
An Efficient Visual Hull Computation Algorithm

Wojciech Matusik
Chris Buehler

Leonard McMillan
Laboratory for Computer Science

Massachusetts institute of Technology
(wojciech, cbuehler, mcmillan)@graphics.lcs.mit.edu

Steven J. Gortler
Division of Engineering and Applied Sciences

Harvard University
sjg@cs.harvard.edu

ABSTRACT
In this paper we describe an efficient algorithm for computing the
visual hull of an object. This problem is equivalent to computing
the intersection of generalized cones. The naïve visual hull
computation algorithm requires intersecting 3D polyhedra. We
exploit the special structure of generalized cone polyhedra and
show how to reduce this computation to a set of intersections in
2D. Moreover, we describe how the 2D intersections can be
carried out efficiently.

Keywords
Visual Hulls, Line Hulls, Efficient Algorithms

1. INTRODUCTION
Many researchers [7,10] have used silhouette information to
distinguish regions of 3D space where an object is and is not
present. Suppose that some original 3D object is viewed from a
set of reference views R. Each reference view r∈R has the
silhouette contour sr whose interior is covered by the object. For
view r, one creates the cone-like volume vhr defined by all the
rays starting at the image's center of projection pr and passing
through the interior of the silhouette. It is guaranteed that the
actual object must be contained in vhr. This statement is true for
all r; thus, the object must be contained in the volume vhR = ∩r∈R
vhr. As the size of R goes to infinity, and includes all possible
views, vhR converges to a shape known as the visual hull vh∞ of
the original geometry [5]. The visual hull is also commonly
known as the line hull.
The visual hull is not guaranteed to be the same as the original
object since concave surface regions can never be distinguished
using silhouette information alone. Moreover, in practice, one
must construct approximate visual hulls using only a finite
number of views. Given the set of views R, we would like to
efficiently compute vhR – the intersection of all cones defined by
all silhouettes in R. Computing visual hulls quickly has many
potential applications including structure-from-silhouettes,
gesture recognition, 3D photography, and real-time geometry
capture.

2. PREVIOUS WORK
Typically visual hulls have been computed using volume carving
methods. These methods remove unoccupied regions from an
explicit volumetric representation. All voxels falling outside of
the silhouette view are eliminated from the volume. This process
is repeated for each reference image. The resulting volume is a

quantized representation of the visual hull according to the given
volumetric grid.
There has been considerable work [4,8] on Boolean operations on
the 3D polyhedra. Most the algorithms require decomposing the
input polyhedra to convex polyhedra. Then, the operations are
carried out on the convex polyhedra.
It has been also shown that the exact sampling of the visual hull
(i.e., an image of the visual hull) from arbitrary views can be
computed efficiently at interactive frame rates [6]. However, this
algorithm does not build the explicit polyhedral representation.
Our algorithm is similar to that in [6], except that we achieve
comparable speed while computing an explicit polyhedral model,
which is more useful in some applications.
The work in [9] also computes an explicit polyhedral model of the
visual hull. They use a slightly different 2D reduction of the
problem, which appears to result in lower performance.

3. Visual Hull Computation Algorithm

3.1 Inputs
For simplicity, we assume that each silhouette is specified by a set
of convex or non-convex 2D polygons. These polygons can have
holes. Each polygon consists of a set of consecutive vertices in its
contours. We also assume that the degree of each vertex is equal
to two. Moreover, for each silhouette we know the location of its
image plane and the location of the center of projection – the apex
of the each cone. The image plane is the 2D plane that contains
the silhouette polygons.
Throughout this paper we use the following notations: we let k be
the number of input silhouettes; we let n be the number of edges
in each silhouette; and we let l be the maximum number of
intersections of a projected line with a silhouette.

3.2 Algorithm Outline
In order to compute the visual hull with respect to the input
silhouettes we need to compute the intersection of the cones
defined by the input silhouettes. The resulting polyhedron is
described by all its faces. The faces of this polyhedron can only lie
on the faces of the original cones. The faces of the original cones
are defined by the center of projections and the edges in the input
silhouettes. The naïve algorithm for computing the visual hull
would do the following: For each input silhouette si and for each
edge e in the input silhouette si we compute the face of the cone.
Then we intersect this face with the cones of all other input
silhouettes. The result of these intersections is a set of polygons

that define the surface of the visual hull. The pseudocode for the
algorithm is given below.

