

Chapter 7

7.4 Invoking M2MAKE From a Batch File

This is the most automatic and convenient way to use the M2MAKE utility. It is possible
to use more or less complex batch files depending on your own requirements, or the need
to compile overlay systems. (To understand batch files, see the section on batch files in
the DOS manual).

Step 1: Make a batch file called MYMAKE.BAT which contain:

m2make %1
cmdfile

Step 2: Store this in a directory specified in the DOS PATH, so that it can be used from
any directory.

Step 3: Invoke M2MAKE using this batch file, by typing either

MYMAKE MYPROG <options> GD
or
MYMAKE GD
(and answer the prompt for Module Name and Options).

M2MAKE will construct the batch file necessary to do the compilation
(CMDFILE.BAT), and the batch file MYMAKE.BAT will invoke
CMDFILE.BAT.

Step 4: To review the batch file generated before allowing it to run, use a batch file
containing:

m2make %1
type cmdfile.batlmore
pause
cmdfile

146

Example batch fIles for invoking M2MAKE:

Use a standard pattern file:

rn2rnake %l/PF=\rnake.pat
crndfile

Utility M2MAKE

Use the non-overlay compiler, multiple compilations per DOS command, and no run­
time tests except stack overflow:

rn2rnake %1/PD="rn2c #.DEF/NOA/B "/PM="rn2c/r-/t-/f-/NOA/B if II

crndfile

Use standard .MOD and .DEF compile patterns, but bypass all implementation module
compilations if any definition module compilations fail:

rn2rnake %l/PB="if exist *.lst gato end"/PT=:end
crndfile

147

Chapter 7

7.5 M2MAKE Options

M2MAKE can accept a number of options, entered immediately following the filename.
Each option begins with a / (forward slash), followed by the option letter (in upper or
lower case), followed by a value. Enter main module name (without extension) followed
by options:

<Module Name> <option>

Some options represent switches, in which case tl}e value field is +(on) or; -(off),

Some options specify a filename, in which case the value is any valid DOS filename. If
only a directory path is entered ending in \(backslash), a default filename is created on
that subdirectory. If the filename extension is omitted, a default extension is supplied.
Some options specify command file patterns, in which case the value is either a character
string terminated by a / (forward slash), or 0 ,or a character string enclosed in single
or double quotes.

~---NOTE--~

M2MAKE does not support spaces before option indicator" / ". Any space will
be interpreted as a terminator for the command line.

148

Utility M2MAKE

The M2MAKE options are:

Switch options

IA Autoquery Option
(Def~ult I A+)

Request Filename if not found.

This option specifies the action required when DEF/SYM or MOD/OBJ (non­
library source/object pair) files are not found that use the module-name for the
filename.

I A+ prompts you for a filename until one of the pairs is found with that
filename or until you press ~ , which indicates M2MAKE should continue
without that file. A pathname may be entered with or without a filename. A
pathname without a filename ends in " \ ", and the specified directory will be
searched for the module. The new specified path becomes the master path for
the remaining files of that module (Le. if "path \" is the answer to a prompt for
a DEF/SYM pair, then "path\" is used as the second directory (i.e. after the
current directory) to search for the MOD/OBJ pair.) The II option is disabled
temporarily for remaining files of modules for which a prompt is issued.

With the I A- option, you are not prompted for missing files.

The action taken when files are missing is controlled by IN option.

149

Chapter 7

IF- make full system; ignore dates

The default IF- causes a pattern generation for all modules which need
compiling according to the relative file dates and module dependencies.

The IF+ option generates the patterns for all files, regardless of the relative file
dates, and in the order determined by the module dependencies.

IG Log option

11+

(Default IG-) loG the files scanned and checked.

Causes M2MAKE to write at the terminal the name of each file it is referencing.
If the named file is found, its full name including directory path is written,
together with its directory timestamp. If a file is not found, the timestamp (Last
Modified) field is blank, and the filename without a directory path is logged. If
both files of a DEF/SYM or MOD/OBJ pair are found, an indication of the
relative ages of the files is also logged.

"<" indicates MOD or DEF older than OBJ or SYM;

">" indicates younger.

The relative age is one of the criteria M2MAKE uses to decide which files need
to be compiled.

11- Ignore object in path deeper than source

This option is useful when the M2xxx environments are used to specify a
hierarchy of directories with a private-library/master-library usage. With 11+, an
object file is ignored by M2MAKE if it is further down the object search paths
than the source is down the corresponding source paths.

