ﬁ - MICROSOFT® PROFESSIONAL EDITIONS Micms Oﬂ®

The comprehensive, must-have reference for
anyone who develops drivers for Windows 2000

Driver Development
Reference

Volume 1

MICIresonm

Driver Development
Reference
Volume 1

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
" One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

123456789 WCWC 543210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office-or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Kodak is a registered
trademark of Eastman Kodak Company. ActiveX, BackOffice, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX, JScript, Microsoft, Microsoft
Press, MS-DOS, MSN, Natural, NetShow, Visual Basic, Visual C++, WebTV, Win32, Win32s, Windows,
and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. All rights reserved. Other product and company names mentioned herein may
be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Management and Production: Online Training Solutions, Inc.
Project Editor: John Pierce '

Acknowledgments to: the Microsoft Corporation Windows 2000 Team

Part No. 097-0002733

Contents

Part 1

Plug and Play..........counemmmemmmmmmmmsmm s 1
Chapter 1 Plug and Play ROULINEScoummescessssmsssssssssensenssssnnsssnss 3
ToACqUITEREMOVELOCK......eiieeriiierieererceieeetecse ettt eee et e neiaens 5
ToAcquireRemMOVELOCKEXcoccecviriiriieeiieinieneet ittt svesee et siaeeenas 7
ToAdjustPagingPathCountcoceeveieieiineenineeeireee e ieseeereenennes 7
ToGetDeviceInterfaceALIasccovererieeiiieriniineniiniiccreseesiece e 8
ToGEetDEVICEINEITACESooveeverriereieniereeriieenteie e enresresesresteeesesiesessens 9
TOGEtDEVICEPIOPEILYcc.viveeemeireeeiereenerietnieerreereeresseese st sveeeseeenens 11
IolnitializeRemoveLock ettt sbre e et e et e a e n s 15
TolnitializeReMOVELOCKEXccccvveirieeeririeeeeirieeen et e e aessesrennens 17
ToInvalidateDeviceRelations.........coceccriviecrinieinienncstiictiecrinresierceeaes 17
ToInvalidateDeviceState......c...cccveveernnnnees e ae s 18
IoOpenDevicelnterfaceRegistryKeyccoveverrrerienireienineesernienraesrenaennens 19
T100penDeviceRegIStIYKEYc.veivireriinriciinennececinieieneecsese et 20
TORegiSterDEVICEINEITACEo.vvvereerercesieeeeieieres s s s saesssssssesenes 22
ToRegisterPlugPlayNotificationcc.ceccvvreenreeceniencerseenenseensenneerseenneen 24
JoReleaseRemoveLockcecveneeenn. ettt ettt st e s ab e e e et e e aae s menes 27
IoReleaseRemoveLOCKEX........cocccvirvriniiniciniciniie e 28
JToReleaseRemoveLoCKANAWAIL.........coervevveeririercriesennnseerereseereernennennes 28
ToReleaseRemoveLockANAWAItEXcccovvreeverienieniiieeesienereereeeeenens 29
TORepOItDEteCtedDEVICE. ...coueereeeererreereerereeseesresererenesreee e seseseesseeseeesnenaes 29
ToReportResourceFOrDEtectionccoivererevereereitrienieriececerene e 32
JoReportTargetDeviceChangecoccvevereeinierereriennnnencesneieseeseenesesnnes 35
IoReportTargetDeviceChange ASynchronouscocceeeeenerrneescenerireenens 36

TOREqUEStDEVICEETECT......covvrueeuieiiriirrenienirene e siseeresresensieeseesnssneneesserenne 38

iv

Windows 2000 Driver Development Reference, Volume 1

ToSetDeviceINterfaceStateccvcvverieninenrenierieriseienressensesreseeseessessessessenns 40
ToUnregisterPlugPlayNotifiCationcccvvvevueeveenierieneeeerieceesesiesreseneeenes 42
Chapter 2 Plug and Play IRPS.........ccoummmmmmnmssessmsssssssmmsssssssessasens 43
IRP_MN_CANCEL_REMOVE_DEVICE.......ccccceceeviinnrinininrrernsrarennenns 45
IRP_MN_CANCEL_STOP_DEVICE........ccicccvviitiieriiinienieenreesreerneanns 46
IRP_MN_DEVICE_USAGE_NOTIFICATIONccoocoveirreereirereevenen. 47
IRP_MN_EJECTcciteottiniieerrieieeerenreeeesisiaesrnessnnessssaessssesssressassnsessssns 51
IRP_MN_FILTER_RESOURCE_REQUIREMENTSccccceevvvvevrrennene 52
IRP_MN_QUERY_BUS_INFORMATIONcccecerreirrninrrnrerareerereennnns 54
IRP_MN_QUERY_CAPABILITIES.........ccoooteitiereinrececceenreeereecrresisveans 56
IRP_MN_QUERY_DEVICE_RELATIONS......ccceiitiriecieeieevieeeee e 59
IRP_MN_QUERY_DEVICE_TEXTcooovriitrienrrereecresreenieesnesneesenens 64
IRP_MN_QUERY_ID ...coooiitiiiieticieiteie st cveeie st vesr e beenesreeaasnnens 65
IRP_MN_QUERY_INTERFACE..........ccoceovttiiiriirieinreniieseeesiesieecvenans 69
IRP_MN_QUERY_LEGACY_BUS_INFORMATION........ceeevvvrrvrenrene 73
IRP_MN_QUERY_PNP_DEVICE_STATEcccovvviiiieierreeceeieeieenne 74
IRP_MN_QUERY_REMOVE_DEVICEcccccovitinvireieiriecirennreeeerenienns 75
IRP_MN_QUERY_RESOURCE_REQUIREMENTS.........ccccvevuerreerrenne. 76
IRP_MN_QUERY_RESOURCES.........coooiiritrereininieeeirecieenieesveesresenseenes 77
IRP_MN_QUERY_STOP_DEVICEcccoooitiereeceeeeecrereee e 78
IRP_MN_READ_CONFIG......cccceoertritiereiniencenireneecsasseesaesssessnasseenns 79
IRP_MN_REMOVE_DEVICE........cocoiiiiieeie e eeereeeecreeseee v senen 82
IRP_MN_SET_LOCKccosiiririirereseiresiencisersesissesessesessssessesassensssens 83
IRP_MN_START_DEVICEcccoviiiiiirieeiienie e srie e ereesseesveestaeseseesvneen 84
IRP_MN_STOP_DEVICE ..ottt 85
IRP_MN_SURPRISE_REMOVALccceevtiiiritieirteceinesrreerireessvessesnees 87
IRP_MN_WRITE_CONFIG......ccececttrrieretierreniieenriesnneninesnesnsessesesseesnns 88
Chapter 3 Plug and Play Structures...........ocunmesmenmessssnssnssennes —)
DEVICE_CAPABILITIES........coccoerttitieretiniientteeseieseennessseeieessaeseasesvaens 91
DEVICE_INTERFACE_CHANGE_NOTIFICATION........cccooeveevurennnee. 96
HWPROFILE_CHANGE_NOTIFICATIONc.cccovvtiriiiriiecneenreeneernnns 97
LPGUID ..ottt rtctesie et st sas s e ssae e ens e tesaaensaseessaansentessnasnnenns 98

Contents v

Part 2

PNP_DEVICE_STATE......ccoiniiirierrinenneeie s eesnenesesesnenens 100

TARGET_DEVICE_CUSTOM_NOTIFICATIONccocevevenrencnnennne 101
TARGET_DEVICE_REMOVAL_NOTIFICATIONccccvevnene e 103
Power Management ... 105
Chapter 1 Power Management Support Routines.........cceuucuseases 107
POCAIIDIIVET ...ccoreinirnierinriieiereereteiereereesasiesiaseseseestsressessessessassasanesenne 107
PoRegisterDeviceForldleDetectioncc.vceevrecnerceereniereneneronnresenns 109
POReEgIStErSYSIEMSIALE ...c..eoveririeeierierie et e estee e ree et b sveeanns 111
POREQUESTPOWETIIP ...cveviicrcniiiniiiiinccn e 112
POSEIDEVICEBUSYccveotirienieiieerieneiieeest e trre st ereetraeeesteeesaeseeraessensassanes 115
POSEtPOWETSIALEc.veveiiiiienrireiieierteiee ettt s s sresresane 116
POSELSYSIEIMSLALEooueereiriiiierieeeee ettt eee st sne et 118
PoStartNextPOWETIIPcocviveriiiiiirre et 119
PoUnregisterSySteMSTALE.o.eviverrrreerirrieerereeeseeseeresereeneseeseeseeseenaees 120
Chapter 2 1/O Request for Power Managementccoeensasensnanas 121
IRP_MN_POWER_SEQUENCEccccoestmmimmieiernerinneeneneeereeceseneaene 121
IRP_MN_QUERY_POWERcccecereuiiimrrriirnremeeieeeierenenesaeienesseseneene 123
IRP_MN_SET _POWER.......cocceitirieiinrectretnmirentreestsieeesenee e s eaene 125
IRP_MN_WAIT_WAKEcocoottiiiiiminrnierenitnntneereesensesesesseseessesenene 129
Chapter 3 Battery Class Driver Routinescumssmmsessesssssssnasas 133
BatteryClassInitialiZeDEVICEovvvrivrmevesiereeresssesesssseesesesessessassesinns 133
BatteryClassIoct........o.covrerineniinieniiieirseereteeee et enessteesneeessensassenaons 135
BatteryClassStatusNOtYc.eeeeriireieeiieerese e 136
BatteryClassUnloadcoceevvevieeeeiieeeniniisesiieseneseesnesessesseesasseennas 137
Chapter4 Battery Miniclass Driver Routines............comseesssscan: 139
BatteryMiniDisableStatusNOtify........ccevvvevierieerierieniinieneesiesc et 140
BatteryMiniQueryInformation.........coceeuevvevrenieriererinecsienienriniesreseennenennnne 141
BatteryMiniQUEryStatisc..o.coieeiuireieeeeieeieestenetesrseeseeesesssansesenns 144
BatteryMiniQueryTag........ccoviceeirenieiinceerceeeeecniessee e seene 146
BatteryMiniSetInformation...........couecveevereeieeeeeiereeesencereeesseeeeseasenanns 147

BatteryMiniSetStatusNOtifY.....c.coceevieiiiirieieerescseerce e 148

vi

Windows 2000 Driver Development Reference, Volume 1

Part 3

Chapter 5 Battery Structures........cconmmnmnnssmnmsmsssssssmsssessnnes 151
BATTERY_INFORMATION.......cccecirtirreeeriereeneeresieesesssessressnessesinens 151
BATTERY_MANUFACTURE_DATE.......ccccootrtetirereeieenie e evenee 153
BATTERY_REPORTING_SCAILE............. ettt et 154
Setup....covrererraereensrnsesenne e S 155
Chapter 1 INF File Sections and Directives.........cocouesenrerernasenanes 157
General Syntax Rules for INF Filesccccecivevinieecninieenneerennenenenens 157
Looking at an INF Fileccoceiinierieieiiiinicieciereee st seeeveevenseneenns 160
Summary of INF Sections............... RPN 162
Summary of INF DIreCtiVescccevvvervirieiervineriieesseeseesseesesssseesenseses 166
INF Version SeCtoncccieeiverieiinereeieesienieeeeinessressesens rveeteeeae e e 169
INF SourceDiskSNames SeCtioncceceeeeevrereeceseeveeecreeiesieeceesreenesnenns 173
INF SourceDisksFiles SECtiOn........cccecieireiiiiniieniniienseesieesesesivesae e 175
INF ClassInstall32 SECHONccoveveiervrrcreeereecrreeeireee e e e creeereeresereeeenne 177
INF DestinationDirs SECtioncccueceeviievieeiieisiireceeiireecteeseeerenreneeeeens 181
INF ControlFlags SECtiON.......ccccoverirerrerieneerinienenienieserseesressesessreseneeenens 184
INF Manufacturer SECON........ccivvvereriereeirereeceenieeeeeeereeenveesreressaeesesesnes 187
INF MOdEIS SECLIOMN. ... cccvieririiieiirieiiresieenreereseesiressrneesessseesasessseessessens 188
INF DDINStall SECHION.....cueivieeieieriereieereeeeveseesreeeesveeteeveessessseneesnenns 191
INF DDInstall.Services SECHONivccvvevicirieieeniirteeesresneeesreessreesvesevens 197
INF DDInstall. HW SECHOMNccvrvierierieiieeiennrreneesreesneeeseeesessssessaeensens 200
INF DDInstall.Colnstallers SECtion.........ccceeeerevreereerenreeneesiersueeeeneeneenns 203
INF DDInstall.Interfaces SECtiOncccvvvuevrierivierereireensrerniseersreersennseenses 208
INF InterfaceInstall32 SECtONcccccevvveevierienieeeeeieeeereeseecreeesreeveennes 211
INF DDInstall.FactDef SECtionc.cccvveuieviirceirniienieeieceieeereensveesesenees 213
INF StrANES SECHOMvocvveeererenieeneee e iessssesses s ssssesssssssssssees 215
INF AddReg DIreCtiVeccoeviireeeriirimiienriierieesieniesene et iesvenes 218
INF DelReg DIr€CHiVEcocvuereiireererireninennienenenieresseieniesesseseseesssesessens 224
_ INF CopyFiles DireCtivecccoeceriererrienirmiinieieiesieresreeeeenssnesssnesesnssenes 220
INF DElFiles DITECHIVEvvvviererireererieietieeenrieresseessenseesseseeeesresvesneensenne 231
INF RenFiles Directivececvievenvrcveveeecreneennennnn et enns 233
INF AddService Directive........cccvvevvniereccinenaene. FE OO 235
INF DelService DIT€CtiVEccccuiiviiiiriereeciecieeseeeseeerereesneesneesereesreesseeseee 244

Contents vii

INF BitReg DIreCtiVe.....coveeevieriiieertieieniierinteseeseeiseesseeeessesseeeseessesaeanee 248
INF LogConfig DIr€Ctive.ccevirnveriervercrireeriesierereesreeseseesstassessuesantones 251
INF ProfileItems DIrCtiVececerueereererentrerereenreseneeieesesseereeeseesenes 260
INF UpdateInis DIrECHVE.cveeveieerereeeereeereesiessiessessessassessesssssssesssnns 264
INF UpdateIniFields DIreCtiVeevvrrrrieersensisensssessssssssesssssssansssnssss 267
INF Ini2Reg DITrECHiVEocveeurrerererrieeerieeinienetseeseseessseneenseseeaessessesananne 270
Chapter2 Setup FUNCLIONS.....c.cececeserescmsrssesssnssessssssssmsessasasnssssnas 273
INF File Processing FUNCHONS.......c.ccveeererrinerereerereneeenesreeseeseeeessereenees 274
Disk Prompting and Error Handling Functionsc.cccecceerviniviinenennen. 275
File Queuing FUNCLONS.civireererirceinicineneeeir et e etseesesenenae 276
Default Queue Callback Routine FUnctionsc.ccceeevveeceveenncverseneennns 276
Cabinet File FUNCON.......cccocoviiniiiiniiiniiiiircir e 271
Disk-Space List FUNCLONScccoveevreeinriereninierieienceneennen e s 277
MRU Source List FUNCHONScociuirviiieneinieiiienesineiceeeereerieseesnessesneene 278
File Log FUDCHONS v vveveee oo eeeseseeeseeereesesseeeeessssesesssesssseeeseesesesen 279
Chapter 3 Device Installation Functions.........cc.oummmmmsuessssennns 281
Update Driver FUnCHONc.c.covevvieriiienieieereicnieeteiee e nneane 282
SetupDi Device Information Functionsccecvvveeeiniiecieeincenccenneeas 282
SetupDi Driver Information Functionsc.coecevvceenenvecveeneneenceenenne. 283
SetupDi Driver Selection FUnctionscccveevriciniecnecnicniinnnnnnenns 283
SetupDi Device Installation Handlers..........ccoeeveimenrinnieenicicviinninnes 284
SetupDi Device Installation Customization Functionsceecevveinnens 284
SetupDi Setup Class FUNCHions..........cccoeevereceninvencniniccitceeicnenens 285
SetupDi Class Bitmap and Icon Functionsccceceeeeenenrinnienninvenan. 286
SetupDi Device Interface FUnctionsc..ccoevevvcveninnnnennnnnninnicnnnan 286
* SetupDi Registry FUNCHONSovv.veoeeeesieeereresseses e sse s seessensenns 287
Other SetupDi Functionsccceeicvininininiinniccene 288
SetupDIASKFOrOEMDISKc.covieutieeieieeneniiereieeesenee s ceensnesennes 289
SetupDiBuildClassInfoLast........ccccervieeririeireeninneeiereesese st seee e 290
SetupDiBuildClassInfoLiStEXivevrieeircenieeirceieeeensccctcres 291
SetupDiBuildDriverInfoListccovvereveriineenenieiineeneseeeeeceenee e 292
SetupDiCallClassInstallercocuervieieeereerieeiennnieeneeneeeenereesreeeeesneees 294
SetupDiCancelDriverInfoSearchcooeeveeviinerinnienienensieceneeeeenennes 295
SetupDiChangeStatecceeuireirreeerenreinieieirrieeeceneere et s 296

SetupDiClassGuidsFromN éme e ereeteeree e eaeaes 297

viii Windows 2000 Driver Development Reference, Volume 1

SetupDiClassGuidsFromNameEXcc.ccoivereneinnniniecnnienecneesereenens 298

SetupDiClassNameFromGuidc.c.coeveveeerrerenrienieieeninesessesesseenenees 299
SetupDiClassNameFromGuidEX...........ccooveervererinieniresenrnreesienssennnneenns 300
SetupDiCreateDeviceInfo..........cceverciererireeerniinereinreenisee e eeseaeas 301
SetupDiCreateDeviceInfOListcocvecrivreerenisionenierenneienreieereeseeseesaereens 303
SetupDiCreateDeviceInfOLIStEXccccvieveerinirerieierinnrissenseneesreeneieesnessens 304
SetupDiCreateDevicelnterfaceco.oevveiereriererieverseseseeresiesseessensensnenes 305
SetupDiCreateDevicelnterfaceRegKey trereetee et et e e seae s 307
SetupDiCreateDeVREZKEYccovcvevieriiieienieeirtrineseetesie st sveeressseneas 308
SetupDiDeleteDeviceInfo..........coceeevieienieeniinecnieieeneeere e 310
SetupDiDeleteDevicelnterfaceDataccocecerereniereerinrinienieseeninsienenneas 311
SetupDiDeleteDevicelnterfaceRegKeyccovvrineervirenienieneninienennns 312
SetupDiDeleteDeVREZKEYcovvririeerieniieiiniriiineeeereereseiseeseeeessensens 313
SetupDiDestroyClassImageListcccovvervrmreeerurecnenncrnecsrenasesennens 315
SetupDiDestroyDeviceINfOListc.cceveruieieeriierenierreeniircssienreeeeneesreenes 315
SetupDiDestroyDriverInfoList.......c.ccvovurverernennesrneecneneneseneseenennens 316 -
SetupDiDraWMinIICOMc..cvvereeriereniricririerteereesesreseseessesesaesssssesaensasneas 317
SetupDiEnumDeviICeInfocccovviecierieinnnenirnieniecenenenieneeeiesressesrens 319
SetupDIiEnumDeviceInterfacescocvevereerieerieecenrinieenenenneenieeeneennes 320
SetupDIiEnumDIiverInfoccccveeieiericiieieeiiseeieieee e 321
SetupDiGetActualSectionToInstalloocercererervirrerierrnriercenena eerreenees 322
SetupDiGetClassBitmapIndeX.........cecveeeierererenenieneeicnenienieensenseesveanens 324
SetupDiGetClassDesCriPtion.........vieveeviverrienrereeereseseeesesiesiessessessesensens 325
SetupDiGetClassDesCriptionEXcccvvrevnernreenienerneeeneseeseenens 326
SetuUPDIGEtCLaSSDEVSccveierreriririeieereisresieseestesesterresessesessssssessessessons 327
SetupDiGetClasSDEVSEXccccviirerririrerientieseninresseeerenesessessesseesesnens 329
SetupDiGetClassImageIndexc.ccoevvreierinierennincenieneeree e seeseseaenees 332
SetupDiGetClassIMageLLiSt ...c.ocivvieeririereseniirerieiesesieresrenressesresessnasees 333
SetupDiGetClassImageLiStEXcccceieruienriererinieerecesesenseeseeseaseesveseens 333
SetupDiGetClassInstallParams............cceeveeviereereeeriereeneeceeriesreeeeeseeseannas 334
SetupDiGetDeviceINfOLIStCIaSSc.ccveveererererereerereneriereriseseeeseenceranses 336
SetupDiGetDeviceInfoListDetailc.ccoveeirvieeieeirseenrinensesieeieseeesraenne 336
SetupDiGetDeviceInstallParamscccoueceeverereercrieccnererevereneniesesrensens 338
SetupDiGetDeviceInstanceldc.cooverecioninninrinenenerniereneeeeeenees 339
SetupDiGetDeviceInterfaceAliascceeeveerernnienreneiiininnersceenieneeerennes 340

SetupDiGetDevicelnterfaceDetailcccooveevevvicenrericrenvireeenieneniesrenieneens 341

Contents ix

SetupDiGetDeviceRegiStryPropertycccoeveeervermreeeceeenireresceeseencreeene 343
SetupDiGetDriverInfoDetail.........ccocuvevrenievnenienrenieinneereieneeseesesnreennes 345
SetupDiGetDriverInstallParamscccoeevveeveeierriiienneneeniesreesieseseessannes 347
SetupDiGetHwProfileFriendlyName..................c....... F OO OO 348
SetupDiGetHwProfileFriendlyNameEXcccocvveeveviveeincnnccnennnneens 349
SetupDiGEetHWPTOfIIELASL.....ccvvvveriereeeeieirenreeere sttt seeaaes 350
SetupDiGetHWProfileLiStEXc..cocoveiriniiciiecrctrrcieene e 351
SetupDIGEtINFCIASSccoovvieiieiecierreieirceriereseseseesrecseeeeeseesresaeseesrenses 352
SetupDiGetSelectedDEVICE.ccviverieiereinieirnie ettt et eees e enaeeaes 353
SetupDiGetSelectedDIIVELccevireeierrirrereearerieriesssereceesissseeeseessessnesenses 354
SetupDiGetWizZardPagecoveccvivecinerinniieninicnieeeseeie et eeveione 355
SetupDilnstallClass........ccoctvevvnenernrenieresnesreeeieens et ae e 355
SetupDiInstallClassEXccvecveirrreereercrnnirereeinesereeseeeeseessesesseesessaserses 356
SetupDilnstallDEVICec.eeverrinerieirenienieceetnrie et 358
SetupDilnstallDeviceInterfacesc.ovevveriviirivieieiieiciincne 360
SetupDiInstallDrivVerFilesccvvverrrerierninricierenrre et 360
SetupDiLoadClassIComnc.ceeiriiciiiieniivneenenieieriere e seie s es e e sae s sre e saas 361
SetupDiMoveDuplicateDevVICeccuvveerieriererieccrieeecceeenieeeneeeerenene 362
SetupDiOpenClassRegKey........cccccveeennene. feeeeere et etaneaa e e sreseesnenee 363
SetupDiOpenClassSREGKEYEXcccvvvevveerirrvenecinerreniennesressensesseneseenes 364
SetupDiOpenDevICeINfo......ccoviricrinrrreieerenr ettt s 365
SetupDiOpenDeviCeINterfaceccovvveeveeriereirienireereeriesieteieseesseenes 367
SetupDiOpenDevicelnterfaceRegKeyccvveveevveeninieeceenreninienienereenen 368
SetupDiOpenDeVREZKEYccceiiriiiieieiireieieeeeiere sttt 369
SetupDiRegisterCoDevicelnstallerscoccovervvinerieenenioerereecenees 371
SetupDiRegisterDeviceInfo..........ccoceeerverneniniininceceeceeen 372
SetupDiREMOVEDEVICE.coueevirierierirnreieeteiesresierseseseereessesseseestaneaseonaes 375
SetupDiRemoveDevicelnterface..........ccovvvverrenerunnens Meeeereeeenreeeeanenrentenns 376
SetupDiSelectBestCompatDIV.......cc.ocvveeiririerrarieenereereenieseereensensasessens 377
SetupDiSelectDEeVICEccovvvreririeniiiicrieriienienee e e ———— 378
~ SetupDiSeleCtOEMDIY ...t 379
SetupDiSetClassInstallParams...........occcvveveiieiiiisisissnieinissse s 380
SetupDiSetDevicelnstallParamsc.ceceeeerererreerveeiereeseneereneerereensosessenes 381
SetupDiSetDeviceRegiStryProperty........ccocereeeierenverneensieenieneesesesneenes 382
SetupDiSetDriverInstallParamsccveerrererseresresersserennsns S 384

SetupDiSetSelectedDEVICEcovverieriesioererecierierereeeceeeeeenees SN 385

X Windows 2000 Driver Development Reference, Volume 1

SetupDiSetSelectedDIIVETco.eevirereereeirereerieresreseereesteeeresecssesneneesenne 386
SetupDiUNremoveDEVICEcveeeiriieririerierinsieseeeiieseereesiesesessraseassessenne 387
UpdateDriverForPlugAndPlayDevicescc.cceeneeee. et 388
Chapter 4 Device Installation Structures........c.cummmnsnsmssessenes 391
SP_ADDPROPERTYPAGE_DATAcccoceceiinmimntriereeernisneeeneeseenene 391
SP_CLASSIMAGELIST_DATA.....ccecitntrirenereiniesreseenseesnsseariseesesanne 392
SP_CLASSINSTALL_HEADERccccoeiiriirniecrinnneeticteieereeeenessens 392
SP_DETECTDEVICE_PARAMSccoooeiiininrtnrerseeraesensesesesesnssesnns 394
SP_DEVICE_INTERFACE_DATA.........cocevvimteierereieererteneesesineennne 395
SP_DEVICE_INTERFACE_DETAIL_DATA.....cccceconevmrnrensieneerennne 396
SP_DEVINFO_DATA ...cocortiietrereeietereesies St eiesee e sre e 396
SP_DEVINFO_LIST DETAIL_DATAcoccerieiererineeierenieneseesenns 397
SP_DEVINSTALL_PARAMSoooitiiiiniiieneeieseneesriesiesreeiesesseessesanans 398
SP_DRVINFO_DATA ..ottt sttt s e 405
SP_DRVINFO_DETAIL_DATAcocooviiieeiienriieetnesieseieeteiesreevennens 406
SP_DRVINSTALL_PARAMScccocoimirireiceceenenererennes e 408
SP_ENABLECLASS_PARAMScooiieeereteeee et sen e 410
SP_INSTALLWIZARD _DATA.....c..cccoiiiiintiiiiiientiieciceneneerenennens 410
SP_MOVEDEV_PARAMSccooiitiietieneceeenteneenee e eeeeresieseesaesaens 410
~ SP_NEWDEVICEWIZARD_DATAccccecerttrtmntrritnniseseniissresenenne 410
SP_POWERMESSAGEWAKE_PARAMS.......cccoovoieimrenreieneeneeeenens 411
SP_PROPCHANGE_PARAMS........coootrieiertrnteeieneeesneieeresieeaeeenans 412
SP_PROPSHEETPAGE_REQUESTccceccevvtenieeierrereenenenrenenrereennens 414
SP_REMOVEDEVICE_PARAMS.......cooeiirteeteiieneeesireresesieeeseenens 416
SP_SELECTDEVICE_PARAMS.......ccitietnierietneeereeeeerete e 417
 SP_TROUBLESHOOTER_PARAMScoceeurvrrerererrreresrreressssennnn 419
SP_UNREMOVEDEVICE_PARAMSoovterientietriiernieneereeeresesnesnees 419
Chapter 5 Device Installation Function Codesccccouuensiernenes 421
DIF_ADDPROPERTYPAGE_ADVANCED........ccccoceiiviinniniininnine 421
DIF_ALLOW_INSTALL.....oooiiiiieiecieiisieeererinieesteese e sneseessessasseesaes 424
DIF_DESTROYPRIVATEDATAocoviiitiierteeierienee e seeeree e 426
DIF_DETECT ...oovvvevuvremmassmsmmsssmmesmsmesssos 427
DIF_INSTALLDEVICEcooiiieireieerentnesienireneennesiessesesssessessesnes 429
DIF_INSTALLDEVICEFILES.......c.ccoceiietrttnieniesernnrenesesreesesseeneenes 431

DIF_INSTALLINTERFACES........ccecoermtereriieenteeeereterereseeneseeneas 433

Contents xi

DIF_NEWDEVICEWIZARD_FINISHINSTALL........cococvviniiinininens 435

DIF_NEWDEVICEWIZARD_POSTANALYZE.......ccccoovevereererennns 438
DIF_NEWDEVICEWIZARD_PREANALYZEccccooovuerunverrrsrnennn 440
DIF_NEWDEVICEWIZARD_PRESELECTccoevvveveerrrirneriaenenns 442
DIF_NEWDEVICEWIZARD_SELECToivuieiveeeeesiessssesesssnnns 444
DIF_POWERMESSAGEWAKEcooevviemimieiesesreesisesrereessesssssanenns 446
DIF_PROPERTYCHANGEccccovoiierereeirseesesesssssessissassessesssssaons 447
DIF_REGISTER_COINSTALLERSc..ovuiiveiiirieseeneieeesesissessesssenes 449
DIF_REGISTERDEVICEcoooiimiiieieieeeieseeeesssesssssesessssassssesssasens 450
DIE_REMOVEcoiiiimemieeeeeesesesessses s esssse s sssasssssessssassassassnsssasaes 452
DIF_SELECTBESTCOMPATDRYV.........coimiereeriieeeeeeireeseseessessessssees 454
DIF_SELECTDEVICEocovvmivireeeresesesseseesssssssessssssessissassssesssssaens 456
DIF_TROUBLESHOOTERooovorreereoereseeeeeeeesssmnessesesseessesessseesennes 460
DIF_UNREMOVEooooiiiirierieesrsessssssssessssssssesassssssssssssssssssssnes 462
RESEIVEA DIF COESvvvneerereereeeeeerseseesessesseseesssseeseseasesssesessessessesesenns 463
DIF_ADDPROPERTYPAGE_BASIC.......ocoooviuirresreirieeeresereeressssrens 464
DIF_ASSIGNRESOURCESoovimreieeeeeeseseeseeessessesssseassssssssssssssssanes 464
DIE_CALCDISKSPACE........ooiiieeeiereeseeeseessseesssssaesissassessssssasaes 464
DIE_DETECTCANCEL.......voieieeteeeeseeereeesessvsesisesssessasssesesssesessanes 464
DIF_DETECTVERIFYoovmieieeeeceeeeeresssseessesesesens et 464
DIF_ENABLECLASSoveeerieieeesrseesssesssissssesssssesssssssess e 464
DIF_FIRSTTIMESETUPovivieeeeeeeeeesreseesesseeessessssesnsseissassessasssssees 464
DIF_FOUNDDEVICE.........oioieeeeiteeeeeeeeeeseeceseeseesssssesensssseseseesssssssees 467
DIF_INSTALLCLASSDRIVERS.......coevievueiieneereeeseessenseseessesiersasseseans 467
DIE_MOVEDEVICE..........oocoooiiioremrnsesresssessresssessssonns e 467
ODbSO0lete DIF COAES.....ccoooieiiiiteeeeeeeceteee ettt eeatbnas e e esssabeeeeseeanes 467
DIF_DESTROYWIZARDDATAooeeeeeeeeeeeeeeeeeeereseseeseeesessressessnes 467
DIF_INSTALLWIZARDooovevvieieeereeresees s iessaesieseesessesssssessssssesesssanes 467
DIE_PROPERTIES ...ooouvvvveeeieeeeereseeeesssssssessessessessssessseessiossesssssssssns 467
DIF_SELECTCLASSDRIVERScoiviitiimieeienieeeseseoseeseeesseeesesessesnenes 467
DIF_VALIDATECLASSDRIVERScc.ovvinimiiveiveeisesesesssessssnessnenes 468
DIF_VALIDATEDRIVERoooimiiiiiretreierenssseeseseesissessesssesesssessnes 468
Chapter 6 PnP Configuration Manager Functionsc.ccuuiaues 469
CM_Add_Empty_Log_Confcccoierurrereierieiieeiencnteceneesesreseennns 469

CM_Add_Empty_Log_Conf_EX......cccceeverrienrnereceenenreneneeneeieneeens 472

Xii

Windows 2000 Driver Development Reference, Volume 1

CM_AAA_ID ..ottt ettt esee et e sae st sn e sve st e e e e s e s e seans 473
CM_AAA_ID_EX ...oiiuricieriieiieiienieeeeteneieressesseesassessesssessssssesnsasssensens . 474
CM_AdA_RES_DES....uveieeereiiietieeeceeeeeeeeceiee et ceeeeserereseveeesseresenesesnrees 476
CM_Add_ReS_DES_EX ..uuviiiieiiiieiieiiiriiienirrecciiieseesssiireesesssssessesssissssses 478
CM_CONNECH_MACHINEv.vvevrrverrersessesessesssssssscsssssssecsssesesssssssssssssssseee 479
CM_Disconnect_ MaChine.........coovvivviviiiivieeniieeieeecenrecenrreeesenreeees e 480
CM_Enumerate_ClasseS........coverveeierrirerernreiereesreesnseenreseneesaressssesesensoseassees 480
CM_Enumerate_ClasseS_EXcccvicivuieirurrierereieiieieeeeireeireeeesssssessssesssns 481
CM_Enumerate_EnUmeratorscccecerreeerrenreenseieriersnesiesssesesssessesessees 482
CM_Enumerate_ ENumerators_EX.......cccccvvvuveiiiiireeieniereeierinnereeeseesseeeseas 484
CM_Free_Log Confooeoeeeiiiiiinicieiereeese st cesre e s sreesrene 485
CM_Free_LOog_CONE_EX.....ovvvveerireeesosessessesssssssesssssssessssesessesssnes 486
CM_Free_Log_Conf_Handle..........cceeueevimerirsiineirieiinienesereesiereenneenne 487
CM_Free_ReS_DES ...covvieieririiriiniiienriesrestesiresecsiessreesnsssreesssesnneensenas 488
CM_Free_Res Des_EX.....coceevveevenieveiceenenn, ettt oot e et e e enes 489
CM_Free_Res_Des_Handle...........ccceeuviviinrenienieeniienneenieennieennneseeonsens 490
CM_Free_Resource_Conflict_Handleccoovrienininncnnieniiiennn 491
CM_GEt_Childceooverrerieriircrienieieieeereniestese e sernesseseesaestesresassansvessesns 491
CM_Get_Child_EX....ccociiiiiiiieririenineierieneersesseeeissessesseesssnesssessssssessns 493
CM_Get_DEPthc...ccciicieeiieiiieeteiee et evess ettt estesnesaassaesaeeaneene 494
CM_Get_Depth_EX...cocovieiiiiiiineceerienrene ettt sree e sree e 495
CM_GEL_DEVICE_TD ...couevviririiieireieiietreiereecstieesieessaeeessaneeesrneeesesrseesareeean 496
CM_Get_DeVice_ID_EXcccccuiviriecieeiesieceeiesieseecveeeeseesieesseesseesaesveenns 497
CML_Get_DeVICE_TD_LLISt coeveeeeerieeenieneereeeeeeseessesnrerreeeeseesesssensessssssssssnnes 498
CM_Get_Device_ID_LiSt_EX....c.ccoceeirieiiiiieieseeceecrereeniee e ere e 500
CM_Get_Device_ID_LiSt_SiZeccceevvrrriivenrenireeiuerireenienens reeereeeeeeeeea 501
CM_Get_Device_ID_List_SiZe_EX....cccoovcvirivieireiierrereescinireeeeeeseseereeens 502
CM_Get_Device_ID_SiZe......cccooereieriiieiiirieenieseesiesseesessseesssessssessenas 503
CM_Get_Device ID_SiZ€_EX ..uuciiiiiiniiiieinriieiiieiecceiniresersiereeesssessanenes 504
CM_Get_DeVNOAE_StatlSceeeeerevvriieeirriereiieieeeeessressesessvsneeseseesnesnes 506
CM_Get_DevINOde_StatuS_EX....c.coovvvivrririeeiriniiiinierreeeeeeniinsenessssesansanas 507
CM_Get_First_Log_Confc.ccccereeiieieirieniesieerieeieeeeeesessseeesnnessneenns 508
CM_Get_First_Log_Conf _EX.....cccovverieniirerieeiiiniereeneesensieesteeeesensnenne 510
CM_Get_Log _Conf_Priorityccocccceevveerienveerierrinieseeneesteeseceneeene e 511
CM_Get_Log_Conf Priority_EX.......cccccrveevemeriieriniinrireneeniesieneenseesienns 512

CM_Get_Next_Log Conf......ccovereieciniininiicieninenescenensreseeseesveeeesseene 513

Contents Xiii

CM_Get_Next_Log_Conf_Ex.......... oottt et aertseansereeteenrareen 514
CM_Get_NeEXt_RES_IIES v.iiviiiiiriiiiiceiteeeeeeirieee et eesernesrereessesnssnrsesesasnes 516
CM_Get_Next_ReS_DES_EXccccovivireiiiiieiieiiiienieirre e ssnnneeeeesssnnneeens 517
CM LGt _PaTenl . .ceiiiiiiiii ittt ebee e e s etbar e e s e s ssaanreeses 518
CML_Get_Parent_EX.....ccccveiierienereeinieecnieeenisneesreriseeesssresenssassesssasssssesens 519
CM_Get_Res_Des_Data........cceeceeriieiieenerrineneecernensinsesneesesessanessseesnes 520
CM_Get_Res_Des_Data_EXccccevveiiiiienienniennienieennennnieriseeesinesniennnes 521
CM_Get_Res DeS Data_SIZe€...cocvviveeeeiceiieieeeeeiiseeseeieeeeaeeesseaeeessree e 522
CM_Get_Res_Des_Data_Size EXccou...... e reer et eeea bt e e e eaaaes 523
CM_Get_Resource_Conflict_COUNL........eceeereirivvnreeeeireeeiereeeenreeersseessneees 524
CM_Get_Resource_Conflict_Detailscovvveeveieirieienereeinereceieneeneeens 525
CM_GEt_SIDLNEG.ccvervieririrrrirrierirenirsieneesiesessesseiesseessesseessesssesseessnenees 526
CM_Get_Sibling_ EXcociviiereninirciirienieeeieeseseeeerseeseessesseesiessensenseses 527
CM_GEt_VEISION..ccccuiieiiireirireeieenriesicreraessesssesseesseessnsesssseassesassaesanessens 528
CML_GEt_VeErSION_EX cocoiiiiiiiieiiieeesieeiereetiereeeeeeeeeseereesereeeeeeeeeseseseseesnas 529
CM_Locate. DeVNOAEcceveviiriiniereenieniesniesieensiesnresseeesseesesssesseessens 529
CM_Locate_DeVNOGE_EX....cocovvuviievririeiriiriniesieeresessiserressessssseseessesessns 530
CM_MOGEY_RES_DES v.cvererereeereeeereveeeeeenmssssssessssssessesssseseseessesseseene ..532
CM_Modify_Res_Des_EX.....cocvvveeerneriiieninineeioneenrneesiesneseessesssensens 533
CM_Query_Resource_Conflict__LiSt......cccecveeririenieirecieneeireeseneeneennen 535
CM_Réenumerate_DevNode ... 536
CM_Reenumerate_ DeVNOAE_EXcccevvererivenienenieenieeneneenresnreseensenees 537
CM_Request_Device_EJeCt.......cceeierieriernrenieniienineesriesresiessesressseseensens 538
CM_Request_Device_Eject_EXcccoeveniniiiniininneiiinenenenceninnieens 540
Chapter 7 PnP Configuration Manager Structures and Types...543
Resource Descriptor StrUCTUIES.ooveevererrernrenrerenenseneeeeenee e eeenienaeas 543
BUSNUMBER _DES........ccoioiiiiieenirterieceseeesresesesaessesaessessaesssseesessens 543
BUSNUMBER_RANGEcccoceiieiirieieeercteesteteeernesesaessesvesessensesaens 544
BUSNUMBER_RESOURCE.......cccccociniiniinrinririirenrienensreseesesseesreennes 545
CS_DES ...t S 546
CS_RESOURGCE......ccommmmmmmnnnnrerevereesemssssssssssssssssssesssessssssnsssssnennesesessins S4T
DEVPRIVATE_DES.......oooioeeeeenirereisenersiessssee e sressesnssssssaesassesnees 547
DEVPRIVATE_RANGE.........coviiiieticicteeeeseesee et ve et e 547
DEVPRIVATE_RESOURCEcceoiviiteeeieeteeeeeee e eeaenseneeneenns 548

193 1N 0) X ST e e 548

Xiv

Windows 2000 Driver Development Reference, Volume 1

DMA_RANGEooooooooooooeoeoeoooeooeoeeoeeeeoeeee e 549

DMA_RESOURCE.......cooctiieieiiieeeieeesienreeneese ettt eseesesesesseesne 550
TO_DES ..ottt ettt et e 550
TO_RANGE ..ottt ettt sttt srs e et eve e s 552
TIO_RESOURCE ...ttt seessenessesiesssseneeses 553
TRQ_DES ...ttt st cessens e sen s e sreeenes 554
TRQ_RANGE ...ttt seesre ettt 555
IRQ_RESOURCEcooniiirriniiricincnireincnnsnire st stessesresresaeses 556
MEM_DES ...ttt ettt ne 556
MEM_RANGE ..ottt ettt sesaeseseee e b e see s 559
MEM_RESOURCE.........cccoocrmmecrininninnen eveeretenerenens bereeteeteesaeesaenanae 560
MFEFCARD_DES.....cotiitrieiteieieeeietetere ettt seesesessestseesesseneosessenes 560
MFCARD_RESOURCEcccoeviriieccerennenn et 561
PCCARDL_DES ..ottt esesnese s e 562
" PCCARD_RESOURCEocoiiitieriiinicriene e 563
OLher STUCKULES ... cveeverrerriieeereeeerenrenieeeeeer ettt st eereia e e ersennas 563
CONFLICT_DETAILS ...ttt cnte et eisieeeiesesees s e 563
PnP Configuration Manager Typescccocvvvvvcvinvennns JR RPN 565
PNP_VETO_TYPE.......ooiiirietreeteieientciete sttt 565
Chapter 8 Device Setup Classesouummsmrmmsmmsmssssssassssassannns 567
Chapter 9 The txtsetup.oem File Format..........cccurncresneanscasnsnsens 575
Disks Section of a txtsetup.oem Filec.coooevvermievninnininiinneincns 576
Defaults Section of a txtsetup.oem File........ccccocorivereiininiinininniineens 577
HwComponent Section of a txtsetup.oem File.........cccoveevvrvncnirnnnnnns 577
| Files. HwComponent.ID Section of a txtsetup.oem File.........ccccccevvennunss 578
Config.DriverKey Section of a txtsetup.oem Filec..cccocceveevininninenne 580

Hardwarelds.scsi.Service Section of a txtsetup.oem File......................... 581

P ART 1

Plug and Play

Chapter 1 Plug and Play Routines 3
Chapter 2 Plug and Play IRPs 43

Chapter 3 Plug and Play Structures 91

CHAPTEHR 1

- Plug and Play Routines

These routines are used by drivers to implement plug and play support. The routines are
listed in alphabetical order. The following lists summarize the routines functionally.

See the Plug and Play, Power Management, and Setup Design Guide for background and
task-oriented information on supporting PnP in drivers.

Device Information Routines

loGetDeviceProperty

Retrieves information about a device such as configuration information and the name of
its PDO.

loInvalidateDeviceRelations
Notifies the PnP Manager that the relations for a device have changed.

loinvalidateDeviceState

Notifies the PnP Manager that the PnP state of a device has changed. In response, the PnP
Manager sends an IRP_ MN_QUERY_PNP_DEVICE_STATE to the device stack.

loReportDetectedDevice
Reports a non PnP device to the PnP Manager.

loReportResourceForDetection
Claims hardware resources in the configuration registry for a legacy device. This routine is

for drivers that detect legacy hardware which cannot be enumerated by PnP.
Registry Routines

loOpenDevicelnterfaceRegistryKey
Returns a handle to a registry key for storing information about a particular device interface.

4 Part1 Plug and Play

loOpenDeviceRegistryKey
Returns a handle to a device-specific or a driver-specific registry key for a particular device
instance.

Device Interface Routines

loRegisterDevicelnterface

Registers device functionality (a device interface) that a driver will enable for use by appli-
cations or other system components.

loSetDevicelnterfaceState

Enables or disables a previously registered device interface. Applications and other system
components can open only interfaces that are enabled.

loOpenDevicelnterfaceRegistryKey
Returns a handle to a registry key for storing information about a particular device interface.

loGetDevicelnterfaces

Returns a list of device interfaces of a particular device interface class (such as all devices
on the system that support a HID interface).

loGetDevicelnterfaceAlias

Returns the alias device interface of the specified interface class, if the alias exists. Device
interfaces are considered aliases if they are exposed by the same underlying device and have
identical interface reference strings, but are of different interface classes.

PnP Notification Routines
loRegisterPlugPlayNotification

Registers a driver callback routine to be called when the specified PnP event occurs.

loReportTargetDeviceChange
Notifies the PnP Manager that a custom event has occurred on a device. The PnP Manager

sends notification of the event to drivers that registered for it. Do not use this routine to re-
port system PnP events, such as GUID_TARGET_DEVICE_REMOVE_COMPLETE.

loReportTargetDeviceChangeAsynchronous
Notifies the PnP Manager that a custom event has occurred on a device. Returns immedi-
ately; does not wait while the PnP Manager sends notification of the event to drivers that

registered for it. Do not use this routine to report system PnP events, such as GUID_
TARGET_DEVICE_REMOVE_COMPLETE.

Chapter 1 Plug and Play Routines 5

loUnregisterPlugPlayNotification
Removes the registration of a driver's callback routine for a PnP event.

Remove Lock Routines

lolnitializeRemoveLock

Initalizes a remove lock for a device object. A driver can use the lock to track outstanding
1/0 on a device and to determine when the driver can delete its device object in response to
an IRP_MN_REMOVE_DEVICE request.

loAcquireRemoveLock

Increments the count for a remove lock, indicating that the associated device object should
not be detached from the device stack nor deleted.

loReleaseRemovelock
Releases a remove lock acquired with a previous call to IoAcquireRemoveLock.

loReleaseRemoveLockAndWait
Releases a remove lock acquired with a previous call to IoAcquireRemoveLock and waits

until all acquisitions of the lock have been released. A driver typically calls this routine in its
dispatch code for an IRP_MN_REMOVE_DEVICE request.

