave vector of the functions which form the intersection of the subspace with the central cell. This wave vector is referred toas the reduced wave vector of the set of functions which compose the subspace. For certain wave vectors the subspace can in turn be reduced into invariant subspaces each of which is characterized by a ring and by the manner in which it transforms under the operations which leave the subspace invariant. This set of operations commutes with the energy, of course, and is called the group of the wave vector of the space. It can now be arranged that in each subspace of the same symmetry, but of different rings, the basis functions be chosen so that any opo...itur

For the derivation of (1) and (2) see Lincoln Laboratory Technical Report No. 38 (T. J.
Carroll, R. M. Ring, February 12, 1954).
of the group of the wave vector has the same representation in each space. When the en ergy is diagonalized only wave functions with the same reduced wave vector and which
transform equivalently will combine to form the new basis functions of the space. Thus if these reductions can be effected, a much smaller secular problem need be solved than if one disregarded the invariance of the subspaces and were content to let the secular problem do the job. To effect this reduction the proper basis functions must be set up in each successive ring which is added to the problem,

Mr. M. M. Saffren of the MIT Solid State and Molecular Theory Group is testing a program which will first determine the intersection of the space characterized by a wave vector with the various rings and then will encode the proper coefficients with which to combine functions in the intersection to obtain a subspace of the proper symmetry. The pro gram is restricted to handle crystalsonly of the cubic group (this includes face- and body centered crystals). The program is to be first added to Dr. Howarth's program for cubi The routines of the program being tested will also be used in a progratil which is to calculate the energy bands in sodium according to the method of symmetrized augmented plan waves.

195 intestinal motilit
The analysis of intestinal-motility records being carried out for Dr. J. T. Farrar of the Gastroenterological Section of the Evans Memorial Hospital involves the autocorre lation and transformation of 80 sets of data. This work has been described under Problem 107 in Summary Reports No. 37 and 38 .

Twenty-four sets of data have been autocorrelated using a total time of 46 minutes with 15,900 points input, 2424 points outpui (101 points output per run). The average run has 700 points of data, giving an average of approximately 2 minutes per run.

These statistics indicate that, because of the high speed and efficiency of wwI, autocorrelations obtained by these methods are not only more accurate but alsocompare favor ably in cost with autocorrelations obtained from special-purpose analog computers. Addiof the autocorrelation program serves as input to the Fourier transiorm program with out further processing.

196

SINGLE-ADDRESS COMPUTER
The single-address computer (SAC) was developed for use in the MIT 1954 summer session course 6.531 . SAC is a modification of the SS computer, which was completed ear lier under Problem 140. A detailed description of the SS computer was presented in Sum mary Report №.

Read-In and Conversion

A SAC program tape, punched by Flexowriter equipment, is read in and converted to WWI binary information by the SAC conversion routine. A new feature which has bee added is the option of erasing SAC storage when reading in. Erasure is effected by pres quick-access storage and the simulated magnetic tapes (sez below) to be cleared before the program tape is converted. ${ }^{1}$ Failure to press the erase button before reading in causes the program information to be superimposed on the previous contents of SAC storage withour disturbing the information on the magnetic tape.

The SAC Magnetic Tapes
An auxiliary-storage medium, consisting of four magnetic-tape units, has been incorporated in SAC. Each of the units has a capacity of 990 SAC words. Words are always transferred between SAC storage and magnetic
divided into 99 blocks, numbered from 1 to 99

Three instructions are used in coding for the magnetic-tape units. These provide tape-search, tape-read, and tape-write facilities. The tape-search instruction (mts xyz) is used to select one of the four tape units and to position it before the desired block; the tape-read (mtr alb) and tape-write (m tw alb) instructions operate on the next block in se quence on the most recently selected tape unit.

The magnetic-tape information is stored in WWI not on the magnetic-tape units but on the buffer drum. This

1. Provision has been made for automatically resetting the SAC tape units to contain pre-
determinct initial data, wheneyco this tz cesired, insteat of being erased.

Modification of Instructions
The scope of the arithmetic operations in SAC has been broadened to facilitate the modification of instructions during the course of a program. The cycle-count lines greatly reduce the need for changing instructions in storage, but in certain cases the ability to make such changes is desirable. In the SS computer, operations combining instructions and integers are not permitted. In SAC, such operations may be executed, provided that the result is a proper SAC word. In particular, an integer may be added toor subtracted from an instruction to produce an instruction with a modified address, and iwo instructions with the address sections. ${ }^{1}$ These procedures are similar to operations normally executed by many digital computers (including WWI) and add considerable flexibility to the treatment of instructions in SAC.

The Instruction rip0
The SAC instruction code contains one additional instruction, ripo, not found in the SS code. This instruction permits the programmer tocall for the read-in of a new program tape. When rip 0 is executed, control is transferred to the SAC conversion routine. The instruction is equivalent, in effect, to pressing the read-in button without pressing the erase buttcn. The tape read in using the ripo instruction must therefore be complete within itself; no reference may be made to symbolic addresses which were assigned in preceding program tapes unless these addresses are reassigned in the new tape.

The Permanent Table of Constants
There is available in SAC a set of fixed quick-access registers whose contents may be read but not changed by the routine. Register 0 contains the integer 0 . and registers These constants may beutlized by the programmer i. exactly the same manner as integers stored within his routine, except that any attempt to modify them will result in a post mortem.

The Treatment of "Excess"
Arithmetic operations on integers in SAC may yield results which are too large to be stored in a SAC memory location. To allow for the generation of such integers, the SAC

1. In all cases, the counter letter, if any, is ignored.
accumulator is made double the length of a memory location. The part of the accumulato accumulator is made double the length of a memory location. The part of the accumulator
which contains any overflow that may be generated is called the "excess." Any attempt to transfer the contents of the accumulator to storage when the contents of excess are not zero will result in a post mortem.

In the SS computer, the instruction txi alc causes the contents of excess to be trans ferred to register alc and excess to be cleared. The contents of excess, however, are not simply related in the decimal system to the integer which originally was generated. ${ }^{1}$ Consequently, the use of the txi instruction is in most cases quite awkward, and it is frequent ly more convenient toclear excess using an arithmetic division by a suitable power of ten This is analogous to the decimal-shift-right found in many decimal digital computers. The $\frac{\text { txi instruction has been abandoned in SAC in favor of the more easily understood and more }}{}$ logical arithmetic division. The jix alc instruction, used to determine whether excess occupied, has been retained

Timing of SAC Programs

At the termination of a SAC program, either by the instruction Stpo or by a computation post mortem, a fictitious time is automatically frinted by the computer, indicating how long a physically existent $S A C$ would have required to execute the program performed This time is computed during the course of the program, giving a preassigned weight to each instruction as it is carricd out. The weights assigned to the instructions are based on 1 millisecond for mer cation, division, and the operations using input and output equipment.

In calculating the time, it is assumed that the magnetic-tape-search (mts) opera tion (but not tape read and write) may proceed in parallel with other computer operations until either the search is completed or another tape instruction is given. The time for multiplication and division, when the address section of these instructions refers to the perman less than the time required to perform the same operation using an ordinary SAC location. This is done because such multiplication or division would ordinarily be accomplished using a numerical-shift operation, which in many computers requires less time than straightforward multiplication and division. In ail other cases, the time is calculated assumin that no operations may proceed simultaneously and that the time required is independent of the numerical quantities and memory registers employed.