For example, if we work in \user and most files are in \master, and we set all
M2xxx to "\master", then all search paths become "\master" (ie current
directory, followed by \master). If we start with a fully made system of
modules in \master, and no files in the current directory (\user), and copy and
update the source files D1.DEF and M1.MOD from \master to \user then when
M2MAKE is run with the II option, the files D1.SYM and M1.0BJ in \master
are not seen by M2MAKE, so that it generates the patterns to compile M1.MOD
and D1.DEF and all its dependencies. When the Compiler puts its outputs into
the current directory, this leaves the made set of modules in \master intact.
Further, modules can be independently updated and the system remade in
\master, at which a further make run in the user directory will still generate all
necessary compiles for the \user version with no impact on the \master version.

150

Utility M2MAKE

IM=filename[.map] IM= read .MAP file of made overlay base.

The specified .MAP file is read. Modules mentioned are not fully processed, as
thay are assumed to be in the Base. Only their .SYM file dates are checked so
that modules which import them, but are not in the Base, will be correctly
compiled.

IL Library file - assume all "made"

IL = <filename>

This option forces M2MAKE not to check for some files that will be assumed to
be already "made". The set of these files is discribed in the file specified by
<filename>. The syntax used in this description file is as follows:

MODULE = <Modula-2 module names>

for each file that must not be checked. A typical use is for library files (like the
standard library) which do not need to be checked for each run of M2MAKE.

If a file with the name "LlBRARY.MAK" exists on the default directory,
M2MAKE will automatically use it as a description file. A description file is
already provided with M2MAKE, which has the name LlBRARY.MAK. It
contains the list of all the files of the library provided with the LOGITECH
Modula-2 system.

Multiple library description files may be specified and separated by commas.

IN geNerate pattern even if source is missing.
(Default IN-)

When a source/object pair is missing, or when a source is missing and its object
date and import relationship to other modules indicates it requires compilation,
the IN option indicates what action M2MAKE should take. With the default
IN-, the compile pattern is not generated, but a message is issued instead. With
IN+, the compilation pattern is generated, even though the source file is
missing.

IT- Print some module sTatistics

Some statistics of number of modules, number of imports etc. are printed to the
log. If the IE option is used, causing a full scan of all source modules,
additional statistics including number of statements, procedures, internal
modules, lines etc. are printed.

151

Chapter 7

IX Cross-reference option
(Default IX-)

This option causes the M2MAKE program to write an inter-module cross­
reference listing into a .XRM file. This listing is in three sections:

• An alphabetical listing of modules with modules they import.

• An alphabetical listing of modules with those modules which
import them.

• An alphabetical listing by Identifier .Module of exported
identifiers and the modules which import them. In this
listing, "******" represents a qualified import of a module, e.g.:

IMPORT MODl
as opposed to

FROM MODl IMPORT Ident.

The alphabetical listings are case-sensitive (upper case letters will precede lower
case letters in the lexical order).

152

I E Extended Cross-Reference Option
(Default I E-)

Utility M2MAKE

This option causes the M2MAKE program to write a cross-reference listing
similar to the IX option. This listing is extended in that under each identifier the
source text of the identifier definition is printed.

~--NOTE---~

To achieve this, the M2MAKE program scans each definition and
implementation module in its entirety (not just to the end of the IMPORT
lists). This takes longer, and gives the possibility of detecting more
syntax errors (which will prevent the command-file generation).

Identifiers which are exported but undeclared, and declared but unexported are
highlighted in the extended cross-reference listing. Note: M2MAKE allows you
to make a cross-reference of a suite of main modules which may share a
common subset of modules. A list of main modules, separated by" , " should
be given together with the IX+ or IE+ options. In this case no command file is
generated.

153

Chapter 7

Filename options

/C Command File Name option
(Default /C=CMDFILE.BAT. Default extension is .BAT)

Generates a command file with a user-selectable name.

/PF Pattern File Name option
(Default /PF=PROG.PAT, where PROG is the main module name; default
extension is . PAT)

Enables a specified pattern file to be used for command file generation.

/5 Extension of link output file option
(Default /S=EXE)

Lets you specify a linker output file extension other than. EXE. This is useful if
using the absolute linker rather than the standard linker. In this case, use
/S=H86.

