

Modula-2/86 Library definitions

PROCEDURE CalllInitProc;

- Call all initialization procedures for the current pro-
gram.

Analoguous to 'CallTermProc’.

CONST
RTSCall = 228; ,
Interrupt vector for general entry of RTS (for
Run-Time Support). The RTS is a resident assembly
program, providing the basic support for running
Modula-2 programs.

CONST

Define the processor's registers, which may be
used as parameters for the standard procedures
'SETREG' and 'GETREG'.

RegAX = 0; RegCX = 1;

RegDX = 2; RegBX = 3;

RegSP = 4; RegBP = '5;

RegSI = 6; RegDI = 7;

RegES = 8; RegCSsS = 9;

RegSS = 10; RegDS = 11;

END System.

185

Library Definitions Modula-2/86

DEFINITION MODULE Termbase;

Terminal input/output with redirection hooks

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH 2Zurich, Switzerland.
[Private module of the Modula-2 system]

EXPORT QUALIFIED
ReadProcedure, StatusProcedure, WriteProcedure
AssignRead, AssignWrite, UnAssignRead,
UnAssignWrite, Read, KeyPressed, Write;

TYPE ReadProcedure = PROCEDURE (VAR CHAR):;

To assign a private read procedure (for redirection of
input) a procedure of type 'ReadProcedure' must be pro-
vided. This procedure returns a character from the input
device. It waits until a character hes been entered.

TYPE StatusProcedure = PROCEDURE (): BOOLEAN;

To assign a private status-procedure (for redirection of
input) a procedure of type 'StatusProcedure' must be pro-
vided. This procedure returns TRUE, if a character is
available to read, FALSE otherwise.

TYPE WriteProcedure = PROCEDURE (CHAR);

To assign a private write procedure (for redirection of
output) a procedure of type 'WriteProcedure' must be pro-
vided. This is typically used to redirect output to a
file or to the screen and a file (log file). Special
interpretation of characters sent to the screen can be
performed in such a private driver procedure.

PROCEDURE AssignRead (rp: ReadProcedure;
sp: StatusProcedure;
VAR done: BOOLEAN);

- 1Install read and status routines for terminal input.

186

Modula-2/86 Library definitions

in: rp read-a-character procedure
sp is-character-available function
out: done TRUE if the installation was done.

Initially the corresponding procedures of 'Keyboard' are
installed.

Subsequent assignments of read and status procedures are
handled in a stack oriented way. Up to six 1levels of
assignments are supported. Done = FALSE if this depth is
exceeded.

Upon termination of a (sub-)program the read and status
procedures installed by that program are always removed, i.e.
the stack is automatically set back to its level upon start of
the (sub-)program. This also holds for 'shared' program calls
(see module 'Program'). In this respect, read procedures are
non-charable resources. However, a (sub-)program that does not
install a read procedure of its own, will by default use the
read procedure most recently assigned by its 'father' program.

PROCEDURE AssignWrite (wp: WriteProcedure;
VAR done: BOOLEAN);

- Install write routine for terminal output.

in: wp character output procedure,
out: done set TRUE if the installation was done.
[see AssignRead above.] Initially the procedure

Display.Write is assigned.

PROCEDURE UnAssignRead (VAR done: BOOLEAN);
- Undo the last AssignRead by the current program,

out: done set TRUE if there was something to
unassign.

The previously valid procedures become active again.

187

Library Definitions Modula-2/86

PROCEDURE UnAssignWrite (VAR done: BOOLEAN);
- Undo the last AssignWrite by the current program.

out: done set TRUE if there was something to
unassign.

The previously valid procedure becomes active again.

PROCEDURE Read (VAR ch: CHAR);
- Read a character using the current input procedure.
out: ch the character read, or NUL.

If no character is available, NUL (0C) is returned. Uses
the current status-procedure and read-procedure.

PROCEDURE KeyPressed (): BOOLEAN;
- Test if a character is available from the current inrput.

Uses the current status-procedure, as assigned by
AssignRead.

PROCEDURE Write (ch: CHAR);
- Write a character to the current output.
in: ch character to write.

Uses the current write-procedure as assigned by
AssignWrite.

END Termbase.

188

Modula-2/86 Library definitions

DEFINIT'ION MODULE Terminal;

Terminal Input/Output
Derived from the Lilith Modula-2 éystem developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED
Read, KeyPressed, ReadAgain, ReadString,
Write, WriteString, WriteLn;

PROCEDURE Read (VAR ch: CHAR);
- Read a character from the terminal. -
out: ch character that was read.

The character is not echoed. Code ASCII.cr from Kkeyboard
is transformed into System.EOL.

PROCEDURE KeyPressed (): BOOLEAN;

- Test if a character is available to Read from terminal.

PROCEDURE ReadAgain;

- Undo the last read: Make the last character be re-read.

PROCEDURE ReadString (VAR string: ARRAY OF CHAR);
- Read a line from the terminal.
out: string receives the text of the line

Characters are accepted (and echoed) from the keyboard
until <cr> 1is entered. The <cr> 1is not returned or

189

Library Definitions Modula-2/86

echoed. and <bs> can be used for editing. Tabs may
be entered, but are expanded into blanks immediately. No
other control characters may be entered.

PROCEDURE Write (ch: CHAR);
- Write a character to the terminal.
in: ch character to be written.

If terminal output has not been redirected, the following
interpretations are made:

System.EOL (36C)
ASCII.ff (14C)
ASCII.del (177C)
ASCII.bs (10C)
ASCII.cx (15C)
ASCII.1f (12C)

go to beginning of next line

clear screen and set cursor home
erase the last character on the left
move 1 character to the left

go to beginning of current line
move 1 line down, same column

mwnwunn

PROCEDURE WriteString (string: ARRAY OF CHAR);
- Write a string to the terminal.
in: string string to be written.

The string can be terminated by a NUL (0C).

PROCEDURE WriteLn;
- Write a new-line to the terminal. [Equivalent to
Write(EOL)]

END Terminal.

