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Digital Computer Laboratory 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

SUBJECT: THE USE OF BOOLEAN ALGEBRA IN LOGICAL DESIGN 

To: N. H. Taylor 

From: R. C. Jeffrey, I. S. Reed 

Date: April 15, 1952 (Revised April 28, 1952) 

Abstract. This note is a practioal description of Boolean algebra and its 
. $pplioation to the analysis and s,ynthesis of digital oomputers. 
It is argued that knowledge of the theory and methods described 
here is equivalent in value to oonsiderable experience and in
genuity in the logioal design of computers, and that it provides 
a way of bringing a novioe in the field up to the point where he 
can make contributions oonsiderably more quiokly then this is 
done at present. 

loa INTRODUCTION 

To a first approximation we can describe a binary computer as 
a set of 2 state memory devices functionally oonneoted b,y an information 
processing network e This first apprOximation to any particular computer 
represents its logical design, it it has been well engineered and well 
constructed, the approximation will be usefull for example, we may then 
ignore the fact that the voltages at oritical points in the machine may 
assume anyone of a continuous range of values. 

It is cus~omary to represent the logical structure of a machine 
by block diagrams~ Unfortunately, you oannot oalculate with block dia
grams: they are merely expository de'vices.. Everyone will agree that it 
would be helpful to be able to represent machines by sets of equations 
for which we know simple rules of transformation. Much would then become 
routine which now requires more or less experienoe and ingenuity, leading 
the designer more quickly to the important decisions. 

There exists a system of mathematics within which such calculation 
is possible.. Its mechanical rules are simpler than those of ordinary 
algebra, as will be seen in the next sectiono With a very little practice 
at it, a novice in the field of digital computers oan solve, with under
standing, a large class of non-trivial problemao For example, the follow
ing problem is solved later in the text. 
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Design a 1lllree bit .cOI1Dter" With "he tollowing "loops·, 

FJ'1 FF~ FF3 

1 1 0 
0 1 1 
1 1 0 (al ternaiies between 110 and Oll) 

,0 ' 0 '- 0 
0 1 0 (passes fram 000 into its , 
1 0 0 oyole, but 000 is not 
0 0 1 inoluded in the oyo1e) 
0 1 0 
1 1 1 
1 , 0 1 
1 0 1 (sticks on' 101) 

Suoh devices might be _used as operation oounterso 

We do not bY any means suggest that taoiliv,y at Boolean algebra 
will 'superoede experi ense and ingenuity in the logical design ot compu"Hrlilo 
Rather ' 

(1) the algebra provides a way ot etficiently channeling the 
experience and ingenuity at the novioes a unified theory aooelerates and 
deepens learning. ~ 

(2) it allows the praotioing designer immediate aooess to the 
important; Don- routine problems. they allow him '\0 use his sld.ll where 
1t c~'s. 

2.0 mOLEAN ALGEBN 

Boolean algebra is most otten developed as an abstraot mathema
tical qstem.,the interpretation being lett open.. Here, however, we parsllel 

, each step i n the 'exposition ot the theory with its oounterpaM in terms ot ' 
the tamiliar block ,diagrams in the hope ot promoting a sense ot oonfidence 
and familiarity 'with the new teohnique. 

The voltage (or current or whatever physical magnitude represents 
information) at any logioally1mportant point ill a maohine may be repre~
ented to a tirst approximation as a fUnotion ot time which, tor everyV8lue 
ot t, is either 0 or 1. Any change in' such a funotion will then be a jump 
disoontinuity. 
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Examples 

l' f T· , clock 
I 

, 
" 

I ""Pu l'S.es ! , , 
0 I I -

, , I 
I , 

G-Cl.:~-e 
0 I , 

D. c . 
0 Le. \Ie I 

The elements of OU~ algebra are such Boolean functions of timeo 

We define f our operations on such functions I ways of compounding 
from x(t) end yet) new Boolean f\mct:1.ons. For conciseness we shall omit 
the time veri able in t he f ollowing table, in which, for example, "Xl" is 
en abbreviation for " Xi (t)"g end "x + y" abbr eviates "x(t) + y(t)"o 

Under "Graph" we show t he output waveform 
when the inputs~ x(t) and yet), areg 

Name 

Not; -

Comp1emen~ 

Andr 

Logicsl 

Table 

x X U 

o 1 
1 0 

Produc1; 

x y. 'q 
000 
010 
100 
l; 1 1 

* ~ "j ~ "J- ~ t r- T x·~ I f--'- +--+---+ 

1--------1---- -.+---------t----~----__I~--: ---+---+1- --+-1 

Dlt:. FRoril Or; ~ ~ ~y 
~ lij ~~'( --tII~'" L~gica1 0 1 1 

101 
A- \)O~I\()J Sum 11 1 

i------t--- --- ----------.---- ----+----------++-------
Partial x'Y ~ 

Sum; 0 0 0 
C7ol1a 0 1 1 

Sum; 1 0 1 
Symmetric 1 1 0 
Difference 

I 

-
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Since there are a finite number of differ~nt ways of assigning 
~8nd 1 as values to n variables, it will always -be 'possible to completely 
describe any Boolean function b.Y a table as we have done for ~he four above. 

