APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

M-146, Sumary Report No. 2, Introduction to Volume 12

Thesis, A Doeado Koyboard for a Binary Register, by David J. Crawford, 1947

R-129, Conversion of Shaf Position to
Binary Liumber Cocie, by H_{e} P. Stebler, September 15, 1947

ImPROLUPILOA

Abstract

There are three goneral typas of input and output oquipment required for infrlwind 1 . Thone are: a) Numorical

35 imi fin will bo usod for inserting and extreoting munorioal information from the Thirlvind Computer. The genaral outlino of tho proposed systen is given in MF-73, Vol. 11. Tha Seaturen Kodak Progreas Report in Vol. 11 doscribos tha actuel film rerdor-recordor in tacre detall. Sone projoot work has been done on automacio convarsion on a dacinal keyboard to binary numbors on the filu. This worte is lesortbed in a thenis by Devid J. Grawford in Vol. 12. M-157 dosoribee bricily some of the requirments for at output printor.

b) Kochanioal and Eleotriona

The first work on the ounvarsion from moohnical and electrical information to numorical in in ormation for the oomputer to use in stmalation problems was done by प. P. Stablor. Hie report in Vol. 11, ontitled Roversible Binary Countor and Shaft Position Indicator desoribes this work. X-80 in Vol. 21 doscribes a Bimple nachantoal to binary converter. The roport R-129 in Vo1. i2 is a aurvoy by H. P. Stablar o? the whole converaion problom from shaft position to bivary numbors. Soms of those mothods are actunlly convaraion from electrian quantities to binery numbors and many of thra can bo revorced for convoreting computer output date to physical quaptitios. Tho project is continuing work ou thaso problent.
o) Graphical

Wo roports are givon on graphilion reoordors. It should be poosibla to uso one of the graphical recordors alroady dovoloped by the Eastinn Fodek Conpeny for othor purposes.

APPRROVED FOR PUBLIC RELEASE. CASE 06-1104.*

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

A DECADE KEYBOARD
FOR A
BIMARY TWGISTER

by
DAVID J. CRAWFORD
S. B. in E. E., Massachusetts Institute of Technology (1943)

SUBMITTED IN PARCIAL FULFILLMGNT OF THE
REQUIREMBN FOR THE DEGREE OF
MASTER OT SCIENCE
at the

MASSACHUSETTS INST ITUTE OF TECHNOLOGY
(1947)

Signeture of Author..../s/... David..........................
Department of Electrical Bngineering, May 23. 1947

/s/... Harold In Hazon
Cheirman, Department Committee on Graduate Studente

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

The author is sincerely indebted to Professor
Godfrey T. Coate for advice and encouragement during his supervision of this thesis. The writer is also gratoful to Mr. Jay W. Forrester and to all other membnrs of the Prcject Whirlvind (D.I,C. 6345) Staff for their continued interest and assistance in the work, and to Professor Gordon S. Brown for making available the facilities of the Servomechanisms Laboratory. The author wishes to express his appreciation to Mr. Ray L. Sllis for his aid in the construction of the working model.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

TABLS OF CONPLNAS

LIST OF DRAWINGS AND PHOROCRAPHS 11
CHAPTBR I Introduction I
CHAPTER II The General System 3
Basis of Operation 3
System Details 5
Representation of Numbers 8
CHAPTER III The Binary Register Operation 11
Introduction 11
Comporents. 11
Operations. 1.5

1. Addition 15
2. Shifting 17
3. Reading 17
4. Muitiplication 18
CHAPTER IV The Binary Register Circuits 20
Flip Flop. 20
Gate-peaker Circuit. 22
Delay Stage. 26
Reglster Stage. 30
CHAPTER V The Timing and Conversion Circuits 32
T1ming-Circuit Requirement 8 32
Push-Button Trigger Circuit 34
Conversion Matrix 39
Reading-Pulse Generation 40
Digit-Pulse Circuit 44
CHAPTER VI Construction and Operation 45
The Completed Unit 45
Initial Adjustment and Testing 54
CHAPTER VII Sumary of Results 60
APPENDIX 63
Representation of Numbers. 63
Decimal-to-Binery Convereions 63
64

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

LIST OF DRAWINGS AND PHOTOGRAFHS

A-30568 Simplified Block Disgram of Decimal-to-binary Converter 6
A-30569 Transmission of the Binary Number 100110 9
A-30570 Typical Flip-flop Circuit 12
A- 30571 Basic Binary Counter 14
A. 30572 Binary Register with Delay Stages. 16
A 30573 Complete Binary Register Block Diagram 19
A- 30574 Flip-flop of the Binary Reg1ster 21
A-30575 Gate-peaker Circuit 23
A. 30563 Delay Line Photograph. 27
A- 30576 Delay Stage Schematic 29
B. 30577 Single Register Stage 31
A- 30578 Timing Relations in Decimal-binary Converter 33
A- 30579 Push-button-controlled Flip-flop 35
B- 30580 Push-button and Conversion Matrix. 37
A-30581 Reading-pulse Generation 41
B-30582 Schematic, Sawt ooth Generation 42
C- 30368 Decimal-binary Converter Block Diagram 46
E-30583 Complete Schematic Dlagrem 47
A- 30561 Chassiะ, Front View 48
An 30565 The Eeyboard 49
A. 30559 Chassis, End V1ow 50
4. 30560 Chassis, Bottom View 51
A- 30558 Chass1s, Bottom View 52
A- 30564 Chassis, Bot tom View 53
A-30584 Timing Wavaforma 59

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHAPTER I

Introduction

Abstract

In an electronic computer being designed at the 1 Massachueetts Institute of Technology, it was decided to use the binary number system as the basis of operation? The binary system is particularly adaptable to use in electrical systems because the binary integers, zero and one, are easily represented by electricel signals of two values. In the past, the principal use of the binary number system has been in electrical circuits used to count a series of events. In this application, the problem of converting the binary count of the circuit into the equivalent decimal number is present. With high-speed computere now being designed to use the binary syatrm of arithmetic, the opposite problem of converting a decimal number to its binary equivalent arises when it is desired to feed data into the machine. The object of this thesis wes to create the necessary circuits to convert data from the decimal system to the binary gystem and to store the result in a binary register.

It is possible for a person to convert a decimal number into the binary system by using arithmetic methods. The result

[^0]
APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

could then be recorded on a binary register by puahing buttons that vould aet up the stages of the register in the correct fashion. Such a method is unduly slow, and for use with a high-speed computer, it is desirable to use a method that uses the fastest capabilities of a human operator. It is believed that a decimal keyboard of the ten-key type with associated circuits to perform the decimal-to-binary conversion automatically is a good approach to the problem. Becanae the problem has not arisen in the past, there has been little work performed towards the solution previous to this investigation. This paper presents one of the many possible systems that could be used to perform the automatic conversion of a decimal number to the equivalent binary number.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

GHAPTER II
The General System

Basis of Operation
Selection of a ten-key keyboard in preference to a matrix-type keyboard automatically deternines a recuirement of the decimal-to-binary converaion circuit. On a matrix-type keyboard (such as those on a Monroe, Marchant, or Friden calculator), there are ten keys for every digit in the number to be recorded, their physical placement indicating the relation of each digit to the decimal point. For the ten-key type of keyboard (such as the one used in a Sundstrand calculator), the sequence in which the digits are recorded determines their placment with respect to the decimal point. The digits of a number are normally read from left to right, the first digit to be recorded auparing on the left in the recorded result, and the last digit appearing on the right. To accomplish this operation, each tine a key is depressed the previously-recorded digits are each shifted one place to the left and the new digit entered in the wits column. Shifting the digits one place to the lefi in the decimal system is the equivelent of multiplying the number by ten. We have therefore made the requirement thet our conversion circuits nust have some means for nultiplying previously-recorded results by ten, each time a key is depressed.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Abstract

Another requirement of almost any decimal-tombinary conversion system is thet some form of bidary repister is necessary to store the final results. The exact form of the register is deterained by other considerations, such as the use of the registpr to perform operations necessary in the conversion process, but these requirements will be discussed later.

If the previous requirements are met, the actual conversion of a decimal number into its binary equivalent is simplified, because decimal-binary equival onts are required only for the ten decimal integers, zero through nine. These equivalents are as follows:

Decimal Integer Binary Equivalent
$0 \quad 0$
1 . 1
210
311
4100
5101
$6 \quad 110$
7111
$8 \quad 2000$

9

1001

Such a conversion may be accomplished by a relatively simple, matrix-type of circuit.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

-3

Abstract

We have now considered all the elements neceseary for the complete decimal-to-binary conversion sytems a keyboard to enter the decimal number, a binary register for recording the final result, circuits to multiply the number in the register by ten each time a key is depressed, and a circuit to convert a decimal integer into its binary equivalent. A simplified block diagran is shown on A- 30568 , page 6. The sequence of operations is straightforward. Bach time a key is depressed, the nunber in the register is multiplied by the binary equivalent of ten, and then the binary equivalent of the decimal integer corresponding to the depressed key is entered into the register.

This system will only handle decimal numbers that have no digits to the right of the decimal point. Digite that are to the right of the oint, whether in the decimal or binary system represent fractions. There is no simple means of converting numbers of this nature from one number system to the other.

System Detaila
The push-button circul;s are arranged so that depressing any push-button creates a pulse to start the timing circuits. Bach button is also connected to a conversion matrix so that the circuits representing the binary components of the decimal integer are turned on. When the timing circuita pulss the conversion matrix, the binary number is added into the register.

Multiplication of a nuaber in the binary syatem is entirely similar to the process used in the decimal system except that the

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

5
binary multiplication table, is much smaller than the decimal multiplication table. The binary multinication table is as followst
$0=0=0$
$1 \times 0=0$
$0 \times 1=0$
$1 \times 1=1$

Consider the multiplication of a binary number, 10111, for example, by the binary number 1010 (decimal nuaber ten).

$$
\begin{array}{cl}
\frac{10111}{1010} & \begin{array}{l}
\text { multiplicand } \\
\text { multiplier } \\
\text { multinlication by binary } 10 \text { or }\left(2^{1}\right)
\end{array} \\
\frac{101110}{201100110} & \begin{array}{l}
\text { multiplication by binary } 1000 \text { or }\left(2^{3}\right) \\
\text { result mulitiolication by binary } 1020 \text { or }\left(2^{3}+2^{2}\right)
\end{array}
\end{array}
$$

Inspection of this example reveals that the desired multiplication may be achieved by first elififing the multiplicand one place to the left (multiplication by 2^{1}). This result shifted two additional oleces to the left is the multiolicand multiplied by 2^{3}. Adding the se two partial products completes the multiplication.

The binary register and associated circuits permit operations that cannot be performed by an ordinary binary counter. The circuits are arranged so that all digits of a binsxy number may be addedinto the register simulteneously. By means of a pulse from the timing circuits the number in the register may be shifted one binary pl ce to the left, such a ehift being the equivalent of mulinplying the number by two. (This is anelogous to a shift of a decinal number one place to the left beine: equivalent to multiplicetion by ten). Other circuits connected to the register permit the stored number to be read from the register in the form of pulses without erasing the stored number. The combination of these featurea permits the multiplication of a number in the register by the binary number 1010 in

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

the manner just descibed. The tiaing circuits control the operational sequence.

In view of the details just described, let us again review the sequence of operations that occur when a key is depressed. First, the push-button circuit creates a trigger that starts operation of the timing circuits and turns on tie circuits in the conversion matrix that represent the binary componenta of the docimal integer. The trigger causes the number in the register to ehift by one binary place. The number in the register is now read out, ehifted two binary places and returned to the eegieter where it is added to the number already present. The multiplicetion process having been completed, the circuita of the converion matrix are read and the binary equivalent of the decimal integer is added to the count in the register. This entirs process is reoeated for each digit of the decimal number untill all digite have been entered. At this point, the binary nunber in the register nay be recorded or entered into the associated computier, and the binary register may be cleared. Representation of Nurbers

The binary syatam lends itself readily to the representation of numbers by electrical means because a zero may be represented by the absence of a signal and a one oy the presence of a signal. In the circuits used in this thesis, a parallel method is used to transmit a number from one place to anocher. Such a scheme is shown in A-30569, page 9. A separate wire is used for each digit of the

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

WIRES OF
DIGIT CABLE WAVEFORIM
\qquad

\qquad
\qquad
\qquad
\qquad

2^{\prime}
2^{0}
\ldots \square
\qquad 0
TIME \longrightarrow
TRANEMISSION OF THE
TRANEMISSION OF THE

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

number and all digits are transmitied simultaneously, a pulse on a line representing a one, and absence of a pulse meaning a zerc.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHAPPER III

The Binary Register Operation

Abstract

Introduction The primary purpose of the binary register is to store the final number until needed. If suitable circuits were connected to a set of flip-flops (Bccles-Jordan trigger circuits) the flip-flops could be used as the storage elements. In the practical case, howfver, the register is used to perform functions other than storege and therefore must be equipped to accompliah these other duties. As previously mentioned, the register must be capable of receiving all digits of a binary number simulteneously and adding them to the number already atored. To perform the multiplication process it must be able to shift the stored number and also have circuits to read the number out of the register and add it back in at a different position. The following discuesion will show how this specialized binary register is evolved from the ordinary binary counter.

