
Veri�able Secret Sharing as

Secure Computation

Rosario Gennaro Silvio Micali

Laboratory for Computer Science

Massachusetts Institute of Technology
rosario,silvio@theory.lcs.mit.edu

Abstract

We present a stronger notion of veri�able secret sharing and exhibit a pro-

tocol implementing it. We show that our new notion is preferable to the old

ones whenever veri�able secret sharing is used as a tool within larger protocols,

rather than being a goal in itself.

1 Introduction

Secret Sharing and Veri�able Secret Sharing (VSS for short) are fundamental notions
and tools for secure cryptographic design. Despite the centrality and the maturity of
this concept (almost 10 years passed from its original introduction), we shall advocate
that a stronger and better de�nition of a VSS is needed.

The intuitive notion of a VSS. As �rst introduced by Chor, Goldwasser, Micali
and Awerbuch in [3], a VSS protocol consists of a two-stage protocol. Informally, there
are n players, t of which may be bad and deviate from their prescribed instructions.
One of the players, the dealer, possesses a value s as a secret input. In the �rst stage,
the dealer commits to a unique value v (no matter what the bad players may do);
moreover, v = s whenever the dealer is honest. In the second stage, the already
committed value v will be recovered by all good players (again, no matter what the
bad players might do).

Prior work. Several de�nitions and protocols for VSS have been proposed in
the past ten years (E.g., [3, 1, 2, 4, 11].) We contend, however, that these notions
and these protocols are of very limited use. In fact, their security concerns \begin
when the dealer's secret is committed, and end when it is recovered." Because in
many applications running a single VSS protocol is exactly what is wanted, these
prior de�nitions and protocols are totally adequate in those scenarios. They are not,
however, adequate in more general scenarios: when VSS is used as a tool towards
other ends, that is, when it is used as a sub-protocol within a larger protocol. Indeed,
and unfortunately, it is by now a well-known phenomenon that protocols that are
secure by themselves, cease to be secure when used as a sub-protocols. (For instance,
[4] used their VSS as a tool to reach Byzantine agreement, and thus had to argue that
their overall protocol was secure \from scratch" rather than in a \modular way." Of
course, such proofs from scratch tend to be overly long and complex.)

Our work. In this paper we put forward a de�nition of VSS that guarantees
reducibility; that is, security even when VSS is used as a sub-routine in an otherwise
secure protocol. A notion of security that guarantees reducibility has been presented
by Micali and Rogaway [9], but for the problem of function evaluation. We thus wish
to extend reducibility-guaranteeing notions of security to veri�able secret sharing
protocols and concretely exhibit VSS protocols that provably satisfy these notions.
More precisely, in this paper we achieve the following goals:

1. We propose a new de�nition of VSS based on secure function evaluation

(This will guarantee the reducibility that characterizes the latter notion.)

2. We compare our new notion with the previously proposed ones, and show that
it is strictly and inherently stronger.

1

(Indeed, though sometimes protocols proved to satisfy weaker properties also
satisfy stronger ones, we shall also show that none of the previous VSS protocols
can satisfy our new notion.)

3. We modify an earlier VSS protocol of [1] and show that it is secure according
to our notion.

2 Prior work

In order to focus on the di�culties that are proper of VSS, in this extended abstract
we shall deal with a simple computational model, both when reviewing prior work
and when presenting our new one.

Computational Model. We consider n players communicating via a very con-
venient synchronous network. Namely, to avoid the use of Byzantine Agreement
protocols we allow players to broadcast messages, and, in order to avoid the use of
cryptography, we assume that each pair of players is connected by a private commu-
nication channel (i.e., no adversary can interfere with or have any access to messages
between good players).

We model the corrupted processors as being coordinated by an adversary A. This
adversary will be dynamic (i.e., decides during the execution of the protocol which
processors corrupt); all-powerful: (i.e., can perform arbitrarily long computations);
and completely-informed (i.e., when corrupting a player she �nds out all his computa-
tional history: private input, previous messages sent and received, coin tosses, etc.).
Further, the adversary is also allowed rushing (i.e., in a given round of communica-
tion, bad players receive messages before the good ones and, based on the messages
received by the bad players, the adversary can decide whom to corrupt next).

We say that such an adversary is a t-adversary (0 � t � n) if t is an upper bound
on the number of processors she can corrupt (t is also referred to as the fault-tolerance
of the protocol.)

