${ }^{-3 . . .5-1000}$
 JADE $\mathbf{Z 8 O}_{\text {KIT }}$

ASSEMBLY MANUAL AND

OPERATING INSTRUCTIONS

Circuit Features

-- On board 2708 EPROM addressable to any 4K boundary above 32 K
-- Power-on-jump to any 4K boundary above 32 K , or the on-board 2708
-- A wait state may be added to any:

1) MI cycle
2) Memory Request cycle
3) On-board ROM cycle (for use at 4 MHz)
4) Input cycle
5) Output cycle
-- On-board run-stop flip-flop and optional generation of MEMORY WRITE allow front panel-less operation
-- Selectable IO adoressing mode:
6) 8080 mode where peripheral address byte is duplicated on high and low order address bytes
7) Z-80 mode where the peripheral byte appears on the low order address, and the contents of the accumulator appears on the high order byte, allowing simultancous I/0
-- DMA Grant tri-states all signals from the processor board
-- 8224 clock genèrator provides 8080 look-alike $\phi 1$ and $\phi 2$ for the S-100 bus
-- Status signals SINP, SOUT, SMEMR, \& SWO are latched per S-100 bus specs.
8) Install sockets for IC 1 thru IC 4, IC 6 thru IC 27, and IC 29 thru IC 40.
9) Install 8 position dip switches (SPST) at locations IC 5 and IC 28.
10) Install . 1 uf capacitors at locations C4, C5, and C11 to C24.
11) Install a 50 to 100 uf electrolytic capacitor at locations Cl and C6. Note the polarity orientation on the silkscreen.
12) Install a 10 pf capacitor at location $C 9$.
13) Install a 100 pf mica capacitor ac location Clo.
14) Install the following resistors:

R1 4.7 K
R2 1 K
R6 330 ohms
8) Install 7805 regulator and heat sink at location Q1. It is advisable to use heat sink grease between the regulator and the heat sink.
9) If you plan to use the 2708 PROM install:

C2 \& C3 50 to 100 uf electrolytic capacitors
R3 51 ohm resistor
R4 240 ohm resistor
D1 12 volt zener diode
D2 5.1 volt zener diode

2 MHz Operation

1) Install an 18 MHz XTAL at location Yl . If the crystal is an overtone type crystal, then install L1, C7 , and C8 . If the crystal is a fundamental type, then these components are not necessary.
2) Install resistor R5 at 3300 ohms.
3) Open all dip switches (off position).
4) Install jumper J2 (adjacent to IC 23) in the 8080 mode by connecting the middle to the lower pads.

Z-80	8080
mode	mode

4 MHz Operation

1) Install a 36 MHz crystal at location Yl . If the crystal is a third overtone type, then install LI, C 7 , and C 8 .
2) Install R5 at 1.8 K ohms.
3) Open all dip switches except IC 5 position 5. This inserts a wait state into every memory cycle, so that you may test the processor with 500 ns memory.
4) If you are using a 2708 ÉPROM, close IC 5 position 6.
5) Install jumper $\mathrm{J2}$ (adjacent to IC 23) in the 8080 IO mode by connecting the middle to the lower pads.

Front Panel-less Operation

1) On the reverse side of the printed circuit card (not the component side) in the upper left hand corner there are four sets of pads marked A, B, C, and D. Connect each set of pads by carefully soldering a small piece of wire to the two pads of each set.
2) Mount your front panel control switches and attach their terminals to a length of ribbon cable. Attach the other end of the ribbon to a dip header plug, pins $13,14,15$, and 16 as shown in the schematic. Attach the ground to the ground plane

3) Close the dip switch at location IC 5 position 1 . This allows the processor card to generate its own Memory Write signal (MWRT), normally a front panel function.

Options

1) On-board 2708 EPROM

To use the provision for the on-board 2708, install the components for the plus 12 -volt and minus 5 -volt power supplies as per step 9 of the board assembly instructions. Connect pad J to pad H of the ROM enable jumper (near IC20).
2) No on-board 2708

