

Memory Organization

B.6 The Heap

The library module Storage implememts the heap management. On each chunk of
memory (typically 10 - 40 K) it does its own memory management. This is transparent
and you can directly get and release memory by means of ALLOCATE and
DEALLOCATE.

Modula-2 provides the standard procedures NEW and DISPOSE to allocate and
deallocate dynamic memory. The compiler maps calls to these procedures to calls of the
procedures ALLOCATE and DEALLOCATE. When using NEW or DISPOSE in a
module, procedures ALLOCATE or DEALLOCATE must be imported or declared in that
module. The standard way is to import these procedures from the library module
Storage. However, a program may declare and use its own versions of ALLOCATE or
DEALLOCATE. In this way, a program can implement its own heap management. In
general, the strategy for allocation and deallocation of dynamic memory will then differ
from the default strategy provided by module Storage.

B.7 The Stack

The stack holds different kinds of data:

• Procedure activation records
• Temporary values during the evaluation of an expression

• Other temporary data

Every process owns its private stack which is part of its workspace. Upon creation of a
process by a call to NEWPROCESS the stack is set such that the fIrst word pushed onto
the stack occupies the last word at the highest even address in the workspace. The stack
grows from the end of the workspace toward lower addresses.

Maximum stack size is 64K bytes. However, in most applications the workspace needed
by a process is less than 64K. Therefore, the stack size is usually limited by the size of
the workspace and the occupation of the heap.

The default size of the main process stack is a fixed value (8000 bytes); you can change
this at link time by using a different size. Refer to the section on linker options.

385

AppendixB

B.8 The Procedure Activation Record

Each time there is a procedure call, a new procedure activation record is created on the
stack of the current process. Depending on whether 8086/8088 or 80186/80286 code is
generated, the activation record format differs slightly. The procedure activation record
contains the following information (see also Figure B-4 and Figure B-5 below):

Procedure parameters Are pushed, if they exist, onto the stack in the order they are
declared. Because the stack grows toward lower addresses,
the last parameter is found at the lowest address.

Static link A pointer, within the same stack, to another procedure
activation record which constitutes the static environment of
the procedure. The static link can find variables or parameters
in the static environment of the procedure. The static link is
only for procedures which are declared nested inside of
another procedure. The static environment consists of the
parameters and variables which are declared in the embedding
procedure(s). When code is generated for 80186/80286, the
static link does not exist, but is implemented as a display.

Return address If the procedure was activated by a near procedure call, the
return address is an offset value only, which corresponds to
the instruction pointer. If the procedure was activated by a far
call, there is also a segment value which corresponds to the
code segment of the calling procedure.

Dynamic link Points to the previous procedure activation record within the
same stack.

Display (186/286 only) A table of pointers, within the same stack, to the other
procedure activation records which make up the static
environment of the procedure. The number of table entries
corresponds to the lexical nesting level of the current
procedure. The display table is used to find variables or
parameters in the static environment of the procedure. The
display is only generated if the code generation option for
80186/80286 was selected. For 8086/8088 code, access to the
static environment is implemented by the static link.

Local data All the variables declared inside the procedure.

386

Local Data of Procedure

Dynamic Link

Return Offset

Return Code Segment

Static Link

Last Parameter

...
First Parameter

Figure B-4: Procedure Activation Record for 8086/8088

387

Memory Organization

Low Addresses

Stack Pointer

Base Pointer

Higb Addresses

AppendixB

Local Data of Procedure

Display

Dynamic Link

Return Offset (IP)

Return Code Segment (CS)

Last Parameter

...
First Parameter

Figure B-5: Procedure Activation Record for 80186/80286

388

Low Addresses

Stack Pointer

Base Pointer

High Addresses

Memory Organization

B.9 Procedure Calling Conventions

A procedure is called with a far intersegment call if at least one of the following
conditions is true:

• It is imported from another separately compiled module.

• It is exported from a definition module.
• It is used in an assignment to a procedure variable or as a procedure parameter.
• It is used as the body (starting point) of a process upon a call to NEWPROCESS.

If none of these conditions is true, the procedure is called with a near intrasegment call.

Before a procedure call occurs, this prologue is executed in the calling procedure:

• Parameters, if any, are pushed on the stack in the same order as they are declared.
A value parameter on one byte occupies two bytes on the stack, with the value in the
low byte and an undefined high byte.

