UNIX User’s Sﬁ;t*rplementary Documerts
(USD)

4.3 Be1k°ley Software Distribution
Virtual VAX-11 Version
490144 Rev. A

July, 1987

Integrated Solutions
1140 Ringwood Court .
‘San Jose, CA 95131

(408) 943-1902

Copyright 1979, 1980, 1983, 1986 Regents of the University of

California. Permissicn o copy these documents or any portion: thereof .

as necessary for licensed use of the software is grented to licensses of
this software, provided this copyright notice and statement of
permission are included.

Documents USD:1, 2, 3, 5, 6, 12, 13, 18, 19, 20, 24, 25, 26, 27, 28, 30,
and 32 are copyright 1979, AT&T Bell Laboratories, Incorporated.

Holders of UNIX™/32V, System III, or Systemi V sofiware licenscs are *

permitted to copy these documents, or zi:y portion of the. ~—~~ ‘sary
- for licensed use of the software, provided this. copyrie g and

hapi

statement of permission are included.

Documents USD:8, 9, 10, 11, 17, and 31 are part of the user conwrit d

software.

This manual reflects system enhancements made at Berkeley and

. sponsored in part by the Defense Advanced Research Projects Agency V ‘
(DoD), Arpa Order No. 4871 monitored by the Naval Electronics

Systems Command under contract No. N00039-84-C-0089. The views
and conclusions contained in these documents are those of the authors
and should not be interpreted as representing official policies, either
expressed or implied, of the Defense Res8ab:i Pro;ecsg Agency or of the
US Government.

UNIX is a registered trademark of AT&T in the USA and other |

countries.
4.2BSD and 4.3BSD were developed by the Regents of the Umvemty

of California (Berkeley), Electrical Fsigi: vinc and Cesaputer Sciences - .-

Departments.

DEC, VAX, and LSI-1 are trademarks of Digital Eq\llpmem i

* Corporation.
NFS (the Sun Network File System) is a product created and developed

Inc.

by Sun chrosystems, Inc. NFS is a trademark of Sun Microsystems,

gy

cgeld ¢

UNIX User’s Supplementary Documents (USD)
4.3 Berkeley Software Distribution, Virtual vAx-11 Version

February, 1986

This volume corizins docune:its whisi suppiecnert the manual puges in The Unix User's Reference
Manual for the Viswal 74%-11 version of the cystem 25 distribated by U.C. Berkeiey, and Volumes 2a and
2b as provxded by isell Labe.alorics.

Getting Started /

Unix for Beginners — Second Edition T USD:1
An introduction to the most basic uses of the system., '

Leam — Computer-Aidsd-instrvtion on UNTY (Sacond Editicn) USD:2
Describes a cor ~* 2fed instruction program :hat walks new uscrs turough he basics of
files, the editor, socument prepararation sofvware.

Basic Utilities

An Introductionto© UNIX Shell . USD:3
Steve Bourne s introduction to the capabilities of sh, a command interpreter especially popular
for writing shell scripts.

An Introduction to u.2 C sheii : USD:4

This introduction to csh, (a command interpreter popular for interactive work) describes many
commonly used UNIX commands, assumes iittle prior knowledge of UNIX, and has a glossary
useful for beginners.

DC — An Interactive Pesk Calculatnr ‘ USD:S
A super HP =uiculiior, if you ‘onotac "aabing point.
BC - An Arbitrary Precision Desk-Calculator Language USD:6

A front end for DC that provides infix notation, control flow, and built-in functions.

Communicating with the World

Mail Reference Mz » | , USD7
Complete detains oni 0n¢ 0F wie L.ograme=¥r .. “agund reading your mail.

The Rand MH Message Hardling System ' USD:8
This system for managing your computer mail uses lots of small programs, instead of one large
one.

How to Read the Negwerk News o E S USD:9
Describes how news works (generally) and some alternatives for reading it, readnews and
vnews .

How to Use USENET Effectively USD:10

USD Contents - . -

Describes the customs, protocols, and etiquette of network news, plus answers to the WMW % recs
most frequently asked by newcomers o the netwoxk

Notesfile Reference Manual R UsB"u
This feature-packed system for maintaining compuner-alded dxscussnon groups is also uscful’
for readmg netnews. i

RS TR R

Text Edmng T P PR

A Tutorial Introduction to the Unix Text Editor ... USD:12
An easy way to get started with the line editor, ed. e e

Advanced Efditing on Unix B , Ce e .+ USD:13
The next step. o

Edit: A Tutorial A .Y ySDA4
An introduction to edit, a line—oriented editor which is a(vemon of ex, assuxmng no prevnous
knowledge of UNIX or text editing. e e g

An Introduction to Display Editing with Vi L ' s -0 USD:1S
The document to learn to use the vi screen editor. S coe T

Ex Reference Manual (Version 3.7) 8 S cercan o USD:16
The final reference for the ex editor, which underlies both editand vi.

Jove Manual for UNIX Users USD 17'
Jove is a small, self-documenung, customlzable dlsplay edltor, based on EMACS A plausxble)
alternative to vi. ‘ e

SED - A Non-interactive Text Editor S Tuspas
Describes a one-pass variant of ed useful as a filter for proc&ssmg large ﬁl&s

AWK — A Pattern Scanning and Procéssing Language (Second Edition) St ms"ml{9
A program for data selection and transformation.

Document Preparation

Typing Documents on UNIX: Using the —ms Macros with Troff and Nroff USD:20

Describes and gives examples of the basic use of the typesetting tools and ‘‘-ms’’, a frequently
used package of formatting requests that make it easier to lay out most documents.

A Revised Version of -ms ‘ ' , USD:21

A l‘);ief description of the Berkeley revisions made to the —ms formatting macros for nroff and
trofl.

Writing Papers with aroff using —me USD:22
Another popular macro package for nroff.

—me Reference Manual USD:23
The final word on —me.

NROFF/TROFF User’s Manual : USD:24
Extremely detailed information about these document formatting programs.

A TROFF Tutorial _ USD:25

An introduction to the most basic uses of troff for those who really want to know such things,
or want to write their own macros.

USD Contents

A Systeas. . . ypuseting Mathematics ' . USD:26
Desciibes cqn, an easy-to-leam language for high-quality mathematical typesetting.

Typesétting Mathematics — User’s Guide (Second Edition) usD:27
More details about how to use egn.

Tbl — A Programn tc Format Tables USD:28
A program for easily typesetting tabular material.

Refer — A Bibliography System USD:29

An introduction to one set of tools used to maintain bibliographic databases. The major pro-
grara, refer, is used to automatically retrieve and format the references based on documnt

citations.
Some Apglications of Inverted Indexes on the UNIX System U290
Mike Lesk’s paper describes the refer nrograms in 2 somewhat larger context.
BIB - A Program for Formatting Bibliographies ' USD:31
This is an alternative to refer for expanding citations in documents.
Writing Tools — The STYLE and DICTION Programs USD:32
“These are programs which can help you understand and improve your writing style.
Amusements
A Guide to the Dungeons of Doom USD:33
An introduction to the popular game of rozue, a fantasy game which is one of the higgest
known users of VAX cycles.
Star Trek 1JSD:34
~You are the Captain of the Starship F *erprise. Wipe out the Klingons and save the Federa-
tion.

B ’t&" AN

UNIX For Beginners — Second Edition

Brian W. Kernighan
(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

This paper is meant to help new users get started on the UNIX? operating system. It

includes:

o basics needed for day-to-day use of the system — typing commands, correcting typ-
ing mistakes, logging in and out, mail, inter-terminal communication, the file system,
printing files, redirecting /O, pipes, and the shell.

e document preparation — a brief discussion of the major formatting programs and
macro packages, hints on preparing documents, and capsule descriptions of some sup-

porting software.

e UNIX programming — using the editor, programming the shell, programming in C,

other languages and tools.
e An annotated UNIX bibliography.

INTRODUCTION

From the user’s point of view, the UNIX operating
system is easy to learn and use, and presents few of the
usual impediments to getting the job done. It is hard,
however, for the beginner to know where to start, and
how to make the best use of the facilities available.
The purpose of this introduction is to help new users
get used to the main ideas of the UNIX system and start
making effective use of it quickly.

You should have a couple of other documents with
you for easy reference as you read this one. The most
important is The UNIX Programmer's Manual; it’s
often easier to teil you to read about something in the
manual than to repeat its contents here. The other use-
ful document is A Tutorial Introduction to the UNIX
Text Editor, which will tell you how to use the editor to
get text — programs, data, documents — into the com-
puter.

A word of warning: the UNIX system has become
quite popular, and there are several major variants in
widespread use. Of course details also change with
time. So although the basic structure of UNIX and how
to use it is common to all versions, there will certainly
be a few things which are different on your system
from what is described here. We have tried to minim-

t UNIX is a trademark of Bell Laboratories.

ize the problem, but be aware of it. In cases of doubt,
this paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type, what
to do about mistakes in typing, how to log out.
Some of this is dependent on which system you
log into (phone numbers, for example) and what
terminal you use, so this section must necessarily
be supplemented by local information.

2. Day-to-day Use: Things you need every day to
use the system effectively: generally useful com-
mands; the file system.

3. Document Preparation: Preparing manuscripts is
one of the most common uses for UNIX systems.
This section contains advice, but not extensive
instructions on any of the formatting tools.

4. Writing Programs: UNIX is an excellent system
for developing programs. This section talks about
some of the tools, but again is not a tutorial in any
of the programming languages provided by the
system.

5. A UNIX Reading List. An annotated bibliography
of documents that new users should be aware of.

UsD:1-2

L. GETTING STARTED

Logging In

You must have a UNIX login name, which you can
get from whoever administers your system. You also
need to know the phone number, unless your system
uses permanently connected terminals. The UNIX sys-
tem is capable of dealing with a wide variety of termi-
nals: Terminet 300's; Execuport, TI and similar port-
ables; video (CRT) terminals like the HP2640, etc.;
high-priced graphics terminals like the Tektronix 4014;
plotting terminals like those from GSI and DASI; and
even the venerable Teletype in its various forms. But
note: UNIX is strongly oriented towards devices with
lower case. If your terminal produces only upper case
(e.g., model 33 Teletype, some video and portable ter-
minals), life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on your
device. Switches that might need to be adjusted
include the speed, upper/lower case mode, full duplex,
even parity, and any others that local wisdom advises.
Establish a connection using whatever magic is nceded
for your terminal; this may involve dialing a telephone
call or merely flipping a switch. In either case, UNIX
should type “‘login:’’ at you. If it types garbage, you
may be at the wrong speed; check the switches. If that
fails, push the ‘‘break’’ or *‘interrupt’’ key a few times,
slowly. If that fails to produce a login message, consult
aguru,

When you get a login: message, type your login
name in lower case. Follow it by a RETURN; the sys-
tem will not do anything until you type aRETURN. If a
password is required, you will be asked for it, and (if
possible) printing will be turned off while you type it
Don’t forget RETURN. '

The culmination of your login efforts is a ‘‘prompt

character,”” a single character that indicates that the -

system is ready to accept commands from you. The
prompt character is usually a dollar sign $ or a percent
sign %. (You may also get a message of the day just
before the prompt character, or a notification that you
have mail.)

Typing Commands

Once you’ve seen the prompt character, you can
type commands, which are requests that the systera do
something. Try typing

date
followed by RETURN. You should get back something
like

Mon Jan 16 14:17:10 EST 1978

Don't forget the RETURN after the command, or noth-
ing will happen. If you think you’re being ignored,
type a RETURN; something should happen. RETURN
won't be mentioned again, but don’t forget it — it has

UNIX For Beginners

tobetlmeatthecndofeachline.v

Another command you might try is who, which
tells you everyone who is currently logged in:

who

gives something like
mb ttyol Jan16 09:11
ski tty0S Jan16 09:33
gam ttyll Jan16 13:07

The time is when the user logged in; ‘“‘ttyxx’’ is the
system’s idea of what terminal the user is on.

If you make a mistake typing the command name,
and refer to a non-existent command, you will be told.
For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of some
other command, it will run, with more or less mysteri-
ous results.

Strange Terminal Behavior

Sometimes you can get into a state where your ter-
minal acts strangely. For example, each letter may be
typed twice, or the RETURN may not cause a line feed
or a return to the left margin. You can often fix this by
logging out and logging back in.t
Or you can read the description of the command stty in
section 1 of the manual. To get intelligent treatment of
tab characters (which are much used in UNIX) if your
terminal doesn’t have tabs, type the command

stty —tabs

and the system will convert each tab into the right
number of blanks for you. If your terminal does have
computer-settable tabs, the command tabs will set the
stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it before
RETURN has been typed, there are two ways (o recover.
The sharp-character # erases the last character typed; in
fact successive uses of # erase characters back to the
beginning of the line (but not beyond). So if you type
badly, you can correct as you go:

t In Berkeley Unix, the command "reset<control-j>" will often
reset a terminal apparently in a strange state because a fullscreen
editor crashed.

UNIX For Beginners

dd#atte#ite

is the same as date.t

The at-sign @ erases all of the characters typed so
far on the current input line, so if the line is irretriev-
ably fouled up, type an @ and start the line over.

What if you must enter a sharp or at-sign as part of
the text? If you precede either # or @ by a backslash \,
it loses its erase meaning. So to enter a sharp or at-sign
in something, type \# or \@. The system will always
echo a newline at you after your at-sign, even if pre-
ceded by a backslash. Don’t worry — the at-sign has
been recorded.

To erase a backslash, you have to type two sharps
or two at-signs, as in W#. The backslash is used exten-
sively in UNIX to indicate that the following character
is in some way special.

Read-ahead

UNIX has full read-ahead, which means that you
can type as fast as you want, whenever you want, even
when some command is typing at you. If you type dur-
ing output, your input characters will appear intermixed
with the output characters, but they will be stored away
and interpreted in the correct order. So you can type
several commands one after another without waiting
for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the charac-
ter ‘‘DEL’’ (perhaps called ‘‘delete’’ or ‘‘rubout’’ on
your terminal). The *‘interrupt’’ or ‘‘break’’ key found
on most terminals can also be used.t In a few pro-
grams, like the text editor, DEL stops whatever the pro-
gram is doing but leaves you in that program. Hanging
up the phone will stop most programs.}

Logging Out
The easiest way to log out is to hang up the phone.
You can also type

login

and let someone else use the terminal you were on.* It
is usually not sufficient just to tumn off the terminal.
Most UNIX systems do not use a time-out mechanism,
50 you'll be there forever unless you hang up.

t Many installations set the erase character for display terminals
to the delete or backspace key. “stty all" tells you what it actually

is.

t In Berkeley Unix, "control-c" is the usual way to stop
programs. "stty all” tells you the value of your "intr" key.

$ If you use the c shell, programs running in the background
continue running even if you hang up.

* "control-d" and "logout” are other altematives.

USD:1-3

Mail
When you log in, you may sometimes get the mes-
sage
You have mail.

UNIX provides a postal system so you can communi-
cate with other users of the system. To read your mxil,
type the command

mail

Your mail will be printed, one message at a time, mosi
recent message first.} After each message, mail waiis
for you to say what to do with it. The two basic
responses arc d, which deletes the message, and
RETURN, which does not (so it will still be there the
pext time you read your mailbox). Other responses are
described in the manual. (Earlier versions of mail do
not process one message at a time, but are otherwise
similar.)

How do you send mail to someone else? Suppose
it is to go to ‘“‘joe’’ (assuming ‘‘joe’’ is someone’s
login name). The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as you like ...

After the last line of the letter

type the character ‘‘control-d’’,

that is, hold down ‘‘control’’ and type

a letter *'d”’.
And that’s it. The ‘‘control-d’’ sequence, often called
““EOF’’ for end-of-file, is used throughout the system
to mark the end of input from a terminal, so you might
as well get used to it.

For practice, send mail to yourself. (This isn't as
strange as it might sound — mail to oneself is a handy
reminder mechanism.)

There are other ways to send mail — you can send
a previously prepared letter, and you can mail to a
number of people all at once. For more details see
mail(1). (The notation mail(l1) means the command
mail in section 1 of the UNIX Programmer’ s Manual.)

Writing to other userst
At some point, out of the blue will come a mes-
sage like
Message from joe tty07...

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you take explicit action
you won’t be able to talk back. To respond, type the

t The Berkeley mail program lists the headers of some number
of unread pieces of mail in the order of their receipt.

t Although "write” works on Berkeley UNIX, there is a much
gicer way of comnunicating using display-terminals — "talk”
splits the screen into two sections, and both of you can type
simultaneously (see talk(1)).

UsD:14

command
write joe

This establishes a two-way commuanication path. Now
whatever Joe types on his terminal will appear on yours
and vice versa. The path is slow, rather like talking to
the moon. (If you are in the middle of something, you
have to get to a state where you can type a command.
Normally, whatever program you are running has to
terminate or be terminated. If you’re editing, you can
escape temporarily from the editor — read the editor
tutorial.)

A protocol is needed to keep what you type from
getting garbled up with what Joe types. Typically it’s
like this:

Joe types write smith and waits,

Smith types write joe and waits.

Joe now types his message (as many lines as he
likes). When he’s ready for a reply, he signals
it by typing (o), which stands for ‘‘over”’.

Now Smith types a reply, also terminated by
(o).

This cycle repeats until someone gets tired; he
then signals his intent to quit with (oo0), for
“‘over and out’.

To terminate the conversation, each side must
type a ‘‘control-d’’ character alone on a line.
(*‘Delete’’ also works.) When the other person
types his “‘control-d"’, you will get the message
EOF on your terminal.

If you write to someone who isa’t logged in, or
who doesn’t want to be disturbed, you'll be told. If the
target is logged in but doesn’t answer after a decent
interval, simply type *‘control-d’’.

On-line Manual

The UNIX Programmer’s Manual is typically kept
on-line. If you get stuck on something, and can’t find
an expert to assist you, you can print on your terminal
some manual section that might help. This is also use-
ful for getting the most up-to-date information on a
command. To print a manual section, type ‘‘man
command-name’’. Thus to read up on the who com-
mand, type

man who
and, of course,
man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a program
called learn, which provides computer aided instruc-
tion on the file system and basic commands, the editor,
document preparation, and even C programming. Try
typing the command

UNIX For Beginners

If learn exists on your system, it will tell you what to
do from there.

II. DAY-TO-DAY USE

Creating Flles — The Editor

If you have to type a paper or a letter or a pro-
gram, how do you get the information stored in the
machine? Most of these tasks are done with the UNIX
‘“‘text editor’’ ed. Since ed is thoroughly documented
in ed(1) and explained in A Tutorial Introduction to the
UNIX Text Editor, we won't spend any time here
describing how to use it. All we want it for right now
is to make some files. (A file is just a collection of
information stored in the machine, a simplistic but ade-
quate definition.)

To create a file called junk with some text in it, do
the following:

ed junk (invokes the text editor)

a (command to ‘‘ed”’, to add text)
now type in

whatever text you want ...

. (signals the end of adding text)

The “.”" that signals the end of adding text must be at
the beginning of a line by itself. Don’t forget it, for
until it is typed, no other ed commands will be recog-
nized — everything you type will be treated as text to
be added.

At this point you can do various editing operations
on the text you typed in, such as correcting spelling
mistakes, rearranging paragraphs and the like. Finally,
you must write the information you have typed into a
file with the editor command w:

w

ed will respond with the number of characters it wrote
into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the informa-
tion is lost.} But after w the information is there per-
manently; you can re-access it any time by typing

ed junk
Type a q command to quit the editor. (If you try to quit
without writing, ed will print a ? to remind you. A
second q gets you out regardless.)

Now create a second file called temp in the same

manner. You should now have two files, junk and
temp.

t This is not strictly true — if you hang up while editing, the
data you were working on is saved in a file called ed.hup, which
you can continue with at your next session.

UNIX For Beginners

What files are out there?

The Is (for *“list’’) command lists the names (oot
contents) of any of the files that UNIX knows about. If
you type

Is
the response will be

Junk
temp

which are indeed the two files just created. The names
are sorted into alphabetical order automatically, but
other variations are possible. For example, the com-
mand

Is-t
causes the files to be listed in the order in which they
were last changed, most recent first. The -1 option
gives a “*long’’ listing: '

Is-1
will produce something like

—rw-rw-rw— 1bwk 41 Jul 22 2:56 junk
—rw-rw—rw— 1bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file. The
41 and 78 are the number of characters (which should
agree with the numbers you got from ed). bwk is the
owner of the file, that is, the person who created it. The
-rw-rw-rw- tells who has permission to read and
write the file, in this case everyone.

Options can be combined: Is It gives the same
thing as Is -1, but sorted into time order. You can also
name the files you’'re interested in, and Is will list the
information about them only. More details can be
found in Is(1).

The use of optional arguments that begin with a
minus sign, like —¢t and —It, is a common convention for
UNIX programs. In general, if a program accepts such
optional arguments, they precede any filename argu-
ments. It is also vital that you separate the various
arguments with spaces: 1s~1is not the same as Is -1

Printing Files

Now that you've got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are needed.

One simple thing is to use the editor, since print-
ing is often done just before making changes anyway.
You can say

ed Junk
1,8p

ed will reply with the count of the characters in junk
and then print all the lines in the file. After you leam
how to use the editor, you can be selective about the
parts you print.

UsSD:1-5

There are times when it’s not feasible to use ihe
editor for printing. For example, there is a limit on
how big a file ed can handle (several thousand lines).
Secondly, it will only print one file at a time, and some-
times you want to print several, one after another. So
here are a couple of alternatives.

First is cat, the simplest of all the printing pro-
grams. cat simply prints on the terminal the contents
of all the files named in a list. Thus

cat junk
prints one file, and
cat junk temp

prints two. The files are simply concatenated (hence
the name ‘‘cat’’) onto the terminal.

Ppr produces formatted printouts of files. As with
cat, pr prints all the files named in a list. The differ-
ence is that it produces headings with date, time, page
number and file name at the top of each page, and extra
lines to skip over the fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a new
page and print temp neatly.

Pr can also produce multi-column output:
pr -3 Junk

prints junk in 3-column format. You can use any rea-
sonable number in place of ‘*3’’ and pr will do its best.
pr has other capabilities as well; see pr(1).

It should be noted that pr is not a formatting pro-
gram in the sense of shuffling lines around and justify-
ing margins. The true formatters are nroff and troff,
which we will get to in the section on document
preparation.

There are also programs that print files on a high-
speed printer. Look in your manual under opr and lIpr.
Which to use depends on what equipment is attached to
your machine.

Shuffling Files About

Now that you have some files in the file system
and some experience in printing them, you can try
bigger things. For example, you can move a file from
one place to another (which amounts to giving it a new
name), like this:

mv junk precious

This means that what used to be *‘junk’’ is now ‘‘pre-
cious”. If you do an Is command now, you will get

precious
temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost for-
ever.

