On the Inapproximability of the Shortest Vector in a Lattice within some constant factor (preliminary version)

Daniele Micciancio*
MIT Laboratory for Computer Science
Cambridge, MA 02139
MIT/LCS/TM-574

February 1998

Abstract

We show that computing the approximate length of the shortest vector in a lattice within a factor c is NP-hard for randomized reductions for any constant $c<\sqrt{2}$.

*email: miccianc@theory.lcs.mit.edu. Partially supported by DARPA contract DABT63-96-C-0018.

1 Introduction

In this paper we show that approximating the shortest vector in a lattice within any constant factor less than $\sqrt{2}$ is NP-hard for randomized reductions.

The first intractability results for lattice problems date back to [10] where van Emde Boas proved that the closest vector problem (CVP) is NP-hard and conjectured that the shortest vector problem was also NP-hard.

Altough much progress was done in proving the hardness of CVP [3], where the problem is proved NP-hard to approximate within any constant factor and quasi-NP-hard within quasi-polynomial factors, the hardness of computing even the exact solution to the SVP remained an open question until recently when Ajtai [2] proved that the SVP is NP-hard for randomized reductions. In the same paper it is shown that approximating the length of the shortest vector within a factor $1+\frac{1}{2^{n^{c}}}$ is also NP-hard for some constant c and in [5] is shown how to improve the inapproximability factor to $1+\frac{1}{n^{\epsilon}}$, but still a factor that rapidly approachs 1 as the dimention of the lattice grows.

In this paper we prove the first inapproximability result for the shortest vector problem within some constant factor greater than 1 . This result is achieved by reducing the approximate SVP from a variant of the CVP which can be proven NP-hard to approximate using essentially the same arguments as in [3]. The techniques to reduce CVP to SVP are similar to those used in [2] where the problem is reduced from a variant of subset sum. However the similarities between the CVP and the SVP leads both to a much simpler proof and a much stronger result.

The rest of the paper is organized as follows. In section 2 we formally define the shortest vector and closest vector approximation problems. In section 3 we prove the NP-hardness of a variant of the closest vector approximation problem. In section 4 we prove that the SVP is NP-hard to approximate by reduction from the modified CVP using a technical lemma which is proved in section 5 .

2 Definitions

We formalize the approximation problems associated to the shortest vector problem and the closest vector problem in terms of the following promise problems, as done in [6].

Definition 1 (Approximate SVP) The promise problem $\mathrm{GapSVP}_{\mathrm{g}}$, where g (the gap function) is a function of the dimension, is defined by

- Yes instances are pairs (V, d) where V is a basis for a lattice in R^{n}, $d \in R$ and $\|V \overrightarrow{\mathbf{z}}\|^{2} \leq d$ for some $\overrightarrow{\mathbf{z}} \in Z^{n} \backslash\{\overrightarrow{\mathbf{0}}\}$.
- NO instances are pairs (V, d) where V is a basis for a lattice in R^{n}, $d \in R$ and $\|V \overrightarrow{\mathbf{z}}\|^{2}>g(n) d$ for all $\overrightarrow{\mathbf{z}} \in Z^{n} \backslash\{\overrightarrow{\mathbf{0}}\}$.

Definition 2 (Approximate CVP) The promise problem GapCVP $_{g}$, where g (the gap function) is a function of the dimension, is defined by

- Yes instances are triples $(V, \overrightarrow{\mathbf{y}}, d)$ where $V \in Z^{k \times n}, \overrightarrow{\mathbf{y}} \in R^{k}, d \in R$ and $\|V \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{y}}\|^{2} \leq d$ for some $\overrightarrow{\mathbf{z}} \in Z^{n}$.
- No instances are triples $(V, \overrightarrow{\mathbf{y}}, d)$ where $V \in Z^{k \times n}, \overrightarrow{\mathbf{y}} \in R^{k}, d \in R$ and $\|V \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{y}}\|^{2}>g(n) d$ for all $\overrightarrow{\mathbf{z}}$.

