Powered by

| Powered by

D) ,
_ Y
‘ Microsoft® Microsoft®
WindowsCE WindowsCE

o Q Pr() gra mmin g

Micros

Microsoft® Programming Series

®

ndows CE

“DOUG’S CODE
DEMONSTRATES
A PERFECT GRASP
OF WINDOWS CE—

CRAFTY AND ELEGANT.”

—Charles Petzold, author,
Programming Windows

Suiwwesgoud

Yo

— | The

definitive

guide to
programming
the Windows CE
API

Douglas Boling

Microsoft |] g
PRESS | o | Microsoft Press

MicrosorT
Winoows' GE

DOuglélS BOllng

Microsoft Press

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1998 by Douglas McConnaughey Boling

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Boling, Douglas McConnaughey, 1960—
Programming Microsoft Windows CE / Douglas McConnaughey Boling.
p. cm.
Includes index.
ISBN 1-57231-856-2
1. Microsoft Windows (Computer file) 2. Operating Systems
(Computers) L. Title.
QA76.76.063B623 1998
005.4'469--dc21 98-39279
CIP

Printed and bound in the United States of America.

123456789 QMQM 321098

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or

* contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
mspress.microsoft.com.

Active Desktop, Developer Studio, Microsoft, Microsoft Press, MS-DOS, Visual C++, Win32, Win-
dows, the Windows CE logo, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Kathleen Atkins
Technical Editor: Jim Fuchs

To Nancy Jane

part1 Windows Prog

chapter 1 Hello Windows CE

chapter 2 Drawing on the Screen

chapter 3 Input: Keyhoard, Stylus, and Menus
chapter 4 Windows, Controls, and Dialog Boxes

Part Ii dows GE Basics

chapter 5 Gommon Gontrols and Windows CGE
chapter 6 NMemory Management

chapter 7 Files, Databases, and the Registry
chapter 8 Processes and Threads

partit Communications

chapter 9 Serial Gommunications
chapter 10 Windows Networking and IrSock
chapter 11 Gonnecting to the Desktop

pativ Advanced Topi
chapter 12 Shell Programming—Part 1

chapter 13 Shell Programming—Part 2

Chapter 14 System Programming

Appendix GOM Basics

35
87
149

265
349
379
493

539
579
633

709
749
793

811

Contents

Acknowledgments
Introduction

part] Windows Programming Basics

chapter 1 Hello Windows GE
WHAT Is DIFFERENT ABOUT WINDOWS CE?
IT’S STILL WINDOWS PROGRAMMING
YOUR FIRST PROGRAM

chapter 2 Drawing on the Screen
PAINTING BASICS
WRITING TEXT
BITMAPS
LINES AND SHAPES

chapter 3 Input: Keyhoard, Stylus, and Menus
THE KEYBOARD
THE STYLUS AND THE TOUCH SCREEN
MENUS
RESOURCES

chapter 4 Windows, Gontrols, and Dialog Boxes
CHILD WINDOWS
WINDOWS CONTROLS
DIALOG BOXES
CONCLUSION

Xi
Xiii

0 O W W

35
36
39
63
71

87
87
105
125
127

149
150
169
208
262

Contents

Part ll

Chapter 5 Common Gontrols and Windows CE

Part Il

Chapter 9 Serial Gommunications

viii

PROGRAMMING COMMON CONTROLS
THE COMMON CONTROLS

OTHER COMMON CONTROLS
UNSUPPORTED COMMON CONTROLS

chapter 6 Memory Management

MEMORY BASICS
THE DIFFERENT KINDS OF MEMORY ALLOCATION

chapter 7 Files, Databases, and the Registry

THE WINDOWS CE FILE SYSTEM
DATABASES

THE REGISTRY

CONCLUSION

chapter 3 Processes and Threads

PROCESSES

THREADS

SYNCHRONIZATION
INTERPROCESS COMMUNICATION
EXCEPTION HANDLING

Communications

BAsIC DRIVERS

BAsIC SERIAL COMMUNICATION
THE INFRARED PORT

THE CECHAT EXAMPLE PROGRAM

265
266
267
346
348

349
350
358

379
380
417
467
491

493
493
499
507
516
531

539
539
545
557
560

Contents

chapter 10 Windows Networking and IrSock 579
WINDOWS NETWORKING SUPPORT 580
BASIC SOCKETS 599
TCP/IP PINGING 626

chapter 11 Gonnecting to the Desktop 633
THE WINDOWS CE REMOTE API 634
THE CEUTIL FUNCTIONS 662
CONNECTION NOTIFICATION 667
FILE FILTERS 680

partiv Advanced Topics

chapter 12 Shell Programming—Part 1 709
WORKING WITH THE SHELL 710
THE TASKBAR 716
THE OUT OF MEMORY DIALOG BOX 725
NOTIFICATIONS 726
CONSOLE APPLICATIONS 742

chapter 13 Shell Programming—Part 2 749
THE SUPPLEMENTARY INPUT PANEL 750
WRITING AN INPUT METHOD 758
HARDWARE KEYS 787

Chapter 14 System Programming 793
THE BOOT PROCESS 794
SYSTEM CONFIGURATION 802
WRITING CROSS-PLATFORM WINDOWS CE APPLICATIONS 802

Appendix GOM Basics 811
UsING COM INTERFACES 812
COM CLIENTS 812
COM SERVERS 813

Index 815

ix

Acknowledgments

I'd heard stories from authors about the travails of writing a book. Still I was unpre-
pared for the task. While I wrote, I learned just how much of a team effort is neces-
sary to make a book. My name appears on the cover, but countless others were
involved in its creation.

First, there is the talented team at Microsoft Press. Kathleen Atkins, the project
leader and editor of this book, took my gnarled syntax and confused text and made
it readable. Kathleen, thanks for your words of encouragement, your guidance, and
for making this book as good as it is. The book’s technical editor, Jim Fuchs, was my
voice in the initial editing process. His judgement was so good that I rarely had to
correct an edit for technical reasons. Many thanks also go to Cheryl Penner, the copy
editor and proofreader; Elizabeth Hansford, the principal compositor; and Michael
Victor, who translated my stick drawings into professional illustrations. Finally, thanks
to Eric Stroo, who took a chance and signed me to write this book. Eric, the sun seems
to be out now.

For technical help, I was privileged to be able to mine the golden knowledge
of the Microsoft Windows CE development team. Special thanks go to Mike Thomson,
who put up with endless inquiries about the technical details of Windows CE. On
the rare occasions that Mike didn’t have the answer, he guided me to the folks who
did. Among those folks who helped were Dave Campbell, Carlos Alayo, Scott Holden,
Omar Maabreh, Jeff Kelley, and Jeff Blum. While these guys did the best they could,
I am, of course, responsible for any mistakes introduced into the text as I interpreted
their answers.

You can’t write a book of this type without hardware. My thanks go to Cheryl
Balbach, Scott Nelson, and the Casio Corporation for their assistance. When other
companies turned me down, Casio stepped up to the plate and provided prerelease
and hard-to-find hardware necessary to test my code. Thanks, Cheryl. Call me if you
need any more drop testing performed.

I also owe a debt of gratitude to the folks at Vadem Ltd. It was while working at
Vadem that I was initially introduced to Windows CE and, amazingly enough, allowed
to contribute to the creation of one of the machines you’ll see in the introduction.
Thanks to Craig Colvin, who talked me into working at Vadem and is now busy de-
signing new and innovative Windows CE products; John Zhao, the president; and
Henry Fung, CTO; as well as the managers down the line, Jim Stair and Norm Farquhar.

Acknowledgments

To all of you, thanks for allowing me to disappear as the book ran behind schedule.
I'd also like to thank Edmond Ku, Scott Chastain, Ron Butterworth, Anthony Armenta,
and the rest of the Clio team.

One good friend deserves special mention. Jeff Prosise started me down this
path when he talked me into writing my first article in 1985. When you get past his
honesty, good nature, and modesty, you're left with one incredibly smart guy, de-
voted to his family and friends. Thanks, Jeff, for everything.

My career as a writer started at the top, PC Magazine. There, I'd like to thank
Michael Miller, Jake Kirchner, Bill Howard, and Gail Shaffer. Other folks no longer
directly tied to the magazine but whom I still regard as part of the PC Magazine fam-
ily are Bill Machrone, Trudy Neuhaus, and Dale Lewallen.

In addition, I thank two of the masters—Charles Petzold and Ray Duncan. These
guys, along with Jeff Prosise, write the best technical books on the planet.

Thanks also to the folks at Microsoft Systems Journal and Microsoft Interactive
Developer, Eric Maffei, Josh Trupin, and Gretchen Bilson. A special thanks goes to
Joe Flanigan, who introduced me to some of the folks on the Windows CE team at
Microsoft.

I'd also like to thank a number of musical groups that helped me through long
hours in front of the PC. These include but aren’t limited to the Beach Boys, the Cran-
berries, Alan Parson’s Project, Toad the Wet Sprocket, the Eagles, and Dire Straits.
Thanks also to the Southland Corporation, owners of the 7-Eleven franchise, for in-
venting the Big Gulp and its more potent cousins, the Super Big Gulp and the Double
Gulp. Thanks also to the Coca-Cola Corporation for providing the caffeine.

On a more serious note, if there’s any one person whose name also deserves to
be on the cover of this book, it'’s Nancy Jane Hendricks Boling, my wife. Nancy en-
dured a year of being a single parent because I spent every spare moment in front of
my PC and an array of Windows CE devices writing this book. Thank you, Nancy.
I'm sure I didn't say it enough over the past year. I love you. Your name isn’'t on the
cover, but the book is dedicated to you. I must also mention two other family mem-
bers—our sons Andy, 2 ¥ years old, and Sam, born during the writing of Chapter 9.
Andy is well on his way to becoming the best big brother a boy can be. Sam, well, he
has the cutest giggle. Thanks also to Amy Sekeras for taking such good care of Andy
and Sam.

Finally, I lack the words to adequately say thanks to my parents, Ronald and
Jane Boling. Mom and Dad, you are simply the best parents I know, have met, or
ever read about. It is my goal in life to attempt to be as good a parent to my children
as you are to Rob, Chris, Jay, and me. I am truly blessed to have you as parents.

Introduction

I was introduced to Microsoft Windows CE right before it was released in the fall of
1996. A Windows programmer for many years, I was intrigued by an operating sys-
tem that applied the well-known Windows API to a smaller, more power-conserving
operating system. The distillation of the API for smaller machines enables tens of
thousands of Windows programmers to write applications for an entirely new class
of systems. The subtle differences, however, make writing Windows CE code some-
what different from writing for Windows 98 or Windows NT. It’s those differences
that I'll address in this book.

JUST WHAT IS WINDOWS CE?

Windows CE is the newest, smallest, and arguably the most interesting of the Micro-
soft Windows operating systems. Windows CE was designed from the ground up to
be a small, ROM-based operating system with a Win32 subset API. Windows CE ex-
tends the Windows API into the markets and machines that can’t support the larger
footprints of Windows 98 and Windows NT.

Windows 98 is a great operating system for users who need backward compati-
bility with DOS and Windows 2.x and 3.x programs. While it has shortcomings, Win-
dows 98 succeeds amazingly well at this difficult task. Windows NT, on the other hand,
is written for the enterprise. It sacrifices compatibility and size to achieve its high level
of reliability and robustness.

Windows CE isn’t backward compatible with MS-DOS or Windows. Nor is it
an all-powerful operating system designed for enterprise computing. Instead, Win-
dows CE is a lightweight, multithreaded operating system with an optional graphi-
cal user interface. Its strength lies in its small size, its Win32 subset API, and its
multiplatform support.

PRODUCTS BASED ON WINDOWS CE

The first products designed for Windows CE were handheld “organizer” type devices
with 480-by-240 or 640-by-240 screens and chiclets keyboards. These devices, dubbed
Handheld PCs, were first introduced at Fall Comdex 96. Fall Comdex 97 saw the re-
lease of a dramatically upgraded version of the operating system, Windows CE 2.0,

xiii

Introduction

xiv

with newer hardware in a familiar form—this time the box came with a 640-by-240
landscape screen and a somewhat larger keyboard.

In January 1998 at the Consumer Electronics Show, Microsoft announced two
new platforms, the Palm-size PC and the Auto PC. The Palm-size PC was aimed di-
rectly at the pen-based organizer market currently dominated by the Palm Pilot. The
Palm-size PC sports a portrait mode, 240-by-320 screen and uses stylus-based input.
A number of Palm-size PCs are on the market today.

Figure I-1 shows both a Palm-size PC, in this case a Casio E-10, and a Handheld
PC, in this case a Casio A-20.

Figure I-1. 7he Casio E-10 Palm-size PC and the Casio A-20 Handbhbeld PC.

Just as this book is being released, Microsoft has introduced the Handheld PC
Professional, which is a greatly enhanced H/PC with new applications and which uses
the latest version of the operating system, Windows CE 2.11." This device brings the
compact nature of Windows CE to devices of laptop size. The advantages of apply-
ing Windows CE to a laptop device are many. First, the battery life of a Handheld PC
Pro is at least 10 hours, far better than the 2-to 3-hour average of a PC-compatible
laptop. Second, the size and weight of the Windows CE devices are far more user
friendly, with systems as thin as 1 inch weighing less than 3 pounds. Even with the
diminutive size, a Handheld PC Pro still sports a large VGA screen and a keyboard
that a normal human can use. The Vadem Clio Handheld PC Pro, shown in Figure 1-2,
is an example of how Windows CE is being used in newer platforms. The system

1. Windows CE 2.11 is Windows CE 2.10 with a few minor changes.

Introduction

can be used as a standard laptop or “flipped” into a tablet-mode device. This de-
vice is just one example of how Windows CE is expanding into new system types.

Figure I-2. The Vadem Clio Handhbeld PC Pro.

I refer to the Handheld PC Pro throughout this book under its operating system
version, Windows CE 2.1, because the platform name, Handheld PC Pro, was deter-
mined very late in the process. I knew of, and in fact, had a hand in the development
of a Handheld PC Pro under its code name Jupiter. However, you can't use code names
in a book, so its operating system version had to suffice.

Other platforms—Auto PC, Web TV set-top boxes, and embedded platforms
designed for specific tasks

are also appearing or will appear in the coming months.
What's amazing about Windows CE is that the flexibility of the operating system al-
lows it to be used in all these diverse designs while all the time retaining the same
basic, well-known Win32 API.

WHY YOU SHOULD READ THIS BOOK

Programming Microsoft Windows CE is written for anyone who will be writing appli-
cations for Windows CE. Both the embedded systems programmer using Windows CE
for a specific application and the Windows programmer interested in porting an ex-
isting Windows application or writing an entirely new one can use the information
in this book to make their tasks easier.

The embedded systems programmer, who might not be as familiar with the
Win32 API as the Windows programmer, can read the first section of the book to

xv

Introduction

become familiar with Windows programming. While this section isn’t the compre-
hensive tutorial that can be found in books such as Programming Windows by Charles
Petzold, it does provide a base that will carry the reader through the other chapters
in the book. It also can help the embedded systems programmer develop fairly com-
plex and quite useful Windows CE programs.

The experienced Windows programmer can use the book to learn about the
differences among the Win32 APIs used by Windows CE, Windows NT, and Windows
98. Programmers who are familiar with Win32 programming recognize subtle differ-
ences between the Windows 98 and Windows NT APIs. The differences between
Windows CE and its two cousins are even greater. The small footprint of Windows CE
means that many of the overlapping APIs in the Win32 model aren’t supported. Some
sections of the Win32 API aren’t supported at all. On the other hand, because of its
unique setting, Windows CE extends the Win32 API in a number of areas that are
covered in this text.

The method used by Programming Windows CE is to teach by example. I wrote
numerous Windows CE example programs specifically for this book. The source for
each of these examples is printed in the text. Both the source and the final compiled
programs for a number of the processors supported by Windows CE are also pro-
vided on the accompanying CD.

The examples in this book are all written directly to the API, the so-called
“Petzold” method of programming. Since the goal of this book is to teach you how to
write programs for Windows CE, the examples avoid using a class library such as MFC,
which obfuscates the unique nature of writing applications for Windows CE. Some
people would say that the availability of MFC on Windows CE eliminates the need for
direct knowledge of the Windows CE API. I believe the opposite is true. Knowledge
of the Windows CE API enables more efficient use of MFC. I also believe that truly know-
ing the operating system also dramatically simplifies the debugging of applications.

WHAT ABOUT MFC?

The simple fact is that Windows CE systems aren’t the best platform for a general-
purpose class library like MFC. The slower processors and the significantly lower
memory capacity of Windows CE devices make using MFC problematic. Most Win-
dows CE systems don’t include the MFC library in their ROM. This means that the
MFC and OLE32 DLLs required by MFC applications must be downloaded into the
systems. The first versions of the Palm-size PCs don’t even support MFC.

That said, there’s a place for MFC on Windows CE devices. One such place might
be if you're designing a custom application for a system you know will have the MFC
and OLE32 DLLs in ROM. For those specific applications, you might want to use MFC,
but-only if you know the target environment and have configured the system with
the proper amount of RAM to do the job.

Introduction

WINDOWS CE DEVELOPMENT TOOLS

This book is written with the assumption that the reader knows C and is at least fa-
miliar with Microsoft Windows. All code development was done with Microsoft Vi-
sual C++ 5.0 and Windows CE Visual C++ for Windows CE under Windows NT 4.0.

To compile the example programs in this book, you need Microsoft Visual C++ 5.0,
which is part of the integrated development environment (IDE), DevStudio, run-
ning on a standard IBM-compatible PC. You also need Microsoft Visual C++ for
Windows CE, which isn’t a stand-alone product. It's an add-in to Visual C++ 5.0 that
incorporates components to the compiler that produce code for the different CPUs
supported by Windows CE. Visual C++ for Windows CE isn’t currently available through
standard retail channels, but information on ordering it directly from Microsoft can
be found on the Microsoft Web site. Finally, you need one of the platform SDKs for
Windows CE. These SDKs provide the custom include files for each of the Windows
CE platforms. These platform SDKs are available for free on the Microsoft Web site.
As a convenience, I've also included the platform SDKs available at the time of the
writing of this book on the accompanying CD.

While not absolutely required for developing applications for Windows CE,
Windows NT 4.0 is strongly recommended for the development environment. It’s
possible to compile and download Windows CE programs under Windows 98, but
many of the features of the integrated development environment (IDE), such as Win-
dows CE emulation and remote debugging, aren’t supported.

Visual C++ for Windows CE won'’t change the outward appearance of Visual C++,
with the exception of a few new tools listed under the tools menu. Nor will the in-
stallation of Visual C++ for Windows CE prevent you from developing applications
for other Windows operating systems. The installation of Visual C++ for Windows CE
will result in new Windows CE targets such as WCE MIPS and WCE SH and WCE x86Em
being added to the platforms listing when you're creating a new Win32 application.
Also, a Windows CE MFC AppWizard will be added to the new projects listing to assist
in creating MFC programs for Windows CE.

TARGET SYSTEMS

You don’t need to have a Windows CE target device to experience the sample pro-
grams provided by this book. The various platform SDKs come with a Windows CE
emulator that lets you perform basic testing of a Windows CE program under Win-
dows NT. This emulator comes in handy when you want to perform initial debugging
to ensure that the program starts, creates the proper windows, reacts to menu selec-
tions, and so on. However, the emulator has some limitations and there simply is no
replacement for having a target Windows CE system to perform final debugging and
testing for applications.

Introduction

You should consider a number of factors when deciding what Windows CE
hardware to use for testing. First, if the application is to be a commercial product,
you should buy at least one system for each type of target CPU. You need to test against
all of the target CPUs because, while the source code will probably be identical, the
resulting executable will be different in size and so will the memory allocation foot-
print for each target CPU.

Most applications will also be written specifically for the Handheld PC or Palm-
size PC, not both. Although the base operating system for both the Handheld PC and
Palm-size PC is Windows CE, the hardware underneath is vastly different. The strict
memory constraints of the Palm-size PC, as well as its much smaller screen, its differ-
ent orientation, and its lack of a keyboard, force compromises that aren’t acceptable
on a Handheld PC or its larger relative, the Handheld PC Pro. Other constraints on
Palm-size PC systems, such as the lack of printing and TrueType support, differenti-
ate its environment from the Handheld PC’s.

In this book, I demonstrate programs that can run on the Handheld PC,
Handheld PC Pro, or Palm-size PC. The goal is to allow the lessons to be applied to
all platforms. For some examples, however, the different screen dimensions mean
that the example will run better on one particular system. I point out the differences
and the reasons they exist. For example, some controls might exist on only one plat-
form or the other. The shells for the two platforms—Handheld or Palm-size—are also
different and need separate coverage. Finally, a small set of features in Windows CE
are simply not supported on the smaller Palm-size PC platform.

WHAT’S ON THE CD

xviii

The accompanying CD contains the source code for all the examples in the book.
I've also provided project files for Microsoft DevStudio so that you can open
preconfigured projects. Unless otherwise noted, the examples are Windows CE 2.0
compatible so that they can run on most Windows CE systems available today. Chap-
ter 13, “Shell Programming—Part 2” contains examples that are compiled for
Windows CE 2.01, so they won't run on current Handheld PCs. There are some ex-
amples, such as the console applications in Chapter 12, that are specific to the
Handheld PC Pro and other devices running Windows CE 2.10.

When you build for a specific platform, remember that it might not be back-
ward compatible with earlier versions of Windows CE. For example, Microsoft moved
some of the C library support from statically linked libraries in Windows CE 2.0 into
the operating system for Windows CE 2.01, the Palm-size PC release. This reduces
the size of an executable, but prevents code built for the Palm-size PC from running
on a Handheld PC running Windows CE 2.0. You can, however, compile code for a
Handheld PC running Windows CE 2.0 and have it run on a Palm-size PC.

Introduction

In addition to the examples, the CD contains a number of folders of interest to
the Windows CE programmer. I've included the platform SDKs for the Handheld PC
as well as for the Palm-size PC. Unfortunately, the Handheld PC Pro SDK wasn’t avail-
able in time for this release. Like the other platform SDKs, that one is available for
free on the Microsoft Web site. Check out the readme file on the CD for late-breaking
information about what else is included on the CD.

OTHER SOURCES

While I have attempted to make Programming Microsoft Windows CE a one-stop shop
for Windows CE programming, no one book can cover everything. A nice comple-
ment to this book is Inside Windows CE by John Murray. It documents the “oral his-
tory” of Windows CE. Knowing this kind of information is crucial to understanding
just why Windows CE is designed the way it is. Once you know the why, it’s easy to
extrapolate the what, when trying to solve problems. Murray’s book is great, not just
because of the information you’ll learn about Windows CE but also because it’s an
entertaining read.

For learning more about Windows programming in general, I suggest the clas-
sic text Programming Windows by Charles Petzold. This is, by far, the best book for
learning Windows programming. Charles presents examples that show how to tackle
difficult but common Windows problems. For learning more about the Win32 kernel
API, 1 suggest Jeff Richter's Advanced Windows. Jeff covers the techniques of pro-
cess, thread, and memory management down to the most minute detail. For learning
more about MFC programming, there’s no better text than Jeff Prosise’s Programming
Windows 95 with MFC. This book is the “Petzold” of MFC programming and simply
a required read for MFC programmers.

FEEDBACK

While I have striven to make the information in this book as accurate as possible,
you’ll undoubtedly find errors. If you find a problem with the text or just have ideas
about how to make the next version of the book better, please drop me a note at
CEBook@DelValle.com. 1 can’t promise you that I'll answer all your notes, but I will
read every one.

Doug Boling
Tahoe City, California
August 1998

Part 1

WINDOWS
PROGRAMMING BASICS

Chapter 1

Hello Windows GE

From Kernighan and Ritchie to Petzold and on to Prosise, programming books tradition-
ally start with a “hello, world” program. It’s a logical place to begin. Every program has
a basic underlying structure that, when not obscured by some complex task it was de-
signed to perform, can be analyzed to reveal the foundation shared by all programs
running on its operating system.

In this programming book, the “hello, world” chapter covers the details of set-
ting up and using the programming environment. The environment for developing
Microsoft Windows CE applications is somewhat different from that for developing
standard Microsoft Windows applications because Windows CE programs are writ-
ten on PCs running Microsoft Windows NT and debugged mainly on separate, Win-
dows CE-based target devices.

While experienced Windows programmers might be tempted to skip this chap-
ter and move on to meatier subjects, I suggest that they—you—at least skim the chapter
to note the differences between a standard Windows program and a Windows CE
program. A number of subtle and significant differences in both the development
process and the basic program skeleton for Windows CE applications are covered in
this first chapter.

WHAT IS DIFFERENT ABOUT WINDOWS CE?

Windows CE has a number of unique characteristics that make it different from other
Windows platforms. First of all, the systems running Windows CE are most likely not
using an Intel x86 compatible microprocessor. Instead, a short list of supported CPUs
run Windows CE. Fortunately, the development environment isolates the program-
mer from almost all of the differences among the various CPUs.

Part| Windows Progr ng Basics

Nor can a Windows CE program be assured of a screen or a keyboard. Some Win-
dows CE devices have a 240-by-320-pixel portrait-style screen while others might have
screens with more traditional landscape orientations in 480-by-240, 640-by-240, or 640-
by-480-pixel resolution. An embedded device might not have a display at all. The tar-
get devices might not support color. And, instead of a mouse, most Windows CE
devices have a touch screen. On a touch-screen device, left mouse button clicks are
achieved by means of a tap on the screen, but no obvious method exists for delivering
right mouse button clicks. To give you some method of delivering a right click, the
Windows CE convention is to hold down the Alt key while tapping. It’s up to the Win-
dows CE application to interpret this sequence as a right mouse click.

Fewer Resources in Windows CE Devices

The resources of the target devices vary radically across systems that run Windows CE.
When writing a standard Windows program, the programmer can make a number of
assumptions about the target device, almost always an IBM-compatible PC. The tar-
get device will have a hard disk for mass storage and a virtual memory system that
uses the hard disk as a swap device to emulate an almost unlimited amount of (vir-
tual) RAM. The programmer knows that the user has a keyboard, a two-button mouse,
and a monitor that these days almost assuredly supports 256 colors and a screen reso-
lution of at least 640 by 480 pixels.

Windows CE programs run on devices that almost never have hard disks for
mass storage. The absence of a hard disk means more than just not having a place to
store large files. Without a hard disk, virtual RAM can’t be created by swapping data
to the disk. So Windows CE programs are almost always run in a low-memory envi-
ronment. Memory allocations can, and often do, fail because of the lack of resources.
Windows CE might terminate a program automatically when free memory reaches a
critically low level. This RAM limitation has a surprisingly large impact on Windows CE
programs and is one of the main difficulties involved in porting existing Windows
applications to Windows CE.

Unicode

One characteristic that a programmer can count on when writing Windows CE applica-
tions is Unicode. Unicode is a standard for representing a character as a 16-bit value as
opposed to the ASCII standard of encoding a character into a single 8-bit value. Unicode
allows for fairly simple porting of programs to different international markets because
all the world’s known characters can be represented in one of the 65,536 available
Unicode values. Dealing with Unicode is relatively painless as long as you avoid the
dual assumptions made by most programmers that strings are represented in ASCII
and that characters are stored in single bytes.

Chapter 1 Hello Windows GE

A consequence of a program using Unicode is that with each character taking up
two bytes instead of one, strings are now twice as long. A programmer must be careful
making assumptions about buffer length and string length. No longer should you as-
sume that a 260-byte buffer can hold 259 characters and a terminating zero. Instead of
the standard char data type, you should use the TCHAR data type. TCHAR is defined to
be char for Microsoft Windows 95 and Microsoft Windows 98 development and unsigned
short for Unicode-enabled applications for Microsoft Windows NT and Windows CE
development. These types of definitions allow source-level compatibility across ASCII-
and Unicode-based operating systems.

New Controls

Windows CE includes a number of new Windows controls designed for specific envi-
ronments. New controls include the command bar that provides menu- and toolbar-
like functions all on one space-saving line, critical on the smaller screens of Windows CE
devices. The date and time picker control and calendar control assist calendar and or-
ganizer applications suitable for handheld devices, such as the Handheld PC (H/PC)
and the Palm-size PC. Other standard Windows controls have reduced function,
reflecting the compact nature of Windows CE hardware-specific OS configurations.

Another aspect of Windows CE programming to be aware of is that Windows CE
can be broken up and reconfigured by Microsoft or by OEMs so that it can be better
adapted to a target market or device. Windows programmers usually just check the
version of Windows to see whether it is from the Microsoft Windows 3.1, 95, or 98
line or Windows NT line; by knowing the version they can determine what API func-
tions are available to them. Windows CE, however, has had four variations already in
its first two years of existence: the Handheld PC, the Palm-size PC, the Handheld PC
Pro, and the Auto PC. A number of new platforms are on their way, with much in
common but also with many differences among them. Programmers need to under-
stand the target platform and to have their programs check what functions are avail-
able on that particular platform before trying to use a set of functions that might not
be supported on that device.