USD:1-6

If you want to make a3 copy of a file (that is, to
have two versions of something), you can use the cp
command:

cp precious temp1
makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and moving
files, there is a command to remove files from the file
system, called rm.

rm temp templ
will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like most
UNIX commands, does its work silently. There is no
prompting or chatter, and error messages are occasion-
ally curt. This terseness is sometimes disconcerting to
newcomers, but experienced users find it desirable.

What’s in a Filename

So far we have used filenames without ever saying
what’s a legal name, so it’s time for a couple of rules.
First, filenames are limited to 14 characters, which is
enough to be descriptive.} Second, although you can
use almost any character in a filename, common sense
says you should stick to ones that are visible, and that
you should probably avoid characters that might be
used with other meanings. We have already seen, for
example, that in the Is command, Is —t means to list in
time order. So if you had a file whose name was —t,
you would have a tough time listing it by name.
Besides the minus sign, there are other characters
which have special meaning. To avoid pitfalls, you
would do well to use only letters, numbers and the
period until you're familiar with the situation.

On to some more positive suggestions. Suppose
you’re typing a large document like a book. Logically
this divides into many small pieces, like chapters and
perhaps sections. Physically it must be divided too, for
ed will not handle really big files. Thus you should
type the document as a number of files. You might
have a separate file for each chapter, called

chapl
chap2
etc...

Or, if each chapter were broken into several files, you
might have

1 In 4.2 BSD the limit was extended to 255 characters.

UNIX For Beginners

chapl.1
chapl.2
chapl3

chap2.1
chap2.2

You can now tell at a glance where a particular file fits
into the whole.

There are advantages to a systematic naming con-
vention which are not obvious to the novice UNIX user.
What if you wanted to print the whole book? You
could say

pr chapl.1 chapl.2 chapld.....

but you would get tired pretty fast, and would probably
even make mistakes. Fortunately, there is a shortcut.
You can say

pr chap®
The * means ‘“‘anything at all,”’ so this translates into
‘‘print all files whose names begin with chap’’, listed
in alphabetical order.

This shorthand notation is not a property of the pr
command, by the way. It is system-wide, a service of
the program that interprets commands (the *‘shell,”’
sh(1)). Using that fact, you can see how to list the
names of the files in the book:

Is chap?®

produces

chapl.l
chapl2
chapl3

The * is not limited to the last position in a filename —
it can be anywhere and can occur several times. Thus

rm *junk® *temp?®
removes all files that contain junk or temp as any part

of their name. As a special case, * by itself matches
every filename, so

pr*
prints all your files (alphabetical order), and

rm *
removes all files. (You had better be very sure that’s
what you wanted to say!)

The * is not the only pattern-matching feature
available. Suppose you want to print only chapters 1
through 4 and 9. Then you can say

pr chap[12349]*

The [...] means to match any of the characters inside
the brackets. A range of consecutive letters or digits

UNIX For Beginners

can be abbreviated, 30 you can also do this with
pr chap[1-49]}*

Letters can also be used within brackets: [a-z]
matches any character in the range a through z.

The ? pattern matches any single character, so
k?
lists all files which have single-character names, and
Is -1 chap?.1

lists information about the first file of each chapter
(chapl.1, chap2.1, etc.).

Of these niceties, * is certainly the most useful,
and you should get used to it. The others are frills, but
worth knowing.

If you should ever have to turn off the special
meaning of *, ?, etc., enclose the entire argument in
single quotes, as in

Is’?

We'll see some more examples of this shortly.

What’s in a Fllename, Continued

When you first made that file called junk, how did
the system know that there wasn’t another junk some-
where else, especially since the person in the next
office is also reading this tutorial? The answer is that
generally each user has a private directory, which con-
tains only the files that belong to him. When you log
in, you are **in'’ your directory. Unless you take spe-
cial action, when you create a new file, it is made in the
directory that you are currently in; this is most often
your own directory, and thus the file is unrelated to any
other file of the same name that might exist in someone
else’s directory.

The set of all files is organized into a (usually big)
tree, with your files located several branches into the
tree. It is possible for you to ‘‘walk’’ around this tree,
and to find any file in the system, by starting at the root
of the tree and walking along the proper set of
branches. Conversely, you can start where you are and
walk toward the root.

Let’s try the latter first. The basic tools is the
command pwd (‘‘print working directory’’), which
prints the name of the directory you are currently in.

Although the details will vary according to the
system you are on, if you give the command pwd, it
will print something like

/usr/your-name

This says that you are cumrently in the directory

your-name, which is in tum in the directory /usr,
which is in turn in the root directory called by conven-
tion just /. (Even if it’s not called /usr on your system,
you will get something analogous. Make the
corresponding mental adjustment and read on.)

USD:1-7

If you now type
Is /usr/your-name

you should get exactly the same list of file names as
you get from a plain Is: with no arguments, Is lists the
contents of the current directory; given the name of a
directory, it lists the contents of that directory.

Next, try
1s /usr

This should print a long series of names, among which
is your own login name your-name. On many sys-
tems, usr is a directory that contains the directories of
all the normal users of the system, like you.
The next step is to try
Is/

You should get a response something like this
(although again the details may be different):

bin
dev
ete
lib
tmp
usr

This is a collection of the basic directories of files that
the system knows about; we are at the root of the tree.

Now try
cat /usr/your-name/junk
(if Junk is still around in your directory). The name
/usr/your-name/junk

is called the pathname of the file that you normally
think of as ‘‘junk’’. ‘‘Pathname’’ has an obvious
meaning: it represents the full name of the path you
have to follow from the root through the tree of direc-
tories to get to a particular file. It is a universal rule in
the UNIX system that anywhere you can use an ordinary
filename, you can use a pathname.

Here is a picture which may make this clearer:

Wi itwiiwil
AR
Y
adam eve mary
/ !/ \ \
/ \ junk
juok temp

Notice that Mary’s junk is unrelated to Eve’s.

This isn’t too exciting if all the files of interest are
in your own directory, but if you work with someone
else or on several projects concurrently, it becomes

USD:1-8

handy indeed. For example, your friends can print your
book by saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neighbor has
by saying

Is /usr/neighbor-name
or make your own copy of one of his files by
cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking around
in his files, or vice versa, privacy can be arranged.
Each file and directory has read-write-execute permis-
sions for the owner, a group, and everyone else, which
can be set to control access. See ls(1) and chmod(1)
for details. As a matter of observed fact, most users
most of the time find openness of more benefit than
privacy.

As a final experiment with pathnames, try

Is /bin /usr/bin

Do some of the names look familiar? When you run a
program, by typing its name after the prompt character,
the system simply looks for a file of that name. It nor-
mally looks first in your directory (where it typically
doesn’t find it), then in /bin and finally in /usr/bin.
There is nothing magic about commands like cat or 1s,
except that they have been collected into a couple of
places to be easy to find and administer.

What if you work regularly with someone ¢lse on
common information in his directory? You could just
log in as your friend each time you want to, but you can
also say *‘I want to work on his files instead of my
own’’. This is done by changing the directory that you
are currently in:

cd /usr/your-friend

(On some systems, cd is spelled chdir) Now when

you use a filename in something like cat or pr, it refers
to the file in your friend’s directory. Changing direc-
tories doesn’t affect any permissions associated with a
file — if you couldn’t access a file from your own
directory, changing to another directory won't alter that
fact. Of course, if you forget what directory you’re in,
type

pwd
to find out.

It is usually convenient to arrange your own files
so that all the files related to one thing are in a directory
separate from other projects. For example, when you
write your book, you might want to keep all the text in
a directory called book. So make one with

mkdir book
then go to it with

UNIX For Beginners

cd book
then start typing chapters. The book is now found in
(presumably)

/usr/your-name/book
To remove the directory book, type

rm book/*®
rmdir book

The first command removes all files from the directory;
the second removes the empty directory.
You can go up one level in the tree of files by say-
ing
Cd L]

¢%.."" is the name of the parent of whatever directory
you are currently in. For completeness, ‘*."’ is an alter-
nate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far pro-
duce output on the terminal; some, like the editor, also
take their input from the terminal. It is universal in
UNIX systems that the terminal can be replaced by a file
for either or both of input and output. As one example,

Is
makes a list of files on your terminal. But if you say
1s >filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn’t already exist, or
overwritten if it does). The symbol > means *‘put the
output on the following file, rather than on the termi-
nal.’’ Nothing is produced on the terminal. As another
example, you could combine several files into one by
capturing the output of cat in a file:

cat f1 f2 13 >temp

The symbol >> operates very much like > does,
except that it means ‘‘add to the end of.’’ That is,

cat f112 3 >>temp

means to concatenate f1, 2 and 3 to the end of what-

ever is already in temp, instead of overwriting the
existing contents. As with >, if temp doesn’t exist, it
will be created for you.

In a similar way, the symbol < means to take the
input for a program from the following file, instead of
from the terminal. Thus, you could make up a script of
commonly used editing commands and put them into a
file called script. Then you can run the script on a file
by saying

ed flle <script

As another example, you can use ed to prepare a letter

UNIX For Beginners

in file let, then send it to several people with
mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX system
is the idea of a pipe. A pipe is simply a way to connect
the output of one program to the input of another pro-
gram, so the two run as a sequence of processes — a
pipeline.

For example,

prfgh

will print the files f, g, and h, beginning each on a new
page. Suppose you want them run together instead.
You could say ~

catfgh>temp
Pr <temp
rm temp

but this is more work than necessary. Clearly what we
want is to take the output of cat and connect it to the
input of pr. So let us use a pipe:

catfgh|pr

The vertical bar | means to take the output from cat,
which would normally have gone to the terminal, and
put it into pr to be neatly formatted.

There are many other examples of pipes. For
example,
Is|pr-3

prints a list of your files in three columns. The program
wc counts the number of lines, words and characters in
its input, and as we saw ecarlier, who prints a list of
currently-logged on people, one per line. Thus

who | we

tells how many people are logged on. And of course
Is | we

counts your files.

Any program that reads from the terminal can read
from a pipe instead; any program that writes on the ter-
minal can drive a pipe. You can have as many ele-
ments in a pipeline as you wish.

Many UNIX programs are written so that they will
take their input from one or more files if file arguments
are given; if no arguments are given they will read from
the terminal, and thus can be used in pipelines. pr is
one example:

pr-3abec

prints files a, b and ¢ in order in three columns. But in
catabe|pr-3

pr prints the information coming down the pipeline,

USD:1-9

still in three columns.

The Shell

We have already mentioned once or twice the
mysterious ‘‘shell,”” which is in fact sh(1).} The shell
is the program that interprets what you type as com-
mands and arguments. It also looks after translating *,
etc., into lists of filenames, and <, >, and | into changes
of input and output streams.

The shell has other capabilities too. For example,
you can run two programs with one command line by
separating the commands with a semicolon; the shell
recognizes the semicolon and breaks the line into two
commands. Thus

date; who

does both commands before returning with a prompt
Character.

You can also have more than one program running
simultaneously if you wish. For example, if you are
doing something time-consuming, like the editor script
of an earlier section, and you don’t want to wait around
for the results before starting something else, you can
say

ed file <script &

The ampersand at the end of a command line says
‘‘start this command running, then take further com-
mands from the terminal immediately,”” that is, don’t
wait for it to complete. Thus the script will begin, but
you can do something else at the same time. Of course,
to keep the output from interfering with what you're
doing on the terminal, it would be better to say

ed file <script >script.out &

which saves the output lines in a file called script.out.

When you initiate a command with &, the system
replies with a number called the process number, which
identifies the command in case you later want to stop it.
If you do, you can say

kill process-number

If you forget the process number, the command ps will
tell you about everything you have running. (If you are
desperate, kill 0 will kill all your processes.) And if
you're curious about other people, ps a will tell you
about all programs that are currently running.

You can say
(command-1; command-2; command-3) &

to start three commands in the background, or you can
start a background pipeline with

t On Berkeley Unix systems, the usual shell for interactive use is
the c shell, csh(1).

USD:1-10

command-1 | command-2 &

Just as you can tell the editor or some similar pro-
gram to take its input from a file instead of from the ter-
minal, you can tell the shell to read a file to get com-
mands. (Why not? The shell, after all, is just a pro-
gram, albeit a clever one.) For instance, suppose you
want to set tabs on your terminal, and find out the date
and who'’s on the system every time you log in. Then
you can put the three necessary commands (tabs, date,
who) into a file, let’s call it startup, and then run it
with

sh startup

This says to run the shell with the file startup as input.
The effect is as if you had typed the contents of startup
on the terminal.

If this is to be a regular thing, you can eliminate
the need to type sh: simply type, once only, the com-
mand

chmod +x startup
and thereafter you need only say
startup

to run the sequence of commands. The chmod(1) com-
mand marks the file executable; the shell recognizes
this and runs it as a sequence of commands.

If you want startup to run automatically every
time you log in, create a file in your login directory
called .profile, and place in it the line startup. When
the shell first gains control when you log in, it looks for
the .proflle file and does whatever commands it finds in
it.t We'll get back to the shell in the section on pro-
gramming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for document
preparation. There are two major formatting programs,
that is, programs that produce a text with justified right
margins, automatic page numbering and titling,
automatic hyphenation, and the like. nroff is designed
to produce output on terminals and line-printers. troff
(pronounced ‘‘tee-roff’’) instead drives a photo-
typesetter, which produces very high quality output on
photographic paper. This paper was formatted with
troff.

Formatting Packages

The basic idea of nroff and troff is that the text to
be formatted containg within it ‘‘formatting com-
mands’’ that indicate in detail how the formatted text is
to look. For example, there might be commands that
specify how long lines are, whether to use single or

1 The c shell instead reads a file called .login

UNIX For Beginners

double spacing, and what running titles to use on each
page.

Because nroff and troff are relatively hard to
leam to use effectively, several ‘‘packages’ of canned
formatting requests are available to let you specify
paragraphs, ruaning titles, footnotes, multi-column out-
put, and 3o on, with little effort and without having to
leam nroff and troff. These packages take a modest
effort to learn, but the rewards for using them are so
great that it is time well spent.

In this section, we will provide a hasty look at the
‘‘manuscript’’ package known as —ms. Formatting
requests typically consist of a period and two upper-
case letters, such as .TL, which is used to introduce a
title, or .PP to begin a new paragraph.

A document is typed so it looks something like
this:

.TL

title of document

AU

author name

SH

section heading

PP

paragraph ...

PP

another paragraph ...

SH

another section heading

PP

etc.

The lines that begin with a period are the formatting
requests. For example, .PP calls for starting a new
paragraph. The precise meaning of PP depends on
what output device is being used (typesetter or termi-
nal, for instance), and on what publication the docu-
ment will appear in. For example, —ms normally
assumes that a paragraph is preceded by a space (one
line in nroff, ' line in troff), and the first word is
indented. These rules can be changed if you like, but
they are changed by changing the interpretation of .PP,
not by re-typing the document.

To actually produce a document in standard for-
mat using —ms, use the command

troff —ms files ...
for the typesetter, and
nroff —ms files ...

for a terminal. The —ms argument tells troff and nroff
to use the manuscript package of formatting requests.

There are several similar packages; check with a
local expert to determine which ones are in common
use on your machine.

UNIX For Beginners

Supporting Tools

In addition to the basic formatters, there is a host
of supporting programs that help with document
preparation. The list in the next few paragraphs is far
from complete, so browse through the manual and
check with people around you for other possibilities.

eqn and neqn let you integrate mathematics into
the text of a document, in an easy-to-learn language
that closely resembles the way you would speak it
aloud. For example, the eqn input

sum from i=0 to n x sub 1 "=" pi over 2

oot

The program tbl provides an analogous service for
preparing tabular material; it does all the computations
necessary to align complicated colummns with elements
of varying widths.

refer prepares bibliographic citations from a data
base, in whatever style is defined by the formatting
package. It looks after all the details of numbering
references in sequence, filling in page and volume
numbers, getting the author’s initials and the journal
name right, and so on.

spell and typo detect possible spelling mistakes in
a document.t spell works by comparing the words in
your document to a dictionary, printing those that are
not in the dictionary. It knows enough about English
spelling to detect plurals and the like, so it does a very
good job. typo looks for words which are ‘‘unusual’’,
and prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most unusual
words are printed first.

grep looks through a set of files for lines that con-
tain a particular text pattern (rather like the editor’s
context search does, but on a bunch of files). For
example,

grep ‘Ing$’ chap*

will find all lines that end with the letters ing in the files
chap®. (It is almost always a good practice to put sin-
gle quotes around the pattern you're searching for, in
case it contains characters like ® or § that have a special
meaning to the shell) grep is often useful for finding
out in which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between two
files, so you can compare two versions of something
automatically (which certainly beats proofreading by
hand).

we counts the words, lines and characters in a set
of files. tr translates characters into other characters;

produces the output

t "typo” is not provided with Berkeley Unix.

USD:1-11

for example it will convert upper to lower case and vice
versa. This translates upper into lower:

tr A-Z a-z <input >output

sort sorts files in a variety of ways; cref makes
cross-references; ptx makes a permuted index
(keyword-in-context listing). sed provides many of the
editing facilities of ed, but can apply them to arbitrarily
long inputs. awk provides the ability to do both pattern
matching and numeric computations, and to con-
veniently process fields within lines. These programs
are for more advanced users, and they are not limited to
document preparation. Put them on your list of things
to learn about.

Most of these programs are either independently
documented (like eqn and tbl), or are sufficiently sim-
ple that the description in the UNIX Programmer's
Manual is adequate explanation.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are finaily
finished. Accordingly, you should do whatever possi-
ble to make the job of changing them easy.

First, when you do the purely mechanical opera-
tions of typing, type so that subsequent editing will be
easy. Start each sentence on a new line. Make lines
short, and break lines at natural places, such as after
commas and semicolons, rather than randomly. Since
most people change documents by rewriting phrases
and adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do later.

Keep the individual files of a document down to
modest size, perhaps ten to fifteen thousand characters.
Larger files edit more slowly, and of course if you
make a dumb mistake it’s better to have clobbered a
small file than a big one. Split into files at natural
boundaries in the document, for the same reasons that
you start each sentence on a new line.

The second aspect of making change easy is to not
commit yourself to formatting details too early. One of
the advantages of formatting packages like —ms is that -
they permit you to delay decisions to the last possible
moment. Indeed, until a document is printed, it is not
even decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most trivial
jobs, you should type a document in terms of a set of
requests like .PP, and then define them appropriately,
cither by using one of the canned packages (the better
way) or by defining your own nroff and troff com-
mands. As long as you have entered the text in some
systematic way, it can always be cleaned up and re-
formatted by a judicious combination of editing com-
mands and request definitions.

USD:1-12

IV. PROGRAMMING

There will be no attempt made to teach any of the
programming languages available but a few words of
advice are in order. One of the reasons why the UNIX
system is a productive programming environment is
that there is already a rich set of tools available, and
facilities like pipes, 17O redirection, and the capabilities
of the shell often make it possible to do a job by pasting
together programs that already exist instead of writing
from scratch.

The Shell

The pipe mechanism lets you fabricate quite com-
plicated operations out of spare parts that already exist.
For example, the first draft of the spell program was
(roughly)

cat.. collect the files

|tr.. put each word on a new line

|tr.. delete punctuation, etc. .

| sort into dictionary order

| uniq discard duplicates

| comm print words in text

but not in dictionary

More pieces have been added subsequently, but this
goes a long way for such a small effort.

The editor can be made to do things that would
normally require special programs on other systems.
For example, to list the first and last lines of each of a
set of files, such as a book, you could laboriously type

But you can do the job much more easily. One way is
to type

Is chap® >temp

to get the list of filenames into a file. Then edit this file
to make the necessary series of editing commands
(using the global commands of ed), and write it into
script. Now the command

ed <script

will produce the same output as the laborious hand typ-
ing. Altemately (and more easily), you can use the fact
that the shell will perform loops, repeating a set of
commands over and over again for a set of arguments:

for i in chap*
do

ed $1 <script
done

UNIX For Beginners

This sets the shell variable i to each file name in turn,
then does the command. You can type this command
at the terminal, or put it in a file for later execution.

Programming the Shell

An option often overiooked by newcomers is that
the shell is itself a programming language, with vari-
ables, contro] flow (if-else, while, for, case), subrou-
tines, and interrupt handling. Since there are many
building-block programs, you can sometimes avoid
writing a new program merely by piecing together
some of the building blocks with shell command files.

We will not go into any details here; examples and
rules can be found in An Introduction to the UNIX Shell,
by S. R. Bourne.

Programming in C

If you are undertaking anything substantial, C is
the only reasonable choice of programming language:
everything in the UNIX system is tuned to it. The sys-
tem itself is written in C, as are most of the programs
that run on it. It is also a easy language to use once you
get started. C is introduced and fully described in The
C Programming Language by B. W. Kernighan and D.
M. Ritchie (Prentice-Hall, 1978). Several sections of
the manual describe the system interfaces, that is, how
you do VO and similar functions. Read UNIX Pro-
gramming for more complicated things.

Most input and output in C is best handled with
the standard I/O library, which provides a set of I/O
functions that exist in compatible form on most
machines that have C compilers. In general, it’s wisest
to confine the system interactions in a program to the
facilities provided by this library.

C programs that don’t depend too much on special
features of UNIX (such as pipes) can be moved to other .
computers that have C compilers. The list of such
machines grows daily; in addition to the original PDP-
11, it currently includes at least Honeywell 6000, IBM
370 and PC families, Interdata 8/32, Data General
Nova and Eclipse, HP 2100, Harris /7, Motorola 68000
family (including machines like Sun Microsystems and
Apple Macintosh), VAX 11 family, SEL 86, and Zilog
Z80. Calls to the standard I/O library will work on all
of these machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential porta-
bility problems, and detects errors such as mismatched
argument types and uninitialized variables.

For larger programs (anything whose source is on
more than one file) make allows you to specify the
dependencies among the source files and the processing
steps needed to make a new version,; it then checks the
times that the pieces were last changed and does the
minimal amount of recompiling to create a consistent
updated version.

UNIX For Beginners

The debugger adb is useful for digging through
the dead bodies of C programs, but is rather hard to
learn to use effectively. The most effective debugging
tool is still careful thought, coupled with judiciously
‘placed print statements.t

The C compiler provides a limited instrumentation
service, so you can find out where programs spend their
time and what parts are worth optimizing. Compile the
routines with the —p option; after the test run, use prof
to print an execution profile. The command time will
give you the gross run-time statistics of a program, but
they are not super accurate or reproducible.

Other Languages

If you have to use Fortran, there are two possibili-
ties. You might consider Ratfor, which gives you the
decent control structures and free-form input that
characterize C, yet lets you write code that is still port-
able to other environments. Bear in mind that UNIX
Fortran tends to produce large and relatively slow-
running programs. Furthermore, supporting software
like adb, prof, etc., are all virtually useless with For-
tran programs. There may aiso be a Fortran 77 com-
piler on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that it is
compatible with C and related programs. (The Ratfor
processor and C tools can be used with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another language, you
are in effect building a compiler, though probably a
small one. In that case, you should be using the yace
compiler-compiler, which helps you develop a com-
piler quickly. The lex lexical analyzer generator does
the same job for the simpler languages that can be
expressed as regular expressions. It can be used by
itself, or as a front end to recognize inputs for a
yacc-based program. Both yace and lex rcquire some
sophistication to use, but the initial effort of learning
them can be repaid many times over in programs that
are easy to change later on.