This computational model is precisely discussed in [4] and [9].

Prior definitions of VSS To exactly capture the informal idea of a VSS, has
proven to be an hard task in itself. The de�nition reviewed below is that of [4], which
relies on the notion of a �xed event:

De�nition: We say that an event X is �xed at a given round in an execution E of a
protocol, if X occurs in any execution E0 of the protocol coinciding with E up to the
given round.

De�nition 1 Let P be a pair of protocols where the second is always executed after
the �rst one, P =(Share-Verify, Recover). In protocol Share-Verify, the identity
of the dealer is a common input to all players, and the secret is a private input to

2

the dealer; the output of player Pi is a value verificationi 2 fyes; nog. In protocol
Recover, the input of each player Pi is his computational history at the end of the
previous execution of Share-Verify; the output of each Pi is a string �i.

We say P is a VSS protocol with fault-tolerance t if the following 3 properties are
satis�ed:

1. Acceptance of good secrets: In all executions of Share-Verifywith a t-adversary
A in which the dealer is good, verificationi = yes for all good players Pi.

2. Veri�ability: If less than t players output verification = no at the end of
Share-Verify then at this time a value � has been �xed and at the end of
Recover all good players will output the same value � and moreover if the
dealer is good � = the secret. 1

3. Unpredictability In a random execution of Share-Verify with a good dealer
and the secret chosen randomly in a set of cardinality m any t-adversary A
won't be able to predict the secret better than at random i.e. if A outputs a
number a at the end of Share-Verify then Prob[a = s] = 1

m

Secure Computation. Let us summarize the de�nition of secure function evalu-
ation of [9]. Informally the problem is the following: n players P1; : : : ; Pn, holding,
respectively, private inputs x1; : : : ; xn, want to evaluate a vector-valued function f
on their individual secret inputs without revealing them (more than already implied
by f 's output). That is, they want to compute (y1; : : : ; yn) = f(x1; : : : ; xn) such that
each player Pi will learn exactly yi.

This goal is easily achievable if there is an external and trusted party, who pri-
vately receives all individual inputs and then computes and privately hands out all
individual outputs. Of course, even in this ideal scenario, the adversary can create
some problems. She can corrupt a player Pi before he gives his input xi to the exter-
nal party and change it with some other number x̂i. And she can still corrupt players
after the function has been evaluated and learn their outputs. These problems should,
however, be regarded as inevitable. Indeed, following [6], [9] call a protocol for eval-
uating f secure if it approximates the above ideal scenario \as closely as possible."
The nature of this approximation is informally summarized below.

De�nition (Initial con�guration, tra�c, input and output): Let us de�ne the follow-
ing quantities within the context of a protocol P .

The initial con�guration for P is a vector ~ic, whose ith component, ici = (xi; ri)
consists of the private input and the random tape of player Pi.

1Notice that if we simply ask in the Veri�ability condition that \all the good players output the
same number � at the end of the Recover phase" it would not be su�cient for our purposes. In
fact, we would still allow the adversary to decide during Recover what value � the good players will
output. Thus Share-Verify would not model a secret commitment as required.

3

The tra�c of player Pi in protocol P at round q, tqi , is the set of messages sent and
received by Pi up to that round.

A local input function ~I = (I1; : : : ; In) for P is an n-tuple of functions such that there
exists a speci�c round r such that, by applying Ii to the tra�c tri , we get the input

player Pi is \contributing to the computation." ~I(~ic) will denote the vector of those
values when P is run on initial con�guration ~ic.

A local output function ~O = (O1; : : : ; On) for P is an n-tuple of functions such that
by applying Oi to the �nal tra�c tfinali of player Pi we get his output.

De�nition (Adversary view): The adversary view, V IEWA
Network, during P is the

probability distribution over the set of computational histories (tra�c and coin tosses)
of the bad players.

De�nition (Simulator and ideal evaluation oracle): A simulator Sim is an algorithm
that \plays the role of the good players". The adversary interacts with the simulator
as if she was interacting with the network. The simulator tries to create a view for the
adversary that is indistinguishable from the real one. He does this without knowing
the input of the players, but it is given access to a special oracle called the ideal
evaluation oracle. For a protocol P with local input function ~I evaluatable at round
r, the rules of the interaction between Sim and the oracle are the following:

� if A corrupts player Pi before round r Sim gets from the oracle the input xi.

