HOTES ON THE
 LOGICAL DESIGN OF
 DIGTXL COMPUTEES
 AND ON
 SRECTAL CODING TEGHNIQUES
 Spriag Term - 1931

Based on lectures given by Consies Wo Adame as part of a special MI courses 6068 - Practice in the Dae of Digital Computers

Frepared by
C. Wo Adams
and P. An Fox

ELECTRONIC COMPUTER DIVISION

SERYOMECHANISUS LABORATORY

TABLE OF COMIENTS

Page
Io NUMBER SYSTEMS AND REPRESENTATION IN COMTUTERS
Ao Origin or Human and of Electronic, Circuit Prefeirencemoci
B. Comparison of Decimal with Binary Comprtorsmencomememos

II AFITEMETIC IN ELECTRONIC CONPUTERS

Bo Binary Parallel Addition accumulatormememememem

1. Flipoliops 5
a Circuit -g
bo AC axd LC coupling restoration - 5
co Logical vso electronic schematics -6
2. Addition -6
3o Low and High Speed Carry -7
Co Binary Subtraction and Negative Numbers 8
3. Tene complement 8
4. Niner complement 10
5. Circuits for complementing and subtracting 12
Do Deaimal Representation in Biostable Circuits 12
E. Decimal Addition 14
Fo Multiflication and other processes 15
6. Decimal multiplication 15
7. Binary multipilcation 16
30 Division Square mooting $_{8}$ etco 21

POREW: RD

The folloming pages contain e resume of the substance of a zeries w" "cotures civen by C. Adams in the spring of 1951 as part of acrece (6ocic) on Pracit e in the Jee of Digital Computors. Prerequisites Ror the consee were axperience mith mumerical methods and with programing for the whiriviryd comphter. The courge was divided into three roughy Qqual paris:
(1) Lecturas on hogical deaign and spectal coding technique applied to computare in emeral,
(2) diccussionso probiames and expmiments on the logical design or on coding for, and on the use of the Fhisilwind couputers and
(3) prepaxition of maderatexisisad problon by each stucent for actual colution on the whiriwind computero
The notes hare pertain jargely to the first part of the course The information on hogical design is generel and cuperficial: it is intended onily as a survey to provide background for the codiag work and to som the assential similarity of the many different automaticm aequenced computers \quad Tho material given here is based on extensive notes taken by Miss Phyldis Fox, ia that much of the credit for them Ia due to hero alit of tho notes were edited by C。Adame so that any erncrs in them are solaly his reaponeibilatyo

I NUMBER SXSTEMS AND REPRDBINTATION TN COMPUTERS

A. Orifin of Human and of Electronic Circuit Preferences

A digital computer is a device that performs sequences of arithmetic operations on numbers. Numbers are descriptive terms that arise in the process of counting, or of putting iterss into onewtomene correspondence with one another. People first learned to count by distinguishing between one and neny; eveatually they adrunced o. step further and counted one, a couple, a lot. When the need was felt for the ability to count higher, people began to enumerate against the most convenient ftandard of come parison available, and this was usualig the digits on the end of theix arms. This resulted in putting things into correspondence with fingers, and thereby learning to count up as one, two, three, . . os nine, ten (which was two-handsmfuli). It was natural then to proceed two-handsfull and one, twomandsmilull and two, etc. While there have been civilizations which counted in groups other than ten, most of those which amounted to anything counted in a decimal system largely because of the accident of having ten fingers.

When one goes to build a machine to be used by human beings, one wants a machine that works with decimal numbers. The usual dest calculators aro accordingly all designed using the decimal system. While many of the large scale digital computers are aiso decimal, it is not always convenient, when numbers are to be handled by eloctronic circuits, to use a systern which requires the distinguishing of ten different stable states. On paper, the number of convenient distinguishable symbols which can be defined is large; but, in vacuum tube work it turns out to be easiest to build reliable circufts which depend on the on-offy or switch; action of vacuum tubes without attempting to use different degrees of "on"。

B. Conpaxiscm of Decimal with Binary Computers.

As a consequence, sone of the large scale decimal machines (such as the EUIAC) fall back on ten different bi-stable circuits to represent a single decimal digit, while others (Heck II, Univac; SSEC, etc.) represent decinal dicits by sone selected ten of the sixteen ($2 \times 2 \times 2 \times 2 \times 16$) different permutations of four bl-stable eleurnts talen together. in other words, designers of electronic machines have anost univerially built their machines aing ase of tie prefexentially binary wality of electronic
cijecuits even when the aachine makes use of the decimal syston throughout to ailov for the decinal attitude of people who are to use the machines.