Most UNIX systems also make available other
languages, such as Algol 68, APL, Basic, Lisp, Pascal,
and Snobol. Whether these are useful depends largely
on the local environment: if someone cares about the
language and has worked on it, it may be in good
shape. If not, the odds are strong that it will be more
trouble than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX.

Programmer's Manual, Bell Laboratories, 1978
(PS2:3)% Lists commands, system routines and inter-

t The "dbx" debugger, supplied starting with 4.2BSD, has
extensive facilities for high-level debugging of C programs and
is much easier to use than "adb”.

USD:1-13

faces, file formats, and some of the maintenance pro-
cedures. You can't live without this, although you will
probably only need to read section 1.

D. M. Ritchie and K. L. Thompson, *‘The UNIX Time-
sharing System,’’ CACM, July 1974. (PS2:1)} An
overview of the system, for people interested in operat-
ing systems. Worth reading by anyone who programs.
Contains a remarkable number of one-sentence obser-
vations on how to do things right.

The Bell System Technical Journal (BSTJ) Special
Issue on UNIX, July/August, 1978, contains many
papers describing recent developments, and some
retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several papers
describing the use of the Programmer’s Workbench
(PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, ‘‘A Tutorial Introduction to the UNIX
Text Editor’* (USD:12) and ‘‘Advanced Editing on
UNIX,”” (USD:13) Bell Laboratories, 1978.1 Beginners
need the introduction; the advanced material will help
you get the most out of the editor.

M. E. Lesk, “Typing Documents on UNIX,”’ Bell
Laboratories, 1978. (USD:20)t Describes the —ms
macro package, which isolates the novice from the
vagaries of nroff and troff, and takes care of most for-
matting situations. If this specific package isn’t avail-
able on your system, something similar probably is.
The most likely alternative is the PWB/UNIX macro
package —mm; see your local guru if you use
PWB/UNIX.*

B. W. Kemighan and L. L. Cherry, ‘A System for
Typesetting Mathematics,’’ Bell Laboratories Comput-
ing Science Tech. Rep. 17. (USD:26)

M. E. Lesk, ““Tbl — A Program to Format Tables,’’
Bell Laboratories CSTR 49, 1976. (USD:28)T

J. F. Ossanna, Jr., ‘*‘NROFF/TROFF User’'s Manual,’’
Bell Laboratories CSTR 54, 1976. (USD:24)t troff is
the basic formatter used by —ms, eqn and tbl. The
reference manual is indispensable if you are going to
write or maintain these or similar programs. But start
with:

B. W. Kemighan, ‘‘A TROFF Tutorial,”’ Bell Labora-
tories, 1976. (USD:25)t An attempt to unravel the intri-
cacies of troff.

t These documents (previously in Volume 2 of the Bell Labs
Unix distribution) are provided among the "User Supplementary”
Documents for 4.3BSD, available from the Usenix Association.

$ These are among the "Programmer Supplementary” Documents
for 4.3BSD. PSl1 is Volume 1, PS2 is Volume 2.

*The macro package -me is additionally available on Berkeley
Unix Systems. -mm is typically not available.

USD:1-14

Programming:

B. W. Kernighan and D. M. Ritchie, The C Program-
ming Language, Prentice-Hall, 1978. Contains a
tutorial introduction, complete discussions of all
language features, and the reference manual.

B. W. Kemighan and R. Pike, The Unix Programming
Environment, Prentice-Hall, 1984. Contains many
examples of C programs which use the system inter-
faces, and explanations of ‘‘why"’.

B. W. Kemighan and D. M. Ritchie, ‘UNIX Program-
ming,”’ Bell Laboratories, 1978. (PS2:3)t Describes
how to interface with the system from C programs: 1’0
calls, signals, processes.

S. R. Bourne, ‘‘An Introduction to the UNIX Shell,”
Bell Laboratories, 1978. (USD:3)1 An introduction and
reference manual for the Version 7 shell. Mandatory
reading if you intend to make effective use of the pro-
gramming power of this shell.

S. C. Johnson, “Yacc — Yet Another Compiler-

Compiler,”” Bell Laboratories CSTR 32, 1978.
(PS1:15)t

M. E. Lesk, ““Lex — A Lexical Analyzer Generator,’
Bell Laboratories CSTR 39, 1975. (PS1:16)$

S. C. Johnson, ‘‘Lint, 8 C Program Checker,’’ Bell
Laboratories CSTR 68, 1977. (PS1:9)$

S. L. Feldman, **“MAKE — A Program for Maintaining
Computer Programs,’”’ Bell Laboratories CSTR 57,
1977. (PS1:12)} ~

J. F. Maranzano and S. R. Bourne, *‘A Tutorial Intro-
duction to ADB,” Bell Laboratories CSTR 62, 1977.
(PS1:10)$ An introduction to a powerful but complex
debugging tool. .

S. I. Feldman and P. J. Weinberger, “‘A Portable For-
tran 77 Compiler,’’ Bell Laboratories, 1978. (PS1:2)}
A full Fortran 77 for UNIX systems.

UNIX For Beginners

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

ABSTRACT

. This paper describes the second version of the learn program for interpreting CAI
scripts on the UNIXT operating system, and a set of scripts that provide a computerized
introduction to the system.

" Six current scripts cover basic commands and file handling, the editor, additional
file handling commands, the eqn program for mathematical typing, the ‘‘~ms’’ package
of formatting macros, and an introduction to the C programming language. These scripts
now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to acquire basic
UNIX skills. Most usage involves the first two scripts, an introduction to UNIX files and
commands, and the UNIX editor.

The second version of learn is about four times faster than the previous one in
CPU utilization, and much faster in perceived time because of better overlap of comput-
ing and printing. It also requires less file space than the first version. Many of the les-
sons have been revised; new material has been added to reflect changes and enhance-
ments in UNIX itself. Script-writing is also easier because of revisions to the script
language.

1. Introduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons and lesson
fragments to teach people computer skills. Since it is teaching the same system on which it is imple-
mented, it makes direct use of UNIX facilities to create a controlled UNIX environment. The system
includes two main parts: (1) a driver that interprets the lesson scripts; and (2) the lesson scripts themselves.
At present there are seven scripts:

— basic file handling commands

— the UNIX text editors ed and vi

— advanced file handling

— the eqn language for typing mathematics

— the “‘ms’’ macro package for document formatting

— the C programming language '

The purported advantages of CAI scripts for training in computer skills include the following:

(a) students are forced to perform the exercises that are in fact the basis of training in any case;
(b) - students receive immediate feedback and confirmation of progress;

1 UNIX is a trademark of Bell Laboratories.

USD:2-2 LEARN — Computer-Aided Instruction on UNIX

(c) students may progress at their own rate;
(d) no schedule requirements are imposed; students may study at any time convenient for them;

(e) the lessons may be improved individually and the improvements are immediately available to
new users;

(f) _ since the student has access to a computer for the CAI script there is a place to do exercises;

(g) the use of high technology will improve student motivation and the interest of their manage-
ment.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions. If
CAI is used without a ‘‘counselor’® or other assistance, it should properly be compared to a textbook, lec-
ture series, ortaggdcourse,ratherﬂmntoasennnar CAI has been used for many years mavanetyofedu-
cational areas. The use of a computer to teach computer use itself, however, offers unique advantages.
The skills developed to get through the script are exactly those needed to use the computer; there is no
waste effort.

The scripts written so far are based on some familiar assumptions about education; these assumptions
are outlined in the next section. The remaining sections describe the operation of the script driver and the
particular scripts now available. The driver puts few restrictions on the script writer, but the current scripts
are of a rather rigid and stereotyped form in accordance with the theory in the next section and practical
limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should not contain
long pieces of explanation; they should instead frequently ask the student to do some task. So teaching is
always by example: the typical script fragment shows a small example of some technique and then asks the
user to either repeat that example or produce a variation on it. All are intended to be easy enough that most
students will get most questions right, reinforcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or no
answer to a question. The student is given a chance to experiment before replying. The script checks for
the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files might say

How many files are there in the current directory? Type ‘‘answer N'', where N is the number of
files.

The student is expected to respond (perhaps after experimenting) with
answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by 17) is
difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of the input
or output are monitored, and the student types ready when the task is done, Figure 1 shows a sample dia-
log that illustrates the last of these, using two lessons about the cat {concatenate, i.e., print) command
taken from early in the script that teaches file handling. Most learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the lesson number
that has just been completed, permitting the student to restart the script after that lesson. If the answer is
wrong, the student is offered a chance to repeat the lesson. The ‘‘speed’’ rating of the student (explained
in section S) is given after the lesson number when the lesson is completed successfully; it is printed only
for the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly ‘‘understands’’ what he
or she is doing; accordingly, the current learn scripts only measure Petformance, not comprehension. If the
student can perform a given task, that is deemed to be *‘learning.”’

The main point of using the computer is that what the student does is checked for correctness
immediately. Unlike many CAI scripts, however, these scripts provide few facilities for dealing with
wrong answers. In practice, if most of the answers are not right the script is a failure; the universal solution

LEARN — Computer-Aided Instruction on UNIX USD:2-3

Figure 1: Sample dialog from basic files script
(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat” command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food” in this directory. List it
by saying "cat food"; then type "ready".
$ cat food

this is the file

named food.
$ ready

Good. Lesson 3.3a(1)

Of course, you can print any file with "cat".
In particular, it is common to first use

"Is" to find the name of a file and then "cat”
to print it. Note the difference between

"Is", which tells you the name of the file,
and "cat”, which tells you the contents.

One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat President

cat: can’t open President

$ ready

Sorry, that’s notright. Do you want to try again? yes
Try the problem again.
$is
-ocopy
X1
roosevelt
$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready
Good. Lesson 3.3b (0)
The "cat” 6ommand can also print several files

at once. In fact, it is named "cat" as an abbreviation
for "concatenate”....

to student error is to provide a new, easier script. Anticipating possible wrong answers is an endless job,
and it is really easier as well as better to provide a simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be broken into
sufficiently small pieces. Anything not absorbed in a single chunk is just subdivided.

USD:2-4 LEARN — Computer-Aided Instruction on UNIX

To avoid boring the faster students, however, an effort is made in the files and editor scripts to pro-
vide three tracks of different difficulty. The fastest sequence of lessons is aimed at roughly the bulk and
speed of a typical tutorial manual and should be adequate for review and for well-prepared students. The
next track is intended for most users and is roughly twice as long. Typically, for example, the fast track
might present an idea and ask for a variation on the example shown; the normal track will first ask the stu-
dent to repeat the example that was shown before attempting a variation. The third and slowest track,
which is often three or four times the length of the fast track, is intended to be adequate for anyone. (The
lessons of Figure 1 are from the third track.) The multiple tracks also mean that a student repeating a
course is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up and
try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct answers the
student has given for the last few lessons, the program may switch tracks. The driver is actually capable of
following an arbitrary directed graph of lesson sequences, as discussed in section 5. Some more structured
arrangement, however, is used in all current scripts to aid the script writer in organizing the material into
lessons. It is sufficiently difficult to write lessons that the three-track theory is not followed very closely
except in the files and editor scripts. Accordingly, in some cases, the fast track is produced merely by skip-
ping lessons from the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material as a work-
book is not the selection of tracks, but actual hands-on experience. Learning by doing is much more effec-
tive than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would not let the
student proceed unless it received correct answers to the questions it set and it would not tell a student the
right answer. This somewhat Draconian approach has been moderated in version 2. Lessons are some-
times badly worded or even just plain wrong; in such cases, the student has no recourse. But if a student is
simply unable to complete one lesson, that should not prevent access to the rest. Accordingly, the current
version of learn allows the student to skip a lesson that he cannot pass; a ‘‘no’’ answer to the ‘‘Do you
want to try again?’’ question in Figure 1 will pass to the next lesson. It is still true that learn will not tell
the student the right answer.

Of course, there are valid objections to the assumptions above. In particular, some students may
object to not understanding what they are doing; and the procedure of smashing everything into small
pieces may provoke the retort ‘‘you can’t cross a ditch in two jumps.”’ Since writing CAI scripts is consid-
erably more tedious than ordinary manuals, however, it is safe to assume that there will always be alterna-
tives to the scripts as a way of learning. In fact, for a reference manual of 3 or 4 pages it would not be
surprising to have a tutorial manual of 20 pages and a (multi-track) script of 100 pages. Thus the reference
manual will exist long before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus little of the
potential complexity of the possible directed graph is employed, since care must be taken in lesson con-
struction to see that every necessary fact is presented in every possible path through the units. In addition,
itis desirable that every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For example,
before the student is allowed to proceed through the editor script the script verifies that the student under-
stands files and is able to type. It is felt that the sooner lack of student preparation is detected, the easier it
will be on the student. Anyone proceeding through the scripts should be getting mostly correct answers;
otherwise, the system will be unsatisfactory both because the wrong habits are being learned and because
the scripts make little effort to deal with wrong answers. Unprepared students should not be encouraged to
continue with scripts.

There are some preliminary items which the student must know before any scripts can be tried. In
particular, the student must know how to connect to a UNIX system, set the terminal properly, log in, and
execute simple commands (e.g., learn itself). In addition, the character erase and line kill conventions (#
and @) should be known. It is hard to see how this much could be taught by computer-aided instruction,

LEARN — Computer-Aided Instruction on UNIX USD:2-5

since a student who does not know these basic skills will not be able to run the learning program. A brief
description on paper is provided (see Appendix A), although assistance will be needed for the first few
minutes. This assistance, however, need not be highly skilled.

The first script in the current set deals with files. It assumes the basic knowledge above and teaches
the student about the Is, cat, mv, rm, cp and diff commands. It also deals with the abbreviation characters
*, 7, and [] in file names. It does not cover pipes or I/O redirection, nor does it present the many options
on the Is command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven are
review exercises. There are a total of 75 lessons in all three tracks, and the instructional passages typed at
the student to begin each lesson total 4,476 words. The average lesson thus begins with a 60-word mes-
sage. In general, the fast track lessons have somewhat longer introductions, and the slow tracks somewhat
shorter ones. The longest message is 144 words and the shortest 14.

The second script trains students in the use of the UNIX context editor ed, a sophisticated editor
using regular expressions for swching.s All editor features except encryption, mark names and ‘;’ in
addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a review lesson. Itis
supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is 2,572 words
long. The ed tutorial is 6,138 words long. The fast track through the ed script is 7,407 words of explana-
tory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed lesson is thus also
about 60 words; the largest is 171 words and the smallest 10. The original ed script represents about three
man-weeks of effort.

The advanced file handling script deals with Is options, I/O diversion, pipes, and supporting pro-
grams like pr, wc, tail, spell and grep. (The basic file handling script is a prerequisite.) It is not as
refined as the first two scripts; this is reflected at least partly in the fact that it provides much less of a full
three-track sequence than they do. On the other hand, since it is perceived as ‘‘advanced,’”’ it is hoped that
the student will have somewhat more sophistication and be better able to cope with it at a reasonably high
level of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run on a termi-
nal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based terminals, or the
nearly extinct Model 37 teletype. Again, this script is relatively short of tracks: of 76 lessons, only 17 are
in the second track and 2 in the third track. Most of these provide additional practice for students who are
having trouble in the first track.

The —ms script for formatting macros is a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future. Further-
more, the linear style of a single learn script is somewhat inappropriate for the macros, since the macro
package is composed of many independent features, and few users need all of them. It would be better to
have a selection of short lesson sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C, but that
document has since become obsolete. The current script has been partially converted to follow the order of
presentation in The C Programming Language,7 but this job is not complete. The C script was never
intended to teach C; rather it is supposed to be a series of exercises for which the computer provides check-
ing and (upon success) a suggested solution.

This combination of scripts covers much of the material which any UNIX user will need to know to
make effective use of the system. With enlargement of the advanced files course to include more on the
command interpreter, there will be a relatively complete introduction to UNIX available via learn.
Although we make no pretense that learn will replace other instructional materials, it should provide a use-
ful supplement to existing tutorials and reference manuals.

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the first two
scripts, so these are more thoroughly debugged and polished. As a (random) sample of user experience,
the learn program has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month period.

USD:2-6 LEARN — Computer-Aided Instruction on UNIX

About 3600 of these are in the files script, 4100 in the editor, and 1400 in advanced files. The passing rate
is about 80%, that is, about 4 lessons are passed for every one failed. There have been 86 distinct users of
the files script, and 58 of the editor. On our system at Murray Hill, there have been nearly 2000 lessons
over two weeks that include Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of someone doing
one or two lessons and then logging out, as do instances of someone pausing in a script for tweaty minutes
or more. In the earlier version of learn, the average session in the files course took 32 minutes and
covered 23 lessons. The distribution is quite broad and skewed, however; the longest session was 130
minutes and there were five sessions shorter than five minutes. The average lesson took about 80 seconds.
These numbers are roughly typical for non-programmers; a UNIX expert can do the scripts at approxi-
mately 30 seconds per lesson, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4 seconds of pro-
cessor time per lesson, and a system expert typing quickly took 15 seconds of real time per lesson. A
novice would probably take at least a minute. Thus a UNIX system could support ten students working
simultaneously with some spare capacity.

5. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer to cap-
ture student responses and their effects, and simplifies the job of passing control to and recovering control
from the student. This section describes the operation and usage of the driver program, and indicates what
is required to produce a new script. Readers only interested in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory (named lib) con-
taining the script data. Within this directory are subdirectories, one for each subject in which a course is
available, one for logging (named log), and one in which user sub-directories are created (named play).
The subject directory contains master copies of all lessons, plus any supporting material for that subject. In
a given subdirectory, each lesson is a single text file. Lessons are usually named systematically; the file
that contains lesson » is called Ln.

Figure 2: Directory structure for learn
lib
play
studentl
files for studentl...
student2
files for student2...
files
L0.1a lessons for files course
LO.1b
editor
(other courses)
log

When learn is executed, it makes a private directory for the user to work in, within the learn portion
of the file system. A fresh copy of all the files used in each lesson (mostly data for the student to operate
upon) is made each time a student starts a lesson, so the script writer may assume that everything is reini-
tialized each-time a lesson is entered. The student directory is deleted after each session; any permanent

LEARN — Computer-Aided Instruction on UNIX

records must be kept elsewhere.
The script writer must provide certain basic items in each lesson:

(1
€3]
©)]
@

&)

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved in
script production is in planning lessons, writing tutorial paragraphs, and coding tests of student perfor-

the text of the lesson;

the set-up commands to be executed before the user gets control;

the data, if any, which the user is supposed to edit, transform, or otherwise process;

the evaluating commands to be executed after the user has finished the lesson, to decide whether the
answer is right; and

a list of possible successor lessons.

mance.

The basic sequence of events is as follows. First, learn creates the working directory. Then, for
each lesson, learn reads the script for the lesson and processes it a line at a time. The lines in the script
are: (1) commands to the script interpreter to print something, to create a files, to test something, etc.; (2)
text to be printed or put in a file; (3) other lines, which are sent to the shell to be executed. One line in each
lesson turns control over to the user; the user can run any UNIX commands. The user mode terminates
when the user types yes, no, ready, or answer. At this point, the user’s work is tested; if the lesson is

passed, a new lesson is selected, and if not the old one is repeated.

Lines which begin with # are commands to the learn script interpreter. For example,

causes printing of any text that follows, up to the next line that begins with a sharp.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.

#print

#print file

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat”
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready”.
#create roosevelt

this file is named roosevelt

and contains three lines of

text.
#copyout
#user
#uncopyout
tail -3 .ocopy >X1
#cmp X1 roosevelt
#log
#next
3.2b2

USD:2-8 LEARN — Computer-Aided Instruction on UNIX

prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print have the
added property that if a lesson is failed, the #print will not be executed the second time through; this avoids
annoying the student by repeating the preamble to a lesson. ’

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used for
creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The #user mode
is terminated when the student types one of yes, no, ready or answer. At that time, the driver resumes
interpretation of the script.

#copyin

#uncopyin
Anything the student types between these commands is copied onto a file called .copy. This lets the script
writer interrogate the student’s responses upon regaining control.

#copyout

#uncopyout

Between these commands, any material typed at the student by any program is copied to the file .ocopy.
This lets the script writer interrogate the effect of what the student typed, which true believers in the perfor-
mance theory of learning usually prefer to the student’s actual input.

#pipe

#unpipe
Normally the student input and the script commands are fed to the UNIX command interpreter (the
‘‘shell’’) one line at a time. This won’t do if, for example, a sequence of editor commands is provided,
since the input to the editor must be handed to the editor, not to the shell. Accordingly, the material
between #pipe and #unpipe commands is fed continuously through a pipe so that such sequences work. If
copyout is also desired the copyout brackets must include the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmp filel file2
is an in-line implementation of cmp , which compares two files for identity.

#match stuff

The last line of the student’s input is compared to stuff, and the success or fail status is set according to it.
Extraneous things like the word answer are stripped before the comparison is made. There may be several
#match lines; this provides a convenient mechanism for handling multiple *‘right’’ answers. Any text up
to a # on subsequent lines after a successful #match is printed; this is illustrated in Figure 4, another sam-
ple lesson.

#bad stuff

This is similar to #match, except that it corresponds to specific failure answers; this can be used to produce
hints for particular wrong answers that have been anticipated by the script writer.

#succeed

#fail
print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘‘commands’’ yes, no, ready, or answer, the driver terminates
the #user command, and evaluation of the student’s work can begin. This can be done either by the built-
in commands above, such as #match and #cmp, or by status retumed by normal UNIX commands, typically
grep and fest. The last command should return status true (0) if the task was done successfully and false

(non-zero) otherwise; this status return tells the driver whether or not the student has successfully passed
the lesson.

LEARN — Computer-Aided Instruction on UNIX USD:2-9

Figure 4: Another Sample Lesson

#print

What command will move the current line
to the end of the file? Type

"answer COMMAND", where COMMAND is the command.
#copyin

#user

#uncopyin

#match m$

#match .m$

"m$" is easier.

#log

#next

63.1d 10

Performance can be logged:

#log file
writes the date, lesson, user name and speed rating, and a success/failure indication on file. The command
#log

by itself writes the logging information in the logging directory within the learn hierarchy, and is the nor-
mal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it. A typical
set might read

25.1a 10
252a §
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 units, 25.2a
for student with speed near 5, and 25.3a for speed near 2. Speed ratings are maintained for each session
with a student; the rating is increased by one each time the student gets a lesson right and decreased by four
each time the student gets a lesson wrong. Thus the driver tries to maintain a level such that the users get
80% right answers. The maximum rating is limited to 10 and the minimum to 0. The initial rating is zero
unless the student specifies a different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the student fails, a
false status is returned and the program reverts to the previous lesson and tries another alternative. If it can
not find another alternative, it skips forward a lesson. bye, bye, which causes a graceful exit from the learn
system. Hanging up is the usual novice’s way out.