Other PnP Routines
loAdjustPagingPathCount

Increments or decrements a caller-supplied page-file counter as an atomic operation. This
routine can be used to adjust other counters, such as counters for hibernation files or crash-
dump files.

loRequestDeviceEject

Notifies the PnP manager that the device eject button was pressed. Note that this routine
reports a request for a device eject, not media eject.

loAcquireRemoveLock

NTSTATUS
IoAcquireRemovelock(
IN PIO_REMOVE_LOCK Removelock,
IN OPTIONAL PVOID Tag
)

ToAcquireRemoveLock increments the count for a remove lock, indicating that the associ-
ated device object should not be detached from the device stack nor deleted.

6 Part1 Plug and Play

Parameters

RemoveLock
Points to an IO_REMOVE_LOCK structure that the caller initialized with a previous call to
TolnitializeRemoveLock.

Tag

Optionally points to a caller-supplied tag that identifies this instance of acquiring the remove
lock. For example, a driver Dispatch routine typically sets this parameter to a pointer to the
IRP the routine is processing.

If a driver specifies a Tag on a call to IoAcquireRemoveLock, the driver must supply the
same Tag in the corresponding call to IoReleaseRemoveLock.
The Tag does not have to be unique, but should be something meaningful during debugging.

The I/O system only uses this parameter on checked builds.

Include
ntddk.h

Return Value
IoAcquireRemoveLock returns STATUS_SUCCESS if the call was successful. Possible
error return values include: ‘

Error Status Description

STATUS_DELETE_PENDING The driver has received an IRP_MN_REMOVE_
DEVICE for the device and is waiting for all remove
locks to clear before deleting the device object. Do not
start any new operations on the device.

Comments
A driver must initialize a remove lock with a call to IoInitializeRemoveLock before using
the lock.

A driver must call IoReleaseRemoveLock to release the lock when it is no longer needed.

Callers of IoAcquireRemoveLock must be running at IRQL <= DISPATCH_LEVEL.

See Also

IolnitializeRemoveLock, IoReleaseRemoveLock, IoReleaseRemoveLockAndWait

Chapter 1 Plug and Play Routines 7

loAcquireRemoveLockEx

This routine is reserved for system use. See IoAcquireRemoveLock.

loAdjustPagingPathCount

VOID
IoAdjustPagingPathCount(
IN PLONG Count,
IN BOOLEAN Increment
)i

IoAdjustPagingPathCount increments or decrements a caller-supplied page-file counter as
an atomic operation. This routine can be used to adjust other counters, such as counters for
hibernation files or crash-dump files.

Parameters

Count

Points to a caller-supplied variable that contains a counter. A driver typically stores a page-
file counter in the device extension for the device.

Increment

Specifies whether the counter is to be incremented or decremented. A value of TRUE speci-
fies an increment operation.

Include

wdm.h or ntddk.h

Comments

This routine is useful for maintaining a count of paging files on a device. The operating
system notifies a driver that a paging file has been created on, or removed from, one of the
driver's devices by sending an IRP. The IRP has the major code IRP_MJ_PNP and the
minor code IRP_MN_DEVICE_USAGE_NOTIFICATION.

This routine can be used for other counters, such as counters for hibernation files or crash-
dump files.

Callers of IoAdjustPagingPathCount can be running at any IRQL.

See Also

IRP_MN_DEVICE_USAGE_NOTIFICATION

8 Part 1 Plug and Play

loGetDevicelnterfaceAlias

NTSTATUS
IoGetDevicelInterfaceAlias(
IN PUNICODE_STRING SymbolicLinkName,
IN CONST GUID *AliasInterfaceClassGuid,
OUT PUNICODE_STRING AliasSymbolicLinkName
)

IoGetDevicelnterfaceAlias returns the alias device interface of the specified interface class,
if the alias exists. Device interfaces are considered aliases if they are exposed by the same
underlying device and have identical interface reference strings, but are of different interface
classes.

Parameters
SymbolicLinkName

Points to the name of the device interface for which to retrieve an alias. The caller typically
received this string from a call to IoGetDeviceInterfaces or in a PnP notification structure.

AliasInterfaceClassGuid
Points to a GUID specifying the interface class of the alias to retrieve.

AliasSymbolicLinkName

Specifies a pointer to a NULL unicode string. On successful return, AliasSymbolicLink-
Name.Buffer points to a string containing the name of the requested alias. The caller must
free the unicode string with RtlFreeUnicodeString when it is no longer needed.

Include
wdm.h or ntddk.h

Return Value

IoGetDeviceInterfaceAlias returns STATUS_ SUCCESS if the call was successful.
Possible error return values include:

Error Status Description
STATUS_OBJECT_NAME_NOT_FOUND Possibly indicates that there is no alias of the
specified interface class.
STATUS_OBJECT_PATH_NOT_FOUND Possibly indicates that there is no alias of the
, specified interface class.
STATUS_INVALID_HANDLE Possibly indicates an invalid SymbolicLinkName

or an invalid AliasClassGuid.

Chapter 1 Plug and Play Routines 9

Comments

The SymbolicLinkName parameter specifies a device interface for a particular device,
belonging to a particular interface class, with a particular reference string. IoGetDevice-
InterfaceAlias returns another device interface for the same device and reference string,
but of a different interface class, if it exists.

For example, the function driver for a fault-tolerant volume could register and set two
device interfaces, one of the fault-tolerant-volume interface class and one of the volume
interface class. Another driver could call IoGetDeviceInterfaceAlias with the symbolic
link for one of the interfaces and ask whether the other interface exists by specifying its
interface class.

Two device interfaces with NULL reference strings are aliases if they are exposed by the
same underlying device and have different interface class GUIDs.

Callers of IoGetDeviceInterfaceAlias must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also
IoRegisterDeviceInterface, RtIFreeUnicodeString

loGetDevicelnterfaces

NTSTATUS
ToGetDevicelnterfaces(
IN CONST GUID =InterfaceClassGuid,
IN PDEVICE_OBJECT PhysicalDeviceObject OPTIONAL,
IN ULONG FTags,
OUT PWSTR *SymboliclinkList
)3

IoGetDeviceInterfaces returns a list of device interfaces of a particular device interface
class (such as all devices on the system that support a HID interface).

Parameters

InterfaceClassGuid

Points to a class GUID specifying the device interface class. The GUIDs for a class should
be in a device-specific .h file.

PhysicalDeviceObject

Points to an optional PDO that narrows the search to only the device interfaces of the device
represented by the PDO.

10 Part1 Plug and Play

Flags

Specifies flags that modify the search for device interfaces.

Flag Meaning

DEVICE_INTERFACE_INCLUDE_ Return disabled device interfaces in addition to enabled
NONACTIVE interfaces.

When searching for a device that supports a particular interface, the caller requires an
enabled interface and thus does not set the DEVICE_INTERFACE_INCLUDE _
NONACTIVE flag.

A driver typically sets the DEVICE_INTERFACE_INCLUDE_NONACTIVE flag to locate
disabled interfaces that the driver must enable. For example, the class installer for the device
may have been directed by the INF file to register one or more interfaces for the device. The

_interfaces would be registered but are not usable until they are enabled by the driver (using
IoSetDevicelnterfaceState). To narrow the list of interfaces returned to only those exposed
by a given device, a driver can specify a PhysicalDeviceObject.

SymbolicLinkList

Points to a character pointer that is filled in on successful return with a list of unicode strings
identifying the device interfaces that match the search criteria. The newly allocated buffer
contains a list of symbolic link names. Each unicode string in the list is null-terminated; the
end of the whole list is marked by an additional NULL. The caller is responsible for freeing
the buffer (ExFreePool) when it is no longer needed.

If no device interfaces match the search criteria, this routine returns STATUS_SUCCESS
and the string contains a single NULL character.

Include
wdm.h or ntddk.h

Return Value

IoGetDeviceInterfaces returns STATUS_SUCCESS if the call was successful. Possible
error return values include:

Error Status Description

STATUS_INVALID_DEVICE_REQUEST Possibly indicates that PhysicalDeviceObject was
not a valid PDO pointer.

Chapter 1 Plug and Play Routines 1"

Comments

IoGetDevicelnterfaces returns a list of device interfaces that match the search criteria.
A kernel-mode component typically calls this routine to get a list of all enabled device
interfaces of a particular device interface class. Such a component can get a pointer to the
file object and/or the device object for an interface using IoGetDeviceObjectPointer or
ZwCreateFile. The device object pointer returned by IoGetDeviceObjectPointer points
to the top of the device stack for the device and can be used in calls to IoCallDriver.

If there is a default interface for the requested device interface class, it is listed first in
SymbolicLinkList. Default interfaces can be set by user mode, but not by kernel mode.

The format of a symbolic link name is opaque; the caller should not attempt to parse a
symbolic link name.

Symbolic links for device interfaces can be used across system boots.

To be notified when additional device interfaces of a particular class are enabled on
the system, register for notification of a device class change with IoRegisterPlugPlay-
Notification.

Callers of IoGetDeviceInterfaces must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also

ExFreePool, IoGetDeviceObjectPointer, IoRegisterDevicelnterface, IoRegister-
PlugPlayNotification, IoSetDeviceInterfaceState, ZwCreateFile

loGetDeviceProperty

"~ NTSTATUS
IoGetDeviceProperty(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_REGISTRY_PROPERTY DeviceProperty,
IN ULONG BufferLength,
QUT PVOID PropertyBuffer,
OUT PULONG ResultlLength
);

ToGetDeviceProperty retrieves information about a device such as configuration
information and the name of its PDO. :
Parameters

DeviceObject
Points to the physical device object (PDO) for the device being queried.

12

Part1 Plug and Play

DeviceProperty
Specifies the device property being requested. Must be one of the following:

DevicePropertyAddress
Requests the address of the device on the bus. PropertyBuffer points to a ULONG.

The interpretation of this address is bus-specific. The caller of this routine should call

the routine again to request the DevicePropertyBusTypeGuid, or possibly the Device-
PropertyLegacyBusType, so it can interpret the address. An address value of OxXFFFFFFFF
indicates that the underlying bus driver did not supply a bus address for the device.

DevicePropertyBootConfiguration

Requests the hardware resources assigned to the device by the firmware, in raw form.
PropertyBuffer points to a CM_RESOURCE_LIST.

DevicePropertyBootConfigurationTranslated

The hardware resources assigned to the device by the firmware, in translated form.
PropertyBuffer points to a CM_RESOURCE_LIST.

DevicePropertyBusNumber

Requests the legacy bus number of the bus the device is connected to. PropertyBuffer poihts
to a ULONG.

DevicePropertyBusTypeGuid

Requests the GUID for the bus that the device is connected to. The system-defined bus type
GUIDs are listed in wdmguid.h. PropertyBuffer points to a GUID, which is a 16-byte struc-
ture that contains the GUID in binary form.

DevicePropertyClassGuid

Requests the GUID for the device's setup class. PropertyBuffer points to a NUL~terminated
array of WCHAR. This routine returns the GUID in a string format as follows, where each
"c" represents a hexadecimal character: {cccccecc-ccec-cece-cece-ceeccecceecc)

DevicePropertyClassName

Requests the name of the device's setup class, in text format. PropertyBuffer points to a
NUL-terminated array of WCHAR.

DevicePropertyCompatiblelDs
Requests the compatible IDs reported by the device. PropertyBuffer points to a MULTI_SZ.

DevicePropertyDeviceDescription

Requests a string describing the device, such as "Microsoft PS/2 Port Mouse", typically de-
fined by the manufacturer. PropertyBuffer points to a NUL-terminated array of WCHAR.

Chapter 1 Plug and Play Routines 13

DevicePropertyDriverKeyName

Requests the name of the driver-specific registry key. PropertyBuffer points to a NUL-
terminated array of WCHAR.

DevicePropertyEnumeratorName

Requests the name of the enumerator for the device, such as "PCI" or "root". PropertyBuffer
points to NUL-terminated array of WCHAR.

DevicePropertyFriendlyName

Requests a string that can be used to distinguish between two similar devices, typically de-
fined by the class installer. PropertyBuffer points to a NUL-terminated array of WCHAR.

DevicePropertyHardwarelD

Requests the hardware IDs provided by the device that identify the device. PropertyBuffer
points to a MULTI_SZ.

DevicePropertyLegacyBusType

Requests the bus type, such as PCIBus or PCMCIABus. PropertyBuffer points to an
INTERFACE_TYPE.

DevicePropertyLocationinformation

Requests information about the device's location on the bus; the interpretation of this infor-
mation is bus-specific. PropertyBuffer points to a NUL-terminated array of WCHAR.

DevicePropertyManufacturer

Requests a string identifying the manufacturer of the device. PropertyBuffer points to a
NUL-terminated array of WCHAR.

DevicePropertyPhysicalDeviceObjectName

Requests the name of the PDO for this device. PropertyBuffer points to a NUL-terminated
array of WCHAR.

DevicePropertyUINumber

Requests a number associated with the device that can be displayed in the user interface.
PropertyBuffer points to a ULONG.

This number is typically a user-perceived slot number, such as a number printed next to
the slot on the board, or some other number that makes locating the physical device easier
for the user. If the device is on a bus that has no UI number convention, or if the bus driver
for the device cannot determine the Ul number, this value is 0OxFFFFFFFF.

BufferLength
Specifies the size, in bytes, of the caller-supplied PropertyBuffer.

14 Part 1 Plug and Play
PropertyBuffer ,
Points to a caller-supplied buffer to receive the property information. The buffer can be
allocated from pageable memory. The type of the buffer is determined by the Device-
Property (see above).
ResuitLength
Points to a ULONG to receive the size of the property information returned at Property-
Buffer. If ToGetDeviceProperty returns STATUS_BUFFER_TOO_SMALL, it sets this
parameter to the required buffer length.
Include
wdm.h or ntddk.h
Return Value |
IoGetDeviceProperty returns STATUS_SUCCESS if the call was successful. Possible
error return values include:
Error Status " Description
STATUS_BUFFER_TOO_SMALL The buffer at PropertyBuffer was too small.
ResultLength points to the required buffer length.
STATUS_INVALID_PARAMETER_2 The given DeviceProperty is not one of the
properties handled by this routine.
STATUS_INVALID_DEVICE_REQUEST Possibly indicates that the given DeviceObject was
not a valid PDO pointer.
Comments

IoGetDeviceProperty retrieves device setup information from the registry. Use this routine,
rather than accessing the registry directly, to insulate a driver from differences across plat-
forms and from possible changes in the registry structure.

For many DeviceProperty requests, it can take two or more calls to IoGetDeviceProperty
to determine the required BufferLength. The first call should use a best-guess value. If the
return status is STATUS_BUFFER_TOO_SMALL, the driver should free its current buffer,
allocate a buffer of the size returned in ResultLength, and call IoGetDeviceProperty again.
Because some of the setup properties are dynamic, the data size can change between the
time the required size is returned and driver calls this routine again. Therefore, drivers
should call IoGetDeviceProperty inside a loop that executes until the return status is not
STATUS_BUFFER_TOO_SMALL.

Chapter 1 Plug and Play Routines 15

Function drivers that support devices on a legacy bus and a PnP bus can use the Device-
PropertyBusNumber, DevicePropertyBusTypeGuid, and DevicePropertyLegacyBus-
Type properties to distinguish between the buses.

Callers of IoGetDeviceProperty must be running at IRQL PASSIVE_LEVEL in the con-
text of a system thread.

See Also

ExAllocatePool, ExAllocatePoolWithTag, CM_RESOURCE_LIST, IO_RESOURCE_
REQUIREMENTS_LIST, GUID

loInitializeRemoveLock

VOID
IoInitializeRemovelock(
IN PIO_REMOVE_LOCK Lock,
IN ULONG AlTocateTag,
IN ULONG MaxLockedMinutes,
IN ULONG HighWatermark
)

ToInitializeRemovelLock initalizes a remove lock for a device object. A driver can use the
lock to track outstanding I/O on a device and to determine when the driver can delete its
device object in response to an IRP_MN_REMOVE_DEVICE request.

Parameters

Lock

Points to a caller-supplied IO_REMOVE_LOCK structure that this routine initializes with
information about the lock, including a counter and a synchronization event. A driver writer
must allocate this structure as part of the device object's device extension.

AllocateTag
Specifies a tag to identify the creator of the lock. Driver writers typically use a 4-character
string, specified in reverse order, like the tags used for ExAllocatePoolWithTag.

The I/O system only uses this parameter on checked builds.

MaxLockedMinutes

Specifies the maximum number of minutes that this lock should be held. A value of zero
means there is no limit. This value is typically used during debugging to identify a driver
routine that holds the lock longer than expected. :

The I/O system only uses this parameter on checked builds. If the lock is held for more than
MaxLockedMinutes on a checked build, the system asserts.

16

Part1 Plug and Play

HighWatermark

Specifies the maximum number of outstanding acquisitions allowed on the lock.

The I/O system only uses this parameter on checked builds. If the lock is acquired -
HighWatermark times on a checked build, the system asserts.

Include

ntddk.h

Comments

The IoXxxRemoveLockXxx routines provide a way to track the number of outstanding I/O's
on a device and determine when it is safe to detach and delete a driver's device object. The
system provides these routines to driver writers as an alternative to implementing their own
tracking mechanism.

1. To ensure that the driver's DispatchPnP routine will not complete an IRP_MN_
REMOVE_DEVICE request while the lock is held (for example, while another driver
routine is accessing the device).

2. To count the number of reasons why the driver should not delete its device object, and to
set an event when that count goes to zero.

A driver typically calls IoInitializeRemoveLock in its AddDevice routine, when the driver
initializes the rest of the device extension for a device object.

A driver calls IoAcquireRemoveLock each time it starts an I/O operation. A driver calls
IoReleaseRemoveLock each time it finishes an I/O operation. A driver can acquire the lock
more than once; the IoXxxRemoveLockXxx routines maintain a count of the outstanding
acquisitions of the lock.

A driver should also call IoAcquireRemoveLock when it passes out a reference to its code
(for timers, DPCs, callbacks, etc.). The driver calls IoReleaseRemoveLock when the event
has returned. '

In its dispatch code for IRP_MN_REMOVE_DEVICE, a driver acquires the lock once
more and calls IoReleaseRemoveLockAndWait. This routine causes the driver to block
until all outstanding acquisitions of the lock have been released. A driver should call Io-
ReleseRemoveLockAndWait after it passes the remove IRP to the next-lower driver but
before it releases memory, calls IoDetachDevice, or calls IoDeleteDevice.

A driver stores the IO_REMOVE_LOCK structure in the device extension of a device
object. The remove lock is deleted when the driver deletes the device extension as part of
processing an IRP_MN_REMOVE_DEVICE request.

Callers of IoInitializeRemoveLock must be running at IRQL = PASSIVE_LEVEL.

Chapter 1 Plug and Play Routines 17

See Also
IoAcquireRemoveLock, IoReleaseRemoveL.ock, IoReleaseRemovel.ockAndWait

IoInitiaIiieRemoveLockEx

This routine is reserved for system use. See IoInitializeRemoveLock.

loinvalidateDeviceRelations

VOID
IoInvalidateDeviceRelations(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_RELATION_TYPE Type
);

IoInvalidateDeviceRelations notifies the PnP manager that the relations for a device have
changed. The types of device relations include bus relations, ejection relations, removal
relations, and the target device relation.

Parameters

DeviceObject
Points to the PDO for the device.

Type
Specifies the type of relations that have changed. Possible values include BusRelations,
EjectionRelations, RemovalRelations, and TargetDeviceRelation.

Include
wdm.h or ntddk.h

Comments

For some relation types, such as BusRelations, this routine causes the PnP or Power Man-
ager to gather updated relations information by sending an IRP_MN_QUERY_DEVICE _
RELATIONS request to the drivers for the device. For other relation types, such as
EjectionRelations, the PnP Manager does not need to gather new relation information
immediately; the PnP Manager queries drivers for ejection relations only when it is prepar-
ing to eject a device.

After a bus driver calls IoInvalidateDeviceRelations to inform the PnP Manager that a
device has disappeared, the bus driver must continue to handle PnP IRPs for that device
until it receives an IRP_MN_REMOVE_DEVICE. In response to such IRPs, the bus driver

18 Part1 Plug and Play

returns STATUS_NO_SUCH_DEVICE. Until it succeeds the remove IRP, the bus driver
can access the device extension to check its flags for the device.

Callers of IoInvalidateDeviceRelations must be running at IRQL <= DISPATCH: LEVEL.

See Also
IRP_MN_QUERY_DEVICE_RELATIONS

loInvalidateDeviceState

VOID
IolnvalidateDeviceState(
IN PDEVICE_OBJECT PhysicalDeviceObject
)

ToInvalidateDeviceState notifies the PnP manager that some aspect of the PnP state of a
device has changed. In response, the PnP Manager sends an IRP_MN_QUERY_PNP_
DEVICE_STATE to the device stack.

Parameters

PhysicalDeviceObject
Points to the PDO for the device.

Include
wdm.h or ntddk.h

Comments

Drivers call this routine to indicate that something has changed with respect to one of the
following aspects of a device's PnP state:

PNP_DEVICE_DISABLED
PNP_DEVICE_DONT_DISPLAY_IN_UI
PNP_DEVICE_FAILED
PNP_DEVICE_NOT_DISABLEABLE
PNP_DEVICE_REMOVED
PNP_DEVICE_RESOURCE_REQUIREMENTS_CHANGED

In response to this routine, the PnP Manager sends an IRP_MN_QUERY_PNP_DEVICE_
STATE request to the device stack, to determine the current PnP state of the device.

Callers of IoInvalidateDeviceState must be running at IRQL <= DISPATCH_LEVEL.

- Chapter 1 Plug and Play Routines 19

- See Also
IRP_MN_QUERY_PNP_DEVICE_STATE, PNP_DEVICE_STATE

loOpenDevicelnterfaceRegistryKey

NTSTATUS
IoOpenDevicelnterfaceRegistryKey(
IN PUNICODE_STRING SymbolicLinkName,
IN ACCESS_MASK DesiredAccess,
OUT PHANDLE DevicelnterfaceKey
)s

IoOpenDeviceInterfaceRegistryKey returns a handle to a registry key for storing informa-
tion about a particular device interface.

Parameters
SymbolicLinkName

Points to a string identifying the device interface. This string was obtained from a previous
call to JoGetDeviceInterfaces, IoGetDeviceInterfaceAlias, or IoRegisterDeviceInterface.

DesiredAccess

Specifies the access the caller requires to the key, such as KEY_READ, KEY_WRITE, or
KEY_ALL_ACCESS.

DevicelnterfaceKey
Points to a returned handle to the requested registry key if the call is successful.

Include
wdm.h or ntddk.h

Return Value

ToOpenDevicelnterfaceRegistryKey returns STATUS_SUCCESS if the call was success-
ful. Possible error return values include:

Error Status Description

STATUS_OBJECT_NAME_NOT_FOUND The routine was not able to locate a registry key
for the device interface, probably due to an error
in the SymbolicLinkName.

STATUS_OBJECT_PATH_NOT_FOUND The routine was not able to locate a registry key
for the device interface, probably due to an error
in the SymbolicLinkName.

Continued

20 Part1 Plug and Play

Error Status _ Description
STATUS_INVALID_PARAMETER Possibly indicates an error in the
SymbolicLinkName.
Comments

IoOpenDeviceInterfaceRegistryKey opens a non-volatile subkey of the registry key for
the device interface specified by SymbolicLinkName. Drivers can store information in this
subkey that is specific to this instance of the device interface, such as the default resolution
for a camera. User-mode applications can access this subkey using SetupDiXxx routines.

The driver must call ZwClose to close the handle returned from this routine when accesé is
no longer required.

Callers of IoOpenDevicelnterfaceRegistryKey must be running at IRQL PASSIVE_
LEVEL in the context of a system thread. '

See Also

IoGetDeviceInterfaces, IoGetDevicelnterfaceAlias, IoRegisterDevicelnterface,
ZwClose '

loOpenDeviceRegistryKey

NTSTATUS
IoOpenDeviceRegistryKey(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG DevInstKeyType,
IN ACCESS_MASK DesiredAccess,
OUT PHANDLE DevInstRegKey
)

IoOpenDeviceRegistryKey returns a handle to a device-specific or a driver-specific
registry key for a particular device instance.

Parameters

DeviceObject _
Points to the PDO of the device instance for which the registry key is to be opened.

DevinstKeyType

Specifies flags indicating whether to open a device-specific or a driver-specific key. The
flags also indicate whether the key is relative to the current hardware profile. May be a
combination of the following values:

Chapter 1 Plug and Play Routines 21

PLUGPLAY_REGKEY_DEVICE

Open a key for storing device-specific information. The key is located under the key for
the device instance specified by DeviceObject. This flag may not be specified with
PLUGPLAY_REGKEY_DRIVER.

PLUGPLAY_REGKEY_DRIVER

Open a key for storing driver-specific information. This flag may not be specified with
PLUGPLAY_REGKEY_DEVICE.

PLUGPLAY_REGKEY_CURRENT_HWPROFILE

Open a key relative to the current hardware profile for device or driver information. This
allows the driver to access configuration information that is hardware-profile-specific. The
caller must specify either PLUGPLAY_REGKEY_DEVICE or PLUGPLAY_REGKEY_
DRIVER with this flag.

DesiredAccess
Specifies the access the caller needs to the key.

DevinstRegKey

Points to a caller-allocated buffer that, on successful return, contains a handle to the
requested registry key.

Include
wdm.h or ntddk.h

Return Value

ToOpenDeviceRegistryKey returns STATUS_SUCCESS if the call was successful. Possi-
ble error return values include:

Error Status Description

STATUS_INVALID_PARAMETER Possibly indicates that the caller specified an illegal
set of DevinstKeyType flags.

STATUS_INVALID_DEVICE_REQUEST Possibly indicates that the DeviceObject is not a
valid PDO.

Comments

The driver must call ZwClose to close the handle returned from this routine when access is
no longer required.

The registry keys opened by this routine are non-volatile.

22

~ Part1 Plug and Play

User-mode configuration utilities, such as Class Installers, can access these same registry
keys using the configuration manager and device installer APIs.

Callers of IoOpenDeviceRegistryKey must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also

ZwClose

loRegisterDevicelnterface

NTSTATUS
IoRegisterDevicelnterface(‘
IN PDEVICE_OBJECT PhysicalDeviceObject,
IN CONST GQUID =InterfaceClassGuid,
IN PUNICODE_STRING ReferenceString OPTIONAL,
OUT PUNICODE_STRING SymbolicLinkName
)s

IoRegisterDeviceInterface registers device functionality (a device interface) that a driver
will enable for use by applications or other system components.

Parameters

PhysicalDeviceObject
Points to the PDO for the device.

InterfaceClassGuid
Points to the class GUID that identifies the functionality (the device interface) being
registered.

ReferenceString

Optionally points to a reference string. Function drivers typically specify NULL for this
parameter. Filter drivers must specify NULL.

Reference strings are only used by a few bus drivers that use device interfaces as place-
holders for software devices that are created on demand. The reference string for a device
interface is passed to the driver by the I/O Manager when the interface is opened. The string
becomes part of the interface's name (as an additional path component). The driver uses ref-
erence strings to differentiate between two interfaces of the same class for a single device.

On Microsofte Windowse 98 systems, the ReferenceString can be no longer than MAX_
PATH characters. There is no length limit on Windows 2000 systems.

Chapter 1 Plug and Play Routines 23

SymbolicLinkName

Points to a unicode string structure allocated by the caller. If this routine is successful, it
initializes the unicode string and allocates the string buffer containing the kernel-mode path
to the symbolic link for this device interface.

The caller must treat SymbolicLinkName as opaque and must not disassemble it.

The caller is responsible for freeing SymbolicLinkName with RtlFreeUnicodeString when
it is no longer needed.

Include
wdm.h or ntddk.h

Return Value

IoRegisterDeviceInterface returns STATUS_SUCCESS if the call was successful. Possible
error return values include:

Error Status Description
STATUS_INVALID_DEVICE_REQUEST Possibly indicates that the PhysicalDeviceObject
is not a valid PDO pointer.
Comments

IoRegisterDevicelnterface registers a device interface and returns the name of the inter-
face. A driver can call this routine several times for a given device to register several
interfaces. A function or filter driver typically registers device interfaces in its AddDevice
routine. For example, a fault-tolerant volume driver might register a fault-tolerant-volume
interface and a volume interface for a particular volume.

The I/O Manager creates a registry key for the device interface. Drivers can access persistent
storage under this key using IoOpenDeviceInterfaceRegistryKey.

A driver registers an interface once and then calls IoSetDeviceinterfaceState to enable and
disable the interface.

If the device interface specified by the PhysicalDeviceObject, InterfaceClassGuid, and
optional ReferenceString already exists, this routine returns STATUS_SUCCESS and the
SymbolicLinkName for the existing interface.

Most drivers use a NULL reference string for a device interface. If a driver uses a non-
NULL reference string, it must do additional work including possibly managing its own
namespace and security. A filter driver that exposes a device interface must use a NULL
ReferenceString to avoid conflicts with other drivers in the device stack.

24

Part1 Plug and Play

Callers of this routine are not required to remove the registration for a device interface
when it is no longer needed. Device interface registrations can be removed from user mode,
if necessary.

Callers of IoRegisterDeviceInterface must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also

IoGetDevicelnterfaces, loOpenDevicelnterfaceRegistryKey, IoSetDeviceinterfaceState,
RtlFreeUnicodeString

loRegisterPlugPlayNotification

NTSTATUS

IoRegisterPlugPlayNotification(
IN IO_NOTIFICATION_EVENT_CATEGORY EventCategory,
IN ULONG EventCategoryFlags,
IN PVOID EventCategoryData OPTIONAL,
IN PDRIVER_OBJ ECT DriverObject,
IN PDRIVER_NOTIFICATION_CALLBACK_ROUTINE CallbackRoutine,
IN PVOID Context,
OUT PVOID =NotificationEntry
)s

IoRegisterPlugPlayNotification registers a driver callback routine to be called when a PnP
event of the specified category occurs.

Parameters

EventCategory

Specifies the category of PnP event for which the callback routine is being registered.
EventCategory must be one of the following:

EventCategoryDevicelnterfaceChange

PnP events in this category include the arrival (enabling) of a new device interface (GUID_
DEVICE_INTERFACE_ARRIVAL) or the removal (disabling) of an existing device inter-
face (GUID_DEVICE_INTERFACE_REMOVAL). See IoRegisterDevicelnterface for
more information on device interfaces.

EventCategoryHardwareProfileChange

PnP events in this category include query-change (GUID_HWPROFILE_QUERY _
CHANGE), change-complete (GUID_HWPROFILE_CHANGE_COMPLETE), and
change-cancel (GUID_HWPROFILE_CHANGE_CANCELLED) of a hardware profile.

Chapter 1 Plug and Play Routines 25

EventCategoryTargetDeviceChange

PnP events in this category include events related to removing a device: the device's drivers
received a query-remove IRP (GUID_TARGET_DEVICE_QUERY_REMOVE), the
drivers completed a remove IRP (GUID_TARGET_DEVICE_REMOVE_COMPLETE),
or the drivers received a cancel-remove IRP (GUID_TARGET_DEVICE_REMOVE_
CANCELLED). This category is also used for custom notification events.

EventCategoryFlags

Specifies flags that modify the registration operation. Possible values include:

PNPNOTIFY_DEVICE_INTERFACE_INCLUDE_EXISTING_INTERFACES

Only valid with an EventCategory of EventCategoryDeviceInterfaceChange. If set, the
PnP Manager calls the driver callback routine for each device interface that is currently
registered and active and registers the callback routine for future device interface arrivals
or removals.

EventCategoryData

Points to further information about the events for which CallbackRoutine is being registered.
The information varies for different EventCategory values:

= When EventCategory is EventCategoryDevicelnterfaceChange, EventCategoryData
must point to a GUID specifying a device interface class. CallbackRoutine will be called
when an interface of that class is enabled or removed.

= When EventCategory is EventCategoryHardwareProfileChange, EventCategoryData
must be NULL.

» When EventCategory is EventCategoryTargetDeviceChange, EventCategoryData must
point to the file object for which PnP notification is requested.

DriverObject

Points to the caller's driver object.

To ensure that the driver remains loaded while it is registered for PnP notification, this call
increments the reference count on DriverObject. The PnP Manager decrements the reference
count when this registration is removed.

CallbackRoutine
Points to the routine to be called when the specified PnP event occurs.

26

Part1 Plug and Play

A callback routine has the following type:

typedef NTSTATUS (*PDRIVER_NOTIFICATION_CALLBACK_ROUTINE) (
“IN PVOID NotificationStructure,
IN PVOID Context
)

The NotificationStructure is specific to the EventCategory. For example, a callback routine
for an EventCategoryDeviceInterfaceChange receives a DEVICE_INTERFACE _
CHANGE_NOTIFICATION structure.

The Context parameter contains the context data the driver supplied during registration.
The PnP Manager calls driver callback routines at IRQL PASSIVE_LEVEL.
Context

Points to a caller-allocated buffer containing context that the PnP Manager passes to the
callback routine.

NotificationEntry

Points to an opaque value returned by this call that identifies the registration. Pass this value
to IoUnregisterPlugPlayNotification to remove the registration.

Include

wdm.h or ntddk.h

Return Value

IoRegisterPlugPlayNotification returns STATUS_SUCCESS or an appropriate error
status.

Comments

A driver registers for an event category. Each category includes one or more PnP events.

A driver can register different callback routines for different event categories or can register
a single callback routine. A single callback routine can cast the NotificationStructure to a
PLUGPLAY_NOTIFICATION_HEADER and use the Event field to determine the exact
type of the notification structure.

Notification callback routines should complete their tasks as quickly as possible and return
control to the PnP Manager, to prevent delays in notifying other drivers and applications that
have registered for the event.

The PnP Manager does not take out a reference on the file object when a driver registers for
notification of an EventCategoryTargetDeviceChange. If the driver's notification callback

Chapter 1 Plug and Play Routines 27

routine requires access to the file object, the driver should take out an extra reference on the
file object before calling IoRegisterPlugPlayNotification.

See the Plug & Play, Power Management, and Setup Design Guide for more information on
using PnP notification. :

Callers of IoRegisterPlugPlayNotification must be running at IRQL PASSIVE_LEVEL.

See Also

DEVICE_INTERFACE_CHANGE_NOTIFICATION, HWPROFILE_CHANGE_
NOTIFICATION, IoUnregisterPlugPlayNotification, PLUGPLAY_NOTIFICATION_
HEADER, TARGET_DEVICE_CUSTOM_NOTIFICATION, TARGET_DEVICE_
REMOVAL_NOTIFICATION

loReleaseRemoveLock

voiD :
IoReleaseRemovelock(
IN PIO_REMOVE_LOCK Removelock,
IN PVOID Tag
)

ToReleaseRemoveLock releases a remove lock acquired with a previous call to IoAcquire-
RemoveLock.

Parameters

RemoveLock

Points to an JIO_REMOVE_LOCK structure that the caller passed to a previous call to
IoAcquireRemoveLock.

Tag
Points to a caller-supplied tag that was passed to a previous call to loAcquireRemoveLock.

If a driver specified a Tag when it acquired the lock, the driver must specify the same Tag
when releasing the lock. If the tags do not match, this routine asserts on a checked build.

If the call to IoAcquireRemoveLock did not specify a Tag, then this parameter is NULL.

The I/O system only uses this parameter on checked builds.

Include
ntddk.h

28 Part1 Plug and Play

Comments
Each call to IoAcquireRemoveLock must have a corresponding call to IoRelease-
RemoveLock.

IoReleaseRemoveL ock decrements the count of outstanding acquisitions of the remove
lock. If the count goes to zero and the driver has received an IRP_MN_REMOVE_DEVICE
request, loReleaseRemovelock sets the event that allows the driver's remove dispatch code
to detach and delete the device object. IoReleaseRemoveLock does not delete the lock; it
decrements the count.

A driver calls a similar routine, IoReleaseRemoveLockAndWait, only in its dispatch code
for an IRP_ MN_REMOVE_DEVICE request. A driver calls IoReleaseRemoveLockAnd-
Wait to ensure that all outstanding locks have been released before it detaches and deletes
the device object.

Callers of IoReleaseRemoveLock must be running at IRQL <= DISPATCH_LEVEL.

See Also

loAcquireRemoveLock, IoInitializeRemovel.ock, IoReleaseRemoveLockAndWait

loReleaseRemovelLockEx

This routine is reserved for system use. See IoReleaseRemoveLock.

IOReIeaseRemoveLockAndWait

VvOoID .
ToReleaseRemovelockAndWait(
IN PIO_REMOVE_LOCK Removelock,
IN PVOID Tag
)s

IoReleaseRemoveLockAndWait releases a remove lock acquired with a previous call to
IoAcquireRemoveLock and waits until all acquisitions of the lock have been released. A
driver typically calls this routine in its dispatch code for an IRP_MN_REMOVE_DEVICE
request.

Parameters

RemoveLock

Points to an IO_REMOVE_LOCK structure that the caller passed to a previous call to
IoAcquireRemoveLock.

Tag

Points to a caller-supplied tag that was passed to a previous call to IoAcquireRemoveLock.

Chapter 1 Plug and Play Routines 29

If a driver specified a Tag when it acquired the lock, the driver must specify the same Tag
when releasing the lock. If the tags do not match, this routine asserts on a checked build.

If the call to IoAcquireRemoveLock did not specify a Tag, then this parameter is NULL.

The I/O system only uses this parameter on checked builds.

Include
ntddic.h

Comments

A driver typically calls this routine in its dispatch code for an IRP_MN_REMOVE_
DEVICE request. A driver should call JoReleseRemoveLockAndWait after it passes the
remove IRP to the next-lower driver but before it releases memory, calls IoDetachDevice,
or calls IoDeleteDevice.

A driver must acquire the remove lock once more before calling loReleaseRemoveLock-
AndWait. Typically, a driver calls IoAcquireRemoveLock early in its DispatchPnp rou-
tine, before the switch statement. Then the lock is acquired for each PnP operation, includ-
ing the acquisition required before calling IoReleaseRemovelL.ockAndWait in the code that
handles the IRP_MN_REMOVE_DEVICE.

To release a lock from code other than the IRP_MN_REMOVE_DEVICE dispétch code,
use IoReleaseRemoveLock.

Callers of IoReleaseRemoveLockAndWait must be running at JRQL PASSIVE_LEVEL.

See Also
IoAcquireRemoveLock, IoInitializeRemoveLock, IoReleaseRemoveLock

loReleaseRemoveLockAndWaitEx

This routine is reserved for system use. See IoReleaseRemoveLockAndWait.

loReportDetectedDevice

NTSTATUS

IoReportDetectedDevice(
IN PDRIVER_OBJECT DriverObject,
IN INTERFACE_TYPE LegacyBusType,
IN ULONG BusNumber,
IN ULONG STotNumber,
IN PCM_RESOURCE_LIST Resourcelist,
IN PIO_RESOURCE_REQUIREMENTS_LIST ResourceRequirements OPTIONAL,
IN BOOLEAN ResourceAssigned,

30 Part Plugand Play

IN OUT PDEVICE_OBJECT #*DeviceObject
)s

IoReportDetectedDevice reports a nonPnP device to the PnP Manager.

Parameters

DriverObject
Points to the driver object of the driver that detected the device.

LegacyBusType
Specifies the type of bus on which the device resides. The PnP Manager uses this informa-
tion to match the reported device to its PnP-enumerated instance, if one exists.

The interface types, such as PCIBus, are defined in ntddk.h. If a driver does not know the
LegacyBusType for the device, the driver supplies the value InterfaceTypeUndefined for
this parameter.

BusNumber
Specifies the bus number for the device. The PnP Manager uses this information to match
the reported device to its PnP-enumerated instance, if one exists.

The bus number distinguishes the bus on which the device resides from other buses of the
same type on the machine. The bus-nmumbering scheme is bus-specific. If a driver does not
know the BusNumber for the device, the driver supplies the value -1 for this parameter.

SlotNumber
Specifies the logical slot number of the device. The PnP Manager uses this information to
match the reported device to its PnP-enumerated instance, if one exists.

If a driver does not know the SlotNumber for the device, the driver supplies the value -1 for
this parameter.

Resourcelist

Points to the resource list the driver used to detect the device. Resources in this list are in
raw, untranslated form.

ResourceRequirements

Optionally points to a resource requirements list for the detected device. NULL if the caller
does not have this information for the device.

ResourceAssigned

Specifies whether the device's resources have already been reported to the PnP Manager.
If ResourceAssigned is TRUE, the resources have already been reported, possibly with Io-
ReportResourceForDetection, and the PnP Manager will not attempt to claim them on

Chapter 1 Plug and Play Routines 3

behalf of the device. If TRUE, the PnP Manager will also not claim resources when the
device is root-enumerated on subsequent boots.

DeviceObject
Optionally points to a PDO for the detected device.

NULL if the caller does not have a PDO for the device, which is typically the case. If
DeviceObject is NULL, the PnP Manager creates a PDO for the device and returns a
pointer to the caller.

If the caller supplies a PDO, the PnP Manager does not create a new PDO. On a given
call to this routine the DeviceObject parameter is either an IN or an OUT parameter, but
not both.

Include
ntddk.h

Return Value
ToReportDetectedDevice returns STATUS_SUCCESS or an appropriate error status.

Comments

A driver should only call IoReportDetectedDevice to report a legacy, nonPnP device.
All PnP devices should be enumerated in response to an IRP_MN_QUERY_DEVICE _
RELATIONS request.

A driver must only do detection on a device if the DoDetectionNow flag is set in the
registry. This flag is typically set in the Services subkey for the driver by an installer.
After reporting detected devices the driver must clear the flag. The location of this flag
is driver-defined.

A driver typically calls this routine from its DriverEntry routine. A few drivers, like certain
NDIS or EISA drivers, might call this routine from an AddDevice routine. :

On successful completion of IoReportDetectedDevice, the caller should attach an FDO to
‘the PDO returned at DeviceObject. Once the caller attaches its FDO, the caller is the func-
tion driver for the device, at least temporarily. There are no filter drivers. The PnP Manager
owns the PDO.

The PnP Manager considers the device to be started and therefore does not call the driver's
AddDevice routine and does not send an IRP_MN_START_DEVICE request. The driver
must be prepared to handle all other PnP IRPs, however.

IoReportDetectedDevice marks the device as a root-enumerated device and this identifi-
cation is persistent across system boots. During subsequent system boots the PnP Manager
"detects" the device on the root-enumerated list and configures it like a PnP device: the PnP

32

Part1 Plug and Play

Manager queries for device information, identifies the appropriate drivers and calls their
AddDevice routines, and sends all the appropriate PnP IRPs. The driver that orignally de-
tected the device may or may not be in the device stack on subsequent boots. It depends on
the device's hardware ID and the resulting INF match, as is true when configuring any PnP
device.

In certain situations the PnP Manager removes the reporting driver from the device stack
and builds a full device stack without waiting for the system to reboot. (For example, when
the user-mode PnP Manager detects the new device.) In such cases, the PnP Manager sends
IRP_MN_QUERY_ID requests to determine the device's hardware ID and compatible IDs
searches for an INF match. If it finds a match, it sends an IRP_MN_QUERY_REMOVE_
DEVICE and an IRP_MN_REMOVE_DEVICE to the device stack to remove the existing
drivers (which at this point are only the driver that called IoReportDetectedDevice and the
parent bus driver). The PnP Manager then rebuilds the device stack using information in the
INF file and the registry.

Callers of IoReportDetectedDevice must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

See Also

IoReportResourceForDetection, IRP_MN_QUERY_DEVICE_RELATIONS

loReportResourceForDetection

NTSTATUS
IoReportResourceForDetection(
IN PDRIVER_OBJECT DriverObject,
IN PCM_RESOURCE_LIST DriverList OPTIONAL,
IN ULONG DriverListSize OPTIONAL,
IN PDEVICE_OBJECT DeviceObject OPTIONAL,
IN PCM_RESOURCE_LIST Devicelist OPTIONAL,
IN ULONG DevicelistSize OPTIONAL,
OUT PBOOLEAN ConflictDetected
);

IoReportResourceForDetection claims hardware resources in the configuration registry for
a legacy device. This routine is for drivers that detect legacy hardware which cannot be
enumerated by PnP.

Parameters

DriverObject

Points to the driver object that was input to the driver's DriverEntry routine.

Chapter 1 Plug and Play Routines 33

DriverList -

Optionally points to a caller-supplied buffer containing the driver's resource list, if the driver
claims the same resources for all its devices. If the caller specifies a DeviceList, this parame-
ter is ignored.

DriverListSize

Specifies the size in bytes of an optional DriverList. If DriverList is NULL, this parameter
should be zero.

DeviceObject

Optionally points to the device object representing device for which the driver is attempting
to claim resources.

DeviceList

Optionally points to a caller-supplied buffer containing the device's resource list. If the
driver claims the same resources for all its devices, the caller can specify a DriverList.
DevicelListSize

Specifies the size in bytes of an optional DeviceList. If DeviceList is NULL, this parameter
should be zero.

ConflictDetected

Points to a caller-supplied BOOLEAN value set to TRUE on return if the resources are not
available.

Include
ntddk.h

Return Value
IoReportResourceForDetection returns STATUS_SUCCESS if the resources are claimed.
Possible error return values include:
Error Status Description

STATUS_CONFLICTING_ADDRESSES The resources could not be claimed because they are
in use or needed for a PnP-enumerable device.

STATUS_UNSUCCESSFUL The DeviceList or DriverList is invalid.

Comments

If a driver supports only PnP hardware, it does no detection and therefore does not call
IoReportResourceForDetection. The PnP system enumerates each PnP device, assigns

34

Part1 Plug and Play

resources to the device, and passes those resources to the device's driver(s) in an IRP_
MN_START_DEVICE request.

If a PnP driver supports legacy hardware, however, it must call IoReportResourceFor-
Detection to claim hardware resources before it attempts to detect the device.

Callers of this routine specify a CM_RESOURCE_LIST in either a DeviceList or a Driver-
List, allocated from paged memory. The caller is responsible for freeing the memory.

A driver that can control more than one legacy card at the same time should claim the
resources for each device against the device object for the respective device (using a the
DeviceObject, DeviceList, and DeviceListSize parameters). Such a driver must not claim
these resources against their driver object.

A CM_RESOURCE_LIST contains two variable-sized arrays. Each array has a default
size of one. If either array has more than one element, the caller must allocate memory
dynamically to contain the additional elements. Only one CM_PARTIAL_RESOURCE_
DESCRIPTOR can be part of each CM_FULL_RESOURCE_DESCRIPTOR in the list,
except for the last full resource descriptor in the CM_RESOURCE_LIST, which can have
additional partial resource descriptors in its array.

IoReportResourceForDetection, with the help of the PnP Manager, determines whether
the resources being requested conflict with resources that have already been claimed.

If a conflict is detected, this routine sets the BOOLEAN at ConflictDetected to TRUE and
returns STATUS_CONFLICTING_ADDRESSES.

