(™M

~,» NuMachine ,T"“hnfgai Stmumari’

SDVU Operating Sysiem |
SDU General Description

Mouse Manual
LMI Printer Software Manual

VR-Series Mouiter
~ 229 Monitor

-

- Ethernet Multibus

LMI DOCUMENTATION SYSTEM MAP

A ** jndicates location of tab divider

/)1/
%’ BASICS: %0 UNIX 1:
**NuMachine Release and Update Information

**IMI Lambda Technical Summary **NuMachine Operating System

**IMI Lambda Field Service Manual an v V. . Secti 1
**NuMachine Installation and User Manual ..UNIX Frogrn rw areanl, éectiogsog-a

**Introduction to the Lambda **Fortran Installation Memo

. **Programming on the Lambda
H ! . Vol.
& —n e %. UNIX 2:UNIX Programmer's Manual, Vol. 2

**The UNIX Time-sharing System
An Introduction to the IX Shell
Typing Documents on the UNIX System
A Guide to Preparing Documents with -ms
Tbl--A Program to Format Tables
NROFFE /TROFE User's Manual
A TROFF Tutorial

**The C Programming Language Reference Manual
Recent Changes to C
Lint, A C Program Checker
Make--A Program for Maintaining

**System 94 Notes
**System 98 Notes
**Common LISP Notes

%‘ LISP 1: The LISP Machine Manual, Part 1

**Introduction
Primitive Object Types
Evaluation
Flow of Control
Manipulating List Structure

Computer Programs

An Introduction to Display Editing
with Vi

| **Symbols **UNIX Programming--Second Edition

| Numbers A Tutorial Introduction to ADB
Arrays Yacc: Yet Another Compiler-Compiler

| Strings Lex--A Lexical Analyzer Generator

| **Functions **A Portable Fortran 77 Compiler
Closures RATEFOR--A Preprocessor for a

| Stack Groups Rational Fortran

| Locatives The M4 Macro Processor

| Subprimitives SED--A Non-Interactive Text Editor

| Areas Awk--A Pattern Scanning and

| **The Compiler Processing Language (2d. ed.)

| Macros DC--An Interactive Desk Calculator

The LOOP Iteration Macro BC--An Arbitrary Precision

**Defstruct Desk-Calculator Language

%‘ LISP 3:

%} LISP 2: The LISP Machine Manual, Part 2

**Objects, Message Passing, and Flavors

**The I/O System
Naming of Files
The Chaosnet
**Packages
Maintaining Large Systems
Processes
Errors and Debugging
**How to Read Assembly Language
Querying the User
Initializations
Dates and Times
Miscellaneous Useful Functions
**Indices

**Introduction to the Window System
**The Window System Manual

**ZMAIL

**Prolog

**InterLISP

**ZMACS Introductory Manual
**7ZMACS Reference Manual

&S

**The UNIX I/O System
On the Security of UNIX
Password Security: A Case History

HARDWARE 1:

**NuMachine Technical Summary
**SDU Operating System

SDU General Description
**Mouse Manual

LMI Printer Software Manual
**VR-Series Monitor

229 Monitor
**Ethernet Multibus

HARDWARE 2:

**SMD 2181 Controller Board
**Fujitsu Disk Drive (Micro or Mini)
**Cipher Tape Drive 1/4"

**Cipher Tape Drive 1/2"
**Tapemaster Product Spec
**Tapemaster Application Note

&S
L R
B

OPTIONS:
**Mince

**Scribble **(varies according to options purchased)

Nu Machine Technical Summary
TI1-2242820-0001

Distributed by LMI 6033 W. Century Blvd. Los Angeles CA 90045
: - USA

Information furnished in this document is believed to be accurate and reliable. However,
no responsibility is assumed by Texas Instruments for its use; nor for any infringements of
patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of Texas Instruments.
Texas Instruments reserves the right to change product specifications at any time.

UNIX'™ is a trademark of American Telephone & Telegraph.
Multibus®™ is a trademark of Intel Corp.
Ethernet'™ is a trademark of Xerox Corp.

Copyright © 1982 Texas Instruments All rights reserved.

Nu Machine Technical Summary

NU MACHINE TECHNICAL SUMMARY

Contents

INTRODUCTION

1.1
1.2
1.3

System Origin
The System
Applications

THE NUBUS

21

PPP
HwWwN

Overview

NuBus Signals

Data Transfer Operations
Multiprocessor Support
2.4.1 Arbitration

2.4.2 |Interrupts

68010 PROCESSOR BOARD

3.1
3.2

Virtual Address Space

Main Functions of the CPU Board
3.2.1 68010 Microprocessor
3.2.2 Cache Operation

3.2.3 Cache Control

3.2.4 Cache ID

3.2.5 Address Translation

3.2.6 Interrupt Mechanism

3.2.7 CPU Control

SYSTEM DIAGNOSTIC UNIT
MULTIBUS INTERFACE

5.1

5.2
5.3

Conversion ,

5.1.1 NuBus-to-Multibus Conversion
5.1.2 Multibus-to-NuBus Conversion
Interrupt Mapping

Lockup Prevention

VIDEO DISPLAY SUBSYSTEM

6.1
6.2

Main Functions of the Video Display Subsystem
Serial Ports

MAIN MEMORY

7.1

Main Functions of the Memory Board

SOFTWARE

8.1

8.2

8.3

SDU Monitor and Diagnostics

8.1.1 SDU Monitor

8.1.2 Diagnostics

Nu Machine Operating System

8.2.1 Overview

8.2.2 Nu Machine Operating System Kernel
8.2.3 Utilities

Future Plans

.NU MACHINE PACKAGING

Monitor, Keyboard and Mouse
Office Module '
110 Interconnection

Rack Module

Summary

Texas Instruments

ComN~NN Hoaoaa

21

25
25

28
28

29
31

33
33

35
35

37

Nu Machine Technical Summary
- Texas Instruments

List of Figures

Figure 1-1. Comparison of Traditional and Nu Machine Architectures 2
N Figure 2-1. Layout of Words, Halfwords, and Bytes 9
Figure 3-1. Virtual Address Space Concept 12
Figure 3-2. Block Diagram of CPU Board 13
Figure 3-3. Data Cache Entry (Parity, Tag Field, and Data) 14
Figure 3-4. Cache Control 15
Figure 3-5. Cache Status 15
Figure 3-6. Virtual-to-Physical Address Transiation 17
Figure 3-7. Representation of Physical Address 18
Figure 3-8. PTE Description 18
Figure 3-9. Definitions of Access Bits 19
Figure 4-1. System Diagnostic Unit Block Diagram 22
Figure 5-1. NuBus-to-Multibus Memory Space Conversion 25
Figure 5-2. NuBus-to-Multibus /O Space Conversion 26
Figure 5-3. Muitibus-to-NuBus Conversion 27
Figure 5-4. Muitibus-to-NuBus Address Conversion 28
Figure 6-1. Block Diagram — B/W Video Display Subsystem 30
Figure 7-1. Memory Board Block Diagram ' 33
Figure 9-1. lOffice Module Cabinet and Contents 43

Figure 9-2. Rack Module and Component Layout 45

1 INTRODUCTION

1.1 System Origins

The Nu Machine is based on the advanced NuBus technology developed at the Laboratory
for Computer Science at the Massachusetts Institute of Technology.

The NuBus and Nu Machine architectures were developed to solve computing needs which
were not served by commercially available equipment. The goal was to create a
workstation-oriented computer with the following features: :

e Processor independent
e State-of-the-art backplane bus
e Network and Graphics oriented

In April 1981, after the initial breadboard Nu Machines were constructed at M.I.T. and the
UNIX™ operating system was ported to it, the design was licensed to Western Digital
Corporation to be re-engineered and marketed as a commercial product. By late 1982,
Western Digital had completed the redesign but decided not to enter the workstation
business. Texas Instruments acquired the Nu Machine/NuBus technology including the
original development group located in Irvine, California.

1.2 The System

Although always conceived of as a workstation, the Nu Machine is designed to be a general
purpose, flexible, high-performance computer. The Nu Machine is a communications
centered architecture in which the NuBus is a wide and efficiently controlled data freeway,
providing exchange of information among processors, memory, mass storage, and remote
computers (via networks). This approach is a departure from other computers. Figure 1-1
contrasts the NuBus architecture with a traditional supermini.

Nu Machine Technical Summary
Texas Instruments

SYSTEM CPU
CONSOLE 250 Instructions
Many Data Types

Large Address Space .
DIAGNOSTIC MEMORY

CACHE

/O ADAPTER

32-Bit NuBus
Traditional Architecture

100 nsec Clock
Period

Diagnostic Processor

Peripheral Controllers % ‘

37.5 MB Transfer /

Rate
Multibus Gateway >

Network Interface

Fair Arbitration

Memory to 6MB

VAR _

—

i Optional Additional General or |
Special-Purpose Processors

32-Bit Addresses

68010 Based Processor

32-Bit Wide Data
Transfers

Nu Machine Architecture

Figure 1-1. Comparison of Traditional and Nu Machine Architectures.

Nu Machine Technical Summary
Texas Instruments

The traditional computer system architecture is processor centered, with the major
subsystems arrayed around the central processing unit (CPU) and isolated from the outside

- world by an 1/0 adapter. The traditional architecture is ili-suited to multiprocessor

configurations and special purpose processor configurations. The NuBus, on the other hand,
provides a framework for systems that require multiple general purpose processors, graphics
processors, signal processors, file management processors, and/or communications
processors.

The Nu Machine incorporates these technologies:
NuBus

The NuBus provides a maximum transfer rate of 37.5 Mbytes per second, a
bandwidth required for high-end applications involving multiple processors and future
high-performance peripherals. OEMs may attach processors and controllers of their
own design directly to the NuBus. The system implementor can have each processor
running a different operating system, or have multiple processors running one
operating system.

The NuBus itself provides many of the key Nu Machine features. Reliability is
enhanced by the use of DIN connectors rather than card edge connectors. The bus
supports autoconfiguration and eliminates the need for “DIP”’ switches and jumpers.
The features that support multiprocessing are high bandwidth, dynamically
redirectable interrupts and ‘“‘fair’’ bus arbitration. Tl is working with standards
organizations, proposing that NuBus technology be adopted as an industry standard.

68010-based CPU with Cache Memory

The central processor of the Nu Machine has a 4K byte 45 nanosecond cache
memory and a sophisticated memory management system implemented in hardware.
These features allow the 68010 to form the heart of a very high performance card.
Because the NuBus supports 32 bits of data and address, it is well suited to take
advantage of the forthcoming 68020 processor. The processor independence of the
bus allows future processors to be built around other standard microprocessor
families or special purpose instruction sets as justified by market needs.

System Diagnostic Unit (SDU)

This muitifunction board provides many features previously available only on much
larger computers. The SDU is independent from the rest of the computer in that it
contains an 8088 processor, RAM, ROM, and serial ports. It can be used under local
or remote access to execute bus, board, and system diagnostics.

By reading ID ROMS on individual cards, the SDU performs an autoconfiguration,
allowing the system to use a new/replacement card immediately, and then bootstraps
the system software. Under program control the SDU can margin both the system
clock and +5 voit power supply to test system robustness and aid in fault isolation.

An independent function of the SDU board is the conversion between the NuBus and
the Muitibus™. This conversion allows masters on either bus to address slaves on
the other bus, and is hardware implemented.

Nu Machine Technical Summary
Texas Instruments

Multibus Subsystem

A large selection of third party 1/0O controllers are accessible through use of the
NuBus-to-Multibus converter. The Multibus Subsystem operates independently of the
NuBus, except during cycles which use them both.

High Resolution Raster Graphics

The 800 x 1024 60Hz noninteriaced display produces the precise drawings and
mixed, multifont text and graphics needed by engineering workstation users.

Networking Capabilities

The Nu Machine Ethernet™ networking capabilities provide dedicated computing
resources under the direct control of the user, while also facilitating inter-user
communication and sharing of resources.

Nu Machine Operating System

The operating system ported from Bell Laboratories UNIX, is very well suited to the
technical work station software needs. Adaptations and enhancements have been
made to support the high resolution graphics and other Nu Machine hardware
features.

Attractive, Functional Packaging.

There are two primary configurations of Nu Machine. The smaller “office” unit is
designed to fit under a work surface and be acousticaily quiet, and the 19"’ rack
model, which supports larger peripherals, is more suited to computer room
operations.

The office unit has a 12 slot card cage and supports a ¥4'' cartridge tape drive and an
8’ 84 megabyte disk. The rack unit has a 21 slot card cage and supports a 2"’
streaming tape unit and a 474 megabyte disk. In both models, all cables attach to the
rear of the card cage rather than to printed circuit cards, thus simplifying
maintenance. Careful design of the motherboard and cabling reduces RF radiation at.
the source. In the office system, peripherals and power supplies are mounted on
easy-to-remove plates to simplify maintenance and to easily accommodate the
mounting requirements of many different makes of peripherals.

The optional 15’ high resolution graphics portrait display used with both Nu Machine
configurations is designed to have a very small footprint on the user’s work surface.
The monitor provides connections for the low profile keyboard and mouse. The
monitor/keyboard/mouse assembly can be up to 200 feet from the Nu Machine itself.

1.3 Applications

The long life expectancy of the NuBus and the high degree of modularity and processor
independence make the Nu Machine boards and chassis a fundamental system for the OEM
or systems integrator. These features make the Nu Machine particularly attractive to OEMs
who plan to create special purpose processors, especially if high bandwidth and

4

1

=

Al

Nu Machine Technical Summary
Texas Instruments

multiprocessing are required. For example, a current Nu Machine customer is delivering Nu
Machines with a proprietary Lisp processor for Artificial Intelligence applications. The
resulting combination of the Lisp and 68010 processor allows their users to do development
in Lisp and still have access to the growing base of UNIX software.

Other possible applications for the Nu Machine include VLSI circuit design, printed circuit
board design, mechanical design, mapping and cartography, civil engineering, architecture,
and Computer-Aided Engineering (CAE).

An advantage of the Nu Machine is its ability to support teams. Many of the above
applications involve large databases which must be shared by team members. The volume
of data may be cumbersome when moved across a local network. With a NuBus, several
processors can directly access the same disk and memory, creating what in essence is a
300M bit-per-second very ‘“local” network. For example, several users each with a
dedicated processor and operating system could have rapid access to the complete project
database within the limits of their access privileges.

The common denominator of all these applications is the requirement for networking in
combination with high-performance processing and graphics. The NuBus makes the Nu
Machine a uniquely flexible and powerful tool in the hands of a skilled system architect.

Nu Machine Technical Summary E“El
Texas Instruments

|

2 THE NUBUS

2.1 Overview

The NuBus interface is the flexible bus structure which aliows the various system
components, including the 68010 CPU board, memory board, video interfaces, network
interfaces, and peripheral controllers, to interact with each other. It supports direct
addressability of more than four gigabytes of memory through 32-bit byte addressing, and
data transactions of 8-, 16-, and 32-bits. Block transfers of multiple words are supported to
achieve maximum bandwidth.

The bus structure is built on a master-slave concept. For each transaction, a device takes
control of the NuBus interface, thus becoming a ‘“master,” and addresses another unit to be
a ‘‘slave” for that transaction. The slave device, on decoding its address, acts on the
command provided by the master. A simple handshake protocol between the master and
slave allows modules of different speeds to use the NuBus interface.

The flexibility of the NuBus plus its high bandwidth allow muitiple master modules to be
connected for multiprocessing configurations. Fair arbitration among the bus masters gives
each processor an essentially equal share of the bus bandwidth.

Any module on the NuBus can interrupt a processor module by writing into an area of
"address space that is monitored by that processor. This *“‘event”” mechanism is an important
aspect of muitiprocessor support. Interrupt lines are eliminated and interrupts may be
dynamically reassigned to different processors.

In summary, important NuBus features are:
o All bus signals, power and grounds are contained within a single 96-pin DIN connector;
e 32-bits of data multiplexed with 32-bits of address;

e Distributed bus arbitration that implements fair bus bandwidth sharing. Arbitration may
take place simultaneously with data transfer operations;

e Simple handshake protocol synchronized to clock cycles;

e “Memory-mapped” interrupt scheme that supports multiprocessors;

e increased bus bandwidth through block transfers;

e Board addressing by siot position rather than jumpers or switches; and
e Address and data transfer integrity may be protected by parity logic.

The NuBus supports the unified bus interconnection of up to 16 system modules. The
motherboard presents each board location with a unique identification number. Any system
module can occupy any board location; thus, jumpers, or switches on individual cards and
special backplane wiring are not needed to define address space.

2.2 NuBus Signals

The NuBus signals are grouped into five classes based on the function performed. The five
classes are: ,

Nu Machine Technical Summary
Texas Instruments

Card Slot Identification
4 signals; assigns the physical location to each module.

Control .
6 signals; performs all control functions. These functions are as follows:
e RESET/ (where *‘/” indicates a negative true signal);

CLK/ (Clock);

e START/ — signals the beginning of data transfer;

o ACK/ (Transfer Acknowledge) — indicates the end of data transfer;

TMO/and TM1/ (Transfer Mode 0 and 1) — are encoded by the current
bus master to indicate type of transfer.

Address/Data
32 signals; carries 32-bit address at beginning of cycle and 32 bits of data
within remainder of cycle.

Bus
5 signals; regulates bus arbitration.

Parity ‘
2 signals A

e SP/ (System Parity) — transmits parity information between cards
implementing NuBus parity checking.

e SPV/ (System Parity Valid) — indicates whether system parity is valid or
not for that transaction.

The NuBus aiso includes conductors that carry power and ground signals. Voltages available
are +5, -5, +12, and -12. Critical signals are isolated and surrounded by power and
ground lines to minimize crosstalk.

2.3 Data Transfer Operations

Data transfer on the NuBus is accomplished using a synchronous master/slave protocol. Bus
transactions are synchronous to the system clock and their durations are multiples of the
clock period. The protocol uses two handshake signals to coordinate the transfer: START/
(generated by the current bus master) and either TMO/ or ACK/ (generated by the stave).

Information is placed on the bus synchronous with the rising (assertion) edge and is sampled
on the falling (sample) edge of the clock cycle. This technique provides protection from race
conditions caused by bus transmission skews.

—r

Read Transactions

Nu Machine Technical Summary
Texas Instruments

Read operations with data widths of 8, 16, and 32 bits are selected by
the transfer mode lines (TMx) and the two low-order address lines. The
current bus master is responsible for selecting the appropriate byte or
halfword for internal use if all 32 bits are not relevant.

Write Transactions

" Block Read

Block Write

Write operatiohs with data widths of 8, 16, and 32 bits are selected by
the transfer mode lines (TMx) and the two low-order address lines. Bytes,
halfwords, and words are organized as shown in Figure 2~1.

Figure 2-1. Layout of Words, Halfwords, and Bytes.

The current bus master has the responsibility of aligning the data to be
written onto the appropriate ADx/ lines for halfword and byte writes. For
example, a write byte 3 requires that the data be placed on AD24/ through
AD31/; all other ADx/ lines are not defined and can be driven to any state.

Block reads on the NuBus consist of a single command/address transfer
initiated by the current bus master, followed by ““N” 32-bit data outputs
from sequential ascending locations of the addressed slave. ‘“N” is equal
to 2-, 4-, 8-, or 16-word blocks and is determined by AD2/, AD3/, AD4/,
and AD5/ on the START/ cycle.

Block writes on the NuBus are similar to block reads except the TM1/
(read/write) is driven to the write state during the START/ cycle, and the
current bus master drives the data bus while the slave accepts data.

Error Acknowledgement

The two TMx lines are encoded at ACK time to indicate whether or not the
bus transfer was successful. Four states are possible:v

ACK

Successful completion of transfer.

Nu Machine Technical Summary
Texas Instruments

NAK
Unsuccessful completion of transfer because of an error condition.

Timeout
Unsuccessful completion of transfer because “N” bus cycles elapsed
while the bus was “‘busy”’ (between START and ACK).

Try Again Later
Unsuccessful completion of transfer but no error condition exists; the
master should rearbitrate for the bus and try again.

2.4 Multiprocessor Support

Advanced arbitration and interrupt techniques provide the primary hardware support for
multiprocessing.

2.4.1 Arbitration

Arbitration for the NuBus takes place each time control is transferred between bus masters.
The winner of the arbitration contest takes control of the bus and retains control until an
arbitration contest is won by another bus master. (Actual transfer of control does not occur
until after the current bus master completes the data transfer in progress.)

The NuBus provides fair bandwidth sharing between processors in a multiprocessor system.
The sharing is accomplished by a rule which is:

If several devices request the bus at a certain time, they are given the bus in
priority order — highest to lowest. Fairness is provided by the rule that no new
bus requests can originate from any device, including those in this group, until all
devices in that group have acquired the bus.

This rule guarantees that processors of higher physical priority do not starve a processor of
lower priority.

Once a bus master has acquired the NuBus, it is, by definition the highest priority bus master
of the group of modules still requesting the bus. An undivided set of data transfers, such as
in the ‘‘test-and-set” operation, can be accomplished by the bus master continually
arbitrating for, and winning, the bus.

An arbitration contest takes place only when control of the bus must be transferred between
bus masters. Therefore, if no other processor has requested the bus, the current bus master
may initiate data transfers without first rearbitrating for use of the bus. This capability
relieves the current bus master from the overhead of arbitrating for use of an idle bus and is
termed ‘‘parking’’ or “‘glomming.”

2.4.2 Interrupts

A processor module can be interrupted by any module on the NuBus performing a write
transaction operation into memory space monitored by the processor. No unique lines or
protocols are required. The address used to post the interrupt can be at any location in the
address space. This allows interrupts to be posted to individual processors in a
multiprocessor system and allows the priority of the interrupt to be software specified by
memory-mapping the priority level.

10

*

n=

3 68010 PROCESSOR BOARD

The CPU board design incorporates a single Motorola 68010 microprocessor, a high-speed
cache memory, and a virtual memory translation unit. The main computational resource of
the Nu Machine, the 68010 generates 24-bit virtual addresses, which allow access to 16M
bytes per virtual address space. These addresses are termed ‘‘virtual” because each
address is not the actual NuBus address in physical memory. Instead, a state machine on
the board translates the virtual addresses to physical addresses.

Main features of the CPU board are:

e 68010
— 32-Bit Arithmetic
— 17 Registers
— 24-Bit Virtual Addresses for Each Process
— 10 MHz Operation
— Byte Addressability

e 4 KB Data Cache
— No Wait States on Cache ‘‘Hits”

¢ ‘“‘Demand Paging’’ Virtual Memory Implementation
— Translation Engine to Translate Virtual Addresses to Physical Addresses
— 512-Entry Translation “‘Look-Aside” Buffer
— Sufficient context stacking to permit recovery from page faults.

3.1 Virtual Address Space

In a typical multiprogramming environment, several ‘‘tasks’’ are active at the same time. The
Nu Machine CPU provides separate virtual address spaces for each of these tasks.

Because even a single virtual address space may be too large to be contained in the
available main memory, the active part of the virtual address space must be mapped to the
available physical address space. To affect mapping, the physical and virtual memory are
divided into 1K byte units called pages. A page of virtual memory is mapped either to a page
in physical memory or to a page in mass storage.

Figure 3—1 is a simple representation of the virtual address space concept. It shows two
virtual address spaces with most pages associated with unique physical memory pages. The -
second page in space ‘“A” and the third page in space “B” are, in fact, the same page of
physical memory.

A virtual memory scheme is needed to provide a large address space and yet allow programs
to run on hardware with smaller memory size. The virtual memory hardware and software
assign virtual addresses to specific physical memory locations in real-time while the process
is executing, in some cases, having to bring the required location into memory from the disk.
Usually the physical memory assigned to different processes will be non-overlapping. The
paging mechanism, however, allows one physical location to be mapped into the virtual
address spaces of two or more processes to implement data or code sharing.

11

Nu Machine Technical Summary t
Texas Instruments .

Physical Memory

Virtual Address 1 Virtual Address
Space A Space B
2 (1B)
. \)
3 (1A)
2 2
4

3 3
5 on) o) |-

4 ———= 4
6

5 5
7 (B) |at— |
8

F————————— —]

Mass Storage Device

Figure 3-1. Virtual Address Space Concept.

Virtual-to-physical address mapping is only one part of a virtual memory scheme. The other
parts provided by the Nu Machine hardware and software are a ‘‘fault recoverable’’ CPU and
a page replacement algorithm.

3.2 Main Functions of the CPU Board

Figure 3-2 is a simplified block diagram of the CPU board showing the main functions.

=

12

=

=

Nu Machine Technical Summary
‘Texas Instruments

5
|
—— = 68010 CPU ’ I
CID ’
‘o >
5 35 |
a8 |
———— —— @ VA
{_ 16 24 / | 6 |
]
| Y ‘ |
|
| Data Cache 2 PBR (Supv) |
| 4K Byte N 6 |
| |
I A PBR (User) |
e =
._, 8
59 24

! Yy Y

|
|
l
= ™ Translati |
Translati ranslation | >
‘Engine “Look Aside” | & =
- ‘23 |
Interrupt 2’|l §%9 I
Logic - 8 a8 ‘
Y | | |
Bus Logic ||
I) _J

NuBus

Figure 3-2. Block Diagram of CPU Board.

3.2.1 68010 Microprocessor

The 68010 microprocessor is a version of the 68000 which can correctly recover from a
virtual memory page fault. The occurrence of a page fault (the page referenced does not
reside in physical main memory) causes the 68010 to stack its internal machine state. At this
point, the 68010 executes the software that causes the page to be brought into memory.
The 68010 then retrieves its previous internal machine state and picks up execution at the
point of the original page fauit.

13

Nu Machine Technical Summary
Texas Instruments

3.2.2 Cache Operation

The 4K byte, write-through data cache provides the CPU with high-speed access to
frequently used words of main memory. Both instructions and data are stored in this unit and
are treated equivalently. This set-associative cache contains 1024 one-word entries and
carries byte parity. If desired, the cache can be disabled for diagnostics or to allow reduced
performance providing graceful degradation in the event of cache failure.

The cache operates in a manner similar to many super minicomputers. A search of the
cache determines if the desired data item is present. The search is performed for all 68010
memory reference operations as long as the cache is enabled. Each word of virtual memory
has a place in the cache where it will be stored, if it is in the cache. The cache must
examine only the location in which the word would be found if it were present.

The entry in the cache where a word is stored, if it is stored at all, is determined by the lower
10 bits of the address. That is, data from location 2003(Hex) would be stored in the third
location of the cache as would data from location 5003(Hex). Only one of these pieces of
data may be cached at any instant in time. The lower 10 bits of the address emitted by the
68010 are used to address the 1024 entry cache in implementing that operation of the CPU.
The address tag, or upper 12 bits of the virtual address space of stored information,
is compared with the upper 12 bits of the emitted address. Figure 3-3 represents a
cache entry.

55 50 49 44 43 32 31 ' 0

Figure 3-3. Data Cache Entry (Parity, Tag Field, and Data).

A “hit” occurs when the 12-bit address tag field stored at that entry matches the emitted
address being sought by that particular 68010 cycle. The ‘“‘hit” rate for this particular cache
is approximately 85%.

A “miss” occurs when the upper 12 bits of the emitted address of the 68010 do not match
the 12-bit address tag field of the stored data. The virtual address must then be translated
into the physical address so that the bus logic will read the complete 32-bit word over the
bus. The desired data item is placed in the cache entry at which the miss occurred,
overwriting whatever data and address tag were there.

The write-through feature insures cache integrity because this cache is always a copy of
memory. Therefore, on write operations when a hit or miss is made, address translation and
bus logic are always invoked causing the written data to go into main memory. Thus, main
memory is always a true copy of the state of the virtual address base, and the cache is a
copy of that data. The cache is checked for a hit even on a write because if a hit occurs, that
cache cell must be updated to the new vaiue.

14

n

=

Nu Machine Technical Summary
Texas Instruments

3.2.3 Cache Control

The cache data integrity is protected by byte parity across the data and tag fields. Any entry
showing a parity error does not cause a hit and is treated as a normal miss except that the
parity error flag in the error status register is set. Figure 3-4 shows the cache control
register, and Figure 3 — 5 shows the cache ‘‘hit’”’ status register.

For diagnostic purposes, the cache may be partially enabled or disabled via bits in the cache
control. Partial enabling allows a diagnostic to test the cache without instructing itself to be
cached.

-------- Translation enable
____________ Cache parity enable
________________ TLB1 low enable
____________________ TLB1 high enable
------------------------ TLB2 low enable
gy g TLB2 high enable
iSRSy Ay g Cache low enable
............................. ---=---~ Cache high enable

Figure 3-4. Cache Control.

-------- Cache ‘‘hit’’
____________ TLB1 ‘*‘hit’’
________________ TLB2 ‘‘hit’’

------------------------------------ Reserved

Figure 3-5. Cache Status.

An aspect of cache control that is not directly implemented by the cache logic itself is the
ability not to cache selected pages of virtual memory. This capability allows support of
writable, shared data areas; for instance, semaphores which must be accessed by multiple
processes. The selective caching of pages is not directly implemented by logic in the
caching section. Rather, the determination of which pages are not to be cached is a feature
of the translation system.

15

Nu Machine Technical Summary
Texas Instruments

Another application of selected caching is 1/0 registers. The selective caching of pages is
not directly implemented by logic in the caching section. Rather, the determination of which
pages are not to be cached is a feature of the translation system. When an 1/0 register is
read multiple times, the desired data is not muitiple copies of the first value but, instead, the
current state of the 1/0 register.

3.2.4 CachelD

Since the data cache on the Nu Machine is directly connected to the 68010 CPU, it caches
data related to virtual address.

The advantages of this approach are obvious. Having the high speed cache (45
nanoseconds RAM) as close in the architecture as possible to the CPU eliminates wait states
for the 10MHz 68010. In the future, faster microprocessors could be accommodated by
increasing the speed of the cache memory path.

In other systems, this approach would have the disadvantage of taking extra time for cache
flushes on every context switch. However, in the Nu Machine, a six-bit register and six extra
bits of tag increase the speed at which the cache may be “‘flushed.” The six extra bits of tag
are called the cache identification (CID) field. Each active virtual address space has a unique
six-bit CID code. When contexts are switched, the six-bit CID register associated with the
68010 CPU is changed. Therefore, cached data from previous virtual address spaces are
immediately invalidated (flushed). An actual flush must be performed only between every
sixty-four context switches.

3.2.5 Address Translation

The CPU card provides hardware to translate 24-bit virtual addresses to 32-bit physical
addresses in 1024 byte page increments. Each page can be marked as resident/nonresident
by the “valid entry” bit; has read and write access protection for both supervisor and user
modes; has a bit to disable data caching on the page; and has both a page-accessed and a
page-modified bit.

Address translation of the virtual address is accomplished by the translation engine and is
based on two levels of page maps. The level-one page map defines the physical addresses
of the level-two map. The level-two map defines the physical addresses of the virtual address
space. The level-one map is 64 words long and the level-two map is 256 words long. The
first page level table must be resident in main memory. Second level page tables may be
resident or “‘paged’’ out to the disk.

Figure 3 -6 illustrates the following explanation of the virtual-to physical address operation.

16

TNl

T

Nu Machine Technica Summary
Texas Ir struments

B

24-BIT VIRTUAL ADDRESS
6 Bits 8 Bits " 10 Bits
AN /' \\ /
] i N/
§ |
! Level 1 |
L Page Table L
T T
] |
: Level 2 i
L Page Table L
T T
I [
PFN (L1) L i |
|
A A
T T
| | !
~ ~ J
T T L PFN (L2) PHYSICAL
' 64 Entries : PAGE
| (words)
(1K Byte)
| |
y L
™ v
256 Entries |
| (words) l — Addressed Word
Physical
Address
{ |
2 g%
| T
_/\\ ‘
/ AN
PBR 24 Bits

Figure 3-6. Virtual-to-Physical Address Translation.
17

Nu Machine Technical Summary
Texas Instruments

Abbreviations used in this description are:
e CID is a cache ID number.
e PADDR is the physical address.
e PBR is the process base register.
e PFN is a page frame number.

e PTE is a page table entry a 32-bit word that represents the physical mapping for one
virtual page.

e PTE1 and PTE2 are level-one and level-two PTEs, respectively.
e VADDR is the virtual address from the CPU.

First, one of two 24-bit PBRs on the CPU card points to the start of the first level page table.
(The hardware contains two PBRs — one for supervisor mode and one for user mode.) Then
the first six bits of the VADDR (bits 23 through 18) are appended to the PBR to form a
physical address for a PTE in the level one page map. This PTE is read from memory.

Next, the PFN of the PTE from the level-one page-table are appended to bits 17 through 10
of the VADDR. This forms the physical address of a PTE in the level-two map. This PTE is
read from memory.

Finally, the PFN of this level-two PTE is appended to bits 9 through 0 of the VADDR. This
represents the final physical address. Figure 3-7 represents the PFN from the level-one —
page table plus the virtual address bits and the data bits. N

*#x#%%Filled with VADDR 17-10 for level-two PTE fetch.
Filled with VADDR 9-0 for data fetch.

Figure 3-7. Representation of Physical Address.

PTEs, as shown in Figure 3-8 have a field, the PFN, that contains the high-order 22 bits of
the physical address of a page. Pages always begin on multiples of 1024 bytes; therefore,
the PFN with 10 bits of Os concatenated is the address of the page.

i byte 0 | byte 1 | byte 2 | byte 3 |

(Note byte numbering)
*See Figure 3-9 below. Il

~ Figure 3-8. PTE Description.
18

i

Nu Machine Technical Summary
Texas Instruments

Each memory reference is checked for read and write access privileges and for the validity of
the PTE. Figure 3-9 shows the definitions of the access bits.

Access bits: BIT 31 - RESERVED
BIT 30 - RESERVED .
BIT 29 - PRIVILEGE BIT 1 (PV1) \ ACCESS
BIT 28 - PRIVILEGE BIT 0 (PV0) / PRIVILEGE
BIT 27 - UPDATE CACHE
BIT 26 -~ VALID ENTRY (page resident/nonresident)
BIT 25 - ACCESSED
BIT 24 - MODIFIED

Figure 3-9. Definitions of Access Bits.

- The access privileges are further illustrated in Table 3-1.

TABLE 3-1. Privilege Bits

PV1 PVO ACCESS PRIVILEGE

0 0 ————> Supervisor R only

0 1 -———— Supervisor R/W

1 0 ————> Supervisor R/W, User R only
1 1 _———— Supervisor R/W, User R/W

If a bit is ‘““modified,” a memory write sets it in the level-two PTE, which, if not already set, in
turn, sets the ‘““modified’’ bit in the level-one PTE.

Translation ‘Look Aside’ Buffer If the CPU hardware implemented address translation only as
just described, each processor reference would cause two memory accesses to do transiation.
To speed up these translations, another caching mechanism, the Transiation ‘‘Look Aside’’ Buffer
(TLAB), holds an additional 512 second-level PTEs and 64 first-level PTEs. All caches are updated
as necessary by the translation engine.

Therefore, if a “hit” occurs. on a second-level PTE, no memory references are necessary for
translation. If a hit occurs on a first-level PTE, one memory reference is required, and in the
rare case where a hit does not occur, two memory references are required to translate the
address. :

3.2.6 Interrupt Mechanism

The 68010 microprocessor supports seven levels of interrupt priorities, labeled one through
seven, with seven having the highest priorities. The Nu Machine CPU unit provides 32
unique vectored interrupts for each of these levels, totaling 224 possible cases. As
described in Section 2.1 on the NuBus, the bus does not require traditional interrupt signals.

19

Nu Machine Technical Summary
Texas Instruments

The shortcoming of traditional interrupt approaches is that they do not support
multiprocessing. In a multiprocessor environment, interrupts or “‘events” must be dynami-
cally assignable to any of many processing elements.

Interrupts, like memory and 1/0, are memory-mapped in the single NuBus address space.
Therefore, computing units can readily interrupt each other or can even interrupt themseives
from high-level language programs.

On the NuBus, events are posted by ordinary bus write cycles to special areas of the address
space to which the CPU units respond. Logic on the CPU board translates all writes to that
region into 68010 interrupts. These interrupts are latched and presented to the 68010 in
priority order.

The priority level of an event is determined by its address within the 224-word area. For
example, the top 32 words of the area correspond to level-seven interrupts; the next 32
words correspond to level-six interrupts, and so forth. When the 68010 requests the interrupt
vector, it is given the unique address of the highest priority interrupt. This action immediately
clears the particular interrupt.

3.2.7 CPU Control

The CPU control logic is primarily a debugging tool. The ‘“‘Stop CPU’ control bit may be
used to halt the 68010 microprocessor upon completion of its current cycle. The halt request
may then be removed allowing the 68010 to continue or begin instruction execution. Writing
the “‘Single-Step CPU” bit enables the single step function. That is, when the 68010 begins
its bus cycle, the stop CPU bit is turned on and, upon completion of that bus cycle, the
microprocessor halts. The halt status of the 68010 may be obtained by reading the ‘“‘Halt
Status” bit.

20

-

4 SYSTEM DIAGNOSTIC UNIT

The System Diagnostic Unit (SDU) is present in all NuBus systems to provide many important
one-per-system functions and ‘“smart” front-end and diagnostic capabilities. By concentrating
these functions on the SDU, rather than on separate CPU cards, the system is able to
support multiple processors without conflict.

On power-up, the SDU verifies the integrity of the bus through a series of bus transfer tests.
The SDU then identifies all boards within its system environment; initiates and monitors
diagnostic and self-test routines to ensure that the boards are functioning properly; signals
the operator, using an on-board serial I/0O facility, if any boards have malfunctioned; and then
initiates the system bootstrap program. ’

The SDU also serves as the NuBus-to-Multibus converter. Facilities are provided for
mapping Multibus cycles into NuBus cycles and vice versa; for mapping Multibus interrupts
into NuBus events; and for generating Multibus interrupts from the NuBus.

The SDU consists of an Intel 8088 microprocessor with on-board memory, two serial 1/0 ports
for communication with the operator and peripherals, and many other system maintenance
and diagnostic features. A functional block diagram is show in Figure 4 —1.

The main features of the SDU are:
System Clock
The SDU is the source of the 75% duty cycle, 10 MHz System Clock (CLK/), to

which all bus operations are synchronized. The system clock rate can be
programmatically margined up or down for diagnostic purposes.

Timeout Recovery

The SDU provides NuBus timeout recovery by monitoring the time between the
START/ and ACK/ control signals. If more than 256 clock cycles occur, the
SDU asserts the ACK/ signal with the appropriate TMO and TM1 code for a
timeout.

Nonvolatile Features

The SDU contains 2K bytes of battery backed-up CMOS RAM. This memory is
used to store the system configuration information in a nonvolatile manner. The
SDU also provides a battery backed-up time-of-day clock.

Ya'' Tape Interface

The SDU contains a va’' streaming tape drive interface. This feature provides
low cost transportable media for the Nu Machine. Since this interface is on the
SDU, diagnostic routines can be loaded from this tape and yet the diagnostic
unit remains self contained.

21

Nu Machine Technical Summary I
Texas Instruments

d EXTERNAL MULTIBUS X

.
| |
I BUFFERS
| x 1o |
| A '/ I[— ————————— 1 {
| ® * | 2 Serial . » g
I o ‘ | Ports |l RS-232 '
| -~ > | | I
o | Ana'lc_?g 0 |l@t Thermal l
| 2 1 | Digital | Sensors | ae
| 64K s |l interface || o Front ,
I PROM | ¢ » | Logic l Panel ,
| > | |
[-« TIMER | |
8 I I l
| 64K [®— | |
| Rl | ! Time-or-oay | | | |
| | CLOCK | + ,
| Y Y | | ot A
| ' | || cMOS RAM | - [
| NuBus < Muitibus | (2K) | |
I Converter [|
| L ______ J |
L _ | _| 8eBitsDatAddress __J'

y ,

Figure 4-1. System Diagnostic Unit Block Diagram.

22

Nu Machine Technical Summary
Texas Instruments

Interval Timer

The SDU contains a programmable timer for generating periodic events to
specific CPUs. The timer may be used for many important system functions,
such as process scheduling.

Debug/Diagnostic Facilities

The SDU provides the operator of the NuBus system several diagnostic tools. A
monitor in the SDU’s PROMs allows either serial port to be used to read and
write bus locations, to initiate SDU self tests, and to execute diagnostics. The
NuBus diagnostic hardware verifies the integrity of the bus.

System Status Display

On power-up, the SDU first runs a self test, next a bus test, and then individual
board tests. The SDU uses the front panel LEDs to summarize the resuits of
the tests, and the detailed results may be read using the system console. A
LED on each board is automatically turned on at power-up, and turned off by the
SDU if that board passes power-up diagnostics. A board with its LED on is
therefore presumed bad.

Serial Port
The SDU contains two serial communications ports, either of which may be used
as the smart front panel/remote diagnostics port, depending on the position of
the diagnostic rotary switch. Otherwise, they are both available as general-
purpose serial ports.
Power Supply Interface

The interface to the power supply includes several lines in addition to the actual
current carrying cables. These lines are ACPF, DCOT, MARGHI, MARGLO, and
ACOFF. The SDU provides the system interface to these lines. ACPF (AC

. power fail) is generated by the power supply. The SDU then posts “events’ to
the installed CPU’s so that they can take appropriate action. DCOT (DC out of
tolerance) indicates that the +5 volt supply is within tolerance (+/-5%). When
this signal is active the SDU generates a system reset. MARGHI and MARGLO
are signals from the SDU by which the +5 volt supply can be margined +/
—-7%. ACOFF is a signal from the SDU to the AC distribution box by which the
SDU can shut off the AC power under: user control or due to temperature
excesses.

System Boot

The NuBus system boots automatically on power-up by action taken by the SDU.
However, if for any reason program control is lost or undefined, the system may
be reinitialized from the SDU manually. A system halt, reset, and reboot may
be initiated from the console serial port.

23

Nu Machine Technical Summary
Texas Instruments

NuBus/Muitibus Translation

The NuBus/Multibus interface is explained in Section 5.

24

(10

=

|

5 MULTIBUS INTERFACE

Although the Nu Machine is designed around the high bandwidth NuBus, the Multibus (IEEE-
796) is also part of the system. The two buses operate independently from one another
except during a conversion. This combination provides NuBus advantages such as flexibility,
speed, expandability, and muiltiprocessing with Multibus peripheral controller options.
Further, Nu Machine users might use any of a large nhumber (approximately 900-1000) of
Multibus-compatible, board-level products from over 100 manufacturers.

5.1 Conversion

The NuBus/Muitibus converter resides on the System Diagnostic Unit (SDU). Bus conversion
in both directions is done by hardware mapping logic and requires no intervention by the
8088 microprocessor.

The Multibus interface is termed transparent because it translates NuBus transactions and
Multibus transactions into each other. Further, the NuBus processor can access data or
even execute programs out of the Multibus memory while conversion is taking place. Figure
5 -1 illustrates how the transparent conversion acts like a “‘bus window.”” The entire Multibus
memory space appears in the NuBus slot space of the SDU. When an address emitted by a
NuBus master falis into this “window,”’ the converter acquires Multibus mastership.

NuBus Physical Address Space

FFFFFFFFi
. -~
4 Gigabytes Multibus Memory Space
e EEFE
1 Megabyte 0 1 Megabyte
~A s
0

Figure 5-1. NuBus-to-Muitibus Memory Space Conversion.

25

Nu Machine Technical Summary
Texas Instruments

5.1.1 NuBus-to-Multibus Conversion

Memory Space NuBus 8- and 16-bit transactions are converted directly into 8- and 16-bit Multibus
transactions. That is, the converter translates a transfer acknowledge on the Multibus to a transfer
acknowledge on the NuBus. Bus conversions occur at bus speeds. NuBus 32-bit transactions are
turned into two separate Multibus transactions to successive addresses.