190

INDICES

191

Indices Modula-2/86

192

Modula-2/86 Indices

INDEX OF LIBRARY MODULES

Library module ASCII ..eeeesccososocsescsosscasassacss 121

Library module CardinalIO ...ceeieeceeencccsccsansoasss 122
Library module CONversion ...ccececeessecescsscssacss 124

Library module DiskDire tecseseenssesneass 126
Library module DiskFileS ..cecceeeeevecoconssnsoceansas 129
Library module Display cscccensas ceceennen ceeess 131
Library module FileMesSSag ...cecesccss cecssseeseseees 132
Library module FileNamesS ...cceceeececccccsososcsesas 133
Library module FileSySt ...ceeeeeccesecnncasanesessas 134
Library module INOUL cceececceasescasescccssscnscseas 146
Library module Keyboard ...ccecececcececcccnans ceeeses 151
Library module MathLib0cetcvececccscossccsseaneas 152
Library module NUMbEXCO ..cceeessossccosesssscsscsaes 154
Library module OPtiONS ..c.eeecesesccesesocssccscsnseces 157
Library module ProCesSSeS ..ceecesscsceccssassasssassas 159
Library module ProgMessag ..ceecsccececcecccsscscsscansss 162
Library module Program ..ceceocesceccosccsscssssccssseeas 163
Library module RealInOut ccocceeeescscccsscosssecscens 174
Library module RS232COAE .ccceeeseeccccccsoccsecscneee 166
Library module RS232INt .eeossessccssccssoacscasssseas 169
Library module RS232P011ing ...iceceevscoccecccceacseas 172
Library module Storage P v
Library module Strings .ceeeeecssescccecassscsssccocsasas 178

Library module SYSteM .ceecescesesvssososscsoccscsoasseas 181

Library module Termbase ...s.ceeseesssecccsssassccceas 186
Library module Terminal ..cc.cceeesccsccssvcscocseoseas 189

193

Indices ‘ Modula-2/86

194

Modula-2/86

Indices

INDEX OF PROCEDURLS
OF LIBRARY MODULES

in alphabetical order by procedure name

Again
ALLOCATE
arctan
Assign
AssignRead
AssignWrite
Available
Awaited

BusyRead
BusyRead
BusyRead

Call
CallInitPro
CallTermPro
CardToString
ChangeDirectory
Close
CloseInput
CloseOutput
CompareStr
Concat
ConvertCardinal
ConvertHex
ConvertInteger
ConvertOctal
Copy

cos

Create
CreateMedium
CurrentDirectory
CurrentDrive

" DEALLOCATE

Delete
Delete
DiskDirProc
DiskFilePROC
Doio

entier
exp

FileNameAndOptions

FileNameChar

(FileSYySt) ceeeereeeeecesnnncnnns
(Storage) ceieieiieenenesnronnnene
(MathLib0) .eeiieeinecnnns Ceessans
(Strings) ceeeeeeeecennnsonescnas
(Termbase) ceeeeersvesccnsncsnans
(Termbase) c.eeeessrocceosncancas
(Storage) ceeeieecececannsocsnsns
(ProCESSES) coseesaronace.tonnnes

(RS232C0OAE) cevssossoenssnoosoanss
(RS232INt) tecerenconosnevsacannes
(RS232P011ing) .c.veeesececocanens

(Program) .ceeceecessccscssssasssss
(SYStem) ceeeeececssccncecsansans
(System) .iveeeeeeescnnnnansnnnas
(NUMLErCo) ceeeveersacsncosannsens
(DiSkDire) .cceeeceecoscosescacssns
(FileSYySt) oceeececsscssosasccssss
(INOUt) ceveeeosccescrsnnnonacnosns
(INOUt) seveeeceaccssasscnonasnssns
(Strings) ..oeeeeeeccsescscsannnns
(Strings) cieeeeeeeeececcacannons
(CONVErsion) seecesececcsccccnens
(Conversion) c..eicecsccscacscans
(ConNVersion) cevesescecssssansscsscs
(CONVEersion) .teeeaccessoscccnsces
(SErings) .eeevececeeenccnocsnnns
(MathLib0) ..cieieoniveacanccnnse
(FileSYySt) cecescecseoscasccnanns
(FileSyst) ..evee. ceescessencsans
(DiSKDiY€@) ceeeecessoccasconccnnns
(DisSkDIre) ceececescsssasscnscses

(Storage) ..ceveceecasceccncanecans
(FileSYyst) seceececccscanenccnses
(S5trings) ceeceveeereescneacsconons
(DiSkFileS) cceeecrcesoscsnnansss
(DiskFiles) cecesssstcecnene
(FileSYSt) cevieerenennsessaacone

(MathLib0) tevieeeeeecccassonnnne
(MathLib0) cccieeeescencsssaacson

(OPtionNS) cevievesscsvensnsasacas
(FileSYSt) ceeececcccocscsssnsnsnse

140
176
153
178
186
187
177
160

167
170
172

l64
185
184
155
127
136
147
147
180
180
124
124
125
124
179
153
135
144
126
126

176
137
179
129
129
143

153 .
152

157
144

195

Indices

GetErrorIrnfo
GetOption
GetPos
GetTime

Init

Init

Init

Init
InitDiskSyste
InitProcedure
Insert
InstallHea
IntToString

KeyPressed
KeyPressed
KeyPressed

Length
Length
1n

Lookup

MakeDir
NumToString

OpenlInput
OpenOutput

Pos

Read

Read

Read

Read

Read

Read

Read
ReadAgain
ReadByte
ReadCard
ReadCardinal
ReadChar
ReadFileName
ReadHex
ReadInt
ReadNBytes
ReadReal
ReadString
ReadString
ReadWord

196

tiodula-2/86

(Program) ..ceeeeeeccccsacsoncnee

(Options) ccececess

(FileSYySt) ceeececvccccssosscecss
(SYStem) ceceocccsccccocnssccscscese

(Processes)
(RS232Code)

secesecscscesoscssasocses

(RS232INt) ceeeeeocccccsssssanass

(RS232Po0lling)

(DiskFiles)

e® e v e cccccesress e

seseeevececoscesrsecsen

(System) .eeceesccvroscosccoscanss
(Strings) eceeeecevecescccssccscns
(StOrage) ..eeseeccceccocncenansns
(NUMbErCO) .cveeeececeenoccnsonnsne

(Keyboard) ..seeceecncccccssscaons
(Termbase) ceecesccccccesscsccass
(Terminal) coeeeeecesocscccsannes

(FileSYSt) sveeeeecsaccccsnconnnss

(Strings) ..ceceecee
(MathLib0)

(FileSyst) .ceececeecccesnoscnnas

(DiSKDIire) seeeececcesoccnccsscnss

(NUMberCo) .eeeeececsccssacsnccses

(INOUL) teeeeececascsosconsonasnsse
(INOUt) teeeeenncscccocessanncnes

(SErings) ceeeeeecvecececrensanes

(INOUL) tieeeercncsanscossconaces
(Keyboard) ceceeseesoccsoscsconss

(RS232Code)

L O LI T AT AR AT A AP AR AP A

(RS232INt) teveeerncococsscncaans
(RS232P011ing) .ceceeececconananss
(Termbase) ..ceevcesoccsevscesnes
(Terminal) c.oceecececssscsnsooses
(Terminal) ..eeeceeecccnccocvnsos
(FileSYSt) ceeeecescscossssnnnans
(INOUL) cecevonecronscacncosoaass