For B inputs there are 22n Boolean functions, anyone of which 
might be realized electronically in some simple wayo The algebra is neutral 

, . on this issues new physical realizations of functions wblch previously had 
to be bui~t up out of others have algebraic representations waiting for them 
and caD be integrated, without changing the algebra, into the data' of the 
dea1gn problem. ' 

To proceed with the formalism: there are 2n ways of assigning 
ODe of the two values, 0, 1, to each of n ' variables. Then it is practical 
to- check any presumed theorem of our algebra by substituting (in tabular 
form) each possible combination of values for the variables on each side 
of the equation. Thus we can prove that the cyclic sum, ® , is represented 
b:y this combination of gates, mixers and ,inverters: ' 

x®y= 
0 -0 0 
011 
11 0 
101 

b
t 
Y 

'defini tion 

(Xoy' ) + ' (X' ~ :,il) 
001 0 1 O( 0 
000 1 1 r 1 
111 1 000 
100 0 0 0 1 

lidentical 
for all 

x,y 
Note that once the 4 pairs of values of x, yare listed, the values of 
x' and y' are determined, and from these, xoyl, x' oy and xy' + x'y. 

By the same tabular method each of the following theorems of 
the algebra can be provedo Again, for conciseness, we have omitted time 
variables . 

Law of Double Negation: (x' ), = x. 

Dual Theorems (The result of interchanging '0' and '11, '+' and 1.1 in an 
expression is the complement of that expression. The result of that inter
change in a theorem is another theorem.) 
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For Product s 

No Po i'lElI'S 

xx=x ~x 

Mul tiply bZ a constant as 
i n ari thInetic : 

LOW~T 0 a.x = a ~ 

l. x = x 

?/C . 

HI~ 'X 
X 
o 

Page 5 

For Sums 

ILOa Numerical 
Coeff i cients: x + x = x 

Add! tion of a constant: 

I + x =: 1 HI , 
x 

a+x=x Low ..,. 
't 

1 
x + Xl = 1 

o 

.1 

fi X 

Assoei at;ive and Co mmutativ e Laws; Ignore gr oupi ng and order 

i n pure "E ro ducts : in pure sumBa 

x(yz) =: (xy)z = xyz x + (y + z) = (x + y) + z = x + y + z 

xy = yx x + y =-y + x 

De Mo r ganDl!.. Theorem: (x + y) i = xlyl 

Di stri bu U ve Laws· 

"Mu.lticPly t hrough" and f ac tor 
as i n ari t hmetic : 

x . (y + z) = xy + xz 
~ 

Unl ike arithmetic: you maY also 
"add through" a product: 

x + (y.z) ,= (x + y).(x + z) ------ ~ 
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A very handy simpl ification: ~ + x'y = x + 7 

@ o I 
FF --

Theorems of mor e purely theoretical interest: 

Epl!lnaion of II.!., 

I = x + Xl 

= ry.:+ xly + xyl + x 8 y8 

I is the sum or all 
2n possible products 
or' D variables end 
their priineso = xyz' + x'yz + ry'z + x Vy9 z + xyz' + x'yz(+ xy'z'+ x'r'z' 

:;:: ryzw + .••••. ,(14 terms) •.• • . + x·Oy'z'w' 
:;:: 

Each function of n variables can be represented by dropping Bome ot the 

tems ot: the above sum: 
rex) = t(l)x + t(0)x9 

r(x,y) :;:: r(1,1)xy + f(O,l)x'y + f(l,O)xy" + f(O,O)X'yl 

r(x,y,z) = f(l,l ',l)xyz .+ .p.o. + f(O,l"o)x,iy.z' + ••••• + t(O,O,O)x'y'z' 

etc. 

llo~e the r elation between zeros in the argument places and primes on 

~he corr~sponding varlable~ . 

This last theorem is of special importance since it allows us to write 
an algebraic expressio~ ror a function directly trom its table: 

x 

1 
o 
1 
o 

1 
1 
o 
o 

rex, ) 

1 
o 
1 
1 

The table is an abbreviation or 4 statements: 
r(l,l) :;:: 1 
r(O,l) :;:: 0 
r(l,O) = 1 
r(o,o) :;:: 1 

: .. f(x,y) :;:: f{l,1)ry + r(O,l)xVy + f(l,O)ry' + t(O,O)x'y' 

:;:: 1 .xy + O.x'y + lory' + 10xl y8 

= xy + ° + xyl + x' y' 

== xy -+ xy' + x'y' 
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A further example: 

x y z g (x,y,z) 

1 1 1 0 
0 1 1 0 
1 0 1 1 
0 0 1 0 g(x, r ,z) = xyl z + XYZI + x'y'z' 
1 1 0 1 
0 1 0 0 
1 0 0 0 
0 0 0 1 

As an excerci se, no·te that in the first example, f(x,y) can be further 
simplified to x + y8 . (Factor,. and use the theorems g a + a' = 1; 
1.a = a; a + al b = a + b) 

3.0 APPLICATION TO PASSIVE NETWORKS 

We may now illust r ate the technique of reducing networks which 
do· not contain memory elements. It is assumed that all pulses occur at 
the same time, so the t ime variable will be dropped. 

Example of translation of equations into block diagr am 

x = ab ~ a 8 : ~'~ b 

z ::::; a + (ab) '" ":.. \ 

Here regard ~ and R as inputs, x , y and z 
as outputs end assume that ~ and Rare 
obtained from FF's 'so that both a, band 
a' and b! are availableo -

r-----~~--~----~----------------~------------~x 



( Engineering Note E=458 ~l Page 8 

Simplification: This design contains redundancies in the sense that fewer 
gates ~nd inverters may be used to get the same outputs for each input: 

i 

Since x + xDy = X + Y 

x = as + b 

:By De Mo rgan ° s theorem 

y=a+b " 

z = a + a' t b l = 1 + b l = 1 

Thus z is simply a point which is pennanently at, s~, high voltage. 