Many of the other computers (Whirlwind, EDVAC, SEAC, IAS, Raytheon, pobing eitco) have nade use of pure binary system, in which counting is by twos sather tinan by tens, so that each digit colurn represents a given power of 2. The digits then are simply 0 and 1.

When a machine is to work with numbers in a binary system, some means must be provided for converting between the decimisl system understood by the hunan users and the binary syste:: understood by the nachine. The conversion process is simple in principle but bothersome in execution; it will be covered later in these notes. The need for cunversion naturally affects the engineering design of a computer, for one must decicie whether it is harder to build a binury machine with a conversion method or a machine that works decimaliy throughout. The decision turns out to depend largely on how rapidly and in what cuantity the machine must be able to handle decinul data and decinal results.

A pure binary system is an obvious choice for aachines intended prinarily for real-time applications such as cuntrol or simulation in which the iachine commicates directly with a physical system, comjutes wile the physical process is actually occurring, and forms results wich are of fleeting or nomentary value only; for here the es are no numerical, tabulated data or results and the deciral $s j$ sten never enters the picture。 For : inn somealled nathematical or scientific or engineering colculitions, the data and results are necessarily decimal but they form a man percentoge of the numbers used in the conputation, and for other such calculations, Erizhical results ure desired or, ut any rate, are sufficient. In these cases, too, the pure binary syste: has obvious advantages. For some
eagineerjng calculations, tablewneking, and business applications, the decinal system is evidently nore desirable. In any event, the choice of the number system used is only one of several factors in the design of a manater.

C. Serjal vs. Parallel Representation.

A second factor is the choice of the neens of representing the several digits which nake up each number. Generally, numbers are repreeented either as digits appearing at a given place one after the other in a time sequence or as digits appearing at several different given points all at the same time. The timesequence representation is generally celled serial; the placemsequence representation is called parallel. The choice. here is very nearly dictated by the choice of the nethod of storage, as will be seen later.

There are, however, nany compromises between strictly serisl and strictly parallel types of operation. Some computers store serially and perform arithmetic in a parallel fashion while others store in parallel and perform arithmetic serially. In some decimal machines, the decimal digits are stored in serial fashion, but each decimal digit is represented by four binury digits, and the four binary digits comprising each decimal digit are stored in parallel, in four separate channels. So the serialparallel distinction, though always blithely nade, is not always a clearcut one.

The manner in which the arithmetic is performed and the manner in which numbers are stored are closely interwoven with the choices between binary and decimul and between seria and parallel. It is necessary, then, to discuss arithmetic processes and storage techniques under several different assumptions as to the means of representing the numbers which must be operated on and remembered by any given machine.

II ARIIHESTIC \mathbb{N} ELECTRONIC COMPUTERS

Ac Binary Serial Addition - Adder.
One of the basic (but not actually indispensable) abilities that any practical corputer can have is the ability to add. Addition of two digits in the binary system is quite simple because there are so few combinations of digits. The addition table is si:ply:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1+0=1 \\
& 1+1=10=0+1 \text { to carry }
\end{aligned}
$$

Assuming ones to be represented as the presence of voltage pulses and zeros as the absence of such pulses occurring at synchronized intervals, the sum of two digits can be formed fairly easily from a few easily-realizable logical circuits.

In the diagrain, the two digits (each represented by a julae or no pulse appearing at a given instant) are shown as a and b. The OR circuit, or mixer, prots out a pulse if either a or bor both are ones. The AND circuit, a coincidence or gate circuit, puts out a pulse only if both a and b are ones(one pulse opens the gate and the other goes through it). The AND or gate circuit is usually formed frow an electron tube with two control grids; both of which must be not negative before the tube wili conduct. The saiae action can be obtained by judicious connections of two crystal diodes. The AHD NOT circuit is really an AND with a HOT, or inverter, circuit on the bottom input. A pulse at the upper input will nomelly pass through the gate unless there is a pulse at bottom input; in which case the gate is closed. The circuit diagramed above satisfies all the conditions required by the binary addition table given earlier.

In any except the rightnost digit colum, however, an addition to be complete ust allow not only for suming the two digits but also for the possibility of a carry from the previous digit column. It appears then that the circuit above performs only half the recuired task (hence the name, half-adder:) By putting two half-adders together, with an OR circuit thrown in, a whole adder can be obtained.

B. Binary Parallel Addition - Accumulator.

Although it is much indore commonly used in a serial machine, the above adder can actually be used in serial or parallel machines. Alter natively, binary numbers can be added in a parallel fashion by adding one number (appearing as pulses or no pulses on a set of parallel lines, one line for each digit column) to a second member stored in a set of flipflop circuits, as is shown the (a) half of the attached drawing (B-34437). A circuit which thus accumulates sums is usually called an eocumsulator.