Connect pad J to pad K of the ROM enable jumper.
3) Power-on Reset jump

The reset jump feature may be enabled in a number of ways. If you are running front panel-less, the jumpenable line is available at the front panel corrector by connecting the pads across letter D. When this line is grounded the reset jump is enabled. If you are using a front panel, two options exist:
a) The Reset jump may be permanently enabled by connecting pad F to pad G. This grounds the jump enable line.
b) Tie pad F to any unused $S-100$ bus pin. When this bus pin is grounded, the reset jump will be enabled. Note that when the jump is enabled the data bus will be blanked during a reset operation. The processor will not be able to read the contents of memory until the jump address is reached. If the processor
is stopped and you hit reset and tıe jump is enabled, the processor will reset to location 0900 , remain stopped, and the data bus will read all zerns, regardless of what is stored at this locatior.. Hittirig the run switch will allow the processor to step through memory until the jump address is reached, at which time normal memory operations are resumed, with all memory locations being visible to the processor.
4) PROM arid Jump Addressing
The on-board 2708 PROM and the reset jump are addressed by
clsoing the appropriate dip switch at IC 28. They may be ad-dressed at any 4 K boundary above 32 K . Note that only one dipswitch may be closed at a time.
Address (hex) Close switch at position
8000 8
9000 7
A000 6
B000 : 5
COOO 4
DOOO 3
E000 1
F000 2
5) Wait State Selection
A wait state may be added to any of the following processor
cycles by closing the appropriate dip switch at IC 5.
Wait Added on Cycle Close switch at position
M1 (instruction fetch) 4
all Memory 5
on-board 2708 6
Input 7
Output 8
6) Address Multiplexing
Jumper J 2 has been provided so that you may choose between

8080 and Z-80 10 addressing modes. Unless you have a specific need for using the $\mathrm{Z}-80$ mode, it is recommended that you use the 8080 mode, thereby maintaining $\mathrm{S}-100$ bus compatibility. See step 4 of the section on 2 MHz operation for the proper installation of this jumper.

Checkout Procedure

It is highly recommended that you use static memories during the initial checkout of your processor board. The timing signals necessary to interface dynamic memory are highly critical and checkout is greatly simplified if static memory is used. When handling MOS devices such as the $\mathrm{Z}-80$, be careful to ground your ',ody to both the processor board and the conductive foam in which the devices are stored before handling the chips. Avoid touching the pins of the chips if possible. Do not proceed from any step until the proper results are obtained.

1) If you have installed the jump enable jumper (pad F to pad G), temporarily disconnect it. If you have a' jump enable switch, open the switch (jump not enabled).
2) Install the board in the computer, power-up and check the output of of the five-volt regulator (right-most pin). If it is not 5 volts, either the regulator is defective, or a short circuit exists on the board. Power-down and check the board for solder bridges.
3) Power down and install the 8224 clock generator (8224-4 at 4 MHz). Power up and check pin 6 for a $2 \mathrm{MHz}(4 \mathrm{MHz})$ square wave.
4) Power-down and install the remaining TTL and the $Z-80$. Power up and repeat steps 2 and 3 . Ifa front panel is used, plug in the connector.
5) Stop the processor if it is running. Press the reset button and hold down. Examine the following pins of the $2-80$ chip:

PIN NAME
30-4-* AD-
1-5 A15
7-10* DD-
12-15 D7

CONDITION EXPECTED
high
high
*These pins may be examined by checking the front panel lights: A0-A15 and DO-D7 should all be on while reset is held down.
6) Release the RESET button. Examine the following pins on the $2-80$ chip;

PIN NAME CONDITION EXPECTED
26
25
24
18
27
16
17
23
30-40*
1-5
RESET
BUSRQ
WAIT
HLTA
M1
INT
NMI
BUSAK
AO-A15
*may be examined via front panel lights. AO-A15 should be off.

If there is a front panel, proceed with the following tests:
7) Hit the EXAMINE NEXT switch 3 or 4 times and see if the address lights count up in binary.
8) With all the address switches off, hit EXAMINE The processor should return to location zero, with all address lights off.
9) Power-down and install a memory board at location zero. Power-up and hit STOP and RESET. With all data switches off, hit DEPOSIT. All data lights should go out.
10) Change data switch \emptyset to a one and hit DEPCSIT NEXT. Check that data light \varnothing is now on.
11) Change each of the remaining data switches, one at a time, to a one.

Hit DEPOSIT NEXT after each change and check that the corresponding data light is now on.
12) When all of the switches.. are on and all of the data lights are on, hit RESET. Step through memory hitting EXAMINE NEXT. The data lights should come on one by one until they are all on.
13) Enter the following program at location \emptyset.