This give. as a simpler equivalent block design 

J 

'""""(l , 
1 v 

, 
<l. 

1..--, 4 
~ 

tr 

.:. -

Example of translation of block diagram into symbolsg 

We may analyze the circuit following and simplify it by first 
translating it into equat ionsg 

INV X = 
~' ( u.' t + (J.-t-~ t 1}' 
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110. we simplify: aaS = 0 and Oob = 00 Then the aai'b 'erm TaIlishes. 

a + alb = a + bo Hence x = ~. (a + b)} '0 :By De )lo rgan , s ~heorem, 
! 

x = b + (a + b)' and by another application 

Simplified bl ock d1agramg 

' .. 
.' /' 

C1 

~ ~T~----~ '-----' 

~-----+----~~------o~ 

A further simpl ificat ion, which will eliminate the gate, is left os an 
exercise 0 

Translation of tables into eguetioD@ 

It is desired to CODstruCt a circuit with the properties given 
by the table: 

l!1 b c x 
1 1, 1 0 
0 1 1 0 
1 0 1 1 . 
0 0 1 0 
1 1 0 0 
0 1 0 0 
1 0 0 1 
0 0 0 0 

which tells , for each possible triad of input values, the desired output. 

We find the desired x = r(a,b,c) as a sum of the products essoc~ 
iated with the liS in the table. 

!hen c i. superfluous: 
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The devices indicated above have their analogies in the methods 
of Aiken and Shannon. However, the treatment of. flip=flops in the next 
section is new, and represents a radical advance over other methods. 

400 THE FLIP-FLOP EQUATIONS 

At this poi nt it becomes necessary to explicitly indicate the 
dependence on time of the variables in our discussion. Expressions like 
'A(t)' represent voltage (or current or whatever physical quantity is 
used as the realization of our 0 and 1) at particular points in the machine 
at time t. If 'A(t)' is suchan expression, 'A(t +T)' will. be the voltage 
(or whatever) at the same point in the machine T seconds later. 

For definiteness , let us assume we are dealing with a clocked 
machine , i oe., a machine in which any changes in state of the FF's must 
occur at discrete times, the times at which the clock pulses occur. Call 
the period of the clock T. 

We shall analyze , under the name 'flip-flop ' an Eccles-Jordan 
multivibrator with 2 inputs, a clear and a set, with a cross-over circuit 
such that when both inputs are 'on' simultaneously, triggering action 
occurs and the FF is complemented. This is somewhat different (superfic
ially) from the WWI sort of FF which is , provided with 3 inputs, no 2 of 
which may be 'on' at once. However, th~ transformation to the WW variety 
is simp+e, once the equation for the present type is established. 

We know that the state of the FF after the inputs have been 
pulsed depends only on (1) which input has been pulsed (has value I) and 
(2) the state of the:r at the time the input was pulsed: A(t+T)=f~a(t),a(t) ,A( t~ 

For example~ if neither input is pulsed, 1.e., if aCt) = aCt) = 0, then 
the FF state doesnOt change ~ A(t + T) = A(t). , IfOonly the clear side 
is pulsed ~a(t) = 1, aCt) = m the state of theFF goes to ° regardless 
of what 1t was before~ A(t +~) = 0. And if the FF is complemented by 
pulsing both inputs ( aCt) = aCt) = I) then A(t + T) = AB(t). These 
characteristics of th~ FF may be summarized by the following table o 

A( t + T) ! I o.a(!) __ aCt) A (t) . Explanation 
, i 

-~~ . -- -1--1 1 1 1 / CompJ.em_ent 

-~- O I 
0 ------1 - 1 Set 
1 0 1 Clear 

1 0 0 :1: _ No change 
1 1 1 0 Complement 
1 0 _l 0 Set ---- -- --
0 1 0 0 Clear 
0 0 0 0 No change 
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This table determines A(t + T) as a function of the inputs and the state 
at time to To get en equation for the FF we rep~esent the table in the 
form 

A(t + T) = f Ga(~) )~(t) )A(t~ = 

f(l,l,l) a(t)a(t)A(t) + ...... + f(O,O,O) a'(t)a'(t)A'(t), 
o 0 , I " 

that is, as a sum of those products which correspond to -:- :bhe 'l's under 'A(t + T). 

A(t + T) = a 8 (t)a(t)A(t) + a'(t)aU(t)A(t) + a(t)a(t)AO(t) + a'(t)a{t)A'(t) 
o 0 0 0 

Factoring "oaU(t)A(t)" from t~e 1st 2 terms and "a(t)A'(t)" from the 2nd 2 terms: 

A(t + T) ::I oao (t)A(t) G(t) + aU (tJ + a(t).&.' (t) G.a(t) + oat (t)] 

and since x + XU = I and x.I == x 

I A{t +. T) = ~a8(t)A(t) + a(t)AI(t)j -

This i8 the flip~f10p equation, which describel the aetion of a 7F the way 
x(t) (±)y(t) = x(t)yD(t) + x8(t)y(t) delcribes the action of a partial sum 
circuit. Bere, however, we deal -essentially with a difference in time (it 
is thie fact which made the analysia of the IT come later than that of 
"in8tantaneous" networks in l3ooleanalgebra). 