1. Flip-flops
a. Circuit. A flip-flop, or trigger circuit, or multivibrator, is a circuit containing a pair of election tubes so connected that only one can be conducting at a given time. The two states are arbitrarily designated as 0 and 1 。 The basic (Eccles-Jordan) idea of the flip-flop is shown below.

When the left tube conducts; point x becomes more negative which drives the grid of the right tube negative and cuts the right tube off; if the right tube conducts, the action is reversed. When the common cathodes are driven positive, both tubes momentarily conduct but then the cross-coupling condensers cut off the previously conducting tube. As shown, there are three inputs, one to insert bodily a zero, one to insert a one, and one to trigger the flipmflop ('i.eo, to switch the flipmflop from whatever state it is in to the other state). And as indicated, the flip-flop has two outputs which are normally used to control gate tubes.
b. AC and DC Coupling - Restoration. The points x and y are normally both at rather high positive potentials, even though one is at a Lower potential than the other. Then gate tubes are connected

(a) STORING OF CARRIES
(b) ADDITION. OF CARRIES

SIMPLE ADDER
to these oubuts, the gates must be capable of operating with their grids at the firmolop plate potentiol, or else the gates must be coupled to the flipmithop through condensers. When condensers are used, the 1 dignflop is called AC-coupled. AC-coupling requires that \therefore se 5 ipwillop be 81 ipped and flopped oftener than some minimum rate in arden to maintain the proper charge on the coupling condenseris. This minimur rate is guaranteed in the Whirlwind Computer by periodically (every $16 \mathrm{mficroseconds)}$ stopping everything and complementing every filp-inop in the computer twice - the process being known as restoreticy Heed for such restoration can be avoided by using DC-coupled Alipwflopi3g in which the plates of the flip-illops are usvaliy operated at ircound and the cathodes and grids at a large negative potential (ego-150 $)$ 。
c. Mogicel vs. Flectronic Schematics. It should be pointed out that the Jogical, or block, diagrams wich are shown and discussed here do not show all the electronis details - for instances arrowheads inply that circuits are so constructed that pulses travel caly in the diarection of the arrows (crystal diodes are used when necesiaxaj; delay blocks are used when and onjy when logical delay is ascesstry, whether or not actual electronic delay is or is not neadadiv she.

F. tim dedern of parallel addition, for instance, a pulse, If axy soming in spm the bottom in any one of the digit colums doss math mems (I) jit attempts to pass through the gate tube; and (2) artea a shert denay it triqgers the coxresponding flip-ilopo If tust finmore oripinaly contaned a zero, the gate is closed and the mily sitecth of the adding pulse is to change the flipmilop to a
 a ma, the atse 1303 m and the pulse gets through the gate to become a cary mom niponlop is triggered back to a zero and the carry
 xemut is $1+2=0$ mad to carry.
d $4 x$ ens of the sexial haif-adder, however, the addition
 remodr ti a detit witho There are two aethods of treating these Suryess in: dine disensised under the noues of "Lownsped carry" and mighoswad carryo
3. Low and High Speed Carry

The low speed carry method is shown in Figure B-34437bq The lower flip-flops store the partial sums of an addition of two numbers, and the upper flip-flops store the carries. The addition of the carries is performed in several stages by a series of pulses on the carry line. A pulse on the carry line is gated through by any carry flipmilop containing a one to add the carry into the next column. Conceivably. new carries may arise from this addition, so that the carry line mast be pulsed again, and so on until no carries reasin. For a number with n digit places, the process may becone quite lengthy, recuiring as many as \underline{n} carries and it becones desirable to devise a method for treating all the carries at one time.

The high-speed carry performs all the carries in one step. The logical difference between this and the sequential operation of the low-speed carry is shown by the figure below which shows the addition of two binary numbers.

III $\left\{\begin{array}{ccc}1 & \begin{array}{c}1 \\ 100000000\end{array} & \begin{array}{c}\text { Carries } \\ 110010000\end{array} \\ \left.\begin{array}{c}\text { Pequential } \\ \text { Low-speed }\end{array}\right\} & \text { Addition }\end{array}\right.$
Because the original addition of two digits cannot produce both a partial-sum one and one to carry, a carry arising at any stage nay be passed along by special gate tubes to the left until it reaches the first position containing a 0 . the l's over which it travels all being triggered to 0. An electronic arrangenent for performing the process is shown in Figure B 34438. A single pulse on the carry flip-flops, after the partial sun (and carries) have been formed, suffices to give a. final result, although enough time must be allowed for the pulse to travel through at most \underline{n} highospeed-carry gate tubes.