We also define a variant of CVP, which will be used as an intermediate step in proving the hardness of approximating the shortest vector in a lattice. The difference is that the Yes instances are required to have a boolean solution, and in the NO instances the target vector can be multiplied by any non-zero integer.

Definition 3 (Modified CVP) The promise problem $\mathrm{GapCVP}_{\mathrm{g}}^{\prime}$, where g (the gap function) is a function of the dimension, is defined by

- Yes instances are triples $(V, \overrightarrow{\mathbf{y}}, d)$ where $V \in Z^{k \times n}, \overrightarrow{\mathbf{y}} \in R^{k}, d \in R$ and $\|V \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{y}}\|^{2} \leq d$ for some $\overrightarrow{\mathbf{z}} \in\{0,1\}^{n}$.
- No instances are triples $(V, \overrightarrow{\mathbf{y}}, d)$ where $V \in Z^{k \times n}, \overrightarrow{\mathbf{y}} \in R^{k}, d \in R$ and $\|V \overrightarrow{\mathbf{z}}-w \overrightarrow{\mathbf{y}}\|^{2}>g(n) d$ for all $\overrightarrow{\mathbf{z}} \in Z^{n}$ and all $w \in Z$.

3 Hardness of approximating CVP

In this section we prove that the modified CVP is NP-hard to approximate within any constant factor. The proof is by reduction from set cover and is essentially the same as in [3].

Definition 4 (Set-Cover) An instance of set-cover consists of a ground set U and a collection of subsets S_{1}, \ldots, S_{m} of U. A cover is a subcollection of the S_{i} 's whose union is U. The cover is said to be exact if the sets in the cover are pairwise disjoint.

In [4], Bellare, Goldwasser et al. show that for every constant $c>1$ there is a polynomial time reduction that, on input an instance ϕ of SAT, produces an instance of set-cover and an integer d with the following properties:

- If ϕ is satisfiable, there is an exact cover of size d,
- If ϕ is not satisfiable, then no set cover has size less than $c d$.

This result is used in [3] to show that the closest vector problem is hard to approximate within any constant factor. In fact, the same reduction can be used to prove that the modified CVP is NP-hard to approximate within any constant factor.

Theorem 1 For every constant $c>1$ the promise problem $\mathrm{GapCVP}_{\mathrm{c}}^{\prime}$ is $N P$ hard.

Proof: Let c be a constant greater than one. We reduce SAT to GapCVP ${ }_{c}^{\prime}$. Let ϕ be an instance of SAT. Apply the reduction from Bellare, Goldwasser et al. [4] to the formula ϕ, to obtained instance of set-cover U, S_{1}, \ldots, S_{m} and integer k. Let n be the size of U and let $S \in\{0,1\}^{n \times m}$ be the matrix defined by $S_{i, j}=1$ iff $i \in S_{j}$.

Define N and y as follows:

$$
N=\left[\begin{array}{c}
\alpha S \\
I
\end{array}\right] \quad \overrightarrow{\mathbf{y}}=\left[\begin{array}{c}
\alpha \overrightarrow{\mathbf{1}} \\
\overrightarrow{\mathbf{0}}
\end{array}\right]
$$

where α is an integer such that $\alpha^{2}>c k$.

- Assume ϕ is satisfiable. Then, U has an exact cover $\left\{S_{i}\right\}_{i \in I}$ of size $|I|=k$. Let $\overrightarrow{\mathrm{x}} \in\{0,1\}^{m}$ be the indicator vector of set I. We have $S \overrightarrow{\mathrm{x}}=\overrightarrow{\mathbf{1}}$ and $\|x\|^{2}=\sum x_{i}=k$. Therefore

$$
\|N \overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{y}}\|^{2}=\alpha^{2}\|S \overrightarrow{\mathrm{x}}-\overrightarrow{\mathbf{1}}\|^{2}+\|x\|^{2}=k,
$$

i.e., (N, \vec{y}) is a YES instance of the modified CVP.

