Introduction to the Wiadcc'y Systr.o

=~ ™ Mot v Aameaal
L
=
2
|
\
\
|
= Tha Yudew G .:m Ma- zal

ZM AT L Overview

FERSE R O S e L o T e e G s e et 0

N AIL Manuz'

SYSTEM MAP for Release 2.0

** indicateglocation of tab divider in binder

These manuals arce part of your Lambda documentation, but are not part of s binder.

Intro to Lambda
Zertal,1SP-Plus Commands

Here are the binders and their contents:

%‘ BASICS:
**L.M] Lambda Technical Summary
: **LMI Lambda Field Service Manual

**NuMachine Installation and User Manual

RELEASE NOTES:
**Release 2.0 Overview & Notes
**Release 2.0 Inst & Conversion
**Editing Lambda Site Files
**Tape Software & Streams
**Common L3P Notes

%LISP 1: The LISP Machine Manual, Part]

**Introduction
Primitive Object Types
Evaluation
Flow of Control
Manipulating List Structure
**Qymbols
Numbers
Arravs
Strings
**Functions
Closures
Stack Groups
Locatives
Subprimitives
Arcas
**The.Compiler
Macros
The LOOD lteration Macro
**Defstruct

%‘ LISP 20 The LISP Machine Manual, Part 2
**Objects, Message Passing, and Flavors
**The 170 System
Nuaming of Filex
The Chaosnet
**Packages
Maintaining Large Systems
Processes
Errors and Debugging
**How to Read Assembly Langusge
Querying the User
Initializations
Dates and Times

Miscellancous Uselul Functions
**Indices

LM
LIS 3:
**Introduction to the Window System
**The Window System Manual
**ZNALL Overview
*HLMAIL

LMI

EE-) EDITORS:
¥ ZMACK Introductory Manual

FTAMACS Referenee Manual
**Ninee

) UNIN 1

e

'_
<

¥

r
<

,_
<

L

**NuMachine Release and Update Information
**NuMachine Operating System

**UNIX Programmer’s Manual, V. 1: Seclion 1
b Sections 2-8

UNIN 2:UNIX Programmer’s Manual, Vol. 2
**The UNIX Time-sharing System
UNIX for Beginners - Second Edition
A Tutorial Introduetion to the UNIX Text Editor
Advanced Editing On Unix
An Introduction to the UNIX Shel
Typing Documents on the UNIX System
A Guide to Preparing Documents with -ms
Thl- A Program to Format Tables
NROFF /TROFF User’s Manual
A TROFF Tutorial
**The C Programming Language Reference Manual
Recent Changes to C ’
Lint. A C Program Checker
Make-A Program for Maintaining
Computer Programs
**UNIX Programming-Second Edition
A Tutorial Introduction to ADB
Yace: Yet Another Compiler-Compiler
Lex- A Lexical Analyzer Generator
**A Portable Fortran 77 Compiler
RATFOR-A Preprocessor for a
Rational Fortran
The M4 Macro Processor
SED- A Non-Interactive Text Editor
Awk- A Pattern Scanning and
Processing Language (2d. ed.)
DC- An Interactive Desk Caleulator
I3C-An Arbivrary Precision
Desk-Caleulator Language
An Introduction to Display Editing
with Vi
**The UNIX 170 System
On the Security of UNIX
Password Sceurity: A Case History

HARDWARE 1:
* Nutachine Technieal Summary
=00 Noniter User's Munual
SOV Gengral Deseription
**Nouse Manual
**} M Printer Software Manual
*I\R-Series Monitor
7220 Mowitor

PARDWARLE 2:
> Pape Drive
A Disk Drive
*Rermin

QI FIONS,
TTivaries according 1o options purchased)
Prafog
Interfisp
Fortray Insinlation Meme

Seribhie
Poalernes N
Y

|

B - T T

INTRODUCTION TO THE WINDOW SYSTEM

Introduction to the Window System, a tutorial guide to
the Window System environment, will be available to all
IMI customers in fourth quarter 1984.

WindowMaker User Manual
May 9, 1985

For LMI Release 2.0 1124-0001

Published by LMI 1000 Massachusetts Avenue. Cambridge MA 02138 USA

}féw; -
srdeT

This manual documents WindowMaker by LMI.

Information in this manual is current as of May 9, 1985 for LMI Release 2.0. The 2.1 release will -
contain figures.

Please help us to make LMI documentation work better for you! Send comments via your customer
dialup mail line to Sarah Smith (username SWRS) or by U.S. Mail to:

Dr. Sarah Smith

Director, Documentation
LMI

1000 Massachusetts Avenue
Cambridge, MA 02138

Copyright © 1985 Lisp Machine Incorporated.

WindowMaker User Manual i Table of Contents

Table of Contents

1. WindowMaker Co. .1
L1Overview Lo .1
1.1.1 What is a Constraint Frame?1
2. Getting Started with WindowMaker e e e e . .3
2.1 WindowMaker Sereen Layout3
3. Slicing the Workspace into Panes e .5
310verview L, e e e e e e .5
3.2 Selecting a Pane for Slicing5
33PaneMenu.o L . 6
3.4 “Divide The Pane Into” Menu G . 6
3.4.1 “Areas of Absolute Size” Menu e e e e e e e e e .7
3.5 Clearing the Workspace 8
4. Generating the Constraint Frame Code9
4.1 Generatingthe Code e .9
4.2 Specifying Pane Attributes9
4.2.1 Specifying a Pane Name C e e e e e e e e e e e e e . .9
4.2.2 Specifying a Pane Flavor P ¢
4.2.3 More Flavor Attributes B (1]
4.3 Specifying Frame Attributes S .. 10
4.3.1 “Store Configuration” and Multiple Configurations 10
4.3.2 More Frame Attributes N |
4.4 The Gencrated Code A §
4.5 Creating new Frames e e e e e e e e e e .12
4.6 Using the Generated Code L. 12
4.6.1 Instantiating a Frame Defined asa Function 13
4.6.2 Instantiating a Frame Defined asa Flavor 13
5. More Information on Windows 15
Appendix A.Demo 17
A.l Demo Instructions 17
A2Useful-Demo Code 19

WindowMaker User Manual i WindowMasker

1. WindowMaker

1.1 Overview

WindowMaker is a front-end graphic interface for constructing constraint-frame LISP code, which
allows rapid construction of customized environments. Until now, code that defines frames and
windows had to be written by hand, a time-consuming and difficult process. Now, WindowMaker
writes the code. Using the mouse and menus, the user slices up a graphic workspace into portions,
-and then asks the system to create (or generate) the code defining each portion as a window. As
the generator runs, it asks the user to specify parameters for each portion. The generated code is
written to a buffer where the user can manipulate it like any other LISP code. To use the frame,
the user compiles the code and instantiates the frame. Modifications ean be done by editing the
generated code or by returning to WindowMaker, making changes, and generating fresh code.

To use WindowMaker, all the user does is makes choices under two menu systemsyone to define
the size and shape of panes, and one to specify pane and frame attributes. :

WindowMaker is a robust system: nothing is hidden from the user and it adds no additional
overhead to the system at runtime. Furthermore, the sophisticated user is not hampered by the
system - any advanced features not provided for by the current release may simply be added to
the code by hand.

WindowMaker works on both landscape and portrait monitors.

1.1.1 What is a Constraint Frame?

A constraint frame holds one or more windows and binds them together; “frame” is named by
analogy to a window frame, a single unit that holds different panes, and “constraint” refers to the
constraining parameters by which the window system allocates screen space to the components of
a given frame,. :

For more detailed information, see Chapter 12 on frames in the Window System Manual.

WindowMaker Lser Manual 2

LU DR TR Niiwe

WindowMaker User Manual 3 Getting Started with WindowMaker

2. Getting Started with WindowMaker

WindowMaker comes loaded on the standard software band. To use WindowMaker, type SYSTEM) W.
When the WindowMaker frame comes onto the screen, you can begin designing frames.

2.1 WindowMaker Screen Layout

WindowMaker’s default screen layout consists of four windows, three smaller windows across the
top and one large window covering most of the screen.

The large window covering most of the screen is the workspace, and is a graphic model of the
constraint frame you intend to construct. The first step in creating a frame is to divide this
workspace into areas representing the panes of a frame. When you ask for the code to be generated,
WindowMaker highlights each pane in turn, and asks you to specify parameters for each pane.

The top middle window holds the counter. This window is blank, except when you divide a pane
proportionally or by specifying a number of characters, lines, or pixels with the mouse. In these
cases, this window displays either a percentage or the number of units specified.

The top right window is the Permanent Menu, which contains two options, generate code and
reset. Selecting |generate code| generates the code for the windows currently shown on the

graphic pane (the large window). Selecting clears the workspace of all panes.

The top left window containing the words “Window Maker” is the title. This pane does not change.

WindowMaker User Manual 4 Getting Started with WindowMaker

WindowMaker User Manual 5 Slicing the Workspace 1nto Pancs

3. Slicing the Workspace into Panes

3.1 Overview

When you’ve entered WindowMaker, you are ready to begin the two-step process of creating a
frame. First, you will slice the workspace into your intended panes, and then you will seleet
|generate code| on the Permanent Menu to generate the code.

NOTE: Do not select [generate code| on the Permanent Menu before slicing the workspace into
panes. If you do, the Window Maker will generate invalid code.

This chapter describes each of the menus and its options.

Panes are specified with the mouse and with menus available from the mouse. Click (Do select an
option on a menu. Click (M) to abort out of the current pane slicing operation. Moving the mouse
ofl any simple popup menu aborts the particular pane slice operation in progress. If you decide
you don’t like a pane after you've made it, you may kill it.

For some of the slice operations, WindowMaker ties the mouse cursor to another cursor. For
example, to indicate where to slice a pane vertically or horizontally, the cursor may be tied to
an arrow pointing down or sideways (in the direction of the proposed slice). Although the arrow
cursor is tied to the mouse, it can move only perpendicularly to the proposed slice.

3.2 Selecting a Pane for Slicing

To begin slicing the workspace into panes, move the mouse over it. Notice that the entire workspace
is highlighted with a box drawn just inside its borders. Each pane you divide the workspace into is
also mouse-sensitive. To select a pane, move the mouse over it: you need not click a mouse button,
‘as is often the case in other programs.

While the mouse is over the workspace, the mouse documentation line near the bottom of the
screen will look like:

L: Help. R: menu of kill, vertical split, horizontal split, and help.

The left mouse button accesses the online help menu. Currently, the online help menu is an
overview of the system. You should read it before starting to slice the workspace into panes.

The right mouse button accesses the menus for slicing the workspace. We will refer to it here as
the Pane Menu since the operations available through it affect panes.

To start dividing the workspace into panes, call the Pane Menu.

WindowMaker User Manual 6 Slicing the Workspace inic Panes

3.3 Pane Menu

To pop up the Pane Menu, click m

WindowMaker pops up a menu with four choices: kill, vertieal split, horizontal split, and help.
Here’s what each option does.

Kill Kills the current pane. Depending on the configuration of panes, WindowMaker ma;
. 3 o 3 y
pop up a menu asking which remaining pane to expand (to fill up space vacated by
the pane you're killing). Your choices will depend on the situation.

[Vertical Split]
Slices the current pane vertically, but first it pops up the Divide This Pane into menu,
which contains three methods for splitting the pane.

|Horizontal Split]
Slices the current pane horizontally, but first it pops up the Divide This Pane Into
menu, which contains three methods for splitting the pane.

Displays the help menu (same as clicking ['f.])
Selecting either of the split options, pops up the Divide The Pane Into menu, discussed below.

3.4 “Divide The Pane Into” Menu

When you select either [Vertical Split| or [Horizontal Split]| on the Pane Menu, Window-
Maker pops up a menu named Divide The Pane Into. This menu has three choices:

Divides the current pane into two equal-sized panes..

|Proportional areas| .
Slices the current pane at the mouse cursor, after you've moved the mouse over some
portion of it. The counter in the top middle WindowMaker pane indicates the percent
of area the mouse is over the current pane at any time. The mouse cursor becomes tied
to an arrow during this operation, and can move only perpendicularly to the direction
of the proposed slice.

NOTE: Proportionality depends on what WindowMaker considers the parent frame.
For example, as long as you continue to slice the same portion of the workspace both
proportionally and in the same direction as previous slices, proportionality is based on

WindowMaker User Manual 7 Slicing the Workspace into Panes

the parent frame. Therefore, the counter may count in proportions based on the part
window. (You needn’t concern yourself with the concept of parent frames.)

|[Areas of Absolute Size]
Choosing this option takes you through two more menus, through which you eventually
specify the absolute sizes of the two panes you've dividing the current pane into. If the
combined size of the two panes is less than the current pane, the remainder becomes
a pane in its own right. See the next section “Areas of Absolute Size” Menu for more
information.

3.4.1 “Areas of Absolute Size” Menu

When you select [Areas of Absolute Size] on the Divide The Pane Into menu, WindowMaker
takes you through a sequence of menus on which you specify the absolute size of the two panes to
divide the current pane into.

First, a menu called Specify Size For First Pane In: pops up. After you finish choosing the size for
the first pane, the Specify Size For Second Pane In: menu automatically pops up.

For vertical slicing, the menu contains these options:

Slices the current pane at the mouse cursor, after you've moved the mouse over it any
number of characters. The counter in the top middle pane indicates the number of
characters you move the mouse. During this operation, the mouse cursor is tied to a
small block, the size of a character. -

Slices the current pane at the mouse cursor, after you’ve moved the meQyse over it any
number of pixels. The counter in the top middle pane indicates the number of pixels
you move the mouse. During this operation, the mouse cursor is tied to a small circle
with a “+” sign inside of it.

[Or let it take any remaining space]
Makes this pane the remainder of the current pane.after the other pane is specified.
You can use this on either the first or second pane, or on both. If you choose this
option for the first pane, the first pane will be the remainder after you choose the
second pane’s size. If you choose this for both panes, you will get two equal-sized
panes.

If you choose this option to specify the first pane’s size, but not for the second pane,
then when you specify the second pane, you will have to move the mouse to the left
from the top right of the pane (for vertical slicing) or up from the bottom left of the
pane (for horizontal slicing). o

For horizontal slicing, the menu contains the same [Pixels] and |Or let it take any remaining space;

WindowMaker User Manual 8 Slicing the Workspace into Pancs

options, but instead of [Characters], contains the option [Lines):

Slices the current pane at the mouse cursor, after you’ve moved the mouse over it any
number of lines. The counter in the top middle pane indicates the number of lines you
move the mouse. During this operation, the mouse cursor is tied to a bar, the size of
one line across the current pane.

3.5 Clearing the Workspace

You can clear the workspace of all panes by selecting on the Permanent Menu.

WindowMaker User Manual 9 Generating the Constraint Frame Code

4. Generating the Constraint Frame Code

4.1 Generating the Code

When you've finished dividing the workspace into panes, you're ready to generate the frame code.
To create the code, click [L)[generate code] on the Permanent Menu.

4.2 Specifying Pane Attributes

Next, WindowMaker asks you to specify the parameters for each pane. One by one, WindowMaker
selects a pane, which it displays in reverse video, and pops up the Specify Window Attributes menu
for that pane. A window must have two main attributes: a name and a flavor.

4.2.1 Specifying a Pane Name

To specify a name, click mu?rom keyboard| to the right of “Name must be unique”. Type a name
and a RETURN). To prevent you from accidentally giving two windows the same name, if you repeat
a name, WindowMaker will erase it and refuse to accept it.

4.2.2 Specifying a Pane Flavor

You can specify the window flavor from a menu or by typing a name to the keyboard. To specify
the flavor from a menu, click (E)[From Menu]. When the Flavor Types menu pops up, select a flavor.
The possible flavors are:

tv:lisp-listener

zwei:zmacs-frame

tvicommand-menu

tv:window

tv:inspect-frame

tv:peek-frame

To specify the flavor from the keyboard, click m[From keyboard| to the right of “Window Flavor”,
type the flavor name, and a ®RETURN). For the correct syntax, type the flavor-name as it appears
in the menu options listed above.

NOTE: Beware of choosing frame or window flavors with which you are not familiar. Some may
have minimum size requirements which could cause an error at instantiation time.

WindowMaker User Manual 10 Generating the Constraint Frame Code

4.2.3 More Flavor Attributes

Alfter you choose a flavor, WindowMaker adds more flavor attributes to the Specify Window At-
tributes menu, appropriate for the type of flavor chosen. These options concern type of blinker,
deexposed typein and typeout action, and bit array. Each option has several choices after it, one
of which is boldfaced. The boldfaced options are the defaults. To choose a different value, click
m on it. The option Specify Blinker FFlavor allows you to select a blinker flavor either from a menu
or by typing one to the keyboard. The menu will list the possible blinkers flavors for the window
flavor type. '

Notice that when WindowMaker adds more flavor attributes to the menu, you will probably have
.to scroll up and down inside the menu to see them all.

If you give a window a flavor that doesn’t exist in that version of the compiled system, Window-
Maker will not pop up more flavor attribute options on the Specify Window Attributes menu.

When you finish with a Specify Window Attributes menu, choose [Do_It]. This adds a pane to
WindowMaker’s internal model using those attributes. If you haven’t specified a name for the
pane, WindowMaker automatically names the first unnamed pane unnamed-pane-namen. For
each succeeding unnamed pane, WindowMaker uses the same name, and increments the number.
If you haven’t specified a flavor, WindowMaker defaults the pane to the flavor tv:window.

Abort| exits from the code generator. You can modify the panes in the workspace or reselect
|generate code] to specify different attributes.

4.3 Specifying Frame Attributes

After you've specified the window attributes for the last pane, WindowMaker pops up the Specify
Attributes for Frame menu, which has two options. It allows you to create create multiple configu-
rations for this frame, and/or specify the frame attributes. When you select to specify the frame
attributes, WindowMaker adds the frame attribute options to the menu.

Here are the two options on the Specify Attributes for Frame menu:

Input name for present configuration: new name o
m to enter a name for the present configuration. Then type the new name
and o RETURD).

Store configuration or generate code:
Select [Store configuration] to create multiple configurations for a frame. Select
[Generate code] to create the code for a frame. These two options are discussed in
more detail immediately below.

4.3.1 “Store Configuration” and Multiple Configurations

-~

WindowMaker User Manual il Generating the Constraint Frame Code

You can create any number of configurations for a frame. The code created by WindowMaker will
allow you to make an instance of any configuration you defined.

To create multiple configurations, name the current configuration by selecting for the
first option on the Specify Attributes for Frame menu. After typing in the name and a ®RETURN),
select [Store configuration]. WindowMaker will store the information you have just given for
each pane in that configuration, and return you to the workspace without creating any code.

Now, select |generate code| on the Permanent Menu again. Again, you will be asked to specify
attributes for each pane drawn on the workspace. You can use the same attributes for any pane
specifed in a previous configuration by selecting its pane name where possible. That is, as long as
you define multiple configurations for a frame, WindowMaker remembers the information you've
specifed for the previous configurations. At any point when you can choose “From menu” instead
of “From keyboard”, WindowMaker lists all the information you've used for that option in the
previous configurations. For example, when you specify attributes for a pane, you can reuse the
information you specified for a pane on a previous configuration, by selecting that pane’s name
from a menu of pane names.

When you're finished creating configurations, select [generate code| on the Specify Attributes for
Frame menu. WihdowMaker adds more frame attributes to the menu. See the next section called
“More Frame Attributes”.

'4.3.2 More Frame Attributes

When you choose |[generate code] on the Specify Attributes for Frame menu, WindowMaker adds
the following options to the menu:

Define a flavor or function: Flavor Function
The constraint code may be written either as a flavor or a function definition. Select
either [Flavor] or [Function].

Choose type of frame flavor: Choose from menu
Selecting [Choose from menu] allows you to choose a frame flavor on the Frame Flavors
menu. Your four options are: :

tv:constaint-frame (this is the default)-
tv:bordered-constraint-frame
tv:constraint-frame-with-shared-io-buffer
tv:bordered-constraint-frame-with-shared-io-buffer

“Which pane to select when frame exposed:
Allows you to specify which pane will be selected when the frame is exposed. You
have two choices: selecting allows you to type in a name, or selecting
pops up 2 menu of the pane names, on which you can select one. The
default is the first pane you specified attributes for.

WindowMaker User Manual 12 Generating the Constraint Frame Code

Input buffer name for code output:
Allows you to name the buffer to which WindowMaker will append the code. You have
two options, New and Your-code-is-in-this-buffer. Clicking (L. allows you to type
in a name. If you don’t type in a name, WindowMaker defaults to Your-code-is-in-
this-buffer.

When you finish specifying the frame attributes, select [Do_it]. In this release, generates
code, instead of aborting out of the code generation operation. This will be fixed in the next
release,

4.4 The Generated Code

When you select to exit from the Specify Attributes for Frame menu, WindowMaker au-
tomatically either stores the configuration or creates code for the frame, depending which you
chose.

If you chose |generate code|, WindowMaker creates the code and writes it to a ZMACS buffer.
The time it takes for this depends on the complexity of your frame: it takes only a few seconds
for a simple frame. The code is written to either the buffer name you specified on the Specify
Attributes for Frame menu, or the default name Your-code-is-in-this-buffer.

Don’t type anything to the Lambda while WindowMaker creates the code. When WindowMaker
is finished, it beeps and and blinks the screen.

To see the code, do E to change to ZMACS. List the buffers to make sure the buffer
containing the code was created. Select that buffer. If you used the same buffer name to create
several generations of code, each generation was appended to the end of the buffer. You can find
each new section of code easily because it will start with either of these two comments:

::This is a function definition generated by WindowMaker.

;:This is a flavor definition generated by WindowMaker.

4.5 Creating new Frames

You may return to WindowMaker at any time, modify the panes, and select [Generate Code] on
the Permanent Menu to create new code. If you choose to write code to an existing buffer, it will
appended to the end of that buffer.

4.6 Using the Generated Code

To instantiate any frame, you must compile its code and expose the [rame. Typically this means
setqing the instance to a convenient name and then sending that instance an :expose message. The
procedure depends on whether you gave the frame a flavor or function definition.

WindowMaker User Manual 13 Generating the Constraint Frame Code

4.6.1 Instantiating a Frame Defined as a Function

If you gave the frame a function definition, you can instantiate it by doing the following:

(setq variable-name (function-name)

where variable-name is the convenient name you choose, and function-name is the function name
you specified. Expose the frame with:

(send variable-name :expose)

4.6.2 Instantiating a Frame Defined as a Flavor

If you gave the frame a flavor definition, you can instantiate it by doing the following:

(setq variable-name (make-instance flavor-name)

where variable-name is the convenient name you choose, and flavor-name is the flavor name you
specified. Expose the frame with:

(send variable-name :expose)

WindowMaker User Manual 14 Generating the Constraint Frame Code

WindowMaker User Manual i5 More Information on Windows

5. More Information on Windows

For more information on windows, consult the Window System Manual, especially section 2.1 on
the Hierarchy of Windows, Chapter 4 on Sizes and Positions, and Chapter 8 on Drawing Graphics.

After you’ve instantiated your code, you might try sending sone of these messages to your frame
or its panes.

These messages should be sent to frames:

iexpose Causes the frame to be exposed to view.

:inferiors Returns a list of the component panes of the frame.
:get-pane ’pane-name

Returns the instance of the pane which has the name pane-name, if it.exists in.that
frame. -

These meésages should be sent to windows:
sheight Returns the height of the window.
:twidth Returns the width of the window.
:draw-circle x y radius

Draws a circle in the window at positicn x, y (referenced from the top left corner) with
radius radius.

WindowMaker User Manual 18 More Information on Windows

WindowMaker User Manual 17 Demo

Appendix A. Demo

Here’s a trivial demo of message-passing to windows. You might like to try this on the panes
in your frame. The file containing the demo is window-maker;useful-demo and is part of your
WindowMaker sources. Since the file is so short, we have duplicated it in Section A.2.

The demo consists of three functions:

drf Function
Draws circles on a pane.

cruft-up-frame ’ Funetion
Draws circles on each pane that accepts such an operation after asking each pane if it can
handle that operation.

clear-up-frame Function
Clears the panes of circles and then refreshes them.

Use WindowMaker to define a frame with at least one medium-size LISP Listener. Create it as a,
flavor definition. Follow the demo instructions in Section A.1.

A.1 Demo Instructions

Call the following commands:
(setq example-window (make-instance my-flavor)
where my-flavor is the frame’s flavor.

(send example-window °’:expose)

Now we are in EXAMPLE-WINDOW. Select a LISP Listener with the mouse. Our example uses a
pane named “Huey”.

(send example-window :get-pane ’Huey) ;This returns its instance.

(setq Huey *) ;Now a variable of the same name is bound to
;the instance.

WindowMaker User Manuai i8 Demo

(drf Huey) :Now we call drf on Huey.

(cruft-up-frame) ;This calls drf on everybody who can draw circles.

(clear-up-frame) ;This cleans everybody up.

WindowMaker User Manual 19

A.2 Useful-Demo Code

(defun drf (win)
(send win ’:clear-gcreen)

(loop for i from 1 to 100
as wid = (send win ’:width)
as hit = (send win ’:height)
as rad = (// (min wid hit) 15)
do (send win ’:draw-circle
(random wid)
(random hit)
(random rad))
D)

(defun cruft-up-frame
(&optional
(frame
(send terminal-io
* :superior)))

Demo

;neaten things up first

;we’ll draw 100 circles

;maximum radius is 1/15 of either
;width or height, whichever is less

;this defaults frame to be

;the superior of the window
;in which you are typing

(loop for pane in (send
frame

' :exposed-inferiors)

when (send pane

1get the list of exposed
;inferior components
;0f the frame

’ioperation-handled-p

':draw-circle)

do (drf pane)
))

;see if they know how to draw
;a circle

;tell them to DRF

WindowMaker User Manual 20

(defun clear-up-frame
(&optional
(frame
(send terminal-io
’ :superior)))
(loop for pane in (send

frame
’:exposed-inferiors)

when (send pane
' ioperation-handled-p
’:clear-screen)

do (send pane ’:clear-screen)

do (send pane ’:refresh)

))

Demo

WindowMaker User Manual 21 function Index

Function Index

C D

clear-upframe 17 T | 17
cruft-upframe L. L. 17

P

‘LISP Machine Window System Manual
‘Edition 1.1, System Version 85
Aﬁgust 1983

Richard Stallman
Daniel Weinreb
David Moon

R Distributed by LMI 6033 W. Ceﬁtury Blvd. Los Angeles CA 90045
o ¥ USA

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
" sachusetts Institute of Technology. Support for the laboratory’s artificial intelligence

research is provided in part by the Advance Research Projects Agency of the Depart-

ment of Defense under Office of Naval Research Contract number N00014-80-C-0505.

Window System Manual .~ © i " Summary Table of Contents

‘Summary Table of Contents

L COMEEDIS . & v v vt v e e e e e e e e e e e e e e e e e e e 3
2. Visibility and Exposure of Windows. e e e e e i e e e e e e e e e 10
I T ol T 1 31
4, Sizesand PosSitIONS« v vt it e e e e e e e e e e e e e e e e e e e 43
BT 3 1 49
6. Output Of TeXt . . . & i i vt i it s e e e e e e e e e e e e e e e e e e 66
T FOMIS. & . v e i et e 83
8. DrawingGraphics L i e e e e e e e 93
9. Blinkers SR e 103
10 TREMOUSE . v v v i it i e e et e et et e ettt et e e e e e e e e 112
11. Margins, Borders, and Labels @ e e e ettt 129
12, Frames . . v v v v it e et et e e e e e e e e e e et e et e e e e e 141
13. Miscellaneous Features e e e e e e et e e e e e e e e e 157
14. Choice Facilities. e e e e e e e e e e e e e e e e e 173
15. Typeout Windows. e et e e e e e e e e e e e e e e e e .. 212
16. TextScroll Windows. v i i i i i it e e et e e e ettt e e e .. 219
17. General Scroll Windows. e e e e e e e e e e e e e e e 228
ConceptIndex. e e i e e e e e e e et e e e e 240
OperationIndex. e s st et e e e s e e e 242
KeywordIndex . . .0 0 it v h i e e e s e s e e e e e e e e e e e e UL 249
Flavor and Resource Index. « « « « v v v oo oo v ee e e e 254
Varidble Index. 0 i e e e e e e e e e e e e e e e e e e 256
FunctionIndex e e . e e e e e e e e e e e e e e e e 259

oA R - BAUGH

Table of Contents | Window System Manual

Table of Contents

1. Concepts . e 3

B 4 T 10 3
1.2 Capabilitiesof Windows. e e et et et e et e e e e 4
1.3 Higher Level Window Facilities. e e e e e e e e 6
14 WindowsasFlavorInstances v v v v vt i i it it it e e e e 6
L5 UsingaWindow o v v i it ittt e e e e e e e e e e e e e 8
1.6 Creation of Windows 0 0 it i it ittt et e e et e e e e e e 9
2. Visibility and Exposure of Windows. e e e e e e 10
2] Hierarchy of WINAOWS v v v i i i i e e et it b et e e oot e e aeeans 10
22 Screens.00 ... @ e e e e et e ee e s e e ... 13
B o .- O Vel 14
24 Bit-SaveArrays. 0., e e e e et e e e e e e e 15
2.5 Screen Arrays and EXpPOSUIe. & & v v o v v v v b v e e e e e e e e e e e e e 17
2.6 AbilitytoOutput e e e e et e e e e e e e e e e e 21
2T WIndowLocking v i e e e e e e e e e e e . 23
228 Temporary Windows v v o v v v i et et e e e e e e e e e .. 24
29 TheScreenManager v v vt it v vt v v e v o e e e e i e e e e 26
2.9.1 Control of Partial Visibility. v v vt v i it e e e e e e 27
2.9.2 Priority among WindowsforExposure e .. 28
29.3 Delaying Screen Management v v v vttt e e e e e e e e 30
3. Selection e e e e et e e e e e e e et e 31
3.1 HowProgramsSelect Windows i i i i i it ittt e i e 32
32 TeamsofWindows e e e e e e e e e e e e e e 34
3.2.1 The System Menu SelectOption e e e e e 35
3.2.2 Selection with Terminaland SystemCommands e .. 36

© 3.3 Seclection SubSHIULES i i i e e e e e e e e e e e e e, 37
-3.3.1 Non-Hierarchical Selection Substitutes e v v v vt ot v vt s e o v nnn 39

. 34 TheStatusofaWindow. e e e e e e e e e e e e e e e e e e e 39
3.5 Windowsand Processes. . . . v v v v v i it it e e e e e e e e e e e 40
4. Sizesand Positions oL L e e e e e e e e et e e 43
4.1 Init Options for Sizes and Posmons e e e e e e e e e ... 43
4.2 Flavor Operations for Sizes and Positions e e e e e e e e e e e e 45
43 LlowLevelEdgesFunctions. i i unn. e e e 47
S.Input. e e e e e e e e e e e e i e e e e e et e 49
5.1 InputBuffers e e e e e e e e e e e e e e e e e e e 50

. S2Blips...... ..., e e e e e e e e 52
5.3 Stream InputOperations O 52
S41/0Buffers. e e e e e e e e e e s 56
541 VO Buffersand TypeAhead PR e e e e 58
542 I/OBuffersasInputBuffers o i e e 58
55 InterceptedCharacters o e e e v e e e e - 59
5.5.1 Synchronously Intercepted Characters C e e e et e e e e s e - 60

Window System Manual ' iii / Table of Contents

'5.5.2 Asynchronously Intercepted Characters 61

5.5.3 Global AsynchronousCharacters. v « v v v v v v v v v v o s 0o v 63
5.6 Polling The Keyboard Explicitly e e e e e e e e e e e e 65
6. Outputof Text e e e e e e e e e e e e e e 66
6.1 How A CharacterIsPrinted.0 it i it it 68
6.2 Stream Output Operations v v o v 4 v v e e e e e 68
6.3 Output Exceptions o oo o i e e 70
6.3.1 Output Hold and End of Page Exceptions 71
6.3.2 *MORE* EXCEPLONS & « v v v v v v v vt v et e e et e e 71
633 EndofLineExceptionst 73
64 CursorMotion. e e e 74
65Erasing. @ e e e e e e e e e 75
6.6 Inserting and Deleting LinesandCharacters. ¢ oo v v v v v v 76
6.7 Anticipating the EffectofOutput. e e m
6.8 Explicit (Non-Cursor)Output. e e e e e e 79
6.9 Window Parameters AffectingOutput. 80
R v 1 £~ 83
71 Specifying Fonts'. o v v i i i e e e e e e e e e e e e 83
7.1.1 FontSpecifiers. e e e e e 85
72 Attributesof Fonts0 0 0 o e e e e e s e e e 87
T3 Formatof FOMtS . . . v v v v v v vt et e v et o oo e st s e ot e e 89
74 ColorFonts e e e e e e e e e e e e e e 92
8. DrawingGraphics e e e e e e e e e 93
8.1 AluFunctions et e e v et et e et e 93
8.2 Flavor Operations for Graphics. . oo v« v v v v v v v v v oo v o v v e u 94
8.3 Low-Level Graphics Using Subprimitives. [98
8.3.1 Subprimitives for Drawing. e e e e e e 101
9. Blinkers e e e e e e e e e e e e e e e e . 103
9.1 Blinker Functions and Operations. e e e e 104
9.2 BHNKETFlavors. « o v v v v v v e e et e e e 107
10. TheMouse i i i it i i it ettt e s bttt n e s e nea 112
10.1 Encoding Mouse Clicks as Characters e e e e e e 113
10.2 Ownershipofthe Mouse. i i i it i it i it n oo e s s 114
~ 10.2.1 GrabbingtheMouse e e e 115
1022 UsurpingtheMouse v ¢ cv o .. e e e e e e e e e e e 118
10.3 How WindowsHandlethe Mouse ¢ v v v v v v v v v o v v v 119
- 104 Mouse Blinkers e et e 121
104.1 ReusableMouseB]mkerTypes. e e e e e e e 123
- 105 Mouse Scrolling. e e e e e e e e e e 123
~10.5.1 Scrolling Protocol e e e e e e e T e e et e e e e e e e e 124
1052 Scroll Bars . & . . o v v v o i e e s e e e e e e e e e e e e e 125
- 10.5.3 Margin Scrolling S e e e e e e e 126
10.6 Mouse Parameters. & . . . v . v v vv s o e e e e e . 128

8-AUG-83

Table of Contents ' _ iv ' - Window System Manual

11. Margins, Borders,and Labels. i it e e e e e e e 129
1L BOrders . v v v v v vttt t i e et e e e e e e e et e, ... 130
11.2 Labels. [et a e e et e e e e e e e e 132
113 Margin Regions . . . v v v i i i it i i it et et e e e e e e 134
11.3.1 Margin RegionExample e e e e e 136
114 DefiningMarginItem Flavors0 i i it i et e e e e 138
12. Frames. et et e e e e e e e e e e e e e e 141
121 Constraint Frames. ¢ . v v vt v ittt ettt e et e et e e e 142
12.1.1 Constraint Frame Flavors. o 0 0 v it i i i it e e it ittt e e e e 142
12.1.2 Examples of Specifications of PanesandConstraints. v v v v v v v 143
12.1.3 Specifying Panes and Constraints e e e e e e e e e 146
12.14 Constraint Frame Operations ¢ v i v v vt v vt ettt et t s oo n s 153
122 Pane-FramelInteraction o v v i i i i it i et e e e 154
1221 The Selected Pane. e e i e e e e 155
13. Miscellaneous Features. e s e e e e e e e e e e e 157
131 Notifications. . . . v v ¢ v v v o v v v e vt e e et e e e e e e e e e e e e e 157
-13.2 Lisp Listeners N 159
133 Editor Windows . . & & i v v vt it it e e e e e e e e e e e e e e e 160
134 Window Flavors for Other Programs- v v v v v v v v v o v v o v o e a oo o n 162
- 135 TheWhoLine... i v v e e et et e e e e . 163
136 TheColorScreen e e et e et et e e e .. . 165
13.6.1 Color Map Functions. et e e et e e e e e e et e e e ... 165
1362 Operatingon Pixels. ¢ v i i it i i e e e e e e e e e 166
13.7 TheSystemMenu. e e e e e e e e e e e e e .. 167
13.8 Window Resources. e e e e T e e i e e b et e e e e e e e e e 168
139 TheColdLoad Stream. v v v v vt i ot et e ettt et oot ee e e e 170

13.10 The Window-Based Debugger v i i it ittt it e v ettt e e e o 171

14. ChoiCe FacTitieS . . v v & v v v vt vt e e e e e ottt e e sttt et eee e 173

D L (1 173
1411 Menultems. i i i it e e e e e e e e e et e e 174
1412 EasyMenulnterface T v i/
1413 Geometry. P I S A et e e e e e SRR 178
1414 Ordinary Menus v 0 vt v e i et e e e i e e e e e e e e 181

- 1415 CommandMenus. . v v v vttt e e e e e e e e e e e e e 184
1416 DynamicItemListMenus., vt i ittt i 185

- 1417 MultipleMenus. S e e e 187

142 MultipleChoice Facility v o v v vt vt ittt et e e e, e e . 190
142.]1 FunctionalInterface.o it i e e ce. .. 191
1422 Flavorsand Opeérations. e e e e e e e e 192
14.3 Choose-Variable-Values Facility e e e e e e e e 194 .
14.3.1 Specifyingthc Variables. e et e e e e e e 194

" 14.3.2 Predefined Variable Types. e e e e e e e e e oo 2195
14.3.3 FunctionalInterface. e e e e e e e e e e e 196
14.3.4 Defining Your Own Variable Type e e e e e e e e e e e e e 199
14.3.5 Making YourOwnWindow. e e e e e e e e e 200

Window System Manual v : . Table of Contents

1436 UserOption Facility . .« o v i v v v e et et e e e e e e e 204
. 14.4 Mouse-Sensitive TypeOut. e e e e e e e e e e 207
145 MarginChoices. oL e e e e e e e e e 210
15. TypeoutWindows.o v ittt it i it el 212
15.1 Activationand Deactivation. e e e e e 213
15.2 Superiorsof TypeoutWindows v e v v v v v .. 214
15.3 Delaying Redisplay After Typeout. 215
16. TextScroll Windows. . . . v v v v v v ittt e e e e et e 219
16.1 SpecifyingtheltemList. v v it i i i i e e e e 219
16.2 Bellsand Whistles. e e e e e 221
163 Item Generators. et e e e e e e e e e e 222
16.4 Mouse Sensitive TextScroll Windows 225
17. General Scroll WInAOWS. - « « v v v v v oot e e e e e e 228
 17.1 Specifying Items and Entries. S 229
172 UsingaScrollWindow i i i it i it e e et e 232
173 Insertingand Deleting Items.t v vt v it v vt vt e e e 234
174 Automatically UpdatingItems. i it v, 234
17.5 Representationof Items.0 i i ittt 237
17.6 Mouse Sensitive Scroll Windows. e e e e 238
Concept Index. e e e e e e e 240
~OperationIndex. 0 e e e 242
CKeywordIndex e e e PR e e e e e 249 -
Flavorand Resource INAex. . .« & i v v v v v v e e o e e eeen e e eeee s 254
Variable Index. e e e e e e e e 256
FunctionIndex 0 v i i i i it it it et e e e e e 259

A o S 8-AUGS3

Window System Manual e 1 - (nil)

Preface

The Lisp Machine window system manual is intended to explain how you, as a programmer,
can use the set of facilities in the Lisp Machine known collectively as the window system.
Specifically, this document explains how to creatc windows, and what operations can be
performed on them. It also explains how you can customize the windows you produce, by mixing
together existing flavors to produce a window with the combination of functionality that your
program requires and adding daemons to various opeérations.

It is assumed that you have a working familiarity with Zetalisp as documented in the Lisp
Machine manual. It is also assumed that you have some experience with the user interface of the
Lisp Machine, including the ways of manipulating windows, such as the Edit Screen, Split
Screen, and Create commands from the system menu. To use the predefined flavors and
methods, you need not be familiar with how methods are defined and combined, but you should
understand what message passing is, how it is used on the Lisp Machine, what a flavor is, what
a "mixin" flavor is, and how to define a new flavor by mixing existing flavors. To use the
information provided- here on where to add daemons, you must be thoroughly familiar with
programming with flavors, and must be willing to refer to the window system source code.as the
final authority for all questions.

Any comments suggestions, or criticisms will be welcomed. Please send Arpa network mail
to BUG-LMMAN@MIT-MC.

Those not on the Arpanet may send U. S snall to
Richard M. Stallman
- 545 Technology Square, Room 914
Cambridge, Mass. 02139

SRCKLMMND>WINDOCTEXT.S - 8AUG-83

t9

(nil) - Window System Manual

Note from Richard Stallman

The Lisp Machine is a product of the efforts of many people too numerous to list here and
- of the former unique cooperative environment of the M.LT. Artificial Intelligence Laboratory. I
believe that the commercialization of computer software hinders the further development of
systems such as described herein. [consider proprietary software morally objectionable and plan
to dedicate my career to promoting the sharing and free exchange of software.

Starting in December 1983 I plan to work on the development of GNU, a complete Unix-
compatible software system for standard hardware architectures, to be shared freely with everyone
just like EMACS. This will enable people to use computers without agreeing to the idea of
proprietary software. This project has inspired a growing movement of enthusiastic supporters. If
you would like to join it, write to me at the address on the previous. page. Help get
programmers sharing again! Contributions of part-time programming help will be very welcome,
as will funding from philanthropists to support full-time workers, and donations or loans of
computers. ' : :

. The current implementation of the window system. is based on flavors, and was designed and
implemented primarily by Howard Cannon and Mike McMahon during 1980. It replaced an
carlier version implemented by me, which was based on Smalitalk-like classes. The newer version
is generally an improvement, but as Howard Cannon steadfastly refused to discuss the design with
me I must decline responsibility for such counterintuitive aspects as the definition of exposure.

Abbut a third of this manual is based on earlier documents written by Dave Moon and
Danicl Weinreb. Sarah Smith of LMI helped to correct the manual, and Chris Schneider and
Steve Strassman provided useful suggestions.

SRCLLLWINIDWINDOLTEXT.S _ _ B UG-83

Window System Manual 3 . g : “Concepts

1. Concepts |

The term window system refers to a large body of software used to manage communications
between programs in the Lisp Machine and the user, via the Lisp Machine console. The console
_consists of a keyboard, a mouse, and one or more screens. All Lisp Machines have at least one
high-resolution black-and-white screen, and some machines also have a color screen. The window
system can handle any number of screens of various kinds. :

_ The window system controls the keyboard, encoding the shifting keys, interpreting special
commands such as the Terminal and System keys, and directing input to the right place. The
window system also controls the mouse, tracking it on the screen, interpreting clicks on the
buttons, and routing its effects to the right places. The most important part of the window
system is its control of the screens, which it subdivides into windows so that many programs can
coexist and even run simultaneously without getting in each other’s way, sharing the screen space
according to a set of established rules. -

11 WindoWs

When you use the Lisp Machine, you can run many programs at once. You can have a Lisp
listener, an editor, a mail reader, and a network connection program, or several of each, all
running at the same time, and you can switch from one to the other convenicntly. Interactive’
programs get input from the keyboard and the mouse, and send output to a screen. Since there
is only one keyboard, it can only talk to one program at a time, However, cach screen can be
divided into regions, and one program can use one region- while another uses another region.
Furthermore, this division into regions can control which program the mouse talks to;- if the
mouse cursor position is in a region associated with a certain program, then mouse clicks are
directed to that program, which is then allowed to decide what the clicks mean. Allocating access
to screen space and input devices is the most important function of the window system.

The regions into which the screen is divided are known as windows. In your use of the Lisp
Machine, you have encountered windows many times. Somctimes there is only one window
visible on the screen; for example, when you cold-boot a Lisp Machine, - it initially has only one
. window showing, and it is the size of the entire screen. If you start using the system menu’s
Create, Edit Screen, or Split Screen options. you can make windows in various places of
various sizes and flavors. Usually windows have a border around. them (a thin black rectangle
around the edges of the window), and they also frequently have a label in the lower-left hand
corner or on top. This is to help the user see where all the windows are, what parts of the
screen they are taking up, and what kind of windows they are.

The next several scctions begin to explain the detailed concepts of how windows work and
what their internal state is. You should probably rcad over these quickly the first time, without
- worrying about all the details. You really don’t have to understand all of the complexity to make
simple use of the window system: it just helps if you know what sort of thing is: going on.

SRCKL.WINDDWINDOLTEXT.S1 ' ‘ ‘ o $-AUG-8Y

.‘.

Capabilitics of Windows . 4 - Window System Manual

1.2 Capabilities of Windows

A window may or may not be exposed, which means that output can be done on it (section
2.5, page 17). At any time at most one window can be selected, which means that input can be
“done through it (chapter 3, page 31). These two conditions constitute the window’s szatus.

Another kind of state information that every window has is its edges: its size and its position
(see chapter 4, page 43). You can specify these numerically, ask for the user to tell you (using
the mouse), ask for a window to be near some point or some other window, and so on.

Windows can function as streams by accepting all the operations that streams accept. If you
do input operations on windows, they read from the keyboard; if you do output operations on
windows,. they type out characters on the screen. The value of terminal-io (see section 21.5.9 of
. the Lisp Machine manual) is normally a window, and so input/output functions on the Lisp
Machine do their I70 to windows by default. ’

A window whose flavor incorporates tv:stream-mixin supports all the standard input stream
operations .and may be passed as the input stream to functions such as read and readline (see
chapter S, page 49). Each such window has an inpur buffer holding characters that have been
typed at the window but not read yet. You can force keyboard input into a window’s input
buffer; frequently two processes communicate by one process's forcing keyboard input into an
input buffer from which another process is reading characters (see page 53).

Any window handles the standard output stream operations and can be passed as the output
stream to functions such as print and format (see chapter 6, page 66). You can output characters
at a cursor position, move the cursor around, selectively clear parts of the window, insert and
delete lines and characters, and so on, by means of standard and not-so-standard stream.
operations. Output of text on windows provides additional features; for example, characters can
be drawn in any of a large set of fonts (type faces), and you can switch from one to another
within a single window (see chapter 7, page 83). Windows can define their own- actions for
exceptional conditions that affect output, such as reaching the right or bottom edge of the
window, or printing more that a window-full without pausing (see section 6.3, -page 70).

In addition to characters from fontsA you can also display graphics (pictures) on windows (see
chapter 8, page 93). There are operations to draw lines, circles, triangles, rectangies, arbnrary
polygons, circle sectors, and cubic splmes

Each window can have any number of blinkers (sce chapter 9, page 103). Most windows have
one blinker that follows the window's cursor position; this blinker normally appears as_a blinking
rectangle. But blinkers nced not follow the cursor and need not actually blink (some do and
some don't). For example, the editor shows you what character the mouse is pointing at; this
blinker looks like a hollow rectangle. The arrow . that follows the mouse is a blinker, too.
Blinkers are used to add visible ornaments to a window, or temporary modifications to a window’s
normal display. - Blinkers are flavor instances with their own standard operations.

" Windows are the standard interface to the mouse (see chapter 10, page 112). Both mouse
motion and mouse clicks are normally handled by messages sent to the window over which the
mousc is positioned.

SRCKL.WINIDWINDOLTEXT.S] ' - ' i‘i-‘z\UG-83

Window System Manual o 5 .~ Capabilitics of Windows

A window's area of the screen is divided into two parts. Around the edges of the window are
the four margins; while the margins can have zero size, usually there is a margin on each edge
of the window, holding a border and sometimes other things, such as a label. The rest of the
window is called the inside; regular character output and graphics drawing all occur on the inside
part of the window. The margins and inside of the window are managed separately so that
mixins to add things to the margins can be independent of the program -that draws in the
window’s inside. See chapter 11, page 129. :

For greater flexibility in subdividing a ‘window into multiple areas of different uses, you can
create inferior windows or panes within the window. The main window is then called a frame.
Each pane can be of a different flavor suitable to its own purpose; thus Peek uses a frame which
has a menu and a scrolling window as its two panes. See section 2.1, page 10, for information
on the hierarchy of windows, and chapter 12, page 141, for a description of frames.

The asynchronously intercepted - characters (such as Control-Abort) which take effect
instantancously when- typed are handled by the sclected window. Each window can - specify its
own. See section 5.5.2, page 61. ' '

A window can have an associated process. For example, when you type Control-Abort, the
process aborted is the one associated with the selected window. Exactly how processes and
windows relate depends on the flavor of the window, and, as usual, there are several operations
“to manipulate the connections. See section 3.5, page 40.

Notifications are a facility for displaying messages from events taking place asynchronously and
not related to the program you ar¢ running (errors in background processes, gsends from other
" users, file servers planning to go down, etc.). Notifications work through operations on the
selected window, so each window can decide how to display a notification. See section 13.1, page
157. o '
~ Screens are represented by flavor objects' also; these are not windows, but share some of the
operations and instance variables of windows (see section 2.2, page 13). Windows and screens
collectively are called sheets. Each screen object usually corresponds to a particular piece of
display hardware. Scrcens can be either black-and-white or color. Color screens have more than
onc bit for cach pixel; and most operations on windows do somcthing rcasonable on color screens.
But the extra bits give you extra flexibility, and so there are some more powerful things you can
do to manipulate colors. Color screens also have a color map which specifies which values of the
pixels display which colors. See scction 13.6, page 165. :

The who line at the bottom of the. screen shows the user something about the state of the
Lisp Machinc. The window system sofiware implements the who line as a separate screen even
" though it appcars on the same TV monitor-as the main screen and its windows. This is why you
cannot move the mouse into the who line arca, or make windows on the main screen hide the
~who line. Sce section 13.5, page 163 for more information on the who line and how it is
interfaced and implemented. : : '

~ SRCXLWIND>WINDOLTEXTSL A . 8-AUG-83

Higher Level Window Facilities .6 © . Window Systcm Manual

1.3 Higher Level Window Facilities

The higher level window facilities are window flavors that combine the basic capabilities of
- windows appropriately to provide directly usable techniques for particular common applications.
These facilities include menus and other choice windows, typeout windows, and scrolling windows.

Menus allow the user to choose one or several of a fixed set of items. The system menu that
you get from double-click-right is an example of one. See section 14.1, page 173. Multiple choice
windows allow the user to specify an answer to each of a set of similar multiple-choice questions
(see section 14.2, page 190) The editor command Meta-X Kill or Save Buffers shows an
example of one.

Choose-variable-values windows allow the user to view and modify the values of a set of
variables, each variable printed and read according to its own range of possible values. One
variable might allow only numbers, while another vanables value might be restricted to a list of
pathnames. See section 14.3, page 194.

Typeout windows allow windows such as scroll windows and editor windows, which normally
‘present displays reflecting permanent data bases, to print output in response to individual
commands. - The typeout window is an.inferior of the other window, and exposes itself when
output is done on it :

Scrolling windows allow the programmer to define a display which the user can then scroll
through. The scrolling window facility provides for scrolling, redisplay, and interaction with the
mouse, requiring the programmer only to specify the entire contents to be scrolled through.
There are two types of scrolling windows, text scroll windows (chapter 16, page 219) and general
- scroll windows (chapter 17, page 228), the former being less powerful but simpler. Note that
-there is a standard interface protocol for the mouse to request scrolling (see section 10.5.1, page
124). You need not use one of the standard scrolling window facilities to make a window that
_ can scroll if you are willing to unplemem the scrolling yourself For example editor windows
and menus can also scroil.

14 Wmdows as Flavor Instances

In the Lisp world, each window is a flavor instance, an mstzmce of some flavor of wmdow
There are many different window flavors available; some of them are described in this manual.
All of them contain the component tv:minimum-window. :

tv: m1n1mum window . Flavor
The flavor on which all window ﬂavors are built. Any window flavors you define should
“include this component. This flavor itsclf is made of the components tv:éssential-
window, tv.essential-activate, tv:essential-expose, tv.essential-set-edges and
tviessential-mouse. tv:minimum-window has no mcthods of its own; all arc inherited
from thosc components. So you will at times (in the dcbugger) run across methods of
those component flavors. You will also run across mcthods of tvisheet, a component of
tv:essentiat-window. - However, there is no nced for you -as a programmer (o pay
_attention to the distinctions among these flavors, and in this manual all the operations,
instance variables and init options of tv:minimum-window arc documented as being “of

SRCKLWINIDWINDOLTEXT:S1 - | BAUGS3

Window System Manual _ o 7 ' Windows as Flavor Instances

windows" rather than of any specific flavor.

tv:window } o o , Flavor
This flavor of window has several mixins that provide much generally useful functionality,
including the ability t0 select the window, graphics operations, labels and borders.
(defflavor tv:window () :
(tv:stream-mixin tv:borders-mixin tv:label-mixin
“tv:select-mixin tv:de\ay—notification-mixin
tv:graphics-mixin tv:minimum-window))

The operations of these mixins are specifically identified in this manual. Use the mixins, .
or use the flavor tv:window, if you want the operations to be available. .

It is often necessary t0 mix flavors to get the desired window behavior. When doing this, you
must pay attention to the correct ordering of flavor components.. The earlier components will
override later ones. For example, if you want to make a window that will print out notifications
on itself by mixing in tv:notification-mixin, you must put it in front of tv:window:

(defflavor my-window () (tv;notif‘ication-mixin tv:window))"
If you put them in the other order, as in ‘ '

(defflavor my-window () (tv:window tv:_notification-m‘ixin))
you get something equivalent to tv:window. The tv:notification-mixin’s effect is completely lost..
The whole point of tv:notification -mixin is that it should override some methods of tv:window
(inherited from tv:delay—not'ification—mixin), and in fact. it dcfines the same operations in a
different way. It follows that if tv:notification-mixin comes last, it will be overridden instead.

It is almost alw}ays' correct to- put mixins first in the ordering SO that they will override
whatever they are added to. One exception occurs with - flavors of margin item; there, the:
ordering is used to control the spatial position ‘of the margin items. _

Screens are also represented by flavor instances, which share some of the characteristics of

windows because they share the component flavor tv:sheet. Screens are described fully in section
2.2, page 13. . :

tv:sheet . A . Flavor

tv:sheet is a flavor that windows and screens share. It is also what provides the structure

required by the microcode display primitives. Operations defincd by this flavor are
documented as being "of windows and screens” in this manual.

_ Much of the contents of this manual is devoted to describing. the instance variables and
operations of various flavors of window. They are grouped below by functionality.

There is a- vague convention somctimes followed for naming flavors of windows. Here the
word frobboz is used to-stand for any feature, attribute, or class of windows that would appcar in
a flavor name (e.g. peek. - lisp-listener, or delayed-redisplay—label). Naming conventions are

different for instantiable flavors (which are complete and can support instances of themselves). and
mixin flavors (which are »incomplcte and only supply one particular aspect of behavior).

frobboz - An instantiable flavor whose most distinguishing characteristic is that it is a
e ’ frobboz. frobboz 18 preferred to frobboz -window except when it is necessary to
make a distinction. ' :

SRCLWINDYWINDOLTEXTSL . gAUGS3

_ Using a Window - 8 ' . Window System Manual

frobboz-mixin A flavor which provides the frobboz feature when mixed into other flavors, but is
not instantiable. Such mixins often have no components, just :required-flavors.

basic-frobboz: This form of name is used instead of frobboz-mixin when the flavor is regarded
' as altering the "essential character” of the window. It does not work to mix two
"basic” flavors together unless they are designed to work together. In certain cases
a basic-frobboz may contain tv:minimum-window as a component, and may even
be instantiable, but usually it is a mixin that must be mixed with tv:minimum-
window and other things in-order to work. '

essential-frobboz

essential- frobboz-mixin N
A name like this is gencrally used for a componcnt of frobboz-mnxm containing
the heart of the frobboz facility but not its bells and whistles or ltS specific
interface.

1.5 Using a.Win’dow ‘

. Many programs never need to create any new windows. Often it suffices to use the standard -

‘input, output and graphics operations on an existing window, such as a Lisp listener which is the
value of terminal-io when your program is called. For example, here is a graphics demo that
will draw a pattern of xored circles on any window which has tv: graphlcs mixin (such as a Lisp
listener).

(defun green-hornet (&optional (window terminal-io)
(separat1on 40)) '
(hacks: w1th real-time.
- (send window ’:clear-screen).
(send window ’:home-down).
(multiple-value-bind (iw ih)
~ (send window ':inside-size)
“(1et ((center x1 (- (truncate iw 2)
: (truncate separation 2)))
(center -x2 (+ (truncate iw 2)
(truncate separat1on 2)))
(center y (truncate ih 2)))
(do ((i (- (min center-y center-x1) 10,)
(1- 1)))
(<= 15))
(send window ':draw-circle
(if (bit-test. 20 i) center x1 center x2)
center-y .
1N
(send window " ty1)

t))

* Such programs should try to stick to the most widely-implemented operations. The ideal is to
use only the standard strcam operations documented in scction 215 of the Lisp Machine manual:

SRCKLWINDSWINDOLTEXT.S1 K | §AUGS3

Window System Manual , 9 - ~ Creation of Windows

then your program will run even with streams that arc not windows. With graphics programs
such as green-hornet you are forced to use some windows-only operations, but it is still best to
stick to the operations provided by the flavor tviwindow.

1.6 Creation of Windows

When you want to create a flashy and sophisticated user interface, especially involving mouse-
sensitivity or automatic updating, it is time to consider creating your own windows (and your own
window flavors, perhaps).

To create a window, use the functions make-instance or instantiate-flavor. (Old programs
- usually use tv:imake-window, which is now equivalent to make -instance but was different in Lhe

past).

make-instance flavor-name &rest init-options
- Creates, initializes, and returns a new instance of the specified flavor. The init-options
argument contains alternating keywords and values; - the keywords must be init options
accepted by the flavor you are using. The init options accepted by various window flavors

are described in this manual.

Example: ,
(make-instance 'tv:lisp-listener
':borders 4
':font-map (list fonts: b1gfnt)
‘:vsp 6
’:edges-from ’:mouse
':expose-p t)
creates an exposed Lisp listener with big characters and lots of vertical space between
lines.

For more information on this function and oninstantiate-flavor, see section 20.7 of the.
Lisp Machine manual. :

tv:sheet-area - - Variable
The arca in which windows are by default created.

:name name ' - Init option for windows
Every window has a name, which is used primarily for printing the window as a Lisp
object, but also serves as a default for the window's label. If you do not specify a name,
the default is constructed from the ﬂavor name and a counter (cach flavor has its own) to

make the name umque

tv:name » . Instance variable of windows
The name of the window. ’ ‘

SRC:KL.WIND>WINDOLTEXT.51 : o © §-AUG-83

Visibility and Exposurc of Windows _ 10 Window System Manual

2. Visibility and Exposure of Windows

The most important picce of information about a window is whether it is actually visible on
the screen. A related but different piece of information is whether the window is exposed.
Understanding these basic concepts, the subjects of this chapter, is vital to any use of the window
system. ‘

Using the system menu Create option you can make two windows that partially overlap. (If
you have never done so, you should try it.) The window system is forced to make a choice here:
only one of those two windows can be the rightful owner of that piece of the screen. Of these
two windows, only one can be (fully) visible at a time; the other one has to be not fully visible,
but either partially visible or not visible at all. Only the fully visible window has an area of the
screen to use.

. If you play around with this, you will see that it looks as if the two windows were two

- overlapping pieces of paper on a desk, one of which must be on top of the other. Create two
Lisp listeners using the Create command of the system menu so that they partially overlap, and
then single-click-left on the one that is on the bottom. It will come to the top. Now single-click-
" left on the other one; it will come back up to the top. The one on top is fully visible, and the
other one is not. '

2.1 Hierarchy of Windows

Several Lisp Machine system programs and application programs present the user with a
-window that is split up into several sections, which are usually called "window panes” or "panes”.
For example, the inspector has six panes in its default configuration: the one you type forms into
at the top, the menu, the history list, and the three inspection panes below the first three. The
window debugger and ZMail also use elaborate windows with panes. Just-as windows on a screen
can subdivide the screen, a window’s panes subdivide the screen space of the window. With
programs such as the editor, inspector and ZMail, it may not be obvious that the windows you
sec are panes in another window because that window occupies the full screen. If you go into
Edit Screen and reshape one of these, you will see clearly how there is a window with
subwindows.

In fact, the panes in an inspector are related to the inspector’'s main window just as that
window is related to the screcen. Windows are arranged in a hierarchy, each window. having a
supcrior and a list of inferiors. Usually the top of the hierarchy is a screcen. In the example
above, the inspector window is an inferior of the screen, and the pancs of the window are
inferiors of the inspector window. The screen itself has mo superior (if you were to ask for its
superior, you would get nil).

A window's superior, its superior’s superior, and so on, are collectively- called its ancestors.
A window’s inferiors and their inferiors, and so on, are called its descendants.

~ The position of a window is remembered in terms of its relative position with respect to its
superior. To figure out where a window is on the screen, we add this relative position to the
absolute. position of the superior (which is computed the same way, recursively: the recursion

SRCKLWINIDWINDOLTEXT.S] - | 8-AUG-83

aa

Window System Manual | . v 11 ' Hicrarchy of Windows

“terminates when we finally get to a screen). The important thing about this is that when a
superior window is moved, all its inferiors are moved the same amount; they keep their relative
position. within the superior the same. You can see this if you play with the Move Window
command in Edit Screen. '

Normally Edit Screen edits the arrangement of the windows on a screen, but it can also edit
the arrangement of inferiors (panes) of a window in the same fashion. If you click right on Edit
Screen, you get a menu containing all the superiors of the window you pointed at, up to the
screen. You can then edit the inferiors of whichever one you choose.

So, what Edit Screen really does is to manipulate a set of inferiors of some specific superior,
which may or may not be a screen. The set of inferiors that you are manipulating is called the
active inferiors set; each inferior in this set is said to be active. The active inferiors are all
fighting it out for a chance to be visible on their superior. If no two active inferiors overlap,
there is no problem; they can all be visible. However, whenever two overlap, only one of them
can be on top. Edit Screen lets you change which active inferiors get to be on top. There is
also a part of the window system called the screen manager whose basic job is to keep this
competition straight. For example, it notices that a window that used to be covering up part of a
second window has been reshaped, and so. the second window is no longer covered and can be
made visible. Inactive windows are never visible until they become active; when a window is
inactive, it is out of the picture altogether. The screen manager will be discussed at length later
(section 2.9, page 26).

Each superior keeps track of all of its active inferiors as a list in the instance variable
tviinferiors, - and each inferior window keeps track of its superior, in the instance variable
tv:superior. Superior windows do nor keep track of their inactive inferiors; this is a purposcful
design decision, in order to allow unused windows to be reclaimed by the garbage collector. So,
when a window is deactivated, the window system doesn’t touch it until it is activated again.

sactivate Co : Operation on windows -
Makes the window active in its superior. '

:deactivate ' Operation on windows
Makes the window cease to be active in its superior. '

;activate-p tornil _ Init aption for windows
If this option is specificd non-nil, the wmdow is activated after it is created. The default -

is to leave 1t deactivated.

tkill S Operation on windows
Killing a window deactivates it but also makes a positive cffort to get rid of other entities
such as processes: or net connections that may be associated with the window. If a
‘window has these things, it may not be satisfactory to just allow the window to be
garbage collected; therefore, the Kkill operation is provided. A command for the user to
get rid of windows should use :kill rather than :deactivate.

SRCKL.WINID>WINDOLTEXTST | ‘ §-AUG-83

Hicrarchy of Windows ' ' 12 . . Window System Manual

:active-p Operation on windows and screens
t if this window is active in its superior. A screen is always considered active.

:inferiors ~ Operation on windows and screens
Returns this window or screen’s list of inferiors.

ssuperior Operation on windows and screens
Returns this window or screen’s superior. For a screen, it is nil.

:set-superior new-superior) , Operation on windows
Makes this window an inferior of new-superior.

:superior superior =~ = - Init option forwzndows
Makes the new wmdow -an inferior of superior. If this is not specified, the default is
tv:mouse-sheet, which is initially the main black-and-white screen.

tv:inferiors Instance variable of windows and screens
A list of the active inferiors. " :

tv:superior’ . Instance variable of windows and screens -
In a window, the value is the window’s superior. In a screen, the value is nil.

tv:sheet-superior window-or-screen
tv:sheet-inferiors window-orscreen
Accessor defsubsts for the corrcsponding instance variables.

tv:sheet-me-or-my-kid-p sheet me
t if sheer is an indirect inferior, zero or more levels down, of the sheet me.

tv:map-over-exposed-sheets function -
Calls function on every exposed sheet, starting with the screens, their inferiors, and so on

down,

tv:map-over-exposed-sheet function sheet
Calls function on every exposed inferior of sheet, to all levcls, including sheet itself.

tv:map-over-sheets function
Calls function on every ‘active sheet, starting w1th thc screens, their mfenors and so on

down.

tv:map-over-sheet function sheet
Calls function on every active inferior of sheet, to all levels, including sheer itself.

SRC:KL.WIND>WINDOLTEXT.51 . . 8-AUG-83

Window System Manual o 13 ' : Screens

2.2 Screens

The topmost nodes of the window hierarchy are actually screens rather than windows. a
screen being an instance of the flavor tviscreen.

tv:screen ' -Flavor
Screens are also flavor instances, whose flavors incorporate tviscreen. Screens are not
- windows, but they have much in common wnh windows, because both incorporate the
flavor tvisheet (page 7). :

Usually each-screen object represents an individual piece of display hardware. However, the
main black-and-white physical screen that all Lisp Machines have is logically divided into two
screens, with different screen objects. These are tv:main-screen and tviwho-line-screen.
Because these are separate screens, windows on the main screen cannot be extended onto the who
line, and the mouse cannot move onto the who line, etc.

Screens are the objects that know how to parse font specifiers (user-level names for fonts) into
font objects that can be used for display. See page 8S. Also, each screen can specify a font for
each of the standard font purposes (:default, :label, :menu, etc.). See page 86.

tv:sheet-get-screen sheet
_ Returns the screen that sheer is an indirect inferior of (skeer itself, if it is a screen).

tv:main-screen ' Variable
The screen object that represents the Lisp Machine black-and-whlte display, except for the
who line area. This is default superior for windows created with tv:make-window. '

tv:who-1ine-screen » Variable
The screen object that represents the who line area. Each field of the who line is a
scparate window on this screen.

tv:defauIt—screen o o Variable
~ This is the screen that is "normally used”. It is mmahzed to be the main screen. Certain
functions that create a window without reference to the mouse use it as a default for the
superior of the window, and window resources with a supcrior as parameter often create
one window initially, with the default screen as the superior.

color:color-screen ' Variable
This is the color screen for the 4-bit-pixel color display that some Lisp Machines have.
The screen object is always present, but is exposed only when the machine actually has a
color screen. See section 13.6, page 165.

tv:all-the-screens ~ Variable
A list of all screen ObjCC[S Wxth this list, you can begin a tree walk to cover all active
- windows. ’

 SRCKL.WIND>WINDOLTEXT.51 §-AUG-83

~ Pixels _ 14 o Window System Manual

tv set-tv-speed &optional (speedGO 5) (wasted-lmesO)
Sets the scanning rate of the main screen, in vertical sweeps per second, to speed. speed
is usually a flonum.

The vertical size of the screen is inversely proportional to the number of vertical scans per
second, because the display rate in horizontal scan lines per second is fixed.

A nonzero value of wasted-lines directs the system to refrain from using that many
horizontal scan lines at the bottom of the screen. If you are using MIT software on a
machine built by Symbolics, you may need to do this, since the screens are typically
misaligned so that the who line is obscured by the screen’s cabinet. A value of 20 to 30
generally does the trick. :

2.3 Pixels

A screen displays an array of pixels. Each pixel is a little dot of some brightness and -color;.
a screen displays a big- array of these dots to form a picture. Everything you see on the screen,
including borders, graphics, characters, and blinkers, is made up out of pixcls. .

Each physical screen has a display memory which stores the values of all the pixels. On
regular black-and-white screens, éach pixel has one of only two values, lit up or not lit up, so
the pixel is represented in memory by one bit. Usually 0 is used for the background of a
window and the characters or lines on it are made of 1's, so 1 can be considered "on" and 0
"off'. On color screens, pixels have more than one bit. The usual sort of color screen has four
bits per pixel. 0 is still often used as the background value and assngncd the color black. There
is no convention for the use of other pixel values.

Black and white screens have a hardware flag that controls the visual appearance of 1 and 0
pixels. In “black-on-white” mode, 1 is dark and 0 is bright, so windows appear with dark text
on a white background. This mode is the default. In "white-on-black” mode 1 is bright and 0
is dark. Users can switch between these modes with Terminal C.

An individual window can specify 1 for background and 0 for text; this is indcpendent of
whitc-on-black mode (which applies to the whole screen) and is requested with the :reverse-
video-p init option or the :set-reverse-video-p opecration (see page 81). These work by
controlling the alu functions used for drawing and erasing characters; sce section 8.1, page 93.
Programs which use the window’s recommended alu functions for their drawing and crasing will
automatically display in reverse-video when this is specified. The who line mouse documentation
window is an example of a window which uses reverse-video.

tv:black-on-white &optional (screentv:default-screen) '
Make screen display one-bits as black, with zero-bits as white. (This is the default mode.)

Note that this works by sctting a bit in the display hardware as a result, if donc on the
main screen, it applm to the who line as well.

SRCAL.WIND>WINDOLTEXT.S1 , | ' 8-AUG-83

Window System Manual 15 : _ Bit-Save Arrays

tv:white-on-black &optional (screentv:default-screen)
Make screen display one-bits as white, with zero-bits as black.

tv:complement-bow-mode &optional (screentv:default-screen)
Toggle whether screen displays one-blts as white or as black. This is what Terminal c

does.

tv bits-per-pixel : Instance variable of tviscreen
1 for a black-and-white screen, larger numbers for other kinds (4 for the standard color
screen).

tv:buffer ' Instance variable of tv:screen

The address of the screen memory, as a fixaum.

tv:buffer-halfword-array Instance variable of tv:screen
An art-16b array containing the screen memory. :

tv:control-address ’ Instance variable of tviscreen
The address of the screen’s control register. which contains, among other things, the flag
controlling black-on-white mode.

2.4 Bit-Save Arrays

The pixel values that make up a window’s screen image are called its confents. When a
window is fully visible, its contents are displayed on a screen so that they can be seen. When the
window is not fully visible, its contents are lost unless there i a place to save them. Such a
place is called a bit-save array.

A bit-save array is an array of bits of sufficient size to hold a copy of the window’s contents.
If a window has a bit save array, its contents are copied into the array when the window ceases
to be fully visible. If the window becomes fully visible again, the contents are copied from the
bit-save array back onto the screen. In the mean time, programs can usc tv:sheet-force-access
to do output into the bit-save array while the window is not visible (sce page 23), and the
window’s inferiors, if any, can be exposed and do output (see scction 2.5, page 17).

When a window with a bit-save array is partially visible, the visible parts can be displayed
correctly by copying them from the bit-save array. This is the bchavior you obscrve if you make
a small Lisp listener window with Create and have a full-scrcen window such as the initial Lisp
- listener or a Zmacs frame partially visible around it. It happens because the Lisp listener or
Zmacs frame has a bit-save array, : : '

If a window does not have a bit-save array. then there is no place to put its contents when it
is not visible, so they are lost. When the window becomes visible again, it will try to redraw its
contents; that is, to regencrate the contents from some state information in the window. This is
done by the :refresh operation documented below. Some windows can do this; for cxample,
-editor windows can regencrate their contents based on the editor buffers they are displaying.
Other windows, such as Lisp listeners, do not remember what was displaved on them and cannot

regenerate their previous contents. Such windows just leave their contents -blank, except for the
margins (sce chapter 11, page 129). which all windows can regenerate. '

SRC:KL.WINDYWINDOLTEXT.51 ' , _' o . &AUGS3

Bit-Save Arrays : ' . 16 -~ Window System Manual

, The advantage of having a bit-save array is that losing and regaining visibility does not require

the contents to be regenerated; this is desirable since regeneration may be computationally
expensive, or even impossible. The disadvantage is that the bit-save array can be large and
swapping it in can be slow. :

When a frame is in use, giving the frame a bit-save array cnables the contents of the frame
and all the panes to be preserved if the frame ceases to be fully visible. Bit-save arrays for the
panes would come into play only if panes were shuffled or substituted within the frame; in most
. applications, this happens never or rarely, and is accompanied by a thorough redisplay. So
normally the frame gets a bit-save array and the panes do not.

tv:bit-array | ' Instance variable of windows
This instance variable of all windows holds the window’s bit array, or nil if it has none.

tv:sheet-bit-array window .
Accessor defsubst for the corresponding instance variable.

sbit-array Operation on windows
Returns the window’s bit array, or ml if it has none.

~:save-bits ' Operation on windows
Returns non-nil if this window saves its bits when not exposed. '

:set-save-bits flag Operation on windows
Tells this window to start or stop saving its bits when not exposed. flag is t to start or nil
to stop. :
:save-bits flag : ' Init option for windows

flag may be t, nil or :delayed. :delayed causes the window to acquire a bit-save array
the first time it is deexposed, but not before.

:refresh &optional (fype ':complete-redisplay) Operation on windows
Restore the saved contents of the window or regenerate the contents, according to. the
value of #ype (and to whether the window has a bit-save array).

Here are the possible values of zype:

:complete-redisplay :
This is the default. The window’s present bit image is completely
discarded and regencrated from scratch. The margins are redrawn by
invoking :refresh-margins. The default definition of :refresh just leaves
the inside blank except for refreshing any exposed inferiors. -

If the window -has no bit-save array, fype is 1gnorcd and the actions for
:complete-redisplay are always used. :

:use-old-bits. The complete contents arc restored from the bit-save array. This is
specified by the system when a window is exposed.

size- changed
-This keyword is spccnf‘ ed v»hcn thc window’s size has been changed The

SRC <L.W INI))WINI)O] JTEXT.S51 8-AUG-83

Window System Manual : ‘ 17 - ‘Screen Arrays and Exposure

contents are. restorcd fmm the bit-save array, and then the margms are
refreshed with :refresh-margins.

:margins-only This keyword is specified when the inside ponioh of the window is
completely undisturbed, and only the margins need to be refreshed. The
system treats it just like :size-changed.

Window flavors ought when possible to provide :after daemons for :refresh, to complete
the job of redrawing the window, which the system itself cannot know how to do. When
these daemons run, the instance variable tv:restored-bits-p will be non-nil if the window
contents were restored from a bit-save array. If this is so, there is no need for the :after
daemons to do anything, except perhaps if the window’s inside size has changed.

tv:restored-bits-p - ~ Instance variable of windows
In :after daemons of :refresh (and therefore also of :expose), this is t if the contents
were testored from a bit-save array. If it is nil, the inside of the window was Ieﬁ blank
and must be regenerated to whatever extent that is possible.

2.5 Screen Ariays and Exposure

This section discusses the concepts of screen arrays and of exposed windows. These have to
do with how the system decides where to put a window's contents (its pixels), how the notion of
visibility on the screen is extended into a hicrarchy of windows, and how programs can control
- which windows -are visible. Do not feel it is your fault if this scems complicated; you do not
need to understand it fully on your first reading of the manual. -

Each window or screen can have a screen-array, which is where output drawn on the window
should go. Drawing characters or graphics is done by changing elements of the window’s screen
array. The screen array is stored in the instance variable tv:screen-array. The variable can also
be nil, to say that the window does not have a screen array at the present time.

A screen normally has a screen array that is displaced to the special memory that the screen’s
hardware displays from. A window that is visible has a screcn array; it is an indirect array that
points into the area of the superior’s screen-array where the inferior gets displayed on the .
superior. For example, consider a visible window whose supcrior is a scrcen and whose upper-
left-hand corner ‘is at location (100,100) in the screen. The window’s scrcen-array would be an
indirect array whose (0,0) element is the same as' the (100,100) element of the screen. If you were .
to set a pixel in the window’s screen-array, the corresponding pixel in the screcn (found by
adding 100 to each coordinate) would be set to that value. '

A visible- window more than one level down from the screen has a screen array that. indirects
more than once. The window's. screen-array points into the middle of its superior’s screen array,
which points into the middle of the supcrior’s superior’s screen array, and so on until the screen
is rcached. When typcout is -done on the window, it will appcar on the screen, offsct by the
combined oﬂ“scts of all the ancestors, so that it will appear in the correct absolute posmon on the
SCreen.

SRCKL.WINDSWINDOLTEXT.S5] . o | : §-AUG-83

Screen Arrays and Exposure ' .18 Window System Manual

Sometimes a window is unable to have a'screen array that points to its superior’s screen array.
For now, 'let’s not ask why this might happen, but consider instead what to do about the screen
array when this does happen. There are two alternatives. If the window has a bit-save - array,
then the bit-save array is used as the screen array. If there is no bit-save array, there can be no
screcn array either. The window’s tviscreen-array variable becomes nil, and there is nowhere for
output on this window to go.

For a window w with a bit-save array, w's inferiors are not affected by where w’s screen
array points. w always has a screen array, and its inferiors’ screen arrays can point to that.

But if w has no bit-save array, it may have nil instead of a screen array, and in that case it
is impossible for w’s inferiors to have screen arrays pointing into w’s screen array. So they in
turn must use their bit-save arrays, if any, as screen arrays, or not have screen arrays. The effect
propagates down the hierarchy.

So we see one possible reason why a window may be unable to have a screen array that
points into its superior’s: if the superior doesn’t have a screen array at all. There is one other
reason: the superior may deny permission for this window to point its screen array into the
supcrior. The superior has an instance variable tviexposed-inferiors which record all the inferiors
-permitted to do this. (Only active inferiors are allowed.) This permission can be granted or
revoked at any time, and is called exposability. Each window can be made exposable or not
exposable using the :expose and :deexpose operations. So, if a window’s superior does not have
a screen array, or if the window is not exposable, then the window must scrounge up a screen
array itself if it can.

A window is said to be exposed if it has a screen array that points into its superior’s. screen
array. Note that a window must be exposable in order to be exposed, -but the converse is not
true. An exposable window is exposed as well if and only if its superior has a screen array.

An exposed window is not necessarily visible. A window is visible if its screen array points,
through some number of levels of indirection, into the middle of the screen’s screen array. An
exposed window’s screen array points into the middle of somerhing, but that may be a bit-save
array in a deexposed ancestor some number of levels up. A window that is cxposed but not
visible must have some ancestors that are not exposed, and at least onc of them must not be
exposable either. This diagram of a window w8 and its ancestors shows the pattern of exposed
- and deexposed windows and how it comes about.

§ <-- wl <-- w2 <-- w3 <-- w4 <-- wh <-- w6 <-- w7 <-- w8

exposable not! exposab]e aga1n .

» wb has a bit-save array
exposed. .. deexposed. .. exposed. .
visible... - invisible... oL Lastil 1‘_nv1’s1'b1e...

Qutput is allowed on a window whenever the window is exposed. Usually exposed windows
arc visible and the output can be scen on the screen. But output 10 an exposced window with a
deexposed ancestor is also permitied. Then the output goes into the middle of that ancestor's bit-
save array rather than onto the screen. Such output cannot actually be scen. But if the
uncxposablc ancestor that must exist is made exposable, the bu-save array will be copicd onto the
screen and the output already donc will be scen, :

SRCKAL.WINITRDWINDOLTEXT.S1 ' . 8-AUG-33 -

Window System Manual o 19 Screen Arrays and Exposure

Output is not normally allowed on a deexposed window, even if the window has a screell
array which is its bit-save array. However, in this case, you can use tv:sheet-force-access to -
override the prohibition and output onto the bit-save array. Use of :permit as the window’s
deexposed typeout action (sce page 21) allows all output on such windows to proceed and draw in
the bit-save array. A ‘deexposed window with no bit-save array cannot have output done on it in

_any fashion since it has no contents.

~ The iexpose operation makes a window exposable. If at that time its superior has a screen
array, the window will become exposed as well. Or, if the superior later acquires a screen array,

the window will become exposed then. This can happen if the superior itself is exposed, or if the
superior is given a bit-save array with the :set-save-bits operation.

The :deexpose operation always makes the window unexposable and thergfore not exposed.

It is possible for a screen to be deexposed. In particular, if a Lisp Machine does not have a
color display physically attached to it, there is still a “color screen” Lisp object in the Lisp world,
put it is deexposed (and so are any immediate inferiors it may have). This is so saved Lisp
environments can be moved easily between machines with different hardware configurations. The
screen -object is left . deexposed so that programs will not try to output to it. The 'screen is
exposed whenever the Lisp Machine system is booted on a machine that actually has a color
screen; then all its exposable inferiors become exposed too. For screens, there is no distinction

between exposed and exposable, since there is no superior to have a say in the matter.

In order to maintain the model that windows are like pieces of paper on a desk, it is
.important that no wo windows that both occupy some piece of screen space be exposed at the
same time. To make surc that this is true, whencver a window becomes exposed, the system
deexposes any - of its exposed siblings that it overlaps. (Note: this is not tru¢ for temporary
windows; see page 24.) : ' .

:@XposSe : " Operation on windows and scréeens
&optional inhibit-blinkers - bits-action new-left new-top
Makes the window exposable, and exposed if possible. This is a very useful operation to
attach daemons to, but remember that this operation may bc performed on a: window that
is already exposable. The daemons must not make the assumption that the window is just
becoming exposable. If the window is not a dircct inferior of the screen, it may not be
becoming exposed either.

If the window is not active-in its superior, it is first activated.

The arguments to the :expose operation are supplied by the system and usually of
interest only to the system’s. methods. User invocations of this operation should usually
supply no arguments. :

If the window actually becomes visible, " the window’s blinkers normally appear with their
desclected visibilities. 1f inhibit-blinkers is non-nil, the blinkers are not acted on. If the
window is being exposed in order to select it. this is used to save time.

SRC:KLL.WIND>WIN DOLTEXTSL ’ ' 8-AUG-83

Screen Arrays and Exposure : 20 ' : Window System Manual

If the window actually becomes visible, bits-action controls how it is put back on the
screen. It can be :noop, :restore or :clean. If it is :noop, the window's screcn area is
not touched. This is used only in very unusual cases. If it is :clean, the window is sent
a 'refresh message with argument :complete-redisplay, which should make the window
redraw itself from scratch if it can. If bits-action is :restore, the window is sent a
:refresh message with argument - :use-old-bits, which should make the window copy its
bit-save array onto the screen. nil as the bits-action is equivalent to :restore for windows
with bit-save arrays and to :clean for windows without them.

new-lefi and new-top are the offsets within the superior at which to expose the window.
They default to the window’s current offsets. These arguments are for use by the :set-
edges operation; you should not pass them. :

A window cannot be made exposable unless its full size fits within the superior.

1deeexpose ' ' ~ Operation on windows and screens
, &optional save-bits-p screen-btts'actzon remove-from-superior
Makes the window not exposed and not exposable. This is a useful operation to add
daemons to. :

The arguments to the :deexpose operation are supplied by the system, and are usually of
interest only to the system’s methods.

save-bits-p defaults to :default. It can also be :force or nil. :default means the bits are
saved if the window has a bit-save array. :force gives the window a bit-save array if it
doesn’t already have one, so that the bits are always saved. nil does not save the bits.

screen-bits-action contrbls what to do to the bits on the screen. It may -be :noop to do
nothing to them, or :clean 10 erase the area occupled by the window.

If remove-from-superior is ml the window. remains exposable. You shou]d always use t
(which is the dcfault) for this argument. The window system uscs nil as part of
implementing deexposure of an exposable window whose superior loses its screen array.
Use of nil at any other time would lead to incorrect results

:8Xpose-p l-orm-I - ’ - Init option for windows
If this option is specified non-nil, the window is madc cxposable afier it is created. The
default is to lcave it deexposed. If the value of the option is not t, it is used as the first
- argument to the :expose opcration (the inhibit-blinkers argument).

:exposable-p - S ' Operalio.n on windows and screens
t if the window is exposable '

:exposed-p ' _ Operation on windows and screens
t if the window is exposed.

SRCKLWINIDWINDOLTEXT.S] _ 8-AUG-83

Window System Manual :) : . Ability to Output

:exposed-inferiors ' Operation on windows and screens
Returns a list of all exposable inferiors of this window or screen.

tv:with-sheet-deexposed (sheet) &body body ‘ Special form
Executes the body with sheet deexposed. If sheet had been exposed, it is reexposed when
body exits. - Operations that change things about the window often make use of this to
~ reduce the complicated case of an exposed window to the simpler case of a deexposed
one.

}Screen-array Operation on windows and screens
Returns the window or screen’s screen array, or nil

" tv:exposed-p o Instance variable of windows and screens
t if the window is exposed.

tv:exposed-inferiors Instance variable of windows and screens
A list of all exposable inferiors of thlS window or screen,

tv:screen-array _ - Instance variable of windows and screens
The screen array, or nil if there is none.

tv:sheet-exposed-p window-or-screen
tv:sheet-exposed-inferiors window-orscreen

- tvisheet-screen-array window-or-screen

Accessor defsubsts for the corresponding instance variables.

2.6 Ability to Output

Whether a window is exposed usually controls whether output can be done on it. In a
deexposed window a flag called the output hold flag is normally 1. This causes an output hold
exception if an attempt is made to output to the window., The normal result of an output hold
exception is that the process doing output waits until the output hold ﬁag is clear. The process
wait state during this wait is "Output Hold".

The output hold flag is also set in a window that has exposed inferiors, because output on
the window would overwrite the inferiors.

tv:sheet-output-hold- -flag window ,
1 to indicate an output hold exception, or 0 to permit output on the wmdow Thxs is
setfable.

When a process attempts to type out on a window. which is deexposed and has its output
hold flag set, what happens depends on the window’s deexposed typeout action. The decxposed
typeout action can be any of certain keyword symbols, or it can be a list. After the specified
action is taken, if the output hold flag is still set. the process will wait for it to clear. The
interesting thing is that the action may affect the value of the output hold flag.

SRCKL.WIND>WINDOLTEXT.51- o . §-AUG-83

Ability to Output ' 2 ' ‘Window Systcm Manual

tv: deexposed—typeoht-act‘lon : Instance variable of windows
The window's deexposed typeout action.

:deexposed-typeout-action ' , Operation-on windows
:set-deexposed-typeout-action action- Operation on windows

Get or set the window’s deexposed typeout action.

:deexposed-typeout-action action S Init option for windows

Initializes a window’s deexposed typeout action to action.

tv:sheet-deexposed-typeout-action window
Accessor defsubst for the instance variable.

:normal

:expose

;permit

:notify

‘error

Here are the possible values of deexposed typeout action:

This, the default, means "no action”. Therefore, the process will always have to
wait for the output hold flag to clear.

The action is to send the window an :expose message. This may expose the
window (if the superior has a screen-array), and if it does expose the window
then the output hold flag will probably be cleared, allowing typeout to proceed
immediately. If the superior is the screen, the :expose option provides a very
different user interface from the :normal option.

This means to permit typeout even though the window is not exposed, as long as
the window has a screen array, i.e., it may type out on its own bit-save array
even though it is not exposed. The next time the window is exposed, the updated
contents will be retrieved from the bit-save array.

The action for :permit is to turn off the output hold flag if the window has a
screen array. This mode has the disadvantage that output can appear on the
‘window without anything being visible to the user, who might never see what is
going on and might miss something interesting.

It is possible to request that output in this mode to partially visible windows be
transferred to the screen periodically. See page 28.

This means that the user should be notified when there is an attempt to do output
on the window. The action taken is to send the :notice message to the window

~with the argument :output (sce page _158). The default response to this is to -

‘notify the user that the window wants to type out and to put the window on a

“list for Terminal 0 S to select it. Supdup and Telnet windows have :notify

deexposed typeout action by default.

The action is to signal an error.

alist, (operation arguments...)

The action is to send the window a message with operation and arguments.

Functions such as ed. whose purpose is to sclect a. window for the user, should not return
immediately. If ed rewurned immediately, then when called in a Lisp listener with its deexposed
typeout action set to :expose, the printing of the value returned by ed would immediately switch

SRCKLWIND>WINDOLTEXT.S] : : 8-AUG-83

Window System Manual | 3 » | Window Locking

back to the Lisp listener, which defeats the purposc of ed. To avoid this behavior, ed calls
tvawalt window-exposure. «

tv:await-window-exposure : v
' Wait until terminal-io is exposed (more precisely, untl its :await-exposure operation

- returns).
sawait-exposure | Operation on windows
Does not return until the window is exposed. (Some window flavors implement it
differently).
tv:sheet-force-access (window) body Special form

- tvisheet-force-access allows you to .do typeout on a window that has a screen array
ceven if its output hold flag is set.. It works by turning off the output hold flag
temporarily around the execution of the body. This is useful for drawing on a window
while it is not visible. For example, changing the menu items of a menu redraws the
menu contents immediately even if the menu is not visible; this is because when the
menu does become visible it looks better to the user for it to become visible in one
_instant with the correct contents. v :

If the window is exposed, tv:sheet-force-access goes ahead and outputs to it. If the
window is not exposed but has a bit-save array, the output goes there.

If the window is not exposed and has not bit-save array tvisheet-force-access doesn’t
do anything at all; it just returns without evaluating its body.

Here is an example: ‘when a text scroll window is given a new item generator, which
completely changes the text that it should display, it redisplays the window in its bit-save
array if necessary.. .dont-prepare-flag is t because the :clear-screen and redisplay
operations take care of preparing the sheet. -
{(defmethod (tv:text-scroll-window :set-item-generator)
(new-item-generator)
(setq item-generator new-item-generator)
(tv:sheet-force-access (self)
“(send self ’:clear-screen)
(send self ’:redisplay 0
(tv:sheet-number~of-inside-Tines))))

2.7 Window Locking .

Each window or screen has a lock which is used to prevent two processes from operating on
the window at once in a way that might cause inconsistent results. OQutputting on the window,
activating or deactivating the window, -expusing or dcexposing the window, and changing the
-window’s shape all lock the window. Thls is done with process lock, via tv:lock-sheet. Note
that the window's infcriors must be locked too.

Another form. of locking is called "temp-locking”. A window is temp-locked. when a
temporary window (sce page 24) is exposed on top of it. All the operations which lock the

 SRCKL.WIND>WINDOLTEXT.S51 S ‘ ' : §-AUG-83

Temporary Windows _ , 24 : Window System Manual

window will have to wait if the window is temp-locked just as they would if the window were
“locked in the ordinary manner; however, the lock is not considered owned by a process but
rather by the temporary windows that overlap the window. It will stay locked until the temporary
windows are all deexposed. The :mouse-select operation and some other things know how to
decxpose temporary windows when necessary to cause a window to become unlocked.

tv:lock-sheet (window-orscreen) &rest body... ‘ Special form
Executes body with window-or-screen locked by this process. Calls to tv:lock-sheet are
found in wrappers for operations such as :expose, so you need not call it yourself, but
you should be aware that it is being done.

tv:lock ‘ | , -+ Instance variable of windows and screens
The lock. It is nil for an unlocked window, a process that has locked the window, or a
list of covering temporary windows if this window is "temp-locked".

tv:lock-count | : o Instance variable of windows and screens
The number of times the lock is: locked This counts the number of recursive lockings for
the same process, for example.

tv: sheet— lock window-or-screen
Returns the contents of window-or-screen’s lock. This is a defsubst and can be setf'd. It
is usually unmodular to use this. :

tv:sheet-can-get-lock window-or-screen &optional (lock-id current-process) »
Returns t if this window or screen could right now be locked by Jock-id; essentially, if it
is free or already locked that way (but in fact it is more complicated than t.his)

Note that if you call this functxon with inhibit- schedulmg flag nil, you are likely to be
susceptible to a timing error.

tv:sheet-clear-1ocks
Unlocks the locks of all active windows., For use in an emergency.
2.8 Temporary Windows

Normally, when a window is exposed in an arca of the scrcen where there are already some
other exposed windows, the windows that used to be there are decxposed automatically by the
window system. This is because the window system normally doesn’t leave two windows both

exposed if they overlap. (In the absence of temporary windows, which we are about to introduce,

the system never allows two overlapping windows to both be exposed.)

But sometimes there are windows that only get put up on the screen for a very short time.
The most obvious examples of such windows are the momentary menus that only appear for long
cnough for you to sclect an item. It would be unfortunate if every time a momentary menu
appeared. the windows under it had to be deexposed. The ones without bit-save arrays would
have their screen image destroyed, forcing them to regenerate it or to rcappear empty. The ones
with bit-save arrays would not be damaged in this way, but they would have to be dccxposcd,
and dccxposurc is a rclatively expcnswc operation.

SRCKL.WIND>WINDOLTEXT.51 ’ : : ' . 8-AUG-83

Window System Manual . : 25 Temporary Windows

This problem is solved for momentary menus by making them temporary windows. Temporary
windows work differently from other windows in the following way: when a temporary window is
exposed, it saves away the pixels that it covers up. It restores these pixels when it is deexposed.
These pixels may come from several different windows. This way it doesn’t mess up the area of
the screen that it uses, even if it covers up some windows that don’t have bit-save arrays.

" Also, a temporary window, unlike a normal window, does not deexpose the windows that it
covers up. This way the covered windows need not try to save their bits away in their bit-save
arrays (if they have them) nor ever have to try to regenerate their contents (if they don’t). They
never notice that the temporary window was (temporarily) there.

tv:temporary-window-mixin , _ _ Flavor
This mixin makes a window a temporary window.

:temporary-bit-array ' : Operation on windows
Non-nil if the window is a temporary wmdow '

- There would be some problems if temporary windows were this simple. Suppose there is a
normal window, and a temporary window appears over it; some of the contents of the normal
. window are saved in an array inside the temporary window. Now, if the normal window were
moved somewhere else, and possibly became deexposed or overlapped by other windows, and
then the temporary window were deexposed, the temporary window would dump back its saved
bits where the normal window used to be. This would clobber some other window.

Furthermore, even though normal window is still exposed, output on it must not be
" permitted, since that could overwrite the temporary window. , '

-~ Because of problems like these, when a temporary window gets exposed on top of some other
windows, all the windows that it covers up (fully or partially) become temp-locked. While a.
window is temp-locked, any attempt to type out on it will wait until it is no longer temp-locked.
Furthermore, any attempt to deexpose, deactivate, move, or reposition a temp-locked window will
wait until the window is no longer temp-locked The temp-locking is undone when the temporary
window is deexposed.

‘Because of temp-locking, you should never write a program that will put a temporary window
up on the screen for a "long” time. There should be some action by the user, such as moving
the mouse, which will make the temporary window deexpose itself. It is best if any attempt by
the user to get the system to do something makes the temporary window go away. While the
temporary window is in place, it blocks many important window system operations over its arca
of the screen.. The windows it covers cannot be manipulated, and programs that try to manipulate
them will end up waiting until the temporary window gocs away.

It works fine to have two or more temporary windows exposed at a time. If you cxpose
temporary window a and then expose temporary window b, and they don’t overlap each other,
they can be deexposed in cither order, and any windows that both of them cover up will be -
temp-locked until both of them are deexposed. If b covers up a. then a will be temp-locked just
like any other window, and so it will not be possible to deexpose a until b has been deexposed.

SRC:KI.WINDSWINDOLTEXT.51 o - §-AUG-83

“The Screen Manager ' ' : 26 N o Window System Manual

2.9 The Screen Manager

- Sometimes not all of the screen is in use by fully visible windows. This does not happen in
. elementary use of the Lisp Machine, since the initial windows in the system are all full-screen-
_ sized, but if you create a small Lisp listener with system menu Create the rest of the screen will
be unclaimed by any fully visible window. The part of the window system responsible for dealing
with unclaimed parts of the screen 1s called the screen manager.

The screen manager fills such unclaimed areas by looking for deexposed windows Wthh fall
entirely or partly within them. Only active immediate inferiors of the screen are considered, and
in a specific priority order described in section 2.9.2, page 28.

A window that falls entirely within unclaimed areas can be made visible without deexposing
any other windows. This is called autoexposure. Since the window is a direct inferior of the
screen, exposing it always makes it visible. The screen manager goes on considering the
remaining deexposed windows, but with less screen area unclaimed.

A window that overlaps the unclaimed areas but also overlaps a visible window cannot simply
be exposed. So it becomes partially visible, which means simply that the screen manager copies
the appropriate parts of the window's contents onto the unclaimed areas. The window is not
treated as visible or exposed in any other sense. This gives the visual impression of overlapping
pieces of paper on a desk top; the deexposed window is partially covered up by the visible
windows, but you can still see those parts that aren’t covered. The contents are copied from the
‘window’s bit-save array. Windows without bit-save arrays are by default incligible for partial
" visibility, so other windows later in the order will get a chance for the same screen area;
however, it is- possible to arrange for windows without bit-save arrays to be partially visible
(though the displayed contents may not be accurate). : :

, Windows whose size and position are such that they do not fit within the bounds of the
superior cannot be exposed, and the screcn manager does not try to autoexpose such windows.
However they can be partially visible like any other wmdows.

The screen manager has one other job. At the same time that it doecs autoexposure, it can
also select a window if there isn't any- sclected window at the time. This is called autoselection.
A window is a candidate for -autoselection if it is an exposed inferior of the screen and its
:name-for-selection is non-nil (see page 35). For more information, sce chapter 3, page 31.

The screen manager does not only manage the inferiors of screems; it can manage the
inferiors of windows as well. The system invokes the screen manager on a sheet’s inferiors by
sending the sheet a :screen-manage message This happens for all visible sheets regardless of
flavor. .

:screen-manage - : Operation on windows and screens
The default definition of this operation is to do auteexposure and display of partially
visible windows among the active inferiors of this window or screen, as described above.

SRC:(];.W]Nl))WlNDOl.TEXT.Sl : ' §-AUG-83

Window System Manual v : 27 v o ~ The Screen Manager

tv:no-screen-managing-mixin - : Flavor
Prevents the screen manager from dealing with the inferiors of a window by redefining the

:screen-manage operation to do nothing.

- When a frame is used by a single program, the program usually expects to have sole
control over exposure of panes. Then this mixin can be used to tell .the screen manager -
not to interfere. Constraint frames do not normally need to use this mixin because they
avoid problems while changing configurations by deactivating any panes that do not belong
in 'the configuration. Zmacs frames do use this mixin so that the screen manager will not
autoexpose various editor windows that belong to the frame.

(screen-manage-autoexpose-inferiors Operation on windows and screens
Performs autoexposure of the active inferiors of thxs window or screen. Used by the
default definition of :screen-manage. '

2.9.1 Control of Partial Visibility

:screen-manage-deexposed-visibility : Operation on windows
Should return non-nil if parts of this window ought to be displayed when the window is
partially visible. The default definition returns non-nil if the window has a bit-save array.

tv:show-partially-visible-mixin Flavor
If a window has this flavor mixed in, then the screen manager will attempt to show it to
the user when it is partially visible even if it doesn’t have a bit-save array. Since there
are no saved contents to display, the screen manager must give the window a screen array
temporarily, send it a :refresh message so it will draw itself on the screen array, and
~ then display whatever is found there. Often this means that you will see the label and
borders of the window, but not the inside.

tv:gray-deexposed-right-mixin ' s - Flavor
tvigray- deexposed-wrong-mixin . : Flavor
- Make any visible parts of the window appear ‘gray if the window is not fully visible.
tv:gray-deexposed-wrong-mixin is faster, but does not work for windows that have
~inferiors. You would use these mixins in windows without bit-save arrays, as a cheaper
alternative to tv:show-partially-visible-mixin, to provide somcthing better than blankness
when the window ought to be partially visible. :

The precise kind of gray is controlled by the instance variable tv:gray-array, which comes
with operations :gray-array and :set-gray-array and init option :gray-array. The value
must be a two-dimensional array of bits that will be replicated by bitblt; its width must
‘be a multiple of 32, Useful values for tv:igray-array include tv:75%-gray, tv:50%-gray,
- tv:33%- gray, tv:25%- gray, and tv:12%-gray. .

tv: 1n1t1any invisible- m1x1n - ' - Flaver
Causcs a window not to appear through screen manaszcmcnt. cven partially, until it has
first been explicitly exposed. This is used in some window flavors (such as editor
windows, - Supdup windows, and others) of which instances are present in the saved
system environment even without the user's cever having requested them. These windows

SRCKL.WIND>WINDOLTEXT.S1 v -_:) 8-AUG-83

The Screen Manager 28 ~ Window System Manual

can be active, and available for 'System keys to select, but will not become partly visible
if some other window is made smaller.

Recall that if a decxposed window has its decxposed typeout action set to :permit, output on
the window can proceed but goes to the bit-save array rather than to the screen. If the window is
partially visible, such output could modify the visible parts of the window. You can request that
the screen manager check periodically for such output and copy the changed contents to the

screen.

tv:screen-manage-update-permitted-windows Variable
Controls whether the screen manager looks for partially-visible windows with deexposed
typeout actions of :permit and updates the visible portion of their contents on the screen.
If the value is nil, which it is initially, the screen manager does not do this. Otherwise
_the value should be the interval between screen updates, in 60ths of a second.