It is possible to entirely eliainate the carry flip-flops by
using a gate tube in the following way. The two input grids are controlled by the paxtial sum in the flip-flop end by the value of the addend (presumably stored in another flip-flop). Only when both grids are positive will the upper gate be open, permitting a pulse on the carry line to get through the tube. In the addition process, the partial sum is first formed.

This has no effect on the carry line as such. Then the carry line is pulsed and a pulse is transmitted only if both A is positive $(0+0=0$ of $\quad 1+1=0)$ and B is positive (addend $=1$), io. only for the case $1+1=0$ and 1 to carry.
C. Binary Subtaction and Hegative Numbers

Several methods may be used to enable a computer to subtract. For instance, an entirely separate subtracting circuit may be constructed, or extra components lay be inserted into the existing addition circuit to enable it to subtract. The resultant added hardware will in general be both undesirable and unnecessary. Subtraction of a number yfrom a number X may also be performed by adding to X the negative of X_{0} For this, some means of handling negative numbers so that they add like positive numbers must be devised.

1. Tens Complement

Consider, for exarnple, numbers in the range -12×71. Suppose the negative numbers are made positive by adding 2 to each of them. Then the $-1 \geq x>1$ range is represented by nuabers in the range $0 \geq x>2$. The quantity $+\frac{1}{2}$ is represented in binary fom as 0.1000 , while the cuantity $\frac{1}{2}$ is represented by $2-\frac{1}{2}=3 / 2=1.1000$. Numbers can be added together exactly as in the addition circuits discussed above, except that:

1) when two negative numbers are added, 2 must be subtracted
from the sum. (i.e。 $(2-x)+(2-y)=(2-z)+2$)
2) when a positive and a negative number are added to give a positive sum, 2 must be subtracted from the sum. (i.e. $x+(2-y)=z+2$)

This subtraction of 2 is autoratic when the addition is carried out in a normal way if any carry off the left-hand and is simply dism regarded.

In using the above complement scheme, there exists the possibility of confusion between a complement and a real positive number greater than one. Obviously, this possibility of results overflowing the allowed -1 to 1 range (i.e. of positive numbers greater than one and of negative numbers less than minus one) mast be considered. This problem can be handled by:

1) not assuming responsibility for the operation of the computer when the progran gives rise to an overfliow, or by
2) building in circuits which detect the occurrence of am overflow. This latter can be done fairly easily, for the addition of two positive numbers must not give rise to a one in the left-most digit nor two negative numbers to a zero (addition of a positive and a negative number cannot possibly cause an overflow).

In the complenent convention described above, the leftnost digit is automatically indicative of the algebraic sign of the number (ioe. zero for plus, one for minus). The convention as described is called the tens, or twos, or radix, compleant because the coaple ent of \underline{x} is obtained by subtracting \underline{x} from the base or radix (two) of the number systea being used. To obtain the complement of x, Fowing x itself, one sinply replaces zeros by ones and ones by zeros, and then adds a one to the right most digit column, perforning carries where necessary. Thus, for example,

$$
\begin{aligned}
& 2=10.00000=1.11111+.00001 \\
& 20 / 32=0.10100=0.10100 \\
& 2-20 / 32=1.01100=1.01011+.00001 \\
& 1_{0} \text { e. Tens comple aent }=1 \rightarrow 0 \text { and } 0 \rightarrow 1,+1 \text { added to right- } \\
& \text { most digit }
\end{aligned}
$$

In the decimal system, the tens complement of x can be taken to be ten- x_{g} so that one forms the complement by subtracting each digit from 9 (rather then from 1 as was the case in the binary system) and by then adding 1 to the rightmost digit. Thus

$$
\begin{aligned}
10 & =10.00000=9.99999+.00001 \\
20 / 32 & =0.62500=0.62500 \\
10-20 / 32 & =9.37500=9.37499+.00001
\end{aligned}
$$

Thus in the decimal system, complementary digits are 0 and 9, 1 and 8,2 and 7, 3 and 6, 4 and 5. Notice that if the numbers are restricted, as before, to the range $-1 \geq x>1$, the leftraost digit can be only 0 , for plus, or 9 , for minus. Therefore, the leftmost, or sign, digit could just as well be a binary digit in the event the allowable range were -1 to 1 。

The tens complement system is simple, convenient, and natural. It is faniliar to most mathematicians (and high school students) the form of co-logs (or complementary logarithms) used to eliminate the need for subtracting when sumaing colurms of inixed positive and negative logarithrs. It is also familiar as the form which negative numbers take on a desk calculator. It should be noted that restriction of the range to $-1 \geq \times 1$ and subtracting from two or ten was simply an example. In practice, any range can be used and complements can be formed by subtracting from 2^{n} or 10^{n} for any value of n for wich 2^{n} or 10^{n} is outside the allowable range.
2. Nines Complement