The lessons may form an arbitrary directed graph, although the present program imposes a limitation
on cycles in that it will not present a lesson twice in the same session. If the student is unable to answer
one of the exercises correctly, the driver searches for a previous lesson with a set of alternatives as succes-
sors (following the #next line). From the previous lesson with alternatives one route was taken earlier; the
program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of response, or
try to estimate the elegance of the answer, or provide detailed analysis of wrong answers. Lesson writing
is so tedious already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on features of UNIX that are not available on many other operat-
ing systems. These include the ease of manipulating files and directories, file redirection, the ability to use
the command interpreter as just another program (even in a pipeline), command status testing and

USD:2-10 ' LEARN — Computer-Aided Instruction on UNIX

branching, the ability to catch signals like interrupts, and of course the pipeline mechanism itself.
Although some parts of learn might be transferable to other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in words in the driver program, and made
more use of the facilities of UNIX. For example, file comparison was done by creating a cmp process,
rather than comparing the two files within learn. Lessons were not stored as text files, but as archives.
There was no concept of the in-line document; even #print had to be followed by a file name. Thus the ini-
tialization for each lesson was to extract the archive into the working directory (typically 4-8 files), then
#print the lesson text.

The combination of such things made learn slower. The new version is about 4 or 5 times faster.
Furthermore, it appears even faster to the user because in a typical lesson, the printing of the message
comes first, and file setup with #create can be overlapped with the printng, so that when the program
finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text files. They
can be edited without any difficulty, and UNIX text manipulation tools can be applied to them. The result
has been that there is much less resistance to going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-programmers who
have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer to get
through to the first lesson or two; once the first few lessons are passed people can proceed on their
own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with computers. It
would help if there were a low level reference card for UNIX to supplement the existing programmer
oriented bulky manual and bulky reference card.

() The concept of “‘substitutable argument’” is hard to grasp, and requires help.
(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time for a reason-
ably intelligent and motivated novice to proceed from ignorance to a reasonable ability to create new files
and manipulate old ones seems to be a few days, with perhaps half of each day spent on the machine.

The normal way of proceeding has been to have students in the same room with someone who knows
UNIX and the scripts. Thus the student is not brought to a halt by difficult questions. The burden on the
counselor, however, is much lower than that on a teacher of a course. Ideally, the students should be
encouraged to proceed with instruction immediately prior to their actual use of the computer. They should
exercise the scripts on the same computer and the same kind of terminal that they will later use for their
real work, and their first few jobs for the computer should be relatively easy ones. Also, both training and
initial work should take place on days when the UNIX hardware and software are working reliably. Rarely
is all of this possible, but the closer one comes the better the result. For example, if it is known that the
hardware is shaky one day, it is better to attempt to reschedule training for another one. Students are very
frustrated by machine downtime; when nothing is happening, it takes some sophistication and experience to
distinguish an infinite loop, a slow but functioning program, a program waiting for the user, and a broken
machine.*

One disadvantage of training with learn is that students come to depend completely on the CAI sys-
tem, and do not try to read manuals or use other learning aids. This is unfortunate, not only because of the
increased demands for completeness and accuracy of the scripts, but because the scripts do not cover all of
the UNIX system. New users should have manuals (appropriate for their level) and read them; the scripts
ought to be altered to recommend suitable documents and urge students to read them.

* We have even known an expert programmer to decide the computer was broken when he had simply left his terminal in
local mode. Novices have great difficulties with such problems.

LEARN — Computer-Aided Instruction on UNIX USD:2-11

There are several other difficulties which are clearly evident. From the student’s viewpoint, the most
serious is that lessons still crop up which simply can’t be passed. Sometimes this is due to poor explana-
tions, but just as often it is some error in the lesson itself — a botched setup, a missing file, an invalid test
for correctness, or some system facility that doesn’t work on the local system in the same way it did on the
development system. It takes knowledge and a certain healthy arrogance on the part of the user to recog-
nize that the fault is not his or hers, but the script writer’s. Permitting the student to get on with the next
lesson regardless does alleviate this somewhat, and the logging facilities make it easy to watch for lessons
that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) — it was often excruciat-
ingly slow and made a significant drain on the system. The current version so far does not seem to have
that difficulty, although some scripts, notably egqn, are intrinsically slow. egn, for example, must do a lot
of work even to print its introductions, let alone check the student responses, but delay is perceptible in all
scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing interrupt at
the wrong time, or by removing critical files, or any number of similar slips. The defenses against such
problems have steadily been improved, to the point where most students should not notice difficulties. Of
course, it will always be possible to break learn maliciously, but this is not likely to be a problem.

One area is more fundamental — some UNIX commands are sufficiently global in their effect that
learn currently does not allow them to be executed at all. The most obvious is cd, which changes to
another directory. The prospect of a student who is learning about directories inadvertently moving to
some random directory and removing files has deterred us from even writing lessons on cd, but ultimately
lessons on such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their sugges-
tions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M. J. McAlpin
have provided substantial feedback., Conversations with E. Z. Rothkopf also provided many of the ideas in
the system. We are also indebted to Don Jackowski for serving as a guinea pig for the second version, and
to Tom Plum for his efforts to improve the C script.

References

1. DL. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educational
System: Plato IV," in Computer Assisted Instruction, Testing and Guidance, ed. Wayne Holtz-
man, pp. 17-29, Harper and Row, New York, 1970.

2. D.C. Gray, J.P. Hulskamp, J.H. Kumm, S. Lichtenstein, and N.E. Nimmervoll, "COALA -A Mini-
computer CAI System," IEEE Trans. Education, vol. E-20(1), pp. 73-77, February 1977.

3. P. Suppes, "On Using Computers to Individualize Instruction," in The Computer in American Edu-
cation, ed. D.D. Bushnell and D.W. Allen, pp. 11-24, John Wiley, New York, 1967.

4. BF. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review, vol. 31, pp. 377-398,
1961. Reprinted in Educational Technology, ed. I P. DeCecco, Holt Rinehart & Winston (New
York 1964).

5. K. Thompson and D.M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories, 1978. See sec-
tion ed (1).

6. B.W. Kernighan, A Tutorial Introduction to the UNIX text editor, 1974. Bell Laboratories internal
memorandum.

USD:2-12 LEARN — Computer-Aided Instruction on UNIX

7. B.W. Kemnighan and DM. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey, 1978. ' '

An Introduction to the UNIX Shell

S. R. Bourne
(Updated for 43BSD by Mark Seiden)

ABSTRACT

The shellt is a command programming language that provides an interface to the UNIXt
operating system. Its features include control-flow primitives, parameter passing, vari-
ables and string substitution. Constructs such as while, if then else, case and for are
available. Two-way communication is possible between the shell and commands.
String-valued parameters, typically file names or flags, may be passed to a command. A
return code is set by commands that may be used to determine control-flow, and the stan-
dard output from a command may be used as shell input.

The shell can modify the environment in which commands run. Input and output can be
redirected to files, and processes that communicate through ‘pipes’ can be invoked.
Commands are found by searching directories in the file system in a sequence that can be
defined by the user. Commands can be read either from the terminal or from a file, which
allows command procedures to be stored for later use.

1.0 Introduction

The shell is both a command language and a programming language that provides an interface to the UNIX
operating system. This memorandum describes, with examples, the UNIX shell. The first section covers
most of the everyday requirements of terminal users. Some familiarity with UNIX is an advantage when
reading this section; see, for example, "UNIX for beginners”. unix beginn kernigh 1978 Section 2
describes those features of the shell primarily intended for use within shell procedures. These include the
control-flow primitives and string-valued variables provided by the shell. A knowledge of a programming
language would be a help when reading this section. The last section describes the more advanced features
of the shell. References of the form "see pipe (2)" are to a section of the UNIX manual. seventh 1978
ritchie thompson

1.1 Simple commands

Simple commands consist of one or more words separated by Blanks. The first word is the name of the
command to be executed; any remaining words are passed as arguments to the command. For example,

who
is a command that prints the names of users logged in. The command
Is-1

prints a list of files in the current directory. The argument —/ tells Is to print status information, size and the
creation date for each file.

1 This paper describes sh(1). If it’s the ¢ shell (csh) you’re interested in, a good place to begin is William Joy’s paper "An
Introduction to the C shell” (USD:4).
T UNIX is a trademark of Bell Laboratories.

USD:3-2 "~ An Introduction to the UNIX Shell

1.2 Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A command
may be run without waiting for it to finish. For example,

ccpgmec &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the shell not to
wait for the command to finish. To help keep track of such a process the shell reports its process number
following its creation. A list of currently active processes may be obtained using the ps command.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the terminal. This out-
put may be sent to a file by writing, for example,

Is ~1 >file

The notation >file is interpreted by the shell and is not passed as an argument to Is. If file does not exist
then the shell creates it; otherwise the original contents of file are teplaced with the output from Is. Output
may be appended to a file using the notation

Is -1 >>file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing, for example,
wc <file

The command wc reads its standard input (in this case redirected from file) and prints the number of char-
acters, words and lines found. If only the number of lines is required then

wc 1 <file
could be used.

1.4 Pipelines and filters
The standard output of one command may be connected to the standard input of another by writing the
‘pipe’ operator, indicated by |{, as in,
Is-1] we
Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is -1 >file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and are run in
parallel. Pipes are unidirectional and synchronization is achieved by halting we when there is nothing to
read and halting Is when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as out-
put. One such filter, grep, selects from its input those lines that contain some specified string. For exam-
ple,

Is | grepold

prints those lines, if any, of the output from Is that contain the string old. Another useful filter is sort. For
example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

An Introduction to the UNIX Shell USD:3-3

Is | grepold | wec -1
prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example,
Is -1 main.c

prints information relating to the file main.c.

The shell provides a mechanism for generating a list of file names that match a pattem. For example,
Is—1*.c

generates, as arguments to Is, all file names in the current directory that end in .c. The character * is a pat-
tern that will match any string including the null string. In general patterns are specified as follows.

* Matches any string of characters including the null string.
? Matches any single character.

[...] Matches any one of the characters enclosed. A pair of characters separated by a minus will
match any character lexically between the pair.

For example,
[a~z]*

matches all names in the current directory beginning with one of the letters a through z.
/ust/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file name is found
that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may also be
used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard UNIX com-
mand that prints its arguments, separated by blanks.) This last feature can be expensive, requiring a scan of
all sub-directories of /usr/fred .

There is one exception to the general rules given for patterns. The character ‘.’ at the start of a file name
must be explicitly matched.

echo *
will therefore echo all file names in the current directory not beginning with .’ .
echo .

will echo all those file names that begin with *.". This avoids inadvertent matching of the names *.’ and “..’
which mean ‘the current directory’ and ‘the parent directory’ respectively. (Notice that Is suppresses infor-
mation for the files ‘.’ and *..")

1.6 Quoting

Characters that have a special meaning to the shell, such as < > # ? | &, are called metacharacters. A
complete list of metacharacters is given in appendix B. Any character preceded by a \ is quoted and loses
its special meaning, if any. The \is elided so that

echo\?

will echo a single ?, and

USD:34 ' An Introduction to the UNIX Shell

echo \\
will echo a single \. To allow long strings to be continued over more than one line the sequence \newline
is ignored.
\ is convenient for quoting single characters. When more than one character needs quoting the above

mechanism is clumsy and error prone. A string of characters may be quoted by enclosing the string
between single quotes. For example,

echo xx“skkkk‘xx
will echo

XXk KHKKXX
The quoted string may not contain a single quote but may contain newlines, which are preserved. This
quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of some but
not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By default this
prompt is ‘$ *. It may be changed by saying, for example,

PS1=yesdear
that sets the prompt to be the string yesdear . If a newline is typed and further input is needed then the shell
will issue the prompt ‘>’. Sometimes this can be caused by mistyping a quote mark. If it is unexpected
then an interrupt (DEL) will return the shell to read another command. This prompt may be changed by
saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the user’s
login directory contains the file .profile then it is assumed to contain commands and is read by the shell
before reading any commands from the terminal.

1.9 Summary
° Is
Print the names of files in the current directory.
° Is >file
Put the output from Is into file.

° Is | we-1
Print the number of files in the current directory.
° Is | grep old
Print those file names containing the string old.
o Is|grepold | wec-l
Print the number of files whose name contains the string old.

° ccpgm.e &
Run cc in the background.

An Introduction to the UNIX Shell USD:3-5

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,
sh file [args ...]

calls the shell to read commands from file. Such a file is called a command procedure or shell procedure.
Arguments may be supplied with the call and are referred to in file using the positional parameters $1, $2,
.+.. For example, if the file wg contains

who | grep $1
then

sh wg fred
is equivalent to

who | grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod (1)
may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command
wg fred

is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is
created to run the command.

As well as providing names for the positional parameters, the number of positional parameters in the call is
available as $#. The name of the file being executed is available as $0.

A special shell parameter $# is used to substitute for all positional parameters except $0. A typical use of
this is to provide some default arguments, as in,

nroff ~T450 —ms $x*
which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2,...) executing commands once
for each argument. An example of such a procedure is tel that searches the file /usr/lib/telnos that contains
lines of the form

fred mh0123
bert mh(0789

The text of tel is

fori
do grep $i /usr/lib/telnos; done

The command
tel fred
prints those lines in /usr/lib/telnos that contain the string fred.

USD:3-6 An Introduction to the UNIX Shell

tel fred bert

prints those lines containing fred followed by those for bert.
The for loop notation is recognized by the shell and has the general form

for name in wl w2,.,
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a newline or
semicolon. Furthermore, reserved words like do and done are only recognized following a newline or
semicolon. name is a shell variable that is set to the words wl w2 ... in turn each time the command-list
following do is executed. If in wl w2 ... is omitted then the loop is executed once for each positional
parameter; that is, in $* is assumed.

Another example of the use of the for loop is the create command whose text is
for i do >$i; done
The command
create alpha beta
ensures that two empty files alpha and beta exist and are empty. The notation >file may be used on its own
to create or clear the contents of a file. Notice also that a semicolon (or newline) is required before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,

case $# in

1) cat >>$1 ;;

2) cat >$2 <$1 ;;

*) echo “usage: append [from] to” ;;
esac

is an append command. When called with one argument as

append file
$# is the string 1 and the standard input is copied onto the end of file using the cat command.

append filel file2
appends the contents of filel onto file2. If the number of arguments supplied to append is other than 1 or 2
then a message is printed indicating proper usage.
The general form of the case command is

case word in

pattern) command-list 33

see

€sac

The shell attempts to match word with each pattern, in the order in which the patterns appear. If a match is
found the associated command-list is executed and execution of the case is complete. Since * is the pattern
that matches any string it can be used for the default case. '

A word of caution: no check is made to ensure that only one pattern matches the case argument. The first
match found defines the set of commands to be executed. In the example below the commands following
the second * will never be executed.

An Introduction to the UNIX Shell USD:3-7

case $# in
%*) e s
%) eae s
esac

Another example of the use of the case construction is to distinguish between different forms of an argu-
ment. The following example is a fragment of a cc command.

for i

docase $i in
—focs]) ..o
—%) echo “unknown flag $i” ;;
*.C) Mlib/cO $i...;;
*) echo “unexpected argument $i” ;;
esac

done

To aliow the same commands to be associated with more than one pattern the case command provides for
alternative patterns separated by a | . For example,

case $i in
-X]-¥)...
esac
is equivalent to

case $i in
-[xy]) ...
esac

The usual quoting conventions apply so that

case $iin
\?)

will match the character ?.

2.3 Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. An alternative
is to include this data within the shell procedure as a here document, as in,

fori

do grep $i «!
fred mh0123
bert mh0789

'

done
In this example the shell takes the lines between «! and ! as the standard input for grep. The string ! is
arbitrary, the document being terminated by a line that consists of the string following <«<.

Parameters are substituted in the document before it is made available to grep as illustrated by the follow-
ing procedure called edg .

USD:3-8 An Introduction to the UNIX Shell

ed $3 «<%
g/$1/s//$2g
w .
%

The call
edg string1 string? file
is then equivalent to the command

ed file «%

g/string 1/s//string2/g
w
%

and changes all occurrences of stringl in file to string2. Substitution can be prevented using \ to quote the
special character $ as in

ed $3 «<+
1,\$s5/$1/$2/g
w

+

(This version of edg is equivalent to the first except that ed will print a ? if there are no occurrences of the
string $1.) Substitution within a here document may be prevented entirely by quoting the terminating
string, for example,

grep $i «<\#

#
The document is presented without modification to grep. If parameter substitution is not required in a here
document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters, digits
and underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null string by say-
ing, for example,

null=
The value of a variable is substituted by preceding its name with $; for example,
echo $user

will echo fred.
Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mv pgm $b

- will move the file pgm from the current directory to the directory /usr/fred/bin. A more general notation
is available for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

An Introduction to the UNIX Shell USD:3-9

echo $user

and is used when the parameter name is followed by a letter or digit. For example,
tmp=/tmp/ps
ps a>${tmp}a

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa
would cause the value of the variable tmpa to be substituted.
Except for $? the following are set initially by the shell. $? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most com-
mands return a zero exit status if they complete successfully, otherwise a non-zero exit
status is returned. Testing the value of return codes is dealt with later under if and while
commands. '

$# The number of positional parameters (in decimal). Used, for example, in the append com-
mand to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique among
all existing processes, this string is frequently used to generate unique temporary file
names. For example,

ps a >/tmp/ps$$

rm /tmp/ps$$
$! The process number of the last process run in the background (in decimal).
$ The current shell flags, such as —x and -v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable before it issues
a prompt. If the specified file has been modified since it was last looked at the shell prints
the message you have mail before prompting for the next command. This variable is typi-
cally set in the file ,profile, in the user’s login directory. For example,

MAIL=/usr/spool/mail/fred

$HOME The default argument for the cd command. The current directory is used to resolve file
name references that do not begin with a /, and is changed using the ¢d command. For
example,

cd /usr/fred/bin
makes the current directory /usr/fred/bin.
cat wn

will print on the terminal the file wa in this directory. The command cd with no argument
is equivalent to

cd SHOME
This variable is also typically set in the the user’s login profile.
$SPATH A list of directories that contain commands (the search path). Each time a command is

USD:3-10 . An Introduction to the UNIX Shell

executed by the shell a list of directories is searched for an executable file, If $PATH is not
set then the current directory, /bin, and /usr/bin are searched by default. Otherwise
$PATH consists of directory names separated by : . For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :), /usr/fred/bin, /bin and
/usr/bin are to be searched in that order. In this way individual users can have their own
‘private’ commands that are accessible independently of the current directory. If the com-
mand name contains a / then this directory search is not used; a single attempt is made to
execute the command.

$PS1 The primary shell prompt string, by default, ‘$ °.
$PS2 The shell prompt when further input is needed, by default, > °.
$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command
The test command, although not part of the shell, is intended for use by shell programs. For example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general test evaluates a predicate
and returns the result as its exit status. Some of the more frequently used fest arguments are given here, see
test (1) for a complete specification.

tests true if the argument s is not the null string
test—f file true if file exists

test —r file true if file is readable

test—w file true if file is writable

test —d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell. A while or
until loop and an if then else branch are also provided whose actions are determined by the exit status
returned by commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following while.
Each time round the loop command-list, is executed; if a zero exit status is returned then command-list, is
executed; otherwise, the loop terminates. For example,

while test $1
do...

shift
done

is equivalent to

fori
do...
done

shift is a shell command that renames the positional parameters $2,$3,...as $1, $2,... and loses $1.

Another kind of use for the while/until loop is to wait until some external event occurs and then run some
commands. In an until loop the termination condition is reversed. For example, :

An Introduction to the UNIX Shell USD:3-11

until test —f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. (Presumably
another process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the test command to test for the existence of a file as in

if test —f file

then process file

else do something else
fi

An example of the use of if, case and for constructions is given in section 2.10.
A multiple test if command of the form

if...

then ...

else if...
then ...
else if...

see

fi

fi
may be written using an extension of the if notation as,

if...

then ...
elif ...
then ...
elif ...

soe

fi

The following example is the touch command which changes the ‘last modified’ time for a list of files. The
command may be used in conjunction with make (1) to force recompilation of a list of files.

USD:3-12 An Introduction to the UNIX Shell

flag=
fori
do case $i in
—) flag=N3;
*) if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \"$i\" does not exist
else >$i
fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not already exist.
Otherwise, if the file does not exist, an error message is printed. The shell variable flag is set to some non-
null string if the —¢ argument is encountered. The commands

In..;m...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if command1
then command2
fi

may be written
commandl && command2
Conversely,
commandl | | command2
executes command2 only if commandl fails. In each case the value returned is that of the last simple com-
mand executed.

2.8 Command grouping

Commands may be grouped in two ways,
{ command-list ; }

and
(command-list)

In the first command-list is simply executed. The second form executes command-list as a separate pro-
cess. For example, ‘

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk
have the same effect but leave the invoking shell in the directory x.

An Introduction to the UNIX Shell USD:3-13

2.9 Debugging shell procedures
The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked
within the procedure as

set-v
(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help isolate
syntax errors. It may be invoked without modifying the procedure by saying

sh-vproc...
where proc is the name of the shell procedure. This flag may be used in conjunction with the —n flag which

prevents execution of subsequent commands. (Note that saying set —n at a terminal will render the terminal
useless until an end-of-file is typed.)

The command

set—x
will produce an execution trace. Following parameter substitution each command is printed as it is exe-
cuted. (Try these at the terminal to see what effect they have.) Both flags may be turned off by saying

set —

and the current setting of the shell flags is available as $—.

2.10 The man command

The following is the mar command which is used to diplay sections of the UNIX manual on your terminal.
1t is called, for example, as

man sh
man —ted
man 2 fork

In the first the manual section for sh is displayed.. Since no section is specified, section 1 is used. The
second example will typeset (—t option) the manual section for ed. The last prints the fork manual page
from section 2, which covers system calls.

USD:3-14 An Introduction to the UNIX Shell

cd /usr/man

: “colon is the comment command”
: “default is nroff ($N), section 1 ($s)”
N=n s=1

fori
do case $i in

[1-9)%) s=$i;;

~t)N=t ;;

-n) N=n ;;

—%) echo unknown flag \"$i\" ;;

x) if test —f man$s/$i.$s
then ${N}roff man(0/${N}aa man$s/$i.$s
else : “look through all manual sections”
found=no
forjin123456789
do if test —f man$j/$i.$j
then man $j $i
found=yes
fi
done
case $found in
no) echo “$i: manual page not found”
esac

esac
done

Figure 1. A version of the man command

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to a
shell procedure of the form name=value that precedes the command name causes value to be assigned to
name before execution of the procedure begins. The value of name in the invoking shell is not affected.
For example,

user=fred command

will execute command with user set to fred. The —k flag causes arguments of the form name=value to be
interpreted in this way anywhere in the argument list. Such names are sometimes called keyword parame-
ters. If any arguments remain they are available as positional parameters $1, $2,

The set command may also be used to set positional parameters from within a procedure. For example,
set— *

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that the first argu-
ment, —, ensures correct treatment when the first file name begins witha —.