• for 8086/8088 only:
If the called procedure is declared nested inside of the calling procedure, the static
link is pushed on the stack.

This sets up the first part of the procedure activation record. The remainder is set up
inside the called procedure.

Now, the procedure is called and gains control. It executes the following procedure
prologue, to prepare the rest of the procedure activation record:

• An optional call to the run-time support routine stack check is executed. BX contains
the number of bytes on the stack needed by the current procedure. This amount
includes the size of local variables and the stack space needed to pass parameters to
called procedures.

389

AppendixB

The following steps are executed for 8086/8088:

• The current value of the base pointer BP is pushed on the stack. This sets up the
dynamic link.

• The value of base pointer BP is set to the current value of stack pointer SP.
• Space is reserved on top of the stack for the local variables of the procedure, if any

exist, by reducing the current value of the stack pointer SP by the total size of the
procedure variables.

Tnis is the code generated for 80186/80286:

• The instruction ENTER size, level is executed where size is the total size of the
procedure variables, and level is the lexical nesting level of the procedure. This
instruction automatically sets up the dynamic link, the display, the space for the local
variables on the stack, and the values for BP and SP.

The statements of the procedure body are then executed. The local variables and the
parameters of the procedure are accessed with an offset relative to the base pointer BP.

Upon termination of the procedure body, the procedure epilogue is executed, performing
the following operations:

The following steps are executed for 8086/8088:

• The stack pointer SP is reset to the current value of the base pointer BP. This
removes the local variables from the stack.

• The dynamic link is popped to restore the old value of the base pointer BP.

This is the code generated for the 80186/80286:

• The instruction LEAVE is called. LEAVE automatically removes local variables,
display, and dynamic link and resets BP and SP.

• A return instruction passes control back to the calling procedure. A far or near return
is used, according to the type of call that was used to activate the procedure. The
parameters and the static link are discarded automatically with the return instruction.

390

Memory Organization

B.I0 Function Results

A function result is returned as follows, depending on the size of the function type:

• One byte values are passed back in register AL.
• Two byte values are passed back in register AX.
• Four byte values are passed back in register DX and in register AX.
• REAL values are always passed back on top of the stack.

~-------------------------NOTE--------------------------~

In the current release, arrays and record types are not allowed as function types.

SET types bigger than a word are treated as structures.

391

AppendixB

B.II Symbols in .OBJ Files

Here are the exact symbol definitions that the LOGITECH Modula-2 compiler puts in
the object file. These can be used for symbolic debugging, or correcting linker symbol
errors. The LOGITECH debuggers show you the names of variables or procedures you
declared, without prefix and suffix. Symbols are truncated to 31 characters (the limit of
the DOS linker and of some assemblers). The generated symbols are case-sensitive.

Type of Symbol

Exported procedure
Local procedure
Nested procedure
Global variable

Beginning of module
End of module

Beginning of data of a module
End of data of a module

Beginning of initialization code
if in different segment

End of initialization code

Name

L __ <procnam> __ <modname>
S __ <procnam> __ < ... > .. .
N __ <procnam> __ < ... > .. .

<varnam> <modname>

$BM __ <modname>
$EM __ <modname>

$BD __ <modname>

$ED __ <modname>

$BI __ <modname>
$EI __ <modname>

Note: These symbols are neither used nor generated, but are reserved.

Initialization entrypoint
Module entrypoint after initialization
Code of a local module

Key for version checking at link time
Key for version checking at run time

Beginning of a Modula-2 program
Description of a Modula-2 program

$ INIT __ <modname>
$BODY __ <modname>

$BODY __ <modname>

KEY __ <dateSYMfile> _ OF _ <modname>
$OK __ <dateOBJfile> OF <modname>

Start Modula
$DD

KEY _._ uses two underline characters with no break;
<data of fila> uses the position-sensitive format ddmmmY'YY_hhmm where;

dd= the day;
"_" is a separator;

mmm= month;
hh = the hour;

392

yy= year;
mm = the minute.

Memory Organization

B.12 Aborting LOGITECH Modula-2 Programs

When you type (Ctrl H Break I or Ctrl C, the operating system usually aborts the
program that is currently running. Ctrl Break and @!ill-@ have the same effect in
LOGITECH Modula-2. However, depending on the circumstances, there are some
restrictions on their use.