Address	Data	Instruction
0000	D3 18	Out 18(Hex)
0002	C3 0000	Jmp 0000

Hit RESET. The data lights should contain D3, the MEMR light, the SWO light, and the MI light should be on, INP and OUT should be off. Hit SINGLE STEP. Nothing should change except the address and the data lights. Hit SINGLE STEP. The MEMR aird M1 + SWO lights should now go off and the OUT light go on. Check to see that both the high and low address bytes contain 18(Hex). This is the 8080 IO mode. After hitting SINGLE STEP 4 times, the processor. should return to address zero.
14) Hit RUN. Check to see that the OUT light is partially on. Close the dip switch at locition IC 5 position 8 , the wait light should come on very dimly. When the dip switch at position 4 is closed, the wait light should come on more strongly. Open position 4 and close position 5; the wait light should come on. Open the switches.
15) Change the contents of location \emptyset to DB. Hit RESET and RUN. The INP light should now come partially on. Close the dip switch at location IC 5 position 7. The wait light should come on very dimly.
16.) Connect a temporary jumper between pads J and K, disconnecting pads J and H if they are connected. Connect a temporary jumper between pads F and G. Deposit 76 (hex) at location C000. Close the dip switch at location IC 28 posizion 4. Hit RESET. The data bus at location zero should contain all zeros. Hit RUN. ifter a fraction of a second the HLTA light should go on. This completes the checkout procedure.

Circuit Description

Processor Status

The five primary status lines from the Z-80 chip are Memory Request ($\overline{\mathrm{MREQ}}$), Instruction Fetch ($\overline{\mathrm{MT}}$), Input-Output Request ($\overline{\mathrm{IORQ}), ~} \operatorname{Read}(\overline{\mathrm{RD}})$; and Write ($\overline{W R}$). They are defined as follows:
$\overline{M R E Q}$ when active (low), indicates that the address bus contains a valid address for a Memory Read or Memory Write.
$\overline{I O R Q}$ indicates that the address bus contains a valid address for an input or an output device.
$\overline{\mathrm{RD}}$ indicates that the CPU wants to read data from memory or an I/0 device. The addressed emmory or device uses this signal to gate data onto the data bus.
$\overline{W R}$ indicates the data bus holds valid information to be stored in the addressed memory or I/O device.

MT indicates that the current machine cycle is the opcode "fetch" of an instruction cycle.

These signals are inverted and gated together by IC 18 and IC 19 to form the status signals SOUT (output), SINP (input), SMEMR (memory read), and SWO (write operation in progress) as follows:

$$
\begin{aligned}
& \text { SOUT }=\text { IORQ } \cdot W R \quad(\text { IC } 18 \text { pin } 6) \\
& \text { SINP }=I O R Q \cdot R D \quad(\text { IC } 18 \text { pin } 8) \\
& \text { SMEMR }=M R E Q \cdot R D \quad(\text { IC } 18 \text { pin } 11) \\
& \text { SWO }=\overline{R D} \cdot \overline{\text { INTA }}(\text { IC } 18 \text { pin } 3)
\end{aligned}
$$

The $\mathrm{Z}-80$ does not have an interrupt acknowledge (INTA) pin. Rather, INTA is defined on the $\mathrm{Z}-80$ chip as

$$
I N T A=M 1 \cdot I O R Q
$$

This signal is generated by IC 15 at pin 11 and is inverted at IC 17 pin 2 for use in the generation of SWO.

These four status signals are then latched by the quad latch IC 13 and SWO is inverted by using the \bar{Q} output from the latch to form $\overline{S W O}$. The latched status signals provide status information for the $S-100$ bus after gating through the..tri-state bus drivers in IC 3.

The Status latch IC 13 is clocked by the PSYNC signal from one-shot IC 8. The Psync signal is true for the first 400 nsec (200 nsec at 4 Mhz) of every 10 or memory cycle (except Refresh) and is used by many peripherals to indicate the earliest moment when status and address information may be sampled from the bus. It may also be used by some peripheral cards to sample status information 0 : the DATA OUT bus. A full description of this signal is given in the section on 8080 PSYNC. The length of the Sync signal is determined by the resistor R5. The one-shot IC 8 is triggered by the SYNCENABLE signal (IC 14 pin 8) which is defined as:

$$
\text { SYNCEN }=\left(M R Q \cdot \overline{R F S F_{1}}\right)+\text { IORQ }
$$

The Memory Write signal MWRT may optionally be generated on the processor card by closing the dip switch at IC 5. position 1. MWRT is defined as; MWRT = MRQ - WR. This signal need only be generated in a front panel-less machine. In a machine with a front panel, the MWRT is generated by the front panel circuitry and defined as processor Memory Write OR Deposit.

Processor Control Bus

The processor write strobe $\overline{\mathrm{PWR}} \mathrm{i}$.; simply the write strobe of the Z-80 chip delayed slightly by two sections of IC 12 and optionally delayed until the end of the PSYNC signal via jumper 31 . This jumper need only be installed if status information is to be ated onto the data bus. See the section on 8080 PSYNC for a complete explanation.