29.2 Pﬁority among Windows for Exposure |

Suppose there is a section of the screen in which there are no exposed windows, and more
than one active, deexposed window could be exposed to fill this area, but the two could not both
be exposed (because they overlap). Which one gets to be exposed? Here's another issue: when
the screcn manager wants to display picces of partially-visible windows, there may be more than
one deexposed window that could be displayed in a given area of the screen. How does screen
~manager decide which window to display?

It decides on the basis of a priority ordering. All of the active inferiors of a window are
‘maintained in a specific order, from highest to lowest priority. When there is a section of the
screen on which more than one active inferior might be displayed, the inferior that is earliest in
‘the ordering, and so has the highest priority, is the one that gets displayed. This ordering is like.
- the relative heights of pieces of paper on a desk; the hxghest piece of paper at any point on the
* desk is the one that you sce, and all the rest are covered up. . : :

: oi‘de r-inferiors ' ‘ Operation on windows and screens .
Sorts the tviinferiors list of active inferiors of this window or screen into the proper order
for considering them for autoexposure or partial visibility.

The default deﬁnmon of :order-inferiors uses a comphcatcd algonthm Wthh is designed to
put the most recently exposed windows first, but also- allows the programmer to specify priorities
~explicitly. If you do not need to know the details. you can safely skip the rest of this subsection.

* The algorithm involves a value assigned to cach window called its priority, which may be a
fixnum or nil. The general idea is that windows with higher numerical priority values have higher
priority to appear on the screen. The default value for the prlorlty is nil, Wthh is considered less
“than any numeric value. : :

SRC:KLWIND>WINDOLTEXTSL R - $-AUG-83

" Window System Manual o 29 : The Screen Manager

tv:ipriority ' Instance variable of windows '
The window’s priority value, a number or nil.

spriority ' ' . ' Operation on windows
:set-priority new-priority _ Operation on windows
Get or set the window’s pnonty value

ipriority priority : ' Init option for windows
Initializes the window’s pnonty value.

The standard ordering of inferiors. puts all exposable inferiors first, followed by the
unexposable inferiors in order of decreasing priority. Each group of unexposable inferiors with the
same priority is order by how recently they were exposable; the longer an inferior has gone
- without being exposable, the farther back it moves.

This is done by computing the current ordering based on the past ordering (as remembered
by the old value of tviinferiors). When the window system does anything which should change
.the ordering, such as making a window exposable or not exposable, it invokes the :order-
inferiors opcration to update the recorded ordering. -

- The ordering is updated by moving the exposable windows to the front and sorting the
unexposable ones by priority. The sort is - stable; that is, unexposable windows with the same
priority value keep their previous ordering. Since most of the time numerical priorities are not
used anyway (the priorities of most windows are nil), .the ordering generally changes only as a
result of exposure and deexposure of windows. When a window becomes exposable it gets pulled
up to the front of the ordering; then when other windows become exposable instcad, this window
“sinks back down. Thus, the ordenng ends up showmg simply how recently each window was
exposable

There is also an operation called burying a window, which deexposes the window and puts it
at the end of its priority grouping in the ordering. A program typically burics its window when it
thinks that the user is not interested in that window and would prefer to see some othcr windows.:
The Bury command in-Edit Screen is a way for the user to bury a window.

sbury ' Operatzon on windows
Buries the window. See also tv:deselect-and- -maybe-bury- wmdow, a convenient
interface to. this opcration (page 33). - '

Negative priorities have a special meaning. If the value of a window's priority is -1, then the
~ window will not ever be visible at all even if it is only partiallyf covered: however, it will still get
autocxposed. “If the value of priority is -2 or less, then the window will not even be autoexposed,
and so it will simply never be scen unless sent an explicit :expose message.

SRCKL.WIND>WINDOLTEXT.S1 | . | O AUGH3

The Screen Manager - 30 : Window System Manual

2.9.3 Delaying Screen Managemeht

The screen manager- can potentially interfere with the actions of a program that explicitly
deexposes windows. - Suppose you send a :deexpose message to an exposed window. The screen
manager will run, and will probably autoexpose that very window, canceling the effect of the
:deexpose. That window certainly does not overlap any still-visible windows, and it is as
recently-exposed as a window can get, so it will be the first candidate for autoexposure.

Explicit deexposure is usually done at the beginning of a sequence of window rearrangements.
For example, moving an exposed window is done by deexposing it, changing its position (which
_is easy when it is deexposed) and reexposing it. We want the screen manager to run when the
whole sequence is complete; it should not consider the transient intermediate states. Even if the
~ screen manager did not directly interfere with the program’s deliberate actions, it would waste
time and confuse the user by displaying partially visible windows in temporarily-unclaimed screen
areas for which the program is already preparing a new use. (This is a general phenomenon.
Management is a useful auxiliary function, but managers have a tendency to interfere with work
they don’t understand if there is no way to shut them off)

We shut the screen manager off with- the special form tv:delaying-screen-management.
While its body is being executed, events that would normally bring about screen management are
recorded on a queue instead. -When the tv:delaying-screen-management form is exited
(whether normally or by throwing), the screen manager looks at the queue and does all necessary .
screen management in one blow, :

Sometimes it happens that screen management cannot be done when the tv:delaying-screen-
‘management form is exited, because relevant windows are locked by other processes. Then the

. entrics are left on the queue. They are handled at some later time when the necessary locks are

- free by a background process called Screen Manager Background So the necessary screen
- management always does eventua]ly get done.

When tv.delaying-screen- management forms are nested only the outennost one wxll do
- any screen managcment when it is e)uted :

tv:de'lay'lng screen- management body... . ' o Special form
* The body forms are evaluated scquentlally with screen management delayed The value of

the last form is returned.

tvewi thout-screen—management “body... Special form
. The body forms are evaluated segentially with screen management delayed. Moreover, if
" the body completes normally, the queue entrics put on by its exccution arec removed from
the queue, on the assumption that the body has itsclf done all appropriate screen
redisplay. . If the body terminates abnormally with a throw, ‘the queued entries remain on
the qucue and arc processed by the screen manager cventually.

SRC:KL.WIND>WINDOLTEXT.S1 4 o o /8-AUG-83

Window System Manual ' 31 | o - Selection

3. Selection

At any time, keyboard input is directed to at most one window, designated by programs or
by the system in response to user commands. This window is called the selected window. A
process trying to do input through another window will normally wait until the window is selected
(however, the wmdow s deexposed typein action can change thls, see below).

‘tv:selected-window : o Variable
The value of this variable is the selected window. You should not set this variable

yourself, but use the defined interfaces described below.

A window’s cursor blinker normally blinks only when the window is selected. This is how the
user can tell which window is selected. (You can control what happens to each blmker when its
window becomes selected; see page 103) :

The user can change the selected window using the Terminal and System keys or the system
menu. Also, clicking the mouse on a wmdow usually selects that window if it is meanmgful to
do so.

- The simplest, and paradigmatic, case of window selection happens if you have several
- independent windows on the screen, such as Lisp listeners. One of them displays a blinking
cursor, and input echoes there. The processes in the others remain .in a keyboard input wait, as
you can sce if one of the windows on the screen is a Peek. The mouse, or the Termmal o]
command can ‘be used to select a different window.

The selected window needs to handle’certam operations that windows in general do not need
to handle. The flavor tv:select-mixin defines these operations, and should be used.in flavors of
- windows that are going to be selected. (A window can be useful without being selectable. For .
example, menus cannot be selected.) The flavor tv:window includes tv:select-mixin.

If two processes try to read from the same window (or windows sharing an input buffer), it is
unpredictable which one will get the input. If you are designing-an application where this might
~ ‘happen, you must make sure than you will not have two processes actually active and reading
input from the same source at the same time. In most applications there will be only one process
that ever reads input from any one window or input buffer. In these applications you should use
- tviprocess-mixin in the window flavor to tell the window which process is associated with it (sce
~ page 40). ' :

The selected window controls the actions performed by the system at the instant a character is
vtypcd on the keyboard.. Due to typed-ahead commands that switch windows (such as Control-Z
" in the cditor), there is no way to know. for certain which window will eventually read a character
being typed at a given moment, so letting the selected window decide asynchronous processing for
the character is the best that can be done. Asynchronous processing options include asynchronous
“intercepted characters (see sccnon 5. 5 2, page 61) and case conversion of control characters (sce
page 59). :

SRC:¢L.WIND>SELECT.TEXT.21 L BAUGSS

‘How Programs Sclect Windows N R , ' ~ Window System Manual

Asynchronous intercepted characters such as Control-Abort which act on a process ask the
selected window which process to operate on, with the :process operation (see page 42). The
who line usually does the same thing to find the process whose run state should be displayed. If
you use tviprocess-mixin, :process returns the process associated with the window; otherwise, a
default definition of :process is inherited from tv:select-mixin .and returns whichever process last
read input from the window (or from any other window sharing the same input buffer). This is
fine for the who- line, but can lead to weird results in Control- Abort So you should use
tv:process-mixin whenever it makes sense.

If a process tries to do input from a window whose input buffer is empty and not selected, it
‘cannot get any input and must wait. (The input buffer is selected if this window, or any other
window sharing the same input buffer, is the selected window). The.wait ends when input
appears in the buffer, or when the buffer becomes selected and there is keyboard input available.
If the window is not even exposed, a notification may happen in addition. This is controlled by
the window’s deexposed typein action, which may be either :normal or :notify. :notify means that
input from the window when it is deexposed should notify the user (see page 157) with a message
like "Process X wants typein”, and make the window "interesting” so that Terminal 0 S can
select it. - : ' : '

:deexposed-typein-action action Init option for windows
Initializes the "dcexposed typein action” (sce' page 32) of the window to action. It
defaults to :normal. ' :

:deexposed-typein-action | Operation on windows
. Returns the “deexposed typein_ action” (see page 32) of the window.

: :-set—deexposed-typeih-act"lon action . ‘ Operatton on windows
Sets the "deexposed typein action” (see page 32) of the window to action.

- 3.1 How Programs Select Windows
Programs éhange the selected window using the :select operation.

:select &optional (rememberprewous t) ‘Operation on windows
- Makes this window (or its selection substitute, if any) the selected window. Unless
" remember-previous is nil, the previous selected window is entered on the list of
prevnously sclectcd windows for the Terminal and System keys to use.

~ Many application wmdow flavors define daemons for this operation. Note however, that
the daemons will be run whcncver this operation is invoked, even if the window 1s
already selected.

tv:select-mixin ’ ' : Flavor
No window can actually be selected unless its flavor includes this mixin. tv:select-mixin

is part of tv:iwindow but not pdrl of tv:minimum- wnndow

Windows whosc flavors do -not contain this mixin may be sent :select messages only if-
they have designated other windows as sclection substitutes (see below). The ultimate
substitute which is finally sclected must have tv:select-mixin. :

SRCKL.WINDSSELECTTEXT.21 o ' 8-AUG-83

Window Systcfn Manual l - - 33 - How Programs Sclect Windows

:selected-p | Oberation on windows
Returns t if this window is the selected window. '

:mouse-select args | Operation on windows
Selects a window, for a mouse click or for asynchronous keyboard input such as the
Terminal command.

While mostly the same as sending :select to the window’s alias for selected windows (see
section 3.2.2, page 36), this operation also causes all type-ahead input to remain with the
- window that used to be selected (see page 59).

Note that the :select and :mouse-select operations should not be invoked in the mouse

process. This means that if you want to use them in a :mouse-click or :mouse-buttons

or :handle-mouse method, you must do ' _
(process-run-function "Select" window-fo-select * :mouse-select)

:deselect &optional (restore-selected t) : Operation on windows
This operation is invoked by the window system when a window ceases to be selected.
This can be because the window is no longer visible, or because some other window is
being selected.

Many application window flavors defined dacmons for the :deselect operation.

restore-selected controls what will be done with this window in the tv:previously-
selected-windows array used by the Terminal S and System commands, and whether to
select automatically some other window found in that array. The possible values are

:dont-save Do not put the window being deselected into the list anywhere, and do
not select any other window.

nil or :beginning
Put the window being dese]ected at the front of the hst, but do not sclect
any other window.

:end Put the window being deselected at the end of the hst, but do not select

any other window.

first Put the window: being deselected at the front of the list, after sclecting the
- window that used to be at the front of the list. This is like what
Terminal S docs.

dastort Put the window being desclected at the end of the list, and select the
window at the front of the list. This is the default.

tv:deselect-and-maybe-bury—window ‘window deselect-maode
' Desclects window, sclecting the previously sclected window. If that causes window to
become deexposed, window is buried. deselect-imode is passed to the :deselect operation,
where it controls where to put the window in the list of prcvtously selccted wmdows used
by the Terminal and Systemi commands.

SRCKL.WINDMSELECT.TEXT2T : . 8-AUG-83

Tcams of Windows : 34 | Window System Manual

tv:window-call (window [exit-operation exit-args..]) body... L Special form

tv:window-mouse-call (window [exit-operation exit-args..]) body... Special form
" Execute body with window sclected. tviwindow-call uses the :select operation to do this,
while tv:window-mouse-call uses the :mouse-select operation; that is how they differ.
On exit, they resclect the window that had been sclected before, and send window a
message with operation exit-operation and arguments exit-arguments. exit-operation is often
:deactivate. It can also be omitted; then nothing is done to window except for
deselectmg it because some other window is selected.

These constructs are no longer as useful as they once were. For controlling selection
among windows of a team, selection substitutes (see section 3.3, page 37) should be used
now instead.

3.2 Teams of Windows

The simple paradigm of selection is based on windows that are independent competitors for
~ the user’s input, such as a pair of Lisp listeners. Another frequent situation is a to have a group
of windows that act as a team. Usually the windows consist of a single frame and its panes, and
usually they are managed by a single process, but neither of these is necessarily so. Often the
windows of a team share an input buffer to make it easier for one process to read input from all
of the windows at once (sce section 5.1, page 50). this is an important technique which you
should definitely read about if you are designing a tcam of windows.

The simple paradigm extends cleanly to teams if we imagine that the user regards each team
as a unit of sclection. In this extended paradigm, the user selects among entire teams as if they
were single windows,

"Teams are not actual Lisp objects, merely concepts understood by the user and programmer.
The window system cannot have a selected team; some window of the team must be selected.
- Each team’s program chooses a window of the team as the team’s selection representative. The
sclected window should then be the selection‘representative of the user’s-chosen team. The
selected window can change when the user chooses a new team, or whcn the user’s chosen team
picks a new representative.

To implement this, the programmer of the team first picks one window of the team to be the
"leader”. This is not the same as the sclection representative; that can change from moment to
moment, but the leader must be fixed. When the team is a frame and its panes, it is natural to
make the frame be the leader. Standard mixins are provided to make this easy to do. These
mixins and the techniques of using them are described below, and in the following sections.

“The selection representative is implemented as the leader’s selection substitute (see section 33,
page 37. Then the team can be sclected with the :select operation on its leader window.

Even when the tcam allows the user some notion of selecting among the windows of the
tcam—such as, when a Zmacs frame in two-window mode allows the user to mouse cither of the
editor windows to sclect it— this is implemented most cleanly by starting from the model of a
team which does all selection under program control, and defining the appropriate mouse clicks as
- commands which tell the team’s program to change its sclection representative,

| SRCKL.WINDISELECT.TEXT.21 : ‘ o 8-AUG-83

-Window System Manual _ | 35 : Teams of Windows

Usually you will want to have only a single item appear for the tcam in the system menu
Select option's menu. If the team consists of a frame which is the leader and its panes, this can
be done with twviinferiors-not-in-select-menu-mixin in the frame’s flavor. More complicated
behavior is also possible; for example, Zmacs frames in two-window mode allow each editor
window to have its own entry in the Select menu.

Also, Terminal and System commands should reselect the team by selecting its current
selection representative. This is. done by making them record and reselect the team’s leader. If
the team consists of a frame which is the leader and its panes, this can be done with tv:alias-
for-inferiors-mixin in the frame’s flavor. (In case you are curious, Zmacs frames follow this
pattern exactly. The frame is the alias for any editor windows inside it.)

The followi_ng subsections describe the details of how these things are done.

3.2.1 The System Menu Select Option

When the Select option in the system menu is used, it gets the list of alternatives to offer by
sending each screen a :selectable-windows message. This opcration is normally defined to
recurse down the: window hierarchy and ask each window whether it wants to be included. Each
window is sent a :name-for-selection message. The value should be either nil (omit this
window) or a string, which is the string to display in the menu of windows.

:selectable-windows ' - QOperation on windows
Returns an alist of strings versus windows, which will become part of the alist that will be
displayed in the system menu Select option’s menu. The alist returned should describe
this window and its inferiors, or whichever of them ought to appear in that menu.

The normal definition includes this window using its :name-for-selection as the car of
the alist element; or omits this window if its :name-for-selection is nil. It then appends
the :selectable-windows values.obtained from the window’s inferiors.

tv:inferiors-not-in-select-menu-mixin Flavor

' This mixin redefines :selectable-windows to ignore the window’s inferiors. They are not
asked whether they should be included. This is an easy way' to make a team of a frame
and its panes have only one entry, the entry for the frame.

- :name-for-selection ‘ Operation on windows
This opcration is supposed to return a string to display in the system menu Select
option’s menu of windows for this window. It may also return nil, meaning do not list
this window. in the menu. o ’

The default definition uses the window’s label string if any, or else its name. Manyb
applications redefine . the operation. = tv:not-externally-selectable-mixin redefines it to
return nil. ' '

If you want more complicated bchavior from a team than simply having a single ecntry,
you can get it by redefining this opcration on the flavors of various windows in the tcam. .

SRCAL.WINIDSELECT.TEXT.21 8-AUG-83

Teams of Windows 36. - Window System Manual

This operation also affects autoselection, done by the screen manager. A window can be
autoselected only if its :name-for-selection is non-nil,

3.2.2 Selection with Terminal and System Commands

tv:previously-selected-windows ' ' Variable
This variable’s value is an art-q-list array whose contents are all the active windows, not
including - the selected window, which the Terminal and System key commands for
window selection should know about. The windows of a team are generally all
represented by a single member of the team, which we can call the "leader”. Typically
the "leader" is a frame Wthh contains the rest of the team as panes, but this is not
requlred. :

The Terminal S command can be thought of as acting on a combined list that contains the
selected window followed by the previously selected windows. So, Terminal n S rotates the first
n elements of this list, so that the selected window becomes the first previously-selected window,
and the nth previously selected window becomes the selected window. The System key also uses
this data base to find a “window of the appropnate flavor to select, or to rotate through all the
windows of that flavor.

Windows are put on tv:previously-selected-windows and taken off of it automatically when
they are selected, deselected, activated or deactivated. Attention is required from the applications
programmer only to identify teams of windows that should be trcated as a unit. The system uses
the :alias-for-selected-windows operation to inquire about this.

:alias-for-selected-windows Operation on windows
Should return the window to represent this one in tv:previously-selected-windows.
When this window gets deselected, its alias is what will be recorded in that array.. In the
simple paradigmatic case of independent Lisp listencrs, the alias of each Lisp listener is
itself. For a window in a team, this should return the team’s "leader” window. '

The default definition of this operation is to return the superior’s :alias-for-inferiors if
that is non-nil, otherwise to return this window itself.

:alias-for-inferiors ' | Operation on windows
Should return a window to serve as the alias for all inferiors to all levels of this window,
if ‘that is desired.. Otherwise it should return nil. :

The default definition returns this window’s superior’s :alias-for-inferiors. Thus, if an
ancestor of this window says it wants to be an alias for all of its descendants, we pass on
its rcqucst, but otherwise we allow the descendants to decide for themsclves. '

tv:alias-for- 1nfer'lors -mixin ' ' FIavor
“This mixin makes a window be an alias for all of its mfcrmrs Thus, the window and all
of its inferiors form a team considered as a unit by the Terminal and System commands,
and this window is the "leader”,

SRCAL.WIND>SELECT.TEXT.21 - , . 8-AUG-83

Window System Manual B 37 v : ‘Se]ection-Substitu'tes

If two windows in a hierarchy, one above the other, both have tv:alias-for-inferiors-mixin,
then the higher one "wins". Put another way, windows are grouped into the largest possible
teams, and there are no subteams w1thm teams,

Note also that no record is kept of which window in a team was actually selected most
recently. tv:previously-selected-windows records only the alias or team leader window, and this
is the window that will receive the :select message if a Terminal command is given to switch
back to that team. The way to make sure that the proper window within the team is selected is
to use selection substitutes, as described in the following section.

tv:n'ot-externﬂ1y-selactable-m1x1n Flavor
This mixin makes a window (and its descendants) have the window’s superior as an alias,
and keeps the window out of the Select menu.

Using this mixin, you can control more closely which windows are distinguished by the
" Select menu and by Terminal commands: instead of making the top of the team’s
" hierarchy be an alias for all of its descendants, specifically chosen descendants are given

this mixin so that they are not distinguished, and any other descendants remain
" distinguished.. :

An older name for this mixin, which still works, is tv:dont-select-with-mouse-mixin.

3.3 Selection Substitutes

Every window has the ability to designate a “selection substitute”. If a window has a-
substitute, requests to select or deselect the original window will be passed along to the substitute.
The' substitute may have a substitute of its own, and so on. A window's selection substitute is
remembered in ‘the instance variable tv:selection-substitute, whose valuc is another window or
nil. :

tv:select 1 on- subst itute _ Instance variable of windows
The window’s selecuon substitute, or nll ' ’

The main use of selection substitutes is for controlling selection within a team of windows.
The tcam has one window designated as the leader; all user requests to select the team come as
:select messages to the team. leader as a result of arrangements -described in the previous section.
As a result, the team’s program can choose a selected wmdow within the team by makmg it the
leader’s selection subsntute :

The :alias-for-selected-windows of the substitute window should be the same as that of the
window it substitutes for, to avoid paradoxical results from the Terminal command. With a
hicrarchical team of windows, this is usually arranged by using tv:alias-for-inferiors-mixin in the
top window of the tcam. The substitute window should not appcar in the systcm menu Select
menu, for if it did, its entry and the entry for the window it substitutes for would be functional
- duplicates. tviinferiors-not-in-select-menu-mixin in the top window of the tcam serves to
_prevent the duplicate entry.

SRCKL.WIND>SELECT.TEXT.21 - s 8-AUG-83

Sclection Substitutes , 38 o Window System Manual

‘

~ These operations on windows are provided for working with selection substitutes: -

:selection-substitute Operation on windows
Returns this window’s selection substitute, or nil if the window does not currently have
one. : '

tultimate-selection-substitute Operation on windows

Returns this window's substitute’s substitute... and so on until a window is reached that
has no substitute. If this window has no substitute, it itself is returned.

:self-or-substitute-selected-p Operation on windows
t if this window, or its substitute, or its substitute’s substitute, etc., is selected.

t:set-selection-substitute substitute | Operation on windows
- Sets this window’s selection substitute to substitute (another window or nil). If it was
previously the case that this window or its substitute was selected, then the window’s new
substitute (or the window itself) will be selected afterward. Thus, the value of :self-or-
substitute-selected-p on this window is not changed by this operation.

Note that when the team’s program uses :set-selection-substitute on the team’s leader
window to change the selected -pane within the team, it does not matter whether the team is
currently selected. Thé "right” results ‘will happen if the team is deselected and reselected at any
time.

To switch the selected pane temporariiy, use
tv:with-selection-substitute (window for-window) body... - Special form
- Exccutes body with window as the substitute for for-window. On exit, it sets for-window
back to whatever it used to be, and deexposes or deactivates window if appropriate.

Also useful is

tv:presar‘ve substitute-status bwindow body... - © Special form

“Executes body, then selects window 1f window or its substitute had been selected to begin
with, _
:remove-selection-substitute - . Operation on windows

window-to-remove suggested-subsntule
Makes sure ‘that window-to-remove is not this window's substitute, suggesting suwggested-
substitute (possibly nil) as a substitute instead. The standard implementation of this
operation simply: sets the substitute to suggested-substitute if the -substitute was window-to-
remove. This operation is used and documented so that particular windows can dcfine
their own ways of calculatmg the new value for the subsututc perhaps ignoring suggested-
subsntule : _

thn a typeout window is deactivated, this operation is used to make sure that it ceases
to be another window’s substitute. ’

SRCKLWINDSELECTTEXT21 8-AUG-83

Window System Manual -~ - 39 ' : The Status of a Window

3.3.1 Non-Hierarchical Selection Substitutes

_ Some programs wish to “"replace” one window with another temporarily. For example, the

functions supdup and telnet can behave this way, giving the appearance of temporarily changing
the Lisp listener or other window in which they are called into a Supdup or Telnet window.
They do this by creating a suitable Supdup or Telnet window and making it the substitute for the
original window. In this case, the substitute window will have the same edges and the same
superior as the original window. It is not an inferior of the original window. It is not required
that the "replacement” window be the same size as the original, either. '

Non-inferior selection substitutes are usually established and deestablished by using tv:with-
selection-substitute in a straightforward manner. The only thing that requires special attention is
to make sure that the original window is the :alias-for-selected-windows of the substitute. In
the case of supdup this is desirable to complete the illusion that the Lisp listener has “magically”
changed temporarily into a Supdup window. Since the substitute window is not a descendant of
the original one, it must have some other way to find the original window (such .as an instance
variable. for the specific purpose) and a specially defined :alias-for-selected-windows method to
return the original window.

3.4 The Status of a Window

A window’s status is a keyword that encodes whether the window is selected, whether it is
exposed, and whether it is active.

:status ’ Operation on windows
Returns one of these symbols: '
:selected Means this is the selected window.
:exposed - Means this is exposed but not selected. It may not be visible.

:exposed-in-superior
Means this window is exposable but its superior has no screen array.

:deexposed Means this window is active in its superior but not exposable. .
deactivated Means this window is not even active.

:set-status suarus Operation on windows
Restores the window’s status to: status, by selecting or deselecting, exposing or deexposing,

and activating or deactivating, as necessary. sfafus must be one of the possible valucs of
the :status operation. ' :

The :status and :set-status operations are useful for selecting a window temporarily and

then restoring everything as it was. .:set-status is correct for this because it may be
necessary to deexpose the window or deactivate it in addition to deselecting it.

SRCKL.WIND>SELECT.TEXT.21 : . _) 8-AUG-83

Windows and Processes | 40 : Window System Manual

3.5 Windows and Prloc‘es.ses. k

A self-contained interactive system that has its own window(s) usually has its own process to
drive the windows. Peck, Zmacs, ZMail and the inspector all do this when invoked through the
System key. Usually each window you create has its own process; there is a Peek process for
each Peck window, so different Peek windows run completely independently.

~ Whether a window is managed by a dedicated process or by various processes is not a crucial
decision. The program that reads commands from the window and draws on the window can
always be run in one dedicated process, or in different processes at different times (though if you
‘run it in two processes at once, you had better be careful to keep them from confusing each
other). The mechanisms of selection and exposure that control whether input and output are
possible on a window at a given time work automatically on any process(es) that try to do the
input or output. So when there is a dedicated process for a window, often the only connection
between them is that the dedicated process is running a program that has a pomter to that
window (typically the value of terminal-io in the process is that window).

For example, the mspector you get with System | has a dedicated process, whereas the one
you get by calling inspect runs in the process that inspect is called in. Yet these two windows
have the same flavor, and the same function, tviinspect-command-loop, does the main work.
The only differences are in deciding when to deexpose the window, what to do when that
happens, when it can be reused, what to do if the user types End, and other things related
directly to the difference in the two user interfaces for entering and exiting.

The -inspector makes an instructive example for comparing these two ways of managing a
window. The function inspect allocates a window out of a resource of reusable windows of the
right flavor (see defresource, section 5.12 of the Lisp Machine manual). It sends the window

some messages to initialize it for this particular scssion of use; this is how it tells the window -

about the object that is the argument to inspect. Then it selects the window manually using
tv:window-call (see page 34) and calls the inspector program. When the user types End, the
program returns, tviwindow-call resclects the old window and deactivates the inspect window,
“and inspect returns. - inspect uses an unwmd protect so that abortmg outside of inspect for any
teason brings back the old window. : »

Typing System | finds or creates an an inspect window of the same flavor. When no init
options arc specified, this flavor’s default init plist specifics the creation of a process, which is
initialized to call the inspector program. If the user types End and the inspector command loop
. returns, the top-level function in the dedicated process buries the inspector window and loops
 back to the beginning. That’s all that is necessary to make System | work. The resource that

" inspect uscs explicitly spcc1ﬁes an init optlon when it constructs a window,. so that no process is
made. : :

tv:process-mixin ' ' v Flavor
Provides an instance variable tviprocess which can remembers a process associated ‘with
the window. A window that will sometimes be used with a dedicated process should have
thlS mixin. :

SRC:(L.WINI))Sl':il,.}?C'l‘.'I'EX'I‘,.ZI . R , © 8-AUG-83

Window System Manual | . 41 Windows and Processes

The most valuable service that this flavor provides is an easy way to create and initialize a
process for each window that is created, and inform the process which window it was
created for. Once this is done, for the most part the desired results follow without special
effort.

Selecting the window or making it visible will give the process a run reason. The window
itself is used as the run reason. Also, this will reset the process if n is flushed (waiting
with false as its wait function).

The :kill operation on the window will invoke the :kill operation on the process.

Use of tv:process-mixin guarantees that the :process operation will return the explicitly
specified process, regardless of which process has most recently read from the window.

tv:process S ' Instance variable of tv:process-mixin
The process associated with the window, or nil. :

~:process process-or-description Init option for tv:process-mixin
Specifies the process for this window. The argument can be a process, or it can be a list,
which is used as a description for creating a process. The list looks like

(initial-function make-process-options)
When the process starts up, it will call initial-function with the window as its sole
argument. Usually the initial function should bind terminal-io to the argument,

If this option is omitted or nil, the window starts out without a process.

:process ' o ' Operation on tv:process-mixin

:set-process process : ' Operation on tv:process-mixin
Gets or sets the process assoclated with this window. nil is a legal value, which means
that the window. has no process associated with it, evén though it has the ability to have
one. - :

1processes o ' Operation on windows _
Returns a list of processes dedlcated to this window. :append method combination is
used, so that all the processes mentioned by any of the methods are put into the final
answer. These are the processes that the :kill operation will kill.

The default is to return nil. tviprocess-mixin contributes a suitable method.

These process-related operations are defined on tv:select-mixin so that they are always supported
by the selected window. Since windows lacking tv:process-mixin do not.cxplicitly remember a
process, .a heuristic is- used to come up with a process to operate on: it is the last process to
have read input from this window’s input buffer. (Think about the fact that the input buffer may
be shared with. other wmdows.)

tv:process-mixin is always put before tviselect-mixin in the compoﬁ-enis of a window flavor,
so this method will be. overridden.

_ SRC:KL.WIN IDSELECT.TEXT.21 : ' - 8-AUG-83

Windows and Processes 42 - Window System Manual

:process Operation on tv:select-mixin
Gets a process somehow associated with this window, heuristically if necessary.

:set-process process Operation on tv:select-mixin
Records process in the place where the last process to read input from this window would
normally be recorded.

:arrest . Operation on tv:select-mixin
sun-arrest Operation on tv:select-mixin
Arrests or unarrests the process returned by the :process operation. The arrest reason
used or revoked is not specified (it defaults).

:call o o ' Operation on tv:select-mixin
Selects an idle Lisp listener wmdow (possibly this window, if it is an idle Lisp listener).
If the window selected is not this one, arrest this window’s process with arrest reason
:call. This arrest reason is removed automatically by selecting this window again.

tv:reset-on-output-hold-mixin ‘ Flavor
Causes any process that tries to draw on this window when it has an output hold to be
reset when it does so (see the :reset operanon on processes, section 26.4.3 of the Lisp
Machine manual). :

tvitruncat1ng—pop-Up-text—\v_indow-w1th-reset ' Flavor
A temporary window that truncates lines and also resets processes that try to output on it
when it has output hold. This flavor is what Terminal F uses.

: _SR(‘:(I..WI.ND)SFLEC" TEXT21 ’ : -8-AUG-83

Window System Manual - 43 T Sizes and Positions

4. Sizes and Positions

This chapter is about examining and sctting the sizes and positions of windows. There are
many different operations that let you express things in different forms that are convenient in
varying applications. Usually, sizes are in units of pixels. However, sometimes we refer to widths
“in units of characters and heights in units of lines. The number of horizontal pixels in one
character is called the character-width, and the number of vertical pixels in one line is called the
line-height; these two quantities are explained on page 67.

A window has two parts: the inside and the margins. The margins include borders, labels,
and other things; the inside is used for drawing characters and graphics. Some of the operations
below deal with the outside size (including the margins) and some deal with the inside size.

Since a window’s size and position are usually established when the window is created, we
will begin by discussing the init-options that let you specify the size and position of a new
window. To make things as convenient as possible, there are many ways to express what you
want. The idea is that you specify various things, and the window figures out whatever you leave
unspecified. For example, you can specify the right-hand edge and the width, and the position of
the left-hand edge will automatically be figured out. If you underspecify some parameters,
_defaults arc used. Each. edge defaults to being the same as the corresponding inside edge of the
superior window; so, for example, if you specify the position of the left edge, but don't specify
~ the width or the position of the right edge, then the right edge will line up with the inside right
edge of the superior. If you specify the width but neither edge position, the left edge will line
up with the inside left edge of the superior; the same goes for the height and the top edge.

In order for a window to be exposed, its position and size must be such that it fits within the

~ inside of the superior window. If a window is not exposed, then there are no constraints on its
-position and size; it may overlap its superior’s margins, or even be outside the superior window
altogether., :

All positions are specified in pixels and are relative to the outside of the superior window.

4.1 Init Options for Sizés and Positions

- :1eft left-edge
:X left-edge
stop lop-edge
1y lop-edge
:position (lefi-edge top-edge)
sright right-edge
tbottom bottom-edge
:width ourside-width
theight ouiside-height _
:size (outside-width outside-height)
“:inside-width inside-width
:inside-height inside height
:inside-size (inside-width . inside-heighi)

SRCKL.WIND>EDGES.TEXT.14 -

Init option for windows
Init option for windows
Init option for windows

Init option for windows
Init option for windows .

Init option for windows
Init option for windows
Init option for windows
Init option for windows .
Init option for windows
Init option for windows
Init option for windows
Init option for windows

8-AUG-83

Init Options for Sizes and Positions 44 ‘ " Window System Manual

°edges (Ieft-edge top-edge rzghl-edge bottom-edge) Init option for windows
These "options set various position and size paramecters. The size and position of the
window are computed from the parameters provided by these and other options, and the
set of defaults described above. Note that all edge parameters are relative to the outside
of the superior window.

scharacter-width spec Init option for windows
This is another way of specifying the width. spec is either a number of characters or a
character string. The inside width of the window is made to be wide enough to display
those characters, or that many characters, in font zero.

- scharacter-height spec Imloptzan Jor windows

This is another way of specxfymg the height. spec is either a number of lines or a
character string containing a certain number of lines separated by carriage returns. The
inside height of the window is made to be that many lines.

:integral-p rornil ' ' ’ Init option for windows
* The default is nil. If this is specified as t the inside dimensions of the window are made
to be an integral number of characters wide and: lines high, by making the bottom margin
. larger if necessary. ' '

:edges-from soufce ‘ - ' Init option for windows
Specifies that the window is to take its edges (position and size) from source, which can
be one of:

alist The "elements of the list should' be the four edges, left, top, right and
- bottom, all relative to this window’s superior. o

astring ~ The inside-size of the window is made large enough to display the string,
" in font zero.

alist (left-edge top-edge right-edge bottom-edge)
Those edges, relative to the superior, - are used, exactly as if you had used
the :edges init-option (see above).

‘mouse - The user is asked to point the mouse to where the top-left and bottom-
' right corners of the window should go. (This is what happens when you
use the Create command in the system menu, for example.)

a window That window’s edges are copied.
:minimum-width ‘tr-ﬁi.xéls .' N | o . : | Init option for windows
:minimum-height n-pixels - : Init option for windows

In - combination- with "the :edges-from :mouse init option, these options specify the

- minimum size of the rectangle accepted from the user. 1f the user tries to specify a-size
smaller than one or both of these minima, he will be beeped at and promplcd to start
over agam with a new top-left corner.

The group of operations below is used to examine or change the size or position of a window.
Many operations that change the window’s size or position take an argument called oprion. The
rcason that this argument cxists is that ccrtain new .sizes or positions are not valid. Onc reason
~ that a size may not be valid is that it may be so small that there is no room for the margins; for

SRCKL.WINDYEDGES. TEXT.14 : ‘ 8-AUG-83

Window System Manual 45 Flavor Opcrations for Sizes and Positions

example, if the new width is smaller than the sum of the sizes of the left and right margins, then
the new width is not valid. A new setting of the edges is also invalid if the window is exposed
and the new edges are not enclosed inside its superior. In all of the operations that take the
option argument, option may be either nil or :verify. nil means that you really want to set the
edges, and if the new edges are not valid, an error should be signalled. :verify means that you
only want to-check whether the new edges are valid or not, and you don't really want to change
the edges. If the edges are valid, the operation with :verify returns t; otherwise it returns two
values: nil and a string explaining. what is wrong with the edges. (Note that it is valid to set the
edges of a deexposed inferior window in such a way that the inferior is not enclosed inside the
superior; you just can’t expose it until the situation is remedied. This makes it more convenient
to change the edges of a window and all of its inferiors sequentially; you don’t have to be careful
about what order you do it in.)

4.2 Flavor Operations for Sizes and Positions |

:size | | ' : Operation on windows
Returns two values, the outside width and outside height.

:height -] . Operation on windows
. twidth ’ o S Operation on windows
Return the window’s height or its width.

" :set-size new-width new-height &optional option L Operation on windows
Sets the outside width and outside height of the window to new-height and new-wzdth,
without changing the posmon of the upper-left corner.

:inside-size , ‘ , ' Operation on windows
Returns two values, the inside width and the inside height.

:inside-height . Operation on windows
:inside-width . - Operation on windows
Return the inside hclght of the window or the 1ns1de width. '

:set-inside-size : " Operation on windows
new-inside-width new-mszde-hezghl &opUOnal option
Sect.the inside width and inside height of the window to new-inside-height and new-inside-
widih, wnhom changing the position of the upper-left corner. The margin sizes are
recomputed according to their contents, which in simple cases means they will stay the
same.

:position : ' - " Operation on windows

- Returns two values, the x and y positions of the upper-left comer of the window, in
pixels, relative to the superior wmdow :

SRCKL.WINIDEDGES. TEXT.14 ' . 8-AUG-83

Flavor Operations for Sizes and Positions .46 : Window System Manual

:set-position newx newy &optional option .- Operation on windows
Sets the x and y position of -the upper-left corner of the window, in pixels, relative to the
superior window.

tedges Operation on windows
Returns four values, the left, top, rlght, and bottom edges, in pixels, relative to the
supenor window.

:set-edgos " Operation on windows
" new-lefi new-top new-rzght new-bottom &optional option
Sets the edges of the window to new-left, new-top, new-rzght and new-bottom, in pixels,
relative to the superior window.

+inside-edges ' ' : Operation on windows
Returns four values, the left, top, right, and bottom inside edges, in pixels, relative to
. the top-left corner of this window. This can be useful for clipping. Note that this
operation is not analogous to the :edges operation, which returns the outside edges
relative to the superior window. :

:center-around x y Operation on windows
Without changing the size of the window, positions the window so that its center is as
close to the point (x,y) as is possible without hanging off an edge. The coordinates are in
pixels relative to the superior window.

:@xpose-near mode &optional (warp-mousep). . Operation on windows |
’ If the window is not exposed, changes its position according to mode and exposes it (with
the :expose operation; see page 19). If it is already exposed, does nothing.

~mode should be a list; it may be any of the following:

(:point x y) Position the window so that its center is as at the point (x,y), in pixels,
relative to the supcrior window, or as close as possible without hanging
~ off an edge of the superior. :

(:mouse) -This is like the :point mode above, but the x and y come from the
- current mouse position instead of the caller. This is like what pop-up
windows do. In addition, if warp-mouse-p is non-nil, the mouse is warped
" (see page 112) to the center of the window. (The mouse moves only if
the window is near an edge of its superior; otherwise the mouse is already
at the center of the window.)

(:rectangle left top right bottom)

. The four arguments specify a rectangle, in pixels, relative to the superior
window. The window is -positioned somewhere ~next to but not
overlapping the rectangle. In addition, if warp-mouse-p is non-nil, the
mousc is warped (sce page 112) to the center of the window.

¢ wmdow window-1 window-2 window-3 ...) :
Position the: window somewhere next to but not overlapping the rectangle
that is the bounding box of all the window-ns. You must provide at least
one window. . Usually you only give one, and this means that the window

SRCKLWINIDEDGES. TEXT.14 o ' L 8-AUG-83

Window System Manual . 47 Low Level Edgcerunctions

- iIs positioned touching one cdge of that window. In addition, if warp-
mouse-p is non-nil, the mouse is warped (sce page 112) to the center of
the window. ' .

:change-of-size-or-margins &rest options Operation on windows
This is the primitive operation for changing a window’s size or the size of its margins.
All the other operations to do so end up calling this one, after all error checking has
been done. ' '

This operation should not be called by users; to change the size, use :set-size or another
higher-level operation, and the margin sizes should be managed by the flavors that are
responsible for computing how big they should be (tv:borders-mixin, etc.).

However, this operation is a good place to add :after daemons to recompute other. data

structure or change the size of inferiors according to the window’s new size. In the :after
daemon, the window’s size and margins will already be altered to their new values.

4.3 Low Level Edges Functions

tv:x-offset - : Instdnce vériable of windows
tv:y-offset - Instance variable of windows
The position of the window’s outside left (or top) edge relative to the window’s superior.
tviwidth =~ , : Instance variable of windows
-tv:height Instance variable of windows

The total width or height of the window.
Recall that a sheet is either a window or a screen.

tv:sheet-width window

tv:sheet-height window

tv:sheet-x-offset window

tv:isheet-y-offset window
Return the value of the corresponding instance variable of window. These are accessor
defsubsts created by the :outside-accessible-instance-variables option of defflavor.
- They can therefore be setf'd, but doing so is usually unwise.

“tv:sheet-inside-width &optional (windowself)
- tv:sheet-inside-height &optional (windowself}
Return the inside width or height of the window.

When used without an argumcnt,'xh'cse defsubsts refer directly to the instance variables,
‘and thercfore must be called from methods or functions which use (declare (:self-flavor

’ "f»'

SRCKL.WIND>EDGES.TEXT. 14 ' N : 8-AUG-83

Low Level Edges Functions . 48 ' Window System Manual

tv:sheet-number-of-inside-11ines &optional (windowself)
Returns the number of lines (of height equal -to tv:line- helght) that fit in the inside
height of the window.

When used without an argument, these defsubsts refer directly to the instance variables,
and therefore must be called from methods or functions which use {declare (:self-flavor

w))

tv:sheet-calculate-offsets window superior
Returns the x and y positions of window’s upper left corner in superior as two values.
window must be an indirect inferior of superior, zero or more levels down. If wmdow and
superior are the same wmdow the values are zero.

tv:sheet-overlaps-p sheet. left top width height
tv:sheet-overlaps-edges-p sheet left top right borrom :
t if sheet overlaps the specxﬁed rectangle. The edges specified are relative to sheet’s

superior.

tv:sheet-overlaps-sheet-p sheet-a sheet-b
t if the two sheets overlap. This is a geometrical test, and it does not matter where in
. the hxerarchy the two sheets are.

tv:sheet-within-p sheer left top right bottom
t if sheet is contained within the specified rectangle, given relative to sheer’s superior.

tv:sheet-within-sheet- p sheet outersheet
t if sheet is within outer-sheer’s area. This is a geometrical test, “and it does not matter

where in the hierarchy the two sheets are.

tv:sheet-bounds-within-sheet-p .Ieft top width height outer-sheet
t if the specified rectangle is within outer-sheet The edges are specified relative to outer-

sheet’s superior.

tv:sheet-contains-sheet-point-p shéet top-sheet x y
t if sheet contains the point (x,y) in top-sheel.

SRCKKLWINI»EDGES. TEXT.14 :) | ' . 8-AUG-83

Window System Manual S 49 Input‘

S. Input

Windows can be given the ability to function as input streams (see section 21.5 of the Lisp
Machine manual). This is implemented by the mixin tvistream-mixin, which is a component of
~ tv:iwindow. (Originally, both input and output stream operations were defined on this mixin, but
now the output operations are available on all windows since a window is fairly useless if you
don't draw on it.) Input characters normally come from the terminal keyboard, but can also come
from mouse clicks, or anything else you may decide to program to generate input.

 tvistream-mixin - Flavor
This mixin defines the standard mput stream operations for doing input from the
keyboard as well as some nonstandard input operations defined in the following sections.

Keyboard input is done through windows so that selection of windows can control which
process can read input at a given time. In fact, this is why the concept of selection exists: by
making each process that does its output to a window also use that window to read input, and by
making a single "selected” window the only window on which input operations can proceed, we
enable the user to decide which process to direct his input to by selecting the corresponding
window. . :

‘Reading characters from a window normally returns a fixnum that represents a character in
the Lisp Machine character set, possibly with extra bits that correspond to the Control, Meta,
Super, and Hyper keys. Character constants in code are written with the #\ or #/ construct and
are described in the Lisp Machine manual in section 21.1 of the Lisp Machine manual.

Programs decode keyboard characters with Idb and dpb using the following byte fields:

, %%kbd-char -A name for the byte field that contains the basic character. This is the low eight
bits, and the contents are a character that can go in a string.

%%kbd-control
A name for the byte field that contains the Control blt..

%%kbd -meta A name for the byte field that contains the Meta blt. '
%%kbd-super A name for the byte ficld that contains the Super bit.
%%kbd-hyper A name for the byte field that contains the Hyper bit.

%%kbd ~control-meta
" A name for the four-bit byte field t.hat contams the Hyper, Super, Meta and
Control bits, /in that order from most significant to least. '

%%kbd -mouse '
A name for the byte ficld that is 1 if this is a "mouse” character, a character that
reports a click of a mouse button rather than a pressing of a keyboard key. (See
page 113.) Note that mouse ‘characters- may conuun Control bits, etc.

" %%kbd -mouse -button
A name for the byte ficld that, in a mouse character, records the number of the
button that was clicked. The left button is 0, the middle is 1, and the right is 2.

SRC:<L.WIND)INPUT.TEXT:4' . e R - 8-AUG-83

Input Buffers ‘ 50) Window System Manual

%%kbd -mouse-n-clicks K .
A name for the byte field that, in a mouse character, records the number of
times whichever button was clicked, minus 1. It is O for a single click, 1 for a
double click, etc.

Though keyboard input characters are currently fixnums, it is possible that a new, special data
type for characters will exist in the future. The #\ construct will produce a character object
rather than a fixnum, and the elements of a string will be character objects rather han fixnums.
Characters will behave just like fixnums in arithmetic and = but will not be eq to fixnums. The
ityi and related stream operations will continue to return fixnums; new operations will be defined
which return character objects instead. It will still be possible to use Idb and dpb with these byte
field names on fixnums and character objects indiscriminately.

Note that reading characters from a window does not echo the characters; it does not type
.. them out. If you want echoing, you can echo the characters yourself, or call the higher-level

functions such as tyi, read, ‘and readline; these functions accept a window as their stream
argument and will echo the characters they read. This is in accord with the general Lisp Machine
" input stream conventions.

The console hardware actually sends codes to the Lisp Machine whenever a key is depressed
- or lifted; thus, the Lisp Machine knows at all times which keys are depressed and which are not.
You can use the tvikey-state function to ask whether a key is down or up. Also, you can
arrange for reading from a window to read the raw hardware codes exactly as they are sent, by
putting a non-nil value of the :raw property on the property list of the input buffer; however,
the format of the raw codes is c¢omplicated and dependent on the hardware implementation. It is
not documented here. :

_tv:kbd-last- act‘lvity -time : | Variable
: The value returned by the function time when the last input character was typed.

5.1 Input Buffers

Every window that generates input or from which input is read must have an input buffer that
holds characters that arc typed by the wuser before any program reads the characters. When you
type a character, it enters the selected window’s buffer. (This is not precisely true;, but it's a
good first mental model. See section 54. page 56.) Reading input from a window, with the :tyi
operation for cxample, takes objects out of the window's input buffer. tv:stream-mixin gives the
window an input buffer, but some other flavors (such as command menus) provide an input
buffer without tv:stream-mixin. The input buffer lives in an instance variable of the window,
called tviio-buffer. -

Input buffers- are examples of 170 buffers, which arc a general facility provided by the
window system. You can explicitly manipulate input buffers in order to get certain advanced
functionality, by using -the :io-buffer init-option and the :io-buffer and :set-io-buffer operations.
Another thing you can do is put properties on the I70 buffer's property list; this lets you request
“various special features. 170 buffers are explained on section 5.4, page 56. ~ :

»SRC:(I...WINl))lNP_U'I‘.'I,'EX'IIL24 _ S : - 8-AUG-83

Window System Manual ;) | . Input Buffers

A window can be thought of as gencrating input when the keyboard is used while the window
is selected. This is the way that ordinary characters normally get into the input buffer. But input
can be gencrated at any place in the program by means of the :force-kbd-input operation. For
example, mouse clicks are often handled by forcing input which is read by the window’s
‘command-interpreting process (see page 113). Then we say that the mouse click also gcnerat&s
input. v

. All the input, no matter how generated, ends up mixed together in the same input buffer, in
chronological order. All the input operations take input from the buffer in that order.

Normally each window that can generate input has its own input buffer. If a process is
managing more- than one window that can generate input, a program to look for input from all
the windows at once would be cumbersome. So it is not done this way. Instead, all the windows
are made to share a single input buffer. Then all input generated by all of the windows goes into
that buffer, from which the input can be read through any one of the windows. The program
simply reads input from one of the windows—always the same one, if the programmer .
prefers—and gets all the input intended for it. - All the keyboard input directed at it, and all
‘mouse clicks on its windows, get merged into a single chronological input stream.

The input buffer does not record which window was "responsible” for generating input read
from a shared input buffer. For mouse clicks the program may need to know which window the
‘mouse was clicked on in order to obey the command properly. The standard way to pass this
information is to use a list as the mput character and make the window clicked on ome of the
elements of the list.

The window(s) used for input operations must have tvistream-mixin. The other windows
need only be able to put input into the right input buffer. It is often easiest to use tv:stream-
mixin for them as well, and generate the input with :force-kbd-input. However, it is sufficient
~ for such windows to support the :io-buffer operation by returning the correct shared input buffer,
and put the input they génerate into that buffer in any way that works, such as with the function
tv:iio-buffer-put, or by invoking :force-kbd-input on another wmdow known to have tv:stream-
mixin and to share the same input buﬂ‘er

If a frame includes a pane that is handled by its own process (such as a Zmacs frame), that
- pane should not share the input buffer used by the rest of the panes. In general, there should be
one input buffer for each process you are using, and that input buffer should be shared by the
windows which go with that process.

~ In general, the way_ to make- windows share an input buffer is to create one using tv:make-
defauit-io-buffer and then specify it for the :io-buffer init keyword when each pane is created.
~ There are also frame flavors that automatically make the pancs share an-input buffer.

tv:io-buffer . ‘ - Instance vaffable of tv:stream-mixin
The window’s input buffer. :

- SRCKL.WIND>NPUT.TEXT.24 | - . - %AUG-83

Blips ' 52 Window System Manual

:1o-buffer spec ' Init option for tv:stream-mixin
Initializes the input buffer of the window. spec may be an I/O buffer, a number or a
list. If it is a number, an 1/0 buffer is made with that size, no input function, and the
default output function. If it is a list, it is interpreted as
: (size input-function output-function)
but if the outpul -function is nil or omitted, tv:kbd-default- output ~function is used.

:1o-buffer _ _ | Operation ontv:stream-mixin
:set-io-buffer io-buffer Operation on tv:stream-mixin
Return or set the window’s input buffer.

‘5.2 Blips

Input need not be made of characters; lists are often used as well for program-generated
input, especially for representing mouse clicks in different kinds of mouse-sensitive areas.
"Characters” which are lists are called blips. The car of the list is by convention a symbol which
identifies the kind of blip. Look for "blip types” in t.he concept index to find the places in this
manual that define various kinds of blips.

" Caution: when using blips, you should keep in mind that the blips may be discarded if the
process -has called any function that does not know what to do with them. The debugger and
break are such functions, so this can happen at any time. Blips either should describe mouse
_actions, which can safely be ignored if they happen when they are not meaningful, or should
notify the process to check other data structures. A blip should not be used to indicate a request
or response from another process, since this information must not be lost. Instead, put the data
on a separate queue and have the process check the queue after every command. A blip that
executes as a no-op command will serve to wake the process up if it is waiting for input when
the data goes on the queue.

There is a technique you can -use to cause blips to be handled even in the middle of calls to
read, the debugger, and other programs that do not look for blips. It is to give your window

" flavor an :around method for :any-tyi. This :around mecthod can look at the value being

returned; if it is one of certain types of blips, you can handle it and then loop around, calling
~ the original :any- tyl handler again w1thout returning to the caller. If it is anything clse, you just
- return it. -

3.3 Stream Input Operations

rany-ty1 &optional eofaction - - - Operation on tv:stream-mixin
Reads and returns the next character of input from the window, waiting if there is none.
The character comes from the window’s input buffer if it contains any characters;
otherwise, it comes from the keyboard. "eofaction is ignored since “end-of-file" is not
meaningful for wmdows this argument exists only because it is part of the mput stream
protocol

SRCAL.WINDMINPUT.TEXT.24 . ' S 8-AUG-83

Window System Manual . : - 53 - | Stream Input Opcrations

~+tyl &optional eof-action Operation on tv:stream-mixin

Like :any-tyi but throws away any blips ("characters” which are lists) that it receives. It
keeps on reading until it finds an actual character, and returns that. Discarded blips will
never be seen as input.

sany-tyi-no-hang &optlonal eof-action Operation on tv:stream-mixin
Like :any-tyi if input is already present in the buffer, but returns nil right away if the
buffer is empty. This is used by programs that continuously do something until a key is
typed, then look at the key and decide what to do next.

:tyi-no-hang &optional eof action ' Operation on tv:stream-mixin
Like :any-tyi but throws away any blips ("characters” which are lists) that it receives. It
keeps on reading. until it finds an actual character or the buffer empty; then it returns the
- character or nil. Discarded blips will never be seen as input.

:mouse-or-kbd-ty1 o _ Operation on tv:stream-mixin

:mouse-or-kbd-tyi-no-hang - - Operation on tv:stream-mixin
These are like the. :tyi and :tyi-no-hang operations, except that blips of a certain kind~
are not discarded and do count as input. These are blips whose car is the symbol
:mouse-button. ‘In this case, the first value returned is the third element (caddr) of the
blip. and the second value returned is the whole blip. By convention, the third element
of such a blip is a character whose %%kbd-mouse bit is 1, which identifies the button-
that the user clicked (sce page 113). All other blips are discarded, as they are by :tyi and
“ityi-no- hang The first value is always a fixnum.

‘I'Ist tyi ' o Operation ontv:stream-mixin
This is the "opposxte" of :tyi. It returns only blips and discards real characters.

.unty1 character) ' - Operation on tv:stream-mixin
Put character back into the window's input buffer so that it will be. the next character
returned by :tyi. Note that character must be exactly the last character that was read, and
that it is illegal to do two :untyi’s in a row. ThlS 1s used by parsers that look ahead one
character, such as read.

:force-kbd- 1nput mput » Operation on tv:stream-mixin
input is inserted into the wmdows input buffer, to be read by the :iyi or other input
operation in its turn. - inpuf may be a character or a list (a blip). It may also be a strmg,
then all the’ characters of the strmg are forced as input, one by one.

 This is the standard way that blips are put into the input stream (sce section 5.2, page
52). _ _

:1isten S o "~ Operation on tv:stream-mixin
Rewrns t if therc arc any characters available to ityi, or nil if there are not. For
- example, the cditor uscs this to defer rcdlsplay until it has. caught up with all of the:
charactcrs that have been typed in.

SRCKL.WINIDINPUT.TEXT.24 S) 8-AUG-83

Strecam Input Operations 54 Window System Manual

:wait-for-input-with-timeout timeout ' Operation on tv:stream-mixin'
Waits until either input is available or timeout 60ths of a second have elapsed.

:clear-input : Operation on tv:stream-mixin-
Clears this window’s input buffer. This flushes all the characters that have been typed at
this window, but have not yet been read.

:playback - Operation on tv:stream-mixin
Returns an array describing the last n characters read from this window, for some value
of n (which is the size of the array). The array elements are used in a circular fashion,
the last one being followed by the first one, and array leader element 1 contains the
index of the last slot stored into (the one containing the last character read). The edxtor
command Help L uses this operation. .

:rubout-handler options function &rest args _ Operation on tv:stream-mixin
Applics function to args inside an environment where inputting from this window will
echo the characters typed and provide for simple input editing. This is documented in
more detail in the Lisp Machine manual. ‘

options is an assq list of keyword symbols and arguments to them. The options acceptable
to windows are: : _

:fuil-rubout flag E _
If the user rubs out all of the characters that he has typed in, normally
the rubout-handler just waits for more characters. If the :fuli-rubout
option is supplied, the rubout handler returns to the caller in this
situation. Two values are retumed, nil and flag. :

sinitial -input string : -
Treat the characters in string as typeahead before readmg anythmg from
the keyboard.

:pass-through chf chl... . ,
Treat the characters chl, ch2, etc. as ordinary characters even if they
would normally be special commands to the rubout-handler. :

:prompt ﬁmcuon
Junction is a functlon to be called before reading any characters; typically
it will display a prompt. The arguments to fiunction are the window and a
flag. When the rubout-handler is first entered the flag is nil, but if it is
~ necessary to prompt again, for instance if the user cleared the screen.
Junction is called with the character the user typed (e.g. # \clear-screen) '
as its ﬂ'agargument.

ﬁmclzon can also be a strmg. then it is simply printed as the prompt.

: reprompt JSunction o
The same as prompt except that the functlon is not callcd the first time

" through. 1If both :prompt and :reprompt arc used, the :prompt is used
the first time and the reprompt is uscd on reprinting.

© SRCKLWINDMNPUT.TEXT24 T o ~ 8-AUG-83

Window System Manual o 55 ' '+ Stream Input Operations

:save-rubout-handler-buffer ; Operation on tv:stream-mixin -
Returns a description of the rubout handler buffer's contents, and clears it out. Two
values are returned: a string and a fixnum (which is the current cursor index in the
string). This is. used on entry to the function break so that typing the Break key
interfaces properly with rubout handling.

:restore-rubout-handier-buffer string index Operation on tv:stream -mixin
Loads the rubout handler buffer contents from string and sets the cursor position to index.
The arguments are usually two values obtained from :save-rubout-handler-buffer.

srefresh-rubout-handler Operation on tv.stream-mixin
&optional discard-last-character
Requests the rubout handler to reprint its buffer and reprompt. If discard-last-character is
non-nil, the last character in the buffer is mscarded firstt This is used by :restore-
rubout handler-buffer.

If you are reading input using the rubout handler, but want to process certain characters
. - immediately (perhaps the character Help) and not leave them as part of the ordinary
- input, use this operation with:argument t.

tv':preemptablb-read-any-tw—m1x1n ‘ . Flavor
This flavor d}eﬁnes,the :preemptable-read operation. :

:preemptable-read - . Operation on tv:preemptable -read -any-~tyi~mixin

options function &rest arguments _
You may have noticed that in the inspector and in the Window Error Handler, if you'
start typing in a Lisp expression, and then while in the middle of typing it you use the
‘mouse to select an object by pointing at it, the program sees the object you moused. If
nothing special were done, though, the blip sent by the mouse process would get put at
the end of the input buffer and would not be seen because of the characters that you
have typed. This mixin is what is used to solve the problem.

The :preemptable-read operation takes the same arguments as the normal :rubout-

“-handler operation, and does the same thing if the mouse is not used. (In fact, it has
nothing to do with the read function, despite the name.) The difference is that if any blip
is sent to the window, the operation returns the blip as the first value and the symbol
:mouse-char as the sccond value. (It does this even if the blip did not come from the

~ mouse; most blips do.) The characters that were in the rubout-handler buffer when the
blip arrived will come back the next time a :preemptable-read operation is used, so the
user can keep typing his expression in. '

These obsolete functions are still used in some old code:

kbd-tyi
Performs :tyi on terminal-io.

SRCKL WIND)INPU LTEXT.24 : ' 8-AUG-83

170 Buﬁ‘crs g ' . 56 ' Window System Mamtal'

kbd tyi-no- hang
~ Performs :tyi-no- hang on termmal ~-i0.

‘kbd-char-available
Performs :listen.on terminai-io.

5.4 1/0 Buffers

An 170 buffer is an array of fixed size: used as a ring buffer. Typically, characters are put
into the buffer by one process and removed by another in FIFO order.. The process that is
removing characters can wait if the buffer is empty, and a process putting in characters can wait
if the buffer is full (or it could throw away the characters). Each window with tv:stream-mixin
- has an input buffer which is an /O buffer and there is also one global 170 buffer for the
keyboard itself.

Note that the thin'gs stored in an 1/0 buffer can be any Lisp objects. They do not have to ‘.
be characters, in any sense. But in practice I/0 buffers are in fact used for storing characters
- (which may be lists), so that is how thls section is written. : '

An I/0 buﬂ'er has these slots in its leader

_ -tvno -buffer-size
' The number of slots in the input buffer.

tvro -buffer-input-pointer
The index at Wthh the next character mserted should be stored.

_tv io- buffer-output pointer
: _ The mdex at which the next available character is present.

If the mput and output pointers are equal, the buffer is empty. If the output
_pointer points at the slot after the input pointer, the buffer is consndered full (in
fact, one slot is still empty. It cannot be used).

tviio- buffer output- -function ,
A function to be called when characters are removed or nil. It is called with the
buffer and the character as arguments. [Its value should be a translated version of
the character (this is usually the same as thc argument). It can also return a non-
nil sceond character, which says that the character should be discarded. In this
- case,. tv*io-buffer-getwill remove the following character, or wait for one.

In wmdow mput buﬂ‘ers thls is usually a function that checks for and handles .
synchronous interception.

tviio-buffer-input-function : :
A function to be called when characters are. msertcd or nil. The window system
does: not actually use this feature. ’Ihe callmg conventions are the same as for the

~output function.

tviio-buffer-state _ :
This may be set to t, nil.. :input or :output to control what can be done with the
“buffer. Charactcrs can be put in if this is nil or :input, and can be rcmovcd if

 SRCKLWINIDINPUTLTEXT.24 o S-AUGS3

Window System Manual _ 57 B : : I/0 Buffers

this is nil or :outpui.
tv:io-buffer-plist '
. A property list containing various properties.

tviio-buffer-last- mput process
The last process that put a character in this I/O buffer.

tviio-buffer-last-output-process
The last process that removed a character from this I/0 buffer.

tviio-buffer- record) v
An array that records the last n characters read from this 170 buffer, for some
fixed n. This array too is a ring buffer, but nothing is ever "removed” from it;
after it is full, it contains the last n things stored into it. The accessor tvno-
‘buffer-record -pointer gets the index of the last slot stored into.

- tv:io-buffer-empty-p io-buffer
tv:io-buffer-full-p io-buffer
Non-nil if the buffer is empty, or full. -

tV:mak_e-‘lo-buffaP size input-function output-function plist state | _
Creates and returns an 170 buffer, initializing some of the slots from its arguments and
the others in a default or reasonabl'e fashion The buffer is initially empty. =

tv:io-buffer-put buﬁ’br character &optional no-hang-p
Inserts character into buffer, waiting if it is full unless no-hang-p. ThlS function also waits
1f the buffer’s state does not permit input. It returns t if the character was inserted. _ '

tv: 1o buffer- gat buffer &optional - no-hang-p ‘
-Removes the next character from buffer. If the buffer is empty, normally we wait for a
character to appear, but.if no-hang-p is non-nil we return nil immediately. This function
also waits if the buffer's state does not permit output. The character removed is put in
buffer’s io-buffer- record array.

tv:io-buffer- unget buffer character
Inserts character into buffer as the next character to be removed rather than as the last
one to be removed. This is used for undoing tviio-buffer-get, and it is an error if
character does not match the last character removed. character is removed from the io-
buffer-record array, by backing up 1ts pointer, just to avoid duplication when character
1is read a sccond time. :

This function should not be used more than once between input operations.
tv:io-buffer- -push buffer character

Insérts character into buffer as the next character to be removcd that is, in a LIFO
‘manner. This is as opposed to tv:iio-buffer-put which inserts a character at the end.

SRCKI.WINDSINPUT.TEXT.24 T 3-AUGS3

- 170 Buffers 8 Window System Manual

tv:io-buffer-clear buffer
Makes buffer empty. -

o tve process- typeahead buffer function :
Uses function as a filter for the characters in buffer. function is called once for each
character, with the character as its sole argument. If function returns non-nil, that value
is stored back in the buffer instead of the original character. If function returns nil, the
- character is deleted from the input buffer.

5.4.1 170 Buffers and Type Ahead

We have said (see section 5.1, page 50) that keyboard input goes into the selected window’s
input buffer. This is not precisely true. Program-generated input made with :force-kbd-input
does go directly into the window’s input buffer, but keyboard input actually goes into another 1/0
buffer called the keyboard input buffer. (There is only one of these in the system.) The characters-
-move from the keyboard input buffer to the selected window’s input buffer whenever a program
tries to read input from that buffer and it is empty. The keyboard input is not assigned to a
selected window until the instant the program is ready to read it.

_ Asynchronous window-switching commands, such as Terminal S, and mouse clicks that select

a window, actually copy the contents of the keyboard input buffer into the buffer of the window
that is being deselected. If you type some commands to the editor, and then type System L
before the editor has read its commands, those commands will still go to the editor, not to the
Lisp listener you have selected. :

"By contrast, synchronous window-switching such as is done by the functions ed, supdup and
inspect, and by "exit" commands in various programs, do not do this, since any further typed-
ahead input should go to the program being switched to.

5.4.2 1/0 Buffers as Input Buffers

tv:make-default-io-buffer
Creates and returns an 170 buffer of the sort used for window input buffers, with all slots -
suitably initialized. The output function used is tvikbd-default- output -function.

tv:kbd-default-output-function buffer char .
This is the default value for a window input buffer’s output function. It checks the

character against the value of tv: kbd intercepted - characters and also checks tv:kbd-tyi-
hook.

tv:kbd-1o-buffer-get buffer &optional no-hang-p (whostate "Keyboard")
Removes a character from buffer, or possibly from the keyboard input buffer. The
keyboard input buffer can be read from only if buffer is the input buffer of the sclected
window, and it is used only if buffer is empty. When a character is rcad from the
keyboard input buffer, buffer’s output function is cxecuted, as if the character had been
put into buffer and then read from there,

: SRC:(L.WIND>INPU'1’.TEX'I’.24 o o | 8-AUG-83

Window System Manual ' : 59 “ . Intercepted Characters

whostate is passed as the first argument to process-wait if this function has to wait, -

tv:kbd-wait-for-input-with-timeout buffer timeout &optional (whostate "Keyboard")
Waits until either tv:kbd-io-buffer-get would not hang on buffer or timeout elapses.
timeout is in 60ths of a second. whostate appears in the who lim_: while we wait.

tv:kbd-wait-for-input-or-deexposure buffer window &optional (whostate "Keyboard")
Waits until either tvikbd-io-buffer-get would not hang on buffer or window is not
exposed whostate appears in the who line while we wait.

tv:kbd-snarf-input buffer &optional not-from-hardware
Transfer any characters that tv:kbd-io-buffer-get could now get from buffer right into
buffer. This is what asynchronous sclection commands use to make sure that type-ahead
for the window being deselected remains with that window.

tv:kbd-char-typed-p
Non-nil - if input is available in the selected window. This can be used in programs that
- loop with interrupts disabled, to tell when the user types a key.

The wmdow system defines the meaning of certain properties on the tviio- buffer-pllst of a
window input buffer. These are

raw Non-nil to inhibit translation of characters from hardware codes to the Lisp
Machine character set. The effect of this is hardware dependent.

asynchronous characters :
An alist which controls which characters are intercepted asynchronously when this

~ window is selected.

:dont- upcase control-characters
Non-nil* prevents the Control (etc.) keys from causing spec1a1 treatment . of
alphabetic case. Normally, typing Control-Shift-A produces the character
#\Control-/a with a lower case "a", while Control-A produces # \Control-A;
and the same for Meta, Super and Hyper If this property is non-nil, the two
inputs are interchanged in meaning, so that Shift produces an upper case
character with or without Control. ‘

5.5 ‘Intercepted Characters -

There are several characters that are specially intercepted by the window system. Some are
intercepted when a process tries to read them, and some are intercepted as soon as they are’
typed. ‘The first kind are called synchronously intercepted characters and the second are called
asynchronously intercepted characters. The - latter come in two kinds: - global - asynchronous
characters such as Terminal and System which are always available (sce section 5.5.3, page 63),
and others defined by the sclected window, normally mcludmg Control Abort and so on (sce

section 5.5.2, page 61).

SRC:L.WINDYINPUT.TEXT.24 | : ' _ 8&-AUG-83

Intercepted Characters 60 o - Window System.Manual

5.5.1 Synchronously lntercépied Characters

Synchronous interception is performed by the io-buffer-output-function of the window input
buffer (see page 56). By default, this function is tv.kbd-default-output-function, which uses the
variable tv:kbd-intercepted-characters to decide which characters to intercept and how to handle
them. A program can change its set of synchronously intercepted characters simply by binding
this variable before reading input. Its default value specxﬁes the characters Abort, Meta-Abort,
Break, and Meta- Break

tv: kbd intercepted- characters : Variable
The value is an alist specifying the characters to be intercepted synchronously (that is,
when read by the program). Since the variable is looked at by a subroutine of the :tyi
operation itself, what matters is current binding at the time the :tyi is done.

Each element of this list should look hke
(character function) .
Then function will be called if character is read, wnh characler as argument.

Sfunction should return two values. The second should be non-nil to say that the character
has been handled by the function and should not be returned to the calling program as
ordinary input. If the second value is nil, the first value should be a translated character
- to usc as input instead of the character typed. (This can be and usually is the same
character that was typed.) The first value is ignored if the second is non- -nil. In practice,
function usually returns its argument and t. '

ﬁmction should begin by setting inhibit-scheduling-flag to nil.

It is reasonable to add new entries to the top level value of this variable, and also for
programs to bind the variable. It is probably unwise to remove the standard entries in the
top level value.

tv:kbd-standard-intercepted-characters - : Variable
This is the that which is the initial value of tv:kbd- mtercepted characters.

tv:kbd—‘lntercept-ahort char &rest ignore

tv:kbd-intercept-abort-all char &rest ignore
'These functions implement the standard meanings of the Abort and Control-Abort keys.
They are suitable for use in tvikbd-intercepted-characters. The first signals the
- sys:abort condition; the sccond resets the current process. '

If terminal-io handles the :inhibit-output-for-abort-p operation and it returns non-nil,
the string "[Abort]" will not be printed.

tv:kbd-intercept-break char &rest ignore
tv:kbd-intercept-error-break char &rcst ignore
These functions implement the standard mcanings of the Break and Control Break keys. .
They arc suitable for use in tv:kbd -intercepted-characters. The first calls break; the
- sccond invokes the debugger. - ' :

- SRCKL.WINDMNPUT.TEXT.24 ') v . o L8-AUG-83

Window System Manual - C 61 | Intercepted Characters

Furthermore, if the variable tvikbd-tyi-hook is non-nil, then it is considered to be a user
function that can intercept the character at this point; see page 61.

By convention, programs are all expected to use the Abort key as a command to abort things
in some appropriate sense for that program. If you don't do anything special, Abort will be
intercepted automatically. But some programs may want to do something specific when the user
types Abort. The system default action can be replaced by binding the variable tvikbd-
intercepted-characters so that Abort goes to your own intercept routine instead of tv:kbd-
_intercept-abort, or so that Abort is read as an input character from the stream like any other
and then is handled by your program.

tv: kbd -ty1-hook ' Variable
The default io-buffer-output-function (tv:kbd-defauit-output-function), before it does
anything else, sees whether the value of tvikbd-tyi-hook is non-nil; if so, it assumes that
the value is a function of one argument, and it applies the function to the character that
was typed. If the function returns a non-nil value, then the character will not be returned
to callers of :tyi or other input operations; otherwise, the character is processed normally.

The idea is that you can write a function that intercepts anything passing through an
input buffer that uses the default io-buffer-output-function. Your function gets passed
the character, and returns nil if it doesn’t want to handle it, or t if it has taken care of
the character,

552 Asynchronously Intercepted Characters

Each window that has tv:stream-mixin can define a set of characters to be intercepted
asynchronously when that window is selected. The interception is done through a different
- mechanism from that used for synchronous interception, but the same handling functions such as
tv:kbd-intercept-abort can ultimately be used. By default, a window requests asynchronous
interception of the four characters Control-Abort, Control-Meta-Abort, Controi-Break, and
Control-Meta-Break. The default meanings of these keys are given in Operating the Lisp
Machine. You can change the set of such asynchronous keys on a per-window basis. -

Since the interception is done. by the keyboard process, the characters cannot straightforwardly
be specified by a variable for the program to bind. So each window has a list of them (which is
actually stored as the :asynchronous-characters property on-the input buffer’s property list).

:asynchronous-characters alist - , Init option for tv:stream-mixin
alist specifies the characters to be intercepted asynchronously while this window is selected,
and what they should do. . :

Each element consists of -a character, a function to call, and optionally some extra
arguments to be passed to it. When the function is called, its arguments will be the
character, the selected window, and any spccified additional arguments from the alist
clement.

If the init opuon is not specified, the dcﬁmlt comes from the value of tvikbd- standard-
asynchronous characters, the initial value of which is

SRCKL.WIND>INPUT.TEXT.24 : 8-AUG-83

Intercepted Characters ' 62 ' ~ Window System Manual

((#\c-abort tv:kbd-asynchronous-intercept-character
(:name "Abort" :priority 50.) '
tv:kbd-intercept-abort)

(#\c-m-abort tv:kbd-asynchronous-intercept- character
{:name "Abort A11" :priority 50.)
tv:kbd-intercept-abort-all)

(#\c-break tv:kbd-asynchronous-intercept-character
(:name "Break" :priority 40.)
tv:kbd-intercept-break)

{#\c-m-break tv:kbd-asynchronous-intercept- character
(:name "Error Break" :priority 40.)
tv:kbd-intercept-error-break))

How these work is explained below.

:asynchronous-character-p character . Operation on tv:stream-mixin
Returns non-nil if this window defines character for asynchronous interception.

:handle-asynchronous-character character : Operation on tv:stream -mixin
Invokes the handler a defined for asynchronous interception of character. This runs the
handler function in your current process. But since handler functions typically do
process-run-function, it usually doesn’t matter.

-sadd-asynchronous-character Operation on tv:stream-mixin
character handler-function &rest additional-args
Define character for asynchronous interception in this window, to be handled by handler
JSunction and the additional-args. This adds.an clement :
(character handler-function . additional-args)
to the alist on the input buffer’s property list.

:remove-asynchronous-character character Operation on tv:stream-mixin
Removes character’s element from the- alist, so that it is no longer intercepted
asynchronously in this process. - '

Asynchronous interception is done by the Keyboard process, and the handler function runs in
that process. Therefore, it must obey some strict conventions. It must not do any 1/0, or wait
for anything; it should not run for very long: it should not get an error. It is usually easiest to
create another process and do the rcal work there, using process-run-function

tv:kbd- asynchronous 1ntercept character character window process-oplzons subhandler
additional-subhandler-args
This function is provided as a convenicnt way to set up the handling of an asynchronously
~ intercepted character. It enables you to interface to the same functions used for
synchronous interception. . It is used with at least two additional arguments: the process
name and opuons for process- -run- functlon -and the function to call in the New Process.
Thus,
(#\c-break tv:kbd-asynchronous-intercept- character
{ :name "Break" :priority 40.)
: tv:kbd-intercept-break)
arranges- to crc.nc a proccss namcd "Break" with priority 40, and call tv:kbd- -intercept-

SRC:KL.WIND>INPUT.TEXT.24 | . 3-AUGH3

© Window System Manual ' 63 . Intercepted Characters

break in that process.

subhandler, which is tvikbd-intercept-break in this example, is passed as arguments
character, window, and the additional-subhandler-args if any.

5.5.3 Global Asynchronous Characters

_ The Terminal and System keys are also intercepted asynchronously, but since their functions
do not usually relate to the selected window, they are not controlled by the sclected window’s
alist of asynchronous characters. These are called global asynchronous characters.

tv:kbd-global-intercepted-characters . Variable
This is an alist whose value controls the characters intercepted regardless of the selected
window. Its elements look and work just like those of the alist specified in the
:asynchronous-characters init option for a window. o

The initial value is
((#terminal tv:kbd-esc)
(#\system th:kbd-sys))

Terminal and System ‘are defined to call functions that read another character and dispatch
on it. The meaning of the second character is controlled by an alist so you can define new
Terminal and System commands.

tv:*escape-keys® » : Variable
The value of this variable is an alist, each entry of which describes a subcommand of the
Terminal key. (Escape is the old name for the Terminal key.) Rather than modifying
the list yourself, use tviadd-escape-key or tv:remove-escape-key (below). Entries on
- the list are of the form: :
(char function documentation optionl optzonz .)
char is the character that should be typed after Terminal to get the new command. The
_character gets upper-cased before it is searched for in this list, so don’t use lower case
- characters. function may either be a list to be evaluated, or a symbol, which is the name
of a function to be applied to one argument. This is cither the numeric argument
- specified by the user (as in Terminal 0 S), or nil if the user gave no argument.

documentation should be a string giving documentation, or a form that gets evaluated and
-returns cither a string or nil. The string will be printed by Terminal Help, except that nil
mecans to omit this character from the Termlnal Help display.

Normally ﬁmction is evaluated or applied in a new process created for the purpose, but if
--you give the keyboard-process.option it will run in the kcyboard process. This option
exists because certain of the built-in commands must work this way. If you add your
own, you should not use this option, since you do not want to interfere with the
operation of the keyboard process. The cost of creating a new process is quite low.

If the :typeahead option is specified. then everything typed before the Terminal key will

be shoved into the selected 1/0 buffer, ie. it will be treated as typcahcad to the currently
selected window. Use this option with commands that change the sclected window, to

SRC:KL.WIND>INPUT.TEXT.24 o . 8-AUG-83

Intercepted Characters ' - 64 | , Window System Manual

ensure that the user's typed input goes where he expected it to when he typed it.

Here is a sample element:
(#\clear-screen
(tv:kbd-screen- red1sp1ay)
"Clear and redisplay all windows.")

tv:add-escape-key char function documentation &rest opiions
Adds an element to tv:*escape-keys*, and puts it in the right place alphabetically.

tv:remove-escape-key char
Removes any element for char from tv:*escape-keys®.

tv:*system-keys® . Variable
The value of this variable is an alist, each entry of which describes a subcommand of the
" System key. Use the functions tviadd-system-key and tv:remove-system-key (below)
to modify the list rather than doing it yourself. Entries are of the form:
(char find documentation create)

char is the character that should be typed after System to get the new command. The
character gets upper-cased before it is searched for in this list, so don’t use lower case
characters. documentation should be a string to be printed by System Help.

If find is an instance of a flavor, then it should be a window, and the System command
will select that particular window. However, normally find is the name of a flavor. If it
is, the System command first searches the previously-selected-windows list for a window
of that flavor, and selects one if it finds one. Otherwise, if the currently selected window
is of that flavor, it beeps. Otherwise, it looks at create to figure out what to do. find can
also be a list; then it is evaluated and the value should be a window or a flavor name to
be used as described above. . ' ’

. If create is nil, it beeps. If create is t, a new window of flavor find is created by calling
make-instance with no options, and is selected. If create is some other symbol, it is the
name of the flavor of window to be created. (This can be different from the flavor to
look for, which might be a mixin that is component of several different flavors all of
which are suitable to select when this key is typed.) Otherwise, create is a form to be
evaluated to create a window. The System command runs in a newly-created process and

"so the form is evaluated in its own process, not the keyboard process.

If the character typed after the System key is typed with the Control shift, existing
windows are ignored and a new window is created according to create..

Here is a sample element.
(#/E zwei:zmacs-frame "Editor" t)

tv:add-system- key char find documentation &optiona] (create t)
‘Adds an clement to tv:*system-keys*, and puts it in the right alphabctical position.

SRCKLWINDMNPUT.TEXT.24 | 8-AUG-83

Window System Manual - 65 _ Polling The Keyboard Explicitly

tv:remove-system-key char
Removes any element for char from tv:*system-keys”.

tv:find-window-of-flavor ﬂavorname :
- Returns a previously seclected window of flavor flavor-name. Windows are found in
tv:previously-selected -windows (page 36) and checked with typep.

tv:select-or-create-window-of-flavor flavor-name
Selects a previously sclected window of flavor flavor-name, or, if none exists, creates a
new one and selects it.

5.6 Polling The Keyboard Explicitly

Another way of using the keyboard, different from reading a stream of input characters from
a window, is to treat it as a “"random access” device and look at the instantaneous state of
-particular keys. Spacewar does this. ”

tv:key-state key-name
-~ Returns t if the keyboard kcy named key-name is currently depressed, nil if it is not.

key-name may be the symbolic name of a shift key, from the table below, or the
.character code of a non-shift key, which is the character you get when you type that key
without any shifts: a lower-case letter, a digit, or a special character. Shift keys that
come in pairs have three symbolic names; one for the left-hand key, one for the right-
hand key, and one for both, which is considered to be depressed if either member of the
pair is. The shift key names are:

:shift ' :left-shift :right-shift
:greek - :left-greek ' : zright-greek
:top ' " sleft-top -:right-top
scontrol :Teft-control :right-control
:meta _ :left-meta :right-meta
:super : :left-super :right-super
:hyper o :left-hyper - :right-hyper
:caps-lock - :alt-Tock - :mode-lock
:repeat . : .

SRC:(]..Wl_Nl))lNPU’I‘.'I_’l-LXTQM B | © 8-AUG-83

Output of Text - 66 _ Window System Manual

6. Output of Text

All windows can function as output streams, displaying the output as if on the screen of an
. ordinary display terminal. ‘The flavor tv:minimum-window implements the operations of the Lisp
Machine output stream protocol (see section 21.5 of the Lisp Machine manual), as well as many
additional output operations such as :insert-line. Every window has a current cursor position; its
main use is to say where to put characters that are drawn. The way a window handles the
operations asking it to type out is by drawing that character at the cursor position, and moving
the cursor position forward past the just-drawn character. '

Cursor position arguments to stream operations are always expressed in "inside" coordinates
(see page 129): that is, coordinates relative to the top-left corner of the inside part of the
window, so the margins don’t count in cursor positioning. The cursor position always stays in the
inside portion of the window—never in the margins. The point (0,0) is at the top-left corner of
the window; increasing x coordinates are further to the right and increasing y coordinates are
further towards the bottom. (Noté that y increases in the down direction, not the up direction!)

tv:cursor-x . ' , Instance variable of windows
tv:cursor-y - ' Instance variable of windows
The window’s current cursor position. Note that these variables use "outside" coordinates,
‘unlike the arguments to stream operations.

The x cursor position is the position of the left edge of the character box of the next
character output. (The leftmost nonzero pixels of the character may be either left or right of the
edge of the character box, according to the lefi-kern of the character; see page 83).

The y cursor positidn is the .positibn of the top of the vertical extent for the line being
- output. If only a single font is in use, the top of the character box is at this vertical position.

In fact, characters are positioned so that their basclines come out on the bascline of the line.
This way, characters of different fonts juxtaposed in one line come out with baselines aligned
" rather than with their top edges aligned. The position of the character’s baseline is a property of -
its font. The window’s baseline is computed from the set of fonts in use, to provide enough-
space above the baseline for any of the fonts (see page 85).

When a character is drawn, it is. combined with the existing contents of the pixels of the
window according to an alu function. The different alu functions are described in section 8.1,
page 93. When characters are drawn, the value of the window’s char-aluf is the alu function
"used. Normally, the char-aluf says that the bits of the character should be bit-wise logically ored
‘with the existing contents of the window (tv:alu-ior). This means that if you type a character,
then set the cursor position back to wherc it was and type out a sccond character, the two
“characters will both appear, ored together one on top of the other. This is called overstriking.
Erasure is also done using an alu function which the window can specify, called the erase-aluf.
Normally this is an alu function which ands the old plxel va]uc wuh the complcment of the area
crascd (tv:alu-andca).

SRC:(L.WIND)OU‘lfPUT.TF,XT.% e 8-AUG-83

Window System Manual | 67 - Output of Text

tv:char-aluf | Instance varidble of windows
tv:erase-aluf : Instance variable of windows
The window’s char-aluf and erase-aluf. '

Reverse-video windows work by interchanging the normal values of the char-aluf and erase- -
"aluf, so that erasing an area sets it to one while drawing a character clears the character’s pixels
to zero. : _

Every window has a font map. A font map is an array of fonts in which characters on the
window can be typed. At any time, one of these is the window’s current font; the operations
that type out characters always type in the current font. Details of fonts and the font map appear
below (see chapter 7, page 83). For now, we describe fonts only enough to explain the character
- width and -line-height of the window; these two units are used by many of the operations
‘documented in this section. The character-width is the char-width attribute—the width of a
“typical™ character—of the first font in the font map. The line-height is the sum of the vsp of the
window and the maximum of the char-heights of all the fonts. The vsp is an attribute of the
window that controls how much vertical spacing there is between successive lines of text. That is,
each line is 'as tall as the tallest font is, and you can add vertical spacing between lines by
controlling the vsp of the window. Operations for controlling the vsp are documented on page 80.
There is no instance variable holding .the vsp, but the system can recompute it from the line-
height and the font map.

~tv:char-width ' o Instance variable of windows
tv:1ine-height Instance variable of windows
The character-width and line-height of the window. The line height is actually used for
outputting a # \return character. The character width is not used at all for ordinary
output, since each font determines its own widths. Both are used for interpreting cursor
positions expressed in characters or lines.

. Every window has a“current font, which the operations use to figure out what font to type in.
If you are not interested in fonts, you can ignore this and something reasonable will happen. In
some fonts, all characters have the same width; these are called fixed-width fonts. The default-
font is an example. In other fonts, each character has its own width; these are called variable-
width fonts. With variable-width fonts, it is not fully meaningful to express horizontal positions in
numbers of characters, since different characters have different widths. Some of the functions
below do use numbers of characters to designate widths; there are warnings along with each such

"use explaining that the results may not be meaningful if the current font has variable width.

- tv:sheet-cursor-x window

tv:sheet-cursor-y window

~ tv:sheet-char-aluf window

tv:sheet-erase-aluf window

tv:sheet-char-width window

tv:sheet-1ine-height window :
Accessor defsubsts for the corresponding instance variables. It may be reasonable to setf
the first four of them, '

© SRCKL.WINDYOUTPUT.TEXT.26 | o 8-AUG-83

How A Character Is Printed - 68 - Window System Manual

6.1 How _A Charactef Is Printed

Typing out a character does more than just drawing the character on the screen. The cursor
position is moved to the right place; non-printing characters are dealt with reasonably; if there is
an attempt to move off the right or bottom edges of the screen, the typeout wraps around
appropriately; more breaks are caused at the right time if more processing is enabled. Here is the
complete explanation of what typing out a character does. You may want to remind yourself how
the Lisp Machine character set works; see section 21.1 of the Lisp Machine manual. You don’t
have to worry much about the details here, but in case you ever need to know, here they are. If
you aren't interested, skip ahead to the definitions of the operations.

First, any output exceptions that are present are dealt with, and made to go away. See
section 6.3, page 70, for an explanation of this.

When all exceptions have been dcalt with, the character finally gets typed out. If it is a
printing character, it is typed in the current font at the cursor position and the cursor position is
moved to the right by the width of the. character. If it is one of the format effectors # \return,
\tab, and #\backspace, it is handled in a special way to be described in a moment. All
other special characters have their names typed out in tiny letters surrounded by a lozenge, and
the cursor position is moved right by the width of the lozenge. If an undefined character code is
typed out, it is treated like a special character; its code number is displayed in a lozenge.

#\tab moves the cursor position to the right to the next tab stop, moving at least one
character-width. Tab stops are equally spaced across the window. The distance between tab stops
iS tab-nchars times the character-width of the window. tab-nchars defaults to 8 but can be
changed (see page 81).

‘Normally # \return moves the cursor position to the inside left edge of the window and
down by one line-height, and clecars the line (see page 75). It also deals with more processing
and the end-of-page condition as described above. However, if the window’s crnot-newline-flag is
on, the #\return character is not regarded as a format effector and is displayed as "return” in a
lozenge, like other special characters.

If the character being typed out is a #\backspace, the result depends on the value of the
window’s backspace-not-overprinting-flag. 1f the flag is 0, as is the default, the cursor position is
moved left by one character-width (or to the inside left edge, whichever is closcr) If the flag is .
1, #\backspaces are treated like all other special characters '

6.2 Stream Output Operations
:tyo ch &opnonal Jont Operation on windows

Type ch on the window, as ‘described above. Basically, type the character ck in font or
* the current font at the cursor position, and advance the cursor position. :

SRCKL.WIND>OUTPUT.TEXT26 = ' ' ~ 8-AUG-83

Window System Manual o 69 _ Stream Output Operations

:string-out siring &optional (start 0) (end nil) , Operation on windows
Type string on the window, starting at the character -start and ending with the character
end. If end is nil,” continue to the end of the string; .if neither optional argument is
given, the entire string is typed. This behaves exactly as if each character in the string
(or the specified substring) were printed with the :tyo operation, but it is much faster.

:fat-string-out siring &optional (start 0) (end nil) Operation on windows
Type the fat string string on the window. This is like :string-out except that the %%ch-
font field of each character is used as the font to draw that character in. The window’s
current font is not used.

"I'lna out string &optional (start 0) (end nil) Operation on windows
Do the same thing as :string-out, and then advance to the next line (like typing a
\return character). The main reason that this operation exists is so that the stream-
copy-until-eof function (see section 21.4 of the Lisp Machine manual) can, under some
conditions, move whole lines from one stream to another; this is more efficient than
“moving characters singly. The behavior of this operation is not affected by the :cr-not-
newline-flag init-option (see page 81). :

:str1-ng-out-centered string left righl y-pos "Operation on windows
Output string (or the portion from start to end), centered between x positions lefi and
right, at y position j-pos (which defaults to the current cursor position).. The cursor is
_left at the end of the string. If the string is multiple lines, the entire rectangular shape it

- .occupies is centered as a unit. To center lines individually, output each line individually
with this operation.

:fresh-1ine Operation on windows
Get the cursor posmon to the begmnmg of a blank line. Do this in one of two ways. If
the cursor is already at the beginning of a line (that is, at the inside left edge of the
window), clear the line to make sure it is blank and leave the cursor where it was.
Otherwise, advance the cursor to the next line and clear the line just as if a #\return
had been output. The behavior of this operation is not affected by the :cr-not-newline-
flag init-option (sce page 8])

beep &optional beep-type ' o ‘Operation on windows
Attempt to attract the user’s attention, by either making a sound with the keyboard or
flashing the screen into and out of inverse video or both.

If beep’s value is nil, both are done. If the value is :beep, only the sound is made. If
it is :flash, only flashing the screen is done. : '

~No standard meanings have been assigncd to beep-type yet.
beep &optional beep-t_) ppe (stream standard~ output)

Beeps by sending a :beep message to stream, passnng beep-type as an argument. If the
stream docs not handle the :beep operation, a sound is made on the keyboard instead.

SRCKLWIND>OUTPUT.TEXT.26 - ' : 8-AUG-83

Output Exceptions 70 ' Window System Manual

d 'lsp'lay lozenged-string siring _ Operation on wmdows
Output strmg in a lozenge. This is how spccxal characters are echoed '

tv:sheet-11ne-out sheet string start end set-xpos set-ypos dwidth
This is a complicated primitive whose interface is arranged to do exactly what the editor
needs for buffer display, to make the editor as fast as possible.

It outputs part of string on sheet like the :fat-string-out operation, but stops if it reaches
‘the right margin (outputting a right margin character if any output remains, if the window
calls for that).

If set-xpos and set-ypos are non-nil, the cursor is moved there and a :clear-eol is done,
before output starts. If one of these arguments is nil, that dimension of cursor position is
not changed. If both are nil, the cursor is not moved and nothing is cleared.

If dwidth is non-nil, it should be a positive number. Output actually starts at index (1-
start) in the string, and at x position dwidth less that the cursor position (as found or as -
set by set-xpos). However, if a :clear-eol is done, it starts at set-xpos. Non-nil dwidth
is to be used if the previous character of the string is in an italic font, and is already
present on the scrcen before the output now being done. It causcs that character to be
output again, presumably overprinting itself, in case a corner of it was erased accidentally
because it protrudes to the right of its allocated space.

Returns two values, the final index in the string and the final x cursor position. The
"window’s cursor is not guaranteed to be moved there; it is undefined on exit from this
function. But the value will be correct.

6.3 Output Exc.éptionsf

Before doing output to a window, . various “exceptional conditions are checked for. If an
exceptional condition is discovered, a standard operation is invoked to handle it. Redefining or
adding daemons to these operations can change the handling of exceptions. For example, output
with the cursor too close to the right margin causes an end of line exception; the handling of this
exception is what moves the cursor to the next line, or truncates the line, or whatever the
window’s flavor arranges for. :

The exceptions are actually indicated by flags, bits, set in the window. The operation to
handle the exception should do nothing if it is invoked when the corresponding flag is not set,
and should not return with the flag still set (or an error will be signaled). The end-of-page and
more flags are set and cleared automatically by moving the cursor; as long as things are done
properly, they will be set if and only if the cursor is in the right place for them. So the

* exception- handler need only make sure to move the cursor to a good place. The output hold

exception handler usually just waits for or brings about a situation in which the reason for the
output hold is gone (usually because the window has been exposed).

SRC:KL.WIND>OUTPUT.TEXT.26 R 8-AUG-83

Window System Manual ; n : Output Exceptions

:handle-exceptions Operation on windows
Performs the exception processing described by all the rest of this section. Exceptions are
processed in this order: '
Output Hold, End-of-Page, «*MORE++, and End-of-Line.

6.3.1 Output Hold and End of Page Exceptions

First, if the window’s output hold flag is set, an output hold exception happens. The
operation :output-hold-exception is invoked to handle it. '

tv:sheet-output-hold-flag window
Returns the output hold flag of window, which is 1 if there is a hold and 0 if not. This

is a setf'able accessor defsubst.

~:output-hold-exception "~ Operation on windows

 This operation should not return until the output hold is gone. It may wait for the
output hold flag to be cleared, or try to cause it to be cleared. The-default handler acts
based according to the window's deexposed typeout action (see page 21). '

_ Néxt, if the end-of-page flag is set (normaily the case if the y-position of the cursor is less .
than one line-height above the inside bottom edge of the window), the :end-of-page-exception
operation is mvoked

tv: sheet -end- page flag window
Returns the end-of-page flag of window, which is 1 if the next output operatmn should
wrap and 0 o_therw15e ‘This is a setf’able accessor defsubst. .

:end-of-page-exception Operation on windows
This operation is invoked to handle the end-of-page exception when present. It should do
nothing if invoked when the flag is zero.

The default definition is simply to' move the cursor to the top line, clear that line, and
set the vertical position for the next *+«MORE«=* if more-processing is enabled.

6.3.2 **MORE** Exceptions

Next, if the window's more flag is set, a more exception happens. The more flag gets set
when the cursor is moved to a new line (e.g. when a # \return is typed) and the cursor position
~ is thus made to be below the more vpos of the window. (If tv:more-processing-globai-enable
is nil, this cxception is suppressed and the more flag is turned off.) The :more-exception
operation is invoked to handle the: excepnon :

tv:sheet-more-flag window

‘Returns the more flag, which is 1 if the ncxt output opcration should do a *+*MORE+=,
and 0 otherwise. This is a setf‘able accessor defsubst. -

* SRC:KL.WINDYOUTPUT.TEXT.26 o B . $-AUG-83

Output Exccptions ' /) '_ Window System Manual

tv:more-vpos ' | Instance variable of windows
The vertical position at whlch the next **MOREs= should happen in output on the
window.

:more-vpos : Operation on windows

Returns the window’s tv.more-vpos.

tv:sheet-more-vpos window
Accessor defsubst for the preceding instance variable.

tv:more-processing-global-enable Variable
»+MORE+» processing does not happen if this variable is nil during the output operation
in which the *sMORE#*#* would have happened.

- :more-exception v S o Operation on windows

The :more-exception handler in the tv:minimum-window flavor does a :clear-eol
operation, types out #«MORE»+, reads a character using the :more-tyi operation, restores
the cursor position to where it originally was when the :more-exception was detected,
does another :clear-eol to wipe out the »+MOREss, and resets the more vpos. The
character read in is ignored. ‘ '

This operation works by calling a subroutine, tv:isheet-more-handler, if the more flag is

" set. It should do nothing if the flag is zero. 1t is safe to redefine it to call that function
with different arguments, or to do other things as well. It is very risky to write a new
definition from scratch, as tvisheet-more-handler is tricky.

tv:sheet-more-handler &optional (operation':tyi) (more-string "*-MORE"")
Implements the standard handling of more exceptions, described above, using operation to
read the input and more-string as the output to be printed and then erased.

Note that the more flag is set only when the cursor moves to the next line, because a
#\return is typed out, after a :line-out, or by the :end-of-line-exception handler described
below. It is not set when the cursor position of the window is explicitly set (e.g. with :set-
cursorpos); in fact, explicitly setting the cursor position clears the more flag. The idea is that
when typeout is being streamed out sequentially to the window, more-exceptions happen at the
right times to give the user a pause in which to read the text that is being typed, but when
cursor positioning is being used the system cannot guess what order the user is reading things in
and when (if ever) is the right time to stop. In this case it is up to the apphcauon program to
provxdc any necessary pauses. » ’

The algorithm for sctting the more vpos is too complicated to go into here in all its detail,
~and you don’t need to know exactly how it works, anyway. It is careful never to overwrite
something before you have had a chance to read it, and it trics to do a *+MORE#+» only if a lot
of output is happening. But if output starts happening near the bottom of the window, there is
no way to tell whether it will just be a littlc output or a lot of output. If there’s just a little, you
would not want to be bothered by a **MORE#=+. So it doesn’t do one immediately. This may
make it nccessary to cause a »*MOREs» break somewhere other than at the bottom of the
-window.. But as more output happens, the position of successive #+«MORE##+s is migrated and
cventually it ends up at the bottom, : '

SRCKLW IND>OUTPUT.TEXT.26 - ‘ 8-AUG-83

Window Systcrh Manual : 3 : Output Exceptions

tv:autoexposing-more-mixin - Flavor
If you mix in this flavor, when a :more-exception happens, the window will be exposed
- (an :expose message will be sent to it). This is intended to be used in conjunction with
‘having a deexposed typeout action of :permit (sec page 22), so that a process can type
out on a deexposed window and then have the window expose itself when a »*MORE#»
break happens. '

6.3.3 End of Line Exceptions

Finally, if the cursor is at or near the end of the line so that there is no room to output the
next character, an end-of-line exception happens. The :end-of-line-exception operation is
invoked to handle it. A flag is not used to trigger this exceptxon since the condition depends on
the width of the character to be output.

send-of-1 1ne-except-1on Operation on windows
This operation is defined by default to advance the cursor to the next line, just as typing
a #\return character does normally (see below). Doing so may, in turn, cause an :end-
of-page-exception or a :more-exception to happen. Furthermore, if the right margin
character flag is on (see page 81), then before going to the next line, an exclamation
point in font zero is typed at the cursor position. When this flag is on, end-of-line
exceptions are caused a little bit earlier, to make room for the exclamation point,

:tyo-right-margin- character Operation on windows
If a right-margin character is to be printed, thts operation is invoked to print it. It can

simply. :tyo the character.

The way the cursor position 'goe's to the next line when it reaches the right edge of the
window is called horizontal wraparound or continuation.. You can make wmdows that truncate
lines instead of wrapping them around by usmg tv:line-truncating -mixin.

tv:line- truncat'lng -mixin ‘ Flavor
This mixin gives a window the ability to truncate lines at the right margin instead of
continuing output onto the next line as usual (sce continuation, page 73). Truncation is
performed if the window’s truncatc-line-out flag is set. When the cursor position is near
the right-hand edge of the window and there is an attempt to type out a character, the
 character simply will not be typed out. -

:truncate-11ne-out-flag flag - Init option for tv:line-truncating-mixin
Initializes the truncate-line-out flag of the window to flag. One means truncate and zero
‘means do not.

tv:sheet- truncate-1ine-out- flag window .
Returns the truncate-line-out flag of the window, which is zero or one. One means -
" truncate and zero means do not; however, the flag matters only 1f tviline- truncatmg-
mlxm is in use. This is a defsubst which may be setf'd.