In general, Ctrl C only has an effect when the program is waiting for keyboard input.
Ctrl Break cannot be used when the program is waiting for input, but can be used any

other time. Ctrl Break is immediately effective - it is acted upon as soon as you use
it. The effect of Ctrl C is delayed until the program reads the@!ill-@ character. By
typing Ctrl Break it is possible to stop a Modula-2 program that is running in an
infinite loop. However, under certain circumstances, the whole system might crash if
(Ctrl H Break) was accepted. LOGITECH Modula-2 tries to prevent this from happening.
Therefore, typing (Ctrl H Break) will sometimes have no effect at all.

In LOGITECH Modula-2, the Break library module lets you define how a program will
behave when you press (Ctrl H Break) or @!ill-@ is typed. If the Break and the
DebugPMD modules are linked into a program, a memory dump (file MEMORY.PMD)
will be generated when you press (Ctrl H Break) or @!ill-@. To debug a program with
the symbolic post-mortem debugger, a memory dump is needed. To be linked with a
Modula-2 program, you must explicitly import the Break module into one of the program
modules. Normally, you will import it in the main module of the program. If the Break
or DebugPMD modules are not linked with a program, no memory dump will be
generated when you use (Ctrl H Break) or @!ill-@ to terminate the program, but the
program will stop anyway, if possible.

With the Break module, you can also keep a program from aborting by having it ignore
(Ctrl H Break I and Ctrl C. You can also install a Break procedure which will be called
when you press Ctrl Break or @!ill-@. With a Break procedure, a dump will not be
generated automatically. When the Break module is used, pressing (Ctrl H Break I once, in
almost all cases, stops the program or calls the installed break procedure.

393

AppendixB

B.13 Command Line Arguments

When a LOGITECH M odula-2 program is executed using the executable file name
prefix and the GD, any text which follows the file name is taken as keyboard input.
This means that you can type, for example:

M2COMP MY _PROG/BATCH/NOAQUERY GD

This works for any LOGITECH Modula-2 program that does keyboard input using the
Terminal or InOut modules. You can aiso inciude this faciiity in your own program.
When you use a read routine like ReadString, it will automatically read the command
line.

This lets you use LOGITECH Modula-2 programs more easily with the DOS Batch files,
which only recognize program input on the command line. Because the compiler, linker
and debugger accept either a space or a GD to terminate an argument, multiple
arguments may be given on the command line. For example:

M2L OVERLAY1 (MAINLINE) GD

394

Appendix C
Technical Tips

395

Technical Tips

Appendix C

e.l Print Time and Date

The following is an example of how to get the Time and Date from the system in a
legiable format. Some math manipulation has to be done to extract the information from
the Time record.

MODULE PrintTimeDate;

FROM TimeDate IMPORT
Time, Get Time;

FROM InOut IMPORT
WriteCard, WriteLn, WriteString;

VAR
curtime
tday, tmonth,
tyear, ttemp,
hr, min

: Time;

CARDINAL;

BEGIN

GetTime(curtime};
tday := curtime.day MOD 32;
ttemp := curtime.day DIV 32;
tmonth := ttemp MOD 16;
ttemp := curtime.day DIV 512;
tyear := ttemp MOD 128;
hr := curtime.minute DIV 60;
min := curtime.minute MOD 60;
WriteString('The Time is '};
WriteCard(hr,2};
WriteString(':'};
WriteCard(min,2};
WriteLn;WriteLn;
WriteString('The Date is '};
WriteCard(tmonth,2};
WriteString('/'};
WriteCard(tday,2};
WriteString('/'};
WriteCard(tyear,2};
WriteLn;

END PrintTimeDate.