Now the problem of de8igning a circuit using flip-flops is simply 
that ot connecting the proper network onto the two inputs. That is) if we 
know aCt) and aCt) al functions ot the ultimate inputs to the circuit we 
can d~aw block diagrams for the inputs to the flip-flops and hence have the 
circui t. 

Illustrations of Circui t Design yia 7lip=ilop Equations 

2 Stage Binary Counter 

(~h1s example is chosen because the result is familiar. In the 
next eMJDple we illustrate the use of th11 method in analyzing a more 
difficult problem.) We wish the counter to be cyclic, 1.e., the succes~iTe 
states of the flip-flop are as shown. The flip-flop will progress from 
each Itate to the next after a count command (pet»~. ~ 

~ A2 

IFFll IFF21 

0 0) 0 1 -
1 0 
1 1 -
0 O. 
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Apparently we need to clear FFl in only one ce.se: when -Al and A2 are . 
both 1 and there is a, count pulseo 

Thu,s 

In other cases where Al= 0 the previous state was also 0, so no pulse 
is required to maintain the state. Note that we are designing in terms 
of the changes in state of the flip-flops, and not in terms of the states 
themselves. 

We must set A, when Al = 0, A2 = 1 and there is a count pulse: 

Similarly fo r "2 g 

Clear: oa2 (t) = ~'(t)"2(t)P(t) + ~(t)"2(t)P(t) J 

i oe 0, we wish to clear A,2 when either of these two condi \ions exist: 

~ = 0 , "2 = 1, pulse 

~ = 1 , A,2 = 1, pulse 

Jow we can factor: ~'(t)A2(t)P(t) + ~(t)~(t)P(t) 

= ~'(t) + ~(t~ ~(t)P(t) = [lJ "2(t)P(t) 

:·loa2(t) = "2't)P(t-) I 
~us we wish to clear ~ on the next pulse whenever it holds a 1, a fact 
which might have been r ead directly from the table (regardlsssof what 
is ,in the left :hand column, the successor of any el' under 8~' is a 0). 

Finally, to set ~: 

a2 ( t) = [~ & ( t) ~ 9 ( t) + ~ (t)~ 0 (t)] P ( t ) 

= ~ t (t) + ~ (t~ ~. (t)P(t) 

= A28 (t)P(t) 

which mean.s that ~. ~s to be cl~ared on the next pulse whenever it holds 
a 80' regard.l.,ess ot what ~ bolds. '!hi. , also might have been seen from 
the table. , 
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We now have, for the equations for the changes to the grids of 
the flip-flop, the following (abbreviated by dropping the 't'): , 

These may be reduced by replacing 'A2P' in the first equation by '082' 
(from the third) and ditto in the second: 

Thus we have eliminated several gates. The block diagram is unfamiliar 
because of the use of two=i~put flip=flops. 

Using only the trigger inputs of flip-flops results in 8 simpler circuit: 

Here oa = a = ca . The flip-flop equati0I?- becomes 

A(t + T) = a(t)A' (t) + a' (t)A(t) = aCt) (±)A(t) 
, c . c c . 
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Returning to the table, Al shoUld be complemented whenever A2 = 12 

cal::; A-;? 

and for A2: ca2 ::; P (complemented on every pulse) 

The Block Diagram 

A I , A' 1. 

--------~~T~ ______ ~ _____ p 

Note ~hat the delay necessary 80 that A2 wil l change ~ P has tried 
to pass the gate i8 assumed to exist in the F-P'" This was implicit in 
our original FF equation .. 

We now indicate, without much co~ent, the solution of the less 
familiar problem proposed in the introduc:t:!:.on. We shall use onl,. the 
complement, input to the f'lip",tlops (exceptd'of reading in numbers, a simple 
process which we wont include in the problem) 0 ' The "counter" changes 
state when it receives a command pulse, pet). 

Al A2 A,3 

1 1 0) A(T) =- ca@A 
0 1 1 
1 1 0 (abbreviated f'orm of the full equation: 
0 0 0 
0 1 

~) A(t + T) = c.(t'(i)A(t» 
1 6 
0 0 

We are oQnclrnla onlr with the change, ··· 0 1 in the ,tate. of' the flip~rlop,o 1 1 1 
1 0 1 
1 0 1 ~stiok~ 
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For ~: 

For ~: 

= ~A31 (AZ + ~i) + ~ UA
Z(A3 + A3i2J 

I c~ = (~A31 + ~!AZ)P -, 

a = c Z (~ I AZ i A3 B + A1 !AzA3' + A10AZBA3 + A1AZA3 )P 

= ~l8AZB (A
3° + A3) + AZ(~ °A3 i + ~A3~ P 

c 2 -I 
a -

a = c 3 
(.A.. A_A B + A 9 A_A + A- A_ 'A 9 ; + A 'A 'A )P 
-~ ~-3 1 ~-3 -~-~ 3 . 1 Z 3 

= ~ A ° (A + A_ 8) + A- 8 A (A ' + A· a)1 P l:l 3 Z ~ -~ 3 2 Z ~ 

I ca 3 = ~lA3U + Al iA:i}P I 

Page 15 

In order to simplify the block diagram for this counter, le~ us 
assume that we have available a "package" realization of x®y. 

c~ = (~A3U + Al OAZ)P as before 

caZ = ~laAzO + AZ(Al tt)A3)] P 

ca 3 = (~ (t) A3)P 

We may now (assuming that i nverters are cheap) use ~he same circuit for 
~ ® A3 in the second and third equations. 
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In case inverters are more expensive than gates, we might s,rnthesize 
(Al $ A3)' directly 

A3 

A' 0------3 

[Hote that this is the dual of the circuit for ® : we interCha.nged gates. ~( •• »~ ..' 
and mixers (+ [J . ~ •. 