'SRC:KL.WIND>OUTPUT.TEXT.26 | o &AUGS3

Cursor Motion : , >74 _ _ Window SystcmManual

tv:truncating-window Flavor
This flavor is built on tviwindow with tviline-truncating-mixin mixed in. If you
instantiate a window of this flavor, it will be like regular windows. of flavor tviwindow
except that lines will be truncated instead of wrapping around. :

6.4 Cursor Motion

The window’s cursor position is where the upper left corner of the next output character will
appear, with a vertical offset if necessary to match up the baselines of various fonts (sce page 87).
Recall that cursor position arguments and values of stream operations are relative to the inside
upper leﬁ corner of the window.

"l‘ead cursorpos &optional (units ":pixel) : Operation on windows
vReturn two values: the x and y coordinates of the cursor position. These coordinates are
in pixels by default, but if units is :character, the coordinates are given in character-
widths and line-heights. (Note that character-widths don’t mean much when you are using
variable-width fonts.) ’ ' .

1ncremant cursorpos x y &optional (units ’:pixel) Operation on windows

- Advances the cursor position the specified amount in cach coordinate. The units may be

~ specified as with :read-cursorpos. This operation is considered to be sequential motion
of the cursor through a variable amount of space, rather than instantaneous jumping of”
the cursor. What this means is that exceptions happen, just as if output were being done.
So the cursor wraps around at the margins (or does whatever this window does for :end-
of-line-exception and :end-of- page exception), and *=MORE=*» processing happens at
the appropriate place.

The following few operations do cursor motion rather than advancing the cursor. The end-of-
page, more and end-of-line exception flags will be set if the cursor is moved to a position where
they ought to be on, and can be cleared if they were previously on and the cursor is moved to a
place where they ought to be off. Exception handling does not take place.

:set-cursorpos x y &optional (units ':pixel) o Operation on windows
Moves: the cursor position to the specified coordinates. The units may be specified as with
:read-cursorpos. If the coordinates are outside the window, move the cursor position to
the nearest place to the specified coordinates that is in the window.

:home-cursor ' Operation on windows
Moves the cursor to the upper lcft corner of the window.

:home-down ‘ Operation on windows
Moves the cursor to the lower left corner of the wmdow :

:forward-char &optional char . Operation on windows
Moves the cursor forward one character position, or the width of char in the current font
if char is specificd. Exceptions arc processed, so this is like outputting a space which has
the appropriate width. '

SRC:<1.WINDYOUTPUT TEXT 26 o | | - ‘. §-AUG-83

Window Systcm Manual L 75 . Erasing

:backward-char &optional char . Operation on windows
Moves the cursor backward one character position, or the width of char in the current
font if char is specified. Exceptions are processed, but there is no reverse-wraparound. At

- the left margin, the cursor does not move. :

:size-1n-characters Operation on windows
Returns two values, the dimensions of the window, .in units of character-widths and line-
heights. (Note that character-wxdt.hs don’t mean much when you are using vanable-w1dth
fonts.)

:set-size-in-characters : Operation on windows
width-spec height-spec &optional option
- Sets the inside size of the window, according to the two specifications, without changing
the position of the upper-left corner. width-spec and height-spec are interpreted the same
way as arguments to the :character-width and :character-height init-options,
respectively. option is passed along to :set-edges (page 46). '

6.5 Erasing
All the erasiﬁg operations operate on the window pixels by drawing the area to be erased
using the window’s erase-aluf as the alu function (see page 67). This is by default tv:alu-andca,

which clears the screen bits of the screen area drawn.

:clear-char &optional char - Operation on windows

Erases the character at the current cursor position. When using variable-width fonts, you =

tell it the character code of the character you are erasing, so that it will know how wide
the character is (it assumes the character is in ‘the current font). If you don’t pass the
char argument, it simply erases a character-width, which is fine for fixed-width fonts.

:clear-string swring &optional start end ' Operation on windows
Erases enough space, starting at the cursor, to contain .string (or the portion of string
from start to end), printed in the current font. The entire height of the linc is crased, so .
" it does not matter whether the text on the screen is string or somcthing else. string
determines only ‘how far to crase. If a fixed-width font is in use, this is equivalent to
doing :clear-char -once for each character in string. This operation bccomes desuable
. because of variable-width fonts.

:clear-eo0l ' Operation on windows
Erases from the current cursor position to the end of the current line; that is, erases a
rectangle horizontally from the cursor position to the inside right edge of the window, and
vertically from the cursor posmon to one linc-height below the cursor position.

:clear-eof ' ’ ' ' Operatzon on windows
Erases from the current cursor position to the bottom of the window. In more detail, first
docs a :clear-eol, and then clears all of the window past the current line.

' SRCKL.WIND>OUTPUT.TEXT.26 | . - © 8-AUG83

LA

Inserting and Deleting L.incs and Characters 76 ‘ ‘ | Window System Manual

‘

:clear-screen : Operation on windows
Erases the whole window and moves the cursor position to the upper left corner of the
window. :
:clear-between-cursorposes siart-x start-y end-x end-y Operation on windows

Erases an area starting at cursor position start-x and start-y, wrapping around if necessary
at the end of the line or the page, until end-x and end-y are reached.

Though the arguments are expressed as cursor positions, the cursor position of the
window is not changed.

6.6 Inserting and Déleting Lines and Characters

Inserting a character means printing it at the cursor but pushing the rest of the text on the
line toward the right margin. Similarly, deleting a character means pulling the following text on
. the line back toward the left so that the position occupied by the character is closed up. Inserting
and deleting lines work the same way vertically, moving the lines below the cursor down or up.

The operations that take a numeric argument specifying the amount of space to insert or
delete also take an argument specifying the unit (either :pixel or :character) in which the space .
has been measured. The unit argument’s meaning is the same as in the :read-cursorpos
operation (page 74) but the default is :character rather than :pixel.

:delete-char &optional {(n 1) (unit ‘character) Operation on windows
' Without an argument, deletes the character at the current cursor position. Otherwise,
deletes n characters (or n pixels if unit is :pixel), starting at the cursor position. Move
the display of the part of the current line that is to the right of the deleted section
" leftwards to close the resultant gap. (If unit is :character, this assumes all characters are
one character-width wide, and so will not do anything useful with variable-width fonts.)

.delete string siring &optional (start 0) (end nil) Operation on windows
This is for deleting specific strings in the current font. It is one of the things to use when
dealmg with vanable-w1dth fonts.

If string is a strmg, excise a region exactly as wide as that string, or a substring specified
by start and end, and moves the display of the part of the current line that is to the
right of the excised regionvlcftwards_to_ close the gap.

If string is a number, it is considered to be -a character code. The single character is-
trcated like a string containing that character. o

tdelete-11ne &optional (n 1) (unit ‘“character) Operation on windows
Without an. argument, deletes the line that the cursor is on. Otherwise deletes n lines, or
n rows of pixels if wunit is :pixel, starting with the onc the cursor is on. Moves the
display below the deleted scction up to closc the resulting gap. '

'SRCKLWIND>OUTPUTTEXT.26 . . &AUGS3

Window System Manual - » 77 - Anticipating the Effect of Qutput

:insert-char &optional {n 1) (unit *character)- ' Operation on windows .
Opens up a space the width of n characters (or n pixels if unit is :pixel) in the current
line at the current cursor position. Shifts the characters to the right of the cursor further
to the right to make room. Characters pushed past the right-hand edge of the window are
lost. (If unit is :character, this assumes all characters are one character-width wide, and
so will not do anything useful with variable-width fonts.) o

sinsert-string ' Operation on windows
string &optional (start 0) (end nil) (fype-too t) :
Inserts a string at the current cursor position, moving the rest of the line to the right to
make room for it.

The string to insert is specified by string; a substnng thereof may be spec1ﬁed with start
~ and end, as with :string-out.

string may also be a number, in which case the character with that code is inserted.

If type-too is specified as nil, the string is not actually printed. The space opened up is
big enough for the string, but is left blank.

:insert-1ine &optional (n 1) (unit "character) Operation on windows
Takes the line containing the cursor and all the lines below it, and moves them down one
line. The line containing the cursor is moved in its entirety, not broken, no matter where
the cursor is on the line. A .blank line is created at the cursor. If an argument n is
given, opens up n blank lines, or n rows of pixels if unir is :pixel. Lines pushed off the
bottom of the window are lost.

6. 7 Antlclpatmg the Effect of Output

The following operations do not output, but provide information about what would happen to
the cursor and the screen if output were done:

:character-width char &optional (font tv:icurrent-font) Operation on windows
Returns the width of the character char, in pixels. The current font is used if font is not
specified. If char is a Backspace, :character-width can return a necgative number. For
Tab, the number returned depends on the current cursor position. If char is Return, the
result is defined to be zero. :

:compute-nioti on ‘ Operation on windows
: string &opnonal (start 0) (end nily (x tvicursor-x) (y tvicursor-y}
(cr-at-end-p nil) (stop-x 0) stop-y botlom-lzmtl rzghl-lmut font line-height
. lab-width

. This is used to ﬁgure out where the cursor would end up if you were to output string
- using :string-out. It does the right thing if you give it just the string as an argument.
start and end can be used to specify a substring as with :string-out. x and y can be used
to start your imaginary cursor at some point other than the present position of the real
cursor. If you specify crat-end-p as t, it pretends to do a :line-out instcad of a :string-
out. - stop-x and stop-y define the size of the imaginary window in which the string is

' SRC:KL.WIND>OUTPUT.TEXT.26 ' : SRR . . 8-AUG-83

Aniicipating the Effect of Output 78) - Window System Manual

':be’ing printed; the printing stops if the cursor becomes simultaneously 2 both of them.
These default to the lower left-hand corner of the window. (This corner is reached before
the right-hand one, since output goes from left to right on each line.)

bottom-limit_and right-limit are vertical and horizontal positions at which to wrap around;
.they default to the inside height and width of the window. They differ from the stop-x
and stop-y in that these act independently when the cursor reaches either one, and they
cause the cursor position to change rather than returning to the caller.

The computation normally uses font, or the window’s current font if font is nil. However,
if string is of type art-fat-string, each character’s %%ch-font field is used as an index in
the window’s font map to find the font for that character, and font is lgnored except
pos51bly for defaulting the tab-width.

For vertical spacing, line-height is used. The default for Ime-hezght is font’s lme height if
Jont is non-ml else the window’s Ime-hexght. '

tab-width specifies the distance between tab stops, in plxels If it is omitted, the default is
(tvisheet-tab-width self) if no font .is specified, or (* (tv: sheet -tab-nchars self)
(tv:font-char-width font)) if a font is specxﬁed. .

Four values are returned:

Sinal-x _
final-y The positions at which output stopped. _
final-index The index in string at which output stopped, or nil if it reached the end

of the string, or ¢ if the string itself was processed but not the implicit
Return which was supposed to follow the smng

maximum-x The largest X posmon value reached during processmg

All coordinates for this operation are cursor positions, relative to the window’s inside -
edges. However, if you specify all the arguments you. can use any origin of coordinate
system you like, as long as you interpret the values in the same coordinate system.

“:string-length . ' ' ‘ Operation on windows
string &opnonal (start 0) (end ml) stop-x (font current-font) (start-x 0)
tab-width .

This is very much hke :compute-motion, but works in only one dimension. It tells you
how far the cursor would move if string were to be displayed in the current font starting.
at the left margin, or at siart-x if that is specified. siart and end work as with :string-
out to specify a substring of string. If stop-x is not specified or nil, the window is
assumed to have infinite width; otherwise the simulated dlsplay will stop when a posmon
stop-x pixels from the left edge is reached.

The computation normally uses font,- or the window’s current font if font is nil. However,
if string is of type art-fat-string, cach character’s %%ch-font ficld is used as an index in -

~ the window’s font map to find the font for that character, and fonf is ignored except
possibly for defaulting the tab-width. ’

SRCAL.WIND>OUTPUT.TEXT.26 : : - ' _ - 8-AUG-83

Window System Manual ‘. 79 Explicit (Non-Cursor) Output

tab-width specifics the distance between tab stops, in pixels. If it is omitted, the default is
(tv:isheet-tab-width - self) if no font is specified, or (* (tv: sheet tab- nchars self)
(tv:font-char-width fonr)) if a font is specified.

:string-length returns three values:
Sinal-x Where the imaginary cursor ended up.

~ final-index The index of the next character in the string (the length of the string if
the whole string was processed, or the index of the character which would
have moved the cursor past stop-x),

maximum-x The maximum x 'coordinat¢ reached by the cursor (this is the same as the
first value unless there are Return or Backspace characters in the string).

68 -Explicit (Non-Cursor) Output

_ A window includes some state mformatmn which changes as output is done. - These include
the cursor position, the current font, alu function, and exception flags. The presence of this
information ‘makes the window behave coherently as a stream, so that the output from one
operation follows that of the previous operation. But sometimes this is not desirable. The
“explicit” output operations use a window only for its position and size, with all additional
information passed by the caller explicitly. This way, multiple streams of output to the same.
window can exist, which do not mterfcre with each othér by trying to use a smgle cursor.

The x and y position arguments used by these operations are relative to the outside edges of
* the window. This is different from the stream and higher-level operations. It is because these
operations are frequently used for drawing parts of the margins, such as labels and margin
regions. :

:string-out- epoc‘lt ‘ Operation on windows
string start-x - start-y x-limit y-Izmtt Jfont alu &optional (start 0) end
 multi-line-line-height
Outputs string (or the portion from start to end) onto the wmdow starting at start-x and’
_ start-y, neither using nor moving the window’s cursor position. If x-limit or y-limit is
non-nil, .output stops if it reachﬁs that position.

" Output is done in font using alu function alu. The window’s current font and alu
function are not used or set. If there are Retum characters in the output, and multi-line-
line-height is nil, they are printed as "Return” in a lozenge. If multi-line-line-height is a
number, that number is used as the line height, ignoring the window’s line height, and
“the horizontal output position ‘moves to-.start-x rather than the left margin for the next
line of output. :

Note that the arguments of tvsheet -string-out-explicit are in a_ different ‘order. “The
argument order of this operation was cleaned up.

| lhe operation returns thrce values: the final x position the final y position, and the final
index in the string. You can use thesc to do multiple operations in consecutive places on
the screen. : :

SRC :(L.WlN]))OUTPU'I‘.’IFXT .26 ' ~ 8-AUG-83

Window Parameters Affecting Output 80 . Window System Manual - -

:string-out-centered-explicit - Operation on windows
string &optional left y-pos right y-limit font alu (start Q) end
multi-line-line-height ».
Outputs string (or the portion from start to end) centered between x positions left and -
right, at y position y-pos. If y-limit is reached, output stops. left and right default to the
inside edges of the wxndow

Output is done in font and - alu, which default to the ones current for the window, and
- lines are separated by muIn-Ime-lme-hezght (which defaults to the window’s line height).

 :string-out-x-y- -centered-explicit ' Operation on windows
string &optional left top right bottom font alu start end
" multi-line-line-height

Displays string (or the portion from start to end) with the rectangle it occupies centered
both horizontally and vertically. Horizontally it is centered between left and right, and

- vertically between top and botlom The defau]ts for these arguments are the inside edges
of the wmdow

'Output is done in fbnt and alu, which default to the ones current for the window, and.
lines are separated by multi-line-line-height (which defaults to the window’s line height).
6.9 Window Parameters Affecting Output
 The following operations and initialization options initialize, get, and set various window
attributes which .are relevant to the typing out of characters. (See also the operations to

manipulate the current font, on page 84.)

smore-p t-or-nil o ” | ~ Init oplzon Jor windows
' Inmahzes whether the window should have more processmg It defaults to t.

:more-p ' ‘ | : | Operanon on windows
Retums t if more processmg (see page 71) is enabled; othermse return nil.

:set-more-p more-p o ' ' ' ' Operation on windows
If more-p is nil, turns off more processing (see page 71); otherwise turns it on.

1VSp n-plxels : L o ~ Init option for windows
Initializes the wmdow s vsp It defaults to 2. o

'VSp : IR S Operdlion on windows
Rctums the value of vsp for this window (see page 67).

156t-vSp newvsp o ' Operation on windows
Scts the value of vsp for this wmdow (sce page 67) to new-vsp

_ SRCKLWIND>OUTPUTTEXT.26 o L BAUGSS

Window Sysiem Manual L 81 _ Window Parameters Affecting Output

:reverse-video-p ' : ‘ Operation on windows
Returns nil normally or t 1f the window displays in ‘white on black rather than black on
white. * This is separate from the whole screen’s inverse- video mode which is what
Termmal C sets. C

:set-reverse-video-p t-or-ml ' " Operation on windows
Enables or disables reverse-video display. Changmg this mode inverts all of the bits in
the window.

:reverse-video-p tr-ornil Ini_t option for windows

Initializes the use of reverse-video display.

:right-margin-character-flag x | _ Init option for windows
If x is 1, the window should print an exclamation point in the right margin when :end-
_ of-line- exceptlon happens if x is 0, it should not. The default is 0. See page 73.

tv: sheet r1ght margin- character- f'lag &optional (window self)
Returns the flag which controls printing of characters at the right margin on wrap-around
on wma'ow This is a setf'able accessor macro.

:backspace—not-overpr'lnt1ng-f1ag x . Init option for windows

' If x is 0, output of #\backspace will move the cursor position backward; if it is 1, it
will display "overstrike” in a lozenge (that -is, # \backspace will be just like other
special characters). The default is 0. See page 68. ' '

tv:sheet- backspace'not -overprinting-flag &optional (window seif) _
Returns the ﬂag which controls how Backspace prmts on window. This is a setfable

accessor macro.

:cr-not-newline- -flag x - Init option for windows
If x is 0, output of # \return will move the cursor position to the beginning of the next
line and clear that line:- if it is 1, it will display "return”.in a lozenge (that is, # \return
will be just like other special characters). - The default is 0. This flag does not affect the
behavior of the :line-out nor the fresh-line operatmns :

tv:sheet-cr-not- new11ne f'lag &optional (window self)
Returns the flag which controls how Return prints on window. This is a setf'able accessor

macro.
:tab-nchars n = ' ') Init option for windows

* n is the separation of tab stops on this window, in units of the window’s char-width,
This controls how the # \tab character prints. n defaults to 8.

tv:sheef-tab-_nchars &optional (windowself) - -
' Returns the distance between tab stops, measured in units of window’s char-width.

SRCKLWINDYOUTPUT.TEXT.26 o 8-AUG-83

Window Parameters Affecting Output 82 ' Window System Manual

tv:sheet-tab-width &optional (window self)
Returns the distance between tab stops, measured in pixels.

SRCKL.WIND>OUTPUT.TEXT.26 o 8-AUG-83

"Window System Manual 83 . Fonts

7. Fonts

Having used the Lisp Machine for a while, you have probably noticed that characters can be
typed out in any of a number of different typefaces. Some text is printed in-characters that are
small or large, boldface or italic, or in different styles altogether. Each such type face is called a
Sont. A font is conceptually an array, indexed by character code, of pictures showing how each
character should be drawn on the screen.

A font is represented inside the Lisp Machine as a Lisp object. Each font has a name. The
name of a font is a symbol, usually in the fonts package, and the symbol is bound to the font.
A typical font name is tr8. In the initial Lisp environment, the symbol fonts:tr8 is bound to a
font object whose printed representation is something hke

#
The initial Lisp environment includes many fonts. Usually there are more fonts stored in QFASL
files in file computers. New fonts can be created, saved in QFASL files, and loaded into the
Lisp environment; they can also simply be created inside the environment.

'Drawing of characters in fonts is done by microcode and is very fast. The internal format of
fonts is arranged to make this drawing as fast as possible. This format is described later, but you
almost certainly do not need to worry about it.

7.1 Specifying Fonts

You can control which font is used when output is done to a window. Every window has a
Jont map and a current font. The font map is conceptually an array of fonts; with a small non-
negative number, the font map associates a font. The current font of a window is always one of
‘the fonts in the window’s font map. Whenever output is done to.a window, the characters are
printed in the current font. You can change the font map and the current font of a window at
. any time with the appropriate. operations.

"The reason why the window has a font map. rather than merely a current font is that it is
necessary to know all the fonts that will be used beforc doing any output in order to know how
-to position the output properly (so that output. in differcnt fonts on the same line will look right).

In addition, certain output operations can accept fat strings (érrays of type art-fat-string)
which contain 16-bit characters, and regard the top 8 bits of each character as a font number to
look up in the font map. These include :compute-motion, :string-length and :fat-string-out.

:font- map ' Operation on wmdaws
Returns the font map. of the window. The object returned is the array that is actually.
being used to represent the font map inside the window. The elements are actual font
objects.

* You should not alter anything about this array, since the window depends on it in order
to function correctly. To change the font map, use the :set-font-map operation.

SRCKLWINDSFONTSTEXTA? — © © © = 3AUGE}

Spccifying Fonts : . 84 | Window System Manual

:set-font-map newmap B Operation on windows
Sets the font map to contain the fonts given in new-map. Returns the array of fonts that
actually represents the font map inside the window (don’t mess with this array!). new-map
may be an array of font specifiers, in which case this array is installed as the new internal
array of the window, and the font specifiers are replaced by fonts. Font specifiers are
described in the following section; a font or the name of a font may be used.

new-map may also be a list of font specifiers, in which case the array is created from the
list in the style of fillarray, with the last element of the list filling in the remaining
elements of the array if any (the array is made at least 26. elements long, or long enough
to hold all the elements of the list).

If new-map is nil, all the elements of the map are set to the default font of the screen.

The current font is set to zero (the first font in the list or array). The line height and
baseline of the window are adjusted appropriately (see below).

The specified font specifiers are remembered so that the :change-of-default-font
operation can cause the map to be recomputed from them. Thls is in casec one of the
specifiers is a purpose keyword.

~ tv:font-map new-map ’ | Init option for windows
This option lets you initialize the font map. new-map is interpreted the same way it is
interpreted by the :set-font-map operation.

tv:font-map : Instance variable of windows
The window’s font map. ’

_:current-font ; ' - Operation on windows
Returns the current font, as a font object. '

:set-cur‘rent-font new-fbnt ' : Operation on windows
Sets the current font of the window. new-font may be a number, in which case that
element of the font map becomes the current font. It may also be a font specifier, in
- which case the font that the specifier describes is used, unless that font is not in the font
map, in which case an error is signalled. Only fonts already in the font map may be
selected.

tv:current-font : o Instance variable of windows
The window’s current font. o : '

:baseline ' ‘Operation on windows
Returns the maximum bascline of all the fonts in the font map. The bases of all
characters will be aligned so as to be this many pixels below the y cursor position, which
is top of the line on which the characters are printed. In other words, when a character
is drawn, it will be drawn below the cursor position, by an amount equal to the

_ difference between this number and the bascline of the font of the character.

'SRCKL.WINDMFONTS.TEXT.17 | 8-AUG-83

Window System Manual _ . 85 ' -Specifying Fonts

tv:baseline Instance variable of windows
The position of the baseline of a text lme, in pixels from the top of the line’s vertical
extent (its cursor position).

tv:sheot-font-map window
tv:sheet-baseline window
‘tv:sheet-current-font window
“Accessor defsubsts for the corresponding instance variables.

You can use the List Fonts command in Zmacs to get a list of all of the fonts that are
- currently loaded into the Lisp environment. Here is a list of some of the useful fonts:
fonts:cptfont This is the default font, used for almost everything.

fonts:medfnt This is the default. font in menus. It it a fixed-width font with characters
somgwhat larger than those of cptfont. B _

fonts:medfnb This is a bold version of medfnt. When you use Split Screen, for example, the
Do It and Abort items are in this font.

~fonts:tht12i - This is a variable-width italic font. It is useful for italic items in menus; ZMa11
uses it for this in several menus.

" fonts:tr10i . This is a very small italic font. It is the one used by the inspector to say "More
above” and " More below". .
fonts:h10 This is a very small font used for non-selected items in Choose Vanable Values
- windows. '
fonts:hi10b This is a bold version of hl10, used for selected- nems in Choose Variable Values
windows.

711 Font Specifiers

Different kinds of screen require different kinds of fonts. The two kinds of screens currently
supported are black-and-white screens with one bit per pixel, and color screens with four bits per
pixel. Color screens with eight bits per pixel will certainly be supported in the near future, and
other kinds of screen may appear. However, it is nice to be able to write programs that will
work ‘no matter what screen their window is created on. The problem is that if your program
- specifies which fonts to use by actually naming specific fonts, then the program will only work if
the window that you are using is' on the same kind of screen as the fonts you are using were

- designed for.

To solve this problem, ‘a program does not have to specify the actual font to be used.
Instead, it specifies a certain symbol that stands for a whole collection of fonts. All of these fonts
are the same cxcept that they work on different kinds of screens. The symbol that you use is the
name of the member of the collection that works on the black-and-white screen. In other words,
when you want to specify a font, always use the name of a black-and-white font rather than a -
font itself. Every screen knows how to understand these symbols and find an appropriate font to
use. This symbol is called a ﬁmt specifier., because it describes .a font rather than actually bcmg a
font. : :

' SRC:(I..WIND)FONTS.'l'EXT.17 , | - 8-AUG-83

Specifying Fonts o : 86 Window System Manual

A font object may be supplied as a font specifier. This does not mean to use the font as
specified; it means to use the font’s name as a font specifier. Thus, if you supply the font object
for the black-and-white font cptfont for a window on a color screen, the symbol fonts:cptfont is
used as a font specifier, resulting in the color version of cptfont actually being used.

_ The functions that understand font specifiers have some cleverness in order to make life easier

for you. If you pass in the name of a font that is not loaded into the Lisp environment, an
attempt will be made to load it from the file server, using the name of the font as the name of
the file, leaving the version and type unspecified, using the load function. The filename used is
SYS: FONTS; fontname QFASL. Also, the color screen knows how to create color versions of
fonts on the fly if they do not already exist. Either of these things may make your program run
slowly the first time you run it, and so, if you care, you can load the file yourself and create a
~color version of the font yourself (see page 167).

Since different users like to use different fonts,. we provide a facility called font purposes.
Wherever a font specifier is used, the program can specify a purpose keyword instead. This
means, "use whatever font the user likes to use for this particular purpose”. The window
remembers when a purpose was specified instead of a particular font, so that if the user changes
the standard font for that purpose, all the existing windows that were told to use that purpose
will change font.. The user specifies a standard font for a purpose with tv:set-default-font,
tv:set-standard-font or tviset-screen-standard-font. Each screen has its own alist mapping
font purposes to font names, but. normally they are all aitered in parallel. - Defined purpose
keywords include : »

«default - This is the font name for ordinary output. It is also called the default font.
menu This is the font name for use in most menu items.

‘menu-standout
This is the font name for menu items that are supposed to stand out. It is
~normally an italic font.

slabel This is the font name used by default for labels.
:margin-choice - '
This is the default font name for margin choice boxes (see page 210).

It is up to each program to decide when any of these purpose keywords is éppropriate.

:parse-font-specifier font-specifier ' Operation on tv:screen
Parses a font specifier in the proper way for this window, according to the screen the
-window is on. The value is a font object.

:parse-font-name font-specifier : 01)eranon ontv:iscreen
Parses a font specifier in the proper way for this window, according to the scrcen the
window is on.. The value is a font name: a symbol which, evaluated repeatedly,
ultimately produces a font. ' '

SRCKL.WIND>FONTS.TEXT.17 | .8-AUG-83

Window System Manual - 87 ‘ Attributcs of Fonts

tv:font-evaluate jfont-name
Returns the font that font-name is the name of, this is done by evaluating font-name
repeatedly until the result is not a symbol.

tv:set-standard-font purpose font-specifier
Sets the standard font for purpose purpose on each screen based on font-speczﬁer Jont-
specifier is turned into a font by each screen individually, and that font becomes the new
standard font for purpose on that screen. All windows on the screen that were set up to
use the standard font for this purpose will switch to using the newly specified font.

tv:set-default-font font-specifier
Sets the standard font for purpose :defauit.

tv:set-screen-standard-font . screen purpose font-specifier
~ Sets the standard font for purpose on screen only.

:change-of-default-font old-font new-font Operation on windows
Informs the window that the meaning of some standard font-name symbols has changed.
If the window uses any of them, it may need to recompute various things; for example,
if that font is used in the label, the window's inside size may be changed; if it is used in
the window’s font map, the line height may be changed. Either one means the number
of lines may change, and this may require adjustment of other data. This can be done by
an after daemon on this operation.

In addition, the operation must be passed along to all inferiors and potential inferiors.

7.2 Attributes of Fonts

Fonts, and characters in fonts, have several interesting attributes. One attribute of each font
is its character height. This is a non-negative fixnum used to figure out how tall to make the
lines in a window. We have mentioned earlier that each window has a certain- line height. The
line height is computed by examining each font in the font map, and finding the one with the:
largest character height. This largest character height is added to the vsp specified for the window
(see page 67), and the sum is the line height of the window. The line height, therefore, is
recomputed every time the font map is changed or the vsp is set. It works this way so that there
will always be enough room on any line for the largest character of the largest font to be
displayed, and still leave the specified vertical spacing between lines. One effect of this is that if
you have a window that has two fonts, one large and one small, and you do output in only the
- small font, the lines will still be spaced far enough apart that characters from the large font will
fit. This is because the window system can’t predict when you mxght, in the middle of a line,
suddenly switch to the large font.

Another attribute of a font is its baselme The baseline is a non-negatwe fixnum -that is the
number of raster lines between the top of cach character and the base of the character. (The
"basc” is usually the lowest point in the character, exccpt for letters that descend below the
baseline. such- as lower case "p" and "g".) This number is stored so that when you are using
~ several different fonts side-b_y-sndc they will be aligned at their bases rather than at their tops or
~ bottoms. So when you output a character at a certain cursor position, the window system first

SRC:XL.WIND>FONTS.TEXT.17 o . 8-AUG-83

Attributes of Fonts 88 o Window System Manual

e;(amines the baseline of the current font, then draws the character in a position édjusted
vertically to make the bases of all the characters line up.

There is another attribute called the character width. This can be an attribute either of the -
font as a whole, or of each character separately. If there is a character width for the whole font,
it is as if each character had that character width separately. The character width is the amount
by which the cursor position should be moved to the right when a character is output on the
window. This can be different for different characters if the font is a variable-width- font, in
which a "W" might be much wider than an "i". Note that the character width does not
necessarily have anything to do with the actual width of the bits of the character (although it
usually does); it is just defined to be the amount by which the cursor should be moved.

There is another attribute that is an attribute of each character separately; it is called the left
kern. -Usually it is zero, but .it can also be a positive or negative fixnum. When the window
system draws a character at a given cursor position, and the left kern is non-zero, then the
character is drawn to the left of the cursor position by the amount of the left kern, instead of
being drawn exactly at the cursor position. In other words, the cursor position is adjusted to the
left by the amount of the left kern of a character when that character is drawn, but only
-temporarily; the left kern affects only where the single character is drawn and does not have any
cumulative effect on the cursor position.

A font that does not have separate character widths for each character and does not have any
non-zero left kerns is called a fixed-width font. The characters are all the same width and so they
line up in columns, as in typewritten text. Other fonts are called variable-width because different
characters have different widths and things do not line up in columns. Fixed-width fonts are
typically used for programs, where columnar indentation is used, while variable-width fonts are
typically used for English text, because they tend to be easier to- read and to take less space on
the screen. :

Each font also has attributes called the blinker width and blinker height. These are two non-
negative fixnums that tell the window system a nice-looking width and height to make a .
rectangular blinker for characters in this font. These attributes are completely independent of
everything else and are used only for making blinkers. Using a fixed width blinker for a variable-
width font is not the nicest-looking thing to do; instead, the editor actually re-adjusts. its blinker
width as a function of what character it is on top of, making a wide blinker for wide characters
- and a narrow blinker for narrow characters. But if you don’t want to go to this trouble, or don’t
necessarily know just which character the blinker is on top of, you can just use the font’s blinker
width as the width of your blinker. For a fixed-width font there’s no problem.

There is also an array for each font called the char-exists table. It is an art-1b array with a
1 for each character that actually exists in the font, and a 0 for other characters. This table is
not used by the character-drawing softWarc: it is just for informational purposes. Characters that
do not exist have pictures with no bits "on" ‘in them, just like the "space" character. Most fonts
implement most of- the printing charactcrs ‘in the character set, but some arc missing some
characters. - S :

SRC:CL.WINDYFONTS.TEXT.17 o §-AUG-83

Window System Manual ‘ 89 .~ FormatofFonts

7.3 Format of Fonts

~ This section explains the internal format in which fonts are represented. Most users do not
need to know anything about this format; you can skip this section without loss of continuity. -

Fonts are represented as arrays. The body of the array holds the bits of the characters, and
the array leader holds the attributes of the font and characters as well as information about the
- format of the body of the array. Note that there is only one big array holding all the characters,
rather than a separate array for each character. The format in which the bits are stored is
specially designed to maximize the speed of character drawing and to minimize the size of the
data structure, and so it is not as simple you might expect.

FED operates on fonts by converting them into a different type of object containing the same
data. This new object is called a font descriptor; it is simpler and easier to work with. See the
files SYS: 101; FNTDEF LISP for the format of font descriptors, and SYS: 101; FNTCNV
LISP for functions to operate on them, and to convert between font descriptors and fonts.

The font format works slightly differently depending on whether the font contains any
characters that are wider than thirty-two bits. If there are any such characters, then the font is
considered to be "wide", and a single character may be made up of several subcharacters to be
" drawn side by side. A wide font stores subcharacters instead. of characters as such, and has a
table indicating which subcharacters belong to each character of the character set. For the time
- being, we will discuss only narrow fonts in which there is no need to distinguish characters from
subcharacters because each character is made of a single subcharacter.

Each character in a font has an array of bits stored for it. The dimensions of this array are
called the raster width and raster height. The raster width and raster height are the same for
every character of a font: they are properties of the font as a whole, not of each character
separately. Consecutive rows are stored in the array; the number of rows per character is the
raster height, and the number of bits per row is the raster width. An integral number of rows
-are stored in each word of the array; if there are any bits left over, those bits are unused. Thus
no row is ever split over a word boundary. Rows are stored right-adjusted, from right to left.
~ When there are more rows than will fit into a word, the next word is used; remaining bits at the
left of the first word are ignored, and the next row is stored right-adjusted in the next word, and
so on. An integral number of words is used for each character.

For example, consider a font in which the widest character is seven bits wide and the tallest
character is six bits tall. The raster width of the font is seven and the raster height is six. Each
row of a character is seven bits, and so four of them fit into a thirty-two bit word, with four bits -
wasted. The remaining two rows require a second word, the rest of which will be unused because
the number of words per character must be an integer. So this font will have four rows per
word, and two words per character. To find the bits for character threc of the font, you multiply
the character number, three, by the number of words per character, two, and find that the bits

- for character three start in word six. The rightmost seven bits of word six are the first row of the
character, the next seven bits are the second row, and so on. The rightmost seven bits of the

- seventh word are the fifth row, and the next seven bits of the seventh word arc the sixth and last
Tow. '

© SRCKL.WIND>FONTS.TEXT.17 - S 8-AUG-83

Format of Fonts : 90 - Window System Manual

Note that we have been talking about "words" of the array. The character-drawing microcode
does not actually care what type the array is; it only looks at machine words as a whole, unlike
most of the array-referencing in the Lisp Machine. In a Lisp-object-holding array such as an art-
q array, the leftmost eight bits are not under control of the user, and so these kinds of arrays are
not suitable for fonts. In general, you need to be able to control the contents of every bit in the
array, and so usually fonts are art-1b arrays. This means you need to know the internal storage
layout of bits within an art-1b array in order to fully understand the font format, so here it is:
the zeroth -element of an art-1b array is the rightmost bit of the zeroth word, and successive
elements are stored from right to left in that word. The thlrty-thlrd element is the rightmost bit
in the next word, and so on. :

Now, if there are any characters in the font that are wider than 32 bits, then even a single
row of the font will not fit into a word. Such characters are divided into subcharacters no more
than 32 bits wide, and the character is drawn by drawing all its subcharacters, one by one, side
by side. The character drawing microcode can only handle ordinary narrow characters, and it is
invoked once for each subcharacter in order to draw a wide character. In order to make this
work, the wide font stores subcharacters in the same way a narrow font stores its characters.

In addition, the wide font has a font indexing table which gives the first subcharacter number
for each character code. (In a narrow font, the font indexing table is nil.) The character W would
-'be drawn by finding the value at index 127 (the code for W) in the font indexing table, and the
value at index 130. Suppose that these are 171 and 173. Then W is made up of subcharacters
171 and ‘172, Either of these subcharacters’ bits can be found in the same way that the bits for
character code 171 or 172 would be found in a narrow font.

The array leader of a font is a structure defined by defstruct. Here are the names of the
. -accessors for the elements of the array leader of a font.

tv: font -name font -
The name of the font. This is a symbol whose value is the font and which senes to

name the font. The pnnt-name of this symbol appears in the prmted representation of
the font. .

tv:font-char-height jfons _
The character height of the font; a non-negative fixnum.

- tv:font-char-width font '

The character width of the characters of the font a non-negative fixnum. If the tv:font-
char-width-table of this font is non-nil, then this element is ignored except that it is
used to compute the distance between horizontal tab stops; it is typically the width of a

lower~case m".

tv:font- base'Hne ﬁmt :
The base]me of this font; a non- ncgatlve fixnum.

SRC:<1.WINDY>FONTS.TEXT.17 | 8-AUG-83

Window System Manual | 91 : : Format of Fonts

tv:font-char-width-table fomr
If this is nil then all the characters: of the font have the same width, and .that wxdth is
given by the tv:font-char-width of the font. Otherwise, this is an art-q array of non-
negative fixnums, one for each logical character of the font, giving the character width. for
that character. The array must be an art-q array for the -sake of the sys:%string-
translate function.

tv:font-left-kern-table font
If this is nil then all characters of the font have zero left kern. Otherwise, this is an
array of fixnums, one for each loglcal character of the font, giving the left kern for that

character.

tv:font-blinker-width font
The blinker width of the font.

tv:font-blinker-height font
The blinker height of the font.

tv:font-chars-exist-table jont
This is an art-1b array with one element for each logical character of the file. The
element is 1 if the character exists and 0 if the character does not exist.

tv:font-raster-height Jont :
The raster height of the font; a positive fixnum.

tv: font-raster- w1dth fonz
The raster width of the font a positive fixnum.

tv:font.—rasters-per-word Jont -
The number of rows of a character stored in each word of the font; -a positive fixnum. -

'tv font-words-per-char font
The number of words stored for each character or subcharacter; a posmve ﬁxnum

tv:font-‘lndex'lng-tab'le Jont
If this is nil, then no characters of this font are wider than thirty-two bits. Otherwise,
this is the font indexing table of the font, an array indexed by character code, containing
the number of the first subcharacter for that character code. There is an extra array
element at an index one greater than the largest character code; it says where the
subcharacters of the largest character code stop. '

'SRCKL.WIND>FONTS.TEXT.17 | N . 8-AUG-83

Color Fonts ' » N 92 | : Window System Manual

7.4 Color Fonts

We mentioned earlier that you need to use different fonts to draw on different kinds of
screen. To draw on a color screen, you must use a color font. If you just pass in a font
specifier when you specify an element of a font map, then a color version of that font will be
created if there isn’t one already, and it will be used as the font.

A color font is almost the same as a regular black-and-white font except that for each pixel
there are many bits. For example, for a four-bit color display (the only type presently supported),
there are four bits for cach pixel. While nothing prevents each pixel of a font from having any
value it wants, usually each pixel is either zero or one other specific value; that is, color fonts do
not usually have multicolored characters in them, or two characters of different color.

Color fonts can be created from black-and-white fonts by the following function:

co'lor make-color-font bw-font &optional (color17) (suffix"")

" Creates and returns a new font. bw-font should be an existing black-and-white font. The
new font has all the same attributes as bw-font, and each character has the same attributes
as the corresponding character in bw-font. For each zero-valued pixel in bw-font, the
pixel in the new font is zero as well. For each one-valued pixel in bw~font, the pixel in

- the new font has value color. The name of the new font is formed by appending
"color-", the print-name of the name of bw-font, and suffix together to form a string, and
then interning that string in the fonts package. :

When a font specifier is examined and the window system decides to make a color version of
the font, it calls color:make-color-font with only one argument, letting the others default. So,
for example, if a color version of fonts:foo-font is automatically created, its name will be
~ fonts:color-foo-font, and its pixels will have the value 17 wherever those in the original font
~ have the value one. However, you can call color:make-color-font to make many color versions
of the same black-and-whlte font, each in a different color. '

Something to keep in mind when using color fonts is that when characters of a color font are
drawn, onto a color window, and the char-aluf of the window is tv:alu-ior (as it normally is),
_ then the bits of the pixels of the character will be bit-wise "or™ed with the existing bits in the

pixels of the window. If the existing bits (that is, the background against which the character is
being drawn) are all zero, there’s no problem. But if they are not, the resulting values of the
- pixels will be some color determined by a bit-wise "or" of two color values, -which is unlikely to
yield meaningful results. Unless this is actually what you want, “you should make sure that the
background is made of zeroes beforé drawing characters onto a color window.

SRC:CL.WIND>FONTS.TEXT.17 - C 8-AUGS3

“Window System Manual L 93 ‘ DraWing Graphics

8. Drawing Graphics

A window can be used to draw graphics (pictures). There is a set of operations for drawing
lines, circles, sectors, polygons, cubic splines, and so on, implemented by the flavor tv:graphics-
mixin. The tv:graphics-mixin flavor is a component of the tv:window flavor, and so the
operations documented below will work on windows of flavor (or flavors built on) tv:window.

tv:graphics-mixin - Flavor
Defines the standard window graphlcs operanons

There are also some operations in this section that are in tv:stream-mixin (page 49) rather
than tv:graphics-mixin, because they are likely to be useful to any window that can draw
characters, but such windows might not want the full functionality of tv:graphics-mixin. These
operations are :draw-rectangle, and the :bitblt operation and its relatives. (If you are building
on tviwindow anyway, this doesn’t affect you, since tv:window includes both of these mixins.)

The cursor position is not used by graphics operations; the operations explicitly specify- all
~ relevant coordinates. -All coordinates are in terms of the inside size of the window, just like
- coordinates for typing characters; the margins don’t count. Remember that the point (0,0) is in
the upper left; increasing y coordinates are lower on the screen, not hxgher Coordinates are
always fixnums,

As wn.h typing out text, before any graphics are typed the process must wait until it has the
ability to output (see section 2.6, page 21). The "output hold flag" must be off and the window
must not be temp-locked The- other exceptlon conditions of typing out are not relevant to
graphics. -

All graphics functions clip to the inside portion of the window. This means that when you
-specify positions for graphic items, they need not be inside the window; they can be anywhere.
Only the portion of the graphic that is inside the inside part of the window will actually be
drawn. - Any attempt to write outside the inside part of the window simply won’t happen.

8.1_ Alu Functions

Most graphics operations take an alu argument, which controls how the bits of the graphic
object being drawn are combined with the bits already present in the window. In most cases this
argument is optional and defaults to the window’s char-aluf (see page 66), the same alu function
as is used to draw characters, which is normally inclusive-or.. The following variables have the
most useful alu functions as their values:

tv:alu-for ' : -+ Variable
Inclusive-or alu function. Bits in the object being drawn are turned on and other bits are
left alone. This is the char-aluf of most windows. If you draw several things with this
alu function, they will write on top of each other, just as if you had used a pen on

paper.

SRCKLWINDXGRAFIXTEXT24 " - = 8-AUG-83

Flavor Operations for Graphics . 94 ‘ - Window System Manual

tv alu-andca - Variable
And-with-complement alu funcuon Bits in " the object being drawn are turned off and
other bits are left alone. This is the erase-aluf of most windows. It is useful for erasing
areas of the window or for erasing particular characters or graphics.

tv:alu-xor Variable

Exclusive-or alu function. Bits in the object being drawn are complemented and other bits
are left alone. Many graphics programs use this. The graphics operations take quite a bit
of care to do "the right thing” when an exclusive-or alu function is used, drawing each
point exactly once and. including or excluding boundary points so that adjacent objects fit
together nicely. The useful thing about exclusive-or is that if you draw the same thing
twice with this alu function, the window’s contents are left just as they were when you
started; so this is good for drawing objects if you want to erase them afterwards.

tv:alu-seta , Variable
Alu function to copy the input bits into the output bits, ignoring the old values of the
output bits. This is not useful with the drawing operations, because the exact size and
shape of the affected region depend on the implementation details of the microcode. The
seta function is useful with the bitblt operations, where it causes the source rectangle to
-be transferred to the destination rectangle with no dependency on the previous contents of
the destination,

tv:alu-and ' : " Variable
"And" alu function. Like tv: alu-seta this is not useful with the drawing operations, but
can be useful with the bitblt operations. 1 bits in the input leave the corresponding
output bit alone, and 0 bits in the input clear the corresponding output bit.

" 8.2 Flavor Operations for Graphics

spoint x y ' Operation ontv: graphlcs mixin
Returns the numencal value of the picture element at the specified coordinates. The result
i 0 or 1 on a black-and-white TV. Clipping is performed; if the coordinates are outside
the wmdow the result will be 0.

:draw-point x y &opnonal alu value Operation on tv:graphics-mixin
Draws value into the picture clement at the specified coordinates, combining it with the
previous contents according to the specified alu function (value is the first argument to the
operation, and the previous contents is the second argument.) value should.be 0 or 1 on a
-black-and-white TV. Clipping is performed; that is, this operation will have no effect if
the coordinates are outside the window. . value defaults to -1, which is a pixel with all bits
1 .

sbitbit , ’ * Operation on tv:stream-mixin
alu - width hezght from-array from-x from-y lo-x lo-y :
Copies a rectangle of bits from from-array onto the window. The rectangle has dlmcnsmns
width by height, and its upper left corner has coordinates (from-x.from-y). It is
transferred onto the window so that its upper left corner will have coordinates (fo0-x.10-y).
The bits of the transferred rectangle are combined with the bits on the display according

SRCKL.WIND>GRAFIX.TEXT.24 | : 8-AUG-83

Window System Manual ‘ 95 ‘ - Flavor Operations for Graphics

i3 to the Boolean function specified by alu. As in the bitblt function, if Jfrom-array is too
small it is automatically replicated. ' ' : :

See the discussion of the bitblt function (section 8.7 of the Lisp Machine manual). for
complete details. Note that ro-array is constrained as described there. See also the
tV'make-sheet—bit-array function below (page 102).

:bitb1t-from-sheet ’ : Operation on tv:stream-mixin
alu width hezght from-x from-y to-array to-x to-y
Copies a rectangle of bits from the window to fo-array. All the other arguments have the
same significance as in :bitbit.

See the discussion of the bitblt function (section 8.7 of the Lisp Machine manual) for
complete details. Note that ro-array is constrained as describéed there. See also the
tv:make-sheet-bit-array function below (page 102).

:bitb1t-within-sheet Operation on tv:stream-mixin
alu width height from-x from-y lo-x lo-y
Copies a rectangle of bits from the window to some other place in the window. All the
other arguments have the same significance as in :bitblt. Note that width or height may
be negative, in which case the coordinates to be copied extend to lower values from the
specified starting values, and copying is done in reverse order. The order bits are copied
makes no difference when copying between different arrays but is important when copying
~ between overlapping portions of one array.

:draw-char font char x y &optional alu , Operation on tv;graphics-mixin
Displays the. character with code char from font font on the window with its upper left
-corner at coordinates (x,y). This lets you draw characters in any font (not just the ones

- in the font map), and it lets you put them at any position without affecting the cursor
position of the window." :

sdraw-1ine Operatzon on tv:graphics-mixin
xl yl x2 y2 &opnonal alu (draw-end-point 1)
Draws a line on the window with endpoints (x/,y/) and (x2y2). If draw-end-point is
specified as nil, does not draw the last endpoint (that is, stops drawing just before that
point instead of at it). This is useful with ‘alu function tv:alu-xor when multiple
- connected lines are in use since drawing an endpoint once each for two lines would
. cancel out. :

' .draw lines alu x0 Y xI yl .. xn yn - QOperation on tv:graphics-mixin ,
Draws n lines on the screen, the first with endpoints (x0,y0) and (x1,y/), the second wnth
endpoints (x/,yl) and (x2,y2), and so on. ‘The points between lines are drawn exactly -
once and the last endpoint, at (xn,yn), is net drawn ~ :

draw dashed-1ine ' Operation on tv:graphics-mixin
o x0 y0 xI yl alu dash-spacmg space-literally-p offset dash-length
Draws a line divided into dashes. The ﬁrst ﬁve arguments are the same as those of the
:draw-line opcratmn :

~ SRCKL.WIND>GRAFIX.TEXT.24 . S - : L 8-AUG-83.

Flavor Opcrations for Graphics % : Window System Manual

The argument dash-spacing specifies the period of repetition of the dashes; it is the length
of a dash plus the length of a space between dashes. Its default value is 20. dash-length
is the length of the actual dash; it defauits to half the spacing.

If space-literally-p is nil, the spacing between dashes is adjustcd so that the dashes fit
evenly into the length of line to be drawn. If it is non-nil, the spacing is used exactly as
specified, even though that might put the end point in. the middle of a space between
dashes.

A nonzero offset is used if you want a space between the starting point and the beginning
of the first dash. The value is the amount of space desired, in pixels. The same space
will be provided at the end point, if space-literally-p is nil. offSet defaults to zero.

:draw-curve Operation on tv graphics-mixin
x-array y-array &optional end alu closed-p

Draws a sequence of connected line segments. The x and y coordinates of the points at

the ends of the segments are in the arrays x-array and y-array. The points between line

segments are drawn exactly once and the point at the end of the last line is not drawn at

all; this is especially useful when alu is tv:alu-xor. The number of line segments drawn -
is 1 less than the length of the arrays, unless a nil is found in one of the arrays first in

which case the lines stop being drawn. If end is specified it is used in place of the actual

length of the arrays.

If closed-p is non-nil, the end point is connected back to the ﬁrst point,

'draw -wide-curve | Operalzon ontv: graphtcs-mtxm
x-array y-array wzdth &optional end alu closed-p
Like :draw-curve but width is how wide to make the lines.

:draw-rectangle width height x y &optional alu Operation on tv.stream-mixin
Draws a filled-in rectangle with dimensions width by height on the window with its upper
left corner at coordinates (x,y)

:draw-tr'lang'le xI yl x2 y2 x3 y3 &optional alu Operatiori on tv:graphics-mixin
' Draws a filled-in triangle with its corners at (x/, vl), (x2,y2), and (x3,y3).

:draw-circle ' S _ Operation on tv:graphics-mixin
center-x center-y radius &opttonal alu :
Draws the outline of a mrcle centered at the point centerx, centery and of radius radius.

:draw-circular-arc o ' Operation on tv:graphics-mixin
~ center-x center-y radius start-theta end-theta &optional alu
Draws part of the outline of a circle centered at the point center-x, center-y and of radius
- radius. :

The part of the circle to be drawn is specified by start-theta and end-theta. These angles
arc in radians; an angle of zero is the positive x direction, and angles increase counter-
clockwise. The arc starts at start-theta and goes through mcrcasmg angles, passing through
zero if necessary, to stop at end-rheta

SRCKLWIND>GRAFIXTEXT24 . R 8-AUG-83

v

~ Window Systcrri Manual ‘ 97 Flavor Operations for Graphics

:draw-f111ed-1n-circle - Operation on tv:graphics-mixin
center-x center-y radius &optional alu
Draws a filled-in circle specified by its center and radius.

- :draw-fi1led-in-sector Operation on tv:graphics-mixin

, . “cenler-x center-y radius theta-l theta-2 &optional alu
Draws a "triangular” section of a filled-in circle, bounded by an arc of the circle and the
two radii at theta-l1 and theta-2. These angles are in radians; an angle of zero is the
positive-X direction, and angles increase counter-clockwise.

s:draw-regular-polygon Operation on tv:graphics-mixin
xl yl x2 y2 n &optlonal aIu
Draws a filled-in, closed, convex, regular polygon of (abs n) sides, where the line from
(xLyl) to (x2,y2) is one of the sides. If n is positive then the interior of the polygon is
~on the right-hand side of the edge (that is, if you were walking from (x1,yl) to (x2y2),
~you would see the interior of the polygon on your right-hand side; this does nor mean
"toward the right-hand edge of the window").

sdraw-cubic-spline : ' Operation on tv:graphics-mixin
px py z &optlonal curve-wzdth alu cl c2 pl-prime-x pl-prime-y
pn-prime-x ' pn-prime-y
Draws a cubic spline curve that passes through a sequence of points. The arrays px and
-py hold the x and y coordinates of the sequence of points; the number of points is
determined from the active length of px. Through each successive pair of points, a
parametric cubic curve is drawn with the :draw-curve operation, using z points for each
such curve. If curve-width is provided, the :draw-wide-curve operation is used instead, .
with the given width. The cubics are computed so that they match in position and first
derivative at each of the points. At the end points, there are no derivatives to be
matched, so the caller must specify the boundary conditions. ¢/ is the boundary condition
- for the starting point, and it defaults to :relaxed; c¢2 is the boundary condition for the
ending point, and it defaults to the value of c/.” The possible values of boundary

~ -conditions are: _

‘relaxed Makes the derivative zero at this end. ,

:clamped Allows the caller to specify the derivative. The arguments pl-prime-x and
pl-prime-y specify the derivative at the starting point, and are only used if
¢l is :clamped; likewise, pn-prime-x and pn-prime-y specify the derivative
~at the ending point, and are only used if ¢2 is :clamped.

:cyclic . Makes the derivative at the starting point and the ending poim be equal.

If ¢l is :cyclic then ¢2 is ignored. To draw a closed curve through n

points, in addition to using-:cyclic, you must pass in px and py with one
-"more than n entries, since you must pass in the first point twice, once at
 the beginning and once at the end. ' - -

~:anticyclic Makes the derivative at the starting point be the negative of the denvatJve '
at the ending point. If ¢/ is :anticyclic then ¢2 is ignored.

 SRCKLWIND>GRAFIXTEXT4 | §AUGSS

Low-Level Graphics Using Subprimitives 98 Window System Manual

tv:spline px py z &optional cx ¢y ¢l ¢2 pl-prime-x pl-prime-y pn-prime-x pn-prime-y
This subroutine of the :draw-cubic-spline operation is also useful in its own right. It
does the computation of the spline to be drawn, then converts it into a sequence of line
segments, returning arrays of x and y coordinates of endpoints of lines. :draw-cubic-
spline works by passing these arrays to the :draw-curve operation.

The function returns three values, an array of x coordinates, an array of y coordinates,
and the number of active points in those arrays. (The arrays are not required to have fill
pointers.) ,

The- arrays to be used can be supplied as the cx and cy arguments, or else new arrays
will be created. If arrays are supplied and too short, they will be made longer.

8.3 Low-Level Graphics Using Subprimitives

Drawing graphics on a window is usually done by sending messages to the window. However,
there is a certain overhead in sending each message. If your application requires speed, you can
g0 to some more trouble by writing your very own method to do graphics. It is a good idea not
to do this until you know that using existing messages will not work; it is easier and less bug-
prone to use the existing messages than to write handlers for new ones. '

. To write a new method you must have a flavor to which to attach that method. In this case,
we want to add some. graphics messages to existing kinds of windows. So, what we want here is
a mixin flavor. You will define a new mixin flavor for your application. You will add methods
to this flavor to do the things you need to do. Then, when you want to create an actual window
to use,- you will create a window of a new flavor; this new flavor will include, as one of its
mixins, your new mixin. For a simple case, you might use the following flavor definitions:

(defflavor circus-mixin () ()
(:required-flavors tv:essential-window))
;»This makes the instance variables of tv:essential-window accessible.

(defmethod (circus-mixin :draw-ciown) {size weight happy‘-p-)

c)

(defmethod (circus-mixin :draw-tent)
(height &optional (number-of-rings 3))
eo) ~ ’ _

(deff'lavor circus-window () (circus-mixin 'tv:windOW)) .

Now you can mstanuate wmdows of ﬂavor c1rcus-wmdow, and they will support your new
messages.

Within the definition of a primitive output operation. you will use the graphics subprimitives
such as sys:%draw-char rather than the high-level operations described in previous sections. To
avoid errors, you should use these subprimitives only from within window mcthods that pmvxde
-thc error checkmg that the subprimitives lack S

SRCKL.WIND>GRAFIX.TEXT24 = - '. 8-AUG-83

Window System Manual ' 9 Low-Level Graphjcs Using Subprimiti_vcs |

In addition, the subprimitives must be used only within the body of a tv:prepare-sheet
special form. An error is signaled if they are used elsewhere.

tv:prepare-sheet body... ’ ' Special form
Executes body in an environment in Wthh it is safe to draw on the window. tv:prepare-
sheet waits until the window is not output-held or locked, and then opens all blinkers
. that could be on top of the window so that they will not interfere with the output (see
page 103). It also turns off interrupts so that the window will remain unlocked and the
blinkers will remain open. '

Because interrupts are turned off, you must be careful in writing the body. It should
execute for no longer than you would mind being unable to do a Control-Abort. It also
must not wait for anything, since that would allow the blinkers to reappear and defeat the
whole purpose of preparing the sheet. '

The microcode subprimitives generally use coordinates relative to the outside edges of the
~ window, This is unlike the high-level interfaces, which use cursor positions, in which the margins
of the window do not count. Also, subprimitives do little or no clipping or other testing for
coordinates that are out of bounds. The results of passing erroneous coordinates are .
-unpredictable; in principle, the machine might halt. '

Another place you can use the subprimitives is inside the :blink operation of a blinker. - This
operation is always invoked in a suitable environment for calling them, including interrupts off.
Because blinkers are always drawn by xor’ing, it does not actually matter whether any other

blinkers are present.

These instance variables and macros are useful in writing output primitives:

(tv:sheet-inside - left)

(tv:sheet-inside-right). -
Return the posmons of the inside left edge and the ms1de right edge, both
relative to the outside left edge. If your operation is intended to output on the -
inside of the window, these may be useful for clipping, and also. for converting
cursor positions to low-level coordinates. o y

(tv:sheet-inside-top)

(tv:sheet-inside-bottom) .
Return the positions of the . inside top edge and the inside bottom edge, both
relative to the outside top edge. \

(tv:sheet-inside -width)
(tv sheet- mstde -height) |
: Return the inside size of the wmdow

tv:width) . _
tv:height -~ . The total width and height of the window, -including the margins.

tv.cursor-x : o . '

~tvicursor-y ~ The current cursor position, expressed in outside coordinates. That is to say, these

~values are not “cursor positions” in the usual sense. of that term, but they do
descnbe thc position of the cursor.

'SRC:(L.W]N15>GRAFIX.TEX'F.24 o | | . 8-AUG-83

v

Low-Level Graphics Using Subprimitives 100 - ~° Window System Manual

tv: screen-array

tvichar-aluf
tv:erase-aluf

" tv:current-font

The array of bits that hold the contents of the window. Usually this is an indirect
array that points to part of the screen, although it may also point to the superior’s
bit-save array, as described in section 2.5, page 17. You can use ar-2-reverse
and as-2-reverse on this array, indexed by coordinates relative to the outside
edges, to examine and draw individual points. The dimensions of this array wilt
be the width and height. '

These are the alu function codes (see section 8.1, page 93) that are supposed to

‘be used for normal drawing and erasing. :tyo, :string-out and so on all use

tvichar-aluf and all the standard erase operations use tvierase-aluf. If your
operation is a kind of drawing or a kind of erasing, it may be correct for you to
use one of these two.

Usually tv:char-aluf is tv:alu-ior, which means to turn on (Set to all ones) the
‘corresponding bits in the array. tvierase-aluf is usually tv:alu-andca, which

means to turn off (set to zero) the relevant bits. However, they would be
different if the window were in reverse video mode. Reverse video mode is not a

~ highly-used feature, but by using these variables you can make your extensions

work correctly in reverse video mode, so it is cleaner to use them. -

However, you may use any alu function. tv:alu-xor is often useful. tv:alu-seta
is usually not wise to use, since it will often result in the alteration of bits that
you did not expect to change, but which happen to fall in the same word as the
ones you were working on. :

This is the window’s current font. If you are drawmg characters it is usually

© correct to use this font.

Here is an example from the tv:graphics-mixin flavor, changed by adding the tv: prefixes in
the places where you would need them if you were to write this outside the tv package.

(defmethod (graphics-mixin :draw-point)

(x y &optional (alu tv:char-aluf) (value -1))

'- (tv:prepare-sheet (self)

(setq x (+ x (tv:sheet-inside-left))

y (+y (tv:sheet-inside-top)))

(if (not (or (< X (tv:sheet-inside-left))

(2 x (tv:sheet-inside-right))
- (< y (tv:sheet-inside-top))
(2 y (tv:sheet-inside-bottom))))
(setf (ar 2-reverse tv:screen- array Xy)
(boole alu value '
 (ar-2-reverse tv:screen-array x y})))))

This method takes its arguments in inside coordinates, and so it first converts them to outside

- coordinates. -

Then it compares them with the boundarics of the inside of the window, and does

nothing if they-are outside those boundaries. This is how it does clipping. Finally, if cvcryth_ing

SRCALWINIDGRATIXTEXT24 . - 8-AUG-83 |

Window System Manual : S 101 Low-Level Graphics Using Subprimitives

is OK, it reads out the current value of the point, combines it with the new value using the
specified alu function (which defaults to the char-aluf of the window), and stores it back into the
array. : .

8.3.1 Subprimitives for Drawing

In addition to using as-2-reverse yourself, you can use these subprimitives, mostly
microcoded. They are equivalent in principle to using as-2-reverse many times, but they are
much faster and have much less error checking. :

Some of these primitives will accept a sheet or an array. In window-system applications the
argument is usually a sheet, but any suitable two-dimensional numeric array will do. (Suitable
usually means that the width, times the number of bits per element, is a multiple of 32.) If an
array is used, there is no need to worry about tv:prepare-sheet. If you are domg the output on
a window, you should pass the wmdow not its screen array.

sys:%draw-rectangle widlh height x-bitpos y-bitpos alu-function sheet-or-array
Draws a rectangle of size width by height with its upper left corner at x-bitpos, y-bitpos.
Alu function alu-function is used, so you can draw, erase or complement the rectangie
with the same function. sheet-or-array is usually the sheet to be drawn on. There is no
clipping or error checking. :

~tv:¥draw-rectangle-clipped width 'height x-bitpos y-bitpos alu-function sheet
This is a little smarter, clipping to the edges of sheet. It does not work on arrays.

tv:draw-rectangle- inside-c1 ipped width height x-bitpos y—bztpos alu-functzon sheet
This clips to the inside edges. of sheet. »

sys:%draw-1ine x0 30 x y aIu draw-end-pomt-p sheet-or-array
Draws a line from (x0.50) to (x,y), all relative to the outside edges of the sheet, or
indices in the array. The point at (x,y) is not drawn. if draw-end-point-p is nil. No
clipping or error checking is done.

sys:%draw-triang'lé xl yl x2 y?2 x3 y3 alu sheet-or-array
Draws a triangle with the speciﬁed corners. No clipping or error checking is. done.

tv:draw-char font char x y alu sheel-or-array
Draws the character with code char in font with its upper left corner at position (x,y) in
outside coordinates. -alu is used as the alu funcuon s0 you can either draw or erase,
There is no chppmg or error checkmg

sys:%draw-char font char x y alu sheet-or-array
This is the actual microcoded primitive. It does not take into account the indexing table
- of a wide font, so when used on a wide font char is not the character code that the- user
actually wants to output 1t is best to use tv:draw-char. :

SRC:(I..WlNT))GRAFIX’.'I,'EX"I‘.’M: . ' - 8-AUG-83

‘Low-Level Graphics Using Subprimitives . 102 . o . Window System Manuai

sys %color- tr‘ansform nl7 nl6 nl5 ni4 nl3 1112 nII ni0 n7 né n5 n4 n3 n2 nl n0
 width height .array start-x start-y

This function operates on a rectangular portion of an art-4b array. It- examines - each
element of the array, and replaces the value of that element with n0 if its previous value
was 0, nl if its previous value was 1, and so on. The upper-left hand corner of the array
is specified by start-x and suart-y, and its size is specified by width and height. array
must be an art-4b array and the specified rectangle must be within the bounds of the
array. :

bitbit alu width height from-array Jrom-x from-y to-array to-x lo-y
. Copies or merges a rectangular portion of from-array to a congruent portion of fo-array.
~ from-x and from-y specify one corner of the rectangle in from-array, and fo-x and fo-y
specify the corresponding point in fo-array. The opposite corner is found by adding width
and height to either of those two positions. The copying is done starting at the specified
corner and proceeding toward the opposite one.

The width of each array, t:mes the number of bits per element in that array, must
be a multuple of 32. , :

When used in _wmdow system applications, one of the arrays will frequently be a
window’s screen array. Then the window must be prepared using tv:prepare-sheet.

~ The operation is not simply one of copying: the bits coming from from-array can be

- merged with those of to-array. This is controlled by the alu argument. Each pair of bits
is combined according to that argument to get the new bit to put in to-array. If alu is
tv:alu-seta, - the old bltS in to-array are ignored. If alu is tv:alu-ior, then the old bits
and the incoming bits are or'ed together. And so on. bitblt is carcful never to change
bits in to-array outside the specified rectangle, which is why it is safe to use tv:alu-seta,
whereas it is not safe to use it in the other subprimitives. '

tv: make‘— sheet-bit-array Window xy &rest -make-array-options

This function creates a ‘two-dimensional bit-array useful for bitblting to and from windows. - -

It makes an array whose first dimension is at least x but is rounded up so that bitbit's
- rostriction regarding multiples of 32. is met, whose sccond dimension is y, and whose
type is the same type as that of the screen array of window (or the type it would be if
‘window had a screen array). make-array-options are passed along to make-array (see
section 8.2 of the Lisp Machine manual) when Lhe array is created, so you can control
other paramcters such as the area.

SRCKLWIND>GRAFIXTEXT.24 . #AUGS3

Window System Manual ‘ 103 - ‘ - . Blinkers

-9, Blinkers

~ Each window can have any number of blinkers. The kind of blinker that you see most often
is a blinking rectangle the same size as the characters you are typing; this blinker shows you the
cursor position of the window. In fact, a window can have any number of blinkers. They need
not follow the cursor (some do and some don’t); the ones that do are called following blinkers;
the others have their position set by explicit operations.

Blinkers afé instances of flavors, like windows,b but they are different flavors, and éupport a
different set of standard operations. The .window system provides several kinds of blinkers, which
differ in the way they appear on the screen. : '

tv:blinker I . Flavr
~ All flavors of blinkers incorporate this one.

Blinkers need not actually blmk for example the mouse arrow does not blink. A blinker’s
visibility may be any of the following:

blink - The blinker should blink on and off periodically. The rate' at which it blinks is
called- the half-period, and is a fixnum giving the number of sixthieths of a second
between when the blinker turns on and when it turns off.

:onort The blinker should be visible but not blink; it should just stay on.
:off or nil The blinker should be invisible. '

- Usually only the blinkers of the selected window actually blink; this is to show you where
your type-in will go if you type on the keyboard. This is because the blinker’s visibility is
generally controlled based on another attribute, the deselected visibility, combined with whether
the window is selected. While the current visibility is frequently changed by hand by the program
that .is using the blinker, the deselected visibility is usually fixed and says something about how
the blinker is generally used. Here are its possible values and their meanings:

on Solid when dcselected blinking when selected. ‘This is the. most commonly used
' value, and the default for the blinkers that show the cursor position of a window.

:off Off when deselected, blinking when sclcctcd.

:blink - Blinking whether selected or not.

t | ~ Solid whether selected or not.

nil- Off whether sclected or not.

thh the wiﬁdnw ' is dcsc]cc’ted, cach b]inkcr‘s' visibility is- initialized from its "dcselectéd_

whosc vmbxhty is t or nil or :blink arc not aﬁ‘cctcd

Blinkers are used to add visible omamcnts to a window: a blinker is visible to the user, but
while programs are cxamining ‘and altcring the contents of a window the blinkers -all go away.
 The way this works is that before characters are output or graphics arc drawn, the blinker gets
‘turned off: it comes back later. This is called opening the blinker. tv:prépare-sheet (page 99) is

SRCKLWINDIBLINKTEXT2L ~ = = e SATGEY

Blinkcr Functions and Operations o 104 ' Window System Manual

responsible for doing this. You can see this happening with the mouse blinker when you type at
a Lisp Machine. To make this work ‘blinkers are always drawn using exclusive ORing (see
tv:alu-xor, page 94).-

Every blinker .is associated with a particular sheet (window or screen). The blinker is
displayed on this sheet, so that its image can appear only within the sheet. When characters are
output or graphics are drawn on a sheet, - only the blinkers of that sheet and its ancestors are
opened (since - blinkers- of other sheets cannot possibly be occupying screen space that might
overlap this output or graphics). The mouse blinker is free to move all over whatever screen it is
on; it is therefore associated with the screen itself, and so must be opened whenever anythmg is
drawn on any window on the screen.

A blinker has a position which gives the location of the blinker’s upper left corner relative to
the blinker’s sheet. The blinker’s lower right corner is controlled by the blinker’s size together
- with its position. The blinker position is constrained to be within the sheet’s area. This does not
force the blinker's lower right corner to be within the sheet’s area, but if it is not, the blinker’s
image will probably be truncated and the part outside the sheet will not appear.

2blinker-p tornil . o Init option for windows
:blinker-flavor flavor-name : S _ Init option for windows
:b1inker-deselected-visibility vzszbzluy ’ " Init option for windows

These init options specify whether a cursor-following should be created for this window,
and what its flavor and visibility should be. The defaults are t, tvirectangular-blinker,
and :on.

Any other blinkers you want for a wmdow must be created manually in an :init method
or elsewhere. : - :

‘tv:blinker-1ist Instance vanable of windows and screens
The list of all blinkers associated with this window or screen.

:blinker-1ist ' o : * Operation on windows and screens - -
. Retums-the list of blinkers associated with this window or screen.

tv:sheet- b'l1nker Tist sheet
Accessor defsubst for the instance vanable

9.1 Blinker Functions and Operations

" .tv:make-blinker window &optional (flavor'tv:rectangular-blinker) &rest options

Creates and returns a new blinker. The new blinker is associated with the given window,
and is of the given flavor. - Other uscful flavors of blinker are documented below. The
options arc initialization-options to the blinker flavor. All blinkers include the tv:blinker
flavor, and so init-options taken by tv:blinker will work for any flavor of blinker. Other
_init-options.may only work for particular flavors.

| SRCLLWINDSBLINK.TEXT.21 ' ' 8-AUG-83

~ Window Systcm Manna_l | 105 | Blinker Functions and Opcrations_

tvix-pos _ P , - Instance variable of tv:blinker
tv:y-pos ‘ . Instance variable of tv:blinker
' The current position of the blmker on its wmdow, or ml if the blinker should follow the
wmdow S Cursor.

1X-pos . x " o - Init option for tv:blinker
1y-pos y ' ’ Init option for tv:blinker
Set the initial position of the blmker within the window. These init-options are irrelevant
for blinkers that follow the cursor. The mmal position for non-following blinkers. defaults
to the current cursor position. : :

:road- cursorpos : ’ Operation ontv: blinker
Returns two values: the x and y components of the position of the blinker within the
inside of the window. '

:sot- cursorpos Xy ‘ : Operanon ontv:blinker
Sets the position of the bhnker relanve to the inside of the window. If the blinker has
been a following blinker (that is, one which follows the window’s cursor) then it ceases to
be one, and from this point on moves only when :set-cu_rsorpos is done,

:size - I ' ‘ Operalton on tv:blinker
Returns the width and hcnght of the blinker area occupled by the blmkcr in pixels, as
' two values. Each flavor of blinker implements this: dxfferently

:sot-size new~wzdth new~hezght ' ' Operation on tv: bllnker
Sets the size of the blinker's displayed pattem Not all blinker flavors actually do
anythmg, but they will all allow the operation. For example, character blinkers have no
- way to change their size because there is no mechanism for automancally scaling fonts. '

:follow-p t-or-mI B ' ’ . Init opnon for tv: bllnker
Sets whether the blinker follows the cursor; if this option i$ non-nil, it does. By default,
thls 1s nil, and so the blmkers position gets sct explxcnly :

.set fo'l'low -p. new-followp ' | ' Operanon ontvbhnker
- Sets whether the blinker follows the cursor. If this. is nil, the blinker stops following the
cursor and stays where it is until exphcnly moved. Othcrwnse the blmkcr starts - following

_ the cursor.

tvivisibil 1ty S * Instance variable of tv:blinker
The blinker’s current vxsxblhty : ' o _

:visibility | | Operation on tv:blinker

rset-visibiTity - newvzszbtlzly ' ’ Operation on tv:blinker.

Get or sct the visibility of the blinker. The specified visibility should be one of :on, nil,
:off, t or’ :blink; Lhelr meanings are described. above.

SRCXLWINDBLINKTEXT2L | 8-AUG-83

Blinker Functions and Operations : 106 ' Window System Manual

 avisibility visibility - B Init option for tv:blinker
: Initializes the visibility. S
tv:deselected-visibility | Instance variable of tv:blinker
. The blinker's deselected visibility.
:deselected-visibility symbol - Init option for tv:blinker
. Sets the initial deselected visibility. By default, it is :on.

:deselected-visibility o Operation ontv:blinker
‘set-deselected-visibility new-vrszbzlzty Operation on tv:blinker

E_xarmne or change the dese_lgcted visibility of the blinker.

tv:half-period. o - Instance variable of tv:blinker
The time interval in 60ths of a second between successive blinks of the blinker. Thls is
relevant only if the visibility is :blink.

" thalf-period S . - Operation ontv:blinker
:set-half-period new-half penod - Operation on tv:blinker -
Get or set the half-period of the blinker. The argument is in 60ths of a second,

thalf- per'lod half-period ‘ Init option for tv:blinker
Initialize the half-period. The default is 15.

tv:sheet o ' ; _ Instance variable of tv:blinker
The window or screen thls blinker moves on. . :

:sheet - " Operation on tv:blinker
Gets the window or screen that the blinker moves on. : :

:set-sheet new~sheel : : o Operatton ontv:blinker -
Sets to new-sheet the wmdow or screen’ on which the blinker moves. If the old window is
an ancestor or descendant of new-sheel, adjusts the (rclative) position of the blinker so
that it does not move. Otherwise, moves it to the pomt (0,0).

tv: t'ime unt‘l'l b1ink o Instance variable of tv:blinker
The time interval in 60ths until the next nme this blmker should blink. For a bhnkmg-
blinker, this controls the next turning on or off.

A non-blinking blinker will- not necessatily change its state at the specified time, but it
will be checked at that time and displayed if it is supposed to be visible but is not. This
is how blinkers reappear after bcmg opcncd so that output can be done.

:defer- reappaarance ‘ ()peranon ontv: blmker
This operation is invoked whenever a blinker is opencd in order to prcpare a sheet, if the
visibility is not :blink and if the blinker is scheduled to reappear in less than 25/60 sec.

* By default, it is defined to delay the blinker's reappearance until 1/2 sec after the present

SRCKLWINDBLINKTEXT2T | | | §-AUG83

Window System Manual o 107 B Blinker Flavors

tv:phase : " Instance variable of tv: bllnker
't when the blinker is present on the screen, nil when it is not.

tphase o .' | | Operation on tv:blinker
Returns t if the blinker is now displayed on the screen.

tb1ink : ’ ' Operation on blinkers
Draws or erases the blinker. Since the blinker is always drawn by xor'ing, drawing it and
erasing it are usually exactly the same. The method can- examine the instance variable
tv:phase to tell which one is happening, but usually there is no need to know. The
:blink operation may assume that the blinker’s sheet is prepared for output. It is always
called with interrupts disabled.

tv:with-blinker-ready do-not-open body... : Special form
This macro is useful in writing methods of blinkers that change the size, position, shape
or anything else that affects how the blinker appears. It executes body after preparing to
. remove the blinker self from the screen. If do-not-open is nil, the blinker is actually
opened before body is executed. - Otherwise, body may call tv:open-blinker if it wants the
blinker open.. Interrupts are disabled by this macro in any case, so that if the blinker is
opened it remains open for the duration of body.

Once the blinker is opéned, its instance variables may be set without special care.

tv:open-blinker blinker :
Clears blinker off from the screen if it is currently drawn. This does not change blinker’s
visibility. Blinkers that are supposed to be visible but are not on the screen are put back
on the screen by the scheduler, every so often. Thus, a blmker can be relied on to stay
open only as long as interrupts are disabled. :

tv:sheet-fol10w1ng-b1_1nker window
Returns a blinker that follows window’s cursor, or-nil if that window has no such blinker.

If there is more than one, it returns the first one it finds (it is pretty useless to have more
than one, anyway).

tv:turn-off—sheet-m'lnkers window .
Sets the visibility of all blinkers on window to :off.

9.2 Blinker Flavors
All the flavors in this section depend on tv:blinker.

For other blinker flavors and related’ considerations for use of a blinker for mouse tracking,
sce the scction on mouse blinkers, section 10.4, page 121.

'SRC:KL.WINDMBLINK TEXT21 - ' S 8-AUG-83

Blinker Flavors : - 108 ' Window Systcvaa'nual

tv:rectangular-blinker Flavor
This is one .of the flavors of blinker provided for your use. ‘A rectangular blinker is
displayed as a solid rectangle; this is the kind of blinker you see in' Lisp listeners and
editor windows. The width and height of the rectangle can be controlled.

swidth n-pixels - o Init option for tv:rectangular-blinker
theight n-pixels : ‘ ‘ Init option for tvirectangular-blinker
Set the initial width and helght of the blinker, in pixels. By default, they are set to the
font-blinker-height and font-blinker-width (see page 91) of the zeroth font of the
window associated with the blinker.

:set-size new-width new-height o Operation on tvirectangular-blinker
Sets the width and height of the blinker, in pixels.

:set- s1ze and cursorpos ' o Operalion ontv:rectangular-blinker
new-width new-height x y
Sets the width and height of the blinker, in pixels, and also its position, at once. This .
- avoids any chance that the blinker will appear.on the screen with its old size and new
position, or vice versa.

- tv:hollow-rectangular-blinker (tvirectangular-blinker) , Flavor
_This flavor of blinker displays as a hollow rectangle: ‘the editor uses such blinkers to show
you which character the mouse is pointing at. This flavor includes tv:rectangular-blinker,
and so all of tv:rectangular-blinker’s init-options and operations work on this too. .

tv:box-blinker (tvirectangular-blinker) Flavor
This flavor of blinker is like tv:hollow- rectangular -blinker except that it draws a box
two pixels thick, whereas the tv:hollow-rectangular-blinker draws a box onc pixel thick.
This flavor includes tv:irectangular-blinker, and so all of tv:rectangular-blinker’s init-
options and operations work on this too.

tv stay-inside-blinker-mixin Flavor
- This mixin makes a rectangular blinker, or any modlﬁed version thereof, kecp all of its
corners inside the blinker’s sheeét. Normally a blinker only makes sure that its position (its
upper left corner) is within the shect. Trying to position this sort of blinker in a bad
place positions it against the edge of the sheet, as near as possible to the requested place.

R AH 1beam b1inker ‘ - ' : Flavor
This flavor of blinker dlsplays as' an I-beam (like a capital 1. Its height is controllable,
.The lmcs arc two pixels wide, and the two horizontal lincs are mne pixels wide.

:height n-pzxels R ' ‘ Init option for tviibeam-blinker
Sets the initial helght of the blmker It defaults to. the line-height- (sece. page 67) of the
‘window.

SRCKLWINDBLINKTEXT2L | o 8-AUG-83

Window System Manual ‘ ‘ ‘ 109 : : Blinker Flavors

tv:character-blinker o : Flavor
This flavor of blinker draws .itself as a character from a font. You can control which font

and which character within the font it uses.

tfont font ' Init option for tvicharacter-blinker
Sets the font in which to ﬁnd the character to display. This- may be anything acceptable
‘to the :parse-font-specifier operation (see page 86) of the wmdows screen. You must
provide this.

:character ch ' Init option for tv:character-blinker
Sets the character of the font to d13p1ay You must provide this.

:character o | ' Operation on tv.character-blinker
Returns the character that this blinker is displaying as.

:set-character new-character &optional new-font Operation on tv:character-blinker
Sets the character to be displayed to new-character. Also, if new-font is provided, set the
font to new-font. new-font may be anything acceptable to the .:parse-font-specifier
operation (see page 86) of the window’s screen. :

_tv:character " Instance variable of tv:character-blinker
tv:font Instance variable of tv:character-blinker
The character being’ drsp]ayed and the font it is displayed in.

tv:bitblt- b'l'lnker (tv:mouse- bhnker mixin) : Flavor
A blinker that displays by copying a two-dimensional array of pixels onto the screen. The
array’s size must be at least the blinker’s size. As it happens, this flavor also includes the
ability to be the mouse blinker.

:array array ' - Init option for tvbltblt blinker
This option specifies the: array “of plxels to be used to display the blinker. Use make-
pixel-array to create the array. If you do not specify this option, you must specify both
the theight and :width options, which will be used to create an array.

swidth »-pixels ' S ' ~ Init option for tv:bitbit-blinker
theight n-pixels Init option for tv:bitblt-blinker
Set the initial width and height of the blinker, in pixels,

:size ' Operation on tv:bitblt-blinker-
" Returns the width and height of the blinker. If this is less than the size of the blinker's
array, then only part of the array, starting at the upper lcft comer, is used.

tset-size width height o Operation o tv:bitblt-blinker

" Sets the: size of the bhnker making a new array if the old one is not as big as the new
sxze _

SRCKL.WINIDBLINK. TEXT.21 - : ' -, o 8-AUG-83

Blinker Flavors ’ 3 - 110 Window System Manual

:array _ Operation on tv:bitblt-blinker

:set-array array ' Operation on tv:bitbit- blmker
Get or set the array of pixels to be used to display the blinker.

tv:array ‘ Instance variable of tv:bitbit-blinker

tv:height : , Instance variable of tv:bitbit-blinker

tv:width Instance variable of tv:bitbit-blinker

These instance varxables hold the special information of bltblt blinkers.

tv:magnifying-biinker (tv:bitbit-blinker) - Flavor
A kind of bitblt blinker which automatically displays a "magnified” version of some of the
dots underneath it. A small square of screen pixels is magnified by replacing each pixel
with an n by n square of identical pixels, where n is the blinker’s magnification factor.

The x-offset and y-offset which the blinker has by virtue of tv:mouse-blinker-mixin (see
page 122) help determine the center of magnification. The position of the magnifying
blinker is, as always, the position of its upper left corner. However, the cursor positions -
plus the offsets give the point which the blinker is indicating (this is the place where the
mouse position would be, if this blinker were the mouse blinker). The magnification is
done so as to keep that point on the screen fixed.

- :magnification factor : Init option jbr tv:magnifying-blinkef
Spccifies the magnification factor of the magnifying blinker. 3 is a good value to use.
The height and width of the blinker should be multiples of the magnification. So should

the offsets.
-:magnification . . ’ ~ Operation on tv:magnifying -blinker
:set-magnification factor ' Operation on tv.magnifying- blmker

Get or set the magmﬁcanon factor of the blinker.

tv:magnifi ca_t'l on ' ' Instance variable of tv:magnifying-blinker
The magnification factor .of the blinker. :

tv:reverse-character-blinker (tv:bitblt-blinker) ' Flavor
This flavor of blinker appears as a solid rectangle with a character removed from it. That
'is, a solid rectangle and the character are both drawn, and xor with each other. This
flavor of blinker proved to be very confusing in the use for which it was originally
implemented, but there seems no point in deleting it entirely.

All the operations and init options of tv:character-blinker are provided,' mough this
flavor does not depend on that one. '

The position of the blinker- is at the upper left corner of the rectangle. The position of
the upper left corner of the character with respect to the rectangle is specified. with the
init options :character-x-offset and :character-y-offset.

SRC:KL.WINDOBLINK. TEXT21 o ' 8-AUG-$3

Window System Manual - S ; ~ Blinker Flavors

:character-x-offset n-pixels Init option for tv.reverse-character-blinker

:character-y-offset n-pixels _ Init option for tv.reverse-character-blinker
Specify the offset of the character’s upper left corner to the right and down from the
‘blinker position (the rectangle’s upper left corner).

SRCKL.WIND>BLINK.TEXT.21 , - 8-AUG-83

TheMouse 1B | ~ Window System Manual

10. The Mousé

~ Programs and windows can use the mouse as an input device. ‘The functions, variables, and
flavors described below allow you.to use the mouse to do some simple things. To get advanced
mouse behavior in your own programs, like the way the editor gets the mouse to put a box
around the character being pointed at, you have to define new methods for various window
operations described in this chapter. Alternatively, you can invoke the built-in choice facilities,
such as menus and multiple-choice windows; these high-level facilities are described later.

At any time the mouse is considered to be indicating a certain position on the screen, called
the mouse cursor position. The mouse cursor is a conceptual entity which we think of as what
moves, inside the machine, when the user moves the mouse.

The mouse cursor position is indicated on the screen by a blinker called the mouse blinker,
an actual Lisp object of the sort described in the chapter on blinkers. Different blinkers can be
-the mouse blinker at different times, since each window ean decide what to use as the mouse
“blinker when that window owns the mouse.

There can be more than one screen, but the mouse cursor position is limited to one screen,
called the mouse sheet (it does not have to be a screen, but it normally is). Mouse. cursor
-positions are usually represented relative to the outside of the mouse sheet, though in operations
on windows they are sometimes represented relative to the particular window. The Terminal 2
command can be used to set the mouse sheet to another screen if your Lisp Machine has more
than one screcn; there is also a system menu option for this.

tv:mouse-x : , Variable

tv:mouse-y ' : Variable
These variables give the position of the mouse, in pixels, measured from the outside
upper-left corner .of the mouse sheet. They are maintained by the process handling the
mouse, normally the mouse process.

tv:mouse-set-sheet sheet _ '
Makes sheer be the mouse sheet, the one on' which the mouse cursor moves, Only

- inferiors of the. mouse sheet (to any number of levels) can own the mouse.

- tvimouse-sheet , _ : _ Variable
The mouse sheet.

tv:mouse-set-sheet-then-call sheet function &rest args
Applics function 1o args with sheet as the mouse-sheet.

Usually the mouse cursor moves only if the user moves the mouse. However, the program
can move the mousc cursor, and change the logical position of the mouse; at any time. This is
called warping the mouse. For example, double-click-left in the cditor warps the mouse to where
" the cditor cursor is -currently located. Since there is no fixed association between positions of
" . physical mouse on the table and spots on the screen, warpmg the mouse does not result in any

‘ mcunsnstcncy : :

SRCKL.WINIDMOUSETEXT.33 I ' ' L §AUG-83

Window System Manual o 113 _ Encoding Mouse Clicks as Characters

tv:mouse-warp x y
Warps the mouse to be at positions x, y with respect to the mouse sheet.

Tracking the mouse means examining the hardware mouse interface, noting how the mouse is
~ moving, and adjusting the mouse cursor position and the mouse blinker accordingly. Mouse
tracking is done by microcode within a window, and by a process called the mouse process when
moving between windows. The mouse process also keeps track of which window owns the mouse
at any time. For example, when the mouse enters an editor window, the editor window becomes
the owner, and to indicate this, the blinker changes to a northeast arrow instead of a northwest
arrow; this is all done by the mouse process.

In general, the mouse process decides how to handle the mouse based on the flavor of the
window that owns the mouse. Some flavors handle the mouse themselves, running in the mouse
‘process, in order to be able to put little boxes and such around things, usually to indicate what
would happen if you were to click a button. The editor, the inspector, menus, and other system
facilities do this. The flavor of the window owning the mouse is also what usually controls the
effect of clicking the mouse buttons

10.1 Encoding Mouse Clicks as Characters

Clicks on the mouse are sometimes encoded into characters. Such characters are normally
forced into input buffers of windows (see page 53), and so .they are distinguished from regular
“keyboard characters by having the %%kbd-mouse bit turned on. Encoding of clicks is done with
tv:imouse-button-encode (see page 116) See page 49 for full mformanon the fields of such a
~ character. '

Note that "mouse clicks" cén also be done on the keyboard. See the variables tv:use-kbd-
buttons and tv:*mouse-incrementing-keystates*, in section 10.6, page 128.

These standard mixins handle mouse clicks. by forcing keyboard input describing the click:

tv: kbd mouse-buttons- m'lx'ln ‘ Flavor
Handles mouse clicks by encoding them as characters which are forced into the window’s
input buffer. In more detail: if it is a double-click on the right button, the system menu
- is called forth. Otherwise, the encoded character representation of the click is forced into
the input buffer of the window. Furthermore, if 1L is a single-click on the left button, the
window is sclected. C

The state of the Contrdl Meta, Super and Hyper keys at the time of the click is
included in the chdractcr in the %%kbd control etc., ficlds (see page 49). '

tvilist- -mouse- buttons mixin ' : Flavor
~This is just like tv:kbd-mouse-buttons-mixin cxccpt that a blip gocs in the input buffer
rather than just an encoded click. The blip looks like:
(:mouse-button encoded-click window x y)
This is more. uscful than just the cncoded click: it tells you where the mouse was
(relative to the outside part of the window), and which window the mouse was over (this
is uscful primarily if scveral windows are sharing the same input buffer).

SRCKL.WINDYMOUSE. TEXT.33 ' o 8-AUG-83

Ownership of the Mouse _ 1.14 ' Window Systém Manual |

The state of the Control, Meta. Super and Hyper keys is mcludcd in the encoded: click,
in the %%kbd- control etc., fields.

The following subte point may explam some difficulties you may have with the above flavors.
It is a tricky point, and you can ignore it if you don’t understand it. The characters (or blips)
created by the flavors above go straight into the window’s input buffer. - Under some circumstances
they may bypass pending characters that have been typed ahead at the keyboard. So if you type
something and then mouse-click at something in rapid succession while your program is busy, the
‘program may see the mouse-click before it sces the character from the keyboard. [This may be
fixed in the future.] See section 5.4.1, page 58, for further discussion of these issues.

10.2 Ownership of the Mouse

Usually the mouse is handled according to the window that it is positioned over. We say that
this window owns the mouse. The window that owns the mouse is the one that will receive the
:handle-mouse, :mouse-moves and :mouse-click messages. So the usual case is that the
window under the mouse owns the mouse.

Since windows are arranged in a hierarchy, generally a window, its superior, its superior’s
superior, and so on, arc all under the mouse at the same time. So the window that owns the
mouse is really the lowest window in the hierarchy (farthest in the hierarchy from the screen) that
is- visible (it and all its ancestors are exposed). If you move the window to part of the screen
occupied by a partially-visible window, then one of its ancestors (often the screen itself) becomes
the owner. The screen handles single-clicking on the left button by selecung the window under it;
this is why you can select partially-visible wmdows with the mouse. :

A greedy wmdow can keep ownership of the mouse even if the mouse moves outside of it,
by setting tviwindow-owning-mouse to that window. This should be done: only when that
~window has come by the mouse by legitimate means, inside a :handle-mouse operation on that
window or one of the other operations invoked by it. Inferiors of the greedy window can still
own the mouse when it is over them. Greediness ends when tv:window-owning-mouse is set
back to nil (its normal state). Then the mouse goes back to being owned by whichever window is
under it. While a window is being greedy, mouse tracking continues to use the methods of the
owmng window, but the way of determmlng the owning window is changed.

The mouse can a]so be grabbed;. which means that some process has taken it away from all
windows. This state is represented by tviwindow-owning-mouse being t. See section 10.2.1,
page 115. ' ' '

Usurping the mouse is an even more drastic mecthod of taking over control. - It turns the
mouse process off, 50 you have to:do the tracking yourself... See section 10.2.2, page 118.

tv:window- own1ng mouse : ' Variable

- If this is nil, the mouse is owned by the window under it. If this is t, the mouse is
grabbed. If this is a wmdqw, the mouse is owned by that window.

SRCKLWIND>MOUSE.TEXT.33 | ' : 8-AUG-83

Window System Manual | ns - Ownership of the Mouse

tv: window—own‘lng mouse
‘Returns the window that now owns the mouse, elther because it is being greedy or

because the mouse is over it. If the mouse has been grabbed,. the value is t.

tv:mouse-window ‘ : ' Variable
The window that is currently handling the mouse. This is the window that tv:window-
owning-mouse returned the last time the mouse process called it.

tv:mouse-wakeup ’
Informs the mouse process that the screen layout has changed. Anything which may
change which wmdow is under any point where ‘the mouse might be should call this

function.

tv: hysteretic window-mixin Flavor
This mixin makes a window continue to own the mouse (by being greedy) for a small
distance beyond the edges of the window. This distance is called the hysteresis, and you
can specify it. This mixin is used by momentary menus, so.that if you accidentally slip a
bit outside the menu, thé menu won’t vanish; you have to get well away from it before
it vanishes. :

thysteresis n-pixels - Init option for tv:hysteretic-window-mixin
Sets the initial value of the hysteresis, in pixels. It defaults to 25. (decimal).

thysteresis S ~ Operation on tv:hysteretic -window-mixin
tsoet-hysteresis new-hysteresis Operation on tv:hysteretic~window-mixin
. Examine or set the hysteresis of the window. :

10.2.1 Grabbing the Mouse

Normally mouse clicks and motion are interpreted by a window that owns the mouse. Some
applications, such as Edit Screen, use the mouse for choosing a window to be operated on.
Then it is nccessary to make sure that control of the mouse remains with the program that is
doing this (e.g. Edit Screen) rather than gomg to whatever window the user wants to choose.
This is done by grabbing the niouse.

When the mouse is grabbed, the mouse process gets told that no window owns the mouse,
and it changes the mouse blinker back to the default (a northeast arrow). The mouse process will
continue to track the mouse. and your process can now watch the position and the buttons by
usmg tv: mouse-x and tV'mouse Y, and the variables and functions described below. ‘

tv:with-mouse-grabbed - : Special form
A tv:with-mouse-grabbed spcma] form just has a body : —
(tv:with-mouse-grabbed :
SJorms. .) :
The forms msnde are evaluated with the mouse grabbed

SRCAL.WIND>MOUSE TEXT33 - L : v) $-AUG-83

Ownership of the Mouse 116 o Window System Manual

tv:mouse- last buttons ' o Variable
This -variable contains a mask dcscnbmg the mouse buttons, as of the last time the
process handling the mouse looked at them. The numbers 1, 2, and 4 represent the lef,
middle, and right buttons respectively, and the value of tv:mouse-last-buttons is the
sum of the numbers representing the buttons that were being held down.

tv:mouse-speed ' - Variable
The speed the mouse has been moving recently, in units approximately like inches per
- second.

tv:mouse-wait &optional (old-mouse-xtv:imouse-x) (old-mouse-ytv:mouse-y)
(old-mouse-buttons tv:mouse -last-buttons)

This function waits for any of the variables tv:imouse-x, tv:mouse-y, or tv:mouse-last-
buttons to become different from the values passed as arguments. To avoid timing errors,
your program should examine the values of the variables, use them, and then pass in the
values that it examined as arguments to tvimouse-wait when it is time to wait for the
mouse to move again. It is important to do things in this order, or else you might fail to
wake up if one of the variables changed while you were using the old values and before
you called tv:mouse-wait.

tv mouse- button -encode bd :
When a mousc button has been pushed, and you want to interpret this push as a click,
call this function. It watches the mouse button and figures out whether a single-click or
double-click is happening. It returns nil if no button is pushed, or an encoded character
describing the click (see page 49).

You should call tv:mouse-button-encode only when a button has just been pushed; that

is, when you see some button down that was not down before. You have to pass in the.

argument, bd, which is a bit mask saying which buttons were pressed down: which are

down now that were not down "before”. The form (logand (logxor old-buttons -1) new

buttons) will compute this mask, where old-buttons is a mask of the buttons that were
_.down before and new-buttons is a mask of the ones that are down now.

tv:merge-shift- keys char ,
‘Maoadifies char by setting the bits corresponding to all the shift keys currently pressed.down
on the keyboard. This is uscful on the result returned by tv:mouse-button-encode. if
you wish to record the state of the shift keys in- the description of a2 mouse click so that
the 'shift'kcys can alter the meaning of the click.

tv:who-1ine-mouse-grabbed-documentation ' Variable

When grabbing or usurping the ‘mouse, you should explain what is going on in the
mousc-documentation line at the bottom of the screen. with-mouse-grabbed and with-
mouse-usurped bind this variable to nil, which -makes the mouse-documentation. line
blank. Inside the body of onc of these special forms. you may setq this variable to a

~string, which will be displayed in the mouse-documentation line. 1If your program has
"modes” which affect how the mouse acts, each part of the program should setq this
variable to its own documentation. :

SRC:KLWINDYMOUSETENT33 o S | 8-AUG-83

Window System Manual | 117 . Ownership of the Mouse

tv:window-under-mouse &optional operatzon acnve-condzlzon Xy
Returns the window that is seen at the point where the mouse is (or at (x,y) in the
mouse sheet, if they are non-nil). This is the window that is partially visible at that
point. If operation is non-nil, only windows that handle that operation are considered at
all. active-condition is another way of filtering among windows; it can be :active or
:exposed, to select among active or exposed windows. ‘

This is used by the mouse process in deciding Wthh window owns the mouse, and can
also be used by you when you have grabbed the mouse.

tv:mouse-specify-rectangle &optional lefi top right bottom (sheet mouse-sheet)
(minimum-width Q) (minimum-height0) abortable
Grabs the mouse and asks the user to specify a rectangle by clicking at two corners. This
is how the system menu Create option works. Four values are returned, the lef, top,
right, and bottom of the rectangle, all relative to sheet.

left and twp, if non-nil, are where to position the mouse initially when asking for the

upper left corner. If right and bottom are also non-nil, then when asking for the lower

right corner the mouse is positioned initially so as to make a rectangle of the same size as

the arguments specify. In other words, what matters about the argument right is how
- much bigger it is than left.

minimum-width and -minimum-height constrain the values that may be returned:

If abortable is non-nil, the user is permitted to abort by clicking the middic button. Then
the function returns nil.

It is often useful to call this function via' tv:mouse -set-sheet-then-call (page 112).

tv:mousa—set-wlndowv-s'lze window &optional (move-pt)
Grabs the mousc and asks the user for new edges for window, returns them, and (unless
inhibited) sets the edges of window to them as well. - window’s edges are set unless move-p
is nil.

The values are the new edges, sultable for the :set-edges operatlon or nil if the user
aborted. :

tv:mouse-set-window-position window &optional (move-pt) _
Grabs the mouse and asks the user for a new position for window. The new position is
returned as two valucs, and window'is moved to. that position unless nove-p is nil.

The values are the new position of the upper left corner; suitable for the :set-position
operation, or nil if the user aborted. : :

SRCKLWIND>MOUSE.TEXT 33 © 8-AUG-83

Ownership of the Mouse - 1}8 | ' Window System Manual

10.2.2 Usurping the Mouse

For high real-time performance, you can usurp the mouse. Then the mouse process steps
aside and lets you do everything related to tracking the mouse until you return control of it. The
variables tv:mouse-x and tv:mouse-y are not updated while the mouse.is usurped. The mouse
blinker disappears, and if you want any visual indication of the mouse to appear, you have to do
it yourself.

tv:w1th-mouse-usurpad ‘ Special form
A tv:with-mouse-usurped special form just has a body:
(tv:with-mouse-usurped
Jorms. . .)
'Ihe forms inside are evaluated with the mouse usurped.

tv:m’ouse-input &optional (wait-flagt)
Waits until something happens with the mouse, and then returns saying what happened.
Four values are returned. The first two are delta-x and delta-y, which are the distance
that the mouse has moved since the last time tv:mouse-input was called. The second two
are buttons-newly-pushed and buttons-newly-raised, which are bit masks (using the bit
assignment used by tv:mouse- -last-buttons: sece above) saying what buttons have changed
since the last time tv:mouse-input was called.

You may call this function only w1th the mouse usurped; otherwise you will get in the
 way of the mouse process, which calls this function itself, and mouse trackmg won’t work
correctly : -

The variables tv:mouse-x and tvimouse-y are not maintained by this function; you must
-do it yourself if you want to keep track of a cumulatwe mouse position. - tvimouse-iast-
buttons is maintained. :

The buttohrnewly-pushed value is suitable for being passed as an argument to. tv'mouse-
buttons-encode, which can be used with the mouse usurped as well as with the mouse
gmbbed

If wait-flag is nil; then the function will not wait; it may return with all zeroes, indiéating
that nothing has changed. : ' .

tv:mouse- buttons

Returns the current state of the mouse buttons in the format used by the tv mouse-last-
buttons variable, by examining the hardware mouse registers.

SRC:¢L.WINDYMOUSE.TEXT.33 ' ' A .. 8-AUG-83

Window System Manual - S 119 . How Windows Handle the Mouse

10.3 How Windows Handle the Mouse

The mouse is rarely grabbed or usurped. Normally it is owned by a window (or a screen). -
Then, mouse handling works through various flavor operations on the owning window. There are
several operations, used at various points in mouse handling, to give you convenient hooks for
modifying a window’s behavior.