[^1]
APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

TYPICAL FLIP-FLOP CIRCUIT

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

grids simultaneously, she statso of the two tubes will be interchanged. the first tube beconing cut off and the second tube conducting. Anothar trigger will flio the sircuit back to the original position. It is thus seen that two triggars are necessary to perform one complete cycle of operation, the vaveform on the plate or grid of one of the tubes rising or falling only once for every two input triggers. If the condition for tube A to be conducting is considered the zero position of the circuit then used as a binary elenent, then the first trigger fed to the circuit will flip it into the one position, with tube B conducting. The next trigger will flip the circuit back to the gero position and will cause ε sudden negative drop in the plato potential of tube A. If this wavefront is fed into a circuit such as an R-InC pealser ${ }^{2}$, a trigger pulse will result that may be used to drive a succoeding flip-flop atage. Such a pulse is known as a cairy pulse and is produced each time the flip-flop completes a cycle.

A reset or clearing trigger is one that is applied to tie grid of tube A and serves to rostore the flip-flop from the one to the zero position. Such en operation produces an ordinary carry trigger, Howeyer, if the flip-flop is originally in the zero position when tue reset is applied, it will have no effect. By coupling a series of flip-flops together through peaking circuits that produce one outpui trigger for every complete flipmflop cycle, a binary counter is forned. Such a counter is shovn in block form in A-30571, page 14.

1. The o eeration of an R-I-C peaker is explained more fully on page 2ε.

This ordinary type of counter may be used ae a binary storage register, each succeeding stage representing the next bigher power of to. To add anther binary number to a number already atored in the register introduces conplications if an etteryt is made to introduce all digits of the nev number simultansously into their respective Uinary stages, The aldition of the nev number may generate carry pulses which would interfere with the digits belng incroduced. Therefore, some modificasion of the counter is neceesary if it is desired to add all digits simultaneously.

The introduction of delay stages overcomes the difficulty in a manner thet is described in the noxt section. When a delay stige receives a trigger pulse, it stores it for a fixed period of time before delivering the pulse at its output terminals.

Io read a number out of the register, a form of coincidence mixer, os geve circuit, is used. When pulsed, such a reading stage will produce an output pulse only if the flip-flop 18 in the one Dosition.

Abstract

Operevions 1. Addition

The flip-flops, peakers and delay stages connected to forn the binary register are shown in block form in $4-30572$, page 16. When a number, in the form of pulses, is added into the register, it is temporarily stored in the delay stages until the set of input pulses representing th.t number have subsided. The delayed pulses are then applied to the flip-fiops. If a carry pulse is produced by

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

a flip-flop and its peaker, it passes through a delay stage befor: reaching the next flip-flop. In this manner, a carry being produced by a flip-flop cannot be interrupted by the input of a oarry pul se from a previous flip-flop stage. In other words, a flip-flop eitays has a chance to reach equilibrium after receiving a pulse before it receives another pulse.
2. Shifting

If a clearing pulse is simultaneouely apolled to al: the flim-flops in the register, all the flip-flope will be restorid to their zero positions. All flip-flops that were originally in the one position generat f carry pulses when they are restored. These carry pulses therefore represent the number that w s stored in the regtster before 1t was cleared. The carry oulepe are stored in the delay circuite until after the clearing pulse has subsided. Wh: m these carries are delivered, the original position of each fli rflop in the register is transmittod to each adjoining flip-flop, or, the number has been shifted by oxe jlece.
3. Reading

In the multiolication process previously described, af or the number in the register has been shifted it is then necessary to read the number out of the register without disturblng the set tings of the register flip-flops. To sccomplish this result, each flip-flop excent the first one in the register has a reding circuit (ses page 15) connected to it. The first flip-floz is alvays in the zero position after a shift so it needs no reading circuit. The

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

arrangement of thes reading circuits with respect to the register stages is shown in block form in 030573 , page 19. Bach rexding stage is connected so that its outpur is fed to the delay inout of a flip-flop two stages removed from the input of the resding stage. .
4. Multislication

Let us review the multiplication process now that some of the detalls of the binary register have beon describod. The correct sequence of pulsea to control the multiplication is supplied by the timing circuits that will be deacribed in detril after their requiremente have been discussed. Pirst, a clearing pulee aoplied to all the register flip-flops ahifts the number over one plece to the left. (Multiplication by 2^{l}). When the shift has been completed, a reading pulse energizes the reading circuits, obtcining pulses representing the original number multiplied times 2^{7}. The wiring of the outputs of the reading stages ahifts this number tro additionel places to the left. The number that is added back into the recister by the reading circuits is therefore $\left(2^{1} \times 2^{2}\right)$ or ε^{3} times the original number stored in the register. When thie paltial product is added into the register (which still contains the oritinal aumber times 2^{1}), the net result is ($2^{1}+2^{3}$) times the criginal rumber.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHAPTER IV

The Binary Register Circuits
In the previous chapter we considered the functions of the binary register and the requirements of the indiviclual componenta of the register. We will now consider the details of the circuits used. Flip-flop

The schematic diagram of a flip-flop stagn of the register is shown in $\mathrm{A}-30574$, page 21. A positive oulge at the trigger in ut will cause the circuit to flip over from its original state. All. three germanium-crystal diodes are used as deccuoling elements. The diodes connected to the trigger input prevent coupling betveen the tro grid circuits, and the diode in the clear inout prevents interaction from the other flip-flops on the clearinf-pulse bus. The neon bulb elows to indicate the flip-flop is Sin tive ona position, when tube B is conducting. The small condensers tend to compensatie the plate-to-grid voltage divider for the input capscitance of the tube. Both the clear and trigper input sources are biased below epproximately eight volts so they do not interfere with the flip-:lop operation.

The flip-flop stage will operato at a trigger repetition rate up to approximatrly 1.5 megacycles. When used in this decimal-binary conversion circuit the trigger repetition rate nevar exceeds 0.67 megacycles, so there is a margin to allow for variation

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

9

in circuit paraneters. The relatively high speed of overation is not es ential to the basic princinles of the converier when the cons varter is working from a push-button input. However, the hichspeed makes the delay circuits more compact and provides for the possibility that the circuit might be used with high-speed electronic input.

Gate-peaker Circuit

The functions of a peaker circuit to produce a carry pulse from a flip-flop output, and a reading circuit to determine the position of the flip-flop have been combined in e one-tube circuit shown in A- 30575, page 23. It utilizes a Type GAS6 pentode. This tube is especially designed for gating applications, having suppressor-grid characteristics similar to those of 1 ts sharp-cutoff control grid.

Let us first consider the operation of the peaker circuit. When the circuit is acting as a peaker, the plate current is cut off by a negative bias on the suppressor grid, and the plate circuit does not enter into the operation. The control grid of the GAS6 i.s connected through a series resistor to the grid of the associated flip-filop. The grid of the flip-flop is normally at a positive potential of about 1.6 volts when the flip-flop is in the one position, so the series resistor is necessary to prevent the 6 as6 grid current from loading the flip-flop.

The screon grid of the GAS6 is connected to its positive supply voltage through an inductor. When the flip-flop connected to the peaker inout is in the one oosition, the control grid of the

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

GaS6 is slightly positive with respect to the cathode and a cu rent is built up through the scroen-grid exronit indsator. Whan the flio-flod is triggered to the zero position, the acreen-grid ucrent of the GAS6 is suddenly cut off. The interruation of screen-gyd current causes an oscillatory transient to appear at the screen arid, the inductance resoneting with the stray canacitarce. If there ore no load connected to the screen-grid circuit, the waveforn would e an exponentially drmped sinusoidal oscillation with the inioial half-cycle positive.

The out nut of the screen grid is capacitively coupled to a damping resistor that is in series with a geraani.m diode. The polerity of the diode connection is such that there is practically no damping forthe initial positive ewing, but the resistance demps out the oscillation on the negative part of the cycle. The value si the resistance is approximately that recuired for critica. dampig so that the transient is damped out in the shortest possible time aithout a posilive overshoot. The out out of the peaker circuit i: a rysitive pulse thit reprcsents a carry.

When the flip-flop is returned to the one posilion, the control-grid potential of the 6AS6 is made positive, causin i_{i} a negative pulse at the screen grid. This negative oulse is overdanped y the tube resietance and the dampinf circuit, however, and has no ef 'sct on succeeding circuits.

Placinp the dapping circuit after the coupline capacitor hes advantages over the more common method of having the danping circuit,

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

25

directly across the inductor, With the latter metiod, en extre resistor is required as the d-c return for the coupline capacitor. The extra resistor reduces the positiverpulse amplitude by introducing extra danning. If the resistor has a high value as that it does not appreciably dam the pulse, then there is danger of building up a blas on the capacitor when the next stage draws grid current. Such a condition is usualiy undesirable, particularly wien the random revetition rate of the nulses would make the bies variable. Usine the damping circuit as the $d-c$ return for the capacitor eliminates both troubles. The resistance for the positivnpulse voltage $1 s \mathrm{high}$, and the resistance for negative volteges is low, preventing a build-up of biss.

To read the position of the flip-flop, it is desired to obtain a julse from the 6aS6 plate circuit if the control-grid voltage of the Gas6 is positive. The plate circuit is sirilar to the screen-grid circuit, havinf an inductor, couplinf capacitor, and dampinf circuit. If the plate current is allowed to build up through Its inductor, and is suddeniy cut off, the desired positive pulse is broduced in the same manner is the nulses of the ecreen-grid circuit.

Certain orecautions must be taken, hovover. The plate current has a direct effect unon the screen-grid current, an increase In the plate current causing, a decrease in the screen current. If the plate current is abruptly increased, the sudicn decrease in screen-grid current causes an undesired positive rulse from the screen-grid circuit. If the plate current is incxensed at a rate that

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Abstract

is slow compared to the period of the oscillatory transient, the slow decrease in the screen-grid current cannot produce a pulse.

The correct result is obtained by driving the suppressor grid with a sawtooth waveform. This voltage, lenown as the reading pulse, slowly increases the plate current (if the s.ssociated flip-flop is in the one position) and then abruptly cuts it off. A positive pulse is produced at the plate that represpnts the digit storfa in the flip-flop and is called an edding yulse. A small nogetive pulse is produced at the screen grid vish does no harm.

Delay Stage
The delay stages used in the binary register had to meet two main requirements. The first has already been described, nanely, the circuit should be able to receive a pulse at its inout, store it a definite geriod of time, and then deliver a pulse at $1 t s$ out jut. The nature of the particular carry circuits used in this register inposes the second requirement. The delay stage must be able to receive an input pulse at the same time it is delivering a pul se at its output. This second requirement eliminates from consideration ordinary muli-vibrator-peaker combinations, although specicl circuits could probsbly be desipned. It was also desired to keep the yumber of tubes por binary-register stage down to a minimum.

Commercial, continuous-wound delay lines sermed to offer a good solution. These lines come in a variety of lengths and impedances, and are relatively convenient to use. A photogran of t.o of these lines is on page 27. The delay line could have been usec. In a straightforverd
1000-OHM DELAY LINES

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

circuit where the nulse is fed in at one end of the ine and received at the other. The characteristics of the twin-triode flip-flops were such that it wa: felt a delay of at least one ficcrosecond was necessary, more delay being desirable. A onemicrosecond delay line is about twenty-two inches long, and such a line in each register stage would cause considerable contructional difficulties.

More delay per unit length was achieved by taking advantage of reflections. A single-reflection scheme, whereby a pulse of one polarity applied to a line is reflected at a short-circuit at the far end and returned as a pulse of opposite polarity, could not be used because the input and output circuits of the delay stuge had to be independent. Drawing A-30576, page 29, shows the circuit used. The tube is normally biased below cutoff by the grid circuit. The grid receives positive nulses from a diode mixer that serves to isolate the two or three circuits that may feed the grid.