In largemscale inachines it is convenient to be able to form the co plement of a umber easily. The first step of forming the tens compleinent is easy, but the addition of the one at the righthand end causes troubles in that the complement must therefore be formed in a counting register to allow for possible carries. It is natural, then, to consider working with the complement on nines, or ones, or radix-inus-ones. In this systen, the compienent is fomed by subtracting from $2^{n} 2^{m}$, where 2^{m} is chosen $2 s$ amall as or snaller than the rightinost digit and 2^{n} as large as or Lurger tian the leftmost digit of tle numbers in the allowable range。With six-binury-digit numbers in the $-1>x>1$ range, for instance,

$$
\begin{aligned}
2^{0}-2^{-5} & =1.11111 \\
20 / 32 & =0.10100 \\
5-20 / 32 & =1.01011
\end{aligned}
$$

As with the tens complement system, addition is straight forward, but now the cases of adding two negatives, or of adding a positive and a negative to get a positive, result in numbers from which $2^{n}-2^{m}$, rather than simply 2^{n}, must be subtracted. The subtraction of 2^{n} is again accomplished autamatioally by neglecting to carry beyond the leftmost digit. Furthermore, the sane neglected carry pulse can be used to add the 2^{m} (by pumping the carry from the left end into the right end) thereby accomplishing the compilete subtraction and yielding the correct result. The process is known as end-aroundcarry. Thus,

NINES COLPLEIENT: END-AROUND-CARIK

As in the tens complement system, the range must be d fined and overflows disallowed. Note that here the range is $-1>x>1$ rather than $-1 \geq x>1$, because $\left(2-2^{m}\right)-1=1-2^{m}$ so that both -1 and $+1-2^{m}$ have the same representation and cannot both be included in the allowable range. The loss of one possible number actually goes to compensate for the fact that 0 has a second, or negative, representation in the nines complement system, namely $2-2^{m}-0=2-2^{m}$ (eog. 1.11111). The inability to represent -1 and the ambiguity of 0 are the two major drawbacks of the nines-compleant system. Actually, with an additive arithnetic unit such as has been described, only -0 and never to can arise, while if the arithmetic unit is subtractive (this has not been discussed here) only to and never -0 can arise. However, with an arithmetic control such as is used in Whirlwind, it is possible to generate to as the result of multiplication, divisions, etc., and this ambiguity is occasionolly troublesome as wili be seen later.
3. Circuits for Complementing and Subtracting

In the nines complement system, a number in a flip-flop register may be made negative by complementing each flip-flop.

The negative of a number can be read from a register without changing the register contents, by sending pulses through gate tubes on the zero-side of the flip-flop.

The sa: circuitry works for the tens complement systern, except that a one ust be added to the register after it has been compleiented, and a one wist be added to the accumnlating register after it has been subtracted into.

D. Decinal Representation in Bi-Stable Circuits.

There are several general raethods for representing decimal digits using bisstable circuits. They may be represented in binary-coded form by four binary digits with some coding involving the assignment of one decimal digit value to each of some chosen ten of the sixteen possible permutations of four binary digits. They ray be represented by a decade ring which has ten numbered bi-stable circuits, some one of which is in an abnormal state while the others are in a normal state, the one which is abnormal indic̣ating the value of the digit. Decinal digits may also be formed from a binary digit in conjunction with five bi-stable circuits of which some four are in a norman state-the bi-quinary system-and in myriad other less comon ways.

Anong the binary-coded representations there are a number of choices, some of which are described below.
a) Straight Binary Representation

$$
\begin{array}{ll}
0=0000 & 5=0101 \\
1=0001 & 6=0110 \\
2=0010 & 7=0111 \\
3=0011 & 8=1000 \\
4=0100 & 9=1001
\end{array}
$$

b) Excess $3^{\prime \prime}$ s code. The code is as follows:

0	0011	5	1000
1	0100	6	1001
2	0101	7	1010
3	0110	8	1011
4	0111	9	1100

This system has the advantages that the complement of a number on a decinal basis is obtained by changing 1's to 0 's and conversely, and that straight binary addition gives rise to a carry at the proper time. Of course the fact that the decinal range 0-9 is translated into binary 3-12 complicates the unit to the extent that a sum (fomed binary-wise) is in error by either +3 or +13 and mast be corrected. That is, if $x+y=z$, with $z \leqslant 10,(x+3)+(y+3)=(z+3)+3$ and subtraction of the 3 is recquired, while for a sum $z>9$, causing a carry, $(x+3)+(y+3)=[(z+3)-10]+13$, so that 13 must be subtracted. This correction process is actually no harder than correcting the surn after adding in straight binary representation.
c) Twomstar Frur, Two, One Code

