Reprogramming the Omega Video Timing

Definition of symbols:

Ph horizontal scan frequency. KHz .
Th horizontal scan period, microseconds
Fo vertical scan frequency. Hz .
Tv vertical scan period, milliseconds
Oh horizontal blanking time, microseconds
th horizontal display time, microseconds
Iv vertical blanking time, microseconds
iv vertical display time, microseconds
sh horizontal sync. pulse duration. microseconds
th horizontal front porch. microseconds
bn horizontal back porch, microseconds
suv vertical sync pulse duration, microseconds
fo vertical front porch, microseconds
by vertical back porch. microseconds
X \quad x resolution, pixels
Y y resolution, pixels
Lx xzoomfactor
Wy y zoom factor
ct character time, microseconds (.$\div \div \div$ for Omega $\leq 00, .3636$ for : Kr: K)

The following timing diagrams illustrate how these symbols are used:

These are relations between symbols derived from theiridefinitions:

$$
\begin{aligned}
& \mathrm{Fh}=1000 / \mathrm{Th} \\
& \mathrm{Fv}=\mathrm{i} 000 / \mathrm{Tv} \\
& \mathrm{Oh}=\mathrm{fh}+\mathrm{sh}+\mathrm{bh} \\
& 0 v=\mathrm{fv} \div \mathrm{sv}-\mathrm{bv} \\
& i \mathrm{~h}=\mathrm{Th}-0 \mathrm{O} \\
& \mathrm{iv}=\mathrm{Tv}-\mathrm{Ov}
\end{aligned}
$$

The Omega allows access to ten video timing control registens. These are loaded via the op code CRTWR (hex 46). followed by negister number (range 0 to 9) and the value to be written. In the following table, (r0) means the contents of rO and thus is the value following the hex sequence ≤ 600; similarly to write hex 57 into register \leq, one would transmit $\leq 60 \leq 57$.

- (r0)=int.Th/ct]-1 ro controls horizontal rate.
- $\left(r^{-}\right)=i n t[$ ih/ct]-2 $; r 1$ controls horizontal display time Also iri determines X resolution by.
$\left.X * Z x=: 6^{*}\left(r_{i}\right)-2\right]$

- $(r \hat{3})=[6 * i n t[s v / T h]-i n t[s h / c t] \quad$ r3 controls horizontal AND vertical sync.
- (r 5) $\mathbf{r}(5)$ and (r 9) work together to define the vertical period. One may choose any values that produce the correct period, within the constraints:
($\mathrm{r} \leq$) ranges from 0 to $: 27$ decimal (r 5) ranges from 0 to 31 decimal (r 9) ranges from 0 to 3: decimal

There are three formulas to use:
interlace, $(r \leq) *(r 9)$ even: $2 * \operatorname{lnt}[\mathrm{Tv} / \mathrm{Th}]=[(\mathrm{r} \leq)+1] *(\mathrm{r} 9)+2\}+2 *(\mathrm{r} 5)-1$
interlace, $(\mathrm{r} \leq) *(\mathrm{r} 9)$ odd: $2 * \operatorname{int}[\mathrm{Tv} / \mathrm{Th}]=[(\mathrm{r} 4)+1] *(\mathrm{r} 9)+2]+i 2 *(\mathrm{r} 5)$
non-interlaced: \quad int $[\mathrm{Tv} / \mathrm{Th}]=[(\mathrm{r} 4)+1] *(\mathrm{r} 9)-1]+(\mathrm{r} 5)$
.- (r 6): (r9) also works with (r 6) to define y resolution, and:may affect the selection of (r 9) in the previous calculations:
interlaced: $Z y * Y=(r 6) *[(r 9)+2]$
non-interlaced: $\quad Z y * Y=(r 6) *[(r 9)+1]$
(note. no zoom means $Z y=1$; a times 2 zoom means $Z y=:$, etc).