The outermost loop of mouse handling determines the owning window and then invokes its
thandle-mouse method. When this method returns, the owning window is recalculated.

:handle-mouse : "~ Operation on windows
This operation is invoked by the mouse process to handle the mouse while it is on this
window. It should return only when the mouse moves out of the window, or if the
mouse is grabbed.

The default definition is to call tvimouse-standard-blinker followed by tvimouse-
default-handl_er.

tv:mouse-default-handler window scroll-bar-p .
The guts of the -:handle -mouse operation. :handle-mouse methods typically set up the
- desired . sort of mouse blinker and then call this function. window is the window the
mouse is being handled for, and scroll-bar-p is t to provide a scroll bar (see_section 10.5.2,
page 125), if the window implements one. Generally the :enable-scrolling-p operauon is
- used to compute the second argument.

A sccond argument of :in is used. for handling the scroll bar itself. Valucs other ‘than nil,
t and :in should be avoided.

This function invokes the :mouse-moves operation to inform the window about mouse
motion, and the :mouse-buttons operation to inform it about buttons going down. They
are the most convenient hooks to use for implementing simple new mouse behaviors.

:set-mouse-cursorpos x y. - . Operation on windows
‘:set-mouse-position x y - Operation on windows
‘Move the mouse instantancously to the specxﬁed position. The effect is as if the user had
moved the mouse over to that spot, without the user actually touching it. For :set-
mouse-position, x and y are rclative to the outside edges of the window. For :set-
mouse-cursorpos, they are relative to the inside. edges (as in the :set-cursorpos
operation).

tmouse-moves x y : : Operation on windows
This operation is mvokcd in the mouse process every time the mouse moves either into,
within or out of this window. x and y are the current posmon of the mouse, relative to
the outside edges of this wmdow

:mouse-moves handlers should always call tvimouse-set-blinker-cursorpos to make the
mouse blinker move. In addition, they frequently move other blinkers or turn them. on
or off. This is how menus arrange to outline the item the mouse is over.

SRCAL.WIND>MOUSE.TEXT.33 ‘ v §-AUG-83

How Windows Handle the Mouse . izo o ' Window System Manual

tv:mouse-default-handler is what invokes this operation.

When this window ceases to own the mouse, for whatever reason, the :mouse-moves
method will always be called one final time, so that it can turn off extra blinkers, etc.

tv:mouse-set-blinker-cursorpos &rest ignore
Moves the current mouse blinker to the current mouse position. :mouse-moves methods
typlcally call thls function. :

:mouse-buttons mask x y ' Operation on windows
This operation is invoked in the mouse process when a button is pressed. mask is a mask
of the buttons pressed, and x and y are the mouse position (in the mouse sheet).

By default, this calls tv:mouse-button-encode to check for double clicks, then brings up
the system menu for double-click-right; .otherwise, it invokes the :mouse-click operation.

tv:mouse-default-handler is what invokes this operation.

smouse-click mouse-char. x y Operation on windows
~ This operation is where most handling of mouse clicks actually goes on. It is invoked in
the mouse process. mouse-char is a character code describing the button pressed and how
many times; such as,. #\mouse-lI-2. x and y are the position of the mouse at the
beginning of the click. It is preferable to use this position rather than the current one, .
because the user positioned the mouse accurately before clicking and motion dunng the
click was probably accidental.

Any window selection” desired should be done in another process, using process-run-
_function or tv:mouse- select It is unrobust to do something so error-prone in the mouse

process.

:or method combination is used, so that all the methods are run until one of them
" returns non-nil. So each mixin can define a way of handling the mouse under certain
circumstances, and it can decline to handle the click by returning nil. For example,
tv:margin-choice-mixin defines a :mouse-click method which handles the click if the
position is inside a margin choice box, and returns nil otherwisc so that the window's
pnmary way of handling chcks can be run. :

tv:kbd-mouse-buttons-mixin and tv:list~mou$e-buttons-mixin work by decfining
‘mouse-click methods.

:who-1ine-documentation-string - Operation on windows
This operation should return a string - describing. what the mouse would do if clicked on
-this window in its current position. For example, menus return a string describing the
menu item that the mouse is over. If different buttons do- different things, or if multiple
. clicks are in use, the string should describe all the possibilities.

SRCKXL.WINDYMOUSETEXT33 ' o 0 8-AUG-83

Window System Manual - o 121 o - Mouse Blinkers

- tv:mouse-select window :
Selects window, and safe to use in the mouse process because it creates a temporary
process to do the work in that case. Used by :mouse-click methods.

tv:mouse-call-system-menu , _
Brings up the system menu, and designed to be safe to use in the mouse process. Used
by :mouse-click methods.

10.4 Mouse Blinkers

- At any time one blinker is the mouse blinker, which follows the motion of the mouse. It is
not always the same blinker. Each window can set up the kind of mouse blinker it wants or
change the blinker, as long as that window owns the mouse.

The mouse blinker's sheet is the mouse sheet, not the window that owns the mouse and
wants this blinker to be used. This avoids problems with displaying the blinker at points near the
edge of the owning window which require parts of the blinker to be outside that window.

Note that mouse blinkers are not following blinkers; the mouse cursor position is independent
of the cursor position of the owning window and also independent of the cursor position of the
mouse sheet.

The recommended way to make a window flavor use a spec1al form of mouse cursor is to .
give the flavor a :mouse-standard-blinker method which alters the mouse blinker using
- tv:mouse-set-blinker or tv:mouse-set-blinker-definition (sce below).

Usually there is only one form of mouse blinker used for any given window. If you want the .
mouse blinker's appearance to vary while the mouse remains in the same window, a good
‘technique. is to have the :mouse-standard-blinker method know how to set up whichever blinker
appearance is tight at the moment it is called, and then call tv:mouse-standard-blinker after
* every event that might necessitate changing the blinker. ‘

tv:mouse-blinker R : ' Variable
The blinker now following the mouse. It should not be changed by the user directly.

tv:mouse-set-blinker blinker &optmnal x-offset y-offset
Makes blinker the new mouse blinker. If x-offser and y-ojfset are non-ml blinker’s offscts
(see bclow) are also sct. :

blmker can be a decfined blinker type instead of a blinker. Then this function is
cquivalent to tv: mouse- set~blinker-definition thh only thrcc arguments specified (page
- 123). :

This function is typically called from :mouse-standard-blinker methods.

SRCKL.WINDMOUSE TEXT 33 - S S 8AUGS3

Mousc Blinkers ' _ I . Window System Manual

tv:mouse-standard-blinker &optional ,(Window(tv:window-dwning-mouse)))
Sets the mouse blinker to the standard kind for window, by invoking the :mouse-
standard-blinker operation on it. This is called by the window system at appropriate
times. ' : . '

:mouse-standard-blinker - -Operation on windows
This should use tv:mouse-set- blinker or tv: mouse -set-blinker-definition to set up the
right kind of mouse blinker to use when the mouse is on this window. By default, it is
defined to pass on the message to the superior window; finally, the screen handles the
operation by making the blinker an upward-left arrow.

tv:mouse-blinker-mixin : Flavor
Not all blinkers can serve as mouse blinkers. Thxs mixin makes a blinker sultable for use

as the mouse blinker.

A mouse blinker has two offsets which relate the blinker position to the mouse position.
- Remember that the blinker position is where the upper left corner of the blinker is
displayed. The upper left corner is not always what you want to place at the precise spot
the mouse is pointing to. For example, if you are using a character blinker with the
character X, probably the center of the X rather than its corner should be "the spot”.

soffsets ' Operation on tv:mouse - blinker - mixin
Returns the x and y offsets of the blinker as two values. The values give the position of
the mouse cursor relative to the blinker; that is, in order to locate the cursor within the
area of the blinker's display, the offsets must be positive.

:set-offsets x y ’ Operation on tv:mousé—blinker-mixin
Sets the offsets of the blinker.

-tv:mouse-character-blinker - ' v , Flavor
‘tv:mouse-rectangular-blinker - - X ’ : Flavor
tv:mouse- hol'low-rectangular-bl1nker ' : - Flavor
tv:mouse-box-biinker Flavor
tv:mouse-box-stay-inside- anker ‘ Flavor

These are versions of popular blinker flavors described in section 9.2, page 107, which
. can be used as the mouse. blinker. tv:mouse-box-stay-inside-blinker incorporates
tV'stay-inside-blinker-mixin : : o

The flavors tv:bitblt-blinker and tvmagmfymg blinker are already suited to be mouse
: blmkers

' SRC:(I..WlNI))MOUSE.’I‘EX'I’SS ' | o o 8-AUG-83

- Window System Manual - 123 Mouse Scrolling

10.4.1 Reusable Mouse Blinker Types

Norma]ly you do not create mouse blinkers yourself Instead, each screen keeps a list of
mouse blinkers of various sorts, and you reuse one of them. This is done by means of mouse
blinker type keywords. A mouse blinker type keyword is given a meaning, which is a function for
~-creating a blinker. The first time somecone wants a blinker of that type on a given screen, one is
created and remembered, and reused every time a blinker of that type 1s wanted. A blinker type
keyword serves a purpose sm'ular to that of a resource..

Predefined type -keywords mclude :character-blinker, :rectangle-blinker, :box-blinker and
:box-stay-inside-blinker. :

- You do not have to use this mechanism, but it saves creation of blinkers to do so.

tv:mouse-define-blinker-type #pe creation-function
Defines type as a mouse blinker type, with creation-function as a function to create one.
The function will receive a screen as argument and should call make-blinker.

tv:mouse-get- anker type sheet : :
Returns a blinker of type #ype whose sheet is sheel The same blinker will be
" automatically: reused for different sheets on the same screen. In fact, the blinker’s sheet
will be the screen, not sheet. - :

tv:mouse-set-blinker-definition ype x-offset y-offset visibility operation &rest args
Sets the mouse blinker to be a blinker of type fype, and sets its offsets and visibility as
specified; then sends the blinker a message of operation and args if operation is non-nil.
operation is typically used to initialize other aspects of the blinker. For example, the
:set-character operation- is useful with character blinkers.

~ This “function can be used in the :mouse-standard-blinker method of a window' to
‘specify a different appearance of the mouse blinker while the mouse is in that-window.

tv:mouse-bl1inkers _ Instance variable of tviscreen
A list of mouse blinkers, examples of various reusable mouse blinker types, created so far
for this screen.

10.5 Mouse Scrolling

Some windows:hzive the ability to scroll. They dlsp]ay onlvy a portion of a virtual window
- which is (or may be) too big to be shown all at once. Scrolling means moving the actua]ly-shown '
* portion up or down through the entire. display.

- SRCKLLWINDOMOUSETEXT33 - . o : ' 8-AUG-83

Mouse Scrolling | ' 124 _ Window System Manual

10.5.1 Scrolling Protocol

~ There are several ways the mouse can be used to scroll a window. Each is 1mp1emented by a
mixin. They all communicate with the window using the same protocol. For the sake of this

~protocol, the contents of the window are considered to be divided vertically into "lines”. A

" position for scrolling is expressed as the number of lines that are above the top of the window.
These do not have to be actual lines of text, though usually they are, but they must all have the
“same height. Usually this common height is the window’s line-height, but that is not required.

tenable-scroll 1ng p Operation on scrolling windows
The various mouse- scrollmg features use this operation to decide whether they should be
active at any given time. If this operation returns nil, the scrolling facilities do not react
to the mouse. :

tscroll- pos1t‘lon B o . Operalion on scroIIing windows
Returns four values: :
top-Ime-num ~ The line-number of the line currently at the top of the wmdow ’
total-lines ~ The total number of lines available to scroll through.
line-height The height (in pixcls) of a line. |
n-items " The number of lines that the window has room for.

sscroll-to 10 &optional (fype ’:absoldte) Operation on scrolling windo.ws
type is one of: v
:absolute Places the line numbered fo at the top of the window.

relative . Adjusts the line displayed at the top of the window by to lines. If to is
: " positive, text moves upward on the screen.

- Since 0 is not guarameed to be legal, both types of scrolling must error check their

‘arguments. o ‘

:new-scroll-position : Operation on windows
This operation is used by the program managing the window to tcll the mouse scrolling
facilitics that the contents of the window have changed under program control. It should
be invoked whenever cither the total number of lines to scroll through or the line number
at the top of the window is changed by anything except the mouse scrolling facilities.

Mouse scrolling facilities put dacmons on this operation in ordcr to update thetr displays
when the situation changes.

SRC:CLWINDYMOUSETEXT.33 | o . $-AUG-83

Window System Manual . 125 Mouse Scrolling

1052 Scroll Bars

If you move the mouse to the left edge of an editor window from the inside, eventually the
mouse cursor changes to a thick up-and-down arrow. Simultaneously, a thin vertical line appears
next to and outside of the left border of the window. This is called entering the scroll bar, and
the thin vertical line, which indicates the portion of the total text that is now on the screen, is
the scroll bar itself. '

. The vertical position of the top and bottom of the thin vertical line, as proportions of the
height of the window, are the same as the positions of the first and last lines of text on the
screen, as proportions of the total number of lines.
While the mouse is in the scroll bar, clicks have special meanings:
single left Moves this line (the one the mouse points at) to the top of ‘the window.
single right Moves the line at the top of the window to where the mouse points.
double left Moves this line (the one the mouse -'points at) to the bottom of the window.
double right Moves the line at the top of the window to where the mouse points.

middle - Scrolls so that the scroll bar moves to where the mouse is. The mouse vertical
' position on the window thus controls where in the display to scroll to; the top of
the: window requests the beginning of the avallab]e display, and the bottom

requests the end.

‘tv:basic-scroll-bar ‘ ' ' _ Flavor

This mixin gives a wmdow the ability to have a scroll bar. It defines three instance
variables: :

tv:scroll-bar - When the window provides margin space for a scroll bar, this is a list
' describing the rectangle allocated. Otherwise, it is nil.

tv:scroll-bar-always-displayed
If this is non-nil, the bar will be displayed whenever margin space is
~ provided for it, even if the mouse is not there.

tv:scroll-bar-in. This is non-nil when the mouse is actually in this window’s scroll bar.

tscroll-bar spec ‘ Init option for tv:basic-scroll-bar
Specifies whether to have a scroll bar, how big to make it. and where. spec can be nil
for no scroll bar, t for a default scroll bar, or a small pesitive number, which requests a

- scroll bar of that width. The scroll bar occupics space in the margins of the window.

:set-scroll-bar spec , - Operation on tv:basic-scroll-bar
Sets whether this window has a scroll bar, or how wide it is. spec is the same as in the
:scroll-bar init option. This can change the inside sizec of ‘the window, since it can
change the amount of space nceded in the margin. '

g SRC:¢L.WIND>MOUSE.TEXT.33 ' : _ o - §-AUG-83

Mouse Scrolling , 126 C . Window Systcm Manual

:enable-scrolling-p o Operation on tv:basic-scroll-bar
- This mixin defines this operation to return t when the window has a scroll bar. Sce page
124 for a description of this operation.

:scroll-barﬁlways-d‘l splayed rornil - Init option for tv:basic-scroll-bar
Non-nil to say that the bar of the scroll bar should appear on the screen all the time, not
just when the mouse is- "in" it.

:scroll-bar-al ways-d1 splayed Operation on tv:basic-scroll-bar
:set-scroll-bar-always-displayed t-ornil Operatior. on tv:basic -scroll-bar
Get or set this flag in an existing window. Setting it updates the screen.
:scroll-more-above BRI Operation on tv:basic-scroll-bar
:scroli-more-below : ' Operation on tv:basic-scroll-bar

t if there is text to scroll up (down) to. The default definition uses the :scroll-position
operation; some flavors redefine it for greater efficiency.

:mouse-buttons-scroll mouse-char x y . .Operation-on tv:basic-scroll-bar
This operation is invoked when the mouse is clicked in the scroll bar. mouse-char is a
character with %%kbd-mouse set, identifying the button clicked and how many times. x
and y are the position at the time of the click, relative to this window's outside edges.
The default definition provides the standard scrolling commands; you can redefine it.

:scroll-relative flom 10 = Operation on tv:basic -scroll-bar
Scrolls the window to move what is now at the y-position from to the y-position fo. The
arguments can be numeric vertical cursor positions, or the symbols :top or :bottom. The
:scroll-position and :scroll-to operations are used to accomplish the scrolling.

10.5.3 Margin Scrolling

) The scfolling mixins described here require that the window have tv:basic-scroll-bar as well,
because they make use of operations defined by that flavor. If you do not want to have a scroll
~ bar, you can specify nil for the scroll bar init option.

tv:flashy-scrolling-mixin : Flavor

: This mixin provides the ability to scroll the window a line at a time by pushing the
mouse against the top or bottom edge. The mouse blinker changes to a thick up or down
arrow when it is in the right place to do- this. '

~This sort of scrolling is provided in the- editor and the inspector. This flavor does not
- cause the text "more above” to appear, the way it does in the inspector; that is done by
tv:margin -scroiling~mixin. :

:flashy-scrolling-region spec Init option for tv:flashy-scrolling-mixin
’ spec specifies where in the window the regions should go in which thc mouse can cause
- scrolling. It looks like this: ‘
' - ((top-height top-left -top-right)
_ (bottom-height- bortom-Ieft bottom-right))
Each rcgion - always abuts the top or bottom cdge of the window, overlapping the

SRC:<E.WIND>MOUSETEXT.33 _ . B | 8-AUG-83

Window System Manual 127 , R Mouse Scrolling

window’s margin, but possibly extending into the inside of the window. Each height is a

number of pixels in height for the specified region. Each left and right give the sides of

the region. left and right can be fixnums (positions. relative to the window left edge),

flonums (fractions of the width of the window, with zero at the left), or :left for the left
. edge or rlght for the right edge. : :

tv: marg'ln scroll-mixin ' - Flavor _
This mixin (which requires tv:margin-region-mixin as well) provides for mouse-sensitive -
regions in the top and bottom margins which say "more below" or "more above" if there
is something to scroll to. A mouse click on the region scrolls an entire windowfull.

:margin-scroll-regions region-list Init option for tv:margin-scroll-mixin
Each element of region-list describes what to do with one of the two scroiling regions. An
element looks like

‘ (keyword at-end-message . more-message fbnt—speczﬁer)
keyword is :top or :bottom, and says which region this element describes. at-end-message
is an expression evaluated to get the string to display in the region when there is no room
for more scrolling in that direction. If nil or omitted, it defaults to "Top" or "Bottom".
more-message is another expression which is supposcd to evaluate to a string to print when
there is room for more scrolling. "More above" and "More below" are the defauits.

Most commonly one just uses a string for the at-end-message and the more-message.
Jont-specifier specifies the font to use. It defaults to tr10i if it is nil or omitted.

tv:flashy-margin- scron'lng -mixin ' - Flavor
This. mixin provides both flashy scrolling and margin scrolling, with the ﬂashy scrollmg
areas - overlying the margin scrolling regions. You don’t need anything else except
tv:basic-scroll-bar. o '

* Here are two. ways of controlling when margin scrolling regions appear or disappear:

‘tv:margin-scroll-region-on-and-off-with-scroll-bar-mixin’ Flavor
This mixin, when combined with tv:margin-scroll-mixin, makes the margin scroll regions
~ disappear if the :scroll-bar init option or the :set-scroll-bar operation is used to make
the scroll bar disappear, and rcappcar if a scroll bar is created agam.

tv:scroll-stuff-on-off-m'lx'ln o o ' _ Flavor
This mixin provides a scroll bar, flashy scrolling and margin scrolling, and makes them
appear or disappear according to the value returned by the :enable-scrolling-p operation.

:decide-if-scrolling-necessary Operation on tv:scroli -stuff-on -off-mixin
' Makes the scroll’ bar and margin regions appear or disappear if appropriate, using the
:enable-scrolling-p to decide whether they should be present. The goal is to avoid
dnplaymg scrolling features, and using up screen space for them, when therc is no place
“to scroll to.

-SRC:(IQ.W]Nl))I\-IOUSE.']“EX"I".33 S o 8-AUG-83

Mouse Parameters : 128 Window System Manual

This oﬁeration is invoked automatically at certain times. It should be invoked also
whenever the number of lines to scroll through has been changed, but before doing any
associated redisplay (smce the redisplay to be done may be different after this operation
finishes).

If the scroll bar and margin regions must be added or removed, then either the inside
size of the outside size of the window must change.. The :adjustable-size-p operation is -
used to decide which. If it returns non-nil, the inside s1ze is preserved and the outside
size is changed otherwise, the outside size is preserved.

Changing the inside size may affect the window’s redisplay calculations, and for some
windows it may cause a redisplay within this operation. You may want to invoke it inside
of a tv:with-sheet-deexposed to avoid letting the user see gratuitous double redisplays,
or to suppress the redisplay entirely if there is no bit-save-array.

If the outside size is to be changed, and if changing the number of displayéble items
: changes the height of the window, that should be done before invoking this operation.

.adjustable size-p ' Operation on tv:scroll-stuff-on- - off-mixin
' This operation is used to decide how to adjust the window margin size. If it returns non-
nil, the inside size is preserved; otherwise, the outside size.

tv:scroll-stuff-on-off-mixin does not define this operation, but it requires users to define

10.6 Mouse Parameters

tv:use-kbd-buttons | | | Variable
If this is non-nil, the Roman numeral. keys I through III on the keyboard are treated as
mouse clicks when the Mode-Lock key is down. The default is t.

,tv mouse-bounce-time Variable
The. delay in microseconds after a change in a mouse button status before the system

begins to look for another change. The default is 2000. microseconds.

tv:mous&doubh-_c'l1ck-time : : - " Variable
‘ The delay in microseconds after which the system gives up checking for an additional
mouse click. The default is .2 seconds. :

tv:mouse- discard -cTickahead
Clears- out the microcode buffcr in which the mousc-trackmg microcode rccords mouse

clicks.

- tv:*mouse-incrementing-keystates® Variable

' This is a list of keys (valid arguments for tvikey-state). When the mouse is clicked, each

of these keys that is held down adds one to the "number of clicks”. The default value is
(:control :shift :hyper) ’

Thus, if you do asingle click with the Control key down,. it'is treated as a double click.

SRCKLWINDIMOUSETEXTA33 ' : 8-AUG-83

Window System Manual | o . - 129 - Margins, Borders, and Labels

- 11. Margins, Borders, and Labels

In previous sections, we have mentioned the distinction between the inside -and -outside parts
of the window. The part of the window that is not the inside part is called the margins. There
are four margins, one for each edge. The margins sometimes contain a border, which is a
rectangular box drawn around the outside of the window. Borders help the user see what part of
the screen is occupied by which window. The margins also someUmes contain a label, which is a
text string. Labels help the user see what a window is for.

, A label can be inside the borders or outside the borders (usually it is inside). In general,
there can be lots of things in the margins; each one is called a margin item. Borders and labels
are two kinds of margin items. In any flavor of window, one of the margin items is the
innermost; it is right next to the inside part of the window. Each successive margin item is
outside the previous one; the last one is just inside the edges of the window. Each margin item
is created by a flavor’s being mixed in. You can control which margin items your window has by
‘which flavors you mix in, and you can control their order by the order in which you mix in the
flavors. Margin item flavors closer- to the front of the component flavor list are further toward the
outside of the margins. The tv:window flavor has as components tv:borders-mixin and tv:label-
mixin, in that order, and so the label is inside the border. The scroll bar, in windows that have
one, is also a margin item (see sccnon 105 2, page 125).

'marg'lns - ' Operation on windows
 Returns four values: the sizes of the left, top, right, and bottom margins, respectively.
Each value includes the contributions of borders, labels, and anything else, to that one
margm For a wmdow with no rnargms all four values are zero. :

| ef t-margi n-size - _ v ' Operation on windows
ttop-margin-size ' Operation on windows
:right-margin-size . = = Operation on windows
:bottom-margin-size = - " Operation on windows
“Return the size of one of the margins,

tv:left-margin-size _ : Instance variable of windows
~tv:top-margin-size L Instance variable of windows
tv:right-margin-size . : Insiance variable of windows
tv:bottom-margin-size e Instance variable of windows

* These hold the four values rctumed by the :margins operation. There are no operations

~ 'to set these variables or init options to initialize them, becausc the margin sizes are always
supposed to be computed from the 1abe1s borders and other margin items as described
below. :

. tv:sheet-left-margin-size window
tv:sheet-top-margin-size window
~tv:isheet-right-margin-size window
tv:sheet-bottom-margin-size window
‘Return the value of the corresponding instance variable of window. These are accessor
' defsubsts created by the :outside-accessible-instance-variables option of defflavor.

'SRCKL.WINDMARGINJIEXT20 o | 3AUG-83

Borders ' ' 130 o Window System Manual

tv:sheet-inside-1eft &optional (windowself)

tv:sheet-inside-top &optional (windowself)

tv:sheet-inside-right &optional (window self)

tv:sheet-inside-bottom &optional (window self)
Return the positions of the inside edges, relative to the top left outside corner of the
window. If used with no argument, these defsubsts expand into .direct references to
instance variables, and therefore may be used only within methods or (declare (:self-
flavor ...)) functions.

11.1 Borders

tv:borders-mixin = o Flavor
The tviborders-mixin margin item creates the borders around windows that you often see
when using the Lisp Machine. You can control the thickness of each of the four borders
. separately, or of all of them together. You can also specify your own function to draw
the borders, if you want somethmg more elaborate than srmple lines. »

“The borders ‘also include some whitespace left between the borders and the inside of the
“window. The thickness of this white space is called the border margin width. The space
is there so that characters and graphics that are up against the edge of the inside of the
window, or the next-inncrmost margin item, do not "merge” with the border.

:borders argument - ' Init option for tv:borders-mixin
This option initializes the parameters of the borders. argument may have any of the
following values:

nil There are no borders at all.

a symbol or a number
A specification (see below) that apphes to each of the four borders.

alist (left top nght bottom) ’
Specifications (see below) for each of the ‘borders at the four edges of the

window.

alist (keywordl specl keyword2 spec2)
Specifications (see below) for the borders at the edges selected by the
keywords, which may be among :left, :top, nght :bottom.

Each specxﬁcatmn for a particular border may be one of the following. It specrﬁes how
thick the border is and the function to draw it. :

nil -~ This edge should not have any border.

t ' The border at this edge should be drawn by the default function with the :
* - default thickness.

anumber - The border at this edge should be drawn by the default functmn with. the
specified thickness. '

asymbol ~ The border at this cdgc should be drawn by the specified function with
" the default thickness for that function,

SRCKLWINDYMARGIN.TEXT20 - o §-AUG-83

Wind_ow Syslem Manual _ . '. 131 _ ' - | - Borders

acons (ﬁmcnon 1hzckness)
- The border at-this edge should be drawn by the speclﬁed funcnon w1th

the spemﬁed thlckness

The default (and. currently only) border funcnon is tv:draw-rectangular-border. Its
- default width is 1.

. To define your own border function, you should create a Lisp function that takes six
“arguments: the window on which to draw the label, the "alu function" (see section 8.1,
page 93) with which to draw it, and the left, top, right, and bottom edges of the area
that the border should occupy. The returned value is ignored. The. function runs inside a
tvisheet-force-access (see page 23). You should place a tvidefault-border-size
“property on the name of the function, whose value is the default- thickness of the border;
it will be used when a specification is a non-nil symbol.

Note that setting border specifications to ask for'e border width of zero is not the same

- thing as giving nil as the argument to this option, because in the former case the space
for the border margin width (see the previous page) is “allocated, whereas in the latter case
it is not. ' : o

:set-bbrders new-borders o 'Opera't:on on tv:borders-mixin
Redcﬁncs the borders. new-borders can be any -of the t.hmgs that can be used for the
:bordérs init optlon (see above).

:border-margin-width n-pzxels : - Init option for tv:borders-mixin -

' Sets the width of the white space in the margins between the borders and the inside of
the window. The default is 1. If some edge does not have any border (the specification-
for that border was nil) then that border won’t have any border margin either, regardless
of the value of this opnon that is the dxﬁ'erence between. border specifications of 0 and

- nil.
:bordeh-ﬁnargin—width B ~ Operation on tv:borders-mixin
. :set-border-margin-width new-widih - . Operation on tv.borders-mixin

~ Return or set the value of the border margin width.

tv: bordei‘emargi n-width ' ' - Instance variable of tv:borders-mixin
The current border margin width. '

tv: borders : : Instance varzable of tv: borders-mixin
A description of the currently specified borders 1t 1s nil for no borders. Otherwxse its
format is complicated and internal in nature. o

tv:full-screen-hack-mixin . Flavor
This mixin is included in many system ﬂavors such as Lisp listeners, Supdup, . and Zmacs
frames. It offers the user the option of rcquesung that these windows have no borders
- when they occupy the full screen. : ‘

. SRCKLWINDOMARGINTEXT20 S S e $-AUG-83

Labels _ C132 ' | ~ Window System Manual

fv:flush-fu'll-scraen-borders Slush-p
With an argument of t, climinates the borders of all windows which are full-screen-sized
and have tv:full-screen-hack-mixin.

With an argument of nil, reinstates the normal borders of all such windows.

- 11.2 Labels

tv: 'label -mixin S Flavor
The tv:label-mixin margin item creates the labels in the corners of windows that you
~often see when using the Lisp Machine. You can control the text of the label, the font
in which it is displayed, and whether it appears at the top of the window or the bottom.

thame S ‘ Init option for windows
The value is the name of the w1ndow Wthh should be a symbol. All windows have
names; note that this is an init option of tv:minimum-window. It is mentioned here
- because the main use of the name is as the default string for the label, if there is a label
(see below). '

tname - ' ' Operation on wmdows
Returns the name of the wmdow whlch is a symbol See above.

'labe'l speczﬁcatzon ‘ : ~ Init option for tv:label-mixin .
Sets the string displayed as the label, the font in which the label is displayed, and
whether the label is at the top or the bottom of the window. Anything you don’t specify
will default; by default, the string is the same as the name of the window, the font is
the screen’s standard font for the purpose :label (see page 86), and the label is at the
bottom of the window.

speczﬁcatzon may be any of:

nil .~ = There is no label at all.
t - The label is given all vthe default characteristics.
:tb'p | -The label is put at the top of the window.

- ‘bottom | - The label is put at the bottom of the window.

‘ zistring The text displayed in the label is this string.
afont | The label is dxsplayed in the spccxﬁed font.

alist (keynordl argl keyword? ...) :
‘The attributes corresponding to the keywords are set; the rest of the
- attributes default. Some keywords take arguments and some do not. The
followmg keywords may be gwen

:top - The label is put at the top of the window.
tbottom - The label is put at the bottom of the window.
:centered . - The label is printed horizontally centered, rather than

starting at the left edge.

SRCKLWINIDPMARGINTEXT20 SR 8-AUG-83

Window System Manual | 133 - | Labels

:string string . The text displayed in the label is string.

- :font font-specifier .
The label is displayed in the specified font. font-specifier
" may be any font specifier (see page 85).

wspvsp - If the label is multiple lines, lines will be separated by vsp
rows of pxxels

:label-size Operation ontv:label-mixin
Returns the width and height of the area occupled by the label

:set-label specification ’ Operatzon ontv label-mixin
. Changes some attributes of the label.. specification can be anything accepted by the :label
init option. Any attribute that specification doesn’t mention retains its old value.

tv: 'labe'l o Instance variable of tv:label-mixin
The value of this variable describes the label of the window. It is either nil for no label
or a list of length cight, whose elements are - '

tv:iabel-left
tv:label -top
tv:label -right
tv:label-bottom - o

The rectangle allocated to the label. All four edges are relative to the
window’s outside upper left corner. '

tvilabel-font The font to use for the label.
tv:label-string The string to display in the label.
tvilabel-vsp The separation between lines in ‘the label.

tv: label-centered
-Non-nil if the label text should be honzontally centered.

tv:top-label-mixin " Flavor
- Causcs the label to appear in the top margin of the window by default mstcad of at the
bottom. The mixin does not override an explicit specxﬁcauon of the labeI position.

tv:box- 'labe'l-m'lx1n ' ' Flavor
Makes the label appear to be in a box by drawing a]me just on the inside of the label.
This combines with the window’s borders, which surround the other three sides of the
label, to make a box. The extra line is present only if the label is turned on. Menus use
this mixin, so from any menu that has a label, such as the one .you get from Split
Screen in the systcm menu, you can see what it looks hke

:label-box-p t-or-nil Init opnon Jor tv.box- label-mlxm
If this. option is nil, the_ box around- the Jabel is inhibited.

SRCKL.WIND>MARGIN.TEXT.20 o : . - 8-AUG-83

Margin Regions _ . 134 } Window System Manual

tv:centered-Tabel-mixin ' Flavor
Makes the label string appear by default horlzontally centered in the width of the window.

tv:de'layed-red‘lsp!ay-'labe‘l-m1x1n Flavor
This flavor adds the :delayed-set-label and :update-label opcrations to your window.
You send a :delayed-set-label message to change the label in such a way that it will not
actually be displayed until you send an :update-label message. This is especially useful
for programs that suppress redisplay when there is typeahead the user’s commands may
change the label several times, and you may want to suppress the redlsplay of the changes
in the label until there isn’t any typeahead. .

:delayed set-label specification ~ Operation on tv.delayed -redisplay-label-mixin
This is like the :set-label method, except that nothmg actually happens until an :update-
label is done.

:update-label | _ Operation on tv:delayed -redisplay-label - mixin

Actually does the :set-label operation on the specification given by the most recent
:delayed-set-label operation.

tv:label-needs-updating ' Inﬁance variable of tvidelayed —redisplay-iabel-mixin
Non-nit if a :delayed-set-label has been done but not displayed yet.

11.3 Margin Regions

Margin regions are a general facility for allocating space in a. window’s margin for specific
purposes. Each region can display text or graphics and can be mouse sensitive. Margin choices
(see page 210) are implemented using margin regions.

tv:margin-region-mixin ‘ ‘ Flavor
This mixin gives a window the ability to have margin regions.

tv:region-1ist ’ Instancevarlableof tv:margin- reglon mixin
A list of margin region descnptors Each descriptor specxﬁes one margin region and is a
list of this form:
(function margin size left top right bottom)
The list may be longer than seven. The meaning. of the extra elements is up to you.
Here is what the seven standard elements mean. We list the names of the defsubsts
provided to access them, :

tv:margin- regnon ~function :
A function to handle various operauons on the margin region. It is called
with an operation name as the first argument, so it could be a flavor
“instance, but no flavors are predefined for the purpose and usually the
function is a defselect. The margin region descriptor itsclf is always one
- of the argumcnts, to identify the region being opcrated on.

tv:margin-region-margin
¢ The name of the margin that thus rcglon lives in; either Ieft ‘top, nght

or :bottom.

SRC:KL.WINDYMARGIN.TEXT 20 | | - 8-AUG-83

Wiﬁdow System Manual | 135 : -' - Margin Regions

tv:margin-region-size
The thickness in pixels of the margm region, "perpendicular to the edge 1t
is next to. (The other dimension is controlled by the size of the window,
possibly diminished by space already reserved for other margin items.)

tv:margin-region-left
- tv:margin-region-top
tv:margin-region-right
tvmargm region-bottom
The edges of the rectangle assigned to the margin region. If positive, they
- are relative to the outside upper left corner of the window. If negative,
they are relative to the outside lower right corner.

You do not specify these; they are computed by the :redefine-margins
operation which divides up the margin space, and recorded here so that
the margin region can be displayed and found by the mouse.
The margin region descriptor may be longer than seven. Additional elements are not used
by tvimargin-region-mixin itself and therefore may be used by h1gher-1eve1 facilities to
record their own information with each margin region.

:set-region-1ist new-region-list Operation on tv:margin-region-mixin
Sets the list of margin regions. The new. list should be a list of margin region descriptors
as described above, but only the first three elements of each descriptor need be filled in.
The rest will be sct up automatically.

These are the operations that the ﬁmction of a margin region is expected to handle:

:refresh descripror '
This operation should draw this regxon on the screen in the position specified by
the margin region descnptor :

:mouse-emters~region descriptor
~.This operation is invoked whenever the mouse moves into this region.

‘mouse-leaves-region descriptor
This operation is invoked whenever the mouse moves out of this region.

‘mouse-moves x y descriptor
- This ‘operation is invoked when the mouse moves within a region. It is also
invoked, following the :mouse-enters-region operation, when thc mouse moves
"~ into a region. x.and y are the new. mouse posmon relatwe to the outside of the
window,

:mouse-click x y descriptor mouse-char
This operation is ‘invoked when the mouse is ‘clicked on this region, except for
" double: click right: If the operation does nothing, the mousc click has no effect.
- The argument mouse-char is like that of the :mouse-click window opcration (page
120).

:who-line-documentation-string descriptor - :
This opcration is invoked to get who line documcentation to.be used when the
mousc is in this region. It should return a string describing the mcaning of

SRC:CLWIND>MARGIN.TENT.20 , ' 8-AUG-83

Margin Regions : _ _ - 136 ' ' Windbw System Manual

mouse clicks on the region.

tv:margin-region-area descriptor
Returns the four edges of the rectangle allocated to descriptor’s margin region, all relative
to the window's outside upper left corner. This may only be used inside of methods of
the window whose margin region is being operated on.

11.3.1 Margin Region Example

This is a simplification of the function used to handle the margin regions made by tv:margin-
scroll-mixin. These regions display strings such as "More above" and respond to a mouse click
by scrolling a full page. The margin regions used have additional nonstandard elements beyond

the seventh:

tv:margin-scroll-region-more-p ,
Non-nil if there is more text to scroll to past this edge.

tv:margin-scroll-region-empty-msg
The string to display when there is no more to scroll to past this edge.

tv:margin -scroll-region-more-msg
The string to display when there is more to scroll to.

‘tv:margin-scroll-region-msg-font
The font to display the strings. in.

SRCKL.WIND>MARGIN.TEXT.20 o ' - 8-AUG-83

Window System Manual o 137 | Margin Regions

(declare-flavor-instance-variables (tv:margin-scroll-mixin)
(defselect margin-scroll-region '
(:refresh (region &optional old-valid
&aux more-p Teft top right bottom)
(multiple-value (left top right bottom)
(tv:margin-region-area region))
;; Is there anything more to scroll to past this edge?
(setq more-p '
(send self
(if (eq (tv:margin-region-margin region) ':top)
:scroll-more-above ’':scroll-more-below)))
;2 Redisplay strmg in the region unless already right.
- (when (or (not old-valid)
" (neq more-p (margin-scroll-region-more-p region)))
(setf (margin-scroll-region-more-p region) more-p)
(tv:sheet-force-access (self)
:; Erase the region. Sheet has just been prepared.
(tv %draw= rectangle (- right left) (- bottom top)
left top tv:erase-aluf self) .
" Prmt the string.
(send self ’':string-out- centered -explicit
(if more-p (margin-scroll-region-more-msg region)
(margin-scroll-region-empty-msg reg1on))
left top right nil
(margin-scroll-region-msg-font region) tv:char-aluf
0 nil nil))))

((:mouse-enters-region :mouse-Teaves-region :mouse-moves)
(&rest ignore)) : '
(:mouse-c¢lick (1gnore 1gnore region 1gnore)
(if (margin-scroll-region-more-p region).

(1et {(from (tv:margin-region-margin reg1on)))

~(send self ':scroli-relative
from (if (eq from ':top) ’:bottom ':top)))

(beep))) -
(:who-Tine-documentation-string (ignore)
- "Any button to scroll one page.")))

SRCKL.WIND>MARGIN.TEXT20 - : T o : v 8-AUG;83

Defining Margin ltem Flavors ’ SRR '138 ‘ Window System Manua]‘

114 Deﬂnmg Margin Item F lavors

Let us assume that you want to define a thmg called a mumble that goes in a window’s
-margins, the way labels and borders do. You create a flavor mumble-margin-mixin that.

implements the feature.

This flavor should have certain instance variables, which will be used only by the methods of
mumble-margin-mixin so their precise format is up to you.

current-mumbles N ‘
Some sort of specification of what mumbles this window should have. It might

- record text to dlsplay for the mumbles; a font to use, etc.

mumble-margin-area -
Records the rectangle within the window where the mumbles should go.

Everything that deals with the location of the mumbles on the screen should act
based on the value of this variable.

It is recommended to use a list of four values: the left, top, right and bottom
edges of the rectangle, all relative to the upper left outside corner of the window.

Some margin mixins - have just a single variable whose value is a list containing both the
contents and the position of the margin item.

~ Example:
(defflavor mumb'le margm mixin
((current- mumb'les nﬂ) mumble-margin- area)
()
(: requ1red flavors tv:minimum- wmdow)
(:inittable-instance-variables current-mumbles)) -

(defmethod (mumble-margin-mixin :before :init) (ignore)
(setq current-mumbles)
(canonicalize-and-validate-mumblie-spec -
current-mumbles)))

Now you must at the minimum create methods for two standard operations for margin
computation and display, to interface mumble-margin-mixin to the rest of the system. These’
opcrations are :compute-margins and. :refresh~-margins. '

:compute-margins Im tm rm bm Operatzon on windows
:compute-margins is uscd by the system to find out how much space is nceded in cach
margin. of the window by borders, labels, and anything clse. FEach flavor that implements
a kind of margin item must definc a method for it. This operation uses :pass-on mcthod
combination, so that the values from one method become the arguments to the next.
These arguments are. interpreted as the amount of space allocated so far in cach margin,
Each method increments onc or more of them by the amount of space nceded by that

mixin, .

SRC:CLWINDYMARGINTEXT.20 I 8-AUG-83

Window System Manual | 139 - Defining Margin Item Flavors

:refresh-marging = ' Operation on windows
Redraws all the contents of the window’s margins. Each flavor of margin item must add a
daemon method to this operation.” The method may assume that its own margin area is
completely crased to begin with.

For example: .
(defmethod (mumble- margm mixin compute—margins)
(Im tm.rm bm)
(let ((wid (mumbie-margin-width current- mumbles)))
(setq mumble-margin-area
~ (Vist Im tm (+ Im wid) (- tv:height bm))) -
(values (+ 1m wid) tm rm bm)))

~ Here we assume that the mumbles always go in the left margin. So it is always the left
margin’s width that is incremented, and the others are returned just as they were passed. We also
assume that mumble-margin-width is a function you have defined that computes the width of
space that the mumbles need.

In addition to returnmg modiﬁed versions of its arguments, ‘the method also sets up the value.
of mumble-margin-area. This is the only place it is necessary to set that variable. By recording
the position of each margin item this way, we take into account how one margin item affects the -
position of the others. For example, the mumbles might come inside the borders, and then the

Im, tm, rm and bm values will already contain the width of the borders. Then margin- =~

mumble-area will describe a rectangle that is within the borders.

Usually an addmonal mixin-specific operation is introduced into this method, as follows
(defmethod (mumble-margin-mixin :compute-margins)
(im tm rm bm)
(send self ’:recalculate-mumble-margins 1m tm rm bm))

(defmethod (mumb1e margin-mixin :reca1cu1ate-mumb1e-marg1ns)
(1lm tm rm bm)
“(let ((wid (mumble-margin-width current-mumbles)))
(setq mumble-margin-area
(tTist Im tm (+ Im wid) (- tv:height bm)))
(values (+ Im wid) tm rm bm)}) -
This way, other mixins can be defined to modify where the mumbles go by replacing the
‘recaiculate-mumble-margins method.

The one other thing you must do is provide a method for :refresh-margins, to draw the
mumbles in the rectangle recorded: You can assume that that rectangle is clear to start with.
. (defmethod (mumble-margin-mixin :after :refresh-margins) ()
(tv:sheet-force-access (self)
(draw-mumbles current-mumbles mumble-margin- area)))

You may wnsh to provide the user with an opcratmn to chanae the wmdows mumblcs This
opcration should use the :redefine-margins opcratlon :

SRCKL.WIND>MARGIN.TEXT.20 : L $AUGSS

Defining Margin Item Flavors . 140 | g - Window System Manual

:redefine-margins ' - Operation on windows
This operation recomputes how much margin space is needed for all of the margin items,
by invoking the :compute-margins operation, and then actually changes the window
margin sizes if necessary.

If the margin sizes have changed, then the window is erased and :refresh-margins is
done; the instance variable tvirestored-bits-p (present in all- windows) is left set to nil.
If the margin sizes have not changed, no output whatever is done, and tvirestored-bits-
p is left set to t. All this is done using the :refresh operation.

Here is an example of how to use it ,
(defmethod (mumble-margin-mixin :set-mumbles) (new-mumbles)
(setq current-mumbles
~ (canonicalize-and- validate-mumb'le spec new-mumbles))
(send self ’':redefine-margins)
(when tv:restored-bits-p
(tv:sheet-force-access (self)
(erase-mumble-area mumble-margin-area)
(draw-mumbles current-mumbles mumble-margin-area))))

The explicit erasure and drawing of the mumbles is done in the case where the total sizes of
‘the margins have not changed (and therefore no screen updatmg has been done), in case the
contents of the mumbles have changed. :

SRC <l WlND)M /\R(JIN'] FX"I .20 o : | §-AUG-83 .

- Window Systém Manual _ 141 Frames

12. Frames

A frame is a window that is divided into sub-windows, using the hierarchical structure of the
window system (discussed in section 2.1, page 10). The sub-windows are called panes. The panes
are the inferiors of the frame, and the frame is the superior of each pane. Several heavily-used
systems programs use frames. For example, inspector windows are frames. The default inspector
window has six panes: the interaction pane on top, the history pane and command menu pane
below it, and threc inspect panes below that. The window debugger and Zmacs also use frames.
In Zmacs, each new editor window is a pane of the Zmacs Frame, ZMail uses several different
frames, even frames within other frames.

From these examples, you can see some of the things that frames are good for. In general,
by using a frame as a user interface to an interactive subsystem, you get a convenient way to put
many different things on the screen, each in its own place. Generally you can split up the frame
into areas in which you can display text or graphics, areas where you can put menus or other
mouse-sensitive input areas, and areas to interact with, in which keyboard input is echoed or
otherwise acknowledged. - l :

It is. usually best for a frame and its panes to be treated as a unit by the system menu Select.
menu and by the Terminal and System keys. The mixins tv:inferiors-not-in-select-menu-
mixin (section 3.2.1, page 35) and tv:alias-for-inferiors-mixin (section 3.2.2, page 36),
“respectively, in the frame’s flavor bring this about. Then selection of panes within the frame is
done by making the chosen pane the selection substitute of the frame (scction 3.3, page 37). The
program managing the frame can maintain a "selected pane within the frame this way, while
letting the user decide when to sclect the frame as a whole.

- It is also common for all of the panes to use the same input buffer so that the program can
- always do its input in the same fashion and collect keyboard and mouse input from all the panes.
See section 5.1, page 50.

It is also possible to have frames with less coupling between their panes. For example, the
‘ frame you get from requesting a frame in the system menu Split Screen option does make its
panes share an input buffer, and allows them to be individually represented in the Select menu
and for Terminal and System commands. It also lets the panes be selected in their own right
and not as substitutes for the frame. - This is done because- typically each window in the split
screen frame. is managcd by its own process

One kind of frame is the constraint. frame, which -adjusts the shapes of its panes automatically
as its own shape is changed. These frames are described first since they are a.rcady-to-use facility.
~ More basic frame flavors can be built upon to create frames which manage their pancs’ exposure

an'd shapes in other ways. The editor, for example,. does this. :

tv:basic-frame = ' ' Flavor
All frame flavors are built on this one. tv: frame ~-forwarding-mixin (sce page 154) mixed
with this provides a non-constraint frame to which you need only add code to dccxde
‘when to expose the pancs and how big to make them. :

SRC:(I.‘.WIND>FRA.a\iES.‘TF.X‘T 14 R S §-AUG-83

Constraint Frames - 142 ~ Window System Manual

tv:basic-frame is nearly the same as tv:minimum-window; it does not have all the
mixins that go into the tv:window flavor. In particular, it does not provide for borders or
‘a label, and it cannot be the selected window. It also has tv:delay-notification-mixin
(see page 157) as a component.

12.1 Constraint Frames

If you use Edit Screen to change the shape of an mspector or debugger window frame, the
shapes of the panes are all changed so that the proportions come out looking as they are
supposed to. If you play around with Edit Screen enough, you can even see the menus reformat
themselves (changing their numbers of rows and columns) in order to keep all of their items
visible. The way "all this works is that the positions and shapes of the panes, instead of being
explicitly specified in units of pixels, are specified symbolically. When the window changes shape,
the symbolic description is elaborated again in light of the new shape, and the panes are reshaped
appropriately. :

, This set of symbolic descriptions is called a set of constraints. When you make a constraint
frame, you specify the configuration of panes within the frame by creating list structure to
represent the layout. The format of this list structure is called the constraint language. It lets you
say things like "give this pane one third of the remaining room, then give that pane 17 pixels,
and then divide what remains between- these two panes, evenly.” The constraint language is fairly
complex, and is described in full detail later. In general, a frame can have many different
configurations. Each configuration is described in the constraint language, and each specifies one
way of splitting up the frame. ‘While the program is running, it can switch a frame from one
configuration to another. Some panes may appear in more than one configuration, but other
- .pancs may be left out of one configuration, and may only be visible when the frame is switched
to another configuration. For example, in ZMail, when you click on Profile, the frame changes
'to a new configuration whose panes include a profile editor window and another ﬁ'ame, the
profile button frame.

12.1.1 Constraint Frame Flavors

The processing - of constramts is acwally implemented by a frame -mixin called tv:basic-

- constraint- frame

The ﬂavor of the frame itself might be any of several ﬂavors The simplest thmg for it to be
1s tv.constraint-frame.

tv:constraint—frame L ' Flavor
This flavor is the basic kind of constraint frame. : The rest of this scction: describes its
behavior in detail. This flavor, like tv:basic-frame, does not provide for borders, a
fabel, or for being selected.

SRCKL.WIND>FRAMES TEXT.14 | - &AUGR3 |

Window System Manual ‘ 143 ' _ Constraint Frames

tv: bordered constraint frame Flavor
~ This flavor is just tv:constraint-frame with tv:borders-mixin (see page 130) mixed in at
the right place. It will have a border around the cdge. By default (using the :default-
init-plist option of the flavor system), the :border-margin-width is zero, so the panes at
the edges of the frame are right next to the border itself.

Bordered constraint frames are used most often. Usually, each of the panes has borders, and
 the frame does too. A reason for this is that when two of the panes are right next to each other,
which they usually are, their borders are side by side, and so look like a double-thick line. In -
order to make the edges of the panes that are at the edge of the frame (rather than up against
another pane) look like they are the same thickness the frame has a border itself.

A convenient way to make all the panes of a constramt frame use the same input buffer is to
use one of the: following flavors: :

tv:cons‘traint-frame-‘mth-shared’-io‘-buffer Flavor
This is like tviconstraint-frame, but all the panes of the frame share the same input
buffer used by the frame itself. See section 5.1, page 50.

: "tv:bordar'ed'-cons'traint-frama-with-sharad-1o-buffar -FIavor

This is just like tv:constraint-frame-with-shared-io-buffer except that it has a

tv:borders-mixin ‘mixed into it at the right place, so that the frame has a border around
it. S

:1o-buffer io-buffer Init option for tvconstramt -frame-with -shared -io-buffer
If this option is present, io-buffer is used as the input buffer for the frame and the panes.
Otherwise, a default input buffer is crcated. (See section 5.4, page 56 for a discussion of
/0 buﬁ“ers) ‘ :

12.1.2 Examples of Specifications of Panes and Constraints

. The full description of how to use constraint frames, including the full constraint language, is
rather complicated. The complete specifications are given in the next section; this section gives
some common examples in order to show the general idea of how the specifications work.

. The fo]lowmg form creates a constraint frame with two panes, one on top of the other, each
~ of which takes up half of the frame.
(make-instance ’tv constraint-frame
:panes
((top pane tv window)
- (bottom-pane tv:window))
‘:constraints
'((main . ((top-pane bottom-pane)
({top-pane 0.5))
((bottom-pane :even))))))
Two mmahzatmn options. were given to the tv:constraint-frame flavor: the :panes option and
the :constraints option. The meaning of the :panes specification is: "This frame is made of the
following pancs. Call the first onc top-pane: its flavor is tviwindow. -Call the sccond one

. SRCKL.WINDSERAMES.TEXT.14 ' 8-AUG-83

Constraint Frames B - 144 ‘ "Wir’xdowSystcm Manual

bottom-pane; its flavor is tv:window". The meaning of the :constraints specification is: "There
is just one configuration defined for this pane; call it main. In this configuration, the panes that
appear are, in order from top to bottom, top-pane and bottom-pane. top-pane should use up
.0.5 of the room. bottom-pane should use up all the rest of the room.”

This example demonstrates some more features:
(make-instance
*tv:bordered-constraint-frame
':panes -
*((graphics-pane tv:window
:1abel nil :blinker-p nil)
(message-pane tv:window - A
-:1abel "Message Pane" :blinker-p nil)
(interaction-pane tv:window))
*:constraints
*((main . ((interaction-pane graphics-pane message-pane)
((message-pane 4 :lines)) "
((graphics-pane 400))
: : ((interaction-pane :even))))))
This frame has a border around the edges (because of the flavor of the frame itself), and it has
three panes. The panes are given some initialization options themseclves. The topmost pane is
interaction-pane, graphics-pane is in the middle, and message-pane is on the bottom.
‘message-pane is four lines high, graphics-pane is 400 pixels high, and interaction-pane uses
up all remaining space.

Here is a window that has two possible configurations. In the first one, there are three little
windows across the top of the frame and a big window beneath them; in the sccond one, the
same big window is-at the top of the frame, and underneath it is a strip split between a menu
and another window. ' '

SRCKL.WIN l))i;‘ RAMES.TEXT.14 ' ' 8-AUG-83

Window System Manual , 145 _ : . : Constraint Frames

(make instance
‘tv bordered- constra1nt frame
:panes '
*((huey tv:window)
(dewey tv:window)
(Touie tv:window)
(main-pane tv:window)
(random-pane tv:window)
{menu tv:command-menu :
item-Tist ("Foo" "Bar" "Baz")))
*:constraints .
*((first-config . ((top-strip main-pane)
: ((top-strip :horizontal (.3)
(huey dewey louie)
((huey :even)
(dewey :even)
(Touie :even))))
- ((main-pane :even))))
(second conf1g ((main-pane bottom-strip)
({bottom-strip :horizontal (2)
(random-pane menu)
((menu :ask :pane-size))
((random-pane :even))))
((main-pane :even))))))
In this example, the frame has two different configurations.. When the frame is first created, it is
‘in the first of the configurations listed, namely first-config. ' In this configuration, the top three-
tenths of the frame are split equally, horizontally, between three windows, and the rest of the
frame is occupied by main-pane. The frame can be. switched to a. new configuration using the
'set-configuration message (see page 153). If we switch it to second- config, then main-frame
- will -appear on top of a strip one-fifth of the height of the window. This strip will contain a
menu on the right that is just wide enough to display the strings in the menu’s item list, and
another pane using up the rest of the strip. ‘When the configuration of the window is sw1tched
main-pane must be reshdpcd.

Another thing to notice is that the list of items in the menu was present in the :panes
option, rather than a form to be evaluated. If the list had been in a variable, it would have
been ncccssary to write the :panes option using backquote like this:

:panes :
'((huey tv: wmdow)
(dewey tv:window)
{louie tv:window)
{main-pane tv:window)
{random-pane tv:window)
{(menu tv:command-menu
:item-1ist ,the-list-of- items))
Mcnus and how to usc them are explained later scc scction 14.1, page 173.

SRCKL.WIND>FRAMES.TEXT.14 - S _ . $-AUG83

- Constraint Frames - 146 Window System Manual

In this example, the window is divided into two windows, side by side.
. (make-instance
'tv:bordered-constraint-frame
*:edges (100 100 600 600)
':panes .
'((left tv:window)
(right tv:window))
- ':constraints
'({main . ((whole-thing)
: ((whole-thing :horizontal (:even)
(1eft right)
((left :even)
- (right :even))))))))
This. example also points out that constraint frames are windows too, and you can use init-options
acceptable to tv:minimum-window with them. In this case, we give the edges of the frame as a
whole, in absolute numbers. Remember that frames are not built out of tviwindow; see page
141 : :

* In actual practice, panes-are usually made out of more interesting flavors than tv:window.

12.1.3 Specifying Panes and Constraints

This section gives the complete rules for specifying the panes of a constraint frame, and for
the constraint language. It should help explain any of the above examples that were unclear, and
tell you all the thlngs you can do with the constraint language. :

When you create a constraint frame, you must supply two mitialization options. The :panes
option specifies what panes you want the frame to have, and the :constraints option specifies the
set of constraints for each of the configurations that the window may assume. For the purposes of
these two options, windows are given internal names, which are Lisp symbols, used only by the
flavors and methods that deal with constraint frames. These names are not used as the actual
names of the windows (as in the :name message (see page 132).

:panes pane-descrzpttons ' - Init option for tv:constraint-frame
This initialization option is required for all flavors of constraint frames. The argument,
- pane-descriptions, is a list of pane descriptions. Every panc description looks like this:
(name flavor . options)
name is the internal name (a symbol). ﬂavor is the flavor of which the pane should be an
instance. options is a list to be appended to the initialization plist for the pane when it is
" .crcated. When the frame is first crcated, it will create all of its panes, using flavor and
options. The frame will add some of its own options to control the position and shape of
- the window; you should not pass any such options in the options list.

SRCKL.WINID>MFRAMES.TEXT.14 o ' ' o ' 8-AUG-83

Window System Manual | - 47 w Constraint Frames

:constraints configuration-description-list . Init option for tv.constraint-frame
This initialization option is required for all flavors of constraint frames. The argument,
configuration-description-list, is a list of configuration descriptions. The format of
configuration descriptions is explained below.

_ Both init options work by initializing instance variables which are then looked at by the :init
methods of constraint frames. Instead of using the init optxons, you can set the instance variables
yourself in a :before :init method. :

tv:panes o Instance variable of tv:constraint-frame
tv:constraints ' - Instance variable of tv.constraint-frame
The instance variables in which the constraint frame mechanism looks to find the lists of
panes and constraints. :

A configuration-description-list is a list of configuration-descriptions. There is ~one
configuration-description in the list for each of the possible configurations that the frame can
assume. [Each configuration is named by a- symbol, -called the configuration-name. A
- configuration-description-list is an alist that associates the configuration-descriptions thh the names.
It looks like this:

((configuration-name-1 . configuration-description-1) -
(configuration-name-2 . configuration-description-2)

..:)

Each configuration-description describes the layout of the panes in a single configuration. The
description has two parts. The first part specifies the order in which the windows appear, and the
second part specifies how the sizes are computed. Actually, in addition to windows, there can
also be dummies in the configuration-descriptor. A dummy is uscd cither to hold empty space
that is not used by any window, or it can reserve a region -of space to be divided up by another
conﬁgurauon-descnptmn :

A conﬁguration-description splits up one of the dimensions of a rectangular area into many
‘parts. -Such an area is called a section. Which of the two: dimensions is being split up is .
determined by the swacking. If the stacking is :vertical then the scction is being split up
vertically; that is, the parts are stacked on top of cach other. If the stacking is :horizontal then
‘the section is being split up horizontally; that is, the parts arc side-by-side. The stacking of the
top-level configuration-descriptions in the :constraints option is always :vertical, -but there can be
more configuration-descriptions nested inside of them, and these can have cither stacking.

Each part has a name, represented as a symbol. A part may hold cither an actual pane, or
other things; in the latter case, it is called a dwmmy part. Dummy parts can be further
- subdivided into more panes and dummics using anothcr constralm-dcscnptlon or thcxr plxels can
bc blank or ﬁlled with some pattern.

A conﬁguratic)n-description looks like this:
(ordering . description-groups)

ordering is a list of names of pancs and of dummies, each represented by a symbol; the

order of this list is the order that the panes and dummies appear in the space being split up by
the configuration-description. For vertical stacking the list goes top to bottom. For horizontal

* SRC:(L.WIND>FRAMES.TEXT.14 | | a 8-AUG-83

‘Constraint Frames ' - 148 . Window System Manual -

stacking the list goes left to right. A descriptioh-gréup is a list of descriptions. Each dcscrif:tion
describes either exactly one pane or one dummy. A conﬁguranon-descnpuon must have one
description for each element of the ordering list.

All of the descriptions in a description-group are processed together ("in parallel”); each of
the ' description-groups is processed in turn, starting with the first one. By grouping the
descriptions this way, you can control which constraints are elaborated together and which are
elaborated at different times.- when two constraints are elaborated at different times you can
control which one is elaborated first. The reason that the ordering-list in the configuration-
description is. separate. from the description-groups is so that the order in which the panes and
dummies appear in the frame can be mdependent of the order in which their constraints are
elaborated. : :

- Each description describes one pane or one dummy. We’ll get back to dumxmes later. A
_ description that describes a pane looks hke this:

(pane-name . constraint)
pane-name is the name of the pane being described;- constraint is the constraint that describes the
pane. We will return later to what descriptions of dummies look like. The constraint will be
elaborated, and will yield a size in pixels; this size will be used for the width or height being
computed.

- Finally we get to constramts themse]ves The basic form of a constramt is as follows:
(key arg-l arg-2 ...)
key may be a fixnum, a ﬂonum, or one of various keyword symbols. Each type of constraint
‘may take arguments, whose meaning depends on which kind of constraint this argument is passed
0. v : _ . _ .

While descriptions of panes do not have the same format as descriptions of dummies, the
same kind of constraints are used in both of them. So all the formats given below may be used
. inside the descriptions of enher panes or dumlmes.

~ Any constraint may, optionally, be preceded by a |lmlt clause. If a constraint has a Hdimit
‘ clause the constraint looks like:
(:Vimit limit-specification key arg-l arg-2 ...)

The :limit clause lets you set a minimum and a maximum value that will be applied to the
size computed by the constraint. If the constraint returns a valuc smaller than the minimum, then
the minimum value will. be used; if it returns a value larger than the maximum, then the
maximum value will be used. The /lmit-specification is normally a two-clement list, whose
_clements are fixnums giving the minimum and maximum values in pixels. If the list has a third =
~ clement, it should be one of the symbols :lines or :characters, and it means that the fixnums
are in units' of lines or characters, computed by multiplying by- the line-height or char-width of -
the pane (sce page 67). If there is a fourth element, it should be the name of a pane, and that
- panc’s. line-height or char-width is used instead of that of the pane being constrained. (If this
constraint applies to a dummy instead of a pane, and the third element of the list is present,
then the fourth must be present as “well, smce dummies do not have their own linc-hcight nor

char-width)

- SRCKL.WINID>FRAMES. TEXT.14 ‘ | - 8-AUG-83

Window System Manual ' 149 Constraint Frames

The following Lisp objects may be used as values of key in a constraint. Note: the funcall
and :eval constraints are rarely used and you probably dont nced to worry about them. - The
other kinds are used frequently. :

Sixnum

: ﬂonum

:even

task -

This lets you specify the absolute size. The value computed by the constraint is

-simply this fixnum. Optionally, an argument may be given: it may be the

symbol :lines or the symbol :characters, meaning that the fixnum is in units of
lines or characters, and should be computed by multiplying by the line-height or
char-width of the window. If a second argument is also present, it should be the
name of a pane, and that pane’s line-height or char-width is used instead of that
of the pane being constrained. (If this constraint applies to a dummy instead of a
pane, and the first argument is given, then the second must be present as well,

~ since dummies do not have their own line-height nor char-width.)

This lets you specify that a certain fraction of the remaining space should be
taken up by this window. Optionally, an argument may be given: it may be.

lines or :characters, and it means to round down the size of the pane to the

nearest multiple of the pane’s line-height or char-width. A second argument may
be given; it is just like the second argument when key is a fixnum (see above).

The distinction between - descriptors in the same group and descriptors in different
groups is important when you use this kind of constraint. If you have one
descriptor group with two descriptors, each of which requests .2 of the remaining
space, then both panes will get the same amount of space. However, "if you have
the same two descriptors but put them in successive descriptor groups, then the
first one will get .2 of the remaining space, and then the second one will get .2 of .
what remains after the first one was allocated; thus the second pane will be
smaller. than the first. - In other words, the amount of space remaining is
recomputed at the end of each descriptor group, but not at the end of each

- descriptor.

This constraint has a special testriction: you can only use it for descriptors in the
last descriptor group of a configuration. Furthermore, if any of the descriptors in
that group use :even, then all of the descriptors in the group must use :even.
The meaning is- that all of the panes in the last descriptor group cvenly divide all
of the remaining space.

It is usually a good idea to use :even for at least one pane in every configuration,
so that the entire frame will be taken up by panes that all fit together and extend

- to the borders of the frame. :even is carcful to choose exactly the right number

of pixels: to fill the frame completely, avoiding roundoff errors that might cause an

‘unsightly line of one or a few extra pixels somcwhere _

Remember that just bccause the :evens ‘must be in the last descriptor group does
not mean that the pancs that they apply to must be at the bottom or right-hand
end of the frame! The ordering of the panes in the frame is controlled by the
ordering list, not by the order in which the descriptors appear.

This conctr‘unt lets you ask the window how much space it would like to take up.

The format of a constrdmt using ask is as follows

‘SRC:(I...W[ND)FRAMES.’]"EX'I’.14_ o o : - 8-AUG-83

Constraint Frames © 150 ' ~ Window System Manual

zask-window

funcall

(:ask operation arg-l arg-2 ..)

~ A message with operation operation and arguments composed of some extra

arguments passed by the constraint- mechanism followed by arg-/, arg-2, etc. is
sent to the pane;- its answer says how much space the pane should take up. Note
that arg-1, etc., are not forms: they are the values of the arguments themselves
(i.e. they are not evaluated; if you want to compute them, you must build the
constraint language description ‘at run-time. This is usually written using a
backquoted list).

The arguments that are actually sent along with the message are the same as the
arguments passed when you use the :funcall option except that the constramt-node
is not passed; see below.

Varlous different flavors of windows accept some messages’ suitable for use with
:ask. By convention, several kinds of windows, such as menus, accept a message

~called :pane-size. For example, the :pane-size method for menus figures out
- how much space in the dimension controlled by the :ask constraint is needed to
display all the items of the menu, given the amount of space available in the

other dimension.. No arguments are specified in the constraint. Other useful
operations, handled by all windows, are :square-pane-size (also with no
additional arguments), which makes the window take up enough room to be
square including its borders, and :square-pane-inside-size, which makes the
window be square inside its borders.

This constraint is a variation on :ask. Its format is:

(:ask-window pane-name message-name arg-1 arg-? ..)
It works like :ask except that the message is sent to the pane named pane-name
instead of the pane being described. This is primarily used for dummies, when
the size of a dummy wants to be controlled by the needs of a pane inside it.

- This constraint lets you supply a function to be called which should compute the

amount of space to use.. The format is:

(:funcall function arg-l arg-2 ..) :
The. specified function is called. It is first passed six arguments from msnde the
workings of constraint frames, and then the arg-1, arg-2, ctc. values. The six

~.arguments are:
constraint-node This is an internal data structure. [Not yet documemed you

should not necd to look at this anyway.]

remaining-width ~ The amount of width remaining to be used up at the time this
.- description is - elaborated, after all of the panes in previous
~description groups and all of the - carlier panes “in this

description group- are ‘allocated.

‘remaining-height Like requnmg-wzdth,-but in' the height direction.
total-width The amount of width remaining to be used up by all of the

parts of this deseription group. This is the amount of room
left after all of the pancs in previous description groups have
been allocated but none of the panes in this description group _'
have been allocated.

SRCKL.WINDYFRAMES. TEXT.14 . | 8-AUG-83

Window System Manual v ’ 151 | S Constraint Frames

total-height Like total-widih, but in the height dircction.

Slacking Either :vertical or :horizontal, depending on the current
o stacking. o :
:eval This is like :funcall, but instead of providing a function and arguments, you

provide a form. The format is;
(:eval form) .

The six special values that are passed as arguments when the :funcall constraint-

type is used can be accessed by Jorm as the values of the following special

variables:)

- tv:issconstraint-nodes«
tv:issconstraint-remaining-widthes
tvissconstraint-remaining-heightes
tv:ssconstraint-total-widthse
tv:ssconstraint-total-heightss

tv:issconstraint-stackings+

‘This- finishes the discussion of descriptions of panes. Descriptions of dummies are different;
they may be in any of several formats, identified by the following keywords: :

:blank This description is used if you want this part of the section to be filled up with
some constant pattern. The format of the description is:
(dummy-name :blank pattern . constraint)
The constraint is used to figure out the size of the part of the section, in the
usual way. pattern may be any of the following:

_ white The part is filled with zeroes. _
" tblack The part is filled with the maximum value that the pixels can hold
‘ (if the pixels are one bit wide, as on a black-and-white TV, this
| value is 1). ’ :
‘anarray - The part is filled with the contents of the array, using the bitbit

function (see page 102).

a symbol The symbol should be the name of a function of six arguments.
The function is expected to fill up the rectangle that has been
~ allocated to this part of the section with some pattern. The

following values are passed to the function:

constraint-node -~ This is an internal data. structure. [Not yet
E “documented; you should not need to look at
© this anyway.] : o

X-position
y-position
width , ‘ _ :
height , These four arguments tell the function the
' - position and size of the rectangle that it should
fill. - , ’
screen-array This is a two-dimensional array into which the

function should writc the pattern it' wants to

SRCKLWINDSFRAMES. TEXT.14 o gAUGS

Constraint Frames 152 - Window System Manual

put into the window.

. alist This is similar to the case in which pattern is a symbol, but it lets
~ you pass extra arguments. The first element of the list is the
function to be called, and that function is passed all of the objects

in the rest of the list, after the six arguments enumerated above.

:horizontal or :vertical :
This description is used lf you want to subdmde the part into more panes and
dummies, using a configuration-description. If you use :vertical, it will be split
up with vertical stacking, and if you use :horizontal, it will be split up with
horizontal stacking. [Currently, you are required to use the opposite kind of
- stacking from the kind currently happening; that is, successive levels of
configuration-description must use alternating - kinds of stacking. This restriction
. may be lifted in the future.] The format is as follows: '
(dummy-name :horizontal constraint . configuration-description) .
or :

(dummy-name :vertical constraint . configuration-description)
constraint, as usual, specifies the size of this part; it can be in any of the formats
given above. Note that in this format, constraint appears as an element of a list

" rather than as the tail of a list, and so the printed representation of the list will
include a pair of parentheses around the constraint. configuration-description tells
how this part is subdivided into parts of its own.

:pane-size ' ' ' Operation on windows
remaining-width remammg-hetght total-width total-height stacking
This operation is invoked by constraints of the form (:ask :pane-size). It should return
the size in pixcls to give the pane, in the current stacking direction. The meanings of the
- arguments as they will. be passed by the constraint manager are described above under the
:funcall constraint (see page 150)

kK :square-pane-size ' Operation on 1 windows
remammg-wzdth remammg-hezght totaI-w:dth total-height Sstacking
.square pane-inside-size - Operation on windows

remaining-width remamzng-hezght total-width total-height stacking
These ooperations are invoked by constraints of the form (:ask :square-pane-size) and
(:ask :square-pane-inside-size). They return the size rcquired to make the pane
square. For horizontal stacking, they returns a ‘width equal to the specified hexght for
vertical stacking, they returns a height equal to the available width.

The difference between the two operations is that .square-pane-size makes the outside
size of the window square, whereas :square-pane-inside-size makes the inside of the
window (not including the borders) square. ' :

SRCALWIND>FRAMESTEXTM -~ o 8-AUG83

Window System Manual : | . 153 | : Constraint Framcs

12.1.4 Constraint Frame Operatiehs‘

:get-pane pane-name ' * Operation on tv:basic-constraint-frame
Returns the pane (the inferior window itself) that was named by the symbol pane-name in
the :panes specxﬁcauon of this- frame

:pane-name pane - Operation on tv:basic-constraint-frame
Returns the symbol that was used to name pane in the :panes specification of this frame.
‘If pane is not one of the panes, return nil.

°create pane name ﬂavor &rest options Operation on tv:basic~-constraint-frame

: Creates and returns a window, to serve as a pane of this frame, made from flavor flavor
and init options opnons name is the pane name to be used. By default, it is not used
here.

The panes of the frame are created from their specification using this bperation, the
-arguments being taken from the elements of the specxﬁcatxon It may be useful to
redefine this operauon - :

~:send-pane v Operation on tv:basic-constraint-frame

' pane-name message -&rest arguments
_ Sends the specified message with the specified arguments to the pane that was named by
the symbol pane-name in the :panes specification of this frame.

tsend-all-panes message &rest arguments 'Operation on tv:basic-constraint-frame
_Sends the specified message with the specified arguments to all of the panes of this frame,
mcludmg the non-exposed ones,

B :sen’d-all-exposed -panes ' Operation ontv:basic-constraintéframe

- message &rest arguments
Sends the- specified ‘message with. the specified arguments to all of the exposed panes of
this frame. .

sconfiguration ,conﬁguraziah-hame Init option for tv:basic-constraint-frame
Makes the initial configuration of the frame be the one¢ named by the symbol
configuration-name,

:configuration ' " Operation ontv:basic-constraint- -frame
Returns the symbol nammg the current conﬁguratxon of the frame.

':set-configurat'lon conﬁguranon-name o Operazzon on tv:basic -constraint-frame '
Sets the con_ﬁguration of the frame to. the one named by the symbol configuration-name.

:get-configuration configuration-name - Operation on tv:basic-constraint-frame
Returns the internal ("parsed”) data structurc that describes what is specified for
configuration’ configuration-name. This describes which windows are supposed to0 be
included, and the constraints for them. ‘

- SRCKL.WIN D)FRAM]-ES.TEXT.M ' _ ' ‘ 8-AUG-83

Pane-Frame Interaction . ' 154 | Window System Manual

sredefine- configuration Operation on tv:basic-constraint- frame
config-name new-conﬁg &optional (parsed-p t)
Redefines the meaning of configuration config-name according to new-config. If parsed-p is
t, new-config is expected to be in parsed form, such as the value returned by the :get-
configuration operation. If parsed-p is nil, new-config is treated as a configuration-
description such as you would use to define the conﬁguratlon when initially specifying the
constralnts of the frame (see page 147). ,

»12.2 Pane-Frame Interaction

Several fundamental window operations actually ask the window’s superior what to do. This
has no effect for a top-level window but becomes important when the window’s superior is a
frame. The superior can decide whether the operations should actually go ahead as requested.
These operations are expose, :deexpose, :bury, :select and :set-edges. Here is how they are

" handled:

expose, deexpose, :bury, :select
These operations first send a message to the superior with operation :inferior-
expose, :inferior-deexpose, :inferior-bury or mfenor select. The pane itself is
passed as the argument.

If the message sent to the superior returns non-nil, the operation is performed on
" the pane as usual. Otherwise, it is skipped.

:set-edges An :inferior-set-edges message is sent to the superior, its arguments being the
: pane followed by the arguments of the :set-edges message. If the operation’s
first value is non-nil, the pane’s edges are changed as requested. Otherwise, the

pane’s edges are not changed, and the remaining values from the :inferior-set- .

edges operation are retumed from the :set-edges. :

Of course, the frame can change the pane’s edges in some other way and then
return nil. ’

_tv:basic-frame defines only the :inferior-select operation to do anything nontrivial; it makes
the pane be the frame's selection substitute and then sends a :select to the frame. - The others
. operations do nothing but return non-nil. Thus, there is minimal interaction between the frame
‘and its inferiors. tv:frame-forwarding-mixin defines :inferior-expose, :inferior-deexpose and
- tinferior-bury so that the frame and panes are all exposed together. :

tv:frame-forwarding-mixin ’ ' Flavor
‘Defines :inferior-expose, mfenor deexpose and sinferior-bury methods for a frame
that normally cause :expose, :deexpose or :bury operauons on pancs (o expose,
-deexposc or bury the frame rather than Lhe pane.

~ An :mfenor-,set-edges method is also defined, for internal reasons only.' Its purpose is
to avoid a uscr-visible change in behavior rathcr't.han to provide one.

'I‘hns flavor is part of tv:constraint- frame and the other standard mstanuable flavars of
constraint frame. : o .

SRCKLWINDIFRAMESTEXT.14 .~ o o $-AUG-83

Window Systém Manual o 155 | " Panec-Frame Interaction

tvibasic-frame has an instance variable tv:recursion which is used to distinguish between
:expose, etc. operations sent by the frame’s code to its panes, and those sent by other programs.
When an outside program sends a :expose, :deexpose, or :bury message to one of the panes,
the :inferior-expose, etc. operation on the frame simply exposes, deexpose or buries the. frame
itself, and docs not allow the operation on the panc to proceed. When the frame's code itself
exposes a pane, it does so with tvirecursion temporarily non-nil so that when the :inferior-
expose is done it will return t and let the pane be exposed. :

:pane-types-alist ' ’ ' Operation on frames
- This should return a menu item list to be used for the handling of the Create item in
the screen editor, when editing the panes of this frame. The value of the menu item
should be a flavor of window to create, or a list to be evaluated to return a flavor.

~ The menu item’s value (or the result of evaluating it) can also be t, which directs the
screen editor to read a flavor name from the user.

12.2.1 The Selected Pane

A frames is normally operated with one of its inferiors as a selection substitute. The selection
substitute of a frame is also called the "selected pane”. as this feature used to be available only
in frames. Unless you mix tv:select-mixin into your frame flavor, the frame itself cannot be the
selected window. Therefore, it is important to provide a- selection substitute when the frame is
created. This can be done by doing :set-selection-substitute in an :after :init method:

(defmethod (my-frame :after :init) (ignore)
(send self ’:set-selection-substitute
(send self ’:get-pane 'interaction-pane)))

Explicitly selecting a pane with the :select operation actually works by setting the frame’s
~selection substitute, by means of the forwarding mechanism described above.

In a constraint frame, or any other frame which. has tv:frame-forwarding-mixin, you should
"not attempt to select a pane which is not a]ready exposed, because of the effects of forwarding on -
the :expose operauon

:selected-pane pane-name ' . Init option for tv:basic-constraint-frame
In a constraint frame, you can initialize the selected pane with this handy init option.
Instead of ﬁshmg out the pane, just give its name.

:select-pane mfenor-wmdow o : Operalzon ontv:basic~frame.
This is another, older name for the. set -selection-substitute opcration, bcforc it was
gencralized to apply to wmdows other than frames.

" :selected-pane : ' Operanon ontvibasic-frame
This is another, older name for the :selection- substltute opcrauon before it was
generalized to apply to windows othcr than tramcs

SRC:(L.WlND)FRAMES.’l’EX’l‘.M o Lo . 8-AUG-83

. Panc-Frame Interaction A 156 ' Window System Manual - |

tv:interaction-pane ' ' Flavor
‘ ~ (tv:preemptable-read-any-tyi-mixin tv:notification-mixin
, tv:autoexposing-more-mixin tv:window)
This flavor is often useful for a pane for reading and echoing ‘multi-character commands
in a system which uses a frame. This pane would typically be the selected pane.

SRCKL.WINDYRAMESTEXT4 o o $-AUG-83

Window System Manual 151 - © Miscellaneous Features

13. Miscellaneous Features

13.1 Notifications

Notifications are asynchronous messages that come.from something other than the selected
window. For example, when an interactive message from another user comes in (which was sent
with the gsend function), it is printed as a notification. You may have noticed that sometimes a
notification is printed out immediately, while sometimes all that happens is a message in the who
line. The selected window is responsible for deciding what to do with the notification.

tv:notify window-ofinterest format-string &rest format-args

tv:careful-notify window-ofinterest careful-p format-string &rest format-args
Make a- notification. format-string and format-args are passed to format to print the text
of the notification. Where this text is printed, and how, is under the control of the
selected window, as descnbed below. :

_wmdow-oﬁmteresl is a window that should be selected if the user clicks the mouse on the
notification window (if the notification happens to use its own window). For example, a
notification about a message from another user will supply the Converse window as this
argument This window can also be selected thh the Terminal 0 S command.

tv:careful-notify is different in that if careful-p is non-nil and the nouﬁcauon cannot be
printed now because of windows being locked, it returns immediately. The value is non-
nil if the notification was printed successfully. :

iprint-notification time string window-ofinterest - Operation on windows
The system invokes this operation on the sclected window to ask it to make a notification.
~ -time will be a time to mention in the notification. string is the text to print. window-of
- interest should be set up for the user to select in some convenient fashion, if possible.

tvinotification-mixin : o Flavor
This mixin causes a window to handle notifications which happen while it is selected by
" printing them out on the window itself, if the window is big cnough Lisp hsteners and
typeout windows of all sorts use this mixin.

iprint- notif‘lcation -on- se'lf o Operazionontv~notif‘cation-mixin
_ time string window-of-interest
'Ihxs operation does the actual work of printing a notification on the window 1tself once it
has been decided definitely to do so. It ‘is sometimes uscful for window ﬂavors
incorporating tv:notification- mlxm to redeﬁne this. :

tv delay notification-mixin - ' ' Flavor

tv:delay-notification-mixin implements the default way of handlmg ngtifications: -to make -

them wait. It is a component of tv:window, and also of anything that contains tv: select-
~mixin. tv: notlflcaﬂon mixin works by overriding it. :

SRCKL.WINDOMISCTEXT23 L e s 8-AUG-83

Notifications | ’ 158 Window System Manual

If a notification arrives while a window of this sort is selected, it is put on a list called
tv:pending-notifications. All that happens immediately is a beep. But the presence of a

" non-nil value for this variable causes the mouse documentation line to display a message
that there are notifications waiting, with blinking asterisks at each end of the line.

As soon as a window that can print the notifications is selected, they will be printed. For
example, selecting a Lisp listener will do it. If you are in the editor, selecting the
typeout window by typing Break will do it. There is also a command Terminal N,
which selects a window that just prints the notifications.

Altematively, Terminal 2 N can be used to make the mouse documentation line go back
to its normal function. This works by transferring everything on tv:pending-notifications
onto another list, tvideferred-notifications. These- deferred notifications will still be
printed if you switch to a suitable window.

Another way a window can handle a notification is to ask some other window to do so.’ For
example, editor windows (zwei:zmacs-window-pane) ask the containing Zmacs frame to do the
job, and it in-turn asks the echo area window to do it. This window displays the notification
.itself if the notiﬁcation fits.

tv: f1nd process in-error :
Returns a process that has got an error and is wamng having made a nouﬁcatlon for a
window to be selected so the debugger can be run. If no such process is waiting, returns
nil. -If there are several such processes, the most recent one to make its notification is.
returned. The window the process is wamng for selection of is returned as the second

value.

‘tv:choose-process-in-error :
Similar to tv:find-process-in-error but asks the user about each candidate process.
When the user answers Y, that process is returned. If the user answers N to each
- candidate, the value is nil. The window the process is waiting for selection of is returned
as the second value, ' :

Ctv: pr'lnt not'lficat'ions
Prints on standard-output all the nouﬁcanons that have happened in this session.

tnotice evenr ' ’ : Operation on windows
The :notice operation is used to report certain events so that flavors can redefine what to
do when they happen The argument to :notice is an event name, a keyword,
Additional arguments are allowed but have no meaning for any of the events yet defined.
Here are the dcﬁned cvents: :

‘input . :
:output The window is being used for input (output) and is not exposed, and its
: deexposed input (output) action. is :notify. The default action is to make a
notification and wait, -

input-wait = The window is being used for input and the process is wailing because no
input is available now. The default action is to adjust the vertical position
at which the next »+«MORE*» will happen.

© SRCKL.WINDIMISCTEXT.23 : | | | 8-AUG-83

Window Systcm Manual ‘ | 159 n Lisp Listeners

error The window is being used for the “debugger and is not exposed. The
default action is to make a notification and wait, or to get another
window if this one is too small.

The :notice 'operation uses :or metho'd combination: all the methods are run until one
returns non-nil. Aside from that, the value returned is not meaningful.

13.2 Lisp Listeners

tv:1isp-1istener : ' Flavor
This flavor of window is used for the window initially selected when the system starts up,
and for windows created when you ask to create a "Lisp” window with any of the system
menu commands. ' :

tv:initial-14sp-1istener Variable
The Lisp listener window that is selected when you boot. :

v 1d'le 1isp- listener &opnonal screen. _
Returns a Lisp listener which is waiting for input at top level and is the full size of the .
‘ spcc1ﬁed screen. The screen defaults to tv default-screen (page 13)

tv:lisp- interactor ' S Flavor
This flavor of window works just hke a LlSp listener, but System L will not select this

kmd of window, nor will tv:idle-lisp-listener retum one.

The mixin pnmarﬂy responsxble for- makmg a Llsp hstener behave the way it does is
tvilistener- mlxm-mtemal _ . :

" tv:listener-mixin-internal " Flavor
< - This contains tviprocess-mixin, and arranges by default for the process to be initialized
to run the Lisp top level‘ read-eval-print loop si:lisp-top-levelt.

:package i o o . Operation on tv:listener -mixin -internal

:sot- paekage ‘package L o Operation on tv:listener-mixin-internal
Get or set the package bemg used by the read-eval-print loop. Thesec work by interfacing
" with some complicated code in tv:lisp-top-level1l. The value from :package can be nil.
~ When you set the package cither a package or a packagc name is acceptable

Ctv: Hstener m1x1n) ' - ' o Flavor ,
‘ - This flavor inherits its entire deﬁmnon from tv: Ilstener -mixin-internal.. - The only
difference is. that System L. 1s defined to look for ‘windows with this flavor, and not the

other.

SRCKLWINDOMISCTEXT.3 8-AUG-83

Editor Windows . 160 Window System Manual

133 Editor Windows

zwei:zmacs- frame ' o Flavor
This is the flavor of the wmdow you get when you type System E. It has its own
process, and can select any Zmacs buffer. Generally none of the editor-specific operations
should be invoked on this window; that should beleft up to the window’s own process.
Requests to this process, which generally ask the process to select a buffer, are passed to
it as blips of the form v
. (:execute zwei: edit- thing spec)
where spec is anythmg valid as the argument o ed

- A Zmacs frame is useful for providing the user an opponuoity to edit whatever he likes.
Sometimes it is useful for a program to offer the user specific text to edit for its own purposes.

zwei:standalone-editor-window - - Flavor
This is a- window with no panes that serves as an editor. It has a minibuffer and type-in
window that pop up as its .inferiors when they are needed. .This window has no process
of its own; use the :edit. operauan in any process to do editing in the wmdow :

zwet: standa'lone editor- frame ' : | ' | - Flavor -
Another .kind of standalone editor window, but this one is a frame with a permanently
visible mode lme and typem-wmdow or mini buffer, just as a Zmacs frame is.

scomtab comtab ' | Init option for standalone editor windows
Specifies the comtab to use in editing in this frame The default lS zwei:*standalone-
comtab' v
zedit o ' ' ‘ _ Operatidn on standalone edilarwindaws

Invokes the editor command loop on thls wmdow The End command will return.

'lntel'va'l string . . ‘ ' , S Operalzon on edttorwmdowx .
Returns a string giving the current text in the window. : :

‘:set-interval-string string o " Operation on editor windows
Sets the text in the wmdow to strmg ' :

:interval - o ' . o Opérationon.editorwindom,

Returns the interval which is being edited in the window. If the window is a Zmacs a

frame, -this is the seclected buffer. Standalone editor windows have their own nonshared
intervals' which they edit; many of the cdltor pnmmvcs that work on Zmacs buffers also
work on these mtervals. : :

:set-interval interval ' " Operation on editor wmdows
' Sets the intcrval that this window is displaying and cditing to interval. On a Zmacs
~ window, interval must be a Zmacs buffer; then this will actually tell the wmdow to select
" the new buffer. - :

CSRCALWINDMISCTEXTZ o 8AUGH

Window System Manual . 161 | _ ~ Editor Windows

zwe‘l:'pop-up-standa!one_—ed1vtor-frame . - ' Flavor
A temporary window form of zwei:standalone-editor-frame.

zwei:pop-up-standalone-editor-frame - . Resource
&optional (superior tv:mouse-sheet)
A resource of such windows, used by the following function.

zwei:pop-up-edstring string &optional (near-mode’(:mouse)) mode-line-list min-width
min-height initial-message (comtab zwei:*standalone-comtab*)
Pops up an editor window containing string and let the user edit it When he types End,
returns a string giving whatever he left in the editor buffer. If he types Abort, the value
is nil. .

near-mode specifies how to position the window before popping it up. It is passed to
tv:iexpose-window-near.

mode-line-list is a list to be used to drive the mode line.

min-width and min-height are minimums for the size of the window. The window is larger
than that if string requires more space to display.

initial-message, if non-nil, is displayed in the typein window immediately after the frame
pops up. '

comtab is the' comtab to be used for editing.

zwei:editor-top-level ' Flavor
This is the flavor used by the Lisp (Edit) window which you can create with the system
menu Create option. It is a kind of Lisp listener in which both the input and the output
are recorded in an editor interval and can be edited. It is based on zwei:standaione-
editor-window.

zwei:temporary-mode-1ine-window-with-borders- resoﬁrce " Resource
&optional (superior tv.mouse-sheet)
A resource of such windows, used by the following functions.

zwe1:temporary-mode-1ine-window-with-borders | Flavor
The temporary mode line window contains just a mode line and a mini buffer. It is a
way for a program to request a small plcce .of input while allowing: the. user to edit with
Zwei.

This is the flavor of window that you get in ZMail if you click right on Select in the
ZMail command menu and then click on Find File in the Select menu.

zwei:typein-1ine-readiine-near-window window format-string &rest format-args
Pops up a temporary mode line window ncar window, displaying its mode linc by passing
Jormai-string and format-args to format, and lets the user cdit. Return terminates editing,
The user’s input is returned as a string. window may be any window on the screen, or
‘mouse, meamng pop up near the mouse.

‘ SRC:(II..WIND)M]SC.'I"F.X'I‘.B - : - 8-AUG-83

Window Flavors for Other Programs 162 ' Window System Manual

zwei:read-defaulted-pathname-near-window window prompt defaults special-type
Pops up a temporary mode line window near window, displaying the string prompt as the
mode line, and lets the uscr edit text which (when the user types Return) is parsed into a
pathname using defaults and special-type. window may be any window on the screen, or
‘mouse, meaning pop up near the mouse. :

'call -mini- buffer near-window
' Operation on zwei:temporary-mode-line-window-with -borders
window function &rest args
Pops up this window near window, then uses fiunction to read the input and returns the
value it returns. function should be an editor function which invokes the mini buffer
using zwei:edit-in-mini-buffer. The first argument to function is a stream reading from
the text the user edited. args are passed to fiunction as additional arguments.

13.4 Window Flavors for Other Programs

tv:peek-frame : Flavor
This flavor of wmdow is a self-contained Peek: dlsplay with its own process to update 1t.

tv: 1nspact -frame - ‘ Flavor
This flavor of wmdow is a self-comamed inspector with its own process to update it.

:tv:1nspect-frame-resource &optional (supenor tv:mouse-sheet) Resource
A resource of inspector frames which are created in a slightly special way so that they do
not have their own processes, but instead are to be invoked m some other process by the
ﬁmcuon mspect '

supdup supdup ' : o : Flavor
A self-contained Supdup window with its own- paxr of processes to transfer data to and
from the network. .

supdup:telnet ' Flavor
A self-contained Telnet window with its own pair of processes to transfer data to and
from the network. :

supdup :supdup-windows &optional (superior tv:mouse-sheet) Resource

supdup:telnet-windows &optional (superior tv:mouse-sheet) , Resource
Resources of Supdup and Teclnet windows, for use by the functions supdup and telnet
when operating in the mode of substituting for another window. :

tv:pop-up-text-window ' , Flavor
A temporary window, otherwise like tviwindow. '

~ tv:pop-up-text- vrlndow &opuonal (supcrzor tv:mouse-sheet) Resource
A rcsourcc of such windows. - :

SRC:CL.WINDSMISC.TEXT.23 _ S 8-AUG-83

Window System Manual | 163 : C ~ The Who Line

tv:tbuncat*lng-pop-up-text-w'lndov: | Flavor
A temporary window which truncates lines of output, otherwise like tv:window.

tv:truncating-pop-up-text-window-with-reset Flavor
Like tv:pop-up-text-window but truncates lines and resets the associated process when
deexposed. This is the kind of window that Terminal F uses to print its output, and it is
good for many similar applications.

tv:pop-up-finger-window &optional (superior tv:mouse-sheet) Resource
" A resource of such windows. '

13.5 The _Who Line -

The who line is the pair of lines at the bottom of the main Lisp Machine screen which
display the current status of the machine. The first of the two lines displays documentation what
~ mouse clicks would do at the present timeé, based on the actual position of the mouse. The

'second line- displays the time, your login name, the current process’s package and run state, and
file or net server information. The term "who line" is sometimes used to refer to this line alone.

The window system treats the who line as a separate screen, thus preventing windows on the
- rest of the screen from being moved or reshaped to overlap the who. line. The mouse
.documentation line is displaycd by a window of its-own, and so is each ficld of the second line.

~ The documentation displayed by the mouse documentation line is obtained by sending the
. window under the mouse a :who-line-documentation-string message (see page 120), or from
the variable tvwho line-mouse -grabbed -documentation when the mouse is grabbed (see page
116).

tv:who-1ine-documentation tornil
Turns the who line display of mouse documentation on or off.

The package name and run state displayed in the who line describe only one process. They

. normally describe the process. associated with the sclected window, which is a different process if

a new window is selected. However, the who line can be fixated on a particular process,
independent of the selected window. ’

tv:who- Hne process : Variable
The process to describe i in the who line, or nil meamng to display the one associated with
the selected window. In the latter case, the :process operation on the window is used to
get, the process to diSplay..

tv:last-who-1ine-process ' : ‘ Variable
 The process most recently described inthe who line, regardlcss of why. that process was
chosen. May be nil if there was no proccss to describe (for example, if the who line was
supposed to describe the sclected window but there was no sclected window or the
window had no process). -

SRCKL.WIND>MISC.TEXT.23 | | | o 8-AUG-83

The Who Line ‘ 164 : Window System Manual

'I‘he user can set tviwho-line- process using the Terminal W command (see "Operating the
Lisp Machine").

tv:who-1ine-clobbered _
~ Informs the who line that it must redisplay everything.

Recording open file streams for display:

tv:who-Tine-file-state-sheet
This who line window displays the status of an open stream or active network server. It

can also display the idle time if there is no stream or server.

This window is also responsible for maintaining the lists of streams and servers that could

be displayed. New streams and servers are reported to it with operations described here.

: . ‘SMQ
sadd-stream stream update-p Operation on tv:who-line- file&sheet

Adds stream to the list of open streams recorded by the file state sheet. If update-p is

non-nil, the who line field is updated immediately.

tdelete-stream stream ' Operation on tv:who-line-file-sheet
Removes stream from the list of streams for the who line. »

:delete-all-streams o _ Operatién on tv:who -line-file-sheet
Clears out the list of streams for the who line.

iopan-streams . : Operation on tv:.who-line-file-sheet
- Returns the list of streams recorded for the who lme

When the who line descnbes an open file, the name. to display for it is obtained with the
istring-for-wholine pathname operation. See section 22.6 of the Lisp Machine manual.

tadd-server . Operanon ontviwho-line-file-sheet
conn contact-name process function
Adds a entry to the list of active network servers recorded by the file state sheet. conn
should be the network connection - of this server, contact-name the contact name it
responded to, process the process the server is runmng in. :

<

:delete-server conn - " Operation on tv:who-line-file-sheet
Removes the entry for connection conn from the list of servers for the who line. Note
that this happens automatically if the connection is broken or closed.

:delete-all-servers - Operation on tv:who-line-file; sheet
Clears out the list of servers for the who line.

tv:close-all-servers &optional (reason "Foo onyou")

Closes the connections of all network servers, giving reason (a string) as the recason in the
CLS packet.

SRCKL.WIND>MISCTEXT.23 o ' A ' 8-AUG-83

Window System Manual _ | 165 : - - The Color Screen

tv: describe -SOrvers
_Prints descriptions of all actwe network servers,

13.6 The Color Screen

- The usual color screen on a Lisp Machine has 454. lines of 576. pixels each, and each pixel
- has four bits. This allows sixteen different colors to be displayed at once. There are far more
than sixteen possible colors. A color map controls the meaning of each of the sixteen pixel values.
Each of the sixteen color map slots specifies an eight-bit red intensity, an eight-bit green . intensity,
and an eight-bit blue intensity. Thus there are about 16 million different colors that can appear,
but only sixteen can be displayed at once.

color:color-screen _ Variable
The screen object that represents the color screen. This object is always present whether
the machine has a color screen or not.

-color:color-exists-p
t if this machine actually has a color screen.

13.6.1 Cbior Map ,Fdnct'ions

color:write-color-map sl r g b &optional synchronize screen
~ Writes the color map contents for slos, a fixnum from O to 17, with the three intensities
r, g and b, all fixnums from 0 to 377 octal.

If synchronize is non-nil, the change is delayed until the vertical retrace time, so that it
will take cffect between frames. screen is the screen to operate on, in case you have more
than one. It defaults to the normal color screen, .

color:write-color-map-immediate slor r g b &optional screen
Like color:write-color-map, but faster. It performs no synchronization at all, and is
intended for use when you have already waited for vertical retrace.

'color :b1t-color-map array &optional screen
Copics the contents. of array, a 16 by 3 array, into the color map of screen (which’
defaults to the normal color screen) This function always waits for vertical retrace to do
its work. :

coIor read- color map slot &optxonal screen v
Returns three values, the red, green and blue intensities from the color map from slot
" slot. This does not actually read the hardware color map, as there is no way to do that.
lmtead color:write-color-map maintains a copy for this purpose. '

SRCKLWINIDMISCTEXT23 | 8-AUG-83

The Color Screen 166 Window System Manual

color:fi11-color-map r g b &optional (start-slot1) screen :
Writes multiple slots in the color map, starting with swart-slot and ending with slot 17,
from r, g and b. Note that the default omits slot 0, which is normally left as black (all
three intensities zero). This function always waits for vertical retrace to do its work.

co'lor:ran&om-color-map &optional (start 1) synchronize screen
Scts ‘the contents of the color map to sixteen randomly chosen colors. The slots modified
are start through 17, by default omitting slot 0. synchronmize is the same as in
color:write-color-map. :

"color:spectrum-color-map
Sets the color map to a spectrum, leaving color 0 as black.

color:colorize &optional (delay4)
Sets the color map (except for slot 0) randomly over and over again, waiting delay 60ths

of a second in between.

co'lor co'lorate &optional (delay4) (steps1000.)
Repeatedly chooses two colors (numbers from 1 to 17) randomly and moves their color
map values gradually towards and through each other, so that ultimately the two slots
exchange colors. A delay of delay 60ths of a second elapses betwcen exchanges. '

13.6.2 Operating on Pixels

- One way to draw on the color screen is to store into its screen array with as-2-reverse. The
screen array of the color screen can be obtained with tvisheet-screen-array, and it is an array
of type art-4b. You can also use these functions:

color clear
Fl]lS the whole color screen with color 0.

-color:rectangle x y width height color &optional aluf screen
Scts the contents of a rectangle on the color screen to pixel value color. x and y are the
coordinates of the upper left corner, and width and height are the size.

aluf is an alu function to apply to each pixel, combining the specified color with the old
pixel contents to get the new contents. The default is tv:alu-seta, which ignores the old
contents. This alu function.is used only on the pixels of the rectangle, which is different
from what is done by the drawing primitives for the black and white screen; this is why
tv:alu-seta does not produce incorrect results as it normally would.

" color:color- draw Vine xI x2 yl y2 &opuanal (coIor17) aluf screen
Sets a line from (x/,y1) to (x2,52) on the color screen to color color. aluf is used as in

color:rectangle.

SRC:KL.WINDSMISC.TEXT.23 N . $-AUG-83

Window System Manual o 167 : The System Menu -

color:color-draw-char Jont char x y &opuonal (color Q) screen
. Draws character char in font font at position (x,y) in color color. font is an ordinary
black-and-white font.

Color fonts can also be created. A color font is composed of four-bit pixels just like the color
screen. Using a color font, characters can be drawn with the normal character drawing primitives.
When this is done, each bit of the color font pixel is combined with the corresponding bit of the
screen pixel using the alu function. The alu function operates bit by bit just as it does on black-
and-white screens, and is applied to many pixels in the neighborhood of the character; so- tv:alu-
seta should not be used.

color:make-color-font bw-font &optional bit-list name-suffix
Creates a color font from black-and-white font bw-font. bit-list is a list of four numbers,
zero or one, which specifies the bits of the pixels of the color font that correspond to
ones in the original font. Pixels that are zero in the original font remain all zero in the
color font. bitlist defaults to (1 1 1 1).

The name of the resulting font is color- followed by the name of the original font,
followed by the value of name-suffix.

Windows can be created on the color screen in the ordinary manner by specifying
color:color-screen as the superior. When fonts are specified for such windows, if the font
specifier names a black-and-white font, a color version of it is found or created. This color font
is created with bit list (1 1 1 1). This is done by the :parse-font-specifier method of the color
screen.