A third :ethod of decinal representation by four flipmflops is called the 2421 nethod. The temin derives frou the fact thit the last three flip-flops represent the true binary values weighted $2^{2}, 2^{1}, 2^{0}$ respectively, while the first flip-flop is weigited 2^{1} rather than 2^{3} 。

0	0000	5	1011
1	0001	6	1100
2	0010	7	1101
3	0011	6	1110
4	0100	9	111

This anounts to replacing tize range $0,1,2,3,4,5,6,7,8$, 9 by $0,1,2,3,4,11,12,13,14,15$, and has the sane general advantages and coaplications as the a:reess 3 code.

E Decimal Addition.
Addition of two numbers within a conputer proceeds in one of several fashions according to the particuliar nethod of nuwber representiation in the machine, according to the speed desired, and according to the whim of the designer.

For a binary-coded machine (e.g. the Hurvard machinea, Univac, etc.) addition may be done eitlier by a direct adoption of binixy addition technicques, or by dodified counting circuits, or by nams of an auxiliary (e.g. wiredmin or stored) addition table. In su.e case3, for instance, the binary numbers representative of the decialal digits in each decimal digit column are added as straight binary numbers. Necessury carries either arise naturaing (if the excess-3 code is used for instance) or are generated in so:se fishich. The sum in eaci of the digit colums is then corrected by adding or subtracting swething to it to give the correct binary-coded result of the decinal sum. In a binury-coded achine using a sequence of n pulees to tranarit the decinal disit \underline{n}, a binary counter modified to count through only the ten chosen conbinations can be used. In the third method, an addition table is used,i.e. a circuit is designed with two ten-alternative inputs and two outputs, one with tan siterniutives, giving the partial sum of the two injut digits, and ons with two alternatives, giving the 0 or 1 to carry. For the decade ring counters, (as used in the ENIAC, for instince; numbers are usualiy transaitted as sequences of pulses which are added (counted) serion into each digit position.of the ring. Subtraction is accomplished usualiy b_{j} adding compleants, although in the counter-type adders, subtraction can be done by counting backwards (e.ge a riesk calculator).

II F. Multiplication and Other Processes.
By the definition of the process, multiplication is verformed by adding the multiplicand to itself the number of times specified by the multiplier. As mechanized for a desk calculator, this process of repeated addition is normally modified so that the tens, hundreds, thousands, and other jowers of ten appearing in the multiplier are dealt with by shifting the multiplicand one column to the left for each nower of ten (note that this is exactly the technique taught in the grade schools which permits a student to multiply by a combined application of a short multipilcation tabls, simple addition, shiftin, and accumulation of the final sum oroduct).

Por example, given a multiplicand of 21 and a multiplier of 39, the multiplication is performed in steps; starting by adding the multiplicand, 21_{3} into an accumulator 9 times, because the last digit of the multiplier is 9 , to give 189, the first partial result. The multipliter then is shifted left (multiplied by 20) and is added 3 times (second digit of the multiplier) to the 189 already in the accumulator. In a binary system, this additive multiolication is relatively easy to mechanize in that the only possible digits in the multiplier are a one, imolying a single addition, or a zero, implying no addition. In binary multiplication, an addition is required on the average for only $1 / 2$ of the multiplier disits. On the other hand, for decimal multiplications, the renetitive addition procese recuires from $2 e r o$ to nine additions for each digit of the multiplier and is therefore quite long. For this reason, recourse is frequentily made to direct use of decimal multiplication tables.

1. Decimal Multiplication

The product of 2 decimal digits will give a two-digit number with a first digit having some value between 0 through 8 , so that a table of decimal products is more involved than a table of decimal sume, in which the result has as a first digit either o or 1 . The two digits resulting from a multiplication of two single digits can be called the left-half and $r i_{6} h t$-half of the product. d'hen the multiplication of a decimal multiplicand by one digit of a multiplier can be formed by pairind, in a suitable circuit. the multiplier digit in turn with each digit of the multinlicand, each pairing datermining a left-half and a rishtwhalf digit of the product. The resulting strings of left-half and rigitmalf digits, when added together, form the product of the multiplicand by the one digit of the multiplier. The process must then be reveated once for each disit of the multiplier. Notice that the leftmalf digits are really only the carries, stored femporarily in a separate register. The process is illustrated in the attached sketch. In the FNIAC, the orocess is shortened by finding at one time, in a suitably elaborate set of circuits, the entire left-half
and the entire right-hal of a onemby-ten digit product. The process is ropeated for each multiplior digit, accumalating the sums of all the lefto half digits and all the right-half digits. These two are then added to give a final answer.