� at round r Sim gets the output y0i for all the players corrupted so far, where
(y0

1
; : : : ; y0n) = f(x0

1
; : : : ; x0n) where x

0
i = xi if Pi is still good, otherwise x0i = Ii(tri)

� if A corrupts a player Pi after round r, Sim gets from the oracle the pair (xi; y0i).

De�nition 2 (secure function evaluation)

Let f be a vector-valued function, P a protocol, Sim a simulator, and ~I and ~O local
input and output functions. We say that P securely evaluates the function f if

� Correctness: If ~ic is the initial con�guration of the network, then

1. xi = Ii(~ic) for all good players Pi

2. with high probability, ~O(~tfinal) = f(~I(~ic))

(I.e. no matter what the adversary does, the function is evaluated during the
protocol on some de�nite inputs de�ned by the local input functions over the
tra�c of the players. These inputs coincide with the original inputs for the
good players)

4

� Privacy: For all initial con�gurations ~ic, if V IEWA
Sim is the adversary view of

the simulated execution of the protocol, we have that

V IEWA

Network � V IEWA

Sim

(I.e., the two views are statistically indistinguishable.)

There are many reasons for which this de�nition captures correctly the notion of a
secure computation. In particular, the following one: the [9] de�nition allows one to
prove formally many desirable properties of secure protocols, the most interesting for
us being reducibility:

Theorem 1 ([9]) Let f and g be two functions. Suppose there is a protocol P that
securely evaluates f in the model of computation in which it can perform ideal evalu-
ation of g. Suppose also that there is a protocol Q that securely computes g. Denote
with PQ the protocol in which the code for Q is substituted in P in the places where
P ideally computes g. Then PQ is secure.

Interested readers are referred to the original (80-page!) paper [9] for a proof of this
statement and a complete and a formal description of their de�nition.

3 Our de�nition of VSS

In this section we provide a new de�nition of VSS that guarantees reducibility. The
key idea for achieving this property is to cast VSS in terms of secure function evalu-
ation. Accordingly, we shall de�ne two special functions shar and rec, and demand
that both of them be securely evaluated in the sense of [9].

We assume a network of n players P1; : : : ; Pn�1 and Pn, where Pn = D the dealer.
Let � = f0; 1g�. Consider the vector space �n and the following metric on it:

given two vectors ~a;~b in �n, let us de�ne the distance between them as the number
of components in which they di�er; that is,

d(~a;~b) = jf1 � i � n; ai 6= bigj

We de�ne the t-disc of ~a as the set of points at distance � t from ~a i.e.

disct(~a) = f~b 2 �n : d(~a;~b) � tg

We will de�ne again VSS as a pair of protocols, called Share-Verify and Recover,
that compute, respectively, two functions, shar and rec, satisfying the following
properties.

shar is the function we use to share the secret among the players. It is de�ned
on the entire space for the n� 1 players (their private input does not matter in this

5

phase) and on two �nite special sets R and S for the dealer. S is the space of possible
secrets while R is a set of random strings. We will ask even after seeing any l shares
(l � t) all secrets are equally likely to generate those shares. We call this property
t-uniformity (see 2 below).

Similarly rec is the function we use to reconstruct the secret. We will run it on
the output of the previous phase. What we want is that we will be able to do so even
if up to t components of the output of the sharing process are arbitrarily changed.
We call this property t-robustness of the function rec (see 3 below).

De�nition: We say that two functions shar and rec are a sharing-reconstructing
pair with parameter t if they have the following properties:

1. (Domain.)
shar : �n�1 � (R � S)! �n

and
rec : �n ! �n

2. (t-uniformity.) 8l � t there exists an integer nl such that 8 si1; : : : ; sil 2 � and
8 v1; : : : ; vn�1 2 �, 8 s 2 S, and 8~x 2 �n such that 8j 2 [1; l]xij = sij , there
exist exactly nl values r1; : : : ; rnl

2 R such that for i = 1; : : : ; nl,

shar(v1; : : : ; vn�1; ri � s) = ~x

3. (t-robustness.) 8 v1; : : : ; vn�1 2 �, 8 s 2 S, 8 r 2 R, if ~x 2 disct(shar(v1; : : : vn�1; r�
s)), then

rec(~x) = (s; s; : : : ; s)

A VSS protocol will be composed by two protocols that securely evaluate these two
functions; the second being evaluated over the output of the �rst2.

