
-- -caaby -
calue,.
CPU Plus

User's Manual
Version 2.0

222 Route 59
Suffern, New York 10901

(914) 368-0353

TABLE Or' CONTENTS
~------ -.- --.--~--

1. I NT RODUCT'I ON ••.•••.•••••••••••••••..•••......

1.1 WHO OR WHAT IS BABY BLU£?•.............•..... l-

1.2 SYSTEM REQUIREMENTS •••••••.•••••...•....•...•.....••• 1-

1.3 ABou'r THIS MANUAL ••..••••••••.•••.•••......••...•..••• 1.-

1 _ 4 S YM,B.OLS •••••••••• _ ••••••••••••••••••••.•••••••.•••••• 1-

2. !LAB'! BLUE HARDWARE r NSTALLA'l' ION •••••••••••••••••••.•••••• 2-

2.1 THE 'EASY WA'i •••••••••••• ~ •••••••••••••.••••••••.•••••• 2-

2.11 CHECK FACTORY SWITCH Sr.T'frNG 2-

2.12 RUN DIAGNOSTICS •.••••••••.•••••.•........•.••••• 2-

2.13 'CUST0!'1!.'.AT[')N .•...••.•.•....•..........•.....•• . i·

2.14 StAt·l:; 1·:LL\·TI\l\.:!·~··I .••...... , '

2.2 OPTIONS: 1'H"~ ItMW WAy .••••••••••••••.••...••...••.•... \

1. . 2 1 WHAT TIlL: . :"i , T . H E ~ ~·H·. A:-.i. • • • , . . .

. ~ ~ 22 BAS Ie PROt'j;.l:I.JH: •.. , .•••.•...•... , . ,

2.23 AVOIDI NG "iU:S r;RVED" MEMORy., .•...

2.24 RESOLVING CONfLICTS ..•...........

2.25 SYSTEM BOARO ~WITCHES .•••....•...

2.J CUSTOMIZATION NOTES •••••••••.••••.•••..•.••.• ~ .•••• 2·

2.31 DETAILED INSTRUCTIONS 2·

2.32 BABY BLUE DIP SWITCHE$ •••.•••..••......•.•.•••.. 2·

1.33 ~OTE SYSTEM CONFIGORAT10N ••.... ~ , , 2··

2 . J 4 1 aM PC - 1"..............,.......... 2·

2 • 3 ',; I 8M PC - 2 ••..•••••••••.•••••••.•......•.••....• 2 .. I

2. 36 I BM PC/Xl' ..•..••.• : .•...••••••.•..........•.... ".!. - 1

2. ')7 rJTHER PC'.-;..........................;-;

2.4 STEP BY STEP HARDWARE INSTALLATION •••••••••••••••••• 2-14

2.41 IBM PC - ALL MODELS ...•...............•........ 2-l4

2.411 Begin•.•.•....•.•.............•••... 2-14
2.412 Remove Cover•..........•............. 2-14
2.4l3 Verify Switch Settings•............. 2-14
2.414 Choose Expansion Socket ..••.••........... 2-14
2.415 Install Baby Blue 2-14
2.416 Reconnect Cables and Test System 2-15
2.417 Finishing Up 2-1S

3. OPERATION: RUNNING ~P/M PROGRAMS •••••••••••••••••••••••• 3-1

3.1 GETTING STARTED •••••••••• " •••••••••••••••••••••••••• 3-1

3.ll DOS COMMANDS•.......•...•...•.....• 3-l

3.12 THE BABY BLUE UTILITIES ••............•...•...... 3-1

3.13 OPERATING fUNDAMENTALS ..•••..................... 3-3

3.2 MEDIA COMPATIBILITY: ACCESS TO CP/M DISKETTES •.•••••• 3-5

3.21 THE PROBLEM OF STANDARDS ••...................... 3-5

3.22 MICROLOG FILE TRANSFER UTILITIES••...• 3-5

3.221 5" CP/M Diskettes 3-5
3.2228" Diskettes •••••..•••................•... 3-6

3.23 SERIAL COMMUNIC\TIONS• 3-6

3.24 OTHER ALTERNATIVES•..•..................•. 3-6

3.3 IMPORTING CP/M PROGRAMS: COMPATIBILITY ••••••••••••••• 3-7

3.31 DEFINITION .•.................................... 3-7

3.32 TEXT .~ND l),4,TA fILES 3-7

3 • 33 0 PER A T I "l (; CON SID E R 1\ T I UN S .•..•....•...•.......•.. 3 - 8

3.4 BABY BLUE AS A CP/M DEVELOPMENT SYSTEM .•.••.•••••••• 3-1~

3.41 TI<AtJSP:\RE'::-,k-:Y OF Hf->U!·:I, Jf:Fl".:l::l 3-l\1

3.411
3.412
50 413
3 .414

Ru 1 ,~,
Ru L ,c

Ru 1·::
I~u 1,:

I: Cr'?clt.in'J CO,"\ Files 3-1~J
I I :) p ,_, 11 1 :1;J E XIS tIn cJ C () t'l F tl e s • 3 - 1 1
I I I: C () P / 1 [) '3 a C 0 ~ F 11 '2 • • • • • • • • • • • • • 3 - L 1
IV: l)iJl'111n'l UnuuUlld COM [·'i l,.'s 3-12

3.42 E:XPORTING PPOGK;~MS•................]-12

4. BABY BLUE REFERENCE MANUA~ 4

4.l INTRODUCTION .•.•••.••................................ 4·

4.2 CONTROL FUNCT IONS•.................•..... 4-

4. J CONSOLE EMULAT I ON •.••...••..•••..•...........••.•.••. 4-

4 • 3 1 l> E :.) CHI t) T i UN. • • • • • • . • • . • • • • • • • • . . • • . • . • • . . 4 -

~.J2 PURPOSE ••.•••.••.•.....••••••.........•......••• 4-

4.33 VIDEO OUTPUT •••••••...•.•••...•...••••••••.••.•• 4-

4. !31 Oper':ltlO:1 .••.••.••.••.••.......•••..•.•••• 4-
4.332 VIJeo Control .::-ooes ...•..........•...•.... 4-

4.34 KEYBOARD INPUT •.....•....•.•......•........•... 4-1

4.341 IJptO!r,ltlon •.•••.•..•..••.................. 4-1
4 • 14 2 TV ':J ') III Fun c t ion Key Pro:) r cl ,nm I n 'J •.•••.•••.• 4 - 1
4.343 K<.?yboarJ Defaults 4-]
4.344 C:nulatin') TV9SG KeyboiHcl D'''~,1.Jlts•.•. 4-L

4.4 OPERATING SYSTEM TRANSLATOR .••. · ..•................•. 4-1

4.41 DESCRrpTIO~ ..•..•........•.................... . 4-1

4.42 PURPOSE .. 4-i

4.43 CP/M BOOS FUNCTION CALLS 4-1

4.44 CP/M BIOS CALLS 4-2

4.441 Logical to Physical Sector Mripplng 4-2
4.442 BIOS Entry Points 4-2

4.5 EXTENDED BOOS FUNCTION CALLS ••••••••...•..•.•••••••. 4-2~

4.5l DESCRIPTION 4-2'

4.52 PURPOSE •..•••.••••.....•....•..•..........•.••• 4-2'.

4.53 OPERATION •..•....••.•......•.•.............•••• 4-2~

4.531 Ca L I
4.532 Call
4.513 Call
4.534 C.'li 1
4.535 Ca I 1
<1. I) 36 Ca 1 1
4.537 C,'1l1
4.538 Ca 1 L
4.539 Ca II

247:
248:
249:
250:
251 :
252:
253:
254 :
255:

Chai:1••.••..............•. 4-21:
8088 Soft·.,.;ar2 Interrupt •.•.•... 4-2(;
System ~e~ory alo~k ~ove Down •• 4-27
Syst~~m Memory t3l.JCk :1,)\'e ~p 4-28
Peek systt·m Memory Byt" 4-2:1
Poki.' ~;yst,-,rn M\JinllfY Byt. •. ' ..•.•••• 4-2H
(>088'BIOS Call. 4-29
Out p 11 t t~ 0 Ii 0 S l 1 ,') I' l} r t ..•..••. 4 - 2 '1

Input trom H(1S~_ : I P')r 4-2'l

4.6 HARDWARE FUNCTIONS •.•••••••••••••••••••••••••••••••• 4-39

4.61 Z-80 PORT ADDRESS DECODING ••.••.••••••••••••••• 4-30

4.62 Z-80 CONTROL LINES •.•••••.•.••••.••.••••••••.•. 4-30

4.63 MEMORY ARBITRATION .•••••••••.•••••••••..••.•••• 4-32

Appendices

A. THE BABY BLUE UTILITIES ••••••••••••••••••••••.•••.••••••• A-l

A.1 BIND: THE CP/M-80 PROGRAM IN PC-DOS FORMAT •.•••••••• A-1

A.2 CONVERT: ACCESS TO CP/M DISKETTES .•••••••••••••..•••. A-3

A.3 KEYFIX: AUTOMATING YOUR KEYBOARD ••••••..•••••••••••• A-6

A.4 DIAGNOSTICS: TESTZ80 •••••••••••••••••••••••••••••••• ~-13

B. APPLICATIONS NOTES •••••••••••••••••••••••••.•••.••••••••• B-l

B.l EMULATING THE "SAVE" FUNCTION: DEBUG.DDT ••••••••••••• B-l

C~',WARRANTY INFORMATION ••••••••••••••••••••••••••••••••••••• C-l

iv

TABLES

2-1: Factory Switch Setting .•.........•........•.......•....• 2-

2-2: DIP Switch Settings .•.......•........................... 2-

2-3: IBM PC-I: Mother Board SW2 Settings 2-

2-4: IBM PC-2: Mother Board SW2 Settings 2-1

4-1: Memory Map ••••........•................................. 4-

4-2: Televideo 950 Video Control Codes 4-

4-3: TV95~ Escape Sequence: Load Function Key 4-1

4-4: TV950 Function Key Codes •....•........•..•.•......•...• 4-1

4-5: Function Key Default Definitions•......•.........• 4-1

4-6: Televideo 9513 Function Key Defaults 4-1'

4-7: Z-80 Functions Control Byt2 ..•...•.•.....•.•........•.. 4-3:

4-8: Address Decoding ••......•......•....•....•..........••. 4-3;

4-9: Segment and Port Assignments ...•......•....••.•.••••..• 4-3:

INTRO

1. INTRODUCTION

1.1 WHO OR WHAT II BABY BLUE?

Baby Blue is d singl~-b03rd microcomputer which enables the IBM
Personill Comput~r to run programs written for the CP/M-SO
operatin~ system. Although small enough to fit in a single
expansion slot, it contains a high-speed Z-80B microprocessor and
a full 64 Kilobyt~s of memory, making it actually more powerful
than most first-generation microcomputers.

The name derives from "Big alue", IBM's traditional nickname.
"Baby" connotes a symbiosis in which Baby Blue handles CP/M-S"
code written for the Z-80, while depending on the the host PC's
8Ci188 microprocessor to manage "life support" (operating system)
functions - keyboard, screen, disk Jrives, ~rinters, etc. The
cloHenoss of this "mother-child" relationship is Baby Blue's
unique strength: you get dual operating system capability under
PC-DOS alone, not the hasHle of maintaining two separate
operating systems.

If you can operate the PC, you can operate Baby Blue - there are
no new commands to learn, all peripheral devices work the same
way, and all programs use PC-DOS diskettes. You actually can't
tell the difference between a "native ll program and a program
which uses Baby Blue - in effect, CP/M-80 becomes a vast library
of time-tested, mature PC-DOS programs in a dizzying variety of
applications. It's a whole world - the largest and most profes
sional software resource available for microcomputers - yet it's
almost unknown to many PC owners. We think you'll enjoy
explor i ng it.

By the way, Baby Blue doubles as a 64K memory expansion, although
it can be placed outside system memory if you're pressed for
space. You also get programmable function keys (KEYFIX), a file
transfer utility which gives you access to diskettes in a number
of CP/M formats (CONVERT), and a communications program with
sophisticated error checking for exchanging files with other
computers (BSTAM).

Baby Blue runs in most IBM-PC compatibles;
a companlon product, BabyTex, for use in

IProfessional Computer.

1-1

Microlog manufactures
the Texas Instruments

INTRO

1.2 SYSTEM REQUIREMENTS

Baby Blue works in an IBM PC or compatible machine, with the
following minimum characteristics:

64 Kilobytes system RAM (l28K recommended for some
applications) •

- One 5" floppy disk drive (one other drive recommended; it
need not utilize 5" floppies) .

- PC-DOS (or MS-DOS) Version 1.1 or 2.0.

1. 3 ABOUT THIS MANUAL

Although Baby Blue is simple to install and use, it is also a
subtle, mature design with a broad history of proven applica
tions.The board's many special features and other esoterica make
this a long book, but it's structured to gJve you easy access to
the information you need at any level.

To~~t you up and running quickly, we begin with a simplified
inst:~llation procedure, requiring nothing more complicated than
phys~cally plugging Baby Blue into an expansion socket. The
factory configuration sidesteps the issues of switch settings and
memory mapping entirely, avoiding the painful part of most
installations. There is one drawback: you won't get a 64K memory
expartsion with this method, and if this is important to you,
you'Ll have to come back later to reconfigure the board.
However, . it is definitely the quick way to start running
programs on your Baby Blue.

with your board installed,' you can skip to Chapter 3, "Operation"
- within half a dozen pages, you'll already have run a sample
CP/M program. The remainder of Chapter 3 will fill you in on the
fine points of Baby Blue's capabilities, and the Appendix
contains in-depth reference sections for all the Microlog
utilities.

The rest is background and technical information about the inner
workings of Baby Blue's hardware and softwar~. It's meant for
the interested user as well as the experi~nced programmer who
wants to design his own applications.

1-2

INTRO

1.4 SYMBOLS

The following symbols ar~ used throughout t~ls text:

<CR>

< >

[xxx] -

Carriage Return,
"Retrn" key .,hen you

or Enter: press
see this symbol.

the "Ent~rlt or

All chardcters ~nclosed by this symbol 3re non-printi~g
keystrokes used for control purpose~: they are typed
but will not appe3r on your s~reen.

items enclosed in squ3re br3ckets must appear, but are
variable depending on context or user response.

Boldface indicates characters appearing on your screen.

c:

s:

d:

e:

Indefinite control drive name. A place-holder 3howing
where to putthename of the disk drive containing the
command file you wish to invoke.

Indefinite source drive name. A place-holder showing
where to put the name of the disk drive from which you
are getting a file. ----

Indefinite destination drive name. A place-holder
showing where to put the name of the disk drive you are
writing to.

Another indefinite drive name.

1-3

INTRO

NOTES:

1-4

INSTALL

2. BABY BLUE HARDWARE INSTALLATION

2.1 THE EASY WAY

I~ you'.ce qazing with horror ~t the :naze of ch-3rts and instruc
~lons In this chapter, we've got good news: y~u probably won't
need them. If you've Qver installed an expansion board, just
read to the end of this section; then open your System Unit, plug
B3by Blue into an expansion slot, and close up (if at all pos
s iole, avo id the Ie f tmos t slot - the one fa r thes t fr om the power
supply) .

Even if you've never been inside your System Unit, we've included
step-by-step instructions for all IBM PC's (See 2.41). This
section is also generally valid for IBM-compatibles not specifi
cally covered - use it in conjunction with the manufacturer's
documentation for your machine.

The only tool required is a medium blade-type screwjriver.

2.11 CHECK FACTORY SWITCH SETTING

Before beginning, check the "DIP" switch unit ~t Baby Blue's
right center - it's a brightly-colored rectangular block contain
ing eight tiny sliding switches, with numbers to match. It's
also marked "ON" and "OFF" - the switches are set by sliding them
in the indicated direction, and should come from the factory as
shown below. Reset any switches that are incorrect.

Table 2-1: Factory Switch Setting

Switch Number: 1 2 3 4 567 a

Setting: [I [] [] [] ON
[] [] [) [) T

2.12 RUN DIAGNOSTICS

Just before replacing the System Unit cover, make sure your
system powers up and otherwise behaves normally; then insert a
working copy (never the original) of your Baby Blue diskette, and
type:

TESTza9 <CR>

, This will test your hardware installation, including all circui
tryon Baby Blue itself. If TESTZa9 returns any errors, or your
system behaves abnormally, turn to the Appendix under
DIAGNOS'rI cs.