Selection of a value for r ? requires first that vertical front porch be rounded to the nearest multiple of 4^{*} Th for interlace and $8^{*} \mathrm{Th}$ for non-interlace- these are the finest increments that the vertical sync pulse can be positioned. Assuming this has been done:

- $\quad(\mathrm{r} 7)=(\mathrm{r} 6)-\mathrm{int}[\mathrm{vf} / \mathrm{ct}]$
- $\quad(\mathrm{r} 8)=0$ for non-interlaced $=3$ for interlaced

APPIJCATIONS

Normally, one reprograms the Omega to optimize system performance. This could mean maximize X and Y resolution, and push monitor bandwidth to the limits of its performance. The Omega constraints are defined by: X and Y cannot exceed $: 023$ without wrap-around
and ct is fixed by the crystal frequency

The monitor typically is constrained in terms of most of the video timing parameters previously used. One usually will try to acheve the maximum refresh rate to minimize flicker.

Where some items are not included in the monitor spec, standards such as ELA RS-343 or RS-170 may be consulted.

Both groups of constraints come into play in the first example. the standard $: 025$ by 768 resolution, 33 Hz . interlace display of the standard Omega ≤ 00.

Example 1: 1024 by $768,34 \mathrm{~Hz}$. interlaced.

Assume we begin with X resolution:
$X=: 024=: 6 *((r i)-2]$ so $(r:)=66$.
Monitor blanking time is spec'ed at 6 microseconds, nominal. RS-3 3 specifies 725 useconds. max. It is desirable to maximize blanking, as it allows the processor to operate at:a higher duty cycle; so we choose the largest multiple of ct within 725 i e. : 6 .
$1 \mathrm{~h}=\mathrm{ct} *[(\mathrm{r}:)-2]=28.25 \mathrm{us}$.
Th $=28.25-7.06=3 \leqslant 31$ usec. $\mathrm{Fh}=28.32 \mathrm{KHz}$. (Within monutor specs)
$(\mathrm{rO})=(\mathrm{r}:)-$ int $[0 \mathrm{Oh} / \mathrm{ct}]-3 \quad$; since we chose Oh to be $: 6^{*} \mathrm{cl},(\mathrm{rO})=79$
Horizontal sync data are not in the $36: 9 \mathrm{spec}$, so we use RS-343.

Let sh=ct*int[2.75/ct] $=2.65$ usec. Let $\mathrm{fh}=\mathrm{ct}{ }^{*}$ int $[.75 / \mathrm{ct}]=.88$ usec.
Ih determines $(r 2):(r 2)=(r 1) \div$ int $\left.^{\top} f h / c t\right]=(66) \div 2=68$.
The resulting backporch is generous: $\mathrm{bp}=0 \mathrm{~h}-\mathrm{fh}-\mathrm{sh}=3.53 \mathrm{usec}$.
To continue, we use $Y=768$ (derived from aspect ratio considerations) and the RS-3 $\angle 3$ vertical retrace time of $: .25 \mathrm{msec}$. Actually, we use 1.257 msec, as it is the closest multiple of Th/2.
$T v=(7.68 / 2) * T h+1.257=14.48 \mathrm{msec} . F v=: 000 / \mathrm{Th}=69.1 \mathrm{~Hz}$ field rate. The frame rate is half this, or 34.5 Hz .