The processor data bus in signal PDBIN is created at IC 10 pin 10 and is defined as:
PDBIN = RD + INTA

This is inverted at IC 17 pin 8 and gated to the bus by tri-state driver IC 4. PDBIN is also AND-ed with the sense switch disable sig-
nal ($\overline{\mathrm{SSWDSB}}$) from the front panel at IC 14 pin 3 . When $\overline{\mathrm{SSWDSB}}$ is active, data is not gated in from the Data-in-bus so that the processor may accept data from the front panel circuitry via the ribbon cable connected to IC 34.

Wait State Generation

A wait state may be added to any processor cycle by closing the appropriate dip switch at location IC 5.
Wait added to cycle Switch position

M1 4
all Memory 5
on-board $2708 \quad 6$
Input 7
Output . 8

When using marginally slow memory, it may be necessary to add a wait state to the M1 (instructî́n fetch) cycle since the Z-80 chip makes its most critical timing demands upon the memory during this cycle. If you are using memory with an access time of:greater than 500 nsec and a processor clock of 2 MHz or memory with access time greater than 250 nsec and a clock rate of 4 MHz , then you must add a wait state to every memory cycle. The on-board 2708 EPROM will run without wait states at 2 MHz , but a wait state must be added at 4 MHz . If you wish to add a wait state to an input or an output cycle, provision has been made, though this stould only be necessary in extreme cases.

Wait states are generated in the following way: The SYNCEN from IC 14 pin 8 is successively clocked through the tin flip flop sections of IC 9 by the processor clock \emptyset. The output of this circuit is a positive-going pulse at pin 8 of IC 15 with a duration of one clock period every time a new processor cycle begins. The wait request signals from the dip switch IC 5 are OR-ed together by IC 6 and inverted at pin 8 of IC 7. This signal may be considered a wait enable signal. If the wait enable signal is active (high) then the pulse
from IC 15 pin 8 is gated through to the NOR gate, IC 6, and then into the Z-80 chip, generating a wait state for one clock period.

Clock Generation

An 8224 clock generator has been used to generate the $\varnothing 1$ and $\emptyset 2$ signals for the $S-100$ bus and the clock for the $Z-80$ chip. The $Z-80$ is clocked by the $\varnothing 2$ signal. This brings the internal timing structure of the $\mathrm{Z}-80$ chip into close emulation of 8080 timing sigilals, a necessity for interfacing to the $S-100$ bus. Note $t_{\text {. at }}$ the tank circuit connected to pin 13 of the 8224 need only be installed with a third overtone type crystal. Resistor R1 and c.apacitor C6 determine the duration of the power-on reset pulse.

Address Multiplexing

The 8080 processor chip provides the peripheral address byte on both the high order and the low order address bytes during an I/0 instruction. The $Z-80$ chip, however, provides the peripheral byte only on the low order address byte. This is done so that the contents of the accumulator may be transferred to the high order address byte during an input instruction, allowing simultaneous input and ouput. Many peripheral caids designed for the S-100 bus decode the high order address byte during an IO instruction, which will cause errors if the Z-80 IO mode is used. Multiplexors II, 24 and IC 25 have been provided so that you may select between 8080 and $Z-80$ IO modes via jumper J2. It is adviseable to connect the jumper to the ADDMUX line thereby operating the board in 8080 mode unless you specifically need the simultaneous IO feature. If you choose $\mathrm{Z}-80$ mode you may have to extensiveiy modify your existing IO boards to operate correctly in this mode.

ROM Addressing and Power on Jump

Addressing for the on-board 2708 (IC 36) is done via address decoder IC 29 and dip switch IC 28. The ROM and the power-on/reset
jump are addressed together, and may be located at an 4 K boundary above 32K. Note that only one switch of the dip switch IC 28 may be closed at a time in order to avoid addressing the ROM at two places in memory. The power-on jump operates in the following way: The processor reset line (RESCLK) clocks the flip flop IC 21 at pin 3. If the jump enable line (JUMPEN) is low at this moment, either by connecting points F and G on the circuit board, or by connection to a front panel switch, (the JUMPEN line is available on the front panel connector IC 34 at pin 16) then flip flop IC 21 is set and the first set of inverting data receivers are tri-stated. This allows the pullup resistors in IC 32 and IC 38 to force the data lines high. The second set of inverting data receivers change all these highs to lows and the processor sees an instruction word of all zeros, which it decodes as a NOP. This had the effect of incrementing the program counter with no other operation being performed. The Program countersteps through memory until the address selected with IC 28 and IC 29 is reached. The ROM select signal is then generated which resets flip flop IC 21 and the processor resumes normal operation.