The link output file is examined by M2MAKE to check its existence and
timestamp in order to decide whether a link step should be generated.

Pattern Specification Options

The command file is generated in six sections. One way to specify a pattern for each
section is to enter it as an option. (See the section on Pattern specification for more
details). The six options for pattern specifiers are:

/PH Head of command file
/PD DEF module compilations
/PB Between DEF and MOD
/PM MOD module compilations
/PL Link step
/ PT Tail of command file

Each option specifier may be followed by =, and then by a character string terminated
either by /, 0 ' or enclosed in single or double quotes.

154

Utility M2MAKE

7.6 M2MAKE Pattern Specification

Command file generation is done in six separate sections. Individual specification of
how to generate these sections is done with character string templates - one for each
section. Each of the six character string templates may be specified in one of three ways:

• By specifying it in the options.

• By specifying it in a pattern file.

• By allowing it to take a default value.

For each of the command file sections, that template is used which is specified by the
earliest of the above methods. For instance, if the MOD compilation pattern is specified
as an option, any MOD compilation pattern specified in a pattern file is ignored, as is the
default MOD compilation pattern.

The templates may contain directives to specify the filenames to be generated in the
command file.

AA

Is replaced by the directory path and filename prefix. The directory path is that
determined for the file after finding it either via the search strategy or by
autoquery.

Is replaced by the filename prefix only.

Generates # or A characters respectively.

Letters associated with each of the six templates specify the pattern in the option list or
the pattern file.

155

Chapter 7

The six templates, and their associated letters are:

IPH Head of command file. Always copied to the beginning of the command file.

IPO DEF file compilation. Used each time a definition module is to be compiled.

IPB Between DEF and MOD section. M2MAKE generates all required definition
module compilations before any implementation or program module
compilations. The PB pattern is copied to the command file between the DEF
and MOD compile sections of the command file.

IPM MOD file compilation. Used each time a MOD file is compiled.

IPL Link step of command file. Used to generate a link if M2MAKE deems this to
be necessary.

IPT Tail section of command file. Always copied to the end of the command file.

In the DEF and MOD patterns, it is possible to generate multiple filenames on one
command line up to the Dos limit of 127 characters. This allows use of the compiler
feature which allows multiple compiles without reloading the compiler (speed
improvement). To specify this, the section to be repeated for each file should be
enclosed in braces" { "," } ". For example, the pattern:

m2c {I.mode/s-}"

might generate:

m2c \pathl\ml.MOD/s- \path2\m2.MOD/s-

Default values for all the pattern sections are:

PH=
PO="m2c I.DEF/NOA/B "
PB=
PM= "m2c I/NOA/B "
PL="m21 I"
PT=

Each of the command file sections may be specified in a pattern file. A pattern file is
used by M2MAKE if:

• It is specified by name in the IPF parameter, and is found.

• IPF is not specified, and a file with a name constructed from the main module
name plus the extension . PAT is present in the current directory or on the
M2PAT search path.

156

Utility M2MAKE

If a pattern file is used, each of the six command file section patterns begins in the
pattern file after a line beginning with

. head or .h (i.e. only the first two characters are checked).

.def or .d

. between or .b

. mod or .m

. link or .1

.tail or .t

The pattern definition ends before the next pattern definition or end of the file.

A pattern file might contain:

.head - this is generated first
del * .lst
.def - this is generated for each def compilation
m2c {#.def/NOA/B}
if exist #.lst goto error
.mod - this is generated for each mod compilation
m2c {#/NOA/B/r-/t-}
. link
m21 #
.tail
if not exist *.lst goto end
:error
dir *.lst
:end

This example will generate a command file which will stop when a compilation error is
detected in a definition module, but if all definition modules compile successfully, it will
compile all implementation modules.

157

Chapter 7

7.7 Search Strategy

The compiler uses a search strategy for finding .SYM files. The linker uses this same
strategy for finding .OBJ files. To be compatible, the M2MAKE program uses this same
search strategy for looking up all files (the files which are subject to the search strategy
are DEF, SYM, MOD, OBJ, EXE, MAK, PAT). The strategy searches the following
paths in order until it finds a required file:

1: The current directory.

2: The master path.

3: The M2xxx paths, set up by a prior DOS SET command, where XXX is the relevant
file extension.