2-1

I HSTALL

2.13 CUSTOHIZATIOH

The standard installation has one drawback - it doesn't let Baby
Blue double as a 64K memory expansion. The rest of this chapter
is about alternate switch settings - use them when you want to
add Baby Blue's 64K to system memory or when the factory con
figuration proves unsuitable. As you'll see, choosing the
proper setting is complicated, because it involves your total
system configuration - the mother board, other expansion boards,
and Baby Blue itself. We've given you a configuration which
works for all current machines as originally manufactured; only a
few unusual systems will absolutely require customized switch
settings.

We suggest:" that everyone take the simple route first, if only to
be sure that Baby Blue is functioning properly. Try the board
out, run some programs, and get comfortable. Then come back if
you like, to customize the installation and pick up your bonus
64K.

2~14 STATIC ELECTRICITY

A word about static electricity - the kind that gives you a shock
when you touch a doorknob or another person - it can damage
~ntegrated circuits; the memory chips in your computer and on
Baby Blue are particularly vulnerable. Professionals often take
sp.cial precautions to insure that sparks don't jump from their
own' bodies to the circuit boards on which they are working. You
aren't likely to have trouble if you observe elementary
precautions such as "tagging up" on a metal table to discharge
yourself before handling any circuit boards. However, if you're
in a place where you get a lot of little shocks, it's time to
look into antistatic sprays and other products for high-static
environments - those jolts aren't doing your computer any good
during normal operation.

2-2

INSTALL

2.2 OPTIONS: THE HARD WAY

You're here because you're not satisfied \lith th~ f . .lctory CO:1fi
guration: most likely you want to use Baby 31ue's 64K for syste~
memory, as well as for running CP/M progrdms. i.Je'll berJin with
some background information, paying special ~ttention to unusunl
factors which may affect your installation. Even if you have some
experience, please scan these introductory notes to see if th~re
are any problems you may have overlooked.

2.21 WHAT THE SWITCHES MEAN

Although Baby Blue is a self-contained microcomputer, your opera
ting system sees it as a simple 64K memory expansion. Meffiory is
divided into "Pages", or "Segments" of 64K each; when you set
Baby Blue's switches, you assign it to a single Page number such
as "1", "2", etc. The number must be unique, because your system
uses it to locate this particular block of memory: no two
physical blocks of ~mory can share the ~me Page number. ---

"System memory" is general-purpose memory available to the opera
ting system. It includes all Pages starting with "0" (which is
always on the mother board) and counting up to the first empty
Page. Any memory above the first empty Page is excluded from
system memory, meaning that it can only be used for special
purposes.

The factory setting assigns Baby Blue to the highest numbered
Page not reserved by the operating system, which is Page "E" in
hexadecimal notation (Page "14" in our normal way of counting).
Since this is outside the normal range of system memory, you
don't have to worry about the schemes used by different computers
to reserve parts of low system memory, or about other expansion
boards (only a few have been designed to use this Page). The
result is a simple, universal installation procedure - but you
don't get a 64K expansion to system memory.

The following instructions assume that you want to map Baby Blue
contiguously at the top of system memory, to gain a 64K
expansion.

2.22 BASIC PROCEDURE

To map Baby Blue into system memory, refer to Table 2-2 ("Baby
Blue DIP Switch Settings"), after determining how many Kilobytes
of memory you have, including Baby Blue. Match this number
under "New Total Memory", and read across to determine your Page
number and corresponding switch settings. ,This will put Baby
Blue's starting address on the first available Page (lowest
number) after allowing for all memory presently installed in your
system. For example, if you have 64K already, this uses up Page
'" so Baby Blue goes on Page 1. If you have 64K plus a 256K
expansion board, you've used up Pages ",1,2,3 and 4 (five Pages
of 64K each, or 32"K) 10' so Baby Blue goes on Page 5.

2-3

IMSTALL

2.23 AVOIDING -RESERVED- MEMORY

Some machines effectively reserve low-numbered Pages for memory
chips to be installed in sockets directly on the mother board.
In these cases, you wi 11 have to pretend you have no less than a
certain amount of memory installed when you use the chart to set
Baby Blue's switches. For example, the IBM PC-2 reserves the
first four Pages (9, 1, 2, and 3) for the 256 Kilobytes which
can be installed on the motherboard - your lowest possible
switch setting will put Baby Blue on Page 4, corresponding to
329K total memory. This is true even if you actually have less
than 329K, including Baby Blue.

Note that if the mother board has not been fully populated, a
gap will appear in the sequence of memory Pages: if you have
memory assigned to Pa,ges 9 and 1 (128K), with Baby B'lue assigned
to Page 4, there is a gap at Pages 2 and 3. In this case you
can't have a 64K memory expansion anyway, so you might as well
stick to the standard installation.

2.24 RESOLVIMG COM~LICTS

You may need to insert Baby Blue somewhere in the middle of
~ystem memory, rather than at the very top. For example, most
RAMdisk software is designed to use all of system memory above,
some predefined Page. If Baby Blue's memory is at the top of
system memory, the RAMdisk will attempt to use it at the same

. time as Baby Blue's microprocessor. The system will see contra
~ictory information and shut down in confusion. The answer is to

'·.et Baby Blue as 'low as possible in system memory, that is,
immediately after the memory on the motherboard. Then tell the
RAHdisk software to begin using memory starting somewhere above
Baby Blue.

If you don't expect any difficulties, j.ust go ahead and install
Baby Blue at the top of system memory, but should a problem
develop, or if there is any question of compatibility with
another expansion board, the best procedure is to remove all
expansion ~emory boards and complete the Baby Blue installation,
including testing, as if the other boards did not exist. This
will put Baby Blue's memory immediately above the memory on the
mother boa rd. Then ins ta 11 the other boa rds, and reset all
switches per the manufacturer's instructions, counting the addi
tional 64K of Baby Blue memory which you have just installed.

The Quad ram 256K Quadboard and the IBM 32K expansion memory
board are known to conflict with Baby Blue unless you position
them above Baby Blue in system memory. Many other RAM boards
w~ll not permit any memory to be installed above them unless they
are fully populated, even if the empty banks are theoretically
disabled.

The factory setting avoids such complications, which arise only
when you m3ke Baby Blue part of system ~emory.

2-4

INSTALL

2.25 SYSTEM BOARD SWITCHES

The switches on the mother board tell the computer's operating
syst~m how much memory is available in the system, and how it is
o r 9 ani z·~ d ; a 1 so, so m e 0 f the s wit c h e s ref 1 e c t you r h a r d war e
configuration (hOlll many disk drives, what kind of monitor, etc.).
Each cime you turn power on, the operatiny system interrogates
the switches and proceeds according to the information it finds
there. The information required will vary from machine to
machine.

For example, the IBM PC needs to be "told" both how much me.nory
is inst~lled directly on the mother board, and also how much
total memory is available, including any expansion boards. By
contrast, you tell the PC!XT how much memory is on the mother
board, but it figures out how much total memory is in the system
without reference to any switches. There are also two versions of
the PC: an older one which can socket 64K of RAM on the mother
board, and a newer version, the "PC-2", which sockets 256K of RAM
on the mother board. The switch blocks on these two machines
appear to be similar, but have different meanings, so you must
know which machine you have. Some systems have no switches at
alL

Don't touch any switches on the mother board unless you change
the amount of system memory. Since the factory setting excludes
Baby Bl ue from system memory, the standard i nsta llat i on doesn't
affect the mother board.

2-5

IHSTALL

2.3 CUSTOMIZATIOH HOTES

2.31 DETAILED IMSTRUCTIOHS

This Section covers the fine points of configuring for specific
machines. Select yours from the following:

(2.34) IBM PC 1
(2. 3 5) IBM PC 2
(2.36) IBM PC/XT
(2.37) Other IBM-Compatible PC's

2.32 BABY BLOE DIP SWITCHES

A master chart of possible Baby Blue switch settings appears in
Table 2-2: refer to it for all installations. To map Baby Blue
into system memory, find the switch setting which corresponds to
the ~ilobytes of total memory installed in your system, including
Baby Blue's 64K. For other applications, assign Baby Blue to the
desired Page (Segment). Switches 1 through 3 must always be ON,
switch 8 must always be OFF.

2";l3 HOTE SYSTEM COHPIGORATIOH

Bef~re going on, you should note your "system configuration" as
it affects Baby Blue, including especially:

- exactly which system and model you have, so that you can
refer to the proper set of instructions.

how much memory you have in Kilobytes, and how it is
distributed between the "mother" board and expansion memory
boards.

- the manufacturer and model name of any expansion boards,
particularly memory expansions and disk drive interfaces.

- type of monitor (screen) and video interface.

- any installations made in software to your operating system,
for example whether you are using disk emulator software
(often called "RAMdisk", or "pseudo disk"), or a print
spooler.

2-6

New Total
Me;nory

l28K

192K

2S6K

320K

384K

448K

Sl2K

S76K

640K

704K

768K

N/A

N/A

N/A

N/A

INSTALL

Table 2-2: DIP Switch Settings

Switch Settin~ Baby Blue
Memory

1 2 3 4 ~_~~_~ ___________ ~~~~~~~~~nt

TffiITTfTITr---- ON
______ LLli T

TITiTfrrfr- -rr - ON
______ lL __ .U T

[] [] [] [J [J --- ON

.LLiLll T
[] [] [] [] [] [J ON
___ -1] [] T

[] [] [] [] --[]--- ON

[] [] [) T

[] [) [) [) [] ON
[] [J [] T

[] [] [] [] ON
__ -...[ULWl T

[] [J (] [) [J [J ON

[1 [] T

2

3

4

S

6

7

8

[] [J [] [] [] ON-4- r5/S 9
[] [] [1 T

[J [1 [] [] [J ON A*
[] [] [] T

[] [] [] [] ON B*
[] [] (] [] T

[] [] [J [] [] ON C*
[] [J [J T

[] [] [) [] ON D*
(] [] [] (] T

[] (] () (] ON E*
[] [] [J [] T

[] [] (] ON F*
[}[][][)[) T

* One or more Pages in the range A through F are reserved by
all machines. For specifics, find your computer in the
Customization Notes which follow.

2-7

IHSTALL

2.34 IBM PC-l

The PC-1 was IBM's first Personal Computer, manufactured
until about March 1983. It sockets 64K on the mother board,
was supplied with DOS 1.1, and has five expansion slots.

Find the two DIP switch blocks in the middle of the mother board,
faintly labelled SWl and SW2 - SW2 is to the right, almost dead
center in the System Unit, and SWl is to the left.

Examine SWl, switches 3 and 4 : they should both be OFF. If they
are not, go no farther: this indicates that you do not have 64
Kilobytes of memory installed on the system board and your system
does not meet the minimum system requirements for uslng Baby Blue
(are you sure you're looking at the right switches?).

If you are mapping Baby Blue into system memory, calculate your
total memory in Kilobytes, including the 64K on Baby Blue. Find
the resulting figure under "New Total Memory" in Table 2-3, and
set SW 2 on the mother board to match the corresponding line of
the chart.

The PC-l addresses a maximum of 544K as system memory. Baby Blue
'can still be mapped above that point, but you won't see
addi tional system memory. Set Baby Blue's swi tches according to
Section 2.31 (Baby Blue DIP Switch Settings), avoiding the
reserved Pages listed below.

RESERVED PAGES (Hex): A, B.

2-8

INSTALL

Table 2-3: IBH PC-l: Mother Board SW2 Settings

New Total Switch Setting
("'emory

____________ l:._~_~_!2_§._~_i!. _____ _

128K Tf--Tf"n------ -- ON
-lL __ .lL Utili T

192K TITf--Tf---- ON
[] [1 LULU T

----256K [1 [] ON
-.--llJ..L _lLWLil T

320K [] (] t] ON
[llllilUl T

384K [1 [J ON
~-ll1LLUUl T

448K [1 [] ON
[] [] [J [J [1 [J T

512K [] ON
tl [1 [1 [] [J [1 [J T

544K+ ON
[] [1 [l (1 II [] [] [J T

Switches 5,6,7 and 8 are always OFF.

2-9

INSTALL

2.35 IBM PC-2

This is the second generation of IBM PC's, featuring a
motherboard which can hold up to 256K of RAM before it is
necessary to install additional memory boards. The left edge
of the mother board is marked, "64KB-256KB CPU".

Calculate your total system memory in Kilobytes, including Baby
Blue's 64K - this figure is your "New Total Memory". The PC-2
reserves the first four· Pages of system memory (0,1,2 and 3), or
the first 256K, for memory installed directly on the mother
board. Therefore, your first available Page is 4, configured as
follows:

New Total
Memory

.'128-320K

Switch Setting

1 2 3 4 567 8

[] [] [] [) [) [) ON
[] [] T

Baby Blue
Memory

Page/Segment

4

Fbr total memory greater than 320K, refer to Table 2-2 ("BabyBlue
DI~ Switch Settings"). Avoid the reserved Pages listed below.

If -your calculated figure for "New Total Memory" is less than
320K (i.e., if your mother board is not fully populated), Baby
Blue cannot add 64K to system memory, and you shouldn't change
any ~witches on the mother board. If your mo~her board was fully
populated, you now have available 320K or more total system
memory, and should set SW2 on the mother board as shown in Table
2-4.

RESERVED PAGES (Hex): 1, 2, 3, A, B.

2-10

INSTALL

Table 2-4 IBM PC-2: Mother Board SW2 Settings

New Total Switch Setting
Memory

1 2 3 4 5 6 7 8

128K [) [)[][] ON
l] II (1 [l T

192K [J tl [] [] ON
---1J [] [) [J T

256K [] [] [] ON
llU I] [) [) T

329K [] [) [] [) ON
[J I) [) [) T

384K (] [] [] ON
[] [] [] [] [] T

448K [J () [) ON
l)[) [1 [) [] T

S12K [] [] ON
(] [J [] II 1] [1 T

544K [] ON
[] [J [J [J lJ [] [J T

576K [)[]lJ[J ON
[] [1 11 (1 T

649K [J [)[] ON
[] [] (] [] [] T

Switches 5,6,7 and 8 are always OFF.

2-11

IlfSTALL

2.36 IBM PC/X'!"

This is the new IBM super-PC, which comes standard with an
IBM-installed Winchester hard disk, DOS 2.0, 128 Kilobytes
of memory, and seven expansion slots. The mother board has
sockets to receive 256K of memory, but unlike the PC-2, the
XT will accept memory installed in the expansion bus before
the mother board is fully populated.

Calculate your total system memory in Kilobytes, including Baby
Blue's 64K. Find this number under "New Total Memory", in Table
2-2 "Baby Blue DIP Switch Settings", and set the switches on Baby
Blue accordingly, but avoid the reserved Pages listed below.

Do not change any switches on the mother board. The PC/XT uses
so(tware, not switches, to determine the amount of memory in the
expansion slots. The switches on the mother.board reflect only
the amount of memory directly installed there. and have nothing
to do with Baby Blue. The XT is also unusual in that although it
sO.ckets 256K on the mother board, this region of memory is not
strictly reserved. Even if the mother board is not fully popu
lated, you can map Baby Blue into the Page just above presently
installed system memory, and the system will recognize the addi-.
tional 64K as general purpose memory.

RES~RVED PAGES (Hex): A, B, C.

2-12

INSTALL

2.37 OTHER PC'S

All the machines listed below reserve varying amounts of system
memory for RAM to be installed directly on the mother board.
Unless the mother board is fully populated (i.e. unless total
memory equals or exceeds the figure given below), Baby Blue won't
act as a melnory expansion - you should not change any switches on
your mother board or otherwise instruct the oper~ting system to
recognize Baby Blue's 64K as additional system memory. The
standard configuration is probably preferable in such a case.

Set the switches on Baby Blue as shown for your machine. For
total memory in excess of the figure given, refer to Table 2-2
("Baby Blue DIP Switch Settings"), but avoid the reserved Pages
listed for each machine.

New Total Swi tch Setting Baby Blue
Memory Memory

1 2 3 4 5 6 7 8 Page/Segment

Columbia 64-128K [J [] [] [] [1 [] ON 2
[] [) T

Compaq 64-128K [1 [J [] [) [1 [J ON 2
[] [l T

Corona 64-576K [1 [1 [] [1 [} [} ON 8
[} [) T

Eagle PC 64-576K [] [J [) [] [} [] ON 8
[J [1 T

RESERVED PAGES (Hex):

Eagle PC: 1, 2, 3, 4, 5, 6, 7, A, B.