3.1 Parameter transmission
When a shell procedure is invoked both positional and keyword parameters may be supplied with the call.

Keyword parameters are also made available implicitly to a shell procedure by specifying in advance that
such parameters are to be exported. For example,

An Introduction to the UNIX Shell USD:3-15

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are made of all
exportable variables for use within the invoked procedure. Modification of such variables within the pro-
cedure does not affect the values in the invoking shell. It is generally true of a shell procedure that it may
not modify the state of its caller without explicit request on the part of the caller. (Shared file descriptors
are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this command
is the same as that of the export command,

readonly name...
Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the variable d is not
set

echo $d

or
echo ${d}

will echo nothing. A default string may be given as in
echo ${d-.}

which will echo the value of the variable d if it is set and ‘.’ otherwise. The default string is evaluated
using the usual quoting conventions so that

echo ${d~"x"}
will echo * if the variable d is not set. Similarly
echo ${d-$1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned a
default value using the notation

echo ${d=.}
which substitutes the same string as
echo ${d-.}

and if d were not previously set then it will be set to the string “.” . (The notation ${.. .=...} is not available
for positional parameters.)

If there is no sensible default then the notation
echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and execution
of the shell procedure is abandoned. If message is absent then a standard message is printed. A shell pro-
cedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been
evaluated. If any of the variables user, acct or bin are not set then the shell will abandon execution of the
procedure,

USD:3-16 . An Introduction to the UNIX Shell

3.3 Command substitution

The standard output from a command can be substituted in a sumlar way to parameters. The command
pwd prints on its standard output the name of the current directory. For example, if the current directory is
/usr/fred/bin then the command

d="pwd"
is equivalent to
d=/usr/fred/bin

The entire string between grave accents (...") is taken as the command to be executed and is replaced with
the output from the command. The command is written using the usual quoting conventions except that a *
must be escaped using a\. For example,

Is *echo "$1™
is equivalent to

Is $1
Command substitution occurs in all contexts where parameter substitution occurs (including here docu-
ments) and the treatment of the resulting text is the same in both cases. This mechanism allows string pro-

cessing commands to be used within shell procedures. An example of such a command is basename which
removes a specified suffix from a string. For example,

basename main.c
will print the string main . Its use is illustrated by the following fragment from a cc command.
case $A in

*.c) B="basename $A .c’

esac

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.
) foriin'ls-t'; do...
The variable i is set to the names of files in time order, most recent first.

° set “date’; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file name
generation for the arguments to commands. This section discusses the order in which these evaluations
occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendlx A. Before a command is exe-
cuted the following substitutions occur.

e parameter substitution, e.g. $user
e command substitution, e.g. ‘pwd’

Only one evaluation occurs so that if, for example, the value of the variable X is the string 3y
then

echo $X
will echo 3y.

An Introduction to the UNIX Shell USD:3-17

° blank interpretation
Following the above substitutions the resulting characters are broken into non-blank words
(blank interpretation). For this purpose ‘blanks’ are the characters of the string $IFS. By
default, this string consists of blank, tab and newline. The null string is not regarded as a word
unless it is quoted. For example,

echo
will pass on the null string as the first argument to echo, whereas
echo $null

will call echo with no arguments if the variable null is not set or set to the null string.
° file name generation
Each word is then scanned for the file pattern characters #, ? and [...] and an alphabetical list
of file names is generated to replace the word. Each such file name is a separate argument.
The evaluations just described also occur in the list of words associated with a for loop. Only substitution
occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and °...” a third quoting mechanism is pro-
vided using double quotes. Within double quotes parameter and command substitution occurs but file
name generation and the interpretation of blanks does not. The following characters have a special mean-
ing within double quotes and may be quoted using \.

$ parameter substitution
* command substitution

" ends the quoted string

\ quotes the special characters $* " \
For example,

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,
echo "$x"

will pass the positional parameters as a single argument and is equivalent to
echo "$182..."

The notation $@ is the same as $# except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to
echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

USD:3-18 An Introduction to the UNIX Shell

metacharacter

\ s * ~ 1] rd

‘ n n n n n t

* y n n t n n

" y y = y t n
t terminator
y interpreted
n notinterpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may be used.
For example, if the variable X has the value $y, and if y has the value pgr then

eval echo $X

will echo the string pgr .
In general the eval command evaluates its arguments (as do all commands) and treats the result as input to
the shell. The input is read and the resulting command(s) executed. For example,
wg="eval who| grep’
$wg fred
is equivalent to
who | grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as |, following
substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being
used interactively. An interactive shell is one whose input and output are connected to a terminal (as deter-
mined by gty (2)). A shell invoked with the —i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.,
. Input output redirection may fail. For example, if a file does not exist or cannot be created.
° The command itself does not exist or cannot be executed.

. The command terminates abnormally, for example, with a "bus error” or "memory fault”. See Figure
2 below for a complete list of UNIX signals.

. The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an error
message will be printed by the shell. All remaining errors cause the shell to exit from a command pro-
cedure. An interactive shell will return to read another command from the terminal. Such errors include
the following.

) Syntax errors. e.g., if ... then...done

. A signal such as interrupt. The shell waits for the current command, if any, to finish execution and
then either exits or returns to the terminal.

. Failure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any error is detected.

An Introduction to the UNIX Shell USD:3-19

1 hangup

2 interrupt

3* quit

4* llegal instruction
5* trace trap

6* IOT instruction

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (from k:ll (1))

Figure 3. UNIX signalst
Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself ignores
quit which is the only external signal that can cause a dump. The signals in this list of potential interest to
shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap command is
used if some cleaning up is required, such as removing temporary files. For example,

trap ‘rm /tmp/ps$$; exit” 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands
rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is required; other-
wise, after the trap has been taken, the shell will resume executing the procedure at the place where it was
interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is never
sent to the process. They can be caught, in which case the process must decide what action to take when
the signal is received. Lastly, they can be left to cause termination of the process without it having to take
any further action. If a signal is being ignored on entry to the shell procedure, for example, by invoking it
in the background (see 3.7) then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The cleanup action
is to remove the file junk$$.

+ Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an up-to-date list.

USD:3-20 An Introduction to the UNIX Shell

ﬂag-
trap ‘rm —f junk$$; exit" 123 15
fori
do case $i in
—c) flag=N ;;
*) if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \"$i\" does not exist
else >$i '
fi
esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be possible for the
process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on exit
from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The
following fragment is taken from the nohup command.

trap 12315

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked com-
mands.

Traps may be reset by saying

trap2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be
obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the trap command.
scan takes each directory in the current directory, prompts with its name, and then executes commands
typed at the terminal until an end of file or an interrupt is received. Interrupts are ignored while executing
the requested commands but cause termination when scan is waiting for input.

d="pwd"
foriin %
do if test —d $d/$i
then cd $d/$i
while echo "$i:"
trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Figure 5, The scan command

read x is a built-in command that reads one line from the standard input and places the result in the variable

An Introduction to the UNIX Shell USD:3-21

x . It returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system call fork.
The execution environment for the command includes input, output and the states of signals, and is esta-
blished in the child process before the command is executed. The built-in command exec is used in the
rare cases when no fork is required and simply replaces the shell with a new command. For example, a
simple version of the nohup command looks like

trap “ 12315
exec $x*

The trap turns off the signals specified so that they are ignored by subsequently created commands and
exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is only subject
to parameter and command substitution. No file name generation or blank interpretation takes place so
that, for examplg,

echo...>xc
will write its output into a file whose name is ».c. Input output specifications are evaluated left to right as
they appear in the command.
> word The standard output (file descriptor 1) is sent to the file word which is created if it does not
already exist.
> word The standard output is sent to file word. If the file exists then output is appended (by seek-
ing to the end); otherwise the file is created.
< word The standard input (file descriptor 0) is taken from the file word.

«< word The standard input is taken from the lines of shell input that follow up to but not including a
line consisting only of word. If word is quoted then no interpretation of the document
occurs. If word is not quoted then parameter and command substitution occur and \ is used
to quote the characters \ $ * and the first character of word. In the latter case \newline is
ignored (c.f. quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is used as

the standard output.
<& digit The standard input is duplicated from file descriptor digit.
<&— The standard input is closed.
>&— The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified by
the digit instead of the default O or 1. For example,

LER] 2>ﬁle
runs a command with message output (file descriptor 2) directed to file.
e 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descriptor 2 is
created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such as
list x.c | Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file /dev/null.
This prevents two processes (the shell and the command), which are running in parallel, from trying to read
the same input. Chaos would ensue if this were not the case. For example,

USD:3-22 An Introduction to the UNIX Shell

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and INTER-
RUPT signals so that they are ignored by the command. This allows these signals to be used at the termi-
nal without causing background commands to terminate. For this reason the UNIX convention for a signal
is that if it is set to 1 (ignored) then it is never changed even for a short time. Note that the shell command
trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument zero is

a minus, then commands are read from the file .profile.

—¢ string
If the —c flag is present then commands are read from string.

-s If the —s flag is present or if no arguments remain then commands are read from the standard input.
Shell output is written to file descriptor 2.

—i If the —i flag is present or if the shell input and output are attached to a terminal (as told by gry) then
this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interac-
tive shell) and INTERRUPT is caught and ignored (so that wait is interruptable). In all cases QUIT
is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell unix command language thompson and
the PWB/UNIX shell, pwb shell mashey unix some features having been taken from both. Similarities also
exist with the command interpreters of the Cambridge Multiple Access System cambridge multiple access
system hartley and of CTSS. ctss ‘

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the shell.
I am also grateful to the members of the Computing Science Research Center and to Joe Maranzano for
their comments on drafts of this document.

$LISTS

An Introduction to the UNIX Shell USD:3-23

Appendix A - Grammar
item: word
input-output
name = value

simple-command: item

command:

pipeline:

andor:

simple-command item

simple-command

(command-list)

{ command-list }

for name do command.-list done

for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part .. . esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline
andor & & pipeline
andor || pipeline

command-list: andor

command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file

file:

case-part:

pattern:

else-part:

empty:

word:

digit:

< file
s> word
<« word

word

& digit

& -

pattern) command-list ;3

word
pattern | word

elif command-list then command-list else-part
else command-list
empty

a sequence of non-blank characters
a sequence of letters, digits or underscores starting with a letter

0123456789

USD:3-24 An Introduction to the UNIX Shell

Appendix B - Meta-characters and Rmrved Words

a) syntactic
| pipe symbol
&& ‘andf symbol
I ‘orf’ symbol
; command separator
3 case delimiter
& background commands
() command grouping
< input redirection
« input from a here document
> output creation
>» output append
b) patterns

* match any character(s) including none
? match any single character
[..] match any of the enclosed characters

¢) substitution
${...} substitute shell variable

LN

v substitute command output

d) quoting
\ quote the next character

. quote the enclosed characters except for
".." quote the enclosed characters except for $ *\ "

e) reserved words

if then else elif fi
case in esac
for while until do done

{1}

An Introduction to the C shell

William Joy
(revised for 4.3BSD by Mark Seiden)
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXT systems. It incorporates
good features of other shells and a history mechanism similar to the redo of INTERLISP.
While incorporating many features of other shells which make writing shell programs
(shell scripts) easier, most of the features unique to csh are designed more for the
interactive UNIX user.

UNIX users who have read a general introduction to the system will find a valuable
basic explanation of the shell here. Simple terminal interaction with csh is possible after
reading just the first section of this document. The second section describes the shell’s
capabilities which you can explore after you have begun to become acquainted with the
shell. Later sections introduce features which are useful, but not necessary for all users
of the shell.

Additional information includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

Introduction

A shell is a command language interpreter. Csh is the name of one particular command interpreter
on UNIX. The primary purpose of csh is to translate command lines typed at a terminal into system actions,
such as invocation of other programs. Csh is a user program just like any you might write. Hopefully, csh
will be a very useful program for you in interacting with the UNIX system. ’

In addition to this document, you will want to refer to a copy of the UNIX User Reference Manual.
The csh documentation in section 1 of the manual provides a full description of all features of the shell and
is the definitive reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of commands,
and words which have special meaning in discussing the shell and UNIX. Many.of the words are defined in
a glossary at the end of this document. If you don’t know what is meant by a word, you should look for it
in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csk and aided in its debug-
ging and in the debugging of its documentation. I would especially like to thank Michael Ubell who made
the crucial observation that history commands could be done well over the word structure of input text, and
implemented a prototype history mechanism in an older version of the shell. Eric Allman has also pro-
vided a large number of useful comments on the shell, helping to unify those concepts which are present

t UNIX is a trademark of Bell Laboratories.

USD:4-2 , An Introduction to the C shell

and to identify and eliminate useless and marginally useful features. Mike O’Brien suggested the path-
name hashing mechanism which speeds command execution. Jim Kulp added the job control and dnectory
stack primitives and added their documentation to this introduction.

An Introduction to the C shell ' USD:4-3

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked. While it has a
set of builtin functions which it performs directly, most commands cause execution of programs that are, in
fact, external to the shell. The shell is thus distinguished from the command interpreters of other systems
both by the fact that it is just a user program, and by the fact that it is used almost exclusively as a mechan-
ism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a command name
followed by arguments. Thus the command

mail bill
consists of two words. The first word mail names the command to be executed, in this case the mail pro-
gram which sends messages to other users. The shell uses the name of the command in attempting to exe-
cute it for you. It will look in a number of directories for a file with the name mail which is expected to
contain the mail program.
The rest of the words of the command are given as arguments to the command itself when it is exe-
cuted. In this case we specified also the argument bill which is interpreted by the mail program to be the

name of a user to whom mail is to be sent. In normal terminal usage we might use the mail command as
follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bilt
EOT
%

Here we typed a message to send to bill and ended this message with a "D which sent an end-of-file
to the mail program. (Here and throughout this document, the notation ‘““x’’ is to be read ‘‘control-x’’ and
represents the striking of the x key while the control key is held down.) The mail program then echoed the
characters ‘EOT’ and transmitted our message. The characters ‘% ’ were printed before and after the mail
command by the shell to indicate that input was needed.

After typing the ‘% ’* prompt the shell was reading command input from our terminal. We typed a
complete command ‘mail bill’. The shell then executed the mail program with argument bill and went
dormant waiting for it to complete. The mail program then read input from our terminal until we signalled
an end-of-file via typing a "D after which the shell noticed that mail had completed and signaled us that it
was ready to read from the terminal again by printing another ‘% ’ prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete command is
typed at the terminal, the shell executes the command and when this execution completes, it prompts for a
new command. If you run the editor for an hour, the shell will patiently wait for you to finish editing and
obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tset command, which sets the default
erase and kill characters on your terminal — the erase character erases the last character you typed and the
kill character erases the entire line you have entered so far. By default, the erase character is the delete key
(equivalent to **?’) and the kill character is ““U’. Some people prefer to make the erase character the
backspace key (equivalent to ““H’). You can make this be true by typing

tset —€

which tells the program tset to set the erase character to tset’s default setting for this character (a back-
space).

USD:44 An Introduction to the C shell

1.2. Flag arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands specify file
names or user names, some arguments rather specify an optional capability of the command which you
wish to invoke. By convention, such arguments begin with the character ‘-’ (hyphen). Thus the command

Is
will produce a list of the files in the current working directory. The option —s is the size option, and
Is-s

causes Is to also give, for each file the size of the file in blocks of 512 characters. The manual section for
each command in the UNIX reference manual gives the available options for each command. The Is com-
mand has a large number of useful and interesting options. Most other commands have either no options or
only one or two options. It is hard to remember options of commands which are not used very frequently,
so most UNIX utilities perform only one or two functions rather than having a large number of hard to
remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be executed with this
input and/or output done to a file.

Thus suppose we wish to save the current date in a file called ‘now’. The command
date

will print the current date on our terminal. This is because our terminal is the default standard output for
the date command and the date command prints the date on its standard output. The shell lets us redirect
the standard output of a command through a notation using the metacharacter ‘>’ and the name of the file
where output is to be placed. Thus the command

date > now

runs the date command such that its standard output is the file ‘now’ rather than the terminal. Thus this
command places the current date and time into the file ‘now’. It is important to know that the date com-
mand was unaware that its output was going to a file rather than to the terminal. The shell performed this
redirection before the command began executing.

One other thing to note here is that the file ‘now’ need not have existed before the date command
was executed; the shell would have created the file if it did not exist. And if the file did exist? If it had
existed previously these previous contents would have been discarded! A shell option noclobber exists to -
prevent this from happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with ‘>’ and all other files. Thus the default is for
files to be permanent. If you wish to create a file which will be removed automatically, you can begin its
name with a ‘#’ character, this ‘scratch’ character denotes the fact that the file will be a scratch file.* The
system will remove such files after a couple of days, or sooner if file space becomes very tight. Thus, in
running the date command above, we don’t really want to save the output forever, so we would more
likely do

date > #now

*Note that if your erase character is a ‘#’, you will have to precede the ‘#’ with a ‘\’. The fact that the ‘#’ character is the
old (pre-crT) standard erase character means that it seldom appears in a file name, and allows this convention to be used for
scratch files. If you are using a CxT, your erase character should be a “H, as we demonstrated in section 1.1 how this could
be set up.

An Introduction to the C shell USD:4-5

1.4. Metacharacters in the shell

The shell has a large number of special characters (like ‘>’) which indicate special functions. We
say that these notations have syntactic and semantic meaning to the shell. In general, most characters
which are neither letters nor digits have special meaning to the shell. We shall shortly learn a means of
quotation which allows us to use metacharacters without the shell treating them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need not worry
about placing shell metacharacters in a letter we are sending via mail, or when we are typing in text or data
to some other program. Note that the shell is only reading input when it has prompted with ‘% ’ (although
we can type our input even before it prompts).

1.5. Input from files; pipelines

We learned above how to redirect the standard output of a command to a file. It is also possible to
redirect the standard inpwt of a command from a file. This is not often necessary since most commands
will read from a file whose name is given as an argument. We can give the command

sort < data

to run the sort command with standard input, where the command normally reads its input, from the file
‘data’. We would more likely say

sort data

letting the sort command open the file ‘data’ for input itself since this is less to type.
We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the standard
input, it would sort lines as we typed them on the terminal until we typed a “D to indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command with the stan-
dard input of another, i.e. to run the commands in a sequence known as a pipeline. For instance the com-
mand

Is—s

normally produces a list of the files in our directory with the size of each in blocks of 512 characters. If we
are interested in learning which of our files is largest we may wish to have this sorted by size rather than by
name, which is the default way in which Is sorts. We could look at the many options of Is to see if there
was an option to do this but would eventually discover that there is not. Instead we can use a couple of
simple options of the sort command, combining it with Is to get what we want.

The —n option of sort specifies a numeric sort rather than an alphabetic sort. Thus
Is—s|sort-n

specifies that the output of the Is command run with the option —s is to be piped to the command sort run
with the numeric sort option. This would give us a sorted list of our files by size, but with the smallest first.
We could then use the —7 reverse sort option and the head command in combination with the previous
command doing

Is —s | sort —n —r | head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run this
to the standard input of the sort command asking it to sort numerically in reverse order (largest first). This
output has then been run into the command head which gives us the first few lines. In this case we have
asked head for the first § lines. Thus this command gives us the names and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by ‘|’ characters
are connected together by the shell and the standard output of each is run into the standard input of the
next. The leftmost command in a pipeline will normally take its standard input from the terminal and the

USD:4-6 An Introduction to the C shell

rightmost will place its standard output on the terminal. Other examples of pipelines will be given later
when we discuss the history mechanism; one important use of pipes which is illustrated there is in the rout-
ing of information to the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX pathnames consist
of a number of components separated by ‘/’. Each component except the last names a directory in which
the next component resides, in effect specifying the path of directories to follow to reach the file. Thus the
pathname :

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory of the root directory ‘/’. Within this directory
the file named is ‘motd’ which stands for ‘message of the day’. A pathname that begins with a slash is
said to be an absolute pathname since it is specified from the absolute top of the entire directory hierarchy
of the system (the root). Pathnames which do not begin with /° are interpreted as starting in the current
working directory, which is, by default, your home directory and can be changed dynamically by the cd
change directory command. Such pathnames are said to be relative to the working directory since they are
found by starting in the working directory and descending to lower levels of directories for each com-
ponent of the pathname. If the pathname contains no slashes at all then the file is contained in the working
directory itself and the pathname is merely the name of the file in this directory. Absolute pathnames have
no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and .’s (periods). In fact, all print-
ing characters except ‘/’ (slash) may appear in filenames. It is inconvenient to have most non-alphabetic
characters in filenames because many of these have special meaning to the shell. The character ‘.’ (period)
is not a shell-metacharacter and is often used to separate the extension of a file name from the base of the
name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the name that
is left when a trailing ‘.’ and following characters which are not ‘.’ are stripped off). The file ‘prog.c’
might be the source for a C program, the file ‘prog.o’ the corresponding object file, the file ‘prog.errs’ the
errors resulting from a compilation of the program and the file “‘prog.output’ the output of a run of the pro-
gram.

If we wished to refer to all four of these files in a command, we could use the notation

prog.* | |
This expression is expanded by the shell, before the command to which it is an argument is executed, into a
list of names which begin with ‘prog.’. The character ‘*’ here matches any sequence (including the empty
sequence) of characters in a file name. The names which match are alphabetically sorted and placed in the
argument list of the command. Thus the command

echo prog.*
will echo the names

Prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above. The echo
command receives four words as arguments, even though we only typed one word as as argument directly.
The four words were generated by filename expansion of the one input word.

Other notations for filename expansion are also available. The character ‘?” matches any single
character in a filename. Thus

echo? 77 17?

will echo a line of filenames; first those with one character names, then those with two character names,

An Introduction to the C shell USD:4-7

and finally those with three character names. The names of each length will be independently sorted.
Another mechanism consists of a sequence of characters between ‘[’ and ‘}’. This metasequence
matches any single character from the enclosed set. Thus
prog.[co]
will match

Pprog.c prog.o

iTI',h the example above. We can also place two characters around a ‘-’ in this notation to denote a range.
us

chap.[1-5]
might match files

chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. This is shorthand for

chap.[12345]

and otherwise equivalent,

An important point to note is that if a list of argument words to a command (an argument list) con-
tains filename expansion syntax, and if this filename expansion syntax fails to match any existing file
names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character .’ at the beginning are treated specially.
Neither ‘*’ or ‘?” or the ‘[’ ‘I’ mechanism will match it. This prevents accidental matching of the
filenames ‘.’ and ‘.." in the working directory which have special meaning to the system, as well as other
files such as .cshrc which are not normally visible. We will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home directory of other
users. This notation consists of the character ‘~* (tilde) followed by another user’s login name. For
instance the word ‘bill’ would map to the pathname ‘/usr/bill’ if the home directory for ‘bill’ was
‘/ust/bill’. Since, on large systems, users may have login directories scattered over many different disk
volumes with different prefix directory names, this notation provides a convenient way of accessing the
files of other users. ’

A special case of this notation consists of a *’ alone, e.g. “/mbox’. This notation is expanded by the
shell into the file ‘mbox’ in your home directory, i.e. into ‘/usr/bill/mbox’ for me on Emie Co-vax, the
UCB Computer Science Department VAX machine, where this document was prepared. This can be very
useful if you have used cd to change to another directory and have found a file you wish to copy using cp.
If I give the command

cp thatfile -
the shell will expand this command to
cp thatfile /usr/bill

since my home directory is /usr/bill.