I/O Space The 64K byte Multibus 1/O space is mapped by the converter to a 64K-word region .

in the NuBus SDU slot space. Each byte of the Multibus 1/O space is mapped to a separate word
of the NuBus space. Thus, NuBus masters that are only capable of performing 16- or 32-bit
operations are able to access individual byte locations in the Multibus /O space. Figure 5-2
illustrates the Multibus /O space mapping.

NuBus Physical Address Space

0
Multibus 1/O Space

64K Bytes

olOjo|>»
Oi0oflwm]>»

r~ T

~
4 Gigabytes
igabyt Muitibus Memory Space
0 E__]
- ~
DIC|BJ|A BlA
\‘§‘\§‘ Dlc 1 Megabyte
~ ~
FrrrF L—J
=) MSB LSB
FFFFFFF
MSB LSB

Figure 5-2. NuBus-to-Multibus 1/0 Space Conversion.

5.1.2 Muitibus-to-NuBus Conversion

On every Multibus cycle, the converter (which is a slave device on the Multibus) checks to
see if it is being addressed. This test to determine if the Multibus address page may be
converted to a NuBus page is accomplished by using the upper 10 bits of the Multibus
address to reference the Multi-to-Nu page map. A bit in each entry in this page map, called

26

Nu Machine Technical Summary
Texas Instruments

the Valid Entry bit, determines if a conversion is to take place. If a conversion is required,
the 22-bit PFN (page frame number) field of the PTE (page table entry) determines the page
of NuBus memory referenced. The completed transiation of the NuBus address is the
concatenation of the 22-bit PFN field with the lower 10 bits of the Multlbus address. Figures
5 -3 and 5- 4 show this process from two points of view.

NuBus Physical Address Space

FFFFFFFF
i i
e v Ve o
Page 4
Multibus Memory Space
4 Gigabytes
) Page 1 FFFFF
Page 3 \ ——| Page 2
1 Megabyte
——] Page 3
fl——— Page 4 0
Page 2 Page Map
:-’ ~L
i T,
Page 1
0

Figure 5-3. Multibus-to-NuBus Conversion.

27

Lt
Nu Machine Technical Summary , H\i
Texas Instruments

Muitibus Address
- 20 Bits o]

Upper Lower
10 Bits 10 Bits
1 22
e P mp—

PTE L—» PFN

Valid
Bit

|
|
|
|
|
|
|
|
|
|
|
! Y

T
22-Bit PFN Field !

32-Bit NuBus Address

Figure 5-4. Multibus-to-NuBus Address Conversion.

5.2 Interrupt Mapping

Multi-to-Nu The mapping-of Muitibus interrupts is handled by the 8088 processor on the
SDU board. When a Multibus interrupt is received by the 8088, the 8088
uses a table that associates Multibus interrupts with NuBus interrupt address
locations to write into the NuBus address space. This causes the appropriate
interrupt.

Nu-to-Multi Event cycles on the NuBus are mapped into Multibus interrupts by an
addressable latch on the SDU. The NuBus writes to this area of the address
space to create Muitibus interrupts.

5.3 Lockup Prevention

In bus conversion, the potential exists that when both buses request the other a ‘““deadly
embrace’ could occur. The Nu Machine protocol, however, provides an elegant solution to
this problem.

If a NuBus master requests use of the Multibus converter at the same time that a Multibus
master has requested the NuBus, the SDU returns a “Try Again Later’ response. This
informs the NuBus master that it is unable to respond at that moment. The NuBus master
then releases control of the NuBus and must rearbitrate for the NuBus again at a later time.
This scheme frees the conversion path allowing the Multi-to-Nu transfer to finish.

28

6 VIDEO DISPLAY SUBSYSTEM

The video display subsystem is a single-board text and graphics display system. It utilizes a
bit-map memory plane and video control circuitry to drive a high resolution noninterlaced
monitor. Two video buffers on the board provide high bandwidth from the NuBus and high
bandwidth to the display monitor. This board can be a master on the NuBus in order to
generate interrupts.

Features of the video display subsystem are:
¢ One megabit of dedicated display memory (dual buffered);
e 1/60th of a second per screen update;
e 64K RAMs;
¢ Programmable number of words per line and lines per frame;
e Arithmetic Logic Unit (ALU) supports on-board logical functions such as XOR,;
‘e Normal/reverse video;
e Horizontal, vertical, and composite synchronous outputs;
e TTL and ECL video outputs available;
e Programmable interrupt generations using vertical blank;
e Maximum pixel display rate of 70 MHz; and
e Two RS-232 serial ports for keyboard/mouse interface.
6.1 Main Functions of the Video Display Subsystem
The video display subsystem uses two dual-ported memory arrays. This unique approach
enables the display to be refreshed from the video memory while, at the same time, the

display may be changed by writing into the bit-map memory. Figure 6 -1 is a functional block
diagram of the board.

29

Nu Machine Technical Summary
Texas Instruments

30

NuBus INTERFACE

______________________ _I
I
XTAL —= ciuenRoR ™ SERIALIZER — >
% Video ’
Output
16 I
64K x 16 ‘
> Bit Map I
Buffer B
SCREEN |
ADDRESS \
COUNTER ¥ |
16
/T Co &—l——-
Enable l
ADDRESS 64K x 16 |
MUX — Bit Map
— Buffer A l
16 16 l
. e |
COUNTER »
|
!
|

Figure 6-1. Block Diagram — B/W Video Display Subsystem.

lIF-

Nu Machine Technical Summary
Texas Instruments

The dual-ported arrays, called “A” and “B”, are each a 16 x 64K memory. The lower (or B)
memory is constantly addressed by the refresh address counters and may continually repaint
the screen by providing a 70-Mbyte bit stream. This design leaves the “A” bit map free to
accept new data from the processor controlling the graphics.

As seen in the block diagram, not only may data be written from the bus directly into memory
“A”, but also a read-modify-write cycle using a single ALU on the video board may be
performed. This architecture allows information written to the board to be ORed, ANDed, or
EXCLUSIVE ORed with values already in the bit map. This read-modify-write and on-board

ALU allows many common operations to be performed within the video card itself. '

In order for updated information to appear on the screen, bits are copied from the “A”

memory to the “B” memory. In fact, when the “A” memory is not being accessed by the
NuBus, it is copied into the ‘B’ memory providing a continual update. However, the NuBus
has priority over the copy/update operation, which provides the maximum bandwidth for
delivering new information to the display.

The screen has the capability to show the old image until the new image is ready to be
displayed. For this feature, the copy operation is inhibited by turning off the “COPY”’ bit in
the command register. In this state, new information is-written into the “A” memory is not
displayed on the screen. Instead, the screen keeps refreshing the old information from the
“B” memory. When the update is complete, the ‘“COPY” bit is turned on, causing the new
information to appear on the screen in one frame time (1/60th of a second). This makes the
Nu Machine suitable for animation and other applications where it would be undesirable to

- watch the screen being gradually updated.

Another advanced feature is the scan line table, a RAM that contains the starting addresses
of each scan line in the ‘“‘B” memory. This mechanism is used for scrolling and making rapid
changes in small portions of the screen. It also could enable display screens with different
aspect ratios, to be used, thereby enhancing the subsystem’s flexibility.

6.2 Serial Ports

Two RS-232 serial ports on the video display board complete the man-machine interface.
Although unrelated to the production of video signals, they support the keyboard and mouse
which may be associated with each display.

Software requirements for servicing the RS-232 ports are simplified by a small amount of
hardware buffering. There are 4 bytes of FIFO on the input side of each port and 2 bytes of
FIFO on the output side of each port.

31

Nu Machine Technical Summary
Texas Instruments

32

-

a

7 MAIN MEMORY

The Nu Machine memory board is a self-contained memory controller and 2 Mbyte memory
array that includes logic to support error correction, block transfers, and error logging. The
memory board interfaces to the NuBus as a ‘“‘slave’ device, responding to requests from a
bus master. Up to 14 memory boards can be installed in the Nu Machine, yielding a
maximum of 7M bytes of available physical memory.

7.1 Main Functions of the Memory Board

The main functions of the memory board reads, writes, and error detection are discussed
below. A functional block diagram of the memory board is shown in Figure 7-1.

The memory board uses a 32/39 modified hamming code for error correction and detection;
seven ECC (Error Correction Code) bits are appended to each 32-bit data word. This code
enables correction of all single-bit errors and allows detection of all double-bit errors within
the 39-bit word (32 data bits plus seven ECC bits). Additionally, some multiple-bit errors
are detected. A multiple-bit error is one in which three or more bits in a particular word are
in error.

Memory Array
512K Bytes

(128K x 39 Bits)

A A m
b 1 O
8 g 7l ®
) @
0
»

19 32
- Error Logging

NuBus Interface Logic

|
|
|
|
|
|
|
l
{
|
|
|
|
] ECC LOGIC {
1
!
r
1
|
|
1
|
|
|
|
r
|
|
|
|

Figure 7-1. Memory Board Block Diagram.

33

Nu Machine Technical Summary
Texas Instruments

Read Operations — A read cycle always results in a 32-bit array access. However, a full
32-bit read of the array generates the correct data on the bus for all size objects because of
the way byte and half-word reads are specified.

The memory board checks the data for errors on all read cycles and then performs one of
three operations: '

e If no errors are detected, data are placed on the bus, and a bus transfer complete
(ACK) response is given.

» |f a single-bit error is detected, it is corrected, and the corrected data are placed on the
bus with a bus transfer complete (ACK) response. This correction is transparent to the
bus master. The corrected data are not written back to memory.

* [f a double-bit error is detected, an error condition (NAK) response is given, and the
data transferred are undefined.

Write Operations — Write cycles may result in 8-, 16-, or 32-bit data transfers. All write operations
are carried out “‘off-line.” That is, the data are latched, the bus transfer completed (ACK) signal
is given, and the bus is released while the write operation is completed.

A 32-bit transfer is the simplest write operation. The latched data are presented to memory, a
corresponding seven-bit ECC pattern is generated, and both are written to the addressed location.
On 8- and 16-bit write transfers, a read of the addressed location is performed first. One of three
things then occurs.

» If no errors are detected, the new data are substituted for the old data; a new ECC pattern
is generated; and the new word and ECC are written in the addressed location.

* If a single-bit error is detected, it is corrected before the new data are substituted. This new
word and its ECC pattern are then written in memory.

» if a double-bit error occurs, the write portion of the partial write is not performed. Thus, the
data with the error are left in memory so that a subsequent read will detect an error. No
indication of the error is immediately returned.

Block Read Operation — Block read cycles result in 2-, 4-, 8-, or 16-word (32-bits/word) block
transfers. Each word of data is read and the data are checked for errors. Then one of three
operations is performed.

¢ [f no errors are detected, the data are placed on the bus. If that transfer is the last one, a
bus transfer complete (ACK) response is given. If that transfer is not the last one, and
intermediate ‘‘ACK” is given and the transfer continues.

» [f a single-bit error is detected, it is corrected, and the corrected data are placed on the bus.
If that transfer is the last one, a bus transfer complete (ACK) response is given. If that transfer
is not the last one, an ‘“‘intermediate”” ACK is given and the transfer continues.

¢ |f a double-bit error is detected, undefined data are transferred, an error condition (NAK)
response is given, and the block transfer terminates.

Block Write Operation — Block write cycles result in 2-, 4-, 8-, or 16-word block transfers. Each
word of data are latched and acknowledged. (An “‘intermediate’’ ACK response is given for all
words except the last word transferred.) When the last word is transferred, a Bus Transfer Compiete
(ACK) response is given, and the bus transfer is complete. Each word of data is latched and
presented to memory; a corresponding seven-bit ECC pattern is generated; and both are written
to the addressed location. Then the address is incremented to the next word. This process occurs
for each word of data to be written until all words have been transferred. Because complete words
are written, no errors can occur on a block write operation.

34

1

-

8 SOFTWARE

Two categories of software are available with the Nu Machine. The first category consnsts of
the SDU Monitor and the diagnostics that run under that monitor.

The second category of software is the Nu Machine Operating System. This is a port of Bell Lab’s
UNIX Operating System. The Nu Machine Operating System is derived from UNIX, Seventh Edition
and contains, in addition to the normal UNIX commands and kernel, enhancements from the
Berkeley version of UNIX and a proprietary window system for the Nu Machine video display
subsystem. Of course, the Nu Machine Operating System will not run on Nu Machines that do
not contain a 68010 processor board.

8.1 SDU Monitor and Diagnostics

8.1.1 SDU Monitor

The SDU Monitor’s primary function is to provide device independence for the diagnostics,
bootstraps and other commands that run on the SDU. In addition, certain primitive
commands built into the Monitor allow the user or service representative to probe the

hhardware even if the mass storage devices are broken.

A mode switch on the back of the machine selects a console device to access the SDU
Monitor. One hardwired position selects a serial port on the SDU and sets it to operate at 300
baud. The functions of the other switch positions are defined by data in a non-volatile RAM.

Primitive Commands Primitive commands available on the SDU Monitor are:
e Reading and writing NuBus and Multibus locations;
e Selectively resetting and enabling the buses;
e Clock and voltage margining to aid in diagnosis;
e Copying data between devices; and
o Downloading commands from the serial ports.

Device Support The Monitor has a uniform device access mechanism similar to that provided
by UNIX. In fact, some UNIX commands can be recompiled and run directly under the Monitor.
Several device drivers are built into the Monitor. In addition, the Monitor has a facility for installing
new device drivers while it is in operation. Device support is provided for:

e Serial ports on the SDU;

e The high resolution display and keyboard;
e The Multibus SMD controller; »

e The Muitibus V2-inch tape controller;

e The Va-inch tape controller;

e The non-volatiie RAM; and

e The time-of-day clock.

For many of the devices, both raw and structured access is provided. For example, the disk may
be accessed as a simple sequential byte stream and may also be accessed via a UNIX file system
driver. The file system driver is not built into the Monitor but rather is ““booted’’ from the disk when

35

R

Nu Machine Technical Summary
Texas Instruments

it is first accessed. This means that it can be replaced by different format file systems. Similarly,
the tapes can be accessed both as a byte stream and as a structured file system in the UNIX
“tar’”’ format.

Loadable Commands To expand the command repertoire, the Monitor loads commands from
several of the devices into RAM on the SDU, passes on arguments to these commands, and runs
the commands. Commands are normally loaded from the disk but can also be loaded from the
tapes or via host machine serial ports. Loadable commands perform |/O via standard input and
output streams, unaware of which device they are talking to.

More important loadable commands are:

The ‘‘setup’ program used to manipulate non-volatile RAM;

The main system and board diagnostics;
The Nu Machine Operating System bootstrap program;

The UNIX file system checker; and

The UNIX dump program.

8.1.2 Diagnostics

Nu Machine diagnostics conveniently verify the correct functions of the system and aid in the
debugging of a downed machine. Two kinds of diagnostics are available: startup diagnostics
and loadable diagnostics. Both forms of diagnostics run under the Monitor; however, the
startup diagnostics are simpler and return only an error code rather than the more extensive
output of the main system diagnostics.

Startup Diagnostics Startup diagnostics are loaded from ROMs on each board as part of the power
up sequence. They provide a relatively quick verification of the correct functioning of a board but
do not provide much information as to the nature of any errors. Being resident on the boards,
these diagnostics do not require any peripherals to be functioning and are always appropriate
for the board on which they reside.

SDU Loadable Diagnostics Loadable diagnostics on the mass storage devices verify the correct
functioning of system components. These diagnostics take longer to run but provide more
information about each test performed and conditions on the device. Loadable diagnostics run
on the SDU make only minimal assumptions about how much of the system is functioning. If the
SDU and bus are functioning, boards can be independently tested.

All loadable diagnostics are written in a high level language, C, and use a common
procedure that specifies the flow control and user interface. Therefore, loadable diagnostics
are relatively simple to use and provide highly structured input and output for machine
interpretation. Once an operator learns to use one diagnostic he has essentially learned all of
them. They have a command-oriented interface, similar to UNIX commands, instead of
menus. This interface is more effective for remote diagnostics and lends itself to machine
automated diagnostic procedures.

Diagnostic Development Kit The development tools used to create the Nu Machine diagnostics
are available as a software option for those who wish to write their own SDU programs and
diagnostics for experimental boards.

36

=

im

Nu Machine Technical Summary
) Texas Instruments

Included in this kit are:
e a C compiler, assembler and linker for the 8088;
e a standard set of C runtime routines; and
e a library of standard Nu Machine diagnostic routines.

The tools run under the Nu Machine Operating System implementation but since they are written
in C, they could also be ported to other machines.

8.2 Nu Machine Operating Syétem

8.2.1 Overview , ,
The Nu Machine Operating System is a port of UNIX Version 7 with extensions that run on
the 68010 processor board and make use of the Nu Machine 1/0 devices. It consists of the
kernel, and includes language processors, text processing tools, and system maintenance
utilities. To port the kernel, the machine dependent modules of UNIX such as the memory
management and the device drivers have been re-written to be appropriate to the Nu
Machine. Most of the machine independent modules, as well as the commands were simply
recompiled without change.

UNIX was selected as a basis for the Nu Machine Operating System because its applications
are broad and its advantages are both practical and technical. UNIX is perhaps the most
popular programming environment available. It is capable of supporting the most demanding
applications as well as providing an effective base for every-day applications. Many people
have been exposed to UNIX at universities, providing a large base of users and programmers
familiar with the system. Since UNIX has been readily ported to many machines, there is a
wide selection of application software available and a large market ready for further
applications.

On the technical side, UNIX offers a variety of advantages:

It is a timesharing system.

Additional terminals and users can be conveniently added to the system at
minimal cost. Even in a single user environment the user may have additional
activities, such as print spoolers and network demons, operating on his behalf.

Terminals, files and other processes have identical I/O.

This dramatically extends the power of UNIX applications. Since input can come
from files as easily as from terminals, output can be saved in a file for later
processing or evaluation. Furthermore, input can come directly from other
programs and be passed directly to other programs for further processing in any:
particular run of an application. Programs can be connected together as building
blocks combining their effectiveness in a multiplicative way.

A tree-structured file system with access protection.

The hierarchy of directories provides a simple, convenient method for organizing
files. Access protection promotes cooperation in a muiltiuser environment by
permitting the user to decide to what extent he should trust others.

37

Y

Nu Machine Technical Summary
Texas Instruments

UNIX is simple.

The kernel is small and easily understood. The commands are easy to learn and
operate. Overall, UNIX is remarkably free of annoying restrictions and arbitrary
details. Although simple, UNIX has great sophistication able to provide adequate
performance while retaining generality.

8.2.2 Nu Machine Operating System Kernel

The Nu Machine Operating System kernel is the control program which implements the
system calls that all application programs use and the device drivers that access the
hardware devices. The kernel is a recompilation of UNIX, Version 7, with portions changed
to adapt UNIX to the Nu Machine. These changes primarily affect the memory management
routines and the device drivers.

The Nu Machine 68010 processor uses page-oriented memory management. Within memory,
page tables describe the virtual-to-physical address mapping for a particular process. The
memory management scheme supports the full 24 bit address space of the 68010 processor.
It also takes advantage of the rapid context switch mechanism provided by the cache ID bits
in cache entries and the process base register. In the current release, processes are
swapped as is done in the standard UNIX implementation. Therefore, the process size is
limited to the amount of physical memory installed on a particular machine. Future releases
will operate in a demand page mode which will take full advantage of the Nu Machine’s
hardware capabilities.

Additional and modified drivers are provided for all the standard Nu Machine peripherals.
These include:

SMD disk)) . .
The disk driver takes advantage of the bad track mapping provided by the

controller. It performs an elevator algorithm sort on the disk queue to minimize
head movement.

Y2 " tape . ; i
2" tap The Y2 inch tape streamer operates the tape in start/stop mode for an effective

tape speed of 25 inches per second. It performs extensive error checking and
automatic retries on error conditions.

1 ” t
" tape The Y2 inch tape operates in streaming mode at a peak tape speed of 90 inches

per second. Controller limitations force all tape blocks to be multiples of 512
bytes.

SDU USARTs) . .
Two serial ports are provided on the SDU. These ports are operated in

asynchronous mode with full baud rate control and limited modem control. Two
teletype line disciplines are provided—the standard UNIX, Version 7, discipline
and the more advanced Berkeley line discipline. Depending on the contents of
the **/etc/ttys” file, these ports may be configured to support either a terminal
with a normal login process or a special demon such as a line printer spooler.
VCMEM This driver, referred to as the Raster Scan Display driver or RSD, implements a
powerful window system. Drivers support the window system, including the
virtual terminal interface with ANSI X3.64 command sequences, the Nu Machine
keyboard, and the mouse. '

38

Nu Machine Technical Summary
Texas Instruments

8.2.3 Utilities

The Nu Machine command environment is the standard set of tools delivered with the
operating system. The tools may be divided into three groups: text processing and
miscellaneous tools, programming tools, and the window system and graphics.

Text Processing and Miscellaneous Tools Most of the commands provided by UNIX, Version 7,
are available on the Nu Machine operating system. These include the Bourne shell, the file system
utility commands such as /s, cp, mkdir, and various miscellaneous commands such as the desk

_ calculator be, the online manual man, and the electronic mail program mail. In addition to the
Version 7 commands, commands from other sources, especially the Berkeley C shell, have been
included.

Text processing tools available on the Nu Machine operating system include the line editor
ed, the regular expression search program grep, and the text formatter nroff. Additional
Berkeley toois include the screen editor vi and the file perusal program page, both of which
use the terminal support package termcaps.

Programming Tools Two compilers, a C compiler and a Fortran compiler are currently supplied
with the Nu Machine operating system. They are both different variations of the same compiler,
the UNIX Portable C Compiler, with different front ends. The C version embodies all the features
of the Kernighan and Ritchie book, The C Programming Language, and generates 32 bit ints.

. The Fortran version implements Fortran 77 and includes a Ratfor front end. Both versions generate
assembly code that, as part of the compile, is fed to an assembler for the 68010. This assembler
is available for special purpose routines.

Nu Machine compilers support separate compilation and linking which dramatically speeds
the building of large programs. Extensive libraries of support routines are provided that
exploit the linking mechanism. Those on the Nu Machine include the standard I/O library, a
library of floating point routines, required since the 68010 does not have a hardware floating
point, a mathematics library and the Berkeley terminal independent 1/0 libraries, curses and
termlib.

The Source Code Control System is a collection of programs that implement version control.
They keep track of different versions, pull together the various pieces of the code and keep
them up to date, and check code for portability to other environments. They can be used to
control any sort of text file, not just programs. The program make uses the modification date
of files to determine which subportions of a program need to be rebuilt to make the program
up-to-date and allows the programmer to specify what tools to invoke to create the program.
There is a program for C called /int that checks for portability across machines and performs
a variety of other useful checks to identify errors that the compiler woulid not catch.

To aid in debugging programs, a powerful UNIX debugging tool, adb, is available on the Nu
Machine. Similarly, to aid in understanding program behavior a trace package is available
that allows the programmer to count how many times each subroutine is called and to
compute what percentage of total execution time is spent in each routine.

39

Nu Machine Technical Summary
Texas Instruments

The Window System and Graphics The window system is an extension of the kernel and user
commands that provides multiple virtual terminals on the Nu Machine high resolution display. This
feature of the Nu Machine Operating System is not a standard part of UNIX, and was derived
at M.I.T. The window system implements the following features:

Muiltiple windows A window is a raster of pixels, that is, a rectangular array of dots either
on or off. Each window is treated as an independent entity by the
window system and may be used to implement a virtual terminal.
Logical windows are mapped to physical portions of the high resolution
screen. They may be partially or totally occluded, that is, covered up
by other windows. The user may change the mapping of windows to
the screen, moving windows and causing, for example, an occluded
window to be exposed. When a process tries to write to an occluded
window, it will block until the window is fully exposed.

Terminal emulation One window function is to implement a virtual terminal so that when a
user process writes to a window, characters appear on the screen.
One window is designated as the keyboard window and can be
identified by a blinking cursor. Characters typed on the keyboard
appear in this window. The keyboard may be detached from one
window and attached to another, effectively switching it between
processes. As part of the terminal emulation, ANSI X3.64 control
sequences move the cursor, and erase portions of the screen. This
emulation is known as termcaps. ‘

Muitiple fonts Another aspect to terminal emulation is that the user can specify the
font, ie. the size and shape of characters displayed in the window.
Each window can support multiple fonts and the user can switch
between them with control commands.

Screen mapping The user may map a window directly into the address space of a
process. The window simply appears as an array of bits in the
address space. In this way, the program can directly control each bit
of the window and implement its own graphics routines and character
painting for maximum efficiency without any intervening code.

Mouse support The window system includes a mouse driver that permits an
application program to read the current position and button state of the
mouse and optionally gives the program an interrupt when the position
or button state changes. The mouse is associated with the current
keyboard window and changes between windows as the keyboard
moves.

In addition to the code inside the kernel, several commands permit the user to manipulate the
screen. A graphics library is available to aid in developing programs that use features of the high
resolution screen. User commands are available to create new windows, change the properties
of a window, change fonts and to display UNIX plot format data in a window. This last command,
trsd, can be used in conjunction with standard UNIX commands to create graphs on the screen
and draw other kinds of pictures. Trsd makes use of the graphics library libg, a set of routines
to draw vectors, manipulate rasters and paint characters onto the screen.

40

Nu Machine Technical Summary
Texas Instruments

8.3 Future Plans

The following items describe planned enhancements that will be available in future releases
of the Nu Machine Operating System.

Demand paging

Local networking

Multiprocessing

The Nu Machine 68010 processor board has the capability to recover
from page faults but the Nu Machine Operating System does not yet
take advantage of this capability. When this feature is implemented, it
will remove the restriction that programs must fit in the available
memory. Furthermore, it should improve the overall efficiency of the
system particularly for large programs by making more effective use of
the available memory.

Support for the Ethernet with both the XNS and IP/TCP families of
protocols is planned for the Nu Machine.

The NuBus and the Nu Machine 68010 processor have been designed
so that multiple processors can reside on the same bus. When these
hardware features are fully exploited by the software, the Nu Machine
operating system will support load sharing between muitiple processors
to increase the amount of computer power available in a multitasking
environment. Owners of Nu Machines will be able to extend the power
of their machine by simply adding more processor boards.

41

Nu Machine Technical Summary
Texas Instruments

42

Nu Machine Technical Summary
Texas Instruments

[

1 1

— v/sJ }»

HEUTR I

\lll A /U

AR
AN
RN
IR
A
I
R
B

Figure 9-2. Rack Module and Component Layout

9.5 Summary

The Nu Machine is the result of research done at M.L.T. combined with product development
by industry. This combination has created a state-of-the-art system which is well thought out
and expertly engineered. The system framework provides the performance and flexibility to
create a wide range of computing environments.

45

e

Nu Machine Technical Summary
Texas Instruments

46

»

R —

g

Nu Machine SDU Monitor User’s Manual
' TI-2242811-0001 |
. -November, 1083

AR e s e

Distributed by LMI 6033 W. Century Bivd. Los Angeles CA 90045
. : USA

Copyright (© 1983 Texas Instruments All rights reserved.

The information and/or drawings set forth in this document and all rights in and to
inventions disclosed herein and patents which might be granted therein disclosing or
employing the materials, methods, techniques of apparatus described herein, are the
exclusive property of Texas Instruments Incorporated.

INTRO(Q) SDU Monitor User's Manual INTRO(D)

INTRODUCTION TO SDU MONITOR SOFTWARE ,
This manual describes the software used by the SDU. It
describes the commands and the diagnostics available both
internally in prom and externally on the disk. Also
included are sections describing routines useful in writing
new diagnostics or other software.

The volume is divided into six sections:

1. Commands

2. System calls

3. Subroutines

4., Devices

5. File formats and ‘conventions
6. Diagnostics

Commands are the programs other than diagnostics that can be
run on the SDU. Sections 2 and 3 are useful in writing new

programs for the SDU. These sections describe routines con-
tained in libraries that can be linked in with the :
programmer's new code.

Section 4 describes "devices" which can be "opened" for
reading, writing, or IO control. These may be devices such

as disk or tape, or they may be parts of the SDU's multibus
address space.

Section 5 describes the formats for certain files such as
the configuration header.

Section 6 describes the diagnostics available for the mul-
tibus IO boards and for the nubus cards.

Printed 8/30/83 ' o 1

e

| NAME

P T,

ADDRESSING(1) SDU Monitor User's Manual ADDRESSING(1)

addressing - read/write nubus and multibus addresses

SYNOPS1S

r[-b][-wl[-11]TLI[first-last] [first,count]] ...
wl-b1[-w]U[=-117]T L[[first-last] [first,count]] data

x[-p]J[~-wlI[=-11TILI [first-last] [first,count]]

DESCRIPTION

The r command prints out the contents of the specified
addresses. The w command writes data as the contents of

each address in the range. The x (examine) command interac-
tively prints the current contents of each address and waits

. for new data to be entered. A carriage return without

- entering new data leaves the old contents unchanged.

Data size options:

-b° ~ The data size is bytes.
-W The data size is words (shorts).
-1 The data size is longs.

The data size determines the size of object being addressed.
The last used data size is the default in subsequent
addressing commands unless a new data size is specified.

An address range consists of one or more consecutive
addresses. The address increment is implied by the current
data size. An address range is specified by giving the
first address first and either the last address last or the
number of addresses count. If neither the last address nor
the number of addresses is given, the address range consists
of the single address specified.

All addresses and data are printed in hexadecimal and must
be entered in hexadecimal. Data and nubus addresses are

v

specified by from 1 to 8 digits.

Multibus addresses are given in the format
segment:o0ffset

where the segment and offset contain from 1 to 4 digits.

Multibus ports (I/O addresses) are given in the format

phh

Printed 8/39¢/83 ’ . _ 1

s - . B ok s ¥ .

4

ADDRESSING(1) SDU Monitor User's Manual ADDRESSING(1)

where hh is the one or two digit 1/0 address.

Relative addressing is possible. When an address range is
specified, the first address may be referenced by the symbol
"." for subsequent use. This symbol may be used as the
first address in a subsequent address range specification,
(even on the same line). The symbols "+" and "-" may also
re used as the first address in an address range. They
refer respectively to the address following and the one
breceding the . address. It is important to remember that
rach time a new address range is specified a new current
starting address is saved.

/N Pt fay gmd

Variables consisting of a single printable character may be
jefined and used as the first address in an address range
(see equals(l)). The variable is used in the format $x
where x is the printable character.

SEE ALSO
equals(l)

Printed 8/39/83 : 2

R I T P ————————— Y

SDU Monitor User's Manual cD(1)

NAME
’ cd - change working directory

SYNOPSIS .
cd [directory]

DESCRIPTION

directory becomes the new default directory. If no direc-
tory is given, the default working directory
"/disk/monitor/bin" is used.

Because a new process is created to execute each command, cd
would be ineffective if it were written as a normal command.

It is therefore recognized and executed by the command moni-
tor itself.

SEE ALSO
pwd(1l)

BUGS

Any string is accepted as an argument, whether or not it is
a legal directory.

Printed 8/30/83 . 1

CLOCK(1) SDU Monitor User's Manual CLOCK(1)

NAME
clock - set the nubus clock

SYNOPSIS
dlock [-n 1] [~-s 10[-£f1]

DESCRIPTION
glock sets the nubus clock rate (normal, slow, or fast).
The options are: '

n Normal rate.
s Slow rate.
£ Fast rate.

If no options are given the current setting of the nubus
¢lock is given.

SEE ALSO
voltage(l)

Printed 8/3@/83 1

conf(1l) SDU Monitor User's Manual conf(1)
NAME

conf - Print out configuration rom data by slot number.
SYNOPSIS

conf [slot...]
DESCRIPTION

Conf prints out the data contained in the configuration prom
of each card. With no slot number specified, data for every
slot will be printed. Otherwise only the requested slots

will be printed. Slots are given as decimal numbers in the
range @ to 15,

SEE ALSO
crom(5)

BUGS

Converter cards put out their own configuration rom data on

bus timeouts so empty slots appear to have converter cards
in them. .

——

wuﬁyl -—%éwmﬁﬁe iv&mCmﬁ§w¢@g7
w Shuls feoar ol enchB/Hsell

Printed 8/30/83 ' 1

copy(1) SDU Monitor User's Manual
NAME
copy - copy from one device to another
SYNOPSIS
- copy from to [numblks]
DESCRIPTION

CO copies numblks blocks (l@24-bytes each) from the device
ven by from to the device given by to. If numblks is not
ecified the copy will continue until the end-of-file is
ached on either device.

RN

s 3

e code for copy is contained in prom, and is most commonly
ed to back up or restore the root file system.

Printed 8/30/83 , 1

Tl o~ - —————— - ~—e—y 7;;”_',2

cp(l) SDU Monitor User's Manual cp(l)

NAME -

cp - copy from one device to another

- SYNOPSIS
cp from [offsetl] to [offset2] [-numblks]

DESCRIPTION _
Sp copies numblks blocks (1924-bytes each) from the device
given by from to the device given by to. An optional block
offset into either device can be specified using offsetl and
offset2. If an offset is not specified, @ is assumed. If
numblks is not specified the copy will continue until the
end-of-file is reached on either device. '
Because cp only reads one block at a time, it can be pain-
fully slow if one of the devices is a tape. 1In most cases,
copy(l) will do the job much more quickly. However, cp is
provided for flexibility.

Printed 10/31/83 | 1

date(1l) SDU Monitor User's Manual date(l)

NAME

ddte - set the SDU battery clock and print its value

SYNOPS1S |
date [-dn] [yyMMmDpDHHMM [.SS]] [gmt]

DESCRIBTION
Date is used to initialize the battery clock on the SDU.
‘The battery clock has three fields: the actual date, a bit
saying whether daylight savings applies to this location and

a

field that specifies the time zone in time minutes west of

Greenwich. The date is specified as in the UNIX date com-—
mand as year, month, day, hour, minute, and optionally,
seconds. Only the least significant digits ie minutes
field, need be supplied, the higher order digits will be
unchanged from the current time. Minutes west of Greenwich
would be 480 for pacific time, 300 for eastern time. The
daylight saving flag says whether daylight savings applies
to ‘this region at all, not whether it is currently in
effect.

d

Option flags:

Daylight savings applies.

Daylight savings does not apply.

With no arguments, date prints the current date and the
value of the other parameters.

Printe

1 8/30/83 1

DEV(1l) ' SDU Monitor User's Manual DEV(1l)

NAME
E dev - list the current sdu drivers

SYNOPSIS
dev

DESCRIPTION

. dev gives a list of the drivers currently present in the
system.

SEE ALSO
driver(1l)

Printed 8/33/83 : ~ 1

driver (L) SDU Monitor User's Manual driver(l)

NAME
driiver - load device drivers

SYNOPSIS
driver [-0 offset] [-r] name [file]

DESCRIPTION
.Driiver loads device drivers into the diagnostic monitor,

normally from the disk. Many device drivers are not built
into the diagnostic monitor, so they must be loaded before
they are used. Driver images exist as load modules that are
similar to command load modules. When the image is loaded,
memory is permanently allocated for the driver load module.
Loading devices drivers reduces the amount of memory avail-
able for running monitor programs.

With one argument, the name, driver looks on the disk in the
stlandard driver directory to find the driver load module.

It assumes the load module file name is the same as the
driver name. If a second argument is supplied, driver
interprets it as the name of the load module file name which
may be on the disk or any other device.

Option flags:

O |offset The offset is static parameter supplied to the
driver when it is loaded. Its meaning
depends on the driver, some do not use it at
all. A typical use is to specify the start-
ing block number for the disk driver. In.
these circumstances, the same driver load
module may be loaded under several names.

r The r option removes the

FILES »
/disk/monitor/drv/* Default directory for devices.

SEE ALSO
dev(l), setdr(2)

Printed 8/392/83 : ~ 1

ENABLE (1) SDU Monitor User's Manual ENABLE (1)

| NAME -
’ enable - enable or disable the multibus and/or nubus

‘SYNOPSIS
enable [[-] mnx]

DESCRIPTION

enable enables or disables the multibus and nubus. The
options are:

m Enable or disable the multibus.
n Enable or disable the nubus. ~
b4 If this option is given the specified bus or busses are

disabled; otherwise they are enabled.

If no options are given both busses are enabled, if only the
x option is given both busses are disabled. :

SEE ALSO
reset(1l), init(l)

oL
)

&

Printed 8/39/83 , 1

EQUALS

NAME
e

SYNOPS

DESCRI

(1) SDU Monitor User's Manual BEQUALS(1)

quals - assign or read an addressing variable

IS
[variable [value]]

PTION

Alvariable is a single printable character which may be used
. to specify the starting address in an addressing range for

t

he r, w, and x cormands (see addressing(l)). After a vari-

able has been assigned a value, it is used in the format $x

where x is the printable character.

hlue is the 1 to 8 hexadecimal digit address that is to be
ssigned to the variable. If variable and value are both

variable is given, the value last assigned to that variable

N4
a e B ——
given then the value is assigned to the variable. If only
v
is given. If no argument is given, all of the currently

a

ssigned variables and their values are given.

SEE ALSO

Print

addressing(1l)

ed 8/39/83 ' o 1

FSCK(1) SDU Monitor User's Manual FSCK(1)

NAME .
fsck - file system consistency check and interactive repair

SYNOPSIS

fsck [-y J [-n J [-sX 1 [-8X] [=t filename] [
filesystem] ...

DESCRIPTION

Fsck audits and interactively repairs inconsistent condi-
tions for UNIX file systems. If the file system is con-
sistent then the number of files, number of Dblocks used, and
number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before
each correction is attempted. It should be noted that most
corrective actions will result in some loss of data. The*
amount and severity of data lost may be determined from the
diagnostic output. The default action for each consistency
correction is to wait for the operator to respond yes or no.

Fsck has more consistency checks than its predecessors
check, dcheck, fcheck, and icheck combined.

The following flags are interpreted by fsck.

-y Assume a yes response to all questions asked by £sck.
-n Assume a no response to all questions asked by fsck;

do not open the file system for writing.

-sX Ignore the actual free list and (unconditionally) -

reconstruct a new one by rewriting the super-block of
the file system. ,

The -sX option allows for creating ‘an optimal free-
list organization. =SX Conditionally reconstruct the
free list. This option is like -sX above except that
the free list is rebuilt only if there were no
discrepancies discovered in the file system. Using =S
will force a no response to all questions asked by
fsck. This option is useful for forcing free list
reorganization on uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its
tables, it uses a scratch file. If the -t option is
specified, the file named in the next argument is used
as the scratch file, if needed. Without the -t flag,
fsck will prompt the operator for the name of the
scratch file. The file chosen should not be on the
filesystem being checked, and if it is not a special
file or did not already exist, it is removed when fsck
completes.

Printed 8/39/83 : 1

FSCK(1

—

SDU Monitor User's Manual FSCK(1)

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free
list. v
2. Blocks claimed by an inode or the free list outside

the range of the file system.
3. Incorrect link counts.
4. Size checks:
Incorrect number of blocks.
Directory size not 16-byte aligned.
D o Bad inode format.
b . Blocks not accounted for anywhere.
. Directory checks:
File pointing to unallocated inode.
Inode number out of range.
Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the
file system.
2. Bad free block list format.
19. Total free block and/or free inode count incorrect.

1S\
-J

fab)
g2
L]

Orphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the lost+found directory. The name assigned is the
inode number. The only restriction is that the directory
lost+found must preexist in the root of the filesystem being
checked and must have empty slots in which entries can be
made. This is accomplished by making lost+found, copying a
number of files to the directory, and then removing them
(before fsck is executed).

Checking the raw device is almost always faster.

DIAGNOSTICS

BUGS

The diagnostics produced by fsck are intended to be self-
explanatory.

Inode numbers for . and .. in each directory should be
c¢hecked for validity.

g and =b options from check should be available in fsck.

(Kol

'sck should. understand about quotas.

Printed 8/30/83 : 2

.. - %
S DR L o L e

FSCK(1) _ SDU Monitor User's Manual FSCK(1)

NAME
fsck - file system consistency check and interactive repair
SYNOPSIS
fsck [-y] [-n J [-sX 1 [-8X] [~t filename] [
filesystem] ...
DESCRIPTION

Fsck audits and interactively repairs inconsistent condi-
tions for UNIX file systems. If the file system is con-
sistent then the number of files, number of blocks used, and
number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before
each correction is attempted. It should be noted that most
corrective actions will result in some loss of data. The
amount and severity of data lost may be determined from the
diagnostic output. The default action for each consistency
correction is to wait for the operator to respond yes or no.

Fsck has more consistency checks than its predecessors
check, dcheck, fcheck, and icheck combined.

The following flags are interpreted by fsck.

-y Assume a yes response to all questions asked by £fsck.
-n Assume a no response to all questions asked by fsck;

do not open the file system for writing.

-sX Ignore the actual free list and (unconditionally)

reconstruct a new one by rewriting the super-block of
the file system.

The -sX option allows for creating an optimal free-
list organization. -SX Conditionally reconstruct the
free list. This option is like -8X above except that
the free list is rebuilt only if there were no
discrepancies discovered in the file system. Using -8
will force a no response to all questions asked by
fsck. This option is useful for forcing free list
reorganization on uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its
tables, it uses a scratch file. If the -t option is
specified, the file named in the next argument is used
as the scratch file, if needed. Without the -t flag,
fsck will prompt the operator for the name of the
scratch file. The file chosen should not be on the
filesystem being checked, and if it is not a special
file or did not already exist, it is removed when fsck
completes. -

Printed 8/30/83 ' 1

FSCK(1) SDU Monitor User's Manual

T T ——— A L S

FSCK(1)

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free
list. '
2. Blocks claimed by an inode or the free list outside

the range of the file system.

3. Incorrect link counts.

4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad inode format.
5. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
Inode number out of range.
Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the
file system.
9, Bad free block list format.
19. Total free block and/or free inode count incorrect.

Fa'ey
i~ =4
.

Drphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the lost+found directory. The name assigned is the
inode number. The ounly restriction is that the directory
lost+found must preexist in the root of the filesystem being
checked and must have empty slots in which entries can be
made. This is accomplished by making lost+found, copying a
number of files to the directory, and then removing them
(vefore fsck is executed).

Checking the raw device is almost always faster.

DIAGNOSTICS

BUGS

The diagnostics produced by fsck are intended to be self-
explanatory.

Inode numbers for . and .. in each directory should be
checked for validity.

~g and =b options from check should be available in fsck.

Psck should understand about quotas.

Printed 8/30/83 : 2

T P

HELP(1) SDU Monitor User's Manual HELP (1)

NAME
help - help in using monitor commands

SYNOPSIS '
' help [cmd ...]

DESCRIPTION

help prints information on the usage of the specified inter-
nal monitor commands. If no commands are specified, help is
given for all monitor commands.

. Printed 8/3@/83 : : 1

\"“!'!!IlIIII.'IIIII!IHII'IIIEF“"' S =

. INIT(L1)

INIT(1) SDU Monitor User's Manual
NAME
init - initialize system
SYNOPSIS
init
DESCRIPTION

init resets the multibus and the nu system. It also enables
both the nubus and the multibus, and jumps to the beginning
of the sdu monitor's code. It is useful in resetting the
system, .e.g., when "out of memory" occurs when trying to run
a program. ' :

SEE ALSO
enable(l), reset(l)

Printed 8/39/83 . ' 1

T T e

pmd(1l) SDU Monitor User's Manual pmd (1)

- NAME _ :
' pmd - post mortem dump

.SYNOPSIS
- pmd [~-adtv] [-C conf] [dumpfile]

DESCRIPTION '
~ Pmd is a utility which will save the contents of CPU and
- NuBus RAM. Pmd is normally used to save the state of a
" crashed system for later analysis. The dump file contains a
header block (as defined by pmdump.h),. followed by CPU cache
contents, followed by all NuBus RAM contents.. The header
block includes sizes of various portions of the dump file,

"CPU control reglster contents, system configuration, and a
chenkword.- S

‘The dumpfile can be a disk file, 1/2" tape (/tape), or 1/4"
tape (7quart) If dumpfile is a tape, then the -t option
- must be supplied. If dumpfile is a disk file, then it must
- already exist in the root file system (/disk) ‘and must be
large enough to hold all RAM plus 24K bytes. Most vroot file

systems are not large enough to also contain a dump file so
“tape is the most common dump medium.