Columbia: 1, B.

Compaq: 1, A, B.

Corona: 1, 2, 3, 4, 5, 6, 7, B.

2-13

IHSTALL

2.4 STEP BY STEP HARDWARE INSTALLATION

2.41 IBH PC - ALL HODELS

2.411 Begin

Turn the system OFF. Disconnect power from the System Unit, then
"disconnect, all peripheral devices (be sure you know how to rein
stall them). Take your monitor off the top of the System Unit
cabinet.

2.412 Re.ove Cover

At the bottom corners of the System Unit rear panel you will find
at least two pan-headed screws that hold the cover in" place -
later models have three more screws, two at the top corners and
one at top center (don't fiddle with the hex-headed ones: they
retain internal components). Remove the screws, then remove the
cover by sliding it towards the front of the System Unit and then
up.

2.413 -Verify Switch Settings

For a standard installation, be sure you have read all of Section
2.1, and check Baby Blue's switches against Table 2-1. For a
custom installation, read Section 2.2 and refer to the customiza
tio~ notes for your machine in Section 2.3. ,
2.414 Cboose Expansion Socket

You will be working in the open area on the left side of the
System Unit, as viewed from the front - to the rear of this area
you will find the system expansion sockets, sticking up from the
mother board. They are made to receive Baby Blue's "edge
connector" - that double row of thirty-one gold contacts projec
ting from the board's lower edge. You may choose any unoccupied
socket, but avoid the leftmost one if you can.

Directly in line with the expansion socket you've chosen, you
should see an L-shaped piece of metal about an inch wide,
fastened with a screw to" the top of the back panel - it covers a
wide slot. Unscrew the retaining screw, then lift the slot cover
clear. Save the screw.

2.415 Install Baby Blue

Bolted to Baby Blue is a metal mounting bracket designed to
repliace the slot cover. Grasping the board's top corners, lower
it into the System Unit, easing the mounting braCket's tongue
into the gap between the mother board and the back panel.
Carefully press Baby Blue into the expansion socket.

2-14

INSTALL

It's a tight fit, and if the board is cock~d in dny direction it
may not go in. Try rocking it lightly, ~nd-to-end and side-to
side, while applying steady downward pr~ssur,? The board should
seat wi thout excess ive pressure, and you should feel that it has
gone all the way into the socket - it should sit square in the
chassis and not appedr cocked. Be careful not to disturb any
other expansion boards in the process.

Center the back panel screwhole within the mounting bracket's
elongated hole, then replace the screw which you saved. Look to
see that the board is still square to the chassis. Check for
accidentally dislodged plugs, particularly the speaker connection
at the front left of the System Unit.

2.416 Reconnect Cables and Test System

Before closing up, let's make sure everything is OK. Reconnect
your peripheral devices to the System Unit - if you're not sure
where everything went, see Section 2 (Setup), of your IBM Guide
To Operations. Reconnect power cables last of all, then turn on
the system to make sure it boots (displays the cursor, beeps,
activates the A drive, then comes up asking you for the date,
etc.), and responds normally to DOS commands.

Make a duplicate copy of the Baby Blue master diskette and put
the master away. Now put the copy in drive A: and type:

A:TESTZS9 <CR>

This initiates the Baby Blue diagnostic tests - if no errors are
shown, your Baby Blue is properly installed and working. If
TESTZ89 shows an error, or if your system behaves abnormally,
turn to the Appendix under DIAGNOSTICS.

2.'11 Finishinq Up

Everything works? Good - turn the power back off, and close up
the System Unit. To replace the cover, start by tipping it
downward, then leveling it as it slides on. Take care not to
bump any boards sea ted in the expans i on sockets. The cover has
to go all the way on - if that black tab at the center of the
back panel protrudes above the cover, back off and try again.
Replace and tighten the cover retaining screws.

This completes the hardware installation. Check again that your
system boots normally, and proceed to the next chapter.

2-15

NOTES:

2-16

OPERATION

3. OPERATION: RUNNING CP/M PROGRAMS

3.1 GETTING STARTED

3.11 DOS COMMANDS

In nor~al operation Baby Glue is meant to b~ completely
"transparent", which means that it fits seamlessly into your
present operating system. When you run a CP/M program, it will
appear to be a native PC-DOS pro;jram: YOu'll use the sa:nr,!
commands and procedures, and execution speeds will be similar.

We're going to assume that you are already fa:niliar with your
operating system. You should know how to physically insert a
diskette in a disk jrive, "boot" your system from a diskette, and
perform common file operations using the following DOS utilities:

FORMAT
CHKDSK
'COpy
DIR
RENAME

If you are at all unsure of these basic procedures, practice them
now before you begin, referring to the documentation which came
with your computer.

3.12 THE BABY BLUE UTILITIES

Although Baby Blue is now physically installed in your computer,
your operating system must be extended to run CP/M programs,
using the Microlog diskette labelled "Baby Blue Conversion
Software". First, make a backup copy of the Baby Blue software
on a new diskette. The command:

COPY A:*.* B: <CR>

will copy all files, where the original Microlog diskette is in
drive A, anq the new diskette is in driveB.

Put the original Microlog diskette away for safekeeping, and take
a DIRectory of the new disk. You should see the files:

HEADER
CONVERT.COM
BIND.COM
STRIP.COM
ltEYFIX.COM
SAMPLE.CPM
TESTZSI.COM

3-1

OPBRATION

Each of these files becomes a new command in you~ operating
system, with the exception of HEADER, which you will notice lacks
the extension "COM". They:

- Convert CP/M-80 programs to run on Baby Blue under PC-DOS.

- Transfer files between selected CP/M formats and PC-DOS
diskettes.

- Provide user-programmable function keys for CP/M programs.

- Test and diagnose Baby Blue itself in the event of suspected
failure.

You have already used TESTZ80 to verify the hardware
installation. Here is a brief description of the other Baby Blue
utilities - for detailed information see the individual sections
in the Appendix.

HEADER

HEADER is a large program, practically an operating system
. in its own right. The "meat" of the Baby Blue software, it
is paradoxically the one utility you never command directly.
It does all its talking to your computer and you are aware
of it only through its effects - it makes CP/M programs run
on your machine.

Before a CP/M program will run on Baby Blue, it must have
HEADER attached to it - this is called "binding" the
program. Binding is carried out using either CONVERT or
BIND, as outlined below.

CONVERT

Convert transfers disk files in either direction between PC
DOS and selected CP/M formats. It can copy files, and
display directories of both PC-DOS and CP/M diskettes. It
also automatically binds HEADER to COM files as they are
written to a PC-DOS disk, and removes it when copying to a
CP/M disk.

CONVERT insures that you can purchase CP/M programs in at
least one format which you will be able to read. Actually,
you can buy most CP/M software already on a PC-DOS diskette,
in which case you won't need CONVERT at all - this is often
called the "Baby Blue" format. If you must purchase a CP/M
formatted diskette, make sure that it is one of the formats

·which CONVERT can read.

3-2

OPERATION

Like CONVERT, BIND attaches HEADER to CP/M COM files;
unlike CONVERT, it works only with PC-DOS, not CP/M
diskettes. It's used when you need to attach HEADER to a
CP/M program already on a PC-DOS diskett~, which is the
recommended way to buy software.

If BIND finds a HEADER already attached to a file, it re
moves it before attaching another one - this is how you
update your files with a new revision of HEADER.

STRIP is the opposite of BIND - it removes HEADER from a
bound program. It's used when you want to export a program
from Baby Blue to a native CP/M system.

KEYFIX

KEYFIX allows you to define over fifty function keys for
each CP/M program - a single keystroke becomes a shorthand
way of entering as many as 80 separate characters. KEYFIX
saves the definitions on disk, in the HEADER attached to
each program.

SAMPLE

SAMPLE is a short CP/M-B0 program, which is already on your
PC-DOS diskette, but has not yet been bound with HEADER.
All it does is post a line of text on your screen, but if
you can BIND it and get it to run, you're ready to use Baby
Blue.

3.13 OPERATING FUNDAMENTALS

Let's try running the SAMPLE program. Type:

BIND SAMPLE (CR>

When the system prompt returns, take a DIRectory. You should see
two SAMPLE files:

SAMPLE.CPM
SAMPLE.COM

Notice that SAMPLE.COM is much larger than SAMPLE.CPM - that's
because it contains HEADER, and is ready to run. Type:

SAMPLE (CR>

3-3

OPERATION

The response should be a congratulatory message. SAMPLE is a very
simple program, but you've just seen how to make a CP/M program
run. SAMPLE is now permanently a PC-DOS COM file: even if you
turn off your machine, the next time you power up you can still
run the program just by typing SAMPLE.

SAMPLE illustrates Baby Blue's special simplicity: once you bind
HEADER to a CP/M program, it is effectively a PC-DOS program and
will run in any computer equipped with a Baby Blue. You can put
the Microlog utilities away, and there are no restrictions to PC
DOS. You use the Microlog utilities only when transferring files
between your system and a CP/M system.

Remember that you only bind CP/M COM files - overlays, and inter
preted programs which run under the control of a COM file are not
bound, nor are text and data files. For example, you would not
bind Wordstar's ".OVR" files, because they run under the control
of WS.COM. You wouldn't bind CBASIC ".INT" or ".BAS" files,
because they run under CRUN.COM or CBAS.COM, respectively.

Don't bind Microlog-supplied applications programs such as
Wordstar or BSTAM - they come preinstalled and ready to run. A
number of independent vendors also package their software bound
with the Baby Blue HEADER - you need to rebind such programs only
when you receive an update of HEADER itself.

Notice that you haven't been asked to learn a separate set of
'commands or create a separate set of disks in order to run CP/M
programs. This means that you can call native PC-DOS programs
~~d CP/M programs from ·the same disk, and just as important,
those programs can freely exchange data or text files. Because
you continue to operate under PC-DOS, the peripherals already
supported by your system will also work with Baby Blue (e.g.,
printer, hard disk, etc.).

NOTE:

There is one area in which we must depart from standard PC
DOS practice: while running a program on Baby Blue, do not
attempt a "warm boot" uS,ing CTRL-ALT-DEL. This will f"iIl~
properiy-r~Bib:YlBlue s Z-8~ mlcroprocessor, and you will
have to cycle power before using the board again. You may,
of course, use CTRL-ALT-DEL when you are not running a CP/M
program, even with Baby Blue physically installed.

3-4

OPERATION

3.2 MEDIA COMPATIBILITY: ACCESS TO CP/M DISKETTES

3.21 THE PROBLEM OF STANDARDS

Simply ~y unt~(iny the marketplace, 13M created ~ new set of
standdrus for the ;nanllfac:turc of personal computers. .r..l though
open to criticism on technical grounds, the IBM PC has been
invaluable as <.I serviceable, if somewhat arbitrary, convention
through which different manufacturers can insure mutual
compntibility of their products.

Incompatibilities have arisen as manufacturers strain against
some of the PC's limitations, and it is al\o/ays possible that IB:-1
will someday violate or completely overturn its own standard, as
it has repeatedly done in the past. In the main, however, the
standard has been successful, and in both hardware and software
the owner of an 8088 microprocessor-based personal computer
enjoys much greater freedom of choice than was possible before
the advent of the IBM PC. For example, almost all PC-DOS or MS
DOS machines can exchange 5" floppy diskettes, with little or no
difficulty. This may seem natural if you have such a machine,
but it represents a tremendous advance.

As a standard operating system, CP/M-80 permitted microcomputer
software to reach a new level of maturity, since it became
possible for a manufacturer to develop application programs for a
broad base of otherwise heterogenous equipment. However, except
for a single 8" CP/M disk format, no standard medium existed for
transferring files from one manufacturer's microcomputer to
another's. It was still necessary to publish the same program in
a variety of machine-specific disk formats, and it was almost
impossible for the average user of 5" diskettes to transfer even
data or text files between different machines. Media
compatibility remains one of the technically most vexing issues
facing users of CP/M-80 applications programs.

Baby Blue avoids the issue as much as possible by using the
standard PC-DOS format, which means complete compatibility within
your system and maximum flexibility in communicating with other
similar systems. Most vendors now offer their CP/M software
already on PC-DOS formatted diskettes, in what is often called
the "Baby Blue format".

3.22 MICROLOG FILE TRANSFER UTILITIES

3.221 5" CP/M Diskettes

Baby Blue comes with CONVERT, a utility which enables you to
transfer files between PC-DOS disks and a number of popular CP/M-
8" forma ts (See Append ix, under CONVERT). You can p~rchase
software in one of these formats, but we strongly recommend
obtaining PC-DOS diskettes whenever possible. You should be aware
that although you will have a wider choice of available software
than you normally would if you owned a CP/M-80 based machine, you
may still run across an incompatible format, especially if you

3-5

OPERATIQN

are trying to transfer files from other machines, some of which
may not even be fully compatible with others of the same
manufacture. Future updates may extend the list of formats
available under CONVERT, but limitations in IBM's disk controller
hardware make a number of formats forever problematical.

3.222 8- Diskettes

Microlog manufactures an 8" disk drive controller for the IBM PC
which will format, read and write standard 8" CP/M diskettes
"(single-sided, single-density). This is the only standard medium
for file transfer in the CP/M world, and gives you access to
practically all published CP/M software. The controller supports
up to four standard 8" floppy drives, and can store a maximum
of 1.25 Megabytes on a double-sided, double-density PC-DOS dis
kette. It also support~ the PC-DOS standard single-sided, single
density a" format. A separately sold utility, called REFORMATTER,
provides access to the IBM 8" floppy diskette format (3741), used
as a transfer medium by IBM minicomputers and mainframes.

3.23 SERIAL COMMUNICATIONS

If you must import files from a machine with an incompatible disk
fo~mat, and you can set up a working serial line between the two
m'achines, you can use BSTAM (Byrom Software Telecommunications
Access Method), ~hich comes preconfigured for your Baby Blue.
This is a sophlsticated but easy to use communications program,
capable of high-speed, error-free data transfer, bypassing
entirely the question of media compatibility.

B$TAM will only talk to BSTAM, which means that you must acquire
it separately in ~ suitable version for the other end of the
line. This will generally be true of any program which can
transmit COM or binary data files, because error-checking
must be very precise, necessitating a very specialized protocol.

The requirements are somewhat relaxed for ordinary text or data
files, consisting purely of ASCII characters. Dissimilar
utilities can exchange such files, but error checking is often
rudimentary or non-existent; we don't recommend this mode of
tr~nsmission for sensitive data. Also, don't try to send COM
files in ASCII mode - ASCII transmissions preserve only the first
seven bits of each eight-bit data "word" - the loss of one bit
out of every eight renders a COM file completely useless.

3.24 OTHER ALTERNATIVES

For one hundred dollars per source diskette (les"s in quantity),
Microlog can transfer your files to a PC-DOS 5" diskette from
practically any soft-sectored CP/M diskette. The fee is payable
in advance, but will be refunded if the transfer is unsuccessful.
Microlog will also assist software producers who wish to publish
their CP/M software completely ready to run on PC-DOS diskettes.

3-6

3.3 IMPORTING CP/M PROGRAMS: COMPATIBILITY

3.31 DEFINITION

To run on Baby Blue, a CP/M program must be:

1) Compatible with CP/M-80 version 2.2

OPERATION

"Version 2.2" represents an update of the original CP/M-80
operating system, with enhanced capabilities. Generally,
any program written for an earlier version (lower number)
will be compatible. Do not confuse CP/M-80 with CP/M-86,
which is an alternative to PC-DOS and doesn't need Baby Blue
to run on your computer.

2) Installable to a Televideo 95~ terminal:

A program controls your video display using codes which are
defined not by the operating system itself, but by the
manufacturers of the leading display terminals. Since CP/M-
80 programs are published to work with a variety of
terminals, they generally come with an installation module
which asks you to choose your terminal from a list of
available options.

Thus, in addition to emulating for your program's benefit
the environment of a CP/M operating system, HEADER must also
pretend to be one of the standard terminals for which CP/M-
80 programs were written. We have chosen the very popular
Televideo 950 terminal as our model - you will find that
this choice assures compatibility with the widest range of
available programs (programs will also work if they're in
stallable to the ADM-3A, which is a subset of the Televideo
950) •

In general, Baby Blue supports programs which have proven trans
portable between native CP/M-80 systems; that is, most reputable
commercially published software. Incompatibility arises when a
program depends upon nonstandard or questionable techniques
which, though workable in a particular implementation of CP/M,
would be considered unsound by the CP/M community as a whole.