- Assume ϕ is not satisfiable. Then every subset $\left\{S_{i}\right\}_{i \in I}$ of size $|I|<c k$ is not a cover. Let $\overrightarrow{\mathrm{x}} \in Z^{m}$ and $w \in Z \backslash\{0\}$. We want to prove that $\|N \overrightarrow{\mathrm{x}}-w \overrightarrow{\mathrm{y}}\|^{2}>c k$. Notice that $\|N \overrightarrow{\mathrm{x}}-w \overrightarrow{\mathrm{y}}\|^{2}=\alpha^{2}\|S \overrightarrow{\mathrm{x}}-w \overrightarrow{\mathbf{1}}\|^{2}+\|\overrightarrow{\mathrm{x}}\|^{2}$. We show that either $\alpha^{2}\|S \overrightarrow{\mathbf{x}}-w \overrightarrow{\mathbf{1}}\|^{2}$ or $\|\overrightarrow{\mathbf{x}}\|^{2}$ is greater than $c k$. Assume $\|\overrightarrow{\mathrm{x}}\|^{2} \leq c k$. We will prove that $\|S \overrightarrow{\mathrm{x}}-w \overrightarrow{\mathbf{1}}\|^{2} \geq 1$, which by our choice of α implies $\alpha^{2}\|S \overrightarrow{\mathrm{x}}-w \overrightarrow{\mathbf{1}}\|^{2}>c k$. Let I be the set of all i such that $x_{i} \neq 0$. Notice that $|I| \leq \sum\left|x_{i}\right| \leq \sum x_{i}^{2}=\|x\|^{2} \leq c k$. Therefore $\left\{S_{i}\right\}_{i \in I}$ is not a cover. Let $j \in U$ be such that $j \notin \bigcup_{i \in I} S_{i}$. We have $[S \overrightarrow{\mathbf{x}}]_{j}=0$ and therefore $\|S \overrightarrow{\mathbf{x}}-w \overrightarrow{\mathbf{1}}\|^{2} \geq\left([S \overrightarrow{\mathbf{x}}]_{j}-w\right)^{2} \geq w^{2} \geq 1$.

4 Hardness of approximating SVP

In this section we use the hardness of approximating the closest vector in a lattice to show that the shortest vector problem is also hard to approximate within some constant factor. The proof uses the following technical lemma.

Lemma 1 For any constant $\epsilon>0$ there exists a PPT algorithm that on input 1^{k} computes a lattice $L \in R^{(m+1) \times m}$, a vector $\overrightarrow{\mathrm{s}} \in R^{m+1}$ and a matrix $C \in Z^{k \times m}$ such that with probability arbitrarily close to one,

- For every non-zero $\overrightarrow{\mathbf{z}} \in Z^{m},\|L z\|^{2}>2$.
- For all $\overrightarrow{\mathbf{x}} \in\{0,1\}^{k}$ there exists a $\overrightarrow{\mathbf{z}} \in Z^{m}$ such that $C \overrightarrow{\mathbf{z}}=\overrightarrow{\mathbf{x}}$ and $\|L \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{s}}\|^{2}<1+\epsilon$.

The proof of the above lemma will be given in the next section. We can now prove the main theorem.

Theorem 2 The shortest vector in a lattice is NP-hard to approximate within any constant factor less than $\sqrt{2}$.

Proof: We will show that for any $\epsilon>0$ the squared norm of the shortest vector is NP-hard to approximate within a factor $2 /(1+2 \epsilon)$. The proof is by reduction from the modified closest vector problem. Formally, we give a reduction from GapCVP ${ }_{c}^{\prime}$ to GapSVP $_{g}$ with $c=2 / \epsilon$ and $g=2 /(1+2 \epsilon)$.

Let $(N, \overrightarrow{\mathbf{y}}, d)$ be an instance of GapCVP $_{c}^{\prime}$. We define an instance (V, t) of GapSVP $_{\mathrm{g}}$ such that if $(N, \overrightarrow{\mathbf{y}}, d)$ is a YES instance of GapCVP $_{\mathrm{c}}^{\prime}$ then (V, t) is a YES instance of $\operatorname{GapSVP}_{\mathrm{g}}$, and if $(N, \overrightarrow{\mathbf{y}}, d)$ is a NO instance of $\mathrm{GapCVP}_{\mathrm{c}}^{\prime}$ then (V, t) is a NO instance of GapSVP $_{g}$.