Now we can select total lines per frame:
Lines=int[2*Tv/Th]=841.
Since this number is odd, we use:
$B \div=[(r \leq)+:] *(r 9)-2]-2 *(r 5)$ and $768=(r 6) *((r 9)-2]$. Choose ($r 9)=6$ for convenience. Then
$(r 6)=96(r \leq)=103(r 5)=4$
Since we are interlaced. $(r B)=3$. All that remains is to select a ralue for $r 7$. The monitor spec says nothing about vertical sync position; RS-3<3 says 0 to 250 usec. We will minimize it to give the monitor the maximum time to stabilize before beginning the next scan.
$(r 7)=(r 6) ;$ vf $=0$. Actually, due to hardware, a 2 usec of exasts.
Example 2: $640 \times 48030 \mathrm{~Hz}$. Interlaced ($\mathrm{RS}-170$).
RS-: 70 dictates almost all video parameters:
$\mathrm{Fh}=15.73426 \mathrm{KHz}$
Th=63 555 usec
$\mathrm{Fv}=59.94 \mathrm{~Hz}$
$T v=: 6.683 \mathrm{msec}$
Other parameters are derived from these-
$\mathrm{Oh}=.15^{*} \mathrm{Th}=10.168 \mathrm{usec}$
$\mathrm{i} h=\mathrm{Th}-\mathrm{Oh}=53.387 \mathrm{usec}$
$\mathrm{fh}=.02 \cdot \mathrm{Th}=1.27 \mathrm{usec}$
$\mathrm{sh}=.0 \mathrm{OB} * \mathrm{Th}=5.084$ usec
$\mathrm{bh}=.06 * \mathrm{Th}=3.813 \mathrm{usec}$
$0 v=075 * T v=1251 \mathrm{msec}$
$1 \mathrm{v}=\mathrm{Tv}-0 \mathrm{v}=15.432 \mathrm{msec}$
$\mathrm{fv}=0$
$\mathrm{sv}=.04^{*} \mathrm{Tv}=667 \mathrm{msec}$
$\mathrm{bv}=0 \mathrm{v}-\mathrm{sv}=.58 \leq \mathrm{msec}$
The crystal frequency required is 72.5035 NHz : this is the standard

Omega ≤ 00 crystal value. It yields a character time of:
$\mathrm{ct}=32 /$ crystal freq. $=. \leqslant 414 \mathrm{usec}$
Th dictates the value programmed into ro:
(ro) $=$ int $T \mathrm{Th} / \mathrm{ct}]-:=$ int $[63.555 / .4 \div: 4]-i=: \leq 3$
$(r 1)=$ int $\left.t^{\circ}: h / c t\right]+2=123$; however this would yield an $Z x^{*} \times$ of
$16 *: 2:=$:936. Assuming a Zx of $3,645: 3$ pixels in x results So
we must compromise the RS-170 standard, and let r : be set by resolution of $6 \leqslant 0 \mathrm{X}$:
(r 1) $=$ int $\left._{-}^{-} \mathrm{Zx}{ }^{*} \mathrm{X} /: 6\right]+2=$ int $\left._{-}^{-3 *} 640 / 16\right]-2=122$
$(r 2)=\left(r^{\circ}\right)+\operatorname{int}(f h / c t)=122+3=125$
$(r 3)=: 6 * i n t(s v / T h)-i n t(s h / c t)=-6 * 3-1:=59$
$(r \leq)$ (r 5) and (r 9) are chosen for 525 scans per frame. Lise the formula for interlaced, with $(r \leq) *(r 9)$ odd:
$52 \overline{5}=[(r \div)-i] *(r 9)-2]-2 *(r 5)-i$
The problem is one of factoring $52 \leq$ within the range constraints on the registers. One combination that works is:
$(\mathrm{r} 5)=86$
(r5) $=1$
(r9) $=4$
For (r 6), use the target y resolution of ≤ 80 :
$\angle 80=(r 6) *:(r 9)+2]$: since $(\mathrm{r} 9)=\angle .(\mathrm{r} 6)=80$
$(\mathrm{r} 7)$ is set by vf: assume this is zero, as the controller is restricted to multiples of $4^{*} \mathrm{Th}$:
$(\mathrm{r} 7)=(\mathrm{r} 6)-\mathrm{int}(\mathrm{vf} / \mathrm{ct})=(\mathrm{r} 6)+80$
and for this application. $(\mathrm{r} B)=3$.

CRT COUTKOLLER IETCW:CMAR TTME - 441.6 NSC

HCRIE:

(2) 736×552 NaN-INTECLACE GOHZ FRAME NATE

VEC:

$$
\begin{aligned}
& \text { Hor } 2 \text { ALC TIAVNG ACCUEATE INITMIN } 10
\end{aligned}
$$

$$
\because 1, k+i
$$