158

Utility M2MAKE

7.S Compiling Overlay Systems

To build an overlay system and pattern, batch files can be set up so that one M2MAKE
run per link is done. The base layer is built in the first invocation of M2MAKE, and the
other layers are built in turn by subsequent invocations.

A scheme can be used where the generated command file is appended to the batch file
which invokes the M2MAKE program. In this way, a loop in the command file can be
established, and an arbitrary number of overlay layers can be built with a single
command.

A batch file MAKEOVLY.BAT, and a copy of it MAKEOVLY.STD are provided for this
purpose. To use it as provided, each of these files must be placed in the current
directory, together with the file MAKEOVLY.PAT. The batch file may then be invoked
with the following parameters:

parm 1 - main base layer module name

parm2 - first overlay layer name

parm3 - base of next overlay layer

parm4 - next overlay layer module name

The pair parm3, parm4 may be repeated for as many layers as exist (except for the
command line length limitation of DOS).

For example, if a system has the following overlay structure:

+-- OV2
+-- OVl --I
1 +-- OV3

BASE -----+
1

+-- OV4

The whole system can be built with the command:

MAKEOVL Y BASE OV1 OV1 OV2 OV1 OV3 BASE OV4

159

Chapter 7

MAKEOVL V.BAT contains:

m2make %1/pl="m2l #"/ pf=makeovly.pat
goto continue
:loop
if x%2 == x goto end
del %2.ovl
m2make %2/pl="m2l # (%l}"/pf=makeovly.pat/s=OVL
shift
shift
: continue
copy makeovly.std+cmdfile.bat makeovly.bat

MAKEOVLV.PAT contains:

.tail
goto loop
:end

MAKEOVL V.STD contains:

m2make %1/pl="m2l #"/pf=makeovly.pat
goto continue
: loop
if x%2 == x goto end
del %2.ovl
m2make %2/pl="m21 # (%l}"/pf=makeovly.pat/s=OVL
shift
shift
: continue
copy makeovly.std+cmdfile.bat makeovly.bat

Many variations on this theme of command and pattern files are possible. For an overlay
system in which some specific layers require the link step to be fed with module names
in answer to autoquery questions it may be more suitable to write a specific batch file to
build each layer. The tail of each command file except the last could then invoke the
batch file to build the next layer.

160

Utility M2MAKE

7.9 Program Operation

M2MAKE runs in five passes. At the start of each pass, an indicative message is written
to the screen. These messages are:

• Reading File: <filename>.MAK, <filename>.PAT

• Reading Directories: path*.xxx

• Reading Source Modules and Comparing Timestamps

• Generating Command File

• Generating Cross Reference Listing

During the first pass, the library and pattern files are read.

During the second pass, derectories specified in the M2xxx environements are read for
later use.

During the third pass, the source programs are read, starting with the main module, in
order to determine all imported modules. Imported module source programs are read
repeatedly, until all mentioned modules have been processed. Normally, (with /E-) the
programs are read only as far as the first source taken beyond the import list for each
module, as this is sufficient to completely define the module structure. In addition,
presence of object files, and relative dates of object and source files are noted in this
pass. These findings are written to the log if the /G+ option is used.

During the second pass, the need for compilations to be performed is calculated, based on
the module dependencies determined from reading the import lists.

161

Chapter 7

A source (.DEF or .MOD) must be compiled if any of the following are true:

• its corresponding .OBJ does not exist.

• its .OBJ is older than its source.

• the .DEF file of an import is to be compiled.

• its .OBJ is older than the .SYM file of an import.

• (for a .MOD) its .OBJ is older than its SYM.

• (for a .MOD) its .DEF is to be compiled.

~-------------------------NOTE------------------------~

When copying files from other systems, make sure that the dates of the files that
overwrite the existing files reflect the desired version. Example: You buy an
update of a special library . All files delivered are older than your application, but
of course newer than the old version. M2MAKE will not recognize that the files
are no good. Use option IF to update your application.

Source Language Syntax

The syntax of the source language accepted by M2MAKE is an extension of that detailed
in the EBNF description of Appendix I of Wirth's Programming In Modula-2, Third
Edition. The extensions allow use of SOS6-format address constants (segment:offset),
both in a ConstantDeclaration, and optionally enclosed in brackets after each ident in the
IdentList of a VariableDeclaration. These extensions are implemented as a superset of the
syntax allowed by the compiler. EBNF for these additions is as follows:

AddressOrConstExpr = ConstExpression [":" ConstExpression J.
ConstantDeclaration = ident "=" AddressOrConstExpr.