1. Actually, this integer is: (contents of excess) $\times 2^{27}+$ (contents of accumulator).
2. See above.

Automatic Post Mortems
The SAC conversion and computation post mortems are virtually identical to those of the SS computer. The computation post mortem in SAC indicates the positions of the four tape units and specifies the most recently selected unit, if the tape has been used. Noother changes in the post mortem have been made necessary by the modification of the computer instructions.
197 THREE-ADDRESS COMPUTER
A hypothetical three-address computer (called TAC) was developed during the pas quarter by staff members of the S\&EC Group. TAC was used during part of the 1954 sum mer-session course 6.531 (Digital Computers: Business Applications). A description of TAC is given in Section 5.2 of this report.

198 student problems coded for sac and tac
This problem number was set up for the use of students enrolled in the special sum mer-session course 6.531 (Digital Computers: Business Applications)

All of the students in the course coded and debugged a problem assigned for solu
on the simulated three-address computer called TAC (developed under Problem 197) tion on the simulated three-address computer called TAC (developed under Problem 197), an arbitrarily specified date.

Most of the students also worked on a second problem to be solved on the simulated single-address computer, SAC (see Problem 196). For this second problem, the student were permitted to select from among three suggested problems covering the maintenanc of bank-balance records, payroll calculations, and an autocorrelation calculation to detec a seasonal sale variation
199 LAMINAR BOUNDAR YAYER OF A STEADY, COMPRESSIBLE FLOW
henthne rohor a
In connection with research on heat-transfer coefficients, recovery factors, and fraction coefficients for supersonic flow of air in a tube, a theoretical investigation of the
characteristics of the laminar boundary layer in the entrance region has been carried out characteristics of the laminar boundary iayer in the entrance region has been carried out
by Dr. T. Y. Toong of the MIT Mechanical Engineering Department. Partial differential equations of continuity, momentum, and energy were developed for the boundary layer. These were then transformed into a series of ordinary differential equations to be solved by WWI for several entrance Mach numbers and thermal conditions at the tube wall.

First, solutions are to be obtained for the case of constant viscosity and thermal conductivity. Then, the effects of temperature dependence of these properties are to be studied.

Solutions of the first set of differential equations for the case of constant viscosity dicrmal conductivity have been obtained for six cases of different entrance Mach num done by wwl
Work is being done to solve the second set of differential equations cor responding to the same six cases.

The coding has been carried out in the "algebraic system" developed by Dr. J. H. ning under S\&EC Problem 108. This system makes use of Gill's modified fourth-orde Runge-Kutta method.

200 A STUDY OF RECURRENT EVENTS

A study of recurrent events in sequences of binary numbers is being made by Miss Bergitte Jensen and Dr. G. P. Dinneen oi Lincoln Laboratory. In each experiment two Bernouilli sequences are generated using a pseudorandom number generator. The basic
 from about 0.2 to 0.9 . The signal sequence is generated for a time which is short compared to the length of the noise sequence.

Various sampling techniques are being tried to determine the optimum statistical test for determining the presence of the signal sequence and its position. The more common statistical problem is that of dec:ding whether a finite sample comes from a noise region or a signal region. Here we observe a finite sample, part of which is from noise and One is the success-run technique, where a particular sequence such as 00000 is searcher for. The other is the density method, where the density over some interval is measured as the interval moves through the sequence. Whenever the density exceeds a certain threshold, we say the sample is from a signal region.

Programs for both of these methods have been coded and preliminary results ob tained. It is expected that this study may be completed during the next quarter.
201 study of the ammonia molecule
A self-consistent calculation of the electronic wave functions and binding energy of the ammonia molecule has been carried out. The method, which has been described in de ail in previous Summary Reports under Problem 144, is this, each 1-electron molecular
orbital is expressed and atomic orbitais belongng to the nitrogen atoms and to the three hydrogen atoms. The total molecular wave function 15 the determinant with the 1 -electron molecular orbitals as elements. The expectaion value of
the Hamiltonian is expressible as a quartic form in the coefficients of the linear combinathe Hamiltonian is expressible as a quartic form in the coefficients of the linear combina-
tions. Insistence that the energy be stationary with respect to variation of these coefficients demands the diagonalization of an effective Hamiltoniais matrix which itself contains the unknown coefficients. The problem is solved iteratively in what is termed a self-consistent manner. A first guess is taken for the coefficients, a new set is determined by the diagonalization of the effective Hamiltonian, this new set is fed back in, and so on until the input and output of a cycle agree to sufficient accuracy.

The matrix components of the effective Hamiltonian are composed of kinetic and potential energy integrals over the fixed set of 1 -electron fuictions. Actually, these were taken to be not the primitive atomic set but orthogonalized and symmetrized combinations
of them. The integrals over the atomic functions were evaluated on desk computers and IBM equipment. The integrals over the symmetrized combinations were obtained by means of a congruent transformation applied to a matrix whose elements were the atomic integrals. This was done on Whirlwind (a 36×36 congruent transformation).

With these integrals, the self-consistent calculation was done on Whirlwind. Various criterions of self-consistency were tried so as to judge the stationary property of the energy. The results are discussed by Dr. H. Kaplan in the 15 September Progress Report
of the Solid State and Molecular Theory Group at MIT. of the Solid State and Molecular Theory Group at MIT.
202 calculation of vertical antenna coverage skeleton
For several months investigations on vertical coverage interference patterns have been carried on by A. F. Bartholomay of Lincoln Laboratory. Complete detailed discussion on this subject can be found in his forthcoming report entitled "On the Calculations of the
vertical Coverage Interference Pattern." Vertical Coverage Interference Pattern.
e skeleton structure which consists of axes through the center of all twoes and 1 cisi (11 null points for constant point differences, and (2) eithera family of envelopes of corre spond-
null ing lobe points (the general case); or (in the flat-earth case) sinusoidal segments approximating the actual lobe shapes. The difficulty in obtaining one complete pattern, notwithstanding several patterns which actually are needed, is twofold:(1) numerous formulas are required to determine a single point; and (2) the number of lobes in such a pattern is directly proportional to the height of the antenna $\left(h_{1}\right)$ above the surface. For example, for an antenna height of $10,000 \mathrm{ft}$ and a $100-\mathrm{mc}$ radar, there will be roughly 2000 lobes. If we al
low 12 points as sufficient to describe each lobe, we would need 24,000 .