Option flags:
a - _Automatic configuration. Contents of CMOS RAM and

configuration ROMs on NuBus cards are used to deter-
mine system configuration. '

d Print debﬁgging messages.

¢ ‘ E Dump dev1ce is tape (also changes default dumgflle to .
/tape.

v .CaQSestthe dump to be verified (recommended) .

~Options which expect arguments after the option letter:’
C conf Use file conf as the conflguratlon file that
' describes which slots contain what ooards and
other configuration data.

FILES)
/dlsk/monltor/conf/std Default configuration file

/dlsk/pmdump : ' Default dumpfile.

'Printed 8/30/83 . _ : , 1

PWD(1) SDU Monitor User's Manual
NAME
pwd - working directory name
SYNOPSIS
pwd
DESCRIPTION

pwd prints the pathname of the working (current) directory.
Unless changed, the default working directory is .
"/disk/monitor/bin". The name of the current directory is .
prepended to any file name used by the sdu monitor that does
not begin with a slash.

SEE ALSO
cd(1), filesys(4)

Printed 8/39/83

RESET(1) SDU Monitor User's Manual RESET (1)

NAME
reset - reset busses/system

SYNOPSIS
reset [[-] bmn 1]

DESCRIPTION
reset resets the nubus (short reset), multibus, or nu sys-
tem. The options are:

b Reset the nubus. This is a short resét of the nubus
only and does not affect any registers.

m "Reset the multibus.
n Do a nu system reset. This is a hard reset which
changes the state of certain registers. If this option

is chosen the b option is not needed.

1f no options are given both multibus and nu system resets
are done.

SEE ALSO
enable(l), init(l)
© . BUGS
“ - A reset of the NuBus will halt the sdu operating system if
: it is executed using the rsd device as the command console.

Printed 10/31/83 | | 1

- S - o

setup(l) SDU Monitor User's Manual setup(l)
NAME . —
setup - setup the cmos configuraion ram , l
SYNOPSIS
setup [clear 1 [sp] [micro [num]] [eagle [num] 1 [
shell 1]

setup dskpart num name byteoffset size
setup shell switchnum byteoffset bytesize

DESCRIPTION _
setup is used to read or modify the contents of the system

a—d

configuration ram. Without any arguments setup gives a ver-
bose description of what the configuration is.

In the first usage above, one or more arguments may be
passed, but the order is important, since the arguments are
handled sequentially.

clear erases all of the configuration information.

sp sets the defaults for the serial ports (e.g. 9600 baud);

micro sets the defaults for syStems with the 80 megabyte
disk.

eagle sets the defaults for systems with the eagle disk.

A number may be entered after either micro or eagle to
specify a non-default interleave factor for disk formatting.

shell sets default limits for the location and size avail-
able for the shell script corresponding to a particular
switch setting.

The second usage is to allow the allocation of part of the
disk for a specific purpose.

The third usage is to allow setting specific parameters for
shell scripts corresponding to the switch setting. This
usage is dangerous and should be used with great care.

When first initializing the configuration data, a typical
sequence (for an eagle disk system) is:

dl setup clear
a1l seﬁup sp eagle shell

BUGS '
The clear option can not be used with any other option. The

Printed 10/31/83 | 1

setup(1) SDU Monitor User's Manual setup(l)
P

. format for using setup is likely to change at a future date.

Printed 18/31/83 | 2

;w-u-....'-l.rlynnu'q!..-n.q'r~v‘" -

TTYSET(1) SDU Monitor User's Manual TTYSET(1)

NAME :
ttyset - change the sdu's monitor device

SYNOPSIS
ttyset device

DESCRIPTION

This command determines what device is to be the sdu monitor
(e.g. for ruanning diagnostics). device may typically be
either "keytty", "ttya", or "ttyb". keytty is the graphics
monitor. ttya is the remote serial port on the sdu. ttyb
is the local serial port on the sdu. The names ttya and
ttyb are used only by ttyset. The actual name used for 1/0
is still tty, so that the command "ttyset tty" will use the
last previously used serial port.

Printed 8/3G/83 : 1

T T
e

uboot (1) SDU Monitor User's Manual uboot (1)

NAME
uboot - Nu Machine UNIX® bootstrap loader

SYNOPSIS
- uboot [-adnctpiT] [-D dev] [~C conf] [~k console] [sys]

DESCRIPTION .
Uboot Dbootstraps UNIX from the SDU to the 68009 processor.
It then establishes a message handler to process messages
coming from UNIX running on the 68008. If sys is specified,
it will bootstrap that file rather than the default,
/uroot /unix.

Option flags:
a Automatic configuration. Contents of CMOS RAM and

configuration ROMs on NuBus cards are used to deter-
mine system configuration.

4a : Print debugging messages.

n Do not start processor after booting.

c Do not enablé the cache on the selected processor.

t Print timing information when program exits.

P Start primary rather than secondary cpu.

i Use interrupt handling on messages (normally
‘busywaits)

N Disablé the clock.

Options which expect arguments after the option letter:

D dev Use file dev as the message handling device.

C conf Useifile conf as the configuration file that
describes which slots contain what boards and
other configuration data.

The k option selects the UNIX console. This option expects a

console keyword to follow. If the keyword is not recognized

or the k option is not sepcified, then the UNIX console
~defaults to SDU serial port A (remote).

k ttya Use SDU serial port A as the UNIX console.

k rsd Use the raster scan monitor as the UNIX console.

Printed 18/31/83 ‘ : 1

uboot (1)

SDU Monitor User's Manual uboot (1)

Several device drivers are used by uboot including the raw
disk driver, and the iomsg driver. The disk driver must be
loaded before running uboot. Normally, if yboot is run from
the disk rather than by downloading, the monitor will have
loaded the disk driver for you. Uboot will automatically

load the iomsg driver using a default name unless it is
overridden with the =D option.

FILES. =
/disk/monitor/drv/ioport Default ioport device

/disk/monitor/conf/std Default configuration file

/uroot/unix Default Nu Machine UNIX

SEE ALSO
' filesys(4)

BUGS

Uboot tends to change frequently hence some of the option
flags may not work and others may be added.

You can stop uboot by typing control C to the monitor but

unix will not bootstrap properly again unless you reset
because uboot steals the clock from the monitor.

“UNIX is a trademark of Bell Laboratories, Incorporated.

Printed 16/31/83

VOLTAGE (1) SDU Monitor User's Manual VOLTAGE (1)

NAME
voltage - set voltage margining

SYNOPSIS
voltage [=n] [-1 J [-h]

DESCRIPTION
voltage margins the nubus voltage (normal, low, or hlgh)
The options are:
n Normal voltage.
1 Low voltage.

h High voltage.

If no options are given the current setting of the nubus
voltage is given.

SEE ALSO
clock(1l)

Printed 8/33/83 . 1

K

. W e - w
B

ALARM(2) SDU Monitor User's Manual ALARM(2)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm(ticks)
long ticks;

DESCRIPTION ’

alarm causes signal SIGALARM, sece signal(2), to be sent to
the invoking process in the number of sdu clock ticks given
by the argument. The clock is programmed to interrupt at 58
millisecond intervals. The default action that a process
takes, if SIGALARM is not caught, is to ignore the signal.

Alarm requests are not stacked; successive calls reset the
alarm clock. If the argument is #L, any alarm request is
cancelled. Because the clock has a 58-millisecond resolu-
tion, the signal may occur up to 50 milliseconds early;
because of scheduling delays, resumption of execution of

when the signal is caught may be delayed an arbitrary
amount._

SEE ALSO

pause(2), signal(2), sleep(2), delay(3) The 58-millisecond
clock resolution may change at a future date.

Printed 8/30/83 - : ‘ 1

. i : -——q‘mg

CLOSE(2) SDU Monitor User's Manual CLOSE(2)
NAME

close ~ close a file
SYNOPSIS

short close(fildes)
short fildes:

DESCRIPTION
Given a file descriptor returned from an open(3) call, close
closes the associated file. A close of all files is
automatic on _exit(2), but since there is a limit on the
number of open files per process, close is necessary for
programs which deal with many files.

Files are automatically closed upon termination of a pro-
cess.

SEE ALSO
open(3), mopen(2)

DIAGNOSTICS
-1 is returned for an unknown file descriptor.

Printed 8/343/83 1

"EXECV(2) SDU Monitor User's Manual EXECV(2)

NAME

execv - change the code and data for the process
SYNOPSIS

short execv(name, argv)

char *name;

char **argv;

DESCRIPTION

execv replaces the code and data space of the process with
the new code and data given in the file name.

When a C program is executed, it is called as follows:

progname(argc, argv)
short argc:
char **argv;

where progname is the name of the start of the code, argce is
the argument count, and argv is an array of character
pointers to the arguments themselves. A null pointer must
end the array. argc is conventionally at least one and the
first wmember of the array points to a string containing the
name of the file.

SEE ALSO
runv(2)

DIAGNOSTICS

If the file cannot be found, if it does not start with a
valid magic number (see a.out(5)), or if maximum memory is
exceeded,

the return value is -1l. Otherwise there is no
return.

Printed 8/3@/83

EXIT(2) SDU Monitor User's Manual EXIT(2)
NAME

exit - terminate process
SYNOPSIS

exit(status)

short status:

_exit(status)
short status;

DESCRIPTION
exit is the normal means of terminating a process. exit
closes all the process's files and notifies the parent pro-

cess if it is executing a wait. status is made available to
the parent process.

This call can never return.

exit may cause cleanup actions before the final "system
exit". The function exit circumvents all cleanup.

SEE ALSO
wait(2), fclose(3)

Printed 8/30/83 1

<

IOCTL(2) SDU Monitor User's Manual , ‘-TOCTL(2)

NAME ,
ioctl ~ control device

SYNOPSIS

short ioctl(fildes, request, argp)
short fildes;

short request;
char *argp:

DESCRIPTION
The file descriptor fildes is a value returned from a suc-
cessful open call. The function performed by ioctl and the

significance of the arguments request and argp depend on the
particular device that was opened.

SEE ALSO
’ open(3), read(3), write(3), seek(2), close(2)

DIAGNOSTICS

If the ioctl call was unsuccessful or if fildes did not
refer to a previously opened device, the return value is -1;
the call returns @ if it was successful.

Printed 8/33/83 ' 1

IOMOV(2) SDU Monitor User's Manual

NAME
iomov ~ do I/0 on an opened file

SYNOPSIS
short iomov(mode, fildes, buffer, nbytes)
short mode; '
short fildes;
char *buffer;
short nbytes;

DESCRIPTION
mode is either 1 for reading from the file or 2 for writing

to the file. The file descriptor fildes is a value returned

from a successful open call. buffer is the location of
nbytes contiguous bytes into which the input will be placed.
The return value is the number of characters read or writ-
ten.

It is not guaranteed that all nbytes bytes will be read if
using the read mode; for example, 1f the file refers to the
tty at most one line will be returned. If the returned

value when reading is 0, then end-of-file has been reached.

The subroutines read(3) and write(3) which call iomov,
should be used instead of iomov.

SEE ALSO
open(3), ioctl(2), seek(2), close(2), read(3), write(3)

DIAGNOSTICS
If the iomov was unsuccessful the return value is -1. Con-
ditions that can generate an error: physical 1/0 errors,
file descriptor not that of an opened file, or a read or
write attempted when the file was not opened for that mode.

Printed 8/30/83 | | | 1

IOMOV(2)

KILL(2) SDU Monitor User's Manual KILL(2)
NAME

kill - send signal to a process
SYNOPSIS :

short kill(pid, sig):;
short pid, sig:

DESCRIPTION

Kill sends the signal(s) sig to the process specified by the
process number pid. See signal(2) for a list of signals.

If the process number is @, the signal is sent to all
processes which have opened the device tty, possibly includ-
ing the calling process itself; see tty(4).

Processes may send signals to themselves. '

SEE ALSO
signal(2)

DIAGNOSTICS

Zero is returned if the process is killed; =1 is returned if
the process does not exist. '

Printed 8/33/83 . ‘ 1

MALLOC(2) SDU Monitor User's Manual ‘.MALLOC(2)

NAME
malloc - memory allocator

SYNOPSIS
char *malloc(size)
unsigned short size;

mfree(ptr)
char *ptr;

DESCRIPTION ,
malloc and mfree provide simple general-purpose memory rou-
tines. malloc returns a pointer to a block of at least size
bytes beginning on a 16-~byte boundary.

The argument to mfree is a pointer to a block previously
allocated by malloc; this space is made available for
further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space
assigned by malloc is overrun or if some random number is
handed to mfree.

DIAGNOSTICS

malloc returns a null pointer ((char *) @) if there is no
mal_.oc
avallable memory.

Printed 8/30/83 _ 1

MOPEN(2) : SDU Monitor User's Manual MOPEN(2)

NAME . ‘
mopen - open for reading or writing

SYNOPSIS

short mopen(name, mode)
char *name;
short mode;

DESCRIPTION

mopen opens the file name for reading (if mode is 1), writ-
ing (if mode is 2) or for both reading and writing (if mode
is 3). name is the address of a string of ASCII characters
representing a path name, terminated by a null character.

The file is positioned at the beginning (byte @). The
returned file descriptor must be used for subsequent calls
for other input-output functions on the file.

The subroutine open(3), which calls mopen, should be used
instead of mopen.

SEE ALSO
open(3), read(3), write(3), ioctl(2), seek(2), close(2)

DIAGNOSTICS]
The value =1 is returned if the file does not exist, if one

of the necessary directories does not exist, or if too many
files are open.

BUGS

This call should probably be redesigned to look exactly like
open(3).

Printed 8/33/83 ‘ 1

PASSINT(2) SDU Monitor User's Manual

PASSINT(2)

passint - pass along an interrupt from the SDU

SYNOPSIS

#include /usr/monitor/h/interrupt.h

short passint(n, ptr)
short n;
_ char *ptr;

DESCRIPTION

passint installs an interrupt handler on the SDU which

writes a 1 to the multibus address specified by ptr. This
call is most often useful if the multibus address has been
previously mapped into a NuBus address through the numapp -

call, thereby providing a general interrupt mechanism for
the NuBus.

There are three pics on the sdu. The interrupt lines are
numbered from @ to 23, going from line @ on pic @ to line 7

on pic 2. The include file gives defines for the various
interrupts. '

If ptr is null, the specified pic interrupt is disabled.

DIAGNOSTICS

If the interrupt number is larger than the maximum number of
pic interrupts, the return value is -1. Otherwise @ is
returned to 1ndlcate success.

The program or driver that calls passint may go away w1thout
resetting the interrupt.

Printed 8/30/83 3 , 1

T T T

SDU Monitor User's Manual RUNV{(2)

RUNV(2)

- NAME
runv -~ create a new process

SYNOPSIS
short runv(name, argv, mode)
char *name;
char **argv; .
- short mode;

DESCRIPTION ' v
runv creates a new process by allocatlng code, data, and
stack space for the file name. mode is 1 if the new process
is to be traced, 2 if tty is to be opened for standard
input, standard output, and standard error output, 3 if both
options are to be done, or @ if neither tracing nor opening
the tty is to done.

When a C program is executed, it is called as follows:

progname(argc, argv)
short argc:
char **argV°

where orogn -is the name of the start of the code, ar gc is
the argument eount, and argv is an array of character
pointers to the arguments themselves. A null pointer must
end the array. argc is conventionally at least one and the
first member of the array points to a string containing the
name of the file.

SEE. ALSO
' execv(2)

DIAGNOSTICS
If no more processes can be created, if the file cannot be
found, if it does not start with a valid magic number (see
a. out(5)), or if maximum memory is exceeded, the return
value is -1. Otherwise the return is the process ID of the
new process. '

Printed 8/30/83 | | | 1

SEEK(2)

SEEK(2) SDU Monitor User's Manual

NAME
seek - move read/write pointer

SYNOPSIS
short seek(fildes, offset)
short fildes;
long offset;

DESCRIPTION
*“The file descriptor refers to a file opened for reading or
writing. The read/write pointer for the file is set to
offset bytes from the beginning of the file.

SEE ALSO
open(3), read(3), write(3)

DIAGNOSTICS _
-1 is returned for an undefined file descriptor.

BUGS

seek is a no~op on device tty. seek should return the value
of the last offset. :

Printed 8/39/83 4 1

SETDR(2) SDU Monitor User's Manual SETDR(2)

NAME
setdr - install a driver

SYNOPSIS
short setdr(drname, fname, ptr)
char *drname, *fname;
char *ptr;

DESCRIPTION
setdr creates a driver drname by allocating memory and load-
ing code and data from fname. ptr is a value that can be
used or ignored by the driver as it wishes. If the driver
drname already exists, the old code and data is replaced.
If the file name fname is null, the driver is released and
no longer can be opened.

SEE ALSO
open(3)

DIAGNOSTICS
If the file cannot be found, if it does not start with a
valid magic number (see a.out(5)), if maximum memory is
exceeded, or if the maximum number of devices is exceeded,

the return value is =1. Otherwise @ is returned to indicate
success.

Printed 8/39@/83 - _ _ 1

SETINT(2) SDU Monitor User's Manual

SETINT(2)

NAME
setint - install an interrupt handler

SYNOPSIS
#include /usr/monitor/h/interrupt.h

short setint(n, func, ds)
short n;

(*func)();

short ds:

DESCRIPTION
setint installs an interrupt handler given by the function
func and the data segment ds for the pic interrupt whose
number is n. There are three pics on the sdu. The inter-
rupt lines are numbered from @ to 23, going from line @ on
pic 3 to line 7 on pic 2. The include file gives defines
for the various interrupts.

If func is null, the specified pic interrupt is disabled.

DIAGNOSTICS
If the interrupt number is larger than the maximum number of
pic interrupts, the return value is -1. Otherwise g is
returned to indicate success. H

BUGS

The program or driver that calls setint may go away without
resetting the interrupt.

Printed 8/30/83 . o | 1

NAME

SIGNAL(2) SDU Monitor User's Manual SIGNAL(2)

signal - catch one or more signals

SYNOPSIS

#include /usr/monitor/h/signal.h

(*signal(signals, func))()
short signals;
(*func) ();

DESCRIPTION

A signal is generated by some abnormal event, initiated
either by the user at the tty (interrupt), or by a request
of another program (kill). Normally the signal SIGALARM is
ignored and all the other signals cause termination of the
receiving. process, but a signal call allows one or more sig-
nals to cause an interrupt to a specified location. All of
the signals that are candidates to be caught must be "or"ed
into the signals argument. Here is the list of signals with
names as in the include file.

SIGALARM gx1 alarm from clock has occurred
SIGINTR gx2 interrupt (control-C) has been sent
SIGDIVERR @x10 program got a divide error
SIGNOMASK 0x20 program got a non-~maskable interrupt
SIGOVFLOW Ox4d program got an overflow error
SIGTIMOUT @x80 program got a bus error

When one or more of the signals trapped for occurs func will
be called with the signal numbers "or"ed as argument. A
return from the function will continue the process at the
point it was interrupted. Once, the function has run, the
signals are reset so that if it is desired to catch any sub-

sequent signal, the catching routine must issue another sig-
nal call.

If a signal occurs which was not trapped for, the default
action is taken, This is to ignore the signal for SIGALARM
and to terminate the process otherwise.

When a caught signal occurs during certain system calls, the
call terminates prematurely. Specifically this can occur
during a sleep(2) or any system call that itself calls the
sleep system call, such as pause, wait, or iomov(2) for
interrupt-driven device drivers. When such a signal occurs,
the saved user status is arranged in such a way that when
return from the signal-catching takes place, it will appear
that the system call did not complete properly. The user's
program may then, if it wishes, re-execute the call.

SEE ALSO

kill(2), sleep(2)

Printed 8/303/83 : o 1

SLEEP(2) SDU Monitor User's Manual : SLEEP(2)

NAME v
sleep, wakeup - event synchronization

SYNOPSIS
short sleep(event)
char *event;
wakeup(event)
char *event;

DESCRIPTION

sleep and wakeup provide a simple event synchronization
mechanism. An event is typically described by a memory
address associated with that event, such as a buffer address
used by a device driver waiting for an interrupt. sleep
stops a process from running until either the specified ,
event occurs, as indicated by wakeup, or a signal is sent to
the process.

wakeup signifies the occurence of an event to all processes
simply by using the event as an argument.

DIAGNOSTICS

sleep returns the value of the signal received or @ if the
return was due to a wakeup.

Printed 8/39%/83 ' . 1

CWAIT(2) SDU Monitor User's Manual WAIT(2)

NAME
wait - wait for process to terminate

SYNOPSIS
short walt(status)
short *status:

DESCRIPTION
wait causes its caller to delay until a 31gna1 is received
or one of its child processes terminates. 1if there are no

children, the value O is returned immediately. The normal
return yields the process ID of the terminated child. 1In

the case of several children several walt calls are needed
to learn of all the deaths.

status recelves the termination status of the process. See

signal(2) for a list of termination statuses (signals); @
status indicates normal termination.

SEE ALSO
exit(2), signal(2)

DIAGNOSTICS
Returns @ if there are no children. Returns -1 if the
return was because a signal was received.

Printed 8/33/83 o S 1

ATOF(3) SDU Monitor User's Manual

NAME ‘
atoi, atol - convert ASCII to numbers
SYNOPSIS
atoi(nptr)
char *nptr;
long atol{nptr)
char *nptr;
DESCRIPTION :
These functions convert a string pointed to by nptr to
integer, and long integer representation respectively.
first unrecognized character ends the string.
Atoi and atol recognize an optional string of tabs and
spaces, then an optional sign, then a string of digits.
. SEE ALSO
: scanf(3)
BUGS

There are no provisions for overflow.

~ Printed 8/39/83

ATOF(3)

The

o

BITCHECK(3D) SDU Monitor User's Manual BITCHECK(3D)

NAME
bitcheck - check a bit field
SYNOPSIS
bitcheck(ptr, name, start, width)
union {

unsigned char *cptr;
unsigned short *sptr;
unsigned long *1lptr:

} ptr; '

char *name;

int start, width;

DESCRIPTION

bitcheck writes walking ones and walking zeroes into the
bits specified and checks the bits written. start is the
starting bit postion in the field, with @ the lowest bit,
and width is the width of the bit field. The use of the
union passed depends on the sum of start and width. The sum
must be less than 32 since the maximum field width is 32.

If the sum is more than 16 a pointer to an unsigned long is
used. If the sum is between 8 and 16 a pointer to an

unsigned short is used. Otherwise ptr points to an unsigned
char.

name is a string printed out with the error message if a bit
error occurs.

SEE ALSO
mem{3), movi(3), movimask(3)

Printed 8/30/83

BLT(3) ‘ SDU Monitor User's Manual BLT(3)

NAME
blt - high speed byte mover

SYNOPSIS
blt(from, to, nbytes)
char *from, *to:

DESCRIPTION ‘
Blt moves bytes from memory to memory u51ng the most effe-
cient instruction sequence.

Printed 8/33/83 - : : . 1

CONFIGURE(3D) SDU Monitor User's Manual CONFIGURE(3D)4

NAME
- configure - print static configuration information
SYNOPSIS
configure(s,al,a2,a3,a4,a5,a6,a7,a8,a9,ald)
char *sg;
DESCRIPTION

This routine is like printf except that it only prints if
the configuration flag is set. The line output will be in a
standard form. The argument s is a printf style format
string.

SEE ALSO
print£(3), vprint£(3), diag(3)

Printed 8/30/83 , 1

CTYPE(3) SDU Monitor User's Manual CTYPE(3)

NAME :
isalpha, isupper, islower, isdigit, isalnum, isspace, :
ispunct, isprint, iscntrl, isascii ~ character classifica-
tion ‘ ,
SYNOPSIS
#include <ctype.h>
isalpha(c)
DESCRIPTION -
These macros classify ASCII-coded integer values by table
lookup. Each is a predicate returning nonzero for true,
zero for false. ,Isascii is defined on all integer values;
the rest are defined only where isascii is true and on the
single non-ASCII value EOF (see stdio(3)).
isalpha c is a letter
isupper ¢ is an upper case letter
islower c is a lower case letter
isdigit ¢ is a digit
isalnum ¢ is an alphanumeric character
isspace 'c is a space, tab, carriage return, newline,
or formfeed :
ispunct c is a punctuation character (neither control
nor alphanumeric)
isprint ¢ is a printing character, code 840(8)
(space) through 9176 (tilde)
iscntrl c is a delete character (@177) or ordinary
control character (less than 049). .
isascii ¢ is an ASCII character, code less than @200
SEE ALSO |
ascii(7)

" Printed 8/30/83 ' . _ 1

DELAY(3) SDU Monitor User's Manual DELAY(3)

NAME

delay =~ delay a specified time
SYNOPSIS
delay(ticks)

long ticks;

DESCRIPTION _
delay causes a delay of ticks time intervals. The basic
time interval is 50 milliseconds. The effect of the call is
to allow a certain amount of time to pass before the call
returns. The actual time delayed may be up to one interval

less or an arbitrary time later because of scheduling
delays. '

SEE ALSO '
alarm(2), pause(2), sleep(2)

BUGS

delay uses the alarm(2) system call. The 58-millisecond
clock resolution may change at a future date.

Printed 8/39/83 ' S 1

DIAG(3D) SDU Monitor User's Manual DIAG(3D)

NAME .
diag - routines for diagnostics support

SYNOPSIS
#include <diag.h>

DESCRIPTION
The standard way of creating a diagnostic program to take
advantage of the diagnostic library support routines is to
create individual test routines and arrays of structures
relating to the tests. Each test routine performs a
specific test and is independent of other test routines.

More specifically, the arrays of structures and the data
that must be created are given below. t select is encoded
according to the '#define' statements.

int ntest;

struct test

char *t name; /* test name */

int t_select; /* bits indicating test selected */

int (*t_fnc)(); - /* test function */

int t argl; /* arguments passed to test function */

int t_arg2;

int t_arg3;

int t arg4:;
} tsttbllly

struct tdata
struct tdata *td_next; /* pointer to next test to run */ -
unsigned td_errcnt; /* number of errors on this test */

} testdatal];

char *cmdname;

char *version:

char *errors[]:

/* this is a dirty test */

#define T_DIRTY 1

#define T_EXPLICIT 2 /* run selected tests explicitly */

#define T STANDARD 4 /* this test is part of the standard set */ .
$define T_CONFIG 8 /* test that finds configuration info */ ;

ntest is the number of tests in the diagnostic.

The tsttbl array must contain ntest structures, one for each
test. t name is a short description of a test routine.

t select describes under what circumstances the test will
run. T DIRTY means that the test runs only if the "dirty"
flag D is given in the command line when the diagnostic is

Printed 8/30/83 : ' 1

DIAG(3D) SDU Monitor User's Manual DIAG(3D)

run, see diag(6). T _EXPLICIT is used internally by the
library routines. "If the T _STANDARD bit is set then the
test will run by default if no explicit tests are specified
in the command line. T_CONFIG means that the test runs if
the configuration flag c is specified. t fnc is the name of
the test routine, and t argl etc. are arguments that are
passed to the test.

The»testdata array must contain ntest structures, one for
each test. This array is used by the library routines to
link together the tests to be done in a specific running of
the diagnostic. It is the only data not initialized by the
diagnositic writer.

The routine main, which is standardly the first routine
called in a C program, is the routine in the diagnostic
library which performs various services and calls the test
routines.

There are other features of the diagnostic library which may
-be used by a diagnostic program, some of which depend on the
arguments in the command line, see diag(6). The main rou-

" tine processes the arguments passed, calls the routine
startug() supplled by the user, runs the test programs as
specified by the arguments, and calls the routine cleanup(),
also supplied by the user. startup, options, and cleanup
default to null routines if not specified by the user.
startup can be used to do any initializations that should be
done before running the tests; cleanup to do any cleanup
work after the tests have finished. options is called for
each non-standard command line flag found. For these flags
to be handled an options routine should be written as one of
the diagnostic program's routines. The routine is passed
three arguments:

options{argc, argv, £lagp)
short argc:

char **argv;

char *flagp:

The first two arguments, ar gc and argv are just like. those
in a normal C main routine. The third one flagp is a char-
acter pointer to the command line's current flag (w1thout
the dasn) A global variable arg indicates the index in
argv to the current argument. If the option processor wants
additional information such as a numeric argument follow1ng
the flag it should use argv[++arg] but only if arg is less

than argc.

cmdname is the diagnositic writer's name for the program.
version is a string which should give a date and version
number to the current version, printed out if the V command

Printed 8/33/83 , ‘ 2

DIAG(3D) SDU Monitor User's Manual DIAG(3D)

line flag is specified. errors is an array of error mes-:
sages. The error routine, see error(3), will print out the
indexed error message. There are various library routines

whose behavior depends upon the flags given in the command
line. ‘

FILES
_ /usr/monitor/diag/libldiag/libldiag.a

SEE ALSO | -
diag(6), vprintf(3), error(3), configure(3)

Printed 8/30/83 _ 3

END(3) SDU Monitor User's Manual END(3)

NAME o _
end, etext, edata -~ last locations in program

SYNOPSIS »
extern end;
extern etext;
extern edata; .

DESCRIPTION

These names refer neither to routines nor to locations with
interesting contents. The address of etext is the first

address above the program text, edata above the initialized
data region, and end above the uninitialized data region.

Printed 8/30/83 ' 1

EZRROR(3D) SDU Monitor User's Manual : ERROR(3D)

NAME :
error - print an error message in standard form

SYNOPSIS : ’
error(errnum,al,a2,a3,a4,a5,a6,a7,a8,a9,ald)

DESCRIPTION : .
This routine is like printf except that it takes its format
string from a table of standard error messages. The first
argument, errnum, specifies the index into an array of char-
acter strings that will be the format string and also be a
description of the error. When the error string is printed,

some additional information such as the test name is also
printed on the error line.

SEE ALSO
print£(3)

Printed 8/39/83 , , 1

FCLOSE(3S) SDU Monitor User's Manual FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS '
#include <stdio.h>

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION , , .
Fclose causes any buffers for the named stream to be emp-
tied, and the file to be closed. Buffers allocated by the

standard input/output system are freed.
Fclose is performed automatically upon calling exit(3).

Fflush causes any buffered data for the named output stream
to be written to that file. The stream remains open.

SEE ALSO
close(2), fopen(3), setbuf(3)

DIAGNOSTICS ‘ B
These routines return EOF if stream is not associated with
an output file, or if buffered data cannot be transferred to
that file. :

Printed 8/39/83 _ 1

FERROR(3S) SDU Monitor User's Manual FERROR(3S)

- feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS

#include <stdio.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr(stream)
FILE *stream

fileno(stream)
FILE *stream;

DESCRIPTION

Feof returns non-zero when end of file is read on the named
1nput stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading
or writing the named stream, otherwise zero. Unless cleared

by clearerr, the error indication lasts until the stream is
closed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated w1th
the stream, see open(3).

" These functions are 1nplemented as macros; they cannot be
redeclared.

SEE ALSO

fopen(3), open(3)

Printed 8/390/83 | | 1

SDU Monitor User's Manual FILL(3)

FILL(3)

NAME)
£ill - fill memory with byte pattern
£illw - £ill memory with word pattern

SYNOPSIS
fill(memory, cnt, pattern)
char *memory:
fillw(memory, cnt, pattern)
char *memory:;-

DESCRIPTION

Fill and fillw copy a byte or word respectively to an area

of memory. The cnt argument specifies the number of bytes
or words to fill. i

Printed 8/30/83 , ' 1

FOPEN(3S) SDU Monitor User's Manual FOPEN (3S)

NAME . .
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(fllename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type,

FILE *stream;

FILE *fdopen(fildes, type)
char *type,

DESCRIPTION

Fopen opens the.file named by filename and associates a
stream with it. Fopen returns a p01nter to be used to iden-—
tify the stream in subsequent operations.

Type is a character strlng having one of the following
values.

r" open for reading

” "

w open for writing at beginning of file

n 1]

a append: open for writing at end of file

Freopen substitutes the named file in place of the open’
stream. It returns the original value of stream. The ori-
ginal stream is closed.

Freopen is typically used to attach t@e preopened constant
names, stdin, stdout, stderr, to specified files.

Fdopen associates a stream with a file descriptor obtained

from open(3). The type of the stream must agree with the
mode of the open file.

SEE ALSO
open{(3), fclose(3)

DIAGNOSTICS

Fopen and freogen return the p01nter NULL if filename cannot
be accessed.

BUGS
Fdopen is not portable to systems other than UNIX.

Printed 8/32/83 o ‘ 1

FREAD(3S) 'SDU Monitor User's Manual FREAD(3S)

NAME _
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>
fread(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;
fwrite(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data
of the type of *ptr from the named input stream. It returns
the number of items actually read.
Fwrite ‘appends at most nitems of data of the type of *ptr
beginning at ptr to the named output stream. It returns the
number of items actually written.

SEE ALSO .
read(2), write(2), fopen(3), getc(3), putc(3), gets(3),
puts(3), printf(3), scanf(3)

DIAGNOSTICS

Fread and fwrite return © upon end of file or error.

Printed 8/30/83 : , 1

FSEEK(38) SDU Monitor User's Manual FSEEK(3S)

NAME
.fseek,. rewind - reposition a stream

SYNOPSIS
#include <stdio.h>

fseek(stream, offset, @)
FILE *stream;
long offset;

rewind(stream)

DESCRIPTION

: Fseek sets the position of the next input or output opera-
tion on the stream. The new position is at the signed dis-
tance offset bytes from the beginning of the file.

Fseek undoes any effects of ungetc(3).

Rewind (stream) is equivalent to fseek(stream, oL,).

SEE ALSO
lseek(3), fopen(3)

DIAGNOSTICS .
Fseek returns -1 for improper seeks. The third parameter
must. be 3.

BUGS
There should be a way for determining the present file
offset. :

Printed 8/39@/83

NAME

GETC(3S) . SDU Monitor User's Manual GETC(38)

getc, getchar, fgetc, getw - get character or word from
stream -

SYNOPSIS

#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION

Getc returns the next character from the named input stream.

Getchar() is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine functlon, not a
macro; 1t may be used to save object text.

'Getw returns the next word from the named input stream. It

returns the constant EOF upon end of file or error, but
since that is a good integer value, feof and ferror(3)

should be used to check the success oOf getw. . Getw assumes

no special alignment in the file.

SEE ALSO

fopen(3), putc(3), gets(3), scanf(3), fread(3), ungetc(3)

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of
file or upon read error.

A stop with message, ‘Reading bad file', means an attempt
has been made to read from a stream that has not been opened
for reading by fopen.

The end-of-file return from getchar is incompatible with
that in UNIX edltlons 1-6.

Because it is 1mplemented as a macro, getc treats a stream
argument with side effects incorrectly. In particular,
‘getc(*f++);' doesn't work sensibly.

Printed 8/30/83 o 1

GETCS (3)

NAME
getcs
getds
getss
getes

SYNOPSIS

getcs()
getds()
getss()
getes ()

DESCRIPTION

get
get
get
get

SDU Monitor User's Manual GETCS(3)

current control segment
current data segment
current stack segment
current extra segment

These routines return the contents of a segment register as
an int. ,

Printed 8/39/83

"GETS(38) SDU Monitor User's Manual GETS (38)

NAME :
gets, fgets - get a string from a stream

SYNOPSIS
$include <stdio.h>

char *gets(s)
char *g;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION ’
Gets reads a strlng into s from the standard input stream -
stdin. The string is terminated by a newline character,
which is replaced in s by a null character. Gets returns
its argument.

Fgets reads n-1 characters, or up to a newline character,
whichever comes first, from the stream into the string s.
The last character read into s is followed by a null charac-
ter. Fgets returns its first argument. :

SEE ALSO
puts(3), getc(3), scanf(3), fread(3), ferror(3)

DIAGNOSTICS

Gets and fgets return the constant pointer NULL upon end of
file or error.

BUGS

Gets deletes a newline, fgets keeps it, all in the name of
backward compatlblllty.

Printed 8/39/83 , ' 1

INPUT(3) SDU Monitor User's Manual INPUT(3)

NAME
input - perform an input operation upon a port
output - perform an output operation upon a port
SYNOPSIS
input(port)
output(data, port)
DESCRIPTION

These routines provide access to input and output instruc-
tions to perform these operations on the multibus.

Printed 8/30/83 ' , 1

SDU Monitor User's Manual INTRO(3)

INTRO(3)
NAME
intro - introduction to library functions
SYNOPSIS
#include <stdio.h>
#include <diag.h>
DESCRIPTION ’

~This section describes functions that may be found in vari-

ous libraries, other than those functions that directly

invoke sdu system primitives, which are described in section

2. Functions are divided into various libraries dis-

tinguished by the section number at the top of the page:

(3) These functions, together with those of section 2 and
those marked (3S), constitute library libmc, which is
automatically loaded by the C compiler cc86. The link
editor 1486 searches this library under the ‘=1lmc’
option.” Declarations for some of these functions may
be obtained from include files indicated on the
appropriate pages.

(3D) These functions constitue the diagnostic library. The
link editor searches this library under the '-1lldiag’
option. Declarations for these functions may be
obtained from the include file <diag.h>

(38) " These functions constitute the ‘standard I/0 package',
see stdio(3). These functions are in the library
libmc already mentioned. Declarations for these func-
tions may be obtained from the include file <stdio.h>.

(3X) Various specialized libraries have not been given dis-
tinctive captions. The files in which these libraries
are found are named on the appropriate pages.

FILES
/usr/861lib/libmc.a /usr/861lib/libldiag.a
SEE ALSO

stdio(3), diag(3)

Printed 8/30/83 _ : 1

> lock(3) SDU Monitor lock(3)

NAME
lock - disable interrupts
unlock - enable interrupts

SYNOPSIS
lock()
unlock()

- DESCRIPTION : _ ‘
The routines simply perform
return. o ' :

cli" and "sti" instructions and

Printed 8/30/83 . , ’ 1

"LSEEK(3) SDU Monitor User's Manual

LSEEK(3)

NAME
lseek - move read/write pointer

SYNOPSIS ' :
long lseek(fildes, offset, 0)
long offset;

DESCRIPTION
The file descriptor refers to a file open for reading or
writing. The read (resp. write) pointer for the file is set
to offset bytes. ‘ : -

SEE ALSO
open(3), fseek(3)

DIAGNOSTICS
-1 is returned for an undefined file descriptor.

BUGS

Lseek is a no-op on character special files. The third
parameter must be d.

Printed 8/39/83 ‘ : 1

MEM(3D) SDU Monitor User's Manual ' MEM(3D)

fillchk, walk - memory tests

SYNOPSIS

fillchk(nuaddr, nbytes, pattern)
long nuaddr, nbytes;
int pattern:;

walk(nuaddr, nbytes, ones)
long nuaddr, nbytes:;
int ones;.

'DESCRIPTION

fillchk fills nbytes of NuBus memory starting at address
nuaddr with the low order byte of pattern. First, all of
the spe01f1ed memory is written with the given pattern, then
the memory is read back and verified against the pattern.
The number of errors that occurred is returned.

walk also tests nbytes of NuBus memory starting at address
nuaddr. walk actually runs 16 tests, each test using a 16-
bit pattern consisting of all ones except for a single bit
g, if ones is @, or a 16-bit pattern consisting of all
zeroes except for a single bit 1, if ones is 1. The 16
tests vary in the bit position of the “differing bit, which
"walks" from the lowest to the highest bit. For each pat-
tern, all of the specified memory is filled with the pattern
two bytcs at a time, and then the memory is read back to
verify it against the pattern. The number of errors is
returned.

Printed 8/30/83 : : , 1

MOVI(3D)

MOVI(3D)

NAME
movi - perform a moving inversions test

SYNOPS1IS
movi(nuaddr, nbytes, width)
long nuaddr, nbytes;
int width;

DESCRIPTION
~movi runs a moving inversions test on nbytes of NuBus memory
starting at address nuaddr. The physical width of the
memory is given by width. For example, the width is 1 for a
64K-by~1 RAM. The number of errors that occurred is
returned. :

MOVI marches through memory with both true and complimented
data, backwards and forwards by addresses that are ascending
powers of two. It takes a time of order n log n. It is
claimed to have a high probability of isolating cell shorts,
cell opens and address uniqueness problems. It is designed
as a shorter version of the more familiar Galpat test.

SEE ALSO
movimask(3), mem(3)

Printed 8/39/83 o 1

MOVIMASK(3D) SDU Monitor

MOVIMASK(3D)

NAME :
movimask - perform moving inversions test with a field mask

SYNOPSIS :
movimask(nuaddr, nbytes, width, startpos, fldwdth)
long nuaddr, nbytes; '
int width, startpos, fldwdth;

DESCRIPTION

movimask runs a moving inversions test on nbytes of NuBus
memory starting at address nuaddr. The physical width of
the memory is given by width. For example, the width is 1
for a 64K-by-1 RAM. fldwdth is the field width of the
memory (in bits), and startpos is the starting bit position
within the field. startpos is @ to start with postion in

the field. The sum of startpos and fldwdth must be less
than 32.

movimask is like movi except that the testing is restricted
to a specified bit-field.

SEE ALSO ,
movi(3), mem(3)

Printed 8/30/83 . 1

NUMAP(3D)

ser's Manual

numap, nufree, numapp, nufreep - access NuBus addresses

SYNOPSIS

short numap(nuaddr, size)
unsigned long nuaddr;
short size:;

nufree(segment, size)
short segment, size;

char *numapp(nuaddr, size)
unsigned long nuaddr,
short size;

nufreep(ptr,~siie)
char *ptr;
short size:;

DESCRIPTION

numap allocates part of the nu map to map into NuBus
addresses starting with nuaddr and including 51ze pages, a
page being 1024 bytes. numap numap returns the multibus segment
value that can be used to access the spec1f1ed NuBus address
range. A return of zero means the mapping of multibus to
NuBus addresses could not be done. nuaddr should be a mul-
tiple of 1024.

nufree frees the size map entries used by a previous numag
call that returned the value segment.

numapp is the same as numap except that a pointer to mul-
tibus memory is returned. Also, the nu address nuaddr does
not have any restrictions on it. A null pointer returned.
means that the mapping could not be done.

nufreep is the counterpart to numa and frees the map
entries associated with the pointer ptr.

SEE ALSO

map(4)

Printed 8/30/83 . : 1

OPEN(3) OPEN(3)

NAME :
open - open for reading or writing
SYNOPS1IS
open(name, mode)
char *name;
DESCRIPTION o
open opens the file name for reading (if mode is 9), wrltlng
Zlf mode is 1) or for both reading and writing (if mode is
name is the address of a string of ASCII characters
reoresentlng a path name, termlnated by a null character.
The file is positioned at the beginning (byte @). The
‘returned file descriptor must be used for subsequent calls
for other input-output functions on the file.
SEE ALSO
read(3), write(3), mopen(2) close(2)
DIAGNOSTICS

The value -1 is returned if the file does not exist, if one
of the necessary directories does not exist or is unread-
able, or if too many files are open.

Printed 8/30/83

PAUSE(3) Oor User's Manual PAUSE(3)

NAME
short pause -~ stop until signal

SYNOPSIS
pause()

DESCRIPTION
Pause never returns normally. It is used to give up control
while waiting for. a signal from kill(2) or alarm(2). The
returned value is that of the 51gnal(s) that caused the
return.