Finally, because Windows CE is so much smaller than Windows 98 or Win-
dows NT, it simply can’t support all the function calls that its larger cousins do. While
you’d expect an operating system that didn’t support printing, such as Windows CE on
the original Palm-size PC, not to have any calls to printing functions, Windows CE also
removes some redundant functions supported by its larger cousins. If Windows CE
doesn’t support your favorite function, a different function or set of functions will
probably work just as well. Sometimes Windows CE programming seems to consist
mainly of figuring out ways to implement a feature using the sparse API of Windows CE.
If 2000 functions can be called sparse.

Partl Windows Propramming Basics

IT’S STILL WINDOWS PROGRAMMING

While differences between Windows CE and the other versions of Windows do exist,
they shouldn’t be overstated. Programming a Windows CE application is program-
ming a Windows application. It has the same message loop, the same windows, and
for the most part, the same resources and the same controls. The differences don’t
hide the similarities. For those who aren’t familiar with Windows programming, here’s
a short introduction.

Windows programming is far different from MS-DOS-based or Unix-based pro-
gramming. An MS-DOS or Unix program uses getc- and puic-style functions to read
characters from the keyboard and write them to the screen whenever the program
needs to do so. This is the classic “pull” style used by MS-DOS and Unix programs,
which are procedural. A Windows program, on the other hand, uses a “push” model,
in which the program must be written to react to notifications from the operating system
that a key has been pressed or a command has been received to repaint the screen.

Windows applications don’t ask for input from the operating system; the oper-
ating system notifies the application that input has occurred. The operating system
achieves these notifications by sending messages to an application window. All win-
dows are specific instances of a window class. Before we go any further, let’s be sure
we understand these terms.

The Window Class

A window is a region on the screen, rectangular in all but the most contrived of cases,
that has a few basic parameters, such as position—x, ¥, and z (a window is over or
under other windows on the screen)—visibility, and hierarchy—the window fits into
a parent/child window relationship on the system desktop, which also happens to be
a window.

Every window created is a specific instance of a window class. A window class
is a template that defines a number of attributes common to all the windows of that
class. In other words, windows of the same class have the same attributes. The most
important of the shared attributes is the window procedure.

The window procedure
The behavior of all windows belonging to a class is defined by the code in its win-
dow procedure for that class. The window procedure handles all notifications and
requests sent to the window. These notifications are sent either by the operating sys-
tem, indicating that an event has occurred to which the window must respond, or by
other windows querying the window for information.

These notifications are sent in the form of messages. A message is nothing more
than a call being made to a window procedure, with a parameter indicating the nature
of the notification or request. Messages are sent for events such as a window being moved

Chapter 1 Hello Windows CE

or resized or to indicate a key press. The values used to indicate messages are defined
by Windows. Applications use predefined constants, such as WM_CREATE or WM_MOVE,
when referring to messages. Since hundreds of messages can be sent, Windows conve-
niently provides a default processing function to which a message can be passed when
no special processing is necessary by the window class for that message.

The life of a message
Stepping back for a moment, let’s look at how Windows coordinates all of the mes-
sages going to all of the windows in a system. Windows monitors all the sources of
input to the system, such as the keyboard, mouse, touch screen, and any other hard-
ware that could produce an event that might interest a window. As an event occurs,
a message is composed and directed to a specific window. Instead of Windows di-
rectly calling the window procedure, the system imposes an intermediate step. The
message is placed in a message queue for the application that owns the window. When
the application is prepared to receive the message, it pulls it out of the queue and
tells Windows to dispatch that message to the proper window in the application.

If it seems to you that a number of indirections are involved in that process,
you're right. Let’s break it down.

1. An event occurs, so a message is composed by Windows and placed in a
message queue for the application that owns the destination window. In
Windows CE, as in Windows 95 and Windows NT, each application has
its own unique message queue’. (This is a break from Windows 3.1 and
earlier versions of Windows, where there was only one, systemwide mes-
sage queue.) Events can occur, and therefore messages can be composed,
faster than an application can process them. The queue allows an appli-
cation to process messages at its own rate, although the application had
better be responsive or the user will see a jerkiness in the application. The
message queue also allows Windows to set a notification in motion and
continue with other tasks without having to be limited by the responsive-
ness of the application to which the message is being sent.

2. The application removes the message from its message queue and calls
Windows back to dispatch the message. While it may seem strange that
the application gets a message from the queue and then simply calls Win-
dows back to process the message, there’s a method to this madness.
Having the application pull the message from the queue allows it to pre-
process the message before it asks Windows to dispatch the message to

1. Technically, each thread in a Windows CE application can have a message queue. Il talk about
threads later in the book.

Partl Windows Programming Basics

the appropriate window. In a number of cases, the application might call
different functions in Windows to process specific kinds of messages.

3. Windows dispatches the message; that is, it calls the appropriate window
procedure. Instead of having the application directly call the window pro-
cedure, another level of indirection occurs, allowing Windows to coordi-
nate the call to the window procedure with other events in the system.
The message doesn’t stand in another queue at this point, but Windows
might need to make some preparations before calling the window proce-
dure. In any case, the scheme relieves the application of the obligation to
determine the proper destination window—Windows does this instead.

4. The window procedure processes the message. All window procedures
have the same calling parameters: the handle of the specific window in-
stance being called, the message, and two generic parameters that con-
tain data specific to each message type. The window handle differentiates
each instance of a window for the window procedure. The message pa-
rameter, of course, indicates the event that the window must react to. The
two generic parameters contain data specific to the message being sent.
For example, in a WM_MOVE message indicating that the window is about
to be moved, one of the generic parameters points to a structure contain-
ing the new coordinates of the window.

Your First Program

Enough small talk. It's time to jump into the first example, Hello Windows CE. While
the entire program files for this and all examples in the book are available on the
companion CD-ROM, I suggest that, at least in this one case, you avoid simply load-
ing the project file from the CD and instead type in the entire example by hand. By
performing this somewhat tedious task, you'll see the differences in the development
process as well as the subtle program differences between standard Win32 programs
and Windows CE programs. Figure 1-1 contains the complete source for HelloCE, my
version of a hello, world program.

HelloCE.h

11
// Header file

1/ :

// Written for the book Programming Windows CE
// Copyright (C) 1998 Douglas Boling

/1

Figure 1-1. The HelloCE program.

Chapter 1 Hello Windows CE

Partl Windows Programming Basics

Figure 1-1. continued

Chapter 1 Hello Windows CE

// InitApp - Application initialization

/1

int InitApp (HINSTANCE hInstance) {
WNDCLASS wc;

// Register application main window class.
wc.style = 0; // Window style
wc.lpfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon
wc.hCursor = NULL; // Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.1pszMenuName = NULL; // Menu name
wc.1pszClassName = szAppName; // Window class name
if (RegisterClass (&wc) == 0) return 1;
return 0;

}

P e R e e e e R S S st S Sl AR LR L SR

// InitInstance - Instance initialization

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR T1pCmdLine, int nCmdShow) {
HWND hWnd;
// Save program instance handle in global variable.

hInst = hInstance;

// Create main window.

hWnd = CreateWindow (szAppName, // Window class
TEXT("Hello"), // Window title
WS_VISIBLE, // Style flags
CW_USEDEFAULT, // x position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT, // Initial height
NULL, // Parent
NULL, // Menu, must be null
hInstance, // Application instance
NULL); // Pointer to create

// parameters

(continued)

11

Patl Windows Programming Basics

Figure 1-1. continued

Chapter 1 Hello Windows CE

'

(continued)

Part |

Windows Programming Basics

Figure 1-1. continued

14

If you look over the source code for HelloCE, you'll see the standard boilerplate
for all programs in this book. I'll talk at greater length about a few of the characteris-
tics, such as Hungarian notation and the somewhat different method I use to con-
struct my window procedures later, in their own sections, but at this point I'll make
just a few observations about them.

Just after the comments, you see the include of windows.h. You can find this
file in all Windows programs; it lists the definitions for the special variable types and
function defines needed for a typical program. Windows.h and the include files it
contains make an interesting read because the basics for all windows programs come
from the functions, typedefs, and structures defined there. The include of commctrl.h
provides, among other things, the definitions for the command bar functions that are
part of almost all Windows CE programs. Finally, the include of HelloCE.h gives you
the boilerplate definitions and function prototypes for this specific program.

A few variables defined globally follow the defines and includes. I know plenty
of good arguments why no global variables should appear in a program, but I use
them as a convenience that shortens and clarifies the example programs in the book.
Each program defines an szAppName Unicode string to be used in various places in
that program. I also use the h/nst variable a number of places and I'll mention it when
I cover the InitApp procedure. The final global structure is a list of messages along

Chapter 1 Hello Windows CE

with associated procedures to process the messages. This structure is used by the win-
dow procedure to associate messages with the procedure that handles them. Now,
on to a few other characteristics common to all the programs in this book.

Hungarian Notation

A tradition, and a good one, of almost all Windows programs since Chatles Petzold wrote
Programming Windows is Hungarian notation. This programming style, developed years
ago by Charles Simonyi at Microsoft, prefixes all variables in the program usually with
one or two letters indicating the variable type. For example, a string array called Name
would instead be called szName, with the sz prefix indicating that the variable type
is a zero-terminated string. The value of Hungarian notation is the dramatic improvement
in readability of the source code. Another programmer, or you after not looking at a
piece of code for a while, won’t have to look repeatedly at a variable’s declaration to
determine its type. The following are typical Hungarian prefixes for variables:

Variable Type Hungarian Prefix
Integer iorn
Word (16-bit) wors
Double word (32-bit unsigned) dw
Long (32-bit signed) /
Char c
String sz
Pointer p
Long pointer ip
Handle b
Window handle buwnd
Struct size cb

You can see a few vestiges of the early days of Windows. The Ip, or long pointer,
designation refers to the days when, in the Intel 16-bit programming model, pointers
were either short (a 16-bit offset) or long (a segment plus an offset). Other prefixes
are formed from the abbreviation of the type. For example, a handle to a brush is
typically specified as hbr. Prefixes can be combined, as in Ipsz, which designates a
long pointer to a zero-terminated string. Most of the structures defined in the Windows
API use Hungarian notation in their field names. I use this notation as well throughout
the book, and I encourage you to use this notation in your programs.

15

Part |

Windows Programming Basics

My Programming Style

One criticism of the typical SDK style of Windows programming has always been the
huge switch statement in the window procedure. The swifch statement parses the
message to the window procedure so that each message can be handled indepen-
dently. This standard structure has the one great advantage of enforcing a similar struc-
ture across almost all Windows applications, making it much easier for one programmer
to understand the workings of another programmer’s code. The disadvantage is that
all the variables for the entire window procedure typically appear jumbled at the top
of the procedure.

Over the years, I've developed a different style for my Windows programs. The
idea is to break up the WinMain and WinProc procedures into manageable units that
can be easily understood and easily transferred to other Windows programs. WinMain
is broken up into procedures that perform application initialization, instance initial-
ization, and instance termination. Also in WinMain is the ubiquitous message loop
that’s the core of all Windows programs.

I break the window procedure into individual procedures, with each handling
a specific message. What remains of the window procedure itself is a fragment of
code that simply looks up the message that’s being passed to see whether a proce-
dure has been written to handle that message. If so, that procedure is called. If not,
the message is passed to the default window procedure.

This structure divides the handling of messages into individual blocks that can
be more easily understood. Also, with greater isolation of one message-handling code
fragment from another, you can more easily transfer the code that handles a specific
message from one program to the next. I first saw this structure described a number
of years ago by Ray Duncan in one of his old “Power Programming” columns in PC
Magazine. Ray is one of the legends in the field of MS-DOS and OS/2 programming.
I've since modified the design a bit to fit my needs, but Ray should get the credit for
this program structure,

Building HelloCE

16

To create HelloCE from scratch on your system, start Microsoft Visual C++ and create a
new Win32 application. The first change from standard Win32 programming becomes
evident when you create the new project. You'll have the opportunity to select a new
platform specific to Windows CE, as shown in Figure 1-2. These platforms have a WCE
prefix followed by the target CPU. For example, selecting Win32 (WCE MIPS) enables
compiling to a Windows CE platform with a MIPS CPU. No matter what target device
you have, be sure to check the WCE x86em target. This allows you to run the sample
program in the emulator under Windows NT.

Chapter 1 Hello Windows CE

Figure 1-2. 7he Platforms list box allows Visual C++ 5.0 to target Windows CE
platforms.

After you have created the proper source files for HelloCE or copied them from
the CD, select the target Win32 (WCE x86em) Debug and then build the program.
This step compiles the source and, assuming you have no compile errors, automati-
cally launches the emulator and inserts the EXE into the emulator file system; you
can then launch HelloCE. If you're running Windows 95 or Windows 98, the system
displays an error message because the emulator runs only under Windows NT.

If you have a Windows CE system available, such as an H/PC, attach the H/PC
to the PC the same way you would to sync the contents of the H/PC with the PC.
Open the Mobile Devices folder and establish a connection between the H/PC and
the PC. While it's not strictly necessary to have the Mobile Devices connection to your
Windows CE device running because the SDK tools inside Visual C++ are supposed
to make this connection automatically, I've found that having it running makes for
a more stable connection between the development environment and the
Windows CE system.

Once the link between the PC and the Windows CE device is up and running,
switch back to Visual C++, select the compile target appropriate for the target device
(for example, Win32 [WCE SH] Debug for an HP 360 HPC), and rebuild. As in the

17

Part |

18

Windows Programming Basics

case of building for the emulator, if there are no errors Visual C++ automatically down-
loads the compiled program to the remote device. The program is placed in the root
directory of the object store.

Running the program

To run HelloCE on an H/PC, simply click on the My Handheld PC icon to bring up the
files in the root directory. At that point, a double-tap on the application’s icon launches
the program.

Running the program on a Palm-size PC is somewhat more complex. Because
the Palm-size PC doesn’t come with an Explorer program that allows users to browse
through the files on the system, you can’t launch HelloCE without a bit of prepara-
tory work. You can launch the program from Visual C++ by selecting Execute from
the Build menu. Or you can have Visual C++ automatically copy the executable file
into the \windows\start menu\programs directory of the Palm-size PC. This auto-
matically places the program in the Programs submenu under the Start menu. You
can tell Visual C++ to automatically copy the file by setting the remote target path in
the Debug tab of the Project Settings dialog box. Figure 1-3 shows this dialog box. When
you've set this path, you can easily start the program by selecting it in the Start menu.

Figure 1-3. 7he Project Settings dialog box in Visual C++ with the Debug tab selected.

One “gotcha” to look out for here. If you're debugging and recompiling the
program, it can’t be downloaded again if an earlier version of the program is still
running on the target system. That is, make sure HelloCE isn’t running on the re-
mote system when you start a new build in Visual C++ or the auto download part
of the compile process will fail. If this happens, close the application and choose

Chapter 1 Hello Windows GE

the Update Remote File menu command in Visual C++ to download the newly com-
piled file.

Palm-size PC users will notice that unlike almost all Palm-size PC programs, HelloCE
has a Close button in the upper right corner of the window. By convention, the user
doesn’t close Palm-size PC applications; they’re closed only when the system needs
more memory space. The lack of a Close button in Palm-size PC applications is only
a user interface guideline, not a lack of function of the version of Windows CE in the
Palm-size PC. For development, you might want to keep a Close button in your appli-
cation because you'll need to close the program to download a new version. You can
then remove the Close button before you ship your application.

If you don’t have access to an H/PC or if you want to check out Windows CE
programming without the hassle of connecting to a remote device, the emulation
environment is a great place to start. It's the perfect place for stepping though the
code just as you would were you debugging a standard PC-based Windows program.
You can set breakpoints and step though code running on a remote system, but the
slow nature of the serial link as well as the difficulty in single-stepping a program on
the remote system make debugging on the emulator much less painful. On the other
hand, debugging on the remote system is the only way to truly test your program. While
the emulator is a good first step in the debug process, nothing replaces testing on the
target system.

The code

Now that you have the program up and running either in the emulator or on a Win-
dows CE device, it’s time to look at the code itself. The program entry point, WinMain,
is the same place any Windows program begins. Under Windows CE, however, some
of the parameters for WinMain have limits to the allowable values. WinMain is de-
fined as the following:

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPreviInstance,
LPWSTR 1pCmdLine, int nCmdShow);

The first of the four parameters passed, hInstance, identifies the specific instance
of the program to other applications and to Windows API functions that need to identify
the EXE. The bPrevInstance parameter is left over from the old Win16 API (Win-
dows 3.1 and earlier). In those versions of Windows, the hPrevinstance parameter
was nonzero if there were any other instances of the program currently running. In
all Win32 operating systems, including Windows CE, the hPrevinstance is always 0
and can be ignored.

The ICmdLine parameter points to a Unicode string that contains the text of
the command line. Applications launched from Microsoft Windows Explorer usu-
ally have no command line parameters. But in some instances, such as when the
system automatically launches a program, the system includes a command line

19

Part |

20

Windows Programming Basics

parameter to indicate why the program was started. The ICmdLine parameter provides
us with one of the first instances in which Windows CE differs from Windows NT or
Windows 98. Under Windows CE, the command line string is a Unicode string. In Win-
dows NT and Windows 98, the string is always ASCIL.

The final parameter, nShowCmnd, specifies the initial state of the program’s main
window. In a standard Win32 program, this parameter might specify that the window
be initially displayed as an icon (SW_SHOWMINIMIZE), maximized (SW_SHOW-
MAXIMIZED) to cover the entire desktop, or normal (SW_RESTORE), indicating that
the window is placed on the screen in the standard resizable state. Other values
specify that the initial state of the window should be invisible to the user or that the
window be visible but incapable of becoming the active window. Under Windows
CE, the values for this parameter are limited to only three allowable states: normal
(SW_SHOW), hidden (SW_HIDE), or show without activate (SW_SHOWNO-
ACTIVATE). Unless an application needs to force its window to a predefined state, this
parameter is simply passed without modification to the ShowWindow function after the
program’s main window has been created.

On entry into WinMain, a call is made to InitApp, where the window class for the
main window is registered. After that, a call to Initlnstance is made; the main window
is created in this function. I'll talk about how these two routines operate shortly, but for
now I'll continue with WinMain, proceeding on the assumption that at the return from
InitInstance the program’s main window has been created.

The message loop
After the main window has been created, WinMain enters the message loop, which
is the heart of every Windows application. HelloCE’s message loop is shown here:

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

The loop is simple: GetMessage is called to get the next message in the ap-
plication’s message queue. If no message is available, the call waits, blocking that
application’s thread until one is available. When a message is available, the call re-
turns with the message data contained in a MSG structure. The MSG structure itself
contains fields that identify the message, provide any message-specific parameters,
and identify the last point on the screen touched by the pen before the message was
sent. This location information is different from the standard Win32 message point
data in that in Windows 9x or Windows NT the point returned is the current mouse
position instead of the last point clicked (or tapped, as in Windows CE).

The TranslateMessage function translates appropriate keyboard messages into
a character message. (I'll talk about others of these filter type messages, such as

Chapter 1 Hello Windows GE

IsDialogMsg, later.) The DispatchMessage function then tells Windows to forward the
message to the appropriate window in the application.

This GetMessage, TranslateMessage, DispatchMessage loop continues until Get-
Message receives a WM_QUIT message which, unlike all other messages causes
GetMessage to return 0. As can be seen from the while clause, a return value of 0
by GetMessage causes the loop to terminate.

After the message loop terminates, the program can do little else but clean up
and exit. In the case of HelloCE, the program calls Termlinstance to perform any
necessary cleanup. HelloCE is a simple program and no cleanup is required. In more
complex programs, Terminstance would free any system resources that aren’t auto-
matically freed when the program terminates.

The value returned by WinMain becomes the return code of the program. Tra-
ditionally, the return value is the value in the wParam parameter of the last message
(WM_QUIT). The wParam value of WM_QUIT is set when that message is sent in
response to a PostQuitMessage call made by the application.

InitApp

The goal of InitApp is to perform global initialization for all instances of the applica-
tion that might run. In practice, InitApp is a holdover from Win16 days when win-
dow classes were registered on an applicationwide basis instead of for every instance,
as is done under Win32. Still, having a place for global initialization can have its uses
in some applications. For a program as simple as HelloCE, the entire task of InitApp
can be reduced to registering the application’s main window class. The entire proce-
dure is listed below:

int InitApp (HINSTANCE hInstance) {
WNDCLASS wc;

// Register App Main Window class.

wc.style = 0; // Class style flags
wc.1pfnWndProc = MainWndProc; // Callback function
wc.chCisExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hlnstance; // Owner handle
wc.hIcon = NULL; // Application icon
wc.hCursor = NULL; // Default cursor
wc.hbrBackground = (HBRUSH) = GetStockObject (WHITE_BRUSH);
wc.TpszMenuName = NULL; // Must be NULL
wc.lpszClassName = szAppName; // Class name

if (RegisterClass (&wc) == 0) return 1;

return 0;

21

Part |

22

Windows Programming Basics

Registering a window class is simply a matter of filling out a rather extensive struc-
ture describing the class and calling the RegisterClass function. The parameters assigned
to the fields of the WNDCLASS structure define how all instances of the main window
for HelloCE will behave. The initial field, style, sets the class style for the window. In
Windows CE the class styles are limited to the following:

B CS_GLOBALCLASS indicates that the class is global. This flag is provided only
for compatibility because all window classes in Windows CE are process
global.

B CS_HREDRAW tells the system to force a repaint of the window if the win-
dow is sized horizontally.

B CS_VREDRAW tells the system to force a repaint of the window if the win-
dow is sized vertically.

B CS_NOCLOSE disables the Close button if one is present on the title bar.

CS_PARENTDC causes a window to use its parent’s device context.

B CS_DBLCLKS enables notification of double-clicks (double-taps under Win-
dows CE) to be passed to the parent window.

The IpfnWndProc field should be loaded with the address of the window’s win-
dow procedure. Because this field is typed as a pointer to a window procedure, the
declaration to the procedure must be defined in the source code before the field is set.
Otherwise, the compiler’s type-checker will flag this line with a warning.

The cbClsExtra field allows the programmer to add extra space in the class struc-
ture to store class-specific data known only to the application. The cbWndExtra field
is much handier. This field adds space to the Windows internal structure responsible
for maintaining the state of each instance of a window. Instead of storing large amounts
of data in the window structure itself, an application should store a pointer to an
application-specific structure that contains the data unique to each instance of the
window. Under Windows CE, both the cbClsExtra and cbWndExtra fields must be
multiples of 4 bytes.

The hinstance field must be filled with the program’s instance handle, which
specifies the owning process of the window. The hlcon field is set to the handle of
the window’s default icon. The hIcon field isn’t supported under Windows CE and
should be set to NULL. (In Windows CE, the icon for the class is set after the first
window of this class is created. For HelloCE, however, no icon is supplied and un-
like other versions of Windows, Windows CE doesn’t have any predefined icons that
can be loaded.)

Chapter 1 Hello Windows GE

Unless the application being developed is designed for a Windows CE system
with a mouse, the next field, bCursor, must be set to NULL. Almost all Windows CE
systems use a touch panel instead of a mouse, so you find no cursor support in those
systems. For those special systems that do have cursor support, the Windows CE doesn’t
support animated cursors or colored cursors.

The hbrBackground field specifies how Windows CE draws the background of
the window. Windows uses the brush, a small predefined array of pixels, specified
in this field to draw the background of the window. Windows CE provides a number
of predefined brushes that you can load using the GetStockObject function. If the
bbrBackground field is NULL, the window must handle the WM_ERASEBKGND
message sent to the window telling it to redraw the background of the window.

The IpszMenuName field must be set to NULL because Windows CE doesn’t
support windows directly having a menu. In Windows CE, menus are provided by
command bar or command band controls that can be created by the main window.

Finally the JpszClassName parameter is set to a programmer-defined string that
identifies the class name to Windows. HelloCE uses the szAppName string, which is
defined globally.

After the entire WNDCLASS structure has been filled out, the RegisterClass func-
tion is called with a pointer to the WNDCLASS structure as its only parameter. If the
function is successful, a value identifying the window class is returned. If the func-
tion fails, the function returns 0.

Initinstance

The main task of Initinstance is to create the application’s main window and display
it in the form specified in the nShowCmd parameter passed to WinMain. The code
for Initlnstance is shown below:

HWND InitInstance (HINSTANCE hlnstance, LPWSTR 1pCmdLine, int nCmdShow) {
HWND hWnd;
HICON hIcon;

// Save program instance handle in global variable.
hInst = hlnstance;

// Create main window.

hWnd = CreateWindow (szAppName, // Window class
: TEXT("Hello0™), // Window title
WS_VISIBLE, // Style flags
0, o, // x, y position
CW_USEDEFAULT, // Initial width

(continued)

23

Part |

24

Windows Programming Basics

CW_USEDEFAULT, // Initial height

NULL, // Parent

NULL, // Menu, must be null
hinstance, // App instance

NULL): // Ptr to create params

// Return fail code if window not created.
if (!IsWindow (hWnd)) return 0;

// Standard show and update calls
ShowWindow (hWnd, nCmdShow);
UpdateWindow (hWnd);

return hWnd;

The first task performed by InitInstance is to save the program’s instance handle
hInstance in a global variable named hlnst. The instance handle for a program is useful
at a number of points in a Windows application. I save the value here because the
instance handle is known, and this is a convenient place in the program to store it.

All Windows programmers learn early in their Windows programming lives the
CreateWindow function call. Although the number of parameters looks daunting, the
parameters are fairly logical once you learn them. The first parameter is the name of
the window class of which our window will be an instance. In the case of HelloCE,
the class name is a string constant, szAppName, which was also used in the WNDCLASS
structure.

The next field is referred to as the window text. In other versions of Windows,
this is the text that would appear on the title bar of a standard window. However, since
Windows CE main windows rarely have title bars, this text is used only on the taskbar
button for the window. The text is couched in a TEXT macro, which insures that the
string will be converted to Unicode under Windows CE.

The style flags specify the initial styles for the window. The style flags are used
both for general styles that are relevant to all windows in the system and for class-
specific styles, such as those that specify the style of a button or a list box. In this
case, all we need to specify is that the window be created initially visible with the
WS_VISIBLE flag. Experienced Win32 programmers should refer to the documenta-
tion for CreateWindow because there are a number of window style flags that aren’t
supported under Windows CE.

The next four fields specify the initial position and size of the window. Since
most applications under Windows CE are maximized (that is, they take up the entire
screen above the taskbar), the size and position fields are set to default values, which
are indicated by the CW_USEDEFAULT flag in each of the fields. The default value
settings create a window that’s maximized under the current versions of Windows CE
but also compatible with future versions of the operating system, which might not

Chapter 1 Hello Windows CE

maximize every window. Be careful not to assume any particular screen size for a Win-
dows CE device because different implementations have different screen sizes.

The next field is set to the handle of the parent window. Because this is the
top-level window, the parent window field is set to NULL. The menu field is also set
to NULL because Windows CE supports menus through the command bar and com-
mand bands controls.

The hinstance parameter is the same instance handle that was passed to the
program. Creating windows is one place where that instance handle, saved at the
start of the routine, comes in handy. The final parameter is a pointer that can be
used to pass data from the CreateWindow call to the window procedure during the
WM_CREATE message. In this example, no additional data needs to be passed, so
the parameter is set to NULL.

If successful, the CreateWindow call returns the handle to the window just cre-
ated, or it returns 0 if an error occurred during the function. That window handle is then
used in the two statements (ShowWindow and UpdateWindow) just after the error-
checking if statement. The ShowWindow function modifies the state of the window to
conform with the state given in the nCmdShow parameter passed to WinMain. The
UpdateWindow function forces Windows to send a WM_PAINT message to the win-
dow that has just been created.

That completes the InitApp function. At this point, the application’s main win-
dow has been created and updated. So even before we have entered the message
loop, messages have been sent to the main window’s window procedure. It’s about
time to look at this part of the program.

MainWndProc

You spend most of your programming time with the window procedure when you’re
writing a Windows program. WinMain contains mainly initialization and cleanup code
that, for the most part, is boilerplate. The window procedure, on the other hand, is
the core of the program, the place where the actions of the program’s windows cre-
ate the personality of the program.

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1Param) {

INT 1i;

//

// Search message 1ist to see if we need to handle this

// message. If in Tist, call procedure.