-------------- As- a final example of the use of the ~lgebra in s.rnthesizing 
circuits we shall design an addero 

Let Ai and Bi be the digits to be added in stage Hi, and let 
the carry int? this ' stage b:~ Ci. Then the carry out will be Ci + 1 and 
the well known table governs the action of the stage: 

Ai(t) Bi (t) Ci(t) Ci ._ +_ .. 1 (t)_ . .. A;1.(t+T) 
-"- ------_ .. _-- --- - - - .----. . ..... _-_._-- -.-

1 1 1 1 l' 
0 1 1 1 0 
1 0 1 1 0 
0 0 1 0 1 
1 1 0 1 0 
0 1 0 0 1 · 
1 0 0 0 1 

, 0 0 0 0 o . 

Note that we require th~ carry to be instantaneous: there is to be no 
C'QIlulative delay from stage to atageo Also note that the sum is to be 
stored in Ai" This time our table does not represent the successive states 
of a countert W~ are interested in successive states of Ai- These are 
indicated row by row by looking first at column one and then at the parallel 
entry in the last column. Use complementable FF: (we wish to complement 
in cases 3, 4, 5,. 6)0 Note that these are just the cases in which Bi(t) = 
Ci' ( t), i. e e, Bi { t) <±> Ci ( t) = 1 
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(!e have introduced the add 
comm~dg petTI 

Now we need to know how t o get 0i + l et) as a function of the three 
parameters on the l eft . Apparently 

which can be factoredg 

I °i + 1 = ~i ° i + (Bi @ °i)~ P 
_.. . 

o,r in unabbreviated form g 

01 + 1 (t) = ~i (t)Oi (t) + (Bi (t) @ 0i {t»Ai (t]] "P(t) 

, 
Note that because of the delay presumed inherent 1n the flip-flop 0i + 1 

will depend on the ~~1ginal A(t) , before compl ementing o 

Further reductiong S1nce B1 ~t) ~ 0i (t) 

c a i (t) = ~ i ( t ) (±) ° i {t] P ( t ) 

appears in both equations: . 

0i + let) = Bi ( t )Oi (t)P(t) + cai(t)Ai ( t ) 

Now O. (t) i s a resul t of gati ng vari ou s i nput s ~rom previous stages with 
the' c~mmand pulse , pet) 0 Ther efore , we need not multi piy it again by p(t)g 

... 
cai (t) = Bi ( t)P(t) (±) 0i ( t) 

0i + l et ) = Bi ( t )Oi ( t) + cai ( t )Ai ( t ) 

Block Diagram 

A.I 
,\ 

- ..... --r 
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5e O DELAY ELEMENTS 

To illustrate our method of treating deiay elements, consider 
the following device for reali~ing x~ y on the trigger input to a flip-floPe 

o 

~( iT'D + ~ ' ( t) 

r-,..-M-- ~ (i) 

It has already been noted that the realization of~ with ordinary electronic 
components requires two gates, two inverters (unless the complements of the 
inputs are also available) and a mixer; it is 'advantageous to trade for all 
this a delay element and a single mixer. The action of the second circuit 
is simple: if x and y both occur, the fliJFflop is complemented twice, 
resulting in no change, whereas if one but not the other occurs it is 
complemented only once o 

We -c~n easily derive the equivalence of the two circuits in our 
formalism, but we have as yet no mechanical way of determining where it 
would be judicious to introduce delayss In this respect our treatment of 
delays parallels that of fli~flops: the introduction of both flip-flops 
and delays 1s a problem of planninge The design problem takes those ele
ments as data together with their operation cycle, and asks for the most 
economical connecting network which meets the "boundary conditions"e 
(The analogy between fli p- flops and delay elements has as its theoretical 
basis the fact that any delay element can be represented as a flip-flop 
gated with a clock of appropri ate frequency and phase o) 

6.0 OTHER PROBLEMS AND APF'LICATIONS 

Magnetic Devices 

Ceramic and ferromagnetic cores act as memory devices in such a 
way that there is generally no continuous signal output indicating that the 
core holds 8 1 0 1 or a Ill . It has already been proposed that such devices 
be interpreted as flip-flops with built-in gateso 

The main apparent difficulty in applying this algebra to magnetic 
devices is that from a 2 state core, three outputs are possible: a pulse 
of "+" polarity,' a pulse of , " ~n polarity and no pulse" We wish, if possible, 
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to avoid going over to a three=valued algebra for the analysis of these 
devices, first because of the complexity of such 8 formalism, and second 
because the cores are themselves devices which have only !!2 states of 
magnetization. in current applications Q 

It would be easy enough to resort to some ~ch device as lumping 
together two of the three outputs from a core for the purposes of analysis; 
bUt it remains to be seen' whether such a device will result in a theory . 
which ignores important logical possibilities in circuits using magnetic 
cores o For further remarks, see Appendix 1IIQ 

Probability in the Boolean Machine 

When a computer is interpreted as a physical realization of a 
s~t of Boolean equations it bec~mes possible to apply probability theory 
in such a way that we obtain information about the density of information 
in critical registerso The application to input-output problems (buffer 
st~~age, etco) is apparento (See articles by Reed in Bibliography.) 