If no conflict is detected, this routine claims the resources, sets the BOOLEAN at Conflict-
Detected to FALSE, and returns STATUS_SUCCESS.

If this routine succeeds and the driver detects a legacy device, the driver reports the device
to the PnP Manager by calling IoReportDetectedDevice. In that call, the driver sets
ResourceAssigned to TRUE so the PnP Manager does not attempt to claim the resources
again.

When a driver no longer requires the resources claimed by a call to this routine, the driver
calls this routine again with a DriverList or DeviceList with a Count of zero.

If a driver claims resources on a device-specific basis for more than one device, the driver
must call this routine for each such device.

A driver can call this routine more than once for a given device. If one set of resources fails,
the driver can call the routine again for the same device with a different set of resources. If a
set of resources succeeds, the driver can call this routine again with a new list; the new list
replaces the previous list.

Callers of IoReportResourceForDetection must be running at IRQL PASSIVE_LEVEL in
the context of a system thread.

Chapter 1 Plug and Play Routines 35

See Also
CM_RESOURCE_LIST, IoReportDetectedDevice

loReportTargetDeviceChange

NTSTATUS
IoReportTargetDeviceChange(

IN PDEVICE_OBJECT PhysicalDeviceObject,

IN PVOID NotificationStructure

)s
IoReportTargetDeviceChange notifies the PnP Manager that a custom event has occurred
on a device. The PnP Manager sends notification of the event to drivers that registered for
notification on the device. Do not use this routine to report system PnP events, such as
GUID_TARGET_DEVICE_REMOVE_COMPLETE.

Parameters

PhysicalDeviceObject
Points to the PDO of the device being reported.

NotificationStructure

Points to a caller-supplied TARGET_DEVICE_CUSTOM_NOTIFICATION structure de-
scribing the custom event. The PnP Manager sends this structure to drivers that registered
for notification of the event.

NotificationStructure.FileObject must be NULL. NotificationStructure. Event must contain
the custom GUID for the event. The other fields of the NotificationStructure must be filled
in as appropriate for the custom event.

The PnP Manager fills in the NotificationStructure FileObject field when it sends notifica-
tions to registrants.

Include
wdm.h or ntddk.h

Return Value
IoReportTargetDeviceChange returns STATUS_SUCCESS or an appropriate error status.
Possible error status values include:

Error Status Description

STATUS_INVALID_DEVICE_REQUEST The caller specified a system PnP event, such as
GUID_TARGET_DEVICE_QUERY_REMOVE.

This routine is only for custom events. .

36

Part 1 Plug and Play

Comments

A driver that defines a custom device event calls IoReportTargetDeviceChange to inform
the PnP Manager that the custom event has occurred. Custom notifcation can be used for
events like a volume label change.

A driver should call the asynchronous form of this routine, IoReportTargetDeviceChange-
Asynchronous, instead of this routine, to prevent deadlocks.

Certain kernel-mode components can call this synchronous routine. For example, a file
system can call IoReportTargetDeviceChange to report a "get off the volume" custom
event when a component tries to open the volume for exclusive access. Clients that register
for notification on file system volumes are careful to not request an exclusive open in a PnP
notification callback routine.

The custom notification structure contains a driver-defined event with its own GUID. Driver
writers can generate GUIDs with uuidgen.exe or guidgen.exe.

Callers of ToReportTargetDeviceChange must be running at IRQL PASSIVE_LEVEL in
the context of a system thread. To report a target device change from raised IRQL, call To-
ReportTargetDeviceChangeAsynchronous. :

IoReportTargetDeviceChange is not supported on- Windows 98; it returns STATUS _
NOT_SUPPORTED.

See Also

IoReportTargetDeviceChangeAsynchronous, TARGET_DEVICE_CUSTOM_
NOTIFICATION

IoReportTargetDevnceChangeAsynchronous

NTSTATUS
IoReportTargetDeviceChangeAsynchronous(
IN PDEVICE_OBJECT PhysicalDeviceObject,
IN PVOID NotificationStructure,
IN PDEVICE_CHANGE_COMPLETE_CALLBACK Callback OPTIONAL,
IN PVOID Context OPTIONAL
'

IoReportTargetDeviceChangeAsynchronous notifies the PnP Manager that a custom
event has occurred on a device. The routine returns immediately; it does not wait while the
PnP Manager sends notification of the event to drivers that registered for notification on the
device. Do not use this routine to report system PnP events, such as GUID_TARGET _
DEVICE_REMOVE_COMPLETE.

Chapter 1 Plug and Play Routines 37

Parameters

PhysicalDeviceObject
Points to the PDO of the device being reported.

NotificationStructure

Points to a caller-supplied TARGET_DEVICE_CUSTOM_NOTIFICATION structure de-
scribing the custom event. The PnP Manager sends this structure to drivers that registered
for notification of the event.

NotificationStructure.FileObject must be NULL. NotificationStructure.Event must contain
the custom GUID for the event. The other fields of the NotificationStructure must be filled
in as appropriate for the custom event.

The PnP Manager fills in the NotificationStructure FileObject field when it sends
notifications to registrants.

Callback

Optionally points to a caller-supplied routine that the PnP Manager calls after it finishes
notifying drivers that registered for this custom event.

The callback routine has the following type:

typedef
VvOID ‘
(*PDEVICE_CHANGE_COMPLETE_CALLBACK)(
IN PVOID Context
)

A device-change-complete callback routine should not block and must not call synchronous
routines that generate PnP events.

The PnP Manager calls device-change-complete callback routines at IRQL PASSIVE_
LEVEL.

Context

Optionally points to a caller-supplied context structure that the PnP Manager passes to the
Callback routine. The caller must allocate this structure from nonpaged memory.

Include
ntddk.h

38 Part1 Plug and Play

Return Value

IoReportTargetDeviceChangeAsynchronous returns STATUS_SUCCESS or an appro-
priate error status. Possible error status values include:

Error Status Description

STATUS_INVALID_DEVICE_REQUEST The caller specified a system PnP event, such as
GUID_TARGET_DEVICE_QUERY_REMOVE.
This routine is only for custom events.

Comments

A driver that defines a custom device event calls IoReportTargetDeviceChange-
Asynchronous to inform the PnP Manager that the custom event has occurred. Custom
notification can be used for events like a volume label change.

The custom notification structure contains a driver-defined event with its own GUID. Driver
writers can generate GUIDs with uuidgen.exe or guidgen.exe.

When a driver calls this routine while handling an event, an IRP_MN_REMOVE_DEVICE,
or an IRP_MN_SURPRISE_REMOVAL, the PnP Manager calls the driver's Callback
routine after the driver returns and the stack unwinds.

Callers of IoReportTargetDeviceChangeAsynchronous must be running at IRQL <=
DISPATCH_LEVEL. If a driver writer calls this routine at IRQL DISPATCH_LEVEL, the
NotificationStructure must be allocated from nonpaged memory.

See Also
IoReportTargetDeviceChange, TARGET_DEVICE_CUSTOM_NOTIFICATION

loRequestDeviceEject

VOID
IoRequestDeviceEject(
IN PDEVICE_OBJECT PhysicalDeviceObject
)s

ToRequestDeviceEject notifies the PnP Manager that the device eject button was pressed.
Note that this routine reports a request for device eject, not media eject.
Parameters

PhysicalDeviceObject
Points to the PDO for the device.

Chapter 1 Plug and Play Routines 39

Include
wdm.h or ntddk.h

Comments

Typically, a PnP bus driver calls IoRequestDeviceEject to notify the PnP Manager that a
user pressed the device eject button on one of its child devices.

A driver calls this routine, rather than sending an IRP_MN_EJECT request, because this

- routine allows the PnP Manager to coordinate additional actions for the eject besides send-
ing the IRP. For example, the PnP Manager notifies user-mode and kernel-mode compo-
nents that registered for notification of changes on the device.

The PnP Manager directs an orderly shutdown of the device. The PnP Manager:
1. Creates a list of other devices that are affected by this device being ejected.

The PnP Manager queries for the device's removal relations, ejection relations, and bus
relations (child devices).

2. Determines whether the device and its related devices can be software-removed.

The PnP Manager sends IRP_MN_QUERY_REMOVE_DEVICE IRPs to the drivers for
the device and its related devices. The PnP Manager also sends notifications to any user-
mode and kernel-mode components that registered for device-change notification on the
device or any of its related devices. If any of the drivers or user-mode components fail the
query-remove, the PnP Manager pops up a dialog box to notify the user that the eject
failed.

3. Software-removes the device and its related devices.

If the previous steps are successful, the PnP Manager notifies registered drivers and ap-
plications that the device and its related devices are being software-removed. Then the
PnP Manager sends IRP_MN_REMOVE_DEVICE IRPs to the drivers for the device and
its related devices. Function and filter drivers detach from the device stack and delete
their device objects for the device(s). The bus drivers retain the PDO(s) for the device(s),
unless a device is physically gone and the bus driver omitted the device in its most recent
response to IRP_MN_QUERY_DEVICE_RELATIONS/BusRelations for the device's
parent bus.

4. Directs the bus driver to eject the device (if possible).

The PnP Manager takes different steps, depending on the eject capabilities of the device: |

= Hot eject is supported.

If the EjectSupported capability is set for the device, the device can be ejected when
the system is running (is in the PowerSystemWorking state). The PnP Manager sends

40 Part1 Plug and Play

an IRP_MN_EJECT request to the bus driver for the device. Any function and filter
drivers detached previously from the stack in response to the remove IRP, so the bus
driver handles the eject IRP. When the bus driver completes the IRP, the PnP Manager
expects the device to be physically absent from the system.

= Hot eject is not supported.

In this case, the device is Removable but does not support eject. The PnP Manager
marks the device as not-present/not-working-properly. The PnP Manager will not
restart the device until a user physically removes it and reinserts it. In this case, the
PnP Manager does not send an IRP_MN_EJECT.

A device's parent bus driver sets the capabilities for a device, including its eject capabili-
ties, in response to an IRP_MN_QUERY_CAPABILITIES request. A function or filter
driver can optionally specify capabilities.

When a device is ejected, its child devices are physically removed from the system along
with it.

A user-mode application can initiate a device eject. In that case, no driver calls this routine
but the OS calls the PnP Manager to initiate the steps listed above.

Callers of IoRequestDeviceEject must be running at IRQL <= DISPATCH_LEVEL. The
PnP Manager performs most of its device-eject tasks listed above at IRQL PASSIVE_
LEVEL.

See Also

IRP_MN_EJECT, IRP_MN_QUERY_REMOVE_DEVICE, IRP_MN_QUERY_
'DEVICE_RELATIONS, IRP_MN_REMOVE_DEVICE

IoSetDevicelnterfaceState

NTSTATUS
IoSetDevicelnterfaceState(
IN PUNICODE_STRING SymbolicLinkName,
IN BOOLEAN Enable
)s

IoSetDevicelnterfaceState enables or disables a previously registered device interface.

Applications and other system components can open only interfaces that are enabled.
Parameters

SymbolicLinkName

Points to a string identifying the device interface being enabled or disabled. This string was
obtained from a previous call to IoRegisterDeviceInterface or IoGetDeviceInterfaces.

Chapter 1 Plug and Play Routines 4

Enable

TRUE indicates that the device interface is being enabled. FALSE indicates that the device
interface is being disabled.

Include
wdm.h or ntddk.h

Return Value

IoSetDeviceInterfaceState returns STATUS_SUCCESS if the call was successful. This
routine returns an informational status of STATUS_OBJECT_NAME_EXISTS if the caller
requested to enable a device interface that was already enabled. Possible error return values
include:

Error Status Description

STATUS_OBJECT_NAME_NOT_FOUND The caller tried to disable a device interface that
was not enabled.

Comments

ToSetDeviceInterfaceState enables a registered device interface for use by applications
and other system components. The interface must have been previously registered with Io-
RegisterDeviceInterface or from user mode.

IoSetDeviceInterfaceState creates a symbolic link for a device interface that is being
enabled. :

A function or filter driver typically calls this routine with Enable set to TRUE after it
successfully starts a device in response to an IRP_ MN_START_DEVICE. Such a driver
should disable the device interface (Enable equals FALSE) when it removes the device
in response to an IRP_MN_REMOVE_DEVICE.

If a call to this routine successfully exposes a device interface, the system notifies any com-
ponents that registered for PnP notification of a device class change. Similarly, if a call to
this routine disables an existing device interface, the system sends appropriate notifications.

The PnP Manager does not send notification of device-interface arrivals until the IRP_MN_
START_DEVICE IRP completes, indicating that all the drivers for the device have com-
pleted their start operations. In addition, the PnP Manager fails create requests for the device
until the IRP_MN_START_IRP completes.

Callers of IoSetDeviceInterfaceState must be running at IRQL PASSIVE_LEVEL in the
context of a system thread.

42 Part1 Plug and Play

See Also
IoGetDeviceIlnterfaces, IoRegisterDevicelnterface, IoRegisterPlugPlayNotification

loUnregisterPlugPlayNotification

NTSTATUS
IoUnregisterPlugPlayNotification(
IN PVOID NotificationEntry
);

IoUnregisterPlugPlayNotification removes the registration of a driver's callback routine
for a PnP event.

Parameters

NotificationEntry

Points to an opaque value representing the registration to be removed. The value was
returned by a previous call to IoRegisterPlugPlayNotification.

Include
wdm.h or ntddk.h

Return Value

IoUnregisterPlugPlayNotification returns STATUS_SUCCESS if the registration was
successfully removed.

Comments

IoUnregisterPlugPlayNotification removes one PnP notification registration; that is, the
registration of one driver callback routine for one PnP event category.

Drivers should unregister a notification first, then free any related context buffer.

A driver cannot be unloaded until it removes all of its PnP notification registrations because
there is a reference on its driver object for each active registration.

Callers of IoUnregisterPlugPlayNotification must be running at IRQL PASSIVE_LEVEL
in the context of a system thread.

See Also
IoRegisterPlugPlayNotification

43

CHAPTEHR 2

Plug and Play IRPs

This chapter describes the PnP IRPs that are sent to drivers. All PnP IRPs have the major
. code IRP_MJ_PNP and a minor code indicating the particular PnP request.

This chapter provides reference information for the individual IRPs. See the Plug and Play,
Power Management, and Setup Design Guide for a description of the order in which the
IRPs are sent, a discussion of how to handle IRPs in a DispatchPnp routine, and a general
discussion of PnP concepts and terminology.

For each IRP and each kind of driver, a driver is either required to handle the IRP, can
optionally handle the IRP, or must not handle the IRP. Consult the table below to identify
which IRPs your driver will handle and then consult the reference pages for information on
the individual IRPs. The IRPs are listed in functional order in the table and in alphabetical
order in the IRP reference pages.

If an IRP is marked "No" in the table for a particular driver, that driver must not handle the
IRP. The driver must pass the IRP to the next driver in the device stack as described in
the reference page for the IRP.

The PnP Manager sends these IRPs. PnP drivers can send some of these IRPs, but only those
so noted in this chapter.

The following are the PnP IRPs and the drivers that handle them:

Function or Function Bus Driver or

Filter Driver Driver for Bus Filter

for Nonbus Bus Device Driver (for
PnP IRP Device (for bus FDO) child PDOs)
IRP_MN_START_DEVICE Required Required Required
IRP_MN_QUERY_STOP_DEVICE Required Required Required
IRP_MN_STOP_DEVICE Required Required Required
IRP_MN_CANCEL_STOP_DEVICE Required Required Required
IRP_MN_QUERY_REMOVE_DEVICE Required Required Required

Continued

a4

Part1 Plug and Play

Function or Function Bus Driver or
Filter Driver Driver for Bus Filter
for Nonbus Bus Device Driver (for
PnP IRP Device (for bus FDO) child PDOs)
IRP_MN_REMOVE_DEVICE Required Required Requifed
IRP_MN_CANCEL_REMOVE_DEVICE Required Required Required
IRP_MN_SURPRISE_REMOVAL Required Required Required
IRP_MN_QUERY_CAPABILITIES Optional Optional Required
IRP_MN_QUERY_PNP_DEVICE_STATE Optional Optional Optional
IRP_MN_FILTER_RESOURCE_ Optional Optional © No
REQUIREMENTS
IRP_MN_DEVICE_USAGE_ Required " Required Required
NOTIFICATION .
IRP_MN_QUERY_DEVICE_RELATIONS
BusRelations Optional Required No @
EjectionRelations No No Optional
RemovalRelations " Optional Optional No
TargetDeviceRelation No No Required
IRP_MN_QUERY_RESOURCES No No Required
IRP_MN_QUERY_RESOURCE_ No No Required
REQUIREMENTS
IRP_MN_QUERY_ID
BusQueryDevicelD No No Required
BusQueryHardwarelDs No No Optional
BusQueryCompatibleIDs No No Optional
BusQueryInstanceID No No Optional
IRP_MN_QUERY_DEVICE_TEXT No No Required
IRP_MN_QUERY_BUS_INFORMATION No No Required @
IRP_MN_QUERY_INTERFACE Optional Optional Required
IRP_MN_READ_CONFIG No No Required ©
IRP_MN_WRITE_CONFIG No No Required
IRP_MN_EJECT . No No Required @
IRP_MN_SET_LOCK No No Required

(1) Héquired or Optional in certain situations. See the reference page for the IRP for more details.
(2) Bus filter drivers might handle a query for BusRelations.

Chapter 2 Plug and Play IRPs 45

IRP_MN_CANCEL_REMOVE_DEVICE

All PnP drivers must handle this IRP.

When Sent

The PnP Manager sends this IRP to inform the drivers for a device that the device will not
be removed.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Input

None

Output

None

/O Status Block

A driver must set Irp->IoStatus.Status to STATUS_SUCCESS for this IRP. If a driver
fails this IRP, the device is left in an inconsistent state.

Operation

This IRP must be handled first by the parent bus driver for a device and then by each higher
driver in the device stack. '

In response to this IRP, drivers return the device to the state it was in prior to receiving the
IRP_MN_QUERY_REMOVE_DEVICE request.

If the device is already started when the driver receives this IRP, the driver simply sets
status to success and passes the IRP to the next driver (or completes the IRP if the driver is
a bus driver). For such a cancel-remove IRP, a function or filter driver need not set a com-
pletion routine. The device may not be in the remove-pending state, because, for example,
the driver failed the previous IRP_MN_QUERY_REMOVE_DEVICE.

The PnP Manager calls any EventCategoryTargetDeviceChange notification callbacks
with GUID_TARGET_DEVICE_REMOVE_CANCELLED after the IRP_MN_CANCEL _
REMOVE_DEVICE request completes. Such callbacks were registered on the device

by calling IoRegisterPlugPlayNotification. The PnP Manager also calls any user-mode
components that registered for notification on the device by calling RegisterDevice-
Notification.

If a file system is mounted on the device, it must undo any operations it did in response to
the query-remove notification.

46 Part1 Plug and Play

See the Plug and Play, Power Management, and Setup Design Guide for detailed informa-
tion on handling remove IRPs and for the general rules for handling all PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also
IoReglsterPlugPlayNotlficatlon IRP_MN_QUERY_REMOVE_DEVICE

IRP_MN_CANCEL_STOP_DEVICE

All PnP drivers must handle this IRP.

When Sent

The PnP Manager sends this IRP, at some point after an IRP_MN_QUERY_STOP_
DEVICE, to inform the drivers for a device that the device will not be stopped for re-
source reconfiguration.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Input

None

Output

None

I/O Status Block

A driver must set Irp->IoStatus.Status to STATUS_SUCCESS for this IRP If a driver
fails this IRP, the device is left in an inconsistent state.

 Operation

This IRP must be handled first by the parent bus driver for a device and then by each higher
driver in the device stack.

In response to this IRP, drivers return the device to the started state. Drivers start any IRPs
that were held while the device was in the stop-pending state.

If the device is already in an active state when the driver receives this IRP, a function or
filter driver simply sets status to success and passes the IRP to the next driver. The parent

Chapter 2 Plug and Play IRPs a7

bus driver completes the IRP. For such a cancel-stop IRP, a function or filter driver need
not set a completion routine.

See the Plug and Play, Power Management, and Setup Design Guide for detailed informa-
tion on handling stop IRPs and for the general rules for handling all PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also

IRP_MN_QUERY_STOP_DEVICE

IRP_MN_DEVICE_USAGE_NOTIFICATION

System components send this IRP to ask the drivers for a device whether the device can
support a special file. If all the drivers for the device succeed the IRP, the system creates
the special file. The system also sends this IRP to inform drivers that a special file has been
removed from the device. The special files can be a paging file, a crash dump file, or a
hibernation file.

Function drivers must handle this IRP if their device can contain a paging file, dump file,

or hibernation file. Filter drivers must handle this IRP if the function driver they are filtering
handles the IRP. Bus drivers must handle this IRP for their adapter or controller (bus FDO)
and for their child devices (child PDOs).

When Sent

Input

The system sends this IRP when it is creating or deleting a paging file, dump file, or hiber-
nation file. A driver can send this IRP to propagate device usage information to another
device stack.

System components and drivers send this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context.

Parameters.UsageNotification.InPath is a BOOLEAN. When this parameter is TRUE, the
system is creating a paging, crash dump, or hibernation file on the device. When InPath is
FALSE, such a file has been removed from the device.

Parameters.UsageNotification.Type is an enum indicating the kind of file. This parameter
has one of the following values: DeviceUsageTypePaging, DeviceUsageTypeDumpFile,
or DeviceUsageTypeHibernation.

48 Part1 Plug and Play

Output

None

I/O Status Block

Drivers set Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status.

Drivers do not modify the Irp->IoStatus.Information field; it remains at zero as set by the
component sending the IRP.

Operation

A driver handles this IRP on the IRP's way down the device stack and on the IRP's way back
up the stack.

A driver responds to this IRP with a procedure like the following:

= If Parameters.UsageNotification.InPath is TRUE, determine whether the device
supports the special file.

A driver should test for the specific Parameters.UsageNotification.Type(s) that the
driver can support. Additional notification types might be added in the future.

See further information below describing the actions required to support each notifica-
tion type.

If Parameters.UsageNotification.InPath is TRUE and the driver cannot support the
special file on the device, the driver must complete the IRP with a failure status.

= If the device supports the special file:

1. Take appropriate actions to reflect that the device now contains, or no longer contains,
a special file.

- A driver typically increments or decrements a counter. For example, if Parameters.
UsageNotification.Type is DeviceUsageTypePaging and Parameters.Usage-
Notification.InPath is TRUE, increment a count of the number of paging files on
the device. Certain driver dispatch routines must check the counter(s).

A device that contains a special file should not be disabled. A driver can call Io-
InvalidateDeviceState, requesting the PnP Manager to re-query for the device's
PnP device state information. In response to the resulting IRP_MN_QUERY _
PNP_DEVICE_STATE IRP, the driver should set the PNP_DEVICE_NOT_
DISABLEABLE flag. '

If InPath is FALSE, a driver sets the DO_POWER_PAGABLE bit in its device object
for the device.

Chapter 2 Plug and Play IRPs 49

2. Propagate the device usage information to any related devices that require the
information.

As part of its handling of an IRP_MN_DEVICE_USAGE_NOTIFICATION IRP, a
driver might be required to pass the information to one or more other device stacks.
Such a driver creates new IRP_MN_DEVICE_USAGE_NOTIFICATION IRP(s) and
sends them to the appropriate device stack(s). The driver must wait for completion of
any device-usage-notification IRP(s) it sends before the driver finishes processing the
device-usage IRP it received.

How to identify the related devices is device- and driver-specific. Typically, a driver
sends the IRP to other drivers to which it would send I/O requests for the file. When a
bus driver handles this request for a child device, it must send a usage notification IRP
to the device stack for the device's parent.

For example, when ftdisk is running a five-disk stripe set, it propagates paging, hiber-
nate, and crash dump notifications to each of those five disks, since each of those
devices can be required to handle paging, hibernate, or crash dump file operations.

3. In a function or filter driver, set an IoCompletion routine.

4. In a function or filter driver, set Irp->IoStatus.Status to STATUS_SUCCESS, set
up the next stack location, and pass the IRP to the next lower driver with IoCall-
Driver. Do not complete the IRP.

In a bus driver that is handling the IRP for a child PDO: set Irp->IoStatus.Status and
complete the IRP (IoCompleteRequest).

5. During IRP completion processing:

If an IoCompletion routine detects that a lower driver has failed the IRP, the function
or filter driver must undo any operations it performed in response to the IRP and pro-
pagate the error. If the function or filter driver propagated the usage information to any
other device stacks, the driver must send another usage IRP to those stacks to notify
them of the failure.

If status is STATUS_SUCCESS and InPath is TRUE, clear the DO_POWER _
PAGABLE bit.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Supporting Paging, Crash Dump, and Hibernation Files on a Device

When any of a driver's special file counts is nonzero, the driver must support the presence of
the special file(s) on its device (or a descendant device).

50

Part1 Plug and Play

For a DeviceUsageTypePaging file created on its device, a driver must do the following:

Lock code in memory for its DispatchRead, DispatchWrite, DispatchDeviceControl, and
DispatchPower routines.

Clear the DO_POWER_PAGABLE bit in its device object for the device (on the IRP's
way up the device stack).

Fail IRP_MN_QUERY_STOP_DEVICE and IRP_MN_QUERY_REMOVE_DEVICE
requests for the device.

For a DeviceUsageTypeDumpkFile file on its device, a driver must do the following:

Lock code in memory for its DispatchRead, DispatchWrite, DispatchDeviceControl, and
DispatchPower routines.

Do not take the device out of the DO state.

Do not register the device for idle detection (PoRegisterDeviceForIdleDetection). If the
device is already registered, cancel the registration. If the driver performs its own idle de-
tection for the device, suspend such detection.

Clear the DO_POWER_PAGABLE bit in its device object for the devicé (on the IRP's
way up the device stack).

Fail IRP_MN_QUERY_STOP_DEVICE and IRP_MN_QUERY_REMOVE_DEVICE
requests for the device.

For a DeviceUsageTypeHibernation file on its device, a driver must do the following:

Lock code in memory for its DispatchRead, DispatchWrite, DispatchDeviceControl, and
DispatchPower routines.

Ensure the device is in the DO state when the driver receives an S4 system power IRP
indicating that the system is about to hibernate.

Do not power down the device in response to a D3 set-power IRP that is part of an S4
hibernate action.

Upon receipt of such a D3 set-power IRP, perform all tasks required to put the device
in the D3 state except for powering off the device and notifying the Power Manager
(PoSetPowerState). The device must retain power until the hibernation file has been
written.

Clear the DO_POWER_PAGABLE bit in its device object for the device (on the IRP's
way up the device stack).

Chapter 2 Plug and Play IRPs 51

= Fail IRP_MN_QUERY_STOP_DEVICE and IRP_MN_QUERY_REMOVE_DEVICE
requests for the device.

See the Plug and Play, Power Management, and Setup Design Guide for more information
about device power states, power IRPs, and supporting power management in drivers.

Sending This IRP

A driver can send an IRP_MN_DEVICE_USAGE_INFORMATION IRP, but only to pro-
pagate device usage information to another device stack. A driver is never the initial source
of device usage information.

See Also

IoAdjustPagingPathCount, IRP_MN_QUERY_REMOVE_DEVICE, IRP_MN_
QUERY_STOP_DEVICE

IRP_MN_EJECT

Bus drivers typically handle this request for their child devices (child PDOs) that support
device ejection. Function and filter drivers do not receive this request.

When Sent

The PnP Manager sends this IRP to direct the appropriate driver or drivers to eject the
device from its slot.

The PoP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Input

None

Output

None

I/0 Status Block

A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status.

On success, a bus driver sets Irp->IoStatus.Information to zero.

. If a bus driver does not handle this IRP, it leaves Irp->IoStatus.Status as is and completes
the IRP.

52

Part1 Plug and Play

Operation

For the device to be ejected, the device must be in the D3 device power state (off) and must
be unlocked (if the device supports locking).

Any driver that returns success for this IRP must wait until the device has been ejected
before completing the IRP.

* See the Plug and Play, Power Management, and Setup Design Guide for the general rules

for handling PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

Instead, see the reference page for the IoRequestDeviceEject routine.

See Also

IoRequestDeviceEject

IRP_MN_FILTER_RESOURCE_REQUIREMENTS

The PnP Manager sends this IRP to a device stack so the function driver can adjust the
resources required by the device, if appropriate.

The function driver typically handles this IRP.

The parent bus driver (and bus filter drivers) should not handle this request for a child PDO;
instead, such a driver should report resource requirements in response to an IRP_MN_
QUERY_RESOURCE_REQUIREMENTS request.

Upper and lower filter drivers do not handle this IRP.

When Sent

Input

The PnP Manager sends this IRP when it is preparing to allocate resource(s) to a device.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of an arbitrary
thread. '

Irp->IoStatus.Information points to an IO_RESOURCE_REQUIREMENTS_LIST con-
taining the hardware resource requirements for the device. The pointer is NULL if the de-

vice consumes no hardware resources.

Parameters.FilterResourceRequirements.IoResourceRequirementList also points to an
IO_RESOURCE_REQUIREMENTS_LIST, but the function driver should use the list in the
IoStatus block. '

Chapter 2 Plug and Play IRPs 53

Output

Returned in the I/O status block.

I/O Status Block

If a function driver handles this IRP, it handles it on the IRP's way back up the stack. If the
function driver handles the IRP successfully, it sets Irp->IoStatus.Status to STATUS_
SUCCESS and sets Irp->IoStatus.Information to a pointer to an JIO_RESOURCE_
REQUIREMENTS_LIST containing the filtered resource requirements. See the Operation
section below for further information on setting the filtered resource list. If a function driver
encounters an error when handling this IRP, it sets the error in Irp->IoStatus.Status. If a
function driver does not handle this IRP, it uses IoSkipCurrentIrpStackLocation to pass
the IRP down the stack unchanged. :

Upper and lower-filter drivers do not handle this IRP. Such a driver calls IoSkipCurrent-
IrpStackLocation, passes the IRP down to the next driver, must not modify Irp->IoStatus,
and must not complete the IRP.

The parent bus driver does not handie this IRP. It leaves Irp->IoStatus as is and completes
the IRP.

Operation

The PnP Manager sends an IRP_MN_QUERY_RESOURCE_REQUIREMENTS request
to the parent bus driver for the device, before the function driver has attached its device
object to the device stack. To give the function driver an opportunity to modify the device's
resource requirements, if appropriate, the PnP Manager later sends an IRP_MN_FILTER _
RESOURCE_REQUIREMENTS request to the full device stack. The PnP Manager sends
this IRP before it allocates hardware resources to the device during initial device configura-
tion. The PnP Manager might also send this IRP during resource rebalancing.

When the PnP Manager sends this IRP, it supplies the driver stack with a resource require-
ments list, which drivers can modify and return. The PnP Manager supplies one of the fol-
lowing types of resource requirements list (listed in order of priority):

= Forced configuration (modified from a resource list to a resource requirements list)
= Override configuration
= Basic configuration

= Boot configuration (modified from a resource list to a resource requirements list)

If a function driver handles this IRP, it must set a completion routine and handle the IRP on
its way back up the device stack. See the Plug and Play, Power Management, and Setup
Design Guide for information on handling a PnP IRP on its way back up the device stack.

54

“Part1 Plug and Play

If the function driver is not changing the size of the current list pointed to by Irp->Io-
Status.Information, the driver can modify the list in place. If the driver needs to change
the size of the requirements list, the driver must allocate a new I0_RESOURCE _
REQUIREMENTS_LIST list from paged memory and free the previous list. The PnP
Manager frees the returned structure when it is no longer needed.

A function driver must preserve the order of resources in the list pointed to by Irp->Io-
Status.Information and must not alter resource tags that it does not handle. The driver must
take care to adjust the requirements list in a way that the device's parent bus supports. If a
function driver adds a new resource to the requirements list, and that resource is assigned to
the device, the function driver should filter that resource out of the IRP_MN_START_
DEVICE before passing the start IRP down to the bus driver.

If the function driver for the device does not handle this IRP, the PnP Manager uses the
resource requirements as specified by the parent bus driver in response to the IRP_MN _
QUERY_RESOURCE_REQUIREMENTS request.

A function driver must be prepared to handle this IRP for a device at any time after the
driver's AddDevice routine has been called for the device.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also

ExAllocatePoolWithTag, ExFreePool, I0_RESOURCE_REQUIREMENTS_LIST, IRP_
MN_START_DEVICE

IRP_MN_QUERY_BUS_INFORMATION

The PnP Manager uses this IRP to request the type and instance number of a device's
parent bus.

Bus drivers should handle this request for their child devices (PDOs). Function and filter
drivers do not handle this IRP.

When Sent

The PnP Manager sends this IRP when a device is enumerated.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Chapter 2 Plug and Play IRPs 55

Input

None

Output

Returned in the I/O status block.

I/0 Status Block

A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status,

On success, a bus driver sets Irp->IoStatus.Information to a pointer to a completed PNP_
BUS_INFORMATION structure. (See the Operation section below for more information.)
On an error, the bus driver sets Irp->IoStatus.Information to zero.

Function and filter drivers do not handle this IRP.

Operation

The information returned in response to this IRP is available to the function and filter
drivers for devices on the bus. Function and filter drivers can call IoGetDeviceProperty

to request a DevicePropertyBusTypeGuid, DevicePropertyLegacyBusType, or Device-
PropertyBusNumber. Function and filter drivers that support devices on more than one bus
can use this information to determine on which bus a particular device resides.

If a bus driver returns information in response to this IRP, it allocates a PNP_BUS _
INFORMATION structure from paged memory. The PnP Manager frees the structure
when it is no longer needed.

A PNP_BUS_INFORMATION structure has the following format:

typedef struct _PNP_BUS_INFORMATION {
GUID BusTypeGuid;
INTERFACE_TYPE LegacyBusType;
ULONG BusNumber;
} PNP_BUS_INFORMATION, =PPNP_BUS_INFORMATION;

The members of the structure are defined as follows:

BusTypeGuid

A bus driver sets BusTypeGuid to the GUID for the type of the bus on which the device
resides. GUIDs for standard bus types are listed in wdmguid.h. Driver writers should gen-
erate GUIDs for other bus types using uuidgen.

56

Part1 Plug and Play

LegacyBusType

A PnP bus driver sets LegacyBusType to the INTERFACE_TYPE of the parent bus. The
interface types are defined in wdm.h. Some buses have a specific INTERFACE_TYPE
value, such as PCMCIABus, PCIBus, or PNPISABus. For other buses, especially newer
buses like USB, the bus driver sets this member to PNPBus.

The LegacyBusType specifies the interface used to communicate with the device. This may
or may not correspond to the type of the parent bus. For example, the interface for a Card-
Bus card that is plugged into a PCI CardBus controller is PCIBus. However, the interface
for a PCMCIA card on a PCI CardBus controller is PCMCIABus.

BusNumber

A bus driver sets BusNumber to a number distinguishing the bus from other buses of the
same type on the machine. The bus-numbering scheme is bus-specific. Bus numbers may
be virtual, but must match any numbering used by legacy interfaces such as IoReport-
ResourceUsage.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

Call IoGetDeviceProperty to get information about the bus to which a device is attached.

See Also

IoGetDeviceProperty

IRP_MN_QUERY_CAPABILITIES

The PnP Manager sends this IRP to get the capabilities of a device, such as whether the
device can be locked or ejected. '

Function and filter drivers can handle this request if they alter the capabilities supported by
the bus driver. Bus drivers must handle this request for their child devices.

When Sent

The PnP Manager sends this IRP to the bus driver for a device immediately after the device
is enumerated. The PnP Manager sends this IRP again after all the drivers for a device have
started the device. A driver can send this IRP to get the capabilities for a device.

The PnP Manager and drivers send this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context.

Chapter 2 Plug and Play IRPs 57

Input

Parameters.DeviceCapabilities.Capabilities points to a DEVICE_CAPABILITIES
structure containing information about the capabilities of the device.

Output

Parameters.DeviceCapabilities.Capabilities points to the DEVICE_CAPABILITIES
structure that reflects any modifications made by the driver(s) that handle the IRP.

I/O Status Block

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL.

If a function or filter driver does not handle this IRP, it calls IoSkipCurrentIrpStack-
Location and passes the IRP down to the next driver. Such a driver must not miodify
Irp->IoStatus.Status and must not complete the IRP.

A bus driver sets Irp->IoStatus.Status and completes the IRP.

Operation

When a device is enumerated, but before the function and filter drivers are loaded for

the device, the PnP Manager sends an IRP_MN_QUERY_CAPABILITIES request to the
parent bus driver for the device. The bus driver must set any relevant values in the
DEVICE_CAPABILITIES structure and return it to the PnP Manager.

After the device stack is built and drivers have started the device, the PnP Manager sends
this IRP again to be handled first by the driver at the top of the device stack and then by
each lower driver in the stack. Function and filter drivers can set an loCompletion routine
and handle this IRP on its way back up the device stack.

Drivers should add capabilities before they pass the IRP to the next lower driver.

Drivers should remove capabilities after all lower drivers have finished with the IRP.

A driver does not typically remove capabilities that have been set by other drivers, but it
might do so if it has special information about the capabilities of the device in a certain
configuration. See the Plug and Play, Power Management, and Setup Design Guide for
information on postponing IRP processing until lower drivers have finished.

After a device is enumerated and its drivers are loaded, its capabilities should not change.
A device's capabilities might change if the device is removed and re-enumerated.

When handling an IRP_MN_QUERY_CAPABILITIES IRP, the driver that is the power
policy manager for the device should set an IoCompletion routine and copy the device
power capabilities, such as the S-to-D power state mappings, on the IRP's way back up the
device stack. To determine the power capabilities of a child device, the parent bus driver

58

Part1 Plug and Play

creates another query-capabilities IRP and sends the IRP to its parent driver. See Reporting
Device Power Capabilities in Part 3, “Power Management,” in the Plug and Play, Power
Management, and Setup Design Guide for more information.

If a driver handles this IRP, it should check the DEVICE_CAPABILITIES.Version value.
If that value is not a version that the driver supports, the driver should fail the IRP. If the
version is supported, the driver should check the Size field. A driver should set only those
fields that are within the bounds of the capabilities structure that it received as input.

Drivers that handle this IRP can set some DEVICE_CAPABILITIES fields but must not set
the Size and Version fields. These fields are only set by the component that sent the IRP.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

A bus driver sends this IRP to the parent device stack when it handles an IRP_MN_
QUERY_CAPABILITIES request for one of its child devices. Also, a driver might send this
IRP to get the device capabilities for one of its devices. A single driver in the stack has only
part of the capabilities information for the device; sending an IRP to the device stack
enables it to gather the full picture, including modifications by any filter drivers, and so
forth.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs The following
steps apply specifically to this IRP:

= Allocate a DEVICE_CAPABILITIES structure from paged pool and initialize it to zeros.
Initialize the Size to sizeof(DEVICE_CAPABILITIES), the Version to 1, and Address
and UINumber to -1.

= Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP_MIJ_
PNP, set MinorFunction to IRP_MN_QUERY_CAPABILITIES, and set Parameters.
DeviceCapabilities to a pointer to the allocated DEVICE_CAPABILITIES structure.

= [Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

= Deallocate the IRP and the DEVICE_CAPABILITIES structure when they are no longer
needed.

See Also

DEVICE_CAPABILITIES

Chapter 2 Plug and Play IRPs 59

IRP_MN_QUERY_DEVICE_RELATIONS

Bus drivers must handle this request for BusRelations for their adapter or controller (bus
FDO). Filter drivers might handle this request for BusRelations. Bus drivers must handle
this request for TargetDeviceRelation for their child devices (child PDOs). Function and
filter drivers might handle this request for RemovalRelations. Bus drivers might handle
this request for EjectionRelations for their child devices (child PDOs).

When Sent

The PnP Manager sends this IRP to gather information about devices with a relationship to
the specified device. ’

The PnP Manager queries a device's BusRelations (child devices) when the device is
enumerated and at other times while the device is active, such as when a driver calls
IoInvalidateDeviceRelations to indicate that a child device has arrived or departed.

The PnP Manager queries a device's RemovalRelations before it removes a device's
drivers or ejects the device and it queries for EjectionRelations before it ejects a device.

The PnP Manager queries a device's TargetDeviceRelation when a driver or user-mode
application registers for PnP notification of an EventCategoryTargetDeviceChange on
the device. The PnP Manager queries for the device that is associated with a particular file
object. This is the only PnP IRP that has a valid file object parameter. A driver can query
a device stack for TargetDeviceRelation.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Input

Parameters.QueryDeviceRelations. Type specifies the type of relations being queried.
Possible values include BusRelations, EjectionRelations, RemovalRelations, and
TargetDeviceRelation. PowerRelations is not used.

Irp->FileObject points to a valid file object only if Parameters.QueryDeviceRelations.
Type is TargetDeviceRelation.

Output

Returned in the 1I/O status block.

1/0 Status Block

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to a failure status such as
STATUS_INSUFFICIENT_RESOURCES.

60

Part1 Plug and Play

On success, a driver sets Irp->IoStatus.Information to a PDEVICE_RELATIONS pointer
that points to the requested relations information. The DEVICE_RELATIONS structure is
defined as follows:

typedef struct _DEVICE_RELATIONS {

ULONG Count;

PDEVICE_OBJECT Objects[1]; // variable length
} DEVICE_RELATIONS, =PDEVICE_RELATIONS;

Operation

If a driver returns relations in response to this IRP, it allocates a DEVICE_RELATIONS
structure from paged memory containing a count and the appropriate number of device
object pointers. The PnP Manager frees the structure when it is no longer needed. If a driver
replaces a DEVICE_RELATIONS structure allocated by another driver, it must free the
previous structure.

A driver must reference the PDO of any device that it reports in this IRP (ObReference-
Object). The PnP Manager removes the reference when appropriate.

A function or filter driver should be prepared to handle this IRP for a device any time after
its AddDevice routine has completed for the device. Bus drivers should be prepared to
handle a query for BusRelations immediately after a device is enumerated.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

The following subsections describe the specific actions for handling the various queries.

BusRelations

When the PnP Manager queries for the bus relations (child devices) of an adapter or con-
troller, the bus driver must return a list of pointers to the PDOs of any devices physically
present on the bus. The bus driver reports all devices, regardless of whether they have been
started. The bus driver might need to power up its bus device to determine which children
are present.

The bus driver that responds to this IRP is the function driver for the bus adapter or con-
troller, not the parent bus driver for the bus that the adapter or controller is connected to.
Function drivers for non-bus devices do not handle this query. Such drivers just pass the IRP
to the next lower driver. (See Figure 2.1.) Filter drivers typically do not handle this query.

In the example shown in Figure 2.1, the PnP Manager sends an IRP_MN_QUERY _
DEVICE_RELATIONS for BusRelations to the drivers for the USB hub device. The PnP
Manager is requesting a list of the hub device's children.

Chapter 2 Plug and Play IRPs 61

Keyboard Joystick
Device Stack Device Stack

- - T T T T T hl
(| Upper Filter DO

I
@ IRP j (optional) } @

FDO
(created by USB Hub 1 ®

driver)
USB Hub }
Device Stack |————-
i Lower Filter DO !
' (optional) : @

(created by USB Host
Controller bus driver)

ik

USB Host Controller w
Device Stack Y

PCI Bus
Device Stack

Figure 2.1 Drivers Handling a Query For Bus Relations

1. As with all PnP IRPs, the PnP Manager sends the IRP to the top driver in the device stack
for the device.

2. An optional filter driver might be the top driver in the stack. A filter driver typically does
not handle this IRP; it passes the IRP down the stack. A filter driver might handle this
IRP, for example, if the driver exposes a non-enumerable device on the bus.

3. The USB hub bus driver handles the IRP.
The USB hub bus driver:

= Creates a PDO for any child device that does not already have one.

= Marks the PDO inactive for any device that is no longer present on the bus. The
bus driver does not delete such PDOs. See Removing a Device in Part 2, “Plug and
Play,” in the Plug and Play, Power Management, and Setup Design Guide for
information on when to delete the PDOs. '

= Reports any child devices that are present on the bus.

62

Part 1 Plug and Play

For each child device, the bus driver references the PDO and puts a pointer to the PDO
in the DEVICE_RELATIONS structure.

There are two PDOs in this example, one for the joystick device and one for the
keyboard device.

The bus driver should check whether another driver already created a DEVICE _
RELATIONS structure for this IRP. If so, the bus driver must add to the existing
information.

If there is no child device present on the bus, the driver sets the count to zero in the
DEVICE_RELATIONS structure and returns success.

= Sets the appropriate values in the I/O status block and passes the IRP to the next lower
driver. The bus driver for the adapter or controller does not complete the IRP.

4. An optional lower filter, if present, typically does not handle this IRP. Such a filter

driver passes the IRP down the stack. If a lower-filter driver handles this IRP, it can add
PDO(s) to the list of child devices but it must not delete any PDOs created by other
drivers.

5. The parent bus driver does not handle this IRP, unless it is the only driver in the device
stack (the device is in raw mode). As with all PnP IRPs, the parent bus driver completes
the IRP with IoCompleteRequest.

If there are one or more bus filter drivers in the device stack, such drivers might handle
the IRP on its way down to the bus driver and/or on the IRP's way back up the device
stack (if there are IoCompletion routines). According to the PnP IRP rules, such a driver
can add PDOs to the IRP on its way down the stack and/or modify the relations list on
the IRP's way back up the stack (in IoCompletion routines).

EjectionRelations

A driver returns pointers to PDOs of any devices that might be physically removed from the
system when the specified device is ejected. Do not report the PDOs of children of the
device; the PnP Manager always requests that child devices be removed before their parent
device. '

The PnP Manager sends an IRP_MN_EJECT IRP to a device being ejected. The driver for
such a device also receive a remove IRP. The device's ejection relations receive an IRP_
MN_REMOVE_DEVICE IRP (not an IRP_MN_EJECT IRP).

Only a parent bus driver can respond to an EjectionRelations query for one of its child
devices. Function and filter drivers must pass it to the next lower driver in the device stack.
If a bus driver receives this IRP as the function driver for its adapter or controller, the

bus driver is performing the tasks of a function driver and must pass the IRP to the next
lower driver.

Chapter 2 Plug and Play IRPs 63

PowerRelations
Reserved.

RemovalRelations

A driver returns pointers to PDOs of any devices whose drivers must be removed when the
drivers for the specified device are removed. Do not report the PDOs of children of the de-
vice; the PnP Manager already requests removal of child devices before removing a device.

The order in which removal relations are removed is undefined. Removal relatlons at the
same level in the device tree can be removed in any order.

Any driver in the device stack can handle this type of relations query. A function or filter
driver handles the IRP before passing it to the next lower driver. A bus driver handles the
IRP and then completes it.

TargetDeviceRelation

A parent bus driver must handle this type of relations query for its child devices. The bus
driver references the child device's PDO with ObReferenceObject and returns a pointer
to the PDO in the DEVICE_RELATIONS structure. There is only one PDO pointer in the
structure for this relation type. The PnP Manager removes the reference to the PDO when
the driver or application unregisters for notification on the device.