13.7 The System Ménu

~ This section describes how to interface. with and customize the system menu which pops up
when you click twice on the nght mouse button.

‘ The system menu is an instance of flavor tv:dynamic-multicolumn-momentary-window-
hacking-menu (see page 187), which means that its menu items are grouped by columns, and
each column’s items come¢ from the value of a corresponding variable which is examined each
time thc menu is popped up in case more itcms have been added. This is to cnable you to add
items to the menu and control where they go. The most common column to add: to is the third
one, which lists various kinds of windows to select (somcwhat like the System command) SO a
special interface is prov1ded for adding to it

tv:add-to-system-menu-prog‘rams-co'lumn- name. form documentation &optional afier
Adds an item named name to the third column of the system menu. form is what to -
execute if the user clicks on the item, and documentation is the mouse documentation -
string,

afler is the name of an 1tem to add after (a string), or t to add at the top, or nil to add
at the bottom.

SRCKL.WINDYMISCTEXT.23 . | o _ 8-AUG-83

Window Rcspurces | 168 o Window System Manual

‘tv ‘system menu-windows-column® Variable
A menu item list which forms the first column of the system menu.

tv: ‘system-menu-th'ls-wi ndow.- column® Variable
A menu item list which forms the second column of the system menu. By convention this
is used for things that operate on the window -that the mouse was pointing at when the
system menu was brought up. They are implemented with :window-op menu items.

The Select item in the system menu pops up a momentary menu with a list of windows that
the user might want to select. Not all the visible windows are included; usually a team of
windows belonging to a single program is represented by a single entry since selection among the
team is controlled by the program rather than the user. See section 3.2.1, page 35, for full
details.

The Create .item in the system menu pops up a menu for the user to choose a flavor of
window to create.

tv:default-window-types-item-1ist ' : Variable
A menu item list that is used by the system menu Create option, and by Create in the
screen editor when operating on a screen.

In general, the screen editor can operate on the inferiors of any window. Then, the
pane-types-alist operation on that window is used to get the item list for possible
ﬂavors o create see page 155 On a screen, the operanon returns the value of this

variable.

13.8 Wmdow Resources

A resource is a pool of mterchangeable objects that are available to be used temporanly and
then returned to the pool (sce scctlon 5.12 of the Lisp Machine manual. Read that before you

continue here)

Resources whose objects are windows are often useful. - For example, there is a resource of
windows of the right flavor to serve as "the system menu"; when you invoke "the" system menu,
a window s allocated from the resource, and it is.returned to the resource’s pool when it is
deactivated.

‘Normally one defines a resource with defresource. If the objects in the resource are
windows, it is better to use instead a different function, tv:defwindow-resource. Allocating
windows from resources, and returning them, is just like working with any other resources, and is
documented in the Lisp Machine manual. :

All the names described in this manual-as resources are defined in this way.

SRC:KLWINDIMISCTEXT.23 R 8-AUG-83

Window System Manual 169 ' : ' Window Resources.

tv: defw1ndow -resource name paramelers &rest opaons Special form
" Defines a resource of -windows, named name. parameters are parameters on which the
object can depend. Following the parameters specified is one additional parameter that is
always defined: the window’s superior. When you allocate 2 window from the resource,
this parameter defaults to. t:mouse-sheet.

options is a list of alternating keywords and values. Neither the keywords nor the values
are evaluated at the time that tvidefwindow-resource is executed, but sometimes the
value - becomes part of an expression that will be executed later (when a window is
allocated from the resource).

- The allowed keywords are

sinitial-copies The value is the number of windows to create in the resource when the
resource is defined. The default is one. The initial copies are made
inferiors of tv:default-screen. Creating an initial copy is just a way of
saving time the ﬁrst time a window needs to be allocated from the
 Tesource. :

:_COnstructdf Sce the deﬁmuon of defresource If it is not specified, tv:defwindow-
-~ resource provides a default, which calls make-instance with arguments
taken from the :make-window option.

:make-window - _
The value should be a list of a flavor name followed by keyword:
arguments. This list will be consed into a make-window form to get the
constructor for the resource,

:reusable-when :
The value should be «deexposed, :deactivated. If this keyword is not
specified, then windows of the resource can be allocated to requesters if
they have been explicitly returned to the pool and are not Ilocked.
:deexposed means that any window that is not exposed is considered to
have been returned to the pool. :deactivated mecans that any window that
is not active is considered to have been returned to the pool.

tv:window-resource-1ist o o Variable
A list of the names of all window resources defined with tv:defwindow-resource.

SRCKLWINDMMISCTEXT23 -~ | _ &AUGH3

The Cold Load Stream ’ ' 170 | A Window System Manual

Example: the system menu is created thus:

;Resource of system menus
(defwindow-resource system-menu ()
:make-window .
(dynamic-multicolumn-momentary-window-hacking-menu
:column-spec-list
(("Windows" =system-menu-windows-columns
:font fonts:h112i)
("This window" ssystem-menu-this-window-column»
:font fonts:h1121)
("Programs" #system-menu-programs-columns=
:font fonts:h112i))
:save-bits t)
:reusable-when :deexposed)

13.9 The Cold Load Stream

User programs that make use of the screen organization and standardization facilities provided
by the window system are frequently in a somewhat difficult position. If that interface to the
window system does not work, there scems to be no way at all to find out what is going on.
Similarly, debugging code associated with switching between windows can be difficult since there
may be no place to print debugging output at the time such code is executing.

One way to debug such problems is to use the cold load stream. This is the stream used in
constructing the inital Lisp Machine environment, before the window system itself has been
loaded. It has the advantage that it does not attempt to interface with the rest of the window
system, or vice versa. It will never deexpose any windows or lock any locks. It types out one
character at a time, by calling the microcode directly, and has very sunple-mmded ideas about
end of line exceptions and more breaks.

tv:cold-load-stream ' " Variable
The cold load stream is the value of this variable. :

When the cold load stream is "waiting” for type-in, it does not actually wait; in fact, it loops
until a character appears, with scheduling turncd off, blinking its own special blinker by hand.
The who line is not updated. Also, the chaosnet processes do not get to run. If the machine
stays in this state too long, all chaosnet connections will be lost. ‘

Whenever the system gets an error in the keyboard process, the scheduler or the mouse
process, the debugger uses the cold-load-strcam rather than terminal-io. You also have the
~ option of requesting this if there is an error in a process whose terminal-io is a window that is
not exposed and cannot be exposed because of locked windows. (You will be queried, using the
cold load stream, to choose between this and a couple of other possibilities.)

When you exit from the debugger after it was using the cold load strcam for one of these
~ reasons, it will ask you whether to "restore the screen”. Normally you should say Yes; then the
-~ screen contents will go back to what they were before the debugger was entered.

SRCKI.WI ND)MISC.'I’EXT.B ' . : | © 8-AUG-83

Window System Manual . 1 The Window-Based Debugger

. It is often preferable to use the cold load stream for debugging window problems even when
the normal alternatives are available. This is because the operation of the debugger using a
window for 1/0 may interfere with the window phcnomena being debugged. Use of the cold
load stream will avoid these problems. You can request use of the cold load stream by setting
debug-io to the value of tvicold-load-stream before you run your test. Once this has been
done, not only errors but breakon and Meta-Break as well will use the cold load stream. To
turn off use of the cold load stream for all debugger invocations, set debug-io back to nil.

You can also force trace output into the cold load stream by setting trace-output. Note that
you must not set trace-output to nil when done; you must save its orlgmal value and set it back
to that.

When the cold load stream is used because you have set one of the stream variables to it,
you do not get the chance to restore the screen. It is not so easy to define how to do that
"right" in this case; if it were done after each exit from the debugger, you would not get to see
‘the history of multiple entries to the debugger. "

. The program can invoke a break loop using the cold load stream by calling tvikbd-use-
cold-load-stream. Type Resume to continue. Note that when the break is entered, the
package you are typing into is typed out, because the package in the who-line is not going to be
correct for this break loop. :

You the user can request such a break loop by typing Terminal Call or by clicking on
Emergency Break item in the system menu. You can get your program into the debugger using
the cold load stream, without having made advance preparation, by getting a break loop in this
fashion, setting debug-io to the cold load stream, exiting, and typing Meta~-Break.

Also, ‘it is often useful to get a cold load stream break loop and call eh on various processes
or stack groups.

13.10: The Window-Based Debugger

- The window-based debugger is an alternative to the usual debugger; it performs the same
- functions but displays graphically rather than using sequential stream 1/0. You invoke the
window-based debugger by typing Control-Meta-W while in the usual debugger. You can switch
back and forth between the two debuggers any number of times while handling a single error.

) The debugger wihdow is divided into six panes. At the bottom is a Lisp-listener-like window,
which ordinarily provides a read-eval-print loop. similar to the regular keyboard debugger. More
commands are available by using the mouse in the other windows as described below.

“At the top is a display of the “disassembled -or ground code for the bcurrem]y sclected stack
frame, depending on whether “or not it is compxlcd It has a scroll-bar, but is othcrwise not
sensitive to the mouse. '

Next are the args and locals windows, side by side, displaying the namcs and vzilucs of the
arguments to the current stack frame and its local variables: they are grayed out if there are
none. They also have scroll bars. Clicking the mouse on the name of an argument will print the -
- name and the value in the Lisp window. Clicking on just the value will print it in the Lisp

SRC :(L.W IND>MISC.TEXT.23 ' : ~ 8-AUG-83

The Window-Based Dcbugger 172 Window System Manual

window. The mouse will highlight any relevant quantity that you are pointing to.

Next is the stack window, which displays in a pseudo-list format the functions and arguments
on the stack. Clicking on a function or argument or sublists of them will cause them to be
printed in the Lisp window as in the argument or local windows. Also, clicking the mouse to the
left of a line containing a particular stack frame will make the debugger select that frame,
changing what the above three windows show,

Below this, and above the Lisp Window, is the command menu for the. debugger window.
The available commands are: : ’

What error Reprints the error message for the current error, in the Lisp window.

Exit Window EH
Exits the debugger window, returning to the regular debugger.

Abort Program
Like Abort in the regular debugger.

Arglist Asks for the name of a function, which can be typed on the keyboard, or
moused if it is on the screen. Picking an actor or a closure will ask for the
message name to that actor and print the arguments to its method for that
-message. Picking. a line of a stack frame from the stack window will try to align
. the printout of the arguments with what value was supphcd in that position in

_ that frame.. _
Edit Reads a name of a function in_ the same fashion as the Arglist command and
invokes the editor on that function.

Retry Attempts to restart the current frame like the Control Meta-R command in the
g regular debugger :

Return a Value :
Asks for the name of a value (which can be selected with the mouse) and returns
- it from the current frame, like Control-R in the regular debugger.

Proceed Proceeds from the error. Clicking left on Proceed is like typing Resume in the
~ regular debugger. - Clicking right on Proceed gets you a menu of available
. proceed types, from which you can select one, This is cquivalent to using one of
. the available Super commands in the regular debugger. If proceeding asks for an
object to return, you can specify it with keyboard input or by pointing to a value
with the mouse. '

Setarg * Select an argument or local w1th the mouse and type or mouse a new value to be
substituted in. :
Search ~ Like the ControI-S command, except that the mouse can be used.
Throw Like- Control-T in-the regular debugger, it asks for a tag and a value and throws
- there. 'Ihe mousc can be used to specify the tag and value.
NIL Ordinarily just supply those symbols as arguments or values for other commands.

These can also be used to answer yes-or-no questions.

SRCKI.WINDOMISCTEXT23 o B S BAUGS

Window System Manual . 173 '. -+ Choice Facilities

14. Choice Facilities

The window system contains several facilitics to allow the user to make choices. These all
work by displaying some arrangement of choices in a window. By pointing to one with the
mouse the user can select it. The details (how the choices are specified, what the user interaction
looks like, and what happens when a choice is selectcd) vary widely, which is why there are
several separate facilities.

Each choice facility is implemented as a family of window flavors, providing several variations
on the basic facility. For those who don’t want to create their own window, each facility provides
an easy-to-use function interface that temporarily pops up a window of the appropriate flavor.
The function interfaces will be described first in each section. Following the function interfaces
there is documentation on how to create and use a window which has the facility.

This document does not cover how to modify these facilities to provide your own specialized
versions, except in. the simplest ways. That is certainly a reasonable thing to want to do. In
order to do it you will need to read some of the code that implements the facility in question,
for instance to learn about window instance variables and about internal operations that you might
want to redefine or put daemons on.

Some portions of these facilitics execute in the process that calls. them, while other portions
exccute in the mouse process. All Lisp. evaluation with which the user is concerned takes place in
the user’s process when using the facilities described in this document, with a very few exceptions
which are noted when they occur. Thus the user may freely use side-cffects (both special variables
and *throw) and nced not worry that an error in his program will interfere with mouse tracking.

14.1 Menus o

A menu is an array of choices, -each identified by a word or short phrase. You can select
one of the choices by moving the mouse near it, which causes it to be hxghhghted {a box appears
around it), and then clicking any’ mouse button.

. What happens when you select one of the choices depends on the particular type of menu.
Typically the choices in a menu might be commands to some program or choices for what a
command should operate upon

The system automatlcally chooses the arrangement of the choices and the size and shape of
the window. Naturally there are ways for the user to control this if necessary. :

To sce an cxample of a menu, click the right-hand mouse button twice, causing the system
menu to appear.

SRCALWINIDCHOICETEXTI3 S B I | 8-AUG-83

Menus _ | ‘ 174 ’ ' Window Systerh Manual

~ 14,11 Menu Items

A menu has ‘a list of items; each item represents one of the choices offered. An item tells
the menu what to display and what to do if the user selects. (clicks on) it. “What to do" specifics
both what value to return and a possible side effect.

Response to selection of an item is implemented by the :execute operation, which is always
_ sent in the user process (rather than the mouse process). Thus side effects occur in the
appropriate process. - The returned value comes back to the user from tvimenu-choose, :choose,
or :execute depending on how the menu is used. This will be explained in detail later.

An item can take any of the following forms:

a strmg or a symbol -
: The string or symbol is both what is displayed and what is returned. There are

no side-effects.

a cons (name . atom)
- name (a symbol or a strmg) is what to display, and atom is what to return. There

are no side-effects.

a list (name value)
name is a string or a symbol to display, and value is any arbmary obJect to

return. There are no side-effects.

a hst (name type arg optionl argl option2 arg2...)
This is the most general form. name is a string or a symbol to dlsplay type is a
keyword symbol specifying what to do, and arg is an argument to it. The options
are keyword symbols specifying additional features desired, and the args following
t.hem are arguments to those opnons

If nil is supphed as a menu item, it is lgnored completely. It takes up no space in the menu.

A list of items is sometimes called an “item alist” since most forms of menu item look like
alist elements mapping strings into what to do about them.

The possible values of fype in the most gencral form of menu item are:

wvalue - arg is what to return. There are no side-effects.
:eval arg is a form to be evaluated. Its value is returned.
funcall arg is a function of no arguments to be called. The valuc it returns is returned.

:no-select - This item cannot be selected. Moving the mouse near it will nor cause it to be.
‘ - highlighted. This is useful for putting comments, headings, and blank spaces into
“menus. arg is ignored, - but must be present to make the item be the form that
has a rype keyword in it. _

:kbd _ - arg is sent to the selected window via the :force-kbd-input operation. Typically
it is cither a character code, which is to be treated as if it were typed in from the
keyboard, or a list (a blip), which is a command to the program (sce scction 5.2,
“page 52). Use of kbd produces an cffect like the cffect of using a command

menu (sce section 14.1.5, page 184). -

© SRCKL.WINDYCHOICE.TEXT.93 o : 8-AUG-83

Window System Manual - 175 . . Mecnus

‘menu arg'ié a new menu to choose from; it is sent a :choose message and the result is
returned. Normally arg would be a pop-up menu. If arg is a symbol it gets
evaluated.

:menu-choose

arg is a list (label . menu-items). . The car and cdr are passed as arguments to
~ tv:imenu-choose, popping up another menu, and the result of choosing from that
menu- is returned. menu-items is another list of menu items.

:buttons arg is a list of three menu items. The item actually chosen (i.e. the item to be
: - executed) is one of these three, depending on which mouse button was clicked.
The order in the list is (left middle right). The three menu items in the list will
be used only for execution, not for display, so it does not matter what they have
as the string to be displayed (it can be nil), and there is no point in giving them
:font or :documentation keywords. These should go in the main menu item, the

one that contains the :buttons.

-:window-op arg is a function of one argument. The argument is a list of three elements: the
window the mouse was in before this menu was popped-up and the x and y
coordinates of the mouse at that time. This item type is handled by the
:execute-window-op menu operation, which the flavor tv:menu does not
implement. The flavor tviwindow- hackmg menu mixin provides a method to
implement it

The menu item modifier keywords are:

font This keyword is followed by a font or a symbol that is the name of a font. The
~ 1tem is dlsplayed in that font mstead of the menu’s default font.

documentatlon
This - keyword is followed by a strmg which brleﬂy descrlbes this menu item.
When the mouse is pointing at this item, so that it is hlghhghted, the
- documentation string will be dlsplayed in the documentation line at the bottom of
- the screen.

bindings This keyword is followed by a list of bindings to be made, suitable for passing to
the function progw (sce scction 3.1 of the Lisp Machine manual). These bindings
~are made before evaluating, - funcalling, sending a message to a window, etc. If
:buttons is used with :bindings, the :bindings must appear inside the menu item
within the :buttons to have an effect on the final result '

Here are some examples of menu item hsts

Three items, that display as FOO BAR and LOSE, and return the symbols foo, bar and
lose- when chosen. _ .
(foo bar:lose)

Another way of specifying the same thmg, using more general syntax
(("FO0" :value foo)
("BAR" :value bar)
("LOSE"” :value lose))

- SRCKL.WINDYCHOICETEXT.93 | o SAUGEY

Menus 176 ‘ ' Window System Manual

Putting FOO in italics and adding documentation for the who line:
(("FOO" :value foo :font fonts:trl2i
:documentation "Choose to FOO")
("BAR" :value bar _
:documentation "Request a BAR")
("LOSE" :value lose
:documentation "Don’t win."))

Some other type keywords are used here. The value of the :choose operation will be a
keyword such as :read or wnte the value returned by the function read, or whatever the
buffer-op-menu returns. ’

(("File" :buttons
((nil :value :read)
- (nil :value :write)
(nil1 :menu-choose
~("File Operation"”
;» Item list of menu obtained for chck-nght onFile,
("Read" :value ;read
;documentation "Read a file")
("Write" :value ;write
;documentation "Write a file")
("Rename" :value ;rename
;documentation "Rename a file")
{("Delete" :value ;delete
;documentation "Delete a file"))))
:documentation . :
"L: Read file. M: Write file. R: Menu.")
- +; The following makes a blank line in a one-column menu.
("" :no-select nil)
;s We assume that buffer-op-menu is a variable whose value is a menu.
("Buffer" :menu buffer-op-menu -
:documentation "Operate on this buffer”)
("Read" :buttons
((nil :eval (read))
{(nil :eval (read)
:bindings ((base 10.)))
nit)
;documentation ,
"L: Read sexp. M: Read sexp, base ten."))

. Here we show the use of :bindings. This expression creates a menu item which contains a
host taken from the local variable host. When the menu item is chosen, the function hack-host
will be called with the appropriate host as the valuc of the special variable host-to- hack
(("Hack This Host"™ :funcall hack-host
:bindings ((host-to-hack ',host))
:documentation "Do some hacks to this host."))

SRCKL.WIND>CHOICETEXT93 - o A | ' v 8-AUG-83

Window System Manual | | 177 : - Menus

tv:menu-execute-mixin ' ’ Flavor
' This flavor defines the execute operation to process a menu item accordmg to the rules
described above.

- sexecute ifem Operation on tv:menu-execute-mixin

- Processes .item, computing and returning the "value to return” according to the rules
described above. Everything about the meaning of menu items, except as far as it affects
displaying the menu, is determined by what the :execute operation does, so by redefining
this operation you can implement new types of menu items. The overall format must be
as described, however, because displaying the menu checks for the type :no-select and
for the :font and :documentation modifier keywords.

texecute-no-side-effects item ' Operation on tv:menu-execute-mixin
' Processes ifem, computing and returning the "value to return”, provided that this can be
done without side effects.. If computing the value to return might possibly have side
effects (such as for item types :eval, :funcall, :kbd, :window-op, :menu and :menu-
choose), the value is not computed and nil is returned. :

This operation is typically used to find the item in a given item list that would return a
. particular value if selected. '

tvimenu-item-string irem &optional item-default-font menu
Returns the string to display for item. The font to use is returned as the second value; it
defaults to irem-default-font if not specified by the item. item-default-font itself defaults to
the current font of the menu as a window. ' ‘

menu is the menu that item is for; it is used for interpreting font specifications in item
itself. '

If you are not interested in t.he font, you can omit the last two arguments.

tv:window-hacking- menu -mixin : : ‘ - Flavor
Provides for the :window-op item type by 1mplcmemmg the :execute- -window-op
- operation. This involves remembering the mousc position and the window under the
mouse- at the timeé the menu is exposed. : - :

14.1.2 Easy Menu Interface

tv:menu-choose irem-list &optional label near-mode default-item superior
Pops up a menu and allows the user to make a choice with the mouse. When the choice
is made, the menu disappears and the chosen item is exccuted. The value of that item is
-returned as the first value of ‘tv:menu-choose, and the item xtsc]f is returned as the
second value.

If the user moves the mouse out of thc menu and far away, the menu dnappcars and
- tv menu- -choose returns nil.

'SRC:L.WIND>CHOICE.TEXT.93 - 8-AUG-83

Menus , ' 178 | " Window System Manual

item-list is a list of items as described above.

label is -a string to be displayed at the top of the menu, or nil (the default) to specify the
absence of a label.

,near-modé is where to put the menu. It defaults to the list (:mouse) and must be an
acceptable argument to tviexpose-window-near.

| default-item is the item over which the mouse should be positioned initially. This allows
the user to select that item without moving the mouse. If defauli-item is nil or
unspecified, the mouse is initially positioned in the center of the menu.

superior is the sheet of which the menu should be an inferior. The default is tv:mouse-
sheet, which is usually a screen.
Example o : :
- (tv:menu-choose ’'(("Read" :value foo) ("Write" :value bar))
"Direction”)
will return foo or bar (or nil if the user moves the mouse out of the menu).
tv:mouse-y-or-n-p string v :
' Asks the user to answer Yes by chckmg on a small window or No by moving the mouse
out of it. The window is a menu which dlsplays a single item, . string.

The value is t if the user clicks on the menu, or nil-if he moves the mouse out of it.

14.1.3 Geometry

The way a‘ menu .is diSplayed is described by six parameters that are collectively called its

geometry. Each of these parameters may be specified as a constraint, or may be allowed to
default based on the item list and the parameters that are constrained.

. There are two styles of arranging the choices in the menu. They can be in an array of rows
and columns, or they can be "filled”, that is, each line has as many choices as will fit with a
reasonable amount of white space in between. In columnar format, each line -has the same
number of choices: the same as the number of columns. This is not true in ﬁ]led format. Filled
format is specified by glvmg zero as:the number of columns.

The geometry is rcpresented as a list of six elements one for each parameter.

“columns - The number of columns, or 0 for filled format.
“rows ~ The number of rows.
inside width The inside-width of the window, in pixels.
inside height The inside-height of the window, in pixels.

maximum width ~ The maximum width of the window, in pixcls. This parameter is mcaningful
' "~ only as a constraint, sincc the way the menu is displayed is sufficientdy

SRCKL.WIND>CHOICE.TEXT93 o ” . 8-AUG-83

{

Window SyStcm Manual A _ 179 : ' Menus

described by its actual width, If the maximum width is constrained, the
.system will prefer to choose a tall skinny shape rather than exceed it.

maximum height: The maximum height of the window, in pixels. This parameter is meaningful
only as a constraint, since the way the menu is displayed is sufficiently
described by its actual height. If the maximum height is constrained, the
system will prefer to choose a short fat shape rather than exceed it.

For the first four parameters, one must distinguish between the current value and the imposed
constraint. The constraint values may be nil, meaning "do not constrain this parameter”. The
current values cannot be nil.

The last two parameters exist only as constraints, and may be nil.

‘ The actual display of a menu is based on four parameters: the number of rows, the number
of columns (or whether to use fill mode), the height and the width.. Some of these may be
specified by constraints; others may be specified on a one-time basis when the menu is displayed;
the rest are chosen based on the ones already known, and on the item list.

The default geometry constraints are all nil, meaning that the system can choose the size and
shape freely, based on the specified item list. The default shape is an upright golden rectangle,
using columnar format with as many columns as fit in the width. Most small menus will have
only one column. :

If both the height and with are specified (cither precisely or indirectly) in such a way that not
all the items can fit, the menu will have a scroll bar and the user will have to scroll to see all .
the items.

~ When the item list of a menu is changed, the 'display of the menu is recomputed based on
the new item list and the geometry. : '

The following init-plist optibns to a menu will initialize the geometry:

:geometry list 4 o ~ Init option for tv:menu
Sets the complete geometry to /ist, a list of six elements. Example: ,
{make-instance ’tv:menu ’':geometry (0 nil 300 nil nil 500))
makes a filled menu that is 300 pixels wide; when its item list is specified or changed it
will become as tall as necessary to display all the items as long as that does not exceed
500 pixels. Beyond that point, it will be 500 pixcls high and will require the user to
scroll. o ' :

srOWS 7-rows _. i ~ Init option for tv:menu
Scts the number of rows. - ’ '

:columns n-columns : ' - Init option for tv:menu
Sets the number of columns.. '

SRCKL.WIND>CHOICE.TEXT.93 ‘ - _ 8-AUG-83

Menus ’ ' © 180 - Window System Manual

f 111-p tornil . Init option for tv:imenu
Specifies whether to use ﬁlled format. :

:default-font fons : Init option for tv:menu
Sets the default font, the font in which items which do not specify a font are displayed.
If this is not specified, it defauits to the standard font for the purpose :menu on the
screen the menu is on (see page 86).

The following operations manipulate the geometry of a menu:

tgeometry "+ QOperation on tv:menu
Returns a list of six things, the menu’s geometry These are the constramts with nil in
unspecified positions; contrast :current-geometry.

tcurrent- gaomatry _ ‘ Operation on tv.menu
Returns a. list of six things, which are the geometry corresponding to the actual current

state of the menu.

The first four elements are actually sufficient to describe the current state. These are
never nil.

The-last two elements retumed are the constraint values for the maximum w1dth and
height, since there are no current values to return. These may be nil.

Contrast this with :geometry.

1set-geometry : Operation on tv:menu
' - &optional columns. rows inside-width inside-height max-width max-height
Sets the geometry (the constraints) from the arguments. The menu may change its shape
and redisplay as‘a result. '

Note that this takes- six arguments 'rather than a list of six things as you »might expect.
ThlS is because you frequently want to omit most of the arguments.

An explicit argument of nil means to make that aspect of the geometry unconstrained. An
omitted argument or an argument of t means to leave that aspect of the geometry the way
it is (if unconstrained, it remains so).

Ff111-p ' ' : ‘ Operation on tv.menu
:set-fi11-p rornil - OQperation ontv:basic-menu
Get or set the menu’s fill mode, t if it displays in filled format rather than columnar
format. These are spccial cases of the :geometry/:set-geometry operations. '

:set-default-font font Operation on tv:menu

Scts the default font, the font in which items that do not specify a font are displayed.
. This recomputes the current display based on'the constraints.

SRC:KI.WIND>CHOICE.TEXT.93 o 8-AUG-83

Window System Manual o : 181 . ' Menus

.set edges left top right bottom &opuonal option Operation on tv:menu
‘This operation, in addition to setting the current position and size of the menu, - also
makes the specified size be a permanent constraint for the menu unless optzon is
:temporary. In that case, the menu is redisplayed with the specified edges for now, but
if it is redisplayed again for any reason, the permanent constraints (or lack of them)
otherwise specified will re-emerge.

tv:menu-compute-geometry drawp &optional inside-width inside-height
Computes the current display parameters from the constraints and the. item list and default
font. inside-width and inside-height serve as constraints for this time -only, overriding any
permanent constraints for those parameters. :

If draw-p is non-nil, the menu is actually redrawn.
This function is a subroutine of various menu methods, and self must be the menu.

:minimum-width | o -Operation on tv: menu
This returns the minimum w1dth for the menu, as requxred to display its label. This is
used in deciding how to display the menu.

~ Other menu flavors can redeﬁne this operation to force the menu to be wide enough for
some: purpose.

14.1.4 Ordinary Menus

‘These are the basic and mixin flavors for the ordinary kinds of menus. They cannot be
instantiated themselves but are useful to know about. Other kinds of menus are discussed in later
sections.

‘tv:basic-menu I ’ ' ' Flavor
Everything else is built on this. All the operations documented here as being defined on
tv:menu are really defined by this flavor.

tv: 1““"1 ist o - - Instance variable of tv:basic-menu
" The item list of the menu : .-

tv: last item ' ' Instance varzabIe of tv:basic-menu
The last item actually selected with a mouse click in this menu, or nil if none has been -
selected yet. Used for positioning the mouse when a momentary menu pops- up. '

tv:current-item o ’ Instance variable of tv.basic-menu
’Ihe item which the mouse is pointing at, or nil. '

tv:chosen-item - . Instance variable of tv:basic-menu
Set cach time an item is sclcctcd, to that item. Waiting for an item to be selccted is
done by setting this variable to nil and wamng for it to become non-ml

SRCXLWINIDCHOICETEXTS3 L %AUGH

Menus . ' 182 Window System Manual

tv: geometry Instance variable of tv:basic-menu
The geometry (constraints) of the menu, a list of length 6.

tv: bas‘lc momentary-menu (tv:hysteretic- wmdow -mixin tvbas:c menu) Flavor
This is a kind of menu, often referred to as a "pop up" menu, which is only
momentarily on the screen. A :choose operation on a menu of this flavor- causes it to
position itself where the mouse is. When the user selects an item in the menu, or
alternatively moves the mouse far away from the menu, the menu disappears and
deactivates, the mouse warps back to where it was when the menu appeared, and the
:choose operation returns the chosen item or nil.

These are the interesting instantiable menu flavors:

tv:menu o ' ‘ Flavor
' (basic-menu borders-mixin top box-label mixin basic-scroll-bar
minimum-window)
This is tvibasic-menu with borders. and a label on top The default is for there to be no
label but you can specify one with the :label init-plist option or the :set-label operation.

tv: momentary menu , | ' ' Flavor
. This is tv:basic-momentary-menu mlxed with the right other flavors. Momentary menus
were described at the beginning of this section.

tv:momentary-menu &optional (superior tv:mouse-sheet) ' . Resource
A resource of momentary menus.

tv: temporary menu (tv: temporary- wmdow mixin' tv:menu) : Flavor
This is a menu that is a temporary window; that is, it saves the bits of the windows
underneath it when it is exposed. It is not a momentary menu, and therefore it does not
expose or deexpose itself automatically.

It is appropriate to use a temporary menu rather than a momentary menu when you want
to pop a menu up and make several choices from it before popping it back down, or if
you don’t want to allow the user the opuon of choosing nothing by moving the mouse
out of the window. :

tv: momantary -window-hacking-menu Flavor
(tviwindow-hacking-menu-mixin tvmomentary menu) '
A momentary menu with the window-hacking mixin. Sce page 177.

tv:momentary-menu &optional (superior tv:mouse-sheet) ' Resource
This is a resource of momentary menus. tv:menu-choose allocates a window from this
Tesource.

- The following operations are useful on any flavor of menu. Also listed are init options which
are uscful with any flavor of menu. Operations and init options that specifically have to do with
“the shape and arrangement of the menu are listed in the scction on geometry (scction 14.1.3, page
178). : _

SRCKLWIND>CHOICETEXTS3 | o © 8:AUG-83

Window System Manual | | 183 : Menus

:item-1ist ’ : - Operation ontv:menu
sset-item-11st item-list : . Operation ontv:menu
’ Get or set the list of items (choices). Semng the item list recomputes the geometry and
redisplays the menu.

sitem-11st items - Init option for tv.menu
The 1tern list can be set when the menu is created ’

:choose o - : Operation on tv:menu
Exposes the menu if it is not already exposed, then waits for a selection to be made with
the mouse. The selection is :execute’d and the resulting value is returned. A momentary
menu will return nil from :choose if the mouse is moved far out of it and in any case
will pop down before returning.

:execute item ‘ - , Operation on tv:menu
Given .an item that was selected, performs the appropriate side-effects and returns the
appropriate value. For most kinds of menus, this operation is invoked automatically as
- part of the :choose operation, but command menus (see below) require the user program-
to invoke :execute explicitly if it is desired.

:move-near- window window ' Operation on tv. menu
Fxposes the menu above or below wmdow giving it the same width.

tcenter-around x y ' = Operation ontv:menu

‘This operation is implemented by all windows, but menus handle it a little differently.
The window is positioned so that the last item chosen appears at the specified coordinates
(in the superior), if possible. If this would cause the menu to stick outside of its
superior, it is offset shghtly to }.eep it-inside. The actual coordinates of the center of the
appropriate item are returned (you might want to put the mouse therc). -Momentary
menus use this to put the menu in such a place that the mouse will be nght over the last
item chosen.

ccurrent-item : ' - Operation on tv:menu
Gets the item the mouse is currently pointing at (nil if none). In most cascs if you are
using this operation you are doing something wrong.

:chosen-{item : o : Operation on tv:menu
:set-chosen-1tem irem . ' Operation on tv:menu
Get or sect the item that has been chosen by the mouse and is being communicated back
to the controlling process. In most cases if you are using these operations you are doing
something wrong ‘

"last item - ' B : B Operation on tv:menu

- :set-last-1tem item ’ Operation ontv:menu
Get or sct the item that was chosen by Lhe mouse the last time this menu was used.
When a momentary menu is exposed near the mouse by the :choose operation, it will

~ put the mouse over this item so that it easy to choose it again. '

SRCKL.WIND>CHOICETEXT93 . 8-AUG-83

~ Menus . - 184 ’ ~ Window System Manual

:column- row-size ‘ Operation on tv:menu
Returns two values: the width of a column in bits and the height of a row in bits.

:1tem-cursorpos item ‘Operation on tv:menu
Returns two values, like :read-cursorpos, giving the coordinates of the center of the
displayed representation of item. The result is nil if the item is scrolled off the display.

:item-rectangle item - - Operation on tv:menu
Returns four values, the coordinates of the rectangle enclosmg the displayed representation
of the specified item. The result is nil if the item is scrolled off the display. Note that
the returned coordinates are inside coordinates and that they include a 1-pixel margin
around the item.

:menu-draw ' Operation on tv:menu
 Draws the menu’s display. :menu-draw is invoked automatically by the system when
required, and should not be used in application programs. However, user-defined menu
flavors may redefine the operation or add daemons to it.

:mouse-buttons-on-1tem butions-down-mask Operation on tv:menu
This operation is invoked by the mouse process when the mouse is clicked on an item. - It
is completely responsible for whatever should be done in the mouse process at that time.
Its default definition is to record the chosen item and process the item type buttons
when that is used.

The instance variable tvicurrent-item or the current item operatlon can be used to ﬁnd
out which item the mouse is on.

‘ - The operatidns :scroll-position, :scroll-to ~ and :scroll-bar-p are also defined for
communication with the scroll bar. See section 10.5.1, page 124. : '

14 1.5 Command Menus

tv: command -menu-mixin ‘ : Flavor
~ The menus described so far are driven by the :choose operanon that is, the program
decides when it is time for the user to choose something in the menu. In some
~ applications it should be the user who decides when to choose something from a menu.
For example, in Peck, the user can select a new mode with the menu at any time, but
Peek cannot spénd all its time waiting for the user to do this.

The command menu is designed for such applications. When an item in a command
menu is chosen, the menu puts a blip into its input buffer. The blip is a list
(:menu item . button-mask menu) _
which can read as an input character with the :any-tyi opcranon on any other window
-sharing thc same input buffer. item is the menu item that was clicked on, button-mask '
- says which mousc button was .used (as in tv:mouse-last-buttons: sce page 116) ‘and
menu is the menu that was clxcked on, in case you are using more than one.

' SRC:KLWIND>CHOICE.TEXT.93 - | . BAUGS3

Window System Manuall. - 185 ‘ Menus

Usually a command window is part of a team of windows managed by a single process
and sharing a single input buffer. Menu clicks generate input that is read in a single
stream together with mouse clicks on the other windows and keyboard input. For
example, Peek and the inspector both use command menus in this way. Once the
controlling process reads the blip, it can de (funcall menu ":execute item) if it wishes the
item to be processed in the usual way for menu items.

tv:command-menu ‘ ; Flavor
This is tv.command-menu-mixin mixed with tv:menu to make it instantiable.

:10-bufter Operation on tv:command-menu

:set-io-buffer io-buffer : ’ Operation on tv:command-menu

These operations get or set the 1/0Q- buffer in which a command-menu .sends stores a blip
when an item is. selected.

:io-buffer io-buffer ' ~ Init opttan for tv:command-menu
The input buffer to be used by a command menu is usually specified when it is created.

tv:io-buffer _ | , B - Instance variable of tv:command-menu
- This is where the input buffer is recorded. '

tv:command-menu-abort-on-deexpose-mixin Flavor
When a command menu built on this flavor is deexposed, it automatically "clicks" on its
Abort item. In other words, the :deexpose method for this flavor searches the item list
for an item whose displayed representation is "ABORT" (case is not significant). If such
an item is found, a blip is sent to the input buffer claiming that that item was clicked on "
with the Left button.

- 14.1.6 Dynamic Item List Menus

Dynamic item list menus dynamically recompute the item list.at various times. Whenever the
program makes an explicit request to use the menu, the menu checks automatically to see whether
its item list has changed. : :

tv: abstract -dynamic-item-1ist-mixin o ‘ Flavor
This mixin causes a menu to mvoke the :update- ltem -list operation at various times.
-This operation receives no arguments and its value is ignored; it should update the item
list if appropnate : :

- This mixin does not define the ubdaté-item list operation, however. Each user of the
mixin must define this opcranon to update the item list as he desires.

:update-item-11 st ' a Operation on dynamic item list menus
~ Sent by the system, this operauon should . be defined by the user to do a :set-item- llst if
the item ‘list should change

Note that this operation may be invoked in various processes, so your definition ‘should
use only global variables (and data structure it can ﬁnd from the menu itself).

SRCi4I. WlND)CHOICF'l‘F)\T% | L 8-AUG-83

Menus 186 ' Window System Manual
tv:dynamic-1tem-11st-mixin S Flavor
Provides for a form which is evaluated to get the menu’s item list, kept in the tviitem-
list-pointer instance variable. The update item~-list operation is defined to evaluate the
form and set the 1tem list to the form’s value. :
tv: 'Item-l ist-pointer Instance variable of tv:dynamic-item-list-mixin
This is the form evaluated to. recompute the current item list.
:item-1 1st-po1n£_er N ' Operation on tv:dynamic-_item?Iist-mixin-
:set-item-1ist-pointer form ‘ Operation on tv:.dynamic-item-list-mixin
Get or set the form. : : : :
:1tem-11st-pointer form ~Init option for tv:dynamic-item~list-mixin

Initializes the form.

- These are menu flavors that are just combinations of this with other flavors:

v tv:dynam'le-mom.entary—me'nu ' - : : ' Flavor

A momentary menu with the -dynamic item-list mixin.

tv:dynamic-momentary-window-hacking- menu v ' Flavor'

A momentary menu with both the dynamxc item-list mixin and the wmdow-hackmg mixin.

R A'H dynam'le temporary menu o ' Flavor

A temporary menu w1th the dynamic 1tem-lxst mixin.

. tv:dynamic- temporary command-menu : : ' Flavor

A command menu with the temporary and dynamic 1tem-11st mixins.

tv: dynam'tc temporary-abort on- deexpose -command-menuy Flavor
A command menu with the temporary, abort-on-deexpose and dynamic item-list mixins.

B tv:dynamic-multicolumn- -mixin. ‘ ' Flavor

This mixin, to be used with tv:abstract-dynamic-~item-list-mixin, makes a menu of
several columns, in which each column’s items are independently dynamically recomputed
The system menu is such a menu. :

The columns’are speciﬁed by the instance variable tv:column-spec-list. The value is a

Tist; each .clement specifies one column of the menu, and looks like this:

(heading item-list-form options. . .) :
heading is a string: to be displayed (as a :no- select item) at the top of the column. - item-
list-form is a form to be evaluated to produce the list of items for the column. It should
have no side effects and may be evaluated in any process. The options are modifier
keywords and values, such as are found in menu- items. These modifiers apply to the
column heading only. The most useful -one . 1s the font keyword. For example, the
system menu uses thxs column spec list:

. SRCKLWIND>CHOICETEXT93 | . 8-AUG-83

Window System Manual - o . 187 - L Menus

({("Windows" tv:#system-menu- w1ndows -columns
:font fonts:h1124) :
("This window" tv:ssystem-menu-this- window- columnt
:font fonts:h1121) _ '
("Programs" tv:ssystem-menu-programs- column-
, :font fonts:h1121)) :
Each column’s item list form is a symboI the name of a special variable o

tv:column-spec-1ist | - Instance variable of tv: dynamuc multlcolumn -mixin

This instance variable holds the column spec hst. ‘
éco]umn-spec-‘l'l st - Init option for tvdynamsc multlcolumn ~-mixin
- Initializes the column spec list. . :
~ :column-spec-list | - Operation on tv:dynamic- multicolumn-mixin
:set-column-spec-11st specs Operation on tv:dynamic-multicolumn-mixin

Get or set the column spec list,

| tv:‘dynaﬂi‘lc-mmt1column-momentary-manu Flavor
This is an instantiable, momentary mixture of tv:dynamic-multicolumn-mixin.

tv:dynamic-multicolumn-momentary-window- -hacking-menu Flavor
Sumlar to the previous, but includes tv:window-hacking- menu-mixin. The system menu -
1s an instance of this flavor. , :

1417 Multiple Menus I

- A multiple menu asks the user to select any combination of menu items rather than a single
“item. The menu has a "choice box" (usually named "Do it"). at the bottom in addition to its
menu items. Clicking on a menu item selects it or unselects it; the selected items are dlsplayed
in inverse video. Clxckmg on the "Do it” box specxﬁes the set of items currently selected.

The :choose operatwn on a muluple menu returns as its ﬁrst value a- hst of the values of the
items selected by the user. :

tv: mu'lt'lp'le menu-choose item-list &optional label nearmode hzghltghled-uems superior
: Pops up a menu and allows the user to choose any subset of the available items. The
user finalizes his choice by clicking on the "Do It" box at the bottom of the menu. At
this time, tv:multiple-menu-choose returns as its first value a list of the results of
executing all the chosen menu nems The second value of tv: multlple menu—choose is t
~ in this case. :

If the user moves the mouse out of the menu and far away, the menu disappears and
“tv:menu-choose returns nil for both values. The second value cnables the caller to
distinguish between a refusal to choose and choosing the empty sct of items.

. item-list is a list of menu items as described above. highlighted-items is a list of some of
the same items; these arc the items to include, -initially, in the sct to be chosen. The
user can add items to the set or remove items from the sct.

- SRC:KL.WIND>CHOICE.TEXT.93 T gAUGSS

Mcnus ' 188 Window System Manual

_ The elements of highlighted-items must be memq in item-list for proper functioning.

label is a string to be dlsplayed at the top of the menu, or nil (the default) to specify the
absence of a label.

near-mode is where to put the menu. It defaults to the list (:mouse) .and must be an
acceptable argument to tv:expose-window-near.

superior is the sheet of which the menu should be an inferior. The default is tv:mouse-
sheet, which is usually a screen.

Example: v .
(tv:mu]tip]e—menu-choose '(rice spinach water coke)

"Pick some foods" nil ’'(water))
might return the list (rice spinach water) if the user clicked on the: entries for rice and
spinach, and did not turn off water.

(let ((1tems '(("Rice"” :value rice)
("Spinach" :value spinach)
("Water" :value water)
("Coke" :value coke))))
(tv:multiple-menu-choose items "Pick some foods" * (:mouse)
(1ist (assoc "Water™ items))))
can return the same possible values, but has a prettier display.

tv:margfn-mu]t1ple—menu—m1x1n' : Flavor
~Gives a menu the ability to have multiple items selected in this manner.

‘tv:multiple-menu (tv:margin-multiple-menu-mixin tvmenu ..) \fla.% '
A menu that behaves as described above. This is a combination of tv:multiple-margin-
- menu-mixin with tv:menu.

: tv:momantary-munip'le -menu : ' Flavor
(tv:margin-multiple-menu-mixin tv:momentary-menu ...) .
A multiple menu that is also momentary.

_ tv:momentary-mu]t'lple-menu &optional (superior tv:mouse-sheet) ~ Resource
_ A resource of momentary multiple menus, used by tv:multiple-menu -choose.

.add item item L Operation on tv:margin-multiple-menu-mixin
Adds item to the item list of the multiple menu, initially unhighlighted. All the existing
items remain, and remain highlighted if they already were.

_:set' item-11ist -item-list Operation on tv:margin-multiple-menu-mixin
In addition to setting the item . list and redisplaying the menu, all the items start out
unhlghhghted :

SRC:KL.WIND>CHOICE.TEXT.93 ‘ - ' 8-AUG-83

Window System Manual _ | - 189 N : Menus

:special-choices items _ Init option for tv:margin-multiple -menu-mixin
’ ~ This init option is equivalent' to the :menu-margin-choices init option (which is
" provided by our component flavor tv:menu-margin-choice-mixin). It is provided for.
historical compatibility. items is a list of menu items that specify the choice boxes desired
and what to do if they are clicked on. -

tv:menu- high'l'lght'lng m1x1n : Flavor _
Provides for some of the menu items to be hlghhghted with inverse video. This is
typically used with menus of "modes”, where the modes currently in effect are
_ highlighted. The menu items corresponding to modes will typically be set up so that
when executed, they adjust the highlighting to reflect the enabling or disabling of a mode.

This flavor is used in tv:margin-multiple-menu-mixin.

tv:highlighted-1items ' . Instance variable of tv:menu- highlighting-mixin
The list of items currently highlighted.
- thighlighted-items v Operation on tv:menu-highlighting -'mixin
:set-hightighted-1items . /lis: ©. Operation on tv:menu-highlighting-mixin

Get or set the list of highlighted items.

“thighl 1ghted items items ' Init opiion Jor tv.menu-highlighting-mixin
' When a menu with the menu-highlighting mixin is created, the list of items to be initially
hlghhghted may be specified. The default is nil.

sadd-highlighted-1 tem item Operation on tv:menu-highlighting-mixin
sremove-highlighted-item item - Operation on tv:menu-highlighting-mixin
Make item be highlighted, or make it stop being highlighted.
thighlighted-values IR - QOperation on tv:menu-highlighting~-mixin-
:set-highlighted-values lisr - Operation on tv:menu-highlighting-mixin
- sadd-highlighted-value value - Operation on tv:menu-highlighting-mixin
- :remove-highlighted-value value Operation on tv:menu-highlighting -mixin

. These operations are similar to the preceding four, except that instead of referring to
items directly you refer to their values, ie. the result of executing them. For instance if
your item . list is an associationlist, with elements (string . symbol), these operations use
symbol. This only works for menu items that can be executed without side-effects, not
for item types :eval, :funcall, etc. ’ '

tv:menu-margin-choice-mixin (tv:margin-choice-mixin) . - Flavor
This mixin gives a menu the ability to have choice boxes in the margm It is used in
mulnple menus. : -

Choice boxcs appcar in a single line in the bottom - margin of the menu. Each one
consists of a name followed by a little square or box. Clicking on the box activates the
“choice.

This flavor ad%xpts tv:margin-thoice-mixin (sce page 211) for usc in menus.

SRCKL.WIND>CHOICE.TEXT.93 - : 8-AUG-83

Multiple Choice Facility 190 -Window System Manual

:menu-margin-choices - o Operation on tv:menu-margin-choice-mixin
:set-menu-margin-choices items Operation on tv.menu-margin-choice-mixin
Get or set the list of choice box items. The items look and work just like menu items,
and clicking on one has the same effect. The difference is only in how and where they

display.

:menu-margin-choices items - Init option for tv.menu-margin- chmce mixin
Initializes the list of choice box items. The default value is
(("DO It"
:eval (values (funcall-self °:highlighted-values)
t)))
which provides a single choice box and implements the values returned by :tvimuitiple-
- menu-choose.

tv:margin-choice-menu ' " Flavor
An instantiable menu flavor that also allows margin choices. :

~ tv:momentary-margin-choice-menu ' Flavor
A instantiable momentary menu flavor that also allows margin choices. :

14.2 Multiple Choice Facility

‘ The multiple choice Vfamhty provides a window containing a bunch of items, one per text line,
and several choices about each item. To see an example of its use, invoke the editor command
Meta-X Kill Or Save Buffers.

For each item, there can be several yes/no choices for the user to make. There is the same
_set of choices for each item (though some.items may omit some choices). For example, in Kill’
Or Save Buffers, there is an item (a line) for each buffer, and each line offers choices “Save",
"Kill" and "Unmod". The choices of the same kind for different items form a column, with a
heading at the top saying what that choice is for. The leftmost column contains the text naming
each item. The remaining columns contain small boxes (called choice boxes). A "no™ box has a
blank center, while a "yes" box contains an "X". Pointing the mouse at a choice box and
chckmg the left button turns it on or off. Each choice can be initialized by the program to "yes"
or "no" as appropriate for a default. :

There can be constraints among the choices for an item. For example, if you want the
- choices to be mutually exclusive, you can set up constraints so that clicking one choice box to
"yes” will automatwally set the other choice boxes on the same line to " :

A multiple chonce w1ndow may have more lines of choices to offer than the window has lines. |
In this case, the user can scroll, as the muitiple choice window is a kmd of text scroll wmdow
(scc chapter 16, page 219).

Thcre-are several parameters associated with a multiple-choice window:

The item—namé is a string, the column heading for items. In the editor cxample, it is
"Buffers". ' : ' ‘

SRC:KL.WIND>CHOICE.TEXT.93 | | $-AUG-83

 Window System Manual o) - 191 Multiple Choice Facility

. The item-list is a list of rcpresentations of items. Each element is a list, (itemn name choices).
item is any arbitrary object, such as an cditor buffer. name is a string which names that object;
it will be displayed on the left on the line of the display devoted to this item. choices is a list of
keywords representing the choices the user can make for this item. Each clement of choices is
either a symbol, keyword, or a list, (keyword default). 1f default is present and non-nil, the
. choice is initially "yes"; otherwise it is initially "no". This is how the editor initializes the "Save"

choice to be "yes" for a modified buffer.

The keyword-alist is a list defining all the choice keywords allowed. Each element takes the:
form (keyword name). keyword is a symbol, the same as in the choices field of an item-list
element. name is a string used to name that keyword. name is used as the column heading for
the associated column of choice boxes.

An element of keyword-alist can have up to four additional list elements, called implications.
These control what happens to other choices. for the same item when this choice is selected by the
user. Each implication can be nil, meaning no implication, a list of choice keywords, or t
meaning all other choices. The first implication is on-positive; it specifies what other choices are
also set to "yes" when the user sets this one to "yes". The second implication is on-negative; it
specifies what other choices are set to "no" when the user sets this one to "yes". The third and
fourth implications are off°positive and gff-negative; they take effect when the user sets this choice
to "no". The default implications are nil t nil nil, respectively. In other words the default is for
the choices to be mutually exclusive.

 If a keyword-alist element does not contain implications, the default implications are rplacd’ed
into it.

- Kill Or Save Buffers specifies the implications as _
((:save "Save" nil (:not-modified) nil nil)
(:ki11 "Ki11" nil (:not-modified) nil nil)
{(:not-modified "UnMod" nil (:save :kill) nil nil)
(:compile "QC-FILE" nil nil nil nil))
~ so that "Unmod” cannot be chosen together with either "Save" or "Kill".

The ﬁnishing-choicesvare the choices to go in the bottom margin. When the user clicks on
one of these he is done. The variable tv:default-finishing~- chouces contains a reasonable default
for this, provxdmg Do It and Abort choices.

14.2.1 Functional Interface
This is the ,eésy interface to the multiple choice facility:
tv:multiple-choose irem-name item-list keywbrd-alist '&optional near-mode maxlines
- Pops up a multiple-choice. window and allows the user to make choices with the mouse.
The dimensions of the window are automatically chosen for the best presentation of the

specified choices. If there are too many choices, more than maxlines, scrolling of the
window is enabled. : : '

SRCKL.WIND>CHOICE.TEXT.93 - ' 8-AUG-83

Mutltiple Choice Facility _ 192 ‘ " Window Systcm Manual

item-name, item-list, and’ keyword-alist are as described above. finishing-choices cannot be
specified and is always the default. :

When the user clicks on one of the two finishing choices in the bottom margin (Do It and
Abort) the window disappears and tv:multiple-choose Teturns. If the user finishes by
choosing Abort the returned value is nil, and the second returned value is :abort. If the
user chooses Do it, the returned value is 2 list with one element for each item. Each
element is a list whose car is the irem (that arbitrary object which the user passed in in

the item-list argument) and whose cdr is a list of the keywords for the "yes" choices
selected for that item. . .

near-mode tells the window where to pop up. Itis a suitable argument for tviexpose-
window-near. The default is the list (:mouse). maxlines, which defaults to twenty, is
the maximum number of choices allowed before scrolling is used.

Here is an example:
»(tv':multiple-choose *word"
*((:eat “Eat" (:add :make-permanent))
(:drink *prink® (:forget :make-permanent)))
*((:add vAdd" nil nil nil (:make—permanent))
(:forget nForget" nil (:make-permanent) nil nil)
(:make-permanent vMake Permanent” (:add) (;forget)-nﬂ nil)))
offers the possibilities of :add or -make-permanent for :eat and the possibilities of :forget or
.make-permanent for :drink. Presumably this would be done because «drink has already been

"added” and :eat has not been.

The implications say’ that making permanent is i_ncompatible with forgetting when forgetting is
possible, and requires adding when adding is possible.

The value returned might be
- ((:eat :add :make-permanent) ,
(:drink))

In this example, the iteins are keywords (symbols), but that is not significant. The system
‘never looks inside them; it just compares them with €q and puts them in the returned value.

14.2.2 Flavors and Operations
These are the grubby details:
tv:basic-multiple-choice ' , ‘ Flavor
o (tv:disp_layed-items-text-scroll-window' tv:margin-choice-mixin) _
This is the basic flavor that makes a window implement the multiplc-choicer'facility. Like -

most basic mixins, it is- not itself instantiable but it docs commit any window that
* incorporates it t0 being a multiple-choice rather than any different sort of window.

SRCCL.WIND>CHOICETEXTS3 o 8-AUG83

Window System Manual : o193 . - Multiple Choice Facility

‘tv:item-name Instance variable of tv:basic-multiple—choice
The window’s 1tem name. g

tv:choice-types " Instance variable of tv:basic-multiple-choice
The window’s keyword. alist. :

tv: mu1t1p'le choice ' Flavor
(tv:basic- mumple choice tv:top-box-label-mixin tv:window)
This is a reasonable window with the multiple-choice facility in it. It has borders and a
label area on top which is used for the column headings.

tv: temporary multiple-choice-window v Flavor
- (tv:temporary-window-mixin tv:muitiple- chouce)
This is a multiple-choice window which is equipped to pop up temporarily.

tv:temporary-mul t-lp'le-cho'lce—vi'lndow o | Resource
&optional (superior tv:mouse-sheei)
This is -a resource of temporary multiple-choice windows, used by the tv:multiple-choose
function. :

The following_ operations are provided by multiple choice windows.

3 tem-1 ist item-list : ' Init option for tv:basic-multiple -choice
Inmahzes the window’s item hst to item-list.

: setup ' ' Operatzon on tv:multiple-choice
item-name keyword-alzst Sfinishing-choices item-list &optional maxlines
This operation sets up all the various parameters of the window. Usually it is used while
the window is deexposed. The window decides what size it should be and whether all the
items will fit or scrolling is required, then draws the display into its bit-array. Thus when
the wmdow xs exposed the display will appear mstantaneously '

maxlines is the maximum number of lines the window may have if there are more items
than this only some of them will be displayed and scrolling w111 be enabled. maxlines
defaults to 20. ,

The finishing-choices are a list of choices for tv:margin-choice-mixin (see page 211).
When one of these finishing choices is clicked om, it should set the instance variable

- tv:choice-value of self to cither a symbol (for an abnormal exit) or a list for the
:choose operation to return. ' '

tv:choice-value Instance variable of tv:basic-muitiple~choice
a When the mouse process sets thls non-nil, the :choose operation returns.

°choose &opnonal near-mode : Operation on tv:multlple-choice
- Moves the window to the place specified by near-mode, which defaults to the list
(:mouse), and cxposcs it. Then waits for the user to make a finishing choice and returns
the window to its original activate/expose status before the :choose. This operation
- returns the same valuc as the function tv:multiple-choose.

SRCL.WIND>CHOICE.TEXT.93 - . %AUGH3

Choose-Variable-Values Facility 194 _ Window System Manual

14.3 Choose-Variable-Values Facility

This facility presents the user ‘with a display of a buﬁch of Lisp variables and their values.
The user may change the value of some of the varxables When the values are to his liking he
may indicate that he is done.

The choose-variable-values window is a kind of text scroll window, so each line of the display
corresponds to one variable. The name of the variable, a colon, and the value of the variable are
displayed. Pointing the mouse at the value causes a box to appear around it. Clicking the left
mouse button at that point allows the value to be changed.

For an example of a choose-variable-values window, t.ry the Frame option of the Split
Screen item in the system menu. ZMail profile mode is also a good example.

14.3.1 Specifying the Variables

When you use a choose-variable-values. window, you must specify one or more variables with
. a list of specxﬁers You pass the list as an argument to tv:choose-variable-values.

Each vanable has a type which controls what values it may take on, the way the value is
‘displayed and the way the user enters a new value. The type mechanism is extensible and is
described in detail later. The types fall into two categories, those with a small number of legal
values and those with a large or infinite number of legal values. The first kind of type displays
all the choices, with the one which is the current value of the variable in bold-face. Pointing at a
 choice and clicking the mouse sets the variable to that value. Those types with a large number of
- legal values display the current value. Pointing at the value and clicking the mouse allows a new

value to be entered from the keyboard. Rubbing out more characters than typed in restores the
original value instead of changing it. : :

The variables_' themselves can be either symbols, which are effectively examined and set as
special variables in the calling program’s process, or locatives, whose contents are examined and
set. The syntax for input and output is controlled by the binding of base ibase, *nopoint,
prinlevel, prmlength package, and readtable as usual. -

Each h'ne of the display is specified by an item, which can be one of the following:

astring “The string is simply displayed. This is useful for putting headings and blank
. : ‘ separating lines into. the display.
asymbol - The symbol is a variable whose type is 'sexp, that is, its value may be any Lisp

object. The name of the variable on the display is simply its pnnt-name and the
value is stored as the value of the symbol.

ahst(varzable name type args..) : :

This is -the general form. variable is the variable whose value is being chosen. It

is cither 'a symbol or a locative. If name is supplied it can be a string, which is
' dlsplayed as the name of the variable, or it can be nil, meaning that this line
- should have no variable name, but only a value. name is optional; if it is
* omitted it-defaults-to the print-name of variable, or to nil if variable is a locative.

SRCKLWIND>CHOICETEXT93 -~ - 8-AUG-83

Window System Manual ' ' 195 _ Choosc-Variable-Values Facility

- type is an optional keyword giving the type of variable; if omitted it defaults to
'sexp. args are possible additional specifications dependent on #pe.

It is possible to omit name and supply fype since one is always a string or nil and
- the other is always a non-nil symbol.

For clarification of this, refer to the examples on page 198.

14.3.2 Predefined Variable Types

The following are the types of variables supported by default, along with ény args that may
be put in the item after the type keyword:

;:c:);p The value is any Llsp expression (sometxmes called an S-expression), prmted with
» prin1, read with read. , _
:princ ~ Same as :sexp except that the value is printed with princ rather than print.
:string The value is a string, printed with princ, read with readline. = '
":number The value is any typé of number. It is printed with prin1 and read with read,

_ but only a number is accepted as input.
:number-or-nil o o
The value may be either a number or nil.

:date The value is a universal date-time. It is printed with time:print-universal-time
and read with readiine-trim and time:parse-universal-time.

:date-or-never ,
‘The value is either a universal date-time or ml nil is printed as “"never”, and a
‘number is printed using time:print-universal-time. Input is read with readline-

~trim; if the string is not "never" it is passed to time:parse-universal-time.

:mterval -or-never
The value is. either ml or a number of seconds. It is printed with time:print-
interval-or-never and new values are read using time:read-interval-or-never.

~icharacter . The value is a character code. It is printed as the character name (usmg the
~:@C format operator), and is read as a single keystroke,

:character-or-nil
- Like :character but nil is also allowed as the value. nil dlsplays as "none" and
" can be input via the Clear Input key.

:st‘ri‘ng-list‘ The value is a list of strings, whose printed representation for input and output
consists of the strings separated by commas and spaces.

pathname

a list (:pathname defbults)
The value is a pathname (see chapter 22 .of the Lisp Machine manual) It is
printed with princ and rcad with readline, fs:parse-pathname, and fs:merge-
pathname-defaults. If defaults is provided, it is a pathname or a defaults-alist to
pass to fs:merge-pathname-defaults. It can also be a symbol whose value

SRC:<L.WIND>CHOICE.TEXT.93 S - 8-AUG-83

Choosc-Variab]eeValues Facility 196 | Window System Manual

should be used. If it is the same variable this xtem 1s semng. then each typed-in
value is merged with the prevxous setting.

:pathname-or-nil : :
'Like :pathname but nil is also allowed as a value. It is read and printed as a

blank line.

:pathname- -list - :
: The value is a hst of pathnames In the prmted representauon they are separated

by commas.

:choose values-list print-function ;
- The value of the variable must be one of the elements of the hst values-list.
: Comparxson is by equal rather than eq. All the choices are displayed, with the
current value in boldface. A new value is input by pointing to it with the mouse
and clicking. ' print-function is the function to print a value; it is optional and
defaults to princ. :

:assoc values-list prmt -function '
Like :choose but car of each element of values-list is what to display, while cdr

is the value that goes in the variable.

‘menu- ahst ztem-lzst :
Like :choose, but instead of a list of values there is ztem-Izst which is a list of
menu items (see section 14.1, page 173). The usual menu mechanisms for
specifying the string to display, the value to return, and the mouse documentation
work with this.

:boolean The value of the variable is cither t or nil. The choices are displayed as yes and

:documentation doc type args..
This is not really a variable type, but goes in the place where a type would
normally be expected. The real type is fype; it and its args are optional as usual.
doc is a string which is displayed in the mouse documentation line when the
mouse is pointing at this item. The default if no documentation is supplied in
this way| depends on the type,. and generally is something like "Click left to input
a new value from the keyboar

'14.3-.3} Functional Interface

‘tv:choose-variable-values variables &rest options
This is the easy-to-use function interface to the choose-vanable-values facility. It pops up
a window displaying the values of the specified variables and permits the user to alter
- .them. -One or more choice boxes (as in the multiple-choice facility) appear in the bottom
- margin of the window. When the user clicks on' the Exit choice box the window
" disappears and this function returns. The value returned is not meaningful; the result is
expresscd in the values of the vanables.

" The system chooses the dxmensmns of the window, and enables scrollmg if there are t00
many variables to fit in the chosen hcight.

SRC:<L.WIND>CHOICE.TEXT.93 . S - _8-AUG-83

Window System Manual ' 197 Choose-Variable-Values Facility

variables is a list whose elements can be special variables or the more gencral items
described above. See the examples below..

‘options is the usual list of alternating option keywords and argument values. The
following option keywords are allowed: -

:label The argument is a string that is the label to be displayed at the top of the
window. The default is "Choose Variable Values".

:function | The function to be called if thé user changes the value of a variable. The
~default is nil (no function). The use of this funeuon is described below
(page 197).

:near-mode Where to position the window. This is a suitable argument for
' tviexpose-window-near. The default is the list (:mouse).

:width Specifies how wide to make the window. This can be a number of
characters, or a string (it is made just wide enough to display that string).
The default is to make it wide enough to display the current values of all
the variables, provided that isn’t too wide to fit in the superior.

:iextra-width- When :width is not specified, this specifies the amount of extra space to
leave after the current value of each variable of the kind that displays its
current value (rather than a menu of all possible values). This extra space
allows for changing the value to something bigger. The extra space is
specified as either a number of characters or a character string. The
default is ten characters If :width is specified, then :extra-width is

- ignored. ' :

:margin-choices -
The argument is a list of specifications for choice boxes to appear in the
bottom margin. - Each element can be a string, which is the label for the
box which means "done", or a cons of a label string and a form to be
evaluated if that choice box is clicked upon. Since this form is evaluated
in the user process it can do such things as alter the values of variables or
“*throw out. The default for :margin-choices is ("Exit").

:superior " The argument is the window to which the pop-up choose-variable-values
window should be inferior. The default is the value of tv:mouse- sheet,
or the superior of w if nearmode is (window w).

:reverse-video-p
The argument is used to control whether the window displays white-on-
black or black-on-white. It is used as the argument of the :set-reverse-~
video-p operation. :

A choose-variable-values window optionally may have an associated function, which is called
whenever the user commands the window to change the value of one of the variables.

~ This functlon can implement constraints among the: vanables. It is called with arguments :
window, variable, old-value, and new-value. ‘The function should return nil if just the original
variable necds to be redisplayed, or t if no redisplay is required; in this case it would usually
setq several of the variables, then perform a wrefresh operation on the window.

SRCKL.WIND>CHOICE.TEXT.93 S 8-AUG-83

Choose-Variable-Values Facility ‘ l98 E : Window System Manual

L4

Here are some examples of how to call tvichoose-variable-values. The simplest sort of
thing you can do is: -
(tv:choose-variable- values *(base ibase »nopoint)
*:1abel "Number format parameters")
- which displays the three variables’ names and values and lets the user change them. The same
example can be done with nicer formatting with: '
(tv:choose-variable-values
*((base "Output Base" :number)
(ibase "Input Base" :number)
_ (*nopoint "Decimal Point"
tassoc (("Yes™ . nil)
("No" . t))))
':1abel "Number format parameters"”)
The entry for *nopoint would have been-simply
(#nopoint ‘"No Decimal Point" :boolean)
except that we wanted to reverse the sense of t and nil. We might even have used
' (*nopoint :boolean)
if we wanted to use the name of the variable as the label rather than spelling it out.

; For a hokler.example,» consider a grocery store. Suppose we have variables *cuts-of-beef*,
*cuts-of-pork®, *cuts-of-lamb®*, and *lettuce-types®, which contain lists of strings indicating
what is available, *squash-type*, which indicates whether we stock summer squash or winter
squash, and *milk-price®*, which contains a floating-point number that is the current price of a
gallon of milk. Then the following expression would dlsplay the inventory and allow it to be
modified, using several different kinds of items: :
(tv:choose-variable-values
~ ’("Meat Department" o
(*cuts-of-beefs "Beef" :string-list)
(»cuts-of-porks* "Pork" :string-list)
'(*cuts-of Tamb+ "Lamb" :string-list)
"
“"Produce"
(#lettuce-types* "Lettuce" :string-1list)
- (»squash-types "Squash" :choose ("Summer" "Winter"))

"Dairy"
(*milk-prices "Milk"
:documentation '
~ "Click left to’ ra'ise the price of milk"
“:number))) :
* Note the use of stnngs to provxde labels for the sectlons, and null strings to separate the sections
~ with blank lines. - :

- SRCXL.WIND>CHOICE.T FXT93 S | - 8-AUG-83

Window System Manual 199 . Choose-Variable-Values Facility

14.3.4 Defining Your Own Variable Type
:decode-variable-type ' Operation on tv:basic-choose-variable-values
kwd-and-args

The system uses this operation on a choose-variable-values wmdow when it needs to
understand an item. Akwd-and-args is a list whose car is the item’s type keyword and
whose remaining elements, if any, are the arguments to that keyword. Six values are

returned; these values are described below. The default method for :decode-variable-

type looks for two properties on the keyword’s property list:

tvichoose-variable -values-keyword
The value of this property is a list of the six values described below. -
Unnecessary values of nil may be omitted at the end.

tv:choose-variable -values -keyword-function
The value of this property is a function that is called with one argument,
kwd-and-args. - The function must return the six values.

You may add a new variable type to the standard set by putting one of the above
properties on the keyword. You may define your own flavor of choose-variable-values

~window and give it a :decode-variable-type method to make it not use the standard

- variable types. This method must take care of implementing the :documentation

keyword, which can appear in an item where a variable type would normally appear.

The six magic values are:
print-function A functwn of two arguments, object and stream, to be used to print the value,

prini is acceptable.

read-function A function of one argument, the stream, to be used to read a new value. read is

. choices

acceptable. If nil is specified, there is no read-function and instead new values are
specified by pointing at one choice from a list. If the read-function is a symbol, it
is called inside a rubout-handler, and over-rubout will automatically leave the
variable with its original value. If read-function is a list, its car is the funcnon,
-and it will be called directly rather than inside a rubout-handler,

A list of the choices to be printed, or nil if just the current value is to be
printed. The choices are printed using the print-function, just as the current value

 print-transiate 1f there are choices, and this function is supplied non-nil, it is given an element

of the choice list and must return the value to be printed using the print-function.

value-transiate If there are choices, and this function is supplied non-nil, it is given an element

of the choice list and must return the value to be stored in the variable.

documentation A string to display in the mouse documentation line when the mouse is pointing

at this item. = This string should tell the user that clicking the mouse will change
the value of this varlable and give any spec1a1 mfonnanon (e.g. that the value
must be a number) :

 SRCKL.WIND>CHOICETEXT93 | o L 8-AUG-83

Choose-Variable-Values Facility 200 : "~ Window System Manual

Alternatively, this can be a symbol that is the name of a function. It will be
called with one argument, which is the current element of choices or the current
value of the variable if choices is nil. It should return a documentation string or
nil if the default documentation is desired. This can be useful when you want to
document the meaning of a particular choice, rather than simply saying that
clicking the mouse on this choice will select it. Note that the function should
return a constant string, rather than building one with format or other string
‘operations, because it will be called over and over as long as the mouse is
pointing at an item of this type. The function is called by the who-line updating
in the scheduler, not in the user process.

For example, :boolean is defined thus:
(defprop :boolean '
' (choose-variable-values-boolean-print nil (t nil))
choose-variable-values-keyword) _
(defun choose-variable-values-boolean-print (value stream)
(funcall stream ':string-out (if value "Yes" "No")))

The type :any is defined with
(defprop :any (prinl read) tv:choose-variable-values-keyword)

14.3.5 Making Your Own Window

The function tvichoose-variable-values may not be adequate if you wish to keep the
- window. permanently exposed or if you wish to alter its behavior. Then you must create a
window yourself. Here are the pertinent flavors.

tv:basic-choose-variable-values : ‘ - Flavor
-(tvimouse -sensitive-text- scroli-window-without-click)
~This is the basic flavor which makes a window xmplement the choose-variable-values
facility. It is not mstantlable

tv:choose-variable- va'lues vrlndow Flavor
(tv:basic-choose-variable-values tvwmdow w)
This is a choose-variable-values window with -a reasonable set of features, including
borders, a label at the top, strcam I/0, the ability to be scrolled if there are too many
variables to fit in ithe window and the ability to have choice boxes in the bot_tom margin.

tv choose-variable-values- -pane (tv choose-variable- values window) Flavor o

‘ A tvichoose-variable-values-window designed to be a pane of a constraint frame. It
redefines the ad;ustable size-p: operation to rcturn nil always, on the assumption that -
the window’s size has bcen spccrﬁcd by the frame and cannot be changed exccpt by the
frame.

SRCKLWIND>CHOICETEXTS3 | . .8-AUG-83

Window System Manual | - 201 ~ Choose-Variable-Valucs Facility

tv: temporary choose variable- values window - : - Flavor
(tv:choose-variable -values-window ' tv:temporary-window-mixin)
A tv:choose-variable-values-window that is equipped to pop up temporarily.

tv:temporary-choose-variable-values-window : " Resource
' &optional (superior tv:mouse-sheei) :
This is a resource of such windows, -from which tv:ichoose-variable- values gets a
window to use.

There are two main styles of use: to create a window giving all. of the parameters in the init-
plist, or to create a window without specifying the parameters, and then use the :setup operation
(see below) to set the parameters before using the window. But in any case, you must specify the
list of variable-specifiers (see section 14.3.1, page 194) and the stack group to evaluate vanab]es in
before you can use the wmdow '

The following init options are available: |

:variables specifier-list Init option for tv:basic-choose-variable-values
“Initializes the. list of variable-specifiers, telling the window which variables to display and
how to read and print the values. :

sfunction fon S : " Init option for tv:basic-choose-’variable-valdes
Initializes the associated function (see page 197), the function called when the window
changes the value of one of the variables it displays. The default is nil (no function).

tv:function Instance variable of tv:basic-choose-variable-values
The window’s associated function. : -

:stack-group sg : Init option for tv:basic-choose-variable-values
The stack group in which the variables whose values are to be chosen are bound. The
window needs to know this so that it can get the values while running in another process,
for instance the mouse process, in order to update the window display -when it is
refreshed or scrolled. If you do not specify the stack group at this time, ‘you must specnfy ‘
it wnh the :setup opcration, before you can use the window.

: tv:stack-group : : Instance variable of tv:basic~-choose-variable-values
The stack group in which variables’ values should be evaluated.

:name-font font o -Init option foi tv:basic-choose-variable-values
The font in whlch names of \andbles arc displayed. The default is the system default
font. S

:value-font fohl : ' Init option for tv:basic-choose-variable-values
The font in whlch values_ of variables are dlsplayed The default is the system default
font. :

SRCKL.WIND>CHOICE.TEXT.93 : _ $-AUG-83

Choosc-Variable-Values Facility - : 202 - ' vWindow System Manual

.string -font jfont ' Init option for tv:basic-choose-variable-values
The font in which items that are just strings (typlcally heading lines) are displayed. The
“default is the system default font.

-sunsel ected-choice-font Jont Init option for tv:basic-choose-variable-values
The font in which choices for a value, other than the current value, are displayed. The
default is a small distinctive font. '

:selected-choice-font fonr Init option for tv:basic-choose-variable-values
The font in which the current value of a variable is displayed, when there is a finite ‘set
of choices. This should be a bold-face version of the preceding font. The default is the
bold-face version of the default unselected-choice font. :

:merg'ln-ehoi ces choice-list Init option for tv.choose-variable-values-window |
The default is a single choice box, labeled "Done”. See page 210 for the details of what
you can put here. Note that specifying nil for this option will suppress the margin-choices
entirely. '

If no dimensions are specified in the init-plist, the width and height will be automatically
chosen according to the other init-plist parameters. The height is dictated by the number of
variables to be dlsplayed Specifying a height in the init-plist, using any of the standard
dlmenswn-speafymg init-plist options, ‘overrides the automatic choice of height.

‘Choose-variable-values windows prOvide'these operations:

:setup . " Operation on tv:choose- vanable values- wmdow
: items Iabel Junction margin-choices
Changes the list of items (variables), the window label, the constraint function, and the
choices in the bottom margin, and sets up the display. Also remembers the current stack-
~_group as the stack-group in which the variables are bound. If the window is not exposed
" (more generally, -if the :adjustable-size-p operation on the window returns non-nil), this
~ reshapes the wmdow to a good size based on the specified items. :

: set variables Operanon on tv:choose-variable -values-window
item-list &optional dont-ser-height
Sets the list of variable-specifiers ~which controls the variables - displayed in the window,
then redisplays the wmdow _

Unless donz-set-heighl is supplied non-nil, the height of the window will be adjusted
according to the number of lines required. If more than 25. lines would be required, 25.
lines will be used and scrolling will be endblcd The setup operation uses :set-variables
to do part of its work.

:adjustable-size-p . Operation on tv:choose-variable -values-window
If this returns non-nil, :setup will reshape the window. By default, this operation returns
non-nil when the window is deexposed. :

SRCKL.WIND>CHOICETEXTY3 . v 8-AUG-83

Window System Manual 203 . ChoOs_é-Variable-Valucs Facility

:appropriate-width ' Operation on tv:choose-variable-values-window
' &optional extra-space .
Returns the inside-width appropriate for this window to accommodate the current set of
variables and their current values. Use this operation after a :setup and before a
'expose, and use the result to do a :set-inside-size. The returned width will not be
larger than the maximum that will fit inside the superior. : ‘

If extra-space.is supplied, it specifies the amount of extra space to leave after the current
value of each variable that displays its current value (rather than a menu of all possible
values). This extra space allows for changing the value to something bigger. The extra
space is specified as either a number of characters or a character string. The default is to
leave no extra space. :

:redisplay-variable variable Operation on tv.choose-variable -values-window
Redisplays just the value of that variable.

In the simplest mode of operation, you call the tv:choose-variable-values function, which
takes care of creating the window and all necessary communication with it. When you make your
. own choose-variable-values window, you need to handle the communication yourself, using the
. information given below. An example of a situation in which this is necessary is when you have
a frame, some panes of which are choose-variable-values windows. :

A choose-variable-values window handles mouse clicks by putting blips (lists) in its input
buffer. These blips are generated by the mouse process and are supposed to be read in the
controlling process. There are two types of blip, both used for specific purposes, and your
program must be able to take the appropriate actions when it reads them. The easy way for you -
to do this is to call the function tv:choose-variable-values-process-message, which is
prov1ded just for this purpose.

:io-buffer A io-buﬁ”er - Iniit option for tv:choose-variable-values-window
The 170 buffer to be used for blips and for ordinary input from the window.

. The following forms of list- ore inserted as blips into the input buffer:

(:variable-choice window item value Ime-no) :
- Indicates that the user clicked on the value of a variable, cxpressing the desire to
change it. The controlling process should rcad keyboard mput as necessary and
set the variable. :

(:choice-box window box)
Indicates that the user chcked on.one of the choice boxes in the bottom margm ‘
~The controlling process may wish to deexpose Lhc wmdow if the box was the
"Done” box,

tv:choose-variable-values-process-message window blip : :
This function implements the proper response to the above blips. It should be called in -
the process and stack-group in which the variables being chosen are bound. window

- should be the choose-variable-values window and blip should be the abject read as input.

SRCK1L.WIND>CHOICE. TEXT.93 . - | o 8-AUG-83

Choosc-Variable-Values Facility - . 04 T Window Systcm Manual

This ﬁmctnon returns nil exccpt in the case where blzp indicates a click on a "Done"
choice box.’

If blip says that the user clicked on a 'variablé.. this function reads user input from the
window as necessary -and sets the variable.

If blip is a :choice-box blip, the action depends on the box in it. If the sixth element
of box is nil, which is normally the case for the "Done" box, this function returns t.
Otherwise, the sixth element of box is evaluated, but this function returns nil.

If blip is actually a character rather than a blip, it is ignored unless it is a Clear-screen,
in which case the choose-variable-values window is refreshed. Therefore, it is reasonable
to use this function with a loop hke this:
(do ()
((tv:choose-variable-values-process-message
c-v-v-window
(progn
(process-wait "Choose" ¢c-v-v-window ’:listen)
{(send ¢-v-v-window ’:any- tyi)))))

14.3.6 User Option Facility

v There is a facility, based on the choose-variable-values facility, for keeping track of options to

a program of the sort that a user would specify once and keep in his init file. Special forms are
provided for defining options, and there are functions for putting all the options into a choose-
values window so that the user can alter them, for writing the current state of the opuans into an
init file, and for resetung all the options to their default initial values. :

def 'lne-user-opt'lon-a'l‘lst name constructor documentation - Special form
Defines name a special variable whose value is a "user option alist”, something which may
be used by the other functions below. This alist will keep track of all of the option
vanables for a particular program. :

The simplest usage is - (define-user- optlon allst name) ‘which just defines name.

(define-user-option-alist name constructor) specifies in addition the name of a
constructor macro to be defined, which provides a slightly different way of defining an
option variable from defvar-user-option. The form (constructor option default name iype
args...) will define an option in this uscr-option-alist. The arguments are the same as the
similarly-named arguments to. defvar-user-option. :

A (hll'd argument may be used to specify a documientation string for the vanable name.
To specify a documentation string and no constructor, give nil for the constructor.

SRCKI.WINDSCHOICETEXTS3 - N 8-AUG-83

Window System Manual - ' - 205 Choose-Variable-Valucs Facility

defvar-user-option ' : Special form
Defines an option and adds it to a user option list.
(defvar-user-option option default documentation
alist name type args...) ' :
defines the special variable option to be an option in the alist, which must have been
previously defined with define-user-option-alist. The variable is declared and initialized
“via (defvar option default documentation). The value of the form default is remembered
so that the variable can be reset back to it later. . -

type is the type of the variable for purposes of the choose-variable-values facility. It is
‘optional and defaults to :sexp. args, which are evaluated (at the time the definition is
done), are the arguments for the type keyword used.

- name is the name of the variable to be displayed in the choose-variable-values window. If
it is omitted or nil, the default is (string-capitalize-words (get-pname option)); except
that when the first and last characters of the print-name are asterisks, they are removed.
E.g. the default name for sowq:*sunny-side-up* would be "Sunny Side Up".

Example: .
. {defvar-user-option preferred-radix 8
~ "Radix to use for files that don’t specify one."
my-program-option-alist "Preferred radix"
:assoc "(("8" 8) ("16" 10.)))

defvar-site-user-option : . Special form
This is like defvar-user-option, except that instead of an initial value a site option
keyword is specified. Instcad of a default value, you specify the name of a site option (a
keyword). The actual default value is the value of that site option .in the current site
table. Loading a new site table resets the option. '

defvar-site-alist-user-option ' - Special form
Defines a user option whose possible values are controlled by site options.
(defvar-site-alist-user-option option default documentation
_ ~ alist ‘name menu-alist) '
defines option as a user option on alist, like defvarsite-user-option. The type for
tvichoose-variable-values is always :menu-alist, and the list of menu items to be used
is determined from the site table according to menu-alist.

menu-alist is a symbol whose valuc is a menu alist, a list of menu items. These itcms are
the alternatives offered to the user, as in the :menu-alist type of variable. However,

~ each menu item specifies a site option keyword, and that alternative is available to the
user only if that site option currently has a non-nil value.

The menu item can specify the controlling site keyword using the modifier keyword :site-
keyword. as in :

("Foo" :value :foo :site-keyword :foo-present)
If this is not done, the menu item’s value-to-return is also the site keyword.

SRCKL.WIND>CHOICE.TEXT.93 , o : §-AUG-83

Choose-Variable-Values Facility - 206 ' Wihdowi Systém Manual

defaull is the name of a site keyword whose value specifies the default. This site option’s

value is matched against each menu item, comparing it against the value of the modifier
~keyword :default-site-keyword, or, if that is not present, against the menu item’s site

keyword name. The first match is the default alternative. Thus "Foo" will be the default
' alternative if the default site option’s value is :foo-present. ,

If default is nil, then the first available menu alist item is also the default.

choose user-options alist &rest options :
Displays the values of the option variables in alist to the user and allows them to be
- altered. The options are passed along to tv:choose- -variable-values. Note that alist is an
actual alist, not a symbol whose value is an alist.

reset-user- options alist
Each of the option variables in ahst is reset to its default initial value.

tv:restrict-user-option option: restrzclzon-lype site-options... Macro ,
Specifies that the user option variable option is significant only if the sxte tables for your
site do (or, if they do not) contain one of. the specxﬁed site-options.

, reslrz‘ction-type is either :if or :unless. If it is :if, the option should be mentioned in the
choose-variable-values window only if one of the specified site options is present in the
currently loaded site table. :unless means that the option should be offered only if none
of the specified site optlons is loaded.

Each opuon may have an :if restriction and an unless restriction.

Elimination of options from an alist according to. their restrictions is done by tv:prune-
' user- option-alist, . calling Whlch is up to you.

- reslnctlon-type may a}so be :never. Then the option is never oﬁ‘ered to the user to
change, but it will still be reset and written with the other options.

tv:prune-user- opt'lon -alist alist :
Returns ‘an alist containing only some of the elemcnts of alist, lacking those that are
“suppressed by restrictions, or that offer only a single alternative. (The latter is likely to
happen with a site-menu-alist user option if a glven site allows only one of the possnble
altcrnatwes.)

write-user-options ahst Stream
For cach option variable in alist whose current value is not equal to its default mmal
value, a form is printed to stream that will set the variable to its current value. The form
uscs logm setq so it is appropriate for putting into an init file. :

SRC:'<|_.WIN|>>Cl-m|CH.;mx1‘.93 o - _ o -8-AUG-83

Window System Manual - - 207 o : - Mouse-Sensitive Type Out

14.4 Mouse-Sensitive Type Out

The mouse-sensitive items facility is a feature somewhat related to the choice facilities
described above. It is similar in its appearance to the user, but quite different in the way it is
interfaced to by a program. Mixing tv:basic-mouse-sensitive-items into a window flavor.equips
the window with mouse-handling according to the paradigm described in this section. Mouse-
sensitive items are something you use when defining your own window, rather than a complete,
stand-alone facility, and consequently do not have an "easy to use" functional interface.

For an example of mouse-sensitive items, try the C-X C-B (List Buffers) command in thé
editor. Try moving the mouse over the list of buﬂ‘e_rs and clicking the right-hand button.

The word "typeout” appears here and there in the mouse-sensitive items facility for historical
reasons, Often mouse-sensitive items are typed out on top of some other display, such as. an
“editor buffer. However, the mouse-sensitive-item facility has nothing to do with the typeout-
window facility. At this point it would be a fairly big incompatible change to fix this,

tv: bas1c mouse-sensitive-items ' ' . Flavor

" Mixing this flavor into a window provides for areas of the screen which are sensitive to
the mouse. Moving the mouse into such an area highlights the area by drawing a box
around it. At this point clicking the mouse performs a user-defined operation. This flavor
is called basic because it fixes the handling of the mouse by the window; it will not work
to mix it with another flavor that expects to define some other kind of mouse handling.
However it is less basic than many basic flavors in that it does not do anything special
with the displayed image of the window.

~ A mouse-sensitive item has a fype, which is a keyword which controls what you can do to it,
an item, which is an arbitrary Lisp object associated with it, and a rectangular arca of the
window. Typically something is displayed in that area at the same time as a mouse-sensitive item
is created, using normal stream output to the window. Unlike things such as menu items, these
mouse-sensitive items are not a permanent property of the window; they are just as ephemecral as
the displayed text and go away if you clear the window or if typcout wraps around and types
~over them. Of course, if you don’t type out more items and text than fit in the window, and
never clear the window, then they will be permanent.

~Associated with each type is a set of operations that arc legal to perform on items of that
type. One of these operations is selected as the default. The tviitem-type-alist instance variable
is an alist that defines these. This alist is composed of e]emems of the following form:
(type left-button-alternative

-documentation S

(string .. alternative) ;A menuitem
(string - :value alternallve) : ;Another menu item
menu-item. . .) : ;More of them

documentation is the string to be displayed in the who line while the- mouse is pomtmg at an item
of this type. The menu items may also have documentation strings in them. documentation may
also be a list of the form

(doc-function. label-function) '
where doc- -function is a function that, when apphcd to a mouse-scnsitive item, returns a
documentation string,” and label-function is' a similar function that returns a string to use as the

SRCKIL.WIND>CHOICE. TEXT.93 ' ' ' 8-AUG-83

Mousec-Sensitive Type Out 2b8 ' ' Window System Manual |

* menu label, to identify the item that the menu is going to apply to.

Here is part of the item type alist used in typeout windows of editor windows:
((zwei:directory zwei:directory-edit-1 _ :
"Left: Run DIRED on this directory. Right: menu of View, Edit."
("View" :value zwei:view-directory '
:documentation "View this directory")
("Edit" :value zwei:directory-edit-1
:documentation
-"Run DIRED on this directory."))
(zwei:file zwei:find-defaulted-file
"Left: Find file this file. Right: menu of Load, Find, Compare."
("Load" :value zwei:load-defaulted-file
:documentation "LOAD this file.")
("Find" :value zwei:find-defaulted-file
:documentation "Find file this file.")
("Compare” :value zwei:srccom-file
‘:documentation
"Compare this file with the newest version."))
(zwei:flavor-name zwei:edit-definition-for-mouse
~ "Left: Edit definition. Right: menu of Describe, Edit."
("Descr1be" :value zwei:describe-flavor-internal
:documentation "Describe this flavor.")
("Edit" :value zwei:edit-definition-for-mouse
:documentation "Edit definition.")))

When an item is clicked on with the mouse, a blip which is a list of the form
(:typeout-execute alternative item)
is placed in the wmdpw s input buffer. item is the datum supphed when the item was
constructed, whose purpose is to identify which item was clicked on, and alternative is obtained
by looking up the type of the item in the window’s item-type-alist. '

If the item is clicked on with the left mouse button, the lefi-button-aliernative is used in the
itypeout-execute blip, If the item is clicked on with the right button, the menu itcms are put .
into a menu, and the user chooses one. The value returned by the :choose operation is used as
the alternative in the :typeout-execute blip. Clicking on an item of a type that. is not one of the
- alternatives in the: 1tcm-type-ahst just beeps. - :

For the Load altemative on a file item in thc editor, the blip might be
"(:typeout-execute zwei:load-defaulted-file
#cfs logical- pathname "SYS SYS; QFCTNS LISP"D)

1tem type -alist = o Opemnon on tv:basic -mouse- sensitive-items
:set-item-type-alist Operation on tv:basic-mouse-sensitive-items
new-item-type-alist - :

Return or sct the item type alist of the window.

SRC:<I.WINDYCHOICETEXT.93 o - 8-AUG-83

Window System Manual : - 209 : B Mouse-Sensitive Type Out

:item-type-alist alist ' - Init option for tvbasnc mouse-sensitive-items
Imuahzes the item type alist of the window.

tv:add-typeout-1item-type - ' o Special form
The spec1a1 form _ -
(tv: add typeout- 1tem type alist type name function
' default-p documentation)

s used to declare information about a mouse-sensitive item type by adding an entry to an
alist kept in a special variable. This alist can then be put into the item-type alist of a
mouse-sensitive window, for instance using the :item-type-alist init-plist option. Note
that each possible alternative for a particular mouse-sensitive item type is defined with a
separate tv:add-typeout-item-type form; this allows each alternative to be defined at the
place in the program where it is implemented, rather than collecting all the alternatives
into a separate table. It also allows new alternatives to be added in a modular fashion.

alist is the special variable containing the alist. You should defvar it to nil before
defining the first item type. Each program that uses mouse-sensitive items has its own
alist of item types, so that there is no conflict in the names of the types. fype is the
keyword symbol for the type being defined. name is the string that names the operation
and alternative is the representation of the alternative (the object to be put in the second
element of the :typeout-execute blip). defiult-p is optional; if it is supplied and non-nil,
_ it means that this operation is the default performed when you click the left button on an
item of this type. documentation is optional but highly recommended; it is a string that
documents what fiunction does. When the user points the mouse at an item of this type,
the documentation line at the bottom of the screcn will give the documentation for the
default function (reachable by the left button) and a list of the functions in' the menu
(reachable by the right button). If the user clicks right, calling for a menu, then the
documentation for whichever . functmn in the menu he points the mouse at will be
dxsplayed :

 alist, type “and Junction are not evaluated ‘name, deﬁzull-p, and documentation are
-evaluated. :

In the editor, alternative is- interpreted (when a :typeout- -execute blip is read) as a
function to be called, and the tv:add-typeout-item-type form is typlcally placed rxght
before the function dcﬁnmon of alternative.

These are the operations used to print items on a window.

-1tem type item &rest format-args ' Operation on tv:basic -mouse-sensitive-items
A new item item of type -1ype is printed, cnhcr by callmg format with format-args, or by
princ’ing item if jormal-args is nil.

- -The mousc-sensitive arca of the - item is whatever space is used up by pnntmg it, as
judged by the motion of the cursor. ‘

The arguments item and type is not necessanly uscd in' printing thc item, but they are
used in handling a click on the item. #ype is used to look up a function in the item type
alist, and item is placed dircctly into the :typeout-execute blip.

~© SRCKL.WINIDCHOICETEXT93 . BAUGS3

Margin. Choices ' 210 ' Window System Manual

Example:
(send standard- output ’:item ’zwei: file pathname)
" in the editor, where standard-output is a window that supports mouse-sensitive items,
will princ the value of pathname and make an item of type zweifile whose datum is’
that pathname. ’

iprimitive-item - Operanon on tv:basic-mouse-sensitive-items
' type item Ieﬂ top right bottom
:pr imitive-item-outside Operation on tv:basic-mouse-sensitive-items

type item left top right bottom
This operation is used to define a mouse-sensitive item without printing it. (Presumably
you print it yourself, either before or after.) The type and item are used as in the :item
operation. The 'remaining arguments are coordinates that describe the four edges of the
‘mouse-sensitive rectangle. -

In :primitiveéitem, the four coordinates are relative to the inside top left corner of the
window (that is, they are cursor positions such as :read-cursorpos would return). In
~ :primitive-item-outside, they are relative to the outside corner of the window (like values
~ of the instance vanables tv:cursor-x and tvicursor-y). :

1 tem-11st ope lzst S Operation on tv.basic-mouse-sensitive~items
Several items are printed, arranged neatly in columns, one for each element of list. An
element of list can be either a string or a list (name . item). In the latter case, name

(typically a string) is printed with princ, and item is used as the datum for the item. If
the element is an atom, that atom serves both to be princ’d and used as the datum. All
the items are of type ype. '

- imouse- sensitive- 1tem X y Operation on tv:basic-mouse-sensitive-items
* Returns a list describing the mouse-sensitive item found at cursor. posmon x, yin the
window, or nil if there is none there.
The list looks like this:
(type item left top right bollom)
The type and item are as specified in the :item operation and the coordinates are cursor
- positions (that is, relative to the outside top left.corner of the window). '

14.5 Mafgin Choice's

A window can be augmented with choice boxes (see page 190) in its bottom margin using the
flavor tv:margin-choice-mixin. These give the user a few labeled mouse-sensitive points that are
independent of anything else in the window : :

Margm choices are not a. complete, stand-alone choice facility and consequently do not have
an "easy to use” functional interface. .

For an cxamp]c'of a window withbmargin choices (as well as choice boxes in its interior), try
- the editor command Meta-X Kill or Save Buffers. -

SRCKLWIND>CHOICETEXT.93 A' 8-AUG-83

Window System Manual | 211 : - Margin Choices

~ tv:margin-choice-mixin : ‘Flavor
Puts choice boxes in the bottom margm according to- a list of choice-box descriptors
which can be specified with the :margin-choices init-plist option or the :set-margin-
choices operation. A choice-box descriptor is a list, (name swate function x1 x2). It is
legal to use a longer list as a choxce-box descnptor and store your own data in -the
additional elements :

name is a string that labels the box. suwte is t if the box has an "X" in it, nil if it is
empty. x/ and x2 are used internally to remember where the choices boxes -are; they are
always spread out evenly in the available width. :

© function is a functlon that is ‘called,m a separate process if the user clicks on the choice
- box. It receives three arguments: the choice-box descriptor for the choice box, the
"margin region” that contains the choice boxes, and the y-position of the mouse relative
. to this window. You probably want to ignore the last two arguments. When function is
. called, self is bound to the win_dow, so function may usc (declare (:self-flavor flavor)) to
access the window’s instance variables. The structure access functions tv:choice-box-
name and tv:choice-box-state may be of use inside fiunction (they are just more specific
- names for car and cadr). If function changes the state of the choxce box, it will need to
* refresh the choice boxes by doing
~_ (funcall (tv:margin-region-function region) ’:refresh region)
where region is its sccond argument, which is why that argument is passed.

tv:margin-choice-mixin contains tv:margin-region-mixin as an included flavor: this
‘means approximately that tv:margin-region-mixin will appear in any combination right
after tv:margin-choice-mixin if it is not explicitly specified to appear somewhere else.
. The position of tv: margin region-mixin controls where the choice boxes appear in
relatmn to the other margin 1tems (borders labels ‘etc). See chapter 11, page 129.

~marg1n choices choices =~ - ' Imlopnon Jor tv:margin-choice-mixin
choices is a list of choice-box. descriptors, described above. A line of choice-boxes will
appear in the bottom margin of the window. If choices is nil, there will be no choice
boxes and no space for them in the bottom margin; however, the window will still be
capable of accepting the :set- margm -choices operation to create a line of choice boxes
later.

:set-margin-choices chozces ‘ - Operation on tv:margin- choice-mixin
- Changes the set of margin choices accordmg to .choices, which is nil to turn them off or a -
- list of choice-box' descriptors, described above. If the choice boxes are turned on or off,

the size of the window's bottom margin will change.accordingly.

tv:margin-choices S ~ Insiance variable of tv:margin -choice-mixin
A list of margin choices, or nil. '

_ To get a menu with margin choices, it is best to usc tv:menu-margin-choice-mixin (page
189), which goes to a little extra trouble to interface the margin choices to the menu.

| SRCLAL.WIND>CHOICETEXT.93 o 8-AUG-83.

Typcout Windows ‘ o o : - Window System Manual

15. Typeout Windows
‘
Typeout windows are a fac111ty prov1ded to make it easier for a program that normally d:splays
a single updatxng plcture to print a stream of unrelated output from Ume to time, '

For example, Zmacs windows normally present a contmuously updated display of an editor
buffer. But some editor commands are designed to print output, such as a directory listing from
Control-X Control-D or a list of buffers from Control-X Control-B. This output cannot
conveniently be printed on the editor window itself, since that window is set up to maintain its
standard display of an editor buffer and is no longer suitable for displaying anything else.
Instead, the output is printed on a special kind of window called a typeout window, which exists
as an inferior of the editor window. Other programs that maintain updating displays, such as the
inspector and Peek, also use typeout windows for this purpose. '

_ A typeout window is an inferior of another window such as the editor or Peek display
window, and "grows" over its superior as output is done on it. The output starts at the top of
the typeout window, which is also the top of its superior, and proceeds downward. The typeout -
window always keeps track of how far down output has proceeded, so that the superior window
can eventually find out how much of its permanent display has been clobbered by the. typeout
‘window and therefore needs to be redisplayed. A horizontal line or "window shade” appears just
‘below the point of lowest output, to enable the user to separate the typeout from the remains of
the permanent display. If output to the typeout window proceeds far enough, it wraps around to
the top of the screen. Then the typeout window records that the entire superior has been
" clobbered and no longer displays any horizontal line.

tv:basic-typeout-window ' . | | Flavor
~ This is the base flavor for all kinds of typeout wmdows It is actually just a mixin, not
_instantiable by itself. :

tv: typeout-window o o ’ " Flavor
(tv:basic-typeout- wmdow tvnotmcatlon ~-mixin tv:window)
* This is the ﬂavor normally used for actual typeout wmdows

tv:typeout-window- vrlth-mouse -sensitive- items K . Flavor
(tv:basic-mouse-sensitive~-items tv:typeout- wundow) _

This flavor- of typeout window also provides the :item operation, -for mcludmg mouse- -

scnsmve rectangles among the typeout. See page 207. '

:bottom-reached ' ' Operation on tv:basic -typeout-window
Returns the greatest y-position clobbered by the typeout window. This is a cursor
position, relative to the typeout window. The horizontal line (typeout window border),
when enabled, appears at this position, provxded it -is not zero or equal to the msnde
vbonom of the window, : -

The value is nil when the typeout window is not active.

SRCKLWINDSTYPOUTTEXTI7 ~ © = §AUGH

Window System Manual . 213 ~ Activation and Deactivation

The typeout window has an instance variable tv:bottom-reached, but this method does
not simply return the value of the instance variable.

" tv:*enable-typsout-window-borders® Variable .
When this variable is non-nil, a horizontal line is used to indicate the bottom of the area
used by the typeout window. No line appears when the typeout window has used its -
entire area (if it has wrapped around or done a :clear-screen). When this variable is nil,
the horizontal line does not appear.” The default value is t.

15.1 Activation and Deactivation

A typeout window is deactivated when not in use. Any attempt to output to it automatically
activates and exposes it because its deexposed-typeout-action is (:expose-for-typeout).

:expose-for-typeout ' Operation on tv:basic -typeout-window
Sent in order to prepare the typeout window to be typed out on. The typeout window
marks itself “exposed” while leaving the bits of its superior on the screen. It initializes
. itself as "empty"” and its bottom-reached as zcro. It also finds a suitable ancestor and
makes itself that ancestor’s sclection substitute. In normal use, this typically causes the
typeout window to become selected. '

sactive-p ' e Operation on tv:basic -typeout -window
.Returns non-nil if the typeout window is active, which is the case if and only if typeout
is currently visible in it

Exposing the typeout window automatically causes it to become the selection substitute of one
of its ancestors (see séction 3.3, page 37). Just which ancestor is determined according to the
situation; it is the nearest ancestor in the existing path of selection substitutes. This is the nearest
ancestor that can be used for the purpose and actually make the typeout window be selected. It
is the typeout window's direct superior only if that superior is selected. For example, if you type
Meta-X in Zmacs and then type Help, the help message will print on the main editor window’s
typcout window, but that editor window is not selected (the minibuffer is). So the typeout
~window - will substitute for the editor frame rather than for the nonselected editor window -

immediately. above it.