If you are not usinc; the on-board ROM, but do wish to use the reset jump to go to your own monitor, this may be done by connecting a jumper between pad J and pad K on the circuit board. If the ROM is used, connect the jumper between pad J and pad H. If the jumper is connected between pads J and H, then the data input drivers will be tri-stated when the ROM is being addressed, preventing conflict between the data input drivers and the ROM data lines. If you do not use the ROM, however, and the jumper is connected between J and H, the 1 K block of memory beginning at the reset u ump address will be "blanked out" by the tri-stating of the input drivers. This is avoided if pad J is tied permanently high by connecting it to pad K. In this configuration, the chip select on the ROM will never tri-state the input drivers and the system memory at the selected jump address is again "visible" to the Z-80.

Direct Memory Access

A Direct Memory Access cycle is initiated by bringing the $\overline{\text { PHOLD }}$ line low (bus pin 74). This. j.s buffered by IC 11 and connected directly to the bus request ($\overline{B U S R Q}$) pin of the $Z-80$. The $Z-80$ samples this line with the rising edge of the last clock period of any processor cycle and if it is active all processor operation is suspended during the next clock cycle and the bus acknowledge pin ($\overline{B U S A K}$) goes active. This pin is inverted by IC 19 and buffered by IC 20 to drive the DMA grant (DMAG) line on the bus (pin 26). $\overline{B U S!K}$ is also buffered by IC 20 and drives three sections of IC 22 and one section of IC 7. This has the effect of Tri-stating all data, address, and control signals from the processor card, thereby relinquishing all control to the DMA device. The DMA operation is terminated when the $\overline{\text { PHOLD }}$ line is returned to its inactive (high) state.

Interrupt Handling

Interrupts are handled internally in the $Z-80$ chip with very little external circuitry required. When the Interrupt line on the $\mathrm{S}-100$ bus is active (low), this iow is gated to the processor chip by buffer IC 20. The $Z-80$ samples its $\overline{I N T}$ pin during the last clock period of each instruction cycle and if it is active AND the internal interrupts enabled flip-flop is set (interrupts are enabled) AND the $\overline{B U S R Q}$ line is not active, then an interrupt is generated. The processor generates a special M1 cycle (instruction fetch) at this point. During this special cycle the $\overline{I O R Q}$ signal becomes active concurrently with the MI signal (normally MI and $\overline{\text { MREQ }}$ are active during an instruction fetch). This special Ml cycle is defined as the interrupt acknuwledge signal and an active high signal is generated at IC 15 pin 11 and gated onto the S-100 bus by buffer IC 4 . When this signal is active, the interrupting device can place an 8-bit vector on the processor data bus. Refer to the 2-80 technical manual as to how this interrupt vector is utilized by the $\mathrm{Z}-80$ in each of the three interrupt response modes.

On the 8080 processor chip one of the status lines was assigned to the interrupt enable flip-flop, so that its status could be read by
external devices. The pin proved to be of extremely limited usefulness, and was not included on the. Z-80 chip. The S-100 bus, however, being essentially a copy of the 8080 pin-out, does include this signal. While it is possible to build circuitry to emulate the function of this pin, its limited usefulness suggests not doing so. Note that the internal interrupt flip-flop operates in the usual way, being set by an EI instruction (ENABLE INTERRUPTS) and reset by a DI instruction (DISABLE INTERRUPTS) OR by a processor reset operation. If you are using any periferal cards that perform interrupts to the processor, check to see if they examine the INTI signal (bus pin 28). If they do, this bus pin may be tied permanently high and the peripheral cards will operate correctly. Note also that if you have a front panel light that indicates interrupts enabled, it will not operate and may be reassigned to another functior.

The Non-maskable Interrupt (NMI) line operates in much the same way as the interrupt line, but this line has priority' over the normal interrupt line and cannot be disabled under software coritrol. It is extremely useful to provide response to important signals such as impending power failure. CPU response to an NMI signal is similar to a normal interrupt response except that the contents of the data bus is ignored while the processor stores the program counter on the stack and jumps to location 0066 H .

The PSYNC signal indicates three things on the 8080 processor chip:

1) PSYNC identifies the first time state in every machine cycle
2) PSYNC And-ed with $\emptyset 1$ or $\overline{\emptyset 2}$ indicates the earliest moment that address information is stable on the address bus.
3) PSYNC indicates that status information is available on the Data bus. The normal operation of an 8i.30 processor card is to latch the system status information off the data bus into an on-board 8212, using PSYNC as a strobe. This latched status information is then available to the $\mathbf{S}-100$ bus.