Only a parent bus driver responds to a TargetDeviceRelation query. Function and filter
drivers must pass it to the next lower driver in the device stack. If a bus driver receives this
IRP as the function driver for its adapter or controller, the bus driver is performing the tasks
of a function driver and must pass the IRP to the next lower driver.

If a driver is not in a PDO-based stack, the driver sends a new target-device-relation query
IRP to the device object associated with the file handle on which the driver performs 1/O.

Sending This IRP

Drivers must not send this IRP to request BusRelations. Drivers are not restricted from
sending this IRP for RemovalRelations or EjectionRelations, but it is not likely that a
driver would do so.

Drivers can query a device stack for TargetDeviceRelation. See the Kernel-Mode Drivers
Design Guide for information on sending IRPs. The following steps apply specifically to
this IRP:

= Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP_
MIJ_PNP, set MinorFunction to IRP_MN_QUERY_DEVICE_RELATIONS, set
Parameters.QueryDeviceRelations.Type to TargetDeviceRelation, and set Irp->
FileObject to a valid file object.

» Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

64 Part1 Plug and Play

If a driver sent this IRP to get the PDO to report in response to an IRP_MN_QUERY_
DEVICE_RELATIONS for TargetDeviceRelation that the driver received, then the driver
reports the PDO and frees the returned relations structure when the IRP completes. If a
driver initiated this IRP for another reason, the driver frees the relations structure when the
IRP completes and dereferences the PDO when it is no longer needed.

See Also

ToInvalidateDeviceRelations, IRP_ MN_EJECT, IRP_MN_REMOVE_DEVICE, Io-
RegisterPlugPlayNotification, ObReferenceObject

IRP_MN_QUERY_DEVICE_TEXT

The PnP Manager uses this IRP to get a device's description or location information.

Bus drivers must handle this request for their child devices if the bus supports this informa-
tion. Function and filter drivers do not handle this IRP.

When Sent

The PoP Manager sends two of these IRPs when a device is enumerated: one to query the
device description and one to query the location information.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Input

Parameters.QueryDeviceText.DeviceTextType is a DEVICE_TEXT_TYPE specifying
which string is requested. Possible values for DEVICE_TEXT_TYPE include DeviceText-
Description and DeviceTextLocationInformation.

Parameters.QueryDeviceText.Localeld is an LCID specifying the locale for the re-
quested text.

Output
Returned in the I/O status block.

I/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate etror status.

On success, a bus driver sets Irp->IoStatus.Information to a pointer to a driver-allocated
block of memory containing a WCHAR buffer with the requested information. On an error,
the bus driver sets Irp->IoStatus.Information to zero.

Chapter 2 Plug and Play IRPs 65

Operation

Bus drivers are strongly encouraged to return device descriptions for their child devices.
This string is displayed in the "found new hardware" pop-up window if no INF match is
found for the device.

Bus drivers are also encouraged to return LocationInformation for their child devices,

but this information is optional. The format of this string depends on the bus. The Device
Manager displays this string in the general properties tab for the device. Vendors should
choose a string that conveys useful information to users and support personnel. For example,
for PCI, the string contains the bus, device, and function. For PC Card, the string contains
the slot.

If a bus driver returns information in response to this IRP, it allocates a NULL-terminated
Unicode string from paged memory. The PnP Manager frees the string when it is no longer
needed.

If a device does not provide description or location information, the device's parent bus
driver completes the IRP (IoCompleteRequest) without modifying Irp->IoStatus.Status or
Irp->IoStatus.Information.

Function and filter drivers do not handle this IRP; they pass it to the next lower driver with
no changes to Irp->IoStatus.

Drivers for busses that support different text strings for different locales should be able
to handle a request for a language that is not explicitly supported by the device. In such a
situation, the bus driver should return the closest match for the locale or should fallback
and return some appropriate supported locale string.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

IRP_MN_QUERY_ID

Bus drivers must handle requests for BusQueryDeviceID for their child devices (child
PDOs). Bus drivers can handle requests for BusQueryHardwareIDs, BusQuery-
CompatibleIDs, and BusQuerylInstancelD for their child devices. Function and filter
drivers do not handle this IRP.

When Sent

The PnP Manager sends this IRP when a device is enumerated. A driver might send this IRP
to retrieve the instance ID for one of its devices.

66

Part1 Plug and Play

input

The PnP Manager and drivers send this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context.

Parameters.Queryld.IdType specifies the kind of ID(s) requested. Possible values include
BusQueryDeviceID, BusQueryHardwarelDs, BusQueryComptibleIDs, and BusQuery-
InstancelD. The following ID type is reserved: BusQueryDeviceSerialNumber.

Output

Returned in the I/0 status block.

I/O Status Block

A driver sets Irp->ToStatus.Status to STATUS_SUCCESS or to an appropriate error status.

On success, a driver sets Irp->IoStatus.Information to a WCHAR pointer that points to the
requested information. On etror, a driver sets Irp->IoStatus.Information to zero.

Operation

If a driver returns ID(s) in response to this IRP, it allocates a WCHAR structure from paged
pool to contain the ID(s). The PnP Manager frees the structure when it is no longer needed.

A driver returns a single string in response to a BusQueryDeviceID or a BusQuery-
InstancelD request, and a MULTI_SZ string in response to a BusQueryHardwarelDs
or a BusQueryComptibleIDs request.

If a driver returns an ID with an illegal character, the system will bugcheck. Characters with
the following values are illegal in an ID for this IRP:

Less than 0x20 (' ")
Greater than 0x7F
Equal to 0x2C (', ")

A driver must conform to the following length restrictions for IDs:

= Each hardware ID or compatible ID that a driver returns in this IRP must be less than
MAX_DEVICE_ID_LEN characters long. This constant currently has a value of 200 as
defined in sdk\inc\cfgmgr32.h.

= If a bus driver supplies globally unique instance IDs for its child devices (that is, the
driver sets DEVICE_CAPABILITIES.UniquelD for the devices), then the combination
of device ID plus instance ID must be less than (MAX_DEVICE_ID_LEN - 1) charac-
ters. The OS requires the additional character for a path separator.

Chapter 2 Plug and Play IRPs 67

= If a bus driver does not supply globally unique instance IDs for its child devices, then the
combination of device ID plus instance ID must be less than (MAX_DEVICE_ID_LEN
- 28). The value of this equation is currently 172.

Bus drivers should be prepared to handle this IRP for a child device immediately after the
device is enumerated. : ‘

Specifying BusQueryDevicelD and BusQueryinstancelD

The values a bus driver supplies for BusQueryDeviceID and BusQueryInstanceID allow
the OS to differentiate a device from other devices on the machine. The OS uses the device
ID, instance ID, and the unique ID field returned in the IRP_MN_QUERY_DEVICE _
CAPABILITIES IRP to locate registry information for device.

For BusQueryDevicelD, a bus driver supplies the device's device ID. A device ID should
contain the most-specific description of the device possible, incorporating the name of the
enumerator and strings identifying the manufacturer, device, revision, packager, and pack-
aged product, where possible. For example, the PCI bus driver responds with device IDs of
the form PCNVEN_xxxx&DEV_xxxx&SUBSYS_xxxxxxxx&REV_xx, encoding all five of
the items mentioned above. However, a device ID should not contain enough information to
differentiate between two identical devices. This information should be encoded in the
instance ID.

For BusQueryInstanceID, a bus driver should supply a string that contains the instance
ID for the device. Setup and bus drivers use the instance ID, with other information, to dif-
ferentiate between two identical devices on the machine. The instance ID is either unique
across the whole machine or just unique on the device's parent bus.

If an instance ID is only unique on the bus, the bus driver specifies that string for Bus-
QueryInstancelD but also specifies a UniquelD value of FALSE in response to an IRP_
MN_QUERY_CAPABILITIES request for the device. If UniquelD is FALSE, the PnP
Manager enhances the instance ID by adding information about the device's parent and thus
makes the ID unique on the machine. In this case the bus driver should not take extra steps
to make its devices' instance IDs globally unique; just return the appropriate capabilities
information and the OS takes care of it.

If a bus driver can supply a globally unique ID for each child device, such as a serial num-
ber, the bus driver specifies those strings for BusQueryInstancelD and specifies a Unique-
ID value of TRUE in response to an IRP_MN_QUERY_CAPABILITIES request for each
device.

Specifying BusQueryHardwarelDs and BusQueryCompatiblelDs
The values a bus driver supplies for BusQueryHardwareIDs and BusQueryCompatible-
IDs allow Setup to locate the appropriate drivers for the bus's child device.

A bus driver responds to each of these requests with a list of IDs that describe the device.
When returning more than one hardware ID and/or more than one compatible ID, a bus

68

Part1 Plug and Play

driver should list the IDs in the order of most-specific to most-general to facilitate choosing
the best driver match for the device. The first entry in the hardware IDs list is the most-
specific description of the device and, as such, it is usually identical to the device ID.

Setup checks the IDs against the IDs listed in INF files for possible matches. Setup first
scans the hardware IDs list, then the compatible IDs list. Earlier entries are treated as more
specific descriptions of the device, and later entries as more general (and thus less optimal)
matches for the device. If no match is found in the list of hardware IDs, Setup might prompt
the user for installation media before moving on to the list of compatible IDs.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Typically, only the PnP Manager sends this IRP.

To get the hardware IDs or compatible IDs for a device, call IoGetDeviceProperty instead
of sending this IRP.

A driver might send this IRP to retrieve the instance ID for one of its devices. For example,
consider a multifunction PnP ISA device whose functions do not operate independently. The
PnP Manager enumerates the functions as separate devices, but the driver for such a device
might be required to associate one or more of the functions. Because PnP ISA guarantees a
unique instance ID, the driver for such a multifunction device can use the instance IDs to
locate functions that reside on the same device. The driver for such a device must also get
the device's enumerator name by calling IoGetDeviceProperty, to confirm that the device
is a PnP ISA device.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

= Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP_MJ_
PNP, set MinorFunction to IRP_MN_QUERY_ID, and set Parameters.Queryld.Id-
Type to BusQueryInstancelD.

= Set IoStatus.Status to STATUS_NOT_SUPPORTED.
In addition to sending the query ID IRP, the driver must call IoGetDeviceProperty to get
the DevicePropertyEnumeratorName for the device.

After the IRP completes and the driver is finished with the ID, the driver must free the ID
structure returned by the driver(s) that handled the query IRP.

See Also

IoGetDeviceProperty

Chapter 2 Plug and Play IRPs 69

IRP_MN_QUERY_INTERFACE

The IRP_MN_QUERY_INTERFACE request enables a driver to export a direct-call inter-
face to other drivers. '

A bus driver that exports an interface must handle this request for its child devices (child
PDOs). Function and filter can optionally handle this request.

An "interface" in this context consists of routine(s) and possibly data exported by a driver
or set of drivers. An interface has a structure that describes its contents and a GUID that
identifies its type.

For example, the PCMCIA bus driver exports an interface of type GUID_PCMCIA _
INTERFACE_STANDARD that contains routines for operations such as getting the write-
protect condition of a PCMCIA memory card. The function driver for such a memory card
can send an IRP_MN_QUERY_INTERFACE request to the parent PCMCIA bus driver to
get pointers to the PCMCIA interface routines.

This section describes the query-interface IRP as a general mechanism. Drivers that expose
an interface should provide additional information about their specific interface.

When Sent

Input

A driver or system component sends this IRP to get information about an interface exported
by a driver for a device.

A driver or system component sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary
thread context. ‘

A driver can receive this IRP at any time after the driver's AddDevice routine has been
called for the device. The device may or may not be started when this IRP is sent (the driver
cannot assume that it has successfully completed an IRP_MN_START DEVICE request for
the device).

Parameters.QueryInterface is a structure that describes the interface being requested. The
structure contains the following information:

CONST GUID =InterfaceType;
USHORT Size;

USHORT Version;

PINTERFACE Interface;

PVOID InterfaceSpecificData

70

Part1 Plug and Play

The members of the structure are defined as follows:

InterfaceType

Points to a GUID that identifies the interface being requested. The GUID can be for a
system-defined interface, such as GUID_BUS_INTERFACE_STANDARD, or a custom
interface. The GUIDs for system-defined interfaces are listed in wdmguid.h. GUIDs for
custom interfaces should be generated with uuidgen.

Size
Specifies the size of the interface being requested. Drivers that handle this IRP must not
return an INTERFACE structure larger than Size bytes.

Version
Specifies the version of the interface being requested.

If a driver supports more than one version of an interface, the driver returns the closest sup-
ported version without exceeding the requested version. The component that sent the IRP

should examine the returned Interface.Version field and determine what to do based on that
value.

Interface

Points to an INTERFACE structure in which to return the requested interface information.
The component sending the IRP allocates this structure from paged memory.

The base layout for an INTERFACE structure is defined as follows:

typedef VOID (+*PINTERFACE_REFERENCE)(PVOID Context);
typedef VOID (*PINTERFACE_DEREFERENCE)(PVOID Context);

typedef STRUCT _INTERFACE {
USHORT Size:;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
// interface-specific entries go here

} INTERFACE, *PINTERFACE;

A driver that exports an interface defines a new type containing the members shown above
plus members for routines and/or data in the interface. (The driver also defines a GUID for
the interface, as described in the InterfaceType member, above.)

A driver that exports an interface defines the execution environment for each routine in the
interface, including the IRQL at which the routine can be called, and so forth.

Chapter 2 Plug and Play IRPs T

InterfaceSpecificData
Specifies additional information about the interface being requested.

For some interfaces, the component sending the IRP specifies additional information in
this field. Typically, this field is NULL and the InterfaceType and Version are sufficient
to identify the interface being requested.

Output

On success, a driver fills in the members of the Parameters.QueryInterface.Interface
structure.

I/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status.

On success, a bus driver sets Irp->IoStatus.Information to zero.

If a function or filter driver does not handle this IRP, it calls IoSkipCurrentIrpStack-
Location and passes the IRP down to the next driver. Such a driver must not modify
Irp->IoStatus.Status and must not complete the IRP.

- If a bus driver does not export the requested interface and therefore does not handle this IRP
for a child PDO, the bus driver leaves Irp->IoStatus.Status as is and completes the IRP.

Operation
A driver handles this IRP if the parameters specify an interface the driver supports.

A driver must not queue this IRP if the IRP requests an interface that the driver does not
support. A driver must check Parameters.QueryInterface.InterfaceType. If the interface
is not one the driver supports, the driver must pass the IRP to the next lower driver in the
device stack without blocking.

A driver that returns an interface in response to this IRP must reference the interface. The
component that requested the interface by sending the IRP is responsible for dereferencing
the interface (using the interface's InterfaceDereference routine). If the component that
sends the IRP, driver X, passes the interface to another component, driver Y, then driver X
is responsible for taking out another reference on the interface (InterfaceReference) and
driver Y is responsible for removing the additional reference (InterfaceDereference).

A driver that handles this IRP should avoid passing the IRP to another device stack to get
the requested interface. Such a design would create dependencies between the device stacks
that are difficult to manage. For example, the device represented by the second device stack
cannot be removed until the appropriate driver in the first stack dereferences the interface.

Interfaces can be bus-specific or bus-independent. Bus-specific interfaces are defined
in the header files for those buses. The system defines a bus-independent interface,

72

Part1 Plug and Play

BUS_INTERFACE_STANDARD, for exporting standard bus interfaces. This interface has
the type GUID_BUS_INTERFACE_STANDARD and is defined in wdm.h as follows:

typedef BOOLEAN (*PTRANSLATE_BUS_ADDRESS)(
IN PVOID Context,
IN PHYSICAL_ADDRESS BusAddress,
IN ULONG Length,
IN OUT PULONG AddressSpace,
OUT PPHYSICAL_ADDRESS TranslatedAddress
)

typedef struct _DMA_ADAPTER *(*PGET_DMA_ADAPTER) (
IN PVOID Context,
IN struct _DEVICE_DESCRIPTION *DeviceDescriptor,
OUT PULONG NumberOfMapRegisters
)3

typedef ULONG (*PGET_SET_DEVICE_DATA)(
IN PVOID Context, ’
IN ULONG DataType,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
)

typedef struct _BUS_INTERFACE_STANDARD {
//
// generic interface header
//
USHORT Size;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
//
// standard bus interfaces
// .
PTRANSLATE_BUS_ADDRESS TranslateBusAddress;
PGET_DMA_ADAPTER GetDmaAdapter;
PGET_SET_DEVICE_DATA SetBusData;
PGET_SET_DEVICE_DATA GetBusData;

} BUS_INTERFACE_STANDARD, #PBUS_INTERFACE_STANDARD;

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Chapter 2 Plug and Play IRPs 73

This IRP is used specifically to communicate routine entry points between layered drivers
for a device. A device interface is a separate mechanism, primarily for exposing a path to a
device for use by user-mode components or other kernel components. Call IoGetDevice-
Interfaces to get a list of device interfaces of a particular device interface class, such as all
the devices on the system that support a HID interface.

Sending This IRP

See the Kernel-Mode Drivers Design Guide for information on sendmg IRPs. The following
steps apply specifically to this IRP:

= Allocate an INTERFACE structure from paged pool and initialize it to zeros.

= Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP_MJ_
PNP, set MinorFunction to IRP_MN_QUERY_INTERFACE, and set the appropriate
values in Parameters.QueryInterface.

s Initialize TIoStatus.Status to STATUS_NOT_SUPPORTED.
= Deallocate the IRP and the INTERFACE structure when they are no longer needed.

= Use the interface routines and context parameter as described in the specification for the
interface.

= Decrement the reference count using the InterfaceDereference routine when the
interface is no longer needed. Do not call any 1nterface routines after dereferencing
the interface.

A driver typically sends this IRP to the top of the device stack in which the driver is
attached. If a driver sends this IRP to a different device stack, the driver must register

for target device notification on the other device if the other device is not an ancestor of
the device that the driver is servicing. Such a driver calls IoRegisterPlugPlayNotification
with an EventCategory of EventCategoryTargetDeviceChange. When the driver receives
notification of type GUID_TARGET_DEVICE_QUERY_REMOVE, the driver must de-
reference the interface. The driver can requery for the interface if it receives a subsequent
GUID_TARGET_DEVICE_REMOVE_CANCELLED notification.

See Also
' IoGetDevicelnterfaces, IoRegisterPlugPlayNotification

IRP_MN_QUERY_LEGACY_BUS_INFORMATION

This IRP is reserved for system use.

74

Part1 Plug and Play

IRP_MN_QUERY_PNP_DEVICE_STATE

Function, filter, and bus drivers can handle this request.

When Sent

Input

The PnP Manager sends this IRP after the drivers for a device return success from the IRP_
MN_START_DEVICE request sent when a device is first started. This IRP is not sent on a
start after a stop for resource rebalancing. The PnP Manager also sends this IRP when a

driver for the device calls IoInvalidateDeviceState.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of an arbitrary
thread.

None

Output

Returned in I/O status block.

I/0 Status Block

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL.

On success, a driver sets Irp->IoStatus.Information to a PNP_DEVICE_STATE bitmask.

If a function or filter driver does not handle this IRP, it calls IoSkipCurrentIrpStack-
Location, does not set an IoCompletion routine, and passes the IRP down to the next driver.
Such a driver must not modify Irp->IoStatus and must not complete the IRP.

If a bus driver does not handle this IRP, it leaves Irp->IoStatus.Status as is and completes
the IRP. ’ ‘

Operation

This IRP is handled first by the driver at the top of the device stack and then by each next
lower driver in the stack.

A driver handles this IRP if it has information about the PnP state of a device. A driver
can set or clear the flags in the PNP_DEVICE_STATE bitmask. If another driver has set a
PNP_DEVICE_STATE in Irp->IoStatus.Information, a driver must take care to modify
the flags in that bitmask rather than overwrite the whole structure.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Chapter 2 Plug and Play IRPs 75

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also
IoInvalidateDeviceState, PNP_DEVICE_STATE

IRP_MN_QUERY_REMOVE_DEVICE

All PnP drivers must handle this IRP,

When Sent

The PnP Manager sends this IRP to inform drivers that a device is about to be removed
from the machine and to query whether the device can be removed without disrupting the
machine. The PnP Manager also sends this IRP if a user requests to update driver(s) for
the device.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Input

None

Output

None

I/0 Status Block

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL.

Operation

This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

In response to this IRP, drivers indicate whether the device can be removed without dis-
rupting the machine.

See Removing a Device in Part 2, “Plug and Play,” in the Plug and Play, Power
Management, and Setup Design Guide for detailed information on handling remove IRPs.
Also see that Design Guide for the general rules for handling all PnP IRPs.

76 Part1 Plug and Play

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also

IRP_MN_CANCEL_REMOVE_DEVICE, IRP_MN_DEVICE_USAGE_
NOTIFICATION, IRP_MN_REMOVE_DEVICE

IRP_MN_QUERY_RESOURCE_REQUIREMENTS

The PnP Manager uses this IRP to get a device's resource requirements list.

Bus drivers must handle this requeyst for their child devices that require hardware resources.
Bus filter drivers can handle this request. Function and filter drivers do not handle this IRP.

When Sent

The PnP Manager sends this IRP when a device is enumerated, prior to allocating resources
to a device, and when a driver reports that its device's resource requirements have changed.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Input

None

Output

Returned in the I/O status block.

I/O Status Block

A driver that handles this IRP sets Irp->IoStatus.Status to STATUS_SUCCESS or an
appropriate error status.

On success, a driver sets Irp->IoStatus.Information to a pointer to an I0O_RESOURCE_
REQUIREMENTS_LIST that contains the requested information. On an error, the driver
sets Irp->loStatus.Information to zero.

Operation

If a bus driver returns a resource requirements list in response to this IRP, it allocates an
IO_RESOURCE_REQUIREMENTS_LIST from paged memory. The PnP Manager frees
the buffer when it is no longer needed.

If a device requires no hardware resources, the device's bus driver completes the IRP
(IoCompleteRequest) without modifying Irp->IoStatus.Status or Irp->loStatus.
Information.

Chapter 2 Plug and Play IRPs 77

If a bus filter driver handles this IRP, it modifies the resource requirements list created

by the bus driver. A bus filter driver modifies the list on the IRP's way back up the device
stack. A bus filter driver must preserve the order of resources in the resource requirements
list and must not alter resource tags that it does not handle. If a bus filter driver changes
the size of the resource requirements list, the driver must allocate a new structure from
paged memory and free the previous structure. If a bus filter driver adds a new resource
requirement to the list and the resource is assigned to the device, the driver must filter the
new resource out of the IRP_MN_START_DEVICE IRP so it is not passed to the bus
driver.

Function and non-bus filter drivers do not handle this IRP; they pass it to the next lower
driver with no changes to Irp->IoStatus.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also
IO_RESOURCE_REQUIREMENTS_LIST

IRP_MN_QUERY_RESOURCES

The PnP Manager uses this IRP to get a device's boot configuration resources.

Bus drivers must handle this request for their child devices that require hardware resources.
Function and filter drivers do not handle this IRP.

When Sent

The PnP Manager sends this IRP when a device is enumerated.
The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Input

None

Output

Returned in the I/O status block.

78

Part1 Plug and Play

I/0 Status Block

A bus driver that handles this IRP sets Irp->IoStatus.Status to STATUS_SUCCESS or to
an appropriate error status. -

On success, a bus driver sets Irp->IoStatus.Information to a pointer to a CM_
RESOURCE_LIST that contains the requested information. On an error, the bus driver
sets Irp->IoStatus.Information to zero.

Operation

If a bus driver returns a resource list in response to this IRP, it allocates a CM_
RESOURCE_LIST from paged memory. The PnP Manager frees the buffer when it
is no longer needed.

If a device requires no hardware resources, the device's parent bus driver completes the
IRP (IoCompleteRequest) without modifying Irp->IoStatus.Status or Irp->IoStatus.
Information.

Function and filter drivers do not receive this IRP.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

Drivers can call IoGetDeviceProperty to get the boot configuration for a device, in both
raw and translated forms. -

See Also

CM_RESOURCE_LIST, IoGetDeviceProperty

IRP_MN_QUERY_STOP_DEVICE

All PaP drivers must handle this IRP.

When Sent

The PnP Manager sends this IRP to query whether a device can be stopped for resource
rebalancing.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Chapter 2 Plug and Play IRPs 79

Input

None

Output

None

I/0 Status Block

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status.
If a driver cannot stop the device, the driver sets Irp->IoStatus.Status to STATUS _
UNSUCCESSFUL.

A bus driver can set Irp->IoStatus.Status to STATUS_RESOURCE_REQUIREMENTS_
CHANGED to indicate success for the IRP but also to request that the PnP Manager requery
the resource requirements for the device before sending the stop IRP.

Operation
This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

In response to this IRP, drivers indicate whether it is safe to stop the device for resource
rebalancing.

See Stopping a Device for Resource Rebalancing in Part 2, “Plug and Play,” in the Plug and
Play, Power Management, and Setup Design Guide for detailed information on handling
stop IRPs. Also see that Design Guide for the general rules for handling all PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also

IRP_MN_CANCEL_STOP_DEVICE, IRP_MN_DEVICE_USAGE_NOTIFICATION,
IRP_MN_START_DEVICE, IRP_MN_STOP_DEVICE

IRP_MN_READ_CONFIG

Bus drivers for buses with configuration space must handle this request for their child
devices (child PDOs). Filter and function drivers do not handle this request.

When Sent

A driver or other system component sends this IRP to read the configuration space of a
device's parent bus.

80

Part1 Plug and Play

Input

A driver or other system component sends this IRP at IRQL < DISPATCH_LEVEL in an
arbitrary thread context.

Parameters.ReadWriteConfig is a structure containing the following information:

ULONG WhichSpace;
PVOID Buffer;
ULONG Offset;
ULONG Length

The members of the structure can be interpreted differently by different bus drivers, but the
members are typically defined as follows:

WhichSpace

Specifies the configuration space.

Buffer

Points to a buffer in which to return the requested information. The component sending the
IRP allocates this structure from paged memory. The format of the buffer is bus-specific.

Offset

Specifies an offset into the configuration space.

Length

Specifies the number of bytes to read.

Output

On success, a bus driver fills the buffer at Parameters.Read WriteConfig.Buffer with the
requested data.

I/O Status Block

A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status such as STATUS_INVALID_PARAMETER_#n, STATUS_NO_SUCH_DEVICE, or
STATUS_DEVICE_NOT_READY.

On success, a bus driver sets Irp->IoStatus.Information to the number of bytes returned.

If a bus driver is unable to compléte this request immediately it can mark the IRP pending,
return STATUS_PENDING, and complete the IRP at a later time.

Chapter 2 Plug and Play IRPs 81

Operation
A bus driver handles this IRP for its child devices (child PDOs).

Function and filter drivers do not handle this IRP; they pass it to the next lower driver with
no changes to Irp->IoStatus.Status and do not set an IoCompletion routine.

A bus driver that handles this request should check the WhichSpace parameter to ensure that
it contains a value that the driver supports.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Typically, a function driver sends this IRP to the top driver in the device stack to which it is
attached and the IRP is handled by the parent bus driver.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

= Allocate a buffer from paged pool and initialize it to zeros.

= Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP_MJ_
PNP, set MinorFunction to IRP_MN_READ_CONFIG, and set the appropriate values
in Parameters.ReadWriteConfig.

= Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

= Deallocate the IRP and the buffer when they are no longer needed.

Drivers must send this IRP from IRQL < DISPATCH_LEVEL.

A driver can access a bus's configuration space at DISPATCH_LEVEL through a bus inter-
face routine, if the parent bus driver supports such an interface. To get a bus interface,

a driver sends an IRP_MN_QUERY_INTERFACE request to the device stack in which the
driver is attached. The driver then calls the appropriate routine returned in the interface.

For example, to read configuration space from DISPATCH_LEVEL a driver can call IRP_
MN_QUERY_INTERFACE during driver initialization to get the BUS_INTERFACE_
STANDARD interface from the parent bus driver. The driver sends the query IRP from
IRQL PASSIVE_LEVEL. Later, from code at IRQL DISPATCH_LEVEL, the driver calls
the appropriate routine returned in the interface, such as the Interface.GetBusData routine.

See Also
IRP_MN_QUERY_INTERFACE, IRP_MN_WRITE_CONFIG

82

Part1 Plug and Play

IRP_MN_REMOVE_DEVICE

All PnP drivers must handle this IRP.

When Sent

Input

The PnP Manager uses this IRP to direct drivers to remove a device's software representa-
tion (device objects, and so forth). The PnP Manager sends this IRP when a device has

been removed in an orderly fashion (for example, initiated by a user in the Unplug or Eject
Hardware applet), by surprise (a user pulls the device from its slot without prior warning), or
when the user requests to update driver(s). The PnP Manager also sends this IRP if one of
the drivers in the device stack fails an IRP_MN_START_DEVICE request for the device.

For an orderly device removal, the PnP Manager sends an IRP_MN_QUERY_REMOVE_
DEVICE prior to the remove IRP. In this case, the device is in the remove-pending state
when the remove IRP arrives. For a surprise device removal on Microsoft Windows 2000,
the PnP Manager sends an IRP_MN_SURPRISE_REMOVAL prior to the remove IRP. In
this case, the device is in the surprise-removed state when the remove IRP arrives. Drivers
can also receive a remove IRP before a device is started. In this case, the device is in the
non-started state when the IRP arrives.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

None

Output

None

I/O Status Block

A driver must set Irp->IoStatus.Status to STATUS_SUCCESS. Drivers must not fail
this IRP.

Operation

This IRP is handled first by the driver at the top of the device stack and then by each lower
driver in the stack.

In response to this IRP, drivers perform such tasks as powering down the device, removing
the device's software representation (device objects, and so forth), and releasing any re-
sources for the device. See Removing a Device in Part 2, “Plug and Play,” in the Plug and
Play, Power Management, and Setup Design Guide for detailed information on handling
remove IRPs in function, filter, and bus drivers.

Chapter 2 Plug and Play IRPs 83

Also see the Plug and Play, Power Management, and Setup Design Guide for the general
rules for handling all PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

If a bus driver detects that one (or more) of its child devices (child PDOs) has been physi-
cally removed from the machine, the bus driver calls IoInvalidateDeviceRelations to report
the change to the PnP Manager. The PnP Manager then sends remove IRPs for any devices
that have disappeared.

See Also

IoInvalidateDeviceRelations, IoRegisterPlugPlayNotification, IRP_MN_CANCEL _
REMOVE_DEVICE, IRP_MN_QUERY_REMOVE_DEVICE, IRP_MN_SURPRISE_
REMOVAL

IRP_MN_SET_LOCK

Bus drivers must handle this IRP for their child devices (child PDOs) that support device
locking. Function and filter drivers do not handle this request.

When Sent

The PnP Manager sends this IRP to direct driver(s) to lock the device and prevent device
eject, or to unlock the device.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in an arbitrary thread context.

Input
Parameters.SetLock.Lock is a BOOLEAN specifying whether to lock (TRUE) or unlock
(FALSE) the device. :

Output

None

I/O Status Block

A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status.

On success, a driver sets Irp->IoStatus.Information to zero.

If a bus driver does not handle this IRP, it leaves Irp->IoStatus.Status as is and completes
the IRP.

84

Part1 Plug and Play

Function and filter drivers do not handle this IRP. Such drivers call IoSkipCurrentIrp-
StackLocation and pass the IRP down to the next driver. Function and filter drivers do not
set an IoCompletion routine, do not modify Irp->IoStatus, and must not complete the IRP.

Operation

If a driver returns success for this IRP, it ensures that the device has been locked or
unlocked before completing the IRP.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

IRP_MN_START DEVICE

All PnP drivers must handle this IRP.

When Sent

Input

The PnP Manager sends this IRP after it has assigned hardware resources, if any, to the de-
vice. The device may have been recently enumerated and is being started for the first time,
or the device may be restarting after being stopped for resource rebalancing.

Sometimes the PnP Manager sends an IRP_MN_START_DEVICE to a device that is al-
ready started, supplying a different set of resources than the device is currently using. A
driver initiates this action by calling IoInvalidateDeviceState and responding to the subse-
quent IRP_MN_QUERY_PNP_DEVICE_STATE request with the PNP_RESOURCE_
REQUIREMENTS_CHANGED flag set. A bus driver might use this mechanism, for
example, to open a new aperture on a PCI-to-PCI bridge.

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Parameters.StartDevice.AllocatedResources points to a CM_RESOURCE_LIST
describing the hardware resources that the PnP Manager assigned to the device. This list
contains the resources in raw form. Use the raw resources to program the device.

Parameters.StartDevice.AllocatedResourcesTranslated points to a CM_RESOURCE _
LIST describing the hardware resources that the PnP Manager assigned to the device. This
list contains the resources in translated form. Use the translated resources to connect the
interrupt vector, map I/O space, and map memory. '

Chapter 2 Plug and Play IRPs 85

~ Output

None

I/0 Status Block
A driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error status
such as STATUS_UNSUCCESSFUL or STATUS_INSUFFICIENT_RESOURCES.

If a driver requires some time to execute its start operations for a device, it can mark the IRP
pending and return STATUS_PENDING.

Operation
This IRP must be handled first by the parent bus driver for a device and then by each higher
driver in the device stack.

In response to this IRP, drivers start a device for the first time or restart a device that was
stopped. The exact operations required to start a device vary from device to device, but can
include powering on the device, performing device-specific initialization, and connecting
the interrupt.

A driver can typically handle this IRP in the same way whether it is starting a device for the
first time or restarting a device after an IRP_MN_STOP_DEVICE, except if a driver needs
to restore device state on a restart after a stop.

See Starting a Device in Part 2, “Plug and Play,” in the Plug and Play, Power Management,
and Setup Design Guide for detailed information on handling a start IRP. Also see that
Design Guide for the general rules for handling all PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also
IRP_MN_STOP_DEVICE

IRP_MN_STOP_DEVICE

All PnP drivers must handle this IRP.

When Sent
The PnP Manager sends this IRP to stop a device so it can reconfigure the device's hard-
ware resources. The PnP Manager sends this IRP only if a prior IRP_MN_QUERY_STOP_
DEVICE completed successfully.

86 Part 1 Plug and Play

The PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context of a system
thread.

Input

None

Output

None

I/O Status Block
A driver must set Irp->IoStatus.Status to STATUS_SUCCESS.

Operation
This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

In response to this IRP, drivers stop the device and release any hardware resources being
used by the device, such as I/O ports and interrupts.

On Windows 2000, a stop IRP is used solely to free a device's hardware resources so they
can be reconfigured. Once the resources are reconfigured, the device is restarted. A stop IRP
is not a precursor to a remove IRP. See the Plug and Play, Power Management, and Setup
Design Guide for more information about the order in which PnP IRPs are sent to devices.

A driver must not fail this IRP. If a driver cannot release the device's hardware resources, it
must fail the preceding query-stop IRP.

See Stopping a Device for Resource Rebalancing in Part 2, “Plug and Play,” in the Plug and
Play, Power Management, and Setup Design Guide for detailed information on handling
stop IRPs. Also see that Design Guide for the general rules for handling all PnP IRPs.

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also
IRP_MN_QUERY_STOP_DEVICE, IRP_MN_START_DEVICE

Chapter 2 Plug and Play IRPs 87

IRP_MN_SURPRISE_REMOVAL

All PnP drivers must handle this IRP.

When Sent

Input

The Windows 2000 PnP Manager sends this IRP to notify the drivers for a device that the
device has been unexpectedly removed from the machine and is no longer available for I/O.

The Windows 2000 PnP Manager sends this IRP before notifying user-mode applications
or other kernel-mode components. After this IRP completes, the PnP Manager notifies reg-
istered applications and drivers that the device has been removed.

The device can be in any PnP state when the PnP Manager sends this IRP.
The Windows 98 PnP Manager does not send this IRP.

The Windows 2000 PnP Manager sends this IRP at IRQL PASSIVE_LEVEL in the context
of a system thread. ‘

None

Output

None

I/O Status Block

A driver must set Irp->IoStatus.Status to STATUS_SUCCESS. A driver must not fail
this IRP.

Operation

This IRP is handled first by the driver at the top of the device stack and then passed down to
each lower driver in the stack.

This IRP indicates that a user removed a hot-plug device, either on purpose or by accident,
without first using the user interface that manages removal of the device, or that a driver for
the device failed a start IRP after a successful stop IRP.

Because the device is no longer present on the machine, drivers must immediately stop all
access to the device. A driver releases any resources associated with the device, but leaves
its device object attached to the device stack until the PnP Manager sends a subsequent
IRP_MN_REMOVE_DEVICE request. Drivers fail any outstanding I/O to the device.

88 Part1 Plug and Play

See Removing a Device in Part 2, “Plug and Play,” in the Plug and Play, Power Manage-
ment, and Setup Design Guide for detailed information on handling this IRP and for the
general rules for handling all PnP IRPs,

Sending This IRP

Reserved for system use. Drivers must not send this IRP.

See Also
IRP_MN_REMOVE_DEVICE

IRP_MN_WRITE_CONFIG

Bus drivers for buses with configuration space must handle this request for their child
devices (child PDOs). Function and filter drivers do not handle this request.

When Sent

A driver or other system component sends this IRP to write data to the configuration space
of a device's parent bus.

A driver or other system component sends this IRP at IRQL < DISPATCH_LEVEL in an
arbitrary thread context.

Input
Parameters.Read WriteConfig is a structure containing the following information:

ULONG WhichSpace;
PVOID Buffer;
ULONG Offset;
ULONG Length

The members of the structure can be interpreted differently by different bus drivers, but the
members are typically defined as follows:

WhichSpace

Specifies the configuration space.

Buffer

Points to a buffer that contains the data to be written. The format of the buffer 1s bus-
specific.

Offset

Specifies an offset into the configuration space.

Chapter 2 Plug and Play IRPs 89

Length

Specifies the number of bytes to be written.

Output

Returned in the I/O status block.

I/0 Status Block

A bus driver sets Irp->IoStatus.Status to STATUS_SUCCESS or to an appropriate error
status such as STATUS_INVALID_PARAMETER_r, STATUS_NO_SUCH_DEVICE, or
STATUS_DEVICE_NOT_READY.

On success, a bus driver sets Irp->IoStatus.Information to the number of bytes written.
If a bus driver is unable to complete this request immediately, it can mark the IRP pending,
return STATUS_PENDING, and complete the IRP at a later time.

Operation
A bus driver handles this IRP for its child devices (child PDOs).

Function and filter drivers do not handle this IRP; they pass it to the next lower driver with
no changes to Irp->IoStatus.Status and do not set an JloCompletion routine.

See the Plug and Play, Power Management, and Setup Design Guide for the general rules
for handling PnP IRPs.

Sending This IRP

Typically, a function driver sends this IRP to the device stack to which it is attached and the
IRP is handled by the parent bus driver.

See the Kernel-Mode Drivers Design Guide for information on sending IRPs. The following
steps apply specifically to this IRP:

= Allocate a buffer from paged pool and initialize it with the data to be written.

= Set the values in the next I/O stack location of the IRP: set MajorFunction to IRP_MJ_
PNP, set MinorFunction to IRP_MN_WRITE_CONFIG, and set the appropriate values
in Parameters.Read WriteConfig.

= Initialize IoStatus.Status to STATUS_NOT_SUPPORTED.

= Deallocate the IRP and the buffer when they are no longer needed.

Drivers must send this IRP from IRQL < DISPATCH_LEVEL.

90 Part1 Plug and Play

A driver can access a bus's configuration space at DISPATCH_LEVEL through a bus
interface routine, if the parent bus driver exports such an interface. To get a bus interface,
a driver sends an IRP_MN_QUERY_INTERFACE request to its parent bus driver. The

- driver then calls the appropriate routine returned in the interface.

For example, to write configuration space from DISPATCH_LEVEL a driver can call IRP_
MN_QUERY_INTERFACE during driver initialization to get the BUS_INTERFACE _
STANDARD interface from the parent bus driver. The driver sends the query IRP from
IRQL PASSIVE_LEVEL. Later, from code at IRQL DISPATCH_LEVEL, the driver calls
the appropriate routine returned in the interface, such as the Interface.SetBusData routine.

See Also
IRP_MN_QUERY_INTERFACE, IRP_MN_READ_CONFIG

g1

CHAPTER 3

Plug and Play Structures

This chapter describes the structures that are parameters to more than one PnP routine or
IRP. Structures that are used by only one routine are described in the documentation for that
routine or IRP.

See the Plug and Play, Power Management, and Setup Design Guide for background and
task-oriented information on supporting PnP in drivers.

DEVICE_CAPABILITIES

typedef struct _DEVICE_CAPABILITIES {
USHORT Size;
USHORT Version;
ULONG DeviceDl:1;
ULONG DeviceD2:1;
ULONG LockSupported:1;
ULONG EjectSupported:1;
ULONG Removable:1;
ULONG DockDevice:1;
ULONG UniquelID:1;
ULONG SilentInstall:1;
ULONG RawDeviceOK:1;
ULONG SurpriseRemovalOK:1;
ULONG WakeFromD@:1;
ULONG WakeFromD1:1;
ULONG WakeFromD2:1;
ULONG WakeFromD3:1;
ULONG HardwareDisablied:1;
ULONG NonDynamic:1;
ULONG WarmEjectSupported:1;
ULONG Reserved:15;
ULONG Address;
ULONG UINumber;
DEVICE_POWER_STATE DeviceState[PowerSystemMaximum];
SYSTEM_POWER_STATE SystemWake;
DEVICE_POWER_STATE DeviceWake;

92

Part1 Plug and Play

ULONG DlLatency;
ULONG D2Latency;
ULONG D3Latency;
} DEVICE_CAPABILITIES, *PDEVICE_CAPABILITIES;

A DEVICE_CAPABILITIES structure describes PnP and power capabilities of a device.
This structure is returned in response to an IRP_MN_QUERY_CAPABILITIES IRP.

Members

Size
Specifies the size of the structure, in bytes. This field is set by the component that sends the
IRP_MN_QUERY_CAPABILITIES request.

Version

Specifies the version of the structure, currently version 1. This field is set by the component
that sends the IRP_MN_QUERY_CAPABILITIES request.

DeviceD1

Specifies whether the device hardware supports the D1 power state. Drivers should not
change this value.

DeviceD2

Specifies whether the device hardware supports the D2 power state. Drivers should not
change this value.

LockSupported

Specifies whether the device supports physical-device locking that prevents device ejection.
This member pertains to ejecting the device from its slot, rather than ejecting a piece of re-
moveable media from the device. ,

EjectSupported

Specifies whether the device supports software-controlled device ejection while the system
is in the PowerSystemWorking state. This member pertains to ejecting the device from its
slot, rather than ejecting a piece of removable media from the device.

Removable

Specifies whether the device can be dynamically removed from the system. If TRUE, the
device is displayed in the Unplug or Eject Hardware applet, unless SurpriseRemovalOK is
also set to TRUE.

DockDevice
Specifies whether the device is a docking peripheral.

Chapter 3 Plug and Play Structures 93

UniquelD

Specifies whether the device supports system-wide unique IDs (that is, the concatenation of
its DevicelD and its InstancelD is unique system-wide). This bit is clear if the IDs that the
device supports are unique only within the scope of the bus.

Silentinstall

Specifies whether the Device Manager should suppress all installation pop-ups; except
required pop-ups such as "no compatible drivers found."

RawDeviceOK

Specifies whether the driver for the underlying bus can drive the device if there is no func-
tion driver (for example, SCSI devices in pass-through mode).

SurpriseRemovalOK

Specifies whether the system should display a pop-up window if a user removes the device
from the machine without first going through the Unplug or Eject Hardware applet (a "sur-
prise-style" removal).

WakeFromD0

Specifies whether the device can respond to an external wake signal while in the DO state.
Drivers should not change this value. :

WakeFromD1

Specifies whether the device can respond to an external wake signal while in the D1 state.
Drivers should not change this value.

WakeFrmez

Specifies whether the device can respond to an external wake signal while in the D2 state.
Drivers should not change this value.

WakeFromD3

Specifies whether the device can respond to an external wake signal while in the D3 state.
Drivers should not change this value.

HardwareDisabled
When set, this flag specifies that the device's hardware is disabled.

A device's parent bus driver or a bus filter driver sets this flag when such a driver determines
that the device hardware is disabled.

The PnP Manager sends one IRP_MN_QUERY_CAPABILITIES IRP right after a device
is enumerated and sends another after the device has been started. The PnP Manager only
checks this bit right after the device is enumerated. Once the device is started, this bit is
ignored.

94

Part 1 Plug and Play

NonDynamic
Reserved for future use.

WarmEjectSupported

Reserved for future use.

Reserved
Reserved for system use.

Address
Specifies an address indicating where the device is located on its underlying bus.

The interpretation of this number is bus-specific. If the address is unknown or the bus
driver does not support an address, the bus driver leaves this member at its default value
of OxFFFFFFFF.

The following list describes the information certain bus drivers store in the Address field for

their child devices:

1394
Does not supply an address because the addresses are volatile. Defaults to OxFFFFFFFF.

EISA
Slot Number (0-F).

IDE

For an IDE device, the address contains the target ID and LUN . For an IDE channel, the
address is zero or one (0 = primary channel and 1 = secondary channel).

ISApnp
Does not supply an address. Defaults to OXFFFFFFFF.

PC Card (PCMCIA)
The socket number (typically 0x00 or 0x40).

PCI
The device number in the high word and the function number in the low word.

SCsl
The target ID.

usB
The port number.

Chapter 3 Plug and Play Structures 95

UINumber

Specifies a number associated with the device that can be displayed in the user interface.

This number is typically a user-perceived slot number, such as a number printed next to the
slot on the board, or some other number that makes locating the physical device easier for
the user. For buses with no such convention, or when the UINumber is unknown, the bus
driver leaves this member at its default value of OxFFFFFFFF.

DeviceState

An array of values indicating the most-powered device power state that the device can
maintain for each system power state. The DeviceState[PowerSystemWorking] element
of the array corresponds to the SO system state. The entry for PowerSystemUnspecified
is reserved for system use.

The entries in this array are based on the capabilities of the parent devnode. As a general
rule, a driver should not change these values. However, if necessary, a driver can lower
the value, for example, from PowerDeviceD1 to PowerDeviceD2.

If the bus driver is unable to determine the appropriate device power state for a root-
enumerated device, it sets DeviceState[PowerSystemWorking] to PowerDeviceD(0
and all other entries to PowerDeviceD3.

SystemWake

Specifies the least-powered system power state from which the device can signal a
wake event. A value of PowerSystemUndefined indicates that the device cannot wake
the system.

A bus driver can get this information from its parent devnode.

In general, a driver should not change this value. If necessary, however, a driver can raise
the power state, for example, from PowerSystemHibernate to PowerSystemS1, to indicate
that its device cannot wake the system from a hibernation state but can from a higher-
powered sleep state.