When a positive pulse is appliod to the grid, the line temporarily appears as its characteristic lapedance (1,000 ohms), and a negative nulse is generated across the line. The negative pulse travels down the line and after the one-way delay time of the lins (0.5 microsecond) it appears at the far end. This end of the lins is terminated in a germanium diocio in parallel with the characteristic impedance of the line. The polarity of the diode is arranged so that it a pears as a low resistance (approximately 1.00 ohms) for a negative pulse and a high resistance (greater than 0.1 negohm) for a positive pulse.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Because the ine appears to be terninated in much less than its charactaristic impedance, the negative pulse is returned to the tube as a positive pulse. When the positive pulse reaches the ond of the ing it is reflected without ohange of polarity, because the tube is cut off and appears as an open circuit. The reflocted positive pulse travels through the line and appears across the terminating rasistor at the output. As in the damping oircuit for the peakars, coupling the terminating resistor through a ospacitor possesses advantages. The total delay between input and output pulses is equal to three times theonervay deles of the line.

Heghater Stage

A single stage of the register is shom in B-30877, page 31, to 11 lustrate the methods used to couple the atages together, Germanium diodes form mixers wherever it is necessary to feed several inputs into one point. They serve to isolate the stages. Such a need arises at the input to some of the delay otages, where it is necessary to feed carry pulses from the preeading stage, addine pulses from another stage and digit pulaes (to be described later) from the conversion matrix. Direct coupling is used between the KIip-flop and the peaker stage because the time between suocessive operations may be measured in microseconds or hours. Cepsacitive covpling is ueed to pass the pulses because they are approximately $0 . i 5$ microsecond wide and the repetition period is never less than 2.5 microsec onds.

A complete stage of the reginter requires three triodes ad a pentode, or two and one-half tube envelopes if twin triodes are used.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHAPTER V

The IIming and Conversion Circuits

Timing-Circuit Requirements

The details of the binary regieter autometically deteraine most of the requirements of the timing circuits. The important waveforms are shown on A-30578, page 33. The operations, broken up into units of time (eachunit 1.5 microseconds longh, are es follows

1. Clearing pulse initiated by push-button circuit which olears register flip-flops and generatfs carries, Cries stored in the delay stages.
2. Ċarries delivered from deldy stages to the flip-flops, completing the shift of the number in the register.
3. End of reading pulse causes reading circuits to read the number out of register and add these adding pulses, shifted over by two places, into the delay stages.
4. Delay stages deliver the adding pulses to the flip-flops, completing the multiolication. Bnd of digit pulse reads the binary digits of the decimal integer from the conversion circuit into the delay stages of the refister.
5. Binary digits delivered from the delay stages to the flio-flops. Action of the circuits are complete excert for any carries that mipht propagate throughout the register. The above sequence reauires three waveforas from the tiaing circuitr, the clearinf pulse, the reading pulse, and the diget pulse.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

TIMING RELATIONS IN DECIMAL-BINARY CONVERTER

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

Because the digit pulse energizes circuits in the conversion matrix that are similar to the reading circuits of the rejister, it can be of the seme shape as the reading oulse.

Push-Button Trigger Circuit

Becanse a nush-buttion tyoe of switch does not make a definite contact :hen it is derressed, a circuit must be used to insure that only one trigger is produced for each vush-button operation. The first scheme attempted was the uce of a flip-fiop that was connected to the switch contacts. The diagram is shown in 30579. page 35. With the circuit at rest, the normally closed contscts of the switch epply a positive ootential to tube A of the flip-fiop, insuring its conduction and therefore keening tube B cut off. If the button 1.8 pushed, the normally closed contact of the switch ls opened, having no effec. on the flimflop. When the button reaches the bottom of its travel, the othr contact is closed, soplying a positive posentiz.l to tube B of the flip-flop, causine the circuit to flip to Its other stable s.ate. Once the condition has been established, the circrit remains in that state regardless of breaks in the switch contact. When the sush-bution is released, the other contac, is again closed, restorine the ilio-flop to its original condition.

This scheme requires a flio-flop for each push-button, the grids of the flip-flops being connected through a diode mixer to an RoI-C peaker stage. The connections are arranged so that rushine any button cuts off the R-L-C peaker, producing a posi,ive pulse. The other set of flip-flop grids are connected to the sonversion matix to set up the binary digits of the decimal integer

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Besides requiring many tubes and circuit components, the flip-flop stages were not alvays stable under the severe operating conditions. The back resistance of the germaniwn-dicde mixer aircuitb produced a heavy load on the flip-flon grid circuits. This loading, plus the long length of grid leads that were necossaly, made the flip-flop operation erretic.

The flip-flop circuits connected to the vush-button were discarded in favor of a simpler circuit composer! of two ges-filled. thyratons shown in B-30580, page 37. Oae side of all the normally open contacts of the push-buttons is connected to a positive potential of about twenty volts. The other terminals of the contacts ere connected through a diode mixer to the grid of gas thbe VI. There is also a parallel set of connections to there tezwinals that goes to diode mixers in the conversion matrix. These conneciions to the matrix normally provide a negative blas of about thirty volts, so tast the gas-tube grid voltage is below firing potential. A negative bias on the shield grid makes the firing point of the contrigerid. ε positive potential of about eighteen volts. The nornally closed contacts of the push-buttons are connected in a series circuit that permits the charging of a 0.02 microfarad capacitor to a positive potential of 150 volts.

Pushing any button breaks the cherging circuit, temporarily leaving the capacitor with a net charge. When the bottom contact of the switch is closed, the control grid of the gas tuive is connected to a positive, twenty-volt potential, and the tube fires, diecharging

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

the capacitor. The discharge produces a positive waveform across the cathode resistor that has a sharply risinp, front, and an exponential trail-off. When the condenser voltage drops below a critical point, the tube goes out. The circuit cannot be operated again until the push-button is rele sed and the condenser has time to recharige, therefore only one pulse may be produced for each push of a button.

The output pulse of thefirst gas tube does not have the correct amplitude or waveshape to act as a clearing pulse for the register flip-flops. It serves tofire the second thyratron which has a oulse-forming network in its plate circuit. The network cone1sta of a small capacitor, an Inductor, and the stray plate-to-ground capacitance of the tube. Such a pl-type network may be considered as a section of an artificial tranemission ine. It is normally charged up through a resistor to the 150 -volt supply potential. When the wavefront from the first gas tube fires the second tube, the network is discharged, producing a single positive oulse acrose the osthode resistor. The pulse is about 0.25 m croseconds wide at the base, and the amplitude of the output may be adjusted by means of the CLBAR-PULSE AMPLITUDS potentiometer. This second gas tube oircuit could not be operated directly from the push-buttons because the storage capacitors are so small they would lose thelr stored charge through atray leakage during the time of push-button travel. The cathode resistor is returned to a negative bias so that the output may be directly coupled to the register flip-flop steges.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Conversion Matrix
The conversion circuits to change the decimal integers into their binary components are also shown in B-30580, page 37, and consist of four diode mixers to prevent interaction betwoen the push-button circuits, and four gate tubes (coincidence mixers) to act as reading circuits. Each gate tube represents a binary digit end the output of each stage is connected to the delay input of the flip-flop in the register representing the particular binary digit.

The normally open contact of each push-bution is connected through germolua diodes to the grid circuits of the gate tubes representing the binary components of the particuler decian integer. For example, the number seven push-button 1 s connected to the 2^{0}, 2^{2}, and 2^{2} gate tube grid circuits $\left(7=2^{0}+2^{1}+2^{2}\right)$. 1 When a button is cepressed, the grids of the associated gate tubes are turned on by the positive potential surplies through the push-buttion contacts. After inree time units (4.5 microseconde), the gate tubes that have their control grids positive, transmit their digits into the register when the digit pulse suddenly cuts off the plate current by means of the suppressor grid.

The potential applied to the control grids of the gate tubes is connected through series resistors so that grid curront prevents the grids from being driven appreciably positive. The gridi-return resistors are connected to a source of minus thiriy vclts bias to keop the tubes normally cut off. The grid-return resistors have a low value so that when adjacent gate tubes are tuzned on, the back

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

resistance of the diodes in the mixer circuite will not raise the blas of a non-energized stage above cut-off.

It is essential that the correct gate tubes have their grid voltages positive 4.5 microseconds after the push-button fires the gas tube that generates the clearing pulse. If no precaution wore taken, it is possible for the push-button to make an intermittont contact that would fire the gas tube, yet perilt the gate tube grids to be blased off 4.5 mlc croseconds later when the digit pulse is supposed to read the digits from the gate tubes. To overcome this difficulty, a capacitor is connected from each ounh-button contect to ground, and the firing point of the gas tube purposely adjusted so that it is about eighteen volts positive. The pueh briton contect nust be made long enough (about twenty microseconds) to charge the dapacitor up to the firing voltage of the gas tube. Bren if the contacts open at the instant the tube fires, the time constant of the condenser disoharge is large enough so that the potential of the condenser wil2. still be positive 4.5 microseconds later.

Reading-pulse Generation
The waveshape requirement on the reading pulse 18 that it should rise slowly and have an abrupt drop. The rise nay stert at ary time after the clearing pulse and the drop should occlu: two time units (3.0 microseconds) after the clearing pulse. The circuit to generate this pulse is show in block form in A-30581, page 41, and in detail in B-30582, page 42. It consists of a flip-flop and delay atage that is used to generate a gate three microseconds long, a savt ooth generator controlled by the gate, and a cathode follower output otage.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

Abstract

43 The flip-flop, which is nornally in the eero poeition, is triggered into the one position by the clearing pule. The clearing pulse is also applied to a delay stage, After three microseconds, the delayad clearing pulse is delivered to the opposite side of the flip-flop, resetting the flip-flop to the zero position. The whole operation produces a negative, throe-microsecond gete thet is epplied. to the sawtooth generator.

The sawtooth generator is a triode with e high value of resistance in series with the plate. The tube is normally conduciting unili the gate from the flip-flop cuts it off. When this occurs, the stray plate-to-ground capacitance is charged by current from the plate resiator. The plate voltage therefore rises towards the supply voltage oxponentially, Before it rises by nore than about forty wolt 3, the three-microsecond gate ceases and the Now resissanct of the tube diecharges the stray capacitance equickly, calling an ebrupt fall in the plate voltage. The amplitude of the sawtooth that is produced is controlled by resistance of the SAWTOOTH AMPLITUDE rheostat which veries the time constant of the exponential rise,

The sawtooth is capacitively coupled to ε. triode-connected 6AQ5 cathode follomr. This relatively high-peryoanco tube wes necessary to feed the combined perallel load of a 1,000 -ohm ielay ine, a $1,000-$ ohm output cable for a possible additional chassis, and the supressor grids of all the gat f tubes. Because the suppressoz grids are diriven positive, they form an appreciable load,

When the CLBAR push-button is depressed, complications arise, because the CLEAR button grounds the clearing-pulse bus. The operation leaves the gate-generating flip-flop in the one position unless a reset method is provided. To perform the reset, the nornally closed contacts of the CLKAR button are wired so that they produce a positive pulso when the button is released, which is applied to tha flip-flop, Digit-pulse Circuit

The ifgit pulse to read the gate tubes 0^{\prime} the conversion matrix has no requirement on shape oxcept thet it must suddenly cut off the suppressor grids one time-unit (1.5 microseconds) E.ter the end of the reading pulse. For convenience, the digit pulee is formed by delaying the reading pulse through 1.5 microseconds of delay $11 n$ eterminated in ite characteristic impedance. No simple means of uing delay-line reflections to shorten the required line being avaliable, the thirty-four inches of delay line were used directly.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

CHAPTER VI

Construction and Operation

The Completed Un1t

The block diagram of the whole unit is aiom in C-30368, page 46, and shows how the basic parts of the converter are interconnected. The complete chomatic diagran shown in E-30583, page 47. has the circuite placed in approximately the same arrangement as the block diagram. Five complete register stages were built, plue a sixth flip-flop that had no associated gate-peaker atage.