//

for (i = 8; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param);
}
return DefWindowProc(hWnd, wMsg, wParam, 1Param);

25

Part |

26

Windows Programming Basics

All window procedures, regardless of their window class, are declared with the
same parameters. The LRESULT return type is actually just a long (a long is a 32-bit
value under Windows) but is typed this way to provide a level of indirection between
the source code and the machine. While you can easily look into the include files to
determine the real type of variables that are used in Windows programming, this can
cause problems when you’re attempting to move your code across platforms. Though
it can be useful to know the size of a variable type for memory-use calculations, there
is no good reason, and there are plenty of bad ones, not to use the type definitions
provided by windows.h.

The CALLBACK type definition specifies that this function is an external entry
point into the EXE, necessary because Windows calls this procedure directly, and that
the parameters will be put in a Pascal-like right-to-left push onto the program stack,
which is the reverse of the standard C-language method. The reason for using the
Pascal language stack frame for external entry points goes back to the very earliest
days of Windows development. The use of a fixed-size, Pascal stack frame meant that
the called procedure cleaned up the stack instead of leaving it for the caller to do.
This reduced the code size of Windows and its bundled accessory programs suffi-
ciently so that the early Microsoft developers thought it was a good move.

The first of the parameters passed to the window procedure is the window handle,
which is useful when you need to define the specific instance of the window. The wsg
parameter indicates the message being sent to the window. This isn’t the MSG struc-
ture used in the message loop in WinMain, but a simple, unsigned integer containing
the message value. The remaining two parameters, wParam and [Param, are used to
pass message-specific data to the window procedure. The names wParam and [Param
come to us from the Winl6 days, when the wParam was a 16-bit value and [Param
was a 32-bit value. In Windows CE, as in other Win32 operating systems, both the
wParam and [Param parameters are 32 bits wide.

It’s in the window procedure that my programming style differs significantly from
most Windows programs written without the help of a class library such as MFC. For
almost all of my programs, the window procedure is identical to the one shown above.
Before continuing, I repeat: this program structure isn’t specific to Windows CE. I use
this style for all my Windows applications, whether they are for Windows 3.1, Win-
dows 95, Windows NT, or Windows CE.

This style reduces the window procedure to a simple table look-up function.
The idea is to scan the MainMessages table defined early in the C file for the mes-
sage value in one of the entries. If the message is found, the associated procedure
is then called, passing the original parameters to the procedure processing the
message. If no match is found for the message, the DefWindowProc function is called.
DefWindowProc is a Windows function that provides a default action for all messages
in the system, which frees a Windows program from having to process every mes-
sage being passed to a window.

Chapter 1 Hello Windows GE

The message table associates message values with a procedure to process it. The
table is listed below:

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {

WM_CREATE, DoCreateMain,

WM_PAINT, DoPaintMain,

WM_HIBERNATE, DoHibernateMain,

WM_DESTROY, DoDestroyMain,
}s

The table is defined as a constant, not just as good programming practice but
also because it's helpful for memory conservation. Since Windows CE programs can
be executed in place in ROM, data that doesn’t change should be marked constant.
This allows the Windows CE program loader to leave such constant data in ROM
instead of loading a copy into RAM so that it can be modified later by the program.
The table itself is an array of a simple two-element structure. The first entry is

the message value, followed by a pointer to the function that processes the message.
While the functions could be named anything, I'm using a consistent structure through-
out the book to help you keep track of them. The names are composed of a Do pre-
fix (as a bow to object-oriented practice), followed by the message name and a suffix
indicating the window class associated with the table. So, DoCreateMain is the name
of the function that processes WM_CREATE messages for the main window of the
program.

DoCreateMain

The WM_CREATE message is the first message sent to a window. WM_CREATE is
unique among messages in that Windows sends it while processing the CreateWindow
function, and therefore the window has yet to be completely created. This is a good
place in the code to perform any data initialization for the window. But since the
window is still being created, some Windows functions, such as GetWindowRect, used
to query the size and position of the window, return inaccurate values. For our pur-
poses, the procedure shown in the following code performs only one function: it
creates a command bar for the window.

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
HWND hwndCB;

// Create a command bar.
hwndCB = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);

// Add exit button to command bar.

CommandBar_AddAdornments (hwndCB, 0, 0);
return 0;

27

Part |

28

Windows Programming Basics

Because Windows CE windows don’t support standard menus attached to win-
dows, a command bar is necessary for menus. While HelloCE doesn’t have a menu,
it does require a Close button, also provided by the command bar, so the program
can be terminated by the user. For this reason, the simplest form of command bar,
one with only a Close button, is created. You create the command bar by calling
CommandBar_Create and passing the program’s instance handle, the handle to the
window, and a constant that will be used to identify this specific command bar. (This
constant can be any integer value as long as it is unique among the other child win-
dows in the window.) Once you've created the command bar, you add a Close but-
ton by calling CommandBar_AddAdornments. Since all we want to do is perform
the default action for this function, the parameters passed are basic: the command
bar handle and two zeros. That completes the processing of the WM_CREATE mes-
sage. I'll examine the command bar in depth in Chapter 5.

DoPaintMain

Painting the window, and therefore processing the WM_PAINT message, is one of
the critical functions of any Windows program. As a program processes the WM_PAINT
message, the look of the window is achieved. Aside from painting the default back-
ground with the brush you specified when you registered the window class, Win-
dows provides no help for processing this message. In HelloCE, the task of the
DoPaintMain procedure is to display one line of text in the center of the window.

LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PAINTSTRUCT ps;
RECT rect;
HDC hdc;

// Adjust the size of the client rect to take into account

// the command bar height.

GetClientRect (hWnd, &rect);

rect.top += CommandBar_Height (GetDigItem (hWnd, IDC_CMDBAR));

hdc = BeginPaint (hWnd, &ps);
DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);

EndPaint (hWnd, &ps):;
return @;

Chapter 1 Hello Windows CE

Before the drawing can be performed, the routine must determine the size of the
window. In a Windows program, a standard window is divided into two areas, the
nonclient area and the client area. A window’s title bar and its sizing border commonly
comprise the nonclient area of a window, and Windows is responsible for drawing it.
The client area is the interior part of the window, and the application is responsible for
drawing that. An application determines the size and location of the client area by call-
ing the GetClientRect function. The function returns a RECT structure that contains left,
top, right, and bottom elements that delineate the boundaries of the client rectangle.
The advantage of the client vs. nonclient area concept is that an application doesn’t
have to account for drawing such standard elements of a window as the title bar.

When you're computing the size of the client area, you must remember that
the command bar resides in the client area of the window. So, even though the
GetClientRect function works identically in Windows CE as in other versions of Win-
dows, the application needs to compensate for the height of the command bar, which
is always placed across the top of the window. Windows CE gives you a convenient
function, CommandBar_Height, which returns the height of the command bar and
can be used in conjunction with the GetClientRect call to get the true client area of
the window that needs to be drawn by the application.

Other versions of Windows supply a series of WM_NCxxx messages that en-
able your applications to take over the drawing of the nonclient area. In Windows
CE, windows seldom have title bars and at the present time, none of them have a
sizing border. Because there’s so little nonclient area, the Windows CE developers
decided not to expose the nonclient messages.

All drawing performed in a WM_PAINT message must be enclosed by two func-
tions, BeginPaint and EndPaint. The BeginPaint function returns an HDC, or handle
to a device context. A device context is a logical representation of a physical display
device such as a video screen or a printer. Windows programs never modify the dis-
play hardware directly. Instead, Windows isolates the program from the specifics of
the hardware with, among other tools, device contexts.

BeginPaint also fills in a PAINTSTRUCT structure that contains a number of useful
parameters.

typedef struct tagPAINTSTRUCT {
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];
} PAINTSTRUCT;

29

Part |

30

Windows Programming Basics

The hdc field is the same handle that’s returned by the BeginPaint function. The
JfErase field indicates whether the background of the window needs to be redrawn by
the window procedure. The rcPaint field is a RECT structure that defines the client
area that needs repainting. HelloCE ignores this field and assumes that the entire client
window needs repainting for every WM_PAINT message, but this field is quite handy
when performance is an issue because only a part of the window might need repaint-
ing. Windows actually prevents repainting outside of the rcPaint rectangle even when
a program attempts to do so. The other fields in the structure, fRestore, fIncUpdate, and
rgbReserved, are used internally by Windows and can be ignored by the application.

The only painting that takes place in HelloCE occurs in one line of text in the
window. To do the painting, HelloCE calls the DrawText function. I cover the details
of DrawText in the next chapter, but if you look at the function it’s probably obvious
to you that this call draws the string “Hello Windows CE” on the window. After
DrawText returns, EndPaint is called to inform Windows that the program has
completed its update of the window.

Calling EndPaint also validates any area of the window you didn’t paint. Win-
dows keeps a list of areas of a window that are invalid (areas that need to be re-
drawn) and valid (areas that are up to date). By calling the BeginPaint and EndPaint
pair, you tell Windows that you've taken care of any invalid areas in your window,
whether or not you've actually drawn anything in the window. In fact, you must call
BeginPaint and EndPaint, or validate the invalid areas of the window by other means,
or Windows will simply continue to send WM_PAINT messages to the window until
those invalid areas are validated.

DoHibernateMain

You need DoHibernateMain because the WM_HIBERNATE message, unique to Win-
dows CE, should be handled by every Windows CE program. A WM_HIBERNATE
message is sent to a window to instruct it to reduce its memory use to the absolute
minimum.

LRESULT DoHibernateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

// If not the active window, destroy the cmd bar to save memory.
if (GetActiveWindow () != hWnd)
CommandBar_Destroy (GetDlgltem (hWnd, IDC_CMDBAR));

return 0;

In the case of HelloCE, the only real way to reduce memory use is to destroy
the command bar control. This is done by means of a call to CommandBar_Destroy.

Chapter 1 Hello Windows CE

The only case in which one should not destroy the command bar is when the window
is the active window, the window through which the user is interacting with the pro-
gram at the current time.

More complex Windows CE applications have a much more elaborate procedure
for handling the WM_HIBERNATE messages. Applications should free up as much
memory and system resources as possible without losing currently unsaved data. In
a choice between performance and lower memory use, an application is better reac-
tivating slowly after a WM_HIBERNATE message than it is consuming more memory.

DoActivateMain

While the WM_ACTIVATE message is common to all Windows platforms, it takes on
new significance for Windows CE applications because among its duties is to indi-
cate that the window should restore any data structures or window controls that were
freed by a WM_HIBERNATE message.

LRESULT DoActivateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
HWND hwndCB;

// If activating and no command bar, create it.
if ((LOWORD (wParam) != WA_INACTIVE) &&
(GetD1gItem (hWnd, IDC_CMDBAR) == 0)) {

// Create a command bar.
hwndCB = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);

// Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 9);
}
return 9;

The lower word of the wParam parameter is a flag that tells why the
WM_ACTIVATE message was sent to the window. The flag can be one of three val-
ues: WA_INACTIVE, indicating that the window is being deactivated after being the
active window; WA_ACTIVE, indicating that the window is about to become the ac-
tive window; and WA_CLICKACTIVE, indicating that the window is about to become
the active window after having been clicked on by the user.

HelloCE processes this message by checking to see whether the window remains
active and whether the command bar no longer exists. If both conditions are true, the
command bar is re-created using the same calls used for the WM_CREATE message.
The GetDigltem function is convenient because it returns the handle of a child window
of another window using its window ID. Remember that when the command bar, a

31

Part |

32

Windows Progromming Basics

child of HelloCE’s main window, was created, I used an ID of IDC_CMDBAR (defined
in HelloCE.h). That ID value is passed to GetDigltem to get the command bar window
handle. However, if the command bar window doesn’t exist, the value returned is 0,
indicating that HelloCE needs to re-create the command bar.

DoDestroyMain

The final message that HelloCE must process is the WM_DESTROY message sent when
a window is about to be destroyed. Because this window is the main window of the
application, the application should terminate when the window is destroyed. To make
this happen, the DoDestroyMain function calls PostQuitMessage. This function places
a WM_QUIT message in the message queue. The one parameter of this function is
the return code value that will be passed back to the application in the wParam pa-
rameter of the WM_QUIT message.

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PostQuitMessage (8);
return 9;

Notice that the DoDestroyMain function doesn’t destroy the command bar con-
trol created in DoCreateMain. Since the command bar is a child window of the main
window, it’s automatically destroyed when its parent window is destroyed.

As I've mentioned, when the message loop sees a WM_QUIT message, it exits
the loop. The WinMain function then calls TermlInstance, which in the case of HelloCE,
does nothing but return. WinMain then returns, terminating the program.

Running HelloCE

After you've entered the program into Visual C++ and built it, it can be executed by
a double-tap on the HelloCE icon. The program displays the Hello Windows CE text in
the middle of an empty window, as shown in Figure 1-4. Figure 1-5 shows HelloCE
running on a Palm-size PC. The command bar is placed by Windows CE across the
top of the window. Tapping on the Close button on the command bar causes Win-
dows CE to send a WM_CLOSE message to the window. Although HelloCE doesn’t
explicitly process the WM_CLOSE message, the Def WindowProc procedure enables
default processing by destroying the main window. As the window is being destroyed,
a WM_DESTROY message is sent, which causes PostQuitMessage to be called.

Chapter 1 Hello Windows CE

Hello Windows CE!

Figure 1-4. 7he HelloCE window on an H/PC.

Hello Windows CE!

Figure 1-5. 7he HelloCE window on a Palm-size PC.

As I said, HelloCE is a very basic Windows CE program but it does gives you a
skeleton of a Windows CE application upon which you can build. If you look at
HelloCE.EXE using Explorer, the program is represented by a generic icon. When
HelloCE is running, the button on the task bar representing HelloCE has no icon dis-
played next to the text. How to add a program’s icon as well as how the DrawText
function works are a couple of the topics I'll address in the next few chapters.

33

Chapter 2

Drawing
on the Screen

In Chapter 1, the example program HelloCE had one task: to display a line of text on
the screen. Displaying that line took only one call to DrawText with Windows CE
taking care of such details as the font and its color, the positioning of the line of text
inside the window, and so forth. Given the power of a graphical user interface (GUD,
however, an application can do much more than simply print a line of text on the
screen. It can craft the look of the display down to the most minute of details.

Over the life of the Microsoft Windows operating system, the number of func-
tions available for crafting these displays has expanded dramatically. With each suc-
cessive version of Windows, functions have been added that extend the tools available
to the programmer. As functions were added, the old ones remained so that even if
a function had been superseded by a new function old programs would continue to
run on the newer versions of Windows. The approach in which function after func-
tion is piled on while the old functions are retained for backward compatibility was
discontinued with the initial version of Windows CE. Because of the requirement to
produce a smaller version of Windows, the CE team took a hard look at the Win32
API and replicated only the functions absolutely required by applications written for
the Windows CE target market.

One of the areas of the Win32 API hardest hit by this reduction was graphical
functions. Not that you now lack the functions to do the job—it’s just that the high
degree of redundancy led to some major pruning of the Win32 graphical functions.

35

Part |

Windows Progras

ning Basics

An added challenge for the programmer is that different Windows CE platforms have
subtly different sets of supported APIs. One of the ways in which Windows CE graphics
support differs from that of its desktop cousins is that Windows CE doesn’t support
the different mapping modes available under other implementations of Windows.
Instead, the Windows CE device contexts are always set to the MM_TEXT mapping
mode. Coordinate transformations are also not supported under Windows CE. While
these features can be quite useful for some types of applications, such as desktop
publishing, their necessity in the Windows CE environment of small portable devices
isn’t as clear. Fortunately, as Windows CE matures we can expect more and more of
the basic Win32 API to be supported.

So when you're reading about the functions and techniques used in this chap-
ter, remember that some might not be supported on all platforms. So that a pro-
gram can determine what functions are supported, Windows has always had the
GetDeviceCaps function, which returns the capabilities of the current graphic device.
Throughout this chapter, I'll refer to GetDeviceCaps when determining what functions
are supported on a given device.

This chapter, like the other chapters in Part I of this book, reviews the drawing
features supported by Windows CE. One of the most important facts to remember is
that while Windows CE doesn’t support the full Win32 graphics API, its rapid evolu-
tion has resulted in it supporting some of the newest functions in Win32—some 50
new that you might not be familiar with them. This chapter shows you the functions
you can use and how to work around the areas where certain functions aren’t sup-
ported under Windows CE.

PAINTING BASICS

36

Historically, Windows has been subdivided into three main components: the ker-
nel, which handles the process and memory management; User, which handles the
windowing interface and controls; and the Graphics Device Interface, or GDI, which
performs the low-level drawing. In Windows CE, User and GDI are combined into
the Graphics Windowing and Event handler, or GWE. At times, you might hear a
Windows CE programmer talk about the GWE. The GWE is nothing really new—just
a different packaging of standard Windows parts. In this book, I usually refer to the
graphics portion of the GWE under its old name, GDI, to be consistent with standard
Windows programming terminology.

But whether you're programming for Windows CE or Windows 98 or Windows NT,
there is more to drawing than simply handling the WM_PAINT message. It's helpful
to understand just when and why a WM_PAINT message is sent to a window.

Chapter 2 Drawing on the Screen

Valid and Invalid Regions

When for some reason an area of a window is exposed to the user, that area, or re-
gion, as it’s referred to in Windows, is marked invalid. When no other messages are
waiting in an application’s message queue and the application’s window contains an
invalid region, Windows sends a WM_PAINT message to the window. As mentioned
in Chapter 1, any drawing performed in response to a WM_PAINT message is couched
in calls to BeginPaint and EndPaint. BeginPaint actually performs a number of ac-
tions. It marks the invalid region as valid, and it computes the clipping region. The
clipping region is the area to which the painting action will be limited. BeginPaint
then sends a WM_ERASEBACKGROUND message, if needed, to redraw the back-
ground, and it hides the caret—the text entry cursor—if it’s displayed. Finally
BeginPaint retrieves the handle to the display device context so that it can be used
by the application. The EndPaint function releases the device context and redisplays
the caret if necessary. If no other action is performed by a WM_PAINT procedure, you
must at least call BeginPaint and EndPaint if only to mark the invalid region as valid.

Alternatively, you can call to ValidateRect to blindly validate the region. But no
drawing can take place in that case because an application must have a handle to the
device context before it can draw anything in the window.

Often an application needs to force a repaint of its window. An application should
never post or send a WM_PAINT message to itself or to another window. Instead,
you do the following:

BOOL InvalidateRect (HWND hWnd, const RECT =1pRect, BOOL bErase);

Notice that InvalidateRect doesn’t require a handle to the window’s device context,
only to the window handle itself. The /pRect parameter is the area of the window to
be invalidated. This value can be NULL if the entire window is to be invalidated. The
bErase parameter indicates whether the background of the window should be redrawn
during the BeginPaint call as mentioned above. Note that unlike other versions of
Windows, Windows CE requires that the »Wnd parameter be a valid window handle.

Device Contexts

A device context, often referred to simply as a DC, is a tool that Windows uses to
manage access to the display and printer, although for the purposes of this chapter
I'll be talking only about the display. Also, unless otherwise mentioned, the explana-
tion that follows applies to Windows in general and isn’t specific to Windows CE.

Windows applications never write directly to the screen. Instead, they request
a handle to a display device context for the appropriate window, and then using the
handle, draw to the device context. Windows then arbitrates and manages getting
the pixels from the DC to the screen.

37

Part |

38

Windows Programming Basics

BeginPaint, which should only be called in a WM_PAINT message, returns a
handle to the display DC for the window. An application usually performs its draw-
ing to the screen during the WM_PAINT messages. Windows treats painting as a low-
priority task, which is appropriate since having painting at a higher priority would
result in a flood of paint messages for every little change to the display. Allowing an
application to complete all its pending business by processing all waiting messages
results in all the invalid regions being painted efficiently at once. Users don’t notice
the minor delays caused by the low priority of the WM_PAINT messages.

Of course, there are times when painting must be immediate. An example of
such a time might be when a word processor needs to display a character immedi-
ately after its key is pressed. To draw outside a WM_PAINT message, the handle to
the DC can be obtained using this:

HDC GetDC (HWND hWnd);

GetDC returns a handle to the DC for the client portion of the window. Drawing can
then be performed anywhere within the client area of the window because this pro-
cess isn’t like processing inside a WM_PAINT message; there’s no clipping to restrict
you from drawing in an invalid region.

Windows CE 2.1 supports another function that can be used to receive the
DC. It is

HDC GetDCEx (HWND hWnd, HRGN hrgnClip, DWORD flags);

GetDCEx allows you to have more control over the device context returned. The new
parameter, hrgnClip lets you define the clipping region, which limits drawing to
that region of the DC. The flags parameter lets you specify how the DC acts as you
draw on it. Windows CE doesn’t support the following flags: DCX_PARENTCLIP,
DCX_NORESETATTRS, DCX_LOCKWINDOWUPDATE, and DCX_VALIDATE.

After the drawing has been completed, a call must be made to release the de-
vice context:

int ReleaseDC (HWND hWnd, HDC hDC);

Device contexts are a shared resource, and therefore an application must not hold
the DC for any longer than necessary.

While GetDC is used to draw inside the client area, sometimes an application
needs access to the nonclient areas of a window, such as the title bar. To retrieve a
DC for the entire window, make the following call:

HDC GetWindowDC (HWND hWnd);

As before, the matching call after drawing has been completed for GetWindowDC
is ReleaseDC. :

Chapter 2 Drawing on the Screen

The DC functions under Windows CE are identical to the device context func-
tions under Windows 98 and Windows NT. This should be expected because DCs
are the core of the Windows drawing philosophy. Changes to this area of the API
would result in major incompatibilities between Windows CE applications and their
desktop counterparts.

WRITING TEXT

In Chapter 1, the HelloCE example displayed a line of text using a call to DrawText.
That line from the example is shown here:

DrawText (hdc, TEXT ("Hello Windows CE!"), -1, &rect,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);

DrawText is a fairly high-level function that allows a program to display text
while having Windows deal with most of the details. The first few parameters of
DrawText are almost self-explanatory. The handle of the device context being used
is passed, along with the text to display couched in a TEXT macro, which declares
the string as a Unicode string necessary for Windows CE. The third parameter is the
number of characters to print, or as is the case here, a —1 indicating that the string
being passed is null terminated and Windows should compute the length.

The fourth parameter is a pointer to a rect structure that specifies the formatting
rectangle for the text. DrawText uses this rectangle as a basis for formatting the text to
be printed. How the text is formatted depends on the function’s last parameter, the
formatting flags. These flags specify how the text is to be placed within the formatting
rectangle, or in the case of the DT_CALCRECT flag, the flags have DrawText compute
the dimensions of the text that is to be printed. DrawText even formats multiple lines
with line breaks automatically computed. In the case of HelloCE, the flags specify that
the text should be centered horizontally (DT_CENTER), and centered vertically
(DT_VCENTER). The DT_VCENTER flag works only on single lines of text, so the final
parameter, DT_SINGLELINE, specifies that the text shouldn’t be flowed across multiple
lines if the rectangle isn't wide enough to display the entire string.

Device Context Attributes

What I haven’t mentioned yet about HelloCE’s use of DrawText is the large number of
assumptions the program makes about the DC configuration when displaying the text.
Drawing in a Windows device context takes a large number of parameters, such as fore-
ground and background color and how the text should be drawn over the background
as well as the font of the text. Instead of specifying all these parameters for each draw-
ing call, the device context keeps track of the current settings, referred to as attributes,
and uses them as appropriate for each call to draw to the device context.

39

Part |

Windows Programming Basics

Foreground and background colors
The most obvious of the text attributes are the foreground and background color. Two
functions, SetTextColor and GetTextColor, allow a program to set and retrieve the
current color. These functions work well with both four-color gray-scale screens as
well as the color screens supported by Windows CE devices.

To determine how many colors a device supports, use GetDeviceCaps as men-
tioned previously. The prototype for this function is the following:

int GetDeviceCaps (HDC hdc, int nIndex);

You need the handle to the DC being queried because different DCs have dif-
ferent capabilities. For example, a printer DC differs from a display DC. The second
parameter indicates the capability being queried. In the case of returning the colors
available on the device, the NUMCOLORS value returns the number of colors as long
as the device supports 256 colors or fewer. Beyond that, the returned value for
NUMCOLORS is —1 and the colors can be returned using the BITSPIXEL value, which
returns the number of bits used to represent each pixel. This value can be converted
to the number of colors by raising 2 to the power of the BITSPIXEL returned value,
as in the following code sample:

nNumColors = GetDeviceCaps (hdc, NUMCOLORS);
if (nNumColors == -1)
nNumColors = 1 << GetDeviceCaps (hdc, BITSPIXEL);

Drawing mode

Another attribute that affects text output is the background mode. When letters are
drawn on the device context, the system draws the letters themselves in the foreground
color. The space between the letters is another matter. If the background mode is set
to opaque, the space is drawn with the current background color. But if the back-
ground mode is set to transparent, the space between the letters is left in whatever
state it was in before the text was drawn. While this might not seem like a big differ-
ence, imagine a window background filled with a drawing or graph. If text is written
over the top of the graph and the background mode is set to opaque, the area around
the text will be filled, and the background color will overwrite the graph. If the back-
ground mode is transparent, the text will appear as if it had been placed on the graph,
and the graph will show through between the letters of the text.

The TextDemo Example Program

40

The TextDemo program, shown in Figure 2-1, demonstrates the relationships among
the text color, the background color, and the background mode.

Chapter 2 Drawing on the Screen

Figure 2-1. 7he TextDemo program. (continued)

parti Windows Programming Basics

Figure 2-1. continued

/1

Chapter 2 Drawing on the Screen

Application message loop

while (GetMessage (&msg, NULL, @, 9)) {

}
/1

TranslateMessage (&msg);
DispatchMessage (&msg);

Instance cleanup

return TermInstance (hInstance, msg.wParam);

// InitApp - Application initialization

/1

int InitApp (HINSTANCE hInstance) {
WNDCLASS wc;

// Register application main window class.

wc.style = 0; // Window style
wc.1pfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hInstance; // Owner handle
wc.hIcon = NULL, // Application icon
wc.hCursor = NULL; // Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
wc.lpszMenuName = NULL; // Menu name
wc.1pszClassName = szAppName; // Window class name
if (RegisterClass (&wc) == @) return 1;

return 0;

// InitInstance - Instance initialization

1/

int InitInstance (HINSTANCE hInstance, LPWSTR TpCmdLine, int nCmdShow){
HWND hWnd;

1/

Save program instance handle in global variable.

hinst = hlnstance;

/1

Create main window.
hWnd = CreateWindow (szAppName, // Window class
TEXT("TextDemo"), // Window title
WS_VISIBLE, // Style flags
CW_USEDEFAULT, // x position
CW_USEDEFAULT, // y position

(continued)

43

Partl Windows Programming Basics

Figure 2-1. continued

(continued)

Partl Windows Programming Basics

Figure 2-1. continued

The meat of TextDemo is in the OnPaintMain function. The first call to DrawText
doesn’t draw anything in the device context. Instead, the DT_CALCRECT flag instructs
Windows to store the dimensions of the rectangle for the text string in rect. This in-
formation is used to compute the height of the string, which is stored in ¢y. Next, a
black rectangle is drawn on the right side of the window. I'll talk about how a rect-
angle is drawn later in the chapter; it's used in this program to produce two different
backgrounds before the text is written. The function then prints out the same string
using different foreground and background colors and both the transparent and
opaque drawing modes. The result of this combination is shown in Figure 2-2.

Chapter 2 Drawing on the Screen

g L
Hello Wi
Hello Wir

Figure 2-2. TextDemo shows how the text color, background color, and background
mode relate.

The first four lines are drawn using the transparent mode. The second four are
drawn using the opaque mode. The text color is set from black to white, so that each
line drawn uses a different color, while at the same time the background color is set
from white to black. In transparent mode, the background color is irrelevant be-
cause it isn’t used; but in opaque mode, the background color is readily apparent
on each line.

Fonts

If the ability to set the foreground and background colors were all the flexibility that
Windows provided, we might as well be back in the days of MS-DOS and character
attributes. Arguably, the most dramatic change from MS-DOS is Windows’ ability to
change the font used to display text. All Windows operating systems are built around
the concept of WYSIWYG—what you see is what you get—and changeable fonts are
a major tool used to achieve that goal.

Two types of fonts appear in all Windows operating systems—raster and
TrueType. Raster fonts are stored as bitmaps, small pixel by pixel images, one for each
character in the font. Raster fonts are easy to store and use but have one major prob-
lem: they don’t scale well. Just as a small picture looks grainy when blown up to a
much larger size, raster fonts begin to look blocky as they are scaled to larger and
larger font sizes.