3.32 TEXT AND DATA FILES

Since Baby Blue operates under PC-DOS, it writes all files
directly to PC-DOS diskettes. Its files are therefore PC-DOS
files, available to any program, whether it be a native 8088
program or a CP/M program running on Baby Blue.

You will find this especially useful in a number of cases where
only some of the programs in a particular family are available in
PC-DOS versions. You can mix and match CP/M and PC-DOS modules,
as long as they communicate by exchanging text/data files.

3-7

OPERATION

Keep in mind that not all programs can exchange data files - the
file may contain control codes and delimiters which are properly
interpreted only by a certain class of programs - for example,
Wordstar/Infostar compatible programs won't read DBASEII files
without translation, and vice-versa. This is true even for
programs· running on the same machine under the same operating
system, and has nothing to do with transferring files between PC
DQS and CP/M.

3.33 OPBRATING CONSIDBRATIONS

Some CP/M programs will run on Baby Blue, but show operational
peculiarities, due to differences between CP/M and PC-DOS. Most
problems result from Uthinking CP/M", that is, when a program's
documentation or your own experience leads you to expect features
which are either not supported or are handled differently under
PC-DOS. The common areas of concern are listed below.

Transient Program Area (TPA)

.

Baby Blue's TPA is more than 63 Kilobytes. This is the
memory available to a CP/M program, and defines the maximum
size of the program you can run. 63K is very large in CP/M
terms - you won't run across programs which are too large
for Baby Blue. Note that HEADER is not part of this overhead.
- it runs in system memory, not in Baby Blue's TPA •

CP/M Resident Commands

Use PC-DOS commands for operations like rename file,
directory, erase, etc. CP/M resident commands are not
emulated.

CP/M Transient Co!!!!!!ands

DDT, ASM, and LOAD will run. File-oriented commands, such as
PIP and STAT may run but with poor or misleading results.·
Use PC-DOS equivalents (e.g. COPY, CHKDSK). Duplicate the
SAVE function by running DDT under DEBUG (See "Applications
Notes", in the Appendix).

Line Editing

PC-DOS does not support CP/M line editing commands (e.g.
CTRL-U, CTRL-R). Use PC-DOS commands, which are assigned
to special function keys.

Enteri~ Responses

You will often have to end a typed response by striking
Return, where the same program on a CP/M system would not
require it.

3-8

OPERATION

Submit ----
Not supported - use PC-DOS .BAT files for batch operations.
This provides a primitive way of chaining when no other
means is available, and is one way that a CP/M program can
be chained to a native PC-DOS program. The Microlog Extended
BOOS Call 247 provides a more elegant method.

Note that a 1 though $$$.SUB is not supported, it is poss i ble
to edit a PC-DOS .BAT file while executing that same file.
If the changes are made to an as yet unexecuted command
line, they will take effect during the current execution of
the .BAT file. Thus a .BAT file can support conditional
chaining

PC-DOS doesn't distinguish between different logical devices
(e.g. printers). Therefore a CP/M program that relies on
this distinction, using the CP/M I/O Byte, will only address
a single device when running on Baby Blue. The byte found
at location 0003H in Baby Blue's memory does not contain the
usual parameters for I/O redirection; instead, the high
order nibble contains the Segment number at which HEADER
found the board.

PC-DOS doesn't support multiple users. HEADER will always
default to User 0.

Case .!!! ~.!!~ N a !!!~.!

PC-DOS treats all filename characters as upper case. Some
CP/M programs rely on the distinction between upper and
lower case filenames.

Not supported under PC-DOS. CP/M supports a software "write
protect" which prevents writing to a disk under certain
circumstances, even though it is not physically write
protected.

Aborting with CTRL-C

You may use CTRL-C to abort a CP/M program which supports
it. This will return you to PC-DOS without rebooting your
system. In contrast to normal CP/M usage, a CTRL-C will
cause an abort when typed anywhere in a line, not merely at
the beginning.

3-9

OPBRATION

3.4 BABY BLUE AS ~ CP/M DEVELOPMENT SYSTEM

Baby Blue makes an excellent tool for CP/M program development.
Most CP/M-89 compi lers, interpreters, and development ut il it ies
(including SID and DDT) have been thoroughly tested on Baby Blue;
their maturity and depth often makes these tools preferable even
where PC-DOS equivalents exist. Because of its relatively large
Transient program Area (63K), Baby Blue can handle larger
development files than most CP/M systems.

Since you know that any COM files you produce will need HEADER to
run on Baby Blue, you will want to know whether this is going to
be a problem. Do you have to bind the COM files you create? How
do you get HEADER off again when you want to work on them? What
about chaining between programs?

Again, the rule is transparency - as far as you're concerned,
except when transferring programs to and from a native CP/M
system, you can forget that HEADER is there. A development tool
is like any other program - once you've bound it, it handles
operating system transactions automatically, and all files are
produced ready to use.

3.41 TRANSPARBNCY O~ HBADBR DB~INBD

The following are the formal rules by which HEADER handles files
containing HEADER itself. We've expanded the discussion to
'il?clude the most relevant cases.
/ .!

P~ease note carefully that the rules apply only when under the
control of HEADER, that is, when running a CP/M-89 program on
Baby Blue - native PC-DOS programs will not recognize the
presence of HEADER. Also note that in the case of interpreters
and pseudo-compilers (e.g. CBASIC) which do not produce COM
files, HEADER is not even part of your program files - it is
bound only to the run-time module or interpreter.

3.411 Rule I: Creating COM ~i1es

New COM files are automatically written with HEADER attached. The
program which creates the file copies its own HEADER to the new
file.

A) new files are produced ready to run under PC-DOS.

B) HEADER need not be present as a separate file.

C) any variables stored in HEADER, such as KEYFIXed function
key definitions, will be transferred from the creating
program to the new file.

D) output files with an extension other than "COM" are ~
written with HEADER attached.

3-19

OPERATION

E) Files received from another computer by a ~P/M s~rial comm~
nications program, such as the Microlog-supplied BSTAM, will
also be bound if they are written to disk with the·extensiol"l
"COM".

3.412 Rule II: Opening Existing COM Files

HEADER is skipped, and the file is opened at the first line of
the program itself.

A) When debugging a COM file (e.g. under DDT), everything is
w her e you e x p e c t toE i n d it, not 0 f f set to ace 0 u' n t for
HEADER's extra code.

B) You can chain to bound CP/M programs.

3.413 Rule III: Copying COM Files

This is not a new definition, but a consequence of the rules for
opening an existing file and creating a new one. In copying an
existing COM file, the input (original) file is read without
HEADER, and the output (copy) is a newly created file which obeys
Rule 1.

Note: These rules do not apply to COPY or other PC-DOS utilities,
which have no provision for any special handling of HEADER.

A) If you copy a COM file to a file with some other extension
(e.g. ".CPM"), the new copy won't contain HEADER. This is
because the input file is read (opened) without HEADER, and
since the output is not a COM file, it is written as is,
again without HEADER.

B) If the copy is also a COM file, it will contain not the
HEADER of the input file, but rather the HEADER of the
program which does the copying - this is true even if the
input and output filenames are exactly the same. The
distinction is academic unless the two HEADERs are
different, either with respect to version number, or to
variable information.

1) This is one way to automatically transfer a whole set
of function key definitions to a new file - just KEYFIX
some COM file capable of performing a COpy operation
(most text editors have this facility), and then
"graft" the KEYFIXed HEADER on to any number of files
simply by copying them.

2) It's important that installation modules be KEYFIXed
identically to the applications programs they are meant
to serve. Otherwise, when you process (copy) the appli
cations program to install it, you'll lose your
function key definitions, since the installed copy will
have lost its original HEADER.

3-11

OPERATION

3.414 Rule IV: Opening Unbound COM Files

If a COM file does not contain HEADER, a "not found" error is
returned when you attempt to open it.

A) A l6-bit program cannot be called as an overlay to a CP/M
program.

B) An unbound CP/M program can be called as an overlay, but
only if its extensi6n is not "COM".

3.42 BXPORTING PROGRAMS

As you have seen, there is never a need to remove HEADER while a
program is runn i ng under PC-DOS; however, it must come of f
before the program will run on a native CP/M system. Any of the
following will work:

1) Use the Microlog utility STRIP.

2) Transfer the file to a CP/M diskette under CONVERT.

3) Under the control of a CP/M program (not a PC-DOS
utility), copy the file to an extension other than'
"COM".

4) Transmit the file using a CP/M serial communications
program such as the Microlog-supplied BSTAM.

STRIP is a native program and does not require a Baby Blue to
work. The other methods work according to the formal rules set
forth above - they all contain HEADER, and produce an output file
which is not a PC-DOS COM file. For example, the file actually
transmitted by the communications p'rogram appears to the
operating system under a different name, usually with an
extension like ".$$$n. .

Once HEADER is removed, COM files are fully transportable from
the Baby Blue to other CP/M systems. You must, of course, pro
vide for different terminal standards, and your program must fit
within the TPA (Transient Program Area) of the target system,
which will typically be much smaller than Baby Blue's.

3-12

REFERENCI

4. BABY BLUE REPERENCE MANUAL

4.1 INTRODUCTION

Baby Blue functions as an emulated CP/M environment, occupying a
single 64K Page (Segment), within the host 8088 microprocessor's
roemory space. Memory is dual-ported, directly accessible to
either the Z-80 or the 8088 - arbitration circuitry automatically
ensures that only one processor has access to the bus at any
given time. The Z-80 is addressed separately from memory as a
clevice in the 8088's I/O map, through physically distinct
decoding circuitry. Therefore, the 8088 can treat Baby Blue's
segment as an ordinary 64K memory expansion whenever the Z-80 is
not executing a program.

During native PC-DOS program execution, the Z-80 is in a HALTed
state, during which it executes a bare memory refresh cyc1~:
dummy "Read" operations on each address in turn, taking no action
on the stored information. The effect is to physically maintain
the electrical level at each location in Baby Blue's memory, so
that the information there remains intact. The two processors
alternate control of Baby Blue's memory according to the hand
shaking scheme described in "Hardware Functions".

This chapter explains how HEADER drives Baby Blue, and converse
ly, how a CP/M program running on the Baby Blue gains access to
host system functions. Since handshaking and memory arbitration
are hard-wired, applications can and have been written which do
not use HEADER functions at all; however, the discussion of
HEADER illustrates all relevant issues, divided as follows:

Control Functions

Describes overall system layout and flow of control during
CP/M program execution.

Operating System Translator

Details the conversion of standard CP/M function calls to
their PC-DOS equivalents.

Console Emulation

Describes the action of the Televideo 950 Emulator, with a
complete list of implemented control sequences.

Extended BOOS Function Calls

I ntroduces a spec ial series of CP/M-style funct ion ca Ils,
enabling a program running on Baby Blue to utilize host
system memory, interrupt facilities, and I/O ports.

4-1

REFERENCE

Hardware Functions:

Describes not HEADER, but the physical structure of the
board, covering memory arbitration (handshaking), address
decoding, and available control lines (port structure).

4-2

REF/CTRL

4.2 CONTROL FUNCTIONS

The process of running a CP/M program begins when PC-DOS loads
the program from disk, into system memory. Execution begins
with the first byte of HEADER, which is written in code native to
the 8088.

First, HEADER "polls" system memory to find out where Baby Blue
is installed. Starting on Page 1, it saves the contents of a
short add~ess space, then uses that space to write a program,
instructing the Z-80 to set a "Found" flag within Baby Blue's
memory. The HALT state is lifted, activating the Z-80. If a
valid "Found" is returned, HEADER knows it has found Baby Blue.
If not, HEADER restores the original contents of the borrowed
locations, and the poll is repeated for the next segment, up to
Page E, covering all possible locations. If a valid "Found" is
not returned, control returns to the operating system, and the
message "No Baby Blue Installed" appears on the screen.

Once the Z-89 is found, it enters a tight polling loop starting
at location FE29H, and waits while HEADER constructs a simulated
CP/M environment within PC-DOS. The first task is to install a
Televideo 950 Console Emulator in system memory to handle
keyboard and monitor transactions, by rerouting traffic through a
new set of console drivers. The host drivers remain intact but
disabled.

Baby Blue's memory receives an abridged CP/M operating system and
the CP/M program itself (See Table 4-1). The bottom 256 bytes
hold the usual CP/M system-control parameters: for example, the
expected jump table vectors are at 9000H and 000SH. The I/O Byte
normally at 0993H is not implemented; instead, the high order
nibble at this location holds the segment number at which
HEADER'S polls located Baby Blue. The top 509 or so bytes contain
the Z-89 portion of the Operating System Translator, which me
diates between a CP/M program's function calls and PC-DOS. The
bulk of Baby Blue's memory, starting at location 109H, is TPA
(Transient program Area) - the area used to run CP/M programs.

Those familiar with CP/M memory layout will notice at once the
veri large "true" TPA - more than 63K entirely reserved for
program execution. In an ordinary CP/M-80 environment, the
boundaries of the memory map are also 64K wide, because that is
the largest memory space which the Z-89 can directly address.
Normally, large sections of that memory are taken up with
elements of the operating system, imposing such severe
constraints that a major element of the operating system (the
CCP, or Console Command Processor) is routinely overwritten in
memory when a transient program is loaded. This increases the
available TPA, but means that the CCP must be reloaded from the
system diskette every time you exit ~ program and return to the

4-3

REF/CTRL

system level. No such overwrite takes place on Baby Blue, since
the permanently available TPA is definitely large enough to hold
any CP/M program.

The source of the extra TPA is that with very minor exceptions,
the entire operating system resides in the memory of the host and
is managed by the 8988. To the extent that the CCP and other
transient routines need not be treated as overlays, execution
speeds increase. A collateral advantage is that it is not
necessary to introduce an entire CP/M operating system, with the
result that to the operator, and for the most part to the rest of
the system, the operating system remains the familiar PC-DOS.

At location FFF9H in Baby Blue's memory, there is a one-byte
register which we will call the "semaphore": the contents of this
byte indicate which processor controls the bus. With the 8988 in
control, this byte is filled with "l"'s (FFH), which means that
the 8088 is in control. When a CP/M program is fully loaded, the
8988 sets the semaphore to a line of "0"'s (00H), then toggles
the "Start" flag to set the Z-80 running.

At this point, the 8088 is free to conduct normal operations,
using any segment of system memory. HEADER turns it into a
dedicated I/O controller: it locks into a loop of code which
causes it to periodically interrupt the z-80 and inspect the
contents of the semaphore. As long as the semaphore remains low
(09H), Baby Blue runs at full speed, completely independent of
the host system - except for the 8988's occasional poll, there is
no handshaking to retard execution.

Wben the CP/M program needs to communicate with the outside
world, it issues a function call to the operating system. Since
the Z-80 has no I/O channels at its disposal, it relies on the
host system to carry out the transaction. The z-89 posts the
contents of its internal registers in a table just above the
semaphore address, and toggles the semaphore to FFH, surrendering
control to the 8988. Handshaking resumes, with the Z-80 executing
a polling loop of its own to periodically inspect the semaphore.

The 8088 inspects the Z-89 register table for the function call
number and ·other parameters. The Operating System Translator
translates the CP/M instructions issued by the program into their
logical ·PC-DOS equivalents, after which it's business as usual
under PC-DOS. Information is returned to the Z-80 register table
and other relevant tables in Baby Blue's memory. Finally, the
8088 resets the semaphore to 00H and lapses into dormancy, pol
ling for another I/O request.

When the Z-80 discovers that the semaphore has changed, it
resumes program execution. At the end of execution, control
returns to the 8088, but not immediately to the system. First
HEADER does a house-cleaning which HALTs the Z-80 and returns the
host operating system to normal, removing all traces of unusual
activity. Only now does HEADER retire, relinquishing control to
PC-DOS.