The multiplicntion-table method of multiplying may be performed in other ways, by making various compromises between speed and equipment. In one method, a table is formed and stored temporarily by repeated addition to give: $1 x$ multiplicand, $2 x$ multiplicand, etc., up through $9 x$ multiplicand. The digits of the multiplier are then used in turn to select from the temporary table the apmropriate multiples to be added into an accumulator. In another method, one stores a table only up through, say, 5 x multiplicand, which requires less time and storage, and completes the table by using such equivalences as $7 \times$ multiplicand $=(5 \times$ multiplicand $)+$ (2π multiplicand), or by using a complement cheme where $7 \times$ mitiplicand $=$ $(10=3) \times$ multiplicand, the factuor 10 being only a shift.

2. Binary Muleiolication。.

The repeated add-and-shift process of the desk calculators and the use of a onewbeten disit multiplication table of the miAC reduce to an identical process when applied to binary mumbers (Adding zero times is the same as multiplying $b, 0$ adding once is the same as maltiplying by l). A more elaborate table may, however, be used to speed up binary multiplication if the binary diefse are treated in groups of two, three, four, or more. For example, each threesome of binary digits can be equated to one basemb or octal digit (e.g. $010111001=271$ [base 8]) and an octal multiplication table miny used to find products, just as a decimal table was used in the methods described above. Sach a procedure is quite uncommon in practice.

Most of the computers which use the binary system perform multiplication by means of a modest amount of control equipment coupled to the regular adding or accumulating circuits. While the details of such arithmetic control devices differ between serial and parallel machines, between nines and tens complement representations of negative numbers, and even between one machine and another of almost identical logical structure. the principles used are quite similar and are adequately typified by the circuitry used in Whirlwind.

The first problem to be dealt with is to make allowance for the algebraic sign of the multiplier, for the straight add-and-shift algorithm is predicated on a positive multiplier. One way this can be handled is by sensing the sign of the multiplier at the cutent. complementing the multiolier if it is negative and storing the 81 gn of the multiplier so that the product, when formed, can be complemented if necessary. In Whirluind, it is standard practice to carry out all separately-controlled orocesses (multiolication, division, and the various forms of shifting) entirely on positive numbers, and for this reason the sign of the multiplicand, as well as that of the multiplier, is sensed, stored and made nositive at the beginaing of a multiplication ordor, before the multiplication process has commenced. (Actually, the correct sign of the product, rather than those of the two operands senarately is stored in a "sign-control" flipflop.

The arithmetic oloment of the Whirlwind computer consists prinarily of threo registers: the Accumulator (AC) which can both add and ehiftio the BoRegister (BR) what is a shifting register that can be considered to be an extenfon to the risht-hand and of the $A C$, and the Amegister (AR) in which numbers are stored which are to be added or subtracted into the AC.

The multiplication process is carried out in a number of steos, as listed below, assuming initially the multiplier to be in AC and the maltiplicand in $A R$:

1. Senge the sigh of the multiplicand: complement the number if negativo and if negative, complement the signocontrol FF (which initially contains 0) . To do thiss the AR sign sense ine, shown below, is pulsed.

A=Register Sign Sensing
2. Sense the sign of the multiplier in $A C$; commement the number if negative; and if negative, comolement the sign-control FF. The circuitry is identical with that shown for AR. The signacontrol FF is seen to contain a 0 if the product is positive and al if the product is negative.
multiplicand sign-control PF multiplier sign-control FF product

+	0	+
$=$	1	+
	+	

0	+
1	+
1	+
0	+

3. Transfer the positive multiplier from $A C$ to $B R$.
4. If the right $-\operatorname{mog}^{2}$ digit of the multiplier, in digit-column 15 of $B R$, fs a l_{0} add the multiplicand, in $A R$, into $A C$. The mechanics of this is discussed below.
5. Shift the contents of $A C$ and of $B R$ to the right by one disit. The rightomost digit in AC moves into the leftomost digit column of BR ; the right-miost digit in BR is lost, being replaced by its neignbor from the left; a zero is put into the left-most columa of $A C$. It is seen, then that the process of shifting the maltiplicand to the left is replaced by the logicelly mequivalent procass of shifting the partial result to the right, just as it is in mosi desk calculators.
6. Repeat step 4.
7. Repeat step 5 .
:
8. Repeat step 4 for the 15 th time
9. Repeat step 5 for the 15 th time。
10. Round off the product (if desired) by adding a contents of the left-most digit of BRointo the rightmand ond of AC.
11. Compelment the product if the sisnocontrol FF contains a 1. This is done by pulsing the product sign line shown below.