The entire unit, exclusive of power supplies, was built on a 13 ty 17 -inch chassis. Photographs are shown on pages 48 through 53. The chaseis contains a set of input push-buttons, complete circuits to perform the decimal-to-binary conversion, neon bulbe to indicate the converted number, ooaxial output jacka for connections to a chasels containing additional registar stages, and a plug to connect a remote keyboard and neon-11ght unit. The conxial outputs are deaigned for use with type $\mathrm{mO}-65 / \mathrm{U}, 1,000$-ohm cable that may be terminated in its characteristic impedance when connected to an additional register chaseis.

The elimination of the flip-flops ascociatec with the puah-bution in favor of the gas-tube circuits accounte for the ten empty tube sockets on the chassis. At sone future date some of these flip-flops may be converted into additional register stages, so they vere left intact.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

14.I. T. SERVOMECHANISMS Lab.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY SLRVOMECHANISMS LABORATORY

- $6.645^{\text {No }}$
D. j. j . c .

A-30565

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SERVOMECHANISMS LABORATORY

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHASSIS, BOTTOM VIEW

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHASSIS, BOTTOM VIEW

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHASSIS, BOTTOM VIEW

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

 - .No special precautions were taken in wiring of the chassit. In general, all circuit components except series grid resistors and delay lines were mounted on terminal boarde and leads connected from the boards to the tube sockets. The germanium crystal diodes were mounted as far as possible from power-dissipating resistors, and care was used in soldering to prevert damage to these units by overhating. Init1al Adjustment and Testing

Before the chassis is initially put into opuration, there are certain adjustments that must be made. These are made by means of acrewdriver controls that generally require litile c.ttention after the initial settings unles's supply voltages fluctuate or tubes are changed. Simple checks, described later, may easily be made to deterinine if the circuits are functioning correctly.

Three d-c power supply volteges are necesen'y to supply the chase18,

$$
\begin{aligned}
& +150 \text { volts at } 275 \text { milliamperes } \\
& +50 \text { volts at } 100 \text { milliamperes } \\
& -150 \text { volts at } 100 \text { milliamperes }
\end{aligned}
$$

from regulated supplies, An anc supply of 6.3 volts at about 7.2 amperes is required for the tube heaters. The power connectionn are made through a plug on the chaesis. Other equipment desirable for initial testing should include a synchroscope, d-c voltneter, and a pulse source. The pulse source is used to fire the pulse-forming gas tube at a continuous rate for convenience in observing steniy-atate circuit operation. The requirements on such a pulse scurce are not

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
very rig1d, almost any shape of positive pulse that is not too long
with respect to the repetition period and has a repotition frequency
of loss than about two thousand cycles per second 1e sufficient.
    One of the first adjustments to be made fo the GAS TUNE
BIAS control. This adjustment determines the firing potent1al of the
firat gas tube and should be adjusted so that the firing point of the
tube is as high as possible. One or the best methods of making the
adjustrent makes use of the oscilloscope by connecting th acrosa the
cathode regletor of VI to observe any trigger produced. Start with
meximum blas and repeatedly depross pusi-button number one. Keep
decroasing the bias unt1l the trigger is observed on tho oscilloscopo
when the button is lepressed. Repeat this operation with the nine
other integer push-buttone, continuously decreasing tho jias if a
puah-button falls to initiate a trigger. The bise is now adjuasted
correctly and need only be readjusted for gam-tube replacemont.
    The FLIP_FLOP BHAS controls the bles of the riggers applied
to the flip-flops, and therefore is an indirect control on the
effective trigger amplitude, It normelly ahould be eat no that the
bias is -7.5 volts.
    The -6 VOLT BIAS controls the blas on the de.ay stages and
1s thereforethe most direct control on the trigger ampl tudes. Is
is normally adjusted for a voltage of -6.6 volte, howaver, alight
deviations in tube characterisilics may require a elight idjustment of
th1s voltage for best operation.
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Abstract

56 The ramaining adjustment and checking are simplified by using the pulse source so that the actions of the circuits mey be observed on the synchroscope. The pulse source should be connectad to the grid circuit of gas tube $V 2$ in some manner so that the gas tube is fired at a continuous rate. The eract connection depends so much upon the source impedance and the pulse amplituie, no standard may be bot.

When the gas tube is firing correctly, the CLEARING PIJLS AMPLITUDE control should be adjusted so that the ol, saring pulse rises one or two volts positive with roepect to ground. If the gate-generating flip-flop, Vg, is operating correctly, it should be possible to observe the sawtooth shape of the reading pulse at the auppressor terminal of any of the gate-peaker stages,

A convenient check may be nade at this point to deteraine If the whole chassis is working correctly. Pushing any one of the Integer pueh-buttone while the gas tube circuits are being pulsed at a continuous rate gives the same offect as pushiag the button many times with the circuit working normally. This corresponds to entering a decimal number that has all digits alike. Bocause the last \underline{n} digits of a decimal number determine the last \underline{g} digits of the - quivalent binary number, pushing a singlo integer button six times will set up a pattern on the six lights thet will romain the eamo regardless of how eny more times the same button $i s$ depressed. The same pattern is obtained If the buttor is pushed while the gas

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Abstract

57 tube is being fired by the puls source. The corvect patterns ere es follows: | Integor | Pattorn |
| :---: | :---: |
| 0 | 000000 |
| 2 | $000: 11$ |
| 2 | 001110 |
| 3 | $010: .01$ |
| 4 | 011100 |
| 5 | 100011 |
| 6 | 101010 |
| 7 | 110001 |
| 8 | 112000 |
| 9 | 112111 |

If the circuit does not produce the above patteras en the given digit button is pushed, it will be necessaxy to adjust the SAMTCOTH AMPLITUDE and -6 VOLM BIAS controls to get the triggers at the correct amplitude to operate the flip-flops. Sae SAWMOOTH AMPLITUDE control is used to adjust the adding pulises from the plate circuits of the gate-peaker stages to the same size as the carry pulses from the screen circuits of these steges. 2 he -6 VOIf BIAS control changes the amplitude of all triggers coming from a delay stage.

If the circuits did not produce the corect patierns on the initial attempt, it is beat to concentrato on one particular pattern for adjusting purooses. It is then possible to chock pulse amplitudes

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

and flip-flop operation to determine the maledjustment. In observing flip-flop operation, it is usuelly best to put a mall capacitior of sbout five micromicrofarads in series with the oscilloscope prote to prevent disturbence of the c1rcuit overailoz. However, when the circuite have been correctly adjueted, a probe of twelve micromicrofarads capacitance ueually produces no 111 effects on the operation.

Drawing $\operatorname{Am} 30584$, page 59, shove the waveforms thai exe produced at the plates of the flip-flops and their trigger invut terminals when the number one button is depressed. Unless there is a defective circuit component, an adjustment of the SAWTOOTH AMPLITUDZ control to equalize the sizes of the adding and carry pulses, and the -6 VOLI BIAS control to make them the correct amplitude, will meke all the flip-flops oparate correctly. Similar waveforms mey be figured out for the other fixed patterns, but when the adjustments have been made so that the circuit works correctly for one pattorn, it usually operates satisfactorily for the othera.

When the circuits espear to work correctly while boing continuously pulsed, the final check is made by disconnecting the pulse source and puahing the buttons. The correct pattern should be formed after pushing a button six times and should not change by additional puahing. If this test checks correctly for all the integer push-buttons, then the entire circuit is working setisfactorily.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

CHAPTER VII
Sunmary of Results

Abstract

The completed unit demongtrates that the principle of operation of this type of decimal-to-binary converter is sound. The system makes use of a ten-key type of keyboard which inherently has a higher gpeed of operation than the matrim-type of keyboard. The keyboard wiring is simple, making it possible to add contact s to a atandard adding-machine keyboard so that the input numbers could be recorded. The length of a connecting eable is not critical, per. mitting the keyboard to be operated from a location separated from the conversion unit.

Although relay circuits could be desigaed to perforia the operations required in this type of conversion sybtem, electronic circuits possess advantages. With the particular circuits that were desipned, the time of operation of the circuite is nogligible when compared to the posaible time of operation of the seyboard. The type of carry system that was used required an additional unit oi time for the circuit to complefe its operetion for each addition binary digit. With these electronic circuits, several thousand binary digits could be used before the time of circuit operation would begin to become comparable with keyboard operation time. If relays were used, a high-speed type of curry system would be necesaary for the system to possess any practicelility, The ofacbrgic circuits are

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

oasily adaptable to use with an input data system that possesses a very much higher operating speed than a keyboerd. In its present form, the unit requires nine tubes in the initiating and converaion circuits, and two and one-hale tubes (using twin triodes) for each binary digit in the register stage. It is doubtful if relay circuite could be built to occupy less space.

It was known from the stert of th1e project that this particular system would not handle the convereion of any nwhers that had digits to the right of the decimal point. It was felt that If numbers of such a neture had to be used, they could be multiplied by appropriate powers of ten used as scale factors to shift all digits to the left of the decimal point.

Although the circuits thet were designed for the unit work setiefactorily, they do not necesearily represent the ultimste in deeign. They do demonstrate that the detailed block diagram of the syatem is astiafactory. Most of the testing was done uaing electronically regulated power supplies as power sources. Tests using unregulated supplies vere not satisfactory bocause the fluctuations of the particualr supply voltages used were independent of eech other. It is belleved that the circuits can je made to operate from unregulated supplies if changes in the anc ine voltage produce proportional changes in each of the three inco supply voltages.

One of the chiof causes of unsatiefactory operation before correct adjustment was due to the fact that the flip-flop stages are senalive to trigger amplitude. This is not a new problem in their

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

deaign and e satisfactory solution is still beine sought by several other groupe working in the ifeld of electronis cosputere. One solution is to use an additionel stage of amplilicetion for the triggers that would have a limiting effect ani would tond to keep the trigger output e constent amplitude. Such a eclution requiros additional components for each stage in the reglater and the added complexity is not justifiable. The author bellover that additional experimentation with the flip-flop parametera will provide a satiofactory solution for this particular application.

Although this thesis presenta a possible solution to the problem of converting decimal numbers containtne vhole digits (no digits to right of decimal point) to their equitelent binary
number, work atill remains to design a system thet will handle any kind of a decimal number. In addition, there still is the problea of designing a satiefactory system to convert binary numbers (including those with digits to the right of tio binary point) into their decimal equivalents.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APREBDIX

Representation of Humbers
The decimal syatem utilizes ton as the number bsse and therefore has ten digits $(0,2, \ldots 9)$. Bach place in a dechnal number represents a power of ten; the digit in a jerticular place tells how many of that particular power of ten are present. For oxample:
$420.34=4 \times 10^{2}+2 \times 20^{1}+0 \times 10^{0}+3 \times 10^{-\cdots}+4 \times 10^{-2}$
The binary bystom is used in a simila manner, except two is the number base, requiring only two digits (O, I). For axample:

$$
\text { B1nary } 101.11=1 \pi 2^{2}+0 \pi^{2}+1 \pi 2^{0}+1 \pi x^{2}+1 \times 2^{-2}
$$

Decimal to Binary Conversion
One of the most obvious mothode of converting a decimal number to its binary equivalent is to extract powers of two from the number, therefore finding the binary components. For examplea

Decimal number	84
extract 2^{6}	$-\frac{64}{20}$
extract 2^{4}	$-\frac{16}{4}$
oxtract 2^{2}	$-\frac{4}{0}$

Therefore, $84=2^{6}+2^{4}+2^{2}$, and the binary equivai int is 1010100 .

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

A almpler system starta by dividing the decimal number by two and noting if there is a remainder, If a renainder is prosent, it indicates that there is a 2^{0} component in the number (the nuwicer is odd). If such is the case, a 1 is writion as the right-hand digit of the equivalent binary number. Tho dividend of the firat operation is divided by two and the remainder of this division (0 or 1) is used as the next binery digit. This second division is the equivalent of dividing the original nuraber by 2^{2}, and a remainder of 1 indicates that there is a 2^{1} component in the number. By continuing the process, that is, dividing the result of each previous division by 2 and noting the remainders, the complete binary equivalent of the decinal number can be found. Here is an oxample of the method:

Divisions	Remainders
2) 84	0
2) 42	0
2) 21	1
2) 10	0
2) 5	1
2) 2	0
2) 1	1

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

65

Addition
The process of addition in the binary system is eintiar to th t used in the docimal system, that 18 , when the sum of two digits is greater than the largest integer, a carry is added to the next column. For examples

Binary Addition Table

$0+0=0$	$1+0=1$
$0+1=1$	$1+1=10$

Sample Addition

	Docimal		Binary
Carries	11		1111111
Addend	886	=	1101110110
Addend	743	=	1011100111
Sun	1629		11001011101

The same type of reasoning may be ajplled to the processes of: multiplication and division in the binary ayetea, in each case the actual process being a simpler operstion in the binary syaten then the decimal systam.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345

Beport A-1:19

 Page 1. of 26
 Project Whirlvind
Sorvomechen I gme Laborasory Nessschusatts Institute of Technology Ca ibrs.dge. Nasachusetts.