Let $L, \overrightarrow{\mathbf{s}}$ and C be as defined in lemma 1. Let $t=1+2 \epsilon$ and let V be the matrix

$$
V=\left[\begin{array}{c|c}
L & -\overrightarrow{\mathbf{s}} \\
\beta \cdot N \circ C & -\beta \cdot \overrightarrow{\mathbf{y}}
\end{array}\right]
$$

where $\beta=\sqrt{\epsilon / d}$.

- Assume that $(N, \overrightarrow{\mathbf{y}}, d)$ is a YES instance, i.e., there exists a vector $\overrightarrow{\mathrm{x}} \in$ $\{0,1\}^{k}$ such that $\|N \overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{y}}\|^{2} \leq d$. From lemma 1 there exists a vector $\overrightarrow{\mathbf{z}} \in Z^{m}$ such that $C \overrightarrow{\mathbf{z}}=\overrightarrow{\mathrm{x}}$ and $\|L \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{s}}\|^{2}<1+\epsilon$. Define the vector $\overrightarrow{\mathbf{w}}=\left[\begin{array}{c}\overrightarrow{\mathbf{z}} \\ 1\end{array}\right]$. We have

$$
\|V \overrightarrow{\mathbf{w}}\|^{2}=\|L \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{s}}\|^{2}+\beta^{2}\|N \overrightarrow{\mathrm{x}}-\overrightarrow{\mathbf{y}}\|^{2} \leq 1+2 \epsilon=t
$$

i.e., (V, t) is a YES instance of GapSVP $_{g}$.

- Now assume that $(N, \overrightarrow{\mathbf{y}}, d)$ is a No instance and let $\overrightarrow{\mathbf{w}}=\left[\begin{array}{c}\overrightarrow{\mathbf{z}} \\ w\end{array}\right] \in Z^{m+1}$ be a non-zero vector. We want to prove that $\|V \overrightarrow{\mathrm{w}}\|^{2} \geq g \cdot t=2$. Notice that $\|V \overrightarrow{\mathbf{w}}\|^{2}=\|L \overrightarrow{\mathbf{z}}-w \overrightarrow{\mathbf{s}}\|^{2}+\beta^{2}\|N \overrightarrow{\mathbf{x}}-w \overrightarrow{\mathbf{y}}\|^{2}$. We prove that either $\|L \overrightarrow{\mathbf{z}}-w \overrightarrow{\mathbf{s}}\|^{2}$ or $\beta^{2}\|N \overrightarrow{\mathbf{x}}-w \overrightarrow{\mathbf{y}}\|^{2}$ is greater than 2. If $w=0$ then $\overrightarrow{\mathbf{z}} \neq 0$ and $\|L \overrightarrow{\mathbf{z}}-w \overrightarrow{\mathbf{y}}\|^{2}=\|L \overrightarrow{\mathbf{z}}\|^{2}>2$. If $w \neq 0$ then $\beta^{2}\|N \overrightarrow{\mathrm{x}}-w \overrightarrow{\mathbf{y}}\|^{2} \geq \beta^{2} c d=2$.

5 Proof of the Technical Lemma

To prove lemma 1 we need a result from [2] and two other lemmas.
Lemma 2 For all $\epsilon>0$, for all sufficiently large integers b, the following holds. Let p_{1}, \ldots, p_{m} be m relatively prime positive integers. Let $P \in R^{m}$ be the vector $P_{i}=\log _{b} p_{i}$ and let $D \in R^{m \times m}$ be the diagonal matrix $D_{i, i}=$ $\sqrt{\log _{b} p_{i}}$. Define the matrix

$$
L=\left[\begin{array}{cc}
D & 0 \\
0 & 1 / a \\
\beta P & \beta / b \ln b
\end{array}\right]=\left[\begin{array}{ccc|c}
\sqrt{\log _{b} p_{1}} & & & 0 \\
& \ddots & & \vdots \\
& & \sqrt{\log _{b} p_{m}} & 0 \\
\hline 0 & \cdots & 0 & 1 / a \\
\hline \beta \log _{b} p_{1} & \cdots & \beta \log _{b} p_{m} & \beta / b \ln b
\end{array}\right]
$$

where $a=\frac{1}{3} \epsilon^{\epsilon / 2}$ and $\beta>\sqrt{2} b \ln b$. Then for all non-zero integer vectors $\overrightarrow{\mathbf{z}} \in Z^{m+1},\|L \overrightarrow{\mathbf{z}}\|^{2} \geq(2-\epsilon)$.