(*

*)

The printout has the following format:

The Time is 14:25
The Date is 8/ 5/87

396

e.2 Printing

This is one way of getting output on the printer

MODULE Printing:

FROM FileSystem IMPORT
Lookup, Close, File, WriteChar, Response;

FROM InOut IMPORT
WriteString, WriteLn;

VAR
printer File;
str ARRAY [0 .. 9] OF CHAR;

PROCEDURE PrintString(str: ARRAY OF CHAR);

VAR
i: CARDINAL;

BEGIN
i: =0;

WHILE (i<= HIGH(str» AND (str[i]<>Oc) DO
WriteChar(printer,str[i]);
INC (i);

END;
END PrintString;

PROCEDURE OpenPrinter;

BEGIN
Lookup(printer,'PRN', FALSE):
IF printer. res <> done THEN

WriteString ("cannot open' PRN''');
WriteLn;
RETURN;

END;
END OpenPrinter;

BEGIN
str := 'It works!';
OpenPrinter;
PrintString(str);
Close (printer) ;

END Printing.

397

Technical Tips

Appendix C

C.3 The Screen

This is one way of writting to the screen memory. The location of the screen memory
depends on your Video Adaptor Card.

For Monochrome Adaptors it is OBOOOH:OH
For Color Graphic Adaptors it is OB800H:OH]

MODULE Screen:

CONST
MAXCOL = 79:
MAXROW = 23:

TYPE ScreenType

VAR

ARRAY[O •• MAXROWj OF
ARRAY[O .• MAXCOLj OF
RECORD char,attr : CHAR END:

screen[OBOOOH:OHj:screenType:

PROCEDURE WriteToScreen(str: ARRAY OF CHAR):

VAR i : CARDINAL:

BEGIN
i := 0:
WHILE (i<=HIGH(str» AND (str[ij<>Oc) DO
screen[12,37+ij .char str[ij: (* Starts writting approximately

in the center of the screen *)
INC (i):
END;

END WriteToScreen:

BEGIN

WriteToScreen('Hello');

END Screen.

398

Technical Tips

C.4 Redirect Input

This is an example of how to use the redirection capability of Termbase module. Refer to
a textbook on Modula-2 if you don't understand the mechanism of procedure parameters
as used by AssignRead.

DEFINITION MODULE RedirectInput;

EXPORT QUALIFIED SetInput;

PROCEDURE SetInput(str: ARRAY OF CHAR);

END RedirectInput.

IMPLEMENTATION MODULE RedirectInput;
FROM InOut IMPORT OpenInput;
FROM Termbase IMPORT UnAssignRead,

AssignRead, ReadProcedure, StatusProcedure;
FROM ASCII IMPORT EOL;

VAR
InputString: ARRAY [0 .. 80) OF CHAR;
StringIndex : CARDINAL;

PROCEDURE Read(VAR ch:CHAR);

BEGIN
IF (Stringlndex<=HIGH(InputString» AND

(InputString[StringIndex) <>Oc) THEN
ch:=InputString[StringIndex];
INC (StringIndex);

ELSE
ch:=EOL;

END;
END Read;

PROCEDURE Status(): BOOLEAN;

BEGIN
RETURN TRUE;

END Status;

PROCEDURE SetInput(str: ARRAY OF CHAR);

VAR i: CARDINAL; done: BOOLEAN;

399

Appendix C

BEGIN
i:=O;
WHILE (i<=HIGH(str» AND (i<=HIGH(InputString» AND (str[ij<>Oc) DO

InputString[ij:=str[ij;
INC(i);

END;
IF (i<=HIGH(InputString» THEN InputString[ij:=Oc END;
StringIndex:=O;
AssignRead(Read,Status,done);
OpenInput(I.TXT");
UnAssignRead(done);

END Set Input;

END RedirectInput.
MODULE Example;
(*

This program is an example of redirection and it uses MODULE
RedirectInput. Before you run this program create a file which
has the string (text) • This program reads the string from a
file (example.txt) and displays it on the screen.

*)
FROM RedirectInput IMPORT Set Input;
FROM InOut IMPORT ReadString, WriteString;

VAR str: ARRAY [0 •• 80) OF CHAR;

BEGIN
SetInput(lexample.txt");
ReadString(str);
WriteString(str);

END Example.

(* example. txt contains the string *)
(* Reads the string untill a blank is encounterd *)

400

Appendix D
Product Support Plan

Copy Protection

Product Support Plan

The LOGITECH Modula-2 disks are not copy-protected. This doesn't mean you can
make unlimited copies of them. LOGITECH Modula-2 software is protected by the
copyright laws that pertain to computer software. It is illegal to make copies of the
contents of these disks, except for your own backup, without written permission from
LOGITECH, Inc. In particular, it is illegal to give a copy to another person.