There also exists a mechanism using the characters ‘{’ and ‘}’ for abbreviating a set of words which
have common parts but cannot be abbreviated by the above mechanisms because they are not files, are the
names of files which do not yet exist, are not thus conveniently described. This mechanism will be
described much later, in section 4.2, as it is used less frequently.

USD:4-8 ' An Introduction to the C shell

1.7. Quotation .
We have already seen a number of metacharacters used by the shell. These metacharacters pose a
problem in that we cannot use them directly as parts of words. Thus the command
echo *
will not echo the character ‘*’. It will either echo an sorted list of filenames in the current working direc-
tory, or print the message ‘No match’ if there are no files in the working directory.
The recommended mechanism for placing characters which are neither numbers, digits, */’, ‘.’ or ‘=’
in an argument word to a command is to enclose it with single quotation characters ‘”, i.e.
echo "**

There is one special character ‘!’ which is used by the history mechanism of the shell and which cannot be
escaped by placing it within ‘> characters. It and the character ‘” itself can be preceded by a single ‘\’ to
prevent their special meaning. Thus

echo\\!
prints
“

These two mechanisms suffice to place any printing character into a word which is an argument to a shell
command. They can be combined, as in

echo\""*
which prints

7%
since the first ‘\’ escaped the first ** and the ‘*’ was enclosed between **’ characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are several ways
to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to continue
for several minutes unless you stop it. You can send an INTERRUPT signal to the cat command by typing
“C on your terminal.* Since cat does not take any precautions to avoid or otherwise handle this signal the
INTERRUPT will cause it to terminate. The shell notices that car has terminated and prompts you again with
‘% ’. If you hit INTERRUPT again, the shell will just repeat its prompt since it handles INTERRUPT signals
and chooses to continue to execute commands rather than terminating like cat did, which would have the
effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their standard
input. Thus the mail program in the first example above was terminated when we typed a "D which gen-
erates an end-of-file from the standard input. The shell also terminates when it gets an end-of-file printing
‘logout’; UNIX then logs you off the system. Since this means that typing too many “D’s can accidentally
log us off, the shell has a mechanism for preventing this. This ignoreeof option will be discussed in sec-
tion 2.2.

If a command has its standard input redirected from a file, then it will normally terminate when it
reaches the end of this file. Thus if we execute

mail bill < prepared.text

*On some older Unix systems the DEL or RUBOUT key has the same effect. "stty all” will tell you the INTR key value.

An Introduction to the C shell USD:4-9

the mail command will terminate without our typing a “D. This is because it read to the end-of-file of our
file ‘prepared.text’ in which we placed a message for ‘bill’ with an editor program. We could also have
done

cat prepared.text | mail bill

since the cat command would then have written the text through the pipe to the standard input of the mail
command. When the cat command completed it would have terminated, closing down the pipeline and the
mail command would have received an end-of-file from it and terminated. Using a pipe here is more com-
plicated than redirecting input so we would more likely use the first form. These commands could also
have been stopped by sending an INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with the possi-
bility of continuing execution later. This is done by sending a STOP signal via typing a “Z. This signal
causes all commands running on the terminal (usually one but more if a pipeline is executing) to become
suspended. The shell notices that the command(s) have been suspended, types ‘Stopped’ and then prompts
for a new command. The previously executing command has been suspended, but otherwise unaffected by
the STOP signal. Any other commands can be executed while the original command remains suspended.
The suspended command can be continued using the fg command with no arguments. The shell will then
retype the command to remind you which command is being continued, and cause the command to resume
execution. Unless any input files in use by the suspended command have been changed in the meantime,
the suspension has no effect whatsoever on the execution of the command. This feature can be very useful
during editing, when you need to look at another file before continuing. An example of command suspen-
sion follows.

% mail harold

Someone just copied a big file into my directory and its name is
A

Stopped

% Is

funnyfile

prog.c

prog.o

% jobs

{1] + Stopped mail harold
% fg

mail harold

funnyfile. Do you know who did it?

EOT

%

In this example someone was sending a message to Harold and forgot the name of the file he wanted to
mention. The mail command was suspended by typing “Z. When the shell noticed that the mail program
was suspended, it typed ‘Stopped’ and prompted for a new command. Then the Is command was typed to
find out the name of the file. The jobs command was run to find out which command was suspended. At
this time the fg command was typed to continue execution of the mail program. Input to the mail program
was then continued and ended with a “D which indicated the end of the message at which time the mail
program typed EOT. The jobs command will show which commands are suspended. The “Z should only
be typed at the beginning of a line since everything typed on the current line is discarded when a signal is
sent from the keyboard. This also happens on INTERRUPT, and QUIT signals. More information on suspend-
ing jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to stop them
somewhat ungracefully. This can be done by sending them a QUIT signal, sent by typing a "\. This will
usually provoke the shell to produce a message like:

Quit (Core dumped)
indicating that a file ‘core’ has been created containing information about the running program’s state when

USD:4-10 An Introduction to the C shell

it terminated due to the QUIT signal. You can examine this file yourself, or forward information to the
maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will ignore
INTERRUPT and QUIT signals at the terminal. To stop them you must use the kiZl command. See section 2.6
for an example,

If you want to examine the output of a command without having it move off the screen as the output
of the

cat /etc/passwd
command will, you can use the command
more /etc/passwd

The more program pauses after each complete screenful and types ‘—More—’ at which point you can hit
a space to get another screenful, a return to get another line, a ‘?’ to get some help on other commands, or a
‘q’ to end the more program. You can also use more as a filter, i.e.

cat /etc/passwd | more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the “S key to stop the typeout.
The typeout will resume when you hit “Q or any other key, but “Q is normally used because it only restarts
the output and doés not become input to the program which is running. This works well on low-speed ter-
minals, but at 9600 baud it is hard to type “S and “Q fast enough to paginate the output nicely, and a pro-
gram like more is usually used.

An additional possibility is to use the "O flush output character; when this character is typed, all out-
put from the current command is thrown away (quickly) until the next input read occurs or until the next
shell prompt. This can be used to allow a command to complete without having to suffer through the out-
put on a slow terminal; “O is a toggle, so flushing can be turned off by typing "O again while output is
being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in which it
operates. The remaining sections will go yet further into the internals of the shell, but you will surely want
to try using the shell before you go any further. To try it you can log in to UNIX and type the following
command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get onto the
system. Thus I would use ‘chsh bill /bin/csh’. You only have to do this once; it takes effect at next
login. You are now ready to try using csh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is ‘/bin/sh’.
In fact, much of the above discussion is applicable to ‘/bin/sh’. The next section will introduce many
features particular to csh so you should change your shell to csh before you begin reading it.

An Introduction to the C shell USD:4-11

2. Details on the shell for terminal users

2.1, Shell startup and termination

When you login, the shell is started by the system in your home directory and begins by reading
commands from a file .cshrc in this directory. All shells which you may start during your terminal session
will read from this file. We will later see what kinds of commands are usefully placed there. For now we
need not have this file and the shell does not complain about its absence.

A login shell , executed after you logm to the system, will, after it reads commands from .cshrc, read
commands from a file .login also in your home directory. This file contains commands which you wish to
do each time you login to the UNIX system. My .login file looks something like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt}users” ; users
alias ts \
“set noglob ; eval “tset —s —m dialup:c100rvdpna —m plugboard:?hp2621nl ***;
ts; stty intr "C kill “U crt
set time=1S5 history=10
msgs —f
if (—e $mail) then
echo "${prompt}mail"
mail
endif

This file contains several commands to be executed by UNIX each time I login. The firstis a ser com-
mand which is interpreted directly by the shell. It sets the shell variable ignoreeof which causes the shell
to not log me off if I hit “D. Rather, I use the logout command to log off of the system. By setting the
mail variable, I ask the shell to watch for incoming mail to me. Every 5 minutes the shell looks for this file
and tells me if more mail has arrived there. An alternative to this is to put the command

biff y
in place of this set, this will cause me to be notified immediately when mail arrives, and to be shown the
first few lines of the new message.

Next I set the shell variable ‘time’ to ‘15’ causing the shell to automatically print out statistics lines
for commands which execute for at least 15 seconds of CPU time. The variable ‘history’ is set to 10 indicat-
ing that I want the shell to remember the last 10 commands I type in its history list, (described later).

I create an alias “‘ts’’ which executes a tset (1) command setting up the modes of the terminal. The
parameters to tset indicate the kinds of terminal which I usually use when not on a hardwired port. I then
execute ‘‘ts”” and also use the stry command to change the interrupt character to “C and the line kill char-
acter to “U.

I then run the ‘msgs’ program, which provides me with any system messages which I have not seen
before; the ‘—f option here prevents it from telling me anything if there are no new messages. Finally, if
my mailbox file exists, then I run the ‘mail’ program to process my mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processing my .login file and begin
reading commands from the terminal, prompting for each with ‘% °. When I log off (by giving the logout
command) the shell will print ‘logout’ and execute commands from the file ‘.logout’ if it exists in my home
directory. After that the shell will terminate and UNIX will log me off the system. If the system is not going
down, I will receive a new login message. In any case, after the ‘logout’ message the shell is committed to
terminating and will take no further input from my terminal.

USD:4-12 An Introduction to the C shell

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and time which had
values ‘10’ and ‘15°. In fact, each shell variable has as value an array of zero or more strings. Shell vari-
ables may be assigned values by the set command. It has several forms, the most useful of which was
given above and is

set name=value

Shell variables may be used to store values which are to be used in commands later through a substi-
tution mechanism. The shell variables most commonly referenced are, however, those which the shell
itself refers to. By changing the values of these variables one can directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a sequence of direc-
tory names where the shell searches for commands. The set command with no arguments shows the value
of all variables currently defined (we usually say set) in the shell. The default value for path will be shown
by set to be

% set

argv 0

cwd /usr/bill
home ust/bill
path (. /ust/ucb /bin /ust/bin)
prompt %

shell /bin/csh
status 0

term ¢100rv4pna
user bill

%

This output indicates that the variable path points to the current directory ‘.’ and then ‘/usr/ucb’, ‘/bin’ and
‘fusr/bin’. Commands which you may write might be in ‘.’ (usually one of your directories). Commands
developed at Berkeley, live in ‘/usr/uch’ while commands developed at Bell Laboratories live in ‘/bin’ and
‘fusr/bin’. ‘

A number of locally developed programs on the system live in the directory ‘/usr/local’. If we wish
that all shells which we invoke to have access to these new programs we can place the command

set path=(. /usr/ucb /bin /ust/bin /ust/local) ‘
in our file .cshrc in our home directory. Try doing this and then logging out and back in and do
set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you insert into your
path and determines which commands are contained there. Except for the current directory °.’, which the
shell treats specially, this means that if commands are added to a directory in your search path after you
have started the shell, they will not necessarily be found by the shell. If you wish to use a command which
has been added in this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added command. Since the shell has to look in the current directory ‘.’ on each command, placing it
at the end of the path specification usually works equivalently and reduces overhead.

1 Another directory that might interest you is /usr/new, which contains many useful user-contributed programs
provided with Berkeley Unix.

An Introduction to the C shell USD:4-13

Other useful built in variables are the variable home which shows your home directory, cwd which
contains your current warking directory, the variable ignoreeof which can be set in your .login file to tell
the shell not to exit when it receives an end-of-file from a terminal (as described above). The variable
‘ignoreeof’ is one of several variables which the shell does not care about the value of, only whether they
are set or unset. Thus to set this variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof
These give the variable ‘ignoreeof’ no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables noclobber and mail. The
metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents of the
named file. In this way you may accidentally overwrite a file which is valuable. If you would prefer that
the shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do
date > now

would cause a diagnostic if ‘now’ existed already. You could type
date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!’ is a special metasyntax indicating that
clobbering the file is ok.t

2.3. The shell’s history list

The shell can maintain a history list into which it places the words of previous commands. It is pos-
sible to use a notation to reuse commands or words from commands in forming new commands. This
mechanism can be used to repeat previous commands or to correct minor typing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechanism of the
shell. In this example we have a very simple C program which has a bug (or two) in it in the file ‘bug.c’,
which we ‘cat’ out on our terminal. We then try to run the C compiler on it, referring to the file again as
‘1$’, meaning the last argument to the previous command. Here the ‘!’ is the history mechanism invocation
metacharacter, and the ‘$’ stands for the last argument, by analogy to ‘$’ in the editor which stands for the
end of the line. The shell echoed the command, as it would have been typed without use of the history
mechanism, and then executed it. The compilation yielded error diagnostics so we now run the editor on
the file we were trying to compile, fix the bug, and run the C compiler again, this time referring to this
command simply as ‘!c’, which repeats the last command which started with the letter ‘c’. If there were
other commands starting with ‘c’ done recently we could have said ‘!cc’ or even ‘!cc:p’ which would have
printed the last command starting with ‘cc’ without executing it.

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still was a bug,
ran the editor again. After fixing the program we ran the C compiler again, but tacked onto the command
an extra ‘—o bug’ telling the compiler to place the resultant binary in the file ‘bug’ rather than ‘a.out’. In
general, the history mechanisms may be used anywhere in the formation of new commands and other char-
acters may be placed before and after the substituted commands.

$The space between the ‘!” and the word ‘now’ is critical here, as ‘'now’ would be an invocation of the kistory mechanism,
and have a totally different effect.

USD:4-14 . An Introduction to the C shell

% cat bug.c
main()

printf("hello);
}
%cc!$
cc bug.c
"bug.c”, line 4: newline in string or char constant
"bug.c”, line S: syntax error
%ed!$
ed bug.c
29
4s/)y/"&Ip
printf("hello");
w
30
q
% !c
cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/lo/lo\/p
printf("hello\n");
w
32
q
% !c —o bug
cc bug.c —o bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% Is -1 1*
Is -1 a.out bug
—rwxr—-xr—x 1 bill 3932 Dec 19 09:41 a.out
—rwxr-xr-x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% "spp"ssp
num bug.c | ssp
1 main()
34
4 printf("hello\n");
5}
% !!|lpr
num bug.c | ssp| lpr
%

An Introduction to the C shell USD:4-15

We then ran the ‘size’ command to see how large the binary program images we have created were,
and then an ‘Is —I’ command with the same argument list, denoting the argument list ‘*’. Finally we ran
the program ‘bug’ to see that its output is indeed correct.

To make a numbered listing of the program we ran the ‘num’ command on the file ‘bug.c’. In order
to compress out blank lines in the output of ‘num’ we ran the output through the filter ‘ssp’, but misspelled
it as spp. To correct this we used a shell substitute, placing the old text and new text between **’ charac-
ters. This is similar to the substitute command in the editor. Finally, we repeated the same command with
‘11°, but sent its output to the line printer.

There are other mechanisms available for repeating commands. The history command prints out a
number of previous commands with numbers by which they can be referenced. There is a way to refer to a
previous command by searching for a string which appeared in it, and there are other, less useful, ways to
select arguments to include in a new command. A complete description of all these mechanisms is given in
the C shell manual pages in the UNIX Programmer’s Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input commands.
This mechanism can be used to simplify the commands you type, to supply default arguments to com-
mands, or to perform transformations on commands and their arguments. The alias facility is similar to a
macro facility. Some of the features obtained by aliasing can be obtained also using shell command files,
but these take place in another instance of the shell and cannot directly affect the current shells environ-
ment or involve commands such as cd which must be done in the current shell

As an example, suppose that there is a new version of the mail program on the system called
‘newmail’ you wish to use, rather than the standard mail program which is called ‘mail’. If you place the
shell command

alias mail newmail _
in your .cshrc file, the shell will transform an input line of the form

mail bill
into a call on ‘newmail’. More generally, suppose we wish the command ‘Is’ to always show sizes of files,
that is to always do ‘~s’. We can do

alias Is Is —s
or even

alias dir Is ~s
creating a new command syntax ‘dir’ which does an ‘Is —s’. If we say

dir “bill
then the shell will translate this to

Is —s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands, to provide default

arguments, and to define new short commands in terms of other commands. It is also possible to define

aliases which contain multiple commands or pipelines, showing where the arguments to the original com-
mand are to be substituted using the facilities of the history mechanism. Thus the definition

alias cd ‘cd\!*;1s*

would do an /s command after each change directory cd command. We enclosed the entire alias definition
in *” characters to prevent most substitutions from occurring and the character *;’ from being recognized as
a metacharacter. The ‘!’ here is escaped with a ‘\’ to prevent it from being interpreted when the alias com-
mand is typed in. The ‘\!*’ here substitutes the entire argument list to the pre-aliasing cd command,
without giving an error if there were no arguments. The *;’ separating commands is used here to indicate

USD:4-16 An Introduction to the C shell

that one command is to be done and then the next. Similarly the definition
alias whois “grep \!" /etc/passwd”
defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a large
number of commands there, shells will tend to start slowly. A mechanism for saving the shell environment
after reading the .cshrc file and quickly restoring it is under development, but for now you should try to
limit the number of aliases you have to a reasonable number... 10 or 15 is reasonable, S0 or 60 will cause a
noticeable delay in starting up shells, and make the system seem sluggish when you execute commands
from within the editor and other programs.

2.5. More redirection; >> and >&
There are a few more notations useful to the terminal user which have not been introduced yet.

In addition to the standard output, commands also have a diagnostic output which is normally
directed to the terminal even whea the standard output is redirected to a file or a pipe. It is occasionally
desirable to direct the diagnostic output along with the standard output. For instance if you want to redirect
the output of a long running command into a file and wish to have a record of any error diagnostic it pro-
duces you can do

command >& file

The ‘>&’ here tells the shell to route both the diagnostic output and the standard output into ‘file’. Simi-
larly you can give the command

command | & Ipr
to route both standard and diagnostic output through the pipe to the line printer daemon lpr.#
Finally, it is possible to use the form
command >> file
to place output at the end of an existing file.t

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands
separated by semicolons, a single job is created by the shell consisting of these commands together as a
unit. Single commands without pipes or semicolons create the simplest jobs. Usually, every line typed to
the shell creates a job. Some lines that create jobs (one per line) are

sort < data
Is —s | sort —n | head -5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is started as a background
job. This means that the shell does not wait for it to complete but immediately prompts and is ready for
another command. The job runs in the background at the same time that normal jobs, called foreground
jobs, continue to be read and executed by the shell one at a time, Thus

du > usage &

1 A command of the form
command >&! file
exists, and is used when noclobber is set and file already exists.
t If noclobber is set, then an error will result if file does not exist, otherwise the shell will create file if it doesn’t exist. A
form
command >>! file
makes it not be an error for file to not exist when noclobber is set.

An Introduction to the C shell) USD:4-17

would run the du program, which reports on the disk usage of your working directory (as well as any
directories below it), put the output into the file ‘usage’ and return immediately with a prompt for the next
command without out waiting for du to finish. The du program would continue executing in the back-
ground until it finished, even though you can type and execute more commands in the mean time. When a
background job terminates, a message is typed by the shell just before the next prompt telling you that the
job has completed. In the following example the du job finishes sometime during the execution of the
mail command and its completion is reported just before the prompt after the mail job is finished.

% du > usage &

[1] 503

% mail bill

How do you know when a background job is finished?
EOT

[1] - Done du > usage

%

If the job did not terminate normally the ‘Done’ message might say something else like ‘Killed’. If you
want the terminations of background jobs to be reported at the time they occur (possibly interrupting the
output of other foreground jobs), you can set the notify variable. In the previous example this would mean
that the ‘Done’ message might have come right in the middle of the message to Bill. Background jobs are
unaffected by any signals from the keyboard like the STOP, INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell remembers
the command names, arguments and the process numbers of all commands in the job as well as the work-
ing directory where the job was started. Each job in the table is either running in the foreground with the
shell waiting for it to terminate, running in the background, or suspended. Only one job can be running in
the foreground at one time, but several jobs can be suspended or running in the background at once. As
each job is started, it is assigned a small identifying number called the job number which can be used later
to refer to the job in the commands described below. Job numbers remain the same until the job terminates
and then are re-used.

When a job is started in the backgound using ‘&’, its number, as well as the process numbers of all
its (top level) commands, is typed by the shell before prompting you for another command. For example,

% lIs ~s | sort —n > usage &
(212034 2035
%

runs the ‘Is’ program with the ‘—s’ options, pipes this output into the ‘sort’ program with the ‘—n’ option
which puts its output into the file ‘usage’. Since the ‘&’ was at the end of the line, these two programs
were started together as a background job. After starting the job, the shell prints the job number in brackets
(2 in this case) followed by the process number of each program started in the job. Then the shell immedi-
ates prompts for a new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing “Z which sends a STOP
signal to the currently running foreground job. A background job can become suspended by using the stop
command described below. When jobs are suspended they merely stop any further progress until started
again, either in the foreground or the backgound. The shell notices when a job becomes stopped and
reports this fact, much like it reports the termination of background jobs. For foreground jobs this looks
like

% du > usage
Z

Stopped

%

*Stopped’ message is typed by the shell when it notices that the du program stopped. For background jobs,
using the stop command, it is

USD:4-18 An Introduction to the C shell

% sort usage &

[1]2345

% stop %1

[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you are doing
(execute other commands) and then return to the suspended job. Also, foreground jobs can be suspended
and then continued as background jobs using the bg command, allowing you to continue other work and
stop waiting for the foreground job to finish. Thus

% du > usage

‘z

Stopped

% bg

[1] du > usage &
%

starts ‘du’ in the foreground, stops it before it finishes, then continues it in the background allowing more
foreground commands to be executed. This is especially helpful when a foreground job ends up taking
longer than you expected and you wish you had started it in the backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job name argu-
ments begin with the character ‘%’, since some of the job control commands also accept process numbers
(printed by the ps command.) The default job (when no argument is given) is called the current job and is
identified by a ‘+’ in the output of the jobs command, which shows you which jobs you have. When only
one job is stopped or running in the background (the usual case) it is always the current job thus no argu-
ment is needed. If a job is stopped while running in the foreground it becomes the current job and the
existing current job becomes the previous job — identified by a ‘-’ in the output of jobs. When the current
job terminates, the previous job becomes the current job. When given, the argument is either ‘%—’ (indi-
cating the previous job); ‘%#’, where # is the job number; ‘%pref’ where pref is some unique prefix of the
command name and arguments of one of the jobs; or ‘%?’ followed by some string found in only one of the
jobs.