Written by: HoP.Stabler,
Date: October 15, 1947
TABL E OF CONTENT:S
ABSTRACTPage No.
IITERODUCTION 2
MECUANTICAL COUNTITR 3
VAPIABLE-FREQUENCY WFTHODS 4
Fundsmentel Relation 4
Numerical exemples 8
Block Dlagrams 11
Oscilletor 13
Switching 16
D-C POTENTIAI-DIVIDER MFIROD 18
D-C Source and Switciing 18
Timing Circuits 18
MUTTIPLTMSSESD IARA 19
"Saw-tooth" Data 19
"Hill-and-Dale" Data 20
Appronrlate Sources 21
Apolication to Fine-Sulbdivialon Information 22
HIGR-SPRED POSSIBILITYZS 22
D-C Step-Comparison llethod. 23
OUTPUT DEVICES 23
DEVILOPMFNT SUGGESTIOZS 24

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

E. 45 Report R-129

Face 2

Abstract

This paber outlinza everel mothoda the t can be used to coavert shaft rotetional position to binery nurber. Since econory of equibnent reouires the one conversion urit servo for several shafta, selective electronic switchinf; is necussery. Several of the sugsested couroonante are described in some detei:. A matho by wich shaft rothtion is neacured In terue of the ireouendy $0:$ a variable oscillator aonears to bo the mest promising annroach.

Some consideration ie given t.2go to the converse nroblem of convertine: e binery nuaber 0 on electrical magnitude.

IN:RONUCTION

The Whirlwind digital comnuter must recelve inmat informaion from the rotational Doatior of mechanical shafts. The sia? fs can je grouped for convenience into two tyres accordire: to the degree of subdivision requiced of the associated informeticn. The fine-subdivision type requizes outow; numbers that are smooth to I pert in 1000 to 5000 , whila the coarse $-8 u b=$ division type requires a marirum subdivision of 1 prrt in 200 to 500 . The fine-subdivision shafta ere subject to high velocitiee and nccelera;ion; tha coerse-subdivision shafts are moved relotively slowly. The inne-sulodivinion type can tolerate some drift in zero position and calibration slone whila stable calibration may be desirable for the coarss-gubdivision type. This classification is somewhat extificial kut is useful in any consicerrtion of possible mpthods. There may be a total of some 48 differen; coarse subdi, 7i ior shafts and 8 fine-subdivision shafte.

The param ters aseociated with the shafts must be furnishod to tho combuter in binary number form. Thie ronort is concerned cinefly with devices that can convert shaft josition into binary number.

In view of the large nunber of shafts involved it is desirable the t many shafts share the same convsreion unit on the basis of gecuence or other suitable controlled switching. The number of conversion units requirad and the maximum time that can be allotted for e converaion mast be guch that agck prrameter can be read every $2 / 20$ second. If there iv to be just ont coarge subdivision unit, the maximun time per conversion ahould not exceed 1 milli second. 2.5 milliseconds has bsen choson tentatively as the correst ondin time for a fine-gubdivision conversion. One section of this renort confiders the possibilit, of much higher converaion speeds.

The arimery informstion sources considered include mechanical cultci contacts, a verlable freouency alpnal and d-c notentialse froblems associnted with multiple-speed data are also investigated. The purpose of the revort za to make a preliminery study of these different possible conversion methods. The study outlines and describes design reoulrements and sur ests pesaiblo zolutions for the associated components. Ideas that mifht posaible orove useful heve been includod even though tiry do not amear to be immediatoly aonlicable. The lest eection makes speaific suggestions for the next sions in the necessary develooment. The outoit conversion problens are closol.y similar to the input requirements and one section of this report is concerned with the transition from binary number ;o electrical maenitude.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

$6: 45$
Benort 8-1: 9
Pr pe 3

BCHANICAZ COUTT:
This proongal in olvas the vere of brush contacts or cam-onereted lonf swltches. It is anvl cable only to corrse-subdivision shafts and should not be extended to five numbore grentor ther. 128 or 256 at the vory most. The maximuri sneec 0 : the controls must be snall and changes infreouent.

One such arranger ents is shown schempticelly in Iigure 1 , Eipht binary digits (0 to 255) ale nrovided by eight car-onereted switchos. The cam discs are mounted in sets of four on two shefts. (These disce are shown above the unner carr oover minion in Fieure l. The gwitches have been omitted from the drawing). The first shaft acvances the switches ? 6 digits Der revolution. The second shaft is counlec to the first b: A mechanical cerry-over dinicn add edvances $1 / 16$ th turn eech revolution of the firgt shaft. Thile the sezond shaft is in motion it moves at ihe game speed as the first sheft.

The circuit scheratic is shown in Figure 2s The outbut sides of corresponding digit switches o? different parameters are connected to a common digit line which leais to a gats tube. The inout sides of $\varepsilon I I$ dipit switches for one parameter are connectod together to n line from ar electranic selection switch. It onder to coad e number, the electronic switch is get to the desired parailste: e get 3 vulea is ennlied simultanecualy to all digit switches for this on ameter, and a clock oulse, tranemitied through the gate tubes, then reads the number into the bus.

Actually, to avoil anbiguity at the transition edges, twe sete of awitches ere needed. In $F 1$ ure 1 theso are denoted Sat A and Set F_{o} Set S duplicetes awitches 2^{1} to 2^{7} inclusive of Set A; the 2° switch is not duvlicated. All cems B are illigned with each other and disnlaced one difit in ohase from the corresvon lint cains of A. All cams A 2^{1} to 2^{7} are elifned with each other. Cam 2° is diso aced one-half dipit fron the other cams of Set A. This Dhesinf is shown in Pi ure 3 (cams 21 to 27 omnitted) The mechanicni carry-over for 3 switches 2 : to 27 mus: also be disjlaced 1 digit in nhage The schemetic for the conne:tions for each nerameter is shown in figure 4. In this way, the numbers adrance only ft the transitions of the 2° switch.

No reedings are 0 issiblo during the fly-orer timo of switch 2°. If the total fly-over tine enresents eny sienificait fraction of the total operation time, this switch shculd be f flin-flop controlled by a brush contect, or else othor meth ds should be used.

The method has the acvantazes of nermanency of celibration, ilnearity ease of testing and, nosib y most immertant of all potentially hish reading speed. The unft orobably ct uld be designed quite compactlyo oarticilarly if brush contects were used. "he disadvanteges consis; of the limitations already mentioned, and present unce:tainty with respect to nwitch life and coliaioilisy.

6345
Report ₹-1:9
Pefe?

TAS LARI - FRRSQUECY MOMODS

Here shaft position controla the freauensy of a variablafreouency oscilletor. The conversion unit consists of switching arrangements, a fixed crystal osclliator, nul se-forming circuits, and two counters. One counter recives varieble-freouency nulses corresnonding to e o rifculer shaft nosi:ion; the oiher counter peceives the fixedfreauency crystel oscillator pulses. The pr rameten is ren into the comvuter bus fron one of the sounters.

There are four different ariengements fn: obtaining the number, These well be called A, B, C, and D. Methods A and B time a fixed number of variablefrequency pulgs, the perrmeter being tend from the clock oulse counter. Methods C and D count the number of variable-frequency pulses in a fixed time interval, the parameter then being rend from the variablefrecuency counter. In metiods A and D the parametor number decreeses with increasing numbers of coun;s. In methods B and C she parameter number increases with increasing numbers of counts. These four arrangements have different ilnearity, stability, and time characteristics. Methods A and B reouire a clock vulse rate which is higher in frequency than the variable frequency, while with methids C and $D_{\text {e }}$ the variable frequency is hifher. The relations between the several variables involvad are derived in the following section.

1. Fundamentel relstions

Method A

```
Let r = number of variablo nulae intervels being timed - a congtant
                f = variab e pulse frequency.
                fc
                n = total number of clock vul ses counted.
                n}=\mathrm{ maximu!! number of clock nulses counted.
                N = narame er numbor.
                r = time roquired for the count - & veriable.
```



```
Let }k=\mathrm{ tuning range factor, i.e., fmes: = kfmin. Suovose algo
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6.345

Reoort R-129
thet r veriable cycles can be timed to e procision of $\underset{F}{E}$ where \in is a fraction of a variable cycle. If the nazimun uncerteinty in timing is
to be no greater than $1 / 2$ e. clock pulse interval (1.0 e $1 / 2$ digit) then

$$
\begin{array}{ll}
\frac{\epsilon}{f_{m i n}}=\frac{1}{2 f_{c}} & \text { or } \\
f_{m i n}=2 \epsilon f_{c} & \text { Also } \quad r=m_{\max } f_{\min }
\end{array}
$$

But

$$
\begin{aligned}
\mathrm{N}_{\max } & =\frac{\mathrm{rf}_{\mathrm{c}}}{\hat{r}_{\min }}-\frac{r f_{\mathrm{c}}}{f_{\max }}=\frac{r f_{\mathrm{c}}}{f_{\min }}\left(1-\frac{1}{k}\right) \\
& =\tau_{\max } f_{c}\left(1-\frac{1}{k}\right)
\end{aligned}
$$

The results listed in colum A of Teble 1 follow directly Irom
these relations.

Method B

In this case $n_{0}=$ the minimum number of clock nulses counted, all
the other difinitione being the same, and

$$
N=n-I_{0}=n_{0}\left(\frac{f_{\max }}{2}-1\right)
$$

The results are aimilar (or identicel) to the previous case and aro listed in colunn B of Table 1.

Method C