DeviceWake

Specifies the least-powered device power state from which the device can signal a wake event.
A value of PowerDeviceUndefined indicates that the device cannot signal a wake event.

D1Latency

Specifies the device's approximate worst-case latency, in 100-microsecond units, for re-
turning the device to the PowerDeviceD0 state from the PowerDeviceD1 state. Set to zero
if the device does not support the D1 state.

96 Part 1 Plug and Play

D2Latency

Specifies the device's approximate worst-case latency, in 100-microsecond units, for re-
turning the device to the PowerDeviceD0 state from the PowerDeviceD?2 state. Set to zero
if the device does not support the D2 state.

D3Latency

Specifies the device's approxim'ate worst-case latency, in 100-microsecond units, for re-
turning the device to the PowerDeviceD0 state from the PowerDeviceD3 state. Set to zero
if the device does not support the D3 state.

Include
wdm.h or ntddk.h

Comments

Bus drivers set the appropriate values in this structure in response to an IRP_MN_QUERY_
CAPABILITIES IRP. Bus filter drivers, function drivers, and filter drivers might alter the
capabilities set by the bus driver.

Drivers that send an IRP_MN_QUERY_CAPABILITIES request must initialize the Size,
Version, Address, and UINumber members of this structure before sending the IRP.

See Also
IRP_MN_QUERY_CAPABILITIES

DEVICE_INTERFACE_CHANGE_NOTIFICATION

typedef struct _DEVICE_INTERFACE_CHANGE_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
//
// Event-specific data
//
GUID InterfaceClassGuid;
PUNICODE_STRING SymbolicLinkName;
} DEVICE_INTERFACE_CHANGE_NOTIFICATION, =PDEVICE_INTERFACE_CHANGE_NOTIFICATION;

A device-interface-change notification structure describes a device interface that has been
enabled (arrived) or disabled (removed). The PnP Manager sends this structure to a driver
that registered a callback routine for notification of EventCategoryDeviceInterfaceChange
events.

Chapter 3 Plug and Play Structures 97

Members

Version
Specifies the version of the data structure, currently 1.

Size
Specifies the size of the structure, in bytes, including the size of the standard first three
members plus the event-specific data.

Event

Specifies a GUID identifying the event: GUID_DEVICE_INTERFACE_ARRIVAL or
GUID_DEVICE_INTERFACE_REMOVAL. The GUIDs are defined in wdmguid.h.

InterfaceClassGuid
Specifies the class of the device interface that has just been enabled or disabled.

SymbolicLinkName

Points to a Unicode string that contains the name of the symbolic link for the device
interface.

Include
wdm.h or ntddk.h

Comments
This structure is allocated from paged memory.

See Also

HWPROFILE_CHANGE_NOTIFICATION, IoRegisterPlugPlayNotification,
PLUGPLAY_NOTIFICATION_HEADER, TARGET_DEVICE _REMOVAL_
NOTIFICATION

HWPROFILE_CHANGE_NOTIFICATION

typedef struct _HWPROFILE_CHANGE_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
/1
// (No event-specific data)
/1
} HWPROFILE_CHANGE_NOTIFICATION, #PHWPROFILE_CHANGE_NOTIFICATION;

98

Part1 Plug and Play

A hardware-profile-change notification structure describes an event related to a hardware
profile configuration change. The PnP Manager sends this structure to a driver that regis-
tered a callback routine for notification of EventCategoryHardwareProfileChange events.

Members

Version
Specifies the version of the data structure, currently 1.

Size
Specifies the size of the structure, in bytes including the size of the standard first three
members plus the event-specific data.

Event
Specifies a GUID identifying the event: GUID_HWPROFILE_QUERY_CHANGE,

GUID_HWPROFILE_CHANGE_COMPLETE, or GUID_HWPROFILE_CHANGE_
CANCELLED. The GUIDs are defined in wdmguid.h.

Include

wdm.h or ntddk.h

Comments

There is no event-specific data for a hardware-profile-change event.

See Also

DEVICE_INTERFACE_CHANGE_NOTIFICATION, IoRegisterPlugPlayNotification, -
PLUGPLAY_NOTIFICATION_HEADER, TARGET_DEVICE_REMOVAL _
NOTIFICATION

LPGUID

typedef struct _GUID {
ULONG Datal;
USHORT Data2;
USHORT Data3;
UCHAR Data4[8];
} GUID

typedef GUID *LPGUID;

An LPGUID is a long pointer to a GUID.

Chapter 3 Plug and Play Structures 99

Include
wdm.h or ntddk.h

Comments
A GUID is a 128-bit unique identifier.

PLUGPLAY_NOTIFICATION_HEADER

typedef struct _PLUGPLAY_NOTIFICATION_HEADER {
USHORT Version;
USHORT Size;
GUID Event;
} PLUGPLAY_NOTIFICATION_HEADER, *PPLUGPLAY_NOTIFICATION_HEADER;

A PnP notification header is included at the beginning of each PnP notification structure,
such as a DEVICE_INTERFACE_CHANGE_NOTIFICATION structure.

Members
Version
Specifies the version of the data structure, currently set to 1.
Size
Specifies the size of the structure, in bytes.

Event
Specifies a GUID identifying the event.

Include
wdm.h or ntddk.h

Comments

Drivers can cast a PnP notification structure to this type to access the Event field and
identify the exact type of the structure.

See Also

DEVICE_INTERFACE_CHANGE_NOTIFICATION, HWPROFILE_CHANGE _
NOTIFICATION, IoRegisterPlugPlayNotification, TARGET DEVICE_CUSTOM_
NOTIFICATION, TARGET_DEVICE_REMOVAL_NOTIFICATION

100

Part 1 Plug and Play

PNP_DEVICE_STATE

Flags

typedef ULONG PNP_DEVICE_STATE, =PPNP_DEVICE_STATE;

PNP_DEVICE_STATE is a bitmask of flags describing the PnP state of a device. Drivers
return this structure in response to an IRP_MN_QUERY_PNP_STATE IRP.

PNP_DEVICE_DISABLED
The device is physically present but is disabled in hardware.

PNP_DEVICE_DONT_DISPLAY_IN_Ul

Don't display the device in the user interface. Set for a device that is physically present but
not usable in the current configuration, such as a game port on a laptop that is not usable
when the laptop is undocked.

PNP_DEVICE_FAILED
The device is present but not functioning properly.

When both this flag and PNP_DEVICE_RESOURCE_REQUIREMENTS_CHANGED
are set, the device must be stopped before the PnP Manager assigns new hardware resources
(non-stop rebalance is not supported for the device).

PNP_DEVICE_NOT DISABLEABLE
The device must not be disabled.

A driver sets this bit for a device that is required for proper system operation. For
example, if a driver receives notification that a device is in the paging path (IRP_MN_
DEVICE_USAGE_NOTIFICATION for DeviceUsageTypePaging), the driver calls
IoInvalidateDeviceState and sets this flag in the resulting IRP_ MN_QUERY_PNP_
DEVICE_STATE IRP.

If this bit is set for a device, the PnP Manager propagates this setting to the device's parent
device, its parent's parent device, and so forth.

If this bit is set for a non-enumerable device, the device cannot be disabled or uninstalled.

PNP_DEVICE_REMOVED
The device has been physically removed.

PNP_DEVICE_RESOURCE_REQUIREMENTS_CHANGED
The resource requirements for the device have changed.

Typically, a bus driver sets this flag when it has determined that it must expand its resource
requirements in order to enumerate a new child device.

Chapter 3 Plug and Play Structures 101

Include
wdm.h or ntddk.h

Comments

The PnP Manager queries a device's PNP_DEVICE_STATE right after starting the device
by sending an IRP_MN_QUERY_PNP_DEVICE_STATE request to the device stack. In
response to this IRP, the drivers for the device set the appropriate flags in PNP_DEVICE _
STATE.

If any of the state characteristics change after the initial query, a driver notifies the PnP
Manager by calling IoInvalidateDeviceState. In response to a call to IoInvalidate-
DeviceState, the PnP Manager queries the device's PNP_DEVICE_STATE again.

If a device is marked PNP_DEVICE_NOT_DISABLEABLE, the debugger displays a
DNUF_NOT_DISABLEABLE user flag for the devnode. The debugger also displays a
DisableableDepends value that counts the number of reasons why the device cannot be
disabled. This value is the sum of X+Y, where X is one if the device cannot be disabled
and Y is the count of the device's child devices that cannot be disabled.

See Also
IoInvalidateDeviceState, IRP_MN_QUERY_PNP_DEVICE_STATE

TARGET_DEVICE_CUSTOM_NOTIFICATION

typedef struct _TARGET_DEVICE_CUSTOM_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
/1
// Event-specific data
//
PFILE_OBJECT FileObject;
LONG NameBufferOffset;
UCHAR CustomDataBuffer[1];
} TARGET_DEVICE_CUSTOM_NOTIFICATION, *PTARGET_DEVICE_CUSTOM_NOTIFICATION;

A TARGET_DEVICE_CUSTOM_NOTIFICATION structure describes a custom
device event.

Members

Version
Specifies the version of the data structure, currently 1.

102

Part1 Plug and Play

Size
Specifies the size of the structure, in bytes, including the first three standard members plus
the event-specific data.

Event

Specifies a GUID identifying the event. GUIDs for custom event notification are defined by
the components that use this mechanism.

FileObject

Points to a file object for the device.

NameBufferOffset

Specifies the offset, in bytes, from beginning of CustomDataBuffer where text begins. A
value of -1 indicates that there is no text.

CustomDataBuffer

A variable-length buffer, optionally containing binary data at the start of the buffer, fol-
lowed by an optional text buffer (word-aligned).

Include

wdm.h or ntddk.h

Comments

Kernel-mode components use this structure for custom event notification: to signal a cus-
tom event (IoReportTargetDeviceChange[Asynchronous]) and when handling a custom
event (in a notification callback routine).

This structure accommodates both a variable-length binary data buffer and a variable-length
Unicode text buffer. The NameBufferOffset must indicate where the text buffer begins, so
the data can be delivered in the appropriate format (ANSI or Unicode) to user-mode appli-
cations that registered for handle-based notification with RegisterDeviceNotification. See
the Platform SDK documentation for information on RegisterDeviceNotification.

See Also

IoRegisterPlugPlayNotification, IoReportTargetDeviceChange, IoReportTarget-
DeviceChangeAsynchronous

Chapter 3 Plug and Play Structures 103

TARGET_DEVICE_REMOVAL_NOTIFICATION

typedef struct _TARGET_DEVICE_REMOVAL_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
/7
// Event-specific data
//
PFILE_OBJECT FileObject;
} TARGET_DEVICE_REMOVAL_NOTIFICATION, *PTARGET_DEVICE_REMOVAL_NOTIFICATION;

A TARGET_DEVICE_REMOVAL_NOTIFICATION structure describes a device-removal
event. The PnP Manager sends this structure to a driver that registered a callback routine for
notification of EventCategoryTargetDeviceChange events.

Members
Version

Specifies the version of the data structure, currently set to 1.
Size

Specifies the size of the structure, in bytes, including the size of the standard first three
members plus the event-specific data.

Event

Specifies a GUID identifying the event: GUID_TARGET_DEVICE_QUERY_REMOVE,
GUID_TARGET_DEVICE_REMOVE_COMPLETE, or GUID_TARGET_DEVICE_
REMOVE_CANCELLED. These GUIDs are defined in wdmguid.h.

FileObject

Points to a file object for the device.

Include
wdm.h or ntddk.h

See Also

DEVICE_INTERFACE_CHANGE_NOTIFICATION, HWPROFILE_CHANGE _
NOTIFICATION, IoRegisterPlugPlayNotification, TARGET_DEVICE_CUSTOM_
NOTIFICATION

P ART 2

Power Management

Chapter 1 Power Management Support Routines 107
Chapter 2 1/0 Request for Power Management 121
Chapter 3 Battery Class Driver Routines 133
Chapter 4 Battery Miniclass Driver Routines 139

Chapter 5 Battery Structures 151

107

CHAPTETR 1

Power Management Support Routines

All drivers that support power management call PoXxx routines. These routines are declared
in ntddk.h and wdm.h.

This chapter describes the following power management routines in alphabetical order:
= PoCallDriver
= PoRegisterDeviceForldleDetection
= PoRegisterSystemState
= PoRequestPowerIrp
* PoSetDeviceBusy
= PoSetPowerState
= PoSetSystemState
= PoStartNextPowerlrp

» PoUnregisterSystemState

PoCallDriver

NTSTATUS
PoCallDriver (
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
)

PoCallDriver passes a power IRP to the next lower driver in the device stack.

108 Part 2 Power Management

Parameters

DeviceObject
Points to the driver-created device object to which the IRP is to be routed.

Irp
Points to an IRP.

Include
ntddk.h or wdm.h

Return Value

PoCallDriver returns STATUS_SUCCESS to indicate success. It returns STATUS_
PENDING if it has queued the IRP.

Comments

Drivers call PoCallDriver—not IoCallDriver—to pass a power IRP to the next lower
driver. Drivers must call PoStartNextPowerlIrp before calling PoCallDriver.

A driver that requires a new IRP should call PoRequestPowerIrp. A driver must not
allocate its own power IRP.

When passing a power IRP down to the next lower driver, the caller should use IoSkip-
CurrentIrpStackLocation or IoCopyCurrentIrpStackLocationToNext to set the IRP
stack location, then call PoCallDriver. Use IoCopyCurrentIrpStackLocationToNext if
processing the IRP requires setting a completion routine, or IoSkipCurrentStackLocation
if no completion routine is needed.

When a device is powering up, its drivers must set completion routines to perform start-up
tasks (initializing the device, restoring context, etc.) after the bus driver has set the device in
the working state. Set completion routines before calling PoCallDriver.

‘When a device is powering down, its drivers rarely set completion routines; they must per-
form necessary power-down tasks before passing the IRP to the next lower driver. After the
IRP has reached the bus driver, the device will be powered off and its drivers no longer have
access to it. ’

Only one inrush IRP can be active in the system at a time. When passing a power-up IRP for
a device that requires inrush current (i.e. the DO_POWER_INRUSH flag is set in the device
object), PoCallDriver checks whether another inrush IRP is already active. If so, PoCallD-
river queues the current IRP for handling after the previous IRP completes and returns
STATUS_PENDING. See Setting Device Object Flags for Power Management in Part 3,
“Power Management,” in the Plug and Play, Power Management, and Setup Design Guide
for more information on inrush IRPs.

Chapter 1 Power Management Support Routines 109

If an IRP_MN_SET_POWER or IRP_MN_QUERY_POWER request is already active for
DeviceObject, PoCallDriver queues this IRP and returns STATUS_PENDING.

On Windowse 2000, drivers that are not in the paging path (that is, the DO_POWER _
PAGABLE flag is set in the device object) should call PoCallDriver at IRQL PASSIVE_
LEVEL. Drivers that are in the paging path (DO_POWER_PAGABLE is not set in the
device object) or require inrush current (DO_POWER_INRUSH is set in the device
object) can call PoCallDriver at IRQL PASSIVE_LEVEL or DISPATCH_LEVEL.

On Windows 98, all drivers call PoCallDriver at IRQL PASSIVE_LEVEL.

See Also
PoRequestPowerlrp

PoRegisterDeviceForIdIeDetection

PULONG
PoRegisterDeviceForIdieDetection (
IN PDEVICE_OBJECT DeviceObject,
IN ULONG ConservationIdleTime,
IN ULONG PerformanceldleTime,
IN DEVICE_POWER_STATE State
)

PoRegisterDeviceForIdleDetection enables or cancels idle detection and sets idle time-out
values for a device.

Parameters

DeviceObject

Points to the driver-created device object for the device. On Windows 2000, this parameter
can point to a PDO or FDO. On Windows 98, this parameter must point to the PDO of the
underlying device.

ConservationidleTime

Sets the time-out value (in seconds) to apply when the system power policy optimizes for
energy conservation. Specify zero to disable idle detection when conservation policy is in
effect.

PerformanceldleTime

Sets the time-out value (in seconds) to apply when the system power policy optimizes for
performance. Specify zero to disable idle detection when performance policy is in effect.

110

Part2 Power Management

State

Specifies the device power state to be requested in an IRP_MN_SET_POWER request
when either ConservationldleTime or PerformanceldleTime has been met. Possible values
are PowerDeviceD0, PowerDeviceD1, PowerDeviceD2, and PowerDeviceD3.

Include

ntddk.h or wdm.h

Return Value

PoRegisterDeviceForIdleDetection returns a pointer to the idle counter to indicate that idle
detection has been enabled. It returns NULL to indicate that idle detection has been dis-
abled, that an idle counter could not be allocated, or that one or both of the time-out values
were invalid.

Comments

PoRegisterDeviceForIdleDetection enables drivers to use the Power Manger's idle detec-
tion mechanism. Drivers call PoRegisterDeviceForIdleDetection for any of the following
reasons:

= To enable idle detection for the device and set initial idle time-out values
= To change the idle time-out values for a device

= To disable idle detection for a device

After enabling its device for idle detection, the driver calls PoSetDeviceBusy whenever its
device is in use, passing the idle pointer returned by PoRegisterDeviceForIdleDetection.

Whenever the device satisfies the current idle time-out value, the Power Manager sends an
IRP_MN_SET_POWER request to the top of the device stack, specifying device power
state State. In response to the IRP, each driver performs any device-specific tasks required
before the power state transition, then passes the IRP to the next lower driver. When the IRP
reaches the bus driver, that driver puts the device in the requested lower power state and
completes the IRP.

PoRegisterDeviceForIdleDetection sets time-out values for both conservation and perfor-
mance. The ConservationldleTime value applies when the system power policy optimizes

. for conservation; the PerformanceldleTime value applies when the system power policy

optimizes for performance. Typically, the applicable policy depends upon the power source:
when running with AC power, the system optimizes for performance, and when running off
a battery, the system optimizes for conservation.

Chapter 1 Power Management Support Routines 1

Certain devices can specify time-out values of -1 to use the standard power policy time-outs
for their device class. The standard time-out values provide for better system integration for
supported standard device classes. At present, WDM supports this feature for devices of
type FILE_DEVICE_DISK and FILE_DEVICE_MASS_STORAGE. PoRegisterDevice-
ForldleDetection returns NULL if -1 is specified for a device of an unsupported type.

Only one idle detection can be set per device. Subsequent calls to PoRegisterDeviceFor-
IdleDetection change the idle detection values.

If both ConservationldleTime and PerformanceldleTime are zero, this routine cancels all
idle detection for the device and returns NULL.

PoRegisterDeviceForldleDetection can free a driver from the need to perform its own idle
detection. However, drivers can also implement their own idle detection.

Callers of PoRegisterDeviceForldieDetection must be running at IRQL<DISPATCH_
LEVEL.

See Also
PoSetDeviceBusy

PoRegisterSystemState

PVOID
PoRegisterSystemState (
IN PVOID StateHandle,
IN EXECUTION_STATE Flags
)3

PoRegisterSystemState registers the system as busy due to certain activity.

Parameters
StateHandle

Points to a caller-supplied memory location that can contain a registration state handle. If
NULL, this is a new registration. If non-NULL, this parameter points to a handle returned
by a previous call to PoRegisterSystemState.

Flags

Indicates the type of activity. Possible values are one or more of the following:

ES_SYSTEM_REQUIRED
The system is not idle, regardless of apparent load.

ES_DISPLAY_REQUIRED
Use of the display is required.

112

Part2 Power Management

ES_USER_PRESENT
A user is present.

ES_CONTINUOUS
The settings are continuous and should remain in effect until explicitly changed.

Include

ntddk.h or wdm.h

Return Value

PoRegisterSystemState returns a handle to be used later to change or unregister the system
busy state. It returns NULL if the handle could not be allocated. '

Comments

PoRegisterSystemState registers the system busy state as indicated by the flags. The
registration persists until the caller explicitly changes it with another call to PoRegister-
SystemState or cancels it with a call to PoUnregisterSystemState.

The Flags parameter specifies the type of activity in progress. Drivers can specify any
combination of the flags.

Setting ES_CONTINUOUS makes the busy state persist until a driver explicitly changes or
cancels it by calling PoRegisterSystemState or PoUnregisterSystemState.

A driver can set the system busy state to request that the Power Manager avoid system
power state transitions out of the system working state (S0) while driver activity is occur-
ring. Note, however, that under some circumstances (such as a critically low battery) the
Power Manager may override this request and put the system to sleep anyway.

Callers of PoRegisterSystemState must be running at IRQL<DISPATCH_LEVEL.

See Also

PoSetSystemState, PoUnregisterSystemState

PoRequestPowerlrp

NTSTATUS
PoRequestPowerIrp (
IN PDEVICE_OBJECT DeviceObject,
IN UCHAR MinorFunction,
IN POWER_STATE PowerState,
IN PREQUEST_POWER_COMPLETE CompletionFunction,

Chapter 1 Power Management Support Routines 113

IN PVOID Context,
OUT PIRP *Irp OPTIONAL
)s

PoRequestPowerlrp allocates a power IRP and sends it to the top driver in the device stack
for the specified device.

Parameters

DeviceObject
Points to the target device object for the IRP. On Windows 2000, this parameter can point

to a PDO or FDO. On Windows 98, this parameter must point to the PDO of the underlying
device.

MinorFunction

Specifies one of the following minor power IRP codes: IRP_MN_QUERY_POWER, IRP_
MN_SET_POWER, or IRP_MN_WAIT_WAKE.

PowerState :

Specifies a power state to pass in the IRP. For IRP_MN_SET _POWER and IRP_MN_
QUERY_POWER, specify the requested new device power state. Possible values are
enumerators of the DEVICE_POWER_STATE type.

For IRP_MN_WAIT_WAKE, specify the lowest (least-powered) system power state from
which the device should be allowed to wake the system Possible values are enumerators of
the SYSTEM_POWER_STATE type.

CompletionFunction

Points to the caller's PowerCompletion callback to be called when the IRP has completed.
The callback is declared as follows:

VOID
(*PREQUEST_POWER_COMPLETE) (
IN PDEVICE_OBJECT DeviceObject,
IN UCHAR MinorFunction,
IN POWER_STATE PowerState,
IN PVOID Context,
IN PIO_STATUS_BLOCK IoStatus
)

The callback parameters are as follows:

DeviceObject
Points to the target device object for the completed power IRP.

114

Part 2 Power Management

MinorFunction
Specifies the minor function code in the power IRP.

PowerState
Specifies the device power state passed to PoRequestPowerlrp.

Context
Points to the context passed to PoRequestPowerlIrp.

loStatus
Points to the IoStatus block in the completed IRP.

Context

Points to a caller-supplied context to be passed through to the PowerCompletion callback.
When the caller requests a device set-power IRP in response to a system set-power IRP, the
Context should contain the system set-power IRP that triggered the request.

Irp
Points to a caller-supplied variable in which this routine returns a pointer to the IRP it
allocates. This parameter can be NULL.

Include

ntddk.h or wdm.h

Return Value

PoRequestPowerlrp returns one of the following:

STATUS_PENDING
The IRP has been‘ sent.

STATUS_INSUFFICIENT_RESOURCES
The routine could not allocate the IRP.

STATUS_INVALID_PARAMETER_2

MinorFunction does not signify a valid minor power IRP code.

Comments

A driver calls PoRequestPowerIrp—not IoAllocateIrp—to allocate and send a power IRP
that has minor IRP code IRP_MN_SET_POWER, IRP_MN_QUERY_POWER, or IRP_
MN_WAIT_WAKE. (A driver must call IoAllecatelIrp to send a power IRP with minor IRP
code IRP_MN_POWER_SEQUENCE.)

Chapter 1 Power Management Support Routines 115

A device power policy owner calls this routine to send a wait/wake, query, or set-power IRP.

PoRequestPowerlrp allocates a device power IRP and sends it to the top of the device
stack for the device. After the bus driver and all other drivers have completed the IRP, and
the I/O Manager has called all IoCompletion routines set by drivers as they passed the IRP
down the device stack, the CompletionFunction is called with the given Context.

The CompletionFunction performs any additional tasks the sender of the IRP requires

after all other drivers have completed the IRP. It need not free the IRP; the Power Manager
does that. On Windows 98, the CompletionFunction is always called at IRQL PASSIVE_
LEVEL, and drivers must complete IRPs at IRQL PASSIVE_LEVEL. On Windows 2000,
the CompletionFunction can be called at IRQL PASSIVE_LEVEL or DISPATCH_LEVEL.

A device power policy owner calls PoRequestPowerIrp to send a device query- or set-
power IRP when it receives a system query- or set-power IRP. The driver should set an
IoCompletion routine in the system IRP and pass the system IRP to the next lower driver.
The IoCompletion routine calls PoRequestPowerIrp to send the device IRP, passing the
system IRP in the Context parameter. The Context parameter is subsequently passed to the
CompletionFunction for the device IRP. In the CompletionFunction, the driver can complete
the system IRP. See Sending IRP_MN_QUERY_POWER or IRP_MN_SET_POWER for
Device Power States and Wait/Wake Callback Routines for details.

If the driver supports the GUID_POWER_DEVICE_ENABLE control, the driver should
use the Boolean value of the control to determine whether to dynamically power itself on
and off while the system is in the PowerSystemWorking (SO) state. See the Volume 2
of the Windows 2000 Driver Development Reference for more information on IRP_MJ_
SYSTEM_CONTROL IRPs, which send requests with minor code IRP_MN_WMI to
inform drivers of the value of the GUIDs.

Drivers can use the returned Irp to cancel an IRP_MN_WAIT_WAKE IRP. Drivers
requesting other power IRPs can pass NULL for this parameter.

Callers of PoRequestPowerIrp must be running at IRQL <= DISPATCH_LEVEL.

See Also

PoStartNextPowerlrp, IRP_MN_SET_POWER, IRP_MN_QUERY_POWER, IRP_MN_
WAIT_WAKE

PoSetDeviceBusy

VOID
" PoSetDeviceBusy(
PULONG IdlePointer
)

116 Part2 Power Management

PoSetDeviceBusy notifies the Power Manager that the device associated with IdlePointer
is busy.

Parameters
IdlePointer

Specifies an idle pointer previously returned by PoRegisterDeviceForldleDetection.

Include
ntddk.h or wdm.h

Comments

A driver uses PoSetDeviceBusy along with PoRegisterDeviceForldleDetection to enable
system idle detection for its device. If a device that is registered for idle detection becomes
idle, the Power Manager sends an IRP_MN_SET_POWER IRP to put the device in a re-
quested sleep state.

PoSetDeviceBusy reports that the device is busy, so that the Power Manager can restart
its idle countdown. If the device is not powered up, PoSetDeviceBusy does not change its
state. That is, it does not cause the system to send a power-on request.

A driver should call PoSetDeviceBusy on every I/O request.
PoSetDeviceBusy can be called from any IRQL.

See Also
PoRegisterDeviceForIdleDetection

PoSetPowerState

POWER_STATE
PoSetPowerState (
IN PDEVICE_OBJECT DeviceObject,
IN POWER_STATE_TYPE Type,
IN POWER_STATE State
)

PoSetPowerState notifies the system of a device's power state.

Parameters
DeviceObject

Points to the target device object.

Chapter 1 Power Management Support Routines 117

Type
Indicates whether to set a system or a device power state. Drivers must specify Device-
PowerState.

State

Specifies the power state to be set. Drivers must specify an enumerator of DEVICE _
POWER_STATE: PowerDeviceD0, PowerDeviceD1, PowerDeviceD2, or Power-
DeviceD3.

Include
ntddk.h or wdm.h

Return Value

- On Windows 2000, PoSetPowerState returns the previous power state. On Windows 98,
PoSetPowerState returns the state passed in State.

Comments

PoSetPowerState notifies the Power Manager of the new power state for a device. A driver
should call PoSetPowerState every time its device changes power state.

A driver calls this routine after receiving a device set-power IRP and before calling Po-
StartNextPowerIrp. When starting a device (that is, when handling a PnP IRP_MN_
START_DEVICE request), the driver should call PoSetPowerState to notify the Power
Manager that the device is in the DO state.

If the device is powering down, the driver must call PoSetPowerState before leaving the
DO state. In addition, the driver must be able to process client requests before PoSetPower-
State returns.

If the device is powering up, the driver must call PoSetPowerState after the device is
successfully put into the DO state.

Callers of PoSetPowerState must be running at IRQL<DISPATCH_LEVEL except
when setting state to DO. When setting state to DO, callers can be running at IRQL<=
DISPATCH_LEVEL.

See Also
PoStartNextPowerIrp

118 Part 2 Power Management

PoSetSystemState

VOID
PoSetSystemState (
IN EXECUTION_STATE Flags
)

Drivers call PoSetSystemState to indicate that the system is active.

Parameters
Flags

Specifies the system activity. Possible values are one or more of the following:

ES_SYSTEM_REQUIRED
The system is not idle, regardless of apparent load.

ES_DISPLAY_REQUIRED
Use of the display is required.

ES_USER_PRESENT
A user is present.

Include
ntddk.h or wdm.h

Comments

A driver calls PoSetSystemState to set flags indicating that system activity is occurring.
Unlike PoRegisterSystemState, this routine does not allow the driver to set a persistent
busy state.

The Flags parameter specifies the type of activity occurring. Drivers can specify any com-
bination of the flags.

Drivers can set the system busy state to request that the system avoid leaving of the working
state while driver activity is occurring. Note, however, that under some circumstances (such
as a critically low battery) the Power Manager may override this request and put the system
to sleep anyway.

Callers of PoSetSystemState must be running at IRQL <= DISPATCH_LEVEL.

See Also
PoRegisterSystemState, PoUnregisterSystemState

Chapter 1 Power Management Support Routines 119

PoStartNextPowerlrp

VoID
PoStartNextPowerIrp(
IN PIRP Irp
)s

PoStartNextPowerIrp informs the Power Manager that the driver is ready to handle the
next power IRP.

Parameters

Irp
Points to an IRP in which the major function code is IRP_MJ_POWER.

Include
ntddk.h or wdm.h

Comments
PoStartNextPowerIrp must be called by every driver in the device stack.

Calling this routine indicates that the driver is finished with the previous power IRP, if any,
and is ready to handle the next power IRP. It must be called for every power IRP.

Although power IRPs are completed only once, typically by the bus driver for a device, each
driver in the device stack must call PoStartNextPowerlrp as the IRP travels down or back
up the stack. Even if a driver fails the IRP, it must nevertheless call PoStartNextPowerlIrp
to inform the Power Manager that it is ready to handle another power IRP.

The driver must call PoStartNextPowerIrp while the current IRP stack location points

to the current driver. Therefore, this routine must be called before loCompleteRequest,
IoSkipCurrentIrpStackLocation, and PoCallDriver. Note, however, that a driver can
call PoStartNextPowerlIrp from its IoCompletion routine associated with the IRP or from
the callback routine it passed to PoRequestPowerlIrp.

Bus drivers must call PoStartNextPowerlrp before completing each IRP.
Callers of PoStartNextPowerIrp must be running at IRQL<=DISPATCH_LEVEL.

See Also
PoCallDriver, PoStartNextPowerIRP

120 Part 2 Power Management

PoUnregisterSystemState

VOID
PoUnregisterSystemState (
IN PVOID StateHandle
)

PoUnregisterSystemState cancels a system state registration created by PoRegister-
SystemState.

Parameters

StateHandle
Specifies a handle previously returned by PoRegisterSystemState.

Include
ntddk.h or wdm.h

Comments

This routine cancels a system busy state registration established by PoRegisterSystemState
and frees the associated StateHandle.

Callers of PoUnregisterSystemState must be running at IRQL<DISPATCH_LEVEL.

See Also
PoRegisterSystemState

121

CHAPTETR 2

/O Request for Power Management

All power IRPs have the major code IRP_MJ_POWER and one of the following minor
codes, indicating a specific power management request:

= JRP_MN_SET_POWER

= JRP_MN_QUERY_POWER

= JRP_MN_WAIT WAKE

= JRP_MN_POWER_SEQUENCE

For each power IRP a driver receives, it must call PoStartNextPowerIrp to indicate to the
Power Manager that it is ready to handle the next power IRP.

After calling PoStartNextPowerlrp, the driver must use PoCallDriver to pass the power
IRP down the device stack. Power IRPs are typically completed by the bus driver for the
device, and therefore must be passed all the way down the device stack.

This chapter provides reference information for the individual IRPs in alphabetical order.
See the Plug and Play, Power Management, and Setup Design Guide for more information
on when the IRPs are sent and how drivers should handle them, along with a general intro-
duction to power management and terminology.

IRP_MN_POWER_SEQUENCE
When Sent

The Power Manager cannot send this IRP. A driver sends this IRP as an optimization to
determine whether its device actually entered a specific power state. The IRP is optional.

To send this IRP, a driver must call IoAllocatelrp to allocate the IRP, specifying the major
IRP code IRP_MJ_POWER and minor IRP code IRP_MN_POWER_SEQUENCE, and then
call PoCallDriver to pass the IRP to the next lower driver. Senders of this IRP must be
running at IRQL <= DISPATCH_LEVEL.

122 Part2 Power Management

Input

None.

Output

Parameters.PowerSequence points to a POWER_SEQUENCE structure with the
following members:

SequenceD1
Number of times the device has been in power state D1 or lower.

SequenceD2

Number of times the device has been in power state D2 or lower.

SequenceD3
Number of times the device has been in power state D3.

The sequence values track the minimum number of times a device has been in the corre-
sponding power state or a lower power state.

The bus driver increments the values in SequenceD1, SequenceD2, and SequenceD3 at
least each time the device enters in the corresponding power state or a lower power state.

I/O Status Bldck

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS to indicate that it has returned
the requested information, or STATUS_NOT _IMPLEMENTED to indicate that it does not
support this IRP.

Operation

This IRP returns the power sequence values for a device. Bus drivers can optionally handle
it; function and filter drivers can optionally send it.

For a device that takes a long time to change state, this IRP provides a useful optimization.
Every time the device changes its power state, its bus driver increments the sequence value
corresponding to that power state. The bus driver initializes the sequence values at boot time
and continually increments them thereafter; they need not be reset to zero. ’

A device policy owner can send this IRP once to get the sequence values before shutting
off the device and once again to get new values when restoring power to the device. By
comparing the two sets of values, the driver can determine whether the device actually
entered the lower-powered state. If the device did not lose power, the driver can avoid a
time-consuming reinitialization when the device returns to the DO state.

Chapter 2 1/0 Request for Power Management 123

For example, if the. device takes a long time to restore power upon reaching the D2 state, the
driver can store the SequenceD2 value before it sets the device state to D2 or lower. Later,
when power is being restored to the device, the driver can compare the new SequenceD2
value with its stored value to determine whether the device state actually dropped below D2.
If the values match, the device did not actually enter a D2 or lower state, and the driver can
avoid reinitializing the device.

IRP_MN_QUERY_POWER
When Sent

Input

The Power Manager or a device power policy owner sends this IRP to determine whether

_ it can change the system or device power state, typically to go to sleep. A driver must call

PoRequestPowerlrp to allocate and send this IRP.

The Power Manager sends this IRP at IRQL PASSIVE_LEVEL to device stacks that set the
DO_POWER_PAGABLE flag in the PDO.

The Power Manager can send the IRP at IRQL DISPATCH_LEVEL if the DO_POWER_
INRUSH flag is set. Such drivers cannot directly or indirectly access any paged code
or data.

Parameters.Power.Type specifies the type of power state being set, e1ther SystemPower-
State or DevicePowerState.

Parameters.Power.State specifies the power state itself, as follows:

= [f Parameters.Power.Type is SystemPowerState, the value is an enumerator of the
SYSTEM_POWER_STATE type.

= If Parameters.Power.Type is DevicePowerState, the value is an enumerator of the
DEVICE_POWER_STATE type.

= Parameters.Power.ShutdownType specifies additional information about the requested
transition. Possible values are enumerators of the POWER_ACTION type.

Output

None.

I/0 Status Block

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS to indicate that the device
can enter the requested state. A driver sets any appropriate failure status to indicate that it
cannot enter the requested state.

124

Part2 Power Management

Operation

The parameters for IRP_MN_QUERY_POWER are identical to those for IRP_MN_
SET_POWER. Rather than notifying drivers of an irrevocable change to the power state,
however, IRP_MN_QUERY_POWER queries whether the system or a device can enter
a particular power state.

A driver must not change the power state of its device in response to an IRP_MN_
QUERY_POWER request.

IRP_MN_QUERY_POWER for a System Power State

The Power Manager sends this IRP to ensure that it can change the system power state
without disrupting work, such as dropping network connections.

Whenever possible, the Power Manager queries before sending IRP_MN_SET_POWER
to request a system sleep state. However, under some conditions (such as the user pressing
the Power Off button or a battery expiring), the Power Manager might issue an IRP_MN_
SET_POWER request without first querying. The Power Manager queries only for sleep
states; it never queries before returning to the working state.

When a driver receives a system power query IRP, it should fail the IRP if it cannot support
any of the device states that are valid for the queried system state. See DeviceState for de-
tails. Otherwise, the driver should pass the IRP to the next lower driver. The bus driver
completes the IRP.

When a device power policy owner receives a system power query IRP, it should set an
IoCompletion routine in the IRP before passing it down. In the IoCompletion routine, it
should send an IRP_MN_QUERY_POWER for a device state that is valid for the queried
system state. See Handling a System Query Power IRP in a Device Power Policy Owner
for details.

When the IRP specifies PowerSystemShutdown (S5), the value at Parameters.Power.
ShutdownType provides a reason for the shutdown. The ShutdownType tells the driver
whether the system is resetting (PowerA ctionShutdownReset) or powering off indefinitely
to reboot later (PowerA ctionShutdownOff). For drivers of most devices, the difference is
inconsequential. However, for certain devices, such as a video streaming device that per-
forms DMA, a driver might choose to power down its device when the system is resetting,
thus stopping any ongoing I/O.

On Microsofte Windowse 2000 systems, the value at ShutdownType can also be Power-
ActionShutdown. In this case, the driver cannot tell what type of shutdown is requested
and should therefore proceed as for a reset.

If a driver fails a IRP_MN_QUERY_POWER request for a system power state, the Power
Manager typically responds by issuing an IRP_MN_SET_POWER IRP. Usually, this IRP
will reaffirm the current system state. However, it is possible that drivers might receive an

Chapter 2 1/O Request for Power Management 125

IRP_MN_SET_POWER to the queried state or to some other intermediate state. Drivers
should be prepared to handle these situations.

IRP_MN_QUERY_POWER for a Device Power State

A device power policy owner sends this IRP down its stack in response to a system IRP_
MN_QUERY_POWER request.

If a driver can put its device in the requested device state, it sets IoStatus.Status to
STATUS_SUCCESS and passes the IRP down to the next lower driver, and so forth

until the IRP reaches the bus driver. If any driver in the stack must fail the IRP, that driver
should complete the IRP immediately by calling IoCompleteRequest and returning a
failure status. Drivers that fail the IRP do not pass it further down the stack.

By returning STATUS_SUCCESS, the driver guarantees that it will not start any operation
that would change its ability to set the requested power state. The driver should queue any
IRPs that require such operations until it completes a set-power IRP that returns the device
to an acceptable power state.

On Windows 2000 systems, when the IRP specifies PowerDeviceD1, PowerDeviceD2,

or PowerDeviceD3, the value at Parameters.Power.ShutdownType provides information
about the current system power IRP, if a system power IRP is active. In this case, the value
at ShutdownType indicates the currently requested system power state, or PowerAction-
None if a system request is not outstanding. On Windows 98, this field always contains
PowerActionNone when the IRP requests a device power state.

See Also
IRP_MN_SET_POWER, PoRequestPowerlrp

IRP_MN_SET_POWER
When Sent

Either the system Power Manager or a device power policy owner can send this IRP.

The Power Manager sends this IRP to notify drivers of a change to the system power state.
If a driver has registered its device for idle detection, the Power Manager sends this IRP to
change the power state of an idle device. '

A driver that owns power policy sends this IRP to set the device power state for its device. A
driver must call PoRequestPowerIrp to send this IRP.

The Power Manager sends this IRP at IRQL PASSIVE_LEVEL to device stacks that set the
DO_POWER_PAGABLE flag in the PDO. Drivers in such stacks can touch paged code or
data to complete the request.

126

Part 2 Power Management

input

The Power Manager can send the IRP at IRQL DISPATCH_LEVEL if the DO_POWER _
INRUSH flag is set. Such drivers cannot directly or indirectly access any paged code
or data.

Parameters.Power.Type specifies the type of power state being set, either SystemPower-
State or DevicePowerState.

Parameters.Power.State specifies the power state itself, as follows:

= [f Parameters.Power.Type is SystemPowerState, the value is an enumerator of the
SYSTEM_POWER_STATE type.

= [If Parameters.Power.Type is DevicePowerState, the value is an enumerator of the
DEVICE_POWER_STATE type.

= Parameters.Power.ShutdownType specifies additional information about the requested
transition. Possible values are enumerators of the POWER_ACTION type.

Output

Parameters.Power.SystemContext is reserved for system use.

I/O Status Block

A driver sets Irp->IoStatus.Status to STATUS_SUCCESS to indicate that the device has
entered the requested state.

A driver must not fail this IRP.

Operation

The Power Manager or a driver can request an [IRP_MN_SET_POWER IRP. The Power
Manager sends this IRP for one of the following reasons:

» To notify drivers of a change to the system power state

= To change the power state of a device for which the Power Manager is performing idle
detection

A driver that owns device power policy sends IRP_MN_SET_POWER to change the power
state of its device.
At any given time, the system allows only one such IRP to be active for each device object.

Each driver must pass each power IRP down to the next-lower driver using the PoCall-
Driver routine. The PoCallDriver interface is similar to that of IoCallDriver, except that

Chapter 2 1/0 Request for Power Management 127

the power management subsystem might delay the IRP before passing it on to the next
driver. For example, delays can occur on a PowerDeviceDO0 request if the device requires
inrush current and therefore must be powered up serially with another such device.

IRP_MN_SET_POWER for System Power States
Only the Power Manager can send a system set-power IRP.

Whenever possible, the Power Manager sends IRP_MN_QUERY_POWER before sending
IRP_MN_SET_POWER to request a system sleep state. However, under some conditions
(such as the user pressing the Power Off button or a battery expiring), the Power Manager
might issue IRP_ MN_SET_POWER without first querying. The Power Manager queries
only for sleep states; it never queries before powering up.

The IRP_MN_SET_POWER request is sent to the top driver in the device stack for a de-
vice. The top driver passes the IRP down to the next lower driver and so forth until the IRP
reaches the bus driver, which must complete the IRP. A filter driver typically does not need
to act on a system set-power IRP, other than to pass it on. The device power policy owner,
however, sets an [oCompletion routine before passing down the IRP; in the IoCompletion
routine, it sends an IRP_MN_SET_POWER request for a device power IRP. See Handling
a System Set-Power IRP in a Device Power Policy Owner for details.

A system set-power IRP informs drivers that a change to the system power state is imminent
and the drivers must prepare for it. However, a driver should not change the power state of
its device until it receives an IRP_MN_SET_POWER for a device power state. For example,
a transition to a sleeping state might require that a driver power off its device. The driver
must complete this IRP in a timely manner, but it can wait until the device is ready to enter
the new state. In general, drivers should avoid any delay that a typical user would find
noticeably slow. For example, a driver could delay a system state change to flush cached
disk or network data, but should not keep a network connection alive or format a tape.

The value at Parameters.Power.ShutdownType provides additional information about

the pending actions. When the IRP specifies PowerSystemShutdown (S5), a driver can
determine whether the system is resetting (PowerActionShutdownReset) or powering off
indefinitely to reboot later (PowerActionShutdownOff). For drivers of most devices, the
difference is inconsequential. However, for certain devices, such as video streaming devices,
a driver might power off the device in order to stop /O when the system is resetting.

On Windows 2000 systems, the value at ShutdownType can also be PowerAction-
Shutdown. In this case, the driver cannot tell what type of shutdown is requested and should
therefore proceed as for a reset.

Device Power States
A driver must set the device into the requested state before completing the IRP.

When the IRP requests a transition to a lower power state, drivers must handle the IRP as it
travels down the device stack, saving any context the driver will need to restore the device

128 Part2 Power Management

to the working state. When the bus driver receives the IRP, it does the same, then sets the
device into the requested power state, calls PoSetPowerState to notify the Power Manager,
starts the next power IRP (PoStartNextPowerlIrp), and completes the device power IRP.

The driver must complete this IRP in a timely manner. In general, drivers should avoid any
delay that a typical user would find noticeably slow. For example, a driver could delay a
system state change to flush cached disk or network data, but should not keep a network
connection alive or format a tape. See Passing Power IRPs for more information.

On Windows 2000 systems, if the IRP specifies PowerDeviceD1, PowerDeviceD2, or
PowerDeviceD3, and a system set-power IRP is active, the value at Parameters.Power.
ShutdownType provides information about the system IRP,

Drivers of devices on the hibernate path should inspect this value. If the IRP requests
PowerDeviceD3 and ShutdownType is PowerActionHibernate, such a driver should
save any context required to restore the device, but should not power down the device;
the device will enter the D3 state when the machine loses power.

On Windows 2000 systems, drivers should not rely on the value at ShutdownType if the
requested power state is PowerDeviceD0.

On Windows 98, if the IRP requests a device power state, the ShutdownType is always
PowerActionNone.

The driver that determines when to power down a device varies depending on the
device class.

The driver that determines when to power up a device is almost always a driver that accesses
the device registers. The driver must verify that the device is in the DO state before access-
ing the device's hardware registers. If the device is not in the DO state, the driver must call
PoRequestPowerlrp to send an IRP to power up the device. A driver cannot access its
device unless the device is in the DO state.

When a driver receives a set-power IRP for device state DO, it sets an IoCompletion routine
and passes the IRP to the next lower driver.

When the IRP reaches the bus driver, that driver applies (or resets) power to the device,
completes the IRP, and calls PoSetPowerState to inform the Power Manager of the new
power state for the device.

After the bus driver completes the power-up IRP, function and filter drivers handle the IRP
in their IoCompletion routines as it travels back up the device stack. In the IoCompletion
routine, each driver restores or reinitializes its device context and performs any other re-
quired start-up tasks.

See Handling IRP_MN_SET_POWER for Device Power States for details.

Chapter 2 1/0 Request for Power Management 129

See Also

PoCallDriver, PoStartNextPowerlIrp, PoSetPowerState, PoRequestPowerlrp,
PoRegisterDeviceForIdleDetection

IRP_MN_WAIT_WAKE

When

Input

Sent

A driver that owns power policy targets this IRP to its PDO to enable its device to awaken
in response to an external event, such as an incoming phone call. A driver must call Po-
RequestPowerlIrp to send this IRP.

As a general rule, a driver should send this IRP as soon as it determines that its device
should be enabled for wake-up. Consequently, drivers for most such devices send this IRP
after powering on their devices and before completing the IRP_MN_START_DEVICE
request.