4-4

Hexadecimal

FFFF

FFFl

FF00

FDFF*

0080

006C

005C

(4005

Table 4-1: Memory Map

Begin Z8~ Register Table

Semaphore

Z-8~ Portion of Translator

CP/M BIOS Jump Table

CP/M BOOS Jump Table

Transient Program
Area - Space

for User Programs

DMA Address

Second Input Filename

First Input Filename

Jump vector to BOOS Translation

0003 Not I/O Byte: Contains Baby Blue
Segment Number

0000 Jump Vector to BIOS Jump Table

* Subject to change

4-5

REF/CTRL

Decimal

65535

65521

65520

65280

65030

65023*

256

128

108

92

5

REF/CONOUT

4.3 CONSOLE EMULATION

4.31 DESCRIPTION

Baby Blue's Televideo 95~ Emulator installs in two parts: an
output section, which handles all screen output from a CP/M
program, and a keyboard input section, which supports TV950-style
programmable function keys as well as Microlog's own KEYFIX
facility.

4.32 PURPOSE

The Emulator establishes portability of almost all CP/M programs
to Baby Blue's console - that is, any program installable to the
Televideo 959 terminal (or the ADM-3A). The purpose is not to
emulate a Televideo 959 with respect to the operator or a remote
system. Keyboard input is passed straight through without trans
lation - control sequences entered at the keyboard will not alter
video functions, but appear literally as the values typed.

4.33 VIDEO OUTPUT

4.3~1 Operation

Befo~e loading a CP/M program onto Baby Blue, HEADER replaces the
PC-DOS CONOUT interrupt, diverting control to the TV950 Emulator
and bypassing the host screen driver. As a result, CP/M console
output passes without translation from Baby Blue to the host
system, thence to the Emulator where it is finally interpreted,
still without translating the original CP/M output. CONOUT is
therefore handled by the 8~88 under PC-DOS, but while the CP/M
prog ram is runni ng, PC-DOS i tsel f dr i ves the screen through the
TV959 Emulator and not through the usual driver.

4.332 Video Control Codes

Table 4-2 defines the standard set of codes for CP/M programs
running under HEADER. Do not confuse them with keyboard entry
codes - the TV950 keyboard is not emulated, and the presence of
Baby Blue in no way alters the operating features of PC-DOS. The
codes are available only to a transient CP/M program using
successive CON OUT function calls. The appdrent keystroke
sequences in the chart are for convenient cross-reference, and
should be regarded as mnemonics only.

4-6

REF/CONOUT

Table 4-2: Televideo 959 Video Control Codes

Control Sequences:

ASCI I

CTRL G 7

CTRL H 8

CTRL 9

CTRL J 19

CTRL K 11

CTRL L 12

CTRL M 13

CTRL V 22

CTRL Z 26

CTRL 313

CTRL 31

Escape Sequences:

ASCI I
Mnemonic Decimal

ESC $ 27, 36

ESC % 27, 27

ESC 27, 49

ESC 27, 41

ESC * 27, 42

ESC + 27, 43

ESC , 27, 44

ASC I I

07H

08H

99H

9AH

~BH

13CH

9DH

16H

lAH

lEH

IFH

ASCI I
Hexadecimal

1BH, 24H

IBH, 25H

IBH, 28H

IBH, 29H

18H, 2AH

18H, 2BH

18H, 2CH

comment -----

Be 1 1

Backspace/cursor left

Tab

Line feed

Cursor up

Cursor right

Carriage down

Cursor down

Clear screen

Home cursor

New line (carriage return-line feed)

Comment

Graphics mode on (IBM, not Tele
video, graphics set)

Graphics mode off

Set high intensity

Set low intensity

Clear screen

Clear screen

Clear screen

4-7

REf'/COHOUT

ESC .a 27, 26

9 48
2 50
4 52

ESC" rc 27, 61

ESC ? 27, 63

ESC E 27, 69

ESC G a 27, 71

9 or @
1 o'r A
2 or B
3 or C
4 or D
5 or E
6 or F
7 or G
S' or H
9 or I

or J
; or K
< or L
.. or M
> or N
? or 0

48, 64
49, 65
59, 66
51, 67
52, 68
53, 69
54, 79
55, 71
56, 72
57, 73
58, 74
59, 75
60, 76
61, 77
62, 78
63, 79

lBH, 2 EH Set cur so rat t rib ute, w her e
"a"="attribute", coded as follows:

30H
32H
34H

IBH, 3DH

lBH, 3FH

IBH, 45H

IBH, 47H

30H, 49H
31H, 41H
32H, 42H
33H, 43H
34H, 44H
35H, 45H
36H, 46H
37H, 47H
38H, 48H
39H, 49H
31\H, 4AH
3BH, 4BH
3CH, 4CH
3DH, 40H
3EH, 4EH
3FH, 4FH

No cursor
Steady block cursor
Steady underline cursor

Position cursor, where rand care
row and column, with offset of 32
(29H) added to each

Transmit current cursor position
(row, column)

Insert line

Set video attribute, where
"a"·"attribute", coded as follows:

normal
blank
blink
blank
reverse
reverse blank
reverse blink
reverse blank
underline
underline blank
underline blink
underline blank
underline
underline reverse blank
reverse blink
underline reverse blank

The first (numeric) set of values for "a" will also step the
cursor forward one character. The second (alphabetic) set leaves
the cursor stationary.

ESC 0

ESC R

ESC T

ESC N

ESC 0

27, 81

27, 82

27, 84

27, 78

27, 79

IBH, 51H Insert character

IBH, 52H Delete line

IBH, 54H Clear to end of line

IBH, 4EIi Set page edit mode

IBH, 4FH Set line edit mode

4-8

REF/CONOUT

ESC V c 27, 86 lI3H, 56H S2t color, wh8r~ "c"="color, coded
as follows:

0 48 30H fore3round blacK
1 49 3lH foreground blue
2 50 32H foreground green
3 51 33H foreground cyan
4 52 34H foreground red
5 53 35H foreground magenta
6 54 36H foreground brown
7 55 37H foreground whit;:
8 56 38H foreground ~rey

9 57 39H foreground light blue
58 3AH foreground light green

; 59 3BH foreground light cyan
< 60 3CH foreground light red

61 3DH foreground light magenta
> 62 3EH foreground yellow
? 63 3FH foreground high-intensity white

@ 64 40H background black
A 65 4lH background blue
B 66 42H background red
C 67 43H background magenta
D 68 44H background green
E 69 45H background cyan
F 70 46H background brown
G 71 47H background white

H 72 48H border black
I 73 49H border blue
J 74 4AH border green
K 75 4BH border cyan
L 76 4CH border red
M 77 4DH border magenta
N 78 4EH border brown
0 79 4FH border white
p 80 50H border grey
Q 81 51H border 1 ight blue
R 82 52H border light green
S 83 53H border light cyan
T 84 54H border light red
U 85 55H border light magenta
V 86 56H border yellow
W 87 57H border high-intensity white

ESC W 27, 87 1SH, 57H Delete character

ESC y 27, 89 1BH, 59H Clear to end of screen

ESC F 27, 102 1BH, 66H Load user buffer I
text (user entry) (80 characters max)
CR 13 0DH

4-9

RBP/COHOUT

ESC f 27, 102 18H, 66H Load user buffer II
text (user entry) (80 characters max)
CR 13 0DH

ESC 9 27, 103 18H, 67H Display user buffer I (on line 25)

ESC h 27, 104 IBH, 68H o i spl ay user buffer II (on 1 i ne 25
- in a real TV950, this buffer
contains the status line)

ESC j 27, 106 1BH, 6AH Reverse line feed

ESC t 27, 116 1BH, 74H Clear to end of line

ESC y 27, 121 1BH, 79H Clear to end of screen

4-10

REF/CONIN

4.34 KEYBOARD INPUT

4.341 Operation

Console input functions (l.~. k'2yboard) rern.31:l l<lrgely l:1ti:l,::-t,
but are routed throu9h a Keybo-3rj Em'Jlator f::>c tltJO (ull::tion.,:

- a greatly expanded TV95iJ-styll? Operitoc-de[lndbl r:? functll)!l
key set, yielding not 22 but 56 programma;:,le fun-::tion k?ys
divided into two tables of 256 charact~rs ea.::h (doubla the
TV959 256-character table). The included KEY?IX utility
offers complete flexibility to the unsophisticated end-user.

- the standard TV959 facility for definition of function keys
under program control.

HEADER alters the keyboard interrupt vectors, modifying the
effective action of CONIN and CONSTAT when a function key is
pressed, but leaving console input functions otherwise intact.
Normally a valid CONSTAT results in a single CONIN, returning one
value for the depressed key. When HEADER recognizes a function
key, however, control passes to a special handler which finds the
character string assigned to that key in a table, and determines
its length. The handler loops CONIN and CONSTAT for the required
number of iterations, returning characters one by one until the
end of the table entry is reached, at which point CONSTAT returns
to the inactive state.

Keep in mind that although a program may issue the TV950 cursor
control codes, CP/M resident line edit functions are not valid at
the keyboard - since we are operating under PC-DOS, we must use
the PC-DOS line editor. This is significant whenever the read
buffer (READBUF) is in use, that is, whenever the system waits
for a <CR) before inputting the values posted on the screen. An
operator whose experience or documentation leads him to expect
the CP/M line editing sequences may suffer some confusion. Also,
remember that where CP/M will automatically close the buffer and
enter the string at a specified length, PC-DOS requires a <CR>
for closure.

4.342 TV951 Function Key Programming

CP/M programs can use the following sequence to define twenty
function keys (Normal and Shifted FI-Fl9) - the TV959's Fll is
not supported by the IBM keyboard. Text entered during the
sequence will be input to the program whenever the designated
function key is pressed. The effect is transient with the cur
rent execution: when execution terminates, all keys revert to the
definitions stored in HEADER and must be reinitialized with each
load of the program. This is in contrast to the user-definable
mode offered under KEYFIX, which physically logs the operator's
definitions to disk.

4-11

RBF/CONIN

Table 4-3: TV9S1 Escape Sequence: Load Function Key

ASCII ASCII
Mnemonic Decimal Hexadecimal Comment

ESC I 27, 124 IBH, 7CH Load function keys

FUNKEY XX XXH Get ASCII code from Table 4-4

1 49 31H Start of Message

(text) This will be the programmed input
for the designated key.

(CTRL p 16 19H] Optional'- precedes any non-print
character

CTRL Y 25 19H End of Message

Table 4-4: TV951 Function Key Codes

ASCII ASCII SHIFT ASCII ASCII
KEY CHAR. DEC. HEX. KEY CHAR. DEC. HEX.

FI 1 49 31 S-Fl < 69 3C
F2 2 50 32 S-F2 = 61 3D
F3 3 51 33 S-S3 > 62 3E
F4 4 52 34 S-S4 ? 63 3F
F5 5 53 35 S-F5 @ 64 49
F6 6 54 36 S-F6 A 65 41
F7 7 55 37 S-F7 B 66 42
Fa a 56 38 S-F8 C 67 43
F9 9 57 39 S-F9 D 68 44
F10 Hl 58 3A S-F19 E 69 45

Because all function keys share a sequential buffer, your program
must define them in the order shown. The buffer's capacity is
256 bytes, including all text plus orie byte for each key
programmed (e.g. If F2 is programmed to input the message "Hi 1" a
total of 4 characters are used up in the table: one for each of
the three text characters, and one more for F2 itself).

4-12

REF/CONIN

4.34l Keyboard Defaults

HEADER is shipped with th~ function key definitions shown in
Tabl e 4 -5. Un) ike CP/M (wI, i ch uses CTRL codes) PC-DOS .3SS i<Jns
lin e ~ J i tin 9 fun c ti ~) n s t a .J set ') f fun c t ion key s • li E i\ D E R i s
shiptJed with the d~finitlons shown in Table 4-5, where th.')
sequenc~s beg i nn i ng \.,r i th II~ ~" «CTRL @>) a re the codr~s ex pec ted
by PC-DOS. Since overwriting these sequences disables tht::'
corr~sponding DOS line-editing function, redefined function keys
may C.luse pro!::>lems if the target CP/M pro·=Jrain t:?!TIploys the
oper'3tiny system's edit facility.

Table 4-5: Function Key Default Definitions

Key Unshifted Shifted Control Alt

FI A@i (00H,3BH) S-FUNI C-Fl A-F1
F2 A@< (00H,lCH) S-FUN2 C-F2 A-F2
Fl A@= (00H,lDH) S-FUNl C-Fl A-F2
F4 A@> (liJ0H,3EH) S-FUN4 C-F4 A-F4
F5 A@? (00H, 3FH) S-FUN5 C-FS A-F5
F6 A@@ (00H,40H) S-FUN6 C-F6 A-F6
F7 A@A (00H,4IH) S-FUN7 C-F7 A-F7
FS FUNS S-FUNS C-FS A-Fa
F9 FUN9 S-FUN9 C-F9 A-F9
F10 FUNl0 S-FUNl0 C-F19 A-F1~

L ARROW A@< (00H,04BH) C-LF
R ARROW A@< (00H, 04DH) C-RT
U ARROW UP
DARROW DOWN

HOME HOME CTRL HOME
END END CTRL END
PG UP PG UP CTRL PG UP
PG DN PG DN CTRL PG DN
INSERT "'@R (00H,52H)
DELETE A@S (0"H,53H)

4-13

REF/COHIH

4.344 Emulating TV958 Keyboard Defaults

The Televideo 950 contains a set of default function key defini
tions which are active in the absence of any other definitions.
Occasionally, instead of reprogramming the keys, a program simply
looks for the default definitions to initiate control functions.
In such a case, the program must be KEYFIXED according to Table
4-6 before the function keys will work on Baby Blue. Some of the
keys shown are not available on the IBH PC - they are shown so
that their definitions can be assigned to some other available
key.

Table 4-6l Televideo 951 Punction Key Defaults

Key Unshifted Shifted

Fl <CTRL A> @ <CTRL H> <CTRL A> , <CTRL H>
F2 <CTRL A> A <CTRL H> <CTRL A> a <CTRL H>
F3 <CTRL A> B <CTRL H> <CTRL A> b <CTRL H>
FS <CTRL A> D <CTRL H> <CTRL A> d <CTRL H>
F6 <CTRL A> E <CTRL H> <CTRL A> e <CTRL H>
F7 <CTRL A> F <CTRL H> <CTRL A> f <CTRL H>
F8 <CTRL A> G <CTRL M> <CTRL A> g <CTRL H>
F9 <CTRL A> H <CTRL M> <CTRL A> h <CTRL H>
F10 <CTRL A> I <CTRL H> <CTRL A> i <CTRL H>
Fll <CTRL A> J <CTRL H> <CTRL A> j <CTRL M>

L ARROW <CTRL H> <CTRL H>
R ARROW <CTRL L> <CTRL L>

U ARROW <CTRL K> ESC j
D ARROW <CTRL V> <CTRL J>

HOME <CTRL 6> <CTRL 6>

BACKTAB ESC I ESC I
PRINT ESC P ESC L

LINE INS ESC E ESC N
LINE DEL ESC R ESC 0

CHAR INS ESC Q ESC q
CHAR DEL ESC W ESC r

LINE ERASE ESC T ESC t
PAGE ERASE ESC Y ESC Y

SEND ESC 7 ESC 6
CLEAR SPACE <CTRL Z> ESC *

4-14

REF/TRANSLATOR

4.4 OPERATING SYSTEM TRANSLATOR

4.41 DESCRIPTION

The Translator converts CP/M BIOS and BDOS calls issued by the
transient program into their nearest logical PC-DOS equivalent,
for execution by the host operating system. Just as the console
emulator defines CP/M compatibility for a TV950 standard
terminal, the Translator d~fines program compatihility with
respect to the function calls employed.

4.42 PURPOSE

The Translator provides mutual transparency between the transient
program and the host operating system. There is no point-to
point correspondence between CP/M and PC-DOS - although they are
close cousins there are some fundamental differences, the most
impor tant of wh ich concerns access to disk fi lese Some features
of CP/M are not supported under PC-DOS: these function calls will
return default values reflecting the state invariably imposed on
that function by PC-DOS (e.g., User Code always returns as 0,
because PC-DOS does not support more than one user).

4.43 CP/M BOOS FUNCTION CALLS

All BOOS calls follow standard CP/M procedure. We will treat them
under the standard CP/M function call numbers.

0: System Reset

Used to terminate program execution. Returns control to PC
DOS (COMMAND.COM), for full normal operation. Before relin
quishing control, HEADER performs a general house-cleaning
in the BIOS, returning all vectors to their normal values,
re-enabling the native PC-DOS console drivers, and resetting
the Z-80.