```
For this case let
r the number of clock pulses used for timing = a constint.
n}=\mathrm{ number of variable mulses counted
no}=\mathrm{ minimum number of variable pulses counted.
nan
~}=\mathrm{ time of counting, constant,
```


APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-129
Page 6

Suppose as beiore that r clock cycles can be timed to a precision of $\frac{\epsilon}{f_{c}}$ where ϵ is a fraction of a clock vulse cycle. If the maximun uncertainty introduced by the timing is $1 / 2$ digit, then

$$
\frac{E}{f_{c}}=\frac{1}{2 f_{\max }}
$$

or $\quad f_{c}=2 f_{\operatorname{mnx}}$ algo $r=r f_{c}$
and $\quad N_{\operatorname{mex}}=T f_{\max }\left(1-\frac{1}{\mathrm{k}}\right)$
These relations lead to the values listed in columr. C of Teole 1 .
Method D
Here $n_{0}=$ the maximum number of variable nulses counted and $N=n_{0}-n=n_{0}\left(1-\frac{f}{f_{\max }}\right)$ 。

The results are Iisted in column D_{0}
Reasonable velues for K and $€$ appear to ve $k=2$,
Comparison of methods
Which of the four methods is preferable depends to some extent on the stability characteristics of the oscillators. Assuming that all the oscill-tors associated with a single conversion unit are identicnl and that uncertainty in frequency is due to a fixad uncertainty dC in capacity, Method A is best. For $\mathbb{N}=0$, dC causes $\frac{1}{k^{2}}$ tines the percentage uncertainty in frequency that the same. $d C$ causes $a t \mathbb{N}=\mathrm{N}_{\text {max }}$. Thus referring to tabls 1 , column $A_{V}(d \mathbb{N})_{N}=0$ $=\frac{1}{k}(d N)_{H}=\mathbb{N}_{\max }$, A reasonable result。 Each of tho other methods is less favorable, D being worst.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Remort R-129
Page 7

On the othar hand, if $\frac{d f}{f}$ is constant over the tuning range, methods B and C are nrefernble to A. B has the adventage (over C) of having lower variable frequencies, for which $\frac{d f}{f}$ may be exncted to have lower constani values. Actually, however, $\frac{d f}{f}$ is not likely to be strictly constant over the tuning range, and Method C has the advantage thet imin is associated with $N=0$ where the uncertainty $d N$ should be small。

If a single conversion unit has associated with it a few paranoters reouiring large $\mathbb{N}_{\text {max }}$ and many narameters requiring eporaciably smaller $\mathbb{N}_{\text {nax }}$. Method C has some advantages. Thud $d C$ may be annrosimately constant for any one oscillator but the $d C$ for the small $N_{m a x} n s c i l l a t o r s$ may be larger than for the large $N_{\max }$ oscillators.

Stability tests of actual oscillators can best decide the chotca. From the point of view of the pulse-forming circuits, it appears advantageous to have the variable pulse rate lower than the constant clock nulse rate. There is little to choose between the four methods with respect to the counting and reading problems, or linearity.

Oneconsideration can be męntioned which places an apparent restriction on the minimum size of $f_{m i n}$. If a control is changed very rapidly, undesirable transients may be set up. Supnose a shaft is turned through the whole tuning range in time t. Assuming that the rate of change of frequency is constent, it is readily shown thet the maximum fractionel chenge in frequency in the thin of one cycle is $\frac{(k-1)}{f_{m i n} t}$. To avoid transients this quantity should be much smaller than $\frac{1}{Q}$ of the oscillator. If $t \mathrm{is}$ of the srder of $1 / 5 \mathrm{sec}$ and $f_{\text {min }}$ is in kilocycles this requirement is well fulfilled.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-129 Pa;e 8
2. Numerical examoles

Fine subdivision. Method A.
Sunnose

$\mathrm{N}_{\text {max }}=5000$	$\mathrm{k}=2$
$\boldsymbol{\gamma}_{\text {max }}=2000$ sec	$\boldsymbol{\epsilon}=0.1$

Then
$f_{c}=5$ MC pulse rate
$f_{\text {min }}=1$ MC pulse rate
$f_{\max }=2 M C$
$\mathbf{r}=2000$
$\boldsymbol{T}_{\text {min }}=1000 \mathrm{\mu sec}$.
For $N=0$ and $d N=1 / 2$
Allowable drift $\quad=50$ cycles
Allowable fractional drift $=\frac{1}{20000}$

For $N=5000$ and $d N a 1$
Allowable drift $=400$ cycles
Allowable fractional drift $=\frac{1}{5000}$
In order that the timing process shall no: introduce an uncertainty ereater than $1 / 2$ digit, counting gates accurate to $1 / 10 \mu s e c$ are required. The clock counter must oderate with an innut pulse rate of 5 MC . The uncortainty of end-carry delay of the variable oulse counter must be lese than $1 / 10$ Hsec. The line between the control oscillators and the converter must carcy sinusoidal frequencies between 1 and 2 MC.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Renort R-129
Page 9.

Coarge subdivision Method A
Take

$N_{\max }=400$	$k=2$
$T_{\max }=400$ нsec.	$\epsilon=$ C.1

Then
$f_{c}=2 M C$ pulse rate
$\boldsymbol{f}_{\text {min }}=400 \mathrm{KC}$
$f_{\max }=800 \mathrm{KC}$
r $=160$
$\tau_{\text {min }}=200 \mu \mathrm{sec}$.
For $\mathrm{N}=0$ and $\mathrm{dN}=1 / 2$
Allowable drift
$=\therefore 50$ cycles
Allowable fractional drift
$=-\frac{1}{1600}$
For $N=400$ and $d N=1$
Allowable drift $=$
$=2000$ cycles
Allowable fractional drift
$=-\frac{1}{400}$
The timing process should not introduce incertainties greater than
1/4 人sec.
Very coarse subdivigion High Speed - Method Δ

Suppose

$$
\begin{array}{ll}
\mathbb{N}_{\text {max }}=64 & x=2 \\
\tau_{\text {max }}=26 \mu \mathrm{sec} & \epsilon=0,1
\end{array}
$$

Then

$$
\begin{aligned}
& \mathbf{f}_{\mathrm{C}}=5 \mathrm{MC} \\
& \mathbf{f}_{\min }=1 \mathrm{MC} \\
& \mathbf{f}_{\max }=2 \mathrm{MC} \\
& \mathbf{r}=26
\end{aligned}
$$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
6345
Report R-129
\begin{tabular}{rlrl}
\(r_{\text {min }}\) & \(=13 \mu \mathrm{sec}\) \\
For \(\quad \mathbb{N}\) & \(=0 \quad\) dN \(m 1 / 2\) & \\
Allowable drift & & \(=3.9 \mathrm{KC}\) \\
Allowable fractional drift & & \(=\frac{1}{256}\)
\end{tabular}
    For N = N5 dN= 1/2
        Allowable drift = 15.6 KC
        Allowablo fractionel drift
        = }\frac{1}{128
        Timing must be eccurate to 1/10 \musec.
        Max1mum over-all time ~ 30\musecs.
Very coarse subdivision Small tuning range. Metiod A
        Suppose
\begin{tabular}{rlrl}
\(\mathrm{N}_{\text {max }}\) & \(=64\) & \(k=1.2\) \\
\(\boldsymbol{\tau}\) & \(=45 \mu \mathrm{sec}\) & \(\epsilon=0.1\)
\end{tabular}
Then
            fc}=5\textrm{MC
            fmin}=1M
            fmax = 1.4 MC
            r = 45
For N =0 dN = 1/2
    Allowable drift = 2.2 KC
    Allowable fractional drift
        = 支
For H = 32 dN = 1/2
    Allovable drift
                                    = 4.4 KC
            Allovable fractional drift
                = \frac{1}{320}
```