(CardinallIo)

sece s s et e s s e L

(FileSYysSt) ceeeeecacccccccssnnnns

(FileNames)
(Cardinalio)

D I I R R I R A I I RN I

LR I N N A A R R

(INOUL) tivevnnececasnnconscnnannse
(FileSyst) ceeeveerenccnccnnnnans

(RealInOut)

®0 s 0 e e cec s s e e

(INOUL) ceeevensessacnsscosecnnces

(Terminal)

L A N I I IR AR A APy

(FileSYSt) cueeecveescenscscsssasnsns

163
158
143
183

160
166
169
172
129
184
178
177
155

151
188
189

143
180
152
136

127
156

146
147

179

147
151
167
170
173
188
189
189
139
148
122
138
133
122
143
139
174
147

189
137

Modula-2/86

ReadWrd

real
RemoveDir
RemoveHea
RemoveMedium
Rename

Reset
ResetDiskSy
ResetDrive

SelectDbrive
SEND
SetModify
SetOpen
SetPos
SetRead
SetTime
SetWrite

sin

sgrt
StartProcess
StartReadin
StartReading
StopReadin
StopReading
StringToCard
StringTolnt
StringToNum

Terminate
TermProcedure

UnAssignRead
UnAssignWrite

WAIT

Write

Write

Write

Write

Write

Write

Write
WriteByte
WriteCard
WriteCardinal
WriteChar
WriteHex
WriteHex
Writelnt
WriteLn
WriteLn
WriteNBytes

Indices

(INOUL) teeereeenssassccossssnncsns
(MathLib0) ..ieevivecesenocscanne
(DiSKDire) steeeeesecssssccscnsnas
(StOrage) ceeeeeeescesscacancenss

(FileSYSt) tieeeiecencrnncensans

(F1ileSyst) .veeeeecescessoscnncans
(FileSySt) sieeececesccccansnsans
(DisSkDire€) ..ceceeacscccsccocoscsnas
(DiSKDire) ceeeeeceoccosccacnocns

(DisSkDire) .eeeeceesseasscccccsas
(ProcesSesS) eeesesecscccnsscnasen
(FLileSYySt) .eceeereesccconcnnonns
(F1ileSYSt) ceeerecececscnsonanses
(FileSYSt) cieevavscsosncnccsacans

(FileSySt) .ececececcccacns

s e s e e

(System) .ceecienscccsscncsssanns
(FileSYSt) ceeersesccnccccanancsns
(MathLib0) .eceececennacssscnnsns
(MathLib0) ececesescescsanssosanns
(ProCesSeS) eueievseessscscsncnsns
(RS232INt) ceveresveoncssnacsccnss
(RS232C0OdE) wveveecccencnssoncans
(RS232INt) tevevrascncaccccscanss

(RS232Code) eeceeeveeinn.

ee s s s

(NUMbErCo) cececesccccccsascssans
(NUMberCo) seeevsocensscscansnnan
(NumberCo) .occvveececescroannconns

(System) ceeeeeene
(System) ceoeeceeencccsens

sevcssrecsescn e

ee e s e e

(Termbase) .seeiececcncsccascoocas
(Termbase) ...eeceseccccccacccccns

(ProCeSSeS) ceeeesesssonsssscccscs
(Display) ecececescscncectsacacsncs

(InOut)

(RS232COAE) ceeeersescnssascosnnns

(RS232INt) tieeveencecnses

(RS232Polling)

cee e s oo

@ e e esseesvscace s

(Termbase) .evesesaccossccnsassssns
(Terminal) ...ccecococcccoscccasns

(FileSyst) ...cveeeen

(INOUL) ceeeececcsoncssesocnsnnons
(CardinalI0) ...eeeessecesccccescs
(FileSYSt) ecvsecccccscoccncncenne
(CardinalIO) .ceeoecacscsccccssns
(INOUE) cecovecsossacssassscocans

(INOUt) .eceeevnccaannnns

(Terminal) ...ceececececscscscsns
(INOUE) tocecesoesncsscssscacosos
(FileSySt) cecececcecoscscasccses

187
187

160
131
149
l68
171
173
188
190
139
149
122
138
123
150 .
149
190
149
140

197

Indices

WriteOct
WriteReal
WriteRealOct
WriteResponse
WriteStatus
WriteString
WriteString
WriteWord
WriteWrd

198

(InOut)

Modula-2/86

e e e s s encce L A A I N R R

(RealInOut) cceececevccecssncossonse
(RealInOut) ..eeeecnccasccosssoce
(FileMessSag) .ceveeeecceascccessans

(ProgMessag) .eecesee. creaceens .
(INOUL) teereeeenooonccoscsnansna
(Terminal) ..cceeeeeocccceosccancsns
(FileSyst) .veeceececvesncens cees
(INOUL) seeeecnsnnscnsossosnacnsces

150
174
175
132
162
149
190
138
150

Modula-2/86 Indices

GENERAI INDEX

BUB7 SUPPOILt «citeeneeeeereceaeenasasoscssnsososasssana 1
Base Jayerl ..veieeeiceersstecscacccecsocecnccncasnnanans 54
Compiler, compiling .eieceeieenesoscocanconcssonsnsnoss 17
Compiler, compiling .ceeeeeeeecssescccccssccosonsonne 25
Compiler, compiling secececscccasoccoscsscssnsscscsse 33
Compilery directivVesS .coieeecceccsessacsssssssasssssascasn 34
Compiler error MeSSAJES c.eeecccsescscnscccsacsassncensce 35
Compiler error messages esececcne cccnsesvsencsn 36
COMPLlE@r E@rrOrS c.ieeesecsecsocscssacsecssssossscncssnnsce 69
Compiler OPLiONS .civeeecosesosscscssocosascssosasosass 30
COMPILING teieacecsocosanasssscsssosssssssosccssssnsnsan 4

Compiling a Definition Modulececeeeccssccacconss 27
Compiling a Implemenation Moduleccccececcccccece 28
Compiling a Program MOdUle ...cevececccacscccccccnnns 26
Compiling, Symbol files needed ...eceeceecsscsccsonce 29

DebUggerccoeeeccsscececssssscsssssceccssoscssssaascss 41
Debugger commandS .c.eceececscesessscscssccsssnsansssces 42
Debugger, debugging ...eeeeccecescscocsscessssasscascss 17
Definition moduleccoevecovcesscssccssssacsocsnas 54
Definition modules .eiececesccensorscacscssssessacscsnnna 9
Directory search Strategy eceececececcscccssccsscoscsaces 20
DisSK SELUD toeeseeesoseccnsscsessssosossecsssancnscns 2
file naming conventions c.ceeeecesceccccccoccccsccnns 13