The jobs command types the table of jobs, giving the job number, commands and status (‘Stopped’
or ‘Running’) of each backgound or suspended job. With the ‘-1’ option the process numbers are also

typed.

% du > usage &

[1] 3398

% Is —s | sort —n > myfile &

[2] 3405

% mail bill

o ;

Stopped

% jobs

(1] - Running du > usage
[2] Running Is —s | sort —n > myfile
(3] + Stopped mail bill
% fg %ls :

Is —s | sort —n > myfile

% more myfile

The fg command runs a suspended or background job in the foreground. It is used to restart a previ-
ously suspended job or change a background job to run in the foreground (allowing signals or input from
the terminal). In the above example we used fg to change the ‘Is’ job from the background to the fore-
ground since we wanted to wait for it to finish before looking at its output file. The bg command runs a
suspended job in the background. It is usually used after stopping the currently running foreground job

An Introduction to the C shell USD:4-19

with the STOP signal. The combination of the STOP signal and the bg command changes a foreground job
into a background job. The stop command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition to jobs, it
may be given process numbers as arguments, as printed by ps. Thus, in the example above, the running du
command could have been terminated by the command

% kill %1
[1} Terminated du > usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of a specific
job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically stopped.
When such a job is then run in the foreground, input can be given to the job. If desired, the job can be run
in the background again until it requests input again. This is illustrated in the following sequence where
the ‘s’ command in the text editor might take a long time.

% ed bigfile

120000
1,$s/thisword/thatword/
Z

Stopped
% bg
[1] ed bigfile &

%

... some foreground commands
{1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000

q
%

So after the ‘s’ command was issued, the ‘ed’ job was stopped with “Z and then put in the background
using bg. Some time later when the ‘s’ command was finished, ed tried to read another command and was
stopped because jobs in the backgound cannot read from the terminal. The fg command returned the ‘ed’
job to the foreground where it could once again accept commands from the terminal.

The command
stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the terminal.
This prevents messages from background jobs from interrupting foreground job output and allows you to
run a job in the background without losing terminal output. It also can be used for interactive programs
that sometimes have long periods without interaction. Thus each time it outputs a prompt for more input it
will stop before the prompt. It can then be run in the foreground using fg, more iriput can be given and, if
necessary stopped and returned to the background. This sity command might be a good thing to put in
your .login file if you do not like output from background jobs interrupting your work. It also can reduce
the need for redirecting the output of background jobs if the output is not very big:

USD:4-20 An Introduction to the C shell

% stty tostop

% wc hugefile &
[1] 10387

% ed text

... some time later

q

[1] Stopped (tty output) wc hugefile

% fg we

wc hugefile

13371 30123 302577

% sity —tostop
Thus after some time the ‘wc’ command, which counts the lines, words and characters in a file, had one
line of output. When it tried to write this to the terminal it stopped. By restarting it in the foreground we
allowed it to write on the terminal exactly when we were ready to look at its output. Programs which
attempt to change the mode of the terminal will also block, whether or not tostop is set, when they are not
in the foreground, as it would be very unpleasant to have a background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows nothing
about background jobs started in other login sessions or within shell files. The ps can be used in this case
to find out about background jobs not started in the current shell.

2,7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The ‘change direc-
tory’ command chdir (its short form cd may also be used) changes the working directory of the shell, that
is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related to
that project in that directory. The ‘make directory’ command, mkdir, creates a new directory. The pwd
(‘print working directory’) command reports the absolute pathname of the working directory of the shell,
that is, the directory you are located in. Thus in the example below:

% pwd

/usr/bill

% mkdir newpaper
% chdir newpaper
% pwd
/usr/bill/newpaper
%

the user has created and moved to the directory newpaper. where, for example, he might place a group of
related files.

No matter where you have moved to in a directory hierarchy, you can return to your ‘home’ login
directory by doing just ‘

cd
with no arguments. The name °..’ always means the directory above the current one in the hierarchy, thus
cd..

changes the shell’s working directory to the one directly above the current one. The name ‘..’ can be used
in any pathname, thus, : ‘ :
cd ./programs

means change to the directory ‘programs’ contained in the directory above the current one. If you have
several directories for different projects under, say, your home directory, this shorthand notation permits
you to switch easily between them.

An Introduction to the C shell USD:4-21

The shell always remembers the pathname of its current working directory in the variable cwd. The
shell can also be requested to remember the previous directory when you change to a new working direc-
tory. If the ‘push directory’ command pushd is used in place of the cd command, the shell saves the name
of the current working directory on a directory stack before changing to the new one. You can see this list
at any time by typing the ‘directories’ command dirs.

% pushd newpaper/references
“/newpaper/references ~

% pushd /usr/lib/tmac

/usr/lib/tmac “/newpaper/references ~
% dirs

/usr/lib/tmac “/newpaper/references ~
% popd

“/newpaper/references ~

% popd

%

The list is printed in a horizontal line, reading left to right, with a tilde (") as shorthand for your home
directory—in this case ‘/usr/bill’. The directory stack is printed whenever there is more than one entry on
it and it changes. It is also printed by a dirs command. Dirs is usually faster and more informative than
pwd since it shows the current working directory as well as any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first directory in the
list. The ‘pop directory’ popd command without an argument returns you to the directory you were in
prior to the current one, discarding the previous current directory from the stack (forgetting it). Typing
popd several times in a series takes you backward through the directories you had been in (changed to) by
pushd command. There are other options to pushd and popd to manipulate the contents of the directory
stack and to change to directories not at the top of the stack; see the csh manual page for details.

Since the shell remembers the working directory in which each job was started, it warns you when
you might be confused by restarting a job in the foreground which has a different working directory than
the current working directory of the shell. Thus if you start a background job, then change the shell’s
working directory and then cause the background job to run in the foreground, the shell warns you that the
working directory of the currently running foreground job is different from that of the shell.

% dirs -1

/mnv/bill

% cd myproject

% dirs

“/myproject

% ed prog.c

1143

‘Z

Stopped

%cd..

% Is

myproject

textfile o

% fg ,
ed prog.c (wd: “/myproject)

This way the shell warns you when there is an implied change of working directory, even though no cd
command was issued. In the above example the ‘ed’ job was still in ‘/mnt/bill/project’ even though the
shell had changed to ‘/mnt/bill’. A similar warning is given when such a foreground job terminates or is
suspended (using the STOP signal) since the return to the shell again implies a change of working directory.

USD:4-22 An Introduction to the C shell

% fg

ed prog.c (wd: /myproject)
. . . after some editing

q

(wd now:)

%
These messages are sometimes confusing if you use programs that change their own working directories,
since the shell only remembers which directory a job is started in, and assumes it stays there. The *-I’
option of jobs will type the working directory of suspended or background jobs when it is different from
the current working directory of the shell. '

2.8. Useful built-in commands
We now give a few of the useful built-in commands of the shell describing how they are used.
The alias command described above is used to assign new aliases and to show the existing aliases.
With no arguments it prints the current aliases. It may also be given only one argument such as
alias Is
to show the current alias for, e.g., ‘Is’.

The echo command prints its arguments. It is often used in shell scripts or as an interactive com-
mand to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with the history
events can be used to reference previous events which are difficult to reference using the contextual
mechanisms introduced above. There is also a shell variable called prompt. By placing a ‘!’ character in
its value the shell will there substitute the number of the current command in the history list. You can use
this number to refer to this command in a history substitution. Thus you could

set prompt="\! % *
Note that the ‘!’ character had to be escaped here even within ‘*’ characters.

The limit command is used to restrict use of resources. With no arguments it prints the current limi-
tations:

cputime unlimited

filesize unlimited

datasize 5616 kbytes

stacksize 512 kbytes

coredumpsize unlimited
Limits can be set, e.g.:

limit coredumpsize 128k

Most reasonable units abbreviations will wbrk; see the csh manual page for more details.
The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash command causes the shell to recompute a table of where commands are located. This is
necessary if you add a command to a directory in the current shell’s search path and wish the shell to find
it, since otherwise the hashing algorithm may tell the shell that the command wasn’t in that directory when
the hash table was computed.

The repeat command can be used to repeat a.command several times. Thus to make 5 copies of the
file one in the file five youcoulddo '

repeat 5 cat one >> five

The setenv command can be used to set variables in the environment. Thus

An Introduction to the C shell USD:4-23

setenv TERM adm3a

will set the value of the environment variable TERM to ‘adm3a’. A user program printenv exists which will
print out the environment. It might then show:

% printenv

HOME-=/ust/bill

SHELL=/bin/csh
PATH-=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER=bill

%

The source command can be used to force the current shell to read commands from a file. Thus
source .cshrc

can be used after editing in a change to the .cshre file which you wish to take effect right away.

The time command can be used to cause a command to be timed no matter how much CPU time it
takes. Thus

% time cp /etc/rc /ust/bill/rc
0.0u 0.1s 0:01 8% 2+1k 3+2io 1pf+0w
% time wc /etc/rc /ust/bill/rc

52 178 1347 Jetc/rc

52 178 1347 /ust/bill/rc

104 356 2694 total
0.1u 0.15 0:00 13% 3+3k 5+3io 7pf+Ow
%

indicates that the cp command used 2 negligible amount of user time (u) and about 1/10th of a system time
(s); the elapsed time was 1 second (0:01), there was an average memory usage of 2k bytes of program
space and 1k bytes of data space over the cpu time involved (2+1k); the program did three disk reads and
two disk writes (3+2i0), and took one page fault and was not swapped (1pf+Ow). The word count com-
mand wc on the other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a
second of elapsed time. The percentage ‘13%’ indicates that over the period when it was active the com-
mand ‘wc’ used an average of 13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions from the
shell, and unsetenv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more features of the
shell to be discussed here, and all features of the shell are discussed in its manual pages. One useful
feature which is discussed later is the foreach built-in command which can be used to run the same com-
mand sequence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and the csh
manual pages (section1) to become familiar with the other facilities which are available to you.

USD:4-24 An Introduction to the C shell

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be iniroked to read and execute com-
mands from these files, which are called shell scripts. We here detail those features of the shell useful to
the writers of such scripts. , ’

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called make
which is very useful for maintaining a group of related files or performing sets of operations on related
files. For instance a large program consisting of one or more files can have its dependencies described in a
makefile which contains definitions of the commands used to create these different files when changes
occur. Definitions of the means for printing listings, cleaning up the directory in which the files reside, and
installing the resultant programs are easily, and most appropriately placed in this makefile. This format is
superior and preferable to maintaining a group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how different ver-
sions of the document are to be created and which options of nroff or troff are appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying
% csh script ...

where script is the name of the file containing a group of csh commands and *...” is replaced by a sequence
. of arguments. The shell places these arguments in the variable argv and then begins to read commands
from the script. These parameters are then available through the same mechanisms which are used to refer-
ence any other shell variables.

If you make the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a ‘#’ character) then a
‘/bin/csh’ will automatically be invoked to execute ‘script’ when you type

script

If the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute it. This allows
you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the input line is
parsed into distinct commands. Before each command is executed a mechanism know as variable substitu-
tion is done on these words. Keyed by the character ‘$’ this substitution replaces the names of variables by
their values. Thus

echo $argv
when placed in a command script would cause the current value of the variable argv to be echoed to the
output of the shell script. It is an error for argv to be unset at this point.
A number of notations are provided for accessing components and attributes of variables. The nota-
tion
$7name

expands to ‘1’ if name is ser or to ‘0’ if name is not set. It is the fundamental mechanism used for check-
ing whether particular variables have been assigned values. All other forms of reference to undefined vari-
ables cause errors.

An Introduction to the C shell USD:4-25

The notation
$#name
expands to the number of elements in the variable name. Thus

% set argv=(ab c)
% echo $?argv

1

% echo $#argv

3

% unset argv

% echo $7argv

0

% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus
$argv(1]
gives the first component of argv or in the example above ‘a’. Similarly
$argv[$#argv]
would give ‘c’, and
$argv[1-2]
would give ‘a b’. Other notations useful in shell scripts are
$n
where n is an integer as a shorthand for
$argvin]
the nth parameter and
si
which is a shorthand for
$argv
~ The form
$$

expands to the process number of the current shell. Since this process number is unique in the system it
can be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell’s standard input (not the script it
is reading). This is useful for writing shell scripts that are interactive, reading commands from the termi-
nal, or even writing a shell script that acts as a filter, reading lines from its input file. Thus the sequence

echo ’yes or no\¢’

set a=($<)
would write out the prompt ‘yes or no?’ without a newline and then read the answer into the variable ‘a’.
In this case ‘$#a’ would be ‘0’ if either a blank line or end-of-file ("D) was typed.

One minor difference between ‘$n’ and ‘Sargv[n]’ should be noted here. The form ‘$argv[a]’ will
yield an error if n is not in the range ‘1-$#argv’ while ‘$n’ will never yield an out of range subscript error.

USD:4-26 An Introduction to the C shell

This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form ‘n—’; if there are
less than » components of the given variable then no words are substituted. A range of the form ‘m-n’
likewise returns an empty vector without giving an error when m exceeds the number of elements of the
given variable, provided the subscript n is in range.

.5. Expressions
In order for interesting shell scripts to be constructed it must be possible to evaluate expressions in
the shell based on the values of variables. In fact, all the arithmetic operations of the language C are avail-
able in the shell with the same precedence that they have in C. In particular, the operations ‘==" and ‘!=’
compare strings and the operators ‘&&’ and ‘| |’ implement the boolean and/or operations. The special
operators ‘="" and ‘! are similar to ‘==’ and ‘!=" except that the string on the right side can have pattern
matching characters (like *, ? or []) and the test is whether the string on the left matches the pattern on the
right.
The shell also allows file enquiries of the form
-7 filename
where ‘? is replace by a number of single characters. For instance the expression primitive
—e filename

tell whether the file ‘filename’ exists. Other primitives test for read, write and execute access to the file,
whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ‘{ command
}’ which returns true, ie. ‘1’ if the command succeeds exiting normally with exit status 0, or ‘0’ if the
command terminates abnormally or with exit status non-zero. If more detailed information about the exe-
cution status of a command is required, it can be executed and the variable ‘$status’ examined in the next
command. Since ‘$status’ is set by every command, it is very transient. It can be saved if it is incon-
venient to use it only in the single immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and some of its con-
trol structure follows:

An Introduction to the C shell USD:4-27

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory “/backup if they differ from the files
already in “/backup

#

set noglob

foreach i ($argy)

if ($i!” *.c) continue # not a .c file so do nothing

if (! —r "/backup/$i:t) then
echo $i:t not in backup... not cp\“ed
continue

endif

cmp —s $i “/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i “/backup/$i:t
endif
end

This script makes use of the foreach command, which causes the shell to execute the commands
between the foreach and the matching end for each of the values given between ‘(’ and ‘)’ with the named
variable, in this case ‘i’ set to successive values in the list. Within this loop we may use the command
break to stop executing the loop and continue to prematurely terminate one iteration and begin the next.
After the foreach loop the iteration variable (i in this case) has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members of argv. This is a
good idea, in general, if the arguments to a shell script are filenames which have already been expanded or
if the arguments may contain filename expansion metacharacters. It is also possible to quote each use of a
‘$’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form
if (expression) then
command
endif

The placement of the keywords here is not flexible due to the current implementation of the shell.t
The shell does have another form of the if statement of the form

1The following two formats are not currently acceptable to the shell:

if (expression) # Won’t work!
then

command
endlf

and

if (expression) then command endif # Won’t work

USD:4-28 ‘ An Introduction to the C shell -

if (expression) command
which can be written

if (expression)\
command

Here we have escaped the newline for the sake of appearahce. The command must not involve ‘|’, ‘&’ or
‘;” and must not be another control command. The second form requires the final ‘\’ to immediately pre-
cede the end-of-line.

The more general if statements above also admit a seqﬁence of else—if pairs followed by a single
else and an endif, e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands
endif

Another important mechanism used in shell scripts is the ‘:’ modifier. We can use the modifier °:
here to extract a root of a filename or ‘:e’ to extract the extension. Thus if the vanable i has the value
‘/mnt/foo.bar’ then

% echo $i $icr $ice
/mnv/foo.bar /mnt/foo bar
%

shows how the “:r’ modifier strips off the trailing ‘.bar’ and the the ‘:e’ modifier leaves only the ‘bar’.
Other modifiers will take off the last component of a pathname leaving the head ‘:h’ or all but the last com-
ponent of a pathname leaving the tail ‘:t’. These modifiers are fully described in the csh manual pages in
the User’s Reference Manual. It is also possible to use the command substitution mechanism described in
the next major section to perform modifications on strings to then reenter the shell’s environment. Since
each usage of this mechanism involves the creation of a new process, it is much more expensive to use than
the ‘:* modification mechanism.} Finally, we note that the character ‘#’ lexically introduces a shell com-
ment in shell scripts (but not from the terminal). All subsequent characters on the input line after a ‘#’ are
discarded by the shell. This character can be quoted using *** or ‘\’ to place it in an argument word.

3.7. Other control structures
The shell also has control structures while and switch similar to those of C. These take the forms
while (expression)

commands
end

tItis alsosmpomntlonotedmlhecummxmplememtwnoftheshellhmmthenumberof" modifiers on a ‘$’
substitution to 1. Thus

% echo $i $ih
fafb/c /a/bt
%

does not do what one would expect.

An Introduction to the C shell USD:4-29

and
switch (word)

case strl:
commands
breaksw

case strn;
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to exit from a
switch while break exits a while or foreach loop. A common mistake to make in csh scripts is to use
break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they doin C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is running
the script. This is different from previous shells running under UNIX. It allows shell scripts to fully partici-
pate in pipelines, but mandates extra notation for commands which are to take inline data,

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an example,
consider this script which runs the editor to delete leading blanks from the lines in each argument file:

% cat deblank

deblank — remove leading blanks
foreach i ($argv)

ed — $i << ‘EOF’

L$s/°[1%/

w

q
‘EOF’
end

%

The notation ‘<< TEOF” means that the standard input for the ed command is to come from the text in the
shell script file up to the next line consisting of exactly ‘’ EOF”. The fact that the ‘EOF’ is enclosed in ‘”
characters, i.e. quoted, causes the shell to not perform variable substitution on the intervening lines. In
general, if any part of the word following the ‘<<’ which the shell uses to terminate the text to be given to
the command is quoted then these substitutions will not be performed. In this case since we used the form
‘1,$’ in our editor script we needed to insure that this ‘$’ was not variable substituted. We could also have
insured this by preceding the ‘$’ here with a \’, i.e.:

USD:4-30 , An Introduction to the C shell

1\$s/[¥/ ,
but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script so
that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a ‘goto label’ and we can
remove the temporary files and then do an exit command (which is built in to the shell) to exit from the
shell script. If we wish to exit with a non-zero status we can do

exit(1)
e.g. to exit with status ‘1°,

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose and echo
options and the related —v and ~x command line options can be used to help trace the actions of the shell.
The —n option causes the shell only to read commands and not to execute them and may sometimes be of
use. :

One other thing to note is that csh will not execute shell scripts which do not begin with the charac-
ter ‘#’, that is shell scripts that do not begin with a comment. Similarly, the ‘/bin/sh’ on your system may
well defer to ‘csh’ to interpret shell scripts which begin with ‘#’. This allows shell scripts for both shells to
live in harmony.

There is also another quotation mechanism using ‘"’ which allows only some of the expansion
mechanisms we have so far discussed to occur on the quoted string and serves to make this string into a
single word as *” does.

An Introduction to the C shell USD:4-31

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal to aid in performing a
number of similar commands. For instance, there were at one point three shells in use on the Cory UNIX
system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the number of persons using each shell
one could have issued the commands

% grep —c csh$ /etc/passwd
27

% grep — nsh$ /etc/passwd
128

% grep —c —v sh$ /etc/passwd
430

%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i ('sh$” ‘csh$’ ‘—v sh$")

~ 7 grep ~c $i /etc/passwd
?end
27
128
430

%

Note here that the shell prompts for input with ‘? * when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You can, for
example, do

% set a=(Is")
% echo $a
csh.n csharm
% Is

csh.n

cshom

% echo $#a
2

%

The set command here gave the variable a a list of all the filenames in the current directory as value. We
can then iterate over these names to perform any chosen function.

The output of a command within ‘*’ characters is converted by the shell to a list of words. You can
also place the “** quoted string within ‘"’ characters to take each (non-empty) line as a component of the
variable; preventing the lines from being split into words at blanks and tabs. A modifier “:x’ exists which
can be used later to expand each component of the variable into another variable splitting it into separate
words at embedded blanks and tabs.

4.2, Braces { ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{’ and ‘}’. These
characters specify that the contained strings, separated by ,” are to be consecutively Subsututed into the
- containing characters and the results expanded left to right. Thus

A{strl,;str2,..stm}B
expands to

USD:4-32 An Introduction to the C shell

Astr1B Ast2B ... AstmB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e. nested).
The results of each expanded string are sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are used. This means that this
mechanism can be used to generate arguments which are not filenames, but which have common parts.

A typical use of this would be
mkdir /{hdrs,retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is most useful
when the common prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit} lib/{ex?.7*,how_ex}}

4.3. Command substitution
A command enclosed in “*’ characters is replaced, just before filenames are expanded, by the output

from that command. Thus it is possible to do

set pwd="pwd"
to save the current directory in the variable pwd or to do

ex “grep -1 TRACE *¢’
to run the editor ex supplying as arguments those files whose names end in ‘.c’ which have the string
‘TRACE’ in them.*
4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of different sub-
stitutions performed by the shell. The exact meaning of certain combinations of quotations is also occa-
sionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX programs, and
debugging shell scripts. See the csh(1) manual section for a list of these options.

*Command expansion also occurs in input redirected with ‘<<’ and within "’ quotations. Referto the shell manual section
for full details. :

An Introduction to the C shell USD:4-33

Glossary

This glossary lists the most important terms introduced in the introduction to the shell and gives
references to sections of the shell document for further information about them. References of the form ‘pr
(1) indicate that the command pr is in the UNIX User Reference manual in section 1. You can look at an
online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this manual.

. Your current directory has the name ‘.’ as well as the name printed by the command
pwd; see also dirs. The current directory ‘.’ is usually the first component of the search
path contained in the variable path, thus commands which are in ‘.’ are found first (2.2).
The character “.’ is also used in separating components of filenames (1.6). The charac-
ter .’ at the beginning of a component of a pathname is treated specially and not
matched by the filename expansion metacharacters ‘?°, ‘*’, and ‘[’ ‘1’ pairs (1.6).