SEE ALSO
kill(2), alarm(2), signal(2), delay(3)

Printed 8/39/83 o 1

PRINTF(3S)

SDU Monitor PRINTF(38S)

printf, fprintf, sprintf - formatted output conversion

SYNOPSIS

$include <stdio.h>

printf(format [, arg 1 ...)
char *format:

fprintf(stream, format [, arg] ...)
FILE *stream;
char *format;

sprintf(s, format [, arg] ...)
char *s, format; :

DESCRIPTION

Printf places output on the standard output stream stdout.
Fprintf places output on the named output stream. Sprintf
places output' in the string s, followed by the character
*\g'.

Each of these functions converts, formats, and prints its
arguments after the first under control of the first argu-
ment. The first argument is a character string which con-
tains two types of objects: plain characters, which are sim-
ply copied to the output stream, and conversion specifica-

tions, each of which causes conversion and printing of the
next successive arg printf. '

Each conversion specification is introduced by the character
$. Following the %, there may be

- an optional minus sign ‘~' which specifies left adjust-
ment of the converted value in the indicated field;

- an optional digit string specifying a field width; if
the converted value has fewer characters than the field
width it will be blank-padded on the left (or.right, if
the left-adjustment indicator has been given) to make
up the field width; if the field width begins with a
zero, zero-padding will be done instead of blank-
padding; '

- an optional period ‘.' which serves to separate the
field width from the next digit string;

- an optional digit string specifying a precision which
specifies the number of digits to appear after the
decimal point, for e~ and f-conversion, or the maximum
number of characters to be printed from a string;

_ Printed 8/30/83 | 1

PRINTF(3S) PRINTF(3S

- the character 1 specifying that a following 4, o, x, or
. u corresponds to a long integer arg. (A capitalized
conversion code accomplishes the same thing.)

- | a character which indicates the type of conversion to
' be applied.

A field width or precision may be “*' instead of a digit
string. In this case an integer arg supplies the field
width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hex-
adecimal notation respectively.

£ The float or double arg is converted to decimal nota-.

. tion in the style ‘[=]ddd.ddd' where the number of d's
after the decimal point is equal to the precision
specification for the argument. If the precision is
missing, 6 digits are given; if the precision is expli-
citly 4, no digits and no decimal point are printed.

e The float or double arg is converted in the style
*[~]d.ddde+dd' where there is one digit before the
decimal point and the number after is equal to the pre-
cision specification for the argument; when the preci-
sion is missing, 6 digits are produced.

g The float or double arg is printed in style 4, in style
. £, or in style e, whichever gives full precision in
minimum space. :

c The character arg is printed. Null characters are
ignored. ' ,
s Arg is taken to be a string (character pointer) and

characters from the string are printed until a null
_character or until the number of characters indicated
by the precision specification is reached; however if
the precision is @ or missing all characters up to a
null are printed.

u The unsigned integer arg is converted to decimal and
printed (the result will be in the range & to 65535).

% + Print a ‘%'; no‘argumeht is converted.
In no case does a non-—-existent or small field width cause
truncation of a field; padding takes place only if the

specified field width exceeds the actual width. Characters
- generated by printf are printed by putc(3).

Printed 8/39/83 , 2

Examples

- To print a date and time in the form ‘Sunday, July 3,

10:02', where weekday and month are pointers to null-
terminated strings:

printf("%s, %s 24, %924:%924", Weekday, month, day,
hour, min);

SEE ALSO
putc(3), scanf(3)

BUGS
Very wide fields (> 128 characters) fail.

Printed 8/30/83 h 3

PTRZOFF(é)

NAME
ptr2off - convert pointer to long
off2ptr - convert long to pointer

SYNOPSIS
long ptr2off(ptr)
char *ptr;
char *off2ptr(addr)
long addr:;

DESCRIPTION
These routines convert the C compiler representation of
pointers which is a segment offset pair to sensible multibus
addresses represented as a long and vice~versa. This is not
the same as simply doing a pointer to long type coersion in
C. Doing a pointer to long type coersion in C returns a
long which contains a segment in one half of the long and
and offset in the other. Segments are in units of 16 bytes
rather than 2**16 bytes so longs obtained from type coer-
sions are not suitable for general address arithmetic.

Printed 8/30/83 g 1

SDU Moni PUTC(3S)

- ,putc, putchar, fputc, putw - put character or word on a
‘stream . S o ‘

SYNOPSIS ‘

#include <stdio.h>
int putc(c, stream)
char c:

FILE *stream;
putchar(c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION

Putc appends the character ¢ to the named output stream. It
returns the character written.

Putchar(c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather
than a macro. It may be used to save on object text.

Putw appends word (i.e. int) w to the output stream. It
returns the word written. Putw neither assumes nor causes
special alignment in the file.

The standard stream stdout is normally buffered if and only
if the output does not refer to a terminal; this default may
be changed by setbuf(3). The standard stream stderr is by
default unbuffered unconditionally, but use of freopen (see
fopen(3)) will cause it to become buffered; setbuf, again,
will set the state to whatever is desired. When an output
stream is unbuffered information appears on the destination
file or terminal as soon as written; when it is buffered
many characters are saved up and written as a block. Fflush
(see fclose(3)) may be used to force the block out early.

SEE ALSO

fopen(3), fclose(3), getc(3), puts(3), printf(3), fread(3)

DIAGNOSTICS

These functions retufn the constant EOF upon error. Since
this is a good integer, ferror(3) should be used to detect
putw errors.

Printed 8/30/83 } - » 1

PUTC(3S) er's Manual PUTC(3S)

BUGS
Because it is implemented as a macro, putc treats a stream

argument with side effects improperly. In particular
‘putc(c, *£f++);' doesn't work sensibly.

Printed 8/30/83 | 2

SDU Monitor

PUTS(3S) PUTS (3S)

NAME
puts, fputs - put a string on a stream
SYNOPSIS
#include <stdio.h>
puts(s)
char *s:
| fputs(s, stream)
- char *s; -
»“FILE *stream.
DESCRIPTION '
Puts copies the null-terminated string s to the standard
output stream stdout and appends a newline character.
Fputs copies the null-terminated string s to the named out-
put stream.
Neither routine copies the terminal null character.
SEE ALSO © * -
fopen(3), gets(3), putc(3), pr1ntf(3), ferror(3)
“fread(3) for fwrlte
BUGS

Puts appends a newline, fguts does not, all in the name of
backward compatibility.

Printed 8/30/83 : , 1

READ(3)

NAME
read - read from file

SYNOPSIS
read(fildes, buffer, nbytes)
char *buffer:; '

DESCRIPTION

A file descriptor is a word returned from a successful open.
buffer is the location of nbytes contiguous bytes into which
the input will be placed. "It is not guaranteed that all
nbytes bytes will be read; for example if the file refers to
tty at most one line will be returned. 1In any event the
number of characters read is returned.

If the returned value is ﬂ,«theh end-of-file has been
reached.

SEE ALSO
iomov(2), open(3)

DIAGNOSTICS |

As mentioned, ¥ is returned when the end of the file has
been reached. If the read was otherwise unsuccessful the

return value is -l. - Physical I/0O errors or file descriptor
not that of an input file can cause an error.

Printed 8/39/83

SCANF (38S)

conversion characters 4, o and x may be preceeded by h to
indicate a pointer to short rather than to int.

The scanf functions return the number of successfully
matched and assigned input items. This can be used to de-
cide how many input items were found. The constant EOF is
returned upon end of input; note that this is different from
@, which means that no conversion was done; if conversion
was intended, it was frustrated by an inappropriate charac-
ter in the input. ‘

For example, the call

int i: float x; char name[507];
scanf("%d4%f%s", &i, &%, name);

with the input line
25 54.32E-1 thompson

will assign to i the value 25, x the value 5.432, and name
will contain ‘thompson\@'. Or,

int i; float x; char name[58];
scanf("%$2d%f%*d%[1234567890]", &i, &xX, name);

"with input
56789 0123 56a72

will assign 56 to i, 789.8 to x, skip '#123', and place the
string ‘56\@' in name. The nexXt call to getchar will return
a's.

SEE ALSO

getc(3), print£(3)

DIAGNOSTICS

The scanf functions return EOF on end of input, and a short
count for missing or illegal data items.

BUGS -

The success of literal matches and suppressed assignments is
not directly determinable.

Printed 8/30/83 ' ’ . 3

CANF (3S) SDU Monitor User SCANF (35)

] a single ‘%' is expected in the input at this point; no
. assignment is done. :

d a decimal integer is expected; the corresponding argu-
ment should be an integer pointer.

‘0 an octal integer is expected; the corresponding argument
should be a integer pointer.

X a hexadecimal integer is expected; the corresponding ar-
gument should be an integer pointer.

s a character string is expected; the corresponding argu-
ment should be a character pointer pointing to an array
of characters large enough to accept the string and a
terminating ‘\@', which will be added. The input field
is terminated by a space character or a newline.

c a character is expected; the corresponding argument
should be a character pointer. The normal skip over
" space characters is suppressed in this case; to read the
next non-space character, try ‘%ls'. If a field width
is given, the corresponding argument should refer to a
character array, and the indicated number of characters
is read. .

89£7 a floating point number is expected; the next field
converted accordingly and stored through the correspond-
ing argument, which should be a pointer to a float. The
input format for floating point numbers is an optionally
signed string of digits possibly containing a decimal
point, followed by an optional exponent field consisting
'of an E or e followed by an optionally signed integer..

C indicates -a string not to be delimited by space charac-
' ters. The left bracket is followed by a set of charac-
ters and a right bracket; the characters between the
brackets define a set of characters making up the
"~ string. If the first character is not circumflex (%),
the input field is all characters until the first char-
acter not in the set between the brackets; if the first
character after the left bracket is °, the input field
is all characters until the first character which is in
the remaining set of characters between the brackets.
The corresponding argument must point to a character ar-
ray. '

The conversion characters 4, o and x may be capitalized or
preceeded by 1 to indicate that a pointer to long rather
than to int is in the argument list. Similarly, the conver-
sion characters e or f may be capitalized or preceded by 1
to indicate a pointer to double rather than to float. The

Printed 8/390/83 o 2

SCANF (38)

TN

“CSANF (38)

scanf, fscanf, sscanf - formatted input conversion.

SYNOPSIS

#include <stdio.h>

scanf(format [, pointer 1 . . .)
char *format: : :

fscanf(stream, format [, pointer 1 . . .)
FILE *stream;

char‘*format;

sscanf(s, format [, pointer] . . .)
char *s, *format; o o

DESCRIPTION

Scanf reads from the standard input stream stdin. Fscanf
reads from the named input stream. 8scanf reads from the
character string s. Each function reads characters, inter-
prets them according to a format, and stores the results in
its arguments. FEach expects as arguments a control string
format, described below, and a set of pointer arguments in-
dicating where the converted input should be stored.

The control string usually contains conversion specifica-
tions, which are used to direct interpretation of 1nput se-
quences. The control string may contains

1. Blanks, tabs or newlines, which match optional white
space in the input.

2. An ordinary character (not %) which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character
"%, an optional a551gnment suppressing character *, an
optional numerical maximum fleld width, and a conversion
character.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment
suppression was indicated by *. An input field is defined .
as a string of non-space charactors, it extends to the next
lnapproprlate ‘character or until the field w1dth, if speci-
fied, is exhausted.

The conversion character indicates the interpretation of the
input field; the corresponding pointer argument must usually
be of a restricted type. The following conversion charac-
ters are legal:

-

Printed 8/30/83 L 1

SCAN(3)

scan - search memory for difference from byte pattern
scanw - search memory for difference from word pattern

SYNOPSIS

scan({memory, cnt, pattern)
char *memory; .
scanw({memory, cnt, pattern)
char *memory; :

DESCRIPTION

Scan and scanw search memory comparing each byte or word
with the pattern. They return the number of the first byte
or word that differs. The cnt argument specifies the number
of bytes or words to scan.

Printed 8/30/83 .

SDU Monitor SMOIO(3S)

stdio - standard buffered input/output package

SYNOPSIS

#include <stdio.h>

PILE *stdin;:
FILE *stdout:
FILE *stderr;

DESCRIPTION

The functions described ‘in Sections 3S constitute an effi—
cient user-level buffering scheme. The in-line macros get
and.EL;c(3) handle characters quickly. The higher level
routines gets, fgets, scanf, fscanf, fread, puts, fputs,

printf, fprintf, fwrite all use g etc and E tc; they can be
freely 1nterm1xed.

A file with assoclated bufferlng is called a stream, and is
declared to be a pointer to a defined type FILE. Fopen(3)
creates certain descriptive data for a stream and returns a
pointer to designate the stream in all further transactions.
There are three normally open streams with constant pointers
declared in the include file and associated with the stan-
dard open flles-

stdin ‘standard input file
stdout standard output file
stderr standard error file

A constant ‘pointer' NULL (@) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or
error by integer functions that deal with streams.

Any routine that uses the standard input/output package must
include the header file <stdio.h> of pertinent macro defini-
tions. The functions and constants mentioned in sections
labeled 35 are declared in the include file and need no
further declaration.. The constants, and the following
‘functions' are implemented as macros; redeclaration of -
these names is perilous: getce, getchar, putce, putchar, feof,
ferror, fileno.

SEE ALSO

open{3), close(2), read(3), write(3)

DIAGNOSTICS

The value EOF is returned uniformly to indicate that a FILE
pointer has not been initialized with fopen, input (output)
has been attempted on an output (input) stream, or a FILE

pointer designates corrupt or otherwise unintelligible FILE

Printed 8/30/83 ; _ . 1

User's Manual

NAME ,
setbuf - assign buffering to a stream

SYNOPS IS
$include <stdio.h>

, setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION

Setbuf is used after a stream has been opened but before it
is read or written. It causes the character array buf to be
used instead of an automatically allocated buffer. ~If buf
is the constant pointer NULL, input/output will be complete-
ly unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:
char buf[BUFSIZ];

~ .A buffer is normally obtained from malloc(3) upon the first
‘'getc or putc(3) on the file, except that output streams
. directed to terminals, and the standard error stream stderr
are normally not buffered. '

SEE ALSO
fopen(3), getc(3), putc(3), malloc(3)

Printed 8/390/83 ‘ 1

‘sTDIo(3s)5 STDIO(3S)

data.

Printed 8/39/83

STRING(3)

s Manual " STRING(3)

strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
index, rindex - string operations

SYNOPSIS

char *strcat(sl, s2)
char. *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2:

strncmp(sl, s2, n)
char *sl, *s2;

char *gtrcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c) ‘ R —
char *s, c: i '

char *rindex(s, c¢)
char *s;

DESCRIPTION

These functions operate on null-terminated strings. They do
not check for overflow of any receiving string.

Strcat appends a copy of string s2 to the end of string sl.
Strncat copies at most n characters. Both return a pointer
to the null-terminated result.

Stremp compares its arguments and returns an integer greater
than, equal to, or less than @, according as sl is lexico-
graphically greater than, equal to, or less than s2. ‘
Strncmp makes the same comparison but looks at at “most n
characters.

Strcpy copies string g2 to sl, stopping after the null char-
acter has been moved. Strncpy copies exactly n characters,
truncating or null-padding s2; the target may not be null-
terminated if the length of sZ is n or more . . Both return
sl.

Printed 8/30/83 I : 1

STRING(3) SDU Monitor Use STRING(3)

Strlen returns the number of non-null characters in s.
Index (rlndex) returns a pointer to the - flrst {last) oc-

currence of character ¢ in strlng s, Or zero if ¢ does not
occur in the string.

BUGS : : . .
~ Strcmp uses native character comparison, which is signed on
'PDP1ll's, unsigned on other machines.

Printed 8/30/83 B i o 2

.. UNGETC(3S) ser's Manual

UﬁéETC(3S)

NAME
" ungetc - push character back into input stream

SYNOPSIS '
#include <stdio.h>

ungetc(c, stream)
FILE *stream;

DESCRIPTION
Ungetc pushes the character ¢ back on an input stream. That

character will be returned b? the next getc call on that
stream. Ungetc returns c.

One character of pushback is guaranteed provided something
has been read from the stream and the stream is actually
buffered. Attempts to push EOF are rejected.

Fseek(3) erases all memory of pushed back characters.

SEE ALSO
getc(3), setbuf(3), fseek(3)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

Printed 8/30/83

RINTF(3D) SDU Monitor use VPRINTF(3D)

NAME
vprintf - print a verbose message in standard form
SYNOPSIS ‘
vprint£f(s,al,a2,a3,a4,a5,a6,a7,a8,a9,alnd)
char *s;
- DESCRIPTION
This routine is like printf except that it only prints if
the verbose flag is set. The line output will be in a stan-
dard form. The argument s is a printf style format string.
SEE ALSO

print£(3), diag(3)

Printed 8/30/83 , : : _ ’ 1

WRITE(3) r's Manual
NAME
write - write on a file
SYNOPSIS
write(fildes, buffer, nbytes)
char *buffer:
DESCRIPTION
A file descriptor is a word returned from a successful open
call.

buffer is the address of nbytes contiguous bytes which are
written on the output file. The number of characters actu-
ally written is returned. It should be regarded as an error
if this is not the same as requested.

Writes which are multiples of 1024 characters long and begin

on a 1924-byte boundary in the file are more efficient than
any others. -

SEE ALSO
iomov(2), open(3)

DIAGNOSTICS
Returns -1 on error: bad descriptor or physical I/O errors.

'Printed 8/39/83 ' ‘ 1

SDU Monitor $disk(4)

$disk - raw disk driver

SYNOPSIS

built into monitdr

DESCRIPTION

The raw disk driver treats the Fujitsu M2312 disk as a sin-
gle sequentially-addressed file. It uses the Interphase
2181 disk controller. The disk is formatted in 512-byte
sectors, 32 sectors per track, 7 tracks per cylinder, and
589 cylinders. However, the driver treats the disk as a
file that is 67,551,232 bytes long. That is, single byteées
may be read or written, although I/O is more efficiently
done if accesses are done in multiples of the logical block
size of 1024 bytes, starting on a logical block boundary.

SEE ALSO

filesys(4)

Only one open to $disk may be done at a time. The actual
disk drive used may change at a future date, so naturally
the physical parameters would change.

Printed 8/30/83 : A 1

. NAME

cal - driver for the SDU calendar chip

SYNOPS1IS :
built into monitor

DESCRIPTION
cal is the dfiver for the 64 bytes of ram on the SDU
MC146818 calendar and time-of-day chip. The first 14 bytes
are used to keep calendar and time information. The last 50
bytes of this memory is nonvolatile, that is, it does not
‘lose its contents if the Nu Machine is powered down.

BUGS
The 64 bytes are accessed by reads and writes to cal but to
program the chip requires writing to the correct reglsters
(bytes 10-13). The seek system call is useful in this re-
gard. '

SEE ALSO

seek(2), cmos(4)

Printed 8/30/83 : 1

mos(4) SDU Monitor

cmos(4)

NAME
' cmos - driver for the SDU cmos configuration ram

SYNOPS1IS
built into monitor

DESCRIPTION ,
cmos is the driver for the 2K bytes of cmos ram on the sdu.
This memory is nonvolatile, that is, it does not lose its

contents if the Nu Machine is powered down. Since the cmos
‘ram contains information on the system configuration, it =

should not be written to directly. The driver config(4) .-
should be used instead. B

SEE ALSO ’
config(4)

Printed 8/30/83

config(4)

r s‘Méhuéi config(@)7

config - driver for accessing the SDU cmos information

SYNOPSIS

built into the monitor

DESCRIPTION

The config driver is the interface to the SDU's cmos ram.

It interprets the cmos ram as containing a certain structure
of information.

‘allows changing the contents of the cmos ram.

Using ioctl and write calls on config
The structure

of information that the cmos ram contains and the ioctl
calls for reading/writing this information are given in the
/usr/monitor/h/confram.h file.

Defines that are useful for the ioctl call are:
#define IDXBITS Ox00J3F

#define CMDBITS @x0Frrg

#define WRITEBIT 9x1000

#define VERSION 0x0010

#define CRC Ox0020

#define SHELL Ox0930

#define NUAVAIL @x09040

#define MCARD 2x9950

$#define SP Ix03060

$define DSKPART 0Ox0379

#define CLEAR (9x0080 | WRITEBIT)
#define ALL Ox0090

As an example, the following code fragment shows one way to
change the baud rate of the remote port (port @) to 2400:

#define SP Ox0369
- #define WRITEBIT Ox1000
#define REMOTEPORT @
#define LOCALPORT 1

struct sp {
char sp_mode;
char sp cmd;
short sp baud:;

/* e.g. 8 bits/char, 16X clock, etc
/* e.g. RTS, ER, RXE, DTR, TXEN */

} sp:

int £4;

fd = open("config", 2);
ioctl(£fid, SP+REMOTEPORT,
sp.sp baud = 2400;
ioctl(fid, WRITEBIT|(SP+REMOTEPORT), (char *) &sp);
close(£fid);

(char *) &sp);

Printed 14/31/83

"config(4)

The shell scripts corresponding to the rotary switch posi-
tion can be read as the special file:

/config/i

where i is the switch postion.

Printed 18/31/83

diag(4) ; L to: 's Manual

NAME i
diag - driver for self-diagnostics on a Nubus board

SYNOPSIS
built into the monitor

DESCRIPTION

Each of the Nubus boards contains a rom with configuration
information and a self-diagnostic. (This self-test is
smaller than the diagnostics available on disk.) Success of
the self-test for a given board is indicated by the turning
off of the led for that board. If an error occurred the
non-zero exit value is reported by the SDU monitor. To run
the diagnostic on the board use:

/diag/i i

where i is the decimal number of the slot containing the
board to be tested. (The number must be between @ and 15).

The first string /diag/i tells the diag driver the board

from which to read the self-test. The parameter i is passed

to the self-test to let it know which board it is testing.

Clearly, the board containing the self-test and the board to

be tested will be the same (except possibly in very unusual
circumstances). —

Printed 8/30/83 , 1

filesys(4)

disk, uroot - file system drivers

DESCRIPTION

disk and uroot are drivers for file systems. contained on the
physical device $disk. Each file system on the disk must
have its own driver. The file system is a Unix file system
with byte ordering based on the M6800@ processor. disk and
uroot use a value that is the logical block offset from the
beginning of $disk at which the file system starts. A logi-
cal block contains 1824 bytes.

The very beginning of the raw disk is reserved to contain
“the file system driver disk. The raw disk also contains the
sdu's root file system at a certain logical block offset
from the beginning of the disk. ' ' :

When the sdu monitor first starts it contains the raw disk
driver $disk but not any file system driver. The first time
an access 1s attempted for a file on the root file system
the sdu monitor reads the blocks at the beginning of the
disk using device $disk to install the file system driver
into the monitor's device table. A block offset value is
also stored into the device table. This value is used by
the file system driver as the offset from the beginning of
the disk at which the file system starts. The name given to
this file system driver by the monitor is disk.

For example, to access the file "drv/ttf" in the root direc-—
tory the pathname "/disk/drv/ttf" should be used. In
accessing this (or any) file the sdu monitor uses the first
component of the path name to open the driver disk and
passes the rest of the path name drv/ttf to that driver.
disk then uses the offset value in its table entry to make
accesses to the raw device $disk.

There can be (and usually are) other file systems on the
disk. In general, to read files in a particular file system
a driver for that file system must be installed, see :
setdr(2) and driver(l). The file system driver uroot is
used to access the file system whose name is uroot. uroot
can also be used to access other files systems, if it is
installed into the sdu operating system appropriately. That
is, the name of this driver as installed into the sdu device
table must be the same name as the file system it is to
access. uroot will search the configuration cmos ram on the
sdu to find a file system with the same name as the file
system driver's name, e.g., if called uroot then the uroot
file system will be the one used; if called usr then the usr
file system will be the one accessed. On the other hand,
the other file system driver disk does not make use of its
name as installed in the device table. It always looks for

Printed 10/31/83 | 1.

filesys (4™

the file system called root in the confiéuration cmos ram.

As, mentioned above, each file system driver has its own
offset value to know where the file system it handles.
starts. The name for the driver becomes the first component

~in the path name for any file in that file system.

SEE ALSO -

~ BUGS

$disk(4), setdr(2), cd(l), pwd(l), config(4)

.The file system drivers can not create new files or change
.the block size of existing files, that is, they can not make

~ _any changes to the superblock or inodes. The file system

Printed 18/31/83

drivers can not handle very large files, (greater than 138

blocks) nor directories more than ten blocks large. The
locations of the file systems on the disk, in particular the
sdu's root file system, may change in the future.

ioport - Interprocessor message exchange driver.

SYNOPSIS
driver ioport

‘DESCRIPTION
The ioport driver prov1des a mechanism for other processors
such as the 68000 unix processor to send messages to a pro-
gram running under the diagnostic monitor. To use the
ioport, the monitor program does an open of the port which
initializes it, then does an ioctl operation that simply
waits until a message is available. When another processor
puts a message in the port, the ioctl returns with a p01nter
to the message recelved.

The 1oport itself is a small data structure in a well-known
location in multibus memory that contains the synchroniza-
tion mechanism that permits multiple processors to share ac-
~cess to the port. The structure looks like:

'struct»ioport

unsigned char busy; /* flag 1ndlcat1ng port in use */‘

unsigned char valid: /* flag 1nd1cat1ng port data valid */
unsigned :16; /* unused */

long msg; - /* NuBus address of the- message */

long wakeup; - /* address of wakeup vector */

Y
In this data structure, busy and valid are just flags that
are true when the contaln Jx80 and false when they contain
2. 'Busy is a lock to acquire use of the port and should be
set with a locked bus cycle. When first acquired, the valid
flag should be false. It should stay in this state until
the other ‘data in the port, specifically the msg address is
valid then set true. The wakeup address is a NuBus address
that will normally be an interrupt pseudo—memory location.
. A processor using the port should write a NuBus 1 to this.
~ ‘address (unless it is zero) after it has set the valid bit
~ to wakeup the handler in the monitor.

Normally there will be a monitor process waiting to receive
the message on the port. As soon as it has made & copy of
the message address it will clear the valid and b busy flags.
This does not necessarily mean that it has fully processed
the message, only that it read the data out of the port so
that somebody else can use the port.

BUGS

Printed 8/3@/83 " 1

&

keytty(4) keytty(4s'

NAME
keytty - driver for the graphics monitor

SYNOPSIS
" built into monitor

DESCRIPTION

The keytty driver provides a line at a time i/o mechanism
for the graphics monitor.

Input Editing

Normal characters are echoed as they are typed and saved in
an input buffer for a process to read. Some control charac-
ters have special meanings on input in that they effect
keytty processing. They are intercepted by the keytty
driver and are not passed to the program:

s Freeze character. Suspends keytty output until the
thaw or interrupt charcters are typed.

“Q Thaw character. If keytty output has been suspended by

the freeze character, typing this character will start
it up without any other effect.

“D End of file character. This character is buffered but
returns a when input processing reaches it, the read T
will return a value of zero signifying end of file.

e Interrupt character. Typing this character will abort
all monitor processes that have the keytty open unless
they have a special interrupt handler. Typing this
character should return control to the monitor shell.

‘U Kill character. Typing this character deletes all
characters up to the last carriage return in the input
buffer. Each character so delete will be echoed by a

backspace-space-backspace sequence which has the effect
of erasing it on a display.

DELETE
Erase character. Erases the last character saved in
the input buffer up to the last carriage return. Echos
as backspace-space-backspace on the display.

CARRIAGE RETURN v
Wakeup character. If a monitor process is waiting for
keytty input, typing this character will cause as much
of the input buffer as the process asked for to be
passed to the process, normally the whole line. The
carriage return will be passed to the process as a new-
line character and echos as the newline character.

Printed 8/39/83 _ _ ‘ 1

eytty(4)

Escape character. Disables echoing up to and including
the next carriage return, however, two escapes in a row
will re-enables echoing and passes a single escape
character into the input buffer. Used for file
transfer protocols. '

Output Processing
Writes to the keytty are normally just output but the new-
line character outputs as carriage return, linefeed. Output

can be frozen and thawed by the appropriate input charac-
ters.

SEE ALSO
ttyset(1l)

BUGS
The vcmem card must be in slot 8.

Printed 8/30/83 - 2

NAME

lights - The meaning of the RUN, SET_UP, and ATTN lights.

DESCRIPTION
On the front of the Nu Machine are three lights, two red
lights called SET_UP and ATTN, and a green RUN light. 1If
the ATTN light is on it means the self-tests for the sdu
have not passed. The SET_UP light on means that the cmos
ram on the SDU does not have a valid crc. The RUN light on
means that a runnlng system (like unix) is operational.

When the Nu Machine is powered up, or a hard reset occurs,

all three lights are on. The SDU software immediately turns
on the ATTN and SET _UP lights only. They are then turned

off respectively as the self-tests pass and the cmos ram is
checked as valid.

Printed 8/39/83 . 1

map - nu map driver

SYNOPSIS

built into monitor

DESCRIPTION

In order to access NuBus addresses from the sdu monitor a
map is used that maps multibus addresses into NuBus ad-
dresses. There are 1lK entries in the map, and each entry,
if enabled, maps a lK-byte multibus address range into a
1K-byte NuBus address range. Maintaining this map is the
job of the map driver numap. -

To map into a range of the NuBus address space, numap is
first opened and then an joctl call is made. The NuBus ad-
dress size is given in 1K-byte page units by passing it as
the request argument to ioctl and the base NuBus address is
given as the argp argument. The ten least significant bits
of the NuBus address should be zeroes, since they are not
used by the map driver. The return value from ioctl is a
multibus segment value which can be used to access the
desired NuBus addresses. A zero return value indicates a
failure to set up the requested mapping. The close system
call frees that part of the map previously allocated by the
ioctl call.

Multibus addresses from 0x40000 to OxF7FFF (segments 9x400
to OxF70) are available for use in the mapping. The other
multibus addresses are reserved for strlctly multibus ad-
dressing.

The driver numap should not be used directly. The subrou-
tines in numap(3) should be used instead.

SEE ALSO

numap(3), open(3), ioctl(2), close(3)
Only one ioctl call may be done for each ogén.

The request argument is used in a dlfferent way from usual
ioctl calls.

Printed 8/3@/83 _ 1

quart(4)

NAME _

quart - driver for the quarter inch tape drive
- SYNOPSIS ,

(already part of the sdu monitor software)

DESCRIPTION
quart automatically rewinds on opens and closes. When writ-
ing or reading data, multiples of 512-byte blocks must be
used.
Seeking works with this driver.
To access file 'n' on the tape, the file name'used should be
"/quart/n". The very first file may be accessed as either
"/quart" or as "/quart/1l". ‘

SEE ALSO

driver(l), setdr(2), read(3), write(3)

—
[}

Printed 8/30/83 . 1

rotary(4)

rotary - How the rotary switch positions are used.

DESCRIPTION

The rotary switch may be set into any of the positions 0 to
4. Each position is intended to serve a different purpose
in the running of the Nu Machine. All of the switch posi-
tions except for position @ make use of. the contents of the:
cmos ram. If the cmos ram is invalid (has a bad crc), then
the "switch position @" code is run.

What actually happens to cause the various actions
corresponding to the switch position (other than @) is that
an ascii shell script for that switch position is read from
cmos ram and executed. The shell script is accessed as the
‘device /config/i where i is the switch position (1 to 4).
These shell scripts are written into the cmos ram at the
time of system integration.

If the switch is in position @, serial port @ (the remote
port) on the SDU is used as the SDU monitor device at 300
baud. The prompt will appear on the device connected to
port 9.

Switch position 1 uses the remote port at 9609 baud.

Switch position 2 runs the uboot command, causing unix to be
automatically booted off the disk.

The SDU hardware also uses switch position 2 to activate the
"deadman" feature. Roughly every half second the rotary
switch register on the SDU must be read to prevent an au-
tomatic system reset. Both the SDU software and the unix
code have software in their clock handlers to read this re-
gister.

Switch position 3 uses the graphics monitor as the SDU moni-
tor device.

Switch position 4 uses the local port at 9600 baud as the
- sdu monitor device.

Printed 8/30/83 = o 1

tape(4)

NAME
‘ tape - driver for the Cipher Microstreamer Tape Drive

SYNOPSIS
(already part of the sdu monitor software)

DESCRIPTION
- tape is the driver for the TAPEMASTER controller using the
Cipher series F880 Microstreamer Tape Drive. The tape au-
tomatically rewinds on opens and closes. When writing data
to a new tape, or adding data to the end of previously writ-
ten data, multiples of 1824-byte blocks should be written.
However, when doing reads or when replacing existing bytes
with new data, the I/O may be done in arbitrary numbers of
bytes, although multiples of 1824-bytes are most efficient.

Seeking works with this driver.

To access file 'n' on the tape, the file name used should be
"/tape/n". The very first file may be accessed as either
"/tape" or as "/tape/l".

SEE ALSO
driver(l), setdr(2)

Printed 8/30/83 ' . 1

NAME

tar, tarq - tar driver for half-inch and quarter-inch tapes

DESCRIPTION

tar is the driver for files contained in tar format on
half-inch tape. tarq is the driver name for files contained
in a tar format on quarter-inch tape. (The tar format is
the Unix tar format.) The difference in names tells the
driver whether it is to call upon the tape driver or the
quart driver to access a particular file.

When the sdu bperating system first starts. it contains the
drivers tape and quart but not the tar driver (under either
name). To access the file filename on tape, the pathname

- /tar/filename should be used if half-inch tape is used, or

SEE ALSO

BUGS

/tarq/filename if the file is on gquarter-inch tape.

The first time an access is attempted for a tar file the sdu
operating system reads the first file on the tape to install
the tar driver into the operating system's device table.

The tar driver will then search the second physical file on

~the tape to see if it is in tar format. The file filename

is then searched for. Actually, the tar driver starts by
checking the first file on the tape to see if it is in tar
format, and if that fails, checks if the second file on the
tape is in tar format. This is done so that not every tar
tape for use by the sdu operating system has to have the tar
driver as its first file. Obviously, this is only useful
once the tar driver has been downloaded into the system by a
previous usage. '

tape(4), quart(4)

The tar driver can be used only for reading, not writing.

Printed 10/31/83 diagnostics _ _, | 1

NAME

ttf - Hex download protocol

SYNOPSIS

(already part of the sdu monitor software)

DESCRIPTION

The ttf driver’ prov1des a very general, though slow way to
access remote files via serial tty lines. It implements a
file transfer protocol on top of the normal, line at a time,
tty driver. Bytes of the file are transmitted in hex so any
kind of file can be transfered. 'The normal freeze/thaw
mechanism remains in operation to avoid flow control prob-
lems.

Assuming that a suitable handler is prov1ded on the other
end of the tty line, once the driver is loaded, programs may
access arbitrary files using a name like:

/ttf/foo/bar

where foo/bar is a name to be interpreted on the remote sys-
tem.

To open files and pass data, the monitor and remote system
exchange 31mple, line oriented messages. To access a file,
ttf sends: ,

~“Oname\n

where name is the name of the remote file to be transfered.
If the remote system can access file name it replies to ttf
with:

~o\n

Any other message is interpreted to be no access and ttf re-
turns from the open with a "file not found" type error.

Once the connection has been established, the remote system
sends data packets of the form:

"D XXXXXXXXXXXX\n

where X represents a hex digit. Each pair of hex digits
describe one byte of the file. The line can contain up to
80 hex digits. After each such line, the monitor will reply

with an acknowledge message of the form:
~“A\n

When the end of file is reached, the remote system should
send an end of file message such as:

Printed 8/3@/83 . . , 1

~“C\n

SEE ALSO
tty(4)”

BUGS
' The protocol as currently implemented is not very robust.
There are no checksums transfered, hence no error recovery.
Writes are not implemented. Only one file at . a time can be
transfered by ttf. Ttf turns the system clock off to
prevent the tty driver from dropping characters. '

Printed 8/30/83

NAME
tty - serial tty driver

SYNOPSIS
built into monitor

DESCRIPTION
The tty driver prov1des a line at a time i/o mechanism for

serial ports. It is designed for full-duplex ascii termi-
nals.

Input Editing

Normal characters are echoed as they are typed and saved in
an input buffer for a process to read. Some control charac-
ters have special meanings on input in that they effect tty

processing. They are intercepted by the tty driver and are
not passed to the program:

°s Freeze character. Suspends tty output until the thaw
or interrupt charcters are typed.

"Q Thaw character. If tty output has been suspended by
the freeze character, typing this character will start
it up without any other effect.

D End of file character. This character is buffered but
returns a when input processing reaches it, the read
will return a value of zero signifying end of file.

“c Interrupt character. Typing this character will abort -
all monitor processes that have the tty open unless
they have a special interrupt handler. Typing this
character should return control to the monitor shell.

s Kill character. Typing this character deletes all
characters up to the last carriage return in the input
buffer. Each character so delete will be echoed by a
backspace-space-backspace sequence which has the effect
of erasing it on a display.

DELETE

Erase character. Erases the last character saved in

the input buffer up to the last carriage return. Echos
as backspace-space-backspace on the display.

CARRIAGE RETURN) S
Wakeup character. If a monitor process is waiting for
tty input, typing this character will cause as much of
the input buffer as the process asked for to be passed
to the process, normally the whole line. The carriage
return will be passed to the process as a newline char-
acter and echos as the newline character.

Printed 8/30/83 . ‘ : 1

Escape character. Disables echoing up to and including
the next carriage return, however, two escapes in a row
will re-enables echoing and passes a single escape B
character into the input buffer. Used for file
transfer protocols.

Output Processxng

Writes to the tty are normally just output but the newllne
character outputs as carriage return, linefeed. Output can
be frozen and thawed by the appropriate input characters.

SEE ALSO
ttyset(1l)

BUGS

Very long lines do not appear to delete fully on kill char-
acters.

 Printed 8/30/83 o - 2

CMOSRAM(5)

NAME

cmosram - Contents of cmos ram on the sdu.

SYNOPS1IS
#include <confram.h>

DESCRIPTION
The sdu uses the cmos ram to determine system configuration
information, such as the type and layout of the disk, baud

rates for the serial ports, etc. The sdu cmos ram memory
can be accessed as the file "cmos", but for almost all pur-

poses should be accessed indirectly through the "config"
driver.

The following is the structure for the cmos ram contents.

struct cmos_ram

unsigned short crc;

struct sh
short sh off; /* switch script offset */
short sh_size; /* shell script size */

} sh[51]; -

short nuavail; /* bit=@ if not used */

/* info on the multibus card slots */
struct mcard
char m_name[8];

char m_interrupt; /* interrupt (@-7) */
char m_port; /* multibus I0 */
char m_datal24]; /* misc. info */

} m[8];

/* info for the serial port driver */

struct sp { /* check hardware description */
char sp mode;
char sp_cmd;
short sp baud;

} spl21;

unsigned char version; /* software version */

/* logical disk partitions */
struct dskpart {

char d user[8]; /* name */

char d_unit; /* unit/device number */
long d_offset; /* byte offset */

long d_size; /* size in bytes */

} dskpart[10];

Printed 8/30/83 | B 1

CROM(5)

NAME c

crom - Contents of configuration rom on NuBus cards.
SYNOPSIS

#include <conf.h>
DESCRIPTION

Each NuBus card contains a configuration rom that contains
various information about the card. The address of this rom

grows down from the top of the slot so that for example, the
last byte of the rom is located at @xXFSFFFFFC, where S is

the slot number in hex. The rom occupies only the low byte
of each word. '

. 3
The following header is adjusted to be at the highest ad-
dresses in the rom.

struct confhdr

{

char resource; /* resources for boot procedure */

char reserved; /* reserved for future use */

char testtime; ' /* log2 of self-test time */

char layout; /* ROM header version number */

char flags:; /* board dependent flags */

char flgoffs[3]; /* RAM offset of device flag register

char diagoffs[3]; /* ROM offset of diagnostic if any */ I:

char drvoffs[3]; /* ROM offset of device driver if any

char cfoffs[3]; /* board offset of config register */

char part[l16]; /* assembly part number */

"char . boardtypel8]; /* generic name of the board */

char vendor[4]; /* vendor id */

char romsize; /* log2 of ROM size in bytes */
#define NONCRC 18 /* number of bytes not used in CRC */

char crcsuml[2]; /* checksum of bytes in ROM * /

char revi8]; /* assembly revision level */

char seriall8]; /* serial number */

Printed 8/393/83 1

"UNIXCONFIG(5) SDU Monitor User's Manual UNIXCONFIG(5)

NAME
unixconfig - Contents of unix configuration file.

-SYNOPSIS

DESCRIPTION
The configuration file tells Unix where boards are located,
how the disk is laid out and certain other information. The
file is an ascii file in records of one to a line. Each
record describes some object, logical or physical. The
first token on the line terminated with a colon gives the
type of object and the rest of the items on the line give
various properties of the object. Normally they are hex

numbers.

object fields

cpu: slot addr

ram: slot addr number of lk pages

port: ioport addr interrupt address

disk: port number channel number start byte size in bytes
logport: port number

. logchannel: channel number

Objects do not have to be unique although no two lines
should be identical. For example, if a system has several
ram cards, it should have several "ram:" entries in this
file. -

SEE ALSO
uboot (1)

BUGS
This format is still subject to change.

Printed 8/30/83 diagnostics - : , 1

2181(6)

NAME .
2181 - diagnostic for Fujitsu M2312 disk

SYNOPSIS | |
2181 [-cstvDFHLQTV] [-A track[-endtrack]] [=R count] [
teSt 00']

DESCRIPTION , :

In addition to the standard diagnostic options, see diag(6),

there are several options specific to this diagnositic:

F Format the specified area of the disk. (Also requires
the D option.)

H Ask for help in using this diagnostic.

A Specify the area (tracks) of the disk that are to be
tested or formatted. The area may be specified either
as a single track or as a range of tracks, using a dash
to separate the first from the last.

- Since the D option destroys data in the area of the disk
being tested, it should be used with great care on a disk

that has information that is not to be destroyed. The A

option must be given correctly to avoid disaster.

SEE ALSO
diag(6)
BUGS

The write tests running on a large area of the disk take.
unreasonably long to run.

Printed 14/31/83 diagnostics ' 1

NAME

cpu -~ diagnostic for 68080 cpu cards

SYNOPSIS
cpu [-cstvLQTV] [-R count] [=8 slot] [test...]

DESCRIPTION
The cpu diagnostic uses the standard command line options,
see diag(6). There are no special operating instructions.

SEE ALSO
diag(6)

Printed 8/30/83. _ diagnostics

diag(e)

SDU Monitor User's Manual diag(6)

diag - standard format for running a diagnostic

SYNOPSIS

diag [-cstvDLQTV] [-R count] [-S slot 1 [test ...]

DESCRIPTION

The diagnostic programs make use of a common diagnostic li-
brary to perform certain common functions, see diag(3). The
standard command line options are:

c Print configuration information about the card.

s Print out summary information when the diagnostic ends.
t Print the name of tests as they are executed.

v Print debugging information verbosely.

D Run the "dirty" tests. Certain tests such as format-

ting a disk may be designated as destructive (of infor-
mation). These tests will not be run unless the D op-
tion is given in the command line.

L Loop on the test set.

Q Do not print error messages;

T Print a list of test names but do not execute.

\Y% Print the version number of the diagnostic.

R Repeat the test sequence count times, a decimal number.
S Test the board in slot, a decimal number.

If no test numbers are épecified then the entire diagnostic
will be run. Otherwise, only the listed tests will be run.
- Tests can be specified as individual decimal numbers or as

numbers separated by dashes, meaning all the tests between
the two numbers inclusively.

A diagnostic program may also use other command line options
specific to its tests, but these must be given using dif-

ferent characters from the standard options.