De�nition 3 A VSS protocol of fault-tolerance t is a pair of protocols (Share-Verify,
Recover) such that

� Share-Verify securely evaluates the function ~y = shar(x1; : : : ; xn�1; r � s),

� Recover securely evaluates the function rec(~y), and

� shar and rec are a sharing-reconstructing pair with parameter t.

Remarks: Though the above de�nition may appear \tailored on some speci�c VSS
protocols," in the �nal paper we shall argue that it does not loose any generality.

Also, as we shall see below, by demanding that both components (and particularly
the second one) of a share-reconstructing pair be securely evaluated, we are putting
an unusually strong requirement on a VSS protocol. But it is exactly this requirement
that will guarantee the desired reducibility property.

2In [4] they use the terminology sequence protocols for this kind of interaction between two
protocols

6

4 Comparison with previous de�nitions of VSS

Let us compare now De�nition 3 and De�nition 1, our token example of prior VSS
de�nitions. To begin with, there is a minor syntactical di�erence between the two
de�nitions: according to De�nition 1 when good players �nd out the dealer is bad
they just stop playing and output verification = no. In our new de�nition instead
the computation goes on, no matter what. This discrepancy can be eliminated by
having protocols in the �rst de�nition agree on a default value when the dealer is
clearly bad and protocols in the second de�nition always output verification = yes
at the end of Share-Verify (since we are dealing with a secure funciton evaluation,
we are guaranteed that all good players will output a common value).

With these minor changes we can prove the following:

Theorem 2 If P is a VSS protocol of fault-tolerance t satisfying De�nition 3, then
P is also a protocol of fault-tolerance t satisfying De�nition 1.

Sketch of Proof First, P satis�es the Veri�ability property of De�nition 1. Indeed
because of the t-robustness of the function rec we have that at the end of the phase
Share-Verify a value � has been �xed and all the good players will output this
value at the end of the Recover part. This is the value that can be obtained by
applying the function rec to the output of the function shar. Because of the t-
robustness property it does not matter that t bad players may change their input
before computing rec. Moreover if the dealer is good this value � is equal to the
secret s.

Second, P also satis�es the Unpredictability property of De�nition 1. Notice
that because of the t-uniformity property it is impossible (in an information-theoretic
sense) to predict the secret better than at random for any algorithm that has knowl-
edge of only l � t components of the output of the function shar. Any t-adversary
has that knowledge but she also has a view of the entire protocol. But here is where
the secure computation comes to our rescue. Because of the security of the evaluation
of the function shar the adversary can create the entire view by herself using the
simulator, and so basically the other information is irrelevant. So it's impossible for
any t-adversary to predict the secret better than at random.

Details of the proof will be presented in the �nal paper.

Are De�nitions 3 and 1 equivalent? That is, if a given VSS protocol P 0 satis�es
De�nition 1, does it also satisfy De�nition 3? The answer to this important question,
provided by the following Theorem 3, is NO. And it better be that way if we want to
preserve reducibility of VSS protocols.

Theorem 3 De�nition 3 is stricly stronger than De�nition 1, that is, there are VSS
protocols satisfying De�nition 1, but not De�nition 3.

7

We will prove this theorem formally in the �nal paper, but let us address here some
of the intuition behind the proof. We start with an easier point.

Consider a VSS protocol P , satisfying De�nition 1, in which the secret is a 3-
colorable graph. During the Recover protocol the graph is reconstructed together
with a 3-coloring of it kindly provided by the dealer. Notice that De�nition 1 is not
violated, but notice also that an adversary gains from the execution of such a protocol
some knowledge about the secret she could not obtain by herself. This in turns means
that there exists no simulator for this protocol and so that De�nition 3 cannot be
satis�ed. And the serious problem with P is that, if used inside a larger protocol in
which it is crucial that the knowledge of that particular 3-coloring stays hidden, P ,
though \secure" as a VSS protocol on its own, jeopardizes the security of the larger
protocol.

This problem with De�nition 1 could be easily solved by substituting property 3
(unpredictability) with a stronger one based on zero-knowledge and simulatability of
Share-Verify. In [4] they shortly address this point. But, still, this would not solve
all the problems. Indeed, another important di�erence between our de�nition and
the previous one is that we require the computation of the function rec to be secure,
i.e. simulatable. VSS protocols usually perform the Recover phase by having each
player distribute his share to the others. This is not simulatable.

Lemma 1 Distributing the shares is not a secure computation of the function rec.