47

Part |

48

Windows Programming Basics

TrueType fonts solve the scaling problem. Instead of being stored as images, each
TrueType character is stored as a description of how to draw the character. The font
engine, which is the part of Windows that draws characters on the screen, then takes
the description and draws it on the screen in any size needed. TrueType font support
was introduced with Windows 3.1 but was only added to the Windows CE line in Win-
dows CE 2.0. Even under Windows CE 2.0, though, some devices such as the origi-
nal Palm-size PC, don’t support TrueType fonts. A Windows CE system can support
either TrueType or raster fonts, but not both. Fortunately, the programming interface
is the same for both raster and TrueType fonts, relieving Windows developers from
worrying about the font technology in all but the most exacting of applications.

The font functions under Windows CE closely track the same functions under
other versions of Windows. Let’s look at the functions used in the life of a font, from
creation through selection in a DC and finally to deletion of the font. How to query
the current font as well as enumerate the available fonts is also covered in the fol-
lowing sections.

Creating a font
Before an application is able to use a font other than the default font, the font must
be created and then selected into the device context. Any text drawn in a DC after
the new font has been selected into the DC will then use the new font.

Creating a font in Windows CE can be accomplished this way:

HFONT CreateFontIndirect (const LOGFONT =#1pl1f);

This function is passed a pointer to a LOGFONT structure that must be filled
with the description of the font you want.

typedef struct tagLOGFONT {
LONG 1fHeight;
LONG 1fWidth;
LONG 1fEscapement;
LONG 1fOrientation;
LONG 1fWeight;
BYTE 1flItalic;
BYTE 1fUnderline;
BYTE 1fStrikelut;
BYTE 1fCharSet;
BYTE 1fOutPrecision;
BYTE 1fClipPrecision;
BYTE 1fQuality;
BYTE 1fPitchAndFamily;
TCHAR 1fFaceName[LF_FACESIZE];
} LOGFONT;

Chapter 2 Drawing on the Screen

The [fHeight field specifies the height of the font in device units. If this field
is 0, the font manager returns the default font size for the font family requested. For
most applications, however, you want to create a font of a particular point size. The
following equation can be used to convert point size to the IfHeight field:

IfHeight = -1 * (PointSize * GetDeviceCaps (hdc, LOGPIXELSY) / 72);

Here, GetDeviceCaps is passed a LOGPIXELSY field instructing it to return the
number of logical pixels per inch in the vertical direction. The 72 is the number of
points (a typesetting unit of measure) per inch.

The [fWidth field specifies the average character width. Since the height of a
font is more important than its width, most programs set this value to 0. This tells
the font manager to compute the proper width based on the height of the font. The
lfEscapement and IlfOrientation fields specify the angle in tenths of degrees of the base
line of the text and the x-axis. The [fWeight field specifies the boldness of the font
from 0 through 1000, with 400 being a normal font and 700 being bold. The next three
fields specify whether the font is to be italic, underline, or strikeout.

The [pCharSet field specifies the character set you have chosen. This field is more
important in international releases of software, where it can be used to request a
specific language’s character set. The [fOutPrecision field can be used to specify
how closely Windows matches your requested font. Among a number of flags avail-
able, a OUT_TT_ONLY_PRECIS flag specifies that the font created must be a
TrueType font. The [fClipPrecision field specifies how Windows should clip char-
acters that are partially outside the region being displayed. The [fQuality field is set
to either DEFAULT_QUALITY or DRAFT_QUALITY, which gives Windows permis-
sion to synthesize a font that, while more closely matching the other requested fields,
might look less polished.

The IfPitchAndFamily field specifies the family of the font you want. This field
is handy when you're requesting a family such as Swiss, that features proportional
fonts without serifs, or a family such as Roman, that features proportional fonts with
serifs, but you don’t have a specific font in mind. You can also use this field to specify
simply a proportional or a monospaced font and allow Windows to determine which
font matches the other specified characteristics passed into the LOGFONT struc-
ture. Finally, the [fFaceName field can be used to specify the typeface name of a
specific font.

When CreateFontindirect is called with a filled LOGFONT structure, Windows
creates a logical font that best matches the characteristics provided. To use the font
however, the final step of selecting the font into a device context must be made.

149

Part |

50

Windows Programming Basics

Selecting a font into a device context
You select a font into a DC by using the following function:

HGDIORJ SelectObject (HDC hdc, HGDIOBJ hgdiobj);

This function is used for more than just setting the default font; you use this func-
tion to select other GDI objects, as we shall soon see. The function returns the previ-
ously selected object (in our case the previously selected font), which should be saved
so that it can be selected back into the DC when we're finished with the new font. The
line of code looks like the following:

h01dFont = SelectObject (hdc, hFont);

When the logical font is selected, the system determines the closest match to the
logical font from the fonts available in the system. For devices without TrueType fonts,
this match could be a fair amount off from the specified parameters. Because of this,
never assume that just because you’ve requested a particular font, the font returned
exactly matches the one you requested. For example, the height of the font you
asked for might not be the height of the font that’s selected into the device context.

Querying a font’s characteristics
To determine the characteristics of the font that is selected into a device context, a
call to

BOOL GetTextMetrics (HDC hdc, LPTEXTMETRIC 1ptm);

returns the characteristics of that font. A TEXTMETRIC structure is returned with the
information and is defined as

typedef struct tagTEXTMETRIC {
LONG tmHeight;
LONG tmAscent;
LONG tmDescent;
LONG tmInternalleading;
LONG tmExternalleading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;
LONG tmOverhang;
LONG tmDigitizedAspectX;
LONG tmDigitizedAspectY;
char tmFirstChar;
char tmLastChar;
char tmDefaultChar;

Chapter 2 Drawing on the Screen

char tmBreakChar;
BYTE tmlItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

} TEXTMETRIC;

The TEXTMETRIC structure contains a number of the fields we saw in the
LOGFONT structure but this time the values listed in TEXTMETRIC are the values of
the font that’s selected into the device context. Figure 2-3 shows the relationship of
some of the fields to actual characters.

% ! l) C tmHeight

\"A

¥ 1 tmExternalLeading
tminternallLeading 5 1

tmAscent

/.

L
tmDescent
\"4

Figure 2-3. Fields from the TEXTMETRIC structure and bow they relate to a font.

Aside from determining whether you really got the font you wanted, the
GetTextmetrics call has another valuable purpose—determining the height of the font.
Recall that in TextDemo, the height of the line was computed using a call to DrawText.
While that method is convenient, it tends to be slow. You can use the TEXTMETRIC
data to compute this height in a much more straightforward manner. By adding the
tmHeight field, which is the height of the characters, to the tmExternalleading field,
which is the distance between the bottom pixel of one row and the top pixel of the
next row of characters, you can determine the vertical distance between the baselines
of two lines of text.

51

Part |

52

Windows Programming Basics

Destroying a font

Like other GDI resources, fonts must be destroyed after the program has finished using
them. Failure to delete fonts before terminating a program causes what’s known as a
resource leak—an orphaned graphic resource that’s taking up valuable memory but
that’s no longer owned by an application.

To destroy a font, first deselect it from any device contexts it has been selected
into. You do this by calling SelectObject, the font passed is the font that was returned
by the original SelectObject call made to select the font. After the font has been dese-
lected, a call to

BOOL DeleteObject (HGDIOBJ hObject);

(with hObject containing the font handle) deletes the font from the system.

As you can see from this process, font management is no small matter in Win-
dows. The many parameters of the LOGFONT structure might look daunting, but they
give an application tremendous power to specify a font exactly.

One problem when dealing with fonts is determining just‘ what types of fonts
are available on a specific device. Windows CE devices come with a set of standard
fonts, but a specific system might have been loaded with additional fonts by either
the manufacturer or the user. Fortunately, Windows provides a method for enumer-
ating all the available fonts in a system.

Enumerating fonts
To determine what fonts are available on a system, Windows provides this function:

int EnumFontFamilies (HDC hdc, LPCTSTR lpszFamily,
FONTENUMPROC T1pEnumFontFamProc, LPARAM 1Param);

This function lets you list all the font families as well as each font within a fam-
ily. The first parameter is the obligatory handle to the device context. The second
parameter is a string to the name of the family to enumerate. If this parameter is null,
the function enumerates each of the available families.

The third parameter is something different—a pointer to a function provided
by the application. The function is a callback function that Windows calls once for
each font being enumerated. The final parameter, [Param, is a generic parameter that
can be used by the application. This value is passed unmodified to the application’s
callback procedure.

While the name of the callback function can be anything, the prototype of the
callback must match the declaration:

int CALLBACK EnumFontFamProc (LOGFONT =1pelf, TEXTMETRIC =1pntm,
DWORD FontType, LPARAM 1Param);

Chapter 2 Drawing on the Screen

The first parameter passed back to the callback function is a pointer to a
LOGFONT structure describing the font being enumerated. The second parameter, a
pointer to a textmetric structure, further describes the font. The font type parameter
indicates whether the font is a raster or TrueType font.

The FontList Example Program

The FontList program, shown in Figure 2-4, uses the EnumFontFamilies function in
two ways to enumerate all fonts in the system.

FontList.h

1/
// Header file

11/

// Written for the book Programming Windows CE
// Copyright (C) 1998 Douglas Boling

//
//
// Returns number of elements

fidefine dim(x) (sizeof(x) / sizeof(x[0]))

e et L B Sl Rt

// Generic defines and data types

//

struct decodeUINT { // Structure associates
UINT Code; // messages

// with a function.

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);

155

struct decodeCMD { // Structure associates
UINT Code; // menu IDs with a
LRESULT (#Fxn)(HWND, WORD, HWND, WORD); // function.

¥s

N e R e e R e et e LA R TR LR R R e bt S A AR e bt A D LR

// Generic defines used by application

jidefine IDC_CMDBAR 1 // Command bar ID

PR e A e i e S SRS E e ik S & e e e S s e S O ey e

// Program specific structures

1/

fidefine FAMILYMAX 24

Figure 2-4. 7he FontlList program enumerates all fonts in the system. (continued)

53

Part] Windows Programming Basics

Figure 2-4. continued

Chapter 2 Drawing on the Screen

(continued)

Part| Windows Programming Basics

Figure 2-4. continued

Chapter 2 Drawing on the Screen

Partl Windows Programming Basics

Figure 2-4. continued

Chapter 2 Drawing on the Screen

(continued)

Partl Windows Programming Basics

Figure 2-4. continued

/1
/1

Chapter 2 Drawing on the Screen

..

DoDestroyMain - Process WM_DESTROY message for window.

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,

LPARAM 1Param) {
PostQuitMessage (0);
return 0;

Enumerating the different fonts begins when the application is processing the
WM_CREATE message in OnCreateMain. Here, EnumFontFamilies is called with the
FontFamily field set to NULL so that each family will be enumerated. The callback
function is FontFamilyCallback, where the name of the font family is copied into an
array of strings.

The remainder of the work is performed during the processing of the
WM_PAINT message. The OnPaintMain function begins with the standard litany
of getting the size of the area below the command bar and calling BeginPaint, which
returns the handle to the device context of the window. GetTextMetrics is then called
to compute the row height of the default font. A loop is then entered in which
EnumerateFontFamilies is called for each family name that had been stored during
the enumeration process in OnCreateMain. The callback process for this callback
sequence is somewhat more complex than the code we've seen so far.

The PaintSingleFontFamily callback procedure, used in the enumeration of
the individual fonts, employs the /Param parameter to retrieve a pointer to a
PAINTFONTINFO structure defined in FontList.h. This structure contains the current
vertical drawing position as well as the handle to the device context. By using the
IParam pointer, FontList avoids having to declare global variables to communicate
with the callback procedure.

The callback procedure next creates the font using the pointer to LOGFONT
that was passed to the callback procedure. The new font is then selected into the device
context, while the handle to the previously selected font is retained in hOldFont. The
point size of the enumerated font is computed using the inverse of the equation
mentioned earlier in the chapter on page 49. The callback procedure then produces
a line of text showing the name of the font family along with the point size of this
particular font. Instead of using DrawText, the callback uses a different text output
function:

BOOL ExtTextOut (HDC hdc, int X, int Y, UINT fuOptions,
const RECT #1prc, LPCTSTR 1pString,
UINT cbCount, const int #1pDx);

61

Chapter 2 Drawing on the Screen

Enumerating the different fonts begins when the application is processing the
WM_CREATE message in OnCreateMain. Here, EnumFontFamilies is called with the
FontFamily field set to NULL so that each family will be enumerated. The callback
function is FontFamilyCallback, where the name of the font family is copied into an
array of strings.

The remainder of the work is performed during the processing of the
WM_PAINT message. The OnPaintMain function begins with the standard litany
of getting the size of the area below the command bar and calling BeginPaint, which
returns the handle to the device context of the window. GetTextMetrics is then called
to compute the row height of the default font. A loop is then entered in which
EnumerateFontFamilies is called for each family name that had been stored during
the enumeration process in OnCreateMain. The callback process for this callback
sequence is somewhat more complex than the code we've seen so far.

The PaintSingleFontFamily callback procedure, used in the enumeration of
the individual fonts, employs the [Param parameter to retrieve a pointer to a
PAINTFONTINFO structure defined in FontList.h. This structure contains the current
vertical drawing position as well as the handle to the device context. By using the
IParam pointer, Fontlist avoids having to declare global variables to communicate
with the callback procedure.

The callback procedure next creates the font using the pointer to LOGFONT
that was passed to the callback procedure. The new font is then selected into the device
context, while the handle to the previously selected font is retained in hOldFont. The
point size of the enumerated font is computed using the inverse of the equation
mentjoned earlier in the chapter on page 49. The callback procedure then produces
a line of text showing the name of the font family along with the point size of this
particular font. Instead of using DrawText, the callback uses a different text output
function:

BOOL ExtTextOut (HDC hdc, int X, int Y, UINT fuOptions,
const RECT =*1prc, LPCTSTR 1pString,
UINT cbCount, const int =1pDx);

61

Part |

Windows Programming Basics

The ExtTextOut function has a few advantages over DrawText in this situation.
First, ExtTextOut tends to be faster for drawing single lines of text. Second, instead of
formatting the text inside a rectangle, x and y starting coordinates are passed, speci-
fying the upper left corner of the rectangle where the text will be drawn. The rect
parameter that's passed is used as a clipping rectangle, or if the background mode is
opaque, the area where the background color is drawn. This rectangle parameter can
be NULL if you don’t want any clipping or opaquing. The next two parameters are
the text and the character count. The last parameter, ExtTextOut, allows an applica-
tion to specify the horizontal distance between adjacent character cells. In our case,
this parameter is set to NULL also, which results in the default separation between
characters.

Windows CE differs from other versions of Windows in having only these two
text drawing functions for displaying text. Most of what you can do with the other
text functions typically used in other versions of Windows, such as TextOut and
TabbedTextOut, can be emulated using either DrawText or ExtTextOut. This is one
of the areas in which Windows CE has broken with earlier versions of Windows,
sacrificing backward compatibility to achieve a smaller operating system.

After displaying the text, the function computes the height of the line of text
just drawn using the combination of tmHeight and tmExternalLeading that was pro-
vided in the passed TEXTMETRIC structure. The new font is then deselected using a
second call to SelectObject, this time passing the handle to the font that was the origi-
nal selected font. The new font is then deleted using DeleteObject. Finally, the call-
back function returns a nonzero value to indicate to Windows that it is okay to make
another call to the enumerate callback.

Figure 2-5 shows the FontListing window. Notice that the font names are dis-
played in that font and that each font has a specific set of available sizes.

Family: MS Sans Serif

MS Sans Serf Point:9

MS Sans Serif Point12
Family: Courier New

Courier New Point:1l0

Courier New Point:12
Family: Times New Roman

Times New Roman Point:10

Times New Roman Point:11

Times New Roman Pomnt 14
Times New Roman Point:15

~ Times New Roman__ Point:20

89 H 413PM

Figure 2-5. 7he FontList window shows some of the available fonts
Jor a Handbeld PC.

Chapter 2 Drawing on the Screen

Unfinished business

If you look closely at Figure 2-5, you'll notice a problem with the display. The list of
fonts just runs off the bottom edge of the FontList window. At this point in a book
covering the desktop versions of Windows, the author might add a window style flag
for a vertical scroll bar and a small amount of code, and magically, the program would
have a scrollable window. But if you do that to a Windows CE main window, you
end up with the look shown in Figure 2-6.

Family: MS Sans Seril 'E

MS Sans Serif Point:9

MS Sans Serif Point12
Family: Courier New

Courier New Point:10

Courier New Point:12
Family: Times New Roman

Times New Roman Point:10

Times New Roman Point:11

Times New Roman Pomnt:14
Times New Roman Point: 15

Tnne&New, ont20 N

Figure 2-6. 7he FontList window with a scrollbar attached to the main window.

Notice how the scroll bar extends past the right side of the command bar up to
the top of the window. The scroll bar should stop below the command bar and the
command bar should extend to the right edge of the window. The problem is that
the command bar lies in the client area of the window, and the default scroll bar style
provided by all Windows operating systems places the scroll bar outside the client
area, in the nonclient space along the edge of the window. The solution to this prob-
lem involves creating a child window inside our main window and letting it do the
scrolling. But since I'll provide a complete explanation of child windows in Chap-
ter 4, I'll hold off describing how to properly implement a scroll bar until then.

BITMAPS

Bitmaps are graphical objects that can be used to create, draw, manipulate, and re-
trieve images in a device context. Bitmaps are everywhere within Windows, from the
little Windows logo on the Start button to the Close button on the command bar. Think
of a bitmap as a picture composed of an array of pixels that can be painted onto the
screen. Like any picture, a bitmap has height and width. It also has a method for
determining what color or colors it uses. Finally, a bitmap has an array of bits that
describe each pixel in the bitmap.

Part |

Windows Programming Basics

Historically, bitmaps under Windows have been divided into two types; device
dependent bitmaps (DDBs) and device independent bitmaps (DIBs). DDBs are bitmaps
that are tied to the characteristics of a specific DC and can't easily be rendered on
DCs with different characteristics. DIBs, on the other hand, are independent of any
device and therefore must carry around enough information so that they can be ren-
dered accurately on any device.

Windows CE contains many of the bitmap functions available in other versions
of Windows. The differences include a new four-color bitmap format not supported
anywhere but on Windows CE and a different method for manipulating DIBs.

Device Dependent Bitmaps

64

A device dependent bitmap can be created with this function:

HBITMAP CreateBitmap (int nWidth, int nHeight, UINT cPlanes,
UINT cBitsPerPel, CONST VOID *1pvBits);

The nWidth and nHeight parameters indicate the dimensions of the bitmap. The
cPlanes parameter is an historical artifact from the days when display hardware imple-
mented each color within a pixel in a different hardware plane. For Windows CE,
this parameter must be set to 1. The cBitspPerPel parameter indicates the number of
bits used to describe each pixel. The number of colors is 2 to the power of the
cBitspPerPel parameter, Under Windows CE, the allowable values are 1, 2, 4, 8, 16,
and 24. As I said, the four-color bitmap is unique to Windows CE and isn’t supported
under other Windows platforms, including the Windows CE emulator that runs on
top of Windows NT.

The final parameter is a pointer to the bits of the bitmap. Under Windows CE,
the bits are always arranged in a packed pixel format; that is, each pixel is stored as
a series of bits within a byte, with the next pixel starting immediately after the first.
The first pixel in the array of bits is the pixel located in the upper left corner of the
bitmap. The bits continue across the top row of the bitmap, then across the second
row, and so on. Each row of the bitmap must be double-word (4-byte) aligned. If
any pad bytes are required at the end of a row to align the start of the next row, they
should be set to 0. Figure 2-7 illustrates this scheme, showing a 126-by-64 pixel bitmap
with 8 bits per pixel.

The function

HBITMAP CreateCompatibleBitmap (HDC hdc, int nWidth, int nHeight);

creates a bitmap whose format is compatible with the device context passed to the
function. So, if the device context is a four-color DC, the resulting bitmap is a four-

Chapter 2 Drawing on the Screen

color bitmap as well. This function comes in handy when you're manipulating im-
ages on the screen because it makes it easy to produce a blank bitmap that’s directly
color compatible with the screen.

Byte
Offset Row 0 1 2 T 125

o o //
128 1 //
%6 2 //

/

7936 63 [
[

Figure 2-7. Layout of bytes within a bitmap.

Device Independent Bitmaps

The fundamental difference between DIBs and their device dependent cousins is that
the image stored in a DIB comes with its own color information. Almost every bitmap
file since Windows 3.0, which used the files with the BMP extension, contains infor-
mation that can be directly matched with the information needed to create a DIB in
Windows.

In the early days of Windows, it was a rite of passage for a programmer to write
a routine that manually read a DIB file and converted the data to a bitmap. These
days, the same arduous task can be accomplished with the following function, unique
to Windows CE:

HBITMAP SHLoadDIBitmap (LPCTSTR szFileName);

It loads a bitmap directly from a bitmap file and provides a handle to the bitmap. In
Windows NT and Windows 98, the same process can be accomplished with ZoadImage
using the LR_LOADFROMEFILE flag, but this flag isn't supported under the Windows CE
implementation of LoadImage.

65

Part |

Windows Programming Basics

DIB Sections

66

While Windows CE makes it easy to load a bitmap file, sometimes you must read what
is on the screen, manipulate it, and redraw the image back (o the screen. This is an-
other case in which DIBs are better than DDBs. While the bits of a device dependent
bitmap are obtainable, the format of the buffer is directly dependent on the screen
format. By using a DIB, or more precisely, something called a DIB section, your pro-
gram can read the bitmap into a buffer that has a predefined format without worry-
ing about the format of the display device.

While Windows has a number of DIB creation functions that have been added
over the years since Windows 3.0, Windows CE carries over only one DIB section
function from Windows N1 and Windows 98. Here it is:

HBITMAP CreateDIBSection (HDC hdc, const BITMAPINFO =pbmi,
UINT iUsage, void =#ppvBits,
HANDLE hSection, DWORD dwOffset);

Because it’s a rather late addition to the Win32 API, DIB sections might be new to
Windows programmers. DIB Sections were invented to improve the performance of
applications on Windows NT that directly manipulated bitmaps. In short, a DIB sec-
tion allows a programmer to select a DIB in a device context while still maintaining
direct access to the bits that compose the bitmap. To achieve this, a DIB section as-
sociates a memory DC with a buffer that also contains the bits of that DC. Because
the image is mapped to a DC, other graphics calls can be made to modify the image.
At the same time, the raw bits of the DC, in DIB format, are available for direct ma-
nipulation. While the improved performance is all well and good on NT, the relevance
to the Windows CE programmer is the ease in which an application can work with
bitmaps and manipulate their contents.

The parameters of this call lead off with the pointer to a BITMAPINFO struc-
ture. This structure describes the layout and color compositior: of a device indepen-
dent bitmap and is a combination of a BITMAPINFOHEADER structure and an array
of RGBQUAD values that represent the palette of colors used by the bitmap.

The BITMAPINFOHEADER structure is defined as the following:

typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPTanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizelmage;

Chapter 2 Drawing on the Screen

LONG biXPelsPerMeter;

LOG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;
} BITMAPINFOHEADER;

As you can see, this structure contains much more information than just the pa-
rameters passed to CreateBitmap. The first field is the size of the structure and must
be filled in by the calling program to differentiate this structure from the similar
BITMAPCOREINFOHEADER structure that's a holdover from the OS/2 presentation
manager. The biWidth, biHeight, biPlanes, and biBitCount fields are similar to their
like-named parameters to the CreateBitmap call—with one exception. The sign of
the biHeight field specifies the organization of the bit array. If biHeight is negative,
the bit array is organized in a top-down format, as is CreateBitmap. 1f biHeight is
positive, the array is organized in a bottom-up format, in which the bottom row of
the bitmap is defined by the first bits in the array. As with the CreateBitmap call, the
biPlanes field must be set to 1.

The biCompression ftield specifies the compression method used in the bit ar-
ray. Under Windows CE, the only allowable setting for this field is BI_RGB, indicat-
ing that the buffer isn’t compressed. The biSizelmage parameter is used to indicate
the size of the bit array; when used with BI_RGB, however, the biSizelmage field can
be set to 0, meaning the array size is computed using the dimensions and bits per
pixel information provided in the BITMAPINFOHEADER structure.

The biXPelsPerMeter and biYPelsPerMeter fields provide information to accu-
rately scale the image. For CreateDIBSection, however, these parameters can be set
to 0. The biClrUsed parameter specifies the number of colors in the palette that are
actually used. In a 256-color image, the palette will have 256 entries, but the bitmap
itself might need only 100 or so distinct colors. This field helps the palette manager,
the part of the Windows that manages color matching, to match the colors in the system
palette with the colors required by the bitmap. The biClrlmportant field further de-
fines the colors that are really required as opposed to those that are used. For most
color bitmaps, these two fields are set to 0, indicating that all colors are used and that
all colors are important.

As I mentioned above, an array of RGBQUAD structures immediately follows
the BITMAPINFOHEADER structure. The RGBQUAD structure is defined as follows:

typedef struct tagRGBQUAD { /# rgbq =/
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;
} RGBQUAD;

67

Part |

Windows Programming Basics

This structure allows for 256 shades of red, green, and blue. While almost any
shade of color can be created using this structure, the color that’s actually rendered
on the device will, of course, be limited by what the device can display.

The array of RGBQUAD structures, taken as a whole, describe the palette of
the DIB. The palette is the list of colors in the bitmap. If a bitmap has a palette, each
entry in the bitmap array contains not colors, but an index into the palette that con-
tains the color for that pixel. While redundant on a monochrome bitmap, the palette
is quite important when rendering color bitmaps on color devices. For example a 256
color bitmap has one byte for each pixel, but that byte points to a 24 bit value that
represents equal parts red, green, and blue colors. So, while a 256-color bitmap can
only contain 256 distinct colors, each of those colors can be one of 16 million colors
rendered using the 24-bit palette entry. For convenience in a 32-bit world, each pal-
ette entry, while containing only 24 bits of color information, is padded out to a 32-
bit wide entry—hence the name of the data type: RGBQUAD.

Of the remaining four CreateDIBSection parameters, only two are used under
Windows CE. The iUsage parameter indicates how the colors in the palette are repre-
sented. For Windows CE, this field must be set to DIB_RGB_COLORS. The ppuvBits
parameter is a pointer to a variable that receives the pointer to the bitmap bits that
compose the bitmap image. The final two parameters, bhSection and dwOffset, aren’t
supported under Windows CE and must be set to 0. In other versions of Windows,
they allow the bitmap bits to be specified by a memory mapped file. While Windows
CE does support memory mapped files, they aren’t supported by CreateDIBSection.

Drawing Bitmaps

Creating and loading bitmaps is all well and good, but there’s not much point to it
unless the bitmaps you create can be rendered on the screen. Drawing a bitmap isn’t
as straightforward as you might think. Before a bitmap can be drawn in a screen DC,
it must be selected into a DC and then copied over to the screen device context. While
this process sounds convoluted, there is thyme to this reason.

The process of selecting a bitmap into a device context is similar to selecting a
logical font into a device context; it converts the ideal to the actual. Just as Windows
finds the best possible match to a requested font, the bitmap selection process must
match the available colors of the device to the colors requested by a bitmap. Only
after this is done can the bitmap be rendered on the screen. To help with this inter-
mediate step, Windows provides a shadow type of DC, a memory device context.

To create a memory device context, use this function:

HDC CreateCompatibleDC (HDC hdc);

Chapter 2 Drawing on the Screen

This function creates a memory DC that’'s compatible with the current screen DC. Once

created, the source bitmap is selected into this memory DC using the same SelectObject

function you used to select in a logical font. Finally, the bitmap is copied from the

memory DC to the screen DC using one of the blit functions, BitBit or StretchBlt.
The workhorse of bitmap functions is the following:

BOOL BitB1t (HDC hdcDest, int nXDest, int nYDest, int nWidth,
int nHeight, HDC hdcSrc, int nXSrc, int nYSrc,
DWORD dwRop);

Fundamentally, the BitBlt function, pronounced bit blit, is just a fancy memcopy
function, but since it operates on device contexts, not memory, it's something far more
special. The first parameter is a handle to the destination device context—the DC to
which the bitmap is to be copied. The next four parameters specify the location and
size of the destination rectangle where the bitmap is to end up. The next three pa-
rameters specify the handle to the source device context and the location within that
DC of the upper left corner of the source image.

The final parameter, dwRop, specifies how the image is to be copied from the
source to the destination device contexts. The ROP code defines how the source bitmap
and the current destination are combined to produce the final image. The ROP code
for a simple copy of the source image is SRCCOPY. The ROP code for combining the
source image with the current destination is SRCPAINT. Copying a logically inverted
image, essentially 2 negative of the source image, is accomplished using SRCINVERT.
Some ROP codes also combine the currently selected brush into the equation to
compute the resulting image. A large number of ROP codes are available, too many
for me to cover here. For a complete list, check out the Windows CE programming
documentation.