However, a driver can send the IRP any time the device is in the working state (Power-
DeviceD0). The device stack must not be in transition; that is, a driver should not send
an IRP_MN_WAIT_WAKE while any other power IRP is active in its device stack.

A wait/wake IRP does not change the power state of the system or of a device. It simply en-
ables a wake-up signal from the device. When the wake-up signal arrives, the policy owner
must call PoRequestPowerlrp to send a set-power IRP to explicitly return its device to DO.

The driver must be running at IRQL PASSIVE_LEVEL to send this IRP. However, the IRP
can be completed at IRQL DISPATCH_LEVEL.

Parameters.WaitWake.SystemWake contains the lowest (least-powered) system power
state from which the device should be allowed to awaken the system.

Output

None.

I/O Status Block

A driver sets Irp->IoStatus.Status to one of the following:

STATUS_PENDING

The driver received the IRP and is waiting for the device to signal wake-up.

130

Part2 Power Management

STATUS_INVALID_DEVICE_STATE

The device is in a less-powered state than the DeviceWake state specified in the DEVICE _
CAPABILITIES structure for the device, or the device cannot awaken the system from the
SystemWake state passed in the IRP.

STATUS_NOT_SUPPORTED
The device does not support wake-up.

STATUS_DEVICE_BUSY

An IRP_MN_WAIT_WAKE request is already pending and must be completed or canceled
before another IRP_MN_WAIT_WAKE request can be issued.

STATUS_SUCCESS

The device has signaled a wake event.
STATUS_CANCELED
The IRP has been canceled.

If a driver must fail this IRP, it completes the IRP immediately and does not pass the IRP to
the next lower driver.

Operation

A driver sends IRP_MN_WAIT_WAKE for either of two reasons:

1. To enable its device to awaken a sleeping system in response to an external wake-up
signal.

2. To enable its device to awaken from a device sleep state in response to an external wake-
up signal.

The IRP must be passed down the device stack to the bus driver for the device, which calls
IoMarkIrpPending and returns STATUS_PENDING from its DispatchPower routine. The
IRP remains pending until a wake-up signal occurs or until the driver that sent the IRP.
cancels it.

A driver can have only one wait/wake IRP pending at a time. A driver that enumerates more
than one child PDO must fail any wait/wake request that arrives while it already has such an
IRP pending. However, the driver should keep an internal count of wait/wake IRPs, incre-
menting the count each time it receives a request and decrementing the count each time it
completes a request. If the count is nonzero after it has completed a wait/wake IRP, the
driver should send another wait/wake IRP to its device stack to "rearm" itself for wake-up.
See Understanding the Path of Wait/Wake IRPs Through a Device Tree for details.

Chapter 2 1/0 Request for Power Management 131

Each driver sets an JoCompletion routine as the IRP travels down the device stack.
When the device signals a wake-up event, the bus driver services the wake-up signal
and completes the IRP, returning STATUS_SUCCESS. The I/O Manager then calls the
ToCompletion routine of the next higher driver, and so on up the device stack.

When a driver sends a wait/wake IRP, it should specify a callback routine in the Po-
RequestPowerlrp call. In the callback routine, the driver typically services the device.
The power policy owner for the device must call PoRequestPowerlrp to send an IRP_
MN_SET_POWER for device state DO.

A driver that acts as the bus driver for one device and the policy owner for a parent device
requests an IRP_MN_WAIT_WAKE IRP for the parent's PDO whenever it has an outstand-
ing IRP_MN_WAIT_WAKE request from one or more of its child PDOs. For example, the
bus driver for a USB device acts as the policy owner for the USB hub controller. In its role
as policy owner, the driver sends a wait/wake IRP to the hub PDO when it receives its first
wait/wake IRP from a device PDO. When the IRP completes, this same driver must deter-
mine which USB device signaled the wake-up event. If additional child device stacks have
also sent wait/wake IRPs, the driver must send its own device stack a wait/wake IRP to
"rearm" it for wait/wake on those children.

To cancel an IRP_MN_WAIT_WAKE, a driver calls IoCancelIrp. Only the driver that
originated the IRP can cancel it. A driver cancels a pending IRP_MN_WAIT_WAKE when
any of the following occurs:

s The driver receives a PnP IRP that stops or removes the device.

» The system is going to sleep and the device wake signal must not awaken it.

Drivers can optionally support the WMI GUID_DEVICE_WAKE_ENABLE control, which
allows the user to choose whether the device can wake a sleeping system. The user interface
presents this control if the driver and PDO support it, as determined by querying the device
capabilities.

When the user changes the DEVICE_ WAKE_ENABLE setting, the driver receives a system
control IRP (IRP_MJ_SYSTEM_CONTROL) with minor IRP code IRP_MN_WMI. See
Volume 2 of the Windows 2000 Driver Development Reference for details.

See Also
PoRequestPowerlrp

133

CHAPTETR 3

Battery Class Driver Routines

The battery class driver exports the following routines for use by miniclass drivers:
» BatteryClassInitializeDevice

= BatteryClassloctl

= BatteryClassStatusNotify

= BatteryClassUnload

These routines are declared in batclass.h.

BatteryClassinitializeDevice

NTSTATUS
BatteryClassInitializeDevice (
IN PBATTERY_MINIPORT_INFO MiniportInfo,
IN PVOID #ClassData
N

BatteryClassInitializeDevice initializes a new battery device with the class driver.

Parameters

Miniportinfo
Points to a BATTERY_MINIPORT _INFO structure, defined as follows:

typedef struct {
USHORT MajorVersion;
USHORT MinorVersion;
PVOID Context;)
BCLASS_QUERY_TAG QueryTag;
BCLASS_QUERY_INFORMATION QueryInformation;
BCLASS_SET_INFORMATION SetInformation;
BCLASS_QUERY_STATUS QueryStatus;

134

_Part 2 Power Management

BCLASS_SET_STATUS_NOTIFY SetStatusNotify;
BCLASS_DISABLE_STATUS_NOTIFY DisableStatusNotify;
PDEVICE_OBJECT Pdo;
PUNICODE_STRING DeviceName;

} BATTERY_MINIPORT_INFO, #*PBATTERY_MINIPORT_INFO;

MajorVersion

Specifies the major version number of the battery class driver. Miniclass drivers should
specify BATTERY_CLASS_MAJOR_VERSION.

MinorVersion

Specifies the minor version number of the battery class driver. Miniclass drivers should
specify BATTERY_CLASS_MINOR_VERSION.

Context :
Points to the context area allocated by the miniclass driver.

QueryTag
Specifies the entry point of the miniclass driver's BatteryMiniQueryTag routine.

Querylnformation
Specifies the entry point of the miniclass driver's BatteryMiniQueryInformation routine.

Setinformation
Specifies the entry point of the miniclass driver's BatteryMiniSetInformation routine.

QueryStatus
Specifies the entry point of the miniclass driver's BatteryMiniQueryStatus routine.

SetStatusNotify
Specifies the entry point of the miniclass driver's BatteryMiniSetStatusNotify routine.

DisableStatusNotify
Specifies the entry point of the miniclass driver's BatteryMiniDisableStatusNotify routine.

Pdo
Points to the PDO for the battery device.

DeviceName
Points to a UNICODE string, and should be NULL.

ClassData

Points to a location at which BatteryClassInitializeDevice returns a handle to be used in
subsequent calls to BatteryClassXxx routines.

Chapter 3 Battery Class Driver Routines 135

Return Value

BatteryClassInitializeDevice returns STATUS_SUCCESS or, possibly, STATUS_
INSUFFICIENT_RESOURCES if not enough memory is available to store the battery
miniclass data.

Comments
Battery miniclass drivers must call BatteryClassInitializeDevice to register each battery
device and to pass data about the device and the miniclass driver to the battery class driver.

This routine should be called as part of the device initialization, typically from the miniclass
driver's AddDevice routine.

The Context member of the BATTERY_MINIPORT_INFO structure points to an area
where the class and miniclass drivers maintain information about the battery device and its
drivers. The context area typically contains the pageable device extension from the FDO and
can also include other information at the discretion of the driver writer.

The class driver passes a pointer to the context area in calls to the BatteryMiniXxx routines.
In their BatteryMiniXxx routines, miniclass drivers should read and write the device exten-
sion data through the passed-in pointer.

Miniclass drivers must supply entry points for all the BatteryMiniXxx routines.

See Also

BatteryMiniDisableStatusNotify, BatteryMiniQueryInformation, BatteryMiniQuery-
Status, BatteryMiniQueryTag, BatteryMiniSetInformation, BatteryMiniSetStatus-
Notify

BatteryClassloctl

NTSTATUS
BatteryClassIoctl (
IN PVOID ClassData,
IN PIRP Irp
);

BatteryClassIoctl handles system-defined battery IOCTLs.

Parameters
ClassData

Points to a battery class handle previously returned by BatteryClassInitializeDevice.

Irp
Points to the IRP containing the IOCTL to be handled.

136 Part 2 Power Management

Return Value

BatteryClassloctl returns STATUS_SUCCESS when it satisfies the request and completes
the IRP. It returns STATUS_NOT_SUPPORTED for all IRPs other than device control
IRPs that specify battery IOCTLs.

Comments
BatteryClassloctl handles and completes device control IRPs intended for the battery. Such
IRPs have one of the following I/O control codes:
= JOCTL_BATTERY_QUERY_INFORMATION
= JOCTL_BATTERY_QUERY_STATUS
= JOCTL_BATTERY_QUERY_TAG

= IOCTL_BATTERY_SET_INFORMATION

The standard battery IOCTLs correspond to the miniclass driver's BatteryMiniXxx support
routines.

When the miniclass driver is called with an IRP_MJ_DEVICE_CONTROL request, it
should determine whether the IRP contains any private IOCTL defined by the miniclass
driver. If so, the miniclass driver should satisfy the request, complete the IRP, and return.

If the IRP contains a public IOCTL, the driver should pass the IRP to the class driver's
BatteryClassloctl routine. This routine examines the IRP, determines whether it applies
to the caller's battery device, and if so, calls the appropriate BatteryMiniXxx routine to
perform the requested operation.

If BatteryClasslIoctl returns STATUS_NOT_SUPPORTED for the IRP, the miniclass
driver must either complete the IRP or forward it to the next-lower driver.

See Also

BatteryMiniQueryInformation, BatteryMiniQueryStatus, BatteryMiniQueryTag,
BatteryMiniSetInformation

BatteryClassStatusNotify

NTSTATUS
BatteryClassStatusNotify (
IN PVOID ClassData
Vs

BatteryClassStatusNotify notifies the battery class driver of changes in battery status.

Chapter 3 Battery Class Driver Routines 137

Parameters

ClassData _
Points to a battery class handle previously returned by BatteryClassInitializeDevice.

Return Value
BatteryClassStatusNotify returns STATUS_SUCCESS.

Comments

Battery miniclass drivers must call BatteryClassStatusNotify whenever any of the
following occur:

= The battery goes on- or off-line.
» The battery's capacity becomes critically low.

= The battery's power state changes; that is, the battery starts or stops charging or
discharging.

= The battery's capacity or power state deviates from the criteria set previously with
BatteryMiniSetStatusNotify.

The battery class driver queues status requests internally. If any such requests are pending
when the miniclass driver calls BatteryClassStatusNotify, the class driver immediately
calls the miniclass driver's BatteryMiniQueryStatus routine.

See Also
BatteryMiniQueryStatus, BatteryMiniSetStatusNotify

BatteryClassUnload

TSTATUS

BatteryClassUnload (
IN PVOID ClassData
)3

BatteryClassUnload frees resources for a battery device that is no longer in use.

Parameters

ClassData
Points to a battery class handle previously returned by BatteryClassInitializeDevice.

138 Part 2 Power Management

Return Value
BatteryClassUnload returns STATUS_SUCCESS.

Comments
BatteryClassUnload frees the battery class handle and unloads the battery device. In
essence, it undoes the registration and initialization performed by
BatteryClassInitializeDevice.

A miniclass driver should call this routine when its battery device is no longer available
for use. Typically, the driver might make such a call when handling a PnP IRP_MN_
REMOVE_DEVICE request or from its Unload routine.

139

CHAPTEHR 4

Battery Miniclass Driver Routines

Battery miniclass drivers must include routines to support PnP and to support battery man-
agement and monitoring. Entry points for the following routines are required to support
standard operating system and PnP Manager functionality:

DriverEntry
AddDevice
DispatchDeviceControl
DispatchPnP
DispatchPower

Unload

For details on a battery minidriver's support for any of the above routines, see the Plug and
Play, Power Management, and Setup Design Guide.

Entry points for the following routines, described in this chapter, are required in all battery
miniclass drivers:

BatteryMiniDisableStatusNotify
BatteryMiniQueryInformation
BatteryMiniQueryStatus
BatteryMiniQueryTag
BatteryMiniSetInformation
BatteryMiniSetStatusNotify

140 Part2 Power Management

The battery class driver calls BatteryMiniXxx routines to get and set information about a
specific battery device. Battery miniclass drivers must supply entry points for these routines.
The BatteryMiniXxx routines can have any name chosen by the driver writer. Prototypes
appear in batclass.h.

BatteryMiniDisableStatusNotify

NTSTATUS
BatteryMiniDisableStatusNotify(
IN PVOID Context
)s

BatteryMiniDisableStatusNotify disables status notification for a battery device.

Parameters
Context

Points to the miniclass-driver-allocated context area for the battery device.

Return Value
BatteryMiniDisableStatusNotify returns one of the following:

STATUS_SUCCESS

A battery is currently installed and status notification has been disabled.

STATUS_NO_SUCH_DEVICE
No battery is present.

STATUS_NOT_SUPPORTED

No functionality is provided for this routine.

Comments .

The battery class driver calls BatteryMiniDisableStatusNotify when it no longer requires
notification of battery conditions set in an earlier call to BatteryMiniSetStatusNotify.

Miniclass drivers that supply a fully functional BatteryMiniDisableStatusNotify routine
must also supply a fully functional BatteryMiniSetStatusNotify routine, and vice versa.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

See Also .
BatteryMiniSetStatusNotify, BatteryClassStatusNotify

Chapter 4 Battery Miniclass Driver Routines 14

BatteryMiniQueryInformation

NTSTATUS
BatteryMiniQueryInformation (

IN PVOID Context,
IN ULONG BatteryTag,
IN BATTERY_QUERY_INFORMATION_LEVEL Level,
IN LONG AtRate OPTIONAL,
OUT PVOID Buffer,
IN ULONG Bufferlength,
OUT PULONG ReturnedLength
);

BatteryMiniQueryInformation returns information about the given battery device.

Parameters

Context
Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag »
Points to a battery tag previously returned by BatteryMiniQueryTag.

Level

Specifies the type of battery information to be returned. Possible values are
BatteryInformation, BatteryGranularityInformation, BatteryTemperature, Battery-
Estimated Time, BatteryDeviceName, BatteryManufactureDate, BatteryManufacture-
Name, and BatteryUniquelD.

AtRate

Specifies the rate of drain, in negative milliwatts, used to calculate the time to discharge
the battery. Meaningful only when Level is BatteryEstimatedTime; ignored for all other
values of Level. :

Buffer

Points to a buffer allocated by the miniclass driver in which to return the requested infor-
mation. Miniclass drivers format the contents of the buffer depending upon the value of
Level, as follows:

Batterylnformation
Return information formatted as a BATTERY_INFORMATION structure.

142

Part 2 Power Management

BatteryGranularitylnformation

Return a variable-length array of type BATTERY_REPORTING_SCALE that contains
the reporting granularity of the remaining capacity. The number of entries returned depends
upon the size of the returned buffer, to a maximum of four entries per battery.

BatteryTemperature

Return a ULONG value giving the current temperature of the battery, in tenths of a degree
Kelvin.

BatteryEstimatedTime

Return a ULONG value estimating the number of seconds of runtime remaining on the
battery, based on the rate of drain specified in AtRate. If AfRate is negative or zero, the
miniclass driver should calculate the runtime based on the current rate of drain. However,
if the driver cannot make an estimate (for example, AfRate is zero and the battery is not
discharging), it should return BATTERY_UNKNOWN_TIME.

BatteryDeviceName

Return a UNICODE string specifying the name of the battery. For example, DR202 identi-
fies a Duracell smart battery.

BatteryManufactureDate

Return a BATTERY_MANUFACTURE_DATE structure specifying the date the battery
was manufactured.

BatteryManufactureName

Return a UNICODE string specifying the model name given to the battery by its manu-
facturer.

BatteryUniquelD

Return a UNICODE string that uniquely identifies the battery, typically a concatenation of
the battery's manufacturer, date, and serial number.

BatterySerialNumber
Return a UNICODE string that contains the battery's serial number.

BufferLength
Specifies the length in bytes at Buffer.

ReturnedLength
Specifies the number of bytes returned at Buffer.

Return Value

" BatteryMiniQueryInformation returns one of the following:

Chapter 4 Battery Miniclass Driver Routines 143

STATUS_SUCCESS

The battery designated by BatteryTag is currently installed and the requested information
has been returned.

STATUS_NO_SUCH_DEVICE
The battery designated by BatteryTag is not present.

STATUS_INVALID_DEVICE_REQUEST

The Level parameter specifies information that this battery does not support.

STATUS_INVALID_PARAMETER

The Level parameter is not one of the enumerators listed.

Comments

The battery class driver calls a miniclass driver's BatteryMiniQueryInformation routine to
get various types of information about the battery. The information returned depends upon
the Level parameter. Not all batteries support all the possible types of information that the
class driver might request. Miniclass drivers should return STATUS_INVALID_DEVICE _
REQUEST for any such requests.

If Level specifies BatteryInformation, the miniclass driver must return a BATTERY _
INFORMATION structure at Buffer. This structure contains status information about the
battery, including its capabilities, technology (whether the battery is rechargeable), and
chemistry; theoretical and actual full-charged capacity; critical bias; number of charge/
discharge cycles; and the capacity levels at which warning alerts occur.

If Level specifies BatteryGranularityInformation, the miniclass driver can return an

array of one to four elements, formatted as BATTERY_REPORTING_SCALE structures.
Each element of the array consists of a granularity value and a remaining capacity value, in -
milliwatt-hours. The granularity indicates the precision of measurement and thus is an
indicator of the accuracy of the capacity.

Most types of batteries report capacity on a single scale. Miniclass drivers for these batteries
return only one entry, giving the remaining capacity and the precision of the scale. Some
batteries, however, have two scales: a gross scale that measures whether capacity is greater
or less than fifty percent, and a finer scale that applies as capacity approaches zero. Mini-
class drivers for such batteries should return two entries describing the two scales.

If Level specifies BatteryEstimatedTime, the miniclass driver must use the optional AzRate
parameter to estimate the amount of time remaining to use the battery. The AfRate parameter
specifies a drain rate, in negative milliwatts.

If Level specifies BatteryUniqueld, the miniclass driver must return a string that uniquely
identifies this particular battery. For control method and smart batteries, the unique ID is

144 Part2 Power Management

the concatenation of the manufacture name, the device name, the manufacture date, and the
ASCII representation of the battery's serial number. This value is not meant to be displayed.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

See Also

BATTERY_INFORMATION, BATTERY_MANUFACTURE_DATE, BATTERY_
REPORTING_SCALE

BatteryMiniQueryStatus

NTSTATUS
BatteryMiniQueryStatus(
IN PVOID Context,
IN ULONG BatteryTag,
OUT PBATTERY_STATUS BatteryStatus
)

BatteryMiniQueryStatus returns status information about the given battery device.

Parameters

Context
Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag
Specifies a battery tag previously returned by BatteryMiniQueryTag.

BatteryStatus

Points to a BATTERY_STATUS structure in which the miniclass driver returns infor-
mation. The BATTERY_STATUS structure is defined as follows:

typedef struct _BATTERY_STATUS {
ULONG PowerState;
ULONG Capacity;
ULONG Voltage;
LONG Rate;
} BATTERY_STATUS, *PBATTERY_STATUS;

PowerState

Specifies a battery power state as one or more of the following flags, ORed together:
BATTERY_POWER_ON_LINE, BATTERY_DISCHARGING, BATTERY_CHARGING,
and BATTERY_CRITICAL.

Chapter 4 Battery Miniclass Driver Routines 145

Capacity
Specifies the capacity of the given battery, in milliwatt-hours, or BATTERY_UNKNOWN_
CAPACITY if the capacity cannot be determined.

Voltage

Specifies the voltage, in millivolts, across the terminals of the given battery, or BATTERY_
UNKNOWN_VOLTAGE if the voltage cannot be determined.

Rate
Specifies the current rate of battery usage in milliwatts or, if the driver reports relative
capacity, in units per hour. A positive value means that the battery is charging; a negative

value means the battery is discharging. If the driver cannot determine the rate, it should
return BATTERY_UNKNOWN_RATE.

Return Value
BatteryMiniQueryStatus returns one of the following:

STATUS_SUCCESS
The battery designated by BatteryTag is currently installed.

- STATUS_NO_SUCH_DEVICE
The battery designated by BatteryTag is not present.

Comments

The battery class driver calls BatteryMiniQueryStatus to get status information about the
battery. The status information includes the battery's power state, capacity, voltage, and the
amount of current flowing at the time of the request.

If the miniclass driver does not supply fully functional BatteryMiniSetStatusNotify and
BatteryMiniDisableStatusNotify routines, the battery class driver calls BatteryMini-
QueryStatus at regular but infrequent intervals to poll the battery's status. Otherwise, the
class driver calls this routine after the miniclass driver has notified it of a change in battery
status.

Before reporting a critically low, discharging battery (BATTERY_DISCHARGING and
BATTERY_CRITICAL), the miniclass driver should ensure that the problem is legitimate
(rather than a transitory state) and if so, should attempt to solve the problem. Possible solu-
tions might include switching to AC power or to another battery. When the miniclass driver
reports that a battery is critical and discharging, the system assumes that battery failure is
imminent and prepares to shut down.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

146 Part 2 Power Management

See Also

BatteryClassStatusNotify, BatteryMiniDisableStatusNotify, BatteryMiniSetStatus-
Notify

BatteryMiniQueryTag
NTSTATUS
BatteryMiniQueryTag(
IN PVOID Context,
OUT PULONG BatteryTag
N

BatteryMiniQueryTag returns the current battery tag.

Parameters
Context

Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag

Points to a caller-allocated variable in which the miniclass driver returns the battery tag.

Return Value
BatteryMiniQueryTag returns one of the following:

STATUS_SUCCESS
A battery is currently installed.

STATUS_NO_SUCH_DEVICE

No battery is present.

Comments

The battery class driver calls BatteryMihiQueryTag to get the value of the current battery
tag. If a battery is present, BatteryMiniQueryTag should return the tag in BatteryTag and
return STATUS_SUCCESS.

Each time a battery is inserted, the miniclass driver must increment the value of the tag,
regardless of whether this is a new battery or the same battery that was previously present.

If no battery is present, or if the miniclass driver cannot determine whether a battery is
present, it should return STATUS_NO_SUCH_DEVICE and set the value of the tag to
BATTERY_TAG_INVALID.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

Chapter 4 Battery Miniclass Driver Routines 147

BatteryMiniSetinformation

NTSTATUS
BatteryMiniSetInformation(
IN PVOID Context,
IN ULONG BatteryTag,
IN BATTERY_SET_INFORMATION_LEVEL Level,
IN PVOID Buffer OPTIONAL
); '

BatteryMiniSetInformation requests that a battery enter the charging or discharging state,
or sets a critical bias value for the battery.

Parameters
Context

Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag
Specifies a battery tag previously returned by BatteryMiniQueryTag.

Level

Specifies one of the following values: BatteryCriticalBias, BatteryCharge, or
BatteryDischarge. ‘

Buffer

Specifies the critical bias adjustment in milliwatts if Level is BatteryCriticalBias. Not used
for other values of Level.

Return Value

BatteryMiniSetInformation returns one of the following:

STATUS_SUCCESS

The operation succeeded.

STATUS_NO_SUCH_DEVICE

No battery is present.

STATUS_NOT_SUPPORTED
The specified battery does not support the requested operation.

STATUS_UNSUCCESSFUL
The operation failed.

148

Part2 Power Management

Comments

The battery class driver calls BatteryMiniSetInformation to request that a battery start to
charge or discharge. It can also call this routine to set a critical bias value.

With a smart battery charger/selector, the class driver specifies BatteryCharge to select a
battery to charge, possibly discontinuing the charging of another battery.

The class driver specifies BatteryDischarge to indicate which battery should poWer the
system. :

The critical bias adjustment is analogous to the reserve capacity of the gas tank in an auto-
mobile. It represents the remaining charge when the battery capacity is reported as zero.
Although the class driver does not change the critical bias value in normal use, this field
is provided in the interface as a maintenance feature. Not all batteries can maintain a
critical bias setting. Miniclass drivers for such batteries should return STATUS_NOT_
SUPPORTED.

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

BatteryMiniSetStatusNotify

NTSTATUS
BatteryMiniSetStatusNotify(
IN PVOID Context,
IN ULONG BatteryTag,
IN PBATTERY_NOTIFY BatteryNotify
)s

BatteryMiniSetStatusNotify sets battery capacity and power state levels at which the class
driver requires notification.

Parameters

Context
Points to the miniclass-driver-allocated context area for the battery device.

BatteryTag }
Specifies a battery tag previously returned by BatteryMiniQueryTag.

BatteryNotify
Points to a BATTERY_NOTIFY structure, defined as follows:

typedef struct {
ULONG PowerState;
ULONG LowCapacity;
ULONG HighCapacity;
} BATTERY_NOTIFY, *PBATTERY_NOTIFY;

Chapter 4 Battery Miniclass Driver Routines 149

PowerState

Sets one or more of the following flags to specify a battery power state: BATTERY _
POWER_ON_LINE, BATTERY_DISCHARGING, BATTERY_CHARGING,
BATTERY_CRITICAL.

LowCapacity

Specifies a ULONG value indicating the battery capacity below which the class driver
requires notification.

HighCapacity _
Specifies a ULONG value indicating the battery capacity above which the class driver
requires notification. '

Return Value
BatteryMiniSetStatusNotify returns one of the following:

STATUS_SUCCESS
A battery is currently installed.

STATUS_NO_SUCH_DEVICE

No battery is present or the given battery tag is invalid.

STATUS_NOT_SUPPORTED

The miniclass driver cannot distinguish the target condition.

Comments

The battery class driver calls a miniclass driver's BatteryMiniSetStatusNotify routine to set
criteria for an acceptable range of battery conditions. When the battery's capacity or power
state deviates from these criteria, the miniclass driver must call BatteryClassStatusNotify
to notify the class driver.

In PowerState, the class driver specifies one or more battery power states. Any time the
battery enters a power state that is not in PowerState, the miniclass driver must notify
the class driver.

In LowCapacity and HighCapacity, the class driver specifies a range of capacity. When
the capacity falls above or below this range, the miniclass driver must notify the class driver.

Some batteries might be unable to distinguish the precise capacities requested by the battery
class driver. When possible, miniclass drivers for these batteries should attempt to correct
for the error so that the user can be informed when the battery approaches a critical state.
Otherwise, such drivers should return STATUS_NOT_SUPPORTED.

150 Part 2 Power Management

The battery class driver calls this routine at IRQL PASSIVE_LEVEL.

See Also
BatteryClassStatusNotify, BatteryMiniDisableStatusNotify

151

CHAPTEHR 5

Battery Structures

This chapter describes the following structures used by battery miniclass drivers:

= BATTERY_INFORMATION

= BATTERY_MANUFACTURE_DATE

» BATTERY_REPORTING SCALE

BATTERY_INFORMATION

typedef struct _BATTERY_INFORMATION {

ULONG
UCHAR
UCHAR
UCHAR
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG

Capabilities;
Technology;
Reserved[3];
Chemistry[4];
DesignedCapacity;
Fui1ChargedCapacity;
DefaultAlertl;
DefaultAlert2;
CriticalBias;
CycleCount;

} BATTERY_INFORMATION, *PBATTERY_INFORMATION;

Battery miniclass drivers fill in this structure in response to certain BatteryMiniQuery-

Information requests.

Members

Capabilities

Specify battery capabilities as a ULONG value encoded with one or more of the follow-

ing flags:

BATTERY_SYSTEM_BATTERY
Set this flag if the battery can provide general power to run the system.

1562

Part 2 Power Management

BATTERY_CAPACITY_RELATIVE

Set this flag if the miniclass driver will report battery capacity and rate as a percentage of
total capacity and rate rather than as absolute values. Otherwise, the miniclass driver should
report capacity in milliwatt-hours and rate in milliwatts.

BATTERY_IS_SHORT_TERM

Set this flag if the battery is a UPS, intended for short-term, failsafe use. Clear the flag for
any other type of device.

BATTERY_SET_CHARGE_SUPPORTED

Set this flag if the miniclass driver supports the BatteryCharge setting in calls to
BatteryMiniSetInformation.

BATTERY_SET_DISCHARGE_SUPPORTED

Set this flag if the miniclass driver supports the BatteryDischarge setting in calls to
BatteryMiniSetInformation.

Technology

Specify zero for a primary, nonrechargeable battery, or one for a secondary, rechargeable
battery.

Chemistry

Specify a four-character string indicating the type of chemistry used in the battery.
Possible values include PbAc (Lead Acid), LION (Lithium Ion), NiCd (Nickel Cadmium),
NiMH (Nickel Metal Hydride), NiZn (Nickel Zinc), and RAM (Rechargeable Alkaline-
Manganese). Additional values might be returned as additional battery types become
available.

DesignedCapacity

Specify the theoretical capacity of the battery when new, in milliwatt-hours. If BATTERY_
CAPACITY_RELATIVE is set, the units are undefined.

FullChargedCapacity

Specify the battery's current fully charged capacity, in milliwatt-hours. If BATTERY_
CAPACITY_RELATIVE is set, the units are undefined.

DefaultAlerti

Specify the capacity (in milliwatt-hours) at which a low battery alert should occur.

Chapter 5 Battery Structures 153

DefaultAlert2

Specify the capacity (in milliwatt-hours) at which a warning battery alert should occur.

CriticalBias

Specify the amount (in milliwatt-hours) of any small reserved charge remaining when

the critical battery level shows zero. Miniclass drivers should subtract this value from the
battery's FullChargedCapacity and remaining capacity (reported in BATTERY _STATUS)
before reporting those values.

CycleCount

Specify the number of charge/discharge cycles the battery has experienced, or zero if the
battery does not support a cycle counter. :

See Also
BatteryMiniQueryInformation, BatteryMiniQueryStatus

BATTERY_MANUFACTURE_DATE

typedef struct _BATTERY_MANUFACTURE_DATE {
UCHAR Day;
UCHAR Month;
USHORT Year;
} BATTERY_MANUFACTURE_DATE, *PBATTERY_MANUFACTURE_DATE;

Battery miniclass drivers fill in this structure in response to certain BatteryMiniQuery-
Information requests.

Members
Day

Specify a value in the range 1 to 31, inclusive.

Month

Specify a value in the range 1 to 12, inclusive.
Year
Specify a value >= 1996.

See Also

BatteryMiniQueryInformation

154 Part2 Power Management

BATTERY_REPORTING_SCALE

typedef struct {
ULONG Granularity;
ULONG Capacity;

} BATTERY_REPORTING_SCALE;

Battery miniclass drivers fill in this structure in response to certain BatteryMiniQuery-
Information requests.

-

Members

Granularity

Specify the granularity of the Capacity value, in milliwatt-hours. For most batteries, this
value describes a monotonically increasing scale of capacity. For lithium ion batteries, this
value describes one of two possible scales: a gross measure of battery capacity, with a large
granularity, or a finer measure as the capacity approaches zero.

Capacity

Specify the battery capacity described by the corresponding granularity, in milliwatt-hours.

See Also
BatteryMiniQueryInformation

P ART 3

Setup

Chapter 1 INF File Sections and Directives 157

Chapter 2 Setup Functions 273

Chapter3 Device Installation Functions 281

Chapter 4 Device Installation Structures 391

Chapter 5 Device Installation Function Codes 421

Chapter 6 PnP Configuration Manager Functions 469

Chapter 7 PnP Configuration Manager Structures and Types 543
Chapter 8 Device Setup Classes 567

Chapter 9 The txtsetup.oem File Format 575

157

CHAPTETR 1

INF File Sections and Directives

This chapter describes the syntax of INF files. See Creating an INF File in Part 4, “Setup,”
in the Plug and Play, Power Management, and Setup Design Guide for addmonal
information on creating and using INF files.

This introduction contains the following information:
» General Syntax Rules for INF Files

= Looking at an INF File

= Summary of INF Sections

= Summary of INF Directives

General Syntax Rules for INF Files

An INF file is a simple text file organized into named sections.

Some sections have system-defined names and some sections have names determined by the
writer of the INF. Each section contains section-specific entries and/or directives that refer-
ence additional sections specified elsewhere in the INF file. Each section, section-specific
entry, and directive has a particular purpose, for example, to copy files from the distribution
media, to install a driver service, or to add (or modify) the value entries in registry keys.

The rest of this discussion describes syntax rules governing the required contents of INF
files, the format of section names, using string tokens, and line format, continuation, and
comments.

Required Contents

s The set of required and optional sections, entries, and directives in any particular INF
depends on the type of device/driver or component (such as an application or device class
installer DLL) to be installed. The set of sections, section-specific entries, and directives
required to install any particular device and its driver(s) also depends somewhat on the

158

Part3 Setup

corresponding class installer. For more information about how the system-supplied class
installers handle device-type-specific INF files, see also the Plug and Play, Power
Management, and Setup Design Guide and, for certain types of devices, the appropriate
manual in this documentation set.

Sections can be specified in any order. Most INFs list sections in a particular order, by
convention, but Setup finds sections by name, not by location within the INF file.

Section Names

= Each section in an INF begins with the section name enclosed in brackets ([1). The

section name can be system-defined or INF-writer-defined.

For example, [Manufacturer] specifies the start of the system-named Manufacturer
section, while [Std.Mfg] represents a particular INF-writer-defined Models section name.

A section name has a maximum length of 255 bytes on Microsofte Windowse 2000. On
Windows 98, section names should be no longer than 28 characters. INFs designed to
work on both platforms must adhere to the smaller limit.

Each section ends at the beginning of a new [section-name] or at the end-of-file mark.

If more than one section in an INF has the same name, the system merges their entries
and directives into a single section.

Section names, entries, and directives are case-insensitive, so version, VERSION, and
Version are equally valid section-name specifications within an INF.

Unless it is enclosed in double-quote characters (''), an INF-writer-defined section name
referenced elsewhere in the INF file must be a unique-to-the-INF unquoted string of
explicitly visible characters, excluding certain characters with INF-specific meanings. In
particular, an unquoted section name referenced by a section entry or directive cannot
have leading or trailing spaces, a linefeed character, a return character, or any invisible
control character, and it should not contain tabs. In addition, it cannot contain either of
the bracket ([]) characters, a single percent (%) character, a semicolon (3), or any
internal double-quote ('') character(s), and it cannot have a backslash (\) as its last
character.

For example, Std.Mfg and Std_Mfg are unique and valid section names when referenced
by n INF entry or directive, but Std;Mfg (with its internal semicolon) is invalid unless it
is enclosed by double quotes ("').

However, specifying an INF-writer-defined section name as a ""quoted string" overrides
most of the the preceding restrictions on characters in referenced section names. Such a
delimited section name can contain almost any explicitly or implicitly visible characters

Chapter 1 INF File Sections and Directives 159

except the closing bracket (]) as long as the corresponding section in the INF matches this
""quoted string" exactly.

For example, "';; Std Mfg " is a valid section-name reference if the corresponding
section declaration in the INF exactly matches the name inside the double quotes with
respect to its space and semicolon characters as [;; Std Mfg 1.

Using String Tokens

= Many values in an INF, including INF-writer-defined section names, can be expressed
as tokens of the form %strkey% . Each such strkey must be defined in the Strings section
of the INF file as a value consisting of a sequence of explicitly visible characters, which
the Windows 2000 setup code converts, if necessary, into Unicode internally. (See the
reference for the Strings section for more detailed information about how to define
% strkey%e tokens and their respective values.)

Line Format, Continuation, and Comments

= Each entry and directive in a section ends with a return or linefeed character. Conse-
quently, the text editor used to create an INF file must not insert return or linefeed
characters after some arbitrary, editor-determined number of characters.

= The backslash character (\) can be used as an explicit line continuator in an entry or
directive. If part of an entry or directive, such as a path, includes a backslash at the end
of a line, that backslash must be delimited with double quotes (''\'") to override its
interpretation as a line continuator. '

= Comments begin with a semicolon (;) character. When parsing and interpreting an INF
file, the system assumes that the following have no relevance to the installation process:

(1) Any characters following a semicolon on the same line, unless the semicolon appears
within a "quoted string"' or % strkey % token

(2) Any empty line containing nothing except a linefeed or return character

» Commas separate the values supplied in section entries and directives.

An INF entry or directive can omit an optional value in the middle of a list of values, but
the commas must remain. Windows 2000 INFs can omit trailing commas, but Windows
9x INFs must not. Dual-OS INFs should specify trailing commas in any sections that are
used on Windows 9x machines. Dual-OS INFs can omit trailing commas in sections that
are only used in Windows 2000 (that is, sections whose names are decorated with .nt,
.ntx86, and so forth).

160 Part 3 Setup

For example, consider the syntax for a SourceDisksFiles section entrSI:
filename = diskid[,[subdir][,size]]

An entry that omits the subdir value but supplies the size value must specify both delimit-
ing internal commas, as follows:

filename = diskid,,size
An entry in a Windows 2000 INF that omits the two optional values can have this format:

filename = diskid

An entry in a Windows9x INF that omits the two optional values must specify the trailing
commas, as follows:

filename = diskid,,

Looking at an INF File

The following example shows selected fragments from a system-supplied class installer's
INF file to illustrate how any INF file is made up of sections, each containing zero or more
lines, some of which are entries that reference additional INF-writer-defined sections:

[Version]

Signature="$Windows NT$"

Class=Mouse

ClassGUID={4D36E96F-E325-11CE-BFC1-08002BE10318}
Provider=%Provider% ; defined later in Strings section
LayoutFile=layout.inf ; entry used only by system installers
DriverVer=09/28/1999,5.00.2136.1

; ... some class installer sections omitted here

[DestinationDirs]
DefaultDestDir=12 ; DIRID_DRIVERS

; ... [ControlFlags] section omitted here
[Manufacturer]

%StdMfg% =StdMfg ; (Standard types)
*MSMT g% =MSMfg i Microsoft

i ... %otherMfg% entries omitted here

[StdMfg]l ; per-Manufacturer Models section

; Std serial mouse

%=pnp@flc.DeviceDesc%= Ser_Inst,*PNPQFQ@C,SERENUM\PNPOFQC,SERIAL_MOUSE
; Std InPort mouse

Chapter 1 INF File Sections and Directives 161

%*pnp@f0d.DeviceDesch = Inp_Inst,*PNPQFQD
; ... more StdMfg entries and following
; MSMfg and xxMfg Models sections omitted here

; per-Models DDInstall (Ser_Inst, Inp_Inst, etc.)
; sections also omitted here

[Strings]
; where INF %strkey% tokens are defined as user-visible (and
; possibly as locale-specific) strings.

Provider = "Microsoft"
StdMfg = "(Standard mouse types)"
MSMfg = "Microsoft"

"Standard Serial Mouse"
"InPort Adapter Mouse"

«pnp@féc.DeviceDesc
*pnp@f0Od.DeviceDesc

HID\Vid_045E&Pid_0009.DeviceDesc = "Microsoft USB Intellimouse"

A few sections within the preceding Windows 2000 INF have system-defined names,

such as Version, DestinationDirs, Manufacturer, and Strings. Some named sections like
Version, DestinationDirs, and Strings have only simple entries. Others reference addi-
tional INF-writer-defined sections, as shown in the preceding example of the Manufacturer
section.

Note the implied hierarchy of related sections for mouse device driver installation(s) starting
with the Manufacturer section in the preceding example. Figure 1.1 on the next page shows
the hierarchy of some of the sections in the INF file.

Note the following about the implied hierachy of an INF file:

= Fach %xxMfg% entry in the Manufacturer section references a per-manufacturer
Models section (StdMfg, MSMfg) elsewhere in the INF. (The entries in the example
above use %strkey% tokens.)

= Each Models section specifies some number of entries; in the example they are
% xxx.DeviceDesc % tokens.

Each such %xxx.DeviceDesc % token references some number of per-model(s) DDInstall
sections (Ser_Inst and Inp_Inst) for that manufacturer's product line, with each entry
identifying a single device (*PNPOFOC and *PNPOFOD, hence the "DeviceDesc" shown
here) or a set of compatible models of a device.

162 Part3 Setup
Manufacturer List
[Manufacturer] Standard Models List
%StdMig% = StdMfg [StdMfg]

Summary of INF Sections

%MSMfg% = MsMfg:

Figure 1.1 Sample Hierarchy of Sections in an INF File

y

%*pnp0foc.DeviceDesc%
=Ser_Inst, ...
%*pnp0fod.DeviceDesc%
= Inp_Inst, ...

Serial Mouse Install info

[Ser_Inst]
CopyFiles = ...

————— Other
——— Ser_Inst
\ Installation

Sections

Microsoft Models List

InPort Mouse Install Info

[MSMig]

%HIDWid_O45E&PId_0009.Devi
ceDesc%=HID_Mouse_Inst, ...

etc,

[Inp_lqst] ——— Other

CopyFiles = Inp_inst
Installation
Sections

DDinstall

sections,

= Each such DDInstall-type Xxx_Inst section, in turn, can have certain system-defined
extensions appended and/or can contain directives that reference additional INF-writer-
defined sections. For instance, the full INF shown as fragments in the preceding example
also has a Ser_Inst.Services section, and its Ser_Inst section has a CopyFiles directive
that references a Ser_CopyFiles section elsewhere in this INF.

The following summarizes the system-defined sections that can be used in INF files.
System-defined section names are case-insensitive, so version, VERSION, and Version

are equally valid section-names within an INF.

This chapter describes the INF sections in the same general order used in most device INF
files. However, these sections actually can be specified in any arbitrary order. The Windows
2000 setup code finds all sections within each INF file by section name, not by sequential

order, whether system-defined or INF-writer-defined.

Version Section

This is a required section for every INF file. For installation on Windows 2000 and/or
Windows 9x platforms, this section must have a valid Signature entry.

Chapter 1 INF File Sections and Directives 163

SourceDisksNames Section

This section is required if the INF has a corresponding SourceDisksFiles section. This sec-
tion is required to install IHV/OEM-supplied devices and their drivers from distribution
media included in packaged products. It is also required in such an INF that installs either
of the following:

A coinstaller DLL to supplement the operations of a system-supplied device class installer
or coinstaller(s) (see also DDInstall.Colnstallers later in this list)

A new class installer DLL to supplement the operatlons of the OS's device installer (see also
ClassInstall32 later in this list)

This section identifies the individual source distribution disks or CD-ROM discs for the
installation. By contrast, the system-supplied INFs each specify a LayoutFile entry in their
Version sections and provide at least one other INF file detailing the source distribution
contents and layout of all software components to be installed.

SourceDisksFiles Section

This section identifies the location(s) of files to be installed from the distribution media
to the destination(s) on the target machine. An INF that has this section must also have a
SourceDisksNames section.

Classinstall32 Section

This section initializes a device setup class. This section is required in any class installer
INF file, but see also DDInstall.Colnstallers later in this list. INFs that install devices and
their drivers under any system-defined device class do not need this section.

DestinationDirs Section

Device/driver INFs have a DestinationDirs section to specify a default destination directory
for INF-specified copies of the files supplied on the distribution media or listed in the INF
layout file(s). This section is required unless the INF installs a device, such as a modem or
display monitor, that has no files except its INF to be installed with it.

ControlFlags Section

This section controls whether the Add New Hardware Wizard presents a list of INF-
specified Models values from which the end user selects a particular manually installed
device (or model of a device) to be installed from the INF. It also can control whether an
INF is used only to transfer files from the distribution media.

In general, most INFs for device drivers and for the system class installers have this section
so they can exclude at least a subset of Models entries from the list of manually installable
devices to be displayed to end users. INFs that only install PnP devices suppress the display
of all model-specific information.

164

Part 3 Setup

Manufacturer Section
This section is required in INFs for devices and their drivers.

The Manufacturer section of a system device class INF is sometimes called a "Table of
Contents,” because each of its entries references an INF-writer-defined Models section,
which, in turn, references additional INF-writer-defined sections, such as a per-models-
entry Dinstall section, DDInstall.Services section, and so forth.

Models Section (per Manufacturer entry)

This section is required to identify the device(s) for which the INF installs driver(s). It
specifies a set of mappings between the generic name (string) for a device, the device ID,
and the name of the DDInstall section, elsewhere in the INF, containing the installation
instructions for the device.

An INF that installs one or more devices and driver(s) for a single provider would have only
one Models section, but system INFs for device classes can have many INF-writer-defined
Models sections.

DDInstall Section (per Models entry)

This section is required to actually install any device(s) listed in a Models section in the INF,
along with the driver(s) for each such device. A DDInstall section can be shared by more
than one Models section.

DDInstall.Services Section

This section is required as an expansion of the DDInstall section for most Windows 2000
kernel-mode device drivers, including any WDM drivers (exceptions are INFs for modems
and display monitors). It controls how and when the services of a particular driver are
started, its dependencies (if any) on underlying legacy drivers, and so forth. This section
also sets up event-logging services by a device driver if it supports event logging.

DDInstall. HW Section

This optional section adds device-specific (and typically, driver-independent) information to
the registry or removes such information from the registry, possibly for a multifunction de-
vice or to install one or more PnP filter drivers.

DDinstall.Colnstallers Section

This optional section registers one or more device-specific or class-specific coinstallers sup-
lied on the distribution media to supplement the operations of the system's device intaller, of
an existing device class installer, and/or of existing class-specific coinstaller(s), if any.

A device-specific coinstaller is an IHV/OEM-provided Win32e DLL that typically writes
additional configuration information to the registry or performs other device installation
tasks that require dynamically generated, machine-specific information that is not available
when the device's INF is created. A class-specific coinstaller is also a Win32 DLL that

Chapter 1 INF File Sections and Directives 165

supplements the installation operations of an already installed device class installer or of the
system's device installer.

DDinstall.Interfaces Section

If a device/driver "exports” certain system-defined device interfaces, such as kernel-
streaming still-image capture or data decompression, or it exports a new class of device
interface to higher level components, its INF can have this section.

Interfacelnstall32 Section

If a to-be-installed component, such as a new class driver, provides one or more new device
interfaces to higher-level components, its INF has this section. In effect, this section boot-
straps a set of device interface(s) of a new class by setting up whatever is needed to make
use of the functionality that interface class provides.