tions for the complete diagram,

Because of the length of the computations, programming the problem for whirlwind I seemed the best approach. Since the entire problem is time consuming even for a largescale digital computer, we considered only obtaining the skeleton structure of the pattern. of $10,000 \mathrm{ft}$, a skeleton pattern of the first 30 lobe lines was obtained. More explicitly, the program printed out in decimal form the X_{o} and Y_{o} coordinates foreach n lobe line ($1 \leq n$ ≤ 30) and for the curve of the earth's surface; and, at the same time, using the automatic curve-plotting routines, the program gave a scope display of the entire skeleton structure on one frame. The actual computer time consumed less than 10 minutes; equivalent calculations performed manually took several weeks. However, unforeseen complications in Whirlwind I. For the program to operate, limits must be set on d_{d}, which is a function of n but which varies greatly for diffierent n . Only through performing manually the entire calculation can such limits be found. Therefore, because of this and other inherent difficulties in the problem itself (see above report), we conclude that, for the present, this problem is best handled by desk calculations.
204 exchange intervals between real slater orbitals
It is rea sonable to expect that our ideas of chemical behavior can be sharpened when we are able to compute this behavior from fundamental theory. A theory that ascribes coulomb forces, spins, and correct statistica! properties to atomic nuclei and electrons with quantum mechanics in the form of Schroedinger's equation is believed to be sufficient to explain all important chemical phenomena. Cases have been computed (Hylleras - the helium atom; James and Cooleridge - the hydrogen molecule) to demonstrate the remarkable agreement of deduced behavior with experimental phenomena. Nevertheless, todate no ambin
computations closely related to the fundamental theoretical basis have been essayed.
With simplifying as sumptions, it is felt that such computations can be made feas if the distribution (or wave functions) of the electrons are expanded in a quickly convergent set of functions which form a complete set and, as orbitals of a single atom, have in a single function almost uniquely the properties of an orbital electron. Slater orbitals are such functions

An initial and computationally most difficult step in such a procedure is to compute integrals where the integrand is the product of two or four such orbitals and an operator. It is this step that gives impetus to the "Integrals Project" now being carried on at the Uni-

mathematics, Coding, and applications

- mathematics, Coding, and applications
will be necessary for each total integration, and the process is to be carried out only once during the computation of a total integral. These functions are derived from the initial contruction of four functions by means of a recursion formula. From these Bessel functions
further functions will be constructed with the construction of each 1, by means of a simple further functions will be constructed with the construction of each $1 /$ by means of a simple
recursion. At the outset it will be necessary to construct a table of coefficients. This table is representative of the multiplication of the two ψ functions together. The major portion of the computation is the numerical quadrature necessary to obtain an 1 g . The integration from 1 to ∞ is converted to an integration from 1 to 0 to give a finite range to the integration. The procedure will be to evaluate the integrand (including the inner integrations) exactly and approximate the outer integration by some "numerical quadrature" procedure.
To date, the initial coefficient table - to be used in constructing the w $\boldsymbol{l}{ }^{M}(\mathrm{~B}, \mathrm{x})$ pol-
In view of the fact that the heaviest portion of the computation
 gated. Of these schemes the most powerful, Gaussian, has proved adaptable, mutatus mutandis, and gives promise of decreasing the total necessary computations by the order of 70% of those necessary when using Simpson's rule. This scheme has been flow diagrammed for the specific case and will shortly be coded and tested.

A subroutine giving spherical Bessel functions of imaginary argument and $1 / 2$-integer order, as well as square roots and exponentials, in (24,6) has been completed and tested by F. J. Corbato of the MIT Physics Department and is now ready for incorporation into this scheme.

The procedure for computing an exchange integral is now sketched in sufficient de tail. The remaining effort will be almost entirely devoted to the tasks of coding, testing, and assembly.
Reference: Ruedenberg, Klaus, "The Two-Center Exchange Integrals" (Part II of "A Study of Two-Center Integrals Useful in Calculations on Molecular Structure"), Jour hal of Chemical Physics, Vol. 19. No. 12, pp 1459-1477, December 195.

205 electron lattice interaction in solids
Because of the large dipole moments associated with the long wavelength optical modes of vibration in ionic crystals, the coupling between these modes of vibration and the motion of a conduction-band electron is strong, too strong to be treated by perturbation the ry. It was even conjectured at one time that such an electron could be trapped in the poential well created by the polarization charge it it self had induced. Al though no experimenta evidence for such a self-trapped electron has been found, itis still expected that the effective
mathematics, coding, and applications \qquad
 large.

Various approaches to the problem of a single electron interacting strongly with the Various approaches to the problem of a single electron interacting strongly with the
optical modes have been proposed. Froblich, Pelzer, and Zienau ${ }^{1}$ and Gross ${ }^{2}$ have worked optical modes have been proposed. Frohlich, Pelzer, and Zienau ${ }^{1}$ and Gross ${ }^{2}$ have worked
in a Fock space for the phonon assembly introducing cutoffs above 1, 2 , or 3 quanta, then in a Fock space for the phonon assembly introducing cutoffs above 1,2 , or 3 quanta, then
attempting an exact solution of the approximate problem remaining, Lee, Low, and Pines ${ }^{3}$ and Gurari ${ }^{4}$ have applied intermediate coupling theory in what amounts to a Hartree-Fock approach in the momentum representation of Fock space. Various Russian writers, including Bogolyubov, ${ }^{5}$ Tyablikov, ${ }^{6}$ and Pekar, ${ }^{7}$ have worked in an electron-lattice configuration space making various approaches to an adiabatic approximation.

Basic to all these approaches are certain assumptions. The periodic potential of the lattice is taken into account through the introduction of an effective mass. The lattice is reated as a harmonically vibrating ${ }^{8}$ The polarizanon charge in a phenomenologica slow electrons.

Several questions have been raised: Haken ${ }^{9}$ in treating a highly specialized model has suggested that the effect of the periodic potential may be considerable. Lee and Pines claim to obtain an exact solution in the limit of strong coupling, yet Pekar, using a varia tional method, seems to obtain lower energies for sufficiently strong coupling. Lastiy, the Fock-space methods suggest an effective mass increasing sharply with momentum, but these methods are valid only for small momenta.

In order to resolve some of these difficulties it is desired to construct a model which can be solved with sufficient exactness to serve as a yardstick in determining the validity
of the various approximations. A possible model has been investigatedexactly by Gross, ${ }^{\text {, }}$, who determined the solutions to the eigenvalue problem arising when an otherwise free elec. tron is allowed to interact with only one traveling lattice wave and all moticn is confined to one dimension. A possible limitation of this model is its spatial asymmetry. For sufficiently strong coupling, for example, Gross finds the state with minimum energy has nonzero momentum. Conceivably this is a fault of the model's asymmetry. To determine whether or not the asymmetry is truly a limitation to Gross's model, the problem of a free electron interacting with twodegenerate modes (right- and left-going) in one dimension has been set up by T. D. Schulz of the MIT Solid State and Molecular Theory Group. The ma-
trices of order $\xlongequal{(\mathrm{n}+\mathrm{i})(\mathrm{n}+2)}$ arising on neglect of all states having more than n phononsexcited are being diagonalized fordivers ${ }^{2}$

* Numbered superscripts refer to references at the end of this problem
ing aims:

1. To see how the effect of the interaction on the ground state depends on wavelength 2. To see if the asymmetry of Gross 's model is important;
rystais in the provide an accurate yardstick for evaluating adiabatic methods used on real 4. To provide a starting point for considering the effects of a periodic potential and discreteness in the vibrating lattice.