The following code fragment sums up how to paint a bitmap:

// Create a DC that matches the device.
hdcMem = CreateCompatibleDC (hdc);

// Select the bitmap into the compatible device context.
hO1dSel = SelectObject (hdcMem, hBitmap);

// Get the bitmap dimensions from the bitmap.

GetObject (hBitmap, sizeof (BITMAP), &bmp);

// Copy the bitmap image from the memory DC to the screen DC.

BitB1t (hdc, rect.left, rect.top, bmp.bmWidth, bmp.bmHeight,
hdcMem, @, @, SRCCOPY);

(continued)

69

Part |

70

Windows Programming Basics

// Restore original bitmap selection and destroy the memory DC.
SelectObject (hdcMem, h01dSel);
DeleteDC (hdcMem);

The memory device context is created and the bitmap to be painted is selected
into that DC. Since you might not have stored the dimensions of the bitmap to be
painted, the routine makes a call to GetObject. GetObject returns information about a
graphics object, in this case, a bitmap. Information about fonts and other graphic
objects can be queried using this useful function. Next, BitBlt is used to copy the bitmap
into the screen DC. To clean up, the bitmap is deselected from the memory device
context and the memory DC is deleted using DeleteDC. Don’t confuse DeleteDC with
ReleaseDC, which is used to free a display DC. DeleteDC should be paired only with
CreateCompatibleDC and ReleaseDC should be paired only with GetDC or
GetWindowDC.

Instead of merely copying the bitmap, stretch or shrink it using this function:

BOOL StretchB1t (HDC hdcDest, int nXOriginDest, int nYOriginDest,
int nWidthDest, int nHeightDest, HBC hdcSrc,
int nXOriginSrc, int nYOriginSrc, int nWidthSrc,
int nHeightSrc, DWORD dwRop);

The parameters in StretchBit are the same as those used in BitBlt, with the ex-
ception that now the width and height of the source image can be specified. Here
again, the ROP codes specify how the source and destination are combined to pro-
duce the final image.

Windows CE 2.0 added a new, and quite handy, bitmap function. It is

BOOL TransparentImage (HDC hdcDest, LONG DstX, LONG DstY, LONG DstCx,
LONG DstCy, HANDLE hSrc, LONG SrcX, LONG SrcYy,
LONG SrcCx, LONG SrcCy, COLORREF TransparentColor);

This function is similar to StretchBit with two very important exceptions. First, you
can specify a color in the bitmap to be the transparent color. When the bitmap is copied
to the destination, the pixels in the bitmap that are the transparent color are not cop-
ied. The second difference is that the hSrc parameter can either be a device context
or a handle to a bitmap, which allows you to bypass the requirement to select the
source image into a device context before rendering it on the screen.

As in other versions of Windows, Windows CE supportts two other blit func-
tions: PatBlt and MaskBIt. The PatBit function combines the currently selected brush
with the current image in the destination DC to produce the resulting image. I cover
brushes later in this chapter. The MaskBIt function is similar to BitBIt but encompasses
a masking image that provides the ability to draw only a portion of the source image
onto the destination DC.

Chapter 2 Drawing on the Screen

LINES AND SHAPES

One of the areas in which Windows CE provides substantially less functionality than
other versions of Windows is in the primitive line-drawing and shape-drawing func-
tions. Gone are the Chord, Arc, and Pie functions that created complex circular shapes.
Gone too is the concept of current point. Other versions of Windows track a current
point, which is then used as the starting point for the next drawing command. So
drawing a series of connected lines and curves by calling MoveTo to move the cur-
rent point followed by calls to LineTo, ArcTo, PolyBezierTo and so forth is no longer
possible. But even with the loss of a number of graphic functions, Windows CE still
provides the essential functions necessary to draw lines and shapes.

Lines
Drawing one or more lines is as simple as a call to

BOOL Polyline (HDC hdc, const POINT #1ppt, int cPoints):

The second parameter is a pointer to an array of POINT structures that are defined as
the following:

typedef struct tagPOINT {
LONG x;
LONG y;

} POINT;

Each x and y combination describes a pixel from the upper left corner of the
screen. The third parameter is the number of point structures in the array. So to draw
a line from (0, 0) to (50, 100), the code would look like this:

POINTS pts[2];

pts[@].x = 0;
pts[@l.y = 0;
pts[1].x = 50;
pts{1l.y = 100;

PolyLine (hdc, &pts, 2):

Just as in the early text examples, this code fragment makes a number of as-
sumptions about the default state of the device context. For example, just what does
the line drawn between (0,0) and (50, 100) look like? What is its width and its color,
and is it a solid line? All versions of Windows, including Windows CE, allow these
parameters to be specified.

71

Part |

72

Windows Programming Basics

The tool for specifying the appearance of lines and the outline of shapes is called,
appropriately enough, a pen. A pen is another GDI object and, like the others de-
scribed in this chapter, is created, selected into a device context, used, deselected,
and then destroyed. Among other stock GDI objects, stock pens can be retrieved using
the following code:

HGDIOBJ GetStockObject (int fnObject);

All versions of Windows provide three stock pens, each 1 pixel wide. The stock
pens come in 3 colors: white, black, and null. Using GetStockObject, the call to re-
trieve one of those pens employs the parameters WHITE_PEN, BLACK_PEN, and
NULL_PEN respectively. Unlike standard graphic objects created by applications, stock
objects should never be deleted by the application. Instead, the application should
simply deselect the pen from the device context when it's no longer needed.

To create a custom pen under Windows, two functions are available. The first
is this:

HPEN CreatePen (int fnPenStyle, int nWidth, COLORREF crColor);

The fnPenStyle parameter specifies the appearance of the line to be drawn. For ex-
ample, the PS_DASH flag can be used to create a dashed line. The nWidth parameter
specifies the width of the pen. Finally, the crColor parameter specifies the color of
the pen. The crColor parameter is typed as COLORREF, which under Windows CE
2.0 is an RGB value. The RGB macro is as follows:

COLORREF RGB (BYTE bRed, BYTE bGreen, BYTE bBlue);

So to create a solid red pen, the code would look like this:

hPen = CreatePen (PS_SOLID, 1, RGB (@xff, @, 0));
The other pen creation function is the following:

HPEN CreatePenIndirect (const LOGPEN #1pigpn);

where the logical pen structure LOGPEN is defined as

typedef struct tagLOGPEN {
UINT lopnStyle;
POINT lopnWidth;
COLORREF 1lopnColor;

} LOGPEN;

CreatePenindirect provides the same parameters to Windows, in a different form. To
create the same 1-pixel-wide red pen with CreatePenindirect, the code would look
like this:

Chapter 2 Drawing on the Screen

LOGPEN 1p;

HPEN hPen;

Tp.TopnStyle = PS_SOLID;
Tp.lopnWidth.x = 1;
Tp.lopnWidth.y = 1;

1p.lopnColor = RGB (@xff, @, @);

hPen = CreatePenIndirect (&1p):

Windows CE devices don’t support complex pens such as wide (more than
one pixel wide), dashed lines. To determine what’s supported, our old friend
GetDeviceCaps comes into play, taking LINECAPS as the second parameter. Refer to
the Windows CE documentation for the different flags returned by this call.

Shapes

Lines are useful but Windows also provides functions to draw shapes, both filled and
unfilled. Here, Windows CE does a good job supporting most of the functions famil-
iar to Windows programmers. The Reciangle, RoundRect, Ellipse, and Polygon func-
tions are all supported.

Brushes

Before I can talk about shapes such as rectangles and ellipses I need to describe another
GDI object that I've only mentioned briefly before now, called a brush. A brush is a
small 8-by-8 bitmap used to fill shapes. It's also used by Windows to fill the back-
ground of a client window. Windows CE provides a number of stock brushes and
also the ability to create a brush from an application-defined pattern. A number of
stock brushes, each a solid color, can be retrieved using GetStockObject. Among the
brushes available is one for each of the grays of a four grayscale display: white, light
gray, dark gray, and black.

To create solid color brushes, the function to call is the following:

HBRUSH CreateSolidBrush (COLORREF crColor);

This function isn’t really necessary when you're writing an application for a four-color
Windows CE device because those four solid brushes can be retrieved with the
GetStockObject call. For higher color devices however, the ¢rColor parameter can be
generated using the RGB macro.

' To create custom pattern brushes, Windows CE supports the Win32 function:

HBRUSH CreateDIBPatternBrushPt (const void =T1pPackedDIB,
UINT iUsage);

73

Part |

74

Windows Programming Basics

The first parameter to this function is a pointer to a DIB in packed format. This means
that the pointer points to a buffer that contains a BITMAPINFO structure immediately
followed by the bits in the bitmap. Remember that a BITMAPINFO structure is ac-
tually a BITMAPINFOHEADER structure followed by a palette in RGBQUAD for-
mat, so the buffer contains everything necessary to create a DIB-—that is, bitmap
information, a palette, and the bits to the bitmap. The second parameter must be
set to DIB_RGB_COLORS for Windows CE applications. This setting indicates that
the palette specified contains RGBQUAD values in each entry. The complimentary
flag, DIB_PAL_COLORS, used in other versions of Windows isn’t supported in
Windows CE.

The CreateDIBPatternBrushPt function is more important under Windows CE
because the hatched brushes, supplied under other versions of Windows by the
CreateHachBrush function, aren’t supported under Windows CE. Hatched brushes
are brushes composed of any combination of horizontal, vertical, or diagonal lines.
Ironically, they’re particularly useful with grayscale displays because you can use them
to accentuate different areas of a chart with different hatch patterns. These brushes,
however, can be reproduced by using CreateDIBPatternBrushPt and the proper
bitmap patterns. The Shapes code example, later in the chapter, demonstrates a method
for creating hatched brushes under Windows CE.

By default, the brush origin will be in the upper left corner of the window. This
isn’t always what you want. Take, for example, a bar graph where the bar filled with
a hatched brush fills a rectangle from (100, 100) to (125, 220). Since this rectangle
isn’t divisible by 8 (brushes being 8 by 8 pixels square), the upper left corner of the
bar will be filled with a partial brush that might not look pleasing to the eye.

To avoid this situation, you can move the origin of the brush so that each shape
can be drawn with the brush aligned correctly in the corner of the shape to be filled.
The function available for this remedy is the following:

BOOL SetBrushOrgbEx (HDC hdc, int nXOrg, int nYOrg, LPPOINT Tppt);

The nXOrg and nYOrg parameters allow the origin to be set between 0 and 7 so that
you can position the origin anywhere in the 8-by-8 space of the brush. The /ppt pa-
rameter is filled with the previous origin of the brush so that you can restore the pre-
vious origin if necessary.

Rectangles
The rectangle function draws either a filled or a hollow rectangle; the function is de-
fined as the following:

BOOL Rectangle (HDC hdc, int nLeftRect, int nTopRect,
int nRightRect, int nBottomRect);

Chapter 2 Drawing on the Screen

The function uses the currently selected pen to draw the outline of the rectangle and
the current brush to fill the interior. To draw a hollow rectangle, select the null brush
into the device context before calling Rectangle.

The actual pixels drawn for the border are important to understand. Say we're
drawing a 5-by-7 rectangle at 0, 0. The function call would look like this:

Rectangle (0, 0, 5, 7);

Assuming that the selected pen was 1 pixel wide, the resulting rectangle would look
like the one shown in Figure 2-8.

0123 4~§m 6

:Iill““%;”

o MEEEN |
- i««
g ilg }Iw

Figure 2-8. Expanded view of a rectangle drawn with the Rectangle function.

Notice how the right edge of the drawn rectangle is actually drawn in column
4 and that the bottom edge is drawn on row 6. This is standard Windows practice.
The rectangle is drawn inside the right and bottom boundary specified for the Rect-
angle function. If the selected pen is wider than one pixel, the right and bottom edges
are drawn with the pen centered on the bounding rectangle. (Other versions of Win-
dows support the PS_INSIDEFRAME pen style that forces the rectangle to be drawn
inside the frame regardless of the pen width.)

Circles and ellipses
Circles and ellipses can be drawn with this function:

BOOL ET1lipse (HDC hdc, int nLeftRect, int nTopRect,
int nRightRect, int nBottomRect);

The ellipse is drawn using the rectangle passed as a bounding rectangle, as shown in
Figure 2-9. As with the Rectangle function, while the interior of the ellipse is filled
with the current brush, the outline is drawn with the current pen.

75

Partl Windows Programming Basics

(nLeftRect, nTopRect) (nRightRect1, nTopRect)

i

(nLeftRect, nBottomRect-1) (nRightRect-1, nBottomRect-1)

Figure 2-9. The ellipse is drawn within the bounding rectangle passed to the Ellipse
Jfunction.

Round rectangles
The RoundRect function,

BOOL RoundRect (HDC hdc, int nlLeftRect, int nTopRect,
int nRightRect, int nBottomRect,
int nWidth, int nHeight);

draws a rectangle with rounded corners. The roundedness of the corners is defined
by the last two parameters that specify the width and height of the ellipse used to
round the corners, as shown in Figure 2-10. Specifying the ellipse height and width
enables your program to draw identically symmetrical rounded corners. Shortening
the ellipse height flattens out the sides of the rectangle, while shortening the width
of the ellipse flattens the top and bottom of the rectangle.

(nLeftRect, nTopRect)

R T
i/ \%i ’; \?
41 | nHeight
\’s o # x“w &

nWidth
a‘f" [N%%uﬂ ¢ . Y
¢ Y § %
3 i

(nRightRect, nBottomRect)
Figure 2-10. The beight and width of the ellipse define the round corners of the
rectangle drawn by RoundRect.

Polygons
Finally, the Polygon function,

BOOL Polygon (HDC hdc, const POINT =1pPoints, int nCount);

76

Chapter 2 Drawing on the Screen

draws a many-sided shape. The second parameter is a pointer to an array of point
structures defining the points that delineate the polygon. The resulting shape has one
more side than the number of points because the function automatically completes
the last line of the polygon by connecting the last point with the first. Under Win-
dows CE 1.0, this function is limited to producing convex polygons.

The Shapes Example Program

The Shapes program, shown in Figure 2-11, demonstrates a number of these func-
tions. In Shapes, five figures are drawn, each filled with a different brush.

Figure 2-11. 7he Shapes program. (continued)

Part1 Windows Programming Basics

Figure 2-11. continued

Chapter 2 Drawing on the Screen

(continued)

Part! Windows Programming Basics

Figure 2-11. continued

(continued)

Part! Windows Programming Basics

Figure 2-11. continued

Chapter 2 Drawing on the Screen

(continued)

Partl Windows Programming Basics

Figure 2-11. continued

In Shapes, OnPaintMain draws the five figures using the different functions
discussed earlier. For each of the shapes, a different brush is created, selected into
the device context, and, after the shape has been drawn, deselected from the DC.
The first four shapes are filled with solid grayscale shades, ranging from black to white.
These solid brushes are loaded with the GetStockObject function. The final shape is

Chapter 2 Drawing on the Screen

filled with a brush created with the CreateDIBPatternBrushPt. The creation of this
brush is segregated into a function called MyCreateHatchBrush that mimics the Create-
HatchBrush function not available under Windows CE. To create the hatched brushes,
a black and white bitmap is built by filling in a bitmap structure and setting the bits
to form the hatch patterns. The bitmap itself is the 8-by-8 bitmap specified by Create-
DIBPatternBrushPt. Since the bitmap is monochrome, its total size, including the
palette and header, is only around 100 bytes. Notice, however, that since each scan
line of a bitmap must be double-word aligned, the last three bytes of each one-byte
scan line are left unused.

Finally the program completes the painting by writing two lines of text into the
lower rectangle. The text further demonstrate the difference between the opaque and
transparent drawing modes of the system. In this case, the opaque mode of drawing
the text might be a better match for the situation because the hatched lines tend to
obscure letters drawn in transparent mode. A view of the Shapes window is shown
in Figure 2-12.

-

back

s | My

Figure 2-12. 7he Shapes example demonstrates drawing different filled shapes.

To keep things simple, the Shapes example assumes that it’s running on at least
a 480-pixel-wide display. To properly display the same shapes on a Palm-size PC
requires a few minor changes to the coordinates used to position the shapes displayed.

I have barely scratched the surface of the abilities of the Windows CE GDI por-
tion of GWE. The goal of this chapter wasn't to provide total presentation of all as-
pects of GDI programming. Instead, I wanted to demonstrate the methods available
for basic drawing and text support under Windows CE. In other chapters in the book,
I extend some of the techniques touched on in this chapter. I talk about these new

Part |

Windows Programming Basics

techniques and newly introduced functions at the point, generally, where I demonstrate
how to use them in code. To further your knowledge, I recommend Programming
Windows 95, by Charles Petzold (Microsoft Press, 1996), as the best source for learning
about the Windows GDI.

Now that we've looked at output, it’s time to turn our attention to the input side
of the system, the keyboard and touch panel.

Chapter 3

Input: Keyboard,
Stylus, and Menus

Traditionally, Microsoft Windows platforms have allowed users two methods of in-
put: the keyboard and the mouse. Windows CE continues this tradition, but replaces
the mouse with a stylus and touch screen. Programmatically, the change is minor
because the messages from the stylus are mapped to the mouse messages used in
other versions of Windows. A more subtle but also more important change from ver-
sions of Windows that run on PCs is that a system running Windows CE might have
either a tiny keyboard or no keyboard at all. This makes the stylus input that much
more important for Windows CE systems.

THE KEYBOARD

While keyboards play a lesser role in Windows CE, they’re still the best means of
entering large volumes of information. Even on systems without a physical keyboard
such as the Palm-size PC, soft keyboards—controls that simulate keyboards on a touch
screen—will most likely be available to the user. Given this, proper handling of key-
board input is critical to all but the most specialized of Windows CE applications. While
I'll talk at length about soft keyboards later in the book, one point should be made
here. To the application, input from a soft keyboard is no different from input from a
traditional “hard” keyboard.

87

Part 1

Windows Programming Basics

Input Focus

Under Windows operating systems, only one window at a time has the input focus.
The focus window receives all keyboard input until it loses focus to another window.
The system assigns the keyboard focus using a number of rules but most often the
focus window is the current active window. The active window, you'll recall, is the
top-level window, the one with which the user is currently interacting. With rare
exceptions, the active window also sits at the top of the Z-order; that is, it’s drawn on
top of all other windows in the system. The user can change the active window by
pressing Alt-Esc to switch between programs or by tapping on another top-level
window’s button on the task bar. The focus window is either the active window or
one of its child windows.

Under Windows, a program can determine which window has the input focus
by calling

HWUND GetFocus (void);
The focus can be changed to another window by calling
HWND SetFocus (HWND hWnd);

Under Windows CE, the target window of SetFocus is limited. The window being given
the focus by SetFocus must have been created by the thread calling SetFocus. An
exception to this rule occurs if the window losing focus is related to the window gaining
focus by a parent/child or sibling relationship; in this case, the focus can be changed
even if the windows were created by different threads.

When a window loses focus, Windows sends a WM_KILLFOCUS message to
that window informing it of its new state. The wParam parameter contains the handle
of the window that will be gaining the focus. The window gaining focus receives a
WM_SETFOCUS message. The wParam parameter of the WM_SETFOCUS message
contains the handle of the window losing focus.

Now for a bit of motherhood. Programs shouldn’t change the focus window
without some input from the user. Otherwise, the user can easily become confused.
A proper use of SetFocus is to set the input focus to a child window (more than likely
a control) contained in the active window. In this case, a window would respond to
the WM_SETFOCUS message by calling SetFocus with the handle of a child window
contained in the window to which the program wants to direct keyboard messages.

Keyboard Messages

Windows CE practices the same keyboard message processing as its larger desktop
relations with a few small exceptions, which I cover shortly. When a key is pressed,
Windows sends a series of messages to the focus window, typically beginning with a
WM_KEYDOWN message. If the key pressed represents a character such as letter or

Chapter 3 Input: Keyhoard, Stylus, and Menus

number, Windows follows the WM_KEYDOWN with a WM_CHAR message. (Some
keys, such as function keys and cursor keys don’t represent characters, so WM_CHAR
messages aren’t sent in response to those keys. For those keys, a program must
interpret the WM_KEYDOWN message to know when the keys are pressed.) When
the key is released, Windows sends a WM_KEYUP message. If a key is held down
long enough for the auto-repeat feature to kick in, multiple WM_KEYDOWN and
WM_CHAR messages are sent for each auto-repeat until the key is released when
the final WM_KEYUP message is sent. | used the word typically to qualify this
process because if the Alt key is being held when another key is pressed, the mes-
sages I've just described are replaced by WM_SYSKEYDOWN, WM_SYSCHAR, and
WM_SYSKEYUP messages.

For all of these messages, the generic parameters wParam and [Param are used
in mostly the same manner. For WM_KEYxx and WM_SYSKEYxx messages, the
wParam value contains the virtual key value, indicating the key being pressed. All
versions of Windows provide a level of indirection between the keyboard hardware
and applications by translating the scan codes returned by the keyboard into virtual
key values. You see a list of the VK_xx values and their associated keys in Figure 3-1.
While the table of virtual keys is extensive, not all keys listed in the table are present
on Windows CE devices. For example, function keys, a mainstay on PC keyboards
and listed in the virtual key table, aren’t present on most Windows CE keyboards. In
fact, 2a number of keys on a PC keyboard are left off the space-constrained Windows CE
keyboards. A short list of the keys not typically used on Windows CE devices is pre-
sented in Figure 3-2 on page 92. This list is meant to inform you that these keys might
not exist, not to indicate that the keys never exist on Windows CE keyboards.

VIRTUAL-KEY CODES

Constant Value Keyboard Equivalent
VK_LBUTTON 01 Stylus tap
VK_RBUTTON 02 Mouse right button$
VK_CANCEL 03 Control-break processing
VK_RBUTTON 04 Mouse middle button$
- 05-07 Undefined
VK_BACK 08 Backspace key
VK_TAB 09 Tab key
- 0A-0B Undefined
VK_CLEAR 0C Clear key

Figure 3-1. Virtual key values in relation to the keys on the keyboard. (continued)

Not all keys will be on all keyboards.

Partl] Windows Programming Basics

Figure 3-1. continued

Constant Value Keyboard Equivalent

VK_RETURN 0D Enter key

- 0E-OF Undefined

VK_SHIFT 10 Shift key

VK_CONTROL 11 Ctrl key

VK_MENU 12 Alt key

VK_CAPITAL 14 Caps Lock key

-- 15-19 Reserved for Kanji systems

- 1A Undefined

VK_ESCAPE 1B Escape key

- 1C~-1F Reserved for Kanji systems

VK_SPACE 20 Spacebar

VK_PRIOR 21 Page Up key

VK_NEXT 22 Page Down key

VK_END 23 End key

VK_HOME 24 Home key

VK_LEFT 25 Left Arrow key

VK_UP - 26 Up Arrow key

VK_RIGHT 27 Right Arrow key

VK_DOWN 28 Down Arrow key

VK_SELECT 29 Select key

- 2A Original equipment manufacturer (OEM)~
specific

VK_EXECUTE 2B ' Execute key

VK_SNAPSHOT 2C Print Screen key for Windows 3.0 and later

VK_INSERT 2D Insert *

VK_DELETE 2E Delete 't

VK_HELP 2F Help key

VK_0-VK_9 30-39 0-9 keys

- 3A—-40 Undefined

VK_A-VK_Z 41-5A A through Z keys

VK_LWIN 5B Windows key

VK_RWIN 5C Windows key *

90

Chapter 3 Input: Keyhoard, Stylus, and Menus

Constant Value Keyboard Equivalent
VK_APPS 5D

- S5E-SF Undefined

VK_NUMPADO0O-9 60-69 Numeric keypad 0-9 keys
VK_MULTIPLY 6A Numeric keypad Asterisk (*) key
VK_ADD 6B Numeric keypad Plus sign (+) key
VK_SEPARATOR 6C Separator key

VK_SUBTRACT 6D Numeric keypad Minus sign (-) key
VK_DECIMAL 6E Numeric keypad Period () key
VK_DIVIDE 6F Numeric keypad Slash mark (/) key
VK_F1-VK_F24 70-87 F1-F24 *

- 88—-8F Unassigned

VK_NUMLOCK 90 Num Lock *

VK_SCROLL 91 Scroll Lock *

- 92-9F Unassigned

VK_LSHIFT A0 Left Shift?

VK_RSHIFT Al Right Shift*

VK_LCONTROL A2 Left Control*

VK_RCONTROL A3 Right Control*

VK_LMENU A4 Left Alt#

VK_RMENU A5 Right Alt*

-- AG-B9 Unassigned

VK_SEMICOLON BA ; key

VK_EQUAL BB = key

VK_COMMA BC , key

VK_HYPHEN BD - key

VK_PERIOD BE . key

VK_SLASH BF / key

VK_BACKQUOTE Co > key

-- C1-DA Unassigned

VK_LBRACKET DB [key

VK_BACKSLASH DC \ key

VK_RBRACKET DD 1 key

VK_APOSTROPHE DE ‘ key

(continued)

91

Part |

Windows Programming Basics

Figure 3-1. continued

Constant Value Keyboard Equivalent
VK_OFF DF Power button
-- E5 Unassigned
- E6 OEM-specific
- E7-E8 Unassigned

- E9-F5 OEM-specific
VK_ATTN F6

VK_CRSEL F7

VK_EXSEL F8

VK_EREOF F9

VK_PLAY FA

VK_ZOOM FB

VK_NONAME FC

VK_PAl FD

VK_OEM_CLEAR FE

*

Many Windows CE Systems don’t have this key.
On some Windows CE systems, Delete is simulated with Shift-Backspace
These constants can be used only with GetKeyState and GetAsyncKeyState.

@ A

Mouse right and middle buttons are defined but are relevant only on a Windows CE system
equipped with a mouse.

For the WM_CHAR and WM_SYSCHAR messages, the wParam value contains
the Unicode character represented by the key. Most often an application can simply
look for WM_CHAR messages and ignore WM_KEYDOWN and WM_KEYUP. The
WM_CHAR message allows for a second level of abstraction so that the application
doesn’t have to worry about the up or down state of the keys and can concentrate on
the characters being entered by means of the keyboard.

The [Param value of any of these keyboard messages contains further informa-
tion about the pressed key. The format of the I[Param parameter is shown in Figure 3-3
on the following page.

InsertDelete (Many Windows CE keyboards use Shift-Backspace for this function.)
Num LockPause

Print Screen

Scroll Lock

Function Keys

Windows Context Menu key

Figure 3-2. Keys on a PC keyboard that are rarely on a Windows CE keyboard.

Chapter 3 Input: Keyboard, Stylus, and Menus

The low word, bits 0 through 15, contains the repeat count of the key. Often,
keys on a Windows CE device can be pressed faster than Windows CE can send
messages to the focus application. In these cases, the repeat count contains the num-
ber of times the key has been pressed. Bit 29 contains the context flag. If the Alt key
was being held down when the key was pressed, this bit will be set. Bit 30 contains
the previous key state. If the key was previously down, this bit is set; otherwise it’s 0.
Bit 30 can be used to determine whether the key message is the result of an auto-
repeat sequence. Bit 31 indicates the transition state. If the key is in transition from
down to up, Bit 31 is set. The Reserved field, bits 16 through 28, is used in the desk-
top versions of Windows to indicate the key scan code. In almost all cases, Windows
CE doesn’t support this field. However, on some of the newer Windows CE platforms
where scan codes are necessary, this field does contain the scan code. You shouldn’t
plan on the scan code field being available unless you know it’s supported on your
specific platform.

[31[30]20]28 27 26 25 2423|2221 |20]19 18 17 16|15 [14]13]12]11]10] 0 | 8 | 7| 6 [5| 4 | 3] 2| 1] 0]
AL t

H

TTT Reserved Repeat count !

Context flag, set to 1 if Alt key down
Previous key state, set to 1 if key previously down
Transition state, set to 1 if key is being released

Figure 3-3. The layout of the 1Param value for key messages.

One additional keyboard message, WM_DEADCHAR, can sometimes come into
play. You send it when the pressed key represents a dead character, such as an um-
laut, that you want to combine with a character to create a different character. In this
case the WM_DEADCHAR message can be used to prevent the text entry point (the
caret) from advancing to the next space until the second key is pressed so that you
can complete the combined character.

The WM_DEADCHAR message has always been present under Windows, but
under Windows CE it takes on a somewhat larger role. With the internationalization
of small consumer devices that run Windows CE, programmers should plan for, and
if necessary use, the WM_DEADCHAR message that is so often necessary in foreign
language systems.