The $Z-80$ chip, however, does not jenerate a PSYNC signal, and does not requipe that status information be latched at the beginning of each machine cycle.

These differences in processur chip architecture have caused some problems in interfacing the $\mathrm{Z}-80$ to the $\mathrm{S}-100$ bus. The PSYNC signal has been created and satisfies the first two conditions of 8080 PSYNC. The third condition, t!at status information be available on the data bus during the PSYNC signal, has been intentionally ignored. To satisfy the third condition of the 8080 PSYNC signal, status information would have to be gated onto the data-out bus during the PSYNC signal. This is both unnecessary and drastically reduces the time that data is available on the DATA OUT bus during a memory write or output cycle.

If you have peripheral cards that examine the data-out bus during PSYNC, the simple solution is to cut the data line examined at the chip input and to tie the input to the apprpriate status line on the bus.

Data Line Examined	Symbol	Available at bus pin
D0	INTA	96
D1	$\overline{W 0}$	97
D3	HLTA	\vdots
D4	OUT	48

Data Line Examined Symbol Available at bus pin D5
M1 44
D6 INP 46
D7 MEMR 47
An Example: IMSAI Front Panel Fix
The IMSAI front panel, for example, examines data line 005 during the PSYNC interval, in order to stop the processor at an Ml cycle. The $\mathrm{Z}-80$ will not necessarily stop on an M1 cycle unless this data line is cut and the line tied to SMI (pin 44) on the $\mathrm{S}-100$ bus.

The S-100 Bus

When using the Z-80 board, the following differences exist in the assignment of $\mathrm{S}-100$ bus pins:
INTE Interrupt Enable (bus pin 28) is not generated by the CPU as explained in the section on Interrupt handling.

NMI Non-maskable Interrupt is not accepted by 8080 processors but is accepted by Z-80 CPUs. This function has been assigned to the previously unassigned bus pin 12 adjacent to the vectored interrupt lines VIO to VI7.

STACK Stack operation (bus pin 98) is an $80 \varsigma \mathrm{~J}$ status line that indicates that a stack operation is in progress: This line is not generated by the $\mathrm{Z}-80$ and is not available on 'he bus. Front panel lights connected to this pin will not operate correctly.

RFSH Refresh is a signal generated by the Z-80 for interfacing the processor to dynamic memorins. It has been assigned to previously undefined bus pin 67.

MRQ Memory request is also generated by the $\mathrm{Z}-80$ and is useful in interfacing dynamic memory without slowing the processor. It has been assigned to undefined bus pin 65.

	SYMBOLS:	"p" prefix indicates a processor command/control signal "S" prefix indicates a processor status signal
LEVELS:	All bus signals except the power supply are TTL	

No.	SYMBOL	NAME	FUNCTION
18	$\overline{\text { STA DSB }}$	STATUS DİSABLE	Allows the buffers for the 5 status lines to be tri-stated
19	$\overline{C / C ~ D S B ~}$	$\begin{aligned} & \text { COMMAND/CONTROL } \\ & \text { DISABLE. } \end{aligned}$	Allows the buffers for the 4 output command/control lines to be tri-stated
20	UNPROT	UNPROTECT	Input to the memory protect flipflop on a given memory board
21	SS	SINGLE STEP	Front panel signal that indicates that the machine is in the process of performing a single step
22	$\overline{\text { ADD DSB }}$	$\overline{\text { ADDRESS DISABLE }}$	Allov's the buffers for the 16 address lines to be tri-stated
23	$\overline{\text { DO DSB }}$	DATA OUT DISABLE	Allows the buffers for the 8 data output lines to be tri-stated
24	\$2	Phase 2 Clock	
25	¢1	Phase 1 Clock	.
26	PHLDA	Hold Ackñowledge	Processor , : control output signal which appears in response to the HOLD signal; indicates that the data and address bus will go to the high impedance state
27	PWAIT	WAIT	Processor command/control output signal which acknowledges that the processor is in a WAIT state
28	PINTE	INTERRUPT ENABLE	This signal not generated by Z-80
29	A5	Address Line \#5	
30	A4	Address Line \#4	
31	A3	Address Line \#3	
32	A15	Address Line \#15	
33	A12	Address Line \#12	
34	A9	Address Line \#9	
35	D01	Data Out Line \#1	:

No.	SYMBOL	NAME	FUNCTION
36	DOO	Data Out Line \#0	
37	A10	Address Line \#10	
38	D04	Data Out Line \#4	
39	D05	Data Out Line \#5	
40	D06	Data Out Line \#6	
41	DI2	Data In Line \#2	
42	DI3	Data In Line \#3	
43	DI7	Data In Line \#7	
44	SMI	M1	Status output signal that indicates that the processor is in the fetch cycle for the first byte of an instruction
45	SOUT	OUT	Status output/signal which indicates that the address bus contains the address of an output device and the data bus 'will contain the output data when $\overline{\mathrm{PWR}}$ is active
46	SINP	INP	Status output signal which indicates that the address bus contains the address of an input device and the input data should be placed on the data bus when PDBIN is active
47	SMEMR	MEMR	Status output signal which indicates that the data bus will be userd for memory read data
48	SHLTA	HLTA	Status out ut signal which acknowledges a HALT instruction
49	$\overline{\text { CLOCK }}$	$\overline{\text { CLOCK }}$	Inverted output of the oscillator that generates the 2 phase clock
50	GND	GROUND	
51	+8V	+8 volts	Unregulated input to 5 v regulators
52	-16V	-16 volts	Negative unregulated voltage

No.	SYMBOL	NAME	FUNCTION
18	$\overline{\text { STA DSB }}$	STATUS DISABLE	Allows the buffers for the 5 status lines to be tri-stated
19	$\overline{C / C ~ D S B ~}$	$\begin{aligned} & \text { COMMAND/CONTROL } \\ & \text { DISAB.LE } \end{aligned}$	Allows the buffers for the 4 output command/control lines to be tri-stated
20	UNPROT	UNPROTECT	Input to the memory protect flipflop on a given memory board
21	SS	SINGLE STEP	Front panel signal shat indicates that the machine is in the process of performing a single step
22	$\overline{\text { ADD DSB }}$	$\overline{\text { ADDRESS DISABLE }}$	Allox's the buffers for the 16 address lines to be tri-stated
23	$\overline{\text { DO DSB }}$	DATA OUT DISABLE	Allows the buffers for the 8 data output lines to be tri-stated
24	\$2	Phase 2 Clock	
25	\$1	Phase 1 Clock	
26	PHLDA	Hold Acknowledge	Processor : control output signal which appears in response to the HOLD signal; indicates that the data and address bus will go to the high impedance state
27	PWAIT	WAIT	Processor command/control output signal which acknowledges that the processor is in a WAIT state
28	PINTE	INTERRUPT ENABLE	This signal not generated by $\mathrm{Z}-80$
29	A5	Address Line \#5	
30	A4	Address Line \#4	
31	A3	Address Line \#3	
32	A15	Address Line \#15	
33	A12	Address Line \#12	
34	A9	Address Line \#9	
35	D01	Data Out Line \#1	

No.	SYMBOL	NAME	Data Out Line \#O
36	DOO	Address Line \#10	

No.	SYMBOL	NAME	FUNCTION
53	$\overline{\text { SSW DSB }}$	$\frac{\text { SENSE SWITCH }}{\text { DISABLE }}$	Disables the data input buffers so the input from the sense switches may be strobed onto the bidirectional data bus right at tre processor
54	$\overline{\text { EXT CLR }}$	$\overline{\text { EXTERNAL CLEAR }}$	Clear signal for $1 / 0$ devices (front panel switch closure to ground)
68	MWRT	MEMORY WRITE	Indicates that the current data on the Data Out Bus is to be written into the memory location currently on the address bus
69	$\overline{\text { PS }}$	PROJEGT STATUS	Indicates the status of the memory protect flip-flop on the memory board currently addressed
70	PROT	PROTECT	Input to the memory protect flipflop on the memory board currently addressed
71	RUN	RUN	Front panel signal that indicates that the RUN/STOP flip-flop is Reset
72	$\overline{\text { PRDY }}$	READY	Processor command/control input that controls the run state of the processor; if the line is pulled low the processor will enter a wait state until the line is released
73	- $\overline{\text { PINT }}$	$\frac{\overline{\text { INTERRUPT }}}{\text { REQUEST }}$	The proces ror recognizes an interrupt request on this line at the end of the current instruction or while halted. If the processor is in the HOLD state or the Interrupt Enable flip-flop is reset, it will not honcr the request
74	$\overline{\text { PHOLD }}$	$\overline{H O L D}$	Processor command/control input signal which requests the processor to enter the HOLD state; allows an external device to gain control of address and data buses as soon as the processor has completed its use of these buses fop the current machine cycle