Printed 8/3@/83 diagnostics . 1

keybd (6)

NAME

s Manual

keybd ~ diagnostic for Pegasus keyboards

SYNOPSIS

keybd [~tvTV] [-S slot]

DESCRIPTION

The keybd diagnostic uses a subset of the standard command
line options, see diag(6). There is only one test in this
diagnostic. This test will "echo" whatever key is depressed
on the keyboard. The echo will be done to the device which
ran the test. Striking special keys will cause appropriate
messages to be displayed. The HOME key will have the mes-
sage " HOME " printed, the CTRL key will cause " CTRL " to
be displayed, etc. The test will continue until the 'C' key
is struck while the CTRL key is held down.

The vcmem board must be operational to run this test.

SEE ALSO

diag(6), vcemem(6)

Printed 12/31/83 diagnostics 1

£ 2

‘s M

SDU Monitor User anual quart(6)

NAME
quart - diagnostic for Cipher quarter inch tape driver
SYNOPSIS
quart [-cstvDLQTV] [-R count] [test...]
DESCRIPTION
The quarter inch tape (cartridge) drive is part of the of-
fice version of the Nu Machine. The command line options
- are standard, see diag(6). There are no special operating
instructions.
SEE ALSO

diag(o)

Printed 8/30/83 diagnostics _ 1

ram(6) " SDU Monitor User's Manual

NAME

ram - diagnostic for NuBus ram cards
SYNOPSIS -

ram [-cstvLQTV] [~R count] [-8 slot] [test...]
DESCRIPTION

The ram diagnostic uses the standard command line options,
see diag(6). There are no special operating instructions.

SEE ALSO
- diag(6)

BUGS i
The moving inversion tests take unreasonably long to run.

Printed 8/39/83 diagnostics - o 1

ser's Manual tqgg}6)

NAME
tape - diagnostic for TAPEMASTER controller
SYNOPSIS
tape [-cstvDLQTVJ [-R count] [test... 1]
DESCRIPTION
The command line options are standard, see diag(6). There
are no special operatlng instructions.
SEE ALSO

diag(6)

Printed 8/39/83 diagnostics , 1

vemenm(6)

NAME _
vemem — diagnostic for NuBus video memory cards

SYNOPSIS | |
vemem [-estvhLQTV] [~R count] [-S slot] [test ...]

DESCRIPTION . :
The vcmem diagnostic uses the standard command line options,
see diag(6). There are no special operating instructions.

SEE ALSO
diag(6)

Printed 16/31/83 ’ diagnostics - 1

Nu Machine System Diagnostic Unit

General Description
2242829-0001

Distributed by LMI 6033 W; Century Blvd. Los Angeles CA 90045
. o USA

Information furnished in this document is believed to be accurate and reliable. However,
no responsibility is assumed by Texas Instruments Incorporated for its use; nor for any
infringements of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
Texas Instruments Incorporated. Texas Instruments Incorporated reserves the right to
change product specifications at any time.

Nu Machine and NuBus are trademarks of Texas Instruments Incorporated.
Multibus*™ is a trademark of Intel Corp.

Copyright © 1984 Texas Instruments All rights reserved.

Preface

This manual provides detailed information about the Texas
Instruments Nu Machine(TM)* System Diagnostic Unit (SDU).
It is primarily directed to the system programmer and

provides some information for the installation personnel.

Information in this manual is divided into the following
sections:

Sectibn

l. General—-Confains physical and functional descriptions
that acquaint the user with the hardware components
and capabilities of the Nu Machine SDU.

2. Installation--Outlines procedures for unpacking the Nu
Machine SDU from its shipping container, installing
the board in the Nu Machine chassis, and performing
diagnostics.

3. Operation--Describes the board and front panel 1ight-
emitting diodes (LEDs), the back control panel rotary
switch, and the reset switch and signals.

4. Programming--Presents information for use by
programmers on the function of the SDU and defines the
Multibus(R)** address space and NuBus(TM)* address
space reserved for SDU use.

Appendix

A. Pl Pin Assignments——-Shows the standard NuBus pin
assignments on Pl.

B. P2 Pin Assugnments——Shows the Multibus pin assignments
on P2.

C. P3 Pin Assignments—-Shows the input/output (1/0) pin
assignments on P3.

* Nu Machine and NuBus are trademarks of Texas Instruments
Incorporated.

** Multibus is a registered trademark of Intel Corporation.

2242829-0001 : ifi

D. Serial Port Pin Assignments--Shows the remote and
local serial port pin assignments.

E. Multibus Compliance Levels--Describes the Multibus
attributes supported by the SDU.

Reference Documents

The following documents contain additional information
related to SDU design. These documents cover NuBus and
Multibus specifications, detailed programming and
implementation information on some components, and interface
requirements for SDU 1/0.

TITLE PART NUMBER
NuBus Specification 2242825-0001

iAPX 86, 88 User’s Manual (intel)

Intel Component Data Catalog

Motorola Microprocessor Data Manual

Multibus Specification (Intel) _ 9800683

or IEEE Standard Microcomputer System
Bus Specification (IEEE Std 796-1983)

AP-28A (Intel)

EIA-RS-232C

QlC-02 Interface Specification
(Rev. D, 9/23/82)

Nu Generation Computer System
Architecture Specification 2236632-0001

Nu Machine Diagnostic User Manual 2244479—000f

r4

Nu Machine Rack Module, _
General Description 2242821-0001

Nu Machine Office Module,
General Description 2242822-0001

Nu Machine Unpacking and :
Inventory Guide. 2244492-0001

iv '2242829-0001

Z

Nu Machine Installation Manual 2242824-0001

Nu Machine SDU Operating System

User Manual o 2242811-0001

Nu Machine SDU Operating System _
Implementation Description 2242812-0001

Ny Machine SDU Operating System :
Driver Design Guide 2242813-0001

Nu Machine SDU Development System,
User Guide 2242815-0001

Nu Machine SDU Development System,
Assembler Reference Manual 2242816-0001

Notation

The following notational conventions have been used
throughout this document.

Ones and Zeros

Signal or bit names that end with an asterisk (*) are active
-low. Names that do not end with an asterisk (*) are active
high. Low means logic 0; high means logic t.

Reset :
The four SDU reset functions are:

® NuBus RESET*
& Multibus INIT*
‘® an SDU reset signal
® a tape controller reset signal
Each of these signals will be referred to by its complete

name, such as NuBus RESET*, unless the context makes it
clear which of the preceding reset signals is intended.

Numbers

Bit 0 of a byte is the least significant bit, and bit 7 is
the most significant bit. Byte numbering is simjilar to bit
numbering. For example, in a 16-bit halfword, bit 7 of byte
0 is adjacent to bit 0 of byte 1. Words are 32 bits.

The hexadecimal symbol (0Ox) precedes each hexadecimal number
throughout this document. A bit represented by X within a
hexadecimal number can range in value from Ox0 to OxF.

2242829-0001 v

vi

2242829-0001

Contents

1 GENERAL DESCRIPTION. .. v eeteeeecnecesecosossoasonsane
Ll General..i.iicieeeeeeeeeeeeeesoeseeacoascnsosesases
1.2 Purpose of EQUIipMeNnt..c.eeeeeeceecocoocacensen
1.3 Equipment Description.ce..eeeeeeieeeecccccccses

1.3.1 8088 and Related Hardware. cveeeeeeee..

Configuration ROM..cceeeeeceoeannnsene

Internal MuUltibusS. ...ttt erneeannnen

NuBus and Multibus Interface.....c....

Front/Back Control Panel

. * . *

Serial CommunicationS...eeieeeeoeeeeean
1/4-Inch Tape Interface...ceeecececceeses
Power Supply Interface..cceeeeececeees
AC Shutdown....c.eeeireeecesnoacancnnas
<10 Thermal SeNSOrS......eececscesncscenas
PECIifiCaAtioNS. ettt eeeeeeeceessosccasansssses
Functional Description......... cecsscsaseccens
1.5.1 BUS CONVErSiON.ceeeeeeeeeeosascecacsss

1.5.1.1 NuBus-to-Multibus
CoNVEersSioN..cceeedeesnanncenss

1.5.1.2 Multibus—to—-NuBus
CoONVErsioN. c.ceeecennocccasas
1.5.1.3 Interrupt Translation........
NuBus Central Features..... teceeccncea
1.5.2.1 System CloCK. . eeeeeeeeeonannn
1.5.2.2 Time-Out RecCoVery....ceeesee.
Nonvolatile Features........ ceevesecaes
1/4-Inch Tape Interface.....cocceeeees
Interval Timer....eeeeeeeeseecoscessse
Debug/Diagnostic FACilitieSeeeeeaeosees
System Status DisplaY...eeeeeeeeansnns
Serial POrtS.cieeceeeeeceneeeccccnoses
Power Supply Interface.....c.eeeeeeenen.
0O System Bootstrap..ceceececeencescosese

L] *
Wwwww Wwww
L[] L]

(Voo BN Yo)} ObhWwNn

1
1
1
1
1
S

L
* .
b

—
.
(04}
.
N

e e
[V XC RV RY RU RS TR
* [] L] . L) L) [] L]
—~—O0ONON AW

2 INSTALLATION. c v eeee e eeemeeneenanenmae e,
2.1 Genera].................Q.......v..............
2.2 Unpacking/Packing the SDU Board...eceeeoeeeee.

2.3 SDU Installation Procedures..... cecessses

3 OPERATION. ...t vereeeesooencsosononsenses teceocasenas
3.! Genera].'..........l....l..d...OIOI....I....‘.‘
3.2 Fault Indication LED.....ueieeeeeneeeenoanenens

2242829-0001

INterface. . i.eeeeeeeeeacecososocscnsss

{

|
~NNooOo,m DLV 5 B9 -

Pt et et Pt
i (.

it P ot Gast Purs ek pumt it e

—
I
~

)
VOOWOYWODO

vii

3 Front Panel LEDS.ccecscecscccscacsssosscsccananas
4 Back Panel Rotary Switch...ccccececececrcocnens
5 Reset Pushbutton and Signals..... eeescsecveasas
6 Self-DiagnostiCS.ccccecaceccsaccsacscssoscasan

|

wwww
I
[N B

ROGRAMMING . .. oo et vceaannocenasanssasccoacancsonnne

1 General..ccecesessccessoscsacsscsssscssssssacsesscs
2 Multibus Address Space Definition...cceececese
SDU ROM.ceeoeoocecascascsssacsssossssanne
2 SDU RAM. . cvovececcccrscscosnssccsscacsnca
3 Address Map...cecsccecescsccsccsssscssssce
4 Front Panel LEDS.ceccceccccccsccccccase
5 Back Panel Switch.e.cicecececeseccscsca
6 Control-Status Register l....ccceecaen
7 Control-Status Register 0....ccceecess
8 A/D Converter..ccesceecscesscsssaccssccsas
S CMOS TOD Chipicecceescsasseassasccsasnasna
1
1
1
1
1
1
1
1
s
i
2
3

I
— O NNOUTWWW e

N
—

F-NP -G N
It I???h?bhbbh
NN

RS~232C Serial PortS.ccsececscccccscncne
Programmable Interval Timers.....ccce.
Time-0ut Register....cciceeescccccccces 4-14
1/4-Inch Tape Interface....cccccceeeess - 4-14
Bus Integrity Registers....ceccceeesee. 4-15
Interrupt Controllers..cceececceececeees 4-18
Multibus Interrupt Register...cceceseees 4-21
CMOS RAM.ceeoececaacscssocsasesasnanss 4—23
Address Space Definition....cccvceceeeee.. 4-24
Multibus Memory SpPace...ccccescacssces 4-25
Multibus 1/0 SP8CE.ctccetesccccscsccces 4-25
Configuration Space.....cccececececescses. 4-25
ware Development..ccceeecccassccccsccccecsss 4-26

F-N
|
w

LJ L] L[] L] . . L] L] L] L] L] [] [] . * L]

NVAEADZAADDALADRAORADDLADAEDDDN
NOUDAWN—O

4.4 le]
A Pl PIN ASSIGNMENTS . e eveencencenncancasoansanaannee Al
B P2 PIN ASSIGNMENTS...eeereerrnnunneesasenensanssass B-l
C P3 PIN ASSIGNHENTS.........;....f.................. Cc-1

D SERIAL PORT PIN ASSIGNMENTS......................;. D-1

E\MULTIBUS COMPLIANCE LEVELS........I...........Q..‘. E_l

viii 2242829-0001

Figures

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

1-1.

4-20

4-3 -

4-8 .

4_90

Figure'4—10.

Figure 4-11.

Figure 4-12.

2242829-

0001

Nu Machine System Diagnostic Unit

Board’oouocoooon.q..oo...oc.o.ocno..o.ooo

SDU Block Diagram and System
Interfaces..............,.........

Address Map Format

ooooo ® 6 00 6000800600000

Translation Definition...c.eeceeeeecceenns

LED Registerooon'oooo.o..ooo.o-‘ocooooooo.

Switch Register..ccceeieececesceccccccnnne

CSRI Read FoOrmat.ceccieceececcscsccnconacsen

CSR] Write FoOrmat...cceeeeeecccccnscnsaes

Control-Status Register 0....ccceecaiean

Integrity Register
Integrity Register
Integrity Register
Integrity Register

Integrity Register

Oreeneenneenacsanncns
Leeenneenennnasannes
2ttt
R

4......00.---...00000

1-2

1-3

ix

Figure 4-13. Integrity Register S5......ccc00c0eeceeee. 4-18
Figure 4-14. OxICIEQ Read FOrmat.....ceeeeeeeecanoees 4=22

Figure 4-15. CMOS RAM Address Spac€......:cccceecsees 4-23

Figure 4-16. SDU NUBUS AQOIr@SSES....eeeevenenannnanaen. 4-24

x | | 2242829-0001

Table 1-1. SDU Board SpecificationS..ceeeeeeceeecens 1-6

Table 2-1. Required SDU CablesS..cceeceeececcan cesedene 2—-4
Table 3-1. Self-Diagnostics Results......ccvieernnn. 3-3
Table 4-1. Multibus Address Spac€.......... Ceeeenee. 4l

Table 4-2. SDU Register Space Definition..ccceeenacss 4-2
Table 4-3. ROM Address Allocatiqn............;...... 4-3
Table 4-4. 1C084 Bit Patterns....;..., cseccas 4-7
Table 4f5. A/D Converter Addresses.................. 4-12

Table 4-6. Multibus Addresses to Serial Port
Registers....... s e e easc s encseas cecncecces 4-13

Table 4-7. PIT Address Map...,...................;.. 4-14
Tabje 4-8, Integrity Registers.....cceeecereeeeeeeeeses 4-15
Table 4-9. PICO Interrupt FUNCtioNS. .. e eeeeeeecacae 4-=19
Table 4-10. PICl Interrupt Functions......c.cvveeeee. 4-20
Table 4-11. PIC2 Interrupt Functions......civeeeeeees. 4-21
Table 4~-12. PIC Addressés.... teecentenennnnn 4-21

2242829-0001 : xi

Table 4-13.

Table

Table

Table

Table

Table

Table

Table

xii

A_lc

B-1.

C—l.

C-Z -

c-3.

Interrupt Addressing.e.ccecececcecccsceeces 4-22

NUBUS Pin ASSignmentsS....ceeeeeeeeesaaeas A-1

SDU Multibus an Assignménts...,......... - B-1
P3 Row A'""f"""""""""""""' C-1
P3 ROW Bivieeeeieneosenonosncosnssnssscnanans c-2
P3 ROW C.tevenncanacananccossassssaananaa C=3
Remote Serial Port Pin Assignments....... D-1

Local Serial Port Pin Assignments........ D-2

2242829-0001

] GENERAL_ DESCRIPTION

1.1 General

This manual provides unpacking, installation, testing, and
operating information for the Texas Instruments Nu Machine
(TM)* System Diagnostic Unit (SDU) board (see Figure 1-1).
This section contains functional and physical descriptions
to acquaint the user with the hardware components and
capabilities of the Nu Machine SDU.

1.2 Purpose of Equipment

The SDU provides many one-per-system functions and smart
front-end and diagnostic capabilities. Since these
functions are concentrated on the SDU, rather than on
separate central processing unit (CPU) cards, the system is
able to support multiple processors without conflict. The
SDU Monitor, the PROM-resident portion of the SDU Operating
System, provides a flexible system-boot environment.

* Nu Machine is a_trademark of Texas Instruments
Incorporated.

2242829-0001 1-1

SDU GENERAL DESCRIPTIO
GENERAL DESCRIPTION

»
-

PEL LI LY
+

1269539
4838901001
P

PRy

TreepuaNe

’!‘a !::21:!;:!

. v-r.-wva-w--

1‘& TReras nuuuu‘..(},’.‘

nuw-m" ” e . wrnnﬂf
. ¥ =t N it

Z.
i3 G-z:ntze

Mhn’v.tan--nw.

30 W
ce

huuus
S ats s e oW 4
Tae e manow g

PR EA TS BRI

"-’Bl‘f‘fst
T M

rrzsiyin &

B S

{
4

PP AP REP R

L ---la~a~'“g.1‘n
Ms. 4& henTUcs B

¢ asbind

p i---tfrtl : %
’!!!Q"!'- . m-@ ~% spseconsNLs
Tlapenswy P .]
75 v o ooooooooocoooo
'*c.‘\l.t'l!t!'u‘\ ~ .tv‘g,
adsna- wlﬁbuﬂ&ﬁ‘.ts; -
. t‘ ¥ o2 vw‘ M N
o B s Fen Hont
JgenneRaRam ., - l. COADOO0000ACO, E*" 882825220,
Cled , i} . w«m;-xg PR qnu-- Rlct Y
e,

;‘~ ey
:l‘txiaot'-q":'qv- crvrTrrEsa
M “re - s ; S8 3-N
B . . . 900 N
. fousl PURER S
.t ssems Sovervsvo- LPTTRETL e
IASRNTN At N
C"'."dﬂﬂ«“..‘ﬂ-‘“‘v
l-!‘ﬂ‘\it :

o 3
oy Hecrraaas .o-coll'aou oucolcu.o'
P INAN IRV NG IY SoRuRerouw

v - Urtuntey v{

OD'DI‘.Q'!SBOOC"OG'Hva sl("'
- S S o

ﬁuuuau -y
;q)(zcum '. 51 it & -

Tl'rt"'b'& L] !O...lb!‘-tlt ccvr.re—u: -»trtn¢az
aremcn po “inne Cenavee

: 3 Sxe - e pvz'gvy -,d'

g(o 00 5 . yeus 5o "R
EEBTXXY T 3 re!wtr* [233
m.%‘) .5 by p o HIF W 5y oy

S f¥'s . g e AR SN PRt
“
§l‘4 n\“ i‘\t”
éeezeeaocaa.

.
<2 i -4
'U0,0QQ
i— w
c:su .)‘)’30~b¢v Cempnwane

v Y oo i AW

5 Do w5y awennty %

‘!!Qt‘ﬁ wv-al - vovede bt »Qltctzt'o.n:;l.a‘t-.nct::arfa« ntrtttta
.;..g.‘.:caxt.--.»ss.;ﬁt:u.;q-,untva--ls X 2

l)l&"h/‘;ma"“,L" a % .
SR " '{‘ e AL
R

a;sc
o e R 51 R

tetz ‘tLT LTV

SERebBinbbELY

wio v Y le . 3

X 1 3-:...'. 1 1{. venws 1, by
:’:*?"}j t@*& il mbel T ey o
: % 'nwr’vm&"

[3.3 lcv!vc”h "tvt!&ot 0.!'0!“-00 oo re
rees
0

fwm.

-
(1 -'#iillll.‘gfﬁ"-"'
S .,;:».uouovaan»u ;

e e 751
)

Spsrinane
!§G Onbnovnvtt
ITITSEL - LR T O0RoRe MiAERSLAKE c...g..«
Jrmens et g et g wrom
svvarvrery . * nt‘-'. Prene nvu-ax-vv‘t s:.u-.
a7y

FieSabad e Ry
I’w{ﬂhw& i ° e
¥ o
“‘.\!‘tt‘ q--nov'.".’.‘ wegwwe 1
[FPOORUREES RL4ETRRARL BELiTT - 444444 444/
A0 4 v
gt vmln Ny, g m‘mxsv 1% t

“drtew "l'ln\.nn‘l.
AEA4iGT Raw

Rclt nvxt

sy ...nn-

M

TN, s

--'gr
C‘l».-kﬂv‘-

M Bpcs (% o
> w e
XXX 1AM

Figure 1-1. Nu Machine System Diagnostic Unit Board.

2242829-0001

1-2

1.3 Equipment Description

The SDU is an 8088-based, single printed wiring board (PWB)
microprocessor system with additional special purpose
hardware to interface to the NuBus (TM)* architecture and
provide required system utilities. Figure 1-2 shows the
ma jor hardware subsections and interfaces with other Nu
Machine system components. The following paragraphs.
describe the major SDU components.

/ EXTERNAL MULTIBUS /

Ao
Y Y Yo __ !
| ¥ 1 |
I BUFFERS Y%a"INCH TAPE |~ ™ e
| — : INTERFACE | o /+"INCH TAPE DRIVE
|
1
I 20y 16p [2semiaL et o
- I : ! RS-232C
™ ‘ PORTS |uei -
l 2 'l anaLoG TO : |
< s [r—
| g g : oo =T {1 THERMAL SENSORS
- < v
l P?(:')(M - 9> ! [INTERFAGE : L= POWER SUPPLY
| 1, | Loate =t = FRONT/REAR PANEL
| 7 - t [AC DISTRIBUTION BOX
PPN |
|) 1l Tmer | |
: RAM - : : |
| {[TME-OF-DAY|| . l
| | CLOCK |
| Y Y ! BATTERY
. H BACKUP
| NuBUS-—»MULTIBUS | | CM?fK?AM - |
I CONVERTER | | |
| b g |
L___ 32BITS DATAADDRESS _ __ _ _ _ _ J

[7

Figure 1-2. SDU Block Diagram and System Interfaces.

* NuBus is a trademark of Texas Insti-uments Incorporated.

2242829-0001 1-3

SDU GENERAL DESCRIPTION
GENERAL DESCRIPTION

4

8088 and Related Hardware

The 8088 microprocessor system is the heart of the SDU It
consists of the FollOW1ng.

& 8088 microprocessor -— The 8088 specifications and

interface are described in the Intel Component Data
Catalog. :

Reset circuits -—- The board-level SDU reset signal
initializes internal registers to the power-up state
and also resets the on-board 8088. The SDU reset
‘signal is driven active by any of the following:

1. The operator pressing the back panel reset button.
A resistor capacitor (RC) circuit then holds the
SDU reset signal low for about 3 milliseconds.

2. The power supply generating an active 5 volts dc
out-of-tolerance signal. [f the SDU sends a high
or low margin signal to the power supply, the dc
out-of~tolerance signal is ignored.

3. The remote serial port detecting a i1ine break
character while the back panel switch is at 0, 2,
3, or 4

4. The on-board deadman timer triggering while the

' back panel switch is at 2. The timer triggers if
the switch panel register, Multibus (R)* address
0x1C084, is not read once every one-half second.

Clock generation circuits —- The 8088 clock is derived
from a 14.7456 megahertz crystal giving the 8088 an
effective clock rate of 4.9152 megahertz.

Multibus time-out logic —- The Mulitibus time-out logic
generates a READY signal to the 8088 as well as a
time-out interrupt if an operation takes more than 3
milliseconds to complete,

64K bytes of ROM
Programmable interrupt controllers -- Three

programmable interrupt controllers (PICs) provide a
flexible interface between the 8088 and devices

* Multibus is a registered trademark of Ihtei Corporation.

2242829-0001

©DU GENERAL DESCRIPTION
GENERAL DESCRIPTION

requiring real-time servicing. The three PICs (PICO,
PICi, and PIC2) are configured as a master PIC (PICO)
and two slave PICs (PIC! and PIC2) as described in the
8259A data sheet. Paragraph 4.2.15, Interrupt
Controllers, details the operation of the 8259A.

® 64K bytes of dynamic RAM
® Multibus interface logic

1.3.2 Configuration ROM

The SDU has a 2K-byte configuration ROM and a configuration
register residing on the NuBus. The contents and format of
the configuration ROM are described in the Nu Generation
Computer System Architecture Specification. The
configuration register implements only the on-board LED bit.

1.3.3 Internal Multibus .

The SDU is built around an internal Multibus. The 1/0/Data
Bus and CMOS/Data Bus, extensions of the internal Multibus,
reduce drive requirements for the various buses. The
external Multibus is also an extension of the internal
Mulitibus. The buffers between the internal Multibus and
external Multibus provide isolation and meet the loading
requirements of the Multibus. (The relationship between the
internal Multibus, external Multibus, and the SDU board is
explained in Paragraph 4.2.7, Control-Status Register 0.
Multibus attributes supported by the SDU are discussed in
Appendix E, Multibus Compliance Levels.)

1.3.4 NuBus and Multibus Interface
The SDU interfaces to and enables two-way conversions
between the NuBus and Multibus.

1.3.5 Front/Back Control Panel Interface

Three lines from the SDU drive the front panel LEDs. Four
lines into the SDU indicate the mode selector position on
. the back panel rotary switch. A single input from the back
control panel resets the SDU.

1.3.6 Sertial Communications
‘Two asynchronous RS-232C ports support data rates to 19.2K

baud.

1.3.7 1/4-1Inch Tape Interface _
A QIC-02 streaming tape drive interface provides system
backup capability and diagnostic loading media.

1.3.8 Power Supply Interface

Two signal lines from the power supply to the SDU indicate
the 5 volts and ac power status. A line from the SDU to the

2242829-0001 ' 1-5

SDU GENERAL DESCRIPTIC
GENERAL DESCRIPTION

power supply enables the SDU to margin the +5 volt supply
above ahd below nominal. .

1.3.9 AC Shutdown :

A line from the SDU to the ac distribution box enables the
SDU to shut off the ac power in emergency situations.

1.3.10 Thermal Sensors
Five inputs from the optional external thermal sensors to an
analog-to-digital converter are provided.

1.4 Specifications

Table 141 lists the physical, electrical, and environmental
specifications for the SDU board.

Table 1-1. SDU Board Specifications

CHARACTERISTIC ' SPECIFICATION
Ambient%Temperature: '
Operating 10 to 35 degrees C
Storage -40 to 65 degrees C
Ambient Humidity: : |
Operating 15 to 807 (noncondensing)
Storage 5 to 95% (noncondensing)
Altitude: '
Operating -300 to 3,000 meters (-990 to 10,000 feet)
Storage : -300 to 12,000 meters (-990 to 40,000 feet)
Shock:
Operating 15g for 11 ms
Storage 25g for 11 ms
Vibration: :
Operating .5g rms, random
Storage .75g rms, random
Power 48 W
Current:
+5 V 9 A ,
+12 V. 150 mA
-12 v 120 mA

1-6 | ' 2242829-0001

SOU GENERAL DESCRIPTION
' GENERAL DESCRIPTION

1.5 Functional Description

The following paragraphs describe the function of the major
Nu Machine SDU components.

1.5.1 Bus Conversion

The NuBus/Multibus converter resides on the SDU. Bus
conversion in both directions is done by hardware mapping
logic and does not require 8088 microprocessor intervention.
The two buses run independently until one bus accesses the
other. Under certain circumstances, a NuBus card can
attempt to access the Multibus at the same time that a
Multibus card is accessing the NuBus. The SDU prevents a
lockup by giving the NuBus a "Try Again Later" response and
aliowing the Multibus cycie to complete. The following two
paragraphs describe the conversions in more detail.

1.5.1.1 NuBus-to-Multibus Conversion The Multibus memory
space and [1/0 space (as described in Paragraphs 4.3.1 and
4.3.2, respectively) are completely contained within the SDU
NuBus slot space. Thus, there is a direct correlation
between NuBus addresses and the accessed Multibus addresses.

The Multibus memory space can be accessed with byte,

hal fword, and word operations. Byte and halfword operations
on the NuBus are translated into byte and halfword
operations on the Multibus. Word operations on the NuBus
are translated into two halfword operations on the Multibus
with the lower halfword transfer occurring first.

The Multibus 1/0 space can be accessed in one of two _
different address ranges. In one range, byte, halfword, or
word transfers can access the Multibus /0 space but only
the low byte of each NuBus word is valid data. In the other
range, byte, halfword, and word transfers are all supported
across the interface.

- When a NuBus access of either the Multibus memory or l/O
space occurs, the following sequence of events occurs:

1. START* on the NuBus accesses the Multibus.

2. The SDU bus translation logic initiates arbitration for
the Multibus.

3. The SDU bus translation logic acquires the Multibus.

4. The Multibus operation (or operations for 32 bits)
occurs as per the Multibus Specification.

2242829-0001 1-7

SDU GENERAL DESCRIPTION
GENERAL DESCRIPTION

5. The SDU returns XACK* on the Multibus.
6.. The SDU does an ACK cycle on the NuBus.

The SDU detects bus locks on the NuBus and asserts the
Multibus signal LOCK* if a NuBus-to-Multibus translation is
in progress. Thus, indivisible transfers are supported
across the bus interface. ”

1.5.1.2 Multibus-to-NuBus Conversion Multibus-to-NuBus
conversions are similar in sequence to NuBus—-to—-Multibus
conversions. The following sequence of events occur:

1. The address map is initialized (see Paragraph 4.2.3) to
point to the desired NuBus page.

2. Multibué master initiates Multibus transfer (upper ten
bits of Multibus address select map entry).

3. Valid bit (bit 23) of map entry indicates a NuBus
access. S v

4. The SDU bus translation logic initiates arbitration for
the NuBus. ’

5. The SDU acquires NuBus mastership.

6. The NuBus operation is initiated by a START cycle as
explained in the NuBus Specification. '

7. The addressed slave on the NuBus responds with an ACK*.

8. The SDU bus translation logic generates XACK* 6n the
Multibus. ‘

[f the Multibus signal LOCK* is active when a Multibus-to-
NuBus conversion is performed, the NuBus ‘is locked until
LOCK* is inactive.

1.5.1.3 Interrupt Translation The SDU can translate
Multibus interrupts into NuBus interrupts. The SDU’s 8088
microprocessor receives all Multibus interrupts in a non-
bus-vectored fashion (explained in the Multibus
Specification). When programmed, the 8088 can respond to
Multibus' interrupts by writing to an arbitrary NuBus address
(or addresses). Since NuBus interrupts are specifically
addressed writes with the least significant bit set to 1,
the Multibus interrupt can be transliated into a NuBus
interrupt. '

1-8 ’ 2242829-0001

SDU GENERAL DESCRIPTION
GENERAL DESCRIPTION

The SDU can also translate NuBus interrupts into Multibus
non-bus—vectored interrupts. On the SDU, the Multibus
address space is contained within the NuBus address space.
The Multibus interrupt register, which lies in this Multibus
address space, can drive any of the eight Multibus interrupt
lines active. Therefore, NuBus writes to the Multibus
interrupt register which have the least significant bit set
to 1 are translated into Multibus interrupts. '

1.5.2 NuBus Central Features

1.5.2.1 System Clock The SDU is the source of the 75
percent duty cycle, 10 megahertz system clock (CLK*), to
which all bus operations are synchronized. Under software
control, the system clock rate can be increased or decreased
by 7 percent for diagnostic purposes.

1.5.2.2 Time-Out Recovery The SDU optionally provides
NuBus time-out recovery by monitoring the time between the
START* and ACK* control signals. If more than the
programmed number of clock cycles (up to 256) occur, the SDU
asserts the ACK* signal with the appropriate TMO and TMI
code for a time-out.

1.5.3 Nonvolatile Features

The SDU contains 2K bytes of battery backed-up CMOS RAM.
This memory is used to store the system configuration
information in a nonvolatile manner. The SDU also provides
a battery backed-up time-of-day clock.

1.5.4 1/4-Inch Tape Interface

The SDU contains a 1/4-inch streaming tape drive interface.
This feature provides low-cost transportable media for the
Nu Machine. Since this interface is on the SDU, only the
SDU, power supply, and tape drive must be functioning
properly to load the diagnostic routines from the 1/4-inch
tape drive.

1.5.5 Interval Timer

The SDU contains a programmable timer for generating
periodic events to specific CPUs. The timer can be used for
many important system functions, such as process scheduling.

1.5.6 Debug/Diagnostic Faciltities

The SDU provides the NuBus system operator with several
diagnostic tools. The SDU Monitor of the SDU Operating
System allows a terminal on either serial port to read and
write bus locations and to initiate and execute SDU

2242829-0001 : = . 1-9

SDU GENERAL DESCRIPTION
GENERAL DESCRIPTION

self-diagnostics. The NuBus diagnostic hardware verifies bus
integrity.

1.5.7 System Status Display

On power-up, the SDU first runs a self-test, then a bus
test, and finally individual board tests. The SDU uses the
front panel LEDs to summarize the results of the tests; the
detailed results can be read using the system console. An
LED on each board is automatically turned on at power-up and
is turned off by the SDU after the board-specific diagnostic
passes. ‘

1.5.8 Serial Ports

The SDU contains two serial communications ports, either of
which can be used as the smart front panel /remote
diagnostics port, depending on the position of the
diagnostic rotary switch. Otherwise, they are both
available as general-purpose serial ports.

1.5.9 Power Supply Interface ,

The interface to the power supply includes several lines in
addition to the actual current-carrying cables. These 1ines
are ACPF, DCOT, MARGIN, and ACOFF. The SDU provides the
system interface to these lines. ACPF (ac power fail) is
generated by the power supply. The SDU then posts events to H
the installed CPUs so that they can take appropriate action.
DCOT (dc out of tolerance) indicates that the +5 volit supply
{s out of tolerance +/-5 percent. When this signal is
active, the SDU generates a system reset. MARGIN is the Sbu
signal by which the +5 volt supply margin can be increased
or decreased by 7 percent. ACOFF is a signal from the SDU.
to the ac distribution box by which the SDU can shut off the

ac power.

1.5.10 System Bootstrap

The SDU Monitor of the SDU Operating System boots ,
automatically upon power—-up. The SDU then determines the
location of the system console, either serial port or high
resolution display, from the position of the rotary switch.
~This allows the system to be manually reset, reinitialized,
or rebooted via SDU Monitor control. Refer to the Nu
Machine SDU Operating System User Manual for the command
descriptions.

The SDU can fully and automatically boot the Nu Machine
Operating System when the rotary switch is properly set.
The rotary switch positions are explained in both the Nu
Machine Rack Module, General Description and the Nu Machine
Office Module, General Description.

1-10 ' : - 2242829-0001

2 INSTALLATION

Z.l General

This section provides information and procedures for
unpacking the SDU from its shipping container and installing
it in a Nu Machine (TM)* system chassis. When the SDU is
shipped Iin a chassis as part of a complete system, refer to
the Nu Machine Unpacking and Inventory Guide for unpacking
procedures.

This section covers installation details of the SDU board
only. The procedures assume that the user has a fundamental
knowledge of basic hand tools and cabling techniques, but
they do not require a detailed understanding of computer
hardware or software.

2.2 Unpacking/Packing the SDU Board

Upon receipt of the container, inspect it to ensure that no
damage has occurred. If any damage is found, note the
damage on the bill of lading and file claim against the
carrier, if applicable. Photograph any damages to the
equipment container.

CAUTION

The Nu Machine systems contain static—-sensitive
electronic components. To avoid damage to these
components, ensure that you are well grounded
before removing or handling the printed circuit
boards.

Use a static-control system consisting of a
static—-control floor or table mat and a static-
control wrist strap. These are commercially
avallable. If you do not have a static-control
system, you can discharge any accumulated static
- charge by touching a grounded object prior to
" handl ing a board.

* Nu Machine is a trademark of Texas Instruments
Incorporated.

2242829-0001 2-1

SDU GENERAL DESCRIPTION
INSTALLATION

It ts imperative that you do not place the printed
circuit board on top of its shipping bag. The
conductive external surface of this bag will short
the SDU board’s energized pins on contact,
resulting in a corrupted CMOS RAM. . Always store
or transport a printed circuit board inside its
protective package.

After completion of the preliminary inspection, perform the
following steps to remove the board from its container and
prepare the computer for installation.

' NOTE

Do not discard any packing materials until
unpacking, inspection, and inventory are complete.

1. Remove the top cushion pad or other packing material.

2. Obtain the packing list. Inventory the items received
against the packing list.

3. Pack all shipping materials into the original shipping
container and store the container for reshipment of the

unit.

4, Inspect the SDU board and components for signs of
damage that may have occurred during shipment. If
damage has occurred, notify the carrier immediately.

To repack the unit, reverse the above procedure using the
original packing material.

2.3 SDU Installation Procedures
The following paragraphs describe the preparation and

installation of the Nu Machine SDU board.

WARNING

Ensure that the chassis ac power cord is .
disconnected from ac power during installation.
Faflure to observe this precaution could result in

severe electrical shock.

2-2 2242829-0001

SDU GENERAL DESCRIPTION
INSTALLATION

Select the chassis sliot for the SDU board. The SDU
board must be installed in either slot 13, 14,0or 15,
whichever is the highest priority NuBus (TM)* slot in
the chassis. Since the SDU generates clock signals
for both the NuBus and Multibus (R)** interfaces, the
selected slot must have a NuBus in the Pl position
and, if the system is equipped with Multibus, a
Multibus in the P2 position.

Install a 1 high by | wide connector plate assembly
(Tl P/N 2235471-0001) to provide the jack for the P3
board connector to plug into. Lower the '1/0 back
panel to access the back chassis framework. Push the
connector plate assembly into the selected chassis
slot hole directly below the motherboard. Secure the
assembly to the back chassis framework with screws.

Returning to the front of the chassis, slide the board
into the selected chassis slot. Hold the board so

-that the inserter/ejector tabs on the front corners of

the board are pushed out and the board components are
to the right. When the board is fully inserted, the
inserter/ejector tabs will snap over the board’s
locking pins to prevent it from vibrating out of the
chassis.

For standard Nu Machine systems, install the Multibus
priority jumper (TI P/N 2220779-0001) on pin A3l and
pin B31 in P2 slot 15. Note that the SDU siot
position can affect the jumper setting. As a rule,
install the jumper on the first slot (either 14 or 15)
which is the Multibus master. If the jumper is not
installed in the correct slot, the Multibus cannot be
enabled.

An SDU paddle board (Tl P/N 2235465-0001) must be
mounted on the P3 connector plate assembly which was
installed in the step 2 above. To connect the SDU
paddie board to the other system components, the SDU
cables in Table 2-1 are required. Note that the cable
length and part number can vary depending on the Nu
Machine system. Consult your local sales
representative for exact ordering information. Refer

* NuBus is a trademark of Texas Instruments Incorporated.

** Multibus is & registered trademark of Intel Corporation.

2242829-0001 : ' 2-3

SDU GENERAL DESCRIPTION
INSTALLATION

to the Chassis Section of the Nu Machine lInstallation
Manual for the SDU paddle board and interface cable
installiation procedures.

Table 2~1. Required SDU Cables

CABLE NAME T1 PART NUMBER
SDU Front Panel 2235232
SDU Rear Panel 2235233
SDU Serial Interface 2235416
SDU Power Supply 2235418
SDU Ac Power Control 2235419

2-4 2242829-0001

3 _OPERATION

3.1 General

This section describes SDU operation after installation in
the chassis with appropriate peripherals and mass storage

devices.
3.2 Fault Indication LED

The SDU card has a red LED mounted on its front edge. This
LED should come on at power-up and go out at the successful
completion of the SDU configuration ROM diagnostic.

3.3 Front Panel LEDs

There are three LEDs on the front panel that indicate the
results of the SDU self-diagnostics. The green RUN LED,
when 1it, indicates that the processor has resumed execution
after the self-diagnostics are successfully completed. The
red ATTN LED goes out when the self-diagnostics are '
successfully completed. The red SET-UP LED goes out if the
battery-powered SDU CMOS RAM is correctly initialized. A
full explanation of self-diagnostics is given in Paragraph
3.6. '

3.4 Back Panel Rotary Switch

The back panel rotary switch has five mode selector
positions labeled 0 through 4. Each switch position selects
a preprogrammed boot sequence device, system console, and
data rates for the serial ports. If the battery-powered
CMOS RAM is not set up, then default boot parameters must be
used. Refer to either the Nu Machine (IM)* Rack Module,
General Description or the Nu Machine Office Module, General
Description for mode selector position information.

3.5 Reset Pushbutton and Signals

A reset pushbutton is located on the back panel of the
.chassis. This pushbutton resets the board-level SDU reset

* Nu Machine is a trademark of Texas Instruments
Incorporated.

2242829-0001 ’ 3-1

SDU GENERAL DESCRIPTION
OPERATION

signal which initializes internal registers to the power-up
state and also resets the on-board 8088.

NuBus (TM)* RESET*®* and Multibus (R)** INIT*, standard reset
signals, are generated by the SDU but do not reset any SDU
functions. These signals are driven active at SDU power-up
and by explicitly resetting them through the SDU monitor.
Setting the NuBus reset bit and the Multibus reset bit in
control-status register I (CSR!) will be discussed in
Paragraph 4.2.6. ' '

Tape RESET* is the reset signal for the 1/4-inch tape
interface. This signal is only driven active through the
SDU Monitor. Setting the tape reset bit in CSR1 will be
discussed in Paragraph 4.2.6. :

3.6 Self-Diagnostics

The SDU automatically performs self-diagnostics at power-up.
Manually resetting the system via the INIT command runs the
same self-diagnostics. Besides the following self-
diagnostics description, additional information can be found
in the Nu Machine Diaanostic User Manual.

At reset, the SDU Monitor turns on all three front panel
LEDs (ATTN, SET-UP and RUN) and then tests the on-board RAM.
The monitor halts if the RAM test fails and leaves all LEDs
lighted. If the RAM test passes, the monitor tests the:

¢ Programmable interrupt controller (PIC)

® Bus time-out register (BTO)

® Interrupt register

® Map RAM

® CMOS RAM CRC
Table 3-1 depicts the results of the self-test diagnostics

indicated by the front panel LEDs. When the ATTN and SET-UP
LEDs are out and the RUN LED is on, a >> prompt will appear

* NuBus is a trademark of Texas Instruments Incorporated.

** Multibus is a registered trademark of Intel Corporation.:

3-2 ‘ ’ 2242829-0001

SDU GENERAL DESCRIPTION
OPERATION

IT‘-dn the SDU monitor console device indicating that the SDU

‘and itsvpperating system are operational.

I1f the ATTN LED remains on, the power-up self-test was not
successfully completed. In this case, refer to the
‘troubleshooting flow chart in either Nu Machine Rack Module,
‘Field Theory and Maintenance or Nu Machine Office Module,
Field Theory and Maintenance for help.

If the SET-UP LED remains on, the battery-powered SDU RAM
was not correctly initialized. Refer to the section on
system power-up in either the Nu Machine Rack Module,
General Description or the Nu Machine Office Module, General
. Description for help. :

Table 3-1, Self-Diagnostics Results

LEDS ON - CMOS RAM CRC PASSED ALL OTHER TESTS PASSED
Al | No - No
SET-UP only No Yes
None Yes No

RUN only Yes Yes

2242829-0001 _ ‘ ' 3-3

/

34

2242829-0001

4 PROGRAMMING

4.1 General

This section describes the SDU Multibus(R)* and NuBus (TM)**
address spaces. If the programmer wishes to alter the 8088
software or investigate 8088 capabilities, begin by ,
referring to the Nu Machine** SDU Development System User
Guide. :

4.2 Multibus Address Space Definition

The Multibus is a non-multiplexed, asynchronous bus which
_supports 8-bit and 16-bit data transfers. Multibus
addresses are twenty bits long, providing one megabyte of
address space. Multibus operation is explained in the IEEE
Standard Microcomputer System Bus Specification (IEEE Std
796-1983). '

Table 4-1 is a partial breakdown of the Multibus address
space reserved for SDU use. The low 64K bytes of the SDU
address space are RAM and the high 64K bytes are ROM.