Proof: Let $\overrightarrow{\mathbf{z}} \in Z^{m+1}$ be a non-zero vector. Define the vector $\overrightarrow{\mathbf{z}}^{\prime}=\left[z_{1}, \ldots, z_{m}\right]^{T}$. Notice that

$$
\|L \overrightarrow{\mathbf{z}}\|^{2}=\left\|D \overrightarrow{\mathbf{z}}^{\prime}\right\|^{2}+\left(\frac{z_{m+1}}{a}\right)^{2}+\beta^{2}\left(P \overrightarrow{\mathbf{z}}^{\prime}+\frac{z_{m+1}}{b \ln b}\right)^{2} .
$$

We want to prove that $\|L \vec{Z}\|^{2} \geq 2-\epsilon$.
If $\overrightarrow{\mathbf{z}}^{\prime}=0$, then $z_{m+1} \neq 0$ and

$$
\|L \overrightarrow{\mathbf{z}}\|^{2} \geq \beta^{2}\left(P \overrightarrow{\mathbf{z}}^{\prime}+\frac{z_{m+1}}{b \ln b}\right)^{2}=\left(\frac{\beta}{b \ln b}\right)^{2} z_{m+1}^{2} \geq\left(\frac{\beta}{b \ln b}\right)^{2} \geq 2
$$

So, assume $\overrightarrow{\mathbf{z}}^{\prime} \neq 0$. Let $\overrightarrow{\mathbf{z}}^{+}, \overrightarrow{\mathbf{z}}^{-} \in Z^{m}$ be the vectors defined by $z_{i}^{+}=$ $\max \left\{z_{i}^{\prime}, 0\right\}$ and $z_{i}^{-}=\max \left\{-z_{i}^{\prime}, 0\right\}$. Define the integers $g^{+}=b^{P \vec{z}^{+}}=\Pi_{i} p_{i}^{z_{i}^{+}}$ and $g^{-}=b^{P \overrightarrow{\mathbf{z}}^{-}}=\Pi_{i} p_{i}^{z_{i}^{-}}$. Notice that $\overrightarrow{\mathbf{z}}^{\prime} \neq \overrightarrow{\mathbf{0}}$ implies $\overrightarrow{\mathbf{z}}^{+} \neq \overrightarrow{\mathbf{z}}^{-}$and since the p_{i} 's are relatively prime, $g^{+} \neq g^{-}$. We observe that for any positive integers $x \neq y,\left|\log _{b} x-\log _{b} y\right| \geq \frac{1}{\sqrt{x y} \lg b}$ (proof: $\left|\log _{b} x-\log _{b} y\right|=$ $\log _{b}(\max \{x, y\} / \min \{x, y\})=\log _{b}(1+|x-y| / \min \{x, y\}) \geq \log _{b}(1+1 / \sqrt{x y}) \geq$ $\log _{b} 2 / \sqrt{x y}=1 /(\sqrt{x y} \lg b)$.) In particular, $\left|P \vec{z}^{\prime}\right|=\left|\log _{b} g^{+}-\log _{b} g^{-}\right| \geq$
$\left(\sqrt{g^{+} g^{-}} \lg b\right)^{-1}$, and since $\log _{b} g^{+} g^{-}=P \overrightarrow{\mathbf{Z}}^{+}+P \overrightarrow{\mathbf{Z}}^{-} \leq\left\|D \overrightarrow{\mathbf{z}}^{+}\right\|^{2}+\left\|D \overrightarrow{\mathbf{Z}}^{-}\right\|^{2}=$ $\left\|D \overrightarrow{\mathbf{z}}^{\prime}\right\|^{2}$ we have

$$
\left|P \overrightarrow{\mathbf{z}}^{\prime}\right| \geq \frac{1}{b^{\frac{\left\|D \vec{z}^{\prime}\right\|^{2}}{2}} \lg b}
$$