VarIdent = Ident [" [.. AddressOrConstExpr "J" J.
VarIdentList = VarIdent {"," VarIdent I.

VariableDeclaration = VarIdentList ":" type.

Without using either cross-reference option, M2MAKE parses ProgramModule and
DefinitionModule and ImplementationModule as far as the end of the import declarations.
With the IX+ option, it parses DefinitionModule as far as the end of the export list, and
with the IE+ option, it parses all three modules completely.

162

Utility M2MAKE

7.10 Error Messages

The following error messages may occur. The environment in which each occurs is
explained below.

Identifier space exceeded - terminated

There is an absolute limit of 63 Kbytes on the number of characters in a
symbol table internal to the M2MAKE program. This message
indicates that the table has overflowed. The message is generated
during the Reading Import Lists pass, and causes immediate
termination of the M2MAKE program.

The symbol table contains character strings. Character strings occupy
n+ 1 bytes in the symbol table, where n is the length of the character
strings. Items entered in this symbol table are:

• each pattern specification
• each unique module name
• for every module, each filename
• for every module, each directory path
• if /X+ or /E+, each exported or imported identifier.

Syntax Error in xxx MODOLE at line nnn

Where xxx is IMPLEMENTATION, DEFINITION or PROGRAM, and
nnn is a line number. Syntax errors detected while reading a source
module are reported with this message to the log. In addition, a
descriptive message for the error is logged. Such syntax errors cause
further parsing of the current module to be abandoned. However, other
modules continue to be processed.

The command file generation and cross reference listing passes are not
executed.

163

Chapter 7

no source file : nama.ext

Where name is a module name, and .ext is .MOD or .DEF.
M2MAKE has detennined that it should compile the named module;
however, the source for that module cannot be found through the
search strategy.

A missing .DEF file may appear to require compilation only when its
corresponding .SYM file cannot be located.

A missing .MOD file may appear to require compilation under the
following conditions:

• its .OBJ file is missing
• its .OBJ file is older than its .SYM file
• its .DEF file is to be compiled

A missing .MOD file will not give rise to this error if its .OBJ file
exists, is younger than its .SYM file, and the .DEF file is not to be
compiled

This message is issued to the log. It is also placed in the generated
command file at the point where the compilation pattern for the named
module would nonnally be written. The compilation pattern is written
to the command file in this error situation only if the /R+ option is
used. The error does not cause termination of command file generation
or M2XREF listing generation.

164

Utility M2MAKE

imports missing from file : name.ext

M2MAKE has detennined that compilation of the given module should
fail because required .SYM files will not be available after previously
generated compiles have run without error. It is always preceded by at
least one message indicating a . DEF file missing.

This message is issued to the log. It is also placed in the generated
command file at the point where the compilation pattern for the named
module would normally be written. The compilation pattern is written
to the command file in this error situation only if the /N+ option is
used. The error does not cause termination of command file generation
or cross reference listing generation.

link step not generated - missing files

M2MAKE knows that a link step should fail because modules it
expects to find are missing. It is written to the log, and also placed in
the generated command file. It will always be preceded by at least one
"file missing" message.

recursive import of DEF modules

A .DEF module is importing itself, either directly or indirectly. The
path of modules through which the fIrst-detected recursive import
chain exists is then logged, one module per line, starting from the
innermost. The batch file generation is terminated.

165

Chapter 7

Notes:

166

Utility M2CHECK

Chapter 8
The M2CHECK Utility

M2CHECK helps you find errors in M odula-2 programs. It reads and analyzes M odula-
2 source code and produces warning messages which indicate possible errors or
"dangerous" codes. It also indicates unused variables, types, constants, and procedures.

A module to be processed by M2CHECK has to be a correct Modula-2 module;
M2CHECK produces error messages when it encounters syntax errors. Although
execution continues, it M2CHECK may not find all problems. For this reason, use
M2CHECK only to modules that have already been successfully compiled.

M2CHECK sends output both to your display screen and to a .LST file. This .LST file
can then be called up through Load Listing in the M2ASSIST menu when the
corresponding .MOD file is in the active window in the POINT Editor.

r--NOTE--~

Syntax errors are referenced by number. See Section 8.3 Warning Messages for
the messages and their meanings.