3.3 Reduction to 2D Intersections
The intersection of a face of a cone with other cones is a 3D
operation (these are polygon-polyhedron intersections). It was
observed by [3,6,9] that these intersections can be reduced to
simpler intersections in 2D. This is because each of the silhouette
cones has a fixed scaled cross-section – it is defined by the 2D
silhouette. Reduction to 2D also allows for less complex 2D data
structures to accelerate the intersections.

Figure 1: One face of the center cone is projected onto the

image planes of two other silhouettes.
To compute the intersection of a face f of a cone cone(si) with a
cone cone(sj) we project f onto the image plane of silhouette sj
(see Figure 1). Then we compute the intersection of projected face
f with silhouette sj. Finally, we project back the resulting
intersection onto the plane of face f. The pseudocode for the
algorithm is given below.

3.4 Efficient Projected Cone – Silhouette
Intersection
In this section we show how to compute the intersection of the
projected cone ci with the silhouette sj of some other cone cj.

3.4.1 Construction of the Edge-Bins
In order to perform the intersections efficiently we use an Edge-
Bin data structure. First, we observe that in case of perspective
projection all rays on the surface of the cone ci project to a pencil
of lines sharing a common point p0 in the image plane of sj. We
can parameterize all projected lines based on the slope α that
these lines make with some reference line. Given this
parameterization we partition the domain of α = (-∞, ∞) into
ranges such that any projected line with the slope falling inside of
the given range always intersects the same set of edges of the
silhouette sj. We define a bin bi to be a three-tuple: the start αstart,
the end αend of the range, and a corresponding set of edges Si,
bi=(αstart, αend, Si). We note that each silhouette vertex
corresponds to a line that defines a range boundary.
In certain configurations, all rays project to a set of parallel lines
in the image plane of sj. When this case occurs, we use a line
p(s)= p0+dα to parameterize the lines, where p0 is some arbitrary
point on the line p and d is a vector perpendicular to the direction
of the projected rays. To define bins, we use the values of the
parameter α at the intersection points of the line p with the lines
in the direction of the lines passing through silhouette vertices. In
this way we can describe the boundary of the bin using two values
αstart and αend, where αstart, αend are the values of α for lines
passing through two silhouette vertices that define the region.
The edge-bin construction involves two steps. First, we sort the
silhouette vertices based on the value of the parameter α. The
lines that pass through the silhouette vertices define the bin
boundaries. This step has a bound of O(n log n).
Next, we observe that two consecutive slopes in the sorted list
define αstart and αend for each bin. To compute a set of edges
assigned to each bin we traverse the sorted list of silhouette
vertices. At the same time we keep the list of edges in the current
bin. When we visit a vertex of the silhouette we remove from the
current bin an edge that ends at this vertex and we add an edge
that starts at the vertex. A start of an edge is defined as the edge
endpoint that has a smaller value of parameter α. In Figure 2 we
show a simple silhouette, bins, and corresponding edges for each
bin. The running time of the above algorithm is O(nl) –
proportional to the total number of edges in all bins.
The edges in each bin need to be sorted based on the increasing
distance from the point p0 (or the distance from parameterization
line p(s) in case of the parallel lines). The efficient algorithm first
performs a partial ordering on all the edges in the silhouette such
that the edges closer to the point p0 are first in the list. Then, when
the bins are constructed the edges are inserted in the bins in the
correct order. The time to construct the bins is O(n log n + nl) for
one silhouette.

VHISECT(Input Silhouettes S)

(1) PolygonSet VHFaces : = ∅
(2) for each input silhouette si in S
(3) for each edge e in silhouette si

(4) for each reference silhouette sj in S\{si}

(5) PolygonSet facesj := ConeFace(e) ∩ Cone(sj)

(6) PolygonSet EdgeFaces := ∩ (facesm, m = 1..k, m≠i)

(7) VHFaces := VHFaces ∪ EdgeFaces

VHISECT(Input Silhouettes S)

(1) PolygonSet VHFaces : = ∅
(2) for each input silhouette si in S
(3) for each edge e in silhouette si

(4) for each reference silhouette sj in S\{si}
(5) Polygon p := project ConeFace(e)onto sj

(6) PolygonSet ps := p ∩ sj
(5) PolygonSet facesj := project ps onto ConeFace(e)

(6) PolygonSet EdgeFaces := ∩ (facesm, m = 1..k, m≠i)

(7) VHFaces := VHFaces ∪ EdgeFaces

e1

Bin 5
e2

e6

e5

e3

e4

Bin 7

Bin 1

Bin 6

Bin 4

Bin 3 Bin 2

e1 Bin 5

e2

e6

e5

e3

e4

 p0

Bin 7

Bin 1

Bin 6

Bin 4

Bin 3

Bin 2

Bin Edges

1 ∅
2 e2, e3

3 e2, e4

4 e2, e5

5 e2, e6

6 e1, e6

7 ∅

Figure 2: Edge-Bins and corresponding edges.