Table 4-1. Multibus Address Space

FUNCTION ADDRESS RANGE COMMENTS
SDU RAM 0x00000-0x0FFFF 64K bytes

SDU Register Space Ox10000-0Ox1FFFF Sparsely implemented,
» multifunction area

SDU ROM OxFO000-0OxFFFFF 64K bytes, byte

addressable

The SDU register space (0x10000-0x1FFFF) contains the
various control registers and special functions implemented

* Multibus is a registered trademark of Intel Corporation.

** NuBus and Nu Machine are trademarks of Texas Instruments
Incorporated.

2242829-0001 - 4-1

SDU GENERAL DESCRIPTION
PROGRAMM I NG

on the SDU. Table 4-2 deta\ls the addresses and related
functions in the SDU register space.

Table 4-2.

FUNCTION
‘Address map

Front panel LEDs/ac
shutdown

Back panel switch
CSR1

. CSRO

A/D converter

CMOS TOD chip
Remote serial port
,Looal serial port
Interval timer #l1
Interval timer #0
Time—out register

1/4-inch tape interface

Bus integrity registers
Interrubt coﬁtroller #0
Interrupt controller #1
Interrupt controller #2

Multibus interrupt
: register :

CMOS RAM

- ADDRESS RANGE

0x18000-0x18FFF

0x1C080

0x1C084
0x1C088
0x1C08C

0x1C100-0x1C11C

0x1C120,0x1C124

0x1C150,0x1C154
ox1c158,0x1c15c
0x1C160-0x1C16C
0x1C170-0x1C17C

0x1C180

Ox1Cl1AO0 and

Ox1C600-0x1CT7FF
0x1C1A8-0x1C1BC
0x1¢1co,0x1c1c4
0x1C1C8,0x1CICC

0x1C1D0,0x1C1D4

Ox1C1E0-Ox1CIFC

Ox1EO0O00-Ox1FFFC

SDU Register Space Definition -

COMMENTS

1024-entry page map

Read onTy
See CSR desc.
See CSR desc.
Read only

See M146818 desc.

‘See Intel 8251A desc.
See Intel 8251A desc.
See Intel 8253 desc.
See Infel 8253 desc.

NuBus time-out preset

See Cipher Tape Manuai

See Intel 8259A desc.
See Intel 8259A desc.

See Intel 825%A desc.

8-bit addréssable

+

2K byte RAM, low byte only

2242829-0001

GENERAL DESCRIPTION
PROGRAMMING

The following paragraphs describe each address space and
corresponding memory-mapped function in detail.

4.2.1 SDU ROM

The Multibus addresses from OxF0000 to OxFFFFF access the
SDU ROM. This ROM contains the SDU Monitor of the SDU
Operating System and certain drivers associated with SDU
functions. Refer to the SDU Operating System User Manual for
detailed SDU ROM information. The ROM consists of up to
four 27128 EPROMS and Multibus interface logic. Each 27128
contains 16K bytes of information. Table 4-3 relates ROM
address ranges to board locations. The SDU ROM can only be
accessed in bytes; 16-bit accesses will not provide
meaningful data.

Tabtle 4-3. ROM Address Allocation

ROM NUMBER ADDRESS RANGE REFERENCE LOCATION

1 OxF0000-0OxF3FFF u43
2 OxF4000-0xF7FFF ue
3 OxF8000-0xFBFFF u4a2
4 OxFCO00-0OxFFFFF us

The 27128s have a 200 nanosecond access time but the actual
SDU ROM response time is between 300 and 400 nanoseconds due
to logic and synchronization delays. .

4.2.2 SDU RAM

The SDU RAM is accessed by the Multibus addresses 0x00000

" through OxOFFFF. The RAM consists of eight 4164 64K byte by
1-bit dynamic RAMs, an 8203 dynamic RAM controller, Multibus
interface logic, a PAL state machine, and termination
resistors. The PAL state machine and the interface logic
translate a 16-bit operation into two byte operations (low
byte first); so the RAM supports Multibus transfers of both
sizes. The 8203 automatically refreshes the DRAMs. The bus
cycle time to read or write the RAM is between approximately
S00 and 750 nanoseconds. However, if a refresh cycle is in
progress, the cycle will be delayed as required. Some areas
of the SDU RAM are reserved for the SDU Monitor. The SDU
Operating System Implementation Description details RAM
allocation.

4,2.3 Address Map _ '
Conversion of Multibus cycles into NuBus cycles requires
mapping 20-bit addresses into 32-bit addresses. The SDU
translates an arbitrary Multibus address into a NuBus
address using a 24-bit by 1024-word static RAM array.
Figure 4-1 depicts the format of this array.

2242829-0001 4-3

SDU GENERAL DESCRIPTION
PROGRAMM ING |

The array is accessed by Multibus addresses 0x18000 through
Ox18FFF. Each map entry consists of four bytes; the most
significant byte is unimplemented.

- Bits 0 through 21 are used as page pointers in the NuBus
address space during Multibus-to-NuBus translation. Bit 22
is unused. Bit 23, the valid bit, is set when a map entry
contains a valid page (1024 bytes) pointer and cleared when
the entry does not contain a valid page pointer. -

The address map is readable and writable over the NuBus.
Only byte transactions are performed; 16-bit operations are
not supported.)

The address map contains undefined data at power-up. Valid
bits in the map may or may not be set. All map entries must
be set to a known assigned value prior to setting bit 1 in
CSRO for the NuBus interface. Failure to do so will result
in spurious accesses to the NuBus during transfers to valid
Multibus addresses.

Multibus Address

Ox18XX(x x11) 0x 18XX(x x10) 0x 18XX(x x01) 0x 18XX(x x00)
reserved - Vix 22-Bit PFN
Unused
valid Bit
NOTE:

PFN = Page Frame Number

Figure 4-1. Address Map Format.

Figure 4-2 shows how Multibus addresses are translated into
NuBus addresses using the map. The upper 10 bits of the
"Multibus address select one of the 1024 map entries. If the
valid bit is set in the setected map entry, the Multibus
operation is translated into a NuBus operation. The lower
22 bits of the selected map entry are used as the most
significant bits of the NuBus address. The lower 10 bits of
the NuBus address are the same as the lower 10 bits of the
Multibus address.

4-4 : 2242829-0001

SDU GENERAL DESCRIPTION
PROGRAMMING

MULTIBUS ADDRESS

——— 20 BIlS —m——
1
!
1

Lower
10 Bits

Upper
10 Bus

PrE g f— vy

Valid
Bit

|

22-Bit PFN Field i

. — —— ——

3

32-BIT NuBUS ADDRESS

NOTE:
PFN -. Page Frame Number
PTE - Page Table Entry

Figure 4-2. Translation DeFinition.

Each map entry corresponds to a fixed page of Multibus
addresses. For example, the map entry at locations 0x184C8,
0x184C9, and 0x184CA always corresponds to Multibus
addresses 0x4C800 through O0x4CBFF. Care should be taken so
that implemented Multibus addresses do not have the valid
bit set in the corresponding map entry.

4.2.4 Front Panel LEDs

Multibus address 0x1C080 accesses the register for the front
panel LEDs. This is a write only register; reading the
register results in undefined data.

This register is one byte wide but only four bits are
meaningful. Bits 0, 1, and 2 each correspond to a different
front panel LED. The LED bits drive the front panel when
they are 0. Thus, writing 1| to a particular bit position
turns the corresponding LED off. Bit 7, the ac shutdown bit,
turns the power off when it is 1. Thus, writing 0x80 to
address 0x1C080 will cause the ac power to go off.

This register is cleared at power-up or SDU reset, enabling

ac power and driving all three LEDs on. Figure 4-3 shows
each bit position function for this register.

2242829-0001 4-5

SDU GENERAL DESCRIPTION
PROGRAMMING

| L————!RUNLED

SETUPLED

ATTNLED
Reserved

Reserved
Reserved
Reserved
AC Shutdown

Figure 4-3. LED Register.

4.2.5 Back Panel Switch H
The status of the back panel switch positions and the

current NuBus slot position of the SDU are determined by

reading Multibus address 0x1C084. This register can only be

read; writing to this location has no effect.

The lower four bits (bits 0 to 3) convey the position of the
back panel rotary switch. Table 4-4 shows the relationship
between the five switch positions and bits 0 to 3 of
0x1C084. The upper four bits (bits 4 to 7) correspond to
the NuBus slot identification lines IDO to ID3. Figure 4-4
shows the switch register’s bit positions and functions.

The back panel switch positions select both software and
hardware options. The software options are described in

- both the Nu Machine Rack Module, General Description and the
Nu Machine Office Module, General Description. Switch
positions 0, 2, 3, and 4 enable the remote serial port to
generate the SDU reset signal when it receives a break
character; switch position 1 disables this function. Switch
position 2 enables the on-board deadman timer; all other
switch positions disable this function. Refer to Paragraph
1.3.1, 8088 and Related Hardware, for more information on
the deadman timer.

4-6 : ' 2242829-0001

SDU GENERAL DESCRIPTION
PROGRAMMING

Table 4-4, 1C084 Bit Patterns

SWITCH POSITION SWITCH3 SWITCHZ SWITCHI1 SHITCHO

— s () s

1
1
0
i
1

A WN—-O
O = e et e
—) v e

7 6 5 4 3 2 1 0

L swiTcHo

—e——————— SWITCH1
SWITCH2
SWITCH3
IDO
D1
1D2
iD3

Figure 4-4. Switch Register.

4.2.6 Control-Status Register 1

Multibus address O0x1C088 accesses a multlpurpose control and
status register. This register is both readable and
writable, but the data read is not always the same as the
data written. This register is cleared at power-up and at
SDU reset. Figures 4-5 and 4-6 show each bit position
fFunction in CSR1 for both reads and writes.

2242829-0001 | 4-7

SDU GENERAL DES
PROGRAMM ING

71 6| sl a| 3] 2]1]o0

L READY (from %" tape)
hieeeemeeeee S DU NUBuUs Reset
~ - SDU Multibus Reset
RESET (to " tape)
REQUEST (to ¥a" tape)
- ENDCONV :
ONLINE (to va" tape)
TPXPT. (from V4" tape)

Figure.4—5. CSR1 Read Format.

716 | 5] a]lalz2!|1]o

l__ NuBus BUS Reset

NuBus SYSTEM Reset
Muitibus INIT

RESET (to %" tape)
REQUEST (to %" tape)
Unused :
ONLINE (to %" tape)
Unused

Figure 4-6. CSRl Write Format.

Bits 0, 3, 4, 6, and 7, when read, convey the status of some
1/4-inch tape interface control lines. - Bits 3, 4, and 6,
when written, drive corresponding bits on the tape
interface. These bits are all active high.

The QIC-02 InterFace\SpeciFicétion explains the meaning of
these tape interface control lines. Note that all SDU tape

4-8 2242829-0001

SDU GENERAL DESCRIPTION
PROGRAMMING

. control and status bits are inverted from the corresponding
bits shown in the QIC-02 Specification. For example, '
writing | to CSR1 bit 6 will cause the QIC-02 signal ONLINE*
to go active (low). If CSRl is read and bit 7 is 1, an '
exception condition exists and the signal EXCEPTION* from
the tape is active (low).

Writing | to bit 0 drives the signal NuBus RESET* active for
a single bus cycle.

Writing 1 to bit 1 drives NuBus RESET* active; it remains
active until 0 is written to this bit. When read, this bit
conveys the state of bit 1| but not necessarily the state of
NuBus RESET*. :

Bit 2 is similar to bit 1, except that it drives Multibus
INIT* active. Reading this bit does not necessarily convey
the state of INIT*.

Bit 5 is a status flag from the SDU analog-to-digital (A/D)
converter which, when active high, indicates that the A/D
converter has completed a conversion and the A/D output is
valid. Bits 5 and 7 are not connected on the register
output; writing data to them has no -effect.

4,2.7 Control-Status Register 0

" Multibus address 0Ox1C08C is a second multipurpose control
and status register. This register is readable and
writable, and the read data indicates the state of each
written bit. This register is cleared at power-up and at
SDU reset. Figure 4-7 summarizes each bit’s function in
CSRO. '

2242829-0001 ' 4-9

SDU GENERAL DESCRIPTION
PROGRAMM I NG

I-— Muitibus Enable
———— Converter Enable
Time-out Enable
Clocksel0
Clocksel1
Voitsel0
Voltsell
Integrity Enable

Notes:

1) Clockselt Clocksel0 Bus Clock

0 0 10 MHz

0 1 9 MHz

1 0 11 MHz

1 1 Off-board source
2) Voltsel1 Voltsel0 +5V dc status

0 0 Normal

0 1 Margin high

1 0 Margin low

1 1 Transition

Figure 4-7. Control-Status Register 0.

Bit 0 of CSRO is the Multibus enable bit. When this bit is
I, the interface between the SDU internal Multibus and the

external Multibus is enabled. Under these conditions, the

‘internal Multibus and external Multibus are effectively one
Multibus, and the interface is transparent for all address,
data, control, interrupt, and arbitration lines.

When this bit is 0, the internal Multibus and external
Multibus become separated. At this point, activity on the
one has no effect on the other. The SDU continues to drive
the external Multibus timing signals (CCLK* and BCLK*),
although all other interface connections are severed, until
the Multibus priority input is forced on. Attempts to
access the external Multibus when this interface is disabled
result in Multibus time-outs; the target slave is not
affected and no transfer acknowledge occurs.

Bit | of CSRO is the converter enable bit. This bit enables
conversions in both directions between the Multibus and

4-10 2242829-0001

U GENERAL DESCRIPTION
PROGRAMMING

NuBus. When this bit is 0, the SDU is effectively isolated
from the NuBus. Attempts to access the NuBus when this bit
is 0 result in Multibus time-outs; no NuBus transaction can

be initiated.

Note that CSRO is cleared at power-up and at SDU reset.
Therefore, the bus interfaces previously discussed are both
disabled and must be explicitly enabled.

Bit 2 of CSRO enables the SDU to generate NuBus time-outs.
The time-out period depends on the value in the time-out
register. |If this bit is 0, time-outs on the NuBus must be
generated by some other system component. Refer to
Paragraph 4.2.12, Time-Out Register, for more details.

Bits 3 and 4 of CSR0O select the rate at which the SDU drives
the NuBus clock. Figure 4-7 shows the clock rate selected
by the various bit patterns. At power—-up or SDU reset the
normal 10 megahertz clock rate is selected. The 9 megahertz
and 11 megahertz clock rates are for diagnostic purposes
only and should not be used in normal operation. These
clock rates are intended to stress the system and
demonstrate operational tolerances. If both bit 3 and bit 4
are high, an off-board clock source, if connected, is
selected.

Bits 5 and 6 of CSRO select the voltage level of the
system’s +5 volts dc supply. Figure 4-7 shows the voltage
level selected by each bit pattern. Note that when the
voltage is changed from a marginal to normal value, both
bits 5 and 6 should be in a transition state of | for no
less than 500 milliseconds before clearing them. This
period allows the power supply to return to its normal
output without enabling the dc out-of-tolerance signal.
Failure to go through this transition state can result in
spurious SDU resets.

Bit 7 of CSRO enables SDU diagnostic registers to drive and
sense the level of NuBus lines. Paragraph 4.2.14, Bus
Integrity Registers, details the relationship between the
integrity registers and particular NuBus signals. When bit
7 of CSRO is 1, the contents of the integrity registers are
statically and unconditionally enabled onto the NuBus.
Therefore, this bit should only be turned on when the NuBus
is in a diagnostic state and, preferably, with NuBus RESET*

active.

4.2.8 A/D Converter

The SDU board has an 8-channel A/D converter which could be
used for sensing levels of external thermal sensors. The
reference inputs to the A/D are GND and +5. Thus, 0x00

.2242829-0001 4-11

SDU GENERAL DESCRIPTION
PROGRAMM ING

indicates that the selected chahnel is connected to ground
or a very low voltage. OxFF indicates that the channel is
connected to a +5 or higher voltage.

To select a channel and read the digitized value:

& Arbitrary data is writtenvto the Multibus address of
the desired channel. This initiates the analog signal
digitization corresponding to that channel.

® When the signal ENDCONV (bit 5 of CSR1) goes active
(high), the digitized data is available from the A/D.

® The digital value is retrieved from the A/D by feading
any valid A/D address.

Table 4-5 shows the relationship'between Multibus addresses
and A/D channels. Note that A/D channel selection occurs on
write cyclies only, and any A/D address can be used to read

the data.
Table 4-5. A/D Converter Addresses

MULTIBUS ADDRESS A/D CHANNEL 1/0 PINS

0x1C100 0] PO0O3 Al2
0x1C104 1 P003 B9

0x1C108 2 POO3 B1O0
Ox1C10C 3 P003 B11
Ox1Cl110 4 Ground

0x1Cl114 S P0OO3 BI13
oxicCl18 6 PO03 Bl4

7 +5 volits dc

Ox1C11C

4.2.9 CMOS TOD Chip

The SDU battery-powered time-of-day Chlp is a Motorola
MC146818. The MC146818 data sheet gives a complete chip
description and programming information. The MC146818 can
be viewed as an array with 64 byte registers with addresses’
from 0 to 63. The first 14 bytes (0 to 13) have special
purposes, while the remaining 50 bytes are general purpose.
Data transfer to this chip requires two bus transactions:
writing the register’s address to Multibus address 0x1Cl24,
then reading/writing data from/to Multibus address 0x1C120.

4.2.10 RS-232C Serial Ports

The SDU has two RS-232C serial communlcatlons ports: the
remote serial port and the local serial port. Each serial
port consists of an 8251A programmable communications

4-12 : 2242829-0001

GENERAL DESCRIPTION
PROGRAMMING

interface (PCl) and interface logic for receiving and
driving RS-232C levels. Both ports operate in asynchronous
mode only. The remote serial port drives the 5DU reset
signal active if a break character is detected on the
received data input while the back panel switch is in
position 0, 2, 3, or 4. Each serial port is connected to a
25-pin, D-shell connector on the Nu Machine back [/0 paneli.’
The remote port is connected to a male connector; the local
port is connected to a female connector. Refer to either
the Nu Machine Rack Module, General Description or the Nu
Machine Office Module, General Description for details on
the SDU paddle card and its interface cable to the serial
ports. ‘

Appendix D shows the relationship between D-shell pin
assignments and 8251A signals. Two Multibus addresses are
associated with each port: 1) a command register for
inftialization, setting control parameters, and reading
status, and 2) a8 data register for reading/writing
received/transmitted data. The 8251A data sheet gives
detailed programming information. Table 4-6 shows the
Multibus addresses for accessing serial port registers.

Table 4-6. Multibus Addresses to Serial Port Registers

MULTIBUS ADDRESS DESCRIPTION
"0xlC150 Remote serial port data register
0x1C154 Remote serial port command/status register
Ox1C158 Local serial port data register
CxlClSC‘ Local serial port command/status register

4.2.11 Programmable Interval Timers

Two Intel 8253 Programmable Interval Timers (PITs) are used
on the SDU: PIT0 and PITl. Each PIT has three timers on it
each with an input clock rate of 1.2288 megahertz. The 8253
data sheet gives detailed programming information. Table
4-7 shows the relationship of Multibus addresses to PIT .
registers and each PIT’s function.

2242829-0001 ' 4-13

SDU GENERAL DESCRIPTION
PROGRAMM ING

Table 4-7. PIT Address Map

MULTI1BUS REGISTER COUNTER

ADDRESS DEFINITION FUNCTION
OxlCIGO PIT]l counter #0 Periodic interrupt #0

O0x1Cl64 PIT]1l counter §l1 Periodic interrupt #1
0x1Cl1é8 PIT! counter #2 Periodic interrupt #2

Ox1C16C PIT1 mode None

0x1C170 PITO counter #0 Remote serial port rate generator
Ox1C174 PITO counter #! Local serial port rate generator
0x1C178 PITO counter #2 Unused

Ox1C17C PITO mode None

PITs operating as periodic interrupts go to interrupt
controller #l at interrupt levels 4, 5, and 6 (refer to
Paragraph 4.2.15, Interrupt Controllers). PITs operating as
rate generators drive the receive and transmit clocks of the
serial ports. Note that the rate generator PITs must be
programmed in the square wave rate generator mode.

The serial data rate is determined by both PITO and the
8251A programming. For example, suppose a 9600 baud rate is
required, and the 8251A is in 16X mode. Since clock input
is 16 times the data rate, the 8251A should have a clock
rate of 153600 (16 X 9600) hertz, and the PIT should be
programmed to divide the input clock rate (1.2288 megahertz)
by 8 (1228800/8 = 153600). '

4.2.12 Time-Out Register v

Multibus address O0x1C180 accesses the NuBus time-out
register on the SDU. This register is both readable and
writable. Setting this register to 0 establishes the
maximum NuBus time-out period of 25.6 microseconds. Shorter
time-out periods (from 0 to 25.6 microseconds) are achieved
by writing numbers greater than 0 into this register. For
example, if Ox80 is written into the time-out register, the
NuBus time-out is set to 12.8 microseconds. This register
fs cleared at power-up and:on SDU resets. Note that NuBus
time-outs are only enabled by setting the time-out bit (bit
2) in CSRO.

4.2.13 1/4-1nch Tape Interface

The SDU 1/4-inch tape interface is memory-mapped in Multibus
address space. The tape interface state machine translates
reads of Multibus address 0OxICIA0 into tape status reads.
Writes to this address are translated into command transfers
to the tape drive. Multibus addresses in the range from

4-14 : | | 2242829-0001

SDU GENERAL DESCRIPTION
PROGRAMM I NG

O0x1C600 to OxIC7FF are translated into string data transfers
to or from the tape drive. Only byte transfers are
supported.

The tape interface control signals RESET*, ONLINE*, and
REQUEST* are determined by bits in CSR!. Paragraph 4.2.6,
CSR1, relates these control signals and bit positions. The
control signal XFER* is driven by a PAL state machine, which
translates Multibus control lines into XFER* and vice versa.
The status lines EXCEPTION* and READY* can be sensed by
reading CSR1 or received as interrupts on PICO. The signals
DIRC* and ACK* from the tape are used strictly by the tape
interface state machine.

For a complete description of the SDU l/4-1nch tape
interface, refer to the QIC-02 Interface SpeCIFtcatlon Rev.
D (9/23/82).

4.2.14 Bus Integrity Registers

The SDU can statically drive NuBus signal lines and then
read the status of these lines to determine if any NuBus
signals are shorted high, low, or together. The bus
integrity registers statically and unconditionally drive the
NuBus if the integrity enable bit (bit 7) in CSRO is 1.
Therefore, the integrity logic should only be activated if
the NuBus is quiescent, preferably with the SDU holding
NuBus RESET* active. The integrity logic is in six Multibus
address space registers. Each of these registers is readable
and writable. If the NuBus signal lines are not shorted,
the data read should be the data written. Table 4-8 shows
which Multibus address accesses which integrity register.

Table 4-8. Integrity Registers

MULTIBUS ADDRESS REGISTER NUMBER

0x1C1A8 0
Ox1CIl1AC 1
Ox1C180 2
Ox1C1B4 3
0x1C1B8 4
Ox1CiBC 5

Figures 4-8 through 4-13 show the relationship between NuBus
signal names and bit positions For each of the integrity
registers.

2242829-0001 - - | 4-15

SDU GENERAL DESCRIPTION
PROGRAMM I NG

L ADOO*
_ — ADO1%
ADO2%
ADO3 %

ADO4 %
ADOS*

ADO6*

Figure 4-8.

ADO7 %

Integrity Register O.

L————-ADOB*

ADO9*
AD10*
AD11%
AD12%

AD13*

AD14%

Figure 4-9.

AD15%

Integrity Register 1.

2242829-0001

GENERAL DESCRIPTION

I———-AD16*

AD17%
AD18%
AD19%

AD20*

AD21%

AD22%
AD23%

Figure 4-10.

Integrity Register 2.

Figure 4-11.

2242829-0001

Integrity Register 3.

PROGRAMMING

o
}

SDU GENERAL DESCRIPTION
PROGRAMM ING

7 6 5 4 3 2 1 0

L————ARBO*

ARB1 *
ARB2*
ARB3*
RQST *
ACK %

START *
SPV*

Figure 4-12. Integrity Register 4.

L spx
—_— TMO*
' TM1%
Unused
Unused
Unused
Unused
Unused

Figure 4-13. Integrity Register 5.

4.2.15 Interrupt Controllers

The SDU has three 8259A programmable interrupt controllers
(PICs) which generate interrupts to the 8088. Two of them
operate in the slave mode (PICl, PIC2) and the third (PICO)
operates in the master mode. Detailed programming '
information is in the 8259A data sheet. The interrupts are

4-18 : : _ 2242829-0001-

RAL DESCRIPTION
PROGRAMMING

individually maskable, and the priority is also
programmable. The interrupt requests can also be programmed
to sense either edges (low-to-high transitions) or high
levels on the PIC inputs. Table 4-9 through Table 4-11
relate each PIC interrupt number to its interrupt function.

Table 4-9. PICO Interrupt Functions

INTERRUPT # SIGNAL DESCRIPTION

0 MULTITO* ‘Multibus time-out

1 TIMEOUT* NuBus time-out ,

2 TPXPT* 1/4-inch tape EXCEPTION* input

3 TPRDY* l1/4-inch tape READY* input

4 ACLOINT* Ac power fail from power supply
5 RSVD* Reserved

6 PIC2INT* Interrupt from slave PIC2

7 PICIINT* Interrupt from slave PICI

The MULTITO signal indicates that a Multibus time-out has
occurred. Multibus time—-outs are generated if the 8088 does
not access a bus for longer than 3 milliseconds. Thus,
MULTITO will go active if the 8088 executes a halt
instruction or if the 8088 is denied Multibus access for
longer than the time-out period. Note that Multibus time-
outs do not cause any transfer acknowledge on the Multibus.
The Multibus does not support error acknowledgment.

The SDU generates a NuBus time-out when the time-out enable
bit in CSR0O is | and either: 1) A START* cycle occurs on the
NuBus and an ACK* cycle has not occurred for longer than the
programmed time-out period, or 2) RQST* has been active but
a START* has not occurred for longer than the programmed
time-out period. In the first situation, the SDU generates
an ACK* with a bus time-out code on the TMx* lines. In the
second case, the SDU generates an idle cyclie to reinitiate
arbitration. A time—-out interrupt indicates one of these
cases.

The TPXPT interrupt indicates an exception condition from
the 1/4-inch tape controller. This interrupt is asserted at
the high-to-low transition of the EXCEPTION* signal from the
tape controller. Refer to the QIC-02 Interface ,
Specification for implications of activity on this line.

TPRDY is similar to TPXPT except that it indicates that the
READY* signal on the l/4-inch tape interface has made a
high-to-low transition.

2242829-0001 . 4-19

SDU GENERAL DESCRIPTION
PROGRAMMING

ACLOINT indicates that the ac power to the +5 volit power
supply is below a specified level. This interrupt is
asserted whenever the power supply ACLO line goes from the
low-to-high state.

~ The slave interrupt controllers, PICl and PIC2 are cascaded
through the master interrupt controller PICO. The slave
interrupt controllers generate PICLINT and PICZINT
interrupts to the master. These. interrupts indicate that
there is an active input on one or more of the respective
interrupt lines.

Table 4-10. PICl Interrupt Functions

INTERRUPT # SIGNAL - DESCRIPTION

0 RXRDYO* Remote serial port receive ready
1 TXRDYO* Remote serial port transmit ready
2 RXRDY1* Local serial port receive ready

3 TXRDY1* Local serial port transmit ready
4 PITINTO* Periodic interrupt O

5 PITINTI* Periodic interrupt 1

6 PITINT2* Periodic interrupt 2

7 Spare '

RXRDYO is a signal from the remote serial port indicating
that a character is in the receive buffer and ready for
processing. This signal is connected directly to pin 14 of
the 8251A associated with the remote serial port.

TXRDYD is a signal from the remote serial port indicating
that the transmitter is ready to accept a data character.
This signal is connected directly to pin 15 of the 8251A
associated with the remote serial port.

RXRDY! and TXRDY! are similar to RXRDYO and TXRDYO except
that they pertain to the local serial port rather than the
remote serial port.

PITINTO, PITINT1, and PITINTZ are all interrupt inputs from
PITI. These general system timers can generate interrupts
from once every 1.62 microseconds to once every 53
milliseconds. Paragraph 4.2.11, Programmable Interval
Timers, gives more information on the interrupt timer.

4-20 2242829-0001

Table 4-11.

INTERRUPT # SIGNAL
LOCALINTO*
LOCALINT*

LOCALINT3*
LOCALINT4*
LOCALINTS*
LOCALINT6*
LOCALINT7*

NoOOMhsA WN—~O

The inputs to PIC2 are driven by a three-state buffer,
inputs to the buffer are the Multibus
is activated only when the
Multibus enable bit (bit 0) of CSRO

through INT7®*. The buffer

LOCALINT2*

SDU GENERAL DESCRIPTION

PROGRAMMING

PIC2 Interrupt Functions

DESCRIPTION

Multibus interrupt 0
Mutltibus interrupt 1
Multibus interrupt 2
Muitibus interrupt 3
Multibus interrupt 4
Multibus interrupt S
Multibus interrupt 6
Multibus interrupt 7

The

interrupt lines INTO*

is 1.

The PICs are programmed by Writing initialization command

words (ICWs) and operation control

required, into the PIC.
the programming sequence are
in the data sheet a signal,

the first ICW (or OCW) and subsequent control words.

SDU implementation, the signal

address bit #2 (MADDROZ).

words (OCWs), as
Details on these control words and

in the 8259A data sheet.
A0, which differentiates between

Note

In the

is driven by Multibus

addresses and each PIC’s control word locations.

Table 4-12.
MULTIBUS ADDRESS FUNCTION
0x1C1CO ICW1, OCwWli
ox1ClC4 ICW2-1CW4,0CW2-0CW3
0x1C1C8 "ICW1, OCWl1
OxiC1iCC ICW2-1CW4,0CW2-0CW3
0x1C1DO ICWl, OCWI
0x1C1D4 ICW2-1CW4,0CW2-0CW3

4.2.16 Multibus Interrupt Register
The Multibus has eight interrupt tines (INTO* to INT7*).
The SDU can sense any of these lines through PIC2 as

described
these lines.
address as Table 4-13 shows.

2242829-0001

PIC Addressés

PICO
PICO

PICI
PICI

PIC2
P1C2

Table 4-12 relates Multibus

CONTROLLER NUMBER

in the preceding paragraph and can drive any of
Each interrupt has a corresponding Multibus

21

n
|

SDU GENERAL DESCRI
PROGRAMMING -

Table 4-13. Interrupt Addressing

MULTIBUS ADDRESS MULTIBUS INTERRUPT LEVEL

Ox1CI1EOQ
Ox1ClE4
OxI1CIES8
- OxI1CI1EC
OxI1CIFO g
Ox1CiF4 -
OxI1C1F8
Ox1CIFC

OV WN—~O

Each Multibus interrupt line can be driven active by writing
a byte to the corresponding Multibus address with the least
significant data bit set to 1. The interrupt can be cleared
by writing 0 to the least significant bit at the same
location. The status of the interrupt register can be
determined by reading address Ox1ClEO0. Each bit of this
register corresponds to a particular Multibus interrupt bit.
For example, if Ox00 is written to OxICIEQO through 0Ox1Cl1FQ,
0x01 is written to OxIClF4, and Ox00 is written to OxICIF8
and OxICIFC, Multibus interrupt 5 will be active and reading
Ox1CIEQO will produce 0x20. This interrupt can be cleared by
writing Ox00 to OxICIF4.. Figure 4~14 shows the format of
Ox1ICIEOQ when it is read.

7 6 5 4 3 2 1 0

L————-Ox1C1E0bh0

0x1C1E4 bit O
O0x1C1E8 bit 0
0x1C1EC bit O
0x1C1FO bit O
0x1C1F4 bit O
0x1C1F8 bit 0
0x1C1FC bit 0

Figure 4-14. O0xICIEO Read Format.

4-22 : 12242829-0001

RAL DESCRIPTION
PROGRAMMING

4.2.17 CMOS RAM

The SDU battery backed up CMOS RAM is accessed by Multibus
addresses Ox1E000 through OxIFFFC. Only every fourth byte
address is a valid RAM address. Thus, byte 0 of the CMOS

RAM is at Multibus address Ox1EQ00, byte 1 is at Ox1EQ004, _
and so forth. A total of 2048 byte locations are provided.
Figure 4-15 illustrates the CMOS address space. The battery

backed up RAM is used to retain system setup and
configuration information through power—-down cycles. The
SDU Operating System User Manual describes the data format
stored in the CMOS RAM. '

Ox1FFFF OX1FFFC
CMOS
RAM
N =
*0x1E004
Ox1E003 Ox1E000
Byte 3 r Byte 2 I Byte 1 Byte 0

Figure 4-15. CMOS RAM Address Space.

i

2242829-0001 - 4-23

SDU GENERAL DESCRIPTIO
PROGRAMM ING

N

4.3 NuBus Address Space Deflnition‘

The SDU is a NuBus slave. All valid SDU addresses are
between NuBus address OxF(ID)000000 and OxF(ID)FFFFFF, where
ID is the SDU hexadecimal slot identification number. The
valid address spaces contained within the SDU’s NuBus
address space consist of three major blocks: Multibus memory
space, Multibus 1/0 space, and configuration space. Figure
4-16 shows the breakdown of the SDU’s NuBus addresses.

OXF(ID)FFFFFC

CONF.
~ ROM T

OxF(ID)FFE000
OxF(ID)FFDFFC

CONF REG.

)i

OxF(IDY14FFFF
= MULTIBUS e} SPACE :L.:
(byte. halfword, word access)
0xF(1D)140000
: OxF(ID)13FFFC -
MULTIBUS
by VO [
" space T
(byte only) .
0xF(tD)100000
OxF(ID)OFFFFF . OxF(ID)OFFFFC

MULTIBUS MEMORY SPACE

£C

)

{C
)]

0xF(ID)000000

Figure 4-16. SDU NuBus Addresses.

4-24 : ' 2242829-0001

RAL DESCRIPTION
PROGRAMMING

4.3.1 Multibus Memory Space

NuBus addresses OxF(ID)000000 through OxF(ID)OFFFFF directly
access the Multibus memory space. The addressing is
contiguous (no holes). Byte, halfword, and word transfers
are supported across the interface. The NuBus address of a
Multibus facility is simply the facility’s Multibus address
appended to OxF(ID)O0... (with ADO* and ADI* adjusted to
indicate transfer size). Thus, SDU facilities on the
Multibus are all available through the NuBus and have the
same operational characteristics (for example, byte access
and holes) when viewed through the bus converter as on the
Multibus. Note that for any accesses through the NuBus-to-
Multibus interface, the converter enable bit (bit 1) of CSRO
must be set to l-—-otherwise NuBus time-outs occur.

4.3.2 Multibus I/0 Space

Two different mappings access the Multibus [/0 space from
- the NuBus. NuBus addresses OxF(ID)100000 through

OxF (ID) 13FFFC are translated into Multibus [/0 operations
with only the low byte of each NuBus word mapped into a
Multibus 1/0 port. Thus, the entire Multibus [/0 address
space is accessible in bytes from the NuBus. Byte,
halifword, or word transfers can access the Multibus 1/0
space in this address range but only the low byte of each
NuBus word is valid data. Read operations to this space are
mapped into Multibus IORC* operations and writes to this
space are mapped into IOWC* operations.

NuBus addresses OxF(ID)140000 through OxF(ID)14FFFF are
mapped into Multibus [1/0 operations, as in Multibus memory
space mapping, with all byte, halfword, and word transfers
supported across the interface. This permits efficient data
transfers to 1/0 locations which support 16~-bit operations.
Word transfers on the NuBus are translated into two 16-bit
Multibus operations. Read operations to this space are
mapped into Multibus IORC* operations and writes to this
space are mapped into IOWC* operations.

4.3.3 Configuration Space

The configuration space on the SDU is made up of a
configuration register and a configuration ROM. The
configuration register’s standard layout does not provide a
reset or enable bit since the SDU performs system boot and
is enabled at power-up. Bit 2 is the LED bit. Writing 1 to
this bit turns the SDU LED on; writing 0 to this bit turns
it off. This bit is turned on at power-up or SDU reset. The
configuration register is at address OxF(ID)FFDFFC.

The 2K-byte configuration ROM is justified to the low byte

of each NuBus word. The configuration ROM addresses are
OxF (ID)FFEOOO to OxF(ID)FFFFFC. The configuration ROM

2242829-0001 4-25

SDU GENERAL DESCRIPTION
PROGRAMMING

contains'board—dependent information and start-up
diagnostics. The Nu Generation Computer System Architecture
Specification details the contents of this ROM.

4.4 Software Development

Both object and source licenses for the SDU Development
System are available, as well as the SDU Operating System
source. Contact your local sales representative for further
information.

Software development information can be located in the
following documents:

TITLE PART NUMBER

‘ﬂg Machine SDU Operating System
User Manual 2242811-0001

Nu Machine SDU Operating System
Impiementation Description - 2242812-0001

Nu Machine SDU Operating System Driver
Design Guide 2242813-0001

'ug Machine SDU Development System,
User Guide 2242815-0001

Nu Machine SDU Development System, ,
Assembler Reference Manual 2242816-0001

4-26 ' : 2242829-0001

Appendix A Pl PIN ASSIGNMENTS

The Pl connector detailed in Table A-l has standard NuBus
pin assignments. Signal line characteristics for the NuBus
are described in the NuBus Specification.

Table A-1. NuBus Pin Assignments

PIN/ROW A B8 C
1 ~-12 -12 RESET*
2 GND GND GND
3 SPV* GND +5
4 Sp# +5 +5
5 TML* +5 TMO*
6 AD1* +5 ADO*
7 AD3* +5 AD2*
8 ADS* -5 AD4*
/ -9 AD7* -5 AD6*
i 10 ADO* -5 AD8*
11 AD11% -5 ADI1O*
12 AD13* GND AD12*
13 AD15* GND AD14*
14 AD17* GND ADle*
i15 - AD19* GND AD18*
16 AD21* GND ~ AD20*
17 AD23* GND AD22*
18 AD25* GND AD24*
19 AD27* GND AD26*
20 AD29* GND AD28*
21 AD31* GND AD30*
22 GND GND GND
23 GND =~ GND RSVD*
24 ARB1* -5 ARBO*
25 ARB3* -5 ARB2*
26 IDI* -5 1DO*
27 I1D3* -5 . 1D2*
28 ACK* +5 START*
29 +5 +5 +5
30 RQST* GND +5
31 GND GND GND
32 +12 +12 CLK*

2242829-0001 A1

2242829-0001

Appendix B P2 PIN ASSIGNMENTS -

The Multibus pin assignments are mapped into a DIN
connector. Table B-1 shows the Mulitibus pin assignments on
the P2 connector as they appear on the SDU. Multibus signal
line characteristics are described in the Multibus
Specification.

Table B-1. SDU Multibus Pin Assignments

PIN/ROW A 8 o

1 AD17* AD16* AD15*
2 DATO* GND AD14*
3 DAT2* GND DAT1*
4 DAT4* GND DAT3*
5 DATe* +5 DATS*
6 DAT8* +5 DATT7*
7 DATA* +5 DATO*
8 DATC* +5 DATB*
S DATE* +5 DATD*
10 ADRO* +5 DATF*
11 ADR2* -5 ADRI1*
12 ADR4* GND ADR3*
13 ADR6* RSVD* ADR5*
14 ADR8B* RSVD* ADR7*
15 ADRA* =12 ADR9*
16 ADRC* GND ADRB*
17 ADRE®* GND ADRD*
18 INTO* GND ADRF*
19 INT2* GND INTL*
20 INT4* +12 INT3*
21 INTE* RSVD* INTS*
22 INTA®* RSVD* INT7*
23 CCLK* GND AD13*
24 - CBRQ* +5 AD12*
25 BHEN®* . 45 AD11*
26 AACK* +5 AD10O*
27 XACK* - +5 INHZ2*
28 IORC* +5 INH1*
29 ‘MRDC* GND IOowC*
30 BUSY* GND MWTC*
31 BPRN* GND BREQ*
32 BCLK* INIT* BPRO*

2242829-0001 B-1

B-2

2242829-0001

Appendix C P3 PIN ASSIGNMENTS

The P3 pin assignments are used for 1/0. Tables C-1 through
C-3 describe the signals on this connector.

PIN/ROW

AO1
A02
AO3
A04
AOS

~ A06.

~ AO7
A0S
AQ9
A10
All
A12
A13
Al4
A15
A6
A17
A18
A19
A20
A2l
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
A32

SIGNAL

TPDATO*
TPDAT2*
TPDAT4*
TPDAT6E*
TPDIR*
TPACK*

- TPRDY*

Open
SWITCHO
SWITCH2
RSVD
ADCCHO
LEDO
LED2
GND
Open
TXDO
DTRO
CTS0
TXD1
DTR1
CTsl1
GND
Open
ACPF
DCOT
Open
MARGZ2
Open
PWROFF
GND
Open

2242829-0001

Table C-1. P3 Row A

DESCRIPTION

1/4-inch tape data bit 0
1/4-inch tape data bit 2
1/4-inch tape data bit 4
1/4-inch tape data bit 6

1/4-inch tape DIRC* control line
1/4-inch tape ACK* control line
1/4-inch tape READY*" control line

Back panel switch bit O
Back panel switch bit 2
Reserved

A/D channel 0

RUN LED on front panel
ATTN LED on front panel
Logic ground

Remote serial port transmit data
Remote serial port data terminal ready
Remote serial port clear to send

Local serial port transmit data

Local serial port data terminal ready
Local serial port clear to send

togic ground

Ac powerfail signal from power supply
Dc out-of-tolerance from power supply

Margin control to power supply

Ac shutdown to ac distribution box
Logic ground '

PIN/ROW

801
802
803
BO4
BOS
BO6
BO7
808
B09
B10
B11
B12
B13
Bl4
B15
B16
B17
B18
B19
820
B21
B22
B23
B24
B25
B26
827
828
B29
B30
B31
B32

SDU GENERAL D
P3 PIN ASSIGNMENTS

SIGNAL

TPXPT*
GND
GND
Open
Open
Open

BFTPRST*

Open

ADCCH1
ADCCH2
ADCCH3

"GND

ADCCHS
ADCCH6
ADCCH7
GND
Open
Open
GND
Open
Open
Open
GND
Open
Open
Open
Open
Open
Open
GND
GND
Open

Table C-2. P3 Row B

DESCRIPTION

1/4-inch Tape EXCEPTION* control line
Logic ground »
Logic ground

1/4-inch tape RESET* control line

A/D0 channel 1
A/D channel 2
A/D channel 3
Logic ground

A/D channetl 5
A/D channel 6
A/D channel 7
Logic ground

Logic ground

- Logic ground

Logic ground
Logic ground

2242829-0001

GENERAL DESCRIPTION
P3 PIN ASSIGNMENTS

Table C-3. P3 Row C

PIN/ROW SIGNAL DESCRIPTION

col TPDAT1 * 1/4-inch tape data bit 1

co2 - TPDAT3* : 1/4-inch tape data bit 3

Cco3 TPDATS* 1/4-inch tape data bit 5

Cco4 TPDAT7* 1/4-inch tape data bit 7

Co05 BFTPXFER* 1/4-inch tape XFER* controlviine
Cco6 BFTPRQST* 1/4-inch tape REQUEST"* control line
Cco7 BFTPONL INE* 1/4-inch tape ONLINE* control line
cos Open

c09 SWITCH1 Back panel switch bit |

clo SWITCH3 Back panel switch bit 3

Cli RSVD Reserved

Ccl2 EXTRST*® Back panel reset switch

Ccl13 LEDI1 SETUP LED on front panel

Cl4 RSVD ' Reserved

Ci15 RSVD ' Reserved

clé Open .