Since none of the error-types detected by M2CHECK can appear in a definition module,
M2CHECK can be used on implementation or "main" modules only. To completely
check the usage of variables and other identifiers, M2CHECK needs to read the symbol
files of imported modules as well as the symbol file of the implementation module.
M2CHECK uses the same search strategy as the LOG/TECH Compiler.

167

Chapter 8

8.1 Running M2CHECK

To run M2CHECK type:

M2CHECK EXAMPLE QJ

You will get a screen that looks like the following:

After the filename, options may be added to adjust the exact operation of M2CHECK to
your specific needs (see Section 8.S Options). If the filename is omitted on the
command line, M2CHECK will prompt for it. In this case, options may again be
appended to the filename, separated by" / ".

8.2 Operational Errors

If M2CHECK cannot complete the checking of a module for any reason described above,
it will issue one of the following messages, indicating operational errors:

- DEFINITION MODULE not checked

fatal error: ~llegal symbol f~le
(symbol f~le has a bad structure)

168

Utility M2CHECK

8.3 Warning Messages

Generation of the warning messages described in this section is the very purpose of the
semantic checker M2CHECK. Most of the checks can be individually enabled or
disabled through options, thus allowing to adapt M2CHECK to produce only those
warnings which seem relevant to the user.

500: Identifier ambiguity

Occurs when several variables may be accessed, for example a global
and a local variable with the same name, or two fields of two different
records are visible at the same time because of the WITH statements.

501 Identifier not referenced

Signals that an identifier (variable, type, procedure, etc) declared or
imported in the implementation is not used.

502: Assignment to a FOR or WITH variabl

Occurs when an assignment is made to the variable of the FOR loop or
to the variable of the WITH statement. Note that if assignment of the
FOR variable is discouraged because of the possible side-effects,
assignment to a WITH variable has unpredictable effect and is
therefore very dangerous.

503: Variable referenced above

Occurs when a variable is used before its declaration. This may be
right, but it may also signal that the programmer has forgotten to
declare a local variable.

~---------------------NOTE---------------------~

Forward references are not allowed by some Modula-2
compilers. Using them may reduce code portability.

169

Chapter 8

504: Variable from another scope

Occurs when an access is made to a variable belonging to an
embedding procedure or module, for example in nested procedures.
This is again perfectly legal but the programmer could also have
forgotten to declare a local variable.

505: Assignment to a value parameter

Occurs when an assignment is made to a formal procedure parameter
passed by value.

506: PROCEDURE or hidden TYPE not implemented

The compiler does not signal which identifier is mIssmg in the
implementation while declared in definition, M2CHECK will list all
missing identifiers in an implementation

507: Identifier declared in DEFINITION not referenced

Signals that an identifier (variable, type, procedure, etc) declared in the
definition is not used inside the implementation.

170

Utility M2CHECK

8.4 DOS Error-level Variable

Upon termination, M2CHECK sets the MS-DOS error-level variable to one of the
following values. This error-level variable can be checked in a batch file.

0: no error detected, no warning issued

1: execution completed, but warning(s) issued

2: symbol file missing

3: other operational error detected

171

Chapter 8

8.5 Options

The following options are available:

Query:

Listing:

Autoquery:

Scope checking:

Forces M2CHECK to ask for SYM files

I Q-(default)
IQ+

Generates a complete listing with line numbers and error messages at
the appropriate positions; if disabled, it will only produce the summary
of the warning (on the display and on the listing file).

IL- (default)
IL+

Enable M2CHECK to ask for .SYM file if it does not found it. This is
useful while using batch files.

I A+ (default)
IA-

Checks for accessing variables in other scopes. (warning 504)

15- (default)
15+

Variable checking:
Checks for ambiguity during variable accessing. (warning 500)

IV+ (default)
IV-

Reference checking:
Checks whether or not identifiers are referenced. (warning 501)

IR+(default)
IR-

172

Utility M2CHECK

Definition module checking:
Checks for coherency between DEFINITION and IMPLEMENTATION

ID+(default)
10-

Illegal assignment checking:
Checks for assignment to FOR or WITH variables. (warning 502)

11+(default)
11-

Paramater assignment checking:
Checks for assignment to procedure parameter passed by value.
(warning 505)

I P+(default)
IP-

173

Chapter 8

Notes:

174

INDEX

A

Archived Files, 9-13

B

Base (for an Overlay), 66

Break module (RID), 90

Breakpoint, 88

c

Call Chain, 107

Command Line

M2CHECK, 168

M2DECODE, 130

M2FORMAT, 31

M2L,58,65

M2MAKE,145

M2VERS, 134

RTD,87

Configuration Files (RID), 91,95

Comment

Commands (M2FORMA T), 32

Handling (M2FORMA T), 24, 32, 33

Cross Reference

Option (M2MAKE), 152

M2XREF Utility, 141

Crtl-Break, Crtl-C (RID), 90

D

Debuggers, see RTD

(PMD In User's Manual)

Decoder

M2DECODE, 129

DEFAULT.M2F, 21,28

177

E

Error Messages

M2CHECK, 168

M2FORMAT, 55

M2L,67

M2MAKE, 163

M2VERS, 138

RTD, 123

Environment Variables

F

M2F (M2FORMA T), 20, 23

M2LID (M2L), 62

M2MAP (M2L), 62

M20BJ (M2L), 62

M2TMP (M2L), 62, 69

File Extensions

ARC, 9

BAT (M2MAKE), 146

CFG (RTD), 84,91,95

DC1 (M2DECODE), 129

FMD (M2FORMAT), 20,22,30

FMT (M2FORMA T), 20,22, 30

HLP (RID), 84

LID (M2L), 57, 59

LST (M2CHECK), 167

MAK (M2MAKE), 151

MAP (M2L), 57, 66 87

M2F (M2FORMAT), 21,22,28

OBJ (M2L, M2DECODE), 57,59,129

OVL (M2L), 57, 66

PAT (M2MAKE), 156

TMD (M2FORMAT), 21, 22, 27

VBK (M2MAKE), 135, 137

XRM (M2MAKE), 152

Index

Index

H

Hardcopy

Switch, 45

Features, 47

I

Initialization Procedures, 75

Installation, 7

L

Library Files, 59

Linker, 57

Command Line, 58, 65

Error Messages, 67

Options, 62

Overlay, 65,72

M

Mouse

RTD, 93,98

MAP Files, 57, 66, 87

M2DECODE, 129

M2F,23

M2FC,20

M2FORMAT, 17

Comment Handling, 24

M2L (See Linker)

M2MAKE, 143

M2VERS, 131

o

Object files, 57, 59, 129

Options

M2CHECK, 172

M2DECODE, 129

178

M2FORMAT, 40

M2L,63

M2MAKE, 148

M~VERS, 135

RTD,92

Overlay

Base, 67

Create, 72

Debug, 90

p

Link, 65

Initialization Procedures, 75

PROCESSES, 81

Standard Library Module, 72

Tennination, 73

PMD, (See User Manual)

PRINTER.M2F, 21,49

PTM2FORM, 21

R

RTD, 83-128

s

Breaking, 90

Commands, 103-121

Configuration, 91,95

Consistency Check, 122

Keyboard Control, 100

Messages, 123

Mouse Control, 98

Option File, 95

Options, 92

Program Execution Control, 88

Temporary Files, 85

Windows, 96

Shared Resource, 77

T

TEMPL (M2FORMA 1'), 20

Template file (M2FORMA 1'), 17,32

Temporary Files

Linker, 62

RTD,85

Tennination

Overlays, 73

Procedures, 75

u

User Associations, 5

v

Version Utility

M2VERS, 131

Variables

Environment, (See Environment Variables)

w

Windows (RTD), 96

x

X-Reference

M2XREF Utility, 141

Index

179

Index

Notes:

180

Logitech U.S.A.
Corporate Headquarters
6505 Kaiser Drive
Fremont, CA 94555
Tel : 415-795-8500

lDGITECH"
MODULA-2
v E R S ION 3.0'

TOOLKIT
Linker Decoder

Make Utility Formatter
Library Sources Disassembler

Run Time Debugger Cross Reference Utility
Version

~LOGITECH
Logitech Switzerland
European Headquarters
CH-lill RomanellMorges
Switzerland
Tel: 41-21-869-9656

Logitech Taiwan
Far East Headquarters
15 R&D Road 2
Science Based Industrial Park
Hsinchu, Taiwan, ROC
Tel: 886-35-77-8241

Algol-Logitech Italy
Via Durazzo 2
20134 Milano MI
Italy
Tel : 39-2-215-5622