When the program wants to make the typeout go away and put back 1ts standard display,- it
must first deactivate the typeout window with the :deactivate operation. '

When the typeout window is deactivated, it sends a :remove-selection-substitute message to
whichever: ancestor it had decided to substitute for. . As a result, if the typeout window is still that
ancestor’s sclection ‘substitute; -the substitute is set back to what it had been before the typeout
- window was exposed. If the ancestor’s substitute has been changed since then, it is left alone.

- The purpose. of making the typeout window a sclection substitute is primarily to make its
cursor blinker blink. A typcout window by default shares the input buffer of its superior. so
which of them is-sclected has no cffect on reading keyboard input. A scparate feature of typcout
windows turns the supcrior's blinkers off completely while the typeout is exposed.

SRCKL.WINDYTYPOUT.TEXT.17 ' : | ' SI-AUG-SB

Supcriors of Typcout Windows , 2i4 ' Window System Manuat

15.2 Superiors of Typeout Windows

To make a window possess an inferior typeout window, include the flavor tv:essential-
window-with -typeout-mixin in it. - This causes a typeout window to be created and provides the
methods to handle communication with the typeout window.

tv:essential-window-with- typeout -mixin Flavor
This is the basic mixin that gives a window the ability to manage a typeout window as its
inferior.

tv:window-with- typeout mixin Flavor

(tvino-screen-managing -mixin tvessentlal window-with -typeout -mixin)
This is what you typically use, rather than tv:essential-window-with-typeout-mixin,
because it prevents screen management of this window’s inferiors from getting in the way
of the operauon of the typeout window.

tv:typeout-window Instarice variable of tv:essential-window- wnth-typeout mixin
' This window’s typeout window. :

:typeout-W'I ndow _ | Operalzon on tv:essential-window-with -typeout-mixin
Returns the value of the instance variable tvtypeout -window, which is the typeout
window assoc1ated with this window.

:typeout-window - Init option for tv:essential- wmdow -with- typeout mixin
(flavor-name - options...) :
This init option specifies what kind of typeout window to create. The car of the value is
the name of flavor of typeout window to use, and the cdr is a list of alternating options
and values to pass to make-instance

If the opnon is not speclﬂed, oris mI ‘no typeout window is actually created.

The tv:basic-typeout- wmdow ﬁavor provndes for daemons and wrappers that cause the '
:mouse-moves and :mouse-buttons messages to get passed either to the typeout window or to
its superior, depending on whether the typcout window has grown down to where the mouse is.

'turn on-blinkers- for typeout
Operanon ontv essentnal—wmdow with-typeout-mixin

Sent to the superior of a typeout window when the mouse moves into an arca that the
typeout window is not using, this operation should make visible any blinkers that are
associated with the use of the mousc. The definition actually provided by the flavor
tv:essential -window-with ~typeout-~ m|x|n does ‘nothing; this operation exists so that you
can add daemions to it.

.turn -off- b11nkers for typeout
Operation ontvessentlal-wmdow -with-typeout- mixin

Sent to the supcrior of a typcout window when the mouse moves into the area used by
‘the typeout window, this operation should turn off any blinkers that were turned on by

 SRCKLWINDYTYPOUTTEXTIT | o $-AUG-83

Window System Manual , 215 Delaying Redispiay After Typeout

sturn-on-blinkers-for- -typeout. The dcfinition actually provided by the flavor
tv:essential -window-with -typeout-mixin does. nothing; thls operauon exists so that you
can add daemons to it. '

A typeout window does #+«MORE+=* processing if and only if that is enabled for its superior.

The usual motivation for using a typeout window is that the superior is to be used for something

other than sequential output; therefore, #*MORE=»#* processing is usually not desired on the

~superior. However, it is not desirable to simply disable »#MORE+#* processing for the superior

because this disables it for the typeout window as well and because the user could reenable it for
both windows with Terminal M.

smore-p ’ _ Operation on tv:basic ~typeout-window
:set-more-p new-morep 3 Operation on tv:basic-typeout-window
These operations are passed along to the superior, so that the user who types the
Terminal M command need not be aware of the distinction between the typeout window
and its superior. :

tv:intrinsic-no-more-mixin - Flavor _
This mixin, intended for use in superiors of typeout windows, prevents *sMOREs=
processing unconditionally without saying. that it is "disabled”. Programs and the user can
think they can enable and disable »*MORE+»* processing for the window using the the
‘more-p and :set-more-p operations, and the Terminal M command but only the
typeout window is affected.

An alternative way to accomplish this is as follows:

(defmethod (my-display-window-with-typeout-window
' more-exception)

0
(setf (tv:sheet-more-flag) 0))

- 15.3 Delaying Redisplay After Typeout

The typeout window superior must- know how to check before -redisplaying to find out
whether part of its. last display has been overwritten by the typeout window and therefore must be
redisplayed. To find out how much screen height the typeout window has used, use the :bottom-
reached operation on it. The typeout window must also be deactivated so that more typeout,
- happening after the redisplay, will work properly.

- Here is an example which is how general scroll windows do this:

SRCKL.WIND>TYPOUT.TEXT.1T - _ | : o . §-AUG-83

- Delaying Redisplay After Typeout 216 _ ‘ Window System Man.ual

(defmethod (tv:scroll-window-with-typeout-mixin
, :before :redisplay) ‘
- (&rest ignore)
(when (funcall tv:typeout-window ':active—p)
(let ((br (min -tv:screen-lines
(1+ (truncate (send tv: typeout window
':bottom-reached)
tv:line- he1ght)))))
:: br is the number of lines of our display
;; that were clobbered by typeout.
{funcall tv:typeout-window ’':deactivate)
(dotimes (1 br)
;s Mark lines as clobbered
(aset nil tv:screen-image 1 0)
(aset -1 tv:screen-image 1 1)
(aset -1 tv:screen-image 1 2))
;; Erase the clobbered area. '
(send self ’':draw-rectangle
(tv:sheet-inside-width)
(* br tv:line-height)
00
tv:alu-andca))))

The editor normally updates its display. after each command. But after a command that prints
typeout, it is important not to update the permanent display right away, because that would make
the typeout disappear almost as soon as it appeared. The same consideration applies to ot.her
programs that use typeout windows:

. The convention in this situation is that after a command that has produced typeout, redisplay
. should be delayed until the user types another input character. If that character is a space, it is
discarded. Otherwise, it is interpreted as a command.

The way the program should decide whether to wait before redisplaying is to invoke the
sincomplete-p operation on typcout window. This reads a flag that is set whenever output is
done on the typeout window and can be cleared by the program’s’ command loop between
commands. Thus, the flag indicates whether the typcout. window was used during the last
command. : ‘ - -

Hcre is'a sample picce of code that illustrates this technique:

SRCKL.WIND>TYPOUT.TEXT.17 ' _ | o ' : 8-AUG-83

Window System Manual | 217 Delayi'ng Redisplay After Typeout

(et ((standard output typeout w1ndow))
(do-forever
;> Clear the flag.
(send standard-output ’':make- comp1ete)

*;; Read and execute one command. |
(process-command (send standard-input ’:tyi))

(when (send standard-output ':incomplete-p)
:; If this command printed some typeout, .
;; delay redisplay by waiting for next input char.
(Tet ((ch (send standard-input ":tyi)))
(unless (eq ch #\sp) _ _
;» Anything but Space, execute as a command.
;» Since Space is not untyi’d, it allows
;; immediate redisplay. _
(send standard-input ':untyi ch))))

;; Here is where we redisplay after each command.,
(unless (send standard-input ’:1isten)
;» Normal redisplay must deactivate the typeout window;
;; see the previous example.
(redisplay-normal- d1sp'lay))))
Note that this command loop follows the editor’s practice of not redisplaying when there is input
available. As a result, when the character read is not a Space, the :untyi causes redisplay to be
prevented by the presence of input. Then the same character is read again at the top of the loop
- and processed as a command. If this command too prints typeout, its typeout will add on to that
-~ already on the typeout window. If this command does not print typeout, the old typeout will be
erased after it is done. : .

:1_ncomp1ete-p o o Operation on tv:basic-typeout-window
Returns the window’s incomplete-flag: t if the command: loop should wait for the next
character before deacuvatmg the typeout window.

tv:incomplete-p ' Instance variable of tv:basic-typeout-window
The window’s incomplete-flag: t if the command loop should wait for the next character
before deactivating the typeout window.

:make-complete : Operation on tv:basic- -typeout-window
Clears the mcomplete-ﬂag The command loop can use this to clear the flag after
éxamining it. :

‘Certain functions such as fquery perform this operation. on the 1/0 strcam to tell the
program not to wait before redisplaying, as it normally would do. The idea is that the
fquery question is not worth preserving on the screen once the user has answered it.

- SRCKL.WINDYTYPOUT. TEXT.17 , : a 8-AUG-83

Delaying Redisplay After Typeout - 218 . Window System Manual

:make-incomplete : Operation on tv:basic-typeout-window
Sets the incomplete-flag. All the standard output stream operations also do this.

~ SRCKL.WIND>TYPOUT.TEXT.I7 | - - 8-AUG-83

Window System Manual ' 219 - ‘ Tcxt Scroll Windows

16. Text Scroll Windows

Text scroll windows provide a simple means of maintaining a display of a number of lines of
the same type with scrolling. For example, they are used by the inspector to display the slots of
a structure. (Sce chapter 17, page 228 for a more general kind of scroll window.)

“tv:text-scroll-window : ' Flavor
This is the base flavor for all kinds of text scroll wmdows It is not instantiable by itself.

A text scroll window updates its display based on a sequence of items. Each item generates
one line of display. An item can be any Lisp object, and how it displays is controlled by how
you define the :print-item operation. For example, you could define -this operation to do a
:string-out; then the items would have to be strings. By default, :print-item uses the function-
prin1, so each item is a Lisp object to be printed.

:print- 1tem item line-no index 3 Operation on tvitext-scroll-window
Displays item, which should be the zndexth item of those currently displayed, at the
current cursor position in the wmdow, which should be on line number line-no of the
wmdow

This operation is the primitive used by all other text scroll window operations to do
output of items. As defined by tvitext-scroll-window, it just does prin1 of irem,
ignoring the other arguments. Other flavors built on tv:text-scroll-window are expected
to redefine thxs operation. :

“In any case, no item may print out as more than one line. This is enforced by truncating’
output at the margin.

16.1 Specifying the Item List

In simple use, you specify an array of items to be displayed, or a list of items (which is
converted .into an array). ltems are referred to sometimes by their indices in the array. A more
sophisticated technique is to specify an item generator, which is a function that simulates the
effect of a possibly very large array of items without requiring you to actually create the array..

tv:items ’ Instance variable of tvitext- scroll window
- The array whose elements are the items to be scrofled through. The index of an item in
this array is- called the index of the item. This array contains the entire sct of items to be
scrolled through, not just those: that are on the screcn at any time:

"tv:top-'l'tem — o Instance variable.of tv:text-scroll-window

The index of the first item currently being displayed (on the first line of the window).
This is how the current scroll position. is rémembered.

SRC:<L.WINDYTSCROLTEXT.37 R : 8-AUG-§3

Specifying the Item List 220 ' ' Window System Manual

The flavor tv:text-scroli-window provides these operations:

1 tams v Operation on tv:text-scroll-window
~ Returns the wmdow 'S array of items. o _

:set-‘ltems new-items o ‘ Operation on tv:text-scroll-window
Sets a new array of items. new-items may be a suitable array (it should have a fill
pointer), or a list of items (an array is made from it), or a number of items (the array is
made that long, but initially empty).

The item-generator of the window is set to nll turning off that feature so that the array
of items will actually be used.

-stop-item . Operation on tv:text-scroll-window

:set-top-item new-top-item ' i Operation on tvitext-scroll-window
The top-item is the index of the item to be displayed on the first line of the window.

snumber-of-items : ' : Operation on tv:text-scroll-window
Returns the number of items this window is currently scroiling through.

:number-of-item irem | ' Operation on tvitext-scroll-window |
Returns-the item number (index) of item. : ’

:item-of -number index " Operation on tv:text-scroll-window
Returns the item at index index.

:Tast-1tem ' ’ o ' Operation on tvitext-scroll-window
- Returns the value of the last item to be scrolled through (that is, the one whose index is
one less than the number of items).

:put-item-in-window item : o Operation on tv:text-scroll-window

:put -last-item-in-window o ~ Operation on tv:text-scroll-window
~ Scroll the window so that the specified item, or the last item, ‘appears on the screen. The
argument item is an item value, not an index.

.delete item index ; v : Operatzon on tv:itext-scroll -window
Modifies the list of displayable 1tems ‘removing the item at index, and updates the screen
if that index is within the portion currently displayed.

:insert-item index item B * Operation on tv:text-scroll-window
:append-item item = o Operation on tv:text-scroll-window
Add a new item item to “the hst of items to be displayed, either at index index (before.
the item currently at that index) or at the end.

The following auxiliary o'perations,are also defined.

SRC:KL.WINDYTSCROIL.TEXT.37 o BAUGSS

~ Window System Manual ' 21 _ : Bells and Whistles

:redisplay swart end Operatzon on tvitext-scroll-window
This is the internal function that causes a :print-item message to get sent for each line in
the range siart to end, which are screen line indices. It should not be redeﬁned, but
daemons may be placed on it to note changes in the screen layout.

:scroll-redisplay new-top delta Operation on tv:text-scroll-window
This is the internal scrolling function that causes partial redisplay with bitblting and then
sends a :redisplay message for the rest. new-fop is the new twitop-item, and delta the
“number of lines actually to be scrolled. This operation should not be redefined, but
daemons may be placed on it.

The operations :scroll-bar-p, :scroll-position, :scroll-to, and :new-scroll-position are also.
- defined for interface with the scroll bar. Other scrolling commands can also use them.

16.2 Bells and Whistles

Function text scroll windows provide for you to change dynamically the function used to
display items. These windows have an instance variable which holds the function to be used. The
inspector uses this feature so that each data type you can inspect can be handled in an
mdependent manner, with its own conventions for what an item means.

tv:function-text-scroll-window (tv:text-scroll-window) Flavor
An instantiable function text scroll window. :

tv:print-function Instance variable of tv:function ~text-scroll-window
This is the function to be called to display an item. See page 224 for an example of a
prmt function, taken from the mspector '

A pr'lnt function -arg Instance variable of tv:function-text-scroll-window

This is an ‘additional argument to be passed to the print function. The print-function’s
complete list of arguments are the item ltself the value of tv:print-function-arg, the
window, and- the item number. :

sprint-function. ﬁmction' Init option for tv:function-text-scrolt-window
.sprint-function-arg arg * Init option jbrtvfunctlon text-scroll-window
. Initialize the corresponding instance variable: '

sprint-function - : - Operation on tv.function-text-scroll-window
sprint-function-arg Operation on tv:function -text-scroll-window

- :set-print-function. function ' Operation on tv:function-text-scroll-window
- :set-print-function-arg arg - Operation on tv:function -text-scroll - wmdow

Get or- sct the correspondmg instance vanable

i setup list ' ' = - Operauon on tv:function —text-scroll-wmdow
list is a list of the form

. SRCKL.WINDMISCROLTEXT37 R 3-AUG-83

WindowSystcm Manual

9
[
»

ltem Generators

{ print- functzon prznt functzon-arg
(item. . .)
top-item-number
" label
_item-generator)
As you can see, it specifies everythmg relevant to telling the window what items to

display and how to display them. label is passed to the :set-label operation.

It is not useful to specnfy both a list of items and a non-nil ifem-generator, since the list
of items is not used if the item-generator is non-nil.

The display is updated by this operation.

Since a text scroll window updates a display according to a fixed pattern, it is often useful for
it to have an inferior which is a typeout window, for the sake of occasional output that is not
~ part of the standard display (such as, the output for Help in the inspector).

tv:text-scroll-window-typeout-mixin (tv:window-with-typeout-mixin) - Flavor
This can be added to a flavor containing tvitext-scroll-window and provides a typeout
window. It also arranges for proper interaction with the typeout window and partial
redisplay over the area it clobbers. '

:TTush-typeout ; N Operation on tv:text-scroll-window-typeout-mixin ‘
If the typeout window is active, this deexposes it,” and makes sure that redlsplay knows
that the lines have been clobbered.

tv text-scroll vrlndow empty-gray- hack ' Flavor
This is a mixin that goes with tv:text-scroll-window. When windows of this type have
an empty array for tviitems, or an item generator that says the number of items is zero,
the interior of the window becomes gray.

- This is used in some panes of the window-based debugger frame.

| 16.3 Item Generators

The item generator feature is how the inspector can scroll through the elements of a large-
array without having to cons up another cqually large array of items. :

tv: 1tam-generator Instance variable of tv:text- scroll window
The item generator function, or nil if no item generator is in use. The itcm geénerator is
a function which simulates the effect of an array of items. It overrides any explicit array
of items; the value of tv:items will still be an array, but it will not affect the display.

:item-ge nerator | : Operation on tv:text-scroll-window
:set-item-generator new-item-generator. Operation on tv:text-scroll~-window
Get or sct the window’s item-generator.

SRCL.WINDYTSCROL.TEXT37 - _8-AUG-83

Window System Manual | < -omy o Item Generators

The :set-items operation scts the item generator to nil, since if you want to use an cxphcn
"list of items, you must not want the item generator to cause them to be xgnored :

The item generator function should expect its first argument to be an item generator operation
keyword. These are the keywords. defined:

:number-of-items
Returns the number of items to scroll through (the equivalent of the fill pointer in
an actual array of items).

:number-of-item item
Returns the index of the specified item. If an actual array were in use, this
would be the index in the array where item is found.

sitem-of-number index
Returns the item at mdex index. If an actual array were being used, this would
be the index’th element of the array.

linsert-item index item
Insert a new item item, before the one at index index. If an actual array were in
use, this would be done by moving the following elements down. The item
generator need support this only if you wish to use the :insert-item or :append-
item operation on the window.

:delete -item index
Delete the item at index index. The following itemns move to lesser indices. The
item generator nced support this only if you wish to use the :delete-item
operation on the window. : :

The inspector uses -an item generator to display the elements of an array, so that it does not
have to create -another array of items as big as the array being displayed. If / is the length of the
array’s leader, then item numbers 0 through /-1 correspond to the leader, and item number
-1 + i corresponds to array element / (multidimensional arrays being treated as one-dimensional).

. The value of the item at item number »n is just n. In other words,. the virtual array of items
that the item generator simulates is an array_ of consecutive integers, independent of the data
being displayed. This may secm to be a weird way of doing things, but consider this: -we do not
want the line for the i th element to print out as simply that element. We want it to contain the
number i as well. So the item value is simply / + [, and the :print-item operation is redefined
o "print” such a number by printing / followed by the ith array element.

Here is a simplified version of the item gencrator used by the inspector. Note that the array.
whose clements are being displayed is found as (car print-function-arg), and -(cadr print-
- function-arg) is non-nil if the leader should be displayed. tv:print-function-arg is an. instance

‘variable from the flavor tv:function-text-scroll-window; sce page 221. :

SRCL.WIND>TSCROL.TEXT.37 | o 8AUG83

Item Generators | ' 224 ' ~ Window System Manual

(defselect inspect-array-item-generator
(:number-of-items ()
(declare (:seif-flavor tv:basic-inspect))
(+ (if (cadr tv:print-function-arg)
(or (array leader-length (car -tv:print-function- arg)) 0)
. 0) :
(array- 1ength (car tv:print-function-arg))))
(:number-of-item (item)

item) . ;; Theitem’s number is the item!
(:item-of-number (number)
number)) ;; The number’s item is the number!

sinsert-item and :delete-item are not supported, since the inspector does not try to insert or
delete items.

The inspector uses a tvifunction-text-scroll-window (see page 221) so :print-object is
handled by calling a dynamically changeable print-function. Here is a simplified version of the
print-function used by the inspector when displaying an array.

(defun inspect-array-printer
(item arg window
&aux (array (car arg))
(1eader-length-to-mention
(or (and (cadr arg) (array-leader-length array)) 0)))
;; arg is the value of tv:print-function-arg.
:; (car arg) is the array.
;; (cadr arg) ist to display the leader.
;3 item is a number, as described above.
(cond ((< item leader-length-to-mention)
(format window "lLeader ~D" item)
(format window ":~12T ")
(tv:print-item-concisely -
(array-leader array 1tem) wmdow))
(t _
(let ((item (- item leader- 1ength to- ment1on))
(rank (array-rank array)) .
- indices)
{(or (= rank 1)
(setq indices
(array-indices-from-index array item)))
(format window "E1t ~D" '
: {if (= rank 1) item 1nd1ces))
(format window ":~9T7 ") :
(tv:print-item-concisely
(ar-1-force ObJ item) w1ndow)))))

SRC:CL.WINDYISCROLTEXT37 o BAUGSS

Window System Manual ‘ - 225 ~ Mousc Sensitive Text Scroll Windows

16.4 Mouse Sensitive Text Scroll Windows

tv:mouse-sensitive-text-scroll-window ' v Flavor
Windows of this flavor allow the lines to contain mouse-sensitive items just like those of
tv:basic-mouse-sensitive-items (sce page 207) though the implementation is different.

Note that the word "item" in "mouse-sensitive item" is completely unrelated in meaning
to the items of the text scroll window itself.

1item B Operation on tv:mouse-sensitive -text-scroll-window
type item &rest format-args
All output to text scroll windows is done with the :print-item operation, which is
responsible for printing a single item. This operation can include mouse-sensitive items in
the output by using the :item operation, which is compatible with that of tv:basic-
mouse-sensitive-items (see page 209).

Note that the item argument here is the datum to identify the mouse-sensmve item, not
the text scroll window item being dnsplayed on thls line.

The :item-list and :primitive -item operauons are not provided, since in this context they are
not really useful.

titem1 - : Operation on tv:mouse -sensitive -text-scroll-window
' item type print-function &rest args
- This is another way of outputting a mouse-sensitive item. ifem and fype have the same
meanings as for the :item operation, but the output is done by calling print-function with
item, the window, and the elements of args as arguments.

The :item operation used to do this, but it was changed for’compatibility, and the old
functionality renamed to :item1.

In-a typical tv:basic-mouse-sensitive-items window, mouse-sensitive items are output on
specific - occasions, and only because they are supposed to be present and mouse-sensitive at that
time. In a text scroll window, typically a single display is maintained at all times, but the parts
that should be sensitive to the mouse may nced to depend on other things. For example, in the
‘inspector, normally the valucs of slots are sensitive, but when you are specifying a slot to store
into, the names of the slots are sensitive instcad.

tv:sensi t'l ve-item- types Instance variable of tv:mouse-sensitive -text-scroll-window
The list of sensitive item types. A mouse scnsitive item is scnsitive to the mouse if its
type (as specified in the :item opcration) is a member of this list.

t can also be used instcad of a list; then all "mouse sensitive items actually arc sensitive. t -
is the default value, so that this feature does not-get in the way if you do not use it.

SRC:KL.WIND>ISCROL.TEXT.37 | D L. 3AUGS

Mouse Sensitive Text Scroll Windows o226 : Window System Manual

:sensitive-item-types ‘ Operation on tv:mouse-sensitive-text-scroll-window

:set-sensitive-item-types - Operation on tv:mouse-sensitive-text-scroll-window
new-item-types

Get or set the list of sensitive item types.

:sensitive-item- types Init option for tv:mouse- sensitive -text-scroll-window
item-types
Initializes the set Qf sensitive item types.

The inspector’s print function shown in the previous section really does its output using the
sitem?1 operation so that the output becomes mouse-sensitive. Here is the real code for the cond-
clause that handles leader elements: ‘

({< item leader-length-to-mention)
- (funcall window ':iteml item 'leader-slot
#'(lambda (item window)
(format window "Leader ~D" 1tem)))
(format window ":~12T ")
(funcaﬂ w1ndow *:iteml (array-leader array item)
<value #'tv:print-item-concisely))
Ieader slot and value are item types which the inspector makes mouse sensitive at various times.

: thn the mouse is chcked on a mouse sensmve item, a blip is placed in the wmdow s input
buffer. The blip looks like
(1ype item window mouse-character) ’
type is the item type, such as leader-slot or :value, and item is the actual item value specified in
the :item or :item1 operation. window is the text scroll window itself. (This is how the inspector
can tell which inspect pane you click on.) mouse-character is a character whose %%kbd-mouse bit
is 1. It tells the program which button was clicked.

tv:line-area-text- scroll-m‘lx'ln S Flavor
This mixin, when added to tv:text-scroll- wmdow creates a "line area” necar the left
edge where the mouse cursor changes to a rightward arrow and a.click means something
different. The line area is an additional part of the left margin and docs not overlap the
space uscd for displaying the items. '

- You must also include the flavor tv:margin-region-mixin in the flavor combination you
instantiate. . _

A mouse click in the line area puts a blip into the input buffer that looks like this:
(:1ine-area item window button-mask) :

button-mask is a mask of bits -corresponding to mouse buttons; see tv:mouse-last-

buttons, page 116, for how to interpret it. : :

:1ine-area-width number ' Init option for tv:line-area-text-scroll-mixin
Specifics the width of the line area in pixels as number.

, SRC:(I..WlNl‘)>'l'SCROL.TEXT.37 . _ - 8-AUG-83

Window System Manual - : 227 “ Mouse Sensitive Text Scroll Windows

:11ne-area-mouse-documentation Operation on tv:line-area-text-scroll-mixin
~ This operation should return a stnng to display in the mouse documentation line whlle the
cursor is in the line area.

tv:1ine-area-mouse-sensitive-text-scroll-mixin Flavor
This flavor should be used instead of tviline-area-text-scroll-mixin if tv:mouse-
sensitiveftext-scrollfwindow is in use. '

tv:current-item-mixin . ' Flavor
This flavor, when added to tv:line-area-text- scroll mixin, identifies one of the items
with an arrow in the line-area, '

tv:current-item ‘ . Instance variable of tv.current-item-mixin
The item to be marked with an arrow, or nil if none. An arrow will mark this item if it
is on the screen, no matter where it scrolls to.

Tcurrent- 1tem : Operation on tv:current-item-mixin
:set-current-item item - Operation on tv.current-item-mixin
' Get or set the value of tv:current-item.

These flavors are part of the implementation of tv:mouse-sensitive-text-scroll-window.

- tv:mouse-sensitive-text-scroll-window-without-click ' Flavor

This is a component of tv:mouse-sensitive-text-scroll-window that -provides everything
but the :mouse-click method. Since this operation uses :or method-combination, it is not
possible to override a method once it is present.

tv: d'lsp'layed 1tems-text-scroll-window Flavor
This flavor records additional information about the items Lhat are actually displayed. It
provides. an' instance variable, tv.displayed-items, which is an. array indexed by line
number. In this array, the :print-item operauon can storc any relevant information about
what was displayed on the line.

The meaning of clements of the array is not defined by this flavor. The :print-item
operation is responsible for storing whatever information is uscful into the appropriate slot
of the array. However, this flavor does move clements of the array when scrolling is
done, and set them to nil when-parts of the wmdow are clcared or when they are about
to be. redisplayed.

Thxs flavor is essentially a subroutine of tv: mouse sensitive -text-scroll- wmdow which
uses cach element of tvdlsplayed items 1o hold information on the mousc-sensitive items
for the line. :

tv:d'lisp'l'ayedﬂ tems Instance variable of tv.displayed-items-text-scroll-window
The array of information about lines on the screcn.

* Despite-all this hair, no window yet devised is as mousc-sensitive as my mother.

SRC:¢L.WIND>TSCROL.TEXT.37 o 3AUGH

General Scroll Windows | 228 Window System Manual

17. General Scroll Windows

General scroll windows are used to put up a continuously-maintained display of items, each
of which can vary in size. They are used by Peek. General scroll windows (from now on called
simply scroll windows) are not a generalization or a building block of text scroll windows, but
rather an mdependent facility.

The scroll window’s display is made up of items. These items are not the same as items in
text scroll windows; the same term is used because they fit in a similar place in the scheme of
things.

An item in a scroll window always occupies an entire line or several entire lines. An item can
be composed of sub-items which are juxtaposed vertically, each sub-item occupying and filling up
some number of lines. The sub-items can in turn be composed of more items. New sub-items
can be dynamically added or deleted at any level, and the display is updated automatically to
match by moving lines around on the screen. - '

Eventually this process of subdivision must come to an end, with lowest-level items made up
of entries, which are juxtaposed in a horizontal sequence.

An entry displays a single string or quantity, updating its display if the value changes. The
entry must record how to obtain a value to display, how to tell when the value has changed since
the screen was updated, and how to output the new value. A single entry can wrap around at
the right margin just hke ordinary .output. Entries can be added to and removed from an item
dynamncally -

In Peek’s Active Processes display, there is a single item that displays the entire set of
processes. It is composed of sub-items, one for each process. If a new process appears, a new
sub-item is created to display it. The sub-item for a single process is a lowest-level item. Each of
the things displayed about a process—its name, its run state, its priority, its percentage use of the
‘cpu—is displayed by a single entry in that item.

The line of column- headings at the top of the display is also a Iowest-level item; its entries
display constant strings. :

Every character displayed on a scroll window comes from an entry. The items serve only to
group entries, and to control the automatic insertion and deletion of entries.

anes can be elther fixed or varlable width. - A variable width entry takes up as much space
as is needed to print its data; this can change when the window is redisplayed. When that
happens, the remaining entries in the item all have to move left or right. A fixed width entry
specifies an amount of horizontal space and always occupics that much space. As a result, it can
be redisplayed without redisplaying the rest of the item afterward. The entrics used in the Active
. Processes display are al] ﬁxed-wndth so that they will line up in columns

Note if the entry specifies a fixed width and the printing of its contents goes past that
width, the window redisplay algorithm will be confused. _

SRC:(L.WIND>TSCROL.FEXT.37 S A $-AUGS3

Window System Manual . - 229 ' : Specifying Items and Entries

The data structure that represents an item is either a list or an array. If it is a list, its cdr is
a list of component items, and its car contains information on .how to update the list (add or
remove component items). Then the item is displayed simply as the concatenation of its
components. If it is an array, then it is a lowest-level single-line item, and the elements of the
array represent entries on the line. The array also has leader slots whose meamngs are described

-~ below.

17.1 Specifying Items and Entries

You do not generally create an array item or an entry yourself. They are made by calling the
function tv:scroli-parse-item, which is given a descriptive data structure made out of lists.
Examples of its use are at the end of this section.

The arguments to tv:scroll-parse-item are entry descriptors, each of which specifies how to
-create one entry. The entries thus specified all go together into one item.

Here are the possible kinds qf entry descriptors:

. astring string
a list (:string string [wzdth])
The entry is displayed by printing string. A string entry never varies, since it
always displays precisely the specified string, and is always fixed width. The width
-can be specified as a means of controlling the position of the following entry;
otherwise, the actual width needed to print the string is the-width of the item.

Example: either (strlng "Foobar" 10.) or "Foobar " specnﬁes an entry that)
prints as Foobar followed by 4 spaces.

a list (:symeval symbol [width-or-nil) [fbrmat-strmg])
The entry is displayed by printing - the value of symbol by passing it to format
together with format-string.. 1f format-string is omitted, the value is printed with
princ. This type of entry is automaueally updated when the value of symboI
changes.

width-or-nil may be a number of pixels, to specify a fixed-width entry, or nil to
specify a variable-width entry. -

Example:
(:symeval base nil " ~D. ")

specifies an entry that prints the value of base in decimal with a following period
and a space in front and in back. It is variable-width so the space it takes up is
three plus however many digits are needed to print the value of base.

alist (:function function list-of-args [width-or-nil] [format-string}) . ’
The value to display is obtained by applying function to list-of-args. If this value
has changed since the last time it was checked, it is displayed by passing it to
format together with format-string. 1f format-string is nil, the value is simply
princ'd. -

SRCKL.WIND>TSCROL.TEXT.37 ' ‘ v 8-AUG-83

Specifying Items and Entries . 230 ' Window System Manual

width-or-nil may be a number of pixels, to specify a fixed-width enﬁry. or nil to
specify a variable-width entry. .

Example: - »
*(:function si:process-quantum-remaining

-(,process) 5. ("~4D//")) '
is an expression that creates an entry descriptor which specifies an entry that will
call si:process-quantum- remaining on some process and print the result in
decimal, followed by a slash, in a field 5 characters wide.

an interpreted function (Iambda vee)

an interpreted function (named-lambda ...)

a compiled function
An entry descriptor which is either a complled function (a FEF) or.a list startmg
with lambda or named-lambda is considered a function. It is treated as an
abbreviation for (:function finction), which specifiecs no arguments, variable width,
and no format string (the value is printed with princ).

a list (:value index [width-or-nil] [format-string])
The value to be displayed is found at index in the window’s value-array.

Two other keywords can be used in an entry descriptor to make the entry.mouse sensitive.
They can be used only in scroll windows which have tviessential-scroll-mouse-mixin (see
section 17.6, page 238). To use these keywords, first you construct an entry descriptor to specify
how the entry should print, according to the preceding- table. Then you add one of these
keywords and a value to go with it at the front of the list. The mouse keyword gives the entry
-.mouse sensitivity but. has no effect on how the entry appears on the screen.

smouse - The keyword :mouse is used in an entry descriptor that looks hke
‘ ‘ (:mouse mouse-data . another-entry-descriptor)

. Such an entry descriptor is handled by creating an entry from another-entry-
descriptor, and then modifying it by recording mouse-data as the mouse sensitivity
of the entry. The resulting entry will print according to another-entry-descriptor
but will be mouse sensitive as well. :

:mouse-item The keyword :mouse is used in an entry descriptor that looks like
(:mouse-item mouse-data . another-entry-descriptor)
:mouse-item is like :mouse except that the symbol tviitem is replaced throughout
mouse-data with item, the item this entry is going to become part of. mouse-data
better be a list. »

There is no way to cause the entry itself to be. inserted into its own mouse
* sensitivity datum because this is not useful when scroll windows are used in the
~intended manner. .

tv:scroll-parse-item &rest keyword-args-and-entry-descriplors

Creates and returns an array item containing entries constructed according to keyword-args-
and-entry~descriptors.

SRCKL.WINDSTSCROL.TEXT.37 IR | T 8-AUGHS3

Window System Manual o 231 - Specifying Items and Entries

keyword-args-and-entry-descriptors begins optionally with some alternating keywords and
values. They are followed by entry descriptors, one for each entry you want in the item.
The keywords and values at the beginning specify information that applies to the item as
a whole. Keywords and entry descriptors are dxsnnguxshed by the fact that an entry
descnptor is never a symbol

The keywords defined are

‘mouse The value is stored as the mouse-sensitivity of the entire item. This is
meaningful only if the window flavor includes tv:essential-scroll-mouse-
mixin (see section '17.6, page 238).

:mouse-self The value is stored as the mouse-sensitivity of the entire item, but first

‘ ' the symbol self is replaced wherever it appears by the item itself (the
array that this function is constructing). This is meaningful only if the
window flavor includes tv:essential-scroll-mouse-mixin (see section 17.6,
page: 238).

lleader - ~This keyword requests extra slots to be allocated in the array leader of the
' item array. It is either a number, the number of extra slots desired, or a
list, whose length is the number of extra slots and whose contents. are

used to initialize them. ' '

tv:scroll-interpret-entry eniry-descriptor item
Creates and returns an entry according to entry-descriptor for use in the array item item.
You do not normally call thlS function yourself; it is used as a subroutme of tv:scroli-
parse- ltem

tv:scroll-string-item-with-embedded-newlines string
Returns an item that will display the string strmg This item is composed of one item for
each]me making up slrmg

Here is an example taken from Peek; it makes the item for a process (the value of process) -
in Active Processes mode. The entrics that use the process as a function work because the process
is a flavor object; the argument given to the process is a flavor operation. Note that tv:ipeek-
process-menu is a function in Peek which asks for a choice with a-momentary menu.

{tv:scroll-parse-item
;; The first entry is mouse-sensitive.
‘(:mouse~item o
(nil :eval (peek- process—menu ’,processv *item O)
rdocumentation
"Menu of useful things to do to this process ")
'string ,(process-name process) 30.) ,
. '(function ,#’peek-whostate ,(ncons process) 25.)
*(:function ,process (:priority) 5. ("~D."))
*(:function ,process (: quantum remaining) 5. ("~4D//"))
more entries...) : ‘

SRCKL.WIND>TSCROL.TEXT.37 BRI - 8-AUG-83

Using a Scroll Window ' ' yx Window System Manual

17.2 ‘Using a Scroll Window

tv:basic-scroll-window - | Flavor
All flavors of scroll window are built on this flavor, which provides all the facilities
specific to scroll windows. It is not instantiable by itself. '

tv:scroll-window ' ~ Flavor
(tv:flashy-scrolling-mixin tv:basic-scroll- wmdow tv:borders-mixin
tv:basic-scroll-bar tv:window)
_ This is an instantiable scroll window flavor. It provides for a scroll bar and margin

scrolling, and for borders and labels.

In addition to beixig ‘able to create a ‘tree of items and entries, you must tell the scroll
window to display them. At the highest level, the entire display is grouped into a single item,
the root item. Switching modes in Peek works by switching to a new root item.

tv:display-item . Instance variable of tv:basic-scroll-window
The root item of the window. The window’s display is precisely whatever comes from this
item, and nothing more. Usually the root item contains some number of subltcms which
" do the real work.

:display-item . - .Operation on tv:basic-scroll-window
:set-display-item item o Operation on tv:basic-scroll-window
Get or set the root item of the window. Setting the root item redisplays the window.

:display-item item = - Init option for tv:basic-scroll-window
Initializes the root item. ‘

tv:truncation - Instance variable of tv:basic-scroll-window
If this is nil, entries can wrap around at the right margin. Otherwise, each item can
- occupy only one line.

struncation Operation on tv:basic-scroll-window
:set-truncation flag - - Operation on tv:basic-scroll- window
- Get or set the truncatlon flag. Semng the flag redlsplays the window.

.truncat1on Sflag T ' : Imt option for tv:basic-scroll-window
' Initializes the truncation flag. '

A scroll window has a value array whose elements may be used to hold arbitrary data to be
displayed by entrics using the keyword :value. Such an entry specifies the index of a slot in the
value array whose contents are the data to display. Putting appropriate data in the value array is
up to you. One technique is to have an automatically updating item whose update function stores
data into the value array, and have entries in the item look in those slots. There can be many
such items, all using the same valuc array slots. Sec section 17.4, page 234. '

'SRC:KL.WINDYTSCROL.TEXT.37 | . S 8-AUG-83

Window System Manual o m : Using a Seroll Window

tv:value-array Instance variable of tv:basic~scroll-window
-The window’s value array.

tvalue-array - Operation on'tv:basic-scroll-window
~Returns the window's value array.

:value-array array-orlength : Init option for tv:basic-scroll-window
Initializes _the window’s value array, or specify how long to make it.

The :redisplay operation updates the display based on the current root item, automatically
reprinting the entries whose contents have changed. :redisplay will be done automatically by the
window system. at certain times (such as when the window size is changed, or the screen is
refreshed), but if you want it to happen simply because some of the displayed data has changed,
you must send a :redisplay message yourself.

redisplay-selected-items is another way to request display updating, which allows you to
control which items will be checked. :

sredisplay &optional full-p force-p Operation on tv:basic-scroll-window
Redisplays the contents of the scroll window. If full-p is nil, the window assumes that its
screen bits contain the result of the last redisplay. that was done, and only items and
entries whose contents are different from last time are actually output. If full-p is non-nil,
everything that is supposed to be on the screen is redrawn.

Jorce-p non-nil means update the contents of the window even if it is not exposed.
Normally, this operation will wait if the window is not exposed.

sredi sp'lay -selected-1tems list-of-items Operation on tv:basic-scroll-window
Redisplays the items in list-ofitems, if they are present on the screen. Other items in the
current item hierarchy are not even considered for redisplay.

~ Since a scroll window shows a constantly updated display, it is often useful to have a typeout
window in it for occasional output that is not part of the display that is usually shown.

tv:scroll-window-with-typeout-mixin ' Flavor
-This mixin should be used in addition to tviwindow-with-typeout-mixin on any scroll
window that is to have a typeout window. It handles interfacing between typeout window
output and redisplay of the scroll window.

tv:scroll-window-with-typeout ' a .Flavor
A scroll window that has an inferior typeout window. - See chapter 15, page 212.

- SRCKL.WIND>TSCROL.TEXT.37 : L 8-AUG-83

Inscrting and Deleting Items _ - 234 Window System Manual

17.3 Inserting and Deleting Items

Scroll windows provide operations for replacing, inserting and deleting items. explicitly. Since
the 'items form a multilevel hierarchy, the position at which to replace, insert, or delete the item
must be specified as a list of numbers. For example, (1 3 0) as a position means item number 0
within item number 3 within item number 1 (within the root item, tvdlsplay-ltem) nil as a
position refers to the root item itself. '

get -item position Operation on tv:basic -scroll-window
Returns the item at position.

:set-1 tem position item Operation on tv:basic-scroll-window
Stores item into the hierarchy at position. S :

sinsert-1item position item Operation on tv:basic-scroll-window
Inserts item at position, before the item that was at position. .

tdelete-item pdsitibh - Operation on tv:basic~scroll-window
Deletes the item at position, so that the following item moves to that position.

These operations also update the window on the screen as necessary.

17.4 Automatically Updating Items

Just as an entry automatically updates the value ‘it displays, sometimes one wants an item to
_ update automatically the: list of items it contains. For example, the Active Processes display
contains one item that displays a list of all active processes. This item contains a list of
component items, one item per process. Just before the displayed entries for each process are
updated if necessary, additional items should be created and inserted in the list if there are any
- newly active processes, and items. should be removed if processes have become inactive.

The first element of an item that is a list is used to store the data of a property list for the
item. Two properties are given standard meanings:

:pre-process-function ’ '
The value of this property is a function to be called whenever it is time to display
this item. Its sole argument is the item itself. The function can modify the item.
The value it returns is ignored. :

function ~ The value of this property is a function to update an individual component of this
s item. This function is called each time any component item is about to be
displayed; or otherwnse thought about

The‘arguments given to the function are the component item, the reverse of the
position of that item (a list of integers), and the location of the property list of
the contdining dtem, the same property list on which this :function property
appcars (this can be passed directly to get). To repcat, the sccond argument is
the reverse of the-position as would be passed to the :get-item opecration or
related operations. This is because it is- casier to implement that way. without
consing. :

SRC:<L.WINDYISCROIL TEXT.37 ‘ . 8-AUG-83

Window System Manual . 235 L Automatically Updating Items

The function should return an _updated component itém, perhaps the same one as
it was passed, perhaps a new one.

Other properties can be used for any purpose. Some of the commonly used pre-process
functions use other properties for their internal state information and additional parameters.

tv:scroll-maintain-11st inir-fun ztem -fun &opnonal per-elt- ﬁm stepper compact-p
pre-proc-fun
Returns an item which maintains a list of component items, one for each element of a
driving list. The item updates automatically so t.hat component items appear and disappear
as elements of the driving list do.

init-fun should be a function of no arguments that returns the current value of the driving .
list. item-fun should be a function that, given an element of the list, returns a component

item to use to display for that element. ‘item-fun is called each time a new element

appears in the driving list. The item created starts out with no component items. The

appropriate set of component items is created by adding them one by one in this way,

the first time the item is updated.

This item works because it is given a suitable pre-process function. The other arguments
to tviscroll-maintain-list are also stored on the property list of the item created. In
particular, per-elt-fun becomes the :function property. (That is all per-elt-fun is used for.)

Normally the value from inir-fun is a list, and the objects that the items are made from
are the elements of this list, but it is possible to extract the objects in other ways. If
stepper is not nil, it should be a function to step through a “"kind of list". stepper is
called with one argument, a "kind of list", and returns three values:

~ the first element extracted from it
a "kind of list" of the remaining elements
non-nil to say there are no more elements
: nil as the "kind of list" is always recogmzed as bcmg empty, regardless of
the third value,
stepper is first called with the value returned by init-fun. The first value goes (if it is
new) to the item-fun; the second is fed back to stepper unless either it is nil or the third
value is non-ml

A stepper function that could step through the properties in a property list might be:
(defun plist-stepper (plist-tail)
(values (car plist-tail) (cddr plist-tail)))

compact-p non-nil says to recopy the list'cach time an clement is. inserted or deleted, so
that the list remains compact and localized.

Here is how Peek in Window Hierarchy mode recursively creates a tree of automaucally
updatmg items:

© SRCKL.WIND>TSCROL.TEXT.37 o o 8-AUG-83

Automaticallly Updatihg Items 236 ' Window System Manual

;s Make an item to describe the entire window hierarchy.
(defun peek-window-hierarchy (ignore)
(tv:scroll-maintain-Tist
;s The init-fiun. When called, it returns a current list of screens.
#’(lambda () tv:all-the-screens)
;» The item-fun, which makes an item for ascreen. .
#'(lambda (screen)
(Tist ()
(tv:scroll-parse-item
(format nil "Screen ~A" screen))
(peek-window-inferiors screen 2)
(tv:scroll-parse-item "")))))
:; No per-elt-fun is needed. Also, the default szepper works
;» because our "list” really is a list,

;» Make an item to describe window and its inferiors.
i; indent is an indentation to print with.
(defun peek-window-inferiors (window indent)
(declare (special window indent))
(tv:scroli-maintain-list
(closure '(window) #'(lambda () (tv:sheet-inferiors window)))
(closure ’(indent)
#'(lambda (sheet)
;; Make an item with two subitems
(list () '
~ 1; One for this window,
(tv:scroll-parse-item
(format nil "~VX" indent)
*(:mouse : _
{nil :eval (peek-window-menu ’,sheet)
~ :documentation _
"Menu of useful things to do to this window.")
:string ,(send sheet ’':name)))
;; and one with subitems for its inferiors.
_(peek-window-inferiors sheet (+ indent 4)))))))

SRC:(L.W]ND)']'S»CROL.;'I'ID(TL37' - : 8-AUG-83

Window Systeni Manual : ' 237 . | ~ Representation of Items

And here is how it makes the item that displays a ‘chaosnet connection’s packets.
(tv scroll-maintain-list :
‘(lambda () (chaos:read- pkts ’ ,co’nn))
*(1ambda (x) . '
(peek-chaos- packet item x ,(+ indent 2)))
nil
#’ ('Iambda (state)
(values state (chaos:pkt-link state)
(null (chaos:pkt-link state)))))
Note that instead of a list of packets there is a chain, with each packet pointing to the next one.
Therefore, an exphcxt stepper is required. chaos:pkt-link is the function which, given one packet,
_ returns the next one in the cham (or nil at the end).

tv:scroll-maintain-14ist-unordered init-fun item-fun &optional per-elt-fun stepper _
Returns an jtem which maintains an unordered list of component items, one for each
element of a driving list. The item updates automatically so that component items appear
and disappear as elements of the list do. :

‘This function is very much like tv:scroll-maintain-list. The difference is that new
component items are always added at the front of the combined item, no matter where
they appear in the driving list. Changes in the order of that list have no effect at all.
This is why this function is called "unordered”. :

tv:scroll-maintain-1ist-update-states elements window &optional item
Redisplays some of the component items of item, an- item of the sort created by
tv:scroll-maintain-list or tv:scroll-maintain-list-unordered.

elements is a list that specifies which component items to update. If the element of the
- driving list from which a component item was made is memq of elements, then the
‘component item is updated.

17.5 RepresentatiOn of Items

An item i elther a list or an array. A list 1tem contains other items, while an array item
contains entries. :
List items have these accessor functions:

. tviscroll-item-component-items
Returns the list of component items of this item.

tv: scroll item-plist
Returns the contents of the property list of this item.

Array items have these accessor funcnons which refer to array leader slots. (The array
elements themselves hold the entries in the 1tem)

tv:scroll-item-size - i
- Returns the number of entries in the item.

'SRCKL.WINDYTSCROL.TEXT.37 . | - . §-AUG-83 .

Mouse Sensitive Scroll Windows ' 238 . Window System Manual -

tviscroli-item- mouse items
Returns a list of mouse-sensitive areas of entries in [hlS item.

_tvscroll item-line- sensmwty
Returns what was specxﬁed for mouse sensitivity of the item as a whole (using the
‘mouse or :mouse-self keyword in tv:scroll- parse-nem)

tv:scroll-item-leader-offset - Variable
The number of standardly-defined slots in an item’s array leader. The slot with this
number and beyond can be used by applications for their own purposes.

. Entries are also arrays. They have a lot of components, all managed internally, and users
- should probably not access them directly. Peek never needs to do so.

17.6 Mouse Sensitive Scroll Windows |

tv:essential-scroll-mouse-mixin ' Flavor
This mixin gives a scroll window the ability to make either items or entries mouse
sensitive, '

v scroll-mouse- -mixin Flavor

This mixin in addition deﬁnes the :execute operation to be the same as on menus.

tv:scroll-parse-ntem provxdes syntax, described above. for associating a mouse sensitivity to
any item or entry. The mouse sensitivity is a list whose purpose is to identify which mouse-
sensitive area was clicked on, and also specify what to do when that happens.

If the car of the mouse sensitivity is nil, then the mouse sensitivity is interpreted as a menu
item. When the scnsitive area is clicked on, the menu item is exccuted by means of the :execute
operation—but this is done in the mouse process. Unfortunately, there is no way to avoid this,
since mouse clicks on scroll windows are expected to be able to happen “at any time”, and no
- other proccss has expresscd its w1llmgness to handle them with a :choose operation.

If the -car of the mouse sensitivity is non-nil, a click is handled by putting a. blip into the
“scroll window's input buffer. The blip has the form
(blip-type sensitivity window mouse-character)
sensitivity is the mouse sensitivity list. blip-rype is the car of that list. window is the scroll window
itself, and miouse-character is a character such as # \mouse-I-1 which indicates which button was
clicked.

The reason that the blip-type is extracted and put at the front is that programs that use scroll
windows may nced to handle blips from many sources. By specifying the car of each mouse
sensitivity, the program can arrange to distinguish these blips from blips coming from menus,
typeout windows, ctc. and process each one in the correct fashion.

Often a scroll ‘window displays many similar items that describe different data objects. . These
items will all have the same patterns of mouse sensitivity. One way for the program to tell which
jtem the user clicked on is to set up the mouse sensitivity using the :mouse-self keyword (for an
"item) or :mouse-item (for an entry). This inscrts the item itself into the sensitivity in place of

~ SRCKL.WIND>TSCROL.TEXT.37 - . . o 8-AUG-83

Window System Manual 239 Mouse Sensitive Scroll Windows

the symbol seif or tv:item, res_pcctivcly.

SRCKL.WIND>TSCROL.TEXT.37 o | 8-AUG-83

Concept Index

active window. e e e
alufunction . . 4 v . v e b e e e e e e e e
ancestorsof awindow.
AULOEXPOSUTE « « & « & « & & o & e e e e e e

autoselection

baseline

bit-savearray.
blackonwhite
blinker . . « .«
blinkerheight.

blinkerwidth ., . . .
blip.
bliptypes
border margin width .
borders

burying« 4.

char-aluf

char-exists table. . .

characterheight
characterwidth e e e
choiceboxes
choose~variable-values windows .
clicks, mouse, encoding of
cipping.. . « + o 4 o0 e a
COlOrSCIeen. « v+ o o o o
constraintframes e e e e e .
continuationoflines
currentfont.

deexposed typein action. . . .
deexposed typeout action
delaying screen management . .
descendants of a window

encoding of mouse clicks .
entries, in scroll windows .
exposablewindow R

exposed window., . .

filedmenus . . . e e e e e e e e e

fixed-width font. . .
flavor.

following blinker
fontformat.,
fontindexingtable.
fontmap. . « ¢ ¢ oo vv .. e e
TontpurposeS. v v o v v v 0 v v v s e e e e
fONtSPECIfier « v v v v v v v e e e e e e e
" . forcing keyboard input »
frame e e e e e S

. . . 160,174,184, 203, 208,226, 238 .

.........

.......

.......
..........

.......

Window System Manuat

ConCept Index

78

geometry (ormenus). v e e e e
global asynchronous characters. e e e 0. .63
grabbingthemouse 115
half-period ofablinker 103
hierarchy of windows10
holdingoutput « + ¢« ¢ ¢ ¢« 4 ¢ o o« 21
horizontal wraparound e e s 13
i/obuffers. e e e e e - 1
inferiorwindows10
inputbuffer ¢ . v 00 .50
inputbuffers,sharing51
inside. & + v 4 4 b b et e e e e e e 129
itemgeneratorS. .« + « ¢« ¢« « ¢ ¢ e e e e 0. 222
items, in scroll windows e e 228
items, intextscrollwindows 219
keyboardinput . .« « + ¢« ¢ 4 v v 00 o . 5 . 49
label . . . & v . v e e e e e e e e e 132
leftkemn., e e e e e e e e e e e 88
lineheight. ¢ v i v v o o e o .67
marginchoices00 v 00 e e s 210
marginitem 0.0 .. e e e . 129
-marginregions e e e e s 134
MArgins. . « o « o ¢ o s 0 b 0w .. . 129
menugeometry., « R 178
menuitems e e e e e e .. 14
MENUS 4 « 2 o o o o o o o o o s s o » . 13
MOUSE « » o v o o o s-n o o o o s o o v o« 112
TOUSEPIOCESS o o o o s o 6 s o s o o o o 113
multiple choicewindows 190
‘negativepriorities 4. . e . .9
notifications 4 4 0.0 . PP 157
openingblinkers 103
outputhold21
outputholdflag. ¢ .« .2
outputoftext v v 4.66
overlappingwindows10
overstriking 0 0. . v oes .66
OWRINGthEMOUSE. + « + &+ « o o o « & « ..o 113,14
PANE . v v v v v e e e e e e e 10,141
partiallyvisible . .+ . .. v .0 v e e e o 10,26
‘pixel e e e P !
positionofwindow e e e e 43
PHOTIY « o v v v v e % o v e e v e o e e e .28
PrOCESSES &« o 2 v o & ¢ o o « 6 o o = e ... 40
rasterheight oo .89

‘8-AUG-83

Window System Manual S 241 - ‘Concept Index

rasterwidth e e e e e e s . . .89 Terminalkey+ ¢ o o . & e e e e e e e 63
' o . textScrollwindows . v v ¢ . 4 4 e a . e e e e 219
SCTCENAITAY « & + o v o o s o o o s s s o o o » 17 tracking themouSe . « « o « « o o o o o o » o o+ J113
T SCTGENMANABET . + « « « v o o b 4 e e 0w e s 11,26 truncationoflines
SCTEENS « & o « o o o o o s s o s & o & e e e e 13 typeoutwindows e e e e e 212
scrollbar e e s e e e e e .. 125
scroflwindows 0 v e e e ee 0w . . 228 usurpingthemouse ., « « « . o Cee s e e 118
sections, in constraintframes. 147
selectmenu s .. . s e e e e e e « .35 valuearrayofascrollwindow. o 232
selectedpane. . . . v ¢ v o e v e i e e e e . 155 variable-widthfont. 88
selectedwindow . . .« i . v s 0 v e 0 s e e e e 31 vertical Spacing(vsp) « « » 4 ¢ 4 o o 0 0 40w . 67
sefection. . « + « ¢ v ¢ 0 . e e e e e e s 31 visibility of ablinker C e e e e e e 103
selectionsubstitutes . . . v 4 ¢ s . 0 4 0 b e e e 7 ViSIBIE « 4 ¢ b ke e e e e e h e e e e e e e s 10,17 -
sharinginputbuffers. I | -+ J . o . 67
SIZEOfWIRAOW o v o « v ¢ v v s o v v s s s 0. 43
SOFUNEPHOMLY « « « o o o o o o o o o ¢ o o s & .28 warpingthemouse e e e s 112
stacking, inconstraintframes. 147 whiteonblack. « + ¢ s ¢ 4« v 4 . . . L 2
superiorwindow et e e e e e 10 wholine v v v o v o v st h e e e 163
Systemkey. e e e e e e e .63 widefomts. . . . L uw e e e e c. .89
) window P T e e e 3
teamsofwindows v .. .00 .. M window hierarchy. D [
temp-iocking 0 0 e 0 e e+ + . .23 wraparound,horizontal 73

temporary window. . . .+ v s e b 0 s 0 60 0 s 24

8-AUG-83

Opcration Index

:activate :
Onwindows) v v e b e e e o0 ... 1
:active-p _ .
(onwindowsandscreens). v v e 0l o o S 12
(on tv:basic-typeout-window).23
:add~asynchronous-character _ o
(ontvistream-mixin) e e oo . 62
:add-highlighted-item '
(on tv:menu-highlighting-mixin) 189
:add-highlighted-value
" (on tv:menu=highlighting-mixin) 189
:add-item : " _
(on tv:margin-multiple-menu-mixin) 188
:add-server - S :
(ontviwho-line-file=sheet). « « . . ‘164
:add-stream. . o .
(ontviwho-line-file~sheet).164 "
:adjustable-size-p S i
(on tv:scroll-stuff-on-off~mixin) 128
" (on tv:choose-variable-valugs-window). 202
:alias-for-inferiors E .
(onwindows) e e e s .. 36
~ :alias-for-selected=-windows o :
(OnWINdOWS) . « v v ¢ v e 4 e e b e e e e e 36
any=-tyi o '
(ontv:stream-mixin) e e e e ae e 52
:any-tyi-no-hang - , _
(ontvistream=mixin) . . . o v s o o o4 53
:append-item " - v : ' '
- (ontvitext=scroll-window) 0220
:appropriate-width. '
~ (on tv:choose=variable-values-window). 203
array ' ’ . .
~ (ontv:bitblt~blinker) .,, . . 110
arrest s
(ontviselect-mixin) S - 73
:asynchronous-character-p . :
(ontvistream=miXin) « + « & v ¢ % . e 0 0 o. . . - 62
:await-exposure. o S
(ONWINdOWS). « v & v v v v e e e e e .23
:backward-char L '
(onwindows) e v e b v e e e e 75
:bascline ' _ . _
(ODWINAOWS) + « o o v v 2ie 4 o0 o U 7 I
beep]
(onwindows) e - 69
:bit-array I -
ONWINAOWS) v v ¢ 0o o oo 0 o o0 o o v o o 16
:bitblt - o
(ontvistream=-mixin} . . + 2 0 . 0 . e .. %
:bitblt-from-sheet F :
(OntviSream=mixin) . . « v v v v v 0 0 0 s v . 95
- :bitbit-within~-sheet '

(on tv:sircam-mixin) Cee e e e 95

Window System Manual

Operatio»n-lnde'x

:blink . S

(onblinkers) e e b e e e e e 107
. :blinker-list

(onwindowsandscreens) 104
:border-margin-width

(ontviborders=mixin)s +« ¢« « 4 4 ¢ ¢ . 0 ..o o 131
:bottom-margin-size :
(onwindows) « . v v v ¢ ¢ s v b 00w o . . 129
:bottom-reached :

(on tv:basic-typeout-window) 212
tbury '

ORWIndows) « » & v o o v vt v e e e .. 29
scall : :

‘(ontv:select-mixin) P ¥4

:call-mini-buffer-near-window

(on zwei:temporary-mode~line-window-with-borders) 162

:center-around
ONWIRAOWS) © v & v v ¢ 0 2 e o v oo e e . .46
(ontv:menu) e e e e e e e e e e e 183
:change-of-default-font -
(onwindows) ¢ ¢ v b 4 e e et e, 87
:change=-of~size=-or-margins
(onwindows) e o e e e e 47
:character '
{ontv:character-blinker) 109
:character-width .)
Onwindows) . & v ¢ v v v bt v e e e e e e s 77
. «choose :
.(ontv:multiple=choice) 193
(ontvimenu) . . o ¢ ¢« v v o 4 v . “ e e e 183
:chosen=-item . i
OnIVimenu) . .+ v v ¢ ¢ 4 o b 0 e e s s e . 183
.- «clear~between~cursorposes :
Cfonwindows) . . v v b e e e e 0 ee oo e . o 16
:clear~char o
" (onwindows) S £
:clear=-eof
fonwindows) e e e TS
:clear-eol . '
(onwindows) ¢ . i .. 0. A 1
:clear-input
(ontvistream-mixin) 00 0. .6 s . 4
:clear-screen
_(onwindows) v v s e e e s s e s se 0 a6
:clear=string : '
(onwindowS) « ¢« v v v 4 ¢« v e e bt e e s . 15
-~:column-row=-size ’
{ONLVIMERU) e o s v s e e s 184
:column-spec=list
(on tv:dynamic-multicolumn-mixin). 187
. compute~margins .
(onwindows) « . v ¢ 4 v e b e b e e ... 138
* :compute-motion
OEDWINAOWS) + v v v v v v v s e e b e e e e e 77

8-AUG-83

:draw~-circular-arc

243

164

(on tv:graphics-mixin)
:draw=cubic-spline -

(on tv:graphics-mixin)

:draw-curve _
(on tv:graphics=mixin)
:draw=dashed~line
. (ontv:graphics-mixin)
:draw~filled=in=circle

-(on tv:graphics-mixin)
:draw-filled-in-sector- _
(on tv:graphics~mixin)
:draw-line - :
(on tv:graphics=mixin)
:draw-lines i
(on tv:graphics-mixin)
:draw=-point

(on tv:graphics-mixin)

:draw-rectangle
(ontvistream-mixin).,
:draw~regular-polygon .
(ontv:graphics=mixin)
:draw~triangle '
(on tv:graphics-mixin)
:draw-wide-curve
(on tvigraphics-mixin)
edges .
(onwindows) . . .«
sedit ' '
(on standalone editor windows). .
:enable~scrolling=p)
(on tv:basic-scroll-bar). . .- . .
(on scrolling windows)
:end-of-line-exception _
_(onwindows).

" :end-of-page-exception

(onwindows)«
:execute
(on tv:menu-execute-mixin). . .
{(ontvmenu) e

" :execute~no-side-effects

(on tv:menu-execute-mixin), . .
exposable-p
(on windows and screens)

~ zexpose

(on windows and screens)
:expose-for-typeout -
. (on tv:basic-typeout-window) . .
:expose-near
(onwindows). . . «
:exposcd-inferiors '

" (on-windows and screens) . e

:exposed-p

‘Window System Manual
:configuration’ ,
_ (ontv:basic-constraint-frame) 153
:Create-pane . ‘
(on tvibasic-constraint-frame) 153
:current~font
(onwindows) . « « v v v ¢ 40 e e . 84
‘current-geometry '
(ontv:menu) e e e e .. .s .. 180
:current-item
ORIVIMENU) & v ¢ o v v v e a e v v v v w o 183
(ontvicurrent-item=mixin). . .+ + o o ¢ « ¥.0 . 27 -
:deactivate .
(onwindows) B i |
:decide~if-scrolling-necessary
(on tv:scroli-stuff-on-off~mixin) 127
:decode~variable-type
* (on tv:basic-choose~variable~-values). . 199
:deeexpose : .
(onwindowsandscreens) ,20
:deexposed~typein~action ,
(onwindows) . « . « ¢« ¢ v e 0 0. . O 73
:deexposed-typeout-action o
(onwindows) ¢ 0 ... 22
:defer~reappearance . ,
(ontviblinker). . « « . o o v v v e 0. 106 -
":delayed-set-label ’ o
(on tv:delayed-redisplay-label-mixin) 134
:delete-all~servers]
(on tviwho-line-file~sheet) 164
:delete-all-streams - ’ '
(on tv:who-line-file=sheet) & . v+ o o o o 4 . .
:delete-char ﬁ :
OnWindows) . i v v v v v s s s v v e ... O
:delete-item - R
(on tv:text-scroll-window). 220
(on tv:basic-scroll-window) 234
:delete-ltine , ,
fonwindows) L. i i e e e e e e 76
:delete-server - : : ‘ ‘
{on tviwho-line-file~sheet) 164
:delete=stream
(ontviwho-line~file-sheet)
:delete~string , .
(OnWINAOWS) v & v o v 0 o v v 0 v 0 s a0 s s oT6
:deselect. .
(onwindows) . . . v . e i e v v e e .. W33
 :deselected-visibility :
(ontviblinker). .+ . . o v o o o v e 106
“display-item
" (on tv:basic-scroll-window) 232
:display~lozenged -string)
©ODWIRAOWS) « & & v v v v v b h e e e e e e 70
:draw-char :
© (ontvigraphics=mixin)00 95
:draw~-circle
(ontv:graphics=mixin) 96 -

(on windows and screens)
:fat~string-out ’

(on windows) .

fili-p _
fontvimenu) . . .0 . o PN

-Operation Index

e .20

e e e .. 180

. AUGS3

Operation Index

:flush-typeout

(ontv: text-scroll-wmdow-typeout-m:xm). oo e 022
:font-map

(onwindows) T X
:force~kbd-input

{ontv:stream=mixin) . « « < + o b 0 0 000000 . 53
:forward-char

(OnwIndOWS) . ¢ v « v ¢ ¢ ¢ v e 0w e .. T4
:fresh-line

©ONWINAOWS) '« « « ¢ v b 0 s e e e s e s e e
:geometry _

{ontvimenu). S e e e e e e 180
:get-configuration

(on tv:basic-constraint-frame). « « + + ¢« ¢ « ... 153
:get=-item

(ontv; basxc-scroll-wmdow) e e e e e e .24
:get-pane '
(ontv: basxc-constramt-frame) e e e e e L1530
shalf-period

(ontviblinker) v ¢ 4 v o s s e 0w oy o106
:handle-asynchronous-character

(ontvistream=mixin) . . . « + ¢+ ¢ 0 o .0 . 62
:handle-exceptions

(ONWINdOWS) . v v ¢« ¢ o« o v o o s 0 0 2 s o s 71
:handle-mouse

(onwIndows) . . ¢ v s v o 0 o s s 0 8. e . 119
sheight

{(onwindows) . . . ¢« . o ¢ b e e e v e e e -45
:highlighted~items

(on tv:menu-highlighting-mixin) 189
- :highlighted~values

(ontv: menu-hxghhghnng-nuxm) 189
.:home~cursor

(Onwindows) . & ¢ v s 4 0 s e e e e s e e
home-down ,

{(onwindows) . . « . ¢« s ¢ 4 . e e e e e
:hysteresis

(on tv:hysteretic-window-mixin)
:incomplete-p

(on tv:basic-typeout-window). ooe e 27
:increment-cursorpos)

(ONWINAOWS) + v ¢ ¢« e 6 o o o 2 0.0 o 0 s o 74
sinferiors 3

(on windows and screens) e e e e e e e s 12
:insert-char

(enwindows) e e e e e e e e s 77
:insert-item :
(ontvitext-scroll-window) . . . « v v ¢ . .o . 220
(ontv:basic-scroll-window) o0 . . 234
sinsert-line .
OnWINdOWS). + v v v v v v b e s e e e T
sinscrt-string

(onwindows)4 v e e e e (i
.linside-cdges o
(ONWINAOWS) . « 4 v o o 0 s s 0 v e b e 0 46
sinside=-height : ' ,

(OnWIRdOWS) « v ¢ o v v s 0 o 4 4 6 b s e 45

74 -
74

115

244 Window System Manual
:inside-size
(ONWINdOWS) » ¢« o « « o o o ¢ s 0 o s 0 s s s o485
:inside-width v
(onwindows) . . o v« . . oo45
:interval
(oneditorwindows) « e . o 160
:interval-string
(oneditorwindows) P . 160
io-buffer
- (ontvistream=miXin) b 0 e o e 00w 52
(ontv:command-menu). e e e e 185
litem

{on tv:mouse~sensitive-text-scroll-window). . 225
_(on tv:basic-mouse=-sensitive-items) 20
:item=-cursorpos

ONtV:MENU) « v « ¢ « v o 0 o v s 0 184
litem=-generator o
(ontvitext=scroll-window). e .. 22
sitem-list

{ontvimenu) 0 e w e e .. P |
(on tv:basic-mouse-sensitive-items) 210
* :item=list-pointer

(on tv:dynamic-item=list-mixin) 186
:item-of-number

(on tv:text-scroll-window). |
:item-rectangle

(ontvimenu) o e s e e s e e 184
iitem~type-alist

(on tv:basic-mouse~scnsitive~items) 208
siteml

(on tv:mouse-sensitive-text-scroll-window). 225
:items

{ontvitext-scroll-window). 220
kill

{(onwindows) . . . ¢« e e ee e e e e 1
:label-size

(ontv:label-mixin). . . .+ . .. e e e s s s e e 133
:last-item

(ontvitext-scroll-window). « <. ..
ONLVIMENU) « + ¢ ¢ ¢ o v o o ¢« 0 o v 0 0 o 183
:left~margin-size

ONWINAOWS) + ¢« ¢ v v ¢ o 0 v 0n 0 s . .. 129
:hne-area-mouse-documentauon

(on tv:line~area-text-scroll-mixin)27
:line~-out '

(onwindows) . « & ¢« v ¢ v s e e e n e e e e 69
list-tyi

(ontvistream=mixin) 0 0 053
“listen

(Ontvistream=mixin) . . + ¢ « « o 4 o 4 0 0. e 53
:magnification

(on tv:magnifying=-blinker). e s e e e e 10 .
:make-complete)
(on tv:basic-typeout-window) 217
:make-incomplete

{on tv:basic-typcout-window) v 218
:margins

§-AUG-83

Window System Manual

OnWINdOWS) » v v v v b v v b e e e 0. ... 129
‘menu~draw

ONLVIMENU) + & ¢ v ¢ ¢ ¢ o e v o b o s . 0w 184
:menu~-margin-choices

(on tv:menu-margin-choice-mixin) 190
‘minimum-width :

(ontvimenu) . . + + ¢ s ¢ ¢ 0 o 0 o o 4 o w . 181

more-exception
(ONWINdowS) « v v v ¢ v v v e e s e e T2
:more-p . ’ ‘
(onwindows) « . . .0 .. e s e i e 80
(on tvibasic-typeout-window) 215
:more-vpos ’ '
(onwindows) O 7]
:mouse-buttons '
{onwindows) ce el 1200
" :mouse=-buttons-on=item '
fontvimenu) . . . 000 0w e e e 184
:mouse-buttons~=scroll
(ontvibasic=scroll=bar) o0 0 . 126
:mouse-click - : : ‘
“(onwindows) 4w e b e e e . e v o 120
:mouse-moves . :
(onwindows) . . v i . e . e e 0 e e b e e e 119
. :mouse-or~kbd-tyi . ’
(ontvistream-mixin) 0 0 w0 e . . . 53
‘mouse-or-kbd-tyi-no~hang
(ontvistream=mixin) . . . ¢« « ¢« ¢« v s53
‘mouse-~select _ .
fonwindows) v b0 0., R &
‘mouse-sensitive=item - :
(on tv:basic-mouse-sensitive-items) "210
:mouse-standard-blinker
~(onWIRdOWS) « '« « « ¢+ b 4 s 0. . . Te e e e o 122
:move-near-window . :)
(ontvmenu) e e e e e e ... 183
‘name . i '
(onwindows) « v . v 4 v 4. . . . e e eoel 1320
:name-~for-selection . -
fonwindows) C e e e e e . 35
:new-scroll-position
Onwindows) « + ¢ v ¢« ¢ ¢ s.b 0 0 0 e 124
:notice _ :
ONWINAOWS) o v v v v v v v b e e e e e e e 158
. :number-of-item = .- ,
_ (ontvitext=scroll~window). . . . « . . 4 220
:number-of-items :

(ontvitext-scroll=window). 220
soffsets))

(on tv:mouse=blinker~mixin), ."., 12
:open~-streams . '
(ontviwho-line~file=sheet) ., e .. 164
:order-inferiors

(onwindowsandscreens) 000 ... 28
:output-hold-exception _

forwindows) L0 i h e e e e s e 2!
:package '

‘Operation Index |

(ontv:listener-mixin~internal) o .. 159
:pane-name :
(ontv:basic-constraint-frame) 153
:pane-size
(onwindows). . « ¢ ¢ v v v v v b e e e e e 152
:pane-types-alist
onframes). o « v v v 4 4 e 4 b e e 0w .. . 155
:parse~font-name v
(ONLVISCTEEM) . o v v ¢ o o v o s o o o o o & . .86
:parse~font-specificr
(ONLVISCTEEN) . & o & o o o o 4 o v o o o s o o » 86
:phase
(ontveblinker) 0.t e e e 107
:playback
(ontvistreamemixin}.054
:point '
(ontvigraphics-mixin) ¢ v ¢M
:position
onwindowS) . « v . . .t b et v e e e e e e 45
:preemptable-read
(on tvipreemptable-read-any-tyi-mixin) 55
:primitive-item
(on tv:basic-mouse-sensitive-items) 210
:primitive-item-outside
(on tv:basic-mouse-sensitive-items) 210
:print~function
(on tv:function-text~scrofl-window) 22
:print-function-arg
(on tv:function-text-scroll=window) 21
‘print-item
(ontv:text-scroll-window) o e W29
print-notification
(onwindows) . . & v . v v v v s e ee . e J157
:print-notification-on-self
. (ontvinotification=mixin) 157
:priority
(onwindows) . o « o v ¢ o s o v s e 0 0 0 s e o 29
" :process
 (ontviseleCt-miXim) . i . 0 b b e e 0 . . .42
{ontv:process-mixin) . . ¢« . v v 0 4 0 0w o0 0. 41
:processes. »

fonwindows) . « « o v v ch o0 u s 0. . . 4l
put-item=-in-window

(ontv:text-scroll-window) 220
:put-last~-item=-in-window o
(on tv:text=scroll-window) Y . |
:read-cursorpos -

(Onwindows) . « v v v v 4 o v b b 0 e e .74
{ontv:blinker) . . . ¢ v 4 v v v 0 e e e e ... 105
:redefine~configuration : .
(ontv:basic-constraint-frame)15
:redefine-margins ’

(onwindows) . . .+ e e e e . J40
‘redisplay ' '

~(ontvitest=scroll-window)21

(on tv:basic=scroll-window) X X
:redisplay-selected-items

8-AUG-83

Operation Index

(on tv:basic-scroll-window) . .

..... . . 233
:redisplay-variable
(ontv: choose-vanable-valu&s-wmdow) 203
:refresh ‘
(onwindows) . + v ¢ 4 « 4 b e e 0 b e 0 o s 16
:refresh-margins
ONWINAOWS) + v v v o v viv o v b e e e 139
:refresh-rubout-handler
(ontvistream-mixin) . . . ¢ ¢ 0 o0 000 . 55
:remove-asynchronous-character
(ontv:istream=mixin) . . « . . 4 o 0 0. i. ..

:remove-highlighted-item

(on tv:menu-highlighting-mixin), 189
:remove-highlighted-value

(on tv:menu-highlighting-mixin) 189
:remove-selection=substitute

(onwindows) et e e e e e e 38
:rectore-rubout-handler-buffer
 (ontvistream=miXif) ¢ 4 . 4 .. 00 0. s 55
:reverse=video~p :
(onwindows) . + + v 0 ¢ 4 0 0 a6 e e 81
:right-margin-size

fonwindows). b ie e s e .. . 129
:rubout-handler -

(ontvistream=mixin) + « v « ¢ 4 v e e o e . 54
:save~-bits i

(onwindows) e e e e e e e e 16
:save-rubout-handler-buffer

{ontvistream=mixin) . « v & « o o o o 0 s 0 4o 55
:sCreen-array

(on windows and screens). C e e e 21
screen=manage ‘
(onwindowsandscreens). « « « « ¢ ¢ 50 0 o oo 26
:screcn-manage-autoexpose~inferiors .

(onwindows and SCreens)e « o v o o o o 0o o 0 oo 27
:screen-manage-deexposed-visibility
(onwindows) . . o v v v o v 0 e 0 s 0. 2T
sscroll- bar-always-dlsplayed

(on tv;basic-scroll-bar) . e e e e e e s o o126
:scroll~more~above Co
(ontv:basic-scroll=bar) 0. .. 126
:scroll-more-below _
.(ontv:basic-scroll=bar) 0. 0. 126
_:scroll=position

(onscrollingwindows). . « « . v ¢« ¢« s 0 0 0 124
:scroll-redisplay -

(ontvitext-scroll=window) 221
:scrolt-relative - . '
(ontv:basic-scroll=bar) . . ¢ . . o 0 4 00 0. 126
:scroll-to

(on scrolling wmdows) Y A A 124
ssclect

Onwindows) v « v 4 v 4 4 b v e e e e e e e 2
‘select=pane ' '

(ontv:basic-frame) e e e e e e e s 155
:sclectable-windows _
C{onwIndOWS) . . f t b e e e e s e e e e s 35

246 - Window System Manual
:selected-p -
(ONWINAOWS) o v o ¢ « v ¢ « 2 o o o 20 o o+ o33
:selected~pane
(ontv:basic-frame). P 1.5
:selection-substitute '
(onwindows) » « + ¢ o o o s s 0 s 0 s 0 e 0 . <38
:self-or-substitute-selected-p
{onwindows) o 4 e 4 e .o e . .38
:send~-all~exposed~panes
(on tv:basic-constraint-frame) 153
:send-all-panes
(ontv: basxc-constrmnt-frame) e o o0« 153
:send-pane
(on tv:basic-constraint-frame) 153
:sensitive-item=~types
(ontwmouse-sensitive-text-scroll-window). e . 26
:set-array
(ontv:bitblt-blinker) ¢« . 0 .. . 110
:set-border-margin-width
(ontv:borders=mixin). I &) §
:set-borders
(ontv:borders=mixin)., o o o o 131
iset-character
(ontv:character-blinker) . . .« « ¢ v ¢ ¢« ¢ & o 109
:set-chosen=-item
{ONIVIMENU) v v ¢« v 4 4 4 b e e b e e e . 183
:set~column-spec-list
(on tv:dynamic-muiticolumn-mixin). 187"
set-configuration :
(on tv:basic-constraint~frame) e e e .. 183
:set=current-font
ONWINAOWS) « & ¢ « & v ¢ ¢ o ¢ o o s s o+ .84
:set-current-item . i
(ontvicurrent-item=mixin) . . « « « « o+ o o o o 227
:sel=Ccursorpos
(Onwindows) . « ¢« o o ¢ 0 0 e s.v 0 6 0 b 0 e s 74
(ontvblinker). . « o ¢ v v v 4 0 o 0 0 s o o 108
:set-deexposed-typein~-action
(onwindows) e e et e e s .32
:set-deexposed-typeout-action
(onwindows) . . « « « v ¢ ¢ s 4 a.e s e e e 2
:set-default-font
(ONIVIMENU) « v v ¢ s v o e 4 s e e e s oo . 180
:set-deselected-visibility '
(ontv:blinker),00 . . e . 106
:set-display-item .
(on tv:basic-scroll-window) R X 7]
set-cdges
(onwindows) o46
(ONIVIMENU) & ¢ « ¢ o e & o v s o 0 o = & o 181
set=fill-p
(ontv:hasic=mienu). . « o ¢ .+ 4 . . v oee s o . 180
:set-follow-p :
(ontv:blinker), v . e e e e a e . 105
:set~font-map
(Onwindows) « + v v & o v v e e s e e e e s 84

:set-geometry

' 8-AUG-83

Window System Manual

ONIVIMENU) .+ & ¢ 4 & o o ¢ o o s s o.s s o o 180
set~half-period -

(ontviblinker). « & & o ¢ v 4 vt v e e e s e 106
:set-highlighted-items

(on tv:menu-highlighting-mixin) 189
:set-highlighted-values v

(on tv:menu-highlighting-mixin) 189
:set-hysteresis
. (on tv:hysteretic-window-mixin) 11§

:set-inside-size

247

Operation Index

(on tv:function-text-scroll=window) 21
- iset=priority)

(onwindows) . . . « .+ s o . . P .
:set-process
(ontviselect-mixin) 42
(ontviprocess=mixin) . « « « . v .0 0.0 . .4
:set-region-list
(ontv:margin-region-mixin)135
:set-reverse=-video-p

fonwindows)t i 4 e e e e e e e 45
:set-interval
(oneditorwindows). . . « « ¢ ¢ ¢ 4 4 o0 . . . 160
:set~interval-string
(oneditorwindows)s » o« o o v 4 4 0 b ee 0 .
:set-io=buffer - .
(ontvistream=mixin) « « « « o ¢ 4 s 0 00000 2
(ontvicommand-menu). . ¢ + + ¢ 4 .. .4 . . 185
:set=item '
- (ontv:basic-scroll-window) ¢ ¢« . . . 234
:set-item=-generator
- (ontv:text-scrofl~window). 222 (ontv:blinker) 106
:set=item~-list o :set-size
(ORLVIMENU) & & ¢ ¢ 4 v .0 o o s o s o o o & . 183 (onwindows) . + « « v 4. 45
(on tv:margin-multiple-menu~mixin) , 188 (on tvirectangular-blinker) 108
‘set-item~list~pointer fontv:blinker) . . . v . v e e e e e h e e 105
_ (ontv:dynamic-item-list~mixin) 186 (on tv:bitblt-blinker). e ... W109
:set~item-type-alist ‘set=size=and-cursorpos
(on tv:basic-mouse-sensitive=items) 208 (ontvirectangular-blinker)« 108
set-items :set~size~in-characters
(ontvitext-scroll-window)., (fonwindows) . . « .+ ¢ v 4 4 s e e e e e . .. 75
'set-label set-status .
(Ontvilabel=mixif) . o o v o o o 0 .. 0. .. 133 (onwindows) NN .. 39
:set-last-item ' :set-superior
ontvimen) . « .. v o o ¢ o 6 b0 e b o0 s s 183 (onwindows). 12
:set~magnification - iset-top~item
(on tv:magnifying-blinker). 110 (ontvitext-scroll=window) v . . % 220
:set~margin=choices] “iset-truncation
(on tv:margin-choice-mixin} « . & 211 {ontv: basw-scroll-wmdow) 232
:set-menu~margin-choices :set-variables
(ontv: menu-margm-mmce-mlxm) 190 (on tv:choose~variable-values-window) 2202
set-more-p .:set-visibility .
(on windows) , e e e e e e e e e e e e 80 {ontv:bHOKEr) . % o v v v e e e e e e e .. W10S
" (ontv: basxc-(ypeout—vnndow) 215 :set-vsp
‘set-mouse-cursorpos (ONWINAOWS) « v « « v ¢ & o ¢ 4 o 0 0 0 o b e 80
(onwindows) . . . & 4 0 v 4 v i v a e e e 119 :setup
:set~mouse~position - (ontv:multiple-choice) e e e 193
(onwindows) . . . v ¢ v v vl e e e e . 119 (on tv:function-text-scroll=window) 20
- iset~offsets _ . " (ontvichoose=varigble-values-window)202
(on tv:mouse-blinker-mixin): 122 :sheet ,
:set~package (ontviblinker) . . v v v v 4 0 e b e e e e e e 106
(ontv:listener-mixin-internal) 159 isize
© :set-position (onwindows)t . et e e . 45
ONWINdOWS) . v & o v v ¢ v o o 4 s 4 0 o o e s 46 “(ontv:blinker) 0 v e .. J105
:set-print-function (on tv:bitblt-blinker), e e e s e e e . W109
(on tv:function-text-scroll-window) 21 size-in-characters . ' _ :
:set-print-function-arg (onwindows) . + c e e e 75

fonwindows). ¢ 0 i e e e b e e e 81
:set-save-bits

(onwindows) & . . . D [
:set-scroll~bar

(on tv:basic-scroll-bar). J25
:set~scroll-bar-always-displayed

(ontv:basic=scroll~bar). 126
:set-selection-substitute

fonwindows) « « v v s 40 e e e 38
:set-sensitive~item-types

(on tv:mouse-sensitive-text-scroll-window)
:set-sheet

8-AUG-83

Operation Index

i
isquare-pane-inside-size

(onwindows) e e e e e e e 152
‘square-pane-size ' :
ODWINAOWS) « v v v v v vt h e e e e .. 2182
:status

(onwindows) . + & ¢ & o v v b 0 b e e e .. 39
:string=length -

ONWINdOWS) o + v 0 4 4 h e e e e e e e 78
sstring-out ‘ .

{onwindows) ih el e 69
:string-out-centered
fonwindows) v 0 v 4 b b e e e e e 69
:string-out~centered-explicit

(fonwindows) . . . ¢« . ¢« 4 4 b s e e s ... 80
sstring-out-explicit

(onwindows) ¢ ¢« 4 b e s e s e 19
:string~-out-x~y~-centered-explicit -
ONWINAOWS) &+ & v v o v v v v o o v v e e 80
superior

(onwindowsandscreens). . « + ¢ ¢« ¢ ¢ o 00 0 0 2
temporary=-bit-array

fonwindows) 0 h e e e e 25
stop-item

(ontv:text~scroll-window) 220
:top-margin-size

(onwindows) .. & v ¢ 4 4 ek e e e e e e e 129
struncation

(on tv:basic-scroll=window) 232
sturn~off-blinkers-for-typeout

(on tviessential-window-with-typeout-mixin) 214
turn~on~blinkers=-for-typeout
(on'tv:essential~window-with-typeout-mixin) . . .

. 214

Window System Manual

tyi

(ontvistream=miXifn) « « « v & + « ¢ ¢ ¢ 4 o+ o . .53
:tyi=no-hang :
(on tv:stream-mixin)
‘tyo

(onwindows) . . .
:tyo-right-margin=-character

(onwindows) ‘e e
:typeout-window :
(on tviessential-window-with-typeout-mixin). . . . -214
:ultimate-selection-substitute

onwindows) P .
sun-arrest .
(ontviselect=mixin) 4 0 4 4 o0 0 e .. 42
‘untyi _ :
(ontvistream-mixin) e i e e s o83
- tupdate~-item=-list -
(ondynamicitemlistmenus) o . . . 185
:update-label

(on tv:delayed~-redisplay-label-mixin) . . ., 134
:value-array

(ontv:basic-scroll-window) 233
wvisibility '

(ontv:blinker), et e e e e « o« 105
vsp

{(onwindows) e e s s e e e s .80
:wait-for=input-with-timeout

(ontvistream=mixin) ¢« ¢ 0 0000w . 54
- :who-line-documentation-string

(onwindows) . . .+ v v o o b b e e e ee .~ 120
:width '

onwindows) e v .. Y

- 8-AUG-83

\I\

, Window System Manual

Keyword Indéx

:absolute
(for tv:mouse-set-blinker-definition) 14
:activate~p

(forwindows) « « v + & ¢ 0 ¢ ¢ o s o o o PR B §
any '

(for choose variable values). 195
amay

(for tv:bitblt-blinker) . « v v . o 109
:ask .
(forcomstraint frames). « « v + v o o ¢ o 0 ¢ o o 149
:ask-window)

(forconstraintframes). . . + v ¢ ¢ 0 ¢ e . 0 0. . 150
" (forchoosevariablevalues) 196
:asynchronous-characters . :
(fortv:stream=mixin) . . « « v v v s v o o o o « & 61

(forinputbufferplist)
:backspace=-not~overprinting~flag ’
(forwindows) . . . v ¢« v v v v v v v 0 v v o o 81
:beginning '

(forcdeselect). « v v v v v v v 0 o b v e e . kX3
:bindings .

(formenuitemtype) . .« « ¢ ¢ ¢ v v 0 .0 . . 175
:black)
. (forconstraintframes). . . o v v ¢« . 4 . 0 0. . 151
:blank ‘

(for constraint frames). e e e e e e e 151
:blink :

(forblinkervisibility) . « . v + v v v o 4 . 4 .. 103
:blinker~deselected-visibility

(forwindows) e e e e e e e 104
:blinker-flavor

(forwindows) . . . v ¢« v v v v v v v 0. .. 104
:blinker-p L -
(for windows) P [
:boolean :

- (for choose variablevalues). 196

:border-margin=-width

(fortviborders=mixin). . . « . ¢« « ¢+ v « . o . . 131
:borders .
(fortviborders=mixin). 130
:bottom

(forwindows) v v v v v v v Ve e e e 43
(forlabels). P & 7
(forborders) . + ¢« ¢ v ¢« v v o o e eoe 0. . 130
:buttons) ’)
C(formenuitemtype) v . v v . eh 0 ee . s 175
:centered ‘ _
(forlabels). v .o ... e e e o132
:character _ T ' _ :
{for tv:character-blinker) e e e e e 109
(for chaose variable values)., 195 .
" :character-height ' o .
(forwindows) e e e e e e e e 44

Keyword Index

:character-or-nil

(for choose variablevalues)195
:character-width

(Orwindows). « v v v v v v v v o v s o u o oo dd
:character-x-offset - '

(for tv:reverse-character-blinker).11
character-y-offset

(for tvireverse-character-blinker), . . « . « . + . 111
:choice=box '

(forbliptype) ¢ v v v v b e e e 203
:choose

(forchoose variablevalues) « . ¢ . . . (196
:clean

(forzexpose). o « v ¢ ¢ o o B 1
:column-~spec-list

(for tv:dynamic-multicolumn-mixin) 187
:columans '
(fortvvmenu) . . . o v o v 4 ¢ o v o w « 0 s . 179
:complete-redisplay

(for tvisheet-bit-array) B {1
:comtab :

(for standalone editor windows). . . . « . «160
:configuration

(for tv:basic-constraint-frame) . « .+ & + + « 4 « o 153
:constraints : _
(fortviconstraint~frame) + ¢« + ¢ « ¢ o . 147
:cr-not-newline~flag

(forwindows)e « « « v o ¢ ¢ o « & O 1 1
- :date ' , :

(for choose variablevalues) . . . « . v 40 o o « 195
:date-or-never

(for choose variable values) e o« o« J95
:deactivated '

(for tv:preserve-substitute~status). « « « ... 39
:deexposed ‘ '

(for tv:preserve=-substitute=status). . « . « « . o . .39
:deexposed-typein=-action

(forwindows). . . . v ¢ ¢ v v e v v o e v o .32
:deexposed-typeout-action

(forwindows). . . + ¢« v v ¢ v . e e e e 22
:default .
(forfontpumpose) . . « v v v v o . o . e e. .86

(for:deexpose). . « « v v v v 4w w8 e . s 20
:default-font

(fortvimenu). . o s v.v v cv s o v o o« s o 180
-:delayed . ’ .

(forsave-bits). « v v v v ¢« v 4 e v a0 e o 16
‘delete~item - . o -

(foritem=gencrator). . » v o v v v o 4 o 0 . . 2223
:desclected-visibility

(fortv:blinker) . .« v .« . .0 .. o ooe e o JJ06
:display-item ‘

(for tv:basic-scroll-window) . « « « « v 4 s 44w W 232
:documecntation

8-AUG-83

Keyword Index
(formenuitemtype).« . + ¢ 4 0 v .o .. 175
(for choose variable values). e e e e e + 196
:dont-save ‘ :
(for tviwithout-screen-management) 33
:dont-upcase-control-characters ' -
(forinputbufferplist).« . .. ¢ .. 59
redges ' : :
(forwindows) . &« v v v o ¢ ¢ ¢ s ¢ o v v o o 44
:edges-from ‘
(forwindows) . . « ¢ o« v ¢ ¢ ¢ ¢« ¢ ¢ o o & .. M
tend o
(for tv:without-screen-management) « « . 33
serror
(for deexposed typeoutaction). . . « « o o o0 . . 22
(fornotice) « v v v ¢« ¢ v ¢ 4 o o s ¢ 4 6 0 n . 159
seval
(formenuitemtype). . . . « « ¢« 4 ¢t 4 o o0 .. 174
(forconstraint frames) o e e v e 151
ieven o
_ (for constraintframes) . . « . « . o . . oo s o149
:execute ' ' B
(forbliptype). e e e e e e e e 160
‘expose : L
(for deexposed typeoutacuon). e s e e e e e e 2
:expose=p S ’
(forwindows) « « o« v ¢ o o0 o o o o o o e o+ 20
exposed
(for tv:preserve~substitute~status)« . . o o 39
:exposed~in-superior

(for tv:preserve-substitute~status) . .+ . . . + o « o 39
s:extra-width

(for tv: chome-vanable-valuw) S)
- shll-p .
c(fortvimenu) . 0 .. 0 ke e . s e e e e s 180
first
(for tv:without-screen-management) 3
" :flashy~-scrolling-region
(for tv:flashy-scrolling-mixin).. 126
:follow=-p
(fortveblinker) . . « o v ¢ e v 0 v e . oo. . 108
:font -
(fortv:character-blinker). « « « « o s v o o & . . 109.
{formenuitem.type).. [P i o3
(forlabels) e e e e e e e e s .. 2133
tv:font=-map .
“(forwindows) . .« v v v e e 6 s e s e 0. .. s 84
:force ' : .
(for:decXpose) « v v v v e v b 4 0. e 0. . 20
:full-rubout ' S
(forcrubout=handler).00 . 54
.funcall .
(formenuitemtype). e ee e e s L 174
(forconstraintframes) <« 150
. :function o
-(for tv: choosc-vanable-values) T IT I | /)

Window System Manual

(for tv:basic-choose~variable-values) 201
(forscroltitems) & . . . 4 0 o . .. 234
(forscroll windowentries). . . . « « + o o o 4 & 229
:geometry
"~ (fortvmenu) e e e e e e . 179
:half-period
(fortviblinker) . o . & v v 0 v v 0 o s 6 0. 106
<height
(forwindows) o « ¢ o o % « o o s o o o o o o o » 43
(for tvirectangular-blinker) 108
(fortviibeam=~blinker) « . . . ¢ 4 . 108
(fortv:bitblt=blinker) 109
:highlighted -items
(for tv:menu~highlighting-mixin) 189
:horizontal :
(forconstraint frames) . . . + « .« « . . R |7
:hysteresis
(for tv:hysteretic-window=mixin) 115
if '
(for tv:restrict=user=option) . . . + o o . o o « o 206
:initial-input
(for:rubout-handler) « ¢ c ¢ ¢« ¢ o . . 54
sinput
(for:motice). » . o ¢« « v o o o ¢ o o o o & » « 158
sinput-wait : :
(fornotice). v v .o o o o s ¢ o s s o « e o . o 158
linsert-item '
(foritem=generator) . . . +. « s ¢ o 5 ¢ ¢ o o o 223
-:inside~height
(forwindoWs) . ¢ o o s s 0 s o ¢ o o s o o o o s 43
:inside~size
(forwindows) . « e e e e s Y)
* :inside-width ,
(forwindows) o o « « o o + o s o s o s o o o s .43
:integral-p
(forwindows) « « « o o « o o s « o o s s o o o » 44
:mterval-or-never '
(for choose variable values). « . . « « . .« 195
sio~buffer
(fortvistream=mixin) . . « o v v v v v v a0 .. 52
(for tv.constraint-frame=-with-shared-io-buffer). . . 143 -
(fortvicommand-menu). .« . « + <+ o o o o+ 185
(for tv:choose-variable-values-window) 203
sitem~1ist
(fortvimenu) . .+ « . ¢ o o . . . e e e e e 183
(for tv: baslc-mumple-chmcc) 193
sitem~list-pointer : .
(for tv:dynamic-item~list-mixin) 186
ritem~-of=number) :
(foritem=generator) . . & « ¢« ¢ « ¢ o 0 . o s 223
sitem-type-alist ' '
(for tv:basic-mouse=-sensitive-items). 209
:kbd :
(formenuitemtype) . .« . . « ¢« o o o v o o o 174
:label . : .
(for tv:label-mixin). e e e e e e e 132

(for tv:choose-variable=values) 197

'8-AUG-83

Window System Manual
(forfontlpurpose) .+ . v v v o 4 o o o o o & s o0 86
:label-box-p .
(for tv:box-label=mixin), 133
:last
(for:deselect). . « « « ¢ v ¢ ¢ 4 e ¢ 0 0 b . s .33
:leader :
(fortv: scroll-parse-ncm) 231
deft
(forwindows)43
(forborders) s e e e e 130
:limit
(forconstraintframes) « 148
:line~area
(forbliptyped « + v ¢ v o v v v v v v w226

:line~area-width

(for tv:line-area=-text-scroll-mixin) e 226
:magnification
(for tv: magmfymg-bhnker) v ... 110
‘margin-choice
(forfontpurpose) ¢« . o 0. e a v o 0. .86
smargin-choices
(for tv:margin-choice-miXin). . . o« v o o v .+ .. 211
(for tvichoosc-variable-values-window) 202
(for tvichoose=variable-values) 197
:margin=-scroll-regions
(for tv:margin-scroll-mixin)« . . 127
:margins-only
(fortvisheet=bit-array) . . . « o ¢ v ¢« 2 ¢« ¢ o 4 17
‘menu
(formenuitemtype) . . . « « . 4 v 4 0w ae 175
(forfontpurpose) . . « o o ¢ s o s 2 o o o o o s 86
(forbliptype). e e e e e e 184
:menu-alist . i o
(forchoose variablevalues)« « . 196
:menu~choose
(formenuitemtype) . + « v v ¢ ¢ ¢+ o o o o s 175
. :menu-margin-choices
‘(for tv:menu-margin-choice-mixin} 190
:menu=-standout ,
(forfontpurmpose) .« « v v v o v s o86
‘minimum-height :
(forwindows) . « + « v ¢ ¢ v o0 o e e e e e 44
‘minimum=-width
(forwindows) « v v v v vt i h e e 4
:more-p
. (for. wmdows) A 80
‘mouse v :
(fortviscroll=parse=item) . + + « ¢« « « « . .« o 231
(forscrollwmdowcnlnes). .. |
(for:expose=near). . . . « e e e e 46
(foredges=from) . « o ¢ ¢ ¢ v 0 o s o o o o o .44
‘mouse-button) ’
(forbliptype). .« v + v ¢« et e v b i . 113
‘mouse-click ' ‘
(formarginregion functions). 135
:mouse-enters-region .
(for margin region funcnons). O K 3

251

(formenuitemtype) « + ¢« « o v 0 4 v 4 4 .. 174
:noop

(fOr:expose)e « v o « o o o ¢ v o 0 s .. .19

(for :deexpose). e e e e e R
:normal .

(for deexposed typeout acuon) e e e e e 2

(for deexposed typeinaction) 32
:notify

(for decxposed typeoutaction) . . . « 4 v .0 o 4 . 2

(for deexposed typeinaction) + . .+ v « 4 4 4 4 .
:number

(forchoose variablevalues) 195
:number-of-item

(foritem=generator). . + « « « + v ¢ ¢ « « o o & 223
:number-of~-items

(foritem=-generator) . . + « o v 4+ ¢+ ¢ o s o 4 o4 s 223
:number-or=nil

" (for choose vanable values) . + v v v e 4 e e e 195
:off

(forblinker visibility) . .« . « v . . o ¢ 103
:on .