Keyboard Functions

You will find useful a few other keyboard-state-determining functions for Windows
applications. Among the keyboard functions, two are closely related but often con-
fused: GetKeyState and GetAsyncKeyState.

93

Part |

94

Windows Programming Basics

GetKeyState, prototyped as
SHORT GetKeyState (int nVirtKey);

returns the up/down state of the shift keys, Ctrl, Alt, and Shift, and indicates whether
any of these keys is in a toggled state. If the keyboard has two keys with the same
function—for example, two Shift keys, one on each side of the keyboard—this
function can also be used to differentiate which of them is being pressed. (Most key-
boards have left and right Shift keys, and some include left and right Ctrl and Alt keys.)

You pass to the function the virtual key code for the key being queried. If the
high bit of the return value is set, the key is down. If the least significant bit of the
return value is set, the key is in a toggled state; that is, it has been pressed an odd
number of times since the system was started. The state returned is the state at the
time the most recent message was read from the message queue, which isn't neces-
sarily the real-time state of the key. An interesting aside: notice that the virtual key
label for the Alt key is VK_MENU, which relates to the windows convention that the
Alt-shift key combination works in concert with other keys to access various menus
from the keyboard.

Note that the GetKeyState function is limited under Windows CE to querying
the state of the shift keys. Under other versions of Windows, GetKeyState can deter-
mine the state of every key on the keyboard.

To determine the real-time state of a key, use

SHORT GetAsyncKeyState (int vKey);

As with GetKeyState, you pass to this function the virtual key code for the key being
queried. The GetAsyncKeyState function returns a value subtly different from the one
returned by GetKeyState. As with the GetKeyState function, the high bit of the return
value is set while the key is being pressed. However, the least significant bit is then
set if the key was pressed after a previous call to GetdsyncKeyState. Like GetKeyState,
the GetAsyncKeyState function can distinguish the left and right Shift, Ctrl, and Alt
keys. In addition, by passing the VK_LBUTTON virtual key value, GetAsyncKeyState
determines whether the stylus is currently touching the screen.
An application can simulate a keystroke using the keybd_event function:

VOID keybd_event (BYTE bVk, BYTE bScan, DWORD dwFlags,
DWORD dwExtralnfo);

The first parameter is the virtual key code of the key to simulate. The bScan code
should be set to NULL under Windows CE. The dwFlags parameter can have two
possible flags: KEYEVENTF_KEYUP indicates that the call is to emulate a key up
event while KEYEVENTF_SILENT indicates that the simulated key press won’t cause
the standard keyboard click that you normally hear when you press a key. So, to
fully simulate a key press, keybd_eveni should be called twice, once without

Chapter 3 Input: Keyboard, Stylus, and Menus

KEYEVENTF_KEYUP to simulate a key down, then once again, this time with
KEYEVENTF_KEYUP to simulate the key release.

One final keyboard function, MapVirtualKey, translates virtual key codes to
characters. MapVirtualKey in Windows CE doesn't translate keyboard scan codes to
and from virtual key codes, although it does so in other versions of Windows. The
prototype of the function is the following:

UINT MapVirtualKey (UINT uCode, UINT uMapType);

Under Windows CE, the first parameter is the virtual key code to be translated while
the second parameter, uMapType, must be set to 2.

Testing for the keyboard

To determine whether a keyboard is even present in the system, first call GetVersionEx
to find out which version of Windows CE is running. All systems that run Windows
CE 1.0 have a keyboard. When running under Windows CE 2.0 or later, call

DWORD GetKeyboardStatus (VOID);

This function returns the KBDI_KEYBOARD_PRESENT flag if a hardware keyboard
is present in the system. This function also returns a KBDI_KEYBOARD_ENABLED
flag if the keyboard is enabled. To disable the keyboard, a call can be made to

BOOL EnableHardwareKeyboard (BOOL bEnable);

with the bEnable flag set to FALSE. You might want to disable the keyboard in a sys-
tem for which the keyboard folds around behind the screen; in such a system, a user
could accidentally hit keys while using the stylus. This function is also new to Win-
dows CE 2.0.

If you build an application to run under Windows CE 1.0, you'll need to explic-
itly load both GetKeyboardStatus and EnableHardwareKeyboard using LoadLibrary
and GetProcAddress to determine the address of these 2.0-specific functions. If a call
is made directly to a 2.0 function from an application, that application is incompat-
ible with Windows CE 1.0 and won’t load.

The KeyTrac Example Program

The following example program, KeyTrac, displays the sequence of keyboard mes-
sages. Programmatically, KeyTrac isn’t much of a departure from the earlier programs
in the book. The difference is that the keyboard messages I've been describing are
all trapped and recorded in an array that’s then displayed during the WM_PAINT
message. For each keyboard message, the message name is recorded along with the
wParam and [Param values and a set of flags indicating the state of the shift keys.
The key messages are recorded in an array because these messages can occur faster
than the redraw can occur. Figure 3-4 shows the KeyTrac window after a few keys
have been pressed.

Parti Windows Programming Basics

= -3
o R e e N

[e R

| WM_KEYUP wP:00000041 IP:cO000001 shift:
WM_CHAR wP:00000061 IP:00000001 shift:
WM_KEYDOWN wP:00000041 IP:00000001 shift:
WM_KEYUP wP:00000041 IP:cOD00001 shift:
WM_KEYUP wP:00000010 IP:cO000001 shift:
WM_CHAR wP:00000041 IP:00000001 shift: IS

| WM_KEYDOWN wP:00000041 IP:00000001 shift: IS
‘ WM_KEYDOWN wP:00000010 IP:00000001 shift: IS

Figure 3-4. 7he KeyTrac window after a Shift-A key combination followed by a

lowercase a key press.

The best way to learn about the sequence of the keyboard messages is to run
KeyTrac, press a few keys, and watch the messages scroll down the screen. Pressing
a character key such as the a results in three messages: WM_KEYDOWN, WM_CHAR,
and WM_KEYUP. Holding down the Shift key while pressing the a and then releas-
ing the Shift key produces a key-down message for the Shift key followed by the three
messages for the a key followed by a key-up message for the Shift key. Because the
Shift key itself isn't a character key, no WM_CHAR message is sent in response to it.
However, the WM_CHAR message for the a key now contains a Ox41 in the wParam
value, indicating that an uppercase A was entered instead of a lowercase a.

Figure 3-5 shows the source code for the KeyTrac program.

KeyTrac.h

1/
// Header file

1/

// Written for the book Programming Windows CE
// Copyright (C) 1998 Douglas Boling

!/
//
// Returns number of elements

f#define dim(x) (sizeof(x) / sizeof(x[0]))

// Generic defines and data types
//

Figure 3-5. 7he KeyTrac program.

Chapter 3 Input: Keyboard, Stylus, and Menus

Patl Windows Programming Basics

Figure 3-5. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

Part! Windows Programming Basics

Figure 3-5. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

INT A
//
// Search message 1ist to see if we need to handle this
// message. If in list, call procedure.
//
for (i = @; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)

return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param);

}
return DefWindowProc (hWnd, wMsg, wParam, 1Param);
}
b e e B SO e e DT L E LB R R DL e R SRS R L R R
// DoCreateMain - Process WM_CREATE message for window.
//

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
HWND hwndCB;
HDC hdc;
TEXTMETRIC tm;

// Create a command bar.
hwndCB = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);

// Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, 0, 0);

/! Get the height of the default font.

hdc = GetDC (hWnd);

GetTextMetrics (hdc, &tm);

nFontHeight = tm.tmHeight + tm.tmExternalleading;
ReleaseDC (hWnd, hdc);

return 0;

// DoPaintMain - Process WM_PAINT message for window.
//
LRESULT DoPaintMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PAINTSTRUCT ps;
RECT rect, rectOut;
TCHAR szOut[256];
HDC hdc;
INT i;

// Adjust the size of the client rect to take into account
// the command bar height.

(continued)

101

Patl Windows Programming Basics

Figure 3-5. continued

(continued)

Patl Windows Programming Basics

Figure 3-5. continued

Here are a few more characteristics of KeyTrac to notice. After each keyboard
message is recorded, an InvalidateRect function is called to force a redraw of the
window and therefore also a WM_PAINT message. As I mentioned in Chapter 2, a
program should never attempt to send or post a WM_PAINT message to a window
because Windows needs to perform some setup before it calls a window with a
WM_PAINT message.

Another device context function used in KeyTrac is

BOOL Scrol1DC (HDC hDC, int dx, int dy, const RECT *1prcScroll,
const RECT #1prcClip, HRGN hrgnUpdate,
LPRECT 1prcUpdate);

Chapter 3 Input: Keyboard, Stylus, and Menus

which scrolls an area of the device context either horizontally or vertically, but under
Windows CE, not both directions at the same time. The three rectangle parameters
define the area to be scrolled, the area within the scrolling area to be clipped, and
the area to be painted after the scrolling ends. Alternatively, a handle to a region can
be passed to ScrollDC. That region is defined by ScrollDC to encompass the region
that needs painting after the scroll.

Finally, if the KeyTrac window is covered up for any reason and then re-
exposed, the message information on the display is lost. This is because a device
context doesn't store the bit information of the display. The application is respon-
sible for saving any information necessary to completely restore the client area of
the screen. Since Keytrac doesn’t save this information, it’s lost when the window
is covered up.

THE STYLUS AND THE TOUCH SCREEN

The stylus/touch screen combination is new to Windows platforms, but fortunately,
its integration into Windows CE applications is relatively painless. The best way to
deal with the stylus is to treat it as a single-button mouse. The stylus creates the same
mouse messages that are provided by the mouse in other versions of Windows and
by Windows CE systems that use a mouse. The differences that do appear between a
mouse and a stylus are due to the different physical realities of the two input devices.

Unlike a mouse, a stylus doesn’t have a cursor to indicate the current position
of the mouse. Therefore a stylus can’t hover over a point on the screen in the way
that the mouse cursor does. A cursor hovers when a user moves it over a window
without pressing a mouse button. This concept can’t be applied to programming for
a stylus because the touch screen can’t detect the position of the stylus when it isn’t
in contact with the screen.

Another consequence of the difference between a stylus and a mouse is that
without a mouse cursor, an application can’t provide feedback to the user by means
of changes in appearance of a hovering cursor. Windows CE does support sctting
the cursor for one classic Windows method of user feedback. The busy hourglass
cursor, indicating that the user must wait for the system to complete processing, is
supported under Windows CE so that applications can display the busy hourglass in
the same manner as applications running under other versions of Windows, using
the SetCursor function.

Stylus Messages

When the user presses the stylus on the screen, the topmost window under that
point receives the input focus if it didn’t have it before and then receives a
WM_LBUTTONDOWN message. When the user lifts the stylus, the window receives

105

Part |

106

Windows Programming Basics

a WM_LBUTTONUP message. Moving the stylus within the same window while it’s
down causes WM_MOUSEMOVE messages to be sent to the window. For all of these
messages, the wParam and [Param parameters are loaded with the same values. The
wParam parameter contains a set of bit flags indicating whether the Ctrl or Shift keys
on the keyboard are currently held down. As in other versions of Windows, the Alt
key state isn’t provided in these messages. To get the state of the Alt key when the
message was sent, use the GetKeyState function.

The IParam parameter contains two 16-bit values that indicate the position on
the screen of the tap. The low-order 16 bits contains the x (horizontal) location rela-
tive to the upper left corner of the client area of the window while the high-order 16
bits contains the y (vertical) position.

If the user double-taps, that is, taps twice on the screen at the same location
and within a predefined time, Windows sends a WM_LBUTTONDBLCLK message to
the double-tapped window, but only if that window’s class was registered with the
CS_DBLCLKS style. The class style is set when the window class is registered with
RegisterClass.

You can differentiate between a tap and a double-tap by comparing the mes-
sages sent to the window. When a double-tap occurs, a window first receives the
WM_LBUTTONDOWN and WM_LBUTTONUP messages from the original tap. Then
a WM_LBUTTONDBLCIK is sent followed by another WM_LBUTTONUP. The trick
is to refrain from acting on a WM_LBUTTONDOWN message in any way that pre-
cludes action on a subsequent WM_LBUTTONDBLCLK. This is usually not a prob-
lem because taps usually select an object while double-tapping launches the default
action for the object.

Inking

A typical application for a handheld device is capturing the user’s writing on the screen
and storing the result as #n2k. This isn’t handwriting recognition—simply ink storage.
At first pass, the best way to accomplish this would be to store the stylus points passed
in each WM_MOUSEMOVE message. The problem is that sometimes smail CE-type
devices can’t send these messages fast enough to achieve a satisfactory resolution.
Under Windows CE 2.0, a new function call has been added to assist programmers in
tracking the stylus.

BOOL GetMouseMovePoints (PPOINT pptBuf, UINT nBufPoints,
UINT *pnPointsRetrieved);

GetMouseMovePoints returns a number of stylus points that didn’t result in
WM_MOUSEMOVE messages. The function is passed an array of points, the size of
the array (in points), and a pointer to an integer that will receive the number of points

Chapter 3 Input: Keyboard, Stylus, and Menus

passed back to the application. Once received, these additional points can be used
to fill in the blanks between the last WM_MOUSEMOVE message and the current one.

GetMouseMovePoints does throw one curve at you. It returns points in the reso-
lution of the touch panel, not the screen. This is generally set at four times the screen
resolution, so you need to divide the coordinates returned by GetMouseMovePoints
by four to convert them to screen coordinates. The extra resolution helps programs
such as handwriting recognizers.

A short example program, PenTrac, illustrates the difference that GetMouseMove-
Points can make. Figure 3-6 shows the PenTrac window. Notice the two lines of dots
across the window. The top line was drawn using points from WM_MOUSEMOVE
only. The second line included points that were queried with GetMouseMovePoints.
The black dots were queried from WM_MOUSEMOVE while the red (lighter) dots
were locations queried with GetMouseMovePoints.

Figure 3-6. 7he PenTrac window showing two lines drawn.

The source code for PenTrac is shown in Figure 3-7. The program places a dot
on the screen for each WM_MOUSEMOVE or WM_LBUTTONDOWN message it re-
ceives. If the Shift key is held down during the mouse move messages, PenTrac also
calls GetMouseMovePoints and marks those points in the window in red to distinguish
them from the points returned by the mouse messages alone.

PenTrac cheats a little to enhance the effect of GetMouseMovePoints. In the
DoMouseMain routine called to handle WM_MOUSEMOVE and WM_LBUTTON-
DOWN messages, the routine calls the function sleep to kill a few milliseconds. This
simulates a slow-responding application that might not have time to process every
mouse move message in a timely manner.

107

Patl Windows Programming Basics

Figure 3-7. 7he PenTrac program.

Chapter 3 Input: Keyboard, Stylus, and Menus

PenTrac.c

//
// PenTrac - Tracks stylus movement

//

// Written for the book Programming Windows CE
// Copyright (C) 1998 Douglas Boling

//

//

#include <windows.h> // For all that Windows stuff
#include <commctrl.h> // Command bar includes

#include "pentrac.h" // Program-specific stuff

A e S e e e e S e L e L
// Global data

//

const TCHAR szAppName[] = TEXT ("PenTrac");

HINSTANCE hlnst; // Program instance handle

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_CREATE, DoCreateMain,
WM_LBUTTONDOWN, DoMouseMain,
WM_MOUSEMOVE, DoMouseMain,
WM_DESTROY, DoDestroyMain,
3

//
/1
// Program entry point
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR 1pCmdLine, int nCmdShow) {

MSG msg;

int rc = 0;

HWND hwndMain;

// Initialize application.
rc = InitApp (hInstance);
if (rc) return rc;

// Initialize this instance.
hwndMain = InitInstance (hInstance, 1pCmdLine, nCmdShow);
if (hwndMain == @)

return 0x10;

(continued)

109

Patl Windows Programming Basics

Figure 3-7. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

(continued)

Pat! Windows Programming Basics

Figure 3-7. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

// Kill time to make believe we are busy.

Sleep(25);
return 0;
}
Rl 2 e R e SR BRI s e s s b e S GRE R SRS S Sl b e AR g
// DoDestroyMain - Process WM_DESTROY message for window.
/7

LRESULT DoDestroyMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
PostQuitMessage (0);
return 0;

Input focus and mouse messages
Here are some subtleties to note about circumstances that rule how and when mouse
messages initiated by stylus input are sent to different windows. As I mentioned pre-
viously, the input focus of the system changes when the stylus is pressed against a
window. However, dragging the stylus from one window to the next won't cause the
new window to receive the input focus. The down tap sets the focus, not the process
of dragging the stylus across a window. When the stylus is dragged outside the win-
dow, that window stops receiving WM_MOUSEMOVE messages but retains input
focus. Because the tip of the stylus is still down, no other window will receive the
WM_MOUSEMOVE messages. This is akin to using a mouse and dragging the mouse
outside a window with a button held down.

To continue to receive mouse messages even if the stylus moves off its win-
dow, an application can call

HWND SetCapture (HWND hWnd);

passing the handle of the window to receive the mouse messages. The function re-
turns the handle of the window that previously had captured the mouse or NULL if
the mouse wasn't previously captured. To stop receiving the mouse messages initi-
ated by stylus input, the window calls

BOOL ReleaseCapture (void);

Only one window can capture the stylus input at any one time. To determine
whether the stylus has been captured, an application can call

HWND GetCapture (void);

which returns the handle of the window that has captured the stylus input or 0 if no
window has captured the stylus input—although please note one caveat. The window

113

Part |

Windows Programming Basics

that has captured the stylus must be in the same thread context as the window calling
the function. This means that if the stylus has been captured by a window in another
application, GetCapture still returns 0.

If a window has captured the stylus input and another window calls GetCapture,
the window that had originally captured the stylus receives a WM_CAPTURECHANGED
message. The [Param parameter of the message contains the handle of the window
that has gained the capture. You shouldn't attempt to take back the capture by call-
ing GetCapture in response to this message. In general, since the stylus is a shared
resource, applications should be wary of capturing the stylus for any length of time
and they should be able to handle gracefully any loss of capture.

Another interesting tidbit: Just because a window has captured the mouse, that
doesn’t prevent a tap on another window gaining the input focus for that window.
You can use other methods for preventing the change of input focus, but in almost
all cases, it's better to let the user, not the applications, decide what top-level win-
dow should have the input focus.

Right-button clicks

When you click the right mouse button on an object in Windows systems, the action
typically calls up a context menu, which is a stand-alone menu displaying a set of
choices for what you can do with that particular object. On a system with a mouse,
Windows sends WM_RBUTTONDOWN and WM_RBUTTONUP messages indicating
a right-button click. When you use a stylus however, you don’t have a right button.
The Windows CE guidelines, however, allow you to simulate a right button click using
a stylus. The guidelines specify that if a user holds down the Alt key while tapping
the screen with the stylus, a program should act as if a right mouse button were be-
ing clicked and display any appropriate context menu. Because there’s no MK_ALT
flag in the wParam value of WM_LBUTTONDOWN, the best way to determine whether
the Alt key is pressed is to use GetKeyState with VK_MENU as the parameter and test
for the most significant bit of the return value to be set. GetKeyState is more appro-
priate in this case because the value returned will be the state of the key at the time
the mouse message was pulled from the message queue.

The TicTac1 Example Program

114

To demonstrate stylus programming, I have written a trivial tic-tac-toe game. The
TicTacl window is shown in Figure 3-8. The source code for the program is shown
in Figure 3-9. This program doesn’t allow you to play the game against the computer,
nor does it determine the end of the game—it simply draws the board and keeps track
of the Xs and Os. Nevertheless, it demonstrates basic stylus interaction.

Chapter 3 Input: Keyboard, Stylus, and Menus

Figure 3-8. 7he TicTacl window.

Figure 3-9. 7he TicTacl program. (continued)

115

Patl Windows Programming Basics

Figure 3-9. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

// Message dispatch table for MainWindowProc
const struct decodeUINT MainMessages[] = {
WM_CREATE, DoCreateMain,
WM_SIZE, DoSizeMain,
WM_PAINT, DoPaintMain,
WM_LBUTTONUP, DoLButtonUpMain,
WM_DESTROY, DoDestroyMain,
!

//
//
// Program entry point
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR 1pCmdLine, int nCmdShow) {

MSG msg;

int rc = 0;

HWND hwndMain;

// Initialize application.
rc = InitApp (hInstance);
if (rc) return rc;

// Initialize this instance.
hwndMain = InitInstance (hInstance, 1pCmdLine, nCmdShow);
if (hwndMain == 0)

return 0x10;

// Application message loop

while (GetMessage (&msg, NULL, @, 0)) (
TranslateMessage (&msg);
DispatchMessage (&msg);

}

// Instance cleanup

return TermInstance (hInstance, msg.wParam);

// InitApp - Application initialization

//

int InitApp (HINSTANCE hInstance) {
WNDCLASS wc;

// Register application main window class.

wc.style = 0; // Window style
wc.lpfnWndProc = MainWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data

(continued)

117

Pat1 Windows Programming Basics

Figure 3-9. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

(continued)

Part! Windows Programming Basics

Figure 3-9. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

GetClientRect (hWnd, &rect);
rect.top += CommandBar_Height (GetDlgItem (hWnd, IDC_CMDBAR));

hdc = BeginPaint (hWnd, &ps);:

// Draw the board.
DrawBoard (hdc, &rectBoard);

// Write the prompt to the screen.
hFont = GetStockObject (SYSTEM_FONT);
hO1dFont = SelectObject (hdc, hFont);
if (bTurn == 0)
DrawText (hdc, TEXT (" X's turn"), -1, &rectPrompt,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);
else
DrawText (hdc, TEXT (" 0's turn"), -1, &rectPrompt,
DT_CENTER | DT_VCENTER | DT_SINGLELINE);

SelectObject (hdc, hOldFont);
EndPaint (hWnd, &ps);
return 0;

// DoLButtonUpMain - Process WM_LBUTTONUP message for window.
//
LRESULT DoLButtonUpMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
POINT pt;
INT cx, cy, nCell = 0;

LOWORD (1Param);
HIWORD (1Param);

pt.x
pt.y

// See if pen on board. If so, determine which cell.
if (PtInRect (&rectBoard, pt)){
// Normalize point to upper left corner of board.
pt.x -= rectBoard.left;
pt.y -= rectBoard.top;

// Compute size of each cell.
cx = (rectBoard.right - rectBoard.left)/3;
cy = (rectBoard.bottom - rectBoard.top)/3;

// Find column.
nCell = (pt.x / cx);

(continued)

121

Partl Windows Programming Basics

Figure 3-9. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

(continued)

Part |

Windows Programming Basics

Figure 3-9. continued

The action in TicTacl is centered around three routines: DrawBoard, DrawXO,
and OnLButtonlUpMain. The first two perform the tasks of drawing the playing board.
The routine that determines the location of a tap on the board (and therefore is more
relevant to our current train of thought) is OnLButtonUpMain. As the name suggests,
this routine is called in response to a WM_LBUTTONUP message. The first action to
take is to call

BOOL PtInRect (const RECT #*1prc, POINT pt);

which determines whether the tap is even on the game board. The program knows
the location of the tap because it's passed in the /Param value of the message. The
board rectangle is computed when the program starts in OnSizeMain. Once the tap
is localized to the board, the program determines the location of the relevant cell within
the playing board by dividing the coordinates of the tap point within the board by
the number of cells across and down.

I mentioned that the board rectangle was computed during the OnSizeMain
routine, which is called in response to a WM_SIZE message. While it might seem
strange that Windows CE supports the WM_SIZE message common to other versions
of Windows, it needs to support this message because a window is sized frequently:
first right after it's created, and then each time it's minimized and restored. You might

Chapter 3 Input: Keyboard, Stylus, and Menus

think that another possibility for determining the size of the window would be dur-
ing the WM_CREATE message. The [Param parameter points to a CREATESTRUCT
structure that contains, among other things, the initial size and position of the win-
dow. The problem with using those numbers is that the size obtained is the total size
of the window, not the size of client area, which is what we need. Under Windows
CE, most windows have no title bar and no border, but some have both and many
have scroll bars, so using these values can cause trouble. So now, with the TicTacl
example, we have a simple program that uses the stylus effectively but isn’t complete.
To restart the game, we must exit and restart TicTacl. We can't take back a move nor
have O start first. We need a method for sending these commands to the program.
Sure, using keys would work. Another solution would be to create hot spots on the
screen that when tapped, provided the input necessary. However, the standard method
of exercising these types of commands in a program is through menus.

MENUS

Menus are a mainstay of Windows input. While each application might have a differ-
ent keyboard and stylus interface, almost all have sets of menus that are organized in
a structure familiar to the Windows user.

Windows CE programs use menus a little differently from other Windows pro-
grams, the most obvious difference being that in Windows CE, menus aren’t part of
the standard window. Instead, menus are attached to the command bar control that
has been created for the window. Other than this change, the functions of the menu
and the way menu selections are processed by the application match the other ver-
sions of Windows, for the most part. Because of this general similarity, I give you
only a basic introduction to Windows menu management in this section.

Creating a menu is as simple as calling

HMENU CreateMenu (void);

The function returns a handle to an empty menu. To add an item to a menu, two
calls can be used. The first,

BOOL AppendMenu (HMENU hMenu, UINT fuFlags, UINT idNewItem,
LPCTSTR 1pszNewltem);

appends a single item to the end of a menu. The fuFlags parameter is set with a series
of flags indicating the initial condition of the item. For example, the item might be
initially disabled (thanks to the MF_GRAYED flag) or have a check mark next to it (cour-
tesy of the MF_CHECKED flag). Almost all calls specify the MF_STRING flag, indicat-
ing that the lpszNewltem parameter contains a string that will be the text for the item.
The idNewltem parameter contains an ID value that will be used to identify the item
when it’s selected by the user or that the state of the menu item needs to be changed.

125

Part |

126

Windows Programming Basics

Another call that can be used to add a menu item is this one:

BOOL InsertMenu (HMENU hMenu, UINT uPosition, UINT uflags,
UINT ulDNewItem, LPCTSTR TpNewltem);

This call is similar to AppendMenu with the added flexibility that the item can be in-
serted anywhere within a menu structure. For this call, the uFlags parameter can be
passed one of two additional flags: MF_BYCOMMAND or MF_BYPOSITION, which
specify how to locate where the menu item is to be inserted into the menu.

Under Windows CE 2.0, menus can be nested to provide a cascading effect. This
feature brings Windows CE up to the level of other versions of Windows, which have
always allowed cascading menus. To add a cascading menu, or submenu, create the
menu you want to attach using CreateMenu and InsertMenu. Then insert or append
the submenu to the main menu using either InsertMenu or AppendMenu with the
MF_POPUP flag in the flags parameter. In this case, the uIDNewltem parameter con-
tains the handle to the submenu while the [pNewltem contains the string that will be
on the menu item.

You can query and manipulate a menu item to add or remove check marks or
to enable or disable it by means of a number of functions. This function,

BOOL EnableMenultem (HMENU hMenu, UINT ulDEnabtleltem, UINT uEnabie);

can be used to enable or disable an item. The flags used in the uEnable parameter
are similar to the flags used with other menu functions. Under Windows CE, the flag
you use to disable a menu item is MF_GRAYED, not MF_DISABLED. The function

DWORD CheckMenulItem (HMENU hmenu, UINT ulDCheckItem, UINT uCheck);

can be used to check and uncheck a menu item. Many other functions are available
to query and manipulate menu items. Check the SDK documentation for more details.
The following code fragment creates a simple menu structure:

hMainMenu = CreatePopupMenu ();

hMenu = CreateMenu ();

AppendMenu (hMenu, MF_STRING | MF_ENABLED, 10@, TEXT ("&New"));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT ("&Open"));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT ("&Save"));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT ("E&xit"));

AppendMenu (hMainMenu, MF_STRING | MF_ENABLED | MF_POPUP, (UINT)hMenu,
TEXT ("&File™));

hMenu = CreateMenu ();

AppendMenu (hMenu, MF_STRING | MF_ENABLED, 10@, TEXT ("C&ut"));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 1@1, TEXT ("&Copy"));
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 101, TEXT ("&Paste"));

Chapter 3 Input: Keyboard, Stylus, and Menus

AppendMenu (hMainMenu, MF_STRING | MF_ENABLED | MF_POPUP, hMenu,
TEXT (“&Edit"));

hMenu = CreateMenu ();
AppendMenu (hMenu, MF_STRING | MF_ENABLED, 100, TEXT ("&About™));

AppendMenu (hMainMenu, MF_STRING | MF_ENABLED | MF_POPUP, hMenu,
TEXT ("&Help™));

Once a menu has been created, it can be attached to a command bar using this
function:

BOOL CommandBar_InsertMenubarEx (HWND hwndCB, HINSTANCE hlInst,
LPTSTR pszMenu, int iButton);

The menu handle is passed in the third parameter while the second parameter, hinst,
must be 0. The final parameter, iButton, indicates the button that will be to the im-
mediate right of the menu. The Windows CE user interface guidelines recommend
that the menu be on the far left of the command bar, so this value is almost always 0.