1: Console Input (CONIN - "Get/Read a Console Character")

A straight-line translation to PC-DOS CONIN, except that
function keys are handled differently as detail~d under
"Keyboard Emulator". See "10: Read Console Buffer" for
further comments about keyboard entry functions.

4-15

REP/TRANSLATOR

2: Console Output (CONOUT - "Write a Console Character")

A straight-line translation to the PC-DOS CONOUT, but note
that PC-DOS itself is routed through the TV950 emulator, not
through the normal host screen driver - hence monitor
controls must conform to the TV950 standard (See Table 4-2).

3: Reader Input

A direct call to the PC-DOS Aux In.

4: Punch Output

A direct call to the PC-DOS Aux Out.

5: List output

Calls PC-DOS PRINT OUT, routing direct to the PRN device.

6: Direct Console !LQ

Fully supported.

7/~: Get/Set !LQ Byte

Ignored because PC-DOS does not support I/O redirection at
this level - "Get I/O Byte" will always return the default
value 0. At Baby Blue's location 0003H, where the CP/M I/O
byte is normally found, the high-order nibble contains
instead the segment number occupied by Baby Blue~s 64K.

9: Print String

Fully supported - a direct translation to the same PC-DOS
function.

l~: Read Console Buffer

A straight-line translation, but note that this means PC-DOS
line editing commands will be in effect, not CP/M, so that
an operator expecting to use the CP/M set may be confused.
Also note that redefining the function keys may disable PC
DOS line-editing features (See "1: Console Input").

4-16

REF/TRANSLATOR

11: Get Console Status (CONSTAT: "Interrogate Console Ready")

A straight-line translation except that like "1: Console
Input", this will be handled, and sometimes automatically
repeated, by the Keyboard E~ulator.

12: Return Version Number

Returns Version 2.2.

13: Reset Disk System

Ignored, since the purpose of this call is always satisfied
under PC-DOS (a 11 disks per petua 11y set to read/wri te). No
incompatibility will result from the use of this command,
but it may mask a deeper problem if the program or its
documentation depends on the CP/M software write-protect
facility (see "28: Write Protect Disk").

14: Select Disk

Direct translation - designates default drive. However, the
Jrive will not automatically go to a read-only state if the
disk media is physically changed, as it would under CP/M
(See "28: Wr i te Protect Disk").

15: Open File

Fully supported, however some confusion may result if you
don't fully understand how the HEADER handles CP/M COM
files under development, as explained under OPERATION.

16: Close File

Direct translation to PC-DOS function call. AL returns
either 00H (successful close) or FFH (file not found). When
closing a COM file, this call also finds the size of the z-
80 code (less HEADER) and stores this number at location
0107H in the HEADER attached t~ the target file. The size of
HEADER itself is stored at location 0105H.

17/18: Search for First/Next

Direct translation to PC-DOS function calls. Returns 00H
(file found) or FFH (file not found) in AL. The directory
image buffered at the DMA address is artificially construc
ted from the PC-DOS image, with the following surprises:

4-17

REP/TRANSLATOR

- In the case of a COM file, the record count returned
includes HEADER, accurately reflecting the disk space
required, but not the TPA.

- There is only one entry, so AL, if found, is always 9
(not 1, 2 or 3). The remaining 96 bytes, which might
ordinarily contain further entries, are filled with
E5H.

- The correct number of group entries are filled in, but
they are all set to 91H, since the actual pointer in
PC-DOS is to the file's first entry in the File Alloca
tion Table.

19: Delete File

. Direct translation to PC-DOS function call.

29: Read seguential

. Direct translation to PC-DOS function call - for a COM file,
the first record returned will be the first line of Z-89
code - HEADER is skipped over.

21: ,write Seguential

,Direct translation to PC-DOS. In the case of a COM file,
the presence of HEADER on the disk is automatically
accounted for - no special adjustments are required to
insure that the write indeed begins at the end of the file.

22: Make File:

Direct translation to PC-DOS. As explained under OPERATION,
HEADER is automatically bound when the file to be created is
designated as a COM file. HEADER is written and closed
immediately, before the COM file is opened, so even if you
decide not to write to the file, or not to close it, you'll
still find that you've created a file containing HEADER.

23: Rename File

Automatically binds HEADER when the filename extension is
changed from someth i ng al se to COM, and v ice-ver sa. S 1 nce
in the first case the bound file is larger by the length of
HEADER, it's possi.ble there will be insufficient disk space
available to write it. Rather than lose the file, we
recover by leaving the file unbound, and tagging it with th~
extension "CPM".

4-18

REF/TRANSLATOR

24: ~ Log-in Vector

Not supported, because it is irrel~vant under PC-DOS.
Returns the defa~lt value FFFFH.

25: Return Current Disk

Direct translation to PC-DOS function cal t.

26: Set DMA Address

See BIOS Call FF24H: SETDM~, below.

27: Return Allocation Vector

Not supported. This function, usually not used by allocation
programs, returns a value which refers to physical
properties of a CP/M diskette. Since PC-DOS diskettes do
not share these attributes, the function is meaningless when
directed at a PC-DOS diskette.

28: Write Protect Disk

Not supported, since PC-DOS does not support the software
write-protect facility offered by CP/M.

29: Return Read Only vector

Not supported, see "28: Write Protect Disk".

30: Set File Attributes

Not supported, since the attributes themselves reside in the
physical directory of a CP/M disk and have no equivalent
under PC-DOS. Therefore, this call will also fail to
"discover" a file which has been defined as "hidden" under
PC-DOS.

31: Get Address of Disk Parameters

Partially emulated. The parameters involved are properties
of a CP/M diskette and are not supported by PC-DOS. The
address returned points to a dummy parameter table based on
an assumed 5" diskette.

32: Get/Set User Code

Returns value 0. PC-DOS does not support multiple users.

4-19

REF/TRAHSLATOR

33/34: Read/Write Random

Direct translation to PC-DOS function call. Files created
while running on Baby Blue will not introduce gaps in a
random access file, and so will be fully transportable.

35: Compute File Size

Returns true file size. Since gaps are not permitted in a
random access fil~ under PC-DOS, "virtual size" is always
the physical size of the file. HEADER is subtracted from
the physical size of a .COM file, giving the size of the Z-
89 code only. This will be accurate for operations
conducted on Baby Blue or on another CP/M system, since
HEADER will not appear in memory in either case. If it is
desired to return the size of a .COM file including HEADER,
the directory image returned to the DMA address by function
calls 17 and 18 will contain this information in the record
count.

36: !!! Random Record

Direct translation to PC-DOS function call.

37:' ~ Drive

Ignored as irrelevant to PC-DOS.

38: Not used

39: !2! used

40: Write Random With ~ Fill

Translated to Function 34: Write Random. (This function
refers to physical properties of a CP/M diskette not
duplicated under PC-DOS)

4-20

REF/TRANSLATOR

4.44 CP/M BIOS CALLS

HEADER maintains a CP/M BIOS jump t~ble starting at FF~0H in Baby
Blut!'s memory, with the stand;,lrd point.?r at 0000H. Except for
disk-bas(~d routines, most (;alls pass to their BOOS counterparts,
which in turn c.'lll th<:?ir ciirect equivalents in PC-DOS. Because
cp/r-1 and PC-DOS locate physical disk sectors very differently,
disk-based c311s undargo .3 Inore complicated translation.

4.441 Logical to Physical Sector Mapping

All disk I/O is based on a conversion of CP/M Track/Sector
pardmeters to corresponding PC-DOS logical sectors, assuming an
ideal "CP/M" diskette of thirty-two 128-byte sectors per track.
This ideal format is automatically mapped onto a real PC-DOS 5"
diskette of eight 512-byte sectors per track, through the
following algorithm:

Logical PC-DOS Sector (32 * T + S - 1) / SCALE

Where:

T "Track number"

S "Segment number"

and SCALE is computed automatically upon disk selection, as:

real physical sector size in bytes / 128

The algorithm assumes 4096 bytes per track, with a limit of 1~24
bytes per sector. It will find the specified sector on any disk
conform i ng to these parameter Si SCALE automa t ica lly accomoda tes
different sector sizes. There is no range check on sector
number, but it must be in the range 1 to 255. The first segment
on the disk is Track ~, Sector 1, which becomes PC-DOS Logical
Sector 9 - therefore, the physical sector always equals the
logical sector plus one.

Remainders are truncated, guaranteeing that the logical sector
will always contain the expected 128-byte sector. This is
because remainders are only produced when physical sector size is
larger than 128 bytes, in direct proportion to SCALE - some
remainder "n" is really a pointer to the nth 128-byte block
within the physical sector. The physical sector is read into a lK
buffer maintained in HEADER, and deblocked into 128-byte segments
for loading at the DMA address.

4-21

REF/TRANSLATOR

You can also read a non-conforming format if its parameters are
known, and sector size does not exceed 1924, but you must first
transpose the target track and sector number into the "ideal"
equivalents expected by HEADER. Find the target sector as the
"Nth" physical sector, counting from the beginning of the disk:

NthSectphys = (SPT * Tphys) + Sphys

Where:

SPT = Physical Sectors per Track on the target disk.

Tphys = Physical (literal) track number.

Sphys = Physical (literal) sector number.

Multiply this number by SCALE, converting it to the nth l28-byte
block (NthSect l28):

NthSect128 = SCALE * NthSectphys

Now~divide by 32. The quotient is the desired track number (T),
and' the remainder is the segment (S). The combined formula
reads:

T + S = SCALE * (S PT * T phys + Sphys) / 32

Passing these calculated values to SETTRK and SETSEC will yield
the desired physical sector.

For example, given an 8" single-sided, single-density diskette
of twenty-six l28-byte sectors per track, SCALE = 1. Therefore,
physical [Track 10, Sector 5) yields:

(26 * HJ) + 5 / 32 = 265/32 = 8 + 8

Or [Track 8, Sector 8). [Track 7, Sector 40) is also valid,
since there is no range check, but not [TraCK 0, Sector 265J,
because the highest allowable sector number is 255.

4-22

REF/TRANSLATOR

4.442 SIOS Entry Points

The standard BIOS entry points are listeJ below in addr~ss order.
All BIOS calls follow standard CP/M procedure, except as
indicated.

FF00H: COLD BOOT

Not supported - initialization is controlled by HEADER under
PC-~OS.

FF93H: WARM !!QQ!

Invokes BOOS call 0, System Reset.

FF06H: CONST

Invokes BOOS call 11, Get Console Status.

FF09H: £.Q!'!!.!

Invokes BOOS call 6, Direct Console I/O (input).

FFIrJCH: CONOUT

Invokes BOOS call 2, Console Output.

FFIrJFH: LIST

Invokes BOOS CallS, List Output.

FF1~H: PUNCH

Invokes BOOS Call 4, Punch Output.

FFl5H: READER

Invokes BOOS Call 3, Reader Input.

FFl8H: ~

Not supported.

4-23

REF/TRANSLATOR

FFIBH: SELDSK

Calculates SCALE. The disk parameters are always based on an
ideal 49-track diskette, with 32 128-bite sectors per
track.

FFlEH: SETTRK
FF2lH: SETSEC

Literal physical track and sector numbers are valid for any
disk of 4996 bytes per track, and no more than 1924 bytes
per sector. Other formats are accessible with translated
parameters, as described above. The first physical sector on
each track is number 9lH.

FF24H: SETDMA

The initial address is the expected 89H. This call invokes
. BOOS Call 26, which means that either call alters the ad
dress set by the other. The usual 128-byte allocation is
sufficient, regardless of physical sector size - the physi
cal sector is stored and deblocked from a 1924-byte buffer
maintained in HEADER.

FF27H: READ
FF'2AH: WRITE

Data is buffered and blocked/deblocked as described above,
under SETDMA.

FF39H: SECTRAN

The physical sector always equals the logical sector plus
one.

FF2DH: LISTST

Al ways retur ns "ready" (FFH inA).

4-24

REF/EXBDOS

4.5 EXTENDED BOOS FUNCTION CALLS

4.51 DESCRIPTION

Microlog has created a set of new CP/M-80 style function cal13
for use on Baby Blue. They are:

Number

247

248

249
250

251
252

253

254
255

4.52 PURPOSE

Function

Chain

8088 Software Interrupt

System Memory Block Move Down
System Memory Block Move Up

Peek Host Memory Byte
Poke Host Memory Byte

8088 BIOS Call (Subset of • 248)

Output to Host I/O Port
Input from Host I/O Port

The extended BOOS function calls are provided to support true
user-designed applications using Microlog's Co-processor boards.
By means of these functions a CP/M-80 program can gain access to
the host system at the following levels:

-8088 software interrupt

-Host memory (block moves and individual locations)

-Direct I/O through host ports

4.53 OPERATIOH

All extended function calls parallel standard CP/M-80 usage.

4-25

REP/EXBDOS

4.531 Call 247: Chain

Entry Parameters

Register C: F7H
Register DE:
Register B:

Starting Address of ASCII Command String
Length of Command String

Return:

Exits the current program, then invokes the indicated
command file.

The Command String may contain the name of any PC-DOS COM, EXE or
BAT file, including any passed parameters (DOS resident commands
are invalid); it must terminate with 9DH «CTRL M>, or (CR». No
provision is made for reentry to the calling program.

4.532 Call 24S: S8SS Software Interrupt

Entry Parameters:

Register C: FSH
Register HL: Address of pseudo 8988 Interrupt/Register

Table

R~turn:

Executes specified interrupt
Updates 8988 Register Table at address specified by [HL]

Emulates an 8988 "INT" instruction. The HL register pair points
in Baby Blue's memory to the starting address of a table
representing the 8988 registers, as follows:

Byte .:

8988 Interrupt/Register Table

Interrupt
Number

99

Registers
AX BX CX OX BP SI 01 OS ES
91 i3 95 97 i9 IT IT IS IT

Flag Byte 'l~:

Flag:
Bit t:

SF ZF -- AF -- PF -- CF
7654321'0

Flags
19

The parameters become active as the specified interrupt is
executed. Upon completion, the contents of the 8988 re~isters are
returned to the tabla.

4-26

REF/EXBDOS

4.533 Call 249: System Memory Block Move Down

Entry Par3met~(s:

Register C: F9
Registers HL: 3lock Move Table AdJ(~ss

R~turn:

Executes block move down in system memory (64K max.)

Upon entry, the HL re~ister pair points to d 10 byte table in
Baby Blue's memory, organized as follows:

Byte #:

Where:

Source
Offset

00

Source
Segment

02

Destination
Offset

04

Destination
Segment

06

alock
Size

08

Block Size - total number of bytes to transfer (up to FF Hex
---orG4K).

Source Offset - l6-bit location of first byte in the block
you are moving.

Source Segment - Present memory segment containing the block
to be moved. Note that this could be Baby Blue's
memory.

Destination Offset - 16-bit location to fill with first byte
of the block.

Destination Segment - Memory segment to which block is to be
moved. Note that this can be anywhere in system
memory, including Baby Blue.

This function parallels the Z-80 LDDR block move instruction, or
the 8088 REPZ MOVSB with the STD instruction, i.e., it moves the
block by starting with the lowest byte and incrementing. You can
move data to or from any area of system memory, including on or
off Baby Bl ue.

4-27

REP/EXBDOS

4.534 Call 251: System Memory Block Move Up

Entry Parameters:

Register C: FAH
Registers HL: Block Move Table Address

Return:

Executes block move up in system memory (64K max.)

Identical in all respects to Call 249, except that it emulates
the Z-81 LOIR instruction, or the 8188 REPZ MOVSB with CLO, i.e.,
it moves the block starting with the last location and
decrementing.

4.535 Call 251: Peek System Memory Byte

Entry parameters:

Register C:
Registers DE:
Registers HL:

Return:

FBH
Offset number
Segment number

Register A: Contents of Byte

Re'ads a byte from the location specified in [DE] and [HL].
Enables a Z-81 program to read from any location in the 8988's
address space, including Baby Blue's memory.

4.536 Call 252: Poke System Memory Byte

Entry parameters:

Register C:
Register B:
Registers DE:
Registers HL:

Return:

FCH
Contents of Byte
Offset number
Segment number

Writes contents of byte to specified location in system
memory.

The contents of (b) wilt be written to the location specified in
[U E) and [H f ..] • En a ole s a Z - 8 I pro 3 ram tow r i t e to any 1 0 cat ion
in the 8088's addr~ss space.