(forblinkervisibility) « . « « « .+ v 0 0 103
‘output

(formmotice) . . . & & v v vt e s e e e e .. 158
:panes :

(for tv:constraint=frame)146
:pass-through

(for :rubout=handler) e e e e 54
:pathname _ '
(forchoose variablevalues) « + v o v v v 195
:pathname~list .
(for choose variable values) e e e e e e e 196
- :pathname-or-nil : ‘
(forchoose variablevalues) 196
‘permit
" (for deexposed typeoutaction) . . v . . v 0 o4 0 . o 22
:point

(for.expose=ncar) A
:position '
(forwindows).00 43
:pre-process-function -

(forscrallitems). . . v v v v v v v e 0 s s s . 234

Keyword Index

‘mouse~-item .
(for scroll windowentries) o0 2230
:mouse=-leaves-region
(formarginregionfunctions) 135
:mouse~moves
(for margin region functions) 135
:mouse-self
(fortv:scroll=parse=item) 231
:name
(forwindows). e e e e e . 29,132
‘name-font _
(for tv:basic-choose-variable~values) 201
:near-mode
197

(fortvichoose~variable-values). » + « « ¢« « « « + &
‘no-select -

8-AUG-83

Keyword Index’

:princ

(for choose variable values)
:print-function

{for tv: funcuon-text-scroll-wmdow)
:print-function-arg :

(fortv: funcuon-text-scroll-wmdow) e s e
* :priority

(for windows)
:process -
(fortv: process-m:xm) ke e e e e e e e
:prompt

(forirubout-handler). . . . « + « ¢ 4 v v v o
‘raw ’

:string

252

Window System Manual
(for choosc variablevalues), 195
(forscroll windowentries).,+ ¢ . . .- 29
(forlabels). . .« v v v v v v o e @ e 0 o oo 132
sstring-font
“(for tv:basic-choose~variable-values) 202
.:string-list
(for choose variable valu%) e s s o . 195
‘superior
(for windows) . e b ee e e s S]
(fortv: choose-vanable-valus) e e 0 s .. 197
:symeval
{for scroll window entries). e e 0. . 229
:tab-nchars ' '
(forinputbufferplist). 59 (forwindows)0 v h v oo .. 8l
‘refresh ' itop
(for margin region functions) 135 (forwindows) . « « « o v ¢ ¢ ¢ 0 s o 0 o 0 s o .43
‘relative (forlabels). . . . v ¢« v ¢ o v v o 0 v v oo 132
(fortv: mouse-set-blmker-deﬁnmon) e e e e 124 (forborders) o « « v ¢« « o s ¢ ¢ o « o s « o o 130
sreprompt struncate-line-out-flag .
(for mbout-handler) e e e e e .. 54 (for tv:line~truncating-mixin) 73
‘restore : “truncation
C(foriexpose) oo oo 19 (for tv:basic~scroll-window) e e e e e e 232
:reverse~video=p ‘typeout-execute
(forwindows) e e e e e e 81 - (forbliptype) s e e e e . . 208
(for tvichoose-variable-values) 197 ‘typeout-window
-:right ' - (for tv.essential-window-with~-typeout-mixin). . . . 214
(forwindows) . & « v ¢ ¢« v v v v v o v o v s o 43 :unless
(for borders) - . e e e s e s e e e e 130 (for tv:restrict-user-option) . « + « « « « ¢ . o @ 206
nght-nmrgm-character-ﬂag ' :unselected-choice-font
(forwindows) e e e e ... 81 (for tv:basic~choose~variable-values) 202
:TOWS :use~old-bits
(fortvimenu) + ¢ v v v v ¢ s o o 2 o s o o« o179 (fortvisheet=bit=aITay) « « « « + « &+ o s o s o « 216
:save-bits :value
" (for windows) e e e e e e e e 16 (for menu item type) 174
:scroll-bar ‘ (for scroll window enms) e e e ... 230
_(fortv:basic-scroll=bar) .« . . . v . .. 0. .. 125 - :value-array - '
:scroll-bar-always~displayed - (for tv:basic-scroll-window) . .« + « « o ¢ o . » . 233
(fortv:basic-scroll=bar) . « « « o ¢ ¢ ¢ ¢ o . .. 2 126 :value-font)
:selected : (for tv:basic-choose-variable-values) 1)
(for tv:ipreserve-substitute-status) 39 ;variable-choice
:selected-choice-font (forbliptype) . . . v v ¢« v ¢« v v o v 0o . 203
(fortv: basxc-choose-vanable-values) 202 :variables
:selected-pane ‘ -(for tv:basic-choose~variable-values) 201
- (fortv: bas:c-constmm-frame) B £ :vertical
sensitive-item=-types . - . (forconstraintframes) « . . ¢ ¢« ¢ . .
(for tv:mouse-sensitive~-text-scroll-window) 226 . :wisibility
sexp (fortv:blinker) e e v e d e . . 106
(for choose vanable valu&s) e e e e e s .. 195 “VSp . '
isize . (forwindows) o o « « « v ¢ ¢ s+ a0 o a s o s+ 80
(forwindows) « v . v v ¢ ¢ s ¢ o ¢ ¢ o0 s o+ » 43 (forlabels). .« . . . « o & e e e e o e .. 133
ssize-changed » :white '
(fortvisheet=bit=array) « ¢ ¢ 0 v . o . 16 - (for constraint frames). e e e e .. 181
:special-choices v :who-line~-documentation=-string
(for tv:margin~multiple-menu-mixin) 189 (for margin region functions) 135
:stack-group i width)
(for tv: baslc-chomc-vanable-values) 201 (forwindows) . . « v v ¢ v ¢ o ¢ e e @ 0 o 0 . 43
........... 108

(for tv:rectangular~blinker)

" 8-AUG-83

152

.

Window System Manual

(for tvichoose-variable-values) - 197
(for tv:bitblt-blinker) « ¢ . . 109

:window :
(foriexpose=near). . « v « o ¢ « ¢ ¢ o o s o s« 46

:window-op

(formenuitemype) . < « v o v o v 0 400 .. 175

X

253

Keyword Index
(for windows)., 43
X-pos »
" (fortv:blinker) e e e e e e e 105
1y v
(forwindows). C ot e e e e e 43
1y-pos .
(fortv;blinker) e e e e e e e e e e e e e 108

8-AUG-83

Flavbrand Resource Index | = 254 | . Window System Manual

Flavor and Resource Index

tv:abstract-dynamic-item=-list-mixin 185

tv:alias-for-inferiors-mixin , e v e .. 36 tvigraphics-mixin. ¢ 00 0. . .93

tv:autoexposing-more-mixin 73 ‘tvigray-deexposed-right-mixin27
tvigray-deexposed-wrong=mixin o o 27

tv:basic-choose-variable-values 200

tvbasiceframe 0 000 ee 0 .. 14D tv:hollow-rectangular-blinker. 108

tvihasicemenu 00000 ... 181 tv:hysteretic-window-mixin 115
tv:basic=momentary=ment « o 182 .

tv:basic-mouse=-sensitive=items 207 tviibeam=blinker 108
tv:basic-multiple=choice . . . ¢« . v . ¢ . o . 192 tvinferiors-not-in-select-menu-mixin35
tvibasic-scroli~bar. w0 125 tv:initially-invisible-mixin27

tvibasic-scroll-window.0 0232 tvinspect=frame . . + . ¢ ¢ ¢ 0 v 0 e 0 e .o . 162
tv:basic~typeout-window212 . tvinspect-frame-resource 162
tv:bitblt-blinker. b o000 o0 0w .. 109 tvinteraction=pane . . « « .« o s 0 00 0. 0. o 156

tvblinker 00 e, 103 tv:intrinsic~no-more=mixin. 215
tv:bordered-constraint-frame13
tv:bordered-constraint-frame-with-shared-io~buffer . 143 tv:kbd-mouse-buttons-mixin. o 113

tv:borders=mixin 4 v 4 0 e 400 .. o 130
tvbox=blinker+« . i ¢ e e e 108 - tviabelemixin 0 .0l e 132

tv:box-label-mixin0 o133 tv:line-area-mouse-sensitive-text-scroli-mixin , . , 227

‘ tviline-area~text-scroll-mixin. 226
tv:centered-label-mixin 134 tvline-truncating-mixin 0. .. T3
tvicharacter-blinker 109 tvilisp-interactor 00 0 0 0. . . 159
tv:choose-variable-values-pane 200 tv:lisp=listener e e e e e s . 159
tv.choose-variable-values-window 200 tv:list-mouse-~buttons-mixin 113
tv:command=menu o185 twlistener-mixin00 00000 159
tv:command-menu-abort-on-deexpose-mixin 185 tv:listener-mixin~-internal 159

tv:command-menu-mixin. 184
tv:iconstraint=frame v e v . . o 142 tv:magnifying-blinker 110
tviconstraint-frame-with-shared-io~buffer. 143 . tvimargin-choice-menu 190

ty:current=item=mixin . . + .« . ¢ o o o o . 227 - tvimargin-choice-mixin0 0. 0. .. 21

, . tv:margin-multiple-menu-mixin 188
tv:delay-notification-mixin 157 tv:margin-region-mixin 134
tv:dclayed-redisplay-label-mixin.13 tvmargin-scroll-mixin 127
tv:displayed-items-text-scroll-window227 - tv: margm-scroll-regxon-on-and-off-wnth-scroll-bar-nuxm127
tv:dynamic-item=list-mixin 186 . VMmN0 v e e 0 e e e 0o oeoe . 182
tvidynamic-momentary-menu « 186 ‘tvimenu-execute=mixin 0 177
tv:dynamic-momentary-window-hacking-menu . . . 186 tv:menu-highlighting-mixin 189
tv: dynam:c-mulueolumn-mmn e v s s e e o« . .18 ° tv:menu-margin~choice-mixin 189
tv: dynamxc-mulucolumn-momemary-menu I .1 ‘tvminimum-window ¢ 0 ¢ e 0 0. B

tve dynamnc-mulucolumn_-momgmary-Mndow-hacklng-menu 187 tv:momentary-margin-choice-menu 190
tv:dynamic~temporary~abort-on-decxpose-command=menu 186 tvimomentary=menu . . . < . . 0 . . 0. . . . 182

tv:dynamic-temporary-command-menu. 186 tv:momentary~-multiple-menu. 188
tv:dynamic-temporary-menu e e e e e e . 186 tvimomentary-window=-hacking-menu 182
. : © -+ tvimouse-blinker-mixin o0 .. 12

zweiteditor=top=level. 0. . L 16] tvimouse~box=blinker. 0. . . 122
tviessential-scroll-mouse-mixin 238 tv:mouse-box-stay-inside-blinker. 122
tviessential-window=-with-typeout-mixin 214 ° tv:mousc-character-blinker. 2. 122
v tv:mouse-hollow-rectangular-blinker. 12

tv:flashy-margin-scrotling-mixin. 127 tv:mouse~rectangular=blinker, 122
tv:flashy=-scrolling-mixin 126 tv:mouse=-sensitive=text-scroll-window 225
tv:frame~-forwarding=mixin 154 tv: mouse-ecmlme-lext-:croll-wmdow-wuhoul-chck . 227
tv:full-screen-hack-mixin131 tv:multiple=choice « .« ¢ v« v . .. 193
tv:function-text-scroll=window22l tvimultiple-menu. o o0 00 188

" 8-AUG-83

"

Window System Manual e 255 - Flavor and Resource Index

_) SUPQUDPIEINEL & v v v b e e e e e e e e .. W162
tvino-screen-managing=mixin. 0 . 0 4. W27 supdup:telnet-windows 0L 162

tvinot-externally-selectable=mixin W37)
tv:notification~mixin, e e .. 157 supdupitelnet . . . ¢ i o 4 e e s e 0 00 s oo J162
o _ supdup:telnet-windows 0 0 ... 162
tv:peek=frame e e e e e e e .o 162 0 v temporary-choose-vanable-values-wmdow. o o s 201
tv:pop~up-finger-window 163 . tviiemporary-menu. ¢ 4 . . 0. s IR | 7]
zwei:pop-up-standalone-editor=frame 161 . zweitemporary-mode-line-window-with~-borders . . .161
tvipop~up=text=window 4 s 0 4 . 162 ~zweitemporary -mode-line~window-with-borders-resource 161
tvipreemptable-read-any-tyi-mixin 55 tvitemporary-multiple-choice-window.193
 tVIDIOCESS="MEXIM + o v & o o o 4 « o . ve e .40 tvitemporary-window-mixin 25
' tvitext-scroll=window. 219
tvirectangular=blinker 108 tvitext-scroll~window-empty~gray-hack22
tvireset-on-output-hold-mixin42 tvitext-scroll-window-typeout-mixin 222
tv:reverse-character-blinker. R & tvitop=label=mixin-. PO k X
: tvitruncating~pop~up-text-window163
LVISCTEEIL & & v & o s o o o o o o o o o o o s » .13 tv:truncating-pop~up-text-window-with-reset . . 42, 163
tv:scroll-mouse-mixin.. e v e e« . 238 tvitruncating=window. Y |
tv:scroli-stuff-on~off~mixin ee e e s 127 titypeout=window 0 v u vl 0w e 22
tviscroll-window e e e e 4. 232 tv:itypeout~window-with-mouse-sensitive-items212
tv:scroll-window-with=typeout 233 : '

- tviscroll-window-with-typeout-mixin 233 tvewindow . . . v h e e e e e e 7
tv:select-mixin 7 tv:window=-hacking-menu-mixin 1
tViSheet . v v o i e e e e e e e e e e e 7 tv:window~with-typeout=mixin.214
tvshow-pamally-vxsxble-nnxm 1 . :

- zweistandalone-editor-frame 160 zweitzmacs=frame 0 0 e v 0 e . e e 160
zweiistandalone~editor-window R [zweiteditor-top=level 161
tv:stay=-inside-blinker-mixin e ... 108 zwei:pop-up-standalone-editor-frame.161
tvistream-mixin. e e e e e e e 49 ° zweiistandalone-cditor-frame 160
supdup:ssupdup. . . v v e v e kv e e e e e e 162 zweisstandalone-editor-window. 160 -
supdup:supdup-windows. . . . « . . o s o . . . 162 zweitemporary-mode-line-window-with-borders . . .161
supdup:supdup. ce v e e e P (7] wei: temporary-mode-hne-wmdow-wuh borders-rcsource161

supdup:supdup-windows. el 162 zwelzmacs=frame 0.0 . 160

: o | | 8-AUG-83

Variable Index)

BRKDA~ChAr . v v . s v e e e e e e e e 49
%%kbd-control 00 00 e 0w e e R
%%kbd-control~meta 2. a0 0. 49
%%kbd-hypero v e ... 49
%%kbd-meta. e e s e e e 49
%%kbd-mouse 0. o. s c e e e e e 49
%%kbd-mouse~button c e e e e &9
%%kbd-mouse-n~clicks <. 49
%%kbd-super. e e e e e e e .. 9
tv:**constraint~node®** L1}
tv:**constraint~remaining-height**. 151
tv:**constraint-remaining-width**15l
tv:**constraint-stacking®®. 151
tv:**constraint-total~height** 151
tv:**constraint-total-width®* 151
‘enable—typeout-wmdow-borders‘. 4 K
. tvi*escape-keys* & B X
tv; ‘mouse-mcremenung-keystat&‘ P V).
tvi¥system=Keys® . . . o o % o s e s 6 o 0 e a e 64
tv:*system-menu~this-window-column®. 168

tv:*system-menu-windows~column® . . . c e 168

tv:12%-~gray e e e e e e e e e e e 27
tv:i25%-gray e e e e e e e e e e 27
tvi33%-gray0 e e e e e e e e s 27
tV:i50%=8raY « v + « ¢ 0 4 b e s e e e i
T5%=BTAY « ¢ 4 o v 4 e e s e e e e e e 27
tviall=the=SCTeens . « v o o s o o s o o o s o 13
tvialu=and . . v ¢ o o b e s e b e s e e 94
tvialu~andca « v . . h v e e e e e e e e s 94
tvialu=ior & & . 0 e e e e e e e e e e s e s 93
tvialu-seta. et s e i e e e e 94
Valu=XOr s v ¢ e o s b s b e e e s s 94
tvicold-load~stream . . . « ¢ < ¢ ¢ 4 4 44w oo 170
color:color-screen i e e e e e e s 13,165

tvidCfault=SCTEBN o o 4 v b b v v e e e a . e 13

tv:default-window-types-item-list 168

tviinitial-lisp-listener . . . o v .0 b a0 eu . 159
tv:kbd-global-intercepted-characters . . . e ... 63
tv:kbd-intercepted-characters e e e e . 60
tv:kbd-last-activity=time 50
- tv;kbd-standard-intercepted-characters 60

tvikbd=tyi=hook00 61

Window System Manual

Variable vInd_ex."'

“tv:last-who-line-process. e« o . 163
tvmain-screen. o« . W e e e e e .. W13
tv:more~processing-global-enable P /]
tvmouse=blinker v 0 v e e 0 4 121
tvimouse-bounce-time . .« . . . ¢ .0 0 44 . . 128
tv:mouse-double-click-time 128

tvimouse~last-buttons . . . ¢ . ¢ ¢« o o 0. .. 116
tvmouse=sheet. + « v « ¢« « v v o o o s 0. . 112

tvemouse-speed . . . v 0 0 e s e b e e 8 s e e 116
tvimouse=window. . ..« ¢ v ¢ 4 4t e b s 000 115
IVIIMOUSE=X & + & ¢ 4 o v o o o o e e e e e 112

EVIITIOUSE™Y & « « s o o o ¢ o s o o o s o o o » 112
tv:previously-selected=windows 36

tviscreen-manage-update-permitted-windows28

tviscroll-item=leader-offset,« 238
tviselected=window . « 4+ ¢ 4 o 0 0 0 s s e e . W31
tvisheet=area. . . v v o o o o . . e e e e e 9
tv:array.

(of tv:bitblt-blinker) P) [
tv:baseline

(ofwindows) e e e w e e . .85
tv:bit-array .

(ofwindows) ¢ v v ¢« vt e b e i e e e 16
tv:bits-per-pixel

C(OftVISETEEN) . . v b ek e e e e e e e e e 15
tv:blinker-list . :

(of windowsandscreens), . . « + ¢ ¢ ¢« ¢ 104
tv:border-margin-width

(oftvborders=mixin) . . © . « « ¢ ¢ o o . .. 131
tv:borders

(oftvborders=mixin) . « « + « « = 4 ¢« ¢ o 0 0 131
tv:bottom-margin-~size

ofwindows) v ¢ v v 4 e b 0 0 129
tv:buffer . _

(of tviscreen) . e s e e e e e e e e 15
tv: buffcr-halfword-array

(of tv:screen) . e e b e s e e e s R .1
tv:char-aluf

(ofwindows) e e e e e 67
tv:char-width

(of windows) « + v 4 ¢ v ¢ e 0 5 e n s s e . 67
tv:character '

(of tvicharacter=blinker). .. « +.v « v » + 0 . . . 109
-tv:choice-types

(of tv:basic-multiple-choice) 193
‘tv:choice-value

(of tv:basic-multiple~choice) 193
tv:chosen=item

(oftvbasice-menu) .« 0 0 0 e e ae 181

tv:column-spec-list

8-AUG-83

Window System Manual

(of tv: dynamu:-mulucolumn-mnxm) 187
tv:constraints

- (oftviconstraint=frame) « . . ¢« 0 0. 147
tvicontrol-address

(oftviscreen) . . ¢ v v v v b 0 e e b e e e e .. 15
tv:current-font .

(ofwindows) v e e e e 84
tvicurrent-item -

(of tvicurrent=item=-mixin). « « . . . e 27
(oftvbasicemenu) 181
tvieursor=x’

(ofwindows) . « v v ¢ ¢ ¢ v e v e b e s e -, .66
tv:cursor-y

fofwindows)o i oo, .66
tv:deexposed~typeout-action

(ofwindows) e e W22
tv:deselected-visibility :
(oftviblinker) . . . v ¢ . o v v v e e e e e 106
tv:display-item .
- (oftv:basic-scroll-window) . . . « . . . 0 b . . 232
tv:displayed-items :

(of tv:displayed~-items-text-scroll-window) 227
tvierase-aluf

(ofwindows) ¢ .o s e e e 67
tviexposed~-inferiors '
. (of windowsandscreens).0 . 0. . .. W2
tviexposed-p. _

(of windowsandscreens)s o« « « v o o o s o « o o 21
tv:font)

(of tv:character-blinker), .« .+ +» « ¢« ¢« . ¢« v . . . 109
tv:font-map

(of windows) . . ¢ ¢ o v ¢ o ¢ o e v 0 0 o s v s 84
tv:function '
(of tv: bamc-choose-vanable-values) 201
" . tvigeometry o S
(oftv:basic=menu) « o v ¢ v v 4 4 0 ve e . e 182
tv:half-period .
(oftviblinker) . . v . v i v e e e e . . 106
tv:height L v . '
(of windows) e o 4 s e e e e e e e 47
(of tv:bitblt=blinker) e e e 110
tv:highlighted-items
(of tv: menu-hlghhghung-mmn) e e e .. 189
" tv:incomplete=p
- (of tv:basic-typeout-window). ¢ . . . 27
tv:inferiors .
(of windowsandscreens). « ..o o v o 4 .4 0 o . . 12
tv:io=buffer) :
(oftvstream=mixin) . . . & v v ¢ v ¢ 0 0 000N 51
(oftv:command-menu) 185
tv:item-generator ' ‘ :
- (of tv:text~scroll-window) e e e e 222
. tviitem~list

foftvibasic-menu) . « . o v v v 0 v v v 0. 181
tv:itlem~list-pointer »
(of tv:dynamic-item~list-mixin) - 186
tviitem=-name

Variable Index

(of tv:basic-multiple-choice)193
tviitems

 (of tvitext-scroll-window). e oo . 219
tv:label - '

(of tv:label-mixin). e e e e e ... G133
‘tv:label-needs-updating

(of tvidelayed-redisplay-label-mixin) 134
tv:last-item

(oftvibasice-menu).« v o . . o . .. 181
tv:left-margin-size

(of windows) e e e e i e e e e 129
tv:line-height .
(ofwindows) ¢ e e e . 67
tv:lock

(of windows and screens) . .
tv:lock~count

(of windowsandscreens) « « « « « « o ¢ ¢ o ¢ o « 24
tvimagnification

(of tv:magnifying-blinker). 110
tv:margin~-choices '
(of tv:margin-choice=mixin). . . . « « + + « ¢ . . 211
tv:more=vpos :
(of windows) A]
tv:mouse-blinkers .
(OftVISCTEEN) « ¢ o o o o o « o s o s o o o o s & 123
tv:name
(Ofwindows) « « «.v v & ¢ s ¢ ¢ o s v v e v 0. 9
tvipanes _
(of tv: constmnt-ﬁ'ame). e et e e e e e e 147
tviphase
(oftviblinker). . ¢ ¢ ¢« v v ¢ 6 ¢ v oo PR (17)
tv:print-function
~ (oftv: funcuon-text-scroll-wmdow) 0. 221
tv:print-function-arg s
(of tv:function-text-scroll-window). e w221
tv:priority _ :
(ofwindows)
tv:process
(of tv:process=mixin). . . . v . . 4 4 00 0. 41
tviregion-list)
(of tv:margin-region-mixin). 134
tvirestored~bits~p .
(of windows) . v ¢« v v 0 v v v b b e v e e 17
tv:right-margin~size
- (ofwindows) 0. . . e e e e J129
tviscreen=-array ')
(of windowsandscreens) © . « «. 4 « + .+ S |
tv:selection-substitute .
(of windows) e st e e e e e e e 37
tv:sensitive~-item=types :
(of tv:mouse-sensitive- text-scroll-mndow) 225
tvisheet)
(oftvblinker). e e 106
- tvistack-group : .
(of tv:basic~choose-variable-values) 201
- tvisuperior

(of windowsandscreens)

8-AUG-83

Variable Index

tv:time-until-blink

(of tv:blinker) e e e e e e

tv:top-item

(oftvitext=scroll=window)

tvitop-margin-size

(of windows). o e e e b e e

tv:truncation
(of tv:basic-scroll-window).
tvitypeout-window

(of tviessential-window=-with-typeout-mixin)

tv:value~array i

(of tv:basic-scroll-window).

tv:visibility

258

{of tv:blinker) . . .
tviwidth

(of windows)

(of tv:bitblt-blinker) . . .

tvix-offset

(of windows) . . .
tV:X-pos

(of tv:blinker) . . .
tv:y~offset

(of windows) . . .
tvly=pos

(of tv:blinker) . . .

Window System Manual

8-AUG-83

Window Systém Manual

Function Index

Function Index

sys:%color=transform 102
sys%draw=char. ¢« oo v o s 0. .. 2 101
sys:%draw=-line. S 1]
sys:%draw-rectangle. 0. 0w e . 101
tv:%draw-rectangle~clipped. 101
sys:%draw-triangle e et e e e .. 10

tviadd-escape=key o 0 b v e 00 e 00 e 64

tviadd-System=KeY . « « ¢« v ¢ s v v s 0 0 2 .. 04
tviadd~to~system-menu-programs-column 167
tviadd-typeout=item=type . . + « ¢ « « ¢ « . . . 209
tviawait-window=exposure « « « « « « ¢ ¢ o 2 4 o 23

3 1P (7.
tv:black-on=white 000 .. 14
color:blt=color-map. . . . - + « « ¢ v 4+ . « . . 165
tvicareful=notify . « 000 0L . . 157
tv.choose-process-in-error e e e e s . 158
choose=-user-options. e e aie e e e e . 206
tvichoose-variable-values 196
tv:choose~variable-values-process-message 203
coloriclear. v v 0 vt e e e e e e . s 166
tviclose-all=servers ¢« . ¢ e v 0 4 o0 .. 164
coloricolor=draw=char. . . « « « « « ¢« ¢ ¢ o o & 167
color:color-draw=~line e o . 166
color:color-exists=p c e e e e e e s 165
color:blt-color-map. ¢ ee s s 165
color:clear. P s e e e e e e s e 166
coloricolor-draw=char. 167
color:color-draw=tine e e e . 166

- color:color-exists=p
color:icolorate. « « + 4 4 v 4 e e e 0 0w ee . . 166

color:colorize. v ee e e e e e e e 166
color:fili=color-map. e e e s 166
color:make-color=font. i « 92,167
-colorirandom=color-map. 166

. color:read-color-map e e ... 165
colorirectangle c 4 0 b e e 0. e e . . 166
color:spectrum=color=map . . « « « +. o ¢ . . . 166
color:write=color-map . . . « . « .« « 165
color:write-color-map-immediate . . ., 165
color:colorate. . . . 4 0 . 0 4 . . . [

- coloricolorize, .+ . 4 . 0 v v v e e e e s ee e s 166

- tvicomplement-bow-mode i . . 0 00 . 0. 15 -
define-user-option-alist . . :« . .. 204
defvar-site-alist-user-option 205"
defvar-site=user-option . « . . « . ¢ . ¢ ¢ . . . 205
defvar-uscr-option oo .. 25
tv:defwindow-resource, e e . 169
tv:dclaying-scréen-management30

tvidescribe-servers v . s v 0w 0w 0 .. 165

tv.desclect~and-maybe-bury-window 33
tvidraw=char . . « . ¢ ¢ b e v e e w0 ... W10
tv:draw-rectangle-inside~clipped101
color:fill~color-map . . « « « ¢« v o+ o W e . J166
tv:find-process~in-error. T e e e e e e 158
tv:find-window-of-flavor ¢ 65
tv:flush-full-screen=borders & 132
tvifont-baseline . . . ¢ v v v h i b b e s e N
tv:font-blinker-height 91
tv:font-blinker-width. C e e e e .. 9

tv:font-char-height. « + ¢ ¢ ¢ 0 ¢ .
tvifont-char=-width. . . « « « + ¢« v 4+ v ¢ 0o v+ .90

tv:font-char-width-table «e 9
tvifont~chars-exist~table o .. .9
tvifont=evaluate ¢ v o v v e e h e e e e s 87
tv:font~indexing-table . . « « + . ¢ o o .. .91
tv:font-lefti-kemn-table 9
tvifont=name ¢ ¢ . 0 v e b e e e e e 9%
tvifont-raster-height R !
tvifont-raster-width 91
tv:font-rasters=per-word o9
t:font-words=per=char 0000, 91
tviidle-fisp~listener. e 159
tviio-buffer-clear e e e e e e 58
tv:iio-buffer~empty=p. oL 57
tvio-buffer~full=p. ¢« v v v 0 v . 57
tvio=buffer-get« v v 0 v b e e e e 57
tviio~buffer-input-function -
tviio-buffer-input-pointer. 56
tviio=buffer-last-input-process. .-. 87
tviio-buffer-last~output=process . . . + + + « « + o + 37

tviio-buffer-output-function., . 5

tviio-buffer-output-pointer56

tviio-buffer-plist. . . « . . ¢« v 00w e e e 57
tviio-buffer-push C e a e e e s 57
tviio-buffer-put. W 57
Ctviio-buffer=record. 00 s 0 e e 0 e e 57
tv:iio~buffer-record=-pointer« 57
tviio-buffer-size.v o o 0000 0. . 56
tviio-buffer-state00 . 0. 56
tviio-buffer-unget e v e e e e e e 57

' tv:kbd-asynchronous-intercept-character 62
kbd-char-available.00 0., . 56

tvikbd-char-typed-p. e e e e . 59
tv:ikbd-default-output-function. 58
. tv:kbd-intercept-abort s e e se s 60
tv:kbd~-intercept-abort=all60
tv:kbd-intercept=break «e. s . 60
tv:kbd-intercept-error-break. L. 60
tvikbd-io=buffer=get v o e 58
tvikbd-snarf-input0 . . .

-8-AUG-83

Function Index

260

" tv:scroll-maintain-list

-tv:sheet-backspace-not-overprinting-flag

Window System Manual

VIOUSE=WAIL o & & « o ¢ o o« ¢ ¢ ¢ o o 8 0 o o

tvimouse-wakeup. . .+ v 4 o 0 0 00000 s s
. 113

tVIMOUSe=WarP. . + « « « & o
tVIMOUSE=Y=0r=N=P. + « « + + « s « » e e e
tvmultiple=choose « v v s o 0 v v 0
tv:multiple-menu~choose
tvnotify.,

tv;bpen-blinker................

zwelpop~-up-edstring . « « . ¢« ¢ ¢ ¢ s 0 0 . .o
tviprepare=sheet . . « o v ¢ ¢ ¢ 0 6 0 6 00 e .
tvipreserve-substitute=status 0. .
tv:print-notifications

tviprocess-typeahead ¢ 0 4 0 0 0 0 0 s o0 s

tviprune~user-option=-alist « 4 o0 «"

color:random=color-map. . . . ¢« ¢« « ¢« ¢ o ¢ o o -

color:read-color-map

zwei.read-defaulted-pathname-near-window

color:rectangle _
tviremove~-escape~key..
tv:remove~-system-~key
reset-user=options . . ¢ . 4 4 . 0 o4 .
tv:restrict-user-option

tviscroll-interpret=entry . + + v ¢« ¢ ¢ o ¢ o0 o« o
tv:scroll-item~component~items. e s e e s
tviscroll-item-line-sensitivity }
tviscroll-item-mouse~items. ¢ ¢ . .
tv:scroll-item~plist ‘
tv:scroll-item~size

tviscroll-maintain-list~unordered
tv:scroll~maintain-list~update=states . . . « o . . «
tv:scroll~parse~-item
tv:scroll-string-item=-with-embedded-newlines. . . .

...............

tv:select-or-create-window=of-flavor
~ tviset-default~font .
tv:set-screen-standard=font. ¢ ¢ 0 0 oo

tviset-standard-font.
tviset=tv~speed. . .

tv:sheet-baseline

tvisheet~bit-armay. . « « + o o+ . & e e e s e

tvisheet=blinker=list. + v v o « « v e ¢ o o o o«

tv:sheet-bottom=-margin-size + .
tvisheel~bounds-within-sheet=p.

" tvisheet-calculate-offsels, « o o ¢« s 4 o 0. o e

- tv:sheet-clear-locks . . .

kbd=tyi o « & 0 4 0 e e e e e e e e e
~kbd-tyi=no=hang 56
tv:kbd-wait~-for-input-or-deexposure, 59
tv:kbd-wait-for-input-with~timeout 5
tvkey-statek o000 65
tv:label=bottom. D k X
tvilabel-centered0 4 e e .. 0133
tvilabel~font0 .0 0 0 0o e . e . . 133
tviabel-left 0. ... e e 133
tviabel=right, . . . v v ¢ v ¢ v v v s v s .. 2133
tvilabel=string ¢ v ¢ 0 0 v a0 0. 40133
tvelabel=top0 v e e e e e e s . . 133
tvilabel=vsp 000 i e . 133
tv:lock-sheet e e e e e e e e 24
tvmake-blinker. « 0 v 4 e e 000w 14
color:make=cofor=font « + ¢« ¢ o v 4 4 4 92,167
tv:make-default-io=buffer 58
make-instance 0 .0 i 0 b e e 0. 009
tv:imake=io=buffer.« « . o e b 0 o5 .. 57
tv:make-sheet=bit-array o . o o102
tvimake=windoW « « v v v s b 0 s e e s b 0 v oD
tvimap-over-exposed-sheet. e 12
tv:map-over-exposed=sheets . . .+ « « « 4+ o+ o o .12
tv:map-over~sheet. e e e e ee e e s 12
tvimap-over~sheets . . . + « = ¢ o s 4 o+ 4 & .. 12
tv:margin-region=area e o e s+ 136
tv:margin-region=bottom ¢ 135
tv:margin-region-function 134
tv:margin-region=left 135
tvimargin-region=margin . . « « « ¢ o ¢« ¢ « o o o 134
tv:margin-region=right, 135
tvimargin-region=size+ o + ¢ o0 0 0 . o . 135
tv:margin=region=top . . <« v .+ ¢ s o . o0 o s s 135
IVMCNU=CROOSE. « « & « o b o = o s o o o o o + 177
tvimenu=-compute~geometry.+ . . 181
tvmenu-item-string.0 e . 177
tvimerge-shift-<keys ee e o116
tvimouse-button=encode e . . 116
tvimouse=buttons+ . 0 0 0. o. oo . . 118
tv:mouse-call-system-menu. S v |
tv:mouse-default=handler.. 119
tv:mouse-define-blinker=type 123
tv:mouse~discard-clickahead 128
tvimouse~get-blinker < 123
tvmouse=input I § £
timouse=select L 0o oo 121
tv:mouse-set-blinker, . .. <« ¢ 0 .. v ... 120
- tvimouse-sct-blinker-cursorpos 0 0 0 o . 120
tvimouse-set-blinker~definition 123
Ctvimouse=set=sheet b . e s e v e e e e s 112
" tv:mouse-set-sheet=then=-call 112
tv:mousc=sct=window=position, . .= « « + « + o » o 117
tv:mouse-sct-window=-size 117
tv:mouse-specify-rectangle o0 o0 117
tv:mouse-standard=-blinker 122

tv:sheet-can~-get-lock .
tvisheet=char=aluf . . . « .o v ¢ o o & o
tv:sheet-char-width

tv:sheet-contains=-sheet-point=p.
tvisheet-cr-not-newline-flag . .
tv:sheet-current~-font

116

178
191
187
157

107

- 8-AUG-83

Window System Manual . 261

tvisheet~top-margin~-size. <. . 129

Function Index

tvisheet=Cursor=x. . . « v oot 4 o ¢ 0 s 0 o s Je o607 tvisheet-truncate-line-out-flag.. 73
tvisheet-cursor=y. . . « « « . v e e e e e o o 67 . twisheet-width. et s e e e e e e 47
tvisheet-deexposed-typeout-action. . « . « + + « + .22 teisheet=within=p . . « + v v ¢ ¢ ¢ ¢ o ¢ . 48
tvisheet-end-page-flag e e e e e . .71 ' tvisheet~within~sheetp.48
tvisheet-erase-aluf e e e e 67 tvisheet-x=offSet.o v v v v .. 47
tv:sheet-exposed-inferiors o . o ... 21 . tvisheet-y-offset.« e ee o 47
tvisheet=exposed=P « + » + v ¢ 4 0 4 0 00 .2l color:spectrum=color-map . « « . + « v o + « o « J166
tvisheet-following=blinker 107 tvispline e e e e e e e 98
tvisheet-font=map ¢85 sys:iocolor=transform . . .+ . . . 404 h e 00 .. 102
tvisheet-force=access . + v v ¢ o v ¢ o 0 0 o onos W23 sysi%draw=char101
tvisheet=get=SCreen . . v + « « ¢ o0 4 0 e 0 0w . 13 sys:%draw=tine 1) |
tvisheet=height. . . . « . . v . ¢ v v v v ¢ v v 47 sys:%draw=rectangle v e e 0 00 . 101
tvsheet=inferiors . . .« v v v o v b v 00 ... W12 sys:draw=triangle . .+ . . 4 . ¢ 0 b 4 e 00 e e 101
tvisheet-inside-bottom. e e w130 -
tvisheet-inside=height47 - tviturn-off-sheet-blinkers 107
tvisheet-inside~left , . . « « . v o v 00 ..o 130 zweiitypein-line-readline-near-window161
tvisheet-inside-right. 130 .
tvisheet=inside=top « ¢ v ¢« 0 4 0 v . . . 130 tviwhite=on=black15
tvisheet-inside-width Te e e 47 ‘tviwho-line-clobbered Jd64
tvisheet-left-margin-size. . . . « . 'v « 129° tviwho-line-documentation 163
“tvisheet=line=height.67 tv:who-line-file-state-sheet 164
tvisheet=line=out0 ¢ v v d w00 . 0 70 . tviwindow-call e e e A4
tv:sheet=lock, e e e s s s e e e e 24 ‘tviwindow-mouse=call -
tvisheet-me-or-my=kid-p i+ o . . W12 tviwindow=-owning=mouse . . . « « ¢« ¢ ¢ . o o . JA15
~tvisheet-more-flag v P A § tviwindow-under-mouse 6 . 0 00 117
tvisheet-more~handler. v v ... W72 tviwith=-blinker=ready. « ¢ v ¢ « ¢« o ¢ ¢ ¢ ¢ o b 107
tvisheet-more=vpos . + .« + . . . e v e v v e w12 0 tviwith-mouse-grabbed W05
tvisheet-number-of-inside-lines. 48 tviwith-mouse-usurped, 118
tv:sheet-output-hold-flag 2.7 tviwith-selection-substitute 38
“. tvisheet-overlaps-edges=p . . . + . . 4+ o ¢48 tviwith-sheet-deexposed 2
tvisheet-overlaps-p v . 4 0. . . .48 tviwithout-screen~management + « « « o « o+ & 30
tvisheet-overlaps~sheet=p .-. « .«48 color:write=color-map- . v . « v . o v ¢ e 0 e 165
. tv:sheet~right-margin~character-flag-. . .81 color:write-color-map~immediate.165
tv:sheet-right-margin-size 129 WIte=USer-options .. . « « + « o « ¢ ¢ ¢ 4 206
tvisheet-SCreen=armay . + « o v o o o o o'0 o » o 221 :
tvisheet-superior . . « s e e e e e e e e 12 zweipop-up=-edstring. ¢ ¢ o0 0 .. . J161
tvisheet~tab=nchars SR 1 | zweiiread-defaulted-pathname-near~window .,162
tvisheet=tab-width 82 - zweitypein~line-readline-near-window Jet

8-AUG-83

ZMail Overview
ZMail Version 57 (Release 2)

Published by LMI 1000 Massachusetts Avenue. Cambridge MA 02138 USA

Copyright © 1985 Lisp Machine Incorporated.

ZMail Overview i Table of Contents

Table of Contents

Notational Conventions ¢« . . 0 0 0 i e e e e e e e e e e e e e 1
1. Basic ZMail Concepts e e e e e e e e e e e e e 2
LIMail Files 0 0 o o o e e e e e e e e e e e e e e e e e e 2
1.2 Starting ZMail0 L L o e e e e e e .2
1.3ZMaill Commands L e e e e e e e e e e e e e e e e e 3
1.4 Using ZMail: Basic Facilities o . .00 oo 3
1.5 Using ZMail: Advanced Facilities 4
Appendix C. Standard File Names v . v v v v e 6
CllInbox Files o o i e e e e e e e e e e e e e e e e 6
C2PrimaryMailFiles o e e 6
Appendix C. ZMail Initializations L0 7
C.1 Setting Up Your ZMail Initialization File e e e e e e e e e e e e 7
C.2 Other Useful Initializations 9
Appendix C. SendingMail oL oo 11
ClHeaderFields e e 11
C.28endingMail L e e e 11

C.3 The Format of Addresses v v v v v v v e e e e e e 12

ZMail Overview 1 Notational Conventions

Notational Conventions

There are many operations that can be performed with ZMail using the keyboard and mouse.
In order to describe these operations unambiguously, the following notational conventions have been
adopted in this document. (For definitions of the terms used, see Iniroduction to the Lambda.)

Function keys are indicated by a lozenge: (____). Some common function keys are:

YSTEM,
TERMINAL

An argument to a function key is separated from it by a space:

e

TERMINAL) F
YSTEM) P
(TERMINAL) (CALL)

Mouse buttons are indicated by the symbol: ﬂ This symbol by itself indicates clicking any
mouse button. ﬂ with one of the letters L, M, or R inside indicates clicking the left, middle, or
right mouse buttons, respectively.

A mouse-sensitive item appears in a box, such as [Split Screen|. To indicate that a particular
mouse button should be clicked while the mouse is pointing at a mouse-sensitive item, a mouse
button indicator appears before the mouse-sensitive item. For example:

[ﬁ] [Split Screen|

Indicates that the right mouse button should be clicked while the mouse is pointing at
(Split Screen]|.

iI

Chotce bores are indicated in the following form:

Do It B}

A fixed-width font, as in function-name, is used for LISP examples that are set off from the
text, as well as for output printed on the Lambda screen. Another font convention is that filenames

are in bold-face, all upper case, as in LAM3:RJPL,LISPM.INIT.

ZMail Overview 2 Basic ZMail Concepts

1. Basic ZMail Concepts

ZMail is a program for reading and sending mail on a Lambda. You can use ZMail if your
Lambda has a UNIX processor or if it is connected to a network, either local or wide-area, containing
at least one machine that has a mail receiving program. If you only have Lambdas without UNIX
processors networked together, you cannot use ZMail at present, since the LISP processors have no
facilities for receiving mail. (A LISP mail server program will be added in a later software release.)

1.1 Mail Files

ZMail assumes that your mail lives in (at least) two mail files:
A primary mail file
This file contains any messages that you have decided to save. ZMail knows about
several different formats for mail files. See the ZMail Manual for more details.
An inbox This is the file that contains any new mail that you may have received.

ZMail moves mail from your inbox to your primary mail file. Other mail systems also use
this system of moving messages from one mail file to another. For example, in UNIX systems,
incoming mail is usually stored in a file called [usr/spool/mail/your-directory, while your saved
mail is stored in your-directory/mbox. See Appendix A for more discussion of what primary mail
files and inboxes look like on different systems.

Typically, Lambda owners use a LISP Machine file system as a file server and another machine
(or the UNIX portion of a Lambda/Plus) as a mail server. If you have such a configuration, you
will need to give ZMail information about where to look for your mail. Appendix B tells how to
set up an initialization file so that ZMail will automatically do the right thing when you go to read
your mail.

Note: if you need to create ZMail initializations, you should do this the first time you
use ZMail, before doing anything else. See Appendix B for step-by-step instructions
on how to set up your initialization file.

However, you will not need to give ZMail any information about where to look for your mail
if all three of the following conditions hold:

1. You read mail on a system that has such a dual mailbox scheme (or have a .BABYL
primary mail file on a system that does not use dual mailboxes, such as Tops-20); and

2. This system is also the machine you are normally logged into when you use the Lambda
(i.e. this system is the machine where your LISPM.INIT file and other LISP files reside);
and

3. You use the default mailboxes.

1.2 Starting ZMail

You can get into ZMail:

e By typing M;
e Via the System Menu [Mail] or [Select] options; or
e By evaluating the form:

(zmail)

‘ZMail Overview 3 Basic ZMail Concepts

When you are using ZMAIL, the screen normally contains three large windows: the summary
window at the top, the command menu in the middle, and the message window at the bottom.
Underneath are two small windows, the mode line and the input line or echo area. You can also
specify alternative configurations. See the ZMail Manual for details.

When you first start up ZMail, the summary window and the message window will be blank.
However, when a mail file is read in, these windows will display useful information.

The summary window displays information about each message in the currently selected mail
file. This information includes the position of the message in the mail file, the sender and recipi-
ent(s) of the message, and, optionally, the subject of the message. (Messages do not always have
an indication of their subject; if they do, it is displayed.)

The message window displays the text of one of the messages in the current mail file. This
is called the selected message. Normally, this is the first message that you have not yet read.
However, you can select any message in the mail file.

The mode line displays the information about the currently selected mail file and the currently
selected message. ’
The echo area is where you enter extended commands or text input, just as in ZMACS.

1.3 ZMail Commands

You can give commands to ZMail either via the keyboard or by clicking on options in the
command menu with the mouse. Keyboard commands, which are usually single characters, provide
a simple way to get the default behavior of ZMail. The command menu offers greater flexibility.

Typically, clicking ﬂ on a command menu option provides the simplest or default version of
a command. Where a corresponding keyboard command exists, it is usually equivalent to elicking

Clicking ﬂ on an option provides more flexibility. Typically, clicking ﬂ will pop up a menu
of options. For some commands, you will be prompted to enter text in the echo area.

Clicking M} on an option usually selects a particular option. For many options, clicking [m is
not standardly defined. However, ZMail allows you to specify what clicking [m on an option means,
through its Profile Editor facility.

For example, clicking m on [Mail|, or typing M, will allow you to send mail. Clicking m on it
will pop up a menu of various mail options. Clicking m allows you to send a bug report.

1.4 Using ZMail: Basic Facilities

The basic functions of ZMail are:

¢ Loading in mail.

e Moving among messages.

e Modifying mail files.

e Sending mail.

Saving (modified) mail files.

The normal way to read mail into ZMail is to type G or click (L} on [Get New Mail|. This will
first read in your primary mail file (your old saved mail) and then its inbox file (your newly arrived
mail).

You can move from one message to another with the following commands:

e Typing N or clicking m on will move to the next message.

ZMail Overview 4 Basic ZMail Concepts

e Typing P or clicking m on will move to the previous message.

e The lines in the summary window are mouse sensitive. Clicking m on a message will
select it.
The summary window also includes a scroll bar. Move the mouse cursor against the
left margin of the summary window until it assumes the shape of a double-headed
arrow. You will now be able to use mouse clicks to scroll the contents of the summary
window. (The mouse documentation line describes all the options.) This is useful if
you have more messages than can be displayed in the summary window.

e Typing a numerical argument, n, followed by J (for Jump) will select message number
n.

Typing ZJ will select the last message.

Typing J by itself will select the first message.

The simplest way of modifying a mail file is to delete messages. Typing D or clicking m on
will delete the selected message. Clicking M) on a message in the summary window will
delete it. These commands only mark the message for deletion. It will not be expunged from the
mail file until the mail file is saved.

A deleted message may be undeleted (before its file is saved) by selecting it and typing U or
clicking m on [Undelete]. Clicking [m on a deleted message in the summary window will undelete
it.

Simple mail may be sent in two ways. Typing M or clicking ﬂ on will enable you to
send a new message.

Typing R or clicking (L} on will allow you to reply to the selected message.

See Appendix C for a discussion of mail headers and other aspects of sending mail.

The window in which you send a message, whether it is a new message or a reply, has the full
editing capabilities of ZMACS. When you are done composing the message, type to send it or
to cancel it. Typing C or clicking (L} on will return you to a message cancelled
by (ABORT).

You can save your primary mail file by typing 8§ or clicking m on [Save Files|. The deleted
messages will be expunged at this time, and your mail file will be updated.

ZMail monitors your inbox. If new mail arrives while you are reading your mail, the mes-
sage New mail in ¢nboz will be displayed in the echo area. Typing G again or clicking m on
[Get New Mail] will read in the new mail.

1.5 Using ZMail: Advanced Facilities

In addition to basic mail reading facilities, ZMail also has more advanced features.

e Maintaining multiple mail files.

Labelling messages with descriptive keywords.

Sorting messages in mail files.

Defining filters and predicates that allow messages to be moved or sorted.
Defining universes of messages, which may cross mail files, to search.

The option allows you to move messages from one mail file to another. This option is
very useful if you receive messages in different subject areas and wish to maintain a separate mail
file for each subject.

The option allows you to read in and select a mail file other than your primary mail
file.

ZMail Overview 5 Basic ZMail Concepts

The option allows you to label a message with descriptive keywords. Keywords
are displayed in the summary window. You can also sort, filter, and move messages based on their
keywords.

The option allows you to sort the messages in the selected mail file by any one of a
number of options, including date, sender, subject, or keywords. You can also sort either “forward”
or “backward”; e.g. from earlier dates to later dates or vice versa; from a to z or z to a, ete.

ZMail also provides a Profile Editor facility, accessed by the option. The Profile
Editor allows you to customize ZMail by setting various options. The Profile Editor also allows
you to define filters and predicates that allow you to sort messages or move them from one file to
another. You can also use the Profile Editor to define universes of messages that cross mail files, so
that you can operate on all the messages of a particular type, no matter where they are physically
stored.

ZMail Overview 6 Standard File Names

Appendix A. Standard File Names

A.1l Inbox Files

Here are the standard names of inboxes on different operating systems:

Operating System: File Name:

Tenex (Tops-10) <your-directory>MAIL.TXT
Twenex (Tops-20) <your-directory>MAIL.TXT
UNIX Jusr/spool/mail/ your-directory
VMS [your-directory] MAIL.MAI

A.2 Primary Mail Files

Here are the standard names of primary mail files on different operating systems:

Operating System: File Name: Alternate File Name:

Tenex (Tops-10) <your-directory>your-username.BABYL
Twenex (Tops-20) <your-directory>your-username.BABYL
UNIX your-directory/mbox your-directory/ your-username.bb

VMS) [your-directory] your-username.BAB

Note: VMS, Tops-20, and Tops-10 do not use the scheme of moving mail from an inbox to a
primary mail file as ZMail does. That is why these systems have only an “Alternate File Name”
for the primary mail file, since such files are created only by ZMail or similar programs, such as
BABYL, running on these systems. Since ZMail cannot write mail back to an inbox, you will need
to create a primary mail file for these systems. ’

ZMail Overview 7 ZMail Initializations

Appendix B. ZMail Initializations

ZMail allows you to set up an initialization file, called ZMAIL.INIT, that sets up various options.
This initialization file allows you to customize ZMail to your needs. Normally, this is merely a
convenience. However, if your file server (the machine where your LISPM.INIT file is stored) and
your mail server (the machine where your primary mail file is stored) are not the same machine, or
if your primary mail file does not have a standard name (see Appendix A for a list of them), you
must have an initialization file. The next section will lead you step-by-step through the process
of creating an initialization file. You should do this the first time you use ZMail, before doing
anything else.

B.1 Setting Up Your ZMail Initialization File

Start up ZMail, following the procedure described above on 2.

Click (R} on [Select].
A menu will pop up. Click ﬂ on [Read or create fiile|.

A mini-buffer will appear. Type in the name of your primary mail file, terminated by
®ETURN). (Your primary mail file can have any name you like.) This should be the
full filename, including the host and directory. For example, if your primary mail file
had the file name xmail in the directory [Imi/rjpi/mail/ on the host CAP, you would
type in CAP:/1mi/rjpi/mail/xmail. The filename you input may either be the name
of an already existing mail file or the name of a new mail file that you wish to create.
The procedure for setting up your initializations is slightly different in the two cases.
Follow the directions in Section I below if your primary file already exists. Follow those
in Section II if you are specifying a new file.

e

5. If your login name on the mail server is different from your login name on the Lambda,
you will be prompted for a login name. Enter your login name, followed by your

password, if any. Terminate with ®ETURN).

Depending on whether the primary mail file you have specified is an existing file or a new file,
the rest of the initialization set up will be different. Follow the appropriate steps below.

I: If your primary mail file already exists, follow these steps:

1. After ZMail reads in your primary mail file, click non . You will be placed
in the Profile Editor, which contains the following windows, going from top to bottom.

e A command menu.

e A scrolling menu containing a number of variables that control the behavior
of ZMail.

e A second command menu.

» A blank window.
e A Mode Line and Echo Area.

2. Position the mouse cursor over More below in the scrolling menu and click () two times
to scroll the menu to the line: File read in at startup: NIL. Position the mouse
cursor over and click m Type in the name of your primary mail file, terminated

by ®RETURN). This should be the full filename, including the host and directory. For °
instance, in the current example you would type in CAP:/1mi/rjpi/mail/xmail.

ZMail Overview 8 ZMail Initializations

7.
8.

9.

Above this line will be: Directory where most of your mail files live: NIL.
Position the mouse cursor over and click {L). Type in the name of the direc-
tory, including the host, terminated by ®ETURN). For example, if your mail files
were stored in the directory [Imi/rjpi/mail/ on the host CAP, you would type in
CAP:/1mi/rjpi/mail/.

Note: the Profile Editor will append a dummy file name to the directory name that
you enter. This dummy file name will appear in the directory name as displayed in the
menu. For instance, in the example just presented, the directory name entered would
be displayed as CAP:/1mi/rjpi/mail/foo.1.

Click m on in the second command menu. You will be asked two questions:

Insert changed variables? (Yes or No). Answer Yes.
Recompile ZMAIL init file? (Yes or No). Answer No.

The Profile Editor will write out a ZMAIL.INIT file containing the initialization options
that you have specified.

Click m on |[File Options| in the top command menu. A menu will pop up that
includes the name of the primary mail file that you specified. For instance, in the
current example, it would be [xmail]. Click n on it. Another menu, labelled Options
for primary mail file will pop up. In the current example, the label would read:
Options for CAP: /lmi/rjpi/mail/xmail. Set the variable Format: to Babyl by
clicking m on the option.

A new menu, also labelled Options for primary mail file will now pop up. Set the
variable Mail: to the name of your inbox. To do this, move the mouse cursor to the
right past Mail: until it assumes the form of a rectangle. Click and enter the
name of your inbox. Enter the complete file name, including host and directory. For
example, if your inbox had the file name rjpi in the directory [usr/spool/mail/ on the
host CAP, you would type in CAP:/usr/spool/mail/rjpi. Terminate the name with
ETORD)-

Click n on Do It E}

Click ﬂ on in the second command menu. This will place you back in the main
ZMail window. '

Click (L) on [Save Files].

II: If you are specifying a new primary mail file, follow these steps:

1.

ZMail will pop up a menu labelled Options for primary masl file. In the current exam-
ple, the label would read: Options for CAP: /lmi/rjpi/mail/xmail. The variable
Format: should be set to Babyl. (It will display in boldface if this is the current value.)
If it is not the current value, click (C) on the option.

In the same menu, set the variable Mail: to the name of your inbox. To do this, move
the mouse cursor to the right past Mail: until it assumes the form of a rectangle.
Click (L} and enter the name of your inbox. Enter the complete file name, including
host and directory. For example, if your inbox had the file name rjpi in the directory
Jusr/spool/mail/ on the host CAP, you would type in CAP:/usr/spool/mail/rjpi.

Terminate the name with -RETURN).
Click n onDo It B}

Click n on [Profile]. You will be placed in the Profile Editor, which contains the
following windows, going from top to bottom.

ZMail Overview 9 ZMail Initializations

e A command menu.

e A scrolling menu containing a number of variables that control the behavior
of ZMail.

e A second command menu.

e A blank window.
o A Mode Line and Echo Area.

5. Position the mouse cursor over More below in the scrolling menu and click [} two times
to scroll the menu to the line: File read in at startup: NIL. Position the mouse
cursor over and click ﬂ Type in the name of your primary mail file, terminated
by ®ETURN). This should be the full filename, including the host and directory. For
instance, in the current example you would type in CAP:/1mi/rjpi/mail/xmail.

6. Above this line will be: Directory where most of your mail files live: NIL.

Position the mouse cursor over and click (L}. Type in the name of the direc-
tory, including the host, terminated by ®ETURN). For example, if your mail files
were stored in the directory [Imi/rjpi/mail/ on the host CAP, you would type in
CAP:/1lmi/rjpi/mail/.
Note: the Profile Editor will append a dummy file name to the directory name that
you enter. This dummy file name will appear in the directory name as displayed in the
menu. For instance, in the example just presented, the directory name entered would
be displayed as CAP:/1mi/rjpi/mail/foo.1.

7. Click ﬂ on in the second command menu. You will be asked two questions:

Insert changed variables? (Yes or No). Answer Yes.
Recompile ZMAIL init file? (Yes or No). Answer No.

The Profile Editor will write out a ZMAIL.INIT file containing the initialization options
that you have specified.

8. Click n on in the second command menu. This will place you back in the main
ZMail window,

9. Click [f.] on [Save Files].

Whichever of these two procedures you follow, in the future, whenever you start to read or
send mail in ZMail, your ZMAIL.INIT file will be read in. This will direct ZMail where to look
for your primary mail file. This file will now be in BABYL format. BABYL format mail files
can contain a number of variables at the beginning. The Mail variable, which you have just set,
specifies your inbox. So your primary mail file, in turn, will direct ZMail where to look for new
mail. Now that you have set up these options, you will never need to set them again.

B.2 Other Useful Initializations

There are other initialization options that it is useful to set when using ZMail. These can be
set in your LISPM.INIT file. An example of a portion of an init file containing these options is

given below. Superscript numerals, such asl, refer to the numbered sections following the sample
forms, not text you type in on your Lambda.

ZMail Overview 10 ZMail Initializations

(login-forms

(setq-globally zwei:*from-user-ids! "rjpi®)
(setq-globally zwei:*from-host*! "LMI-CAPRICORN")

)
(£s:file-host-user-id> 'rjpi (si:parse-host ’cap))

3 nil) logout-list)

1 When you send a message from a Lambda, a From: field is automatically generated, containing
the login name of the sender and the host (machine) from which it was sent. This field is provided
both to tell the recipient(s) who sent the message and also so that mail reading programs can use
it to send a reply back to the sender. Since Lambdas cannot currently receive mail, the name of
the Lambda is not a useful host name. If you tried to send a message from a Lambda, you would
receive the following message in the mode line.

(push ’(setq fs:user-unames

your-name@your-lambda, a Lisp machine, cannot be the From field. Type User@host:

You would then need to type in a valid user name and host name. The information you entered
would be stored in the Lambda for the current session, so that you would not need to re-enter this
information when you sent subsequent messages. By setting the variables zwei:*from-user-id* and
zwei:*from-host* in your LISPM.INIT file, you will never be queried to enter this information.

2 {s:file-host-user-id is a function that returns a cons consisting of a login name and a host. Nor-
mally, if you have not specified a login name for a particular host, you will be queried for a login
name the first time you try to access a file on that host. The login name you entered would be
stored in the Lambda for the current session, so that you would not need to re-enter this infor-
mation for subsequent file access. By putting this form in your LISPM.INIT file, you will never be
queried to enter this information.

3 fs:user-unames is the variable containing the alist of login names and hosts specified for the
current session. This form sets this variable to nil when you logout.

ZMail Overview 11 Sending Mail

Appendix C. Sending Mail

C.1 Header Fields

Messages contain two parts: headers and text. Text is the actual content of the message.
Headers give information about the message, such as who sent it, who it was sent to, etc. You
might look at the text of the message as analogous to a letter and the headers as analogous to the
information that appears on the envelope containing the letter. There are many header fields that
can appear in a message. The ZMail Manual lists all of them. However, the most common header
fields that you should know about are:

To This field lists the primary recipients of a message. Every message sent by ZMail must
have a To field. Appendix C.3 discusses the forms that can be used for the addresses
of recipients.

Subject This field gives a brief description of the contents of the message.

CC (Carbon Copy)
This field also specifies recipients of a message. You use this field the way you would
the carbon copy of a paper message.

The previous fields were ones that users of ZMail fill in. The following fields are normally
generated by ZMail automatically.

From This field indicates the sender of the message. You can explicitly override this if you
like. For example, if you send a message from a Lambda when someone else is logged
in, you would probably want to set this field by hand, so the recipients of your message
knew who actually sent it (unless you're being devious!).

Date This field gives the date and time the message was sent.

Here is an example of a message with these fields:

Date: March 17, 1985 11:00 PM

From: ALEISTER@OZ

To: LEILAQOZ

CC: perdurabo),CCCQOZ, charon!vovi@O0Z, capricorn!elvira!therion’CCCQ0Z
Subject: Vernal Equinox ‘

Well folks, uncle Aleister is just reminding you that it’s that
special time of year again. I will expect to see you all at our
annual gathering, having the times of your lives.

-30-
A.C.

Appendix C.3 discusses the forms of addresses illustrated here.

C.2 Sending Mail

When you inform ZMail that you wish to send mail by typing M or clicking m on [Mail], the
following text will appear in the message window:

ZMail Overview 12 Sending Mail

To:
--Text Follows This Line-~

The cursor will be positioned just after To: Remember that every message must have at least one
recipient in its To field. Only header fields can precede the line --Text Follows This Line--.
The message should follow it.

The message window where you compose mail allows you to use ZMACS commands to move
from the header area to the message area. You can add header fields by hand, just as you add text.
(Note that header field names must be followed by a colon (:).) However, there are also special
commands that add header fields and move to the message area.

CTRL-X S Adds a Subject field. It creates a Subject: header, if one does not exist, and places
the cursor at the end of it. If a Subject: header already exists, it deletes the old
contents and positions the cursor there.

This command also takes numeric arguments:

0 Moves the cursor to the beginning of the Subject: header entry. This
will create a Subject: field if necessary, but will not delete the contents
of one that already exists.

negative Deletes the Subject: header.

CTRL-X C Adds a CC field. It creates a CC: header, if one does not exist, and places the cursor
at the end of it. If a CC: header already exists, it adds a comma (,) to the end of the
last recipient and positions the cursor after it.

This command also takes numeric arguments:

0 Moves the cursor to the beginning of the CC: header entry. This will create
a CC: field if necessary.

negative Deletes the CC: header.

CTRL-X T Adds To field. This works like CTRL-X C.
CTRL-X A Adds more text. This moves the cursor to the end of the message area.

Note: You can also send mail by typing CTRL-X Min ZMACS. You will then be placed in a ZMACS
buffer that contains the same text that typing M in ZMail will produce. The commands for adding
header fields also work.

C.3 The Format of Addresses

ZMail expects the address of every recipient of a message to be of the form:

user@host

where host is a machine that your Lambda can talk to and user is the login name of a user of host.
If there is more than one recipient in a header field, you must separate each recipient from the
next with a comma (,). For example, in the sample message on page 11, there are three recipients
in the CC: header, all separated by commas.
You can also use explicit routing in recipient names. This is necessary when your Lambda
cannot talk directly to some other host but can talk to an intermediate host. The CC: header in
the sample message gives several examples of different methods for routing:

ZMail Overview 13 Sending Mail

Routing with %
% can be used instead of @ to separate the user and host portions of an address.
perdurabo’CCC@0Z means to send the message to the host called 0Z and then on to
the user with the login name of perdurabo on the machine called CCC.

Routing with !
! is used in messages sent to hosts on Usenet. The general form of Usenet addresses
is:

where user is the recipient of the message, recipient-host is the machine where user
logs in, local-host is a machine that a local mail server can talk to, and ... is a list of
all machines, each separated from the other by an exclamation point (!), that connect
local-host to recipient-host. Whereas many networks use implicit routing, where you
specify only the final destination for a message, Usenet addresses require an explicit
specification of all the machines linking your local machine to the destination machine.
charon!vovi@0Z means to send the message to the host called 0Z and then on to the
user with the login name of vovi on the machine called charon.
Routing with % and !

It is possible to mix these two types of routing: capricornt!elvira!therion%CCC@0Z
means to send the message to the host called 0Z, then to the host called capricorn
and then on to the user with the login name of therion on the machine called elvira.

ZMail Manual
First Edition, ZMail Version 50 (System 84)
April 1983

Lol follasc Motes

Richard Stallman

Distributed by LMI 6033 W. Century Blvd. Los Angeles CA 90045
USA

_ This report describes research done at the Artificial Intelligence Laboratory of the Mas-
! sachusetts Institute of Technology. : Support for the laboratory’s artificial intelligence
research is provided in part by the Advance Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research Contract number N00014-80-C-0505.

ZMail Manual i Summary Tabie of Contents

Summary Table of Contents

1. TheScheme of ZMail. i i i e it e e e i e e e e e e e 2
2 MailFilesand Buffers. 0 o i e e e e e e e e e e e e e 5
3 MESSAEES a i e 7
4 GettingNewMail;Inboxes. i i e 13
L L3 {73 # U » P 16
6. Viewing and Editing the Sclected Message. e e e e e e e e e e e e 19
7. Deleting Messages v v v v v v e e e e e e e e e e e e e 21
8. Saving Filesand ExitingZMail i i e e e e e 24
9. TheSummary Window i i i i i i e it ot e st o v o vt na o aon o .25
10. SendingMail 29
11. SortingMessages e 41
12. Keywords. e 43
13. Moving Messages ot v it e e e e e e e e e e e e e e e 45
14. References Between Messages T e e e e e e e e e e e e e 48
15. Message Predicates it it e e e e e e e e e e e e e e e 49
16 Map OVer. o i it e e e e e e e e e e e e e e 54
17. Window Configurations PR e e e T T T PR 56
18. Editing Your Profile. L N 57
19, "Other" Commands v v v v v et e e e it e e e e e e e e e 64
20. BabylFileFormat. @ i i i e e e e e e 65
Conceptindex. i i i i e e e e e e e e e e e 69
Variable Index. o i i e 70
Function Index i i i i e 71

23-MAY-83

Table of Contents ' i ZMail Manual

Tdble of Contents

L TheSchemeof ZMail ¢ o v i i v i et e 2
1.1 SimpleUsage.« v v .n e e e e e e e e e e e e e e e e 2
12 TheSereenLayout . . o . o v v v v oo v oo v o e e e e 3
13 Keyboard ComMmMAnds. . . . ¢ o v v oo o v v o v v oo e e 4

131 Keyboard HelpCommands. . . .« .+« v e vt v v o oo v ve i e 4

9. MailFilesandBuffers. . . « . v« v o v v v v v oo e v i e 5

3. Messages . . e e e e e e e e e e e e e e e e 7
3.1 Message HeaderFields e e e e e e e e e e e e e e 3
32 Message ALIHDULES . . . o o vt v oo e e e e S 11

4, GettingNewMail; Inboxes o v it 13
4.1 GMSGS: Reading System ARNOUNCEMENLS . . . « « « o ¢ o oo s s o s o 0o m o o oot e 15

§. SEIECHOM « « « v v v v v e e v e e e e e e e m e e e e e e e e 16
5.1 Selecting and Creating ZMail Bufferso . 16
52 Selecting aMessage. . i v v . e e e e e S

521 ThePointPdl v v v vt it et e e e e e e e e e 18

6. Viewing and Editing the Selected Message. v o v ov vt e 19
6.1 Editing the Selected Message o o v o v v e e e e e 19
62 Header Reformatting o « v v v v v oo o o v o o v o oo s o st m o e e 2

7. Deleting MESSAZES. « o .« + v v o v e e e e e e e e e e e 21
7.1 How to Delete,and Undelete e e e e e e e e e e e e e 21
72 HowwoExpungeBuffers o ch i e e 2

8. Saving Filesand ExitingZMail oo v o i e 24

9. TheSummary Window« o v v v v vt vt it i e e e 2
9.1 Mousc Commandsonthe Summary Windowo oot 27

10. Sending Mail. o v oo e e e e 2
10.1 Mail Composition Window Configurations. e e e e 30
10.2 Editing Commands for MessageHeaders. v oo oo v n e 31
10.3 MailTemplates R 32
10.4 Profile Optons forSendingMail.o v v i v v 4
10.5 Forwarding and Redistribution.« oo v v e 36
10.6 Sending BUg REPOTIS. . . . v v v v v v e e i e e e 37
107 ROPIVINE. © & v v v v e ot e it e e e e e e e e e 37
10.8 ReplyMode OPHOMS. « . o v v v v v v v ot v v v e e e 38
109 Reply Profile Variables. o wv v vt v vt 39

11, SOrUNGMESSAZES. o « « v o v v v v o v v e e e e e e e e e 41

12 KEYWOIAS « o v v v e i e e e e et e e e e e e e e e 43
12.1 Filter-Keyword Associations. e e e e e e 44

13. MOVIRgMGESSagES . . . v o v e v e 45

23-MAY-83

ZMail Manual | . iii Table of Contents

13.1 Mail-File—Filter Associations. ¢ vt v v v v v vt i 46
132 TextMail Files o o o e e e e e e e e e e e 47
14. References BetweenMessages v o oo oo 48
15. MessagePredicates L i e e e e 49
15.1 Built-in Message Predicates b e e e e e e e e e e 49
182 FIterS. v v v v v i e e et e e e e e e e e e e e e 50
153 DefiningFilters. e e e e e e e e 51
154 Universes. v i v i i e e e e e e e e e e e e 52
16 Map Over. i e e e e e e e s e 54
16.1 Experimental Window Configuration e e e e e e e e 54
17. Window Configurations e e e e e e e e e e e e e e 56
18. Editing YourProfile. e e 57
18.1 The Bottom Row of BOXES. v v v v v e e et e e e vt e e e 57
182 The Filters Box & v v i i it e e i e et et e et e e 59
18.2.1 Pitfallsof Associations v v i i i i e e e e 60
18.3 The Universesand MailFilesBoxes, 60
18.4 The Key?nords Box: e e IPERSPEPEN 61 ;
185 TheFileOptionsBox v . o v v i vt v v s v e e . 61
18.6 The HardcopyBox e e e e e e e e e e e e e e 62
19. "Other"Commands v i v v vt e e et et e e e e e e 64
20. BabylFile Format. i it e i e e e e e e e e e e e e 65
201 VeISIONS. .+ & v v v v i v e e e e e e e e e e e e e e e e e 85
202 Overall Babyl FileStructure. e . 65
20.3 The Babyl OptionsSection. v i i v et e e e e . 65
204 Message SeCUOMSt i e e e e e e e e e e e e e e e e e e 67
Conceptindex. i i i e e e e e e e e e 69
Variable Index. e e e e e e e e e e e e e 70
FunctionIndex i i i i e e e e e e e 1

23-MAY-83

ZMail Manual . 1 (nil)

Preface

This is a reference manual for ZMail, the Lisp machine system’s facility for reading.
managing and sending mail. It describes how to use ZMail, but not how to customize it, except
for the profile options which you can set with ZMail's own profile cditing mode.

Command names and names of keyboard characters are in bold face and capitalized, as in
Control and Select Referenced Msg. Names of menu items are also in bold face, except that
italics are used for menu items that appear on the screen in italics. Menu items are capitalized as
they appear in the menu (or at least that is the intention).

A general knowledge of the conventions of operating the Lisp machine is necessary for
understanding this manual. For the most part, you do not need to know anything about
programming in Lisp. The exceptions are a few functions that it may be useful for your programs
to call w0 interface with ZMail.

~ Many Lisp variables affecting ZMail’s operation are documented in this manual (all in the
zwei: package, though that is not stated explicitly befow). These variables are ZMail profile
options. While you can refer to or set them with Lisp code, generally you would set them with
the ZMail profile editor (see chapter 18, page 57), which you can use without knowing how to
program in Lisp. When a variabie has a fixed set of alternative values; these are documented as
they would appear in the ZMail profile editor. The actual Lisp values of the variables can be
figurcd from the following rule: replace all imbedded spaces with hyphens, and intern the string
in the keyword package. Yes and No are exceptions, rcprescnted by t and nil.

Any comments, suggestions, or criticisms will be weicomed. Please send Armpa network - mail
to BUG-LMMAN@MIT-0Z.

Those not on the Arpanet may send U.S. snail to

Richard M. Stallman
545 Technology Square, Room 791
Cambridge, Mass. 02139

Note

The Lisp Machine is a product of the efforts of many peopic too numerous to list here and
of the former unique cnvironment of the M.LT. Artificial Intelligence Laboratory. The author of
this -manual believes that the commercialization of the computer indusuy hinders the further
development of systems such as described herein. He considers proprictary software morally
objectionable and plans to dedicate his carcer to promoting the sharing and free exchange of
software. For morc information on this issue, write to the address above.

ZMail was written primarily by Mike McMahon. Sarah Smith helped to correct this manﬁal.

Eugene C. Ciccarcili (author of Bubyl). wrote the scction on the Babyl file format, one day when
the disks were not getting t00 many Crrors.

PSAKRMS>ZMTOP.TEXT.11 . 23-MAY-83

The Scheme of ZMail 2 7ZMuil Manual

1. The Scheme of ZMail

‘There is always a ZMail window in your Lisp machine worid.. You can sciect it with the
system menu Select option or by typing System M. Normally you would never officially "exit™
ZMail but just switch to another window when you are finished using ZMail.

Another way to enter ZMail is to call the function zmail.

zmail &optonal file
Selects the ZMail window, and reads in the mail file file (a pathname or string) if the

argument is specified..

L1 Simple Usage

If you want.to use ZMail just for reading, deleting and answering your personal mail, you
need to know only seven commands.

After you invoke ZMail, type G’ or click left on Get New Mail in the menu. This will read
in your primary mail file (your old saved mail) and also its inbox file (your newly arrived mail).
As soon as the first few messages have been read in, you can begin working with them while
ZMail continues to read the rest. Sce chapter 4, page 13 for more information about this.

To move to the next message or the previous message, type N or P, or click left on Next or
Previous (sce section 5.2, page 17). When you arc finished with a message and no longer wish
to save it. type D or click left on Delete (see chapter 7. page 21). This marks the current
message, the message being viewed, as deleted. It will really disappear the next time the mail file
is saved.

To reply to a message, type R or click left on Reply (see section 10.7, page 37). You can
then edit the text and headers of the rcply. Send the reply by typing the End key or cancel it
by typing the Abort key. The M command is similar: use it for originating a new message that is
not a reply (see chapter 10, page 29).

When you arc finished processing your mail, type S or click left on Save Files (see chapter
8. page 24). The deleted messages will actually disappear at this time, and your mail file on the
file server will be updated. -

While you are working, ZMail may tell you that more mail has arrived. You can type G
again or click left on Get New Mail to bring it into ZMail. Note, however, that this may take
some time,

PS:<RMS>/ZM.TEXT.53 _ 23-MAY-83

7Mail Manual 3 The Screen Layout

1.2 The Screen Layout

When you are using ZMAIL., the screen normally contains three large windows: whe summary
window at the top, the comumand menu in the middle, and the message window at the bottom.
Underneath are two small windows, the mode line and the input line or echo area. There are
four top-level screen configurations you can choose from; see chapter 17, page 56.

The message window normally displays the selected message. This is how you read incoming
mail. It can also display a mecssage you are sending.

The summary window displays one line for each message in the selected ZMail buffer, to give
you a general idea of what mail you have. See chapter 9, page 25 for more information on the
summary window display, how to control it, and what you can do with the mouse on it.

The command menu is the primary way of giving commands to ZMail. Clicking the mouse
on an item in the menu issues a command. It usually makes a difference what mousc button you
click: the left button usually does the simplest or commonest form of the command, and the
right button usually gives you a second menu of alternative forms of the command.

The mode: line dispiays information about the sclected message iwhen you are at top level
When you are not at top level, it displays information about the particular mode you are in. It
always starts with the word "ZMAIL". At top level, it dispiays

IMAIL buffername = msgnumber/ total (atiributes) { keywords}
See buffers (page 5), message numbers (page 7). attributes (section 3.2, page 11) and keywords
(chapter 12, page 43). total is the total number of messages in the selected buffer, or "1 if the
buffer is not fully read in yet.

The echo area is used for command prompting and for messages about the progress of
activities suchas reading or saving files. It is also the place where the minibuffer usually appears.
The minibuffer is a smail editing window in which you supply small pieces of input such as the
name of a file to move a message into; you can edit the input with ordinary Zwei commands,
and it is finialized when you type Return (in some cases End is used instead).

ZMail also uses another kind of minibuffer, the pop-up minibuffer (flavor zweitemporary-
mode-line-window), which appears temporarily when needed. This unusual minibuffer is used
for input for commands in pop-up menus, and usually appears next to the pop-up menu.

At all tmes. the mouse documentation line at the bottom of the screen says what you can do

using the mouse buttons at the current position of the mouse. You can explore the possibilities of
using the mouse by moving the mouse around and watching the mouse documentation line.

PS:CRMS>ZM.TEXT.S3 . 23-MAY-83

Keybourd Commands . , 4 /ZMail Manual

13 Keyboard Commands

You can give commands to ZMail by typing on the keyboard as well as by clicking the
mouse. Most of the commonest commands, in their simple forms, can be done ecither way. Since
the keyboard command is usually a single character, it is usually easier to type it than to use the
mouse. :

Some less frequently used commands are extended commands. This means that they consist of
the character X followed by a command name, terminated with a carriage return. Extended
.commands in ZMail are about the same thing as extended commands in the Zwei editor, except
that you can type them with X instead of Meta-X (though Meta-X works t00).

All ZMail commands have names as extended commands, including those that are available
with single characters or through the command menu. For example, the Delete command can be
typed as X Delete, which is the same as typing D or clicking on the Delete item in the
command menu. What the command does when executed depends on whether it was invoked
with the keyboard or the mouse, and on which mouse buuoni was used to invoke it

Keyboard comménds can be given an argument simply by typing digits before entering the
command. (Control, Meta, etc. digits also work, as in Zwei) As in Zwei, if you delay in giving
the command, the argument begins to echo. .

1.3.1 Keyboard Help Commands

ZMail provides the same self-documentation facilities as the Zwei editor. To request help,
type the Help key, followed by a character saying what kind of inquiry you are making (or by
another Help, if you don’t know what’s availabie). ‘

A few important help inquiries are:

Heip C Type Heip C followed by a. keyboard character or clicking the mouse, 0 find out
what that keyboard or mouse command does. If you click the mouse, be sure to
click it in the place on the screen that you want to find out about.

Help D Type Help D followed by a ZMail extended command name. to find out what it

does.
Help A Type Help A followed by a topic (such as Delete or Mail) to get a list of ZMail

commands whose names contain the string you typed, and how to invoke them.

Help L Type Help L to find out the last 60 commands you typed, in case you forget
what you did.

PS:<RMS>ZM.TEXT.S3 : 23-MAY-83

ZMail Manual ' : 5 Mail Files and Buifers

2. Mail Files and Buffers

The purpose of a mail cditor is to operate on mail files: files stored permanendy on a file
server, containing messages. Each user has a primary mail file where his personal mcssages go.
On ITS, your primary mail file is called cither directory; your-usemame RMAIL or directory:.
your-username BABYL.. On Tenex or Twenex, it is called <{your-directory>your-username BABYL.
On Unix, it is called your-directory/mbox or your-directory/your-username.babyl.

You can create other mail files, and redistribute mail into them from your primary mail file.
On certain file servers, you can cause mailing lists to forward mail to other mail files instead of
your primary mail file; that is a system-dependent matter in which ZMail is not directly invoived.

There are several standard formats' for storing mail in mail files. Each operating system
generaily has a standard; for ITS, this is RMAIL format; for Tenex and Twenex, the so-called
Tenex format; for Unix, the so-called Unix format. Then there is ZMail's own favorite format,
called Babyl format, which is best because it allows more of ZMail's features to be used. Finally,
there is the “text mail file” which is formatted so as to icok good when printed out, and cannot
be read back into ZMail (see section 13.2, page 47).

ZMail knows iwhich formats of mail file are typically found on eich file server operating
system, and generally rccognizes the format of a file automatically from the contents of the file.
When it does not, you can use the command X Select Arbitrary Format Mail File to read in the
file (see page 62).

Most ZMail commands do not work directly on a mail file, for two reasons: access o file
servers is slow, and it is desirable not to make changes in the file stored on the file server until
you have had a chance to reconsider them.

Instead. when you refer to a mail file for the first time, ZMail copies the contents of the mail
file into the Lisp machinec. creating something called a buffer. When you read a message, it
comes from the buffer; when you deletc a message, or edit its text, it is changed in the buffer,
and so on. Eventuaily you give the Save Files command and the contents of the buffer are
copied back to the file server, updating the mail file itself. Buffers that correspond to mail files
are called file buffers.

Because reading a mail file from the file server can ke a long time, ZMail lets you start
working with a file buffer before the whole file has been read. Meanwhile, the ZMail background
prucess continues to read in the rest of the file. While the file is being read in, you can only
operate on the messages that have been read so far, and the total number of messages in the
buffer will be displayed as "??". You will sce additional messages appear in the summary, a few
at a time, as the file is read. Finally the correct total number of messages will appear, indicating
that read-in is complete.)

Because reading in mail files takes time. you may not wish to enter ZMail and then wait. An

alternative is to prefoad ZMail while using the Lisp machine for other things. Later on in the
session, when ZMail is fully preloaded. you can enter it and work on your mail without delay.

PS:KRMS>7M. TEXT.S3 23-MAY-83¥

Mail Files and Buffers 6 ZMail Manual

zwei:preioad-zmail &rest files
Asks the ZMail background process to load all the files into ZMail. Each argument
should be a pathname or a string. The loading is done with low priority so as not to
interfere with your other activitics. If you enter ZMail and refer to one of the files before
it is fully loaded, the rest of it will be loaded right away with high priority.

Some buffers do not correspond to files at all. They live and die inside ZMail. They are
called temporary buffers. and their use is to record a particular sct of messages taken from one or
more mail files so that you can work with them as a group. Temporary buffers cannot be saved,
and are lost when you end your session, but no mail is lost this way since each message must
belong to a file buffer. Aside from this, temporary buffers can be used just like file buffers.

Each message resides in one file buffer and any number of temporary buffers. You can select
the message through any of these buffers, and changes you make will be visible later no matter
how you come across the message. Initially a message is found only in one buffer, a file buffer;
you can move it into temporary buffers, or remove it from them.

The file buffer that the message is in is called the owner of the message, For any one
message, the owning mail file never changes. When you "move" a message 0 another file buffer,
in fact a copy is created there. The original message is deleted (this is actually optional), but stll
exists undl its owning mail file buffer is expunged.

At any time, one buffer is selected. The summary window summarizes the messages in the
sclected buffer; the Next and Previous commands move through the selccted buffer, and the
Map Over command operates on all the messages in the selected buffer. 1n simple use of ZMail,
the buffer for your primary mail file is selected.

zmail-startup-file-name Mail file read in at startup. ' Variable
The value is a pathname or string naming a mail file. When your ZMail init file is read
in. this mail file will be read in automatically.

PS:ARMS>ZM.TEXT.S3 23-MAY-83

/Mail Manual , 7 _ Messages

3. Messages

Fach communication from another user to vou is called a message. The data in a mail file is
made up of messages. Within ZMail. the data object that represents one message in a mail file is
also called a "message”. Each message has a message number which is its position among all the
messages in the buffer; this number is displayed in the mode line and in the summary window.
If a message is in more than one buffer, it has a different number in cach buffer.

A message contains headers and text. Also, various attributes may be attached to it and
keywords may be assigned to it, but these are not part of the contents of the message. See
attributes (section 3.2, page 11) and keywords (chapter 12, page 43).

The headers of a message have been compared to the things written on the envelope of a
letter, while the message text has been compared to what goes inside it. For example, the
headers say who sent the message, who it was sent to (presumably including you, if you received
it), and when it was sent. When a message is displayed in ZMail, the headers are at the top,
followed by the text, with a blank line in between. For example:

Date: April 11, 1983 1:20 am
From: RMS @ MIT-OZ;

Those were the headers; this is the text.

The headers are made of fields, each consisting of a field type and data that goes with it
There is a fixed set of field types, each with its own standard meaning and usage. For example,
the person who sent the message is stated by the From ficid; the pcople sent to, by the To field;
the date of mailing, by the Date field. By contrast. the text of the message has no standard
interpretation or purpose cxcept to te read by the peuple who receive the message.

When you use ZMail to look at a message you have received, the headers of ihe message
appear at the top, followed by the text. Usually a blank line separates the headers from the text
Each header field begins with a word or muitiple words, starting in the first column and
terminated by a colon. This word or words are the field type ("From”, "Date”, ewc.). Whatever
comes after the colon is the date of the field (the author’s name, the date, etc.). If the dat of a
field is more than onc line long, the lines after the first are indented to show that they are not
new fields. For example:

Frem: Richard M. Stallman <RMS@AI>
To: LOSERGAI, WINNEREAI,
SOMEQONE-ELSE@GMC
Date: Not this week. sorry
Subject: Messages with invalid Date fields.

Some header fields are present for your information only. Some others are used automatically
by ZMail at times. For example. the Repiy command uscs the From ficld to determine where to
send the reply. :

PS:ARMS>ZMUTEXT.S3 _ 23-MAY-82 .

Message Header Ficlds 3 ZMail Manual

When you send a message, you can specify the headers as well as the text. You specify some
header fields. such as Subject, simply to make them appear in the messagc. Others. such as To,
have additional cffects on how the message is sent. (The To field you specify controls who the
message is sent to, as well as showing up in the headers that are sent.) ZMail puts some header
fields automatically into messages you send. The Date ficld is always provided automaticaily, and
the From field is provided if you do not specify one. The Subject field of a reply is initialized to
be a copy of the subject of the message you arc replying to, if it has onme, but you can dclete or
change the subject before you send the reply. :

3.1 Message Header Fields

BCC Blind CC. These recipients get a copy of the message but are not mentioned in
the headers of the copies received by the ordinary (non-blind) recipients. There
will only be a BCC field in a message you receive if you were one of the BCC
recipients, or were forwarded the message by one of them. You put a BCC field
in a message you are sending if you wish to specify BCC recipients for it.

BFCC Blind FCC. Like BCC ‘except that the méssage is put into a mail file within -
ZMail rather than actually mailed. Like the BCC field, this field does not actuaily
appear in the header of a message except in the copies sent to the BCC and
BFCC recipients. You specify this field in a message you are’ sending if you wish
to request delivery of the message into mail files within ZMail.

cC Carbon Copy. These recipients get copies of the message just like the To
recipients. - There are only ‘wo differences between To and CC: ZMail always
insists on having at lcast one primary (To or FTo) recipient. and CC does not
count for this; the human reader will interpret the message from a different point
of view depending on whether he is a To recipient (the message is addressed to
him), or a CC recipient (the message is mercly being shown to him).

You can put a CC field in an outgoing message to specify CC recipients.

Date The date and time of origin of the message. This appears in every message. You
never specify one when sending a message; it is filled in automatically.

Draft-compaosition-date
Indicates the date and time when a saved draft was written. [t appears only in
saved drafts. See page 29.

Expiration-date
Indicates the date and tme after which the message is no longer uscful. An
opticnal ZMail feature deletes expired messages automatically (page 22). You can
put an Expiration-date field in a message you are sending, and it may also be
uscful to put one into a message you have reccived with the X Set Expriration
Date command. :

FCC File Carbon Copy. The contents of the field consists of one or morc pathnames
separated by commas. You put an FCC ficld into a message you are sending to
cause copies of it to be moved into files within ZMail. ZMail docs this by
reading the files into ZMail buffers and then adding a message te cach one.

PS:IARMS>ZM.TEXT .53 ‘ 23-MAY-83

o,

7/Mail Manual ' , 9 Message Header Ficlds

From " The From ficid in a message received indicates who sent it as an address to
which replics can be sent. A From ficld appears in cvery message received.
Nommally the From ficld of a message you send is gencrated automatically based
on your user name (the valuc of user-id). but you can specify one explicitly if
you are not actually the person who is logged in and you want the rccipients to
know who really originated the message.

FTo File To. This is the same as FCC except that the presence of an FTo satsfies
ZMail’s demand for at lcast one To recipient in cach message sent. If you wish
to send a message 0 one of your mail files dircctly within ZMail, bypassmg the
mail system of your file server host, you can use this.

in-reply-to This field contains references to messages which this message is intended as a
reply to. It can be used by the recipients to match up related messages. (In
ZMail, this is done with the conversation commands; sce chapter 14, page 43.) A
properly formatted In-reply-to field can be added to a reply you are sending with
the command Meta-X Add In Reply To Field during editing of the draft (page
32); a profile option causes them to be added automatically to every reply (page
39).

Mail-from This header ﬁeld is put into messages received over the network by certain file
: server hosts. ' i :

Message-IiD . This hcader,ﬁcld is meant as a standard way of uniquely identifying one message
among all the message sent on any machine in all human history. At least, we
hope there will never be a pair of messages with the same message-id.

Message-id fields may appear in messages received if the originating hosts and
mail composition programs chose to generate them. [f you wish to have message
ids in your outgoing mail, a ZMail profile option causes them to be gencrated
automaticaily. ' '

Redistributed-by
Redistributed-date

~ Redistributed-to

Redistributing 2 message with ZMail or various other programs adds one of cach
of these fields to the header (section 10.5, page 36). They state who redistributed
the message, when, and to whom (presumably including you). You do not write
these fields yourscif,

Remailed-by

Remailed-date

Remailed-to These mean the same thing as Redistributed-by, -date and -to. Different mail
processing programs usc one or the other.

Resent-by

Resent-date

Resent-to Yet another serics of names for the same thing; these are the official names
adopted in 1982 for usc in Intcmet.

Resent-CC

Resent-reply-to
Resent-sender

PS:KRMSZM.TEXT.S3 ' 23-MAY-83

i

ZMail Manual 11 - Message Auriﬁutcs

For fields such as To and From. whose values arc one or more mailing addresses, the value
obtained in that way is a list of address-descriptions, cach of which is a list of alternating
properties and values. The propertics found in an address-description include

:host .Followed by a list of strings, a path of hosts to the target host.
‘name Followed by a string, the mailbox name at that host.

:personal-name
Followed by a string, the user's “personal name”. This is the "Winner" in

"Winner SWNR@FOO>".

sinterval Followed by a list of two ZWEI buffer-pointers to the beginning and end of the
text for this mailing address.

«distribution-list or :bracketed-list '
These indicate an address which is is composed of a collection of other addresses.
It is followed by a string that names the collection. The :inferiors property will
also be present to describe the contents. A distributon list looks like "name:
address. address...;" and a bracketed list is "name <address, address..>" with more
than one address msnde

iinferiors . Followed by a list of more address-dcscnpuans for the addresses in the
" distribution list or bracketed list.

:include or :postal
Followed by a string, these represent ":include:" or ":postal:" addresses.

3.2 Message Attributes

Attributes are propertics assigned to a message automatically by ZMail as a result of the ZMail
commands you perform on the message. There are a fixed set of auributes. each of which has a
defincd meaning: At top level in ZMail, the atributes of the selected message are displayed in
the mode line in parentheses.

To contrast atributes with keywords (see chapter 12, page 43): keywords are assigned to
messages only by cxplicit commands from the user, any name can be used as a keyword, and it
is up to the user to decide what the keyword signifies.

Answered A reply has been- sent for this message by means of the Reply command (ZMail
cannot tell whether you have sent a message which a human would consider a
"rcply").

Bad-header This message has a header ficld that is syntacticaily invalid.

Deleted .This message has been deleted; it will go away when its owning mail file is
expunged.

Filed A copy of this message has been moved into another mail file with Move to File.

Forwarded This message has been forwarded with the Forward command.

Last This is the last message in the sclected ZMail buffer. (This attribute is somewhat
funny, as it comes and goes on a message when you switch buffers.)

PS:CRMS>7ZM.TEXT.S3 ' ' 23-MAY-83

ZMail Manual 4 13 Getting New Mail; Inboxes

4. Getting New Mail; Inboxes

Your mail file is never the same file that the host computer delivers mail in. Instcad, the file
mail is delivered in is called the inbox file. Two different files are used so that you will not have
problems of losing mail that arrives while you are ruaning ZMail.

ZMail moves the new mail from the inbox file to the mail file’s buffer in an opcration known
as getting new mail. Each mail file for which mail can be delivered has its own inbox file; ZMail
. knows automatically how to find a mail file's inbox. Mail files which are filled only with ZMail
(by moving messages from other mail files) and do not receive any mail directly do not nced
inbox files.

ZMail knows the inbox file for your primary mail file because it knows file server’s operating
system’s convention for where to deliver mail for a user. Mail files other than your primary mail
file must be Babyl files in order to have inboxes. A Babyl format mail file can explicidy record
the name of the corresponding inbox file with the Mail file option (see scction 20.3, page 65).
You specify this option when you create the mail file, or with the File Options box in the profile
editor (see section 18.5, page 61). The other mail file formats do not provide for this feature, so
they have no, way to record a name for the inbox.

A consequence of this is that when documentation for your host operating system (Twenex,
Unix, etc.) speaks of "your mail file”, the file it speaks of is really the inbox file. Your primary
mail file itself may not be known to any programs running on the host computer, cxcept those
which use the same strategy of moving mail between files that ZMaxl uses, such as BABYL on
ITS and Twenex, and RMAIL on ITS.

To get new mail for your primary mail file, click left on Get New Mail, or type G. To get
new mail for some other mail file, click right on Get New Mail. You then type the file name.
You can specify a file not read into ZMail yet, and ZMail will read it in; you can also specify a
nonexistent file, and ZMail will create it

Getting new mail for a mail file works by renaming the inbox (so that additional mail will not
be added to it while ZMail is reading it) and reading the contents of the old inbox into the mail
file buffer. Meanwhile, any arriving mail goes into a new inbox file, not the onme ZMail has
renamed. Getting new mail does not in itself change the mail file, only the file buffer, but
normally ZMail begins to save the buffer for you "in the background™ while letting you continue
10 type ZMail commands. '

The renamed inbox file is not deleted untl your mail file is saved. This is to make sure you
do not lose any messages if your Lisp machine crashes. If you save the mail file after getting new
mail, then the new messages are all safe in your mail file (unless you explicitly got rid of them),
so they will not be lost. If you fail to save the mail file, the renamed inbox waits for you to run
ZMail again and get new mail. Then, ZMail will merge in the old, renmamed inbox a sccond
time. The old inbox is only deieted once it is safe o do so.

While you are running ZMail, it will check from time to time whether there is anything new

in your primary mail fil¢'s inbox. If it finds anything, a message "You have new mail” will
appear in the echo area. '

PS:<RMS>ZM.TEXT.53 23-MAY-83 -

Getting New Mail: Inboxes 14 ZMail Manual

‘®inhibit-background-mail-checks® Don'tcheck for new mail in the background. Variable
Yes or No. with No (do check!) as the default,

If you do get additional new mail, you can do Get New Mail again to bring it into ZMail.
However, the mail file must have been saved first. This is because the old. renamed inbox
cannot be deleted until you save the file, and the new inbox cannot be renamed until the old
renamed one is deleted. Since normally ZMail begins to save the mail file whenever you get new
mail. if you ask to- get new mail again, it just waits for the save to be finished (or it may have
* finished alrcady). If you tumn off the automatic saving, doing Get New Maii again will begin the
save if necessary.

siphibit-background-saves*® Do not automatically save after get new mail. Variable
Yes or No, with No (do save!) as the default.

If the mail file has been saved once since last getting new mail, it does not have to be saved
again, even if you have changed it since saving it. The important point is that the new mail you
got, last time has to be safe on. the file server. If you have deleted some of it since then, saving

the deletions or not is your choice. , :

L)

*always-jump-aftar-get-new-mai1® Move to first message even when no new mail. Variable
When you get new mail, the first new message becomes seiected. If this option is Yes.,
when you try to get new mail and there is none to get, the first old message is selected.
Yes or No, with No as the defauit. '

ZMail knows that some mail files storc mail in forward order of receipt, while others store it
in' reverse order. Forward order is called "appending”, a term which we usually take to mean
"adding at the end”. Reverse order is called “prepending”, or "not appending”. Sysicm-
depending mail file formats usually have a system-imposed convention; for example, Tenex-format
mail files always store mail in forward order. In a Babyl or RMAIL format file, you can specify
the order. ZMail will automatically add new mail to the front or end of the file to maintain the
ordering that the file is supposed to have. In a Babyl file, you can also specify whether to
reverse the order of the messages when they are transferred from the inbox file to the mail file,
in case those two files use opposite orderings. This is controlled by the Reverse New Mail file
option.

Each Babyl or RMAIL file's urdering (appending or not) is controlled by the Append file
option which you can specify with the profile editor (sce section 18.5, page 61). In-additon, this
profile option controls what will be done when you create a new Babyl or RMAIL file:

snew-mail-file-append-p* Should newly created mail files append? Variable
This controls whether a newly crcated mail file is initalized to add messages at the
beginning (“prepending”) or at tie cnd ‘("appending”). The alternatives arc Append,
meaning new maii files should append: Prepend. meaning new mail files should prepend;
Sticky, mcaning a new mail file should copy the sctting of the mail file that is current
when you create it: and Ask, mecaning you should always be asked whether to append or
prepend each time you create a mail file. The default is Sticky. -

PS:CRMS>ZM.TEXT.S3 ' 23-MAY-83

7Mail Manual 15 GMSGS: Reading System AnnounccmcmS

4.1 GMSGS: Reading Sysiem Announcements

Some file servers (ITS and Twenex at prescnt) have the ability to record general
announcements and deliver them to you as mail.

Rather than putting a copy of each announcement into your inbox, which would wastc a lot
of disk spacc when there are hundreds of users, the announcement systcm (GMSGS) remembers
which announcements each user has seen, and can give you the new announcements when you
are ready to read them, in ZMail. ’

You can get new announcements at any time with the extended command X Gmsgs. This is
a process nearly the same as getting new mail. The file server puts the new announcements for
you into a file that is like an inbox, and ZMail merges them into your file buffer.

You can also have GMSGS done for you automatically, under control of an option in your
profile. :

run-gmsgs-p Run GMSGS before getting new mail. Variable
Values are Yes, No and Once only, with No as the default. Once only means run
GMSGS the first time new mail is read in, but not on subsequent occasions.

*gmsgs-other-switches® Other switches to supply to GMSGS server. - Variable
The value is a string containing zero or more switches for GMSGS. It is significant only
when GMSGS is run. The default is /Z :

Normally the GMSGS server is invoked on the host on which the mail file is stored (the mail
file that announcements are going int). A Babyl mail file can have a GMSGS-Host file option
which specifies a different host. These options are set with the profile editor (see section 18.5,
page 61). '

PS:ARMS>/ZM.TEXT.S3 : 23-MAY-83

Sclection _ 16 ZMail Manual

5. Selection

At any time one ZMail buffer is the sclected buffer and one of its messages is the sclected
message—cxcept when there are no buffers at all. The selected message appears in the message
window and is the subject of most ZMail commands. The selected buffer is described in the
summary window. and is used for the basic ZMail motion commands.

5.1 Selecting and Creating ZMail Buffers

To select a buffer, click the right button on the Select File menu item. This gets a menu
which includes ail the buffers you have ever sclected, any additional mail files that appear in your
profile (see chapter 18, page 57), plus four special items: Find File, Mark Summary, Subset and
Abort (the last is the way to get out of the menu).

If you click on a buffer listed in the menu, that buffer is reselected.

. Click. on Find_ File to select a mail file. You:use a minibuffer to type the mail file's
-pathname. Then the mail file is read into a file buffer, which ‘is selected. If you specify: a file
that does not exist, ZMail creates it, after first asking you to specify the file options (sce section
18.5, page 61).

Click on Mark Summary to create a new buffer and fill it with messages chosen from the
selected buffer. After you type the name for the new temporary buffer, move the mouse to the
summary window and click on the lines for thc messages you want 0 mark. An X appears on
the lines you have sclected. To remove the X from a line, click on it again. You can scroll the
summary window if necessary to find all the messages you want 10 mark. When you are finished
marking messages. type the End key and the new buffer will be selected. Alternatively, type the
Abort kcy and all will be canceled.

Click on Subset to create a new subset buffer (click middle on Select File does this 100).
The predicate selection window appears, a frame containing several menus and boxes that you use
to specify a universe and a predicate. When you click on the Done box, a new temporary buffer
is filled with all the messages in that universe that maich the predicate. See chapter 15, page 49
(predicates) for more about these matters. '

Clicking left on Select File is a quick way to switch to the previously sclected buffer.
Repeating this alternates between two buffers.

The oxtended command X List Buffers prints a list of all buffers in ZMail, and all additional
mail files ZMail knows about but has not read in. You can click on one to select it, or flush the
display by typing a space.

PS:KRMS>/M.TEXT.53 23-MAY-83

ZMail Manual 17 Sclecting a Message

5.2 Selecting a Message

Once you have sclected a buffer, you can move between messages in it. The Next, Previous
and Jump commands arc used for this. In addition, you can select a message by using the
mouse in the summary window.

The Next command is used for moving forward in the selected buffer. If you type N or click
left on Next, you move to the next non-deleted message in the buffer. That is, a new selected
message is found by looking forward from the message that was already selected.

If you type N with a numeric argument, you move forward as many messages as you specify,

If you click right on Next, ymi get a menu of six different ways of moving forward. These
alternatives are:

Next Undeleted -
) Move to the next message in the buffer that is not deleted. This is what you get
from clicking left on Next.

Next Unseen Move to the next message in the buffer that has not been scen yet. A message is
. marked as “seen” when its contents are displayed in the message window. Merely
showing up in theé summary docs not constitute being seen.

Next Move to the next message in the buffer, including even deleted messages.

Last Undeleted
Move to the last (that is, final) message in the buffer that is not deleted. This is
what you get by default from clicking middle on Next, but you can make that do
any of these six things by means of a profile option.

Last Unseen Move to the last message in the buffer that has not been seen yet

Last Move to the last message in the buffer, including even deleted messages.

snext-middle-mode* Middle button on Next command. Variable
This controls what happens when you click the middle button on the Next menu item.
The alternatives are: Next Undeleted, Next Unseen, Next, Last Undeleted, Last
Unseen, and Last. The default is Last Undeleted. :

Typing Control-N moves to the next message, including deleted messages.

The menu item Previous is just like Next but moves backwards instead of forwards. Clicking
right on Previous gets you a menu of Previous Undeleted, Previous Unseen, Previous, First
Undeleted, First Unseen and First. The keyboard commands P and Controi-P move to the
previous undeleted message, and to the previous message including deleted messages, respectively.

*previous-middle-mode® Middle button on Previous command. . Variable
This controls what happens when you click the middle button on thc Previous menu
item. The alternatives arc: Previous Undeleted, Previous Unseen, Previous, First
Undeleted, First Unseen, and Flrst. The default is First Undeleted.

PSIKRMSOZM.TEXT.S3 ') 23-MAY-83

Sclecting a Message 18 - ZMaii Manual

The J command sclects the first undeleted message in the sclected buffer. A numeric
argument is interpreted as a message number; you would gencrally find the message number of
the message you want to sclect from the summary window.

You can aiso select any message in the buffer by finding it in the summary window and
clicking left there. Scroll the summary window if necessary to find the message you want.