Two values of the coupling constant (intermediate and strong) and two wavelen ${ }^{\text {th }}$, (intermediate and long) are being investigated. For intermediate coupling good convergence as been obtained. For strong coupling it is found that a better criterion than total number of quanta must be used in cutting off the infinite secular equation to obtain good convergence. r. Meckler is considering modifications in the ,

1. Fröhlich, H., Pelzer, H., Zienau, S., Phil., Mag. 41, 221 (1950)
2. Gross, E., Tech. Report 55, Lài. for Insulation Res., MIT (1952)

Lee, T. D., Low, F., and Pines, D., Phys. Rev. 90, 297 (1953)
Lee, T. D., and Pines, D., Phys. Rev. 92, 883 (1953)
5. Bogolyubov, N. N., Ukr. Mat. Zhurnal 2, 3 (1950).
6. Tyablikov, S. v., Zh. Eksper. Teor. Fiz. 21, 377 (1951); ibid 22, 513 (1952); ibid 23, 381 (1952); Zh. Tekh, Fiz. 22, 325 (1952).
7. Pekar, S. I., J. Exp. Theor. Phys. USSR 19, 796 (1949): Zh. Tekh. Fiz. 21, 154 (1951); ibid, 22, 1062 (1952); ibid, 22, 1076 (1952); Usp. Fiz. Nauk. 50,197 (1953): Is sledovaniia po Elektronnoi Teorii Kristallov, Gostekhizdat, 1951 (or German translaion, "Untersuchungen zur Elektronentheorie der Kirstalle, "Akad. -Verlag, Berlin, 1953).
8. Fröhlich, H., Proc. Roy. Soc. Al60, 230 (1937)
9. Haken, H., $\frac{\text { Z. Physik. } 135,408 \text { (1953). }}{\text { Phys. Rev. 84, }} 818$ (1953)

206 electron energies of the molecule h_{2}^{-}
The complete problem, undertaken by A. Dalgarno of Queen's University of Northern the collision processes
mathematics, Coding, and applications \qquad
(1) charge transifer
$\mathrm{H}+\mathrm{H}^{-} \longrightarrow \mathrm{H}^{-}+\mathrm{H}$
(2) assuciative detachment
and, in addition, (3) the evaluation of the mobility of H^{-}in a gas of atomic hydrogen. Such processes are of importance in the physics of the upper atmosphere and of the sun.

The basic data required for (1), (2), and (3) are the electronic energies of the two lowest states of the molecule H_{2}. (It may be mentioned incidentally that the calculations will also provide useful information on the dissociation energy and electron affinity of $\mathrm{H}_{2}{ }^{-}$. The energies of $\mathrm{H}_{2}{ }^{-}$can be expressed in terms of certain molecular integrals, and it is fo he evaluation of these that the Whirlwind 1 computer has been used.

The integrals involved have the form
$\int r_{a}{ }^{n} e^{-a r_{a}} r_{b}{ }^{n} e^{-\beta r_{b}} d r \quad \int r_{a}{ }^{n} e^{-a r_{a}} \nabla^{2} r_{b}{ }^{n} e^{-\beta r_{b}} d r$
$\int r_{1 a}{ }^{n} e^{-a r_{1 a}} r_{1 b}{ }^{n} e^{-\beta r_{1 b}} r_{2 a^{2}} e^{k} e^{-\gamma r_{2 a}}{ }_{r_{2 b}}{ }^{\ell} e^{-8 r_{2 b}}\left(1 / r_{12}\right) d r_{1} d r_{2}$
where r_{12} (or r_{a}), etc., is the distance of electron 1 from nucleus A, r_{12} is the distance of electron 1 from electron $2, a, \beta, y, 8$ are parameters, and m, n, k, ℓ are integer which may be negative. Depending on the values of the various parameters, essentially six different integrals arise, known as

1. Overlap
2. Coulomb attraction
3. Kinetic energy
4. Coulomb repulsion
5. Hybrid
6. Exchan
and they are required for a large number of values of a, β, γ, δ and the nuclear separation R of which the integrals are a function

Integrals 1,2 , and 3 were alread
of the MIT Physics Department. It was hoped to program program written by F. J. Corbato imitations only 4 and 5 were completed. However, 6 is being programmed under Problem 204 by P. Merryman.

The integrals which were programmed and for which results were obtained are specifically
${ }^{5} 50$

$$
\begin{aligned}
& \int e^{-a r_{1 a}} e^{-\beta r_{2 b}}\left(1 / r_{12}\right) d r_{1} d r_{2} \times\left\{\begin{array}{l}
1 \\
r_{1 a} \\
r_{1 a} r_{2 b} \\
r_{1 a} a^{2}
\end{array}\right. \\
& \int e^{-a r_{1 a}} e^{-\beta r_{2 b}} e^{-\gamma r_{1 b}}\left(1 / r_{12}\right) d r_{1} d r_{2} \times\left\{\begin{array}{l}
1 \\
r_{1 a} \\
r_{1 b}
\end{array}\right.
\end{aligned}
$$

By an elementary expansion of $1 / \mathrm{r}_{12}$ in terms of spherical harmonics, it may easily be hown that all these integrals are expressible as somewhat lengthy combinations of products of auxiliary integral

$$
A_{n}(\lambda)=\int_{1}^{\infty} e^{-\lambda x} x^{n} d x \quad, \quad B_{q}(\mu)=\int_{-1}^{+1} e^{-\mu x} x^{q} d x
$$

A routine for generating these functions was available.
208 interceptor flight-control problem
A system of 14 first-ordér nonlinear differential equations representing an intereptor flight-control problem was solved by M. Merwin of the MIT Dynamic Analysis and Control Laboratory using the Gill adaptation of the fourth-order Runge-Kutta method. The
hirlwind solution showed that the equations were unstable. These results, reproduced Whirlwind solution showed that the equations were unstable. These results, reproduced ater on an analog computer, proved to be most useful, since the system defined by the diferential equations was thought to be an optimum system.

209 NUMERICAL SOLUTION OF HOMOGENEOUS LINEAR DIFEERENTIAL
This problem was selected by Dr. J. C. P. Miller of Cambridge University, Camridge, England, as one that not only would provide a generally useful and interesting routine but could be completed during his brief visit at the Digital Computer Laboratory.

The equation to be solved is

$$
\left(a_{1} x^{2}+a_{2} x+a_{3} \frac{d^{2} y}{d x^{2}}+\left(b_{1} x^{2}+b_{2} x+b_{3}\right) \frac{d y}{d x}+\left(c_{1} x^{2}+c_{2} x+c_{3}\right) y=0\right.
$$

$$
\begin{aligned}
& \text { starting at } x=x_{0} \text {, with } y=y_{0} \text {. } \frac{d y}{d x}=y_{0}{ }^{\prime} \text {, at interval } h \text { in } x . \\
& \text { The method of solution is to obtain a recurrence rela }
\end{aligned}
$$

The method of solution is toobtain a recurrence relation forterms in the Taylor ex
pansion at each x and tofind values of y and y^{\prime} at $x+h$, by summation, and then start again th the new value of x .