The two very-coarse-subdivision examples are useful in considering the possibilities of multiple-speed data discussed in another section.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
\(s\)
6345
Report R-129
For \begin{tabular}{rl}
\(\tau_{\text {min }}\) & \(=13 \mu \mathrm{sec}\) \\
For & \(=0 \quad \mathrm{dN}=1 / 2\)
\end{tabular}
Allowable drift
Allowable fractional drift
\(=\frac{1}{256}\)
For \(\quad \mathbb{N}=45 \quad d w=1 / 2\)
Allowable drift
\(=15.6 \mathrm{KC}\)
Allowable fractional drift
\(=\frac{1}{128}\)
Timing must be accurate to \(1 / 10 \mu \mathrm{sec}\).
Maximum over-all time \(\sim 30 \mu s e c s\).
Very coarse gubdivision Small tuning range. Metiod A
Suppose
\begin{tabular}{ll}
\(\mathbb{N}_{\text {max }}=64\) & \(\mathbf{k}=1.2\) \\
\(\boldsymbol{\tau}=45 \mu \mathrm{sec}\) & \(\boldsymbol{\epsilon}=0.1\)
\end{tabular}
Then
\begin{tabular}{rl}
\(\boldsymbol{f}_{\mathrm{c}}\) & \(=5 \mathrm{MC}\) \\
\(\boldsymbol{f}_{\text {min }}\) & \(=1 \mathrm{MC}\) \\
\(\boldsymbol{f}_{\text {max }}\) & \(=1.4 \mathrm{MC}\) \\
\(\mathbf{r}\) & \(=45\) \\
For \(\quad \mathbb{N}=0\) & \(d \mathbb{N}=1,2\)
\end{tabular}
Allowable drift \(=2.2 \mathrm{KC}\)
Allowable fractional derft \(\quad=\frac{1}{45 j}\)
For \(N=32 \quad\) dN \(=1 / 2\)
Allowable drift \(=1.1 \mathrm{KC}\)
Allovable fractional drift
\(=\frac{1}{320}\)
```

The two very-coarse-subdivision examples are useful in considering the possibilities of multiple-speed data discussed in another section。

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-129

The odd values for r in these examples resresent only typical
minimums. Larger r values require higher values fo elther $f_{m i n}$ and f_{c} or for $\boldsymbol{T}_{\text {max }}$.

3. Block diagrams

Figure 5 shows a block diagram of a complete fine-gubdivision unit assuming the constants of the first example and with switching provided for 8 separate inputs.

Assume that initially FF1, FF2, FF3 are all at zero, so that GT2 is open but GTI, GT3, and GT4 are closed. Counter $\mathrm{N} O$ 。 2 reads 96 , the reset value, and Counter No. 2 has accumulated a value for N. A read-out oulse is received. This triggers FF No. 1, opening GTl. The next clock nulse passes through GTI and GT2, resets FF1, and reads \mathbb{N} into the bus. After delay through DE3, counter No. 2 is reset by the same oulse.

Recelpt of N_{18} followed by an order setting the selection switch to the next parameter to be read. The read-in pulse from the bus sets FF2. The next variable pulse resets FF2, setting FM3 and ovening both GT3 and GT4 . Thus timing always starts at a definite (and very smali) time after a variable Dul $=e_{\text {. }}$ FF3 1s reset, stoming the count, by the fasi end-carry pulse from Counter 1.

CT2 and DE2 insure that Counter 2 is not cead until GT4 is closed and complete carry-over has taken nlace. If the scheduling of read-out nulses is such that ample time is always allowed for the count, FFI and GT1 and CM2 can be omitted or arranged instead to oderate the alarm in case of incorrect timing。

DE5 must be sufficiently long to allow fo: switching transients.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Change of pulse rate may cause a change in $d-c$ restring levels in the variable-freouency pulse shaping circuits, and a consequent slight change in phase of the pulse with respect to the pulse cycl.e. Investigation should be made to see whether this phase change is apprecieble and how rapidly it becomes stabilized. If the required DS5 is long, it may be preferable to order the next selection switch setting before reading out the accumulated H 。

Figure 6 is a block diagram of the fixed-Prequency counter 2. Unless the program scheduling requires great economy of tine, high-speed carry-over is not neceasary. The output getes are arranged to read the complement number into the bus and switches are provided by which the initial reset reading can be chosen,

Although counter 2 may receive as many as 10,000 nulses during a
 ilme required for end-carry through coumter I is $2 / 5 \mu \sec$ (inciuding any difference between the setting and resetting times of FF3 and the associated gates), the correct inftial reading for counter $2 i_{3}$ the binary equivalent of 6381 . If \mathbb{I} is 1000 the counter receives 9002 pulses increment and thus reeds 6381 plus 9002 lese 8192 not indicated, or 7192. The 9's complement of this number is 1000 , which is read into the bus. The 8192 not indicated does not leed to ambiguity because the minimum reading at the ond of an accumalation is $6381 \leftrightarrow 5000\left(\mathrm{~N}_{\max }\right)+2=11383$, and is thus always over 8192。

Figure 7 is a corresponding diagram for counter 3. High-speed end-carry is essential. Switches which control the reset value are convenient in an exnerimental model but could be omitted from the finsl design.

The block diagrams for a coarso-subdivision unit would differ from Figg. 1, 2, and 3 only in the number of inputs to bs switched and in the numbera of stages of the counters.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-129

4. Ogcillator

Clearly the success of the method denends primarily on the design of the oscillator. The allowable drift requirements of the fine-subdivision example given in section 2 are very difficult to meet over long neriods of time. However, the fine-subdivision control will have the necessary smoothness provided the instantaneous rate of change of \mathbb{N} due to random frequency shifte does not exceed $1 / 2$ digit per $1 / 20$ th-second reading interval, or 2 digits ver second averafed over a second. The stabllity of callbration probably would be satisfactory with a steady drift rate of 25 digits per hour (at all positions of the control) provided this is neriodic with time of day or temperature. The oscillator of any good communications receiver or signal generator meets these relaxed requirements provided that there are no sudden changes of sumply voltages and provided that it is not subjected to mechanical vibretion.

Figure 8a show the schematic of a simple type of oscillator with the requisite short-time stability. This is a modification of a circuit by K, Δ. Pullen ${ }^{1}$, The modification consists of increasing the cathode resistor from 600 ohms to $6 \mathbb{K}$ and in operating the grids at a d-c potential of about 22 volts rather than at ground. This change results in strictly class-A overation and a high imedance across the tuned circuit. The static characteristic giving the relation between e_{1} and e_{0} (see Figure $8 b$) is show in Figure 9 for two different plate suoply potentials. The characteristic is suitebly bent to produce amplitude stability without drawing current fron either grid. The very slight change resulting from a 30 increase in plate vol tage is also notable,

[^2]
APPROVED FOR PUBLIC RELEASE. CASE 06-1104

6345
Report R-129

Pege 2.5

Chenges of n itch of the order of 100 cycles or mnre are produced by shunting cadacitances across the 92 -ohm termination, although no quantitative meesurements have been made. The mechenical rigidity of the chassis was not sufficient to nermit a good test of the effect of changing tubes. Change of n few kilocycles/sec (10 to 20 digits) seems likely.

The following modifications are desirables A coil having an appreciably higher Q should be used. Possibly the fized wiring losses ere such that a somewhat higher L would give a better compromise between high over-all Q and high C. A temperature-compensated $L C$ is desirable。 Coil manufacturers should be consulted for suggestions. The blasing arrangerent shown in Figure 6 is poor because the filter condenser C3 becomes part of the oscillating circuit. The best Q is obtained if the low side of the tuning condenser is placed at the DC bias potential by connecting it directly to the Low side of $L_{\text {。 }}$ If this is mechanically inconvenient, another possibility is to place both I and C1 at DC ground potential and connect their high sides to the grid through a blocking condenser. The $D C$ bias would then be supplied to the grid through a one-megohm resistor.

An approximate analytical investigation sould be made of the phaso shift of the feeciback voltage. It may prove preferable to provide feedback through a 100-umf blocking condenser and a resistor connected ef ther to the plate of VIB or to some point nearer BY.

An inherently poor feature of the design is that it places the cathodes at relatively high $R F$ and $D C$ potentiels. A_{8} a result the heaters may cause some 60-cycle frequency modulation. Although the sudible heterodyse notes which were observed were vary clear, this is not a very adequate test. A test for 60 -cycle modulation could be made easily, when a complete counting syeten is assembled, by starting the timing interval at different points of the 60 -cycle period. Changes of the hester by-pass condensers produce changes of frequency,

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-129
Page 16

A suitable transformer should be used to drive the output line rather than a cathode follower. The transformer must not discriminate between 1 MC and 2 MC, but it need not reproduce a sinusoidal waveform, and some peaking is tolerable。

By far the greatest difficuity is likely to be exnerienced was th the mechanical design of the tuning arrangements and chassis. In order to heve frequency smoothness, great rigidity, excellent beerings, and freedom from vibration are necessary. General Radio or Cardwell might be consulted to advantage.

The oscillator requirements for the coarso subdivision units are much less stringent. Possibly an output transformer can be used as part of the plate load and an output tube avoided. An electron coupled miniature pentode oscillator with a compact LC is another design possibility. A Wien bridge oscilitor (if the frequency is gufficiently low) would have the advantage of giving a linear $\frac{1}{f}$ with a linear-C variable condenser. This results in a inesr $N($ Method A or $B)$. Even with the coarse-gubdivision requirements, some noticable drift and change of calibration with tubes is likely - particularly if the unit is reduced in size and pompromises are made in its design。
5. Switching

Figure 11 shows a gating method for 8 inputs. This circuit has not been tested (oven statically), and the constants are tentative. Each 6aS6 is intended to receive signals of .5 to 1.5 volts pMS. The gate selection gquare wave drives the suppressor to zero bias. It must have a duration of about 2.5 millisec. The screen-dropping resistor is introduced to 1 imit the screan dissipation when the tube is cut off. The screen potential has a time

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-129
constant of about 1 sec. (during its rise).
There are many other gating methods oossible which are more
expensive with respect to nower or tubes。
If there are as many as 48 innuts to be selected, these can be grouved in 6 sets of eight. Wach set of eight has a common plate resistor and drives a second mixer tube. The six second-mixer tubes in turn have a common plate resistor.

The pulse shaping circuits present no unvsual problem excent that they must be preceded by one or two stages of video amplification.

Circuits have already been designed for crystal-controlled nul se

APPROVED FOR PUBLIC RELEASE. CASE 06-1104

6345
Report R-129
Page 18

D-C POTENTIAL-DIVIDER METHOD

The simplicity and linearity of potentioneters meke them attractive as control elements. These features may be narticularly important for aome of the coarse-subdivision parameters.

A d-c voltage can be converted to a time interval. If a counter receives nulses at a constant rate during the intercal, an approvinte binary number is oroduced. A block diagram with suggested constants is shown in Figure 12.

D.C Source and Switching

Figure 13 shows arrangements at the control stationand Figure 14 the associated selection method. All c a thode follover grids excent the selected one are kept below ground potential by the clamping triodes. The input line to the conversion unit has a maximum time constant of "usec. After 50 uspc the outnut voltage across the common cathode resistor will be within 0.1% of its final value.

Figure 15 gives measured denartures from linearity between divisiona of a control potentiometer and the output cathode vclitage. The potentioneter was a finely divided leecs and Northrup $22 \mathbb{K}$ slide wire. The dejartures indicated are comparable to the uncertainty in the readings. Variations of 10 volis in the zero reading and 1 or 2% in slope may be exnected for different tubes, With regulated heater voltage, longe-time stability and over-all linearity within $\pm 1 / 2 \%$ seems feasible. With a smaller number of incuts, a higher cathode resistor and a lower transconductance tube can be ueed.

Higher-speed switch arrangements are shown in Figures $16 A$ and B 。 They are naturally more expensive of nower, and the extra cathode follower of Figure 16B introdxes additional uncertainty.

Application of negative feedback could be applied more readily to the selection switching if an a-c carrirr were employed. However, unless the feedback can be returned to the voltage divider itself, the loss uncerteinties in the line (at the necessary high frequency) would result in decreased over-all precision.

Timing Circuita
The delay multivibrator can be a low-precision self-restoring type, Since the read-in oulse to the selection switch may je too short to produce proper triggering, TTI may be necessary. This is conveniently a $6 A C 7$ with ite plate connected to the normally high plate of the multivibrator.

Figures 17 and 18 show circuits for the sreep generator and amplitude comparator. Except for the slight modification of two time constants, these circuits are the game as those given by Chance ${ }^{\circ}$. It may be necessary to take

[^3]
APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

the sweep output from the eathode of $72 B$ rathar than from the grid in order to have sufficiently low impedance to drive the pick-off circuit. In this case, some tailoring of the linearity nrovision will be necessary. Linearity of about $1 / 10$ is possible. The stability should be satisfactory if the pick-off diode is operated with a regulated hater supnly.

The counter must be reset to a value below zero determined by the time required for the sweep to reach the zero-noint voltage.

Several other timing circuits are nosaible alternatives. (See the references cited above). In particular, a phantastron might be more economical of tubes and possibly more accurate. Its delay value is not quite as conveniently controlled, since a current rather than a voltage is required.

MULTIPLE-SPEED DATA

Fairly precisc inforaction can be obtained by properly combining two or three sets of relatively coarse weighted date. For example, if a unit dial gives a number accurate to 1 part in 32 and a sixteens dial (driven at $1 / 16$ the speed) gives a number to the same accurecy, the combined informition 1s accurate to 1 part in 512. The reading device must have proper rules for interoreting the deta. Two such processes are discussed here.
"Sav-tooth" data
Suppose that each dial has a strict lineer sav-tooth output of information which after annropriate conversion adoears as counter readings. For illustration, consider first a decimal system. The units readings progress uniformly $0,1 \ldots . .9,0,1 \ldots . .9$ with continuous rotation of the control. The tens readings are given to tenths of a tens $d i g i t$, although they are not necessarily correct to better than $\pm 4 / 10$ th of a tens digit. The fractions are for correct rounding off only. The tens informotion is staggered 5 unfts (, 5 tens) with respect to the units information.

With the control at zero position the units dial reads O, the tens dial $-0.5(\pm 0.4)$. When the cortrol is advanced e true increment of 27 units the units deal reads 7 , the tens dial 2.2 ($\pm .4$). Sunnose the annarent tens reading is 1.9 . To obtain the correct tens digit the rule is: add to the tens dial a number of tenths equal tc the tens comolement of the unit reading and then discard the fraction. Thus $1.9+(10-7) \times 0.1$ gives 2 for the correc: tens reading or 27 for the anawer. On the other hend, if the abnerent tens reading is 2.5 then $2.6+(10-7) \times 0.1$ still giver 2 or 27 for the ansver.

This procedure is easily carried out with binery counters. As one poselbility, consider the following speed allocations.

Control Xnob
Units dial information
Sixteens dial informetion

64 digits ver revolution (8 revofor 512 total) l_{x}
32 digits per revolution
512 dig1ts per 288° of revolution or $1 / 20 x$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-129
Pege 20

The ratio of the units and sixteens speeds is 20 rather then 16 becanse the sixteens information does not extend over a complete revolution.

Figure 19 shows the counter arrangements in the conversion unit. The aixteens counter contains 7 stages so that it recisters sixteens and aighths of a sixteensdigit. Consequently the sixteens information must be correct to $\pm 3 / 8$ ths of a sixteen digit; the 18 , the information conversion error urst never be greater than 1 part in 43 of the full scale value. The sequence of operations is as follows:

1. Read into both counters simultaneously through GT1 and GT2, which are controlled by the associated information.
2. Read into the units register from the units counter.
3. A round-off pulse sets TF3 and opens Gr3. Clock vulses are added simultaneously to the units counter and to the sixteens counter, the latter pulses being reduced by a factor of 4 by FF1O and FFII.
4. FT3 is reset and GT3 closed by the ond carry from the units counter.
5. A read-out palse reads the positions of FFOO through FFO8 into the bus
6. The counters and registers are cleared.

"E111-and-dale" data

Here, the units data uniformiy increase with rotation and then uniformly decrease at the same rate. Two sets of such units data, displaced in phase, are necessary. This is illustrated in Figure 20 for a 32 scaleo The two sets of units data are denoted A and B. 360 degrees of rotation correspond to one complete up-and-down cycle, and A and B are displaced 90° in phase. The sixteens data are given by C. The vilue of N represented by the $A B C$ deta is given in the figure below C_{0} The zeros of \triangle occur for $\mathbb{N}=$ $-17,47,111 \ldots$ The zeros of B occur for $\mathbb{N}=-1,63,127 \ldots$, the zero of C for $\mathbb{H}=7$. The rales for computing \mathbb{F} from the $A B C$ data are also given in the figure. Notice that, as before, the C reading (the sixteens digit) can be in error by as much as $\ddagger 7 / 16$ of a sixteen digit without changing the computed answer. Actually the A and B innes may be rounded or interrupted at the top and bottom of their cycle so that the allowable C orror may be somewhat less than $\pm 7 / 16$ of a sixteen digit.

The computed N is easy to obtain from binary counters. Three counters are used. (Two or one can actually be used provided time is not a consideration) The A and B counters are alvays reset to -1 (1.111). The three sats of data are converted simultaneously; the A counter reads (A-1), the B counter reads $(B-1)$, the C counter reads C. Gates associated with the first two stages of the C counter determine how the final reading is to be obtained. For example, if $C=3$ the bus receives the A counter reading and

Page
the C reading. If $C=4$ the B counter reading is substituted for the Δ reading. If $C=I_{0}$ a single pulse is added to the A counter; the bus then receives the C reading and the $9^{\prime} \mathrm{B}$ complement of the A counter reading. Similarly for $C=2$, a pulse is first added to the B counter, and the B complement is then read out to the bus. By this choice of phasing for the original data no carry-over between A (or B) and C is needed.

Appropriate Sources

Unfortunately, 360° eaw-tooth data are difficult to generate with mechanical motion, particularly if reversibility is necessary. Ideally, the discontinuity should require infinitessimal motion, or negligible time for the transitions. Four potentiometer arrangements meet this requirement with varying success.

1. Two ordinary potentiometers (for example GR 214A 10K) can be fitted with bridges for 360° rotation, mounted back to beck, and staggered in the se by about 70°, so that one contact arm or the othor, is always on a winding. This is represented schematically in Figure 21A. Small resistors V end \mathbb{W} keep the two contact arms at the same potential while they are simultaneously on their respective vindings, excent during a 10° over-lap section wher the Y contact is at the high and the X contact at the low end. Sl is closed except at and near this high-low over-lap. S2 flips over in the middle of the high-low over-lap to create the sew-tooth discontinuity. S1 and S2 are cam-operated micro switches. This arrangement is easiest to set up with stendard equipment. Faulty results are obteined if the control is read during the filp-over time of S2. This time is of the order of 6 milli-seconds, and if the control has very adequate subdivision (l part in 500) for the parameter represented, this may be unimportant
2. Higher transition sneed is obtained with the arrangement of Figure 21B. The potentiometer windings are arranged to have only about 3 degrees of higholow overlap. Sl is a sliding contact driven by the potentiometrr shaft and is closed excent for 5 degrees including the high-1ow overlap. In this case the discontinuity (during decay) hes the time constant of the IIne through about 12K or perhaps $6 \mu s e c$. Slightly over 1 time constant will take the voltage below the zero point, say 30 volts. The rise time is much more rapid. This method broadens the zero nosition of the potentiometer to some 5 degrees, which is not serious for l-in-32 units date.
3. A soecial potentiometer can be constructed with a very amall gap betveen the high and low ends. The contact arm shorts the high and low ends during transition, and a switch similiar to 51 opens the sumnly voltage at and near the cross-over. This has the advantage of requirin just one potentiometer for the unit data. The transition times are similiar to those of arrangement 2.
4. A soecial sten attenuator can be constructed with nerhads 64 steds. This is shown in Figure 21C (with 8 stens). The contact arm must short aifjacent contects during a trangition.

Hill-and-dale data can be obtained from a continuously wound

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R-189
Page 22
potentiometer tanned just 180° apart. It can also bs obtained from a Helipot with high and low tans placed alternately and uniformly along the vinding.

A rotating condenser with symetrical pletes provides hill-and-dele data which can be used for frequency control. The requisite linearity for 32 subdivisions should be nossible, particularly if the tuning range is small.

Application to Fine-Subdiviaion Information

If difficulty is experienced with the stebility of the finesubdivision oscillator when its turning condenser is subject to mechanical vibration some consideration may be given to the value of multiple-speed data, particularly if apolied to just a few of the shafts. Unfortunately there is not much advantage to be gained unless the data of each of the two apeeds are given to about the same precision. (Tor example 128 "units" given to a precision of 1 part in 128 and 64 "tens" given to a precision of ± 0.4 of a "tens" digit). This leade to unfavorable speed ratios unless a sorvo is avallable to drive the units shaft There might be some value in using a condenser with a many-vaned rotor and correspondingly divided stator. This is likely to lead to a lou tuning ratio if the required linearity (for the tens) is maintainod. Another possibility is to use 3 shafts at 3 different speeds, with procigion, say, of 1 in 32 for each. This would require $\mathrm{N}_{\max }=64$. The last two numerical frequency examples (see pago $7,10)$, with $k=2$ or 1.4 , are apolicablo here. A single parameter in this way requires 5 separate oscillators and a corresponding number of switching arrangements, a high price to pay for e possible gain in smoothness and speed. While potentiometers are simpler than oscillators, they cannot be driven at high velocity by a servo-motor.

HIGH-SPEED POSSIBILITIES

It would be convenient to have the conversion time from electrical magnitude to binary number so short that the computer, after requesting a particular reading, could wait for the angwer before continuing other operations. Unfortunately the required time appears to be prohibitively long unless a separate counter is associated continuously with each shaft.

The mechanical counter described at the beginning of this report tas adequate soeed provided low-imodance video cable is used for all the multiplegate leads. A single filp-floo and two associated gate tubes could replace the mechanical two-way gwitch shown in Fig. 4.

The direction-sensitive pulse generator and reversible counter described In RLE Report No. 3 could be apviled to elther fine or coarse-subdivision sheftg. The reversible counter circuit should be modified by apolying the high-gpeed cerry method to progression in either direction. Engraved lines, 200 to the inch, on a light aluminum disc could serve as the primary information source. This method is too expensive to apply except under unusuel circumstances, but it has the requisite speed for immediate reading.

The variable-frequency method and the d-c awsep method both involve the accumulation of \mathbb{N} by counters recelving successive unit increments. If the maximum reliable counting rate is $5 \mathrm{MC} / \mathrm{sec}$ (possibly this is too conservitive),

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

the time for a reading can never be less than $\frac{N_{\text {max }}}{5 \mathrm{MC} / \mathrm{gec} \text {. If } \mathrm{N}_{\text {max }}} \mathrm{is}$ large , the
time can be reduced by multiple-speed data. With the number of counts as gmall ae 32 (as in the hill-and-dale $d-c$ method) and the suitching time (at considerable expense) reduced to $2 \mu \mathrm{sec}$, some $10 \mu \mathrm{sec}$ would still be required for an answer, (The interval between readings clso must be sufficient to allow the sweep circuits to recover).

D-C Step-Compari son Nethod

An alternative d-c conversion scheme may jecome more attractive as development proceeds. This is shown in Figure 22. It makes use of the circuits used to generate a d-c deflection voltage for the storage tubes ${ }^{\text {a }}$. At present the maximum degree of subdivision for these voltages is 1 part in 32. This unit is called the d-c generator in the figure. Its output voltage depends on the readings of the 5 flip-flops. Assume that a parameter reference voltage has been selected and made available to the amplitude comparator. With all the flip-flops off, the pulse distributor opens GTO4 and GT14 and sonds an add pulse to FFO4. The d-c generator sets up a voltage of 16 units (in less than $2 \mu \mathrm{sec}$). If 16 units exceeds the parameter 701 tage by as much as $1 / 2$ unit, a pulse sppears from the comparator which resets FFO4, returning the d-c Benerator to zero. If if is less than the parameter voltage, FYO4 remains set. The pulse distributor next opens GTO3 and GTI3 and sets FFO3. The generator sets up 8 units (or 24 if FFO4 is still on), and the amplitude comparator responds with a subtract pulse if this trial value is again too large. This process is repeated until all 5 flipflope have been explored. The final binary number avoears on the flip-flops and may be read out to the bus through gate tubes not shown. The amplitude comparator can be of the same type as that given in Figure 22 provided its recovery time is made sufficiently short. A high-voltage crystal should replace the 6R6 comparison diode.

The time required for a step comparison 0 ? this type is likely to be about $2 \mu \mathrm{sec}$ ner binary stage, or $10 \mu \mathrm{sec}$ for subdivision to 1 in 32 . This time is comparable to the $\mathrm{d}-\mathrm{c}$ sween method. If the $\mathrm{d}-\mathrm{c}$ generator can be extended to give finer subdivisions, step comparison becomes increasingly advantageous. The comparetor probably can be mede to operate reliably with a discrimination of $1 / 2$ volt; thus the upper ifmit for subdivisions cannot be made very large, even if otherwise possible.

OUTPUT DEWICES

This section considers, quite briefly, sone of the related output problems.

The output of the computer must control the readings of many metera and several eerros. Most of the meters provide readings to an accuracy of 1% or less, and presumably can be actuated by d-c voltages. Data ewitching is again desirable.

[^4]
APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Page 24

Both the d-c aweep method and the d-c step-comparison wothod are quasi-reversible, while the variable-frequency method apparently cannot bo directly applied to the output problem. Figure 23 indicates how a d-c sweep method can be used to convert a binary number to a d-c voltage. This ehould te compared with Figure 12. The circuit operates as follows.

1. Assume all output switches are open, the counter cleared.
2. Set the selection switch.
3. Read the binary number into the countor register.
4. The read-in pulse after DEl closes the selected normally open output switch by means of its associated flip-flop.
5. Cl now can discharge through the lov impedance of the sweop amplifier. C2 does not follov the discharge of Cl very rapldiy bocause of $\mathrm{R} . \mathrm{Cl}$ is considersbly larger than C2.
6. After DE2, FFI is set. This starts the sween, and simultaneounly the counter receives clock pulses. Cl rises in potential with the sweep.
7. The fast end-carry from the counter first opens the output aritch, isolating Cl, and then stope the sak-tooth swoep.
8. C2 charges from Cl, and the vacuux-tube voltmeter roade the output vol tage until the next time information is evailable.

Tvo changes would be deelrable. The sweop properly should bo interrupted, and the maximum voltage held on the sveop condenser (rather than being discharged) while the output switch is atill open, in order to allow Cl to reach equilibrium. Probably a way can be found to do this which atill doas not interfore with the atrict innearity of the aweep. Properly R should be replaced by a normally closed awitch that is opened curing the rise of the sweep and then closed again at the top. This adds considerable expense, hovever, end suttable compromises of time constant may be possible. Some manner of retaining the intermittent information other than on condensers would certainiy be desirable.

Figure 24 gives an output switch suggestion. This has a long closing time but a short opening time. Figure 25 shows an almost conventional swoep amplifier. The cathode follower sumply for the screen of V1 may not be warranted, in $\begin{aligned} & \text { iew of other uncertainties in the method. }\end{aligned}$

With careful development, this method probably can give accuracies of the order of 1\%. The time required for the conversion is comparable to that re quired for the input conversion. A step d-c generetor like those used for the deflection circuits of the storage tubes is to be preferred to a sveep, proviciod the necessary gubdivision is possible.

For readinge that must be given to an accuracy of better then 1%, multiple veighted date should be used. The problem then becomes one of designing meters and servos which operate with multiple date and which properly interoret the veighting.

In some cases the expense of a separate binary register which is al ways associated with a particular servo-driven outbut shaft may be warranted. The servo must be able to interpret the counter as vell as to make ohanges in the reac ing as the error is reduced. The methods described in RLE Report No. 3 are

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Report R=129
Page 25
expensive but are applicable to such a problem.

D2VELOPMITNT SUGGESTIONS

The variable-frequency method appears to be the most promising as an input device. Development should start with the design and testing of a fine subdivision oscillator and also a coarse-subdivision oscillator, with sons attempt to simulate actual cockpit mechanical requirements. Construction of a fairly complete fine-subdivision unit is warranted unless meanwhile a still more promising approach is formulated.

If manpower is available, the system of Figure 12 would be intoreeting to study, since a Helipot is to be preferred to an oscillator if it cen serve adequately Some preliminary experimental work could be done on potentiometer sources for multiple deta.

If the programming of the computer would be significantly sasior with conversion times of $\mathrm{f} \mu \mathrm{sec}$ or under for most of the coarso-subdivision information, then nome investigation of switch contacts and oabling might bs undertaken in connection with the mechanical counter proposal.

HPS/Og
H. P. Stabler

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