£lOoppY diSKS ceveecesrososocassscsccsnsosnscsnscssnone 16

hard diSKS teeceeesoosecsasconacsosssacscsonsssoscsasasnsnas 3
hard diskS ..ceceecesvccrecccssosacssacssosacsssscsncass 18
HEAD ceveeeecrsessseceansccsansscscsasscssonasssssncscsscsss 80

Implementation module .v.ceceecececncaaca teecsccsaecnne 54
Implementation Modulesccccccvcecccscocncrscnnes 9
installation ..ieeieerieccenscecrccercccnosanas ceesens 2

Library module ASCIIceecceccenacosccasonssnasees 121
Library module CardinalIO ...cececcecsccsssscascanses 122
Library module COMPPAra secssceasancascae ceeecee ceeases 116
Library module CONVErSiON ccesoscesecsesssssncsassess 124
Library module DiSKDire .escsececscscesccsscsonsocncss 126
Library module DiSKFileS ..cceocecencscccascsnnsances 129
Library module Display c..eesecsecesccseocssnsenneaass 131
Library module FileMeSSAQg ..veeeesevcscesscosonnsaess 132
Library module FileNameS .c.ceeoescccessacccccncccacss 133
Library module FileSYSt ..cccescccsccccscncccccccasss 134
Library module INOUt .cecocecccooccsscsccansnsosenses 146
Library module Keyboardcecceecocesscescacasecsssas 151

Indices ' Modula-2/86

Library module MathLiblccceeecvecescscccccaccass 152
Library module NUMberCoceceesceccaccscssasasesss 154
Library module Options ...seeeccecescscacsasoncosssass 157
Library module ProCeSSES ..eseecesccssecsasccscasnssaes 159
Library module ProgMeSSag .ecececescscssccscsscsscscnss 162
Library module ProgramJeeeeccescsscscscccscassecss 163
Library module RealInOutcccecececocccacs ceeesees 174
Library module RS5232C0OAE .eeeescecocssccascconsansess 166
Library module RS232INt ..ceeeecesssacsssosccanssssss 169
Library module RS232P011ing ..cccvececocccosencsnnses 172
Library module StOoragec.cceeceescccccasccccsssss 176
Library module Strings ..ceceececcessscscsccscassseasaecs 178
Library module SYyStem ..ececeeccseccccccsassencsssscs 181
Library module TermbaSe s.ecesccecccccccccssaccsaccacs 186
Library module Terminal ..cccececesccssscsccccscosssssse 189

Linker error meSSageS .ccceecccscsosscscscscccccosassscs 40
Linker, 1inking ..ccecececcceacecseccssesccacccanasan 17
Linker, 1linking ...ccccececccccccnscccccsonsenscsasasncs
Linker, 1inking ..cecececeeccccncosccscasccsccsacanes
Linker OptiOnNS .cccececececcvsccsccsnsscconccncnscssosns,

LinNKiNg ceceecescecccsccscsnsscecncasseccsscnsscscnanscs

w W w
(S-S N

Modules, Definition ..cceececccccccssscacscsceccnnsase 9
Modules, Implementation .c.cceeccecccsccccsnscasssccns 9
Modules, Program .e.ceceecececscscscssosscssccnssncassssns 8

2

MS5-DOS ccececccccccsoscsosccssscscncscsascssssocscssscnsoss

operating SYStem .ececeeececececcsasccsscasasscssnnsnse 33
operating SYSteM .cccececcecesccsccscasssoscscssscnsnne 49
operating SYStem .eeeeececcececccccccansaccencacannssns 50

OVErlays .cceecccccesccscsccccsoncssosansocsacseasansasnse 55
OVErlayS ceeccecccncccccccsesesscsssonssescscsonassasnse 78
PC-DOS cececteceecscsoncsccsoscccscsoanncsncsasconcsanncsnssansse 2

Procedure interface ...cceccecenccsesconcnscnscnssnns 8l
Program Creation .eeeeeceeeecccsencecsccsceccsnscsnncane 11
Program eXeCUtiON .ccescecececccoscssosasscsscccansasna 5
Program eXecCUtion ...eeeeceecscascacsscacaccscscsncasns 12
Program MOdULES ..eeeecseccsccssscsassoscnscnscsanannes 8

FUNNINg A PrOgram ...ececeseccacecssccsssosacssossnasass 5
TUNNiNG PrOQramMS «ecesseecsssscsascsesscacssssssccacsess 12
Run—-time SUPPOYXt cccceceocecccesescscrssssccscsccsscsasns 55

Sample PrOgLaAM .ceeeeececssccccssacsessassesscssccasnns 3
Sample Program ..cceeececescsscscssssesssssesacascocscs 5
SLACK teevenenetaceceaceessssasassssssccsacssccannene 80
Symbol fileS ceeicecececcssscccssasssonnssscscscnnosans 29
Symbolic debUgger ...ceeecereccsssssccccccsnsorsacass 41
system disk creationccecececsscscssaccasaoaans 2
System requirements ...ccececescacssccssscscosssnsans 1

200

Modula-2/86 Indices
Variable allocation ...cceeoccceccccsccccccccssaccns . 81
Version checkingccceeeccsccecscecaccscsccnssones 58

WOXKSPACE ceeseceesessesscsassescsasosccsansassancsns .96

201

Section

THE SYMBOLIC RUN-TIME DEBUGGER
Table of Contents

Contents

Page

Appendix 1

Introduction
How to Run the Run-Time Debudger

Run-Time Debugger Options
Memory Requirements and Swapping:
Programs Taking Command Line Arguments

Control of Program Execution

Breakpoints

Step Mode

Overview of Run—~time. Debugger Coriiands
Run-Time Errors

Stopping Programs During Exgcutlon:
Debugging Programs That Use Overlays

Window Format

Markers
Selecting an Item for Dlsplay

The Run-Time Debugger Commands

Global Commands
Activating the Step Mode
Display of Information
Use of the Step Mode in
Multi-Process Program

Run-Time Debugger Windbys

Call Window
Module Window
Data Window
Text Window
Raw Window

Error Messages

ow o [--] o0 0o ~ NN owm wn =W N Ll -

e N W R B B
aunvHO. o "o

[
©

THE SYMBOLIC RUN-TIME DEBUGGER

1 Introduction

This chapter describes the symbolic run-time debugger (rtd)
distributed as a separate package for LOGITECH Modula-2/86.
The symbolic run-time debugger is a complement to, and
cannot be used without, the LOGITECH Modula-2/86 Base
Language System.

The symbolic run-time debugger allows the user to monitor
the execution of a program. The user executes the program in
steps, simulating slow motion. After each step, the user may
inspect the data and the current status of the program. He
can modify the values of the variables the program uses.
There are several ways the user can step through the
program. Depending on the situation, he may decide to
execute in larger or smaller steps.