Combinatorial Problems; Planning vSo Design 

We have shown a method whereby, given the desired cycle, a logic
ally optimum counter may be designed (relative to existing "packaged" 
realizations of logical functions)Q But this theory sheds no direct light 
on the problem: what is the most desirable cycle for a given application? 
Rather, we have suggested that the theory, in reducing the actual design 
to a routine process, leads the designer mor~ quickly to that crucial 
questioDo H flip~flops . are capable of 2n different configurations, and 
there are 22n different "counting" cycles which might be obtained. The 
optimum electronic realizations of these are not all of the same complex
ity; and often, in a particular application (S8r where .arbitrary meanings 
are assigned to the various stages of the count) any one of a number of 
these cycles would be equally useful o The problem is then not: "What, 
for the given cycle, i s the optimal realization?", but rather, "Comparing 
a number of usable cycles and their optimal realizations, which of these 
is optimum?" (which of a number of relative minima is least?) 

We might call such decisions combinatorial rather than logical. 
The algebra, as developed here , provides no complete solutions to such 
problems s However, it appears that the problem may be soluble by further 
analysis. (One possibility is this: formulate a set of fully mechanical 
rules for deciding between two circuits on grounds of relative complexity 
in terms of available components; then program a computer to work out all 
optimal ~esigns (relative minima) and decide between them as to the absolute 
minimum.) 

In general, the broader questions of computer planning are il~ . 
luminated but not solved by the present theoryo It is entirely possible 
that further theoretical development, incorporating combinatory, statistical 
and information~theoretic elements with the present theory may lead to a 
mathematical treatment of the broader questions concerning the organization 
of computing ma chineryG 
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The present theory gives something like the tollowing general 
picture ot digital computers G Any particular analog computer may be re
garded as a physical realization or analyzer ot at set ot differential 
equations. Similarly we may regard any digital computer, general purpose 
or otherwise, as a physical realizatiop or analyzer of a set ot Boolean 
ditterence equationBe 

The equations analyzed b.Y a machine may be studied in a pertectly 
abstract way (this has not been done here) jus\ as the maChine may be 
studied as a physical entityo Then two points ot view are possible: 

(1) The Boolean difterence equations describe t~e working of 
the machipeo 

(2) The machine real~zes or analyzes the equationa. 

It ia the validity ot the second point 'ot vi .. which motivates 
'\he building ot a~ machine. 

History of this Theory and Relation to Other , Theolfes 

The English mathematician, George Boole, 'presented, in 1847,the 
:firat workable but cumbersome predecessor ot the present sort of formalism. 
He -Was interested in its interpretation as an algebra of logic and ot 
Probability, and it was the application to logic which inspired the investi
gations of his successors, Wo S. Jevons, Co So Peirce, E. Schroeder and 
others in increasing the power and simplicity of the algebra. 

One logical interpretation of the present algebra is this: let 
the variables (dropping the time arguments altogether) represent sentences 
such as ".3 > 2", ".3 > 5" and "Water boils at 100°C . " The two values 0 and I 
are interpreted respectively as falsity and truth , so that .3 > 2 = I but 
.3) 5 = Oe "x!" is the sentence which is true when "x" is false, and vice 
versa: (the contradi{tory of "x") "it is not the case that x" or briefly 
IInot x". Therefore, .3>5)' = I . "xoy" is the sentenceUx and y~ which 
is true only when both x and yare true, (.3 > 5). (.3 > 2) = o. x + y is 
x and/or y (briefly: x or y), which ia true if x is true ory is true or 
both are true: (.3 > 5) + (.3 > 2):z Io Similar interpretationl1l may be found 
for the other Boolean functions, and it will be seen that, on this inter
pretation, the theorems of the system are those laws of logic which apply 
to propositions and their combinations. . 

When we drop the assumption that the variables may have only 
the two values 0 and I there results a formalism which has as ~ne of its 
interpretations a logic of classes containing the classical theory of 
syllogisms. 

It was, as far as we know, Claude Shannon who, in 19,38, first 
published an interpretation under ~hich the algebra becomes a theory ot 
relay and switching circciits. Shannon'li interpretation led the way to an 
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application of the algebra to static information-processing networks of 
all kinds, including those used in present-day electronic digital computers. 
Bowever, Shannon's theory took no account of the dependence on time of the 
states of a computero Therefore, while it led to an analysis of networks 

, of gates, mixers, inverters and the rest, it did not permit an analysis of 
flip-flops. That theory wes no substantial help in designing counters, ,' 
adders and so on. 

After Shannon, the principal development of algebraic methods 
in this field came from Burkhart, Kalin and Aiken of the Harvard Computa
t10~ Laboratory. In the form in which it wa, published in 1951, their 
algebra (which shared with Shannon" a lack of adequate means for represent-
ing time variables) was an arithmetic of 0 and I. . 

I 

Boolean Algebra 

( + and 0 have the meanings 
used in this text) 

x' 

x+y 

Aiken" Formulation 

( + and 0 have their ordinary 
arithmetioa1 meanings) 

1 .. x 

Superficially, the Aiken algebra i, aa.ier to usa then Boolean 
algebra, since it i, merely ordinary arithmetio restricted to 0 a~ I. 
Bowever, for every new law which one must learn in order' to use Boolean 
algebra, one must learn an arithmetical trick to use the Aiken algebrao 
Consider, for example, the transformation which in Boolean algebra is 
accomplished by De Morgan's theorem. 