DDinstall.FactDef Section

This section should be included in the INF of any manually installed nonPnP device. It
specifies the factory default hardware configuration settings, such as the bus-relative I/O
ports, IRQ (if any), and so forth, for the card.

Strings Section

This section is required in every INF file to define each %strkey% token specified in

the INF. By convention, the Strings section (or sections if the INF provides a set of locale-
specific Strings sections) appear(s) last in all system-supplied INF files for ease of
-maintenance and localization.

Some of the sections listed here, particularly those with Install in their names, can contain
directives that reference additional INF-writer-defined sections. Each directive causes
particular operations to be carried out on the items listed under the appropriate type of INF-
writer-defined section during the installation process.

The set of valid entries and/or directives for any particular section in the preceding list is
section-§pecific and shown in the formal syntax of the reference for each of these sections.
Optional entries and directives within each such section are shown enclosed in unbolded
brackets, as for example:

[Version]

[Provider=% INF-creator%]

The Provider entry in a [Version] section is optional in the sense that it is not a mandatory
entry in every INF file.

166 Part3 Setup

Summary of INF Directives

The following summarizes the system-defined directives that can be used in INF files. INF
directive names are case-insensitive, so Addreg, addReg, and AddReg are equally valid as
directive specifications within an INF.

This chapter lists the most commonly used directives first, together with their reciprocal or
related directives. The most rarely used directives are toward the end of the chapter.

AddReg Directive

This directive references one or more add-registry-sections used to add subkeys and/or
value entries to the registry or to modify existing value entries.

The particular INF section in which an AddReg (or DelReg) directive occurs determines
the default ("relative") location within the registry for the modifications specified in the
referenced add-registry (or delete-registry) section. For device/driver INFs, these default
registry locations, which can be designated in the INF's add/delete-registry sections by the
value HKR, are typically user-visible, device-specific or driver-specific subkeys somewhere
under the following keys in the HKEY_LOCAL_MACHINE registry tree:

= ..Enum, under which the system's PnP enumerators store device-specific information,
such as the device ID, compatible device IDs, if any, and so forth

Any INF-supplied information stored somewhere in the ..Enum (sometimes called
the "device" or "hardware") branch of the registry is generally device-specific but
driver-independent in nature. For example, an add-registry section referenced in the
DDInstall. HW INF section can be used to write the value entries of a Device
Parameters subkey under the device-specific key in the ..Enum branch. The OS
creates such a device-specific subkey of the ..Enum branch for each detected and enu-
merated PnP device and for legacy (nonPnP) devices. As another example, device-
specific logical-configuration information, whether supplied by a PnP bus driver or by
an add-registry-section referenced in an INF-writer-created log-config-section is also
stored in a subkey of such a device-specific key.

In the Windows 2000 registry, this ..Enum branch is a subtree of the ..\CurrentControl-
Set\Control tree.

= ..Class\SetupClassGUID, in which the system's device installer stores information about
each particular (setup) class of devices and under which the corresponding device class
installer and coinstallers, if any, store per-device/driver information, such as the "friendly
name" of a particular device, the device description string, the name of the device's
manufacturer, the name of the driver image, and so forth

For example, any add-registry section referenced in an INF's DDInstall section is
assumed to store this kind of registry information, possibly some of it as localized string

Chapter 1 INF File Sections and Directives 167

values, in a subkey (sometimes called the "software" or "driver" key) under the
..Class\SetupClassGUID key for the appropriate device class.

In the Windows 2000 registry, this ..Class branch is also a subtree of the ..\Current-
ControlSet\Control tree.

Additional INF sections referenced by AddReg can set up registry information for supplied
coinstallers, for system-defined device interfaces (such as kernel streaming interfaces) ex-
ported to higher level components by a device/driver, for new device interfaces exported by
an installed component for a given class of devices, for driver services, and/or even for a
new setup class of devices if the INF has a ClassInstall32 section.

DelReg Directive

This directive references one or more del-registry-sections used to remove obsolete subkeys
and/or value entries from the registry. For example, such a section might appear in an INF
that upgrades a previous installation.

CopyFiles Directive

This directive references one or more file-list-sections specifying transfers of model/device-
specific driver image(s) and any other necessary files from the distribution media to the des-
tination directory for each such file. Alternatively, this directive can specify a single file to
be copied from the distribution media to the default destination directory.

DelFiles Directive

This rarely used directive references one or more file-list-sections specifying files to be de-
leted from the target of the installation. For example, such an optional section might appear
in an INF to "deinstall” file(s) that will be superceded by some file(s) to be installed by the
INF. If no such stale file(s) could possibly be installed on the target machine, this directive
is irrelevant.

RenFiles Directive

This rarely used directive references one or more file-list-sections specifying INF-associated
source files to be renamed on the destination. For example, such an optional section might
appear in an INF if the installer should change the name(s) of one or more "replaced" files
on the destination to preserve them when copying files supplied on the distribution media.

AddService Directive

This directive references at least a service-install-section, possibly with an additional
event-log-install-section.

INFs for most kinds of Windows 2000 devices (those that install drivers) have an INF-
writer-defined service-install-section to specify any dependencies on system-supplied
drivers or services, during which stage of the system initialization process the supplied
driver(s) should be loaded, and so forth. Many INFs for device drivers also have an

168

Part3 Setup

INF-writer-defined event-log-install-section that is referenced by the AddService directive
to set up event logging by the device driver.

DelService Directive

This rarely used directive deletes a previously installed service. For example, it might undo
the operations of an AddService directive specified in a previous version of the INF file.

Addinterface Directive

This directive references an add-interface-section in which one or more AddReg directives
are specified referencing sections that set up the registry entries for the device interfaces
supported by this device/driver. Optionally, such an add-interface-section can reference one
or more additional sections that specify delete-registry, file-transfer, file-delete, and/or file-
rename operations.

BitReg Directive

This rarely used directive references one or more bit-registry-sections specifying existing
REG_BINARY-type value entries in the registry for which particular bits in the values are
to be modified.

LogConfig Directive

This directive references one or more log-config-sections that specify acceptable bus-
relative and device-specific hardware configurations in an INF for device(s) that are
detected (by PnP device enumerators) or manually installed. For example, INFs for
nonPnP ISA, EISA, and MCA devices, which are manually installed, use this directive.
(See also this directive's reference for more information about the even more rarely used
DDInstall.LogConfigOverride section.)

Updatelnis Directive

This rarely used directive references one or more update-ini-sections specifying parts of a
supplied INI file to be read during installation and, possibly specifying line-by-line modifi-
cations to be made in that INT file.

UpdatelniFields Directive

This rarely used directive references one or more update-inifields-sections specifying modi-
fications to be made on fields within the lines of an INI file.

Ini2Reg Directive

This rarely used directive references one or more ini-to-registry-sections specifying lines or
sections of an INI file to be written into the registry.

The specific set of valid sections under which any of the directives in the preceding list can
be be specified is system-determined. For quick reference, the basic form of each valid sec-
tion is shown later in the formal syntax of the reference for each directive, as for example:

Chapter 1 INF File Sections and Directives 169

[DDInstalll | [DDInstallHW] | [DDInstall.Colnstallers] | [ClassInstall32]
[ClassInstall32.ntx86]

AddReg=add-registry-section[, add-registry-section] ..

However, the system-defined extensions for cross-platform Windows 2000 and dual-OS
INF files can be appended to certain INF-writer-defined section names, as explained in
Creating an INF File. That is, the undecorated [DDInstall. HW] section shown in the formal
syntax for the AddReg directive reference implies the validity of all decorated forms of this
type of section, such as [install-section- -name. nt.HW], [install-section-name.ntx86.HW],
and so forth.

The rest of this chapter describes the formal syntax and meaning for each system-defined
named section, standard INF-writer-defined section, and directive that can be specified in an
INF file.

INF Version Section

[Version]

Signature=""signature-name"'

[Class=class-name]
[ClassGuid={nnnnnnnn-nnnn-nnnn-nnnn-nunnnnnnnnnn}]
[Provider=%INF-creator%)

[LayoutFile=filename.inf [filename.inf]...]
[CatalogFile=filename.cat]
[CatalogFile.nt=unique-filename.cat]
[CatalogFile.ntx86=unique-filename.cat]
DriverVer=mm/dd/yyyy[x.y.v.z]

By convention, the Version section appears first in INF files. Every INF file must have this
section.

Entries and Values

Signature="signature-name"

Can be any of $Windows NT$, $Chicago$, or $Windows 958$. The enclosing $ are required
but these strings are otherwise case-insensitive. If the signature-name is none of these string
values, the file is not accepted as a valid INF.

If an INF is used to install device(s)/driver(s) on both Windows 9x and Windows 2000
platforms, it must designate any OS-specific installation information by appending system-
defined extension(s) to its DDInstall section(s), whether the signature-name is $Windows
NTS$, $Chicago$, or $Windows 95$. (See Creating an INF File in the Plug and Play, Power
Management, and Setup Design Guide for a discussion of these extensions.)

170

Part3 Setup

Class=class-name

For any standard type of device, this specifies the class name, such as one of the system-
defined class names like Net or Display as listed in devguid.h, for the type of device to be
installed from this INF file. See Device Setup Classes for more information on the system-
defined device setup classes.

If an INF specifies a Class it should also specify the corresponding system-defined GUID
value for its ClassGUID entry. Specifying the matching GUID value for a device of any
predefined device setup class can install such a device and its driver(s) faster since this helps
the system setup code to optimize its INF searching.

Any INF that adds a new setup class of devices to the system should supply a unique, case-
insensitive class-name value that is different from any of the system-defined device-type-
specific classes in devguid.h. Such an INF must specify a newly generated GUID value for
the ClassGUID entry. Otherwise, this entry is irrelevant to an INF that installs neither a new
device driver under a predefined device setup class nor a new device setup class.

ClassGuid = {nnnnnnnn-nnnn-nnnn-nnnn-nnnnhnnnhnnn}

Specifies the device-class GUID, formatted as shown here, where each # is a hexadecimal
digit.

For a Windows 2000 device/driver(s) INF, such a GUID value determines the device (setup)
class subkey in the registry ...\Class tree under which to write registry information for the
driver(s) of device(s) installed from this INF file. This class-specific GUID value also
identifies the device-class installer for the type of device and class-specific property-page
provider, if any.

For a new device setup class, the INF must specify a newly generated ClassGUID value.
For more information about creating GUIDs, see the Plug and Play, Power Management,
and Setup Design Guide. For more information about system-defined device setup classes,
see Device Setup Classes.

Provider=%INF-creator%
Identifies the provider of the INF file. Typically, this is specified as an % Organization-
Name % token that is expanded later in the INF's Strings section.

For example, INFs supplied with the system typically specify the INF-creator as % Msft%
and define % Msft% = ''Microsoft" in their Strings sections.

LayoutFile=filename.inf [,filename.inf]...

Specifies one or more additional system-supplied INF files that contain layout information
on the source media required for installing the software described in this INF. All system-
supplied INFs specify this entry, but IHV/OEM-supplied INFs do not.

Chapter 1 INF File Sections and Directives 171

INF files that are not distributed with the OS itself must omit this entry and have Source-
DisksNames and SourceDisksFiles sections instead. By convention, these two sections
follow the Version section.

CatalogFile=filename.cat |

Specifies the catalog file to be included on the distribution media of a device/driver when
it has been tested, certified, and assigned digital signature(s) by the Microsoft Windows
Hardware Quality Lab. (Contact WHQL for more information about the signing, testing,
and certification of IHV and/or OEM driver packages.) The file has the extension .cat.

Catalog files are not listed in the SourceDisksFiles or CopyFiles sections of the INF. Setup
~ assumes that the catalog file is in the same location as the INF file.

System-supplied INF files never have CatalogFile= entries because the OS validates the
signature for such an INF against all system-supplied xxx.cat files.

[CatalogFile.nt=unique-filename.cat] |
[CatalogFile.ntx86=unique-filename.cat] |

Specifies another INF-writer-determined but unique file name, also with the extension .cat,
for a Windows 2000-specific or Windows 2000-platform-specific catalog file to be included
on the distribution media of a device/driver already validated by WHQL.

If these optional entries are omitted from a dual-OS INF file, a given CatalogFile=
filename.cat is used for validating WDM device/driver installations on all Windows 2000
and Windows 98 machines. If any decorated CatalogFile.xxx= entry exists in an INF's
Version section together with an undecorated CatalogFile= entry, the undecorated entry
is assumed to identify a filename.cat for validating device/driver installations only on
Windows 98 machines.

Note that any cross-platform and/or dual-OS device/driver INF file that has CatalogFile=
and CatalogFile.xxx= entries must supply a unique IHV/OEM-determined name for each
such .cat file.

DriverVer=mm/dd/yyyy[,x.y.v.z]

This entry specifies version information for drivers installed by thls INF. This entry is
required in Windows 2000 INFs.

The mm/dd/yyyy value specifies the date of the driver package, including the driver files and
the INF. A hyphen (-) can be used as the date field separator in place of the slash (/).

The x.y.v.z specifies an optional version number. This value is for display purposes only (for
example, in the Device Manager). The OS does not use this value for driver selection.

A Windows 2000 INF should have a DriverVer entry in the Version section to provide
version information for the whole INF plus DriverVer directives in the individual DDInstall
sections to provide version information for individual drivers. DriverVer entries in the

172 Part 3 Setup

DDinstall sections are more specific and take precedence over the global DriverVer entry
in the Version section.

When the OS searches for drivers, it chooses a driver with a more recent DriverVer date
over a driver with an earlier date. If an INF has no DriverVer entry or is unsigned, the OS
applies the default date of 00/00/0000.

Windows 98 does not recognize a DriverVer entry in the Version section. Therefore, an
INF that will be used on Windows 98 should have DriverVer entries in the undecorated
DDlInstall sections that are used by Windows.98.

Comments

When the Microsoft Windows Hardware Quality Lab certifies a driver package, it returns
.cat catalog file(s) to the IHV or OEM that contain the digitally encrypted signature(s) for
the driver package. The IHV or OEM must list any .cat file(s) in the Version section of
their INF and must supply the files on the distribution media in the same location as the
IHV/OEM-supplied INF file. The .cat files must be in uncompressed form.

Example

The following example shows a Version section typical of a simple device-driver INF, fol-
lowed by the required SourceDisksNames and SourceDisksFiles sections implied by the
entries specified in this sample Version section:

[Version]

Signature="$Chicagos$"

Ctass=SCSIAdapter
ClassGUID={4D36E97B-E325-11CE-BFC1-08002BE10318}
Provider=%INF_Provider%
CatalogFile=ahal54_win98.cat
CatalogFile.ntx86=ahal54_ntx86.cat
DriverVer=08/20/1999

[SourceDisksNames]

; diskid = description[, [tagfile]l [, <unused>, subdirl]
1
2

%Floppy_Description%,,,\Win98
%Floppy_Description%,,,\WinNT

[SourceDisksFiles]

; filename_on_source = diskID[, [subdir][, sizell

ahal54x.mpd = 1,,

Chapter 1 INF File Sections and Directives 173

[SourceDisksFiles.x86]
ahal54x.sys = 2,\x86

[Strings]
INF_Provider="Adaptec"”
Floppy_Description = "Adaptec Drivers Disk"

See Also
DDlInstall, SourceDisksNames, SourceDisksFiles, Strings

INF SourceDisksNames Section

[SourceDisksNames] |
[SourceDisksNames.x86]

diskid = %strkey% | ["\disk-description["]],[tagfile][,unused,path]]

A SourceDisksNames section identifies the distribution disk(s) or CD-ROM disc(s) that
contain the source files to be transferred to the target machine during installation.

Entry Values
diskid
Specifies a nonnegative integer that identifies a source disk. This value can be expressed in
decimal or in hexadecimal notation, but it cannot require more than four bytes of storage. If

there is more than one source disk for the distribution, each diskid entry in this section must
have a unique value, such as 1, 2, 3,... or 0x0, 0x1, 0x2,... and so forth.

disk-description

Specifies a % strkey% token or a "'quoted string"' that describes the contents and/or purpose
of the disk identified by diskid. The installer can display the value of this string to the end
user during installation, for example, to identify a source disk to be inserted into a drive at a
particular stage of the installation process.

Every %strkey% specification in this section must be defined in the INF's Strings section.
Any disk-description that is not a %strkey% token is a user-visible string that must be de-
limited by double-quote characters (') if it has any leading or trailing spaces.

174

Part 3 Setup

tagfile
This optional value specifies the name of a tag file supplied on the distribution disk, either

in the root directory or in the given path subdirectory, if any, of the disk. The value should
specify only the filename, not any directory or subdirectory.

Setup uses a tag file to verify that the user inserted the correct installation disk. Tag files are
only used for removeable media.

A vendor can also use a tag file to contain a "cabinet" of compressed installation files. If
tagfile has the extension .cab, Setup uses it as a tag file and as a source of installation files.

unused

This is not used on Windows 2000. This value is only used in Windows 9x. See the
Windows 98 DDK documentation for further information. '

path

This optional value specifies the path to the directory on the distribution disk containing
source files, including the tagfile if any. The path is relative to the root and is expressed as
\dirname\dirname?2... and so forth. If this value is omitted from an entry, files are assumed
to be in the root directory of the distribution disk.

Subdirectories containing particular source files can be specified relative to a given path
directory in the corresponding SourceDisksFiles section of the INF file. However, any
tagfile supplied on the distribution disk must reside either in the given path directory or,
if path is omitted, in the root directory.

Comments

A SourceDisksNames section can have any number of entries, one for each distribution
disk. Any INF with a SourceDisksNames section also must have a SourceDisksFiles
section.

These sections never appear in system-supplied INFs. Instead, system-supplied INFs specify
LayoutFile entries in their Version sections.

To support a multiplatform distribution of Windows 2000 driver files, construct platform-
specific SourceDisksNames sections. For example, all system setup API functions that
process a SourceDisksNames section will search first for a SourceDisksNames.x86 sec-
tion on a Windows 2000 x86-based platform and only look at an undecorated SourceDisks-
Names section if they cannot find a SourceDisksNames.x86 section.

Examples

In the following example, the write.exe file is the same for all Windows 2000 platforms and
is located in the \common directory on a CD-ROM distribution disc. The cmd.exe file is a
platform-specific file that is only used on Windows 2000 x86-based platforms.

Chapter 1 INF File Sections and Directives 175

[SourceDisksNames]
1 = "Windows NT CD-ROM",file.tag,,\common

[SourceDisksNames.x86]
2 = "Windows NT CD-ROM",file.tag,,\x86

[SourceDisksFiles]
write.exe =1
cmd.exe = 2

This next example again shows the SourceDisksNames section from the example in the
preceding reference for the Version section.

[SourceDisksNames]

; diskid = description[, [tagfilel [, <unused>, subdirl]

.o

1 = %Floppy_Description%,,,\Win98
%F1loppy_Description%,,,\WinNT

N
[i§

See Also

DestinationDirs, SourceDisksFiles, Version

INF SourceDisks'FiIes Section

[SourceDisksFiles] |
[SourceDisksFiles.x86]

filename = diskid[,[subdir]l, sizel]

A SourceDisksFiles section names the source files used during installation, identifies the
source disks (or CD-ROM discs) that contain those files, and provides the path to the sub-
directories, if any, on the distribution disks containing individual files.

Entry Values
filename

Specifies the name of the file on the source disk.
diskid v
Specifies the integer identifying the source disk that contains the file. This value and the

initial path to the subdir(ectory), if any, containing the named file must be defined in a
SourceDisksNames section of the same INF.

176 Part3 Setup

subdir

This optional value specifies the subdirectory (relative to the SourceDisksNames path
specification, if any) on the source disk where the named file resides.

If this value is omitted from an entry, the named source file is assumed to be in the root
directory or in the path directory that was specified in the SourceDisksNames section for
the given disk.

size
This optional value specifies the uncompressed size, in bytes, of the given file.

Comments

A SourceDisksFiles section can have any number of entries, one for each file on the distri-
bution disk(s). Any INF with a SourceDisksFiles section also must have a SourceDisks-
Names section. (These sections are omitted from a system-supplied INF, which instead
specifies a LayoutFile entry in its Version section.)

To support a multiplatform distribution of Windows 2000 source files, construct platform-
specific SourceDisksFiles sections. For example, all system setup API functions that pro-
cess a SourceDisksFiles section will search first for a SourceDisksFiles.x86 section on a
Windows 2000 x86-based platform and only look in an undecorated SourceDisksFiles
section if they cannot find a SourceDisksFiles.x86 section.

However, the presence of a SourceDisksFiles.x86 section does not exclude the existence of
an undecorated SourceDisksFiles section within the same INF if it installs some software
that is cross-platform in nature.

Example

The following example shows the SourceDisksFiles section for the corresponding
~ SourceDisksNames example shown in the immediately preceding section and in the
Version section.

[SourceDisksFiles]

; filename_on_source = diskID[, [subdir]f, sizel] ,
ahal54x.mpd = 1,, ; on distribution disk 1, in subdir \win9x

[SourceDisksFiles.x86]
ahal54x.sys = 2,\x86 ; on distribution disk 2, in subdir \WinNT\x86

Chapter 1 INF File Sections and Directives 177

See Also
CopyFiles, DestinationDirs, RenFiles, SourceDisksNames, Version

INF Classlinstall32 Section

[ClassInstall32] | [ClassInstall32.ntx86]

AddReg=add-registry-section[, add-registry-section] ...
[Copyfiles=@filename | file-list-section], file-list-section] ...]
[DelReg=del-registry-section|, del-registry-section] ...]
[Delfiles=file-list section|, file-list-section] ...]
[Renfiles=file-list-sectionl, file-list-section] ...]
[BitReg=bit-registry-section|[,bit-registry-section)...]
[Updatelnis=update-ini-section| update-ini-section)...]
[UpdateIniFields=update-inifields-section[,update-inifields-section]...]
[Ini2Reg=ini-to-registry-sectionl,ini-to-registry-section)...]

A ClassInstall32 section installs a new setup device class (and possibly a class installer) for
some number of devices of the same new type.

An INF for device(s) in a system-defined device setup class should not specify a Class-
Install32 section. However, coinstaller(s) can be provided for any such device or class of
devices to supplement the installation operations of existing class installers or of the
Windows 2000 device installer.

Usually, a ClassInstall32 section will have one or more AddReg directives to add value
entries under a system-provided SefupClassGUID subkey in the registry. These value entries
can include the class-specific "friendly name," class-installer path specification, class icon,
property-page provider, if any, and so forth. Except for AddReg and CopyFiles, the other
directives shown here are very seldom used in a ClassInstall32 section.

Valid Directives
AddReg=add-registry-section[, add-registry-section] ...

References one or more named sections in which class-specific value entries are specified
to be written into the registry when this INF is processed. Typically, this is used to give the
new device setup class at least a friendly name that other components can later retrieve from
the registry and use to open installed devices of this new device class, to "install" any new
device class installer and/or property-page provider for this device setup class, and so

forth. An HKR specification in any add-registry-section referenced here designates the
.Class\{SetupClassGUID} registry key.

178

Part 3 Setup

Copyfiles=@filename | file-list-section], file-list-section] ...

Either specifies one named file to be copied from the source media to the destination or
references one or more named sections in which class-relevant file(s) on the source media
are specified for transfer to the destination. The DefaultDestDir entry in the Destination-
Dirs section of the INF specifies the destination directory for any class specific single file
to be copied. :

System-supplied INFs for device setup classes (and class installers) do not use this directive
in this section.
DelReg=del-registry-section[, del-registry-section] ...

References one or more named sections in which value entries or keys are specified to be
removed from the registry during installation of the class installer.

However, if a particular {SetupClassGUID} subkey exists in the registry ..Class branch, the
system setup code subsequently ignores the ClassInstall32 section of any INF that specifies
the same GUID value in its Version section. Consequently, an INF cannot replace an exist-
ing class installer or modify its behavior from a ClassInstall32 section. To modify the
behavior of existing class installer, use a class-specific coinstaller.

Delfiles=file-list section], file-list-section] ...

References one or more named sections in which previously installed class-relevant file(s)
on the destination are specified for deletion.

Renfiles=file-list-section], file-list-section] ...

References one or more named sections in which class-relevant file(s) to be renamed on the
destination are listed.

BitReg=bit-registry-section[,bit-registry-section]...

Is valid in this section but almost never used.

Updatelms:update-lm-sectlon[,update-ln|-sect|on]..
Is valid in this section but almost never used.

UpdatelniFields=update-inifields-section[,update-inifields-section]...
Is valid in this section but almost never used.
Ini2Reg=ini-to-registry-section[,ini-to-registry-section]...

Is valid in this section but almost never used.

Comments

The system processes the ClassInstall32 section of an INF for a new device setup class
when such a device is about to be installed but the SetupClassGUID value of that device's

Chapter 1 INF File Sections and Directives 179

class is not predefined by Windows 2000. (See Device Setup Classes for a list of the system-
defined setup class names and GUIDs.)

To support a multiplatform distribution of Windows 2000 driver files, construct platform-
specific ClassInstall32 sections. For example, all system setup API functions that process a
ClassInstall32 section will search first for a ClassInstall32.ntx86 section on a Windows
2000 x86-based platform and only look at an undecorated ClassInstall32 section if they
cannot find a ClassInstall32.ntx86 section.

Every device installed on Windows 2000 platforms is associated with a device setup class in
the registry. If the INF for a particular device to be installed is not associated with a new de-
vice class installer or its ClassGUID= specification in the Version section does not match
any of the system-defined setup class GUIDs, that device's registry subkey is created under
«.Class\{ UnknownClassGUID}.

The INF for any device class installer typically has an AddReg directive in its ClassInstall-
32 section to define at least one named section that creates a friendly name for its kind of
device in the SetupClassGUID subkey of the registry ..Class tree. The Windows 2000 setup
code automatically creates this SetupClassGUID subkey in the registry from the value sup-
plied for the ClassGUID= entry in the Version section of such an INF file when the first
device of that (new) setup class is installed.

Under this SetupClassGUID subkey, such an INF also provides registry information for
some number of Models-specific subkeys, using additional AddReg directives in its per-
manufacturer, per-models DDInstall sections. In addition, the INF can use the add-registry
section(s) referenced in its ClassInstall32 section to specify a property-page provider and
to exert control over how its class of devices is handled in the user interface.

Such a class-specific add-registry section has the following general form to define a friendly
name for the device setup class and other class-specific value entries in the class-specific
registry key:

[SetupClassAddReg]

HKR,,,,% DevClassName % ; device-class friendly name
{HKR,,Installer32,," class-installer.dll,class-entry-point'']
[HKR,,EnumPropPages32,," prop-provider.dll,provider-entry-point']
HKR,Icon,," icon-number"

[HKR,,SilentInstall,,1]

[HKR,,NolnstallClass,,1]

[HKR,,NoDisplayClass,,1]

A nonnegative icon-number indicates the icon is supplied by the given property-page pro-
vider or by the new device class installer. Negative icon-number values are reserved for
system use.

180

Part 3 Setup

Setting the predefined SilentInstall, NoDisplayClass, and NoInstallClass Boolean value
entries in a class-specific registry key has the following effects:

= Setting SilentInstall directs installers to send no pop-ups to the user that require a
response while installing device(s) of this class, whether specified in the DDInstall
sections of the class installer's INF file or in separate INF:files for subsequently installed
devices that declare themselves of this class by setting the same ClassGuid={Class-
GUID} specification in their respective Version sections. For example, the system class
installers of CD-ROM and disk devices and the system parallel port class installer set
SilentInstall in their respective registry keys.

If a class-specific installer requires the machine to be rebooted for any device that it
installs, the class-specific add-registry section in its INF cannot have this value entry.

= Setting NoDisplayClass suppresses the user-visible display of all devices of this class by
the Device Manager. For example, the system class installers for printers and for network
drivers (including clients, services, and protocols) set NoDisplayClass in their respective

registry keys.

= Setting NolInstallClass indicates that no device of this type will ever require manual
-installation by an end user. For example, the system class installers for exclusively PnP
devices set NoInstallClass in their respective registry keys.

A ClassInstall32 section can contain AddReg directives to set the DeviceType, Device-
Characteristics, and Security for devices of its setup class. See the INF AddReg Directive
for more information.

Examples

This example shows the ClassInstall32 section, along with the named section it references
with the AddReg directive, of the INF for the system display class installer.

[ClassInstall132]
AddReg=display_class_addreg

[display_class_addreg]

HKR,,,,%DisptayClassName%
HKR,,Installer32,,"Desk.Cpl,DisplayClassInstaller”
HKR,,Icon,,"-1"

By contrast, this example shows the add-registry section referenced in the system CD-ROM
INF's ClassInstall32 section. It sets up a class-specific property-page provider for the CD-
ROM devices/drivers that it installs. This INF also sets the SilentInstall and NoInstallClass
value entries in the CD-ROM class key to TRUE (1).

Chapter 1 INF File Sections and Directives 181

[cdrom_class_addreg]

HKR,,,,%CDClassName% .

HKR, ,EnumPropPages32,,"SysSetup.D11,CdromPropPageProvider"
HKR,,SilentInstall,,1

HKR, ,NoInstaliClass,,1

HKR,,Icon,,"101"

See Also

AddReg, BitReg, CopyFiles, DDInstall, DelFiles, DelReg, Ini2Reg, Models, RenFiles,
SetupDiBuildClassInfoListEx, UpdateIniFields, Updatelnis, Version

INF DestinationDirs Section

[DestinationDirs]

[DefaultDestDir=dirid[,subdir]]
[file-list-section=dirid[,subdir]] ...

A DestinationDirs section specifies the target destination directory or directories for all
copy, delete, and/or rename operations on files referenced by name elsewhere in the
INF file.

This section is required in any INF that uses a CopyFiles directive or that references a file-
list-section, whether with a CopyFiles, DelFiles, or RenFiles directive.

Entry Values
DefaultDestDir=dirid[,subdir]]

Specifies the default destination directory for all copy, delete, and/or rename operations on
files that are not explicitly listed in a file-list-section referenced by other entries here.

file-list-section

Specifies the INF-writer-determined name of a section referenced by a CopyFiles, Ren-
Files, or DelFiles directive elsewhere in the INF file. Such an entry is optional if this section
has a DefaultDestDir entry and all copy-file operations specified in this INF have the same
target destination. However, any file-list-section referenced by a RenFiles or DelFiles
directive elsewhere in the INF must be listed here.

dirid
Specifies the directory identifier of the target directory for operations on files that are refer-
enced by name, possibly within a named file-list-section of the INF. This can be one of the

182

Part 3 Setup

following numerical values, which are shown here with the values most commonly specified
by device/driver INFs toward the top of this list:

Value Destination Directory

12 Drivers directory
This is equivalent to %windir%\system32\drivers on Windows 2000 platforms and to
YowindirJo\system\loSubsys on Windows 9x platforms.

10 Windows directory
This is equivalent to %windir% for both Windows 2000 and Windows 9x.
11 System directory

This is equivalent to %windir%\system32 for Windows 2000 and to
Yowindire\system for Windows 9x.

50 Yowindir%e\system directory (Windows 2000 only)

30 Root directory of the boot drive (a.k.a. "ARC system partition" for Windows 2000)
54 Directory where ntldr.exe and osloader.exe are located (Windows 2000 only)
01 SourceDrive:\pathname (the directory from which the INF file was installed)
17 INF file directory

20 Fonts directory

51 Spool directory

52 Spool drivers directory

55 Print processors directory

23 Color (ICM)

-1 Absolute path

21 Viewers directory

53 .User Profile directory

24 Applications directory

25 Shared directory

18 Help directory

The following dirid values are for commonly used shell "special folders":

Value Shell Special Folder

16406 All Users\Start Menu

16407 All Users\Start Menu\Programs

16408 All Users\Start Menu\Programs\Startup
16409 All Users\Desktop

16415 All Users\Favorites

16419 All Users\Application Data

16422 Program Files

Chapter 1 INF File Sections and Directives 183

Value Shell Special Folder
16427 Program Files\Common
16429 All Users\Templates
16430 All Users\Documents

Besides the values listed above that are defined in setupapi.h, you can use any of the
CSIDL_Xxx values defined in shlobj.h. To define a dirid value for a folder not listed above,
add 16384 (0x4000) to the CSIDL_Xxx value. For more information on CSIDL_Xxx values,
see the Platform SDK documentation.

subdir

Specifies the subdirectory (and the rest of its path, if any, under the directory identified by
dirid) to be the destination of the file operations in the given file-list-section.

Comments

The optional DefaultDestDir entry provides a default destination for copy, rename, and
delete file operations that appear elsewhere in the INF file:

= CopyFiles directives that use the direct copy (@filename) notation must have a Default-
DestDir entry in the DestinationDirs section of the INF in which the direct-copy entry
appears.)

= CopyFiles, RenFiles, or DelFiles sections that are not directly referenced in the
DestinationDirs section must have a DefaultDestDir entry in the DestinationDirs
section of the INF in which the copy/rename/delete files section(s) appear.

Because all WDM drivers must be installed in the %windir%\system32\drivers directory
of computers running Windows 2000 or Windows 98, their dual-OS INFs must specify the
dirid value 10 with an explicit subdir path as system32\drivers either as the DefaultDest-
Dir entry, if any, or in the given file-list-section(s) (referenced elsewhere in the INF with
the CopyFiles directive) that list the WDM driver images to be copied to the target.

Examples

This example sets the default target directory for all copy-file, delete-file, and rename-file
operations specified in a given Windows 2000 INF file to the %windir%\system32\drivers
directory. Such a simple DestinationDirs section is common to INFs for new Windows
2000 peripheral devices, because such an INF usually just copies a set of source files into
a single directory on the target machine.

[DestinationDirs]
DefaultDestDir = 12 ; dirid = \Drivers on WinNT platforms

184 Part 3 Setup

This example shows a fragment of the DestinationDirs section of the INF for Windows
2000-installed display/video drivers, for which the ClassInstall32 section was shown as an
example in the immediately preceding reference.

[DestinationDirs]
DefaultDestDir =11 ; dirid = \system32 on WinNT platforms

I

; 1ist of per-Manufacturer, per-Models, per-DDInstall-section, and
; CopyFiles-referenced xxx.Miniport/xxx.Display sections omitted here
; along with several other miniport/display paired drivers

vga.Miniport

=12
vga.Display =11
xga.Miniport =12
xga.Display =11

; all video miniports copied into \system32\drivers on WinNT platforms
; all paired display drivers copied into \system32

See Also

ClassInstall32, CopyFiles, DDInstall, DelFiles, RenFiles, SourceDisksFiles, Source-
DisksNames, Version

INF ControlFlags Section

[ControlFlags]

ExcludeFromSelect=* |
ExcludeFromSelect=Aw-id[,hw-id] ...
[ExcludeFromSelect.nt=Aw-id[,hAw-id] ...]
[ExcludeFromSelect.ntx86=hAw-id[,hw-id] ...]
[CopyFilesOnly=Aw-id[,hw-id] ...]
[Interactivelnstall=Aw-id[,hw-id] ...]

Typically, a ControlFlags section has one or more ExcludeFromSelect entries to control
which device(s) listed in the per-manufacturer Models section of INF file will not be dis-
played to the end user as options during manual installations.

INFs that install exclusively PnP devices also have this section unless they set the No-
InstallClass value entry in their respective SetupClassGUID keys to TRUE, as already
described in the reference for the ClassInstall32 section.

Chapter 1 INF File Sections and Directives 185

Entries and Values

ExcludeFromSelect

Removes all (*) or the specified list of devices from the display shown to the end user, from
which that user is expected to select a particular device for installation. To exclude a set of
OS-incompatible or platform-incompatible devices from this display, one or more Exclude-

. FromSelect entries can have the following system-defined (and case-insensitive) extensions
appended:

.nt
Do not display these device(s) on computers running Windows 2000.

.ntx86
Do not display these device(s) on x86-based computers running Windows 2000.

hw-id
Identifies a device that is specified in the per-manufacturer Models section of the INF file.
Each such Aw-id value in a given entry must be separated from the next with a comma (,).

CopyFilesOnly

Installs only the INF-specified files for the given device(s) because the device hardware

is not accessible or available yet. This entry is rarely used. However, it can be used to pre-
install the driver(s) of a device for which the card will later be seated in a particular slot that
is currently in use. For example, if a device currently seated in the particular slot is neces-
sary to transfer INF-specified files to the target, the INF would have this entry.

Interactivelnstall

Forces the specified list of devices to be installed in a user's context. Each line can specify
one or more hardware or compatible IDs and there can be one or more lines.

This entry is optional. The preferred way to install devices is to omit this entry and allow
Setup to install the device in the context of a trusted system thread, if possible. However, if
a device absolutely requires a user to be logged in when the device is installed, include this
entry in the device INF. This entry is not supported on Windows 9x systems.

Comments

The system's New Device Wizard builds a list of installable devices by searching through
all available INF files. It extracts information about models/devices from each of these INF
files and displays this information to the end user, unless an INF overrides this behavior by
suppressing the display of one or more models/devices in that INF's ControlFlags section.

Listing the Aw-id of a device in an ExcludeFromSelect entry removes it from the display
shown to the end user. Specifying * (an asterisk) for the ExcludeFromSelect value removes
all devices/models defined in the INF file from this user-visible list.

186

Part 3 Setup

An INF writer should use the InteractiveInstall sparingly and only in the following
situations:

= To install driver(s) for devices that have corrupted or otherwise incorrectly defined hard-
ware IDs. For example, when two or more different devices share the same Hardware ID.
This case is strictly forbidden by the Plug and Play standard, but some hardware vendors
have made this error in hardware design.

= To install drivers for devices that require their own driver and absolutely cannot use the
generic class driver or another driver supplied with Windows 2000. The Interactive-
Install directive forces the Windows 2000 Device Manager to ask the user for confirma-
tion for compatible ID matches.

In the future, WHQL might not grant the Windows Logo to devices whose INF files include
any InteractivelInstall entries.

Example

This example of the ControlFlags section in the system mouse class installer INF sup-
presses the display of devices/models that cannot be installed on Windows 2000 x86-based
platforms. (Some relevant fragments of the same INF were already shown in the intro-
duction to this chapter.)

[ControlFlags]

; Exclude all bus mice and InPort mice for x86 platforms
ExcludeFromSelect.ntx86=+PNPQFQD,*PNPOF11,+*PNPOF00@,*PNPOFO2,*PNP@F15
; Hide this entry always

ExcludeFromSelect=UNKNOWN_MOUSE

The following INF file fragment shows two devices: one that is fully PnP capable and re-
quires no user intervention during installation and another that requires its own driver and
cannot use any other driver. Specifying InteractiveInstall for the second device forces
Windows 2000 to install this device in a user’s context (a user with administrative rights),
including prompting the user for the location of the driver files (INF file, driver file, and so
on) as required.

[Manufacturer]
%Mfg% = ModelsSection

[ModelsSection]

; Models section, with two entries

%Devicel.DeviceDesc%h = Devicel.Install, \
PCI\VEN_1000&DEV_0001&SUBSYS_00000000&REV_01

%Device2.Device.Desc% = Device2.Install, \
PCI\VEN_1000&DEV_0001&SUBSYS_00000000&REV_02

Chapter 1 INF File Sections and Directives 187

[ControlFlags]
Interactivelnstall = \
PCI\VEN_1000&DEV_0001&SUBSYS_00000000&REV_02

.
» .

See Also
ClassInstall32, Manufacturer, Models

INF Manufacturer Section

[Manufacturer]

manufacturer-name
[manufacturer-name] ... |

90 strkey Jo=models-section-name

[% strkey %o=models-section-name] ...

The Manufacturer section identifies the manufacturer of one or more devices that can be
installed using the INF file. It also defines the Models section name for the installation of
that manufacturer's devices and their driver(s).

Entries and Values

manufacturer-name

Identifies the device(s)' manufacturer and the corresponding Models section elsewhere in the
INF. Each such entry must uniquely identify the manufacturer within the INF file. However,
an entry specified in this manner cannot be localized.

strkey

Specifies a token, uniquevwithin the INF, representing the name of a manufacturer. Each
such %strkey% token must be defined in a Strings section of the INF file.

models-section-name

Specifies an INF-writer-defined name for the per-manufacturer Models section within the
INF file. This value must be unique within the INF and must follow the same general rules
for defining section names already described in General Syntax Rules for INF Files.

Comments

Any INF that installs one or more devices must have a Manufacturer section. An
IHV/OEM-supplied INF typically specifies only a single entry in this section, but using

a % strkey%o=models-section-name entry simplifies the localization of the INF for the inter-
national market, as described in Creating International INF Files or as described later in
the Strings section.

188 Part 3 Setup
If an INF file specifies one or more entries in the manufacturer-name format, each such
entry implicitly specifies the name of the corresponding Models section elsewhere in
the INF. ‘
The Manufacturer section of a system-supplied device setup class INF is sometimes
called a "Table of Contents" because this section sets up the installation of every manufac-
turer's devices/models of the same class for which the drivers are supplied with the OS. Each
entry in such an INF's Manufacturer section specifies both an easily localizable % strkey %
token for the name of a manufacturer and a unique-to-the-INF per-manufacturer Models
section name. '

Examples
This example shows a Manufacturer section typical to an INF for a single IHV.
[Manufacturer]
%LogiMfg%=LogiMfg ; Models section == LogiMfg
[Strings]
LogiMfg = "Logitech"
The next example shows part of a Manufacturer section typical to an INF for a device-
class-specific installer:
[Manufacturer]
%ADP%=ADAPTEC
; several entries omitted here for brevity
%SONY%=SONY
%ULTRASTOR%=ULTRASTORE

See Also

Models; Strings

INF Models Section

[models-section-name]

device-description=install-section-name,hw-id| compatible-id...]
[device-description=install-section-name,hw-id[,compatible-id]...] ...

A per-manufacturer Models section identifies at least one device, references the DDInstall
section of the INF file for that device, and specifies a unique-to-the-INF hardware identifier
for that device. Any entry in the per-manufacturer Models section also can specify one or
more additional device ID(s) for model(s) compatible with the device designated by the
initial HW ID and controlled by the same driver(s).

Chapter 1 INF File Sections and Directives 189

Each INF-writer-defined models-section-name must be referenced in the Manufacturer
section of the INF file. There can be one or more entries in any per-manufacturer Models
section, depending upon how many devices (and drivers) the INF file installs for a particular
manufacturer.

Entry Values

device-description

Identifies a device to be installed, expressed as any unique combination of explicitly visible
characters or as a %strkey% token defined in a Strings section of the INF file.

install-section-name

Specifies an INF-writer-determined name of the DDInstall section for the device (and
compatible models of device, if any).

hw-id
Specifies a vendor-defined string that identifies a device, which the PnP Manager uses to
find an INF-file match for this device. Such a hardware ID has one of the following formats:

enumerator\enumerator-specific-device-id

Is the typical format for individual PnP devices reported to the PnP Manager by a single
enumerator. For example, USB\VID_045E&PID_00B identifies the Microsoft HID key-
board device on a USB bus. Depending on the enumerator, such a specification can even
include the device's hardware revison number as, for example, PCRVEN_1011&DEV_
002&SUBSYS_00000000&REV_02.

*enumerator-specific-device-id
Indicates with the asterisk (¥*) that the device is supported by more than one enumerator. For

example, *PNPOFO1 identifies the Microsoft serial mouse, which also has a compatible-id
specification of SERENUM\PNPOFO1.

device-class-specific-ID
Is an 1/O bus-specific format, as described in the hardware specification for the bus, for the
hardware IDs of all peripheral devices on that type of 1/O bus,

Note that a single device can have more than one hw-id value. The PnP Manager uses each
such Aw-id value, which is usually provided by the underlying bus when it enumerates its
child devices, to create a subkey for each such device in the registry ..Enum branch. For
manually installed devices, the system's setup code uses their sw-id values as specified in
their respective INF files to create each such registry subkey.

compatible-id
Specifies a hw-id value compatible with that designated by the given hw-id. Any number
of compatible-id values can be specified for an entry in the Models section, each separated

190 Part 3 Setup

from the next by a comma (,). All such compatible devices and/or device models are con-
trolled by the same driver as the device designated by the initial Aw-id.

Comments

Any given install-section-name must be unique within the INF and must follow the same
general rules for defining section names already described in General Syntax Rules for INF
Files. Such a DDInstall section name referenced in a per-manufacturer Models section

also can have extensions appended to the given install-section-name, thus defining addi-
tional DDInstall sections for the OS-specific or platform-specific installation of the given
device(s). For more information about using extensions in cross-platform Windows 2000
and/or dual-OS files, see also Creating an INF File in Part 4, “Setup,” in the Plug and Play,
Power Management, and Setup Design Guide.

Any given hw-id for a manually installed device can be specified in the ControlFlags
section of the INF to prevent that device from being displayed to the end user by the Add
New Hardware Wizard.

For more information about PnP Aw-id and compatible-id values, see also the Plug and Play,
Power Management, and Setup Design Guide. .

For each device/driver installed using an INF file, the device installer(s) use the information
supplied in the Manufacturer section and per-manufacturer Models sections to generate
Device Description, Manufacturer Name, Device ID if the installation is manual, and, pos-
sibly, Compatibility List value entries in the registry.

Example

This example shows a per-manufacturer Models section with some representative entries
from the system mouse class installer's INF file, defining the DDInstall sections for some

devices/models.

[Manufacturer]

%StdMfg% =StdMfg ; (Standard types)
WMSMfg% =MSMfg ; Microsoft

3 ... %hotherMfg% omitted here

[StdMfg]l ; per-Manufacturer Models section
; Std serial mouse
%*pnp@f@c.DeviceDesc%= Ser_Inst,*PNPOFQC,SERENUM\PNPOFQC,SERIAL_MOUSE
; Std InPort mouse
%*pnp@f@d.DeviceDesc% = Inp_Inst,*PNPOF@D
. more StdMfg entries

See Also
ControlFlags, DDInstall, Manufacturer, Strings

Chapter 1 INF File Sections and Directives 191

INF DDInstall Section

[install-section-name] |
linstall-section-name.nt] |
[install-section-name.ntx86]

[DriverVer=mm/dd/yyyy[,x.y.v.z]]

[CopyFiles=@filename | file-list-sectionl file-list-section] ...]
AddReg=add-registry-section[,add-registry-section]...
[Inclade=filename.infl.filename2.inf]...]
[Needs=inf-section-namel,inf-section-name]...]
[Delfiles=file-list-section|,file-list-section)...]
[Renfiles=file-list-section| file-list-section]...]
[DelReg=del-registry-sectionl,del-registry-section]...]
[BitReg=bit-registry-section|,bit-registry-section]...]
[LogConfig=log-config-section{,log-config-section)...]
[Profileltems=profile-items-section|,profile-items-section]...]
[UpdateInis=update-ini-section[,update-ini-section]...]
[UpdateIniFields=update-inifields-section| ,update-inifields-section]...]
[Ini2Reg=ini-to-registry-section|,ini-to-registry-section]...]