In other words we want that, when we compute rec(~y) over ~y = shar(v1; : : : ; vn�1; r�
s), no knowledge about ~y should leak except the secret s. The rationale for asking this
is again the fact that we want our VSS protocols to be secure not just by themselves
but when used inside subroutines of more complex protocols. Leaking knowledge
about the shares may create problems to the security of the overall protocol.

Probably one of the reasons this point was missed before was that in Shamir's
secret sharing scheme the shares consist of the value of a polynomial of degree t with
free term s. For a t-adversary who corrupts exactly t players, knowing the secret
is equivalent to knowing the shares of all players. In fact, knowing the t shares of
the corrupted players and the secret at the end of Recover, she has t + 1 points of
the t-degree polynomial, and by evaluating the so infered polynomial at the names
of all good players, she easily computes all shares. However, we object that what
happens to be true for the VSS protocols based on Shamir's scheme, may not be
true for all VSS protocols. And one should not \wire in" a general de�nition what
happens to be true in a speci�c case. Moreover, even in Shamir-based VSS protocols,
if the polynomial has degree bigger than the number of corrupted players, then it is
no longer true that knowledge of the secret is equivalent to knowledge of all shares.
(In fact, one may even use such a protocol both for veri�ably secret sharing a given
value and for, say, ipping a coin.) It is thus needed that the knowledge gainable by
an adversary at the end of a secure VSS protocol exactly coincides with the original
secret whenever the dealer is honest.

8

5 A VSS protocol that satis�es our de�nition

In the �nal paper, we shall demonstarte that Rabin's VSS protocol can be modi�ed so
as to yield a VSS protocol, secure in our sense and with fault-tolerance n=2. For the
time being, we will be content of exhibiting a simpler VSS protocol secure in our sense
and with fault-tolerance n=3, by modifying an older protocol of Ben-Or, Goldwasser,
and Wigderson [1]. The modi�cation actually occurs only in the Recover part, and
uses techniques also developed by [1], but within their \computational protocol"
rather than in their VSS protocol.

Let n = 3t+1 and P1; : : : ; Pn�1; Pn = D be the set of players, D being the dealer.
We will make all our computations modulo a large prime p > 22n. Let ! be a primitive
n-th root of the unity in Zp. It is known from the error-correcting codes theory that
if we evaluate a polynomial f of degree t over the n di�erent points !i for i = 1; : : : ; n
then given the sequence si = f(!i) then we can reconstruct the coe�cients of the
polynomial in polynomial time even if up to t elements in the sequence are arbitrarily
changed. For details on this error-correcting encoding of a polynomial known as the
Reed-Solomon code readers can refer to a standard text like [10]. Let m be a security
parameter.

Protocol Share-Verify ([1]):

1. The dealer chooses a random polynomial f0(x) of degree t with the only condi-
tion that f0(0) = s his secret. Then he sends to player Pi the share si = f0(!i).
Moreover he chooses m random polynomials f1; : : : ; fm of degree t as well and
sends to Pi the values fj(!i) for each j = 1; : : : ;m.

2. Each player Pi broadcasts a random value �i

3. The dealer broadcasts the polynomials gi =
Pm

k=0 �
k
i fk for all j = 1; : : : ;m

4. Player Pi checks if the values he holds satisfy the polynomials broadcasted by
the dealer. If he �nds an error he broadcasts a complaint. If more than t + 1
players complain then the dealer is faulty and all players assume the default
zero value to be the dealer's secret.

5. If less than t+1 players complained the dealer broadcasts the values he sent in
the �rst round to the players who complained.

6. Each player Pi broadcasts a random value �i

7. The dealer broadcasts the polynomials hi =
Pm

k=0 �
k
i fk for all j = 1; : : : ;m

8. Player Pi checks if the values he holds satisfy the polynomials broadcasted by
the dealer. If he �nds an error he broadcasts a complaint. If more than t + 1
players complain then the dealer is faulty and all players assume the default
zero value to be the dealer's secret.

9

Let shar be the following function:

shar(v1; v2; : : : ; vn�1; r � s) = (s1; s2; : : : ; sn�1; �)

with si = f0(!i) where f0(x) = s + a1x + : : : + atx
t and r = a1 � : : : � ad (i.e. the

polynomial is created using the coin tosses r of the dealer). Then we can state that

Lemma 2 Protocol Share-Verify securely evaluates the function shar according to
De�nition 2.