Writing the equation as

```
p(x) y y +q(x) y y +r(x) y=0
```

and differentiating n times we get
$p y_{n+2}+\left(n p^{\prime}+q\right) y_{n+1}+\left(\frac{n(n-1)}{2} p^{\prime \prime}+n q^{\prime}+r\right) y_{n}+\left(\frac{n(n-1)}{2} q^{\prime \prime}+n r^{\prime}\right) y_{n-1}$ $+\frac{\mathrm{n}(\mathrm{n}-1)}{2} \mathrm{r} \mathrm{r}_{\mathrm{n}}-2=0$.
Then if we write $T_{n}=\frac{h^{n} y_{n}}{n!}$ or $y_{n}=n!T_{n} h^{-n}$. we obtain
$(\mathrm{n}+1)(\mathrm{n}+2) \mathrm{pT}_{\mathrm{n}}+2+(\mathrm{n}+1)\left(\mathrm{n} \mathrm{p}^{\prime}+\mathrm{q}\right) \mathrm{h} \mathrm{T}_{\mathrm{n}}+1+\left(\frac{\mathrm{n}(\mathrm{n}-1)}{2} \mathrm{p}^{\prime \prime}+\mathrm{nq}{ }^{\prime}+\mathrm{r}\right) \mathrm{h}^{2} \mathrm{~T}_{\mathrm{n}}$

$$
+\left(\frac{n-1}{2} q^{\prime \prime}+r^{\prime}\right) h^{3} T_{n-1}+1 / 2 r^{\prime \prime} h^{4} T_{n-2}=0 .
$$

This defines T_{n+2} for $n=0,1,2, \ldots$ if we take $T_{-2}=T_{-1}=0, T_{0}=y$, and $T_{1}=h_{1}$.
Then
$\mathrm{y}(\mathrm{x}+\mathrm{h})=\mathrm{T}_{0}(\mathrm{x}+\mathrm{h})=\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}+\cdots$ hy' $(x+h)=T_{1}(x+h)=T_{1}+2 T_{2}+3 T_{3}+\ldots$
gives the new T_{0} and T_{1}. The processes cease when two successive terms are negligible.
This equation covers many familiar and unfamiliar functions; it has been used with

$\mathrm{e}^{x^{2}}$	satisfying $y^{\prime \prime}-2 x y^{\prime}-2 y=0$
$\cos x$	satisisying $y^{\prime \prime}+y=0$
$\int_{0}^{x} \mathrm{e}^{x^{2}} \mathrm{dx}$	satisfying $y^{\prime \prime}-2 x y^{\prime}=0$
x^{10}	satisfying xy $y^{\prime \prime}-9 y^{\prime}=0$
$y=\log x$	satisfying $x y^{\prime \prime}+y^{\prime}=0$

showing that nearly seven figures can be readily obtained. The greatest error occurred with $\mathrm{e}^{\mathrm{x}^{2}}$, where units in the seventh figure accumulated in eight steps, corresponding to a factor exceeding 10^{6} in the increase of the function

211 Servo response to a cosine pulse
Thie problem is concerned with extending the curves in Figure 25-16, page 705 of Instrument Engineering, Volume 11, by Draper, McKay, and Lees. It is desired to find the maximum response $\times(t)$ for 1440 parameter pairs ($\zeta, \mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{n}}$) in the equation

$$
\left(1 / w_{n}^{2}\right) \ddot{x}+\left(2 \zeta / w_{n}\right) \dot{x}+x=G(t) \text {, where } T_{n}=2 \pi / w_{n} \text {. }
$$

$\dot{x}=d x / d t, \dot{x}=d^{2} x / d t^{2}, \dot{G}(t)=(1 / 2)\left[1-\cos \left(2 \pi t / T_{p}\right)\right]$ for $0 \leq t \leq T_{p}$

and $G(t)=0$ for $t>T_{p}$.

The parameters ζ and $\mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{n}}$ are from the range $0.01 \leq \zeta<5,0.1 \leq \mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{n}} \leq 10$. Analytic expressions for $x(t)$ may be found in the above-mentioned book, but these were found ampractical for determining tie maximum response. Accordingly, a step-byeep approximation to the response curve using Taylor series is employed. The step-bytep procedure is stopped when the derivative becomes negative, and an interpolation
arried out back into the last step. This procedure was applied using parameters different carried out back into the last step. This procedure was applied using parameters different
from those of the present problem by Dr. J. H. Laning. Jr., in coding the problem for a from those of the present problem by Dr. J. H. Laning, Jr., in coding the problem for a
card-programmed calculator. Coding of the problem using the CS II system was accom-card-programmed calculator. Coding of the problem using the CS
plished by Dr. J. M. Stark of the MIT Instrumentation Laboratory.

3. OPERATION OF WHIRLWIND I

During the past quarterly period the Whirlwind Computer System reliability was high. According to estimates by computer operators, 96% of the 886 hours of assigned operation time was usable. A detailed account of the assignment of computer time to the operation time was usious major activities is given in Fig. 3-1.
var

Work by the systems group on the central computer has included modernization of the arithmetic-element control, reorganization of the power-supply control for a large seg ment of the terminal equipment, and some equipment relocation and circuit changes for easier, less-frequent trouble shooting. Marginal-checking facilities, extended to cover more of the terminal equipment, have already proved their value by revealing some circuit shortcomings now corrected.

Two additional drum groups of auxiliary storage added to the 15 al ready available ot the computer increase drum storage from abost 31,000 to about 36,000 registers.

Fig. 3-1. Allocation of Computer Time

3.1 Systems Engineering

Most of the circuitry and logic of the a rithmetic element of the computer is contemporary with the original system installation. The elementary state of the art at that time Sed the original designers to build into their circuits a large degree of flexibility against
unforeseen circumstances. Experience in computer operation has shown some of the original equipment to be unnecessarily complicated; where practicable W WI is being improved in this respect.

Revisions of the arithmetic-element controt included standardization of circuitry and chariges in logic. These modifications to the stop counter and divide control eliminated excess circuitry. reduced the time required for the divide operation by one-third, and increased the operating margins of the system.
A large part of the terminal equipment for WWI, one floor below the main section of the computer, was installed at a later date than the bulk of the WWI circuitry, and a separate power-supply-control system was designed for it. It has long been evident that the dircuitry and because the pemert much to be desired because of the inaccessionty of hutdown. This results in writing between the slots on the magnetic drums and has materially down. This results in writing between the slots on the magnetic drums and has materially
reduced drum reliability. In addition to these shortcomings, it is now felt that the present independent control of the auxiliary drum and buffer drum is not necessary.
A new power-supply-control system eliminates these objections mentioned and reaces the number of independent controls for the two groups of equipment.