Each per-Models DDInstall section contains an optional DriverVer entry and one or more
directives referencing additional named sections in the INF file, shown here with the most
commonly specified INF directives, CopyFiles and AddReg, listed first. The sections
referenced by these directives contain instructions for installing driver files and writing any
device-specific and/or driver-specific information into the registry.

Directives and Entries
DriverVer=mm/dd/yyyy[,x.y.v.z]

This optional entry specifies version information for the driver package.

The mm/dd/yyyy value specifies the date of the driver package, including the driver files
and the INF. This date should be the most recent date of any file in the driver package.
A hyphen (-) can be used as the date field separator in place of the slash (/).

The x.y.v.z specifies an optional version number. This value is for display purposes only (for
example, in the Device Manager). The OS does not use this value for driver selection.

When the OS searches for drivers, it chooses a driver with a more recent DriverVer date
over a driver with an earlier date. If an INF has no DriverVer entry or is unsigned, the OS
applies the default date of 00/00/0000.

192

Part 3 Setup

A Windows 2000 INF should have a DriverVer entry in its Version section and/or in the
individual DDInstall sections. If there is a DriverVer entry in a DDInstall section, the OS
uses that entry instead of the one in the Version section for that particular device.

Windows 98 does not recognize a DriverVer entry in the Version section. Therefore, an
INF that will be used on Windows 98 should have DriverVer entries in the undecorated
DDInstall sections that are used by Windows 98.

CopyFiles=@filename | file-list-section[file-list-section] ...

This directive either specifies one named file to be copied from the source media to the
destination or references one or more INF-writer-defined sections in which device-relevant
file(s) on the source media are specified for transfer to the destination. The CopyFiles
directive is optional, but is present in most DDInstall sections.

The DefaultDestDir entry in the DestinationDirs section of the INF specifies the destina-
tion for any single file to be copied. The SourceDisksNames and SourceDisksFiles sec-
tions, or an additional INF specified in the LayoutFile entry of this INF's Version section,
provides the location on the distribution media of the driver file(s).

AddReg=add-registry-section[,add-registry-section]...

This directive references one or more INF-writer-defined sections in which new subkeys,
possibly with initial value entries, are specified to be written into the registry or in which the
value entries of existing keys are modified.

An HKR specification in such an add-registry section designates the ..Class\SetupClass-
GUID\device-instance-id registry path to the user-accessible driver (a.k.a. "software" key).

-Include=filename.inf[filename2.inf]...

This optional entry specifies one or more additional named INF files containing sections
needed to install this device and/or driver. If this entry is specified, usually so is a Needs
entry.

For example, the system INFs for device drivers that depend on the system's kernel-
streaming support specify this entry as Include= ks.inf[, [kscaptur.inf,] [ksfilter.inf]].

Needs=inf-section-name[,inf-section-name]...

This optional entry specifies the particular section(s) within the given INF file(s) that must
be processed during the installation of this device. Typically, such a named section is a DD-
Install (or DDInstall.xxx) section within one of the INF file(s) listed in an Include entry.
However, it can be any section that is referenced within such a DDInstall or DDInstall.xxx
section of the included INF.

For example, the INFs for device drivers that have the preceding Include entry specify
this entry as Needs= KS.Registration[, KSCAPTUR.Registration| KSCAPTUR.
Registration.NT, MSPCLOCK Installation]

Chapter 1 INF File Sections and Directives 193

DelFiles=file-list-section[file-list-section]...
This directive references one or more INF-writer-defined sections listing file(s) on the target

to be deleted. In general, this directive is used only in INFs that upgrade a previous device/
driver installation to remove obsolete files from the target machine.

RenFiles=file-list-section file-list-section]...

This directive references one or more INF-writer-defined sections listing file(s) to be re-
named on the destination before device-relevant source files are copied to the target com-
puter. Typically, this directive is used only in INFs that upgrade a previous installation to
"save" previously installed files on the target machine from being overwritten.

DelReg=del-registry-section[,del-registry-section]...

This directive references one or more INF-writer-defined sections in which keys and/or
value entries are specified to be removed from the registry during installation of the
device(s).

Typically, this directive is used to handle upgrades when an INF must clean up old registry
entries from a previous installation of this device. An HKR specification in such a delete-
registry section designates the ..Class\SetupClassGUID\device-instance-id registry path to
the user-accessible driver (a.k.a. "software" key).

BitReg=bit-registry-section[,bit-registry-section]...

This directive references one or more INF-writer-defined sections in which existing registry
value entries of type REG_BINARY are modified. (See also AddReg.) An HKR specifica-
tion in such a bit-registry section designates the ..Class\Setup ClassGUID\device-instance-id
registry path to the user-accessible driver (a.k.a. "software" key).

LogConfig=log-config-section[,log-config-section]...

This directive references one or more INF-writer-defined sections within an INF for a root-
enumerated device or for a manually installed device. In these named sections, the INF for
such a "detected" or manually installed device specifies one or more logical configurations
of bus-relative hardware resources that the device must have to be operational. The INF for
such a manually installed device that is not software-configurable also should have a
DDlInstall.FactDef section.

The LogConfig directive is never used to install PnP peripheral devices, but, for more infor-
mation about using a DDInstall.LogConfigOverride section to override the hardware re-
source requirements reported by the underlying bus, see the reference for this directive later
in this chapter.

This directive is irrelevant to all higher level (nondevice) drivers and components.

194

Part 3 Setup

Profileltems=profile-items-section[,profile-items-section]...

This directive references one or more INF-writer-defined sections that describe items to be
added to, or removed from, the Start menu.

This directive is only supported on Windows 2000 platforms.

Updatelnis=update-ini-section[,update-ini-section]...

This rarely used directive references one or more INF-writer-defined sections, specifying a
source INI file from which a particular section or line within such a section is to be read into
a destination INI file of the same name during installation. Optionally, line-by-line modifi-
cations to an existing INI file on the destination from a given source INI file of the same
name can be specified in the update-ini section.

UpdatelniFields=update-inifields-section[,update-inifields-section]...
This rarely used directive references one or more INF-writer-defined sections in which
modifications within the lines of a device-specific INI file are specified.

Ini2Reg=ini-to-registry-section[,ini-to-registry-section]...

This rarely used directive references one or more INF-writer-defined sections in which
sections or lines from a device-specific INI file, supplied on the source media, are to be
moved into the registry.

Comments

The given install-section-name must be referenced in a device/models-specific entry under
the per-manufacturer Models section of the INF file.

Except for devices that have no associated files to be transferred from the source media, a
dual-OS INF file for a WDM driver must have at least two parallel DDInstall sections for a
given device, as follows:

1. For Windows 9x platforms, provide an undecorated DDInstall section that specifies en-
tries for device installations. There is no DDInstall.Services section in such a dual-OS
INF file, because Windows 9x does not store the same information about device/driver
services and dependencies in its registry as Windows 2000 does. Depending on the
device, it can also have either or both of the optional DDInstall. HW and DDInstall.
Interfaces sections to install the device/driver on Windows 9x platforms. (It might also
have a DDInstall.LogConfigOverride section, as described later in the reference for the
LogConfig directive.)

2. For Windows 2000 platforms, provide a corresponding DDInstall.ntx86 section that
specifies the entries for device/driver installations on x86-based Windows 2000 plat-
forms. (Alternatively, the INF could have a corresponding DDInstall.nt section.) If the
INF installs driver(s), such a dual-OS INF must have DDInstall.ntx86.Services section(s)
to specify the device/driver registry information to be stored in the Windows 2000

Chapter 1 INF File Sections and Directives 195

registry's ...\CurrentControlSet\Services tree. Depending on the device, it can also
have one or more of the optional DDInstallntx86.HW, DDInstall.ntx86.Colnstallers,
and/or DDInstall.ntx86.Interfaces sections to install the same device/driver on x86-
based Windows 2000 platforms. (It might also have a DDInstall.nt.LogConfigOverride
section, as described later in the reference for the LogConfig directive.)

For more information about how to use the system-defined .nt and .ntx86 extensions in
cross-platform and/or dual-OS INF files, see also Creating an INF File.

Each directive in a DDInstall section can reference more than one section name, but each
additional named section must be separated from the next with a comma (,). Each such
section name must be unique within the INF and must follow the same general rules for
defining section names already described in General Syntax Rules for INF Files.

Any AddReg directive specified in a DDInstall section is assumed to reference an add-
registry section that cannot be used to store information about upper or lower filter drivers,
about multifunction devices, or about driver-independent but device-specific parameters. If a
device/driver INF must store this type of information in the registry, it must use an AddReg
directive in its undecorated DDInstal.LHW section and decorated DDInstall.xxx. HW
sections, if any, to reference another INF-writer-defined add-registry section.

A DDlInstall section can include a directive named Reboot or Restart. These directives are
only for compatibility with Windows 9x. If one of these entries is present the OS is forced to
reboot when the device is installed. These directives should never be used for PnP devices.
In any case, it is best to let Setup determine whether the machine needs to be rebooted rather
than specifying these directives. '

Examples

This example shows the expansion of the DDInstall sections, Ser_Inst and Inp_Inst, refer-
enced in the example for the immediately preceding per-manufacturer Models section.
[Ser_Inst]

CopyFiles=Ser_CopyFiles, mouclass_CopyFiles

[Ser_CopyFiles]
sermouse.sys

[mouclass_CopyFiles] ; section name referenced by > 1 CopyFiles
mouclass.sys

[Inp_Inst]
CopyFiles=Inp_CopyFiles, mouclass_CopyFiles

[Inp_CopyFiles]
inport.sys

196 Part 3 Setup

This example shows the DDInstall.NT section in a dual-OS INF file for a system-supplied
WDM driver of a particular audio device. With the exception of the DriverVer entry, its
entries are identical to the undecorated DDInstall section for installations of the same device
on Windows 9x platforms. However, a DDInstall. NT section is necessary in such a dual-OS
INF file to set up the DDInstall. NT.Services section that is required to install the
device/driver on Windows 2000 platforms.

[NDMPNPB003_Device.NT]‘

DriverVer=01/14/1999,5.0

Include=ks.inf, wdmaudio.inf

Needs=KS.Registration, WDMAUDIO.Registration.NT
LogConfig=SB16.LC1,SB16.LC2,SB16.LC3,SB16.L.C4,SB16.LC5
; a few log-config-sections omitted here for brevity
CopyFiles=MSSB16.CopylList

AddReg=WDM_SB16.AddReg

The following shows the sections referenced by the preceding Needs entry in the system-
supplied ks.inf and wdmaudio.inf files specified in the Include entry. When the Windows
2000 device installer and/or media class installer process this device's DDInstall. NT section,
these next two sections are also processed.

[KS.Registration]

; following AddReg= is actually a single line in the ks.inf file

AddReg=ProxyRegistration,CategoryRegistration,\
TopologyNodeRegistration,PlugInRegistration,PinNameRegistration,\
DeviceRegistration

CopyFiles=KSProxy.Files,KSDriver.Files

[WDMAUDIO.Registration.NT]

AddReg=WDM.AddReg

CopyFiles=WDM.CopyFiles.Sys, WDM.CopyFiles.Drv

; INF-writer-defined add-registry and file-1ist sections

; referenced by preceding directives are omitted here for brevity

B

See Also

AddReg, BitReg, CopyFiles, DelFiles, DelReg, DestinationDirs, DDInstall.Colnstallers,
DDlInstall.FactDef, DDInstall. HW, DDInstall Interfaces, DDInstall.Services, Ini2Reg,
LogConfig, Manufacturer, Models, RenFiles, ProfileItems, SourceDisksFiles, Source-
DisksNames, UpdateIniFields, Updatelnis, Version

Chapter 1 INF File Sections and Directives 197

INF DDInstall.Services Section

[install-section-name.Services] |
[install-section-name.nt.Services] |
[install-section-name.ntx86.Services]

AddService=ServiceName,[flags),service-install-section[,
event-log-install-section|,| EventLogType][,EventNamel]l]...
[DelService=ServiceNamel,[flagsl[,[EventLogTypell,EventNamel]]]...
[Include=filename.infl filename2.inf]...]
[Needs=inf-section-namel,inf-section-name]...}

Each per-Models DDInstall.Services section contains one or more AddService directives
referencing additional INF-writer-defined section(s) in a Windows 2000 INF file.

Windows 2000 INFs commonly use the DDInstall.Services section with at least one Add-
Service directive to control how and when the services of a particular driver are loaded, any
dependencies on other services or on underlying (legacy) drivers it might have, and so forth.
Optionally, they set up event-logging services by the device driver(s) as well.

DDlInstall.Services sections should have the same platform and OS decorations as their
related DDInstall sections. For example, a DDInstall.ntx86 section would have a corres-
ponding DDInstall.ntx86.Services section.

This section is irrelevant to exclusively Windows 9x installations.

Directives and Entries

AddService=ServiceName,[flags],service-install-section{,event-log-install-section
[,[EventLogType][,EventName]]]...

This directive references an INF-writer-defined service-install-section and, possibly, an
event-log-install-section elsewhere in the INF file for the driver(s) of the device(s) covered
by this DDInstall section. '

DelService=ServiceName[,[flags][,[EventLogType][,EventName]]]...

This directive removes a previously installed service from the target machine. This directive
is very rarely used, except possibly in an INF file that upgrades a previous installation of
the same devices/models listed in the per-manufacturer per-Models section that defined the
name of this DDInstall section.

Include=filename.inf,filename2.inf]...

This optional entry specifies one or more additional named INF files containing sections
needed to install this device. If this entry is specified, usually so is a Needs entry.

198 Part 3 Setup

Needs=inf-section-name[,inf-section-name]...

This optional entry specifies the particular named section that must be processed during
the installation of this device. Typically, such a named section is a DDInstall.Services or
DDInstall.xxx.Services section within an INF file listed in an Include entry. However, it
can be any section that is referenced within such a DDInstall.Services or DDInstall.
xxx.Services section.

Comments

The given DDInstall section must be referenced in a device/models-specific entry under
the per-manufacturer Models section of the INF file. The case-insensitive extensions to the
install-section-name shown in the formal syntax statement can be inserted into such a DD-
Install.Services section name in dual-OS and/or cross-platform INF files. For more infor-
mation about how to use the system-defined .nt and .ntx86 extensions in cross-platform
Windows 2000 and/or dual-OS INF files, see also Creating an INF File in Part 4, “Setup,”
in the Plug and Play, Power Management, and Setup Design Guide.

For more detailed information about INF-writer-defined service-install-sections and
event-log-install-sections, see the reference for the AddService directive.

Examples

This example shows t,he DDInstall.Services section for the Ser_Inst section shown as an
example in the immediately preceding reference for the DDInstall section.

[Ser_Inst.Services]
AddService=sermouse, 0x00000002, sermouse_Service_Inst,\
sermouse_EventlLog_Inst

; flags value in preceding entry indicates function driver of device
AddService = mouclass,, mouclass_Service_Inst, mouclass_EventLog_Inst

; entries in the following xxx_Inst sections omitted here for brevity,
; but fully specified as the example for the AddService directive
[sermouse_Service_Inst]

[sermouse_EventLog_Inst]

5 e

[moucTass._Service_Inst]

s e

[mouclass_EventlLog_Inst]

5 see

Chapter 1 INF File Sections and Directives 199

This example shows the DDInstall.NT.Services section and its INF-writer-defined service-
install-sections in the dual-OS INF file for the system-supplied WDM audio device/driver
shown as an example in the immediately preceding reference for the DDInstall section.

[WDMPNPBOO3_Device.NT.Services]

AddService = wdmaud, @x00000000,wdmaud_Service_Inst
AddService = swmidi,0x00000000,swnidi_Service_Inst
AddService sbl6, 0x00000002,sndblst_Service_Inst

[wdmaud_Service_Inst]

DisplayName = %wdmaud.SvcDesc% ; friendly name (see Strings)
ServiceType =1 ; SERVICE_KERNEL_DRIVER
StartType =1 ; SERVICE_SYSTEM_START
ErrorControl =1 ; SERVICE_ERROR_NORMAL

3

ServiceBinary = %10%\system32\drivers\wdmaud.sys

[swmidi_Service_Inst]

DisplayName = %swmidi.SvcDesc%

ServiceType =1

StartType =1

ErrorControl =1

ServiceBinary = %10%\system32\drivers\swmidi.sys

[sndbist_Service_Inst]

DisplayName = %sndblst.SvcDesc%
ServiceType =1 '
StartType =1

ErrorControl =1

ServiceBinary = %10%\system32\drivers\mssbl6.sys

[Strings] ; only immediately preceding %strkey% tokens shown here
%wdmaud. SvcDesc%="Microsoft WDM Virtual Wave Driver (WDM)™
%swmidi.SvcDesc%="Microsoft Software Synthesizer (WDM)"
%sndblst.SvcDesc%="WDM Sample Driver for SB16"

The reference for the DDInstall. HW section, next, has more examples of DDInstall.
Services section(s) with some service-install section(s) referenced by the AddService
directive, including one for a PnP filter driver.

See Also
AddService, DDInstall, DDInstall. HW, DelService, Models

200

Part3 Setup

INF DDInstall.HW Section

[install-section-name. HW] |
[install-section-name.nt. HW] |
[install-section-name ntx86. HW]

[AddReg=add-registry-section|, add-registry-section]...] ...
[Include=filename.infl filename2.inf]...]
[Needs=inf-section-namel,inf-section-name]...]
[DelReg=del-registry-section|, del-registry-section]...] ...
[BitReg=bit-registry-section|,bit-registry-section] ...] ...

DDInstall. HW sections are typically used for installing multifunction devices, for install-
ing PnP filter drivers, and for setting up any user-accessible device-specific but driver-
independent information in the registry, whether with explicit AddReg directives or with
Include and Needs entries.

Directives and Entries

AddReg=add-registry-section[, add-registry-section]...

References one or more INF-writer-defined add-registry-sections elsewhere in the INF

file for the device(s) covered by this DDInstall. HW section. Such an add-registry section
typically installs filters and/or stores per-device information in the registry. An HKR speci-
fication in such an add-registry section designates the ..Enum\enumeratorID\device-
instance-id registry path to a user-accessible per-device (a.k.a. "hardware") subkey.

Include=filename.inf,filename2.inf]...

Specifies one or more additional named INF files containing section(s) needed to install this
device. If this entry is specified, usually so is a Needs entry.

Needs=inf-section-name[,inf-section-name]...

Specifies the named section(s) that must be processed during the installation of this device.
Typically, such a named section is a DDIristalLHW (or DDInstall.xxx.HW) section within
an INF file listed in an Include entry. However, it can be any section that is referenced
within such a DDInstall HW or DDInstall.xxx.HW section of the included INF.

DelReg=del-registry-section[, del-registry-section]...

References one or more INF-writer-defined delete-registry-sections elsewhere in the INF
file for the driver(s) of the device(s) covered by this DDInstall section. Such a delete-
registry section removes stale registry information for a previously installed device/driver
from the target machine. An HKR specification in such a delete-registry section designates
the same subkey as for AddReg. ’

Chapter 1 INF File Sections and Directives 201

This directive is rarely used, except in an INF file that upgrades a previous installation of
the same devices/models listed in the per-manufacturer per-Models section that defined the
name of this DDInstall section.

BitReg=bit-registry-section[,bit-registry-section]...
Is valid in this section, but almost never used. An HKR specification in a referenced bit-
registry section designates the same subkey as for AddReg.

Comments

The case-insensitive extensions to the install-section-name shown in the formal syntax
statement can be inserted into such a DDInstall. HW section name in cross-platform
Windows 2000 and/or dual-OS INF files. For more information about how to use the
system-defined .nt and .ntx86 extensions in cross-platform and/or dual-OS INF files, see
also Creating an INF File.

Any DDInstall. HW section either must have an AddReg directive or must Include another
INF file and reference a section in the corresponding Needs entry that sets up the necessary
registry information.

Each directive in a DDInstall. HW section can reference more than one INF-writer-defined
section, but each additional named section must be separated from the next with a comma
(;). Each such section name must be unique within the INF and must follow the same gen-
eral rules for defining section names already described in General Syntax Rules for INF
Files.

For more information about installing multifunction devices, see also the Plug and Play,
Power Management, and Setup Design Guide.

Example

This example shows how the Windows 2000 CD-ROM device class installer INF uses
DDlInstall HW sections to support both CD audio and changer functionality by creating
the appropriate registry section(s) and setting these up as PnP upper filter drivers with
AddService directives.

;3 Installation section for cdaudio. Sets cdrom as the service
;3 and adds cdaudio as a PnP upper filter driver.
[cdaudio_instalil]

CopyFiles=cdaudio_copyfiles,cdrom_copyfiles

[cdaudio_install.HW]
AddReg=nosync_addreg,cdaudio_addreg
; cdaudio_addreg required to register this as a PnP filter driver

202 Part 3 Setup

[cdaudio_install.Services]
AddService=cdrom,dx00000002, cdrom_ServicelnstallSection
AddService=cdaudio,,cdaudio_ServicelnstallSection

[changer_install]
CopyFiles=changer_copyfiles,cdrom_copyfiles

[changer_install.HW]
AddReg=changer_addreg

; ... changer_install.Services section similar to cdaudio's
; ... some similar cdrom_install(.HW)/addreg sections omitted

[cdaudio_addreg] ; changer_addreg section has similar entry
HKR, ,"UpperFilters",0x00010000,"cdaudio" ; REG_MULTI_SZ value

; Use next section to disable synchronous transfers to this device.
; Sync transfers will a]ways_be turned off by default in this INF
; for any cdrom-type device. '

[nosync_addreg]
HKR, ,"DefaultRequestFlags",0x00010001,8

[autorun_addreg]
HKLM,"System\CurrentControlSet\Services\cdrom”,"AutoRun",0x00010003,1
;3 service-install sections for cdrom, cdaudio, and changer

[cdrom_ServicelnstallSection]

DisptayName = %cdrom_ServiceDesc%
ServiceType . =1

StartType =1

ErrorControl =1

ServiceBinary = %12%\cdrom.sys
LoadOrderGroup = SCSI CDROM Class
AddReg = autorun_addreg

[cdaudio_ServicelnstallSection]

DisplayName = %cdaudio_ServiceDesc%
ServiceType =1
StartType =1
ErrorControl =1

ServiceBinary = %12%\cdaudio.sys

; ... changer_ServicelnstallSection similar to cdaudio's

Chapter 1 INF File Sections and Directives 203

See Also
AddReg, BitReg, DDInstall, DDInstall.Services, DelReg

INF DDInstall.Colnstallers Section

[install-section-name.Colnstallers] |
[install-section-name.nt.Colnstallers] |
[install-section-name.ntx86.Colnstallers]

AddReg=add-registry-section|, add-registry-section]...
CopyVFiles=@filename | file-list-section| file-list-section)...
{Include=filename.infl filename2.inf]...]
[Needs=inf-section-name|,inf-section-name]...]
[DelFiles=file-list-section| file-list-section]...]
[RenFiles=file-list-section| file-list-section]...]
[DelReg=del-registry-section[, del-registry-section]...]
[BitReg=bit-registry-section[,bit-registry-section]...]
[Updatelnis=update-ini-section[update-ini-section]...]
[UpdateIniFields=update-inifields-section| ,update-inifields-section]...]
[Ini2Reg=ini-to-registry-section|,ini-to-registry-section]...]

This optional section registers one or more device-specific coinstallers or (rarely) device-
class-specific coinstallers supplied on the distribution media to supplement the operations
of existing device class installer(s).

Directives and Entries

AddReg=add-registry-section[, add-registry-section]...
References one or more INF-writer-defined add-registry-sections that store registry infor-
mation about the supplied coinstaller(s).

An HKR specified in such an add-registry section designates the ..Class\SetupClassGUID\
device-instance-id registry path to the user-accessible driver (a.k.a. "software") key. Thus,
for a device-specific coinstaller, it writes (or modifies) a Colnstallers32 value entry in this
user-accessible per-device/driver "software" subkey.

For a class-specific coinstaller, it registers the new coinstaller(s) by modifying the contents
of the appropriate ..CoDeviceInstallers\SetupClassGUID subkey(s). The path to the appro-
priate registry SetupClassGUID subkey(s) must be explicitly specified in the referenced
add-registry section(s).

204

Part 3 Setup

CopyFiles=@filename | file-list-section[,file-list-section]...

Transfers the source coinstaller file(s) to the destination on the target machine, usually by
referencing one or more INF-writer-defined file-list-sections elsewhere in the INF file. Such
a file-list section specifies the coinstaller file(s) to be copied from the source media to the
destination directory on the target.

However, system INFs that install coinstallers never use this directive in a DDInstall.
Colnstallers section.

Include=filename.inf[,filename2.inf]...

Specifies one or more additional named INF files containing sections needed to install the
coinstaller(s) for this device or device setup class. If this entry is specified, usually so is a
Needs entry.

Needs=inf-section-namel[,inf-section-name]...

Specifies the particular section(s) that must be processed during the installation of this
device. Typically, such a named section is a DDInstall.ColInstallers (or DDInstall.xxx.-
Colnstallers) section within a INF file listed in an Include entry. However, it can be any
section that is referenced within such a DDInstall.Colnstallers or DDInstall.xxx.-
Colnstallers section of the included INF.

DelFiles=file-list-section] file-list-section]...
References a file-list section specifying file(s) to be removed from the target. This directive

is rarely used, but it might be used in an INF that upgrades a previous installation with new
coinstaller file(s).

RenFiles=file-list-section[,file-list-section]...
References a file-list section specifying file(s) on the destination to be renamed before co-

installer source files are copied to the target.This directive also is rarely used, but it might be
used in an INF that upgrades a previous installation with new coinstaller file(s).

DelReg=del-registry-section[, del-registry-section]...

References one or more INF-writer-define delete-registry-sections. Such a section speci-
fies stale registry information about the coinstaller(s) for a previous installation of the same
device(s) that should be removed from the registry. An HKR specified in such a delete-
registry section designates the same registry subkey as already described for AddReg.

This directive is very rarely used in a DDInstall.Colnstallers section.

BitReg=bit-registry-section[,bit-registry-section]...
Is valid in this section but almost never used. An HKR specified in such a bit-registry
section designates the same registry subkey as already described for AddReg.

Chapter 1 INF File Sections and Directives 205

Updatelnis=update-ini-section[,update-ini-section]...
Is valid in this section but almost never used.

UpdatelniFields=update-inifields-section[,update-inifields-section]...
Is valid in this section but almost never used.

Ini2Reg=ini-to-registry-sectionl,ini-to-registry-section]...
Is valid in this section but almost never used.

Comments

The given DDInstall section must be referenced in a device/models-specific entry under the
per-manufacturer Models section of the INF file.

If an INF includes a DDInstall.Coinstallers section, there must be one for each platform-
decorated and undecorated DDInstall section. For example, if an INF contains an [install-
section-name.ntx86] section and an [install-section-name] section and it registers
device-specific coinstaller(s), then the INF must include both an [install-section-
name.ntx86. Coinstallers] section and an [install-section-name.Coinstallers] section.
For more information about how to use the system-defined .nt and .ntx86 extensions in
cross-platform and/or dual-OS INF files, see also Creating an INF File. Coinstallers are
not supported on Windows 9x platforms.

Each directive in a DDInstall.Colnstallers section can reference more than one INF-writer-
defined section name, but each additional named section must be separated from the next
with a comma (,). Each directive-created section name must be unique within the INF and
must follow the same general rules for defining section names already described in General
Syntax Rules for INF Files.

A coinstaller is a Win32 DLL that typically writes additional configuration information to
the registry or performs other installation tasks that require dynamically generated, machine-
specific information that is not available when an INF is created. A device-specific co-
installer supplements the installation operations either of the OS's device installer or of the
appropriate class installer when that device is installed. A device-class-specific coinstaller
supplements the installation operations either of the OS's device installer or of the appro-
priate class installer for every device of that class when they are installed.

For more information about writing and using coinstallers, see also the Plug and Play,
Power Management, and Setup Design Guide.

Installing Coinstaller Images

All coinstaller files must be copied into the %windir%\system32 directory on Windows 2000
machines, or into %windir%\system on Windows 9x machines. Like any INF CopyFiles
operation, the destination is controlled explicitly for a named file-list-section in the

206

Part3 Setup

DestinationDirs section of the INF file by the dirid value 11 or by supplying this dirid
value for the DefaultDestDir entry.

Registering Device-Specific Coinstallers

To add the REG_MULTI_SZ-type value entry for one or more device-specific coinstallers
to the registry, an add-registry-section referenced by the AddReg directive has the follow-
ing general form:

[DDinstall.Colnstallers_DeviceAddReg]

HKR,,Colnstallers32,0x00010000,'" DevSpecificColnstall.dll
[,DevSpecificEntryPoint]"[," DevSpecific2Colnstall.dll
[,DevSpecific2EntryPoint]"...]

The entry in such an add-registry section appears as a single line within the INF file, and
each supplied device-specific coinstaller DLL must have a unique name. After it has been
registered, the system's device installer calls such a device-specific coinstaller at each sub-
sequent step of the installation process for that device.

When the optional DevSpecificEntryPoint is omitted from an add-registry section entry, the
default CoDevicelnstall routine is assumed to be the entry point of any coinstaller DLL.

Registering Device-Class Coinstallers

To add a value entry (and setup-class subkey, if it does not exist already) for one or more
device-class coinstallers to the registry, an add-registry-section referenced by the AddReg
directive has the following general form:

[DDinstall.Colnstallers_ClassAddReg]

HKILM,System\CurrentControlSet\Control
\CoDevicelnstallers,{SetupClassGUID},
0x00010008," DevClssColnst.dll[,DevClssEntryPoint]"

Each entry in such an add-registry section appears as a single line within the INF file, and
each supplied class coinstaller DLL must have a unique name. If the supplied coinstaller(s)
should be used for more than one class of devices, this add-registry section can have more
than one entry, each with the appropriate SetupClassGUID value. (The reference for the
Version section earlier in this chapter contains a summary of the system-defined device
classes and their respective setup ClassGUID values.)

Such a supplemental device-class coinstaller must not replace any already registered co-
installer(s) for an existing class installer, so it must have a unique name and the REG_
MULTI_SZ-type value supplied must be appended (as indicated by the 8 in the flags
value 0x0010008) to the class-specific coinstaller entries, if any, already present in the

Chapter 1 INF File Sections and Directives 207

{SetupClassGUID} subkey. However, the OS setup functions will never append a duplicate
DevClssColnstall.dll to a value entry if a coinstaller of the same name is already registered.

The INF for a supplemental device-class coinstaller can be activated by a right-click install
or through a custom setup application's call to SetupInstallFromInfSection.

Example

This example shows the DDInstall.ColInstallers section for IrDA serial network cards. The
system-supplied INF for these IrDA (serial) NICs supplies a coinstaller to the system IrDA
class installer.

; DDInstall section

[PNP.NT]

AddReg=ISIR.reg, Generic.reg, Serial.reg
PromptForPort=0 ; This is handled by IRCLASS.DLL
LowerFilters=SERIAL ; This is handlied by IRCLASS.DLL
BusType=14

Characteristics=0x4 ; NCF_PHYSICAL

; ... PNP.NT.Services section omitted here
[PNP.NT.CoInstallers]

AddReg = ISIR.CoInstallers.reg

[IRSIR.reg]

HKR, Ndi, HelpText, @, %IRSIR.Help%

HKR, Ndi, Service, @, "IRSIR"

HKR, Ndi\Interfaces, DefUpper, 0, "ndisirda"
HKR, NdilInterfaces, DeflLower, @, "nolower"
HKR, Ndi\Interfaces, UpperRange, @, "ndisirda"
HKR, Ndi\Interfaces, LowerRange, @, "nolower"

[Generic.reg]
HKR, ,InfraredTransceiverType,0,"0"

[Serial.reg]
HKR, ,SerialBased,®, "o"

[ISIR.CoInstallers.reqg]
HKR, ,Colnstallers32,0x00010000,"IRCLASS.d11,IrSIRCTassCoInstaller"”

; ... Services and Event Log registry sections omitted here
[Strings]

IRSIR.Help = "An IrDA serial infrared device is a built-in COM port or
external transceiver which transmits infrared pulses. This NDIS
miniport driver installs as a network adapter and binds to the FastIR
protocol."

208 Part3 Setup

The preceding PNP.NT.Colnstallers section only referenced a coinstaller-specific add-

- registry section. It has no CopyFiles directive because this system-supplied INF installs a
set of I'DA network devices and, like all system INFs, uses the LayoutFile entry in its
Version section to transfer the coinstaller file to the destination. However, any DDInstall.
Colnstallers section in an INF supplied by an IHV or OEM also would have a CopyFiles
directive, along with SourceDisksNames and SourceDisksFiles sections.

See Also

AddReg, BitReg, CopyFiles, DDInstall, DelFiles, DelReg, DestinationDirs, Ini2Reg,
RenFiles, SourceDisksFiles, SourceDisksNames, UpdatelniFields, UpdatelInis, Version

INF DDInstall.Interfaces Section

[install-section-name.Interfaces] |
[install-section-name.nt.Interfaces] |
[install-section-name.ntx86.Interfaces]

AddInterface={interfaceGUID} [, [reference string] [,[add-interface-section] [,flags]]] ...
[Include=filename.infl filename2.inf]...]
[Needs=inf-section-name[,inf-section-name]...]

Each per-Models DDInstall.Interfaces section can have one or more AddInterface direc-
tives, depending on how many predefined device interfaces a particular device/driver sup-
ports and/or how many new (and compatible with existing) device interfaces the driver(s)
of that device export for use by still higher level components.

To support existing device interfaces, such as any of the system's predefined kernel-
streaming interfaces, specify the appropriate interfaceGUID value(s) in this section. To
install a component, such as a class driver, that exports a whole new class of device inter-
faces, an INF also must have an Interfacelnstall32 section.

Directives and Entries
Addinterface={interfaceGUID} [, [reference string] [,[add-interface-section] [,flags]]]

This directive installs support for a device interface, designated by the given interfaceGUID
value, that the device/driver exports to higher level components. Usually, it also references
an INF-writer-defined add-interface-section elsewhere in the INF file.The {interfaceGUID}
and/or (rarely specified) reference-string can be expressed as %strkey% tokens that are
defined in a Strings section of the INF file. The INF of a PnP device function or filter driver
usually omits the optional reference string entry unless that driver uses reference strings to
discriminate between two interfaces of the same class for a single device. The flags, if
specified, must be zero.

Chapter 1 INF File Sections and Directives 209

An add-interface-section typically references an add-registry section that contains value
entries to be stored in the registry about the interface(s) supported by the device/driver.

An HKR specified in such an add-registry section designates the user-accessible device-
interface subkey of the ..DeviceClasses\{InterfaceClassGuid)\ registry branch. In the
Windows 2000 registry, DeviceClasses is a subkey of the ..CurrentControlSet\Control key.

Include=filename.inf,filename2.inf]...

This optional entry specifies one or more additional named INF files containing sections
needed to register the interfaces supported by this device/driver. If this entry is specified,
usually so is a Needs entry. :

Needs=inf-section-namel[,inf-section-name]...

This optional entry specifies the particular section(s) that must be processed during the in-
stallation of this device. Typically, such a named section is a DDInstall.Interfaces (or DD-
Install.xxx.Interfaces) section within a INF file listed in an Include entry. However, it can
be any section that is referenced within such a DDInstall.Interfaces or DDInstall.xxx.
Interfaces section of the included INF.

Comments

The given DDlInstall section must be referenced by a device/models-specific entry under
the per-manufacturer Models section of the INF file. The case-insensitive extensions to the
install-section-name shown in the formal syntax statement can be inserted into such a DD-
Install.Interfaces section name in cross-platform and/or dual-OS INF files. For more infor-
mation about how to use the system-defined .nt or .ntx86 extensions in cross-platform
and/or dual-OS INF files, see also Creating an INF File.

If a given {interfaceGUID} is not installed already, the OS's setup code installs that device
interface class in the system. Usually, an INF that installs one or more new device interfaces
for every subsequently installed device also has an [Interfacelnstall32] section containing
each specified {interfaceGUID} as an entry to set up registry information, copy any neces-
sary files, and so forth for such new device-interface classes.

For more information about how to create a GUID, see the Platform SDK documentation.
For the system-defined interface class GUIDs, see the appropriate system-supplied header,
such as ks.h for the kernel-streaming interface class GUIDS. -

When a driver is loaded, it must call IoSetDeviceInterfaceState once with each {interface-
GUID} value specified in the INF's DDInstall.Interfaces section that the driver supports on
the underlying device to enable the interface for runtime use by higher level components. As
an alternative to registering its support for a device interface in its INF, a device driver can
call IoRegisterDeviceInterface before making its initial call to IoSetDeviceInterfaceState.
Usually, a PnP function or filter driver makes this call from its AddDevice routine.

210 Part 3 Setup

Each AddInterface directive in a DDInstall.Interfaces section can reference an INF-writer-
defined add-interface-section. Each such section name must be unique within the INF and
must follow the same general rules for defining section names already described in General
Syntax Rules for INF Files.

For more detailed information about INF-writer-defined add-interface-sections, see the
reference for the AddInterface directive.

Example

This example shows the DDInstall. NT.Interfaces section in the dual-OS INF file for the
system-supplied WDM audio device/driver shown as examples in the preceding references
for the DDInstall section and DDInstall.Services section.

; following AddInterface= are all single Tines (without

; backslash 1ine continuators) in the system-supplied INF file

[WDMPNPBO@3_Device.NT.Interfaces]
AddInterface=%KSCATEGORY_AUDIO%,%KSNAME_Wave%,\
WDM_SB16.Interface.Wave
AddInterface=%KSCATEGORY_AUDIO%,%KSNAME_Topology%,\
WDM_SB16.Interface.Topology
AddInterface=%KSCATEGORY_AUDIO%,5KSNAME_UART%,\
WDM_SB16.Interface.UART
AddInterface=%KSCATEGORY_AUDIO%,%KSNAME_FMSynth%,\
WDM_SB16.Interface.FMSynth

.
3 e

[Strings] ; only immediately preceding %strkey% tokens shown here
%KSCATEGORY_AUDIO% = "{6994ad@4-93ef-11d0-a3cc-00a0c9223196}"
KSNAME_Wave = "Wave"

KSNAME_UART = "UART" -

KSNAME_FMSynth = "FMSynth"

KSNAME_Topology = "Topology"

5 e

See Also

AddInterface, DDInstall, Interfacelnstall32, IoRegisterDeviceInterface,
ToSetDeviceInterfaceState

Chapter 1 INF File Sections and Directives 211

INF Interfacelnstali32 Section
[Interfacelnstall32]

{InterfaceClassGUID}=install-interface-section| flags]... |
install-interface-section.nt[flags]... |
install-interface-section.ntx86/[flags]...

This section sets up one or more new device interface classes for a device/driver that exports
such an interface to still higher level components. The INF of such a device/driver also has a
DDInstall.Interfaces section to register its own support for each such new device interface
class or else the driver must call IoRegisterDeviceInterface with each InterfaceClassGUID
value when it is loaded.

Note that any subsequently installed devices/drivers also can register their support for such a
new device interface in the DDInstall.Interfaces sections of their respective INF files or by
calling IoRegisterDeviceInterface. In effect, this section bootstraps a new device interface
class for all devices/drivers that register support for that interface.

Entry Values

InterfaceClassGUID

Specifies a GUID value identifying the newly exported device interface.

Each given GUID value in this section also must be referenced by an AddInterface direc-
tive in the DDInstall.Interfaces (or appropriate DDInstall.xxx.Interfaces) section of the

INF file, or else the newly installed device's driver must call IoRegisterDeviceInterface
with this GUID.

For more information about how to create a GUID, see the Platform SDK documentation.
For the system-defined interface class GUIDS, see the appropriate headers, such as ks.% for
the kernel-streaming interfaces.

install-interface-section

References an INF-writer-defined section, possibly with any of the system-defined exten-
sions, elsewhere in this INF.

flags

If specified, must be zero.

212 Part3 Setup

Comments .
When a given InterfaceClassGUID is not already installed in the system, that interface is
installed as the corresponding DDInstall.Interfaces (or DDInstall.xxx.Interfaces) section is
processed by the system setup functions during device installation or when that device's
driver makes the initial call to IoRegisterDevicelnterface.
Each INF-writer-created interface-install-section name must be unique within the INF and
must follow the same general rules for defining section names already described in General
Syntax Rules for INF Files. Extensions, such as .NT or .ntx86, to a given interface-install-
section allow OS-specific and/or platform-specific interfaces to be exported from the same
INF file. For more information about these system-defined extensions, see Creating an INF
File in Part 4, “Setup,” in the Plug and Play, Power Management, and Setup Design Guide.
Any given interface-install-section has the following general form:
[interface-install-section]
AddReg=add-registry-section|, add-registry-section] ...
[Copyfiles=@filename | file-list-section], file-list-section] ...]
[DelReg=del-registry-section|, del-registry-section] ...]
[BitReg=bit-registry-section|,bit-registry-section]...]
[Delfiles=file-list section], file-list-section] ...]
[Renfiles=file-list-sectionl, file-list-section] ...]
[UpdateInis=update-ini-section[,update-ini-section]...]
[UpdatelIniFields=update-inifields-section|,update-inifields-section]...]
[Ini2Reg=ini-to-registry-section|,ini-to-registry-section]...]
As shown here, an interface-install section must have at least one AddReg directive that
references one or more add-registry sections to set up device-interface-specific information
in the registry during installation of this interface. An HKR specified in such an add-registry
section designates the ..DeviceClasses\{InterfaceClassGUID} key.
The registry information about this interface should include at least a friendly name for the
new device interface and whatever information the higher level components that open and
use this interface will need.
In addition, such an interface-install-section might use any of the optional directives shown
here to specify interface-specific installation operations.

See Also

AddReg, BitReg, ClassInstall32, CopyFiles, DDInstall, DDInstall.Interfaces, DelFiles,
DelReg, Ini2Reg, IoRegisterDevicelnterface, RenFiles, UpdatelniFields, UpdateInis

Chapter 1 INF File Sections and Directives 213

INF DDInstall.FactDef Section

[install-section-name.FactDef] |
[install-section-name.nt.FactDef] |
[install-section-name.ntx86.FactDef]

ConfigPriority=Priority_Value
[DMA Config=[DMAattrs:]DMANum]
[I0Config=io-range]
[MemConfig=mem-range]
[IRQConfig=[IRQattrs:IRQNum

This section should be used in an INF for any manually installed nonPnP device that an end
user might install with the Add New Hardware wizard. This section specifies the factory-
default hardware configuration settings, such as the bus-relative /O ports, IRQ (if any), and
so forth, for such a card. :

Section Entries and Values

ConfigPriority=Priority_Value

Specifies the priority value for this factory-default logical configuration, as HARD-
RECONFIG, indicating a jumper change is required to reset this logical configuration.

DMAConfig=[DMAattrs:]DMANum

Specifies the bus-relative DMA channel as a decimal number. DMAattrs is optional if the
device is connected on a bus that has only 8-bit DMA channels and the device uses standard
system DMA. Otherwise, it can be one of the letters D for 32-bit DMA, W for 16-bit DMA,
and N for 8-bit DMA, with M if the device uses busmaster DMA and with one of the
following (mutually exclusive) letters indicating the type of DMA channel used: A, B,

or F. If none of A, B, or F is specified, a standard DMA channel is assumed.

10Config=io-range
Specifies the I/O port range for the device in the following form:

start-end[([decode-mask][:alias-offset][:attr])}
where:

start specifies the (bus-relative) starting address of the I/O port range as a 64-bit
hexadecimal value.

end specifies the ending address of the I/O port range, also as an 64-bit hexadecimal value.

214 Part 3 Setup
decode-mask defines the alias type and can be any of the following:
Mask Value Meaning IOR_Alias =
3ff 10-bit decode 0x04
ftf 12-bit decode 0x10
i 16-bit decode - 0x00
0 ' — positive decode OxFF
alias-offset is ignored.
attr specifies the letter M if the given range is in system memory. If omitted, the given range
is in I/O port space.
MemConfig=mem-range
Specifies the memory range for the device in the following form:
start-end[(attr)]
where:
start specifies the starting (bus-relative) address of the device memory range as a 64-bit
hexadecimal value.
end specifies the ending address of the memory range, also as a 64-bit hexadecimal value.
attr specifies the attributes of the memory range as one or more of the following letters: R
(read-only), W (write-only), RW (read/write), C (combined write allowed), H (cacheable),
F (prefetchable), and D (card decode addressing is 32-bit, instead of 24-bit) If both R and W
are specified or if neither is specified, read/write is assumed.
IRQConfig=[IRQattrs:]IRQNum
Specifies the bus-relative IRQ that the device uses as a decimal number. IRQattrs is omitted
if the device uses a bus-relative, edge-triggered IRQ. Otherwise, specify L to indicate a
level-triggered IRQ and LS if the device can share the IRQ line listed in this entry.
Comments

The given DDInstall section must be referenced in a device-specific entry under the per-
manufacturer Models section of the INF file. The case-insensitive extensions to the
install-section-name shown in the formal syntax statement can be inserted into such a
DDInstall.FactDef section name in cross-OS and/or cross-platform INF files. For more
information about these system-defined extensions, see Creating an INF File.

This section must contain complete factory-default information for installing one device.
The INF should specify this set of entries in the order best suited to how the driver initializes
its device. If necessary, it can have more than one of any particular kind of entry. For
example, the INF for a device that used two DMA channels would have two DMA Config=

Chapter 1 INF File Sections and Directives 215

lines in its DDInstall. FactDef séction. From this section, the Add New Hardware wizard
builds binary logical configuration records and stores them in the registry.

The INF files of manually installed devices for which the factory-default logical configu-
ration setting(s) can be changed also should use the LogConfig directive in their DDInstall
sections. In general, such an INF should specify the entries in each of its log-config sections
and in its DDInstall.FactDef section in the same order.

Examples

This IOConfig= entry specifies an I/O port region, eight bytes in size, which can start at
2F8.

10Config=2F8-2FF

This MemConfig= entry specifies a memory region of 32K bytes that can start at DO00O.
MemConf1ig=D000@0-D7FFF

See Also
DDInstall, LogConfig

INF Strings Section

[Strings] | [Strings.LanguagelD] ...

strkeyl= [""1some string["']

strkey2 =" string-with-leading-or-trailing-whitespace
"very-long-multiline-string " |
"string-with-semicolon' | "'
""double-quoted-string-value

'l|

string-ending-in-backslash"' |

An INF file must have at least one Strings section to define every %strkey% token
specified elsewhere in that INF.

Entry Values
strkey1, strkey?, ...

Each strkey in an INF file must specify a unique name consisting of letters, digits, and/or
other explicitly visible characters. A % character within such a strkey token can be ex-
pressed as % %.

some string | "some string"

Specifies a string, optionally delimited with double-quote characters ('), that contains
letters, digits, punctuation, and possibly even certain implicitly visible characters, in

216

Part 3 Setup

particular, internal space and