```
6345
Report R-129
```


LIST OF DRAWINGS

FIGURE NO.

TITLE

Mechanical Counter	A-31030
Block Dlagram Mechanical Counter	A-31.031
Cam Phasing	A-31032
Double Sultch Connections	A-31033
Block Dlagram. Variable Frequency Conversion Unit.	B-31034
Pixed Frequency Pulse Sounter	4-31035
Veriable Frequency Pulse Counter	A-32036
Cathode Coupled Oecillator	A-31037
Cathode Coupled Static Characteristice	A-31038
Oscillator Unit	4-31039
Input Selaction Circuit Frequency Method	A-31040
Block-Diagram - DC Potential Divider Method	B-31041
Control Potentiometer	A-31042

Input Selectron Circuit - DC Method

$A=31043$

An 31044
A. 31045

A- 31046
Amplitude Comparator and Pulse Amplifior
A-31047
Counters for Multiple Speed Date E. 31048
"H111 and Dale" Data
A-31049
Potentiometers for Sautooth Data . A-31050
DC Step Comparison Method A-32052
Binary No. to DC - Sweep Method $\quad 2-31052$
Output Switch A-31053
Sveep Amplifier A-31054
m- 27 - 7 P_ス715z
DRAWING NO.
A-31030
A-31.031
A-31032
-31033
-31034
1035

A-31037
A-31038

A-31040
-31041
-31042

Cathode Follover Linearity
Higher Speed Solectron Circuits

म-71152

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FIG. 3
CAM PHASING

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

$A-310 \equiv$

FIG. 4
DOUBLE SWITCH CONNECTIONS

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FIGURE 8

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FIGURE 9 .
CATHODE - COUPLED OSCILLATOR
STATIC CHARACTERISTICS.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

$7-31040$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FIGURE 13
CONTROL POTENTIOMETER

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

M1
$\frac{0}{n}$
$\frac{1}{4}$

$$
\underline{c}
$$

FIG 21
POTENTIOMETERS FOR SAW-TOOTH DATA

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

1-31053
FIG. 24
OUTPUT SWITCH

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FIG. 25
SWEEP AMPLIFIER

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

[^0]: 1. Under the Division of Induatrial Cooperation, Project WHIRLWIND
 2. See Appendix, page 63, for description of the binary number syst em.
[^1]: Component:
 One of the most common forms of high-speed binary counter utilizes flip-flops as the basic element of construction. Such a trigger circuit (show in $A-30570$, page 12) normally has one tube conducting and the other tube biased below cut-off by the condition of the first tube. If a suitable trigger pulse (a pulse of short duration) of either nositive or negative polarity is anolied to both

[^2]: 1. K. A. Pullen - The Cathode-Coupled Amplifior, I, Ro B. 34, P. 402, 194r. This reference was celled to my attention by Mr, D. J. Crawford
[^3]: - B. Chance. Rev. Sci. Inst. 17, p. 400 and p. 403,1946 . See also Radiation Laboratory Series Vol. 19, Chaps. 5, 7, 13; 7ol. 20, Chap. 5

[^4]: *John O. Ely. Ingineering Notes No. E-3l