(XY)' '= x' + y' 

In Aiken's algebra it becomes necessary to delicately introduce l's and 
parentheses in order to go from 1 - 7:3 (our n(x;y)tn) to (l-x) + (l-y) -
(l-x){l-y) (our "Xl + y' II). Then Aiken's arithmetic is at least as herd 
to handle as Boolean algebra. Furthermore, it has the disadvantage that 
while an entire expression such as 'x + y - xy' (our 'x + y') is always 
either 0 or 1, yet such expressions often contain parts which are neither 
o nor 1, and hence meaningless. Thus if x = Y = 1, x + y - xy = 1, bu~ 
~ of it, x + y, is 2, which is meaningless in the interpretation. We 
heve examined this matter here in some detail in order to justify our use 
of a simple but unfamiliar forma1iam rather then a familiar but unexpect
'ed1y complicated one.. ' ' 
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The present theory, with its use of time variables throughout, 
is the work of Irving S. Reedo To our knowledge it is the first analysis 
of computing machines powerful enough to provide. e general method for 
s.ynthesizing flip-flop circuits such as accumulators ~ straightforward 
calculation. Furthermore, by designing not in terms of the sequence of 
states of the flip-flops, but rathe;r in: terms of the changes in their 
states, we are led directly to a minimal design, without the use of such 
cumbersome devices as ·minimizetipn charts" 0 

It should be stressed that the present report is an account of 
the most direct and easily used practical outcomes of the theory. For a 
rigorous mathematical account of the theorY the reader is referred to the 
papers ~ Reed in the Bibliography. The introduction of time variables 
makes possible an extension of Boolean algebra into analysis. The theoret
ical background of the results presented ~ere is an analogue of the calculus 
~nd theory of ordinary differential equations, based, not on ordinary 
arithmetic, but rether on Boolean algebra. 

These methods )fere used, in a restricted form, in the design of 
the MADDIDA and ~DAC computers, begiDni~g in the winter of 1947. One of 
the results of the theoretical studies has been that the present method 
i8 applicable to pulse circuits in . general, and not only to computers 
using a special sort of clock waveformo . ' ;' .. 
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APPENDIX I 

Summary 

x y x' x+y xy xC±>y x+y xly 

1 1 0 1 1 0 0 0 
0 1 1 1 0 1 0 1 
1 0 0 , 1 0 1 0 1 
0 0 1 0 0 0 1 1 

n ' 
There are 22 distinct functions of A variables, some of which are repeti-
tions of functions of n - 1, n - 2, •• , •• , 1, 0 variables. E.g., Xl appears 
above as a function of two variables (its value is derined ,foreall 4 values 
of x, y; but since it is actually definable in terms of x alone, it is 
really a function of 1 variable). The two functions of 0 variables ere 
o and I. 

There ere an infinite number of functions in terms of which' ell 
functions cen be defined o The two such functions ' of 2 veriebles ere. and 
I. For exemple: ' 

xix = x' 

It follows that ell other functions are definable in terms of I , since all 
functions are definable i~ terms of ~ end ~: 

x + Y = (x' y' ) , 

x~ y = xy' + x'y 

Phrsicel Realizetions of Functionsl 

(The listie not complete) (In the magnetio oircuit. current in the indi
cated directions represents 1; no ourr.ptrepr8sent. 0; diodes might be 
necessary to prevent back flow and-for clamping.) 

I ' ' 
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Complement 
+ 

I 
~ 

(Bies end voltage dividing 
network ere such thet when 
the grid goes positive, the 
Xl point goes down to zero.) 