4-28

REF/EXBDOS

4.537 Call 253: 8988 BIOS Call

Entry ~ar~m~t2rs:

Reqister C: F~)ii

R~gister!; HL: 8~88 Interrupt/Re9ister Table Address

Return:

Execut2s specified interrupt.
Updates 8~B8 Interrupt/Register Table at specified address.

This function is included for compatibility with e~rlier versions
of HEADER, and is a subset of Call 248. Its action is identical
in every respect except that it passes only the first four regi
sters (AX, ax, CX, DX), and the effective table is only nine
bytes long.

4.538 Call 254: Output to Host I/O Port

~ntry Parameters:

Register C: FEH
Register E: 8-bit output value
Registers HL: Host system port number

Since the Baby Blue has no ports of its own, all I/O must pass
through the 8088. This function enables a Z-80 program to output
values directly to a port (under the control, of course, of the
8088) - use this function instead of an OUT instruction.

4.539 Call 255: Input from Host I/O Port

Entry Parameters:

Register C: FFH
Registers HL: Host system port number.

Return:

Register A: 8-bit input value.

Complements Call 254, enabling the Z-80 to input values directly
from an 8088-controlled port.

4-29

REF/HARDFUN

4.6 HARDWARE FUNCTIONS

4.61 Z-81 PORT ADDRESS DECODING

The assignment of address lines to the Z-80 1 s I/O port is
given in Table 4-8 ("Blue DIP Switch Decoding"). Note that the
memory page (segment) address lines map onto the low-order bits
of the port address by sharing the same switches for signal
decoding. This means that the port address could vary from
0300H to 031CH, depending on the base address of Baby Bluels
memory (Table 4-9).

In a single Baby Blue system, port address and segment
decoding could be separate, but tying them together offers the
possibility of running more than one in parallel - mapping the
onboard memory into different pages will automatically define
separate port addresses, without special accomodations from the
host control program. HEADER in fact uses this facility when it
polls memory to locate the Baby Blue - once the memory
segment is located, the port address is automatically known.

Note that here, OFF = 1 = High, and ON = 0 = Low. Numbers in
110

11 brackets are set for compatibility with HEADER, but cou14
be set differently to interface a different control program.
Since A8 and A9 are hard-wired high (11111), the high-order nibble
of the port address is always 3H. A0 is tied Low ("~II), so all
addresses are given as even, even though the low order bit is
re~lly a IIdon't care ll

•

4.6~ Z-81 CORTROL LIRES

Z-89 control lines available to the 8088 programmer are:

NMI (Non-Maskab1e Interru'pt: Jump to Location 66H)

In HEADER this interrupt is serviced by a routine which
emulates a Z-89 system reset.

INT (Interrupt)

HALT

A special, discretei y configured control line which
presents a hard-wired HALT instruction (76H) to the Z-
80 data bus, bypassing RAM. Following activation of
this line, the HALT instruction waits to appear on the
data bus for the next instruction fetch, permitting the
orderly completion of the current machine cycle.

When the Z-80 is in a HALT state, it executes No-ops,
which are essentially bare memory refresh cycles. A
HALTed Z-80 recognizes only an NMI or an INT (with :nask
enabled), so one of these must be used to resume
processing.

4-30

REF/HARDFUN

RESET is activated only by a power-up syste~ reset, dnd is not
available to the programmer - use NMI with a z-8ra service routine
at 66H to emulate any desired RESET functions.

Control lines are accessed through the Z-80's I/O port address of
as follows:

(0) 93XXH [Cont~ol Data Byte)

Where:

(0) OUT Instruction

03XXH Port address in hexadecimal, where XX are
determined by DIP switch settings on the Baby Blue (See
Table 4-9: "Baby Blue DIP Switch Decoding").

[Control Data Byte) = information transmitted to the port to
select the available control lines. Only bits 0, 2 and
3 of this byte are significant: the rest are "don't
cares" ("X"). It maps onto the control lines as
follows:

Table 4-7: Z-8& Functions Control Byte

Data Lines

NMI INT X HALT
Functions 03 02 01 00 Decimal

HALT Z-80: 0 ra x ra 13

RUN (all off) : 9 0 x 1 1

INTERRUPT: 9 1 x 1 5

JUMP to Loc. 66H: 1 9 x 1 9

All control lines latch and so must be cancelled explicitly.
For example, the "JUMP to Location 66H" cancels HALT with a "1"
on 00 so that NMI will execute, but NMI must in turn be be
cancelled by a "RUN" instruction (9 on 03) for the service
routine to begin - otherwise the Z-80 will continuously execute
an NMI.

4-31

REP/HARDPUN

Table 4-8: Address Decoding

PORT
NUMBER

(HEX)

PORT
ADDRESS

LINES

All

AIO
3

A9

AS

A7

A6
X

AS
(0 ·OR 1)

A4

A3

A2
X

Al
(2 THRU C)

A"

4.63 MEMORY ARBITRATION

DIP
SWITCH

.. HIGH

HIGH

SWI

SW2

SW3

SW4

SWS

SW6

SW7

LOW

SETTING
(BINARY
VALUE)

X

X

(1)

(1)

ON U}

ON {O}

ON U}

?

?

?

?

XX

SEGMENT
ADDRESS

LINES

MEMORY
SEGMENT
(PAGE)

AI9

A18

AI7

Al6

THRU

E

Memory access is as straightforward as writing or reading a
location within Baby Blue's memory segment. Since the Z-SO
handles refresh, handshaking is constant, but it is automatically
controlled by the board's hardware.

The 8088 has priority access to Baby Blue's onboard memory. A
validly decoded address, combined with an active /MEMR or /MEMW,
presents an active /BUSREQ to the Z-B9. The z-B9 must respond by
relinquishing the bus, but first completes its current machine
cycle. The 89BB waits, responding to an active signal on its I/O
CHANNEL READY line. An active /BUSACK indicates that the Z-B9
has relinquished the bus, and lifts I/O CHANNEL READY, permitting
the 89B8 to complete its cycle. Now /BUSREQ goes high, starting
the Z-B9 and insuring that each memory access by the 89B8 is
followed by at least one Z-B9 cycle, to maintain refresh.

4-32

REF/HARDFUN

Table 4-9: Segment and Port Assignments

Switch Setting Memory Address z-80 Port
~L~._7_8 _____ ~ment ____ Rang~ ___ ~dress_

[] [] [] [] [] [J [J ON 1 1000~-lFFFF 302
[j T

[] [J [-:-j ':'""":[J--:-[~l --;[-;.-) [) ON 2 20000-2T:'FFF 304
____ ..:....;[)'-- T

[J [] [J [1 [J [j ON 3 30000-3FFFF 306
[] [] T

[] [) [] [] [] [] (ION 4 40000-4FFFF 308
[] T

[] [] [] [J [] [) ON 5 5£HHHl-5FFFF 30A
[] [] T

[) [] [] [] [] IT ON 6 6000~-6FFFF 30C
[) [) T

[) [) [] [) [] ON 7 70000-7FFFF 30E
(] [) [) T

[) [] [) [] [] [] [) ON 8 80000-8FFFF 310
[) T

[] [] [J [) [] [] ON 9 90000-9FFFF 312
[] [] T

[] [] [1 [] [] [) ON A* A00fHJ-AFFFF 314
[1 [] T

[] [] (] [1 l1 ON B* B0ItHJ0-BFFFF 316
[1 [1 [1 T

[] [1 [) [1 [1 [] ON C* C0000-CFFFF 318
[) [) T

[) [1 [] [] [] ON D* D0000-0FFFF 31A
[] (] (] T

[] [) [] (1 [] ON E* E0000-EFFFF 31C
[] [] [] T

[] [) [] [] ON F* F0000-FFFFF 31E
[] [) [] [] T

* One or more Pages in the range A through F are reserved by
all machines.

4-33

BIND

A. THE BABY BLUE UTILITIES

A.I BIND: THE CP/M-aS PROGRAM IN PC-DOS FORMAT

BIND dttaches HEAUER to 2P/M-80 programs which are on PC-DOS
diskettes, as opposed to CONVERT, which does the same thing to
programs on CP/M diskettes. Use BIND when:

- as recommended, you purchdse CP/M software published on PC
DOS diskettes, though not yet bound with HEADER.

- you transfer software from a CP/M system by some means which
does not directly involve the Co-Processor, e.g. a PC-DOS
communications program or the Microlog 8" Disk Controller.
(Programs running on the Co-Processor will automatically
BIND HEADER to any COM files they write on a PC-DOS disk).

- you update your files with a new version of HEADER.

PROCEDURE

Both BIND.COM and HEADER must be on the same disk in the default,
or logged-in drive. Type:

c:BIND s:filename.COM d: <CR)

BIND first checks for the presence of HEADER in the target file.
If the file contains some version of HEADER, it will be replaced
with the version currently on your disk. If source and destina
tion are on the same drive, the old filename.COM will be over
w r itt en. T his ish 0 w BIN Dis use d to u pd ate apr 0 g ram wit han e w
version of HEADER.

Iff i lename.COM does not conta i n HEADER, Bam will respond with
the warning:

This -.COM- file may be an asaa file -
if you still wish to bind it,
rename it with ex tens i on - .CPM-

If you attach HEADER to a native PC-DOS program, the program
will no longer run - BIND is making sure that won't happen. If
you know you've got a CP/M file, type:

RENAME s:filename.COM filename.CPM <CR>

A-I

BIND

Then:

c:BIND s:filename.CPM d: <CR>

This will unconditionally attach HEADER to filename.CPM,
producing the larger filename.COM. The size of the two files will
differ by exactly the length of HEADER.

You may of course rename your file to the CPM extension before
running BIND the first time, but be careful: if the file already
contains HEADER, it will now be "double-bound", containing two
HEADERs, and it won't run. It's safest to probe for the presence
of HEADER by attempting to BIND your COM file first, before you
RENAME it to CPM.

B I NO does not accept globa 1 , or "w i ldca rd" filenames, fo r
example:

BIND *.CPM

will not match a series of files; instead, it will look for a
single file literally named "*.CPM". Since you only BIND each
COM file once, the absence of globals shouldn't be a serious
handicap.

A-2

CONVERT

A.2 CONVERT: ACCESS TO CP/M DISKETTES

Use CONVERT to:

- Move files in either dlrection between PC-DOS dnd CP/M.

To transfer a file, you must have two diskettes, one
formatted for PC-DOS (double or sin'3le slded), th~
other for CP/M (single sided only).

- Inspect the directory of a CP/M diskette.

Don't use CONVERT to attach HEADER to a file which is already on
a ~C-D05 formatted diskette - use BIND instead. Convert requires
two disk drives to operate; at least one must be a 5-inch floppy
disk drive.

Type:

Response:

PROCEDURE

c:CONVERT s:filename

CP/M IBM File Transfer Utility
Version 2.1 (c) 1982, Microlog Inc.

IBM Disk: __

Type the one-letter name of the drive which contains your PC-DOS
formatted diskette - no <CR) is necessary. Notice that CONVERT
immediately posts your response at the top of the screen. It
will continue to do this with each parameter (selection) you
supply, forming a "status line" for easy reference. The next
prompt is:

CP/M Disk: __

Type the name of the drive containing your CP/M diskette.

Response:

AVAILABLE FORMATS:

1. NBC pc-alll
2. IMS 5111
3. DBC VT-laX
4. Heath/Zenith Soft Sectored
5. CP/M-a6 on the IBM PC

SELECT FORMAT:

A-3

CONVERT

Select from this list the format that matches your CP/M diskette,
and type the appropriate number, 1 through 5. Now the Functions
Menu appears:

1. Copy from CP/M to IBM
2. Copy from IBM to CP/M
3. Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Exit program

ENTER SELECTION:

Type a number from 1 to 6 - the entire menu remains on the
screen, but the other functions fade to half-intensity,
highlighting your choice. Your function remains highlighted until
execution is completed.

FUNCTIONS

1 •. £.22:£ from CP/M to IBM

Type "1" to bring a file into PC-DOS from CP/M. Your screen looks
like this:

IBM Disk: d: CPM Disk: s: CPM format type: formattype

1. Copy from CP/M to IBM
2. Copy from IBM to CP/M
3. Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Exit program

ENTER FILE NAME «return> to exit copy) :

You now type:

filespec <CR>

Which is soon replaced by:

COPYING FILE s:filename.ext

You may use global parameters in place of filenames and exten
sions (e.g. *.ext , or *.*).

When the copy is finished, CONVERT says:

ENTER FILE NAME «return» to exit)

Ent~r anoth~r filename, or type <CR>, returning to the Functions
Menu.

A-4

CONVERT

Identi.;al to the procedure for Functi,)n 1, except of course that
now th~ ~ourCi~ is a PC-DOS formatted diskett.:?, and the destina
tion is a CP/M diskette.

3. Pr!.nt Directory of IBM Q.isk

This function displays the directory of the disk listed as "ISM
disk" ~t th: top of your screen, so you don't have to e;.cit
CONVERT to find out which files you've got. If you've got the
wrong type of disk in there, you'll get an error.,The directory
appears at the bottom of the screen and remains there for
ref~rence after control returns to the Function Menu.

4. Print Directory of CP/M Disk

Similar to Function 3, except that you get the directory of the
disk listed as the "CP/M disk". This is the only way to read the
directory of a CP/M diskette under PC-DOS.

5. Change Parameters

When you want to change an entry in the onscreen status line,
this function allows you to quickly restart CONVERT from the top,
without exiting to system level.

You type "5", the screen clears, and CONVERT begins again with
the prompt:

IBM Disk: __

6. Exit Program

The screen clears, and the system prompt appears, returning you
to PC-DOS command level.

A-S

KEYFIX

A.3 KEYFIX: AUTOMATING YOUR KEYBOARD

KEYFIX allows you to program more than fifty "definable" function
keys to output any character string (sequence of keystrokes), up
to 89 characters long. Because the function key definitions
reside in HEADER, KEYFIX can only be used with CP/M programs
running on Baby Blue.

PROCEDURE

Type:

c:KEYFIX s:filename <CR>

Response:

ENTER THE KEY YOU WISH TO DEFINE, <a>-TO EXIT

Press a "definable" key, as explained below. The screen clears,
and you see this:

KEY SELECTED: [FUNKEY]

CORRENTLY DEFINED AS:

[current designation]

TO DEFINE A KEY HIT <RETURN) TO LEAVE THE KEY UNCHANGED
HIT ANY OTHER KEY.

pres~ "Return" «CR». All information currently on the screen
remains there, and in addition,

Now type:

To define a key, enter a string of characters. Define
able keys may not be used. They will be ignored.
Control characters are okay. The maximum length of one
entry is 88. Any characters exceeding this size or the

total table size will be truncated.

TO END THE STRING, ENTER THE KEY YOU ARE DEFINING.

(character string] <FUNKEY>

A-6

KEYFIX

The symbol "(FUNKEY)" means "press the key you tire currently
defining" - that's how KEYFIX knows you're done. Why not <CR>?
Because you might use that as part of your definition - if you
do, it will display as "AM".

The screen clears, and you're back at the top, ready to start on
another key. This is the £~ way to exit once you begin to
define a key: whatever you see at the bottom of your screen is
stored literally as the key definition. If there is nothing at
the bottom of your screen, your key will be stored as a "null",
meaning that when you press it during program execution, nothing
at all will happen.

Restarting KEYFIX

You can always get back to top of KEYFIX by pressing the
currently selected key, but remember that once you have
started to define a key, the bottom of your screen will be
stored as the new key definition, even if there is nothing
there.

To Inspect the Definition of ~ ~

Press the key to display its current status; press the key
again, and you're back at the top of KEYFIX.

To Finalize Your Entries

When you've finished setting up your keys, type "0" ("Ouit")
at the top of KEYFIX, to return to PC-DOS. Always exit in
this way if you want to save your entries - KEYFIX will
write them all to disk, in the HEADER attached to the target
program. Now, whenever you call that program, your keys will
work as you have programmed them.

To Clear ~ Function Key

You may want to erase the definition of a function key
simply to disable it, but the main reason is to clear table
space for long entries to other keys, as explained below.

Go to the initial prompt, and press the key. Now press
"Retrn"; at this point, your cursor is standing on an empty
line at the bottom of the screen. Immediately press the
selected key again, entering a "null", or inactive, string
for the selected key.