Handling Menu Commands

When a user selects a menu item, Windows sends a WM_COMMAND message to the
window that owns the menu. The low word of the wParam parameter contains the
ID of the menu item that was selected. The high word of wParam contains the noti-
fication code. For a menu selection, this value is always 0. The /[Param parameter is
0 for WM_COMMAND messages sent due to a menu selection. Those familiar with
Windows 3.x programming might notice that the layout of wParam and [Param match
the standard Win32 assignments and are different from Win16 programs. So, to act
on a menu selection, a window needs to field the WM_COMMAND message, decode
the ID passed, and act according to the menu item that was selected.

Now that I've covered the basics of menu creation, you might wonder where
all this menu creation code sits in a Windows program. The answer is, it doesn’t. Instead
of dynamically creating menus on the fly, most Windows programs simply load a menu
template from a resource. To learn more about this, let’s take a detour from the de-
scription of input methods and look at resources.

RESOURCES

Resources are read-only data segments of an application or a DLL that are linked to
the file after it has been compiled. The point of a resource is to give a developer a
compiler-independent place for storing content data such as dialog boxes, strings,
bitmaps, icons, and yes, menus. Since resources aren’t compiled into a program, they
can be changed without having to recompile the application.

127

Part |

Windows Programming Basics

You create a resource by building an ASCII file—called a resource script—
describing the resources. Your ASCII file has an extension of RC. You compile this
file with a resource compiler, which is provided by every maker of Windows devel-
opment tools, and then you link them into the compiled executable again using the
linker. These days, these steps are masked by a heavy layer of visual tools, but the
fundamentals remain the same. For example, Visual C++ 5.0 creates and maintains
an ASCII resource (RO) file even though few programmers directly look at the resource
file text any more.

It's always a struggle for the author of a programming book to decide how to
approach tools. Some lay out a very high level of instruction, talking about menu
selections and describing dialog boxes for specific programming tools. Others show
the reader how to build all the components of a program from the ground up, using
ASCII files and command line compilers. Resources can be approached the same way:
I could describe how to use the visual tools or how to create the ASCII files that are
the basis for the resources. In this book, I stay primarily at the ASCII resource script
level since the goal is to teach Windows CE programming, not how to use a particu-
lar set of tools. I'll show how to create and use the ASCII RC file for adding menus
and the like, but later in the book in places where the resource file isn't relevant, I
won'’t always include the RC file in the listings. The files are, of course, on the CD
included with this book.

Resource Scripts

128

Creating a resource script is as simple as using Notepad to create a text file. The lan-
guage used is simple, with C-like tendencies. Comment lines are prefixed by a double
slash (//) and files can be included using a #include statement.

An example menu template would be the following:

//
// A menu template
//
ID_MENU MENU DISCARDABLE
BEGIN
POPUP ™&File™
BEGIN
MENUITEM "&Open...", 100
MENUITEM "&Save...", 101
MENUITEM SEPARATOR
MENUITEM "E&xit", 120
END
POPUP "&Help"
BEGIN
MENUITEM "&About", 200
END
END

Chapter 3 Input: Keyboard, Stylus, and Menus

The initial ID_MENU is the ID value for the resource. Alternatively, this ID value
can be replaced by a string identifying the resource. The ID value method provides
more compact code while using a string may provide more readable code when
the application loads the resource in the source file. The next word, MENU, identi-
fies the type of resource. The menu starts with POPUP, indicating that the menu item
File is actually a pop-up (cascade) menu attached to the main menu. Because it's a
menu within a menu, it too has BEGIN and END keywords surrounding the descrip-
tion of the File menu. The ampersand (&) character tells Windows that the next char-
acter should be the key assignment for that menu item. The character following the
ampersand is automatically underlined by Windows when the menu item is displayed,
and if the user presses the Alt key along with the character, that menu item is selected.
Each item in a menu is then specified by the MENUITEM keyword followed by the
string used on the menu. The ellipsis following the Open and Save strings is a Win-
dows Ul custom indicating to the user that selecting that item displays a dialog box.
The numbers following the Open, Save, Exit, and About menu items are the menu
identifiers. These values identify the menu items in the WM_COMMAND message.
It's good programming practice to replace these values with equates that are defined
in a common include file so that they match the WM_COMMAND handler code.

Figure 3-10 lists other resource types that you might find in a resource file. The
DISCARDABLE keyword is optional and tells Windows that the resource can be dis-
carded from memory if it’s not in use. The remainder of the menu is couched in BEGIN
and END keywords, although bracket characters { and } are recognized as well.

Resource Type Explanation

MENU Defines a menu

ACCELERATORS Defines a keyboard accelerator table
DIALOG Defines a dialog box template

BITMAP Includes a bitmap file as a resource

ICON Includes an icon file as a resource

FONT Includes a font file as a resource

RCDATA Defines application-defined binary data block
STRINGTABLE Defines a list of strings

VERSIONINFO Includes file version information

Figure 3-10. The resource types allowed by the rvesource compiler.

129

Part |

Windows Programming Basics

Icons

130

Now that we’re working with resource files, it’s a trivial matter to- modify the icon
that the Windows CE shell uses to display a program. Simply create an icon with your
favorite icon editor and add to the resource file an icon statement such as

ID_ICON ICON "tictac2.ico™

When Windows displays a program in Windows Explorer, it looks inside the EXE file
for the first icon in the resource list and uses it to represent the program.

Having that icon represent an application’s window is somewhat more of a chore.
Windows CE uses a small 16-by-16-pixel icon on the taskbar to represent windows
on the desktop. Under other versions of Windows, the RegisterClassEx function could
be used to associate a small icon with a window, but Windows CE doesn’t support
this function. Instead, the icon must be explicitly loaded and assigned to the win-
dow. The following code fragment assigns a small icon to a window.

hIcon = (HICON) SendMessage (hWnd, WM_GETICON, FALSE, 0);
if (hIcon == 0) {
hIcon = LoadImage (hInst, MAKEINTRESOURCE (ID_ICON1), IMAGE_ICON,
16, 16, 0);
SendMessage (hWnd, WM_SETICON, FALSE, (LPARAM)hIcon);:
}

The first SendMessage call gets the currently assigned icon for the window. The
FALSE value in wParam indicates that we’re querying the small icon for the window.
If this returns 0, indicating that no icon has been assigned, a call to LoadImage is made
to load the icon from the application resources. The LoadImage function can take
either a text string or an ID value to identify the resource being loaded. In this case,
the MAKEINTRESOURCE macro is used to label an ID value to the function. The icon
being loaded must be a 16-by-16 icon because under Windows CE, Loadlmage won't
resize the icon to fit the requested size. Also under Windows CE, LoadlImage is lim-
ited to loading icons and bitmaps from resources. Windows CE provides the function
ShLoadDIBitmap to load a bitmap from a file.

Unlike other versions of Windows, Windows CE stores window icons on a per
class basis. This means if two windows in an application have the same class, they
share the same window icon. A subtle caveat here—window classes are specific to a
particular instance of an application. So, if you have two different instances of the
application FOOBAR, they each have different window classes, so they may have
different window icons even though they were registered with the same class infor-
mation. If the second instance of FOOBAR had two windows of the same class open,
those two windows would share the same icon, independent of the window icon in
the first instance of FOOBAR.

Chapter 3 Input: Keyhoard, Stylus, and Menus

Accelerators

Another resource that can be loaded is a keyboard accelerator table, This table is used
by Windows to enable developers to designate shortcut keys for specific menus or
controls in your application. Specifically, accelerators provide a direct method for a
key combination to result in a WM_COMMAND message being sent to a window.
These accelerators are different from the Alt-F key combination that, for example,
can be used to access a File menu. File menu key combinations are handled auto-
matically as long as the File menu item string was defined with the & character, as in
&File. The keyboard accelerators are independent of menus or any other controls,
although their assignments typically mimic menu operations, as in using Ctrl-O to
open a file.
Below is a short resource script that defines a couple of accelerator keys.

ID_ACCEL ACCELERATORS DISCARDABLE
BEGIN
"N", IDM_NEWGAME, VIRTKEY, CONTROL
"Z", IDM_UNDO, VIRTKEY, CONTROL
END

As with the menu resource, the structure starts with an ID value. The ID value
is followed by the type of resource and, again optionally, the discardable keyword.
The entries in the table consist of the letter identifying the key, followed by the ID
value of the command, VIRTKEY, which indicates that the letter is actually a virtual
key value, followed finally by the CONTROL keyword, indicating that the control shift
must be pressed with the key.

Simply having the accelerator table in the resource doesn’t accomplish much.
The application must load the accelerator table and, for each message it pulls from
the message queue, see whether an accelerator has been entered. Fortunately, this is
accomplished with a few simple modifications to the main message loop of a pro-
gram. Here’s a modified main message loop that handles keyboard accelerators.

// Load accelerator table.
hAccel = LoadAccelerators (hInst, MAKEINTRESOURCE (ID_ACCEL));

// Application message loop
while (GetMessage (&msg, NULL, 9, 0)) {
// Translate accelerators
if (ITranslateAccelerator (hwndMain, hAccel, &msg)) {
TranslateMessage (&msg);
DispatchMessage (&msg):

131

Part |

Windows Pr wning Basics

The first difference in this main message loop is the loading of the accelerator
table using the LoadAccelerators function. Then after each message is pulled from
the message queue, a call is made to TranslateAccelerator. If this function trans-
lates the message, it returns TRUE, which skips the standard TranslateMessage and
DispatchMessage loop body. If no translation was performed, the loop body ex-
ecutes normally.

Bitmaps can also be stored as resources. Windows CE works with bitmap resources
somewhat differently from other versions of Windows. With Windows CE, the call

HBITMAP LoadBitmap(HINSTANCE hInstance, LPCTSTR TpBitmapName);

loads a read-only version of the bitmap. This means that after the bitmap is selected
into a device context, the image can’t be modified by other drawing actions in that
DC. To load a read/write version of a bitmap resource, use the LoadlImage function.

Strings

132

String resources are a good method for reducing the memory footprint of an appli-
cation while keeping language-specific information out of the code to be compiled.
An application can call

int LoadString(HINSTANCE hInstance, UINT uID, LPTSTR TpBuffer,
int nBufferMax);

to load a string from a resource. The ID of the string resource is uID, the [pBuffer
parameter points to a buffer to receive the string, and nBufferMax is the size of the
buffer. To conserve memory, LoadString has a new feature under Windows CE. If
IpBuffer is NULL, LoadString returns a read-only pointer to the string as the return
value. Simply cast the return value as a pointer to a constant Unicode string (LPCTSTR)
and use the string as needed. The length of the string, not including any null termi-
nator, will be located in the word immediately preceding the start of the string.

While I will be covering memory management and strategies for memory con-
servation in Chapter 6, one quick note here. It’s not a good idea to load a number of
strings from a resource into memory. This just uses memory both in the resource and
in RAM. If you need a number of strings at the same time, it might be a better strategy
to use the new feature of LoadString to return a pointer directly to the resource itself.
As an alternative, you can have the strings in a read-only segment compiled with the
program. You lose the advantage of a separate string table, but you reduce your
memory footprint.

Chapter 3 Input: Keyboard, Stylus, and Menus

The TicTac2 Example Program

The final program in this chapter encompasses all of the information presented up to
this point as well as a few new items. The TicTac2 program is an extension of TicTacl;
the additions are a menu, a window icon, and keyboard accelerators. The TicTac2
window, complete with menu, is shown in Figure 3-11, while the source is shown in
Figure 3-12.

Figure 3-11. 7he TicTac2 window winsertDelete (Many Windows CE keyboards use
Shift-Backspace for this function.)

TicTac2.rc

1/
// TicTac2 - Resource file

/i

// Written for the book Programming Windows CE
// Copyright (C) 1998 Douglas Boling

1/
1/

#include "tictac2.h"

/1

// Icon

1/

ID_ICON ICON "tictac2.ico"

Figure 3-12. 7he Tictac2 program. (continued)

133

Patl Windows Programming Basics

Figure 3-12. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

(continued)

Patl Windows Programming Basics

Figure 3-12. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

// Command Message dispatch for MainWindowProc

const struct decodeCMD MainCommandItems[] = {
IDM_NEWGAME, DoMainCommandNewGame,
IDM_UNDO, DoMainCommandUndo,
IDM_EXIT, DoMainCommandExit,

s

/1

/1

// Program entry point

L1

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPWSTR 1pCmdLine, int nCmdShow) ({

MSG msg;

int rc = 0;
HWND hwndMain;
HACCEL hAccel;

// Initialize application.
rc = InitApp (hlnstance);
if (rc) return rc;

// Initialize this instance.
hwndMain = InitInstance (hInstance, 1pCmdLine, nCmdShow);
if (hwndMain == @)

return 0x10;

// Load accelerator table.
hAccel = LoadAccelerators (hInst, MAKEINTRESOURCE (ID_ACCEL));

// Application message loop
while (GetMessage (&msg, NULL, @, 0)) {
// Translate accelerators
if (!TranslateAccelerator (hwndMain, hAccel, &msg)) {
TranslateMessage (&msg);
DispatchMessage (&msg);
}
}
// Instance cleanup
return TermInstance (hInstance, msg.wParam);

// InitApp - Application initialization

//

int InitApp (HINSTANCE hInstance) {
WNDCLASS wc;

(continued)

137

Pat! Windows Programming Basics

Figure 3-12. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

// TermInstance - Program cleanup
1/
int TermInstance (HINSTANCE hInstance, int nDefRC) {

return nDefRC;
}
//
// Message handling procedures for MainWindow
//

// MainWndProc - Callback function for application window
/1
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {

INT i;

//

// Search message list to see if we need to handle this

// message. If in list, call procedure.

/1

for (i = @; i < dim(MainMessages); i++) {

if (wMsg == MainMessages[i].Code)
return (*MainMessages[i].Fxn)(hWnd, wMsg, wParam, 1Param);

}
return DefWindowProc (hWnd, wMsg, wParam, 1Param);
}
gt SRR e Sk (AR LR S SRR R S LA A L LA L E L AR ER AR
// DoCreateMain - Process WM_CREATE message for window.
//

LRESULT DoCreateMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM 1Param) {
HWND hwndCB;
HICON hlIcon;

// Create a command bar.

hwndCB = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);
// Add the menu.

CommandBar_InsertMenubar (hwndCB, hInst, ID_MENU, 0);
// Add exit button to command bar.
CommandBar_AddAdornments (hwndCB, @, 0);

hlIcon = (HICON) SendMessage (hWnd, WM_GETICON, @, 0);
if (hIcon == 0) {
hlcon = LoadImage (hInst, MAKEINTRESOURCE (ID_ICON),
IMAGE_ICON, 16, 16, 0);

(continued)

139

Pat! Windows Programming Basics

Figure 3-12. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

Pat! Windows Programming Basics

Figure 3-12. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

(continued)

143

Patl Windows Programming Basics

Figure 3-12. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

Patl Windows Programming Basics

Figure 3-12. continued

Chapter 3 Input: Keyboard, Stylus, and Menus

SelectObject (hdc, hOldPen);
DeleteObject (hPen);
return;

The biggest change in TicTac2 is the addition of a WM_COMMAND handler in
the form of the routine OnCommandMain. Because a program might end up han-
dling a large number of different menu items and other controls, I extend the table-
lookup design of the window procedure to another table lookup for command IDs
from menus and accelerators. For TicTac2, I use three command handlers, one for
each of the menu items. This results in another table of IDs and procedure pointers
that associates menu IDs with handler procedures. Again, this way of using a table
lookup instead of the standard switch statement isn't necessary or specific to Win-
dows CE. It's simply my programming style.

The first menu handler, OnCommandNewGame, simply calls the reset game
routine to clear the game structures. The routine itself returns 0, which is the default
value for a WM_COMMAND handler.

The OnCommandUndo command handler is interesting in that it isn't always
enabled. TicTac2 handles an additional message WM_INITMENUPOPUP, which is sent
to a window immediately before the window menu is displayed. This gives the win-
dow a chance to initialize any of the menu items. In this case, the routine
OnlInitMenuPopMain looks to see whether the bLastMove field contains a valid cell
value (0 through 8). If not, the routine disables the Undo menu item using
EnableMenultem. This action also disables the keyboard accelerator for that menu
item as well.

The final command handler, OnCommandExit, sends a WM_CLOSE message
to the main window. Closing the window eventually results in Windows sending a
WM_DESTROY message, which results in a PostQuitMessage call that terminates the
program. Sending a WM_CLOSE message is, by the way, the same action that results
from clicking on the Close button on the command bar.

Other changes from the first TicTac example include modification of the mes-
sage loop to provide for keyboard accelerators and the addition of code in the
OnCreateMain routine to load and assign a window icon. Also, the string prompts
for whose turn it is are loaded from the resource file.

Looking at the OnCommandNewGame handler introduces one last new func-
tion. If the game isn’t complete, the program asks the players whether they really want
to clear the game board. This query is accomplished by calling

int MessageBox (HWND hWnd, LPCTSTR 1pText, LPCTSTR 1pCaption,
UINT uType);

147

Part |

148

Windows Programming Basics

This function displays a message box, a simple dialog box, with definable text and
buttons. A message box can display a message along with a limited series of buttons.
Message boxes are often used to query users for a simple response or to notify them
of some event. The uType parameter allows the programmer to select different but-
ton configurations, such as Yes/No, OK/Cancel, Yes/No/Cancel, and simply OK. You
can also select an icon to appear in the message box that signals the level of impor-
tance of the answer.

A message box is essentially a poor man’s dialog box. It offers a simple method
of querying the user but little flexibility in how the dialog box is configured. Now
that we’ve introduced the subject of dialog boxes, it’s time to take a closer look at
them and other types of secondary and child windows.

Chapter 4

Windows, Gontrols,
and Dialog Boxes

Understanding how windows work and relate to each other is the key to understanding
the user interface of the Microsoft Windows operating system, whether it be Microsoft
Windows 98, Microsoft Windows NT, or Microsoft Windows CE. Everything you see
on a Windows display is a window. The desktop is a window, the taskbar is a win-
dow, even the Start button on the taskbar is a window. Windows are related to one
another according to one relationship model or another; they may be in parent/child,
sibling, or owner/owned relationships. Windows supports a number of predefined
window classes, called controls. These controls simplify the work of programmers
by providing a range of predefined user interface elements as simple as a button or
as complex as a multiline text editor. Windows CE supports the same standard set of
built-in controls as the other versions of Windows. These built-in controls shouldn’t
be confused with the complex controls provided by the common control library. I'll
talk about those controls in Chapter 5.

Controls are usually contained in dialog boxes (sometimes simply referred to
as dialogs). These dialog boxes constitute a method for a program to query users for
information the program needs. A specialized form of dialog, named a property sheet,
allows a program to display multiple but related dialog boxes in an overlapping style;
each box or property sheet is equipped with an identifying tab. Property sheets are
particularly valuable given the tiny screens associated with Windows CE devices.

149

Part | Windows Programming Basics

Finally, Windows CE supports a subset of the common dialog library available
under Windows NT and Windows 98. Specifically, Windows CE supports versions of
the common dialog boxes File Open, File Save, Color, and Print. These dialogs are
somewhat different on Windows CE. They’re reformatted for the smaller screens and
aren’t as extensible as their desktop counterparts.

CHILD WINDOWS

150

Each window is connected via a parent/child relationship scheme. Applications cre-
ate a main window with no parent, called a top-level window. That window might
(or might not) contain windows, called c¢hild windows. A child window is clipped to
its parent. That is, no part of a child window is visible beyond the edge of its parent.
Child windows are automatically destroyed when their parent windows are destroyed.
Also, when a parent window moves, its child windows move with it.

Child windows are programmatically identical to top-level windows. You use
the CreateWindow or CreateWindowEx function to create them, each has a window
procedure that handles the same messages as its top-level window, and each can, in
turn, contain its own child windows. To create a child window, use the WS_CHILD
window style in the dwStyle parameter of CreateWindow or CreateWindowEx. In
addition, the hMenu parameter, unused in top-level Windows CE windows, passes
an ID value that you can use to reference the window.

Under Windows CE, there’s one other major difference between top-level win-
dows and child windows. Windows sends WM_HIBERNATE messages only to top-
level windows that have the WS_OVERLAPPED and WS_VISIBLE styles. (Window
visibility in this case has nothing to do with what a user sees. A window can be “vis-
ible” to the system and still not be seen by the user if other windows are above it in
the Z-order.) This means that child windows and most dialog boxes aren’t sent
WM_HIBERNATE messages. Top-level windows must either manually send a
WM_HIBERNATE message to their child windows as necessary or perform all the
necessary tasks themselves to reduce the application’s memory footprint. On Win-
dows CE systems, such as the H/PC that support application buttons on the taskbar,
the rules for determining the target of WM_HIBERNATE messages are also used to
determine what windows get buttons on the taskbar.

In addition to the parent/child relationship, windows also have an owner/owned
relationship. Owned windows aren’t clipped to their owners. However, they always
appear “above” (in Z-order) the window that owns them. If the owner window is
minimized, all windows it owns are hidden. Likewise, if a window is destroyed, all
windows it owns are destroyed. Windows CE 1.0 supports window ownership only
for dialog boxes, but from version 2.0 on, Windows CE provides full support for owned
windows.

Chapter 4 Windows, Gontrols, and Dialog Boxes

Window Management Functions

Given the windows-centric nature of Windows, it’s not surprising that you can choose
from a number of functions that enable a window to interrogate its environment so
that it might determine its location in the window family tree. To find its parent, a
window can call

HWND GetParent (HWND hWnd);

This function is passed a window handle and returns the handle of the calling window’s
parent window. If the window has no parent, the function returns NULL.

Enumerating windows
GetWindow, prototyped as

HWND GetWindow (HWND hWnd, UINT uCmd);

is an omnibus function that allows a window to query its children, owner, and sib-
lings. The first parameter is the window’s handle while the second is a constant that
indicates the requested relationship. The GW_CHILD constant returns a handle to the
first child window of a window. GetWindow returns windows in Z-order, so the first
window in this case is the child window highest in the Z-order. If the window has no
child windows, this function returns NULL. The two constants, GW_HWNDFIRST and
GW_HWNDLAST, return the first and last windows in the Z-order. If the window handle
passed is a top-level window, these constants return the first and last topmost win-
dows in the Z-order. If the window passed is a child window, the GetWindow function
returns the first and last sibling window. The GW_HWNDNEXT and GW_HWNDPREV
constants return the next lower and next higher windows in the Z-order. These con-
stants allow a window to iterate through all the sibling windows by getting the next
window, then using that window handle with another call to GetWindow to get the
next, and so on. Finally, the GW_OWNER constant returns the handle of the owner
of a window.
Another way to iterate through a series of windows is

BOOL EnumWindows (WNDENUMPROC TpEnumFunc, LPARAM 1Param);

This function calls the callback function pointed to by [pEnumFunc once for each
top-level window on the desktop, passing the the handle of each window in turn.
The [Param value is an application-defined value, which is also passed to the enu-
meration function. This function is better than iterating through a GetWindow loop
to find the top-level windows because it always returns valid window handles; it’s
possible that a GetWindow iteration loop will get a window handle whose window
is destroyed before the next call to GetWindow can occur. However, since
EnumWindows works only with top-level windows, GetWindow still has a place when
iterating through a series of child windows. \

151

Part |

152

Windows Programming Basics

Finding a window
To get the handle of a specific window, use the function

HWND FindWindow (LPCTSTR 1pClassName, LPCTSTR 1pWindowName);

This function can find a window either by means of its window class name or by means
of a window’s title text. This function is handy when an application is just starting
up; it can determine whether another copy of the application is already running. All
an application has to do is call FindWindow with the name of the window class for
the main window of the application. Because an application almost always has a main
window while it’s running, a NULL returned by FindWindow indicates that the func-
tion can’t locate another window with the specified window class—therefore, it's
almost certain that another copy of the application isn’t running.

Editing the window structure values
The pair of functions

LONG GetWindowLong (HWND hWnd, int nlndex);
and
LONG SetWindowLong (HWND hWnd, int nIndex, LONG dwNewlong);

allow an application to edit data in the window structure for a window. Remember
the WNDCLASS structure passed to the RegisterClass function has a field, cbWndExtra,
that controls the number of extra bytes that are to be allocated after the structure. If
you allocated extra space in the window structure when the window class was reg-
istered, you can access those bytes using the GetWindowLong and SetWindowLong
functions. Under Windows CE, the data must be allocated and referenced in 4-byte
(integer sized and aligned) blocks. So, if a window class was registered with 12 in
the cbWndExtra tield, an application can access those bytes by calling GetWindowLong
or SetWindowlLong with the window handle and by setting values of 0, 4, and 8 in
the nindex parameter.

GetWindowLong and SetWindowLong support a set of predefined index values
that allow an application access to some of the basic parameters of a window. Here
is a list of the supported values for Windows CE.

B GWI_STYIE The style flags for the window
GWI_EXSTYLE The extended style flags for the window

GWL_WNDPROC The pointer to the window procedure for the window
GWIL_ID The ID value for the window

GWIL_USERDATA An application-usable 32-bit value

Chapter 4 Windows, Controls, and Dialog Boxes

Dialog box windows support the following additional values:

DWIL_DLGPROC The pointer to the dialog procedure for the window

B DWIL_MSGRESULT The value returned when the dialog box function
returns

B DWIL_USER An application-usable 32-bit value

Windows CE doesn’t support the GWL_HINSTANCE and GWL_HWNDPARENT
values supported by Windows NT and Windows 98.

Scroll Bars and the FontList2 Example Program

To demonstrate a handy use for a child window, we return to the FontList program
from Chapter 2. As you might remember, the problem was that if a scroll bar were
attached to the main window of the application, the scroll bar would extend upward,
past the right side of the command bar. The reason for this is that a scroll bar attached
to a window is actually placed in the nonclient area of that window. Because the com-
mand bar lies in the client space, we have no easy way to properly position the two
controls in the same window.

An easy way to solve this problem is to use a child window. We place the child
window so that it fills all of the client area of the top-level window not covered by
the command bar. The scroll bar can then be attached to the child window so that it
appears on the right side of the window but stops just beneath the command bar.
Figure 4-1 shows the Fontlist2 window. Notice that the scroll bar now fits properly
underneath the command bar. Also notice that the child window is completely un-
detectable by the user.

Times New Roman Point:24
Family: Symbol Number of fonts:2
ZypBoh Mowr:12
Zyufoh Tlowr 14
Family: Arial Number of fonts:6
Arial Point10
Arial Point11
Arial Point:12
Arial Point13

Arial Point:18

Figure 4-1. 7he FontList2 window with the scroll bar properly positioned just beneath
the command bar.

153

Pat! Windows Programming Basics

The code for this fix, which isn’t that much more complex than the original
FontList example, is shown in Figure 4-2. Instead of one window procedure, there
are now two, one for the top-level window, which I have labeled the Frame win-
dow, and one for the child window. I separated the code for these two windows into
two different source files, FontList2.c and ClientWnd.c. ClientWnd.c also contains a
function, InitClient, which registers the client window class.

Figure 4-2. The FontList2 program.