The magnetic-tape equipment in use with $w w i$ can be logically divided into two separate systems, the auxiliary memory (which has the exclusive use of two tape units) and the | delayed-printout system (which shares the other three with the computer). The magnetic- |
| :--- | lape systeri, in its auxiliary-memory cappacity, has been operating satsiactorn ween giving ome trouble, and several changes were made in the system toimprove its reliability. Circuit modifications improved the operating margins, and a relay in the control register allowed the Flexowriters more time to operate. Additional relays have been installed to reace unwanted signal coupling. The equipment is being moved to a new position where the panels will be more accessible for servicing.

operation of whirlwind I
3.2 Terminal Equipment

In the past two years the input-output system for WWI has grown so rapidily that mar-ginal-checking facilities were sometimes not added as new equipment went into service When this omission was made good, marginal-checking lines frequently were not optimized in their arrangement. During this quarter new marginal-checking circuits were installed and old lines for the in-out system were Some develop
Some developmental work was necessary prior to this installation because of the na ture of several of the circuits associated with the terminal equipment. A method of mar
ginal-checking the crystal gates in the "and" and "or" circuits for the intervention regis ginal-checking the crystal gates in the "and" and "or" circuits for the intervention regis
ters was developed so that it is now possible to pinpoint weak crystals in these registers,

When marginal checking was extended to the gas-tube indicator-light register, hitherto unsuspected weaknesses of the circuit were revealed by the low and rapidly deterior ating margins. As a result of this discovery, the extinguis sing circuit was redesigned to make the tube requirements less critic 1 and to give more reliable operation
$\rightarrow 1$ to to about 12,000 registers, each of 17 bits, by using Groups 2 and 3 for this purpose 800 The source of intermittent crosstalk between the buffer- and auxiliary-storage tions of the buffer drum has been located and removed. Occasional buffer-drum parity alarms over a period of several weeks are attributed to this fault. The change should im prove the reliability of the buffer drum to the point where it approaches that of the auxili ary drum.

4. CIRCUITS AND COMPONENTS

4.1 Vacuum Tubes

4. 1.1 Vacuum-Tube Life

During the third quarter of 1954 the W WI computer operated for 1680 hours.
Vacuum-tube life has been calculated for five different tube types as outlined in Summary Report No, 36. A summary of this information together with previous data is shown below

Tube Type

7AD7/SR1407/614
7AK7
6080/6080WA/:AS/G
5965
6BL7GT

1952	1953	$\begin{gathered} \text { First } \\ \text { Quarter } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { Second } \\ & \text { Quarter } \\ & 1945 \end{aligned}$	$\begin{gathered} \text { Tuird } \\ \text { Quarter } \\ 1 \\ 1594 \end{gathered}$
2.00	3.3	1.75	1.6	1.4
0.26	0.43	0.5	0.6	0.3
	6.6*	1.1	1.5	1.4
	0.2*	0.4	0.3	0.2
	0.7*	0.3	0.5	0.5

*Last quarter 1953 only
There are no major changes in these figures from the second quarter.
Several life tests are still active. That of the GE 5965 has reached 5400 hours with one section conducting and the other cut off. Monotonic shifts in contact potential, which have caused the grids of the cutoff sections to become more positive and those of the con he sections is about 0.7 volt. Conder ent emis sion has developed on the cutoff sec
 has been observed.
A life test gun to develop, pred cut off, has reached 2000 hours. Some grid-cathode leakage has be how interface impedance ranging from 1 to 3 ohms with a fifth section showing 16 ohms No interface is present on the conducting sections.

The life test of special 5687's with A31 Cathaloy (tungsten-nickel) cathode sleeves

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CIRCUITS AND COMPONENTS \qquad

Fig. 4-1. Wwi Tube Failures

July 1-September 30, 1954
has reached 3400 hours with one section conducting and iner cuf off. Considerable grid emissicn has developed on the cutoff sections; grid currents in the conducting sections are of. The difference in plate curren. at zero bias between the conducting andecutorf sections Three of the ten conducting sections show interface impedance ranging from 3 to 15 ohms while no interface is apparent on the cutoff sections.

A second life test involving tungsten-nickel A31 Cathaloy cat ode sleeves, being run on some special GE z-2177's (improved 5965), has reached 2000 hours with one section conducting and the other cut off. In general the grid currents are low indicating that grid emission may not be a problem. Interface impedance ranging to 55 ohms is present in 27 of the 35 conduction sections; the cutoff sections show a maximum of 15 ohms in five of the 35 sections. Worthy of note is the fact that there is more interface impedance present on the conducting sections of this tungsten-nickel alloy cathode than on the cutoff sections, as perience on active alloys where silicon is the impurity
4.1.2 Vacuum-Tube Research

An investigation of 30,000 -hour 7AK7's from the five-digit multiplicr has been completed and a report, $M-3020$, published. Conside rable interelectrode leakage probably caused by sublimation on the micas from the cathode nickel sleeve was found. On tapping, ransient decreaues in interelectrode resistance probably caused by changing contact of the side rods with the micas resulted in more than half of the 30 tubes indicating intermitten horts. The sensitivity of the detecting equipment is such that a maximum resistance of approximately 5 megohms lasting at least 500 microseconds can be detected Barrin
thode problems, interelectrode leakage may be a serious linitation on long tube life.

An extensive investigation was made of the state of the cathodes of these tubes. To liminate effects of geometry, the tubes were triode connected to +90 volts and the control grid pulsed at 1% duty factor up to +30 volts. A useful criterion of the state of the cathode
which evolved from the investigation was the change in pulsed triode-connected plate current at a fixed high value of grid drive (+25 volts) while varying the heater voltage from ent at a fixed high value of grid drive (+25 volts) while varying the heater voltage from
6.3 to 5.0 volts. This value is called "n" and is given as a percentage of the $6.3-\mathrm{v}$ cur rent. From the basic as sumption that an increase in n is caused by an increase in the overall work function of the cathode, it is possible to plot a family of curves showing variation in the triode-connected plate current as n varies; new tubes show an n of 6%.

By adding to the measured current of the old tubes the percentage decrease calculated from their n measurement, a distribution of currents is found whose mean is about 5%
below that of new tubes and whose standard deviation is essentially the same as that of new
whes. A Fisher "n lest, however, shows a fair probability that the 5% difference could be Hributed to chance. Now by comparing the percent decrease from a perveance curve at a arionecoled plate curren (saduraion) whe values predcled from the n cal ting a rather high degree of certainty for the validity of the theoretical drop

The n test has proven itself to be a rather valuable tool in our vacuum-tube work in other phenomenon.

4.2 Component Replacements

Fig. 4-3 lists the replacements of components other than tubes during the third uarter of 1954 .

CIRCUITS AND COMPONENTS

Component	Type	$\underbrace{\substack{\text { a }}}_{\substack{\text { Toati in } \\ \text { Seruice }}}$	$\underset{\substack{\text { No. of } \\ \text { Failures }}}{\text { ar }}$	$\underset{\substack{\text { Huurs of } \\ \text { Operation }}}{ }$	Comments
Capacitor		${ }^{136}$	1	4000-5000	Low capacitance
$\underbrace{}_{\substack{\text { Crystal } \\ \text { Diodes }}}$	$\begin{gathered} \text { IN34A } \\ \text { (glass body) } \end{gathered}$	16,881	$\begin{array}{r} 2 \\ 2 \\ 1 \\ 2 \\ 21 \end{array}$		
	$\underbrace{\text { D-38 }}_{\text {(ceramic body) }}$	5137	1	25000-26000	Low R_{b}
	(iffused junction	61	1	3000-4000	Drift
Rectifier	Selenium, IRC, 19PA 6, $156-v$ d-c, $5-\mathrm{ma}$	${ }^{834}$	2	4000-5000	Open
Relay		675	1	1000-2000	Failed to operate
Resistor	Deposited carbon 9000-ohm 1/2-watt $+1 \%$	${ }^{878}$	I	2000 ${ }^{\circ}$ - 10000	Above tole erance Above tolerance
Switch	Toggle, SPST	666	1	24000-25000	Intermittent contact
${ }_{\substack{\text { Trans, } \\ \text { former }}}$	$\begin{gathered} \text { Pulse, } \\ \text { Hipersil core, } 3: 1 \end{gathered}$	4280	1	2000 - 3000	Open primary

Fig. 4-2. WWI Component Failures July 1 - September 30, 195

5. ACADEMIC PROGRAM

5.1 MIT Courses

Summer Session, 1954
During the summer of 1954, MIT offered 35 different special summer programs, courses of 1 or 2 weeks duration largely for the benefit of interested people from business and industry. Two of these were directly concerned with digital computation, both being the Digital Computersors Charles W. Adams and Stanley Gill with the full cooperaionable interest in the field of computer applicalion. For example, there were courses in Analogue Computation, Numerical Control of Machine Tools, Operations Research, and Mathematical Problems of Communications Theory.