The structure and user interface of the run-time debugger
are very similar to that of the post-mortem debugger. The
run-time debugger uses the same windows and screen layout as
the = post-mortem debugger. The run-time debugger commands are
a superset of the post-mortem debugger commands:

o All global commands of the post-mortem debugger are
also valid in the run-time debugger.

o In any particular window, all local commands in the
post-mortem debugger are also valid in the run-time
debugger.

This chapter describes those features and functions which
are specific to the run-time debugger. The post-mortem
debugger is documented in another chapter. Please refer to
this chapter for a description of the commands that are
common to the post-mortem debugger and the run-time
debugger.

2 How to Run the Run-Time Debugger
To initialize the run-time debugger, enter:

A> m2 rtd<CR>

The debugger responds with a sign-on message:
Modula-2/86 Run-Time Debugger

followed by the version number and a copyright notice. Then,
the debugger asks for the name of the program the user
wishes to debug. Enter the file name followed by <CR>. The
debugger will then load your program into memory, and
display the Module window. At this point, the program has
not started to execute.

The user may set breakpoints before executing the program.
The user instructs the debugger to start the execution of
the program by entering one of the Go commands.

When the program is terminated, the debugger prompts the

user to enter the name of the next program to debug. Enter
<ESC> to exit.

2.1 Run-Time Debugger Options

When the user starts the run-time debugger, he may also
specify, ‘on the command line, various options. Options are
denoted by a slash (/) followed by the first character of

the option name. For example, to activate the query and swap
options, the user enters:

A> m2 rtd/q/s<CR>
when starting the run-time debugger.
The following options are available:

Option Action

/Query The Query option indicates that
reference and source files should be
searched for according to the query
strategy (see corresponding section of
the Modula 2/86 manual for description).
The user will be prompted to enter the
reference and source file names. If the
Query option is not specified, the
debugger automatically searches for
these files according to the default
search strategy.

Option Action

/Large The Large option enlarges the internal
workspace of the run-time debugger. This
workspace is used for storing
information on the program being

debugged. In particular, it contains
information for each module of the
program. When debugging large programs
consisting of many modules, the default
workspace of the run-time debugger may
be too small. This would lead to a stack
or heap overflow in the debugger itself.
The size of the default workspace is 16
K bytes. When the Large option is used,
this size is increased to 32 K bytes.

/8Swap The Swap option enlarges the memory
available to the program being debugged.
This enlargement is made by swapping a
part of the run-time debugger code with
the program being debugged. A more
complete description of the Swap option
is given in the next section.

/Version The Version option displays the date and
version of the run-time debugger.

2.2 Memory Requirements and Swapping

The run-time debugger requires approximately 210 K bytes of
memory to run. The remaining memory can be used by the
program being debugged. For example, on a system with 256 K
bytes of memory, the user can debug a program that uses
approximately 55 K bytes.

The requirement of 210 K bytes includes approximately 34 K
bytes for the operating system (DOS 2.0), 8 K bytes for the
special verson of the MOdula-2/86 run-time support (file
M2S.EXE), and 168 K bytes for the run-time debugger itself.
If the user's operating system is larger than 34 K bytes, he
should compute the requirements accordingly.

A special version of the Modula-2/86 run-time support is
provided with the run-time debugger in the file M2S.EXE. The
regular run-time support (M2.EXE) preserves 17 K bytes for
the DOS command interpreter on top of the memory. This
special version makes this memory available to Modula-2
programs, If the run-time debugger is run with the regular
version of the run-time support, it will use approximately
227 K bytes. The only disadvantage of the special run-time
support is that DOS will need to load from disk its command
interpreter each time the debugger terminates.

-3-

wWwith the Swap option, it is possible to enlarge the memory
space available to the program being debugged by
approximately 40 K bytes. On a system with 256 K bytes of
memory, this allows the user to debug programs that use up
to 95 K bytes.

When the user specifies the Swap option; part of the run-
time debugger 1is kept in memory until needed. This part
includes the handling of the Call window, the Module window,
the Data window and the Raw window. When the program has
been stopped and the user invokes one of these windows, the
program is swapped out to disk. It will be swapped into
memory as soon as the user resumes execution.

Note that the handling of the Text window belongs to the
resident part of the run-time debugger. As long as the user
activates this window only, no swapping will occur. This
allows the user to step through a program avoiding the delay
caused by swapping.

When the user chooses the Swap option, the debugger creates
the two Swap files RTDSWAP.RTD and RTDPROG.RTD in the
current directory of the current drive. Both files have a
fixed size of approximately 45 K bytes. Therefore, when
using the Swap option the user should make sure 90 K bytes
of disk space are available.

2.3 Programs Taking Command Line Arguments

With the run-time debugger, the user can debug programs that
take arguments on the command line. When the debugger asks
for the program to be debugged, the user should enter the
arguments in the usual way. For example:
Assume the program 'mycopy' is normally started under
DOS by entering:

A> m2 mycopy filel £file2<CR>

With the run-time debugger, following will start the
program in the same way:

name of the program (MAIN.LOD)> mycopy filel £ile2<CR>

3 Control of Program Execution

There are two ways the user can control the program being
debugged. One is to set breakpoints on some specific
statements of the program. The other is to step through the
program, stopping at each statement or procedure call.

When the debugger stops the execution of the program, either
at a breakpoint or after a step has been executed, the user
can inspect and modify the content of variables in any part
of the program. The user may examine any process, and he may
view or change the data of any module or any active
procedure.

3.1 Breakpoints

One way for the user to monitor program execution is to
indicate to the run-time debugger certain points at which
the execution of the program should stop. These points are
called breakpoints. When the program executes a statement on
which a breakpoint is set, the program stops and the user
may examine the data structures and the status of the
program.

The user may set a breakpoint on any statement of the
program. The debugger sets no 1limit to the number of
breakpoints., The user may set or remove breakpoints before
he starts the execution of the program or any time the
program is stopped.

Bach breakpoint has an occurrence counter associated with
it. Each time the user sets a breakpoint, the debugger
prompts him to specify a limit for the occurrence counter.
This counter tells the debugger how many times to execute
the statement before stopping the program. Once an
occurrence counter has reached its limit, the debugger stops
the program each time it encounters this breakpont.

For example, the user sets the limit of the counter for a
particular breakpoint to five. The run-time debugger will
execute the program until the fifth time it reaches the
statement on which this breakpoint is set. If the user
continues the execution of the program, the debugger will
stop the program each time this breakpoint is encountered.

3.2 Step Mode

The wuser can also instruct the debugger to execute the
program statement by statement or procedure call by
procedure call. The debugger 'steps' through the program
stopping its execution at the beginning of the next
statement or procedure call. Another possible step is to
execute the program up to the return from the current
procedure, If a breakpoint is encountered during the
execution of a step, the program will stop at the
breakpoint. Anytime the program is stopped, the user may
examine its current status and data.