Cl7 RTSO Remote serial port request to send
Cc18 RXDO Remote serial port received data
Ccio DSRO o Remote serial port data set ready
ca0 RTSI1 tocal serial port request to send
c21 RXD1 tocal serial port received data
Cc2 DSR1 Local serial port data set ready
Cc23 GND Logic ground

C24 Open

c25 Open

c26 Open

c27 Open

c28 Open

c29 Open

c30 Open

C31 Open

C32 Open

The 1/4-inch tape interface signal 1ine characteristics are

described in the QIC-02 Interface Specification. The back
control panel switch inputs to the SDU are all pulled up to
+5 volts through 1K ohm resistors on the SDU. These signals
are typically either open or shorted to ground by the
external switch. The A/D channel inputs are high impedance
inputs to an A/D converter. Locations for resistors in
parallel with the A/D are provided on-board to facilitate
voltage divider or controlled current circuitry.

The front paneI LED outputs are driven by a 745241 buffer.
The LEDs turn on when these signal lines are driven low.

2242829-0001 ' - C-3

SDU GENERAL DESCRIPT
P3 PIN ASSIGNMENTS

The LEDs should be connected to +5 vo]tszthrough a current
1imiting resistor. : » .

The serial port signal lines are all at standard RS-232C
levels. The ac powerfail, dc out-of-tolerance, and margin
signals are all determined by the power supply.

Normally, ac powerfail is logic 0. With ac removal, the
powerfail signal goes to logic | at least 3 milliseconds
before loss of dc output. On ac turn-on, this signal
remains high until the output is in regulation.

Normally, dc out-of-tolerance is logic 0. When the output
is under or over voltage by 5 percent, dc out-of-tolerance

goes to logic 1. When the output goes back to within
tolerance, this signal remains high for 100 to 500
milliseconds. ' ‘

The SDU has the capability to margin the power supply by
+/-7 percent. The system margin checking driver circuit is
on the SDU board.

The ac shutdown signal is an open-collector output capable
of sinking 10 milliamps. Signal levels up to 30 volts can
be tolerated on this line.

C-4 2242829-0001

PIN/ROW

VONOOODAWN —

Note:

Connector is a 25-pin,

Table D-1.

RS-232C DESIGNATION

Frame ground (AA)
Transmitted data (BA)

Received data (BB)

Request to send (CA)
Clear to send (CB)
Data set ready (CC)
Signal ground (AB)
Data carrier detect (CF)
Not used

Not used

Not used

Not used

Not used

Not used
Transmitter clock (DB)
Not used

Receiver clock. (DD)
Not used

Not used

Data terminal ready
Not used

Not used

Not used

Not used

Not used

2242829-0001

D-shell, male

Remote Serial Port Pin Assignments

SDU NAME

Chassis ground
TXD

RXD

RTS

CTS

Not used

Logic ground
DSR

Not used

Not used

DTR

connector.

Appendix D SERIAL PORT PIN ASSIGNMENTS

8251A PIN

19

3
23
17

22

24

SDU GENERAL DESCRITY
SERIAL PORT PIN ASSIGNMENTS

Table D~2. Local Serial Port Pin Assignments

PIN/ROW RS-232C DESIGNATION

| Frame ground (AA)
2 Received data (BB)
3 Transmitted data (BA)
4 Clear to send (CB) ’
S Request to send (CA) .
6 Data set ready (CC)
7 Signal ground (AB)
8 Data terminal ready
9 Not used

10 Not used

11 Not used

12 Not used

13 Not used

14 Not used

15 Receiver clock (DD)
16 Not used

17 Transmitter clock (DB)
18 . Not used

19 Not used -

20 Data carrier detect (CF)

21 Not used

22 - Not used

23 Not used

24 Not used

25 Not used

Note:

SDU NAME

Chassis ground
RXD

TXD

CTS

RTS

Pull-up

Logic ground
DTR

Not used

Not used

DSR

Connector is a 25 pin, D~shell, female connector.

8251A PIN

19
17
23

24

22

2242829-0001

Appendix E_ MULTIBUS COMPL IANCE LEVELS

The Multibus Specification allows optional levels of
compliance in several areas. This section describes
Multibus attributes supported by the SDU.

Data Path The SDU supports a 16-bit data path on the
Multibus. Byte swapping techniques are used to allow both
8-bit and 16-bit cards to work in the system.

Memory Address Path The SDU supports a 20-bit Multibus
memory address path. Multibus cards using 16-bit or 24-bit
addressing may not be compatible.

1/0 Address Path The SDU supports a 16-bit 1/0 address
path but does not act as an 1/0 stave. 8-bit 1/0 address
path slaves are supported.

Interrupt Attribufes The SDU supports only nonbus-vectored
interrupts over the Multibus.

Multibus Arbitration The SDU supports the Multibus daisy
chain priority resolution scheme and drives CCLK* and BCLK*
on the Multibus. CCLK* is driven at 10 megahertz but BCLK*
(arbitration clock) is driven at 5 megahertz to permit up to
seven potential masters on the Multibus. The SDU has two
potential masters on it--the 8088 and the NuBus converter.

2242829-0001 ' E-1

E-2 v N 2242829-0001

‘ _ : CUT ALONG LINE

Manual Title:

Nu Machine System Diagnostic Unit, General Description

(2242829-0001)

Manual Date: August 1. 1984 Date of this Letter:

User's Name: . Telephone:

Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN USA.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

i

.]

. "

BUSINESS REPLY MAIL ————

" FIRST CLASS ~ PERMIT NO. 7886 _ SANTA ANA. CA =

POSTAGE WILL BE PAID BY ADDRESSEE —

. .]

// EEEE—

{f TEXAS INSTRUMENTS

DATA SYSTEMS GROUP EEE——

ATTN: CUSTOMER TECHNICAL SUPPORT s ————

17881 Cartwright Road ———

irvine, CA 92714 [————
FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

manufactured by Mouse SysWonm rporation. (The mechanical
mice from CADRs will not work with the Lambda.) Setting up
the mouse for use is a bit different than it was with the
mechanical mice some of you may be used to.

nCONTENTS

The mouse box should contain a mouse, a mouse pad, a bag
containlng -extra felt pads and lenses, a technical manual
from Mouse Systems, and a copy of this document. The box
may have empty spaces for other equipment; ‘these are for
accessbries which do not need to be used with the Lambda.

: The mouse you reéceive may have either a DB—9P (9-pin D)
_connector, or an RJ-11C (telephone type) connector. “In
either case, it will match the connector on. the side of your
monitor. (If 1t doesn t, let us know.)v. ‘

' THE MOUSE PADf

The metal object with blue and green lines prlnted on 1ts
surface is the MOUSE PAD.’ This is a spec1a1 surface upon
- which the mouse. mdst be moved. The mouse will not work '
~correctly unless 1t is on the. pad. ' -

Put the pad on your desk in a comfortable p051tion.‘ Orient
it as you would- a sheet of ordinary paper, Wlth the long
direction going toward and away from: you. -

CABLE‘SETUP-

The connector on the mouse should be insérted into the i
matching socket on the right side of the monitor. There is
only one appropriate socket there, so you can't go wrohg.

CALIBRATING THE MOUSE

Each time the mouse is powered up, it must be CALIBRATED.
(The mouse receives its power from the monitor, so the mouse:
loses power whenever the monitor is turned'off, as well as
when it is disconnected: ffom the monitor.) This means that
the mouse must adjust ‘to the sensitivity of its particular
sensors and to the mouse pad in use.

To do this, move,the mouse around in large circles (about 6
inches in diameter) at a comfortable speed until the mouse
cursor starts moving. This should happen within 10 seconds.
If it does not, see the next section.

- DIAGNOSING PROBLEMS
If yonﬁhave'a.pfoblem with the mouse, first make sure the

Lambda software is running. The next thing to try is
power-cycling the mouse. Pull the connector out of the

3
33

O

monitor, wait a few seconds, then plug it back in. Then
recalibrate the mouse. This will usually clear up any
problems.

If trouble persists, you can get some information about the
problem by turning the mouse over and looking at the LEDs
which shine through holes there. If the mouse is operating
normally, only one of the two LEDs will be on, glowing
continuouély,;and pressing the buttons will have no effect
on the LEDs. If pushing any of the buttons causes the
second LED to light, the calibration failed for some reason
(probably because you did not move the mouse smoothly during
calibration); power-cycle the mouse and try it again. 1If no
LEDs are lit, try pushing any of the buttons on the front.
If both LEDs light, the mouse is not calibrated; try the
calibration procedure again. If no LEDs are lit, the mouse
probably is not receiving power; make sure the connector is
plugged in firmly. If one or more LEDs are flashing, there
is some sort of error which was detected by the mouse's '
internal processor. The Mouse Systems technical manual
describes how you can correct most of these. If this does
not succeed, contact LMI for a replacement.

If the mouse does not slide easily on the mouse pad, the
felt pads on the bottom of the mouse may be dirty or worn.
The replacement pads packed with the mouse may be used if
needed. The pads have an adhesive on the back which is
protected by paper. The replacement lenses are supplied in
case you lose one of the original ones while you have the
mouse open; they do have an annoying tendency to roll away.

SOME TECHNICAL INFORMATION

Two of the DIP switches inside the mouse are changed from
their standard settings. Switch 4 is turned OFF; this sets
the pad orientation to suit the shape of our screen. Switch
6 is turned ON; this sets the bit polarity correctly.

Some of the mice supplied by LMI are wired with DB-9P
connectors, rather than the RJ-11C connectors shown in the
Mouse Systems manual. The pinouts of this connector are
shown below: '

PIN FUNCTION ' WIRE COLOR
2 Data Out Red
7 Ground Black

9 Power (+5) Brown

Mouse Systems Corporation
M-2 Optical Mouse
- Technical Reference Manual

e

Distributed by LMI 6033 W. Century Blvd. Los Angeles CA 90045
USA

PR

© January 1984 Mouse Systems Corporation

Federal ConWanications Commission
Radio Frequency Interference Statement

‘Warning: This equipment generates and uses radio frequency energy and if not installed and used properly,
that is, in strict accordance with the manufacturer’s instructions, may cause interference to radio and
television reception. It has been type tested and found to comply with the limits for a Class B computing
device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed
to provide reasonable protection against such interference in a residential installation. However, there is
no guarantec that interference will not occur in a particular installation. If this equipment does cause
interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:
Reorient the recciving antenna; Relocate the computer with respect to the receiver; Move the computer
away from the receiver; Plug the computer into a different outlet so that computer and receiver are on
different branch circuits; If necessary, the user should consult the dealer or an experienced radio/television
technician for additional suggestions. The user may find the following booklet prepared by the Federal
Communications Commission helpful: “How to Identify and Resolve Radio-TV Interference Problems.”
This booklet is available from the U.S. Government Printing Office, Washington, DC 20402, Stock No.
004-000-00345-4.

Warranty

Your mouse is warranted against defects in material and workmanship for a period of one year from the
date of purchase. The obligation of this warranty shall be limited to repairing or replacing any part of
- the product which, in the opinion of MSC, shall be proved defective in materials or workmanship under
normal use and service during the one-year period commencing with the date of purchase. Contact the
factory for a return authorization number. Return postage pre-paid to Mousc Systems Corporation, 2336H
Waish Avenue, Santa Clara, CA 95051.

This one-year warranty is in licu of all other express warranties, obligations or liabilities. Any implied

warranties, obligations or liabilities, including but not limited to any implied warranty of merchantability,

shall be limited in duration to the one-year duration of this written limited warranty. Any action for breach

of any warranty hereunder, including but not limited to, any implied warranty of merchantibility, must be

brought within a period of 18 months from the date of purchase. Some states do not allow limitations on

how long an implied warranty lasts, so the above limitation may not apply to you. No agent, representative,

dealer or employee of MSC has the authorijty to increase or alter the obligations of this warranty. This

warranty shall not apply to any product which, in the opinion of MSC, has been modified, repaired, or

altered in any way without the express written consent of MSC, This warranty shall not apply to the felt

fect which arc cxpendable. In no case shall MSC be liable for any consequential damages for breach of
this or any other warranty expressed or implied whatsoever. Some states do not allow the exclusion or

limitation of incidental or conscquential damages, so the above limitation or exclusion may not apply to
you. This warranty gives you specific legal rights, and you may also have other rights which vary from
state to state.

2
Mouse Systems 2336H Walsh Av Santa Clara, CA 95051 (408)988-0211 Telex 467848

1._Introduction

This document explains all about thc MSC M-2 optical mouse. MSC has becn shipping the M-2 unit
since December 1983 and this document is constantly updated with feedback from our customers. If you
have any qucstions, comments, or problems, please fecl free to contact us.

The M-2 mousc incorporates a number of features not found on any other mouse. The M-2 requires
no calibration and can run on a varicty of surfaces (versions of the M-2 will work on blue jeans and
newspaper, for example). The M-2 uscs analog hystercsis to provide noise-free operation with no loss of
resolution. The tracking algorithm never permits thec mouse to “fly away” and tracking error is minimal
up to the the maximum speed (25 or 50 inches per second depending on the version).

Based on field experience at thousands of installations, the M-2 mouse has proven to be an extremely
reliable computer peripheral. The contents of this manual should answer all of your questions in the very
remote possibility that something goes wrong. '

2. Normal use

The mouse is a fairly simple device. Basically all you do is plug it into your system and go.

3. When not in use

We recommend unplugging the mouse when not in use.

4. Connecting the mouse to your system

Connecting the mouse is straightforward. It will either plug into an existing mouse port in your computer,
or into the RS-232 interface box. If you are using the RS-232 interface box, be sure the power supply is
plugged into the wall and the mouse is plugged into the interfacc box. Plug the provided 25-pin connector
into your computer and the other end into the interface box. The two RJ11C conncctors on the interface
box are interchangable. :

Orient the pad so that the blue lines are vertical.

5. Mouse use

The mouse works best when it is within +45° from its nominal (vertical with respect to the selected pad)
orientation. Most mouse users place their wrist on the surface and grasp- the mouse with their thumb and
little finger. Because the mouse can be lifted and re-positioned, the screen cursor can (and often is) always
be positioned anywherc on the screen without having to move any muscles above the wrist.

Onc finger may be uscd for all three buttons, or the mouse buttons may be used one finger per button.

There arc about as many different styles of mouse usage and preferences for mouse shape as there are
people. The MSC M-2 design attempts to satisfy the broadest range of people.

3
- Mouse Systems 2336H Walsh Av Santa C lara, CA 95051 (408)988-0211 Telex 467848

6. Options

Various options are set at the factory. Most options can be modified in the ficld in a few minutes without
any special parts. The default settings are:

Option Default Optional
Baud rate 1200 2400 baud
Polarity RS-232 TTL
Protocol MSC standard v Quadrature and others <contact factory>
RS-232 plug Send on 3 (pin or socket) <contact factory)
Pad orientation Landscape Portrait

For serial protocols, polarity rcfers to the polarity of the start bit. In the TTL mode, a START bit is
a "low" TTL voltage. In the RS-232 mode, a STOP bit is a "low" TTL voltage. In RS-232 mode, the
output is open-collector. RS-232 mode allows the mouse to be connected to our RS-232 interface box to
be converted to RS-232 compatible levels.

If an RS-232 interface is ordered, we will normally ship a female connector where the mouse transmits on
pin 3 (IBM Personal Computer) or a male, pin 3 connector (every other system).

The pad orientation selection determines how the pad is die cut; all mice are the same.

7. Opening up the mouse

The mouse never needs to be opened.

For the curious, to open the mouse, remove the two screws on the bottom of the mouse. Then place the
mouse on a table as if you were going to usc it. Then remove the top of the mouse.

There are only three things inside the mouse; 2 lenses and a PC board. Please note the placement of thesc
components when you open the mouse. Notice that the lenses fit in the round holes on the bottom of
mouse (you wouldn’t believe how many mice we get back with the lenses placed on top of the PC board!).
DO NOT touch the mirror; it is easily scratched.

When assembling the mouse, do not overtighten the screws.

8. Power-cycling the mouse

It should not be necessary to ever power cycle the mouse. The mouse code constantly chccks itself for
consistency and will restart itscif in the cvent of a failure.

If it is desired to power-cycle the mouse, wait at least 5 scconds before plugging the mouse back in. This
allows sufficient time for the microprocessor resct capacitor to discharge. Prc-mature re-plugging will almost
always work and will not harm any of the mouse components. :

9. Calibration

The M-2 mouse requires no calibration at any time. It insmntancously adjusts to any sufacc it is placed
upon.

4
Mouse Systems 2336H Wulsh Av Santa Clara, CA 95051 (408)988-0211 Telex 467848

10. What to do if the mousc doesn’t work right

There are no user scrviccable components inside the mouse. If the mouse does not work or scems to not
operate as well as you think it should, first check the following before calling us:

When the mouse is powcrcd on, the red LEDs on the bottom of the mouse will turn on. If this doesn’t
happen, it probably means the mouse isn’t plugged in or there is a bad cord somewhere. Try wiggling the
mousc and power supply cords around especially near a connector.

If one of the switches doesn’t work, it usually means the case has been seriously overtightened and onc of
the keytops is actuating one of the switches. Another cause could be a bad switch.

The mouse should not mis-track in normal use. At high speeds and when the mouse is lifted from the
- surface while moving at high speeds, occasional mis-tracking may occur. If the mouse is exposed to high
RF ficlds or is operated without a proper ground on the host computer, there may be some jitter when the
mouse is lifted from the mouse pad.

Erratic tracking of the mouse under normal conditions could be due to improper pad orientation or a
bad mousc pad. Although erratic tracking could also be caused by a catastrophic failure of the redundant
LEDs, a cracked lens, or an extraordinarily large picce of dust in the optical path, we have never seen any
of these cases.

The problem could also be in your computer tracking software. See Section 15.
If you are usihg the RS-232 interface, you may have ordered the wrong cable. Try reversing pins 2 and 3

- {or purchase a “null modem™) if you suspect this is the case.

11. Care of the mouse pad

The mouse pad is madc out of aluminum and coated with a very hard organic coating. However, the pad
is susceptible to scratches and dents. You can wash it and use window glass cleaner on it.

If you have a mousc pad which appears to have only blue lines on it, it should not be exposed to direct
sunlight (i.e., taken outdoors). Please note that it is perfectly safe to use these pads indoors in direct
sunlight since window glass absorbs UV. ‘

12. Maintenance

The mouse is completely maintenance-free.

13. Unusual applications

The mouse can be used as a digitizer if a transparency of the item to be digitized is placed over the CRT
screen,

14. For more information

The mouse is covered by and described in U.S. Patent 4,364,035.

, 5
Mouse Systems 2336H Walsh Av Santa Clara, CA 95051 (408)988-0211 Telex 467348

interfacing

15. OEM Software interfacing

For a number of different computers, MSC provides a varicty of software support packages. For example
on the IBM and TI Personal Computers, MSC provides a software package to add end-uscr customizable
pop-up menus to existing softwarc with no sofiware or hardware modifications.

For other machines, we will provide code samples and suggested high level interfaces on request. If you
would like to market your mouse software through MSC, we would be delighted to talk with you.,

The MSC mouse protocol is the most bandwidth efficient protocol available today providing more
information in a shorter amount of time at any given baud rate than any other protocol.

The protocol is as follows: five byte data blocks are sent when and only when there is a change of mouse
statc. The start of a data block is indicated by a sync word whose upper 5 bits are 10000. The next 3
bits are the debounced state of the switches (0 means depressed). The next 4 bytes contain two updates
of the = and y registers: Az, Ay, Az, Ay (note that Az is the horizontal distance moved since the last
transmission of Az relative to the coordinate system of the pad). Each byte is a two’s complement packed
8-bit binary number. Positive is RIGHTwards and UPwards motion. After five bytes are sent, other bytes
may be sent beforc a sync word appears. Therefore, most tracking software should scan for a sync word
after receiving the 5 bytes.

The following table summaries the protocol:
. Byte Contents

10000LMR

Az

Ay

Az

Ay

Ot b OO DD e

The mouse only sends out data when it thinks it has changed state (a switch transition or movement).

Mouse tracking software should read bytes until a byte with a 10000 high-order bit pattern is read. The
switches are the lower 3 bits of this byte (0 mcans pressed). Next, read two sets of two bytes. After a
total of 5 bytes have been read, the software should ignore bytes until the “start” byte is recognized. This
ensures synchronization.

Since extraneous bytes are not sent in the standard M-2 mouse, testing for extraneous bytes is a good way
to debug your tracking software (this technique may not be reliable with versions of the M~2 which contain
serial numbers since these mice may transmit a serial number as the sixth byte in some data blocks).

After initializing the UART to 8 data bits, no parity, 1200 baud operation, the basic algorithm is as follows:
1. Read a byte .

2. If upper bits are 10000, then save this in SWITCH-STATUS. Otherwise, go to 1 (extrancous byte
. received). XOR’ing the new SWITCH-STATUS and old SWITCH-STATUS will indicatc whether a
button has changed state,

3. Add the next byte to the X-REGISTER (bc sure to do an 8086 CBW instruction first if you arc on a
16-bit machinc).

6
Mouse Systems 2336H Walsh Av Santa Clara, CA 95051 (408)988-0211 Telex 467848

4. Add the next byte to the Y-REGISTER.
5. Add the next byte to the X-REGISTER.
6. Add the next byte to the Y-REGISTER.
7. Go To L.

Note that cach data byte should be read using interrupts. Do NOT read the first data byte and then loop
inside the interrupt service routinc until the other 4 bytes have been read. Instead, read a byte in the
interrupt service routine, process it as appropriate, and set a counter to indicate which byte has been read.
Then return from the interrupt.) ‘ '

Now, asynchronously with this operation, the computer may LOAD-AND-ZERO these registers. Depending
on the program controlling the mouse cursor, these values may or may not be added to the mouse cursor
postion register (¢.g., some software may restrict the mouse cursor to certain areas of the screen at certain
times).

There has becn some confusion about the protocol: switches, Az, Ay, Az, Ay. The second and third
bytes are not the same as the fourth and fifth bytes. They are the same register which is sent and cleared
twice in the five byte packet. This is because it is a more efficient use of the available bandwidth to send
the position information more often that the switch status. The mouse NEVER sends high and low bytes
of a sixtcen bit word. In other words, treat the second and third bytes just like the fourth and fifth bytes.

‘For example, say the mouse is at screen position (10,10). The mouse sends the block (hex): 87 01 FF
03 00. This is interpreted as follows: 1) The switches are all up 2) Move the mouse cursor 1 unit to the
- right and 1 unit down 3) Move the mouse cursor 3 units right. Of course, we don’t necessarily redraw
the cursor on the screcn each time. Rather, we update internal mouse position registers and let our screen
refresh routine sample these position registers at the screen refresh rate. Also note that we have simplified
things somewhat; what really happens is that the tracking routine updates a “delta position register set.”
‘Then it is up to the application softwarc to decide whether and how to update the mouse position registers
which correspond to the physical mouse position on the screen. For example, the application software may
decide to “trap” the mouse inside a window.

Some systems may update the mouse cursor after reading the first two-byte set. Other systems may wait
longer depending on how long it takes to move the mouse cursor on the screen. If you update z and y
screen registers at the same time, the screen tracking may look smoother than if you don’t.

DO NOT ignore bytes 4 and 5. Those bytes really are significant and you could cause serious mistracking
if you ignore them. You will also get (on the average) half the resolution meaning you have to move the
mouse twice as far. Remember, you don’t have to redraw the cursor every time the mouse position is
updated.

Be sure not to let the mouse cursor go off-screen.

Many systems usc a 2:1 screen-to-mouse ratio. That is, 1 inch of mouse motion gives 2 inches of screen
motion. This usually requires that the mouse position information be multiplied by 2 before being displayed.
Hence, every other dot on the screen is addressable. This has never turned out to be a problem; single
“pixcls” should normally be addressed with the screen “magnified” so that a single pixel is magnified into
a squarc array of pixcls. This is because human pointing has a limited dynamic range; it is incfficient to
require someone to point with better than 10 mil accuracy.

We strongly urge you to try 2X magnification. Most software cngincers are reluctant to do so, but after
7
Mouspﬂ%'yslmzs 233611 Walsh Av Santa Clara, CA 95051 (408)988-0211 Telex 467848

& h . - LN
they try it, they find the fecling of control and ¥pced far outweighs the inability to choose single pixcls.
Also be careful on magnification since some screens are not square. The gencral rule is that if you draw a
circle with the mouse, it should look like a circle on the screen.

If you really nced single pixel resolution, you might consider using a tracking algorithm such that mouse
motion of 0 and 41 gives screen motion of 0 and +1 and mouse motion of any other value is doubled.

Some people usc a non-lincar scaling approach based on the velocity of the mouse. That is, if a mouse
delta is below a certain absolute value, the delta is scaled with one factor and a different factor is used
otherwise. The supposed “advantage™ of this technique is that if you move the mouse slowly, you can
move in very fine increments, whereas if you move the mouse fast, you can quickly get to the other end
of the screen with very little mouse motion. In reality, this technique results in a loss of both speed and
accuracy. Human beings are inhcrently linear and onc of the rcasons mice are so popular is that using
a mouse is very similar to pointing with your arm. With the non-linear scaling approach, you force the
-user to solve a non-lincar control problem. The non-linear technique has been suggested by hundreds of
- people over the last 10 years, but very few systems use the technique. The reason is simple: the (linear)
mouse has becn shown to be a near perfect pointing device. If there is a better pointing device, it cannot
‘be perceptibly better: ;

When using the RS-232C interface, the mouse does not set DSR, CTS, etc. These signals can usually be
ignored by software. In some cases, user software must contain code which specifically tells the UART to
ignore these signals. In the first 40 msec after the mouse is plugged in, it will send a start bit continuously
(BREAK). You may need to reset the UART after the receipt of the BREAK. Also, sometimes initializing
the UART is a very tricky procedure; we know of several cases where, because of improperly initializing
the UART, you sometimes must run a program twice before the mouse will work.,

The mouse sends 8 bit bytes with no parity. All eight bits contain significant data. Operating system
- features that change a bit (c.g., always clear high order bit), swallow nulls, respond to 1S or 1Q, and/or
eplicate DELETE should be disabled.

-"16-bit machines should remember to propagate the sign bit (all quantities are two’s complement). Use the
" 8086 instruction CBW (Convert Byte to Word) to do this.

‘Some users have asked for a poll mode where the mouse can be queried for its position. This is unnecessary
overhead for both the mouse and the host system: the host must poll the mouse every refresh to ensure
that the mouse is always accurately tracked. Hence, not only is poiling redundant, but it is extremely
(inefficient since most of the time the mouse hasn’t moved.

Since § bytes are transmitted at 1200 baud, the maximum sustained velocity of the mouse should be under
" 61 in/sec for real-time tracking The mouse position is available for refresh 48 times/sec. Velocities seldom
cxceed 30 in/sec and 24 frames/scc is the frame rate for motion pictures. The mouse can transmit at
higher baud rates but the performance advantage is ncgligible compared with the added burden on the
host computer.

If the softwarc intcrface is correct, the mouse will track realiably and accurately under normal conditions.
It will never drift on the screen. No time-delay will be apparant to the uscr, even at high speeds.

For examples of innovative mouse software, we refer you to Apple’s Lisa, Xerox’s Star, VisiCorp’s VisiOn,
or any of the products from [.isp Machings, Inc. or Symbolics (both in Cambridge, MA).

8
Mouse Systems 2336H Walsh Av Santa Clara, CA 95051 (408)988-0211 Telex 467848

16. OFM Hardware intcrfacin};

If you go direct into a UART you should probably order a TTI. mouse. Another way is to use the standard
RS-232 polarity and provide a 4.7K pull-up resistor. In this case, a start bit will be a logic high. The
mouse requires 5V @ 200mA. The RJL1C conncctor pinout is GNID (1), +5 (2), OUTPUT to UART(3).
To determine which is pin 1, unplug the line cord (not the handsct cord) from your tclephone. Grasp the
connector with the “pins” facing you and the cord hanging straight down (or towards you). Then pin 1
is on your left. Note that the connector is a six position connector: the middle four pins are loaded (1-4)
and the outer positions (0 and 5) are not.

The levels sent on the RS-232 interface arc RS-232 compatible, although they do not meet RS-232
specifications. Specifically, the upper level is +5 V with some ripplc and the lower voltage is -5 V
(regulated). We used this scheme for increased reliability and low cost: the RS-232 level converter is
- nothing more than a 1K pull-up resistor.

17. Specifications

Requires 5V @ 200mA.

e RI11C connector pinout: GND (1), +5 (2), OUTPUT to UART(3)

Mouse OUTPUT line requires a 4.7K pull-up resistor at UART input (RS-232 polarity)
Size: 98 x 66 x 28 (L x W x H in mm)

0.25 mm resolution (100 counts/inch)

Maximum velocity: 25 or 50 inches/sec:

Depth of field >1 mm

9
Mouse Systems 2336H Walsh Av = Santa Clara, CA 95051 (408)988-0211 Telex 467848

How to Use the

LMI Printer Software
May 1984

Published by LMI 6033 W. Century Blvd. Los Angeles CA 20045
USA

How to use the LMI printer software

This file documents version 6 of the LMI printer software (otherwise known as

the TIGER system, named after the IDS Paper Tiger printer, which was the first
printer used at LMI, but which is not presently supported). It describes how to
request a printout, how to use the special features of the program, and how you
must set up your system to get it to work correctly.

The hardcopy of this document that you receive was produced with LMI printer
software. At various times, we have used both the Toshiba P1350 and TI 855
printers for the hardcopy; The Toshiba version is produced using bit-graphic
fonts; the font list is ‘(25vg 25vgi 25vgb 25vgbi 25fg 25vrb). The TI855

version uses the font modules Gothic, Courier Italic, and Courier in slots 1, 2,
-and 3 respectively; the font list is "(3. 2. 35. 34. 1. 17.). This setup uses _
serifed fonts rather than sans-serif fonts for the main text; this choice is based
on the font modules we own.

Obtaining and connecting a printer

Just about any kind of serial ASCII printer will work to some extent with this
software. At present, we support the following printer types: VANILLA, which is
used for printers with no special features (or printers whose special features are
not yet supported), TOSHIBA, which supports the Toshiba P1350 and P1351

printers, and TI855, which aupports the Texas Instruments 855 printer. The
distrubution package also includes software for the ANADEX type, which handles

the Anadex DP9000 series printers; however, this is not supported by LMI, as we

have no ability to test it.

The TOSHIBA printer type supports many special features, including multiple-font
printing (both with the built-in fonts and with arbitrary fonts which are printed in
graphics mode), bit-array printing, setting character and line-per-inch density, and
printing Lisp Machine characters using graphics mode.

The TI855 printer type supports multiple-font printing (using the fonts available

in font modules), printing of bit arrays, and setting character and line density. It
does not support bit-mode fonts; because of the interchangable font modules,

these are not needed as they are on the Toshiba.

The section "Printer interfacing” gives some information on how to connect a
printer. Contact LMI Customer Service for more advice on selecting and
connecting a printer.

Setting up your site files

To cause printouts to be sent to the correct machine, you have to edit your site
file (SYS: SITE; SITE LISP) to make your printer the default printer, and then do
(MAKE-SYSTEM ‘SITE “:COMPILE) to ~ause the site information in your system to

be updated.

In the site file you will find entries for the variables :DEFAULT-PRINTER and
tDEFAULT-BIT-ARRAY-PRINTER. The present value may be NIL, ‘:TIGER, or
":TOSHIBA, or it may be a list. The new value should be of the form
“(:PRINTER-TYPE "HOST-NAME"), where PRINTER-TYPE is the appropriate

. supported printer type for your printer, and HOST-NAME is the name of the

machine that will have a printer connected. These site options cause the values
of the variables SI:*DEFAULT-PRINTER* and SI1:*DEFAULT-BIT-ARRAY-PRINTER*,
respectively, to be set; you can change the defaults during a session by setting
one or both of these variables. ’

If your printer supports bit-array printing, you should change both
:DEFAULT-PRINTER and :DEFAULT-BIT-ARRAY-PRINTER to this value. 1If your
printer does not support bit-array printing, :DEFAULT-BIT-ARRAY-PRINTER should

be NIL.

If you have more than one printer on your network, you might want the default
printer on some machines to be different from the default on others. You can
put a local value for :DEFAULT-PRINTER, :DEFAULT-BIT-ARRAY-PRINTER, or both
into the lmlocs file (SYS: SITE; LMLOCS LISP). You can also set
:DEFAULT-PRINTER and :DEFAULT-BIT-ARRAY-PRINTER differently; this is useful to
distrubute the printing load a bit, or if only one of your printers can print
graphics. See the Lisp Machine Manual for more information.

The program expects to find the TIGER-QUEUE; directory on the host that

contains the printer. The TIGER-QUEUE directory is used whenever temporary

files need to be created (this includes printing from streams (such as M-X Print
Buffer and M-X Print Region in the editor), printing arrays on machines other

than the one with the printer, printing more than one copy of an array, and using
the :ARRAY-FILE printer type). This means that the Lisp Machine with the printer
must have a local file system (all system bands supplied by LMI have one), that
the TIGER-QUEUE; directory must exist, and that the machine must be listed in the
:CHAOS-F ILE-SERVER-HOSTS entry in the site file (again, this should always true in
LMI-supplied site files).

There must be directory translations for TIGER; and TIGER-FONTS; on your

SYS: host. The sample site file on this tape (SYS: TIGER; SITE LISP) includes

an example of the translations you will need. If this software was supplied with
your machine, rather than being sent later, these will already be in place.

Finally, your site directory should contain the file SYS: SITE; TIGER SYSTEM

that is included with this distribution. This file is referenced when you build the

TIGER system; it tells where to find the system definition. (The actual system
definition is in the file SYS: TIGER; TIGER-SYSTEM LISP.

How to load the printer software

First, you must restore all the files on the supplied tape. If your file host is a
Lisp Machine, (RESTORE-MAGTAPE) will do. Remember to use .
(FS:TAPEMASTER-INITIALIZE) first if you are using a Lambda.

Then you will need to load the TIGER software into your machine. (MAKE-SYSTEM
‘TIGER) will do it. Answer Y to all the questions it asks. You may want to save
a band containing it. Some bands supplied by LMI already contain this system; if
you have one of these, you should make sure all the patches are loaded by doing

(LOAD-PATCHES ‘TIGER).

If you want to request printouts remotely (that is, from Lisp Machines other than
the one that has the printer), both machines must have this software loaded, and

both should have all patches loaded.

The supplied programs will work on both CADR and Lambda processors. (If you
load the supplied files on a CADR, ¢ number of warnings of the form "File FOO

was éompiled with a different versfon of SELECTQ"; these can be safely
ignored.) Hardcopy can be requested on one type of machine and printed on the
other. .

How to request printouts

To request a printout, you use the functions HARDCOPY-FILE, HARDCOPY-STREAM,

and HARDCOPY-BIT-ARRAY. These functions are all defined in the green Lisp

Machine Manual. They take optional keyword arguments, that are described later.
The HARDCOPY-BIT-ARRAY function (by default) copies the array into a temporary
array before printing it, so you are free to modify or reuse the original array as
soon as it returns.

If you are printing arrays, you might find the function TIGER:TIGER-ARRAY
convenient. Instead of taking required LEFT, TOP, RIGHT, and BOTTOM arguments, it
takes optional keyword arguments for those numbers. (Any bound that is not
specified defaults to the appropriate edge of the array.) This function will also
accept a window as its argument; the screen array of the window is printed, and
the bounds are defaulted from the inside edges of the window. This function

does NOT copy the array by default, but you can ask for copying with the
:COPY-ARRAY keyword argument.

You can also request a printout using the ZMacs commands M-X Print File,
M-X Print Buffer, and M-Sh-P (Quick Print Buffer). (In System 98 the
additional command M-X Print Regfon is available.)

If you have a printer that supports bit-array printing, Terminal Q will hardcopy
the screen or a portion of it.. If you have NewDraw, the Hardcopy and Hardcopy

Hierarchy commands will print your drawings.

There is also a new Hardcopy choice in the system menu. If you select this, you
get a choose-variable-values menu that lets you select a file to print, and some
optional parameters. At present, you will have to edit the sources if you want to
change the list of possible printers it presents; this will be changed in the next
version.

Optional parameters for printing

'COPIES (1) ALL
The number of copies of the file to print.v

:DELETE-AFTER (NIL - files, T - arrays and streams) ALL
If T, the file is deleted after it is printed.

sTITLE-PAGE (NIL) ALL
If T, a page telling who the printout is for is printed before the file is
printed.

sFILE-HEADING (NIL) ALL

If T, a heading telling who the printout is for is printed at the top of the
first page of the printout.

:tPAGE-HEADINGS (T - files and streams, NIL - arrays) ALL
If T, a heading with the page number and filename is printed at the top of

every page.
Optional parameters for printing files and streams

sCHARACTERS-PER-INCH (printer—-dependent) TOSHIBA, TI855
The number of characters per inch to print. This will be rounded to the
nearest value that your printer supports.

:LINES-PER-INCH (printer-dependent) TOSHIBA, TIB55
The number of lines per inch to print. This will be rounded to the nearest

value that your printer supports.

:FONT (0) | | TOSHIBA, TI855
The font to print the file in.

On the Toshiba P1350, this can be a fixnum, that refers to a font built
into the printer, or it can be a symbol or string, in which case it refers
to a font that will be printed in graphics mode. The user should be
aware that graphics-mode printing is slower than character-mode

printing. The Toshiba P1350 printer has three built-in fonts. Font 0 is
the high-speed font, font 1 is Prestige Elite, and font 2 is Courier. We
have a number of bit-graphic fonts for the Toshiba available; they are

in the directory SYS: TIGER-FONTS;. The software supports any

mixture of these; you can use built-in fonts and bit-graphic fonts in

the same document. This is useful, for example, to include some true
italics in your printout, while not slowing down printing too much.) The
down-loadable font feature of the P1351 is not presently supported.

On the TIBSS5, only fixnum values are allowed. Font 0 is the internal
limited character set; note that this works only in draft mode. Fonts 1,
2, and 3 are the fonts contained in the font modules plugged into slots
1, 2, and 3. Font 4 is the font loaded into the Extended Character Set
option. (The software does not presently support this option. We will
be adding support for it when ours is delivered.) The default font list
cyclically uses fonts 1, 2, and 3; fonts 0 and 4 are not used. If you
own fewer than 3 font modules, you may want to change the value of

the variable TIGER:DEFAULT-TIB55-FONT-MAP.

You can also select boldface and shadow printing. Specifying a font

number plus 16. in the :FONT or :FONT-LIST argument gets you a boldface

version of it. A font number plus 32. get a shadow-printed version. A font

number plus 48. gets a boldface shadow-printed version. (I.e.: If font 1l is
- Gothic, font 17 is Gothic Bold, font 33 is Gothic Shadow, and font 49 is

Gothic Bold Shadow.) Boldface printing is simply overstruck. Shadow

printing is overstruck with the new set of dots offset 1/120 of an inch;

this produces a somewhat different bold effect. The effect of boldfacing

does not come out well in copies; use shadow printing in documents that

will be reproduced. Which you prefer in originals is a matter of taste.

A warning about selecting fonts on the TI855: Many of the font modules
have a modified character set for word processing. The character set
in the module is indicated just below the font name. ASCII 96 is a
standard ASCII font; WP is a word-processing font. (There are also
some foreign-language modules available; these have modified character

sets as well.) Only ASCII fonts should be used for progras

listings! (Fonts we know about: Prestige Elite and Gothic (the font
module packed with the printer) are ASCII; Orator 85, Courier, Courier
Italic, Gothic 15, and Modern PS are WP.) A combination that we find
works well for program listings which use Electric Font Lock Mode in

the editor is Gothic as font 0 and Courier Italic as font 1. The internal

character set is a standard ASCII cha 1 . van be used for
listings. Note that it only implements draft mode.

The changed characters in the WP fonts are as follows:

ASCII WP
\ registered trademark
* copyright 4
* degrees
{
: paragraph
} dagger
~ trademark
tFONT-LIST (NIL) TOSHIBA, TI855

A list of fonts'to print the file in. Each element of the list can be a valid
font specification, as explained above. The first font will be used for text
that is in the first font in the attributes list of the file, and so on.

The'default for font handling (if neither :FONT or :FONT-LIST is specified)
is to use a default font list containing only hardware fonts (the Toshiba
bit-graphics fonts are never used by default). If :FONT is specified, that

font will be used for the entire document; any font changes contained in
the document will not be processed.

~ :QUALITY (NIL) TI855
This allows you to select draft or quality printing mode. T means quality;
NIL means draft. .

Optional parameters for printing arrays

:COPY-ARRAY (HARDCOPY-BIT-ARRAY - T, TIGER-ARRAY - NIL)
TOSHIBA, TI855

T means to copy the array into a temporary array before printing. Note
that the default value is different depending on which function you called;
these defaults are for compatibility with previous software versions.

sLEFT (0) TOSHIBA, TIB855
The leftmost position of the array to use.

:TOP (0) "TOSHIBA, TI855
The highest position of the array to use.

tRIGHT ((pixel-array-width array)) TOSHIBA, TI855
The rightmost position of the array to use.

:BOTTOM ((pixel-array-height array)) ‘ TOSHIBA, TI855
The lowest position of the array to use,

1X~-SCALE (printer-dependent) TOSHIBA, TI855
A factor to multiply all pixels by horizontally. Only small fixnums are
permissible values; the exact set is printer-dependent. (The Toshiba and
TI855 support any value of this.)

:Y-SCALE (printer-dependent) TOSHIBA, TI855
A factor to multiply all pixels by vertically. Only small fixnums are
permissible values; the exact set is printer-dependent. (The Toshiba
supports scale factors 1, 2, 3, and 4; the TI855 supports scale factors 1,

2, and 4. Factors larger than 2 actually produce grotesquely large
printouts on these printers; they may be useful someday.)

Cleaning up probleas

Occasionally something will go wrong with the printer software, and you will need
to prod it a bit. The following functions may be useful. Note that these must be
executed on the maching that has the printer connected.

(TIGER:ABORT-FILE))
This stops the printout of the current file and removes it from the queue.
Any files that are later on the queue remain there. Since you cut off
printing in the middle of a file with this function, you have to power-cycle
the printer when you call this, as its state is not known. If the current
printout is a temporary array created by the COPY-ARRAY option, the array
is returned to the free pool.

(TIGER :UNWEDGE-TIGER) _
This kills the TIGER process, deletes the printer streams, and then restarts
the TIGER process. The queue is not reset; any file that was in progress
when the UNWEDGE-TIGER was done will be restarted. You will have to
power-cycle the printer.

(TIGER:RESET-TIGER)
This kills off everything associated with the printer software: the print
queue is cleared, the printer streams are deleted, and the TIGER process is
killed. Use this when something seems very wrong and you feel you need
to start all over. Again, you will have to power-cycle the printer. If any
of the queue entries were for arrays created by the COPY-ARRAY option,
they are returned to the free pool.

(SEND TIGER:SERIAL-STREAM ‘:RESET)
If the serial stream seems to get stuck (stays in Serial TYO state forever
when the printer is actually ready, for example), resetting the stream
sometimes helps. If this fails, you will have to use TIGER:RESET-TIGER.

Extending the software (implementing new printer types)

To find out how to add new printer types, you will have to read the source code.
Mostly, you have to create a new flavor of stream for your printer, and give it
methods for whatever special features you want to support. Most of these will

be self-contained, and therefore simple. The symbol associated with the new
printer type must also be given certain properties; see an existing definition for
examples.