Now assume for contradiction that $\|L \overrightarrow{\mathbf{z}}\|^{2}<2-\epsilon$. We have $\left\|D \overrightarrow{\mathbf{z}}^{\prime}\right\|^{2}<2-\epsilon$ and $\left|z_{m+1}\right|<a \sqrt{2}$. It follows

$$
\begin{aligned}
\|L \overrightarrow{\mathbf{z}}\| & \geq \beta\left|P \overrightarrow{\mathbf{z}}^{\prime}+\frac{z_{m+1}}{b \ln b}\right| \\
& \geq \beta\left(\left|P \overrightarrow{\mathbf{z}}^{\prime}\right|-\left|\frac{z_{m+1}}{b \ln b}\right|\right) \\
& \geq \beta\left(\frac{1}{b^{1-\epsilon / 2} \lg b}-\frac{a \sqrt{2}}{b \ln b}\right) \\
& >\left(\frac{\beta}{b \ln b}\right)\left(b^{\epsilon / 2} \ln 2-a \sqrt{2}\right) \\
& >\sqrt{2} b^{\epsilon / 2}(\ln 2-\sqrt{2} / 3)>\sqrt{2}
\end{aligned}
$$

Lemma 3 Let L be the matrix defined in lemma 2 and assume $\beta<b^{2-\epsilon}$. Define the vector $\overrightarrow{\mathbf{s}}=[0, \ldots, 0, \beta]^{T} \in R^{m+2}$. For every vector $\overrightarrow{\mathbf{z}}^{\prime} \in\{0,1\}^{m}$, let $g=\prod_{i=1}^{m} p_{i}^{z_{i}}$ and $\overrightarrow{\mathbf{z}}=\left[\left(\overrightarrow{\mathbf{z}}^{\prime}\right)^{T}, b-g\right]^{T}$. For every positive $\delta<1 / 2$, if $\left|z_{m+1}\right|=|b-g| \leq \delta a$, then $\|L \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{s}}\|^{2} \leq 1+\delta$.

Proof: Notice that

$$
\left\|D \overrightarrow{\mathbf{z}}^{\prime}\right\|^{2}=P \overrightarrow{\mathbf{z}}^{\prime}=\log _{b} g=\log _{b}\left(b-z_{m+1}\right)=1+\log _{b}\left(1-\frac{z_{m+1}}{b}\right)
$$

Therefore, using the inequality $|\ln (1+x)-x|<x^{2}$ valid for all $|x| \leq 1 / 2$, we have

$$
\begin{aligned}
\|L \overrightarrow{\mathbf{z}}-\overrightarrow{\mathbf{s}}\|^{2}= & \left\|D \overrightarrow{\mathbf{z}}^{\prime}\right\|^{2}+\left(\frac{z_{m+1}}{a}\right)^{2}+\beta^{2}\left(P \overrightarrow{\mathbf{z}}^{\prime}+\frac{z_{m+1}}{b \ln b}-1\right)^{2} \\
= & 1+\log _{b}\left(1-\frac{z_{m+1}}{b}\right)+\left(\frac{z_{m+1}}{a}\right)^{2} \\
& +\left(\frac{\beta}{\ln b}\right)^{2}\left(\ln \left(1-\frac{z_{m+1}}{b}\right)+\frac{z_{m+1}}{b}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq 1-\frac{z_{m+1}}{b \ln b}+\left(\frac{z_{m+1}}{a}\right)^{2}+\left(\frac{\beta}{\ln b}\right)^{2}\left(\frac{z_{m+1}}{b}\right)^{4} \\
& \leq 1+\delta\left(\frac{a}{b \ln b}\right)+\delta^{2}+\delta^{4}\left(\frac{a^{2} \beta}{b^{2} \ln b}\right)^{2}<1+\delta
\end{aligned}
$$

Lemma 4 For all $0<\gamma<1, \lambda>0$ and all large enough n, if b is chosen at random from the set, of all products of n distinct primes less than $n^{2+2 \gamma^{-1}}$, then with probability exponentially close to 1 there are at least n^{n} elements $g \in$, such that $|b-g| \leq \lambda b^{\gamma}$.