3.3 oQverview of Run-time Debugger Commands

There are five global commands which most clearly
distinguish the run-time debugger from the post-mortem
debugger. These commands allow the user to control the
execution of the program by stopping at specific points in
the program. Whenever the program is stopped, the user can
examine its current status, and display and modify its data.
In this way the user can determine more specifically the
location and cause of problems in his program.

The five global commands are described in detail in the
corresponding section. The following list briefly defines
each command. The user invokes these global commands by
entering the letters of the command name, shown in upper
case on the command 1line. For example, the user activates
the Go Breakpoint command by typing 'GB',

o Go Breakpoint

Stop at the next breakpoint
o GOSCR>

Same meaning as 'Go Breakpoint'
o

Stop on the next statement
o

Stop on the next procedure call
o Go Return

Stop on the return from the current procedure
o

Execute the program until the end, ignoring breakpoints

3.4 Rupn-Time Errors

When a run-time error occurs in the program being debugged
or when the program calls the standard procedure HALT, the
run-time debugger gains control and displays the Call
window. No memory dump (file MEMORY.PMD) is generated. The
run-time debugger also indicates in the <Call window the
cause of the run-time error. The user can now inspect the
program, but he cannot resume the execution. When the user
activates a Go command, the debugger displays the following
message:

Note: Program stopped due to error or HALT

Then, the debugger asks for a new program to debug, as when
the program terminates normally.

3.5 Stopping Programs During Execution

A program being debugged with the run= e debugger should
not be 1linked such that its obj file contains module
'Break'. Module 'Break' is alrgaty linked into the run-time

debugger itself, 5& QW(“C\,’bC\»

gged can be stopped by typing <Ctrl-
s into an infinite loop or at any other
cuting. The run-time debugger will then
Call window, in the same way as when a run-time
rs. The run-time debugger handles the execution of
stopped with <Ctrl-break> in the same way as
rams that stop because of a run-time error.

The program being
break> when it
time it is
display th

3.6 Debugging Programs That Use Qverlays

BEach time an overlay is called, the run-time debugger stops
the execution when the overlay has been loaded, but before
it has started execution. This is similar to what happens
when the wuser starts debugging a program, The debugger
displays the Module window when the overlay has been loaded.
The user may then set breakpoints or start the execution of
the overlay in step mode.

4 Window Format

The run-time debugger has the same windows as the post-
mortem debugger - the Call window, the Module window, the
Data window, the Text window and the Raw window. As in the
post-mortem debugger, the first two lines of each window
indicate the commands available.

-7~

LOGITECH MODULA-2/86 December 10, 1984

RUN-TIME DEBUGGER USER’S MANUAL

page 7 (replace sub-section 3.5 by the follwoing)

A program being debugged, with or without the run—time
debugger, should import module ‘Break’, so that its
object file will include this module

The program being debugged can be stopped by typing <Ctrl-C>
when it is waiting for input, or <Ctrl-break> at any other
time it is executing:, for instance when it runs in an infinite
loop. If a program that contains module ‘Break’ ig stopped in
this way, then the run-time debugger handles this situvation in
the same woy as when a run—-time orror occurs. It displays the
Call window, and you can inspect the status and the data of the
pragram as they were when <Ctrl-C> or <Ctrl-breakd> was typed.
It is not possible to resume the execution of the program.
Upon the next Go command, the run—~time debugger will display a
message. It then prompts you to enter the name of the next
program to debug, as when the program terminates normally.

I# a program that does not contain module ‘Break’ is stopped by
<Ctrl1l-C> or <Ctrl-break>, then the run—time debugger will not
display the Call window. Instead, it will just terminate the
program, and prompt for the next program to debug.

4.1 Markers

As in the post-mortem debugger, the greater-than (>) sign is
used in the run-time debugger as an execution marker to
indicate active code. It appears in the Call, the Module and
the Text windows and its meaning is the same in the run-time
debugger as in the post-mortem debugger.

In the Call, the Module and the Text windows certain lines
are marked with an asterisk (*) to indicate where the user
has set breakpoints throughout the program. A breakpoint can
be set at any statement in any procedure or module.

The breakpoint at which a program stops is marked with a
pound sign (#) which replaces the asterisk.

4.2 gelecting an Item for Pisplay

Like the post-mortem debugger the run—-time debugger displays
the position of the selected item in the lower part of each
window. The user may select a different item using the
cursor keys or by entering a new position.

5 The Run-Time Debugger Commands

Like the post-mortem debugger, the run-time debugger has two
types of commands - global and local. The same definitions
apply to these commands in the run-time debugger as in the
post-mortem debugger. Local commands are only applicable to
the particular window in which they appear and are explained
in the appropriate sections.

5.1 g@Global Commands

In addition to the global commands available in the post-
mortem debugger, six new global commands are available in
the run-time debugger. The global commands appear on the
second line of each window, below the window name and local
commands:

=[Call Mod Data Text Raw Init] Hexa Quit
#[P L N} Go[End Bpt Ret Proc Stat]

-8-

The following describes the global commands available in the
run—-time debugger only:

Command Action

GoEnd Instructs the debugger to execute the
program until the end, ignoring all
breakpoints.

GoBreakpoint Instructs the debugger to execute the
program until the next breakpoint.

For the following commands, the debugger stops the program
at the next breakpoint it encounters, or after the specified
step has been completed, whichever comes first:

GoReturn Instructs the debugger to execute the
program until the return from the
current procedure, or to the next
breakpoint.

GoProcedure Instructs the debugger to execute the
program until the next procedure call,
or to the next breakpoint.

GoStatement Instructs the debugger to execute the
program until the next statement, or to
the next breakpoint.

5.2 Activating the Step Mode

When the wuser invokes the Go Statement or the Go Procedure
command, the step mode is active only in certain modules.
The debugger executes the program and stops at each
statement or procedure in those modules in which the user
has enabled the step mode. Unless a breakpoint is
encountered, the program will not stop in a module where the
step mode is not enabled. When a program is loaded by the
debugger, by default the step mode is disabled in all
modules that belong to the system library. For all other
modules, the step mode is enabled.

In the Module window, the run-time debugger marks modules
where the step mode 1is enabled with a plus sign (+)
preceeding the module name. It does not mark modules with
step mode disabled. The user may change the default and
enable or disable the step mode in any module when the
Module window is displayed.

5.3 Display of Information

When the debugger stops executing the program at a
breakpoint or after a step has been performed, it displays
the same window which was shown when the user initiated the
execution of the program. For example, if the user invokes
the 'Go Procedure' command from the Text window, the
debugger will again display the Text window when it stops
executing the program.