Proof To be presented in the full paper. (No proof of this protocol has yet ap-
peared.)

The Recover protocol is modi�ed with respect to the one in [1] in order to make
it a secure computation of the function rec.

Protocol Recover (Modi�ed):

1. Each player Pi chooses random polynomials pi(x); qi1(x); : : : ; qim(x) all with free
term 0. He sends to player Pj the values pi(!j); qi1(!j); : : : ; qim(!j)

2. Each player Pi broadcasts nm random bits ik;l

3. Each player Pi broadcasts the following polynomials rj = qij+jmodni;j pi for each
j = 1; : : : ;m

4. Each player Pi checks that the information player Pk sent him in round 1 is
consistent with what player Pk broadcasted in round 3. If there is a mistake or
Pk broadcasted a polynomial with non-zero free term broadcasts badk

5. If there are more than t+ 1 players broadcasting badk, player Pk is disquali�ed
and all the other players assume 0 to be Pk's share.

6. Each player Pi distributes to all other players the following value si + p1(!i) +
p2(!i) + : : :+ pn(!i) then interpolates the polynomial F (x) = f0(x) + p1(x) +
p2(x) + : : :+ pn(x) using the error correcting algorithm of Solomon and Reed.
The secret will then be s = F (0) = f(0).

Let rec be the function

rec(s1; : : : ; sn�1; �) = (s; : : : ; s; s)

where s is the result of the Solomon-Reed "interpolation" of the si.

Lemma 3 Protocol Recover securely evaluates the function rec according to De�-
nition 2.

10

Proof Omitted. Will be presented in the full paper.

And so it follows that

Theorem 4 The protocol P = (Share� Verify; Recover) is a VSS protocol accord-
ing to De�nition 3 with fault-tolerance n

3

Sketch of Proof Immediate from Lemmas 2 and 3 once we prove that shar and
rec are a sharing-reconstructing pair of parameter n

3
. But this is obvious from the

properties of polynomials and of the Reed-Solomon encoding. Details in the �nal
paper.

6 Conclusion

In the past cryptographic schemes and protocols used to be considered secure until
not broken. Due to the increasing use and importance of cryptography, this approach
is no more acceptable. To call a protocol secure we need a proof of its security. This
means that we need de�nitions and methods to be able to prove security.

Following this philosophy we have presented a new and stronger de�nition for
one of the most important cryptographic protocols: Veri�able Secret Sharing. We
argued that this de�nition is the correct one especially when VSS is to be used as
a sub-protocol inside larger protocols (which is probably the most common case for
VSS). We �nally presented a protocol which provably satis�es our new de�nition.

References

[1] M.BenOr, S.Goldwasser, A.Wigderson, Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation, Proceedings of STOC
1988

[2] D.Chaum, C.Crepeau, I.Damgard, Multiparty Unconditionally Secure Protocols,
Proceedings of STOC 1988, pp.11-19

[3] B.Chor, S.Goldwasser, S.Micali, B.Awerbuch, Veri�able Secret Sharing and
achieving simultaneity in the presence of faults, Proceedings of FOCS 1985, pp.
383-395.

[4] P.Feldman, S.Micali, An Optimal Probabilistic Protocol for synchronous Byzan-
tine Agreement, Proceedings of STOC 1988, �nal version in MIT-LCS TR425.b

[5] O.Goldreich, S.Micali, A.Wigderson, Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems, J. of the ACM, Vol.38,
No.1, pp. 691-729, 1991

11

[6] O.Goldreich, S.Micali, A.Wigderson, How to play any mental game, Proceedings
of STOC 1987

[7] S.Goldwasser, S.Micali, Probabilistic Encryption, J. of Computer and System
Sciences, Vol.18, No.1, pp.186-208

[8] S.Goldwasser, S.Micali, C.Racko�, The knowledge complexity of interactive proof
systems, in SIAM J. Comput. Vol.18 No.1, pp 186-208, 1989.

[9] S.Micali, P.Rogaway, Secure Computation, Proceedings of CRYPTO 1991, �nal
version available from the authors.

[10] W.Peterson, E.Weldon, Error Correcting Codes, MIT Press 1972

[11] T.Rabin, M.BenOr Veri�able Secret Sharing and multiparty protocols with honest
majority, Proceedings of STOC 1989

[12] A.Shamir, How to share a secret, Comm. of the ACM, 22(11), Nov. 1979, pp.
612-613

12