3.4.2 Efficient Intersection of the Projected Cone
Faces with a Silhouette
Using the edge bin data structure we can compute efficiently the
intersection of the projected cone ci with the silhouette sj of some
other cone cj. In order compute the intersection we process the
consecutive faces of cone ci. We start by projecting the face f1
onto the plane of silhouette sj. The projected face f1 is defined by
its boundary lines with the values αp1 , αp2. First, we need to find
a bin b = {αstart, αend, S} such that αp1 ∈ (αstart, αend). Then, we
intersect the line αp1 with all the edges in S. Since the edges in S
are sorted based on the increasing distance from the projected
vertex of cone ci (or distance from line p(s) in case of parallel
lines) we can immediately compute the edges of the resulting
intersection that lie on line αp1. Next, we traverse the bins in the
direction of the value αp2. As we move across the bins we build
the intersection polygons by adding the vertices that define the
bins. When we get to the bin b’ = {α’start, α’end, S’} such that αp2
∈ (α’start, α’end) we intersect the line αp2 with all edges in S’ and
compute the remaining edges of the resulting polygons. It is
important to note that the next projected face f2 is defined by the
boundary lines αp2, αp3. Therefore, we do not have to search for
the bin αp2 falls into. In this manner we compute the intersection
of all projected faces of cone ci with the silhouette sj. The running
time of this intersection operation is optimal since it is O(m),
where m is the number of vertices of the resulting cone
intersection. Therefore, the total running time for intersecting two
silhouette cones is O(n log n+nl +m), or O(n log n + nl) since m
is bounded by nl.

3.5 Calculating Visual Hull Faces
In the previous section we described how to perform the
intersection of two cones efficiently. Performing the pairwise
intersection on all pairs of cones results in k-1 polygon sets for
each face of each cone. The faces of the visual hull are the
intersections of these polygon sets at each cone face. We perform
the intersection of these polygon sets using standard algorithms
for Boolean operations [1,2]. It is important to note that the

polygons in these sets are possibly non-convex, have holes, and
have no high-degree vertices. The time to intersect two polygon
sets each with q vertices is O((q+a) log q), where a is the number
of vertices in the resulting intersection. In our case we have k-1
polygon sets for each cone face that we need to intersect. The
intersection of the k-1 polygons each with q vertices can be
implemented in O((kq +b)log kq) where b is the number of all
intersections of polygon edges.
Our resulting representation includes redundant copies of each
vertex in the resulting polyhedron (in fact, the number of copies
of each vertex is equal to the degree of the vertex divided by 2).
To optionally eliminate the redundant copies, we simply merge
identical vertices. This allows us to obtain a watertight model.

3.6 Complexity Analysis
We analyze the time complexity in terms of l. Recall that l is
defined to be the maximum number of intersections of a projected
line with a silhouette. Note that l is always less than n, and in
practice l is generally much smaller than n.
In Section 3.4, it is shown that the complexity of intersecting two
cones is O(n log n+nl). Thus, for all pairwise intersections
between cones we have O(k2(n log n + nl)).
The time to intersect k-1 polygons sets, each of them with at most
n vertices, is O((kn+b) log kn), where b is the number of vertices
in the intersection. In the worst case, each of the k silhouettes has
at most l faces with n vertices in each of the k-1 polygon sets. This
is because the number of vertices in the intersection of two cones
is bounded by O(nl). Therefore, the part of the algorithm
described in Section 3.5 takes O(kl(kn+b) log kn).
Combining the analyses of Sections 3.4 and 3.5, the complete
time complexity is O(k2(n log n + nl) + kl(kn+b) log kn).