5.4 Uge of the Step Mode in a Multj-Process Program

If the program to be debugged contains more than one
process, the step mode is only applicable to one process at
a time. The commands Go Statement, Go Procedure and Go
Return always refer to the current process only. When the
user invokes one of these commands, the debugger will stop
the program in the current process - the same process in
which it was stopped the last time.

If the user wishes to stop the program in another process,
he must set a breakpoint on a statement in a procedure that
will be executed by this other process. When the debugger
encounters this breakpoint, the user selects the appropriate
step mode to examine this new process. The step mode is then
only applicable to the new process. Whenever the debugger
stops the execution of the program the user can set
appropriate breakpoints to stop the program in the original
process, or in any other process.

6 Run-time Del lind

The following sections describe those aspects of the run-
time debugger windows which differ from the post-mortem
debugger windows. They explain the local commands which are
available in the run-time debugger only.

6.1 Call Window

The Call window in the run~time debugger has the same major
components and functions as in the post-mortem debugger. It
displays the chain of procedure calls of a process. In the
run-time debugger the Call window cannot be invoked before
the user has started the program with the Go command.
Because no procedure of the program is active at that time,
the Call window would be empty. When this error occurs, the
debugger displays the following message:

=10~

Error: Cannot display Call window during loading

to indicate that the program has been loaded into memory but
has not been started yet. Because no procedure of the
program is active at that time, the Call window is empty.

There are no local commands available in the run-time
debugger Call window.

The following example shows the Call window. The message
'Status: procedure step' indicates that the program stopped
after it completed a Go Procedure command. The two
procedures marked with an asterisk have breakpoints in them.

CALL |
=[Call Mod Data Text Raw Init] Hexa Quit #[P L N] Go[End Bpt Ret Proc Stat]

Status: procedure step
procedure step for this process

1 *> RecursiveOne in Demo stops at line 36 , statement 1
2 *> RecursiveOne in Demo at line 38 , statement 1
3 > FirstOne in Demo at line 24 , statement 1
4 > initialization of Demo at line 57 , statement 1
5 > PROCESS

Position > 1
Note: Execution until next procedure or next breakpoint

SAMPLE SCREEN 1

6.2 Module Window

The Module window displays the 1list of modules that
constitute the program being debugged. The modules in which
the step mode is enabled are marked with a plus sign (+).

Local Commands in the Module Window

There are two local commands in the Module window of the run-
time debugger. The user invokes them by entering the first
character (shown in upper case) of each command name. The
local commands appear on the first line of the window, to
the right of the window name as follows:

MODULE Enablestep Disablestep

-11-

Command Action

Enablestep Enables the step mode in the selected
module. When the user invokes the Go
Procedure and Go Statement commands to
step through the program, the program
will only stop in the modules where the
step mode is enabled.

Disablestep Disables the step mode in the selected
' module. For all modules of the system
library, the step mode is disabled by

default.

6.3 Data Window

The Data window displays the variables and/or parameters of
the selected procedure or module.

Local Commands in the Data Window

There 1is one additional local command in the Data window of
the run-time debugger. The Modify command appears at the end
of the first 1line of the window after the window name and
the other local commands.

Command Action

Modify Modifies the contents of the selected
variable or parameter. The debugger
prompts the user to enter the new value
according to the type of the data item:

o CARDINAL, INTEGER, REAL
The user enters the new value which must
be of the same type.

o BYTE, WORD
The user enters the new value as a
CARDINAL number.

o ADDRESS, POINTER

The user enters the new value in the
form <segment>:<offset>. Both parts are
four digit, hexadecimal numbers.

-12-

Command

Action

o BOOLEAN

The user changes items of type BOOLEAN
by entering a T for TRUE or an E for
FALSE.

o CHAR

The user modifies items of type CHAR by
entering a character in quotes, such as
'a' or "a", or by entering an octal
value.

o BITSET

The user modifies items of type BITSET
by entering a binary number. The binary
number consists of up to 16 digits of
'one' or ‘'zero', indicating that the
corresponding bit should or should not
be set. If the user does not wish to
modify a certain bit, he can enter an x
at this position and the debugger will
retain the original value for this bit.

o SET

The user modifies items of type SET by
invoking the Son command to 1list the
contents of the set. The run-time
debugger then lists the possible
elements in the set and indicates
whether each element is in the set or
not, To change the elements included in
the set, the user must select a
particular element and activate the
Modify command. By responding with T for
TRUE or an F for FALSE to the prompt 'In
set?' he can then include or exclude
that element into or from the set.

o Enumeration

The user modifies the value by entering
the name of the element to which he
wants to set the value. The element name
must be given as defined by the
declaration of the enumeration type.

-13-

The following sample screens show the path the user follows
to modify the content of an array element with a record
structure. First, he invokes the Son command to view the
elements of the wvariable ‘'node' of the module 'Demo'.
(Sample Screens 2 & 3) Next, he again invokes the Son
command to display the fields of the record 'node[l]', and
the value and type of each field. (Sample Screen 4) Finally,
the user modifies the value of the first field which is of
type CARDINAL. He invokes the Modify command and enters a &
to change the value from 1 to 6. Sample Screen 5 shows the
modified data.

DATA | Son Father Left(dec index) Right(inc) Var X Addr Examine(process) Modify
=[Call Mod Data Text Raw Init] Hexa Quit #[P L N) Go[End Bpt Ret Proc Stat)

Demo.
1 x 1 INTEGER
2 y 2.0000000000E+000 REAL
3 z 3 INTEGER
4 node ARRAY([1..4)] OF RECORD

Position > 4

SAMPLE SCREEN 2

DATA | Son Father Left(dec index) Right(inc) Var X Addr Examine(process) Modify
=[Call Mod Data Text Raw Init] Hexa Quit #[P L N] Go[End Bpt Ret Proc Stat]

Demo.node
1 (1) RECORD DATA
2 [2] RECORD DATA
3 (3] RECORD DATA
4 (4] RECORD DATA

Position > 1

SAMPLE SCREEN 3

=14~

DATA | Son Father Left(dec index) Right(inc) var x
D Addr Examine(pro:
[Call Mod Data Text Raw Init] Hexa Quit #(P L N] Go[End Bpt ReépPrggsgéag?dify

Demo.node(1)

1 datal 1 CARDINAL
g data2 2.0000000000E+000 REAL
data3 3 INTEGER

Position > 1 new value (cardinal) > 6

SAMPLE SCREEN 4

dify
DATA | Son Father Left(dec index) Right(inc) Var X Addr Examine (process) Mo
=[ca1{ Mod Data Text Raw Init] Hexa Quit #[P L N] Go[End Bpt Ret Proc Stat]

Demo.nede(1)

1 datal 6 CARDINAL
2 data2 2.0000000000E+000 REAL
3 data3 . 3 INTEGER

Position > 1

SAMPLE SCREEN 5

6.4 Text Window

The Text window displays the text of the module or procedure
in which the debugger stops the program. The greater-than
sign (>) indicates the 1line in which the debugger stopped
the program, the call of the next procedure, or where the
last process transfer or interrupt occurred.