\(\left.$$
\begin{array}{lll}\text { No. SYMBOL } & \text { NAME } & \begin{array}{l}\text { FUNCTION } \\
75\end{array} \\
\text { PRESET } & \text { RESET } & \begin{array}{l}\text { Processor command/control input; } \\
\text { while activated the content of the } \\
\text { program counter is cleared and the } \\
\text { instruction register is set to 0 }\end{array} \\
76 & \text { PSYNC } & \text { SYNC }\end{array}
$$ \begin{array}{l}Processor command/control output

provides a signal to indicate the

beginning of each machine cycle\end{array}\right]\)| Processor command/control output |
| :--- |
| 77 |
| 78 |

No.	SYMBOL	NAME	FUNCTION 96
SINTA	INTA	Status output signal to acknow- ledge signal for INTERRUPT request	
98	SSTACK	STACK	Status output signal indicates that the operation in the current machine cycle will be a WRITE memory or output function
99	POC	Status output signal indicates that the address bus holds the pushdown stack address from the Stack Pointer; not available with Z-80	
100	GND	Grownd	

Parts List

$\text { IC } 1-8224^{(1)}(8224-4 \text { at } 4 \mathrm{MHz})$... \because IC 34 - This is the Front Panel
IC 2 r Resistor Pak	connector
IC 3 - 8T97	IC 35 - Resistor Pak
IC 4 - 8T97	IC 36-2708 EPROM (optional)
IC 5-8 position spst	IC 37-8T98 or 8098
Dip Switch	IC 38 - Resistor Pak
IC 6-74LS21	IC 39-8T98 or 8098
IC 7-74LS00	IC 40-8T97
IC 8-74121 (Texas Instruments	Note: Resistor packs supplied with
IC 9-74LS74 Recommended)	this kit are 16 pin, 15 resis-
IC 10 - 74LSO2	tor,with pin 16 common. Values between 1 K and 4.7 K may be used.
IC 11-8T97	R1-4.7K
IC 12-74LSO4	R2 - 1 K
IC 13-74LS75	R3 - 51 Jhms
IC 14-74LSOO	R4-240 ohms ;
IC 15-74LS08	R 5 - $3.3 \mathrm{k}\left(1.8 \mathrm{~K}^{\mathrm{K}}\right.$ at 4 MHz$)$
IC 16-Resistor Pak	R6 - 330 . ohms
IC 17-74LSG4	Q1 - 78055 volt regulàtor
IC 18-74LS08	\therefore Heatsink -
IC 19-74LS04	Y1 - 18.000 MHz crystal (36.000 at 4 MHz)
IC 20-8T97	L1 - 1 uhy (needed only with overtone XTAL)
IC 21-74LS74	D1 - 12 volt zener diode
IC 22 - 74LSOO	D2 - 5.1 volt zener diode
IC 23-74LSO2	C1 - C3 50-100 uf electrolytic capacitors
IC 24-74LS157	25 volt
IC 25-74LS157	C4, C5, C7, C11 - C24 - . 1 uf ceramic capacitors
IC 26-8T97	C6 - 50 to 100 uf electrolytic
IC 27-8T97	C8 - 56 pf @ 2 MHz 20 pf @ 4 MHz
$\begin{aligned} \text { IC } 28-8 \text { position } \\ \text { SPST Dip Switch } \end{aligned}$	$\begin{aligned} & c 9-10 \mathrm{pf} \\ & \text { C10-200pf } \end{aligned}$
IC 29-74LS138	
IC $30-\mathrm{Z}-80$ (Z-80A at 4 MHz)	\because
IC 31-8T98 or 8098	(1. Inte? or $A M$)
IC 32 - Resistor Pak	(2) AMD

IC 33 - 8T97

ITHACA AUDIO Z-80 CPU BOARD

Revisions schedule

Rev. 0 initial release
Rev. 1 edge connectors 1 ines 18 and 19 interchanged. I.ine 18 corrected to chip 22-9; line 19 to chip 7-1.

LAYOUT DIAGRAM 280 BOARD

```
        IfHACA AHDIO Z-80 CPU BOARD
    Hevisions schedule
Hev. U Initial release
Hev. 1 Edre connectors lines 18 and 19 inter-
        changed. Line 18 corrected to ohip
        22-9; line 19 to chip 7-1.
Rev. 1.1 HClk changed to RGlk U17-10 used in-
        stead of ul7-11.. This improves reset
        jump operation.
Rev. 1.2 Data received on the data in bus 1s no
        longer placed on the data out bus.. This
        prevents the possibility of ringing.on
        the data busses caused by crosstalk.
Rev. 1.3 The pins and polarity of refresh have
        been changed from line 67 to line 66
        to correspond with Bus standards.
```