Chapter 4 Windows, Controls, and Dialog Boxes

(continued)

Patl Windows Programming Basics

Figure 4-2. continued

Chapter 4 Windows, Controls, and Dialog Boxes

wc.style = 0; // Window style
wc.lpfnWndProc = FrameWndProc; // Callback function
wc.cbClsExtra = 0; // Extra class data
wc.cbWndExtra = 0; // Extra window data
wc.hInstance = hlnstance; // Owner handle
wc.hIcon = NULL, // Application icon
wc.hCursor = NULL; // Default cursor
wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);:
wc.lpszMenuName = NULL; // Menu name
wc.lpszClassName = szAppName; // Window class name

if (RegisterClass (&wc) == 0) return 1;

// Initialize client window class.
if (InitClient (hInstance) != @) return 2;
return 0;

// Initlnstance - Instance initialization

//

HWND InitInstance (HINSTANCE hInstance, LPWSTR 1pCmdLine, int nCmdShow) {
HWND hWnd;

// Save program instance handle in global variable.
hInst = hlnstance;

// Create frame window.

hWnd = CreateWindow (szAppName, // Window class
TEXT ("Font List 2"), // Window title
WS_VISIBLE, // Style flags
CW_USEDEFAULT, // x position
CW_USEDEFAULT, // y position
CW_USEDEFAULT, // Initial width
CW_USEDEFAULT, // Initial height
NULL, // Parent
NULL, // Menu, must be null
hInstance, // Application instance
NULL); // Pointer to create

// parameters
// Return fail code if window not created.
if (!IsWindow (hWnd)) return 0;

// Standard show and update calls
ShowWindow (hWnd, nCmdShow);

UpdateWindow (hWnd);
return hWnd;

(continued)

157

Part! Windows Programming Basics

Figure 4-2. continued

Chapter 4 Windows, Controls, and Dialog Boxes

Partl Windows Programming Basics

Figure 4-2. continued

Chapter 4 Windows, Controls, and Dialog Boxes

int TermClient (HINSTANCE hInstance, int nDefRC) {
return nDefRC;

}

//

// Font callback functions

// FontFamilyCallback - Callback function that enumerates the font
// families.
//
int CALLBACK FontFamilyCallback (CONST LOGFONT =*1pl1f,
CONST TEXTMETRIC #1pntm,
DWORD nFontType, LPARAM 1Param) {
int wve = 1

// Stop enumeration if array filled.
if (sFamilyCnt >= FAMILYMAX)
return 0;
// Copy face name of font.
I1strcpy (ffs[sFamilyCnt++].szFontFamily, 1p1f->1fFaceName);

return rc;

// EnumSingleFontFamily - Callback function that enumerates the font
// families
//
int CALLBACK EnumSingleFontFamily (CONST LOGFONT =1plf,
CONST TEXTMETRIC #1pntm,
DWORD nFontType, LPARAM 1Param) {
PFONTFAMSTRUCT pffs;

pffs = (PFONTFAMSTRUCT) 1Param;
pffs->nNumFonts++; // Increment count of fonts in family.
return 1;

// PaintSingleFontFamily - Callback function that enumerates the font
// families.
//
int CALLBACK PaintSingleFontFamily (CONST LOGFONT =*1plf,
CONST TEXTMETRIC *1pntm,
DWORD nFontType, LPARAM 1Param) (
PPAINTFONTINFO ppfi;
TCHAR szOut[256];
INT nFontHeight, nPointSize;
TEXTMETRIC tm;
HFONT hFont, hOldFont;

(continued)

161

Patl Windows Programming Basics

Figure 4-2. continued

Chapter 4 Windows, Controls, and Dialog Boxes

Patl Windows Programming Basics

Figure 4-2. continued

Chapter 4 Windows, Controls, and Dialog Boxes

The window procedure for the frame window is quite simple. Just as in the
original FontList program in Chapter 2, the command bar is created in the
WM_CREATE message handler, DoCreateFrame. Now, however, this procedure also
calls CreateWindow to create the child window in the area underneath the command
bar. The child window is created with three style flags: WS_VISIBLE, so that the win-
dow is initially visible; WS_CHILD, required because it will be a child window of the
frame window; and WS_VSCROLL to add the vertical scroll bar to the child window.

Part |

166

Windows Programming Basics

The majority of the work for the program is handled in the client window pro-
cedure. Here the same font enumeration calls are made to query the fonts in the sys-
tem. The WM_PAINT handler, DoPaintClient, has a new characteristic: it now bases
what it paints on the new global variable sVPos, which provides vertical positioning.
That variable is initialized to 0 in DoCreateClient and is changed in the handler for a
new message, WM_VSCROLL.

Scroll bar messages

A WM_VSCROLL message is sent to the owner of a vertical scroll bar any time the user
taps on the scroll bar to change its position. A complementary message, WM_HSCROLL,
is identical to WM_VSCROLL but is sent when the user taps on a horizontal scroll bar.
For both these messages, the wParam and [Param assignments are the same. The
low word of the wParam parameter contains a code indicating why the message was
sent. Figure 4-3 shows a diagram of horizontal and vertical scroll bars and how tap-
ping on different parts of the scroll bars results in different messages. The high word
of wParam is the position of the thumb, but this value is valid only while you're pro-
cessing the SB_THUMBPOSITION and SB_THUMBTRACK codes, which I'll explain
shortly. If the scroll bar sending the message is a stand-alone control and not attached
to a window, the /Param parameter contains the window handle of the scroll bar.

SB_LINEUP
SB_PAGEUP

SB_THUMBPOSITION
SB_THUMBTRACK

SB_PAGEDOWN
SB_LINEDOWN

SB_LINELEFT SB_THUMBPOSITION SB_LINERIGHT
SB_PAGELEFT $B_THUMBTRACK SB_PAGERIGHT

Figure 4-3. Scroll bars and their hot spots.

The scroll bar message codes sent by the scroll bar allow the program to react
to all the different user actions allowable by a scroll bar. The response required by
each code is listed in the following table, Figure 4-4.

The SB_LINExxx and SB_PAGExxx codes are pretty straightforward. You move
the scroll position either a line or a page at a time. The SB_THUMBPOSITION and
SB_THUMBTRACK codes can be processed in one of two ways. When the user drags
the scroll bar thumb, the scroll bar sends SB_THUMBTRACK code so that a program
can interactively track the dragging of the thumb. If your application is fast enough,
you can simply process the SB_THUMBTRACK code and interactively update the
display. If you field the SB_THUMBTRACK code, however, your application must be

Part |

166

Windows Programming Basics

The majority of the work for the program is handled in the client window pro-
cedure. Here the same font enumeration calls are made to query the fonts in the sys-
tem. The WM_PAINT handler, DoPaintClient, has a new characteristic: it now bases
what it paints on the new global variable sVPos, which provides vertical positioning.
That variable is initialized to 0 in DoCreateClient and is changed in the handler for a
new message, WM_VSCROLL.

Scroll bar messages

A WM_VSCROLL message is sent to the owner of a vertical scroll bar any time the user
taps on the scroll bar to change its position. A complementary message, WM_HSCROLL,
is identical to WM_VSCROLL but is sent when the user taps on a horizontal scroll bar.
For both these messages, the wParam and [Param assignments are the same. The
low word of the wParam parameter contains a code indicating why the message was
sent. Figure 4-3 shows a diagram of horizontal and vertical scroll bars and how tap-
ping on different parts of the scroll bars results in different messages. The high word
of wParam is the position of the thumb, but this value is valid only while you’re pro-
cessing the SB_THUMBPOSITION and SB_THUMBTRACK codes, which I'll explain
shortly. If the scroll bar sending the message is a stand-alone control and not attached
to a window, the [Param parameter contains the window handle of the scroll bar.

SB_LINEUP
SB_PAGEUP
SB_THUMBPOSITION
SB_THUMBTRACK

SB_PAGEDOWN
SB_LINEDOWN

SB_LINELEFT $B_THUMBPOSITION SB_LINERIGHT
SB_PAGELEFT SB_THUMBTRACK SB_PAGERIGHT

Figure 4-3. Scroll bars and their bot spots.

The scroll bar message codes sent by the scroll bar allow the program to react
to all the different user actions allowable by a scroll bar. The response required by
each code is listed in the following table, Figure 4-4.

The SB_LINExxx and SB_PAGExxx codes are pretty straightforward. You move
the scroll position either a line or a page at a time. The SB_THUMBPOSITION and
SB_THUMBTRACK codes can be processed in one of two ways. When the user drags
the scroll bar thumb, the scroll bar sends SB_THUMBTRACK code so that a program
can interactively track the dragging of the thumb. If your application is fast enough,
you can simply process the SB_THUMBTRACK code and interactively update the
display. If you field the SB_THUMBTRACK code, however, your application must be

Chapter 4 Windows, Gontrols, and Dialog Boxes

quick enough to redraw the display so that the thumb can be dragged without hesi-
tation or jumping of the scroll bar. This is especially a problem on the slower devices

that run Windows CE.

Codes

Response

For WS_VSCROLL
SB_LINEUP
SB_LINEDOWN
SB_PAGEUP

SB_PAGEDOWN
For WS_HSCROLL
SB_LINELEFT

SB_LINERIGHT
SB_PAGELEFT

SB_PAGERIGHT

Program should scroll the screen up one line.
Program should scroll the screen down one line.

Program should scroll the screen up one screen’s
worth of data.

Program should scroll the screen down one
screen’s worth of data.

Program should scroll the screen left one character.
Program should scroll the screen right one character.

Program should scroll the screen left one screen’s
worth of data.

Program should scroll the screen right one screen’s
worth of data.

For both WS_VSCROLL and WS_HSCROLL

SB_THUMBTRACK

SB_THUMBPOSITION

SB_ENDSCROLL

SB_TOP

SB_BOTTOM

Programs with enough speed to keep up should
update the display with the new scroll position.

Programs that can’t update the display fast enough
to keep up with the SB_THUMBTRACK message
should update the display with the new scroll
position.

This code indicates that the scroll bar has com-
pleted the scroll event. No action is required by the
program.

Program should set the display to the top or left end
of the data.

Program should set the display to the bottom or
right end of the data.

Figure 4-4. Scroll codes.

167

Part |

168

Windows Programming Basics

If your application (or the system it’s running on) is too slow to quickly update
the display for every SB_THUMBTRACK code, you can ignore the SB_THUMBTRACK

bar thumb. Then you have to update the display only once, after the user has fin-
ished moving the scroll bar thumb.

Configuring a scroll bar

To use a scroll bar, an application should first set the minimum and maximum val-
ues—the range of the scroll bar, along with the initial position. Windows CE scroll
bars, like their Win32 cousins, support proportional thumb sizes, which provide feed-
back to the user about the size of the current visible page compared to the entire
scroll range. To set all these parameters, Windows CE applications should use the
SetScrollInfo function, prototyped as

int SetScrollInfo (HWND hwnd, int fnBar, LPSCROLLINFO Tpsi, BOOL fRedraw):;

The first parameter is either the handle of the window that contains the scroll
bar or the window handle of the scroll bar itself. The second parameter, fnBar, is a
flag that determines the use of the window handle. The scroll bar flag can be one of
three values: SB_HORZ for a window’s standard horizontal scroll bar, SB_VERT for a
window’s standard vertical scroll bar, or SB_CTL if the scroll bar being set is a stand-
alone control. Unless the scroll bar is a control, the window handle is the handle of
the window containing the scroll bar. With SB_CTL, however, the handle is the win-
dow handle of the scroll bar control itself. The last parameter is_fRedraw, a Bool-
ean value that indicates whether the scroll bar should be redrawn after the call has
been completed.

The third parameter is a pointer to a SCROLLINFO structure, which is defined as

typedef struct tagSCROLLINFO {
UINT cbSize;
UINT fMask;
int nMin;
int nMax;
UINT nPage;
int nPos;
int nTrackPos;
} SCROLLINFO;

This structure allows you to completely specify the scroll bar parameters. The cbSize
field must be set to the size of the SCROLLINFO structure. The fMask field contains
flags indicating what other fields in the structure contain valid data. The nMin and
nMax fields can contain the minimum and maximum scroll values the scroll bar can
report. Windows looks at the values in these fields if the fMask parameter contains
the SIF_RANGE flag. Likewise, the nPos field sets the position of the scroll bar within
its predefined range if the fMask field contains the SIF_POS flag.

Chapter 4 Windows, Controls, and Dialog Boxes

The nPage field allows a program to define the size of the currently viewable
area of the screen in relation to the entire scrollable area. This allows a user to have
a feel for how much of the entire scrolling range is currently visible. This field is used
only if the fMask field contains the SIF_PAGE flag. The last member of the SCROLLINFO
structure, nTrackPos, isn’t used by the SetScrollInfo call and is ignored.

The fMask field can contain one last flag. Passing a SIF_DISABLENOSCROLL
flag causes the scroll bar to be disabled, but still visible. This is handy when the en-
tire scrolling range is visible within the viewable area and no scrolling is necessary.
Disabling the scroll bar in this case is often preferable to simply removing the scroll
bar completely.

Those with a sharp eye for detail will notice a problem with the width of the
fields in the SCROLLINFO structure. The nMin, nMax, and nPos fields are integers
and therefore in the world of Windows CE, are 32 bits wide. On the other hand, the
WM_HSCROLL and WM_VSCROLL messages can return only a 16-bit position in the
high word of the wParam parameter. If you're using scroll ranges greater than 65,535,
use this function:

BOOL GetScrollInfo (HWND hwnd, int fnBar, LPSCROLLINFO 1psi);

As with SetScrollinfo, the flags in the fnBar field indicate the window handle
that should be passed to the function. The SCROLLINFO structure is identical to the
one used in SetScrolllnfo; however, before it can be passed to GetScrollInfo, it must
be initialized with the size of the structure in c¢bSize. An application must also indi-
cate what data it wants the function to return by setting the appropriate flags in the
fMask field. The flags used in fMask are the same as the ones used in SetScrolllnfo
with a couple of additions. Now a SIF_TRACKPOS flag can be passed to have the
scroll bar return its current thumb position. When called during a WM_xSCROLL
message, the nTrackPos field contains the real time position while the nPos field
contains the scroll bar position at the start of the drag of the thumb.

The scroll bar is an unusual control in that it can be added easily to windows
simply by specifying a window style flag. It’s also unusual in that the control is placed
outside the client area of the window. The reason for this assistance is that scroll bars
are commonly needed by applications, so the Windows developers made it easy to
attach scroll bars to windows. Now let’s look at the other basic Windows controls.

WINDOWS CONTROLS

While scroll bars hold a special place because of their easy association with standard
windows, there are a large number of other controls that Windows applications often
use, including buttons, edit boxes, and list boxes. In short, controls are simply pre-
defined window classes. Each has a custom window procedure supplied by Windows
that gives each of these controls a tightly defined user and programming interface.

169

Part |

Windows Programming Basics

Since a control is just another window, it can be created with a call to
CreateWindow or CreateWindowEx, or, as [will explain later in this chapter, auto-
matically by the dialog manager during the creation of a dialog box. Like menus,
controls notify the parent window of events via WM_COMMAND messages encod-
ing events and the ID and window handle of the control encoded in the parameters
of the message. Controls can also be configured and manipulated using predefined
messages sent to the control. Among other things, applications can set the state of
buttons, add or delete items to list boxes, and set the selection of text in edit boxes
all by sending messages to the controls.

There are six predefined window control classes. They are

Buttorn A wide variety of buttons.
Edit A window that can be used to enter or display text.
List A window that contains a list of strings.

Combo A combination edit box and list box.

Static A window that displays text or graphics that a user can’t change.

Scroll bar A scroll bar not attached to a specific window.

Each of these controls has a wide range of function, far too much for me to cover
completely in this chapter. But I'll quickly review these controls, mentioning at least
the highlights. Afterward, I'll show you an example program, CtlView, to demonstrate
these controls and their interactions with their parent windows.

Button Controls

170

Button controls enable several forms of input to the program. Buttons come in many
styles, including push buttons, check boxes, and radio buttons. Each style is designed
for a specific use—for example, push buttons are designed for receiving momentary
input, check boxes are designed for on/off input, and radio buttons allow a user to
select one of a number of choices.

Push buttons

In general, push buttons are used to invoke some action. When a user presses a
push button using a stylus, the button sends a WM_COMMAND message with a
BN_CLICKED (for button notification clicked) notify code in the high word of the
wParam parameter.

Check boxes

Check boxes display a square box and a label that asks the user to specify a choice.
A check box retains its state, either checked or unchecked, until the user clicks
it again or the program forces the button to change state. In addition to the standard

Chapter 4 Windows, Controls, and Dialog Boxes

BS_CHECKBOX style, check boxes can come in a 3-state style, BS_3STATE, that al-
lows the button to be disabled and shown grayed out. Two additional styles,
BS_AUTOCHECKBOX and BS_AUTO3STATE, automatically update the state and look
of the control to reflect the checked, unchecked, and in the case of the 3-state check
box, the disabled state.

As with push buttons, check boxes send a BN_CLICKED notification when the
button is clicked. Unless the check box has one of the automatic styles, it’s the re-
sponsibility of the application to manually change the state of the button. This can
be done by sending a BM_SETCHECK message to the button with the wParam set to
0 to uncheck the button or 1 to check the button. The 3-state check boxes have a
third, disabled state that can be set by means of the BM_SETCHECK message with
the wParam value set to 2. An application can determine the current state using the
BM_GETCHECK message.

Radio buttons

Radio buttons allow a user to select from a number of choices. Radio buttons are
grouped in a set, with only one of the set ever being checked at a time. If it’s using
the standard BS_RADIOBUTTON style, the application is responsible for checking
and unchecking the radio buttons so that only one is checked at a time. However,
like check boxes, radio buttons have an alternative style, BS_AUTORADIOBUTTON,
that automatically maintains the group of buttons so that only one is checked.

Group boxes
Strangely, the group box is also a type of button. A group box appears to the user as
a hollow box with an integrated text label surrounding a set of controls that are natu-
rally grouped together. Group boxes are merely an organizational device and have
no programming interface other than the text of the box, which is specified in the
window title text upon creation of the group box. Group boxes should be created
after the controls within the box are created. This ensures that the group box will be
“beneath” the controls it contains in the window Z-order.

You should also be careful when using group boxes on Windows CE devices.
The problem isn’t with the group box itself, but with the small size of the Windows
CE screen. Group boxes take up valuable screen real estate that can be better used
by functional controls. This is especially the case on the Palm-size PC with its very
small screen. In many cases, a line drawn between sets of controls can visually group
the controls as well as a group box can.

Customizing the appearance of a button

You can further customize the appearance of the buttons described so far by using a
number of additional styles. The styles, BS_RIGHT, BS_LEFT, BS_BOTTOM, and
BS_TOP, allow you to position the button text in a place other than the default center
of the button. The BS_MULTILINE style allows you to specify more than one line of

171

Part |

172

Windows Programming Basics

text in the button. The text is flowed to fit within the button. The newline character
(\n) in the button text can be used to specifically define where line breaks occur.
Windows CE doesn’t support the BS_ICON and BS_BITMAP button styles supported
by other versions of Windows.

Owner-draw buttons

You can totally control the look of a button by specifying the BS_OWNERDRAW style.
When a button is specified as owner-draw, its owner window is entirely responsible
for drawing the button for all the states in which it might occur. When a window
contains an owner-draw button, it’s sent a WM_DRAWITEM message to inform it that
a button needs to be drawn. For this message, the wParam parameter contains the
ID value for the button and the /Param parameter points to a DRAWITEMSTRUCT
structure defined as

typedef struct tagDRAWITEMSTRUCT {
UINT CtiType;
UINT Ct11ID;
UINT itemlID;
UINT itemAction;
UINT itemState;
HWND hwndItem;
HDC hDC;
RECT rcltem;
DWORD itemData;

} DRAWITEMSTRUCT;

The CtlType field is set to ODT_BUTTON while the CYID field, like the wParam
parameter, contains the button’s ID value. The itemAction field contains flags that
indicate what needs to be drawn and why. The most significant of these fields is
itemState, which contains the state (selected, disabled, and so forth) of the button.
The hDC field contains the device context handle for the button window while the
rcltem RECT contains the dimensions of the button. The itemData field is NULL for
owner-draw buttons.

As you might expect, the WM_DRAWITEM handler contains a number of GDI
calls to draw lines, rectangles, and whatever else is needed to render the button. An
important aspect of drawing a button is matching the standard colors of the other
windows in the system. Since these colors can change, they shouldn’t be hard coded.
You can query to find out which are the proper colors by using the function

DWORD GetSysColor (int nIndex);

This function returns an RGB color value for the colors defined for different
aspects of windows and controls in the system. Among a number of predefined in-
dex values passed in the index parameter, an index of COLOR_BTNFACE returns the

Chapter 4 Windows, Gontrols, and Dialog Boxes

proper color for the face of a button while COLOR_BTNSHADOW returns the dark
color for creating the three-dimensional look of a button.

The Edit Control

The edit control is a window that allows the user to enter and edit text. As you might
imagine, the edit control is one of the handiest controls in the Windows control pan-
theon. The edit control is equipped with full editing capability, including cut, copy,
and paste interaction with the system clipboard, all without assistance from the ap-
plication. Edit controls display a single line, or by specifying the ES_MULTILINE style,
multiple lines of text. The Notepad accessory, provided with the desktop versions of
Windows, is simply a top-level window that contains a multiline edit control.

The edit control has a few other features that should be mentioned. An edit
control with the ES_PASSWORD style displays an asterisk (*) character by default
in the control for each character typed; the control saves the real character. The
ES_READONLY style protects the text contained in the control so that it can be read,
or copied into the clipboard, but not modified. The ES_LOWERCASE and ES_UPPER-
CASE styles force characters entered into the control to be changed to the speci-
fied case.

You can add text to an edit control by using the WM_SETTEXT message and
retrieve text by using the WM_GETTEXT message. Selection can be controlled using
the EM_SETSEL message. This message specifies the starting and ending characters
in the selected area. Other messages allow the position of the caret (the marker that
indicates the current entry point in an edit field) to be queried and set. Multiline edit
controls contain a number of additional messages to control scrolling as well as to
access characters by line and column position.

The List Box Control

The list box control displays a list of text items so that the user might select one or
more of the items within the list. The list box stores the text, optionally sorts the items,
and manages the display of the items, including scrolling. List boxes can be config-
ured to allow selection of a single item or multiple items or to prevent any selec-
tion at all.

You add an item to a list box by sending an LB_ADDSTRING or LB_INSERTSTRING
message to the control, passing a pointer to the string to add in the [Param parame-
ter. The LB_ADDSTRING message places the newly added string at the end of the list
of items while LB_INSERTSTRING can place the string anywhere within the list of
items in the list box. The list box can be searched for a particular item using the
LB_FIND message.

173

Part |

Windows Programming Basics

Selection status can be queried using the LB_GETCURSEL for single selection
list boxes. For multiple selection list boxes, the LB_GETSELCOUNT and LB_GET-
SELITEMS can be used to retrieve the items currently selected. Items in the list box
can be selected programmatically using the LB_SETCURSEL and LB_SETSEL messages.

Windows CE supports most of the list box functionality available in other ver-
sions of Windows with the exception of owner-draw list boxes, and the LB_DIR
family of messages. A new style, LBS_EX CONSTSTRINGDATA, is supported un-
der Windows CE. A list box with this style doesn’t store strings passed to it. Instead,
the pointer to the string is stored and the application is responsible for maintaining
the string. For large arrays of strings that might be loaded from a resource, this pro-
cedure can save RAM because the list box won’t maintain a separate copy of the
list of strings.

The Combo Box Control

174

The combo box is (as the name implies) a combination of controls—in this case, a
single-line edit control and a list box. The combo box is a space-efficient control for
selecting one item from a list of many or for providing an edit field with a list of pre-
defined, suggested entries. Under Windows CE, the combo box comes in two styles:
drop-down and drop-down list. (Simple combo boxes aren’t supported.) The drop-
down style combo box contains an edit field with a button at the right end. Clicking
on the button displays a list box that might contain more selections. Clicking on one
of the selections fills the edit field of the combo box with the selection. The drop-
down list style replaces the edit box with a static text control. This allows the user to
select from an item in the list but prevents the user from entering an item that’s not in
the list.

Since the combo box combines the edit and list controls, a list of the messages
used to control the combo box strongly resembles a merged list of the messages for
the two base controls. CB_ADDSTRING, CB_INSERTSTRING, and CB_FINDSTRING
act like their list box cousins. Likewise the CB_SETEDITSELECT and CB_GETEDIT-
SELECT messages set and query the selected characters in the edit box of a drop-
down or a drop-down list combo box. To control the drop-down state of a drop-down
or drop-down list combo box, the messages CB_SHOWDROPDOWN and CB_GET-
DROPPEDSTATE can be used.

As in the case of the list box, Windows CE doesn’t support owner-draw combo
boxes. However, the combo box supports the CBS_EX_CONSTSTRINGDATA extended
style, which instructs the combo box to store a pointer to the string for an item in-
stead of the string itself. As with the list box LBS_EX_CONSTSTRINGDATA style, this
procedure can save RAM if an application has a large array of strings stored in ROM
because the combo box won’t maintain a separate copy of the list of strings.

Chapter 4 Windows, Controls, and Dialog Boxes

Static Controls

Static controls are windows that display text, icons, or bitmaps not intended for user
interaction. You can use static text controls to label other controls in a window. What
a static control displays is defined by the text and the style for the control Under
Windows CE, static controls support the following styles:

B SS_LEFT Displays a line of left-aligned text. The text is wrapped, if nec-
essary, to fit inside the control.

M SS_CENTER Displays a line of text centered in the control. The text is
wrapped, if necessary, to fit inside the control.

B SS_RIGHT Displays a line of text aligned with the right side of the con-
trol. The text is wrapped, if necessary, to fit inside the control.

B SS_LEFTNOWORDWRAP Displays a line of left-aligned text. The text isn't
wrapped to multiple lines. Any text extending beyond the right side of
the control is clipped.

B SS_BITMAP Displays a bitmap. Window text for the control specifies the
name of the resource containing the bitmap.

B SS_ICON Displays an icon. Window text for the control specifies the name
of the resource containing the icon.

Static controls with the SS_NOTIFY style send a WM_COMMAND message
when the control is clicked, enabled, or disabled, although the Windows CE ver-
sion of the static control doesn’t send a notification when it's double-clicked. The
SS_CENTERIMAGE style, used in combination with the SS_BITMAP or SS_ICON style,
centers the image within the control. The SS_NOPREFIX style can be used in combi-
nation with the text styles. It prevents the ampersand (&) character from being inter-
preted as indicating the next character is an accelerator character.

Windows CE doesn’t support static controls that display filled or hollow rect-
angles such as those drawn with the SS_WHITEFRAME or SS_BLACKRECT styles. Also,
Windows CE doesn’t support owner-draw static controls.

The Scroll Bar Control

The scroll bar control operates identically to the window scroll bars described previously
with the exception that the fnBar field used in SetScrollinfo and GetScrolllnfo must be
set to SB_CTL. The hwnd field then must be set to the handle of the scroll bar control,
not to the window that owns the scroll bar. Like window scroll bars, the owner of the
scroll bar is responsible for fielding the scroll messages WM_VSCROLL and WM_HSCROLL
and setting the new position of the scroll bar in response to these messages.

175

Chapter 4 Windows, Gontrols, and Dialog Boxes

Static Controls

Static controls are windows that display text, icons, or bitmaps not intended for user
interaction. You can use static text controls to label other controls in a window. What
a static control displays is defined by the text and the style for the control Under
Windows CE, static controls support the following styles:

M SS_LEFT Displays a line of left-aligned text. The text is wrapped, if nec-
essary, to fit inside the control.

B SS_CENTER Displays a line of text centered in the control. The text is
wrapped, if necessary, to fit inside the control.

B SS_RIGHT Displays a line of text aligned with the right side of the con-
trol. The text is wrapped, if necessary, to fit inside the control.

B SS_LEFINOWORDWRAP Displays a line of left-aligned text. The text isn’t
wrapped to multiple lines. Any text extending beyond the right side of
the control is clipped.

B SS_BITMAP Displays a bitmap. Window text for the control specifies the
name of the resource containing the bitmap.

B SS_ICON Displays anicon. Window text for the control specifies the name
of the resource containing the icon.

Static controls with the SS_NOTIFY style send a WM_COMMAND message
when the control is clicked, enabled, or disabled, although the Windows CE ver-
sion of the static control doesn’t send a notification when it's double-clicked. The
SS_CENTERIMAGE style, used in combination with the SS_BITMAP or SS_ICON style,
centers the image within the control. The SS_NOPREFIX style can be used in combi-
nation with the text styles. It prevents the ampersand (&) character from being inter-
preted as indicating the next character is an accelerator character.

Windows CE doesn’t support static controls that display filled or hollow rect-
angles such as those drawn with the SS_WHITEFRAME or SS_BLACKRECT styles. Also,
Windows CE doesn’t support owner-draw static controls.

The Scroll Bar Control

The scroll bar control operates identically to the window scroll bars described previously
with the exception that the fnBar field used in SetScrollInfo and GetScrolllnfo must be
set to SB_CTL. The hwnd field then must be set to the handle of the scroll bar control,
not to the window that owns the scroll bar. Like window scroll bars, the owner of the
scroll bar is responsible for fielding the scroll messages WM_VSCROLL and WM_HSCROLL
and setting the new position of the scroll bar in response to these messages.

175

Patl Windows Programming Basics

The CtiView Example Program

The CtlView example program, shown in Figure 4-5, demonstrates all the controls
I've just described. The example makes use of several application-defined child win-
dows that contain various controls. You switch between the different child windows
by clicking on one of five radio buttons displayed across the top of the main win-
dow. As each of the controls reports a notification through a WM_COMMAND mes-
sage, that notification is displayed in a list box on the right side of the window. CtlView
is handy for observing just what messages a control sends to its par<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>