The first of the digital-computer subjects, a 1 -week seminar entitled Digital Computers: Advanced Coding Techniques, was intended as a meeting ground for experienced puters: Advanced Coding Techniques, was intended as a meeting ground for experienced
computer programmers interested in summarizing the present state of the art and in excomputer programmers interested in summarizing the present state of the art and in ex-
changing ideas for future work in automatic coding. Planned for 25 persons, the course was with great difficulty limited to 42 , including many experts in the field. While concrete results are hard to summarize, it was felt to be a fruitful experience for all concerned.

An introductory 2 -week course in Digital Computers: Business Applications stressed coding techniques and other aspects of computers in the light of commercial and industrial management information handling. The 61 students divided into four broad clarses, with 25 representing 16 varied businesses, 17 representing 7 insurance companies, 7 repreand other special interests. To facilitate the teaching and use of practical computers typical of machines commercially available for business use, the summer-session computer developed for the 1953 summer session was revamped into a single-address computer (SAC), and an entirely new three-address computer (actually a $3+1$ address machine), called TAC, was developed.

These two hypothetical computers proved very successful in demonstrating the varions features of digital computers, with only a small attention to the many trivial, almost unavoidable, details that tend to clutter up any practical computer design

Fall Term, 1954
The principal course on machine computation being offered at MIT in the fall of 1954 is 6.25. Machine-Aided Analysis, a survey of computing technicques aimed largely at

academic program
 \qquad

seniors in Electrical Engineering. This subject, first offered in the spring of 1954, had a fallterm enrollment of about 55 seniors and graduate students. It consequently was divided all-term enrollment of about 55 seniors and graduate students. It consequently was divide
into three 20 -man sections taught separately by Professors Linvill, Booton, and Adams. into three 20 -man sections taught separately by Protessors Linvill, Booton, and Adams.
Practice problems were planned to allow each student to use both a REAC and the Whirl wind I computer (simulating the hypothetical TAC which had been developed for the 1954 summer session). Exercises using desk calculators and a card-programmed calculator which were included in the first presentation of the subject, were eliminated in this second presentation to permit more time for studying techniques of problem analysis and of error analysis.

5.2 TAC--A Three-Address Computer

TAC is a hypothetical computer developed for use in MIT's special summer pro gram in Digital Computers: Business Applications, August 1954. A compiler-interpreter program for MIT's Whirlwind I permits Whirlwind to simulate TAC.
TAC Definitions
A character is any of the following letters, digits, superscripts, symbols, or machine functions comprising the complete vocabulary of the MIT Flexowriters (augmented by S and ;)

```
TE{ ()-+.\underline{1}0246802468ab...z
```


where $\underline{R}=$ return carriage, $\underline{T}=$ tab (stops every tenth space), $\underline{B}=$ back space, $\underline{C}=$ color where $\underline{R}=$ return carriage, $\underline{T}=$ tab (stops every tenth space), $\underline{B}=$ back space, $\underline{C}=$ color
shift (starts black), $\underline{H}=$ stop, $I=$ ignore, and $\underline{S}=$ space. A word consists of nine characters
A number is a word in which the first character, a, is - , + , or 0 , and each of the remaining eight characters bedefghi is one of nine digits $0,1,2, \ldots$, forming an 8 -digit decimal integer.

An instruction is a word in which the first character, a, represents one of the 15 operations listed below and the remaining characters, paired, form four "addresses." The scheme is shown below:

An address normally refers to one of 110 registers which are numbered 00 , 01 , ., 99, $\times \overline{0}, \times 1, \ldots, \times 9$. However, there are certain exceptions to this:
the characters are usedas a continuation of the operation designation (e ons ondted, and 2. The fg address for operation P is omitted, and the characters are used to con tinue operation specification:
3. The registers xl and x 2 canbe trestedas a single register for certain purposes, and this register is denoted by the address xx. For operations A, S, M, D, or N, the contain 8 -digit numbers having the same 16 -digit number, provided that $\times 1$ and $\times 2$ con tains +98765432 , then $\times x$ will be deemed to contain +1234567898765432 ,

We note that address $\times 0$ always contains exactly zero. A post mortem (see below) will always occur if any instruction contains an address which is not legitimate according to the above rules.

A post mortem is performed automatically whenever TAC encounters any impossible instruction (in particular, any word not starting with one of 15 legitimate operation code letters, or containing an illegitimate address, or violating the special conditions listed on pages 66, 67, ard 68). The post mortem consists of printing the location of the illegitimate instruction itself, the contents of the registers it refers to, a sequence table listing the locations of the instructions performed just prior to the post mortem, and an altered-word table listing the contents of all of the registers whose contents have been altered during the program.

The time required to perform a given instruction may be calculated from the following facts: TAC storage consists of a magnetic drum with four groups of 25 words ($0-24$, 25-49, 50-74, 75-99) revolving at 40 revolutions per second (1 millisecond per word); follows the control sequences one word time (no waiting time required); and TAC always * If two references to the drum are required to acquire operands or store results, TAC searches for both simultaneous
times computed independently.
academic program
(he following list), forms the required operation (in the number of word times indicated in the following list). the bc address of N, L, R, P, or T)

Symbols Used
abcdefghi represents the nine characters of a TAC word.
C) represents "contents of." Thus C(bc) represents "the contents of the register whose nust each be either one of the decimal digits or the letter x).
\rightarrow represents "becomes the new contents of." Consequently: $\mathrm{C}(\mathrm{bc})+\mathrm{C}(\mathrm{de}) \rightarrow \mathrm{fg}$ should be read as "the contents of bc plus the contents of de becomes the new contents of register fg, replacing whatever was in f_{g} but net changing what is in be or de."
represents TAC's double-length register made by pairing $\times 1$ and $\times 2$.
$\underset{100^{\text {c }}}{>} \quad \begin{aligned} \text { represents "is greater than, } " \\ \text { (read as "ten to the } \mathrm{c} \text { ") }\end{aligned}$ represents a one followed by c zeros
zeros (for example, $10^{5}=$ 100, 000).