The tOSHIBA printer is an example of a very compiete printer definition. This
printer definition is considerably more complex than most are likely to have to be

- the interdependence of a lot of the functions is caused by the desire to make
the shift between bit-graphics mode and regular printing mode as clean and
painless as possible. On the Toshiba, each new bit-graphics comand causes the
printhead to stop; also, sending regular characters after bit graphics causes the
printhead to stop. If the new stuff is too close to the old, the head actually has
to back up so it can get into position. Much of the hair is caused by the wish to
give all contiguous graphics as one graphics mode comand to minimize these
problems.

Printer interfacing

The supported port on the LMI Lambda is the B (local) port (the one the SDU
console isn't connected to). This port has the following pinouts:

Protective Ground

Transmit Data (Lisp Machine receives)

Recelve Data (Lisp Machine sends)

Ready to Send (Lisp Machine receives)

Clear to Send (Lisp Machine sends -- always on)

Data Set Ready (Lisp Machine connects to ground)
Signal Ground

Data Carrier Detect (Lisp Machine sends —- always on)

OOV A WN —

If hardware handshaking is being used, whichever line the other end asserts for
Ready/Busy signalling should be connected to pin 4; otherwise, pin 4 should be
jumpered to pin 5. Pins 1 and 7 should go straight through; pins 2 and 3 go
straight through or reversed, depending on which line the other device asserts.
(Most printers will want 2 connected to 2 and 3 connected to 3.)

The CADR serial port is connected to J10 on the I0B. Some LMI-manufactured

CADRs have a serial port connector on the bulkhead near the video connector. If
you have no such connector, a standard adapter cable that attaches to J10 is
avaliable from LMI. (This cable is identical to the cable used to connect to the
Chaosnet transceiver.) In either case, the pinouts of the DB2S connector are as

follows:

Protective Ground
Transmit Data (Lisp Machine sends)
Receive Data (Lisp Machine receives)
Ready to Send (Not connected)
Clear to Send (Lisp Machine receives -- connected to DSR on chip)
Data Set Ready (Lisp Machine receives —- connected to CTS on chip)
Signal Ground
Data Carrier Detect (Lisp Machine receives)
0 Data Terminal Ready (Lisp Machine sends - always on)

NOdOOUO A WN —

Connecting line 6 to whichever line the other device asserts for Ready/Busy
should enable hardware handshaking on the CADR. Pins 5, 6, and 8 must be high
for output to occur; you should usually jumper 5, 8, and 20 together. Connect
pin 6 to these as well if you are not using hardware handshaking. Note that the
CADR will usually need a cable that reverses lines 2 and 3 for connection to a

printer.

The variable TIGER:HANDSHAKE-TYPE controls which type of handshaking the :
software will attempt to use. It can take three values: :HARDWARE, :SOFTWARE, and
:DEFAULT (this uses HARDWARE on Lambdas, SOFTWARE on CADRs). This is tested

only when a new serial stream is made; usually, only one stream is made per
warm~boot, but calling TIGER:ABORT-FILE or TIGER:RESET-TIGER causes a new

stream to be created the next time something is printed. Therefore, you should

set this variable before you print anything. (You can also patch it or change it in

the sources.)

If you have a Toshiba P1350, you will need to wire a cable to connect the
printer to your Lisp Machine as follows:

P1350 LMI Lambda CADR

~N WA —

I
2
3
7

Jumpers:

P1350: connect S, 6, 8, 20

Lambda: connect 4, 5

CADR: connect 4, 5, 6, 8, 20

The handshake mode should be :SOF TWARE.
seem to work reliably with the Toshiba P1350 printer.
TI855, so we believe this to be a bug in the printer.)

switches should be set as follows:

Sl Bits 5 and 8 ON, others OFF

S2 All OFF

S3 Bit 7 ON, bit 8 OFF, others as preset

S4 Bits 1, 2, 3, 4, 7, 8 ON, others OFF

If you have a Toshiba Pl1351, you will need to wire a cable to connect the

printer to your Lisp Machine as follows:

P1350 Lambda
1 1

2 2

3 3

7 7

20 4
Jumpers:

Pl3SO: connect 5, 6, 8
LMI Lambda: none

CADR

N NN W -

CADR: connect 4, S5, 8, 20

The handshake mode should be :HARDWARE. Oddly enough, the P1351 we have
only functions correctly in HARDWARE handshaking mode —- just the opposite of
the P1350! The switches inside the printer should be set as follows:

Sl Bits 5 and 8 ON, others OFF

S2 All OFF

S3 Bit 7 OFF, bit 8 ON, others as preset
S4 Bits 1, 2, 3, 4, 7, 8 ON, others OFF

If you have a TI85S printer, you will need to mske a special adapter cable.
(Neither of the serial cables offered by TI is exactly correct.)
male Cantronics printer connector at one end, and a male RS-232 connector
(DP-25P) at the other end.

.Centrontcs (TI855)

15
16
17
19
33

0B-25P (LMI Lambda)

N~y W

(Hardware handshaking does not »
It works fine with the
Inside the printer, the

It is wired as follows:
(CADR)

6
2

1
7

20

This cable has a

4

Jumpers: None

The handshake mode for the TI855 should be :HARDWARE. (:S0F TWARE also works
with TI1855 printers; however, we believe that :HARDWARE is the mode of choice
whenever feasible; it causes less load on the Lisp Machine processor, and there
are no problems with dpopped handshake characters.

Moniterm Corporation

Operating Manual
VR-Series

Distributed by LMI 6033 W. Century Blvd. Los Angeles CA 90045

USA

Copyright © 1984 LISP Machine Inc.

A. GENERAL INFORMATION

I.
II.
III.

4

!
wa b B H 1

B e 15 |

e
4

‘General

Pdwer Input

Power Mating Connector
Power Supply Circuit

Power Diss;pation Chart

TTL Interface Specifications
Separate Sync Specification
ECL Interface Specifications
ECL Separate Syncs

ECL Composite Syncs

Two Level Composite Video
ECL Board Assembly Drawing

B. _DISPLAY TIMING

-
<| IHI 'HI -
1=
. . . .

Horizontal-

Vertical

Two Level Composite Video Option
Composite Video SYNC

C. _THEORY OF OPERATION

-
IHl i 'HI
1<t i<l b=l D] Bl
L] [] [] []

D. Schematics,Assembly Drawings, Bill of Materials, Mechanical

Hdrizontal Section
Vertical Section
TTL Video Board
ECL Video Board

Circuit Wave forms

"Drawings, Adjustments

Page #

A b WYY N

(2]

10
11

12
14
15
15

16

ane lMoniterm VR series display monitor utilizes the latest advances
in integrated circuits and switching technology teamed with a high
performance CRT. Horizontal frequencys are available from 32 KHZ
to 68 KHZ and retrace times as low as 2.8 u seconds.

- A separate modular high voltage supply allows wide variations in
displayed video without changing brightness levels or display
blooming, allowing the display designer to use visual attributes
such as; reverse video, blink, and reverse blinking video without
i11 effects. This high voltage supply also allows a wide range of
horizontal retrace times. This is very helpful in applications
where the display drive logic has bandwidth limitations.

Environmental

Temperature Range: Operating: 10C to 50C (50F to 122F)
Transit storage: -40C to 85C (-40F to 185F)
Humidity: 5% to 90% (non-condensing)
Altitude: Operating: up to 10,000ft (3.0 km)
Transit Altitude: up to 40,000ft. (12 2 km)
X-RADIATION
The monitors comply with DHEVW standard 21-CFn-sub chapter J when the
monitor is operated within the specified input voltage limits.

WEIGHTS FULL BODYSHIELD
VR-15-21 _ VR-15 2.5 pounds
- VR=17-27 VR-17 4.0 pounds
‘ ‘ VR-19-33 VR-19 5.25 pounds

Low Voltage Power Supply: 6 pounds .
Low Voltage Power Supply Shield: 1 pound

Geometric Distortion - sweep non-linearities and pin cushion distortion
exceed the requirements of EIA STD RS-375A.

Internal Contrbls (See Adjustment Section)

Horizontal width Horizontal Hold
Horizontal Linearity Horizontal Dynamic Focus
Vertical Hold Vertical Size

Vertical Top Bottom Linearity ~ Vertical Linearity
Vertical D.C. Centering Vertical Dynamic TFocus
Final Anode Voltage D.C. Focus

Brightness Video Contrast
Optional Controls |

Remote Brightness: 100K 1/2watt potentiometer.With the remote
_ brightness option the internal brightness control
is a range control.
Remote Contrast: TTL Video 5K ohm 1 watt potentiometer
' ECL Video 500 ohm 5 watt potentiometer

(1)

The monitor's power input connector is a Molex #22-27-2041 4 pin
connector configured as follows:

—Pin # 1T +43vDC
- Pin # 2 GND
Pin # 3 GND
Pin # 4 +32vDC
— *For Power requirements see. the. power dissipation chart
III. MATING CONNECTOR

- The power input connector should be mated to Molex #22-01-2045
The Molex pin for this connector is #08-50-0136

IV. POWER SUPPLY CIRCUIT

Since the deflecfion board has on board regulators, the raw D.C.
power circuit shown below is satisfactory.

]

[

+4700 uf
63v

|”—-)

+ 4700 uf
— :I: 50v
V. _POWER DISSIPATION CHART -
hVerage D.C. Power 15p 15L 17P 17L 20P 20L
+48v + 10% (50 KHZ 875ma 1.0a 950ma 1.0a . 950ma 1l.1la

Horizontal)

+32v £ 10% (50 KHZ 650ma 550ma 750ma 600ma 800ma 650ma
Horizontal)

+48v ¥ 10% (64 KHZ 875ma 1.1a | 950ma l.1la 950ma 1l.1a

Horizontal)

+32v £ 10% (64 KHZ 650ma 550ma 750ma 600ma 800ma 650ma
Horizontal) ' . . :

Moniterm supplied low voltage power supply

Input voltage 100y, 120v, 220v, 240v, RMS 50/60 HZ
programming card selectable

. (2)
Input power- 75w (nominal) See model chart

VI TTL INTERFACE SPECIFICATIONS
{Connector Molex #09-75-1061)

Pin out
Vertical Sync
GND

Horizontal Sync
GND

Video (1 Banks) .
GND ., 6

For Sync Specifications see separate Syncs

O o W

MATING CONNECTOR
Molex #09-50-3061
Molex Pin # 08-50-0106

Top of the TTL Board

Pin # 1
TTL VIDEO
Video
Rise and
Amplitude Input Impedance Fall Time
Low Level (0.0 to 0.8v)=white 220/3300hm 4 n sec

Termination to
+5v (130ohm)

High Level (+2,0v to +5.2v)=black

(3)

I SEPARATE SYNCS SPECIFICATION
Rise
) and
: : Input v Fall
. Amplitude Impedence Frequency Width Time
horizontal TTL compatible 220/330ohm - 150ns-~ TTL
Sync phase locks to termination - Sus comp.
negative edge to +5v '
LL=0.0 to 0.8v (130ohm)
HL=2.0 to 5.2v i
Vertical ‘ _
Sync TTL compatible 220/330ohm 45-65HZ* |100ms - TTL
negative edge’ termination | (other 300ms comp.
Sync to +5v frequencies
LL=0.0 to 0.8v (130ohm) available
HL=2,0 to 5.2v as an option

* If a refresh rate of'anything other than 60.0HZ is chosen the low voltage

power supply transformer must be shielded with a mumetal shield to prevent

a2 vertical swim problem in the monitor. For countries with 50HZ power, the
. refresh rate must be SOHZ to prevent the same problem.

|———Ho’r1zontal Preqnency———-—'

fro—t—
Horizontal width

xszsisal_zxasnsnnv""""‘4 R

Vertical width

(4)

" SPECIFTCATIONS

Specifications: Logic levels shown below gives video on=white,
reverse levels for video off=black

Signal ‘ . Connector
Most significant (22) bit outer shell J1

is high (-.96v to -.81v)
Center is low (-1.85v to -1.65v)

Second most significant (21) bit outer J2
shell is High (-.96v to -.81v)
Center is low (-1.85v to -1.65v)

Least significant (20) bit outer J3
shell is high (~-.96v to -.81lv)
Center is low (-1.85v to -1.65v)

J1,J2,J3, are BNC connectors

ECL VIDEO . : Rise
and Fall
Time
Amplitude Input Impedance Video Bandwidth Video Amp
Center conductor 750hm without 82 MHZ - (10% to
(-1.85v to -1.65v) =2v or -5.2v 90%)
_ ’ Pulldown 4.5n sec
Outer shell

Logic levels above video on = white
Reverse levels for video off = black

(3)

SEPARATE‘SYNCS = ECL VIDEO BOARD

Signal

Connector Molex
(#09-75-1061)J7 Amplitude Input impedance

Vertical Sync Input

GND

Horizontal Sync Input

+5v output (100ma max)

GND

-5v output (100ma max)
J7 Mating connector
Molex # 09-50-3061
Molex Pin # 08-50-0106

1

wn

TTL compatible 120/180 ohm
negative edge termination
sync to +5v (72ohm)

TTL compatible 120/180ohm
Phase locks to termination
. heg. edge to +35v (720ohm)

See silkscreen drawing for connector layout
See separate syncs page for sync specifications
See ECL interface page for video specifications

X COMPOSITE SYNC - ECL VIDEO BOARD

Signal

Connector

Amplitude Input impedance

Vertical Sync & (BNT)J4

Horizontal Sync

*Low Level *High Level
See composite Sync wave form

XI TWO LEVEL COMPOSITE VIDEO

TTL compatible 120/180 .ohm
termination to

*L1L=0.0 to 0.8v +5v (72ohm)
*HL=+2,0 to +5.2v :

Signal Connector Amplitude Input impedance
Two level (BNC) J4 Video-Two comparators 750hm'to GND

composite video

adjustable from +2.5v DC coupled
to «3.5v

Sync-comparator

adjustable from +3.5v

to ~3.5v)

See Two Level Composite Video Option write ﬁp

(6)

Y %20 Ammmnv 91
C S
o *+6)
2t
m
e
: 21y
€1y — 4T 1 o
IEg - = 'y
- Al 2700
= . %)
~
22587 R

J3

™

DTL82050! SILKSCREEN

(7)

SECTION B DISPLAY TIMING

I Horizontal Timing

The Moniterm Specification includes '"back porch" retrace and
"front porch" intervals. Since the retrace is phase locked to
the falling edge of the sync pulse, and actually starts slightly
before it, at least one blank character after the last display
character position is recommended. Delaying the horizontal

sync additional time causes the display to shift left; thus the
user can center the display external to the monitor.

Horizontal Scan Retrace Time Video Time
64KHZ + 5% *3.5 u sec max 11.5 u sec -
50. KHZ +5% . *5 u sec max . 15 u sec

*These retrace times are maximum numbers. Since we are using a
regulated High Voltage supply, faster retrace times are available.
The retrace time and horizontal frequency can be customized to
the customer's requirements.

II Vertical Timing

The vertical retrace is initiated on the falling edge of the
vertical sync. Rest results are ohtained if this coincides with
the horizontal sync or occurs during horizontal sync. Tor an
interlaced display on alternate frames vertical sync is delayed
one half the horizontal time, 7.5us for a G4KHZ horizontal. In
any case, total vertical refresh should he a discrete function
of the horizontal scan.

The vertical retrace interval is specified at 667us of which
approximately 1/2 is beam retrace and 1/2 is settling time. The
display is blanked only during the retrace interval. The additional
raster lines are available for display although non-linearities are
present.

Vertical sync can occur immediately after the last scan of the
last display row. Delaying vertical sync additional scan times
causes the display to move upward which can facilitate vertical
centering or a very smooth scroll, raster by raster (panning).

The vertical oscillator free runs and is factory preset at 7% lower
than nominal and will sync to signals initially + 7% from nominal.
As with the horizontal setting, any unit for utilization at other
than 60HZ should he specified so that vertical lock can he assured.

For the height, sync, and linearity adjustments, see the adjustment
section.

(8)

Tl

VN &

T2

<=

T3

/ _ 92 Base Drive IBI=2.2 Amps Peak

Base Current

IB2=3 Amps Peak

IC=Ip + Iy

Q2 Collector Current

Ip=500ma to 900ma Depending on Model

Ip T2 Primary Current
Flyback
Inductor Current

+7 Amps to +9.5 Amps Peak

Iy
Horizontal Yoke

Current

-7 Amps to ~9.5 Amps Peak
The model determines the difference
in peak currents.

ICR
Retrace

Capacitor Current

375V to 550V this depends on model

VCR
Q2 Collector Retrace

Capacitor Voltage

IDR
Catch
Diode Current

Basic Horizontal Output Waveforms , (9)

II1T TWO LEVEL COMPOSITE VIDEO OPTION

The Two Level Composite Video Interface uses an ECL comparator

to sense two discrete video levels. These two levels are set by

potentiometers R20 and R21 and can be adjusted between +2.5 to -3.5V,
?he Sync is also sensed by a comparator and adjusted by
potentiometer R22, The level may be adjusted between +3,5 to -3.5V;
To adjust the Video Comparators, set channel 1 to Video and
channel 2 to D.C. potentiometcer level. IC7 pin § is Level 1

and IC 7 pin 11 is Level 2,

-t SV

AT e&;,.,w“tz
‘ = Levely

For the example shown, Level 1 would be adjusted to +0.7 V plus
the noise ievel. Level 2 would be +1.5 V plus the noise level,
For best rise and fall time of the video the comparators should

be adjusted as close to the beginning of the desired video level

as possible. An example is shown below.

.--cheL8 '
... LeveL AR

If the video'is'adjusted to Level A, the single dot characters
and the double dot characters will appear the same intensity level.
However, if the comparator were set to Level B, the double dot

characters would be brighter than the single dot characters.

.

(10)

The Sync should be provided as shown below

TTL High level

2.0v to 5.2v _ “ U
TTL Low level

0.0 to 0.8v dl

.

L

1

H Sync 150 u sec min

2 u sec max

- V Sync 30 u sec min

300 u sec max

Note that the Horizontal Sync is advanced by the pulse width

of the Borizontal Sync during Verticél Synec.

This is done so

the Phase Lock isn't out of lock at the end of Vertical Sync.

The Phase Lock requires several scan lines to sync up once it is

out of lock. A possible curcuit is shown below,

Vv sync

74 6
-— Comp. Sync

H sync A
Y

select

. Advanced H sync B
74L8151

H sync + advanced sync

(11)

THEORY OF OPERATION

I. Horizontal Section

IC 3 CD4046 is a phase lock loop (PLL) that drives the horizontal
section. The internal oscillator frequency of the PLL is controlled
by P2, R9, and C5. The sync input to the PLL is capacitively
coupled from Pin G on the video board into Pin 14. The PLL syncs

on the positive edge of the H sync pulse. The output of the PLL
drives (Pin 4) the gate of the power }MOS FET transistor, Q;.

The drain current of Q1 is transformer coupled through Tl which
provides the base drive for Q2 (the horizontal output transistor).
The horizontal retrace pulse from Qg is coupled through the voltage
divider of 214 and R11l and is clamped to +12v by Zener diode D4.

This +12v pulse is brought back into the phase comparator of the
PLL via Pin 3 of IC3. The output of the phase compactor is low
pass filtered at Pin 13 of the PLL by the combination of 26, R10,
and C17. The error voltage of the low pass filter is brought into
Pin 9, -the input to the PLL voltage controlled oscillator (VCO).
The VCO sets the frequency of the PLL output (Pin 4). This
horizontal drive is directly proportional to the input voltage.

The horizontal yoke has a saw tooth current that swings from +7 amps
to -«7 amps peak for 15" portrait models, and +9.5 amps to -2.5 amps
for the Landscape models. Q2 clamps the positive yoke voltage to
the saturation voltage of the transistor during the positive yoke
current. Catch diode D6 clamps the negative yoke voltage during
the negative yoke current. Vhen Q2 is turned off the transition
from + to - yoke current C23, 24, and 25 in combination with the
horizontal yoke inductance sets the horizontal retrace time. The
retrace time voltage wave form is half sine wave called the flyhack
pulse. The flyback pulse in combination with D5, T2 primary
inductance, and C21, determines the boost voltage for the horizoantal
drive. The boost voltage sets the horizontal energy level and
determines the horizontal width.” The flyback pulse is stepped

down through T2 to provide raw +10v and -10v. The +10v is regulated
through IC4 which provides +6v for the CAT filament. The raw +10v
and -10v are provided to the video hoards via pins I and K
respectively. The +10v is regulated on the video board to provide
+5v for the TTL logic. The -10v is regulated to -5.2v for the

ECL logic.

(12)

The horizontal yoke current goes through the linearity coil L1
through S caps C31 and C32 (which heip control horizontal
linearity) into the horizontal dynamic focus section where

the S correction voltage is capacitively coupled through C33
into the primary of T3. The horizontal dynamic focus voltage
is stepped up in the secondary of T 3 to approximately 300v and

capacitively coupled into the focus grid through C 34 via blue
wire 4.

The vertical dynamic focus is brought off C40 and capacitively
coupled into the base of the transistor Q3. The collector of '
Q3 drives producing approximately 250v of vertical dynamic
focus. -

Power to the horizontal section is provided by the output of
IC 1 which provides a maximum of 40v, adjusted by the horizontal
width pot P1,

The high voltage power supply provides +1000v énd -~110v. The
1000v is divided to approximately 500v through P8 and R28 to
drive the brightness grid on red wire 3. Also the brightness
voltage can be controlled through the brightness transistor Q4,
which is controlled by the op amp IC6 and the remote brightness
pot. The 1000v is also divided by R27 and P7 to provide
approximately 350v of focus voltage on blue wire 4. The -110v
goes through D10, R11l, and Zener D11 to control grid green wire
2, which is at about -57v at full contrast. The -110v has a
“"spot killer" circuit consisting of R31, C48, and D10, that holds
a negative voltage on the control grid to avoid burning a spot in
thé CRT after AC power is removed. Power to the high voltage
supply is provided by the output of regulator IC2 at approximately
25v.

(13)

TI VERTICAL SECTION

VERTICAL DEFLECTION CIRCUIT

The heart of the vertical deflection circuit is ICS, the TDA

1170. The IC performs four major functionms.

A Power Amplifier and Ramp Generator

Internal Oscillator

Voltage Doubler

Sync Input

The power amplifier provides the power to the vertical yoke from -

pin 4 of ICS5. A current of 1 amp p-p 1is supplied to the vertical

section of the yoke. The yoke current is capacitively coupled
through C40 into the sense resister R21. The sense resistor

converts the yoke current into a 1lv p-p voltage which is compared .

against the ramp out of pin 10, and includes the S correction for
‘ the vertical axis. This S correction is adjusted by the linearity
.ecorrection pots P5 and P6.

The Internal Oscillator is set by the RC network R23, C43, and

P3.. It normally runs in the range from 45-63 Hz.

‘The input voltage of 25 volts on pin 2 from regulator ICI, is
_doubled to 50 volts in the doubling circuit D9, C36, and C35.

The 50 volt output on pin 3 is used for the vertical flyback.
Vertical sync input comes in on pin 8 from pin F on the video

board connector which is driven by the LS14 on the video board.

This vertical sync input IC4 clamps the sync»voltage at .7 volts.

Power to the vertical section is provided by the output of IC2
which generates a voltage of approximately 25 volts.

- (14)

" The TTL video board has a video driver transistor Ql, collector
supply voltage regulator ICl, and input buffer IC3, sync buffer
IC4, and a +5v regulator (IC2) to drive IC3 & IC4.

The video driver transistor Ql is a common emitter driver that
swings between +30v and +1.8v. The +30v is produced by regulator
IC1, TI 783CKC. The regulator is adjustable from Ov to +30v with
the contrast Pot P1l. This produces the same voltage swing on the
cathode (collector of Q1) and also adjusts the control grid G1
from -91v to -61v.

Ql is kept out of saturation (VCE +1.8v) by the combination of

clamp diodes D3 & D4 & the VBE drop of Q1. Peaking inductor L1
speeds up the transistion time from +1.8v to +30v. IC3 (74S04)
provides the base drive for Ql.

IC4 (74S14) inverts the horizontal and vertical sync inputs and
drives the horizontal phase lock (CD4046) and the vertical deflec-
tion IC (TDA1170) on the deflection board. The TDA1170 clamps
sync inputs to +.7v and R5 limits the current draw from IC4.

IV ECL VIDEO THEORY OF OPERATION.

The ECL video board has a common base video transistor Q1 that
drives the cathode and a second common base video transistor Q2
that is capacatively coupled into the control grid (Gl1). The
emitter current of Q1 & Q2 is controlled by IC1 & IC2 (MC10115)
defferential input ECL receivers. The emitter follower outputs
of IC1 & IC2 are wire-ored, this keeps Q2 off when Ql is on.
Three discrete emitter current levels (60ma, 30ma, 15ma) can be
switched into eight different combinations. This emitter current
is translated into a voltage change by collector load resistors
R4 & R7. As the cathode voltage (Ql collector) goes from +25v to
+9v the control grid voltage (D) goes from -82v to -67v. This
collector voltage swing, produced by 100ma of current, gives a
differential voltage swing of approximately 30v.

Also on the board are a series of 74LS14 inverters that are
used to drive the horizontal and vertical sync inputs.

- (15)

ov____| /\/\
‘ -1lv

Horiz.
Frequéncy Vert. Freq.
Pin 4 of IC3 and . R21 or -~ side of C40
Gate of Ql .
+120V——————— +50v—
+80V cmmemn
ov T
Pin 2 0of Tl o . +15v

Ic5 Pin 4 or function of C39 and R17

+8v -

ov—-—b/ - ,

-6v- ‘ 7v-12v\p.p/_\/
«15v —————eee i . '

Pin 6 of T1 or .Transformer + side of C40 or yoke side of R16
side of R30, R42, R43 ' '

C31 and C32 or Lin coil side

of €51 Collector of Q3
Horizontal .
Dynamic }
Focus
Appr. 300v —®
PP .

Vertical Dynamic
Focus Appr. 250v P-D

The dynamic focus voltages vary somewhat from model to model.
Wave form at the junction of €34 and R26. _ " (16)

Horizontal Hold
P3 Vertical Hold
P4 Vertical Size
P5 Vertical Top Bottom Linearity
P6 Vertical Linearity

P7 D.C. Focus

P8 Brightness

P9 Vertical D.C. Centering

P10 Vertical Dynamic Focus

Pll Horizontal Dynamic Focus

P12 video Contrast Connector

P13 Composite Sync Level

Pl4 Level 1 Composite Video

P15 Level 2 Composite Video

Ll Horizontal Linearity

- lfﬁTiT=
D_ iPlS rl’_].:J P13 pl2

P8
PP P “1. PP P PPP
r;_|1 b 9 10 6 534
2 QI ans H P ollelle] ol{olo)]

(17)

4 .
Horizontal Width
P2 Horizontal Hold
P3 ' Vertical Hold
P4 Vertical Size
PS5 Vertical Top Bottom Linearity
P8 Vertical Linearity
P7 D.C. Focus
P8 Brightness
P9 Vertical D.C. Centering
P10 Vertical Dynamic Focus
P11l Horizontal Dynamic Focus
P12 Video Contrast Connector
P13 Composite Sync Level
P14 Level 1 Composite Video
P15 Level 2 Composite Video

Horizontal Linearity

(18)

iy

Fn-l_ﬂ

MY 1A WL
M-ic

"y Gvenes < §-I¢

<

Tvames < b-te

wis ssanpeige < ! T

=< T~ I

SSIrAHITHR

< g -20

$3aNIHO1RY

i A0 i 133HS| < 3WSS]
- 00~ Sl ~Lbo " LEEEHD AWEvitIn 54
~ ouf Lo, NOIYITIee¥ -
—— < ““.“ (hon1a0 a15)1au a0k 1INV NS00 Wi 7 s
IEV NN “ou Bupmsg L] i
gl < L—
= e o - A= T
hisd
193/141 118 ITONIS wopduossg T T ‘% “oN3 SSIMMOTND xg D =8 i Tws -
ooy mwiseg sownnsy |"TRE r{— T35 AGI- b 3WHLYD sl L1 o
UOLLEeHOdHOD WHILILOW semmores sermivans veoem | + SIVAOHJdY ofn w9~ OfN w9~ iTen Tna| 9 T Ta
AOIE =% NMMLTY dvO XYdE ag— wF< -3¢
AOI~ sy WD =ber S04 <4 wp
SN0Y wg~ SLIA th+ =g— FSINSILS <10 af- €-1r
$SSIHOTNY =¥~ TMISTNUOH ST~ T80 ONINGD ~1D nF-
ANV s(- 50 -*IMAS NIA of —TE JXIRTRRPY
e S WA U1t
AN i ; (3] Shis A< ¥ -1t
= o \4

< u._ﬂmm_

0-0011-0LY
»w

SIILVIHIOS vepsursg

k<74 e
oe W)
T L | om
0]
QYVO8 NO1303133G

v} oMl

]

$TYAOHIAY

ssauybug

AOW.——&I—] ed 2y

@ o

#1008 Jug pusog D

wa G—
N vamog —(]

= = 2v,

>

D
[- >

o

3
"
5

-H

—i

[L3 NS

eio Y 6d

'O

3
&

*

o] TTF W

21D

X

NI
EIaT

h

— e
L el

nm_uoum_uzu sl 9q
o oom, T T T 7oty
N\
—= ¢ oz ! .
1 ‘ZHOH
15y oY
= Sd
13
VM S Y
T
D
bd
94
te =
Za:] |~|
3 TP T I
< " .
o T
T N
i S H 2vhg (sj0wsy) <
: 8 ‘tosh ssauubug -
9\@ DVl
Y ISBA ZJOH § AOI-AER+AQKe | AZU+
b O MEED
56t = = HOLIINNOD O X,

(eaug spowsegj oeprp AHM

* O AN—]
w
@

&

{1

t Gg—
g
i

&

It
s

]
A%]
2]
o

i’

H

~N
(=]

a

~N
@

o

-}

ol
o

AAA
A

Eal

A

'l

&

ﬂ.e

wmvd A0S+

L

!LE

(-1

231
5 , 2 219
. _ a— e R vin g
oL 0 o Col [

<] 210 |-
EbY
2bY
OEY
»id
[¥-)

a1 1
1L

v g :
n_ 80 _ _ ,
- [r——

h

| Ql

m[

2

o

~

El

SIOf b
523

1
1€J

-
o
o
L
| | -

GIaIA - € |
nﬁﬂl ave §59 EED . .
H H% — e
...]hmmm U...a %Y — 4, ,
vy) : o - _.u_u.v- ..l_|||||||_| |
2 152 TA0m -
2 e Ted _ﬂw_ 5
) et u
mm .) 029

i @ £ O %] I@l ey . i

| K|)

A e o [|Uo Fat Hals s 332
') 080 411 .
DOD_M__ 8 _ - { Ld e

T L R

12.25°113.25] 1325
il 40 | 12.50 | 1¢.0
j4.0 | 1089 |12.20
113,40 | /6.00 | 1270
9.00 | s0.25 | s0.25
1,25 | 2.25 | 3 vo
2.2€ | 2.00 | 3.00
[/3.00 | /5,00 |/2.60
1600 | 13.00 |15,94
1014 112.15113.50
156 19.00 |10.57

olo[efzlpfn|r]o]r s

i v s WTOR
.093 Jus- et _CRT m°_
P Bchmdyp-Series || Loy

/2.2 5|

13.25{13.25

114,00

18.45 18.13

11.50

13.00 | 14.70

11.00

12.50 | 14.20

/0.28

16.25110.25

1.28

225} 2.38

1975

1.34]12.87

10.00

12.00 | {3.7%

13.00

15.00 | {700

T 756

9.10_{10.5

noz3rnm00"’>==_

Jo.1¥#

12.45°) 13.50

231
T

CRY W\OQ\TD_?\’

VP-Sekies

| S000P

3.
" 4,
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

17.

TEST PROCEDURE FOR MONITORS

Mdunt the deflection board on the chassis.

Connect the high voltage power supply cable to the high voltage
power supply. ,

Connect the yoke to the deflection board.

Connect the signal inputs to the video board.

Power up the pattern generator.

Connect the low voltage power supply to the deflection board.

Turn on the low voltage power supply. '

Allow 20 seconds for the display to become operable.

Adjust the brightness P8 so the background raster is yisible.

Adjust the horizontal sync P2 for stable display.

Adjust the vertical sync P3 for stable display.

Adjus£ the contrast P9 on the video board to the maximum.

Adjust the vertical dynamic focus voltage to a minimum of 200-250V P-P.
Adjust the horizontal dynamic focus voltage to a minimum of 300-350V P-P.
Make the initial focus adjustment P7 for the best overall focus.

Make ﬁhe initial vertical linearity adjustment by adjusting PS5 maximum
and the adjusting P5 and P6 in an iterative fashion. Use P4 for the

vertical height adjustment. The vertical height should be adjusted
to the full display height.

Adjust the horizontal linearity coil for maximum width then adjust this
for best horizontal linearity. The horizontal linearity should be
+ or - 5%. -

Code Ref. R2

Test Procedures For Monitors Cont.

18.
" 19.
. 20.

21.
22.

23.
24.
25.
26.
27.
- 28.
29,
30.
31.

Readjust the vertical linearity by adjusting P5 and P6. Again using

P4 for the
+ or = 5%.

Attach the

Adjust the
boundaries

Adjust the

height adjustment. The vertical linearity should be

display template to the CRT.

horizontal size Pl and the vertical size P4 to the
of the template.

yoke magnets to the boundaries on the template.

Install the pincusion magnets on the yoke to the boundarles on the

"template.

Observe that the background raster overscans the displayed area
by a mlnlmum of one character time.

Adjust brightness P8 so that the background raster is just below
the level where it is visible.

For units with the remote brightness option check to see that the

remote pot
Adjust: the

Adjust the
105 vac to

Power down

will extinguish the raster.
focus P7 for best overall focus.

input line voltage to the low voltage supply from
129 vac and observe that the display operates normally.

the low voltage power supply and observe that the display

doesn t make an extremely bright spot.

Stamp tested.

24 Hour burn in.

Ship

JURL AOS IN LTV AW ZI'0TD 00-SSLY-¥¥T z v
juey, A9T 3N 2T AW W0 00-19ZZ-vT 1 ¥

JueL ASZ 30 0T dWD 8Z0'€T0 00-ZT90T-W¥T T '

390 ADOS 3N T° dD /0 00-SYOT-EVT 1 v

1250 050°Z¥0* 8€D’SED
'€€07 620’ 12D’ €2’ HTD

19D AQOT I0 T° aw - TI0'60780°SD'€D0'ZD O00-THOT-€¥T, . 9T ¥

33D AOOT 3In T0° 4 910 00-TEOT-E¥T T ¥

AT 3d 0Ly dw 020 00-TILY—-ZHT 1 ¥

190 m1 3d 0cz a0 6VO'LTD 00-TTge-evl z ¥

1) AT 3d 22 a0 660 00-T0ZZ-T¥T 1 v

19D MY T IN T0° aW L¥O'VED ® ®00-TE0T-THT z ¥
190 MIT 34 AT a0 16079v0 00-T1Z0T-Z¥T z ¥
WNUTMTY A0S 30 0LY dWD 0VD'LED'9ED 00-SLLY—O¥T € ¥
WNUTUNTY AE9 I0 L°P dYO 610’90 00-9SLV—OVT z v
WNUTUNTY AE9 IN EE dVD 10 00-99€€-0%T G
UNUTUNTY AQOT 3N, LT a0 120 00-T9LZ-0VT 1 ¥
unuTUNTY AQS I 022 dWD ¥O T0-SLZZ-OVT T ¥
WUTUNTY AQS 3N ZT YO 810 00-SLZZ-0v1 1 ¥
wnuTUNTY A9T 30 027 a0 062920 00-TLTT-0FT 4 v
WUTUNTY AE9 30 00T dWO | L0 00-9L0T-O0¥T T ¥
. OIATDST | Wiiioid "IN eaN Tia - AD #od
T-€Y °3J°Y 9poD T0-00TT-L66 £86T ‘I 1990390 WOH QUVOH NOLIOTLIHA MAN

C-EXY SpoD °393d

ﬁHHF‘I\HN
R R e D P L P L L e,

™ - ~ n i L} N ™ ~ L | - ~ -~

-

XD iod

%S Iod 6d'Td 00-0205-00%

00T I0d va'ed 00-0¥0T-00F

 MT Jod Tid 00-0Z0T-00%

TI00 XLTIVANIT T1 00-0E¥0-02€

urd-97 IMO0S *O°I €3I 00-09TZ-¥8¢

urd-g IDIOOS 0" I 9OI 00-80TZ-¥8C

aTeuRd SNIJ 00-202Z~-Z8¢2

*S*d YOIOENNCO IC 00-THZS-082Z

" 9%OX HOIOANNCD Ze 00-TH02-08C

€g0LZSNI 3001d Tia ¢ €00-0L2S-¥9T

GZYZSNI B40Id va - 00-Z¥ZS-v91

GSPZSNI HI0IA €0 00-S¥ZS-BIL

9S8W FAOIA STa’9a’‘sd - 00-0958-091

0SEUW HA0Id | 80’4 00-0058-09T

SEGYNI Hd0Id | ZId 00-SE6V-09T

€E6VNI HIOIA - ¥1a 00-E€6¥-09T

$OOPNI SIOIQ €1a*0Ta’6a’za’Ta 00-¥00V-09T

eoH 35 3d ¥T AW SID 00-TZOT-8pT

uTTd AOSC 30 S°T WD ZED'TED 00-TSST-9FT

WITd $S AOOT 30 1° WD SPO'PIO'EVD 00-THOT-9¥T

NOIIdTEOSHEd NOIIVIOISH] *d¥ §HeWIN JHvd
€861'Lz Isqueideg ¢ HHVd WOd (MVOH NOIIOTLIAA MAN

T0-00TT-L66

£€-EV 9p0) °Jy

D %S M% UNO MLV SR

D S M% WO MEE S
O 3S-M% WO MOLZ S
O %9 M% WO YOZT S

D %S M% Wyo 08T S

D %S Mk uyo QST S

O %S mx o WI Sad

D %G Mk WO WI Sm
D S M WO MOOT ST
D %S M% Wyo NOT S

O 3§ My WO NT S

D %S My wyo T s

D 35 Mk Wyo 0T S
O %S MZ Wyo 8°9 S
D %G M[Wyo €°€ SA

STINZADIVON MOLSTSNWL
€00ET AM YOLSISNWIL
600ET W VOLSISNWAL

umng, T WS¢ I0d

J0S J0d

pey’ 9y
Tew’ 6

9gu’ s
STH' 0T

At

i
S’ Tha €6
824’ L24’ 924
0¥’ 668’ e
geu’ LW’ ETH' T
2

Tea

62

€7 Zhy’ 08y
LTH

0

€0

40

8d‘Ld

01d’9d’sd’ed

NOLIdTRIOSHI

T0-00TT-L66

NOILVNDISHd ~dd

SP-ZLY0-Thb
SY-EEE0~TIY
SZT-pLZO-ThY
SY-pTT0-Th
SHr1810-ZVV
SZ-TSTO-ZvY
SH-S0T0-ZV
$Z-50T0-2h¥
SH~-p0TO-Zh¥
SH—-E0TO-Zh¥
ST-Z0T0-ThY
S2-0T00-2h

6Z-0010-Zh¥

lecowm|ovv
ST-00€E-0V Y
TO-€TC6-Vv
00-£0ET-CCV
00-60£T-CCV

00-0SSC-20v

00-0£0S-00¥

YAGINN JUYd™

< N ~ =~ e~ e~ M et - e e M ™M =t o~ N N N
< < }c < € & & & & &£ & & & &£ &£ & & &£ £«

€861 ‘2T 1990100 € OV QUVOd NOTIOFIINA MAN

‘H'M H'S SX0V-7 MRS . 20-v¥v0-009 4 ¥
“H'M"H"S .8/€X0V-F MRIDS . T0-€¥¥0-009 9 ¥
J908LIN *D°I) 10-908L-02S 1 v
| HSOLTTVAL *D°I 61 00-0LTT-02S T '
ILTEWT *O°I oI zo-LTE0-0zs 0T ¥
MAHLTEWT *O°I | 101 T0~-LTE0-02S T ¥

9YOVTOW *D°I €01 00~-9%0%7—0TS 1 v
€1, YINIOISNVILL | €L 00-T120-08¥ T ¥
-1 TBRIOASNYEL 1L 00-0TZ0-08¥ T v
WITA $T M% WO NZ9°S S 6TH TP-¥29S-V¥v T v
WETA $T Mk WO 66V SEd g4 Tr-ge6v-vey T ¥
wird 1 M% wye vm.,u. S 0z -eSLv-vvv - T v
WITA $T M% WO £5°F ST 'ed - Th-TEST-bhp z v
wird T M% Wyo €/C S 'Y Tv-0EvT-Vib A
w{Td 3T M% WO NOZ S 8Ty’ 9Ty T9-2002~b¥¥ z v
wiTd $T M% Wyo YI6T Say TA: XA Tr-EI6T-Vvb z ¥
- WUTEA 3T M5 WO MOT S N A T9-200T-¥iv T ¥
D 36 MY WP N8 SW vy SY-£280~Th¥ T v
D 35 M% WO WP Sa P’ LY SU-ELVO-TV z v

v NOIIdTRNDSH NOIIVNOISAEd *J3d THENON Nvd, XD Wod
F—-£Y 39y |poD T0-001TT-L66 €86T ‘CT 1°2qo100 ¥ 39OV WOod QUv0d NOIIOFTIRI MAN

9-£Y °J9Y 9po)

*H°d %XZE€-9 MRS

ud-8 HOLOENNCD OFIIA
P2, YEHOISNYIL

€-Z, WAWIOISNWIL

3L YINIOASNWLL

T-Z1 YANIOASNYAL

€00ETHN MOESISNWL

T60ET W I03SISURL],

" oraT o1
pSuUuIS}sp 39 03 -say
WTTJ $S AD09 I0 LP00® WD
WITd $S A009 3N STO" dWD
WITd 35 AD09 N T0° D
WITJ $S AO0Y 3N 8900° WD
WITd $S AOSZ 3N 0°T dw
*390 AQOT I LP0" dWD
*19Q AQOT IN 950° dWD
*33) AQOT 3n g90° dWD

| 39D AOOT 30 Z80° AW
*39D) AQOT 30 T° 4w

ec

A

4 P

A

A

¥0

z0

9 01

9Py

orae) Tao Ll o)
S2O’¥20'€20
§20'¥22'€7D
S20'¥20'€20
2ED'1€D
€50

€50

£50

€50

£50290

00-TT¥0-02S

00-v£90-009

00-L£20-08Y
00-¥TZ0-087
00-2T20-08Y
00-£T20-08¥
00-€0ET-ZZ¥
00-T6€T-ZZ¥

00-9€ST-9%T
00-9€0T-9%T
oo'wmwmxova_.
00-250T-9%T
00-TELV-EPT
00-TE9S-£VT
00-TE89-EHT
00-TEZ8-EVT .

S R T O R I R P L L

4
T
1
T
T
T
T
T
T
T
00-92L¥-9%1 £
£
¢
¢
4
T
T
T
T
4

00-TYOT-€¥T

NOLLd THOSEI

T0-00TT-L66

NOILYNDISE] °Jd

WANN Rvd A0 Wod

€861 ‘T 1390300 WOd NOIIJO/QUVOH NOTIOFIIRI MAN

YOLVINSNI YOIW €-0L 00-9060-C¢t9
94 3I9sul UOTAN 00~-9000-2€9

€0L JursiesHy 00-t08¥—0£9

TeuIajul 9§ I9YSemyooT] 00-2090-¥09
cE-9 u__,z 00-C£90-c09

NOIIATOSHd NOILVNDISHKI °J3d YIHNON SV

T
[A
T
14
[4

< & & <

XD Wod

L—€Y 3p0D * 3y . 10-00TT-L66 €86T ‘Lz asquoadog g abeq wod uoradp parvod uotloaTiad