Reminder

Remember to send your registration card, if you haven't done that. It helps us to keep
our contact with you, and keeps you up-to-date with important product information.

401

AppendixD

Technical Support

LMIS

We know that effective communication with our customers is the key to quality service.
Therefore we have set up the LMIS (LOGlTECH Mouse/Modula-2 Information Service),
an electronic bulletin board where you can contact us at your convenience.
To logon to the LMIS, dial:

(415) 795-0408

using a 300, 1200 or 2400 baud modem.

The menu of available options is self explanatory.

BIX

LOGITECH also sponsors an electronic conference on BIX, the BYTE INFORMATION
EXCHANGE system from Byte magazine. If you have access to BIX, join us in the
LOGITECH conference, and communicate with us there.

Getting Help through the Hotline

You should rely on your manual or your dealer to answer questions about using your
package. If you do encounter a technical problem with your package, our Technical
Support Specialists will be glad to help you.

We ask you to follow these steps before you call or write.

• Read the section of the manual that describes the procedure you are trying to perform.

• If the problem relates to your software, check to make sure that the software is
properly configured.

If, after following these steps, you are still not able to solve the problem, give us a call at
(415) 795-0427, or write to us. If you write, please include your daytime phone number
and the best time to reach you. Also, please add "Attn: Technical Support" somewhere
on the envelope.

We want to help you make the most effective use of your package.

402

Modula-2 Glossary

A LOGITECH Modula-2 Glossary

In LOG/TECH Modula-2, these terms have specific meanings:

Base layer
A program which calls a subprogram. For example, the compiler passes made
by the overlay version of the LOG/TECH Modula-2 compiler are called
sequentially by the compiled base which is their base layer.

Compilation unit
Part of a program contained in a separate file which can be compiled separately.
M odula-2 compilation units are: definition, implementation, and program
modules. Modules can be compiled separately only if the imported definition
modules are already compiled. Only definition modules can export objects. If
an object is exported from a compilation unit, it must be split into definition and
implementation modules.

Definition module
The definition part of a Modula-2 module. For more infonnation on definition
modules, refer to the corresponding sections in Programming in Modula-2 by
Niklaus Wirth.

Development system
The entire system, both hardware and software, used to develop a program.
Software includes the operating system and utility programs and libraries.
When used to develop Modula-2 programs, it includes Modula-2 run-time
support, as well as the Modula-2 compiler, linker, debuggers, editor, utilities,
and library.

403

Modula-2 Glossary

Language support

Library

A program seen as an extension to the hardware. It gives the target system the
ability to execute programs written in the corresponding programming language.
The language support for Modula-2 is part of the Modula-2 run-time support.

In general, a library is a set of functions or procedures which can be used by any
program. In Modula-2 the library is equal to the set of all available Modula-2
library modules.

Library module
A M odula-2 module, consisting of a definition and an implementation part,
which is available for use by any M odula-2 program.

Implementation module
The implementation part of a M odula-2 module. An implementation module
contains the code that implements the capabilities provided by this module as
they are specified by the corresponding definition module. The section on basic
concepts in this manual contains a brief description of implementation modules.
For more on the use of implementation modules refer to the corresponding
sections in Programming in Modula-2 by Niklaus Wirth.

Main module
The main module of a Modula-2 program is the module that is given to the
linker to link the program. The module code of the main module constitutes the
main program. The main module must be a program module.

Main program
The term 'main program' has two different definitions depending on the context
in which it is used:

When talking about a single program, it refers to a particular part of the code of
that program, the main program code. Executing the main program code is
equivalent to executing the whole program. In Modula-2, the main program
code consists of the program module. The execution of a program starts with
the execution of its main program code. When the execution reaches the end of
the main program code, the program terminates.

When talking about programs and subprograms, the term main pro gram refers
to a program that is the base layer of a (set ot) subprogram(s), and that is not a
subprogram itself.

404

Objects

Overlay

Modula-2 Glossary

Anything that can be given a name, including constants, variables, procedures,
types, and modules.

A part of the code of a program is an overlay of that program, if this code is
loaded at the same memory location as some other code - the code of another
overlay - of the same program. When code that belongs to an overlay is loaded
into memory, it overlays the code of the overlay that was loaded previously.
Sometimes, not only code but also data is overlayed.