There are several features of the above process which need further discussion

1. Step 4 and the 14 repetitions of it will actually do nothing about half the time since the maltiplier will on the average contain half zeros and hall ones.
2. In the Whirlwind accumalator, addition requires a separatelymordered carry, so that each revetition of step 4 o or at least each actual addition, would seem to require a seoparate carry operation.
3. Durinc the process, after an addition and before a shifto the number in $A C$ may easily exceed one in magituce, oven though this is outside the allowable range for Uhirlwind. The product will never exceed one, hovever.

The need for performing useless steos, as mentioned in $3 t e m$ l above, can be elininated bi using the following circuit. Instead of a sequence of alternate add and shift pulses, a sequence of digitosense nulses are supplied and these become dither add or shift pulses as necessary.

Where BRI5 holds a L_{0} GT2 is open and the sense nulse orders an addition and sets BRL5 to O_{0} so that OTR will be closed and GTl will be onen for the next sense pulse. Then BRI5 holds a zerog OT2 is closed, no addition takes olace, but a shiftt is ordered instead. Thus a sequence of sense pulses gives a sequence of alternate add and shift pulses, omitting und necessary add bulses. A counter is used to count the shift pulses (not the add nulses) and to stop the flow of sense nulses after the lyth shift.

The need for a senarate carry pulse after each addition is climinated in :Whirlwind, with a considerable resultant economy. in muitiplica fion time, by combining the carry ,ith the proness of silifting ordinarily required after each addition. This combined shift and carry process can be understood by considering two of the partial sum flip-flops of AC together with their associated carxy filpoflons. In the sketch, A is the carry 81 indiop for B_{8} and C for D_{9} and it is desired to use one - pulse both to add in any carries and to shift the resultant contents of the $A C$ one to the right (ioe., what B had, D will have).

CARRY

Sxin
The first column in the following table represents the possible configurations arising from the first step of an adrition; the second column the
 Inal column the result of an ensuint shift order.

$\begin{aligned} & \text { Add } \\ & B \times \infty \end{aligned}$	$\begin{gathered} \text { Fartial } \\ \text { Carry } \\ 3=A \\ \hline \end{gathered}$	Shift Bight $\mathrm{D}=\mathrm{C}$
00	00	00
01	10	10
10	10	10
11	01	01

It is not difficult to arrange a circuit to deduce the final column from the first directly, omittinc the second stev entirely, so that one nulse suffices for both partial carry and shift. A oartial carry after each adaition is sufficient in this crse, because (as can be seen in the table) after its completion no digit location will over have $j^{\prime \prime} s$ in both the surs filp-fiop (D) and the associated carry flipoflop (C). Thus the oossible addition of the multiplier to the partial product durins the next step of the multinlication proceeds without difficulty, resulting at worst
 the oroduct remains partly in the sum and partiy in the carry Fr_{s}, and a comilete (highmpeed) carry is necessary to complote the job.

A circuit is shown below for nerforming the combined operations upon receiving a shift and carry pulse. The arrangement of gate tubes (so that a pulse comes out on one fif four lines depending on the seting of two $\mathrm{FF}^{\mathrm{n}} \mathrm{g}$) is sometimes called a "whiffletree".

LIF 3. Dswision? Squaremrootnse e\%co

By dowelooing and mechanizing reasongbly simple and repetitive shesorithms, any other arithmetic processeg, such as inveraion divisiong and the takt n_{g} of roots and of vovers, and many special. procociures such Gs finding values in tables, cin be ndded to the bas of tricks antomatically oerformed by a comouter. However, any of these rrocesses, and in fact the orocess of multiolication and even of addition, can also be built up out of simoler $a b i l i t i e s$ and given to the machine in the form of a sequence of inetruation rather than in the form of hardwaro.

The decision as to which orocesses ghould be builtwin and which may be left to be proframmed is as mach a matter of tasto as of encineero ingo Builtwin operations are performed quicker and require less storage than programmed operations, but they require oxtra oquipment which inco creases cost and tends to reduce reliability. The wisest choice would geem to be based on buildingoin only those operations which are likely to be needer in every problem and to program all others, snending the time and money thus saved on increasing the speed and storase csoncity of the computer. A mall increase in speed and storas capacity can far surpans in value a large amount of builtoin equipment for performing special processes.

In any event, all presentoday comouters have the builtmin ability to add, subtract, and multiply. Many have builtoin division; some have builitoin squarearooters; a few have builtmin table hookoups for finding logarithme, exponentiel and/or trigonometric functiolls. dt hardly seems worthwhile to discuss the mechanization of any of these processes within these rather superficial noter.