4. Implementation and Results
We have implemented and tested the algorithm on a variety of
both synthetic and real silhouettes of objects. The silhouettes of
the real objects are obtained using a system composed of a digital
camera and a rotating platform. We can vary the complexity of the
silhouettes by arbitrarily approximating their contours. The
sample results of the visual hulls are shown in Figure 3. Table 1
shows the running time of the algorithm depending on the number
of input silhouettes. Table 2 shows the running time of the
algorithm depending on the number of edges in the input
silhouettes. All running times are measured on a 1GHz Pentium
III machine with 1GB of RAM.
These running times illustrate the performance of the algorithm in
the common case, when l is small relative to n. We can see that
the running times are nearly quadratic in the number of silhouettes
and nearly linear in the number of edges.
Table 1. Running Time vs Number of Cones
 (100 edges per silhouette)

Number of Cones Running Time (s)
2 0.015
3 0.031
4 0.047
5 0.078
6 0.125
8 0.235

10 0.375

continued from last page
12 0.563
16 0.984
20 1.547
24 2.187
28 2.953
32 3.828
36 4.797

Table 2. Running Time vs Edges in Silhouettes
 (8 cones per visual hull)

Edges per Silhouette Running Time (s)
9 0.031

15 0.047
23 0.078
35 0.094
41 0.109
55 0.141
67 0.156
74 0.174
86 0.203
99 0.234

113 0.265
135 0.313
173 0.421
241 0.609
319 0.860
459 1.344
590 1.797
641 2.000

5. Conclusion
In this paper we have presented an efficient algorithm for
constructing polyhedral representation of the visual hull. To our
knowledge, this is the first algorithm that is capable of computing
the visual hull polyhedral representation in real time or at least at
interactive frame rates. We believe it is well suited for a variety
applications especially those in computer graphics and computer
vision.

 REFERENCES
[1] Balaban, I. J., "An optimal algorithm for finding

segments intersections." Proc. 11th Annual ACM
Sympos. on Computational geometry,1995, p. 211-219.

[2] Bentley, J., Ottmann, T., "Algorithms for Reporting
and Counting Geometric Intersections." IEEE Trans.
Comput. C-28, 9 (Sept. 1979), pp. 643-647

[3] Buehler, C., Matusik, W., Gortler, S.J., and McMillan,
L., ”Creating and Rendering Image-Based Visual
Hulls.” Technical Report 780, Laboratory for
Computer Science, Massachusetts Institute of
Technology, June 1999.

[4] Chazelle, B., “An optimal Algorithm for Intersecting
Three-Dimensional Convex Polyhedra” , SIAM J.
Computing, 21 (1992), 671-696

[5] Laurentini, A. “The Visual Hull Concept for Silhouette
Based Image Understanding.” IEEE PAMI 16,2
(1994), 150-162.

[6] Matusik, W., C. Buehler, R. Raskar, S. Gortler, and L.
McMillan. ”Image-Based Visual Hulls” Proceedings of
ACM SIGGRAPH 2000, Computer Graphics
Proceedings, Annual Conference Series, July 2000, pp.
369-374.

[7] Potmesil, M. “Generating Octree Models of 3D
Objects from their Silhouettes in a Sequence of
Images.” CVGIP 40 (1987), 1-29.

[8] Rappoport, A., and S. Spitz. “Interactive Boolean
Operations for Conceptual Design of 3D solids.”
SIGGRAPH 97, 269-278.

[9] Rozenoer, Max & Shlyakhter, Ilya "Reconstruction of
3D Tree Models from Instrumented Photographs."
Master of Engineering Thesis, Massachusetts Institute
of Technology, 1999.

[10] Szeliski, R. “Rapid Octree Construction from Image
Sequences.” CVGIP: Image Understanding 58, 1 (July
1993), 23-32.

Figure 3: Shaded image of the visual hull and 6 out of 26
 input silhouettes that generated it.

	INTRODUCTION
	PREVIOUS WORK
	Visual Hull Computation Algorithm
	Inputs
	Algorithm Outline
	Reduction to 2D Intersections
	Efficient Projected Cone – Silhouette Intersection
	Construction of the Edge-Bins
	Efficient Intersection of the Projected Cone Faces with a Silhouette

	Calculating Visual Hull Faces
	Complexity Analysis

	Implementation and Results
	Conclusion
	In this paper we have presented an efficient algorithm for constructing polyhedral representation of the visual hull. To our knowledge, this is the first algorithm that is capable of computing the visual hull polyhedral representation in real time or at
	REFERENCES