Proof: Let m be the number of primes less than $n^{2+2 \gamma^{-1}}$. From the prime number theorem we have $m>n^{2+2 \gamma^{-1}-\gamma / 3}$ for all large enough n, and
 $\left[0, n^{\left(2+2 \gamma^{-1}\right) n}\right]$ into $k=n^{\left(\frac{2}{\gamma}-\frac{2 \gamma}{3}\right) n}$ intervals each of size $n^{\left(2+\frac{2 \gamma}{3}\right) n}$. Let I_{b} the interval containing b. We will prove that with probability exponentially close to one $|g-b|<\lambda b^{\gamma}$ for all $g \in I_{b}$, and $\left|I_{b} \cap,\right|>n^{n}$. Let $g \in I_{b}$. We have $|g-b|<\left|I_{b}\right|$ and

$$
\begin{aligned}
\operatorname{Pr}\left(\left|I_{b}\right|>\lambda b^{\gamma}\right) & =\operatorname{Pr}\left(b<\lambda^{-\frac{1}{\gamma}} \cdot\left|I_{b}\right|^{\frac{1}{\gamma}}\right) \leq \frac{\lambda^{-\frac{1}{\gamma}} \cdot\left|I_{b}\right|^{\frac{1}{\gamma}}}{|,|} \\
& \leq \frac{\lambda^{-\frac{1}{\gamma}} \cdot n^{\left(\frac{2}{\gamma}+\frac{2}{3}\right) n}}{n^{\left(1+\frac{2}{\gamma}-\frac{\gamma}{3}\right) n}}=\lambda^{-\frac{1}{\gamma}} \cdot n^{-\left(\frac{1-\gamma}{3}\right) n}
\end{aligned}
$$

To bound the size of $I_{b} \cap$, observe that each interval I_{b} is chosen with probability $\left|I_{b} \cap,|/|\right.$,$| . Therefore we have$

$$
\begin{aligned}
\operatorname{Pr}\left(\left|I_{b} \cap,\right|<n^{n}\right) & =\operatorname{Pr}\left(\operatorname{Pr}\left(I_{b}\right)<\frac{n^{n}}{|,|}\right)=k \cdot \frac{n^{n}}{|,|} \\
& =n^{n} \cdot n^{\left(\frac{2}{\gamma}-\frac{2 \gamma}{3}\right) n} /|,| \leq \frac{n^{\left(1+\frac{2}{\gamma}-\frac{2 \gamma}{3}\right) n}}{n^{\left(1+\frac{2}{\gamma}-\frac{\gamma}{3}\right) n}}=n^{-\left(\frac{\gamma}{3}\right) n}
\end{aligned}
$$

Lemma 5 For all $\alpha_{1}, \alpha_{2}>0$, there exists $\delta_{1}, \delta_{2}, \delta_{3} \in(0,1)$ so that for all sufficiently large n the following holds: Assume that (S, X) is an n-uniform hypergraph, $n^{2} \leq|S| \leq n^{\alpha_{1}},|X| \geq 2^{\alpha_{2} n \lg n}, k=n^{\delta_{1}}$ and C_{1}, \ldots, C_{k} is a random sequence of pairwise disjoint subsets each with exactly $|S| n^{-\left(1+\delta_{2}\right)}$ elements, with uniform distribution on the set of all sequences with these properties. Then, with probability of at least $1-n^{-\delta_{3}}$ the following holds: for each $f \in\{0,1\}^{k}$ there is a $T \in X$ so that $f(j)=\left|C_{j} \cap T\right|$ for all j.