By using overlays, a program that would require a large amount of memory can
run on a computer with less memory. Modula-2 provides a simple overlay
concept in the form of subprograms.

Program
A Modula-2 program with all the modules which are imported directly or
indirectly by its main module. When a program is linked, the resulting load file
includes all these modules. A M odula-2 program may also call another
Modula-2 program as a subprogram. A program that calls a subprogram, but is
not a subprogram itself is also called a main program. In this context, the term
program refers to the one main program and the set of all its subprograms.

Program module
A M odula-2 module which does not have a definition module and is not
declared in any other module. The code of a program module is a main
program. For more information on program modules please refer to the
corresponding sections in the book Programming in Modula-2 by Niklaus
Wirth.

RTS (Run-time support)
A set of modules which includes language support and other configuration­
dependent functions. These include typical operating system features such as
setting up the memory configuration, loading programs, and dumping memory
to disk.

Separately compiled module (SCM)
A compilation unit which is either an implementaion or a program module, and
has been compiled separately.

405

Modula-2 Glossary

Subprogram
A Modula-2 program called by another Modula-2 program. A subprogram
consists of those modules imported directly or indirectly by its main module
which are not part of its base layer. A subprogram can use objects exported by
the modules of the calling program. A subprogram may also call other
subprograms. Subprograms in Modula-2 provide a very simple overlay
concept. For information on how to call subprograms, please refer to the
definition module 'Program' in the library section of this manual. For
information on the memory use of subprograms, refer to the appendix on
memory organization.

Target system
The system, both hardware and software, on which you execute your application
programs. In most cases the target system is the same as the development
system. However, this is not a requirement. The hardware configuration of a
target system for Modula-2 or Modula-2lVX86 does not require a terminal or
disks. The software configuration may be reduced to the Modula-2 run-time
support and your program.

Workspace
The memory region allocated to a process for stack, program variables, heap,
and subprograms. When a Modula-2 program is started, it begins execution as
the main process. The default stack size of any main program is 8000 bytes.
This value can be modified at link time. A subprogram shares the workspace
(stack) of its base layer. When a process is created, the workspace is defined as
a parameter of SYSTEM NEW PROCESS. It may be located anywhere, (loop,
stack, or global data). Just don't let the process have a longer lifetime than its
workspace!

406

INDEX

A

Abort A Program, 393

Absolute Variables, 159

Activation Record, 386

Address

Constant, 159

Arithmetic, 159

ADDRESS, 57159-163,165

ADR Function, 62, 166

Alignment, 84

ALLOCATE, 57

ANSI.SYS, 10

ARRAY, 40, 172

Assembly interfacing, 110

Assembly language, 110-114, 120

AUTOEXEC.BAT, 17,20

B

Base Layer, 379,401

BITSET, 171

BOOLEAN, 171

BUFFERS Statement, 10

BYTE, 165,171

c

CLanguage, 115-122

Call Chain, 123, 140

Calling Convention, 387

CARDINAL, 171

CASE Statement, 43

CHAR, 171

CHR, 173

CODE, 169

Command Line Handling, 126, 394

Compilation Unit, 401

409

Compile

From Editor, 27

From DOS Shell, 70

Compiler,

Configuration, 80, 81

Directives, 90

Error Messages, 96

Options, 80

CONFIG.SYS, 10

Configuration of PMD, 125, 128

Controller Mask, 181

Coroutine, 63

CODE, Procedure,

Using CODE, 89

D

DEALLOCATE, 57

Debugging Commands

Keyboard Control, 134

Mouse Control, 132

DEC With Addresses, 161

Decimals, 201

Default Data Segment, 117

Definition Module, 401

Development System, 401

DISABLE, 169

DOSCALL, 170,187

Diskettes, 9

DOS 3.1, 11

DOS 3.2, 11

DOS Non Reentrancy, 180

Dynamic Array Parameters, 48

Dynamic Link, 387

INDEX

INDEX

E

Enable, 169

Enumeration Type, 171

Examples Technical Tips, 369

Execution, 381

EXTCALL Procedure, 115,170

Extensions (See Files)

F

Files:

Declaration, 47

CFG, 125, 128

FILES statement, 10

LST,73

OBJ,73

REF,73

SYM,73

Foreign Definition, 116-122

Function Results In Register, 391

G

GETREG, 168

GOTO statement, 39

H

Heap, 385

410

I

Implementation Module, 402

INBYTE, 169

INC, With Addresses, 161

Installation, 7

Interfacing Other Languages, 109

Assembly Language, 110-114, 120

CLanguage, 115-122

INTEGER, 171

Interrupt, 177, 181

INWORD, 169

IOTRANSFER, 167,175,177

ISR (Interrupt Service Routine), 178

K

Key, 107,110

Key Control (PMD), 132

L

Language Qualifier, 116

Language Support, 402

Library Search Strategy, 217-219

Library, 402

Link:

From Editor, 30

With DOS Linker, 32

Linking, 101, 119, 120

USTEN, 168.183

LONGINT, 171

M

Main Module, 402

Mask Interrupt Controller, 181

MathLibO, 173

Memory Dump, 123-126

Memory Organization, 377-380

Memory Requirements, 8

Module,

Definition, 36,51,53,55,58,77

Implementation, 37,52,54,58,78

Program, 36,56,74

Monitor, 183

Mouse Control (PMD), 132

N

NEWPROCESS, 167, 182,382

o

Object Files (.OBJ), 392

Objects, 403

Opaque Type, 172

Options,

Compiler, 80

PMD, 129

OUTBYTE, 169

OUTWORD, 169

Overlays, 379, 403

p

Pascal, 35-68

PATH Command, 14,20,21

Pictures In Decimals Output, 204

411

PMD

Commands, 137-149

Configuration, 125, 128

Keyboard Control, 134

Messages, 152-156

Mouse Control, 132

Options, 129

Windows, 137-149

Pointer Type, 41

POlNTER, 172

Priorities, 175, 176, 181

PROC Type, 49

PROC, 172

Procedure Activation, 386-389

PROCEDURE, 172

Procedures

IOTRANSFER 64

TRANSFER, 64

PROCESS, TYPE, 64

liSTEN,64

NEW, 57

DISPOSE,57

WAIT,65

SEND,65

PROCESS, 165,172,382

Program, 403

R

REAL, 171, 208-213

Record Type, 40

Record Variant, 40

Register Constants Def, 165

Return Address, 387

RTS Run Time Support, 403

RTSIntPROC, 178

Run Time Errors, 124

INDEX

Run Time Support Modules, 119, 120,214-215

INDEX

s

Search Strategy, 217-219

Separate Compilation, 403

Separate Compilation, 403

SET, 171

set Type, 39

SETREG, 168

SETREG,168

SIGNAL, TYPE, 65

SIZE Function, 62

Size, 166

Stack, 378, 385

Stack, 378, 385

Statement

EXIT,46

FOR, 44

IF,43

LOOP, 46

REPEAT,44

WHILE,45

WITH,41

Static Link, 387

Status, 124

Subprogram, 404

Subranges, 171

SWI, 169

Symbols In OBI file, 392

Symbol

Defined Twice, 101

Name Convention, 109, 116

SYSTEM, Module, 64

412

T

Target System, 404

Tennination of Program, 124

Tennination Procedure, 124

Transfer, 167,175

Tronc, 173

TSIZE Function, 62, 166

TYPE, ADDRESS, 57

TYPE, WORD, 60

Type

v

Conversion, 173

Transfer, 174

VAL, 173

Variable Allocation, 384

Version Checking

At Compile-Time, 105

At Link-Time, 106

At Load-Time, 108

w

Word, 165, 171

Workspace, 382, 404

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Logitech U.S.A.
Corporate Headquarters
6505 Kaiser Drive
Fremont, CA 94555
Tel : 415-795-8500

lDGITECH'"
MODULA-2
v E R S ION 3.0

USEItS MANUAL
Compiler
Library

Post Mortem Debugger

~LOGITECH
Logitech Switzerland
European Headquarters
CH-lill RomanellMorges
Switzerland
Tel: 41-21-869-9656

Logitech Taiwan
Far East Headquarters
15 R&D Road 2
Science Based Industrial Park
Hsinchu, Taiwan, ROC
Tel: 886-35-77-8241

Algol-Logitech Italy
Via Durazzo 2
20134 Milano MI
Italy
Tel: 39-2-215-5622