TAC Instruction Code

Name	Code Letter	Word Times Operation	Function	Post Mortem Will Occur
Rea	R	5/char.	Read enough characters from punched lape to fill the positions whout chaning the ogherter de, of C(de). (ignores deletions, deals properl lines, tabs, and carriage returns \qquad	If tape contains illegal characters, or if $b=0$, or if $c=0$, or if $b>c$ or if de $=x x$ or is not a legiti mate address. with upper andlower case, luding back spaces, under explicitly, and $\$$ and are
Print	${ }^{\text {P }}$	10/char.	Print the characters in the positions numbered b thruc in register de, preceded by followed by g .	Unless $b=1,2, \ldots, 9$ and $c=1,2, \ldots, 9$ and de is a legitimate addres (n not $x x$) or if $b>c$.
Tape Read	Tr	30/block	Read ten words from block de (or from next consecutive block if de $=00$) on tape unit c into registers $f g$, fg_1, $1, \ldots, f_{g}+9$.	
$\begin{gathered} \text { Tape } \\ \text { Write } \end{gathered}$	Tw		Write ten words onto block de (or onto next consecutive block if de $=00$) on unit c from registers f g. $\mathrm{fg}+1, \ldots, \mathrm{fg}+9$.	if de $=00$ and block 40 has been just read or written.

Input	1	5/char.	Without altering the present contents of storage, start reading a program in conventional form, ending by taking the next instruc tion from the address precedin start at the end of the tape.	
Halt	н		Stop computing. Start at hi only if the start button is depressed.	
Add	A	2	$\mathrm{C}(\mathrm{bc})+\mathrm{C}(\mathrm{de}) \rightarrow \mathrm{fg}$	
Subtract	s	2	$\mathrm{C}(\mathrm{bc})-\mathrm{C}(\mathrm{dc}) \rightarrow \mathrm{tg}_{\mathrm{g}}$	
Multiply	M	10	$\mathrm{C}(\mathrm{bc}) \times \mathrm{C}(\mathrm{de}) \rightarrow \mathrm{fg}_{\mathrm{g}}$	
Divide	D	25	$\begin{aligned} & \text { C(bc) + C(de) } \begin{array}{c} \mathrm{fg} \\ \text { (quotient rounde }) \end{array} \end{aligned}$	
Numerical Shift Left	N+	?	C (de) $\times 10{ }^{\text {c }}$ ¢ fg	
Shift Right	N-	2	$\mathrm{C}(\mathrm{de})+10^{\mathrm{c}} \rightarrow \mathrm{fg}$	
Compare Numerical		2	Take next instruction from: $f g$ if or next register $C(\mathrm{dc})=\mathrm{C}(\mathrm{de})$.	$\begin{aligned} & \text { * If } \mathrm{C}(\mathrm{bc}) \text { and } \mathrm{C}(\mathrm{de}) \text { are } \\ & \text { not both numbers. } \end{aligned}$
$\begin{aligned} & \text { Logical } \\ & \text { Shift } \end{aligned}$	${ }^{\text {L }}$	2	Shift C(de) and C(fg) cyclically c places (left if b is t, right if b is -). \qquad	Unless $\mathrm{b}=+$ or $-\boldsymbol{- c} \mathrm{c}=0$ $1, \ldots \ldots$, or $9 ;$ and de and f_{8} are legitimate addresses or if bc, de, or $f g=x x$

A post mortem occurs on A, S, M, D, C, K, and E unless bc, de, and fg are all legiti-
mate addresses.

1. Register x0 contains 000000000 . If an instruction attempts to put other information
into it, the information is lost. No post mortem occurs.

. A post mo
Addition and Subtraction in TAC
The rules which TAC obeys in adding or subtracting are the following:
2. While a positive number may start with zero instead of plus, a positive sum or difference formed by TAC always starts with a plus sign.
-2. If any or all of the addresses bc, de, or fg in the instruction designate register xx, both C (bc) and C (de) must be numbers. If fg does not equal xx , the magnitude of the sum or difference must be less than 10^{8}.
ends on whether of the addresses bc, de, or fg designates register xx , the situation de-
C(b)) acters. The symbels wed are

- represents either a plus sign or a zero
\ddagger represents a plus sign or a minus sign as appropriate
${ }_{k}$ represents any character other than + , -, or 0
$\mathrm{k}^{\prime} \quad$ represents any other character other than + , -, or 0 (different from k) represents any set of eight characters to the right of the sign, i.e., in positions be 2-9 or de 2-9
(w) - letter 10 parentheses refer to the first of three different cases tabulated at the bottom of the page, wherein the right-hand eight digits of the results are discussed in terms of C (bc 2-9) and $\mathrm{C}($ dee $2-9)$
this situation

The right-hand eight columns of the result, i. .e.,
C(fg2-9), are de rived from C(bc2-9) and C(de2-9) thus:

*	C (bc2-9) and C (de2-9) are simply added column by column.	IF the sum exceeds 99,999 ,999 or IF the addition requires adding a carry or any chavacter other than zero to any nondigit.
\times	If C (bc2-9) is larger than C(de 2-9), assuming column by column from $\mathrm{C}(\mathrm{de} 2-9)$.	IF the subtraction requires subtracting a borrow or any character other than zero or itself from any nondigit.
r	The quantity C(bc2-9), or C(de2-9), whichever is preceded by the minus sign, is subtracted column by column from C(de2-9) or C(bc $2-9)$.	IF the difference so formed is negative or IF the condition of case x arises.

5.3 Visitors

Tours of the WWI installation include a showing of the film "Making Electrons Count," computer demonstration, and an informal discussion of the major computer components. During the past quarter 15 groups visited the computer installation. Included in the se groups were:

July 7 Special Foreign Students, MIT
August 3 MIT Summer Session Course -- Digital Computers: Advanced Cod-
August 4 Secondary School Science Teachers
August 18-21 MIT Summer Session Course -- Digital Computers: Busine ss Appli-
August 24 Teachers Group
September 22 Worcester Polytech Students

6.1 Publications

Project Whirlwind technical reports and memorandums are routinely distributed to only a restricted group known to have a particular interest in the Project, and to ASTIA (Armed Services Technical Information Agency) Document Service Center, Knott Building. Dayton, Ohio. Requests for copies of individual reports should be made to ASTIA.
The following is a list of memoranda published by the Scientific and Engineering
Computations Group during the past quarter:

No.	Title	Date	Author
SR-38	Summary Report No. 38, Second Quarter 1954		
M-2891	Proposed Change in WWI to Make Possible Programmed Recording of the "Lights"	7-13-54	A. Siegel
DCL-7	The "FL" Flexowrater Code, Binary Numerical Sequence - reprint p. 20 , M-1623		
DCL-8	The "FL" Flexowriter Code, Alphanumerical Sequence - reprint p. 19 M-1623		
DCL-11	Automatic Scope Output Display Routines Routines	8-30-54	N. J. Saber
DCL-12	A Program for Transferring Binary Information Back and Forth betw Paper Tape and Magnetic Tape	9-1-54	S. F. Best

[^0]: Current Problems Arranged According to the Mathem
 (* MIT Project on Machine Methods of Computation)

[^1]: 1. See Quarterly Progress Report No. 11 of the Project on Machine Methods of Computa-
 tion, p. 9 .
 each variable appears once in each term