The command Control-F searches through the rest of the selected buffer, starting at the
cursor in the selccted message, for a search string whxch it reads from the keyboard. The next
message which contains the string is sclected.

5.2.1 The Point Pdl

The point pdl remembers the last several messages that have been selected. Whenever you
sclect a message, except for sequential motion with the Next and Previous commands, the
previous selected message is remembered on the point pdl

* The command Control-Meta-Space selects the last message on r.he'point pdl. The ‘message

sclected before the Controi-Meta-Space goes on the point pdl in its stead. As a result,
repeating this command alternates between two messages. When given a numeric argument a, it
cycles through the last n messages (the currently selected one, and n-l from the point pdl). A
negative argument cycles in the other direction.

Clicking middle on Jump lets you choose a message from the point pdl with the mouse. It
prints summary lines in the summary window for all the messages in the point pdl. Click on a
line to select the message.

PS:KRMS>ZM.TEXT.S3 : 23-MAY-83

ZMail Manual . 19 Viewing and Fditing the Selected Message

6. Viewing and Editing the Selected Message

If a message is too long to fit in the message window all at once. you must scroll through it.
The mode line tells you where you are in the message by displaying one of these three strings:

-~More Below--
The beginning of the mcssage ‘is visible in the window, but the end is not.

~-More Above-~
The end of the message is vnsxble in the wmdow but the beginning is not.

--More Above and Below--
Neither the beginning nor the end is in the window now.

The character Period moves to the beginning of the selected message. Space scroils forward
one screenful, and Overstrike (thar. is, backspace) scroils backward. Control-V and Meta-V also
scroll, just as in Zwei. Control-L redisplays with the current line at the center of the window if
possible.

You can also scroll with the mouse, in three different ways. If you move the mouse off the
left cdge of the message window, you get a standard scroll bar. You can also brush the mouse
 against the top or bottom of the window, néar the right hand edge. Watch for the mouse cursor
to change shape to a fat arrow pointing either up or down: then you will have found the right
spot.

Also, if you put the mouse on the --More Below-- or whatever string in the mode line,
click left scrolls forward, click middle scrolls backward, and click right gets a menu of Forward,
‘ Backward, Beginning and End.

6.1 Editing the Selected Message

To edit the text of the selected message, type Control-R or click the mouse on the message
window. You will enter the editor, and can use the ordinary editing commands to edit the text
of the message. When you are finished, type End to return to ZMail top level.

The commands to move across mailing addresses (recipient or mailbox names) are available
when editing a message, just as they arc when composing a draft. ¥ou could use them for
moving within the headers of the message. See page 31. 3

There are two ways of merging the text of two messages together, both extended commands.
X Yank Msg inserts the text of some other message into the selected message. By default it uses
the most recently deleted message (from whatever buffer), but you can also specify a numeric
argument that is a message number in the current buffer. X Concatenate inserts the text of the
selected mcessage into some other message, which you chouse by clicking on a line in the
summary window. It deletes the selected message after copying its text

The extended command X Occur prints all the lines in the selected message that contin a
string that you specify with the minibuffer.

PS:(RMS>7ZM.TEXT.S3 23-MAY-83 -

Header Reformatting 20 7Mail Manual

6.2 Header Reformatting

7Mail provides the option of rcformatting headers or messages for display (in Babyl files
only). How this is done is up to you. Most commonly users choose to suppress the display of
certain uninteresting header fields such as Return-path.

To request reformatting, define a mail template (see section 10.3, page 32) and make its name
be the value. of the ZMail option *default-reformatting-template*. Reformatting is done by
invoking this template on each message of a Babyl file when the file is read in. Both the original
and the reformatted header are saved in the mail file, so each message is reformatted only once.

sdefault-reformatting-template® Template for reformatting headers. Variable
The value is a symbol, the name of a template defined with zwei:define-mail-template.
nil as a value means do not reformat messages; this is the defauit. Otherwise, the
template is invoked on each message parsed in a Babyl file being read in, unless the
message -has been reformatted aiready or the Babyl file disables reformatting with the No
Reformation file option.

PS:IARMS>ZM.TEXT.S3 - 23-MAY-83

ZMail Manual 21 Delcting Messages

7. Deleting Messages

When you no longer need a message, you delete it with the Delete command.

Deleting 2 message in ZMail does not mean that it disappears immediately. Instead, the
message is flagged as "deleted”. This shows up as a "D" after the message number in the
summary window.

Deleted messages can be operated on just like any others, though many commands including
the simple variety of Next and Previous will skip over them by defauli. In fact, you can select
the message and undelete it with the Undelete command. A message that has been undeleted is
as good as one that was never deleted. :

If a message exists in more than one buffer, then if you mark it as deleted, it will show up
as deleted in all of the buffers.

Deleted messages do disappear eventually. When you expunge a buffer all deleted messages
are removed from it. If you expunge a file buffer, all deleted message in it are permanently
discarded from ZMail; they are removed from the file buffer and from any other buffers they
mdy be in. {Recall that each message must always beidng to exactly one file buffer.) Normally file
buffers are expunged just before they are saved. ’

7.1 How to Delete, and Undelete

To delete the selected message, type D or click on the Delete menu item. If you type D, or
click the left mouse button, the next undeleted message in the selected buffer is selected instead
of the message you deleted. Type Control-D or (unless you redefine its meaning) click middle on
Delete to move to the previous undeleted message instead. If you click the right button on
Delete, you get a menu of options for what message to select:

Forward Select the next undeleted message in the selected buffer. This is what you get if
you click left.

Backward Select the previous undeleted message in the buffer.

No Leave thre meéégge just deleted selected anyway.

Remove Actually remdéve the message from the buffer now. Allowed only when the
selected buffer is a temporary buffer. This is the same as the X Remove
command.

Every time you do a deletion using the menu, you also change the action of the middle
button for the future.

You can set the direction to move after click left, and the initial direction to move after click
middle. with the profile editor. :

PS:K{RMS>ZM.TEXT.S3 ' . 23-MAY-83 -

How to Expunge Buffers _ 2 7Mail Manual

snext-after-deleta® Dircction to move after Delete. Variable
The alternatives are Forward, Backward, No and Remove. ‘I'he default is Forward.

*delete-middie-mode® Dircction to move for click middle on Delete. Variable
The possible values are the same as for *next -after-delete®.

To undelete the sclected message, type U or click on the Undelete menu item. If the
sclected message is not deleted. this will undelete the last previous deleted message: therefore, a
U will undo the effect of a D if you have not redefined the way the D command moves.

You can delete any message by typing D with the message number as a numeric argument.
You can undelete any message in a similar fashion.

You can also delete and undelete messages using the summary window. If you click right on
a line in the summary, the menu of operations you get includes both Delete and Undelete. In
addition. the default action of the middle button in the summary is to delete a message if it is
not deleted, or undciete a message if it is deleted. ‘

. The exte;xded command X Delete Duplicate Msgs finds all duplicate messaées in the éselected :
buffer and deletes all but one of each sct of duplicates. .

7.2 How to Expunge Buffers

You can expunge the selected buffer by clicking middle on the Save Files menu item, or by
typing E. ' :

To expunge other buffers without having to select them, click right on Save Files. This gives
you the "expunge/save/kill menu”. With i, you can specify which buffers you wish to save,
which you wish to kill, and of course which you wish to expunge. Finally, click on the Do It
choice box and the specified operations will occur. You can also click on Abort to cancel them
all and leave the menu. '

When you exi;t;nge a temporary buffer., deleted messages which are in that buffer are
removed from that buffer only. When you expunge a file buffer, all the deleted messages in that
buffer arc eliminated completely from ZMail, removed from all the buffers they occur in.

squery-before-expunge® Show headers and ask before expunging deleted messages.Variable
If Yes, expunging prints a list of all the messages in the buffer that are about to be
discarded. and then asks you to confirm the expunging of them. Yes or No, with No as
the default. .

A message can have an expiration date after which it is no longer useful. Normally only
system announcements (see section 4.1, page 15) have expiration dates. but you can give the
sclected message an expiration date with the extended command X Set Expiration Date.
Expunging a file buffer optionally expunges all expired messages.

PS:KRMS>ZM.TEXT.S3 . 23-MAY-83

ZMail Manual 23 . How to Expunge Buffers

"%delete-expired-msgs*® Automatically delete expired messages. Variable
Alternatives are Yes. No, Ask and Per File. ‘The last is the default, and mcans that
each file specifics whether expired messages in it should be deleted (with a file option: sce
section 20.3, page 65). Ask means that you should be asked explicitly what to do, cach
time a buffer is expunged.

The extended command X Remove removes the selected message from the selected buffer,
which must be a temporary buffer. The buffer will no longer contain this message. Removing the
message does not delete it; it does not cause the message to be discarded from its owning file
buffer.

PS:KRMS>ZM.TEXT.S53 23-MAY-83

Saving Filcs and Exiting ZMail 24 7Mail Manual

8. Saving Files and Exiting ZMail

When you have finished editing your mail files with ZMail, you must save the buffers back
on the file server if you do not want your changes to be lost.

Usually you will want to expunge any deleted messages from the files before they are saved.
You can cxpunge and save all mail files by clicking left on Save Files or typing S. (Mail files
that have not changed will not be saved.)

For more explicit control over saving and expunging, click right on Save Files. You get a

menu with three boxes for each ZMail buffer: an Expunge box, a Save box, and a Kill box. If
“the box is filled in, the buffer will be expunged. saved, or killed. Click on the boxes you wish
to fill on (or clear out), and then click on the Do It box below. Alternatively, click on the Abort
box to leave the menu and not expunge, save or kill anything.

When you have saved your files, you might wish to reboot the machine if you are finished
with .it, or use the System or Terminal key to g0 (0 another program. ZMail has a Quit
command, but it isn’t really needed; you might as ‘well just use the Save Files command and
then select whatever other program you want. :

The keyboard command Meta-~ marks the selected mail file as "not changed, not needing to
be saved”. ZMail will no longer attempt to save it for you, unless you change it again.

To change the name of a mail file, you use the extended command X Rename Buffer and
then save the file under its new name. X Rename Buffer on a file buffer asks for a new
filename. It is also allowed on temporary buffers; then it asks for an arbitrary string for the new
name. '

PS:<RMS>7ZM.TEXT.S53 . ‘ 23-MAY-83

ZMail Manual) AR The Summary Window

9, Thé Summarj Window

'The summary window occupics the top half or so of the scrcen, when you are at top level in
ZMail. It displays onc line for cach message in the selected buffer. You can do various things to
a message by clicking the mouse on the line for that message. If there arc too many mcssages (0
fit on the screen at once, you can scroll through the list.

To scroll the summary window, bump the mouse against the top or the bottom where it says
More Above or More Below. Or you can move the mouse off the left cdge of the summary
window to get a standard scroll bar, where ail three buttons become scrolling commands. In
addition, the keyboard command Control-Meta-V scrolls the summary window a whole screenful
or by the specified number of lines (which may be negative).

Each line of the summary window describes one meséage.

sdefault-summary-template® Pattern for lines in summary window. Variable
The value of this variable controls how a summary line is calculated for a message. The
value should be a list of alternating keywords and arguments. Each keyword specifies one
printer-function which prints something about a message. The argument following the
keyword is passed to that grinter-function. i i

nil and t are also allowed as values, and treated specially. nil is interpreted as an
abbreviation for .
(:size 5 :recipients 23. :keywords t :subject t)
and t for ,
(:size 5 :date :date :recipients 23. :keywords t :subject t)
The default value is t. .

Every Babyl format mail file has a Summary Window Format option (see section 20.3,
page 65). Its value controls display of the summary when that file is the selected buffer,
overriding this ZMail option. The possible values of the file option are the same as thos
of the ZMail option. :

The defined keywords (all of which appear in the example) are:

‘size Prints the size of the message. The argument (5, above) is the number of
columns of spacc to use for the printout.

date Prints the date of origin, time of origin or both. The argument is :date,
itime or :date-and-time, to specify which.

rrecipients Prints the sender and rccipients of the message. Your own name is
omitted to save spacc; certain host names identified as "local” by your
site’s site configuration are also omitted. The argument is the number of
columns to use.

keywords Prints a description of the keywords of the message, inside of braccs (sce
chapter 12, page 43). The argument is ignored.

:subject Prints the subject field of the message, or, if there is no subject, the first

PS:(RMS>ZM.TEXT.53 | 23-MAY-83 .

The Summary Window 26

nonblank line of text. The argument is ignored.

PSARMESZMUTEXT.SS -

7Mail Manual

23-MAY-83

ZMail Manuali 27 Mouse Commands on the Summary Window

defauit-summary-template. does not control the printing of the message number and the
message status. These always appear at the beginning of cach line. The status is a character that
follows the message number, and is one of these four:

D This message is deleted. This overrides the following conditions.
A A reply has been sent for this message.
- This message is unseen. It has never been the selected message.

This message has been seen but not replied to.

9.1 Mouse Commands on the Summary Window

Clicking left on a summary line selects the message on that line. This means that the message
you chose will be displayed in the bottom half of the screen, and most commands will apply to
it.

Clicking right on a summary line gets 2 menu of several things you can do to the message on
that line. The alternatives are:

Keywords Change keywords on this message. This works just like clicking on Keywords in
' the command menu, includingdepending on which button you click, but applies
to the message you chose in the summary rather than the selccted message.

Delete Delete this message.

Reply Rebly to this message. This works just like clicking on Reply in the command
menu, including depending on which button you click, but applies to the message
you chose in the summary rather than the selected message.

Move . Move this message to another buffer. This works just like clicking on Move in
: the command menu, including depending on which button you click, but applies
to the message you chose in the summary rather than the selected message.

Append Append this message to another message. [f you click the left mouse button, it is
appended to the selected message. If you click the right mouse button, you get to
choose the message 10 append to by clicking on its line in the summary. ‘

Filter Create a temporary buffer of messages from the selected buffer that resemble this
message in some way. The first thing that happens when you click the mouse is
to print a list of various characteristics of the message. Then you click on one of
the lines in the list with the mouse, and ZMail finds all the messages which share
the chosen characteristic and makes a temporary buffer containing them.

Clicking middle on a summary line either deletes or undeletes the message. If it is deleted to
begin with, it is undeleted; otherwise, it is deleted. You can redefine the operation of click
middle to be any of the alternatives available in the menu for click right, pius a couple of other
alternatives; use the profile editor.

PS:ARMS>ZM.TEXT.53 :) 23-MAY-83 '

Mouse Commands on the Summary Window 28 ZMail Manual

ssummary-mouse-midd1e-mode® Middle button on summary window. Variable
Controls what happens when you click the middle button on the line for a message in the
summary window. The alternatives arc Keywords, Delete, Undeiete. Remove. Reply,
Move, Append, Filter, and two that are not in the menu for click right:
Delete/Undelete, delete the message if not deleted, undelete if already deleted;
Delete/Remove, delete if from a file buffer, or remove if from a temporary buffer. The
default is Delete/Undelete.

There are a few other options that affect the display of the summary window:

esummary-window-fraction* Fraction of the frame occupied by the summary. Variable
This value is in effect in the normal mail editing mode. By default, it is 0.48s0.

*?41ter-summary-window-fraction® Fraction for the summary in filter mode. Variable
Either nil, meaning that the summary window- should not appear in filter definition mode,
or a flonum between zero and one. The default value is nil.

*summary-scrpli-fraction® Amountby which to glitch summary window. Variable .

. The value is a flonum that specifies a fraction of the summary window's size. The
summary window "glitches” (scrolls by a few lines) when a message just outside of the
displayed part of the summary is selected.

PS:KRMS>/M.TEXT.S3 : 23-MAY-83

ZMail Manual ‘ 29 : Sending Mail

10. Sending Mail

You can send mail by clicking left on the menu item Mail, or by typing M. You then get to
edit the text and headers of the message to be sent. When you arc finished, type End to send
the message, or type Abort to go back to the top level of ZMail without sending the message.

Beginning to send a message creates a ZMail object called a drafi. Aborting sending a
message is not final. You can resume editing the draft with the Continue command. Then you
again have the choice of sending it or aborting. Even once a draft has bcen sent, you can
resume editing it and send it again, with changes in the text or the recipients.

Click left on Continue or type C to resume editing the last draft you were editing. Click
middle on Continue to resume editing the last draft that has not been sent. To resume any other
draft, click right on Continue. This gives you a menu including all the drafts that exist—all the
messages you have sent or begun to compose. Click on one to resume editing it.

While editing a draft, you can save it in a separate file, or as a message in a ma11 file in
ZMail. There are commands for saving the draft:

Control -X Control-W
Saves the draft in a file, whosc name you specxfy

Controi-X Control-S
Saves the draft in a file, the same file last saved in.

Control-X Control-Meta-S
Saves the draft as a message in a mail file loaded into ZMail

To restore a draft, click right on Continue. The menu you get includes two special items, in
italics, as well as the existing drafts. Use the menu item Restore Draft File to restore a draft
saved in a separate file. Use the menu item Restore Draft Message to restore a draft saved as a
message. Clicking left restores the selected message as a draft. Clicking right asks you to click on
a line in the summary window to specify the message to be restored as a draft.

You can also restore a file containing a saved draft while composing some other draft, using
the editing command Control-X Controi-R. It reads a pathname with the minibuffer.

mail-file-for-drafts Mail file to store drafts in. : Variable
This is the mail file in which drafts saved as messages should go. The value should be a
pathname (or string), or nil which means your primary mail file or clse some other mail
file present in ZMail. A value of nil appears in the profile cditor as an empty line.

*default-draft-file-name® Default file for saving drafts of messages in. Variable
This is the default pathname for Controi-X Control-W. The value should be a pathname
{or string) or nil. A value of nil appears in the profile editor as an empty line.

PS:(RMS>ZM.TEXT.S3 . 23-MAY-83 -

Mail Compuosition Window Configusations 30 7Mail Manual

10.1 Mail Composition Window Coni‘igurations

There are three window configurations that you can use for composing outgoing mail. Profile
options control which configurations the Mail and Reply commands use. Once you are composing
mail, you can switch to any of the configurations with editor commands.

"One window” mode displays the headers and text of the draft together in the message
window. the same window that normally displays the selected message being read. There are
actually three variants of this mode, since each of the three top-level window configurations that
includes the message window could be used (see chapter 17, page 56). The headers are separated
from the text by a delimiter line which you should not change; by default this line contains '

--Text Follows This Line--
but there is a profile option to change it (some people like the dehrmter line to be blank, as it is
in messages you have received). When you are editing a draft, the editor command Controi-X 1
switches to this mode.

*Two wmclow" mode displays the headers and text each in its own window. These wo
windows use up the entire ZMail frame; the message window, summary window and ' command
menu do not appear. The editor command Control-X 2 switches o this mode.

*Three window" mode displays the separate headers and text windows just like two window
mode, and in addition dispiayes the message(s) being replied to in a third window at the top of
the frame. This mode is never entered automancally except by the Reply command. but you can
always switch to it if you like. If there is no message "being replicd to”, the seclected one is
displayed. The editor command Control-X 3 switches to this mode.

The initial choice of configuration for all the mail sending commands (except for Reply) is
controlled by the following profile option:

*default-mail-window-configuration® Default window configuration when mailing. Variable
The default value is Normal, which. means not to switch window configurations for
composing mail. The window which normally displays the selected message you are
reading displays the draft instead. This is one of the variants of "One window™ mode;
which variant is used depends on what window configuration you were using to read your
mail. This is the default because it makes entering and exiting mail composition fast.

The other alternatives are Send, which specifies "Two window" mode (headers and text in
two separate windows), and the specific variants of "One window" mode: Both, meaning
show the summary window and a mail (headers and text) window: Message only,
meaning show just one window containing headers and text: and Experimental, which
uses the experimental configuration of ordinary mail reading mode, with the message
being sent instead of a message being read.

*mail-header-delimiter® Linc between headers and text in one-window mode. Variable
The value is a string which becomes the contents of the line separating the hcaders and
text of a draft. If the string is empty, the line will be blank. The default is "--Text
Follows This Line--".

PS:{RMS>ZM.TEXT.S3 : 23-MAY-33

i

ZMail Manual) 31 Editing Commands for Message Headers

The Continue command to resume editing a draft goes back to the same window
configuration that was in use the last time you were editing the same draft.

The Reply command has its own set of profile options and arguments to control the window
configuration, but it uses the same set of window configurations and the same editor commands 0
switch between them.

10.2 Editing Commands for Message Headers

Special editing commands that understand the syntax of message headers are available when
you are composing mail. Many are also available in the ZMACS Control-X M and Meta-X Bug
commands, and in the functions mail and bug, though these are not strictly speaking part of
ZMail,

These commands are for motion across mailing addresses (names of mailboxes), and are
available when editing received messages as well as when editing drafts.

Hyper-F Forward Address. . Moves forward to end of this or following address.
Hyper-B Backward Address. r»:;dves backward to end of this.or following address.
Hyper-K |) A

Hyper-Rubout

Kill Address and - Backward Kill Address. Kill forward to end or backwards to
beginning of an address.

Hyper-T Exchange Addresses. Exchanges like Meta-T and Control-Meta-T, but operates
on mailing addre;ses rather than words or s-expressions

These commands are available only when editing drafts (outgoing mail).

Control-XA Add more text. If the text and headers are in separate windows, it moves to the
text window. Otherwise it moves point to the end of the draft.

Controi-XC Add CC recipient. Creates a CC field in the headers of this draft message, if
there isn't one already, and positions at the end of it adding a comma if there is
already something in the field.

WIth a ncgative argument, delctes any CC field that exists. With a zero
argument, just moves to the start of the CC ficld (creating the field if nccessary).

Control-XT Add To Field. Like Control-X C but operates on To fields rather than CC fields.

Controi-XS Add Subject field. Creates an empty Subject header field, or deletes the contents
: of an existing Subject field, and positions point there.

With a negative argument, dcletes any Subject field outright. With a zero
argument, positions to the beginning of the Subject field, creating one if
necessary, but not delcting any cxisting subject.

Meta-X Add From Field
Like Control-X S but operates on From fields. Normally the From field of a
message is generated for you. You add an explicit onc if you, thc person sending

PS:{RMS>7ZM.TEXT.53 . 23-MAY-83

Mail Templates 32 ' /Mail Manual

the message, are not the person who is logged in.

Meta-X Add In Repiy To Field
Inserts an In-reply-to field whose contents describe the message(s) you are now
replying to.

Meta-X Add References Field
Inserts a References field which has descrxbes all the messages in the selected
buffer. It has one line per message, containing either the message’s message-id if
it has one, or else the date and sender of the message.

There are two techniques for using this: select a temporary buffer containing only
the messages you have in mind and then compose a draft and use this command,
or use the command with a mail file selected and delete the lines that describe
messages other than the ones you want to refer to.

Meta-X Add FCC Field
Meta-X Add FTo Field
Inserts an FCC, or FTo field naming a mail file which you specify with a menu

like the one for the Select command. The menu includes all the mail files -

known to ZMail, and items for reading in/creating additional files.

Meta-X Add Expiration Date Fieid
Inserts an Expiration-date field containing a date you specify (see page 22).

Meta-X Change Subject Pronouns
Changes all forms of "I" to forms of "you" and vice versa, in the subject field.
Tuis is useful when the subject field has been copied from another message that
you are replying to.

10.3 Mail Templates

ZMail templates are a means of specifying header fields automatically in messages you are
sending. Each template you define has a name and its definition specifies various header fields to
initialize. You can invoke a template explicitly, and you can also have various dcfault templates
that arc invoked automatically in certain circumstances.

zwei:define-mail-template -Macro
A template is defined with zwei: define-mail- -template, as follows:
(zwei:define-mail-template name
documentation
bdody.. .)

bady is Lisp code which uscs convenient functions described below to modify header fields ;

as you desire. documentation is a string whose first line is brief documentation (a
complete sentence) and whose entire text is the full documentation. The purpose of the
documentation is to say what this template is to be used for. name is the template’s
name, a symboi.

PS:KRMS>ZM.TEXT.53 ' : 23-MAY-83

I

: zwei:delete-field fpe

ZMail Manual , | 3 ‘Mail Templates

An editor command is automatically constructed from the template. Its name is created
by appending "COM-" and name. The resulting command is made available through
Meta-X when you are composing mail in Zmacs or ZMail, and when you are editing a -
received message in ZMail. Thus, a template named MORE-INFO would produce a
command com-more-info which would be accessed using Meta-X More Info.

These are the functions recommended for use in the body of a template:

2wei:add-T191d 1npe contents
Adds a fype field to the header, putting in contents confents. Existing type fields are left
alone. fype should be a keyword identifying a header field, such as :cc or :reply-to.
contents should be a string.

zwei:default-rield type contents
Similar to zwei:add-field but does nothing if a field of type fype already exists with
nonempty contents. If an empty field exists, it is filled in from contents; otherwise a new
field is created and filled with contents.

Deletes any field(s) of type fype.

zwei:find-field 1ype
Returns a buffer pointer to the first fype field, or nil if there are none. This is for
sophisticated alteration of header fields.

zwe1i:add-text-start siring
Adds string to the text of the message, at the beginning >f the text.

zwei:add-text-end string
Adds string to the text of the message, after any exxsnng text.

The arguments to these functions can be calculated in an arbitrary fashion. Actually,
templates are not limited to calling these functions. They can run arbitrary Lisp code. In
particular, they can use any of the primitives that editor commands use. zwei:*interval® will be
bound to an interval containing the message being operated on. In addition, if you are replying
to messages or forwarding messages in ZMail, the variable zwei:*msgs* will be bound to a list
of those messages (otherwise, it is nil). You can therefore easily examine those messages, such as
by using zwei:msg-fits-fiter-p on them to see if they match one of your ZMail filters, and
make your header alterations conditional on the answer.

In addition to invoking templates explicitly with Meta-X, you can have tcmplates that are run
automaticaily when you begin.to send a message. The ZMail options zwei:*defauit-forwarding-
template*, zwei:*defauit-bug-template®, 2zwei:*defauit-eply-template®, and 2zwei:*defauit-
mail-template* may have as their values the names of templates (as specified in the template
definitions) that are 10 be run automatically when you start to compose, respectively, a forwarding
of other messages, a bug report, a reply, or anything else. Thec variables may also be nil to
specify that no tempiate is to be invoked: this is the default. Sending with Zmacs uses, instead,
the variables zwei:*default-zmacs-mail-template* and zwei:*default-zmacs-bug-template®.
They too should have as values either template names or nil.

PS:{RMS>ZM.TEXT.53 ;) 23-MAY-33

Profile Options for Sending Mail) 34 ZMail Manual

Here is an example of a template definition:

(zwei:define-mail-template more-info
"Set up request for more info on a bug.”
(zwei:add-field ':cc "BUG-LISPM")
(zwei:default-field ':subject "Your bug report.”)
(zwei:add-text-start
(if (bit-test 1 (random))
"1 need more information in order to track
down the bug that you reported.” ’
"The most important thing a bug report should contain
is the precise sequence of actions that will reproduce the bug.
It should be written so that no imagination is required
to follow the directions. If I have to imagine what to do,
there is no guarantee that what I imagine will behave the same
way as what you did. A1l filenames should be given exactly.
A11 sequences of characters, code, etc. should be given exactly.
'Never describe anything that you could present exactly
Every description is based on a theory of what is relevant;
leaving out what you consider irrelevant cannot help me,
and can hinder me if your theory is wrong. -

"M

Template definitions can be put in your ZMail init file, by editing the text, or they can go in
your LISPM init file (since you don’t need to be using ZMail to use templates). If you ask for a
template to be invoked automatically, make sure you arrange to have the template defined
when that occursi

Templates are also used for refomiatting headers for display. See section 6.2, page 20.

10.4 Profile Options for Sending Mail

-sdefault-fcc-1ist® Default initial FCClist. Variable
Whenever you start to send a message, it is initialized to send copies to the files in this
list The copies go to the files using local mail (see below). The list is empty by-defauit.

sdofault-cc-11st* Default initial CClist. Variable
Whenever you start to send a message, it is initialized to send copies to the recipients in
this list, The list is empty by default.

You could get the effect of *default-cc-list* and *defauit-fcc-list® with a suitable template
set up to run by default, but the variables are kept around since they alrcady existed, and are
simpler than a template if they are all you want. If you do have a default template, the default
CC’s have alrcady been put in the header when the default template is run.

PS:KRMS>ZM.TEX'T.53 . 23-MAY-83

ZMail Manual 35 Profile Options for Sending Maii

*mail-sending-mode® How to transmit outgoing messages. Variable

‘The alternatives arc COMSAT. Chaos. and Chaos Dlrect. Chaos is the default; it
means that one of the hosts at your site which has a mail server is asked to transmit the
mail to all the recipients. Chaos Direct is similar, except that each rccipient on a host
on your local Chaosnet is taken care of by contacting that host’s own mail server directly.
Thus, if there are recipients on several local hosts, the Lisp machine will contact each of
them. Reccipients on hosts that are reached through other nctworks, or whose hosts are
not responding, are handled by forwarding through one of the hosts that did respond.

COMSAT is the mailer demon on ITS, and COMSAT mail sending mode means that
mail is transmitted by writing a file in COMSAT's input format on a suitable ITS, using
ordinary file output. This mode is only avallable at MIT.

sdefault-header-force® Default header force (via COMSAT). : Variable
This option is only meaningful when you are using COMSAT for sending mail, which is
possible only at MIT.

The alternatives are: None, meaning COMSAT can choose the header format; RFC733.
meaning force an RFC 733 format header; Network, meaning force a typical Arpanet
format header; lTS meaning force’an ITS-style single line header. The default is None.

sroquire-subjects*® Reguire subjects on outgoing messages. Variable
The alternatives are Yes, No, On bug reports, and Initial but nct required. Yes does
not actually forbid you from sending a message with no subject. If you try to do so,
ZMail will ask for a subject with a minibuffer, but if you just type Return, the message
will go without a subject. The default is No.

*sgnd-headar-format® Format of headers in outgoing mail. Variable
Format of recipients in headers sent (except via COMSAT). This controls how mailing
addresses are formatted in the actual outgoing header, based on information obuwined from
parsing the headers you specify or on any other information ZMail has. For example, in
automatically generatcd From fields, ZMail always has available your personal name as
determined from your user-name when you logged in; the question is whether to include
it in the actual header.

The ailternatives are: Short, use "@" to scparate user and host, and omit personal
names; Long, use " at " to separate user and host, and omit personal names; and
Include Personal, include the user's personal name if any. The default is Include
Personal.

PS:KRMS>ZM.TEXT.53 ’ , 23-MAY-83

Forwarding and Redistribution 36 7Mail Manual

10.5 Forwarding and Redistribution
Redistributing means sending the text of a message you have rcceived to a new bunch of
recipients. '

Forwarding is a generalization of redistributing. The text of a message you have received is
inserted into an editing buffer, but you can then modify it or insert additional text before you
send it

You can do any of these things by clicking right on the menu item Mail and selecting the

item Forward or Redistribute from the menu that appears next. Clicking middle on Mail does
one of these things aiso; which one is controlled by a variable in your profile:

ma{1-middle-mode Middle button on Mail command. Variable
The alternatives are Mail, Bug. Forward, Redistribute and Local. Bug is described in
the following section. Local is an obsolete feature not documented because there are
better ways to do what it does. The default is Bug.

When y&u redistribute a message, you specxfy only the recipients. The original message is
mailed to them, with only some added header information saying who rediswibuted it
Redistribution does not create a draft. The commands X Redistribute All and X Redistribute
Msg are also available for redistributing all the messages in the selected buffer, or just the
selected message.)

Forwarding a message works just like mailing a new message, except that the text is initialized
to containing a copy of the headers and text of the original message. A subject field summarizing
the original message is also provided. Using the Map Over command, you can forward more
than message at once. The F command is a convenient way to forward the sclected message.

sforwarded-message-begin® Format line before forwarded messages. Yariable
This supplies the contents of the line that is put before the first message in a bunch of
messages being forwarded. By default, this string is empty, so the line will be blank.

storwarded-message-end® Format line after forwarded messages. Variable
This supplies the contents of the line that is put after the last message in a bunch of
messages being forwarded. By default, this string is empty, so the line will be blank.

*forwarded-message-separator® Format line between forwarded messages. Variable
This supplics the contents of the lines that go between messages in a bunch of messages
being forwarded. By default, this string is empty, so the line will be blank.

*forwarded-add-subject® Forwarded messages are supplicd with a subject. Variable
Yes or No, with Yes as the default.

PS:K{RMS>ZM.TEXT.53 : 23-MAY-83

ZMail Manual , 37 Sending Bug Reports

10.6 Sending Bug Reports
Reporting a bug is mailing a message to a bug report mailing list.

You send a bug report with the command X Bug, from the Mail-right menu, or from middle
on Mail. You get a menu of the known bug report topics, which include

ZWEI Report a bug in the Lisp machine editing software.

Mail Report a bug in ZMail. |

LISPM Report a bug in any other part of the Lisp machine software system.
LMMAN Report an inaccuracy, omission or unclarity in the Lisp machine manual.

Hardware Report a malfunction in a particular Lisp machine.
Other If you select this, you can type in the name of the bug report topic.

The function zwei:add-bug-recipient can be used to add entries to the list of bug report
topics. For example, ZWEI could have been added with
(zwei:add-bug-recipient "ZWEI"
"Report a bug in the Lisp machine editing $oftware.") P
In addition, any system defined with defsystem can specify a bug report mailing list to go in the
menu, with (:bug-reports fopic-name documentation). The two arguments are strings.

The actual address to which the bug report is sent is made by conéatenating "BUG-" and the
name of the bug report topic; thus, BUG-LISPM or BUG-Hardware. The host is determined by
a site option, :host-for-bug-reports, specified for your site in SYS: SIiTE; SITE LISP.

The bug report is automaticaily initialized to contain the version numbers of the software you
are running and the name of the machine you are using. This information is very helpful to the
person who will investigate the bug (that is, me).

10.7 Replying

Most messages you send are probably replies to messages you have received, so ZMail has a
special command with its own features for replying to the selected message. You can start
sending a reply by typing the character R, or by clicking on the menu item Reply.

The recipients of the reply are initalized to be the sender and recipients of the message you
are replying to. Some other header fields, such as the subject, may also be initialized for you.

You can then cdit the text of your reply. You can insert the text of the original message into
the reply using the C-M-Y command. You can also edit the headers. When vou are finished,
type End to send the reply or Abort to cancel i. You can rcsume editing an aborted reply with
the Continue command.

PSKARMS>ZM.TEXT.S3 . 23-MAY-83

Reply Mode Options 38 ' ZMail Manual

10.8 Reply Mode Options

While the concept of replying is simple, there are many alternative ways to initialize the
header of the reply, and various window configurations that can be used for cditing the reply.
You can sct your reply mode parameters with the profile editor; in addition, you can do one
reply with diffcrent parameters by clicking the right mouse button on the Reply menu item. This
gives you a menu with which you can specify the parameters for this reply only.

There are two options that pertain to replying: how to initialize the recxplents. and the
window configuration.

The initialization of the recipients is a matter of who should receive the reply, and which
recipients should be listed as "CC" rather than "To" (admittedly, this is a subtle matter). The
potendal recipicnts are the sender of the original message, the "To" recipients of the original
message, and the "CC" recipients of the original message. You can specify what to do with each
of them.

; The alternanves are: :
All To Sender and original To, CC original CC.

All-CC To Sender, CC original To and CC.

Ce-All To original To, CC Sender and original CC.
To To Sender and original To.

To-CC To Sender, CC original To.

CC-To To original To, CC Sender.

Sender To Sender.

The window configurations available for reply include displaying both the original window and
the reply (Show Original), treating this as ordinary mail (Like Mail), and displaying the text of
the reply with the original message inserted into it (Yank). If you do not choose to have the
original message inserted to start with, you can insert it later using the Control-Meta-Y
command,

Control-Meta-Y
Yanks in the text of the message(s) you are replying to, indenting all the lines. If
you specify a numeric argument, the lincs are not indented.

Control-XY “Prunes” headers yanked by Controi-Meta-Y (or in any fashion), dcleting all
header fields except the sender and the date.

*one-window-after-yank® Just show Headers and text afier yanking in message. Variable
Should Control-Meta-Y remove the window containing the original message from the
window configuration? Yes or No, with Yes as the default.

PS:KRMS>ZM.TEXT.53 ' 23-MAY-83

sr”

ZMail Manual 39 Reply Profile Variables

*prune-headers-after-yanking® Prune headers of yanked messages. Variable
If this option is Yes., yanked hcaders arc pruned automatically when they are yanked.
Otherwisc, you must prune them cxplicitly with the Controi-X Y command. Yes or No,
with No as the default.

If you click right on Reply, you can choose both of these options. If you click left on Reply
or type R, the options are controlled by two variables, *reply-mode* and *reply-window-
mode®*, which you can set with the profile editor. The defaults are All and Like Mail.

Users often have a few combinations of options which they find useful. In addition to the
default combination which you get with left click or with R, you can have a sccond combination

. that you get with middle click on Reply, and a third combination that you get by typing 1R

(The R command with argument 1). Many users make these two the same.

Middle click on Reply is controlled by the two variables *middle-reply-mode* and
middle-reply-window-mode, which default to Sender and Show Original. R with argument
1 is controlled by the variable *ir-reply-mode*, which defaults to Sender, and by *reply-
window-mode* (so you cannot set this by itself). You can specify these variables with the profile
editor.

10.9 Reply Profile Variaples

*generate-in-reply-to-fiald® Automatically generate In-reply-to fields. Variable
Yes or No, with Ng as the default.

dont-reply-to People not to reply to. Variable
This. is a list of strings. When you reply to a message. any recipients of the original
message whose names begin with any of these strings will be omitted from the recipients
of the reply. The default is the list ("INFO-*"), which matches ail informational lists.

sreply-header-format® Format of recipients inserted for Reply. Variable
This controls how the recipients as obtained from the originai message are formatted when
inserted into the draft headers for you to edit. Contrast it with *send-header-format®,
which has the same alternatives and controls a similar formatting operation performed
when the message is actually senr (page 35).

The alternatives are: Short, use "@" to scparate user and host, and omit personal
names; Long, use " at " to separate user and host, and omit personal names; Include
Personal, include the user'’s personal name if any; and Use Original, mcaning format
the name as it is formatted in thc message you are replying to. The default is Short.

sreply-moda® Default reply to. Variable
Controls which recipients will rcceive the reply, when you click on the Reply menu
option with the left button. or type the R command with no argument. The alternatives
arc the same as arc available in the menu you get when you click right on Reply, and
the defauit is All.

PS:CRMS>ZM.TEXT.S3 ‘ 23-MAY-83

Reply Profilc Variables) 40 7Mail Manual

eraply-window-mode* Decfault reply window sctup. Variable

Controls the window configuration used when you click on the Reply menu option with

the left button, or type the R command with no argument. The alternatives are the same
- as are available in the menu you ‘get when you click right on Reply, and the default is
Like Mail.

1r-reply-mode Default reply with argument of 1 to. Variable
Controls which recipients will receive the reply, when you issue the R command with
argument 1. The alternatives are the same as are available in the menu you get when you
click right on Reply, and the default is Sender.

midd1e-reply-mode Defauit reply to for middle button. . Variable
_ Controls which recipients will receive the reply, when you click on the menu option
Reply with the middle button. The alternatives are the same as are available in the menu
you get when you click right on Reply, and the defauit is Sender.

*middle-reply-window-mode® Default reply window setup for middle button. Variable

Contfols the window configuration used when you click on the menu option Reply with

the middle button. The altcrnatives are the same as are.available in the menu you get
when you click right on Reply, and the default is Show Qriginal. ‘

PS:CRMSS/M.TEXTS3 . 23-MAY-83

7Mail Manual 41 ' Sorting Messages

11. Sorting Messages

You can sort the messages in the selected buffer in many different orderings using the Sort
command. In addition, any Babyl format mail file can be given a sort predicate as a file option:
then any new messages added to the file will be inserted in the correct position according to the
sort predicate. (This implies that the file will always be sorted provided you do not aiter existing
messages.)

Sorting is controlled by two options: what part of the message to compare. and whether to
sort forwards or backwards. For example, you can sort forwards by date (ecarlier messages first),
or you can sort backwards by sender (alphabetical order, with senders at the end of the alphabet
first).

Here are the message characteristics you can sort by:

Date The dates (and times) at which messages were sent are compared. "Forward"
means carlier dates come first.

To The recipients of the messages are compared alphabetically. "Forward" means that
names at the beginning of the alphabet come ﬁrst, in thlS and all the or.her
alphdbetical sorting options ; ;

t

From The recipients of the messages are compared alphabetically.

Subject The subjects of the messages are compared alphabetically.

Text The texts.of the messages are compared alphabeticaily.

Keywords The lists of keywords of the messages are compared alphabetically (see chapter 12,

page 43). Each Babyl format mail file remembers the list of keywords used in it
and cach message's keywords are ordered in the same order as that list. So
keywords that come carlier in the file's list will have a higher priority for
determining where a message will go. You can edit the file’s list using the Mail
Files box in the profile editor (sce section 18.3, page 60).

Length - The lengths of the messages are compared. Forward ‘means that shorter messages
come first.
Pasition This means that messages are ordered first alphabetically by the name of the mail

- files they belong to; messages from. the same mail file are ordered by position in
that mail file. Note that a message can belong to any number of buffers, but
only one mail file.

Clicking left on the Sort menu item docs the default kind of sort. initially, this is sorting
forwards by date. Clicking right on Sort gets a menu with which you can choose the type and
direction of sort. The type that you choose becomes the new default.

Clicking middle on the Sort menu item sorts the selected buffer according to its own sort
predicate. This does not set the default for click teft.

PS:{RMS>ZM.TEXT.53 ‘ 23-MAY-83 -

Sorting Mcssages 42 ZMail Manual

A Babyl file’s sort predicate is the value of the Sort file option (sce ‘scction 20.3, page 65).
Set this with the File Options box in the profile cditor (see section 18.5. page 61). The Sort
option controls only which characteristic the sort is done with; the direction of sort is controlied
by the Append file option. the one which normally controls which end of the file new mail is
added to. You can think of this as a generalization of its usual meaning.

PS:KRMS>ZM.TEXT.S3 ' ‘ 23-MAY-83

ZMail Manual o 43 : Keywords

12. Keywords

You can assign keywords to messages to classify them for later use. For cxample, you might
give all messages that are about bugs the keyword bug, and all messages about ZMail the
keyword zmail. Later you would be able to read through or operate on all messages with the
keyword bug, or on all messages that have the, keyword zmail and not the keyword bug.

You assign keywords to messages by -hand using ZMail commands. A program with less than
human intelligence cannot tell from the text of a message whether it pertains to bugs, so you tefl
ZMail once, and it remembers from then on. Keywords are the mechanism by which ZMail
remembers these things.

You can assign keywords to any message, but Babyl format is the only mail file format that
can remember keywords. If you are using any other format of mail file, the keywords will not be
there when you read the file into ZMail in the next session. This is one of the reasons why
Babyl format is preferred.

Sometimes you can figure out simple rules that are good guides for classifying a message. For
example, any message sent to BUG-ZMail is probably about ZMail. You can tell ZMail such
rules and use them to provide default assignments of keywords. which you can overnde if you do
not like what they did.

The basic way to change the keywords of a message is to click right on Keywords. You get
a multiple highlighting menu listing all the keywords ZMail has seen in this session, with the ones
assigned to the selected message highlighted. You can click on a keyword to turn it on or off.
Finaily, make the changes take effect by clicking on the Do it box, or cancel them by clicking on
the Abort box. To specify a new keyword that has not been used before, click on the New box.
You will then be asked to type the keyword. When you have done so, thc keyword will appear
in the menu with the others, and you can turn it on or off for this message by clicking on it.

Once you have turned keywords on or off with click right, you can repeat the operation on
other messages with click left, Click left on Keywords turns on the same keywords that you
turned on the last time you used the menu, and turns off the same keywords that you turned off
the last time you used the menu.

The kcywords of the selected message appear in the mode line within braces, after the
message flags that follow the message number.. You can click on them too; it is the same as
clicking on Keywords. Also, each line in the summary window lists the keywords of the message
within braces at the beginning of the Subject or Text field.

Each Babyl file has a list of keywords, which you can set with the profile editor (see section

18.4, page 61). The purpose of putting kcywords in this list is so that they will appear in the
menu of pussible keywords regardless of whether ZMail has iioticed any messages using them.

PS:{RMS>/M.TEXT .53 23-MAY-83

Filter-Keyword Associations 44 ZMail Manual

12.1 Filter-Keyword Associations

You can tell ZMail rules for how to assign keywords; these arc called filler-keyword
associations. ‘To create one, you must first define a filter, which is a named predicate that some
messages will satisfy (see scction 152, page 50). For example, there could be a filter named
bug-zmail-recipient which is satisfied by any message which has BUG-ZMail as a recipient.
Then you associate the filter with the desired set of keywords. Both of these operations can be
done with the Filters box in the profile editor (see section 18.2, page 59).

Having established the rules, you tell ZMail to apply them to the selected message by typing
K or clicking middle on Keywords. ZMail looks through the list of associations and applies each
filter to the message. Each time the message satisfies a filter, the associated keywords are given to
the message. Any other keywords the massage already had remain on :

PS:<RMS>/M.TEXT.53 - 23-MAY-83

ZMail Manual v 45 Moving Messages

13. Moving Messages

When you work with more than onc mail file, you nced to move messages from one file to
another. Some uscrs divide move most of their mail out of their primary mail files and into other
mail files according to their topics. The ZMail command Move to File is used for this, and for
some rclated operations.

The simplest way t0 move a message {0 another mail. file is to type O (for Output). ZMail
reads the filename from the keyboard, reads in or creates the file if necessary, and moves the
selected message to that file's buffer. The default filename is the last name you used, so if you
just type Return, you will move to the same file as last time.

You can also move 0 the default place by clicking left on Move to File in the command
menu.

Clicking right on Move to File gets you a menu of places to move to. These include all the
buffers in ZMail and six special items, which appear in italics.

By Filters

By Indmdual Filters
Figure out which mail ﬁle to move to by matchmg the message agamst the mail-
file-filter associations (see below). By Filters appears when you are moving a
single message, and By Individual Filters appears when you are moving several
messages, such as with Map Qver of Move, to emphasize that each message will
be match individually against the filters to determine where to put that message.

New Temporary.
Generated Temporary
~ Create a new temporary buffer and move Lhe message into it. New Temporary
asks for a name from the keyboard, while Generated Temporary uses the name
Temp, or Temp-1 if there is already a Temp, and so on.

The next time you click right on Move to File, the temporary buffer will have its
own item in the menu. You do not use New Temporary or Generated Temporary
to move a second message into the same buffer.

Find File Create a new file buffer, reading in the mail file if it exists, and move the
message into it. The filename is read from the keyboard with the minibuffer.

Text Mail File Create a new write-only text mail file (see below), and move the message into it

Hardcopy "Moving the message to hardcopy” is how you print the message on a printer.
Click left to use the default printer and default options (you can change the
defaults in the. profile editor to save them in your init file); click right to specify
them with a menu. The available hardcopy ogtions are documented under profile
editing; see scction 138.6, page 62. Any changes made to the hardcopy options
remain in effect for the rest of the session.

Abort Cancels the Move to Fiie operation. This is the only way to get out of the menu.

PS:(RMS>ZM.TEXT.53 ' 23-MAY-83 -

Mail-File—Filter Associations) 46 _ /Mail Manual

Whichever you specify with click right becomes the new default for click left.

If you follow the practice of moving much of your mail into non-primary mail files, it is
convenient to have thosc files appear in the Move to File-right menu even if you have not read
them in yet. Your profile can contain a list of files to include in the menu, which you can edit
with the Mail Files box in the profile editor (see section 18.3, page 60).

default-move-mail-file-name Default filename for files to move messages to. Variable
The value specified for this variable in your profile provides an initial meaning for click
left on Move to File to use. The value is also used as the default pathname when ZMail
reads the name of a file to move to. Every time you specify a file buffer to move to, this
variable is updated. .

move-file-name-sticky-n2 Take filename type from defauit. Variable
Take file type for moving to a new file from default. In other words, if the default is
FOO.BAR and you type FOXX, the file will be FOXX.BAR. Yes or No, with Yes as the
default. '
A message has only one owning mail file buffer, which cannot be changed. When you move
2 message into a temporary buffer, the same message appears in. that buffer in addition to
whatever other buffers it belongs to. But when you "move” a message into a file buffer,
including text mail files, it actually works by copying the message. Normaily, the original is
deleted in this case (but it does not actually disappear until expunged).

*delete-aftar-move-to-file® Delete message when moved to file. Variable
Yes or No, with Yes as the default. If Yes, moving a message into another mail file
buffer, which actually copies the message, marks the original as deleted. If no, the
original is not dcleted. ‘

13.1 Mail-File—Filter Associations

It is also useful to tell ZMail about rules for how to decide where to move a message. These
rules are called mail-file-filter associations. made up of pairs of one mail filec and one filter, and
they are set up using the Mail Files or Filters box in the profile editor (sce scction 18.2, page
59). The rules are used only when you tell ZMail to use them. You do this by selecting By
Filters or By Individual Filters in the Move to File menu, or by clicking middle on Move to File.
Then ZMail takes each message to be moved and matches it against the filters in the associations,
one by one, untl a filter matches the message. The mail file associated with that filter is the one
the message is moved to.

For example, you might define a filter about-zmail which matches messages which have
“zmail” in their subjects, and associate this with the mail file ZMAIL-BUGS.XMAIL. Then Map
Over of Move to File of By Individual Filters would (among other things) move all such messages
into that file.

When you are moving multiple messages, messages that do not match any association flter
are not moved. Messages are normally deleted when moved into another mail file buffer (see the
preceding scction), and in this case the messages actually moved are dcleted while those not

PS:CRMS>/M . TEXT.S3 o 23MAY-83

o

ZMail Manual 47 Text Mail F iles

moved because they matched no filter are not deleted. A uscful technique for dividing up all new
mail automatically is to get new mail, make a subset buffer of unscen messages (sce page 49).
then do Map Over of Move to File of By Individual Filters.

13.2 Text Mail Files
A text mail file is a file of messages written to be read directly by humans.

Other formats of mail file are designed to be used as data bases by ZMail and other mail
editing programs. They contain special delimiters to enable the programs to parse out the
messages reliably no matter what their contents. Text mail files are designed 0 look good when
printed or typed on a terminal. Messages are separated only by blank lines, or some other string
you specify. As a result, it is impossible to parse one once it has been written. Text mail files
are produced as output from ZMail but cannot be used as input.

The only way to create a text mail file buffer is in the Move to File command, since there is
no other way for it to have any messages. It always starts out empty except for the messages you
move in. .

The text mail file buffer is just like any other buffer as long as you are in ZMail. You can
select the buffer, opcrate on the messages, delete them, reply to them. You can even change the
mail file’s format, using the File Options box in the profile editor. But if you save the file in
text mail file format, that file cannot be read back in by ZMail. Indecd, ZMail does not even
look for an existing file when it creates a text mail file buffer. The buffer starts out empty, and
saving it will produce a new file version.

stgxt-mail-file-separator® Line between messagesin text mail file. - Variable
This string supplies the contents of the lines written between each pair of messages in a
text mail file. The default is the empty string, making the line that scparates messages a
blank line.

PS:IARMSOZM.TEXT.S3 . 23-MAY-83

References Between Messages | 48 ZMail Manual

14. References Between Messages

Some messages refer to other messages with In-reply-to or References fields. You can add an
In-reply-to ficld to an outgoing message with the editing command Meta-X Add In Reply To
Field, and ZMail provides a profile option (*add-in-reply-to-fieids®) for adding them
automatically to all outgoing messages. You can also insert a References ficld. either manually or
with Meta-X Add References Field (page 32). If other users use ZMail for their replies, or use
some other program which does likewise, it is possible to trace out all the messages that make up
one conversation by looking at the inter-message references. ZMail provides commands to do this.

The extended command X Select Referenced Msg finds the message referenced by the .
selected message and selects that one. X Delete Referenced Msgs deletes all messages referenced
by the selected message.

The extended command X Select References creates and selects a temporary buffer
‘containing all the messages referenced directly or indirectly by the selected message. This means
the mcssages that the selccted message refers to, and the messages they refer to, and SO on.

'

To trace rcferences ‘both forward and backward, use X Select Conversatton by References
This selects a temporary buffer containing all the messages connccted by references in either
direction with the selected message., Messages that reference the selected message, directly or
indirectly, are included as well as those referenced by it. The conncction between the selected
message and the other message need not always run in the same direction; a message that
references the same onec that the selected message references will be included. There is also X
Delete Conversation by References, which deletes the same se- of messages that the other
command would sclect.

X Append to Referenced Msg appends the selected message into the text of the message it
references, then deletes the selected message. The result is that the two related messages are
textually tied together.,

X Move In Place of Referenced Msg moves the selected message to occupy the place of the
message it references. It is moved as in the Move command, into that message’s file, at a
position jusg before it. Then that other message is deleted.

When scarching for the refercnced message, ZMail first trics the sclected mail file (a numeric
argument to any of these commands inhibits this). Next it uses the filter-universe associations to
try to find a universe: it applies each filter in turn to the original message, and if a filter
matches. the associated universe is searched. If nothing is found this way, the user is asked to
specify a universe to search. The filter-universe associations are set using the Filters box or the
Universes box in the profile editor (see section 18.2, page 59).

PS:{RMS>ZM.TEXT.53 ’ 23-MAY-83

7Mail Manual) " Message Predicates

15. Message Predicates

A message predicate is a way of distinguishing some messages from the rest according to their
contents (headers and text). Message predicates can test such things as whether a message has
been read, deleted, replied to, or moved to another file; for a particular sender or recipient. a
particular subject, or a particular keyword.

The normal command menu contains three commands that work with message predicates.
Each command uses both a predicate and a universe. A universe is a buffer or a union or
. intersection of buffers (see universes, section 15.4, page 52). The predicate is used to select some
of the messages from the universe. For example, you might choose as the predicate "messages
with RMS as a recipient” and as the universe "either FOO.BABYL or Temp-2"; then you will
get all messages in either FOQ.BABYL or the temporary buffer Temp-2 which have RMS as a
recipient. The messages that match are the ones that any of these three commands will operate
on. The commands differ in what they do to the messages thus found.

Survey Print a list, in the summary window, of all the messages matchmg a predicate.

Jump Select, one by one, the messages matching a predicate. Click right on Jump to
; specify a predicate; then, you will move to the next message in the selected buffer
that satisfies the predicate (you can also specify a universe to move through; but
the default is “the rest of the selected buffer”). Once you have done this, you
can continue moving through the same set of messages by chckxng left on Jump.
This uses the same predicate and universe as last time.

Select File
Click middle on Select File to create and select a subser buffer consisting of ail
messages which match the predicate; then you can use the Next and Previous
commands to move around through them, or use Map Over to operate on all of
them. The subset buffer is given a name that looks like [universe[predicate>, as
in [RMS.BABYL|Kdeleted>.

15.1 Built-in Message Predicates

Whenever you are asked to choose a message predicate, no matter what it will be used for,
the choice is always made with the predicate seiection window (flavor zweu filter-selection-frame).
Here are the predicates you can choose from:

All Checks nothing at all; this is the trivial predicate, which every message satisfies.

These predicates check for message attributes:

Deleted .Checks for a deleted message.

Unseen Checks for a message that has never been selecied in ZMail ("seen” in full by the
user). :

Recent Checks for a message that is “recent”; that is, was obtained as new mail since the

last time its mail file was expunged.

PSKRMS>/M.TEXT.S3 - | 23-MAY-83

Filters 50 ZMail Manual

Answered Checks for a message that you have replied to using the Reply command.

Filed Checks for a message that you have moved into another buffer using the Move to
File command.

These check the headers or the text:

Search Checks for a message whose text contains a given string. You are asked to specify
the string to search for with the minibuffer. :
From/To Checks for a message that has a specified -address as its sender or as a recipient.

You are asked to specify the address to look for with the minibuffer.

Subject Checks for a message whose subject contains a specified substring. You are asked
to specify the string to search for with the minibuffer; aiternatively, you can click
on a message in the summary window and its subject will be used as the string to
check for. :

These check the message keywords:

akeyword Checks for a message that has th:s keyword.:

Any Checks for a message that has any keywords at all.

These can check for derived predicates or combinations of things.

a filter Each defined filter (sce-section 152, page 50) appears in the predicate selection
. window. Click on a filter name to use that filter.

New Filter Click on-this to define a new filter and use that one (unless you abort).

Not Negates the condition specified by whatever else you choose. Clicking on Not

does not specify a predicate and does not exit the selection window. Each click
on Not turns it on or off, as you can see by the highlighting of the box. When
you select one of the other predicates, if Not is on at the time, the meaning of
the selected predicate is inverted.

15.2 Fiiters

A ZMail filter is a message predicate that you define in terms of other predicates. Once
defined. these user-defined predicates can be used just like the built-in ones in the Survey, Jump
and Select File commands. In addition, filters can be associated with mail files, keywords or
universes. These associations enable ZMail to figure out automatically which mail file, universe or
kcywords to use in certain commands by checking the associated filters against the message to be
operated on. Associations are set up with the profile editor (see section 18.2, page 59). Filter-
keyword associations provide rules for the Keywords command (see section 12.1, page 44). Filter-
universe associations provide rules for the conversation commands (scc page 48). Filter-mail file
associations provide rules for the Move to File command (see section 13.1, page 46).

You use a filter as a predicate by clicking on its name in the predicate selection window.

When cditing the associations of filters, you specify a filter with a menu. Both situations provide
a box to click on to define a new fiiter instead of using one of the listed cxisting filters.

PS:KRMS>ZM.TEXT.53 : " 23-MAY-83

7Mail Manual : o 51 Defining Filters

15.3 Defining Filters

~ You can ask to definc a new filter almost any time you are supposcd to choose a filter to use.
What happens then is the same no matter what you were going to use the filter for. The window
configuration changes to present the filter definition frame (flavor zwei:zmail-filter-frame). This
frame contains an editor window that displays the definition as written so far, as Lisp code, and
boxes that you can use to specify the definition. You can edit the Lisp code directly if you know
what the code should look like. You can also create the filter definition by clicking on the other
boxes in the frame to specify various primitive predicates and logical operations (And, Or and
Not) for combining them. As you click on the boxes, the code displayed in the editor window
changes automatically to show the effect of what you have done.

Above the editor window is a box that is used to specify the name of the filter to be defined.
Initially the name is something like Noname-1; click on the box to specify a different name.
When you have done so, the name will appear both in the box and in the editor window (in the
proper place in the definition).

The remaining boxes are on the left hand side. The bottom two rows are for specifying
primitive predicates. The top row of boxes are for specifying combinations of primitive predicates.
The second row is used for testing the filter and for exiting filter; definition.

Here are the boxes that specify primitive predicates:

Deleted, Unseen, Recent, Answered, Filed, Subject
These are the same as the primitive predicates dcscnbcd in the preceding section.

To Checks for a message whose To recipients include a particular one. You are asked
to specify with the minibuffer the recipient to check for.

To/CC Checks for a meséage whose 'recipicnts of all kinds include a particular one.” This
is a more general condition than the preceding one; it is always true if that one
is. You are asked to specify with the minibuffer the recipient to check for.

From Checks for a méssage from a certain sender. You are asked to specify with the
minibuffer the sender to check for.

Subject Checks for a message whose subject includes a particular string, wmch you specify
in the minibuffer.

Qther Checks for a message containing a particular string within a particular header field.
You specify first the header field name and then the string, with the minibuffer.
If the header ficld is one which contains recipicnts, such as To or From, the
specified string is looked for as one of the rccipients. Otherwise it is looked for
as a textual substring.

Before Checks for a message dated before a date .which you specify.

On Checks for a message dated on a date which you specify.

After Checks for a message dated after a date which you specify.

Keywords The box labeled "keywords" has an item for each keyword that appears on ény

message, and another item named Any (in italics). Awny checks for a message that
has any keywords. The item for a particular keyword checks for a message that

PS:ARMS>/ZM.TEXT.S3 . 23-MAY-83

Universcs 52 7/Mail Manual

has that particular keyword.

Filters The box labeled "Filters” has an item for each filter alrcady defined. The item
specifies a predicate that checks for a message which satisfics the predefined filter.
Thus, onc filter can be used as a subroutine of another filter definition.

A simplc filter definition can be completed simply by selecting one primitive predicate with
the boxes listed above. A more complex filter definition would involve combinations of primitive
predicates using And, Or and Not. These definitions are written using the boxes labeled thus in
the first row. To specify a conjunction of predicates, first click on And, then click on the
predicates in the conjunction, and finally click on Close to finish the conjunction. Or and Not
are done the same way (but you may only have one prcdlcate inside the Not). Clicking on And,
Or or Not inserts a pair of parentheses, which you can see in the editor window, and positions
point between them. Close moves point over the closc parenthesis. Thus, you can always see in
the editor window the results of any complicated structures you have specified with the boxes.

You can test the definition you have made so far by clicking on Sample. This finds all the

messages in the selected buffer that match the deﬁmuon and dxsplays them m the summary,

window that appears at the top of the screen.

If you are satisfied, click on Done to actually dcfine the filter and return to your previous
activity. Click on Abort to return there without defining a filter.

Filter definitions can be saved in your ZMail init file, but this does not happen automatically.
You must use the profile editor to specify which filters should be saved. See scction 18.2, page
59. , '

15.4 Universes

A universe is a specification of a space of messages to search through. Any single buffer can
be used as a universe; so can a union or interscction of buffers or other universes. A universe

can also be defined as thc complement of a buffer or universe; that is, all messages no¢ in that

buffer or universe. Therc are also a few built-in special universes:

Selected Buffer
This universe refers to whichever buffer that is selected at the tme the universe is
used. .

Rest of Selected Buffer
This uni crse refers to all of the sclected buffer foilowing the sclccted message.
This is the default for the Jurmp command, which is why rcpeated use goes
through ll the messages in _the buffer that satisfy the choscn predicate.

Beginning of Selected Buffer -
This universe refers to all of the selected buffer before the selected message.

Loaded Mail Files
Al messages actually loaded into ZMail as of the moment the universe is used.
Recall that ZMail allows you to work with a file before the whole file is read in.
This universe specifically ignores the messages that have not been read in yet.

PSAARMSPZMTEXT.SI ' 23-MAY-83

ZMail Manual 53 : ~ Universcs

All "~ All messages in all mail files known to ZMail. If not all the mail files are loaded,
use of this universe will wait until loading is complete.

A universe is usually used together with a message predicate by some sort of muitiple-message
operation. The operation will act on all the messages in the given universe which fit the given
predicate. For these applications, you will specify a universe with the predicate sclection window.

If you click on the box that asks for a universe, you get a menu that includes each of the
built-in special universes, each of the user-defined universes, and each ZMail buffer (since they
can serve as universes). There is also an additional item for defining a new universe. If you click
on this, the universe definition window appears. ' '

The universe definition window contains menus listing some built-in special universes, ail the
existing user-defined universes, and all the ZMail buffers. There are aiso boxes for the set
operations Union, Intersection and Not. You use these to specify a combination of the existing
universes; they work like And, Or and Not in fiiter definition mode. Not of a universe
expression means all loaded messages that would not be in that universe. You can sec the Lisp
code for the universe definition accumulate in the editor window as you click on the boxes; you
can also click on that wmdow and edit it directly.

Click on the box above the editor wmdow to specxfy a name for the umverse, and ﬁnally
click on Done to define it or Abort to exit without defining a universe.

Universe definitions can be saved in your ZMail init file, but this does not happen
automatically. You must use the profile editor to specify which universes shouid be saved. See
section 18.3, page 60.

" One other use of universes is in telling certain searching commands the bounds of where to
search. See page 48. You can specify the universe manually, or give ZMail rules in advance
from which it can figure out automatically which universe to use. Such rules are called the filter
universe associations, and you specify them in the profile editor (see section 13.2, page 59).

PS:KRMS>ZM.TEXT.53 . 23-MAY-83

Map Over) 4 , ZMail Manual

16. Map Over

The Map Over menu command ailows you to perform an operation on all the messages in
the selected buffer at once. For example, you can delete them all, add keywords to them all, or
forward them all (at once, in a single message). Map Over is most useful together with
temporary buffers, when you create a temporary buffer so that you can map over it. The various
ways of creating temporary buffers thus become ways of specifying which messages to delete,
forward, etc.

Clicking right on Map Over brings up a menu of operations that can be mapped. The
alternatives are: Delete, Undelete, Type, Find String, Keywords (that is, add keywords to a
' message), Unkeywords (that is, remove keywords), Move to buffer, Forward, Redistribute,
Reply, and Concatenate. '

Type means that all the messages are printed in succession. Find String means that you type
a string in the minibuffer and each message is searched for that string; messages which contain it
are listed in the typeout window, and you can click on a line to select that message.
.Concatenate means that all the messages are stuck together into a singie message. The other
options do the same thing as the like-named top level ZMail commands. : '

Mapping the Forward command over muitipie messages creates one draft only, which contains
all of the messages to be forwarded. Mapping the Reply command, however, starts one draft for
each message 0 be replied to.

Clicking left on Map Over repeats the last map operation. Clicking middle performs one of
the map operations described above; a profile option specifies which one:

map-middie-mode Middle button on Map command. Variable
This controls what happens when you click the middle button on the Map menu item.
The alternatives are the same as those in the menu of mapping operations.

16.1 Experimental Window Configuration

The experimental window configuration allows you to apply any of the commands in the
command menu to a set of messages instead of a single message. You get into the experimental
configuration by clicking right on Configure in the command menu and then selecting
Experimental in the menu that follows: you can also make it the default wuh a profile option
(see chapter 17, page 56).

In the experimental configuration, the command menu is split by a pane containing two
boxes, one specifying a universe and the other a predicate. By clicking on the boxes, you can
specify a different universe or predicate; these then apply to the next command you click on in
the command menu. The commands for which the universe and filter are relevant are those in
the part of the command menu below the boxes.

PS:{RMS>7ZM.TEXT.53 23-MAY-83

ZMail Manual 55 Experimental Window Configuration

The box for specifying a universe appears on the left and normally says Just current
message. If you click right on this, you get a menu of built-in and uscr-defined universes, with
which you can select one. The box will change to display the name of the universe you have
selected. : :

Similarly, the predicate sclection box normally says All, which means that the predicate used
by default is a trivial one that accepts all messages in the specified universe. If you click right on
the box, you get to the predicate selection window, in which you can select a built-in message
predicate or a user-defined filter, or define and use a new filter. The box will change to display
an indication of the predicate or filter you chose.

Thus, to delete all the messages in ail loaded files, click right on the universe box and select
All in the menu, then click on Delete in the command menu.

The boxes always display the name of the universe and filter that will be used for the next
command. Normally the universe box says Just current message and the filter box says All,
informing you that commands will apply to the selected message alone. If you choose a different
universe or filter, the box changes. After the next command, the boxes revert back to their
normal states, so specifying a universe or predicate applies only to one command. However, the
last. universe you specified is recorded and iyou can ;specify ‘it again jusg by clicking the middle
button on the universe box: similarly, the last predicate you specified is recorded and you can
specify it again by clicking middle on the predicate box.

PS:(RMS>7ZM.TEXT.53 ' 23-MAY-83

Window Configurations 56 ZMail Manual

17. Window‘Conﬁguratidns

There are four window configurations you can use for normal mail-rcading with ZMail. The
normal default is called Both; it displays both the summary window and the message window,
with the command menu in between. Two other configurations are Message only and Summary
only; these climinate either the summary window or the message window (The command menu
and mode line arc always present in top-level configurations). The remaining configuration,
Experimental, presents the same set of windows as Both but provides. additional featurcs relating
to universes and filters (see section 16.1, page 54). '

You can switch to a different configuration at any time while you are at top level by clicking '

on Configure. Clicking left selects the Both configuration. Clicking right gets a menu of all four
configurations. In addition, the following profile option allows you to specify which configuration
ZMail should start up in.

sdefault-initial-window-configuration® Default startup window setup. Variable
Controls the window cor;ﬁguration used initially in normal mail reading mode. The
alternatives are Both, Summary only, Message only, iand Experimental. The default is
Both.

(ZMail also has other window configurations, such as the one used for editing the profile and

those used for composing mail, but they are used automatically by the commands they are
intended for and are not alternatives at this level.)

PS:<RMSYZM.TEXT.S53 ‘ 23-MAY-83

Y

7ZMail Manual . 57 ’ ' Editing Your Profile

18. Editing Your Profile

7Mail has many flags and parameters for the user to set The ZMail profile editor makes it
easy for you to find out what options are available. sct them, and store the settings in your
"ZMail init file" so that they will be in effect every time you use ZMail.

To enter the profile editor, click on the menu item Profile. The window configuration will
change to display a list of option names. and values at the top, and the text of your ZMail init
file at the bottom. (There will also be several boxes with words in them, which you can click on
to enter other aspects of the profile editor).

- The list of options displays one option per line, together with its current setting or the
possible alternatives. If the option has a fixed set of alternatives, they are all displayed, with the
selected alternative in boldface. To select an aiternative, click on it with the left mouse button.
If the option allows an arbitrary number, string or filename, the current setting is displayed. To
change it, click on it with the left mouse button. A cursor will appear instead of the current
setting, and you can then type in the new setting. End it with Return.

There are too many options to fit on the screen at once, so you can scroil through the list,
cither with the scroll bar by moying the mouse ‘off the left of the list, or by pushing the moyse
against the top or bottom of the list where it says more above or more below.

You can also edit the text form of the information by clicking on the window containing the
text with the left mouse button. You then use the ordinary editor commands to do your editing.
To exit, type End.

The list of option settings and the text are duplicate representations of the same information.
You can cdit either one, and the other will be changed to match (eventually, nbt instantaneously).
The list of options at the top is casiest for a beginning user to edit, because it shows you what
options are available and what kinds of values they can have. Editing the text form is useful only
for more sophisticated tasks. The text form is maintained because that is the way your profile is
stored in the init file,

18.1 The Bottom Row of Boxes

The five boxes underncath the displayed list of options arc used to coatrol the profile editor.

The Done box exits the profile editor. This does not save your init file on disk; use the
Save box for that.- However. you can go back to using ZMail with the option settings you have
established. If you decide you like them, you can reenter the profile editor later and save your
init file on disk then.

The Reset box resets all ZMail user options to the values they have in vour init file on disk.

You are offered the choice of reading the text back in from the disk file as well, or updating it
as is usually done when option values are changed.

PS:KRMS>ZM.TEXT.S3 23-MAY-83 |

The Bottom Row of Boxes 58 , ZMail Manual

~,

The Defaults box resets all ZMail options to their system default values—what they would be
if you had no init file. You are asked whether to update the textual form as well. If you say
Yes. it is updated by deleting everything that scts an option parameter.

The Edit box sclects the textual form of the init file for editing with all the usual editor
commands. This is the same as clicking the mouse on the window where the text is displayed.
The text is updated to match your latest optién settings before you begin cditing it. You can exit
with End. whereupon the text as you havé edited it will be read and the options list will be
updated according to the changes you have made. ‘

The Save box controls the updating of the textual .form of the profile and of the init file on
disk.

Clicking left on the Save box is a simple way to update them both. The text is updated to
correspond to the option settings that you now have, and then saved on disk in your init file.
Finally, if you have created a compiled init file, that too is updated. ‘

; Clicking Right on the Save box gets you a menu containing; operations that let you controt
the updating more carefully. The menu items are Save file, Make init file compiled, Insert
changes, Reap file, and Recompile file. .

Insert changes updates the text version of the profile, as stored inside ZMail and displayed
in the bortom half of the screen. It does not change any disk files.

Save file writes the text version of the profile, as displayed on the screen, into your init file
on disk. It does not update the text first, and it does not update the compiled version of your
init file, just the text version.

Recompile file recompiles your init file, updating the compiled version. Use this only if you
already have a compiled init file. '

Clicking left on the Save box is equivalent to doing Insert changes, Save file and then
perhaps Recompile file. :

Make init file compiled compiles the text of your init file. This is useful if the text isﬁong :
and contains lots of filter definitions, because it will load faster if compiled. It does not ‘make
ZMail run faster once the file is loaded; for cxample, filter definitions arc always compiled no
matter how they are input. For simple init files, there is no advantage in compilation.

, When you have a compiled init file, the actual init file which ZMail loads is the compiled
fle. The source is stored in a different file. When you perform the Make init file compiled
operation, you arc asked for the filename to use for the non-compiled version.

Reap file offers to delete old versions of the text of your init file.

PS:KRMS>ZM.TEXTS3 ' 23-MAY-83

7Mail Manual | 59 The Filters Box

" 18.2 The Filters Box

7Mail can record filter definitions in your init file so that they are available in future sessions.
It can also record associations between filters and mail files. The Filters box is used to specify
which filter definitions and associations should be recorded permanently.

If you click left on the Filters box, you get a multiple menu which lists all the filters you
have defined. Those which are rccorded in the init file are highlighted.

You can change which filters are recorded by clicking on the filters you wish to change.
Clicking on a highlighted filter makes it unhighlighted, and' vice versa. To finish, click on the Do
it choice box at the bottom of the menu. The text in the profile editor window does not actually
change ‘until this time, and until then you can cancel your changes by clicking on the Abort
choice box instead.

The remaining choice box, New Filter, allows you to define new filters while in the middle of
this. Clicking on this choice box puts you into filter definiion mode (see section 15.3, page S1).
When you exit that mode, having possibly defined a new filter, you are back in the menu.

; ‘Click middle on the Filters hox to edit the assqciations of a filter. First you are presented,

with 2 menu listing all filter names. Use this to specify which filter's associations to eédic The”
menu also contains the item New, which you can use to define a new filter and then return t0
the menu.)

After sclecting a filter, you receive another menu with which you specify what kind of
associations to edit. This menu contains three items: Keywords, Mail files, and Universes.
Filter-keyword associations provide rules for the Keywords command (see scction 12.1, page 4).
Filter-universe associations provide rules for the conversation commands (see page 48). Filter-mail
file associations provide rules for the Move to File command (see section 13.1, page 46).

If you click on Keywords, you then get to edit the keyword associations of the filter. A filter
can have any number of associated keywords. You get a multiple highlighting menu listing ail
known keywords, where keywords associated with this filter are highlighted. Click on a keyword'
1o add it to the list or remove it. Use the Do It choice box to finalize the changes, or Abort t©0
cancel them. The New Keyword choice box allows you to define new keywords on the spot and
add them to the menu.

If you click on Mail files, you then get to edit the mail file association of the filter. The
filter can have only one associated mail file, so you gct an ordinary menu listing all known mail
files, New and None. Click on the one you wish to select. None means leave the filter with no
associated mail file, and New lets you specify a mail file not already known. If you decide not to
change the association, move the mouse away from the menu to abort it.

If you click on Universes, you then get to cdit the universe association of the filter. The
filter can have only one associated universe. so this menu works just like the one for mail files.

PS:<RMS>ZM.TEXT.S3 | _ 23-MAY-83

The Universes and Mail Files Boxes . 60 ZMail Manual

18.2.1 Pitfalls of Associations

Any changes you make to the associations of a filter are recorded in the init file, if you save
the init file in that session. Associations record filters by their names. If you do not direct
7Mail to record the associated filters in your init file, and fail to define appropriately named
filters in your next session, you will probably get Lisp errors when ZMail tries to use the missing
ones.

For the case of filter-universe associations, the same caveat applies to the universes.

It is possible to associate a filter with a temporary buffer instead of a mail file. If you do so,
and you save the init file later in the session, the init file will record the name of the temporary
puffer. In a later session, if you make use of the mail-file-filter associations, you must have a
buffer by that name to avoid difficuities.

18.3 The Universes and Mail Files Boxes

The Universes box does for universes 'what the Filters box does for-filters. Clicking left, you
can specify which of your defined universes should be recorded in your init file. Clicking middle,
you can alter the associations between filters and universes.

Clicking left on the Universes box gives you a multiple highlighting menu listing all defined
universes. The ones recorded in your init file are highlighted. Click on a universe to add it 10
the list or remove it. Finally, click on the Do It choice box to finalize your changes, of ciick on
the Abort choice box t0 cancel them. The New Universe choice box ailows vou (o define a new
universe on the spot and go back to the menu. -

Clicking middle on the Universes box gives you a menu of universes, to sclect the one
whose associations will be cdited. There is also an item New, which allows you to define a new
universe and proceed to edit its associations. The only associations a universe has are filters.
Once you select a universe, you get a multiple highlighting menu listing all filters, with the ones
associated with the given universc highlighted. Click on a fiter to add it to the list or remove it.
Finally, click on the Do It choice box to finalize your changes, or click on the Abort choice box
to cancel them. The New Filter choice box allows you to define a new universe on the spot and
go back to the menu of asscciations.

Be sure to read section 18.2.1, page 60 before using associations.

The associations between filters and universes arc bidirectional. It does not matter whether
you select a filter and change its associated universe, or select a universe and change its associated
filters: the same set of bidirectional associations is being edited in cither case. There is one
asymmetry, however: a fiter can have only one associated universe, but a universe can have any
number of associated filters. If you associate a filter with onc universe, no matter how, you
automatically remove any association between that filter and any other universes. For the uses of
flter-universe associations, see page 48.

The Mail Files box does for mail files what the Filters box does for filters. It works just like

the Universes box. Clicking left. you can specify which mail files should be recorded in your
init file. Clicking middle, you can alter the associations between filters and mail files.

PS:KRMS>ZM.TEXT.S3 . 23-MAY-83

7ZMail Manual 61 The Keywords Box

The associations between filters and mail files are bidirectional, just like those between filters
and universes. They provide defaulting rules for the Move to File command (sce scction 13.1,

page 46).

18.4 The Keywords Box

The Keywords box lets you edit the list of keywords stored in a mail file or the associations
between keywords and filters or. Click left to do the former or middle for the latter.

Clicking left on the Keywords box allows you to edit the lists of keywords stored in Babyl
format mail files. These lists exist to make keywords appear in the menu for the Keywords
command so you can conveniently add them to messages. An editor window appears containing a
list of Babyl files and their keywords. You can edit this list, and finish by typing End to make
your changes take effect or Abort to cancel them.

Editing the keyword-filter associations by clicking middle on Keywords works just like editing
the universe-filter associations by clicking middle on Universes. You get a menu of all known
keywords (including New, which lets you specify a keyword not prevxously known), and then a
multiple highlighting menu with which you'select the filters' to associate with the keyword.

Keyword-filter associations are bidirectional, like mail file-filter and universe-filter associations,
and you can use either the Filters box or the Keywords box to change them. Unlike universes
and mail files, morc than one keyword may be associated with a single filter. These associations
provide defaulting rules for the Keywords command (see section 12.1, page 44).

Be sure to read section 18.2.1, page GQ before using associations.

18.5 The File Options Box -

The File Options box lets you change the parameters of any mail file. You can change the
mail file from one format to another this way, or change which end new messages are added at
In addition, some formats -of mail file have additional subsidiary options that you can set

You first get a menu listing all known mail files. Click on the mail file whose dptions you
wish to edit. :

Then you get a window displaying the options for the mail file. You get the same sort of
window every time you create a mail file, so that you can specify its format and options. This
window is like the one which displays the ZMail user options; it contains one option per line,
together with its current value or the possible alternatives. If the current value is displayed, click
left on it to change it; if altcrnatives are displayed, the current alternative is in bold face, and
click left on an alternative to select it

The first option listed is the format of the mail file. Each file server provides its own set of
formats; some formats oxist on more than one type of server, while others belong to one
particular operating system. For example, Twenex file servers offer the formats Tenex, Babyl and
Text. Each mail file format has its own sct of options, and if vou change format. the sct options
listed will change.

PS:KRMS>ZM.TEXT.S3 . 23-MAY-83

"The Hardcopy Box . 62 7Mail Manual

The available mail file formats are RMAIL, Babyl. Tenex, Unix and Text. The Babyl format
is a flexible format that provides the most featurcs. The Tenex and Unix formats are the standard
formats of those operating systems. The RMAIL format is the standard format of I1S. The Text
format contains no special formatting information, and can only be uscd for output from ZMail,
because such files cannot be parsed back into messages.

VMS and Multics users shouid note that ZMail is not presently capable of reading the
mail files found on those systems.

A mail file must be read in in the proper format in order for ZMail to parse it properly.
When ZMail reads in a mail file, it normally determines the format of the file automatically,
based on knowing which possibilities to expect on a particular file server, plus some heuristics.
For example, on a Twenex file server, the Tenex and Babyl formats are the only possibilities
expected (Text format files cannot be read), and there is a special program in ZMail to decide
between those two. If you have copied a Unix mail file onto the Twenex and want to read it
from there, ZMail will read it wrong.

Changing the format with the File Options box determines how ZMail will save the file; it is
available only after the file has been read into a buffer, and that is too late to be useful in
reading the file properly. For this purpose, the command X Select Arbitrary Format Mail File is
provided. This command asks for a mail file format as well as a filename, and then reads the file
parsing for that format. For example, you could read in the Unix format file this way, specifying
Unix as the format. Later you could use File Cptions w0 change the format to Tenex or Babyl,
and save the file in that format. .

Strictly speaking, the parameters of a mail file are not part of your profile, because they often
affect the way the mail file is formatted, and in any casc affect all users who edit it, not just you.
But seuting mail file options and altering your profile are similar sorts of operations, and that is
why the File Options box is found in the profile editor.

18.6 The Hardcopy Box
The Hardcopy box lets you edit the options for printing hardcopy from messages.

Clicking on the Hardcopy box gets you 2 list of the hardcopy options, together with the
alternatives for them. This list works just like the regular ZMail options list: click on an
alternative to select it, and the selected alternative is in displayed bold face; if any number or
string is allowed, the current sctting is displayed, and you change it by clicking on the current
value and then typing the new value. Finally, click on Do It to make the changes take effect, or
Abort to cancei them,

Unlike the main ZMail options list, the hardcopy options list is short and is all displayed at
once. There is no scrolling.
 The options are:
Output Device The only device available at MIT is Dover.

Font For output devices which can print more than one font, this specifics the font to
use. The default at MIT is LPT8. ’

PS:KRMS>ZM.TEXT.S3 : ' 23-MAY-83

ZMail Manuai) 63 The Hardcopy Box

Number of copies -
This is the number of copies to print. The default is 1.

Spool through MC
This is relevant to Dover output only. Alternatives are Yes and No. No means
send directly to the Dover.

Include Summary
This says whether the hardcopy should include a summary of the messages in it.
The alternatives are Yes, No and Just Summary.

Print each message on a separate page
The alternatives are Yes and No.

Line between messages .
This is a string used to make the lines separating messages, if you specify that
each message should mot be a separate page. By default, this is the empty suing,
meaning that messages are separated by blank lines.

PS:(RMS>7M. TEXT.53 ' 23-MAY-83

*Other” Commands 64 ZMail Manual

19. "Other" Command.s

The Other item in the command menu is a way at getting at various other ZMail commands
with the mouse.

Click right on Other gets a menu of "other” commands. Initally there are two commands on
the "other” command listt X Whois and X View File. The former prints the verbose information
about a specified user at a specified site. The latter displays the contents of a file, and lets you
scroll through it. You can add any ZMail extended command to the “other” menu using the
function zwei:add-other-command, as in

(zwei:add-other-command zwei :com-zmail-yank-msg)

This is a macro and its arguments are not evaluated.

Notice how - the command name X Yank Msg becomes zwei:com-zmaii-yank-msg. In
general, change hyphens to spaces and add “zwei:com-zmail-" to the front, to get the symbol for
nearly any ZMail command.

1
N

Click left on Other repeats the ‘last Oﬂier commaixd used.

PS:{RMS>ZM.TEXT.53 . 23-MAY-33

ZMail Manual 65 Baby! File Format

20. Babyl File Format

Unless otherwise stated, an Uparrow character is to be read as Control-character, eg. tL is
a Control-L.

20.1 Versions

First, note that each Babyl file contains in ‘its Babyl Options section the version for the Babyl
file—each version change signals a change in the format of Babyl files. This file describes Version
5 format. ' '

20.2 Overall Bahyl File Structure

A Babyl file consists of a Babyl Options section followed by zero or more message scctions.
The Babyl Options section starts with the line BABYL OPTIONS:. Message scctions start with
Control-Underscore Control-L Return Linefeed. Each section ends with a Control-Underscore.
(That is also the first character of the starter for the next section,. if any.) Thus, a three message
Babyl file looks like: :

BABYL OPTIONS:
contents of the Babyl Options section.
t_tL
contents of the Ist message section
i
contents of the 2nd message section
r_tL
contents of the last message section
T

Babyl is tolerant about some whitespace at the end of the file—the file may end with the final
t_ or it may have some whitespace, e.g. a Return Linefeed, after it.

20.3 The Babyl Options Section

Each Babyl option is specificd on one line (thus restricting string values these options can
currently have). Values are either numbers or strings. The format is name, colon, and the value,
with whitespace after the colon ignored, e.g.:

Qwner: ECC.
Append: 3
Mail: PS:<ECC>ECC-TEST.MAIL.1

Here, the Owner option is the string "ECC", the Append option is the number 3 and the Mail
option is the string "PSiKECC>ECC-TEST.MAIL.1".

PS:CRMS>ZM.TEXT.S3 ' 23-MAY-83

'The Baby! Options Section . 66 : ZMail Manual

If just an option appears with no colon or anything clsc following it on the linc, that significs
a value of t for boolcan options, 1 for numcric options. A missing option has a dcfault valuc of
0 for most numeric options, or nil for most other options (boolean or othcrwisc).

Different mail-reading programs may have their own options set of options, so all programs
should be prepared to ignore and preserve any options that they do not recognize.

These options can be set in ZMail with the File Options box in the profile editor (see scction
18.5, page 61).

Mail The value is a string, the name of the inbox file(s) for this Babyl file, separated
by commas if there are more than one filename in the string. This is converted
by ZMail into a list of pathname objects.

Version The value is a number, the Babyl file format version.

Owner A string which is the name of the user who "owns" this file. If any other user
wries to save the file. he will be asked to confirm. ZMail regards an empty string
“ or missing pption as nil, no owner.

-Append The value is a number, either 0, 1 2 or 3. The number is interpreted as a pair
" of bit-Rags. The low bit is 1 if new mail should be added at the end of the file.
The second bit is 1 if the inbox file should be reversed before it is added. ZMail
presents this value to the user as two separate file options, the Append option
and the Reverse-New-Mail option.

No Reformation o _
' The value is boolean, so this option either appears with no valuc (t) or does not
appear (nil). t means that message headers should not be reformatted. This turns
off ZMail's or Babyl's reformatting feature (see section 6.2, page 20). The default
is nil.

Labels The value is a string, made up of names of keywords separated by commas. This
represents what is referred to above as the list of keywords stored in a Babyl file
(see section 18.4, page 61).

GMSGS-Host The value is a string, the name of the host to find a GMSGS server on when
doing GMSGS to get system announcements for this file. The default is an empty
string which is taken as meaning nil. This means to use the host the file is stored
on. a reasonable thing to do if that host supports a GMSGS server. See scction
41, page 15.

Summary-Window-Format
The value is aLisp object in printed form. If it is not nil. it is used instead of
the value of *default-summary-template® when this fife is displayed in the
summary window. Sec that variable, page 25, for possible valucs (aside from nil,
which in this context means "not specificd by this file").

Sort The value is the window's sort predicate, a symbol. See sorting, chapter 11, page
41. The option appears in the file as a string naming the type of sort.

Delete-expired .
‘The value is a string, Yes or No. which is taken as meaning t or nil. t means
delete expired messages automatically when cxpunging the file. (Just the option

PS:ARMSOZM.TEXT.S3 . 23-MAY-83

-

ZMail Manual 67 | Mecssage Scctions

name with no colon is also acccpfcd as meaning t, and if thc option is not
present the value is nil).

Babyl uses certain other options that are not used by ZMail. They arc described here for
completeness.

XMail The value is a filename, used by Babyl on Tenex/Twenex systems. When Babyl
adds the mail file to the Babyl file, it will also add it to this XMail file if
specified. Note that this XMail file is in standard Tenex/Twenex mail-file format,
not Baby! file format. The default is no XMail file specified.

XMail Append The value is a number, zero or one, used by Babyl on Tenex/Twenex systems.
This controls how Babyl adds new mail to the XMail file, mentioned above. It is
a boolean: one means append to “the XMail file, zero means prepend. The
default is to prepend.

No Qriginal ~ The value is a number, zero or one, used by Babyl. A value of one specifies that
when header reformation occurs, the original header should be discarded, to save
space in the Babyl file. The default is to keep the original header.

20.4 Message Sections

A message section contains one message and information associated with it. The first line is
the "status line", which contains a bit (0 or 1 character) saying whether the message has been
reformatted yet, a list of the attributes of the message, and a list of keywords. Attributcs are
built-in properties with built-in-meanings. Some, such as Answered or Unseen, are assigned
automatically as byproducts. Others, such as Deleted, appear in response to special commands.
Keywords are user-defined and user-assigned (witl, the Keywords command). The entries in the
status line are scparated by commas, with an empty entry separaung the attributes from the
keywords. For example, consider

1, answered,, zval, bug,

The 1 mecans this message has been reformatted. The only attribute is Answered, and the
keywords are zval and bug. A message with no attributes or labels would have a status line like
1,,)

Or. if it had two auributes, Answered and Deleted, it would look like:
1, answered, deleted,, zval, bug,

After the status line comes the original header if the header has been reformatted for display.
Following that is the EOOH line, which contains exactly the characters
wxe EQOH =% .
{(which stands for “end of original header”). Notc that the original header, if a network format
header. includes the wailing CRLF. And finally, following the EOOH line is the visible message,
header and text as it is displayed for the user by Babyl or 7ZMail. For cxample, here is a
complete message section, starting with the message starter, and cnding with the terminator:

PS:KRMS>ZM.TEXT.53 ' 23-MAY-83

Mcssage Sections 68 _ ZMail Manual

t_tL

1,, wordab, eccmacs,

Date: 11 May 1982 21:40-EDT

From: Eugens C. Ciccarelli <ECC at MIT-AI>
Subject: notes

To: ECC at MIT-AI

esee EQOH s»e

Date: Tuesday, 11 May 1982 21:40-EDT
From: Eugene C. Ciccarelli <ECC>

To: ECC ‘

Re: notes

Remember to pickup check at cashier’'s office, and deposit it
soon. Pay rent.
T

. The header reformatting shown is that done by Babyl Refonnamng in ZMail is done by a
user-defined mail template, if desired. -

PS:<RMS>ZM.TEXT.53 : 23-MAY-83

Concept Index

Concept Index

ZMail Manual

Attributes of messages ORI RPN 11
Babyifileoptions « « ¢ ¢ ¢ o o 0 o0 e .. 65
BabylfileS. « « « v o v v o o ot e o n o s+ 2565
Buffers -
Commandmeny . . . « » « « . S |
Conversations e e e e e e e e s 8
Deletion of messages. -. e e e s e s .« e A
Drafts e i e e e e 29
Duplicate messages e e e e e R
Echoarea e e s s e e e e s e e e 3
Experimentai window configurtion. 54
Expirationdate. « . P
Expunging. . - « o v o ¢ ¢ o o 0 s oo s e e .2
Cxpunging deleted messages. e e e e e pa 1
FHEDUTETS + « + o o o oo e e e e S
Flleoptions . . « « v « o+ ¢ o o o o ¢ o o o . .61
Filter-keywordassociations « . .« . . N " §
FIEIS &+ v v v v o v o s v s s o o 0o o s oo 50
Forwardingmail P 1
GMSGS S &]
HardcopyoptionS . . . + « « v v ¢ ¢ ¢ o 0« 0 o 62
Headerreformatting. . « . . « « « « « « s v o » 20
Headers.+ . « . & @ e e e e e e e s 7
Inbox fileS. . . &« ¢ v ¢ v v v e e e e e e e 13
Keywords v « ¢ v o o & & e e e e e e s 43
Mailfile, e 5
Mailfileformats P
Mailtemplates ¢ v o v v s e e e . 2

Mail-file filterassociations 46
Message predicates e e e e e .. 49
Messagewindow . . . o o v 0 e v 0 e 0 e s s 3
MESSIEES &+ o o o 0 0 e b e e e e e e e e s 7
Minibuffer ¢« ¢ v v ¢ v o v o 0 0 e e e 3
Modelinewindow e e e e 3
Newmail. . . . « o ¢ ¢ v v v s v o v o 0 a0 o 13
Pointpdl et e e e e e s 18
Primarymailfile e s e e s s §
“Profileeditor -0 0 0 e e e e e e s7
Redistributingmail « .. ¢ o 36
Referencesbetweenmessages . « + + « « « « « » o o« 48
Reportingbugs. « o v ¢ ¢ o v o o v o o Ky
Selectedbuffer. e e e e e e s 6.16
Selectedmessage e e e e e s 17
Sendingmail . . . o veie o029
SortpredicateS. ¢ e e 00 00 s s s 41
Sorting messages B 3¢
Subsetbuffer ¢ . ¢ ¢« o ot e s . 49
Summary window 0 e e e e s e e e 3,25
Systemannouncementsasmail 15
TemplateS v ¢ v 0 0 v e e s e B2
Temporarybuffers« .+« . v .. 6
Text(ofamessage) . . « .+ ¢ o s o o0 00w e 7
Textmailfiles 47
Undeletionofmessages « <+ ¢ « 21
UNIVEISES. + « v ¢ ¢ v ¢ o s o o o s o s s o s 52
Windowconfigurations 56
ZMailbackground proeess 0 0 00 o0 5

23-MAY-83

Variabie Index 70 | ZMail Manual

Variable Index

*1r-reply-mode® . , . . e e e e e .. 40 *mail-header-delimiter® WX
'always-;ump-aﬁer-get-new-nml‘ e e e e e 14 *mail-middle-mode® e 0. 236
*default=ce=lSI® o 4 v o0 00 o s .. 34 *mail-sending=mode®*. o . .. e o0 35
*default-draft~file-name® . . . + + « o o ¢ o o o 29 *map-middle-mode®0 0 .0 .. M4
default-fce=list . . . « « ¢« ¢ ¢ ¢ o e e s 4 *middle-reply-mode®.

sdefault~header=force®. . . « + o ¢ o o o s o s 35 *middle-reply-window-mode® Y
*default-initial-window=configuration® 56 *move-file-name-sticky=fm2*.46
*defauit-mail-window=-configuration®. 30 *new-mail-file-append-p*. 14
*defauit-move-mail-file~name® « 46 ° *next-after-delete®*
*default-reformatting-template®- . . 20- °®next-middle-mede® C e e e e s e e 17
*default-summary~-template® 25 *one-window-after-yank® e o e s e e s k.
dejete~after-move-to-file. 46 *previous-middle-mode® o ... o . o 17
Sdelete~expired=msgs® . . « . ¢ . 4 s e o0 s oo 3 *prune-headers-after-yanking® PR |
*dolete-middle=mode®. . « . . o ¢ ¢« o . » . . 22 *query-before=expunge®. 0 0o .. 2
*dont-reply-t0®. e 6 e e s e o e 39 *reply~header-format® < . ¢ ¢« 0 0 .0 39
‘ﬁlter-mmmry-wmdow-ﬁacuon‘ B8 *teply-mode® s e e s e s e e s 39
sforwarded-add-subject®*. 36 *reply=window=mode® 0 0.0 .. oM
*forwarded-message=begin®. . . 4 . o o 36 Srequire=subjects® . . . o ¢ o . e o s 0o oe s 438
_‘forwarded-mge-md’;..c.......,36‘5‘run-gmsyp G L
*forwarded~message=separator® ¢ o o . 36 *send- hader-fomm‘ . e e s e s e e e s 35
*generate~in-reply-to=field® 19 *summary= mcuse-nnddle-mode 2
*gmsgs-other-switches® S . *summary-scroll-fracion® e v . .28
inhibit-background-mail-checks® 14 *summary~window=-fracion® 28
*inhibit~background-saves®. 4 Stext-mail~file=sepamaor® 00 s 0 47
*maiji-file=for-drafts® | *amil-startup-file-pame®0 0. 6

23-MAY-83

I

ZMail Manual Function Index

e

Function Index

mweiadd=field o .. W33
weiadd=text=end 0. .. e e s 3 N.Next b e e e e e e e e 17
zweiadd=~{ext=Start e 040 ... 33 Next. « ¢ v ot e et e o e et e e e e e 17
Numeric Arguments 4

Configure e e s e e e e e e 56
Conlitue . . & v ¢« v ¢ o ¢ o o « o s o o « v o » 29 OMove e e e e e e e e e 45
Control-D. e e e e e e e e e e e e e 2 Other/ViewFile. . « v v v v v ¢ v o o v o ¢ o s 64
Control=F. et e e e e e s e e e e e s 18 Other/WHOiS . « . v ¢ v ¢« v o o v o o o o s v s 64
Control-Meta-Space e e e e .. .18 Overstrike 19

Controi-Meta-V+ . ¢ o . A
Control~N. e e e v e .0 17 PPrevious . . v ¢ v v v ¢ v s 6 0 0 0 b a0 0 17
Control-R. e e e e e e s e e . 19 Period . « v v v v v b e et s e e e e e e e 19
: _ zweipreload-zmail e e e e e 6
D Delete et e e e e e e e A Previols . . . ¢ v ¢ v v v o v b e e e e e 17
zweitdefault-field. PO Profile e e e e e e e e 57

zwei:define-mail-template 32
Delete . . & & ¢ v v o v b e e e e e e e e, 2 RReply v v v v v v vl v 7
weicdelete=field 0 000 0. . 33 Reply . ¢ v ¢« v v v v e e e e e e e e e 37

Digits. B 4
S.SaveFiles. ¢ v v v i i e e e 24
EExpunge . .« « v ¢ o v o v i v e . L. 2 SaveFiles. e e e 2
' : : ’ SeectFile e e e i, .16,49
FForward ¢« .« ¢ v v v e e o oo . .36 SeletFile/FindFile. 16
weidfind=fleld 000 0. 33 SelectFile/MarkSummary 16
SelectFile/Subset . . . « ¢« v v ¢ ¢ v v o v u o . 16
GetNewMail e e e e e e e e 13 Sort. e e e e e e e e e e s 41
SPaCE . . . b v e e e e e e e e e e e 19
Hardeopy . « v v v 6 v v o ot e e e e e e s 45 SUTVEYt e et e e e s e e e e e e e e 49

Help . . . e e s e s et e e e ae e e . 4
UUndelete. ¢ ¢t v v v v v o o v v o 2
O 17 Undelete v v v ¢ v v v o0 v L. 2

Jump. . . . e e e e e e e e e e e 18,49
D, 4
KKeywords. . . . v v v v v v v v v v oo 0. M4 XAppendtoReferencedMsg. 43
Keywords ." . v v v v e v e e e e e e e e e 43 XBug e e e e e e e e 36,37
XConcatenate v v ¢« & v ¢ o ¢ s o o 04 . 19
Y R 29 . X Delete Conversation by References. 48
Mait/Bug.e.. 36, 37 X Delete DuplicateMsgs. 2
Mail/Forward. . . . « ¢ v ¢ v v v o v b e o 0 36 XDeleteReferencedMsgs 48
Mail / Redistribute e e e e e 36 XExpunge v v v v v v v e e e 2
MapOver.o v v i i i v v v v o 54 XForward oo, 36
Map Over / Move to File / By Individual Filters, 46 XOmMSES . & v v v v et e e e e e e e e 15
Meta=X. . v v it st e e e e e e e e e e e 4 XListBuffers 16
Meta=X Add Expiration DateField k] XO0cour . . . v v v v v e e e e e e e 19
Meta=XAddFCCField 2 XRedistribute Al, 36
Mcta-X AddFToField 2 XRedistribute Msg 36
Meta-X Change SubjectPronouns 2 XRenameBuffer. 24
Move/Generated Temporary« « v « + + 45 XReply . . & v v v v e e e e e e e e e 37
Move/Hardeopy. . « v v v v 0 vt 0w e e e . 45 X Select Conversation by References 48
Move/NewTemporary . . « v+ v =« ¢ v v o v & 45 XSelect ReferencedMsg. 48
Move/TextMailFile 45 XSelectReferences. v« 48
Move in Place of ReferencedMsg. 43 XSctExpirationDate 2
MovetoFile. v v v v v v v v v .. 45 XViewFile. v v v v v v e e v v v v 64
MovetoFile/ByFilters 46 XWhois ¢ v v v v s e e e e 64

23-MAY-33

Function Index

XYanKkMSE « « ¢« « ¢ 0 o 0 0 e om0 e
zmait e e o s e e s
wetadd-field e v e e e .
zwei.add-text-end. e s e e e
zweiadd~text~start e e 8 e .

ZMail Manual

zweirdefault=field. o o 4 e . 33
zweirdefine-mail~tempiate 32
zweiidelete=field e e e e e e e 33
weirfind-field e e e n e e e e e kX
zweirpreload=zmail o o0 e o0 oo 0 6

23-MAY-83

TN