-15-

Local Commands in the Text Window

The three local commands specific to the Text window of the
run-time debugger allow the user to set and delete
breakpoints.

Commangd . Action

Setbreakpoint Sets a breakpoint in the selected line.
If more than one statement is on the
line, the run-time debugger prompts the
user to indicate on which statement he
wishes to set the breakpoint.

The run-time debugger also prompts the
user to set a limit for the occurrence
counter associated with the breakpoint.
The user may type <CR> for the default
value for this limit which is 1.

If a breakpoint is already set on the
selected statement the debugger replaces
the old value of the occurrence counter
with the new one.

Clearbreakpoint Removes a breakpoint on the selected
line. If more than one statement is on
the 1line, the debugger prompts the user
to indicate from which statement he
wishes the breakpoint to be removed.

Killallbreakpoint Removes all breakpoints from the
program,

6.5 Raw Window

The Raw window displays the memory contents around a given
address. The initial address of the selected memory location
depends on the window from which the user invokes the Raw
window, The values are set the same way as in the post-
mortem debugger.

Local Commands in the Raw Window

There are three additional local commands in the Raw window
of the run~-time debugger.

-16~

Command

Action

Input/
Qutput

Modify

Used to read in and write out data
through an 1/0 port. The debugger
prompts whether to read in or write out
a byte or a word. It then asks the user
to enter the address of the serial port
which will be used.

Allows the wuser to modify the memory
contents at the selected address. The
debugger asks the user for the new value
and specifies in which format it should
be entered. The format to be wused
depends on the format in which the Raw
window currently displays the memory
contents.

-17-

Appendix 1~
ERROR MESSAGES IN RUN-TIME DEBUGGER

The following is an alphabetical 1list of the . run-time
debugger error messages. When error messages are caused by
certain commands only, these commands are 1listed in
brackets. For error messages not listed in this chapter,
please refer to the 1list of error messages of the post-
mortem debugger. ‘ o e -

o Can not display call window during loading
[Call command]

The Call window shows the chain of active procedures. If
the program has not started execution, no procedures are
active; thus, the Call window would be empty.

o Local data can not be modified until past BEGIN
[Data window, Modify command]

The 1local data of a procedure does not exist before- the
procedure entry code, to which the 'BEGIN' corresponds,
has been executed. :

o No breakpoint in definition module
[Text window, Set breakpoint command]

A breakpoint can only be set on a statement Because the
definition module does not contain statements; . no
breakponts can be set there. '

o No breakpoint to clear
[Text window, Clear breakpoint command]

No breakpoint is set .at the selected’ stdtement,
therefore it cannot be removed. ’ ’ e

o No statement in this line T
[Text window, Set breakpoint command]

The selected line does not contain any statements. A
breakpoint can only be set on a statement, A line that
contains only a symbol like 'END', 'IF', 'CASE', !LOOP'
or similar is considered to contain no statement. .

o Not modified (new value out of range)
: [Data and Raw windows, Modify command]

The new value the user entered is not w1th1n the valid

range. No modification has been made.

-18-

Process decriptor can not be modified
[Data window, Modify command]

The run-time debugger does not allow the user to modify
process descriptors., Modification of the process
descriptors may cause unpredictable behavior of the
program and the run-time debugger.

Structured data cannot be modified (use Son command)
[Data window, Modify command]

The Modify command is applicable only when the selected
data 1item is of a simple type. The user should invoke
the Son command and select those elements or fields he
wants to modify.

This type of data can not be modified
[Data window, Modify command]

Procedure variables, variables of opaque types and
variables of type PROCESS cannot be modified.

-19-

LOGITECH

LOGITECH MODULA-2/86
DISTRIBUTION DISKS

RUN--TIME-DEBUGGER

Modula-2/86 Run-Time Debugger, Release 1.10
Logitech SA, January 13985

Format: - IBM-PC, double sided, 9 track (360K),
pPC-DOS 2.0 or later

Number of disks: 1

LOGITECH

LOGITECH Modula-2/86 Run—-Time Debugger (RTD)

Release 1.10 — Dec 1984

Here is the list of the files on the RTD distribution disk,
together with some explanations what they contain:

Modula—-2/86 Run—-Time Support (RTS5):

M2.EXE standard RTS8 (same as on disk 1 of
Modul a—2/86 Base Language System)

ZSMALL . EXE special version of RTS: This version of the RTS increases
the maximum size of an appliaction program that can be
debugged within a given memory size by 17K bytes.

When using this version, the MS-DOS Command Interpreter
is overwritten by the RTD and therefore we can
use its memory (17K bytes) for the RTD.
After termination of the RTD, DOS will reload its
Command Interpreter {(file COMMAND.COM) from disk.
Note: The version MISBMALL has be created with the
sowrces of the RTS (contained on disk 1 of Modula—-2/86
Base Language System) by changing the constant *KEEF_COM®
in file RTS.INC from TRUE to FALSE.
Executable Modula-2/86 Run-Time Debugger (RTD):
RTD.LOD main program of RTD
MZRTD.LOD overlay of RTD
RTDOVLAY.LOD overlay of RTD
The Run—-Time Debugger source files:
These RTD source modules allow a user to customize the RTD
to a specific hardware (keyboard, size of RAM, etc).
For details please refer to the commented source files.
After modification of these source modules, they must be compiled
by means of the command "M2 comp DEXINOUT", resp. "MZ2 comp RTDWS".
After successfull compilation, the main program of the RTD
must be re—-linked {(see below).
WARNING: DO NOT MODIFY OR RECOMFILE THESE DEFINITION MODULES!
They are included for documentation only.
DEXINOUT.DEF Contains definitions for keyboard and screen.
DEXINOUT.S5YM
DEBXIMOUT.MOD
RTDWS. DEF . Contains definitions for the RTD s workspace. With
RTDWS . 8YM these definitions the RTD may be adapted to the

RTDWS.MOD memory size.

RTD. LNK
DETYFE.L
DEXINOUT
DEXCLI.L
RTDX. LNE
RTDWS. LN

READ-ME.

The Run-Time Debugger object files:

These files are needed to re—-link the RTD after modification.
To re-link the RTD, use the command "M2 link rtd . In addition
to the object files listed below, the RTD needs certain modules
of the Modula-2 Standard Library (contained on the distribution
disk 2 ("Linker®) of the Modula—-2/86 Base Language System:

NE
« LINE
NE

k

The file containing this text:

RTD