Proof: See Theorem 2.2 in [2].
We can now prove lemma 1. Let ϵ be a positive constant less than $1 / 2$ and let k be a sufficiently large integer. Let $\delta_{1}, \delta_{2}, \delta_{3}$ be the constant defined in lemma 5 with $\alpha_{1}=2+4 \epsilon^{-1}$ and $\alpha_{2}=1$. Let $n=k^{1 / \delta_{1}}$. Let L be the matrix defined in lemma 2 with p_{1}, \ldots, p_{m} the set of all primes less than $n^{2+4 \epsilon^{-1}}$ and b chosen at random among the products of n distinct such primes.

From lemma 2 we know that $\|L \overrightarrow{\mathbf{z}}\|^{2}>2-\epsilon$ for all non-zero $\overrightarrow{\mathbf{z}} \in Z^{m+1}$.
Let $C \in\{0,1\}^{k \times(m+1)}$ be the matrix defined by $C_{i, j}=1$ iff $j \in C_{i}$, where C_{1}, \ldots, C_{k} are the sets defined in lemma 5 with $S=\left\{p_{1}, \ldots, p_{m}\right\}$.

For every $\overrightarrow{\mathrm{x}} \in\{0,1\}^{k}$, let $f(j)$ be the function $f(j)=x_{j}$. Define X to be the set of all $T \subseteq S$ such that $|T|=n$ and $\left|b-\Pi_{t \in T} t\right| \leq \frac{\delta b^{\epsilon / 2}}{3}$. From lemma 4 (with $\gamma=\epsilon / 2$ and $\lambda=\epsilon / 3$) we have $|X| \geq n^{n}=2^{n \lg n}$, and from lemma 5 there exists a $T \in X$ such that $\left|C_{j} \cap T\right|=f(j)$ for all j. Let $\overrightarrow{\mathbf{z}}^{\prime} \in\{0,1\}^{m}$ be the indicator vector of the set $T, g=\Pi_{t \in T} t$ and define the vector $\overrightarrow{\mathbf{z}}=\left[\left(\overrightarrow{\mathbf{z}}^{\prime}\right)^{T} \mid b-g\right]^{T}$. Notice that $\left|z_{m+1}\right| \leq \frac{\delta b^{\epsilon / 2}}{3}$. We have $C \overrightarrow{\mathbf{z}}=\overrightarrow{\mathbf{x}}$, and from lemma $2,\|L \overrightarrow{\mathbf{z}}\|^{2} \leq 1+\epsilon$.

References

[1] L. Adleman, Factoring and Lattice Reduction, Manuscript, 1995, cited in [2]
[2] M. Ajtai, "The Shortest Vector Problem in L_{2} is NP-hard for Randomized Reductions", Electronic Colloquium on Computational Complexity, 1997, http://www.eccc.uni-trier.de/eccc/
[3] S. Arora, L. Babai, J. Stern, Z. Sweedyk, "The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations", Proc.

34th Annual Symposium on Foundation of Computer Science, 1993, pp. 724-733.
[4] M. Bellare, S. Goldwasser, C. Lund, A. Russel, "Efficient Multi-Prover Interactive Proofs with Applications to Approximation Problems", In Proc. 25th ACM Symp. on Theory of Computing, 1993, pp. 113-131.
[5] J.Y. Cai, A. Nerurkar, "Approximating the SVP to within a factor (1+ $1 / \mathrm{dim}^{-\epsilon}$) is NP-hard under randomized reductions", Manuscript.
[6] O. Goldreich, S. Goldwasser, "On the Limits of Non-Approximability of Lattice Problems", preliminary version in ECCC TR97-031, http://www.eccc.uni-trier.de/eccc.
[7] R.M. Karp, "Reducibility among combinatorial problems", Miller and Thatcher eds., Complexity of Computer Computations, 1972, Plenum Press, pp. 85-103.
[8] R. Kannan, "Minkowski's convex body theorem and integer programming", Mathematics of Operation Research, 12/3, 1987.
[9] C. Lund, M. Yannakakis, "On the Hardness of Approximating Minimization Problems", Journal of the ACM, 41(5):960-981. Prelim. version in STOC'93.
[10] P. van Emde Boas. "Another NP-complete problem and the complexity of computing short vectors in a lattice", Tech. Report 81-04, Math Inst. Univ. Amsterdam, 1981.