G.lJt ~ ~~. 
~~M~)' 
~~~ N\~:l.. 

-+-

.... 
'· t o

• 

Page 24 

Product 

For .B inputs: 

x • x ..... )( .... 
\.i. ... 

'Fo..,.. '" :"'~"'-\-S j ~'\'Vet o.'M.pl\~'t( ..... !~\M~, 
ov-tpvt r\J\t~ i~ i",,,eV'ie~ . 

rOlf ~ ~pv~ (J:J:::\ w·\~V\''l..JI, 
:B 

~io..s 
\ H 

' '\ '" . 

x-JWo. ~" y 
.-.-- )( "'" "\ {P Ie. t. evct \ S' ] " '\=>rov·,Jes ~I\t:~.~ 

o\J-t~\Ji' ?v\s~ i~ ;V\ve-r-kJ . 

-----.....j,oI!:--- ~ 
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Partial Sum 

If you can ignore the polarity of the output ~ depend on the 
coincidence i.n time, duration, amplitude and shape of x and y ----------

Otherwise 

Black Box #1 

.(If the variables end also 
their primes are available.) 

- , 

I 
~ 

·f 
- ! 

Black Box 112 

(If the variables, but not their 
prime's, are available.) 

It follows from the statements on the previous page that, given realiza
tions of not and ~, black box realizations of all other functions can 
be constructed. And given realizations of ... §.t':;J , all needed black boxes 
can be constructed. ' , . 

Fli -Flops 
A' A 

R Triggers when bo~h inpU~8 
are pulsed at once,. . 

A(t + C:) = a(t)AI (t) + a l (t).A.(1;) o . 

(Reduces to the first case 
when a = a) 

o 
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Magnetic 
Memory Core 

currents as shown 
represent 10 No 
current represents O. 

Value of A: , =1, .J:, = 0 

R(t) = a(t)a'(t)A(t) o 

oa(t) 

1 
0 
1 
0 
1 
0 
1 
0 

aCt) A(t) 

1 1 
1 1 
0 1 
0 1 
1 0 
1 0 
0 0 
0 0 
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A(t+E) ~(A) d_(A) 

' r - 0 0 
1 0 0 
0 0 1 
1 0 0 
0 n 0 
1 1 0 
0 0 0 
0 0 0 

.J 

This can be set and cleared; reed out br clearing (if the core held a 1 
there will be a pulse out). However: it won't trigger as shown, end the 
readout is e single pulse, rether then a D.C. level 0 

R(t) 

0 
0 
1 
0 
ri 
0 
0 
0 
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APPENDIX II 

Some Theorems of Boolean Algebra 

Ignore order and grouping in pure sums and pure products. . -

"Multiply through" and factor as in ordinary algebra, and "add 
through" a product . 

a + (b.c) = (a + b).(a + c) 

'-!'.:. 

0 + X = X O.x = 0 x+ x = x x;- Xl = 1 

1 1 l.x 
~ 1' ~, " \ i"'!, ":I· ' ~~~···, ..... , .. , ': -+ X = = X x 0 x = X x • x' = 0 

Expansion of a Function 

f(x,y,z) = t(0,O,O)X1y'zl + t(l,O,O)xy'z' + •••• + t(l,l,l)xyz 

= ~(O,O,o) + X+Y+~ j!(l,O,O) + x'+Y+~ .-~ ••• I!(l,l,l) + x,~g+a 
In particular, tor the constant fUnction t(x,y,z) - I for all x,y,z, we get 

I : XUyozo + xyOZ8 + •••• + xyz (all 8 terms are present) 

and for the constant :t(x,y,zr': ° we- get 

° = (x+y+z).(x 9+y+z) •.••• (X 9+yO+ZI) (all '8 tactors are present) 

De Morgan's Law: (xy)' : --x1 + yO ; (rly)" = x'y' 

Elimination of a factor: x +--x 8y = x + y 

Theorems relating to (t) g 

x G> (y ~ z) = (x <i> y) @ Z :: x@ y Et) z 

xe>y = : y~ x 
x (i) y = xyT + xly 

, . 
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(X@y)8 =x8 @y=X@yl 

[x ® y) 8 is an- interesting funciiong it is 1 exacUy when x and y 
have the same value::J 

x(y~ z) = xy~ xz 

If x G> y = z, i = y (t) z . (Permi ts solution of equations) 

x@I = XU 

x@o=x 

x@x = 0 

For a more complete list of theorems, Bee works of Oouturat and 
Whi tehead 11 sted in Bibliography . 

Any expression can be put in the form! 

Ax + Bx' 

e.g., the equation for the IF with 2 inputs is in that form. 

To complement such an expression it is sufficient to complement 
the "coefficients"g 
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APPENDIX III 

Core Analysis with 3 Valued Logic 

oa(t) a(t) A(t) 

-1 -1 -1 
0 -1 -1 
1 -1 -1 

-1 0 -1 
0 0 -1 
1 0 ~1 

-1 1 -1 
0 1 -1 
1 1 -1 

-1 -1 0 
0 -1 0 
1 -1 0 

-1 0 0 
0 0 0 
1 0 0 

-1 1 0 
0 1 0 
1 1 0 

... 1 -1 1 
0 -1 1 
1 -1 1 

... 1 0 1 
0 0 1 
1 0 1 

-1 1 1 
0 1 1 
1 1 1 

A(t+E) R(t) 

-1 0 
-1 0 
-1 0 
1 1 

-1 0 
~1 0 
1 - 1 
1 1 

-1 0 
0 0 

-1 -1 
... 1 -1 
1 1 
0 0 

... 1 -1 
1 1 
1 1 
0 0 
1 0 

-1 -1 
-1 -1 
1 0 
1 0 

... 1 -1 
1 0 
1 0 
1 0 

aCt) = .:!:1 has same effect 

as aCt) = +1 o 

R is woUIld 80 that when 
the state of the core is 
moving toward 1, R = 1, i.e.; 

~(t) = ~#~t) < A(t +~}] 

[!(t) . = ~~t) = A(t + f] 
~t) · = ~lBt) ) A(t-+El] 

"¢>" means if and only if 

s~+~ a\ ~~ ~'('e', 
_\ .. 4, ; ~\ 'II. t ; 0: 1M ~~\t't.t

t'C"",~. 
~ ~~ .. "-I\~.l.\ ....... ~~ 0J0.L 

tos',t\V~ 0..$ ~~ ~~. 
O,,6J'\+t.. ~ ~ -, . /\to I: 0, 

The rules of 3 va1tiea algebra are more cumbersome than those of the present 
theory. 

Note that cores require a 3 valued analysis only to the same extent that 
vacuum tube circuits do. In vacuum tube circuits, too, there are three 
possible inputs and outputs: positive, negative and zero pulses. In 
trying to account for such circuits in terms of 0 and 1 alone, we are 
somewhat farther from reality than when we use -1, 0 and I. But the three 
valued analysis is itself a high-order abstraction from the real situation 
with its continuum of infinitely many values. 
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The point i~ that we pay for the additional simplicity of each 
higher order of abstraction in faithfulness of the resulting black-and-
white picture of the real situationo ' 

We believe that a 3 valued analysis would be of use, but the 
use would be a better evaluation of the limitations of the two valued 
approach. There may exist combinations of elements whose utility depends 
on the polarities of the pulses involved. Such designs could be ·cranked 
out" of a 3 valued analysis. But it may be that, having recognized them, 
they can be introduced into the two valued analysis by special devices. 
One such device is translating 8 single--pulse-train: 

I 

into two: { :[--1--... ...... ~ .. --;--. i .. . b= ~. 
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