A-7

ItBYPIX

Correcting Errors

There is no practical way to correct an error, except to
start again. Press the selected key twice, then press
"Re trn", to sta rt over.

Duplicate Definitions

To KEYFIX the same definitions to a number of programs,
rename HEADER to HEADER.COM - now you can KEYFIX HEADER
itself. Then chaqge the name back to HEADER, and BIND it to
your programs.

Sorry, you can't run KEYFIX on KEYFIX itself - it's not a
CP/M-S9 program.

Def.inable Keys

YOU can define a total of 56 different function keys,
divided into four registers. The unshifted, or "normal"
register consists of:

19 Function Keys: (Fl>-(F19>.
4 Arrow Keys: (Up>, (Down>, (Left>, <Right>.
6 Others:(Home>, (End>, (Pg Up>, (Pg On>,

(Delete>, (Insert>.
29 Total

To select an unshifted key, type:

(Function key>

For example,

(Fl>

displays:

KBY SELECTED: FUNCTION 1

The "control" register consists of:

19 Function Keys <Fl> - (Fl9>
2 Arrow Keys: (Left>, <Right>
!_Q.~hers:~~~~~~~!!d>.L_~~~pg On>
16 Total

A-S

KEYFIX

To select one of the 16 keys in the "control" register,
press <CTRL) and the function key simultaneously. For example:

<CTRL HOME>

displays:

KEY SELECTED: CTRL HOME

The "Shift" and "Alternate" registers each contain 10 keys:

For example,

<SHIFT FI> (or <ALT FI»

displays:

KEY SELECTED: SHIFT FI (or ALT FI)

Default Definitions

HEADER comeS with all function keys predefined as shown in
Table 4-5. The peculiar symbols beginning with "-@" are
sequences expected by the PC-DOS line editor: you use this
facility, for example, every time you delete a character
while typing a DOS command. If you redefine these keys, you
will disable the corresponding DOS line-edit function during
execution of your KEYFIXED program. This will only be a
problem in the rare case where a program does not have its
own line-edit functions.

Allowable Strings

You may enter any character as part of the definition for a
function key, except that nothing will happen if you try to
enter one of the definable keys. This means that one
function key cannot call another, nor can a function key
call itself.

The so-called "parallel functions" - ALT, SHIFT and CTRL -
are always used as part of a two-keystroke combination. If
you type <CTRL> nothing happens; however, if you hold <CTRL)
down and type another character, for example "C", you get
this on your screen:

A-9

ICEYFIX

Your system uses a caret ("A") to represent the "hidden"
<CTRL> keystroke - doni t confuse it with the "real" caret,
or <Shift 6> on your keyboard. Your system interprets this
"-C" not as two characters, but as one: the normally non
printing command sequence <CTRL C>.

If you type:

<SHIFT 6><C>

You'll also see:

but this is interpreted, and normally printed (or displayed)
as the two characters "A", and "C".

Some keys, such as <Tab> and <Retrn> will post peculiar
control codes on the screen as you define a function, but
don't worry - during program execution your system will
properly interpret these as commands, and will not print or
display unintended characters.

Space Limitations:

The longest definition you can enter is 80 characters - if
you enter too many, the following message appears at the
bottom of your screen:

ERROR: NO SPACE AVAILABLE

However, there is also a hidden limitation: your total
entries, for all functions, cannot exceed the size of the
"table" which has been reserved for them. There are actual
ly t'wo tables, each of 256 characters, divided between the
possible function keys as follows:

Table 1 256 Characters Total

10 Normal Functions: <Fl> - <F10>
10 Shift Functions: <SHIFT Fl - <SHIFT FIB>
20 Keys Total _. _____ _

Average 12.8 Characters per Function.

A-I"

KEYFIX

Table 2 256 Characters Total

10 ALT Functions:?l - F10
10 CTRL Functions: FI - F10
6 Cursor Controls: <UP>,<OOWN>,<RIGHT>,<LEFT>,

<CTRL RIGHT>,<CTRL LEFT>
10 Other Functions: <rIOME>,<END>,<PG UP>,<PG ON>,

<INS>,<CTRL HOME>,<CTRL END>,
<DEL),<CTRL PG UP~,<C~RL PG ON)

36 Functions Total

Average 7.1 Characters per Function.

If you have some really long strings, you may want to use
the functions of Table 1, in order to save space in Table 2.
In most applications, the Arrow and Other functions tend to
be short strings, and it is quite natural to save elaborate
instructions for the Normal keys Fl - F10.

HEADER's original default definitions occupy most of the
table space already - this is why you may suddenly receive a
"No Space Available" error after only a moderately long
string. To get more space, clear some functions you aren't
using by redefining them as nulls.

EXAMPLE

The following exercise programs a hypothetical text editor named
TEDIT.COM to output a name and address at the touch of function
key Flo

Run KEYFIX on TEDIT:

KEYFIX TEDIT <CR)

Select Fl:

<Fl>

Elect to define Fl:

<CR)

Enter key definition:

Ethel and Rupert Snoot~M35 Tar-Boosh Ln.AHHog-Jaw, N.D.<Fl>

Exit KEYFIX:

A-II

KEYFIX

Exit KEYFIX:

o
The symbol "AM" appeared each time you pressed (Retrn> while
entering the key definition itself. It represents (CTRL-M>, which
is properly interpreted as a carriage return by the computer.

Now, whenever you press
following text appears:

(Fl> during a TEDIT session, the

Ethel and Rupert Snoot
35 Tar-Boosb Ln.
Hog-Jaw, N.D.

This occupies 53 of the 256 characters available in Table 1.
Note that all symbols count, including "AM" (1 character) and
spaces.

Don't limit yourself to simple text entry - you can KEYFIX
anything you can type, especially command sequences which can
turn a sound but awkward program into a high-performance vehicle.
Any often-repeated complex series of keystrokes is a candidate
for ~ function key "mini-program" - a complicated graphic figure
for example, or a text editing sequence. With eighty characters
at your disposal, you can achieve spectacular results.

Many powerful software packages are so complicated that you end
up~seldom using many functions simply because it's too much
trouble to remember all the codes. A logically arranged KEYFIX is
often the answer - you'll find that the function keys fall natu
rally into groups for easy reference.

A-12

TESTZS9

A.4 DIAGNOSTICS: TESTZ89

TESTZ8~ is a diagnostic program which tests all hardware
.functions on the Baby Blue board, including memory. Use it any
time you suspect a physical malfunction on the board. It is
included so that you can distinguish Baby Blue related problems
from faults in other parts of your system, lncluding possible
problems with software.

PROCEDURE

Type:

TESTZ8fiJ <CR>

System Response:

Z8fiJ CO-PROCESSOR CONFIDENCE TEST VERSION 1.92
COPYRIGHT(C), 1983, MICROLOG, INC.

1 BABY BLUE LOCATOR PASSED
2 INTERRUPT TEST 66 PASSED
3 8fiJS8 MEMORY TEST PASSED
4 8fiJ88 ADDRESS LINES PASSED
5 INTERRUPT TEST 38 PASSED
6 Z81 ADDRESS LINES PASSED

** TESTING SUCCESFULLY COMPLETED **

If you see this, you know the problem is definitely elsewhere,
either somewhere else in your system, or in software. If your
board fails TESTZS0, or you suspect a hardware fault in your
system, continue reading through "Troubleshooting", below.

TROUBLESHOOTING

You're here because your system fa i led to behave norma lly af ter
you installed Baby Blue, or because TESTZ80 returned an error.
At worst, you may have to return your board to Microlog for
service, but that's going to take some time, so you're hoping to
find another answer. Our experience indicates that very few
boards actually fail after factory testing, and that apparent
faults are usually due to some factor overlooked during the
installation. Most boards received by our service department turn
out to be in perfect working order.

Here are some common faults:

- At boot-time, an error message appears at the top of your
screen (e.g. "l0AA 201", Parity 2).

A-13

TESTZ89

- Your machine won't boot at all. Either you don't get a
cursor, or you only get a cursor, or the system locks up as
the titles come on.

- You get erratic operation, often associated with a
particular utility or peripheral device.

- TESTZ89 returns various errors.

All of these appear to be "hard" errors, indicating defective
hardware. Since Baby Blue is the only new factor, it is natural
to assume that the board is defective. However, as explained in
Section 2.2, problems may arise from conflicts between elements
in your system, where neither part is in itself at fault. Such
conflicts can be resolved, but it's important to know first where
the fault lies.

Use the following procedure to isolate the problem. Remember,
before you touch any boards, be ~ that ~ turn E.£~~ OFF,
and disconnect the power cable from your System Unit.

First, remove Baby Blue, and turn all the DIP switches on and off
two or three times; then reset them as recommended and try rein
stalling the board. DIP switches are Baby Blue's only mechanical
component, and they sometimes get "tired" - exercising them is
often a quick fix. Make sure they're really set - push hard.

T~e next step is to isolate Baby Blue - you don't know the board
is ~efective unless you have removed all other factors which
might affect it. This means removing as many other boards as
possible, stripping your computer down to bare essentials.
Obviously, you wouldn't remove your video interface or disk drive
controller, since without them your computer won't run anyway,
but any extra memory boards or peripheral device interfaces
should come out. Also, your boot disk should contain a plain
vanilla operating system - if you've made any software installa
tions to your working copy of DOS, make a new copy of your
original operating system for testing purposes.

Before you start pulling boards, make some notes, if you haven't
done so already. Don't change anything you can't undo, and make
sure you've recorded the settings of any switches you can see.
On most machines, you'll have to change the switches on the
motherboard after removing any memory boards. When you're done,
you should have returned your machine to its original factory
configuration.

Make sure the machine works normally in every way, then instdll
Baby Blue, using the factory switch settings shown in Section
2.11. Don't do any customizing at this point - we're trying to
find out whether the board is OK, so keep it simple. You now
have a complete isolation test - the only change to your working
machine is plugging in Baby Blue - you haven't even changed a
switch position.

A-14

TESTZ80

If the board doesn't work now, try a different expansion slot -
you'd be surprised how often this works, ~ven thou~h all slots
are theoretically th~ sam~. ~he manufdcture('~ documentation
won't mention it, but ~any m~chines have shown problems with the
physical distribution of signals on the expdn:3ion bus. The same
principle applies if you have an expansion chassis, only mor? SOi

try your putting your board in the System Unit, or vice-vers~. IE
the board still doesn't work, it's tim~ to turn to the Warranty
section and get some help.

If your board works now, you can start reinstalling your various
options until you find the one that doesn't like Baby Blue. When
you find the problem, Section 2.2 ~ay give you some idea of
what's causing it. The way to fix a conflict with another board
is to change the Page assignment of one or both boards - this
will remove possible overlaps in th~ memory map.

Changing Baby Blue's memory Page also changes its "port address",
which is a separate addressing scheme used by your system to
locate peripheral devices such as printers and disk drives. This
means that you can also resolve conflicts involving non-memory
boards, simply by changing Baby Blue's Page assignment.

Contact your dealer for any problem you can't fix - he is in the
best position to help, since he is on the scene and can directly
observe the symptoms. If you can't get satisfaction locally,
contact Microlog at:

Technical Support
Microlog Inc.
222 Route S9

Suffern, NY 10901
914-368-'BS3

When reporting any problem, be sure you include the following
information:

-Serial number, dealer's name, and date of purchase.
-System configuration, as outlined in Section 2.26.
-A short history of your attempts to fix the problem,

including contacts with your dealer.

A-1S

'l'ESTZ81

HOTES:

A-16

APPNOTES

B. APPLICATIONS NOTES

B.l EMULATING THE "SAVE" FUNCTION: DEBUG.DDT

Although DDT and si~ilar utilities work on Baby Blue, they're not
vldry useful if you can't write the results of your work to disk.
Normally, you would use the CP/M resident SAVE command, but this
command is not available under PC-DOS. A neat sol~tion is to run
DDT under the control of DEBUG, using DEBUG's Write facility in
much the same way you would use SAVE. Note that unlike SAVE,
DEBUG makes it very easy to compute the file size to write,
becausld it's given simply as the number of bytes in hexadecimal.

The screen display is shown" in boldface~ comments follow the
semicolon.

A>DEBUG DDT.COM <CR) ~run DDT under DEBUG

-G <CR> istart DDT

* DDT STARTS HERE *

xxxxxxxxxxxxxxxx

-I (filespec] <CR)

-R <CR>

HEXT PC
nnnn pppp

-(do whatever you want]

DDT's signon message

specifies target file

DDT reads the file

DDT responds with the next free
address following the file, and the
assumed program counter (l~~H for .COM
files). You can use this information
to determine the size of the loaded
file.

modify target file under DDT.

IMPORTANT: before exiting DDT, find
out how many bytes you want to save,
and also the starting memory location
(usually 100H).

B-1

APPalOTES

-03 <CR>

-<CTRL-C>

displays contents of Baby Blue
location 9993H in first position.
Ordinarily, this would be the CP/M I/O
Byte, which is not implemented in
HEADER. Instead, the high-order nibble
contains the segment number occupied
by Baby Blue in the host's memory
(e.g, a Baby Blue with base address
E0000H will display "E9" with this
command). you'll need this information
to Write your file under DEBUG.

exits DDT, returns to DEBUG

program terminated normally; DDT signs off;

* DDT ENDS HERE *

-al<filespec> <eR>

-RC~ <eR>

-CXexxxx <eR>

-wseqment:offset <CR>

-Q <CR>

specifies DEBUG output file

calls ex register

enter number of bytes to save (HEX)

write output file to disk: enter Baby
Blue's segment, followed by colon,
followed by the starting address to
save within Baby Blue's memory
(usually the beginning of the program,
at l0"H).

exit DEBUG

B-2

WARRANTY

c. WARRANTY INFORMATION

DISCLAIMER

Microlog, Inc. makes no representations or ~arranties with
respect to the software programs included herein and specifically
oiscldims any implied warranties of merchantability or fitness
for a particular purpose. Furthermore, Microlog, Inc. reserves
the right to revise the software programs included herein and to
make changes from time to time in the content thereof. Microlog,
Inc. is not o~ligated to notify any person or organization of
such revision or change.

LIMITED WARRANTY

Microlog warrants the original user of this hardware product that
it is free from defects in materials and workmanship for a period
of ninety (90) days from the date of shipment from Microlog or
Dealer to the original end user. If any Microlog product becomes
defective within the first ninety (90) days from the date of
shipment, Microlog will replace or repair, at its sole option,
that unit which proves to be defective. This warranty is void
if, in the sole opinion of Microlog, the product has been subject
to abuse, misuse, or modification. All warranties are non
transferrable. This warranty is in lieu of any other warranty,
expressed or implied, and in any event, is limited to product
repair or replacement. Microlog shall not be liable for any
incidental or consequential damages of any kind resulting from
use of this product.

IF YOUR BOARD FAILS TO OPERATE.

Microlog rigorously tests every product to insure that our boards
will not fail in the field. However, even with this level of
testing, problems do occur. If your board requires repair,
please refer to the return procedure outlined below.

C-I

WARRANTY

RETURN POLICY

All defective products in question, whether purchased directly
from Microlog, or through an authorized dealer, must be returned
to Microlog for repair or replacement according to the conditions
set forth in the limited warranty.

Prior to returning any defective product for replacement or
repair, you must receive a RMA (Return Materials Authorization)
number from Microlog. When requesting an RMA number, please
provide the following information:

1. A brief description of the problem.

2.

3.

Serial number of the unit to be returned.

The name of the dealer from whom
purchased.

4. The date of purchase.

the unit was

Upon receipt of an RMA number from Microlog, pack the unit along
with a copy of your proof of purchase and sh ip it prepa id to
'Microlog. Items received without proof of purchase cannot be
s~rviced and will be returned at the sender's expense. The RMA
n~mber must be marked on the outside of the shipping container.

Repaired units, if still in warranty, will be shipped prepaid by
UPS surface. Customer requests for any method of shipment other
than UPS will be charged to the customer. All requests for
air freight will be shipped collect.

All products returned for repair or testing and found to be out
of warranty will be assessed a minimum $55.00 service charge. If
the charge for repair is to exceed $55.00, the customer will be
notified for authorization prior to Microlog's repair of the
unit. An RMA number is also required for out of warranty repair.

All prices are subject to change without notice.

Ship to:

Microlog Inc.
222 Route 59
Suffern, N.Y. 10901
(914) 368-0353

C-2

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-01
	B-02
	C-01
	C-02