- Each directory has a file ‘..’ in it which is a reference to its parent directory. After
changing into the directory with chdir, i.e.

chdir paper
you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.7).

a.out Compilers which create executable images create them, by default, in the file a.out. for
historical reasons (2.3).

absolute pathname
A pathname which begins with a */’ is absolute since it specifies the path of directories
from the beginning of the entire directory system — called the root directory. Pathname s
which are not absolute are called relative (see definition of relative pathname) (1.6).

alias An alias specifies a shorter or different name for a UNIX command, or a transformation
on a command to be performed in the shell. The shell has a command alias which
establishes aliases and can print their current values. The command unalias is used to
remove aliases (2.4).

argument Commands in UNIX receive a list of argument words. Thus the command
echoabec

consists of the command name ‘echo’ and three argument words ‘a’, ‘b’ and ‘c’. The
set of arguments after the command name is said to be the argument list of the com-
mand (1.1). ' '

argy The list of arguments to a command written in the shell language (a shell script or shell
procedure) is stored in a variable called argv within the shell. This name is taken from
the conventional name in the C programming language (3.4).

background Commands started without waiting for them to complete are called background com-

mands (2.6).

base A filename is sometimes thought of as consisting of a base part, before any ‘.’ character,
and an extension — the part after the *.’. See filename and extension (1.6) and basename
(1).

bg . The bg command causes a suspended job to continue execution in the background
2.6). '

bin A directory containing binaries of programs and shell scripts to be executed is typically

called a bin directory. The standard system bin directories are ‘/bin’ containing the
most heavily used commands and ‘/usr/bin’ which contains most other user programs.

USD:4-34

break
breaksw

builtin

case

cat
cd
chdir

chsh

cmp

command

command name

An Introduction to the C shell

Programs developed at UC Berkeley live in ‘/usr/uch’, while locally written programs
live in ‘/usr/local’. Games are kept in the directory ‘/usr/games’. You can place
binaries in any directory. If you wish to execute them often, the name of the directories
should be a component of the variable path.

Break is a builtin command used to exit from loops within the control structure of the
shell (3.7). ‘

The breaksw builtin command is used to exit from a switch control structure, like a
break exits from loops (3.7).

A command executed directly by the shell is called a builtin command. Most com-
mands in UNIX are not built into the shell, but rather exist as files in bin directories.
These commands are accessible because the directories in which they reside are named
in the path variable.

A case command is used as a label in a switch statement in the shell’s control structure,
similar to that of the language C. Details are given in the shell documentation ‘csh (1)’

3.

The cat program catenates a list of specified files on the standard output. 1t is usually
used to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8, 2.3).

The ¢d command is used to change the working directory. With no arguments, cd
changes your working directory to be your home directory (2.4, 2.7).
The chdir command is a synonym for cd. Cd is usually used because it is easier to
type.
The chsh command is used to change the shell which you use on UNIX. By default, you
use an different version of the shell which resides in ‘/bin/sh’. You can change your
shell to ‘/bin/csh’ by doing

chsh your-login-name /bin/csh
Thus I would do

chsh bill /bin/csh
It is only necessary to do this once. The next time you log in to UNIX after doing this
command, you will be using csh rather than the shell in ‘/bin/sh’ (1.9).

Cmp is a program which compares files. It is usually used on binary files, or to see if
two files are identical (3.6). For comparing text files the program diff, described in ‘diff
(1)’ is used.

A function performed by the system, either by the shell (a builtin command) or by a pro-
gram residing in a file in a directory within the UNIX system, is called a command (1.1).

When a command is issued, it consists of a command name , which is the first word of
the command, followed by arguments. The convention on UNIX is that the first word of a
command names the function to be performed (1.1). :

command substitution :

component

continue

The replacement of a command enclosed in “* characters by the text outpui by that com-
mand is called command substitution (4.3).

A part of a pathname between */* characters is called a component of that pathname . A
variable which has multiple strings as value is said to have several components; each
string is a2 component of the variable.

A builtin command which causes execution of the enclosing foreach or while loop to
cycle prematurely. Similar to the continue command in the programming language C
(3.6).

An Introduction to the C shell USD:4-35

control-

core dump

cp
csh
.cshrc

cwd

date
debugging
default:

DELETE
detached

diagnostic

directory

directory stack

du

Certain special characters, called control characters, are produced by holding down the
CONTROL key on your terminal and simultaneously pressing another character, much like
the SHIFT key is used to produce upper case characters. Thus control-c is produced by
holding down the CONTROL key while pressing the ‘c’ key. Usually UNIX prints an caret
(") followed by the corresponding letter when you type a control character (e.g. “"C’ for
control-¢ (1.8).

When a program terminates abnormally, the system places an image of its current state
in a file named ‘core’. This core dump can be examined with the system debugger ‘adb
(1)’ or ‘sdb (1)’ in order to determine what went wrong with the program (1.8). If the
shell produces a message of the form

Illegal instruction (core dumped)

(where ‘Illegal instruction’ is only one of several possible messages), you should report
this to the author of the program or a system administrator, saving the ‘core’ file.

The cp (copy) program is used to copy the contents of one file into another file. Itis one
of the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.

The file .cshrc in your home directory is read by each shell as it begins execution. It is
usually used to change the setting of the variable path and to set alias parameters which
are to take effect globally (2.1).

The cwd variable in the shell holds the absolute pathname of the current working direc-
tory. It is changed by the shell whenever your current working directory changes and
should not be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts. The shell
has several options and variables which may be used to aid in shell debugging (4.4).

The label default: is used within shell switch statements, as it is in the C language to
Iabel the code to be executed if none of the case labels matches the value switched on
3.7.

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job. Many users change the interrupt character to be “C.

A command that continues running in the background after you logout is said to be
detached .

An error message produced by a program is often referred to as a diagnostic. Most
error messages are not written to the standard output, since that is often directed away
from the terminal (1.3, 1.5). Error messsages are instead written to the diagnostic out-
put which may be directed away from the terminal, but usually is not. Thus diagnostics
will usually appear on the terminal (2.5).

A structure which contains files. At any time you are in one particular directory whose
names can be printed by the command pwd. The chdir command will change you to
another directory, and make the files in that directory visible. The directory in which
you are when you first login is your home directory (1.1, 2.7).

The shell saves the names of previous working directories in the directory stack when
you change your current working directory via the pushd command. The directory
stack can be printed by using the dirs command, which includes your current working
directory as the first directory name on the left (2.7).

The dirs command prints the shell’s directory stack (2.7).

The du command is a program (described in ‘du.(1)’) which prints the number of disk
blocks is all directories below and including your current working directory (2.6).

USD:4-36

echo
else
endif

EOF

escape

/etc/passwd

exit

exit status

expansion

expressions

extension

* An Introduction to the C shell

The echo command prints its arguments (1.6, 3.6).
The else command is part of the ‘if-then-else-endif’ control command construct (3.6).

If an if statement is ended with the word then, all lines following the if up to a line start-
mg with the word endif or else are executed if the condition between parentheses after
the if is true (3.6).

An end-of-file is generated by the terminal by a control-d, and whenever a command
reads to the end of a file which it has been given as input. Commands receiving input
from a pipe receive an end-of-file when the command sending them input completes. -
Most commands terminate when they receive an end-of-file. The shell has an option to
ignore end-of-file from a terminal input which may help you keep from logging out
accidentally by typing too many coatrol-d’s (1.1, 1.8, 3.8).

A character ‘\’ used to prevent the special meaning of a metacharacter is saxd to escape
the character from its special meaning. Thus

echo *
will echo the character ‘*’ while just
echo *

will echo the names of the file in the current directory. In this example, \ escapes ‘*’
(1.7). There is also a non-printing character called escape, usually labelled ESC or ALT-
MODE on terminal keyboards. Some older UNIX systems use this character to indicate
that output is to be suspended. Most systems use control-s to stop the output and
control-q to start it.

This file contains information about the accounts currently on the system. It consists of
a line for each account with fields separated by *:’ characters (1.8). You can look at this
file by saying

cat /etc/passwd

The commands finger and grep are often used to search for information in this file. See
‘finger (1)’, ‘passwd(5)’, and ‘grep (1)’ for more details.

The exit command is used to force termination of a shell script, and is built into the shell
(3.9).

A command which discovers a problem may reflect this back to the command (such as a
shell) which invoked (executed) it. It does this by returning a non-zero number as its
exit status, a status of zero being considered ‘normal termination’. The exit command
can be used to force a shell command script to give a non-zero exit status (3.6).

The replacement of strings in the shell input which contain metacharacters by other
strings is referred to as the process of expansion. Thus the replacement of the word ‘*’
by a sorted list of files in the current directory is a ‘filename expansion’. Similarly the
replacement of the characters ‘!1” by the text of the last command is a ‘history expan-
sion’. Expansions are also referred to as substitutions (1.6, 3.4, 4.2).

Expressions are used 'in the shell to control the conditional structures used in the writing
of shell scripts and in calculating values for these scripts. The operators available in
shell expressions are those of the language C (3.5).

Filenames often consist of a base name and an extension separated by the character “.’.
By convention, groups of related files often share the same root name. Thus if ‘prog.c’
waeanrOgram.dlendieobjectﬁleformlsprogramwouldbestowdm progo
Sumlarly a paper written with the ‘-me’ nroff macro package mxght be stored in

‘paper.me’ while a formatted version of this paper might be kept in ‘paper.out’ and a list
of spelling errors in ‘paper.errs’ (1.6).

An Introduction to the C shell USD:4-37

fg

filename

The job control command fg is used to run a background or suspended job in the fore-
ground (1.8, 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not including the
character ‘/* which is used in pathname building. Most filenames do not begin with the
character ‘.’, and contain only letters and digits with perhaps a ‘.’ separating the base
portion of the filename from an extension (1.6).

filename expansion

flag

foreach

foreground

goto

grep

head

history

home directory

Filename expansion uses the metacharacters ‘*’, ‘7 and ‘[’ and ‘]’ to provide a con-
venient mechanism for naming files. Using filename expansion it is easy to name all the
files in the current directory, or all files which have a common root name. Other
filename expansion mechanisms use the metacharacter ~* and allow files in other users’
directories to be named easily (1.6, 4.2).

Many UNIX commands accept arguments which are not the names of files or other users
but are used to modify the action of the commands. These are referred to as flag
options, and by convention consist of one or more letters preceded by the character ‘-’
(1.2). Thus the Is (list files) command has an option ‘s’ to list the sizes of files. This is
specified

Is-s

The foreach command is used in shell scripts and at the terminal to specify repetition of
a sequence of commands while the value of a certain shell variable ranges through a
specified list (3.6, 4.1).

When commands are executing in the normal way such that the shell is waiting for them
to finish before prompting for another command they are said to be foreground jobs or
running in the foreground. This is as opposed to background. Foreground jobs can be
stopped by signals from the terminal caused by typing different control characters at the
keyboard (1.8, 2.6).

The shell has a command goto used in shell scripts to transfer control to a given label
3.7.

The grep command searches through a list of argument files for a specified string. Thus
grep bill /etc/passwd

will print each line in the file /etc/passwd which contains the string ‘bill’. Actually,
grep scans for regular expressions in the sense of the editors ‘ed (1)’ and ‘ex (1)'.
Grep stands for ‘globally find regular expression and print’ (2.4).

The head command prints the first few lines of one or more files. If you have a bunch
of files containing text which you are wondering about it is sometimes useful to run
head with these files as arguments. This will usually show enough of what is in these
files to let you decide which you are interested in (1.5).

Head is also used to describe the part of a pathname before and including the last */’
character. The tail of a pathname is the part after the last ‘/°. The “h’ and “it’
modifiers allow the head or tail of a pathname stored in a shell variable to be used
(3.6).

The history mechanism of the shell allows previous commands to be repeated, possibly
after modification to correct typing mistakes or to change the meaning of the command.
The shell has a history list where these commands are kept, and a history variable
which controls how large this list is (2.3).

Each user has a home directory, which is given in your entry in the password file,
letc/passwd . This is the directory which you are placed in when you first login. The cd
or chdir command with no arguments takes you back to this directory, whose name is
recorded in the shell variable home. You can also access the home directories of other

USD:4-38

ignoreeof

input

interrupt

job

job control

job number

jobs
kill

Jogin

login shell

logout

Jogout

An Introduction to the C shell

users in forming filenames using a filename expansion notation and the character *~
(1.6).

A conditional command within the shell, the if command is used in shell command
scripts to make decisions about what course of action to take next (3.6).

Normally, your shell will exit, printing ‘logout’ if you type a control-d at a prompt of ‘%
’. This is the way you usually log off the system. You can set the ignoreeof variable if
you wish in your .login file and then use the command logout to logout. This is useful
if you sometimes accidentally type too many control-d characters, logging yourself off
2.2). '

Many commands on UNIX take information from the terminal or from files which they
then act on. This information is called input. Commands normally read for input from
their standard input which is, by default, the terminal. This standard input can be
redirected from a file using a shell metanotation with the character ‘<’. Many com-
mands will also read from a file specified as argument. Commands placed in pipelines
will read from the output of the previous command in the pipeline. The leftmost com-
mand in a pipeline reads from the terminal if you neither redirect its input nor give it a
filename to use as standard input. Special mechanisms exist for supplying input to com-
mands in shell scripts (1.5, 3.8).

An interrupt is a signal to a program that is generated by typing “C. (On older versions
of UNIX the RUBOUT or DELETE key were used for this purpose.) It causes most pro-
grams to stop execution. Certain programs, such as the shell and the editors, handle an
interrupt in special ways, usually by stopping what they are doing and prompting for
another command. While the shell is executing another command and waiting for it to
finish, the shell does not listen to interrupts. The shell often wakes up when you hit
interrupt because many commands die when they receive an interrupt (1.8, 3.9).

One or more commands typed on the same input line separated by ‘|’ or ‘;’ characters
are run together and are called a job. Simple commands run by themselves without any
" or ‘;’ characters are the simplest jobs. Jobs are classified as foreground, back-
ground , or suspended (2.6).

The builtin functions that control the execution of jobs are called job control commands.
These are bg, fg, stop, kill (2.6).

When each job is started it is assigned a small number called a job number which is
printed next to the job in the output of the jobs command. This number, preceded by a
‘%’ character, can be used as an argument to job control commands to indicate a
specific job (2.6).

The jobs command prints a table showing jobs that are either running in the background
or are suspended (2.6).

A command which sends a signal to a job causing it to terminate (2.6).

The file .login in your home directory is read by the shell each time you login to UNIX
and the commands there are executed. There are a number of commands which are use-
fully placed here, especially ses commands to the shell itself (2.1).

The shell that is started on your terminal when you login is called your login shell. It is
different from other shells which you may run (e.g. on shell scripts) in that it reads the
Jdogin file before reading commands from the terminal and it reads the .logou file after
you logout (2.1).

The logout command causes a login shell to exit. Normally, a login shell will exit when
you hit control-d generating an end-of-file, but if you have set ignoreeof in you .login
file then this will not work and you must use logout to log off the UNIX system (2.8).
When you log off of UNIX the shell will execute commands from the file ./ogout in your
home directory after it prints ‘logout’.

An Introduction to the C shell USD:4-39

lpr

Is

makefile
manual

metacharacter

"mkdir
modifier

more

noclobber

noglob

notify

The command Ipr is the line printer daemon. The standard input of Ipr spooled and
printed on the UNIX line printer. You can also give Ipr a list of filenames as arguments
to be printed. It is most common to use Ipr as the last component of a pipeline (2.3).
The Is (list files) command is one of the most commonly used UNIX commands. With no
argument filenames it prints the names of the files in the current directory. It has a
number of useful flag arguments, and can also be given the names of directories as argu-
ments, in which case it lists the names of the files in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users (1.1, 2.1),
whether they are logged on or not.

The make command is used to maintain one or more related files and to organize func-
tions to be performed on these files. In many ways make is easier to use, and more help-
ful than shell command scripts (3.2).

The file containing commands for make is called makefile or Makefile (3.2).

The manual often referred to is the ‘UNIX manual’. It contains 8 numbered sections
with a description of each UNIX program (section 1), system call (section 2), subroutine

" (section 3), device (section 4), special data structure (section 5), game (section 6), mis-

cellaneous item (section 7) and system administration program (section 8). There are
also supplementary documents (tutorials and reference guides) for individual programs
which require explanation in more detail. An online version of the manual is accessible
through the man command. Its documentation can be obtained online via

man man

If you can’t decide what manual page to look in, try the apropos(1) command. The sup-
plementary documents are in subdirectories of /usr/doc.

Many characters which are neither letters nor digits have special meaning either to the
shell or to UNIX. These characters are called metacharacters. If it is necessary to place
these characters in arguments to commands without them having their special meaning
then they must be quoted. An example of a metacharacter is the character ‘>’ which is
used to indicate placement of output into a file. For the purposes of the history mechan-
ism, most unquoted metacharacters form separate words (1.4). The appendix to this
user’s manual lists the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character ‘!’ or of variables
using the metacharacter ‘$’, are often subjected to modifications, indicated by placing
the character *’ after the substitution and following this with the modifier itself. The
command substitution mechanism can also be used to perform modification in a similar
way, but this notation is less clear (3.6).

The program more writes a file on your terminal allowing you to control how much text
is displayed at a time. More can move through the file screenful by screenful, line by
line, search forward for a string, or start again at the beginning of the file. It is generally
the easiest way of viewing a file (1.8).

The shell has a variable noclobber which may be set in. the file .login to prevent
accidental destruction of files by the ‘>’ output redirection metasyntax of the shell (2.2,
2.5).

The shell variable noglob is set to suppress the filename expansion of arguments con-
taining the metacharacters ‘*, ‘*’, ‘?, ‘[’ and ‘]’ (3.6).

The notify command tells the shell to report on the termination of a specific background
Job at the exact time it occurs as opposed to waiting until just before the next prompt to
report the termination. The notify variable, if set, causes the shell to always report the
termination of background jobs exactly when they occur (2.6).

USD:4-40

onintr

output

path

pathname

pipeline

popd

port

pr

An Introduction to the C shell

The onintr command is built into the shell and is used to control the action of a shell
command script when an interrupt signal is received (3.9).

Many commands in UNIX result in some lines of text which are called their output. This
output is usually placed on what is known as the standard output which is normally
connected to the user’s terminal. The shell has a syntax using the metacharacter ‘>’ for
redirecting the standard ousput of a command to a file (1.3). Using the pipe mechanism
and the metacharacter ‘|’ it is also possible for the standard output of one command to
become the standard inpus of another command (1.5). Certain commands such as the
line printer daemon p do not place their results on the standard output but rather in
more useful places such as on the line printer (2.3). Similarly the write command places
its output on another user’s terminal rather than its standard output (2.3). Commands
also have a diagnostic output where they write their error messages. Normally these go
to the terminal even if the standard output has been sent to a file or another command,
but it is possible to direct error diagnostics along with standard output using a special
metanotation (2.5). ,

- The shell has a variable path which gives the names of the directories in which it

searches for the commands which it is given. It always checks first to see if the com-
mand it is given is built into the shell. If it is, then it need not search for the command as
it can do it internally. If the command is not builtin, then the shell searches for a file
with the name given in each of the directories in the path variable, left to right. Since
the normal definition of the parh variable is

path (. /usr/ucb /bin /ust/bin)

the shell normally looks in the current directory, and then in the standard system direc-
tories ‘/ust/ucb’, ‘/bin’ and ‘/usr/bin’ for the named command (2.2). If the command
cannot be found the shell will print an error diagnostic. Scripts of shell commands will
be executed using another shell to interpret them if they have ‘execute’ permission set.
This is normally true because a command of the form

chmod 755 script

was executed to tumn this execute permission on (3. 3) If you add new commands to a
directory in the path, you should issue the command rehash (2.2).

A list of names, separated by ‘/° characters, forms a pathname. Each component,
between successive ‘/’ characters, names a directory in which the next component file
resides. Pathnames which begin with the character ‘/° are interpreted relative to the
root directory in the filesystem. Other pathnames are interpreted relative to the current
directory as reported by pwd. The last component of a pathname may name a directory,
but usually names a file.

A group of commands which are connected together, the standard output of each con-
nected to the standard input of the next, is called a pipeline. The pipe mechanism used
to connect these commands is indicated by the shell _metacharacter P (1.5,2.3).

The popd command changes the shell’s working directory to the directory you most
recently left using the pushd command. It returns to the directory without having to
type its name, forgetting the name of the current working directory before doing so
@.7.

The part of a computer system to which each terminal is connected is called a port.
Usually the system has a fixed number of ports, some of which are connected to tele-
phone lines for dial-up access, and some of which are permanently wired directly to
specific terminals.

The pr command is used to prepare listings of the contents of files with headers giving
the name of the file and the date and time at which the file was last modified (2.3).

An Introduction to the C shell USD:4-41

printenv The printenv command is used to print the current setting of variables in the environ-
ment (2.8).
process An instance of a running program is called a process (2.6). UNIX assigns each process a

unique number when it is started — called the process number . Process numbers can be
used to stop individual processes using the kill or stop commands when the processes

are part of a detached background job.

program Usually synonymous with command ; a binary file or shell command script which per-
forms a useful function is often called a program.

prompt Many programs will print a prompt on the terminal when they expect input. Thus the

editor ‘ex (1)’ will print a ‘:’ when it expects input. The shell prompts for input with ‘%
> and occasionally with ‘? * when reading commands from the terminal (1.1). The shell
has a variable prompt which may be set to a different value to change the shell’s main
prompt. This is mostly used when debugging the shell (2.8).

pushd The pushd command, which means ‘push directory’, changes the shell’s working direc-
tory and also remembers the current working directory before the change is made,
allowing you to return to the same directory via the popd command later without retyp-
ing its name (2.7).

ps The ps command is used to show the processes you are currently running. Each process
is shown with its unique process number, an indication of the terminal name it is
attached to, an indication of the state of the process (whether it is running, stopped,
awaiting some event (sleeping), and whether it is swapped out), and the amount of CPU
time it has used so far. The command is identified by printing some of the words used
when it was invoked (2.6). Shells, such as the csh you use to run the ps command, are

not normally shown in the output.
pwd The pwd command prints the full pathname of the current working directory. The dirs
builtin command is usually a better and faster choice.
quit The quit signal, generated by a control-\, is used to terminate programs which are
behaving unreasonably. It normally produces a core image file (1.8).
quotation The process by which metacharacters are prevented their special meaning, usually by
using the character ** in pairs, or by using the character ‘\’, is referred to as quotation
a.n.
redirection The routing of input or output from or to a file is known as redirection of input or output
(1.3). '
- rehash The rehash command tells the shell to rebuild its internal table of which commands are

found in which directories in your path. This is necessary when a new program is
installed in one of these directories (2.8).
relative pathname

A pathname which does not begin with a ‘/’ is called a relative pathname since it is
interpreted relative to the current working directory. The first component of such a
pathname refers to some file or directory in the working directory, and subsequent com-
ponents between ‘I’ characters refer to directories below the working directory. Path-
names that are not relative are called absolute pathnames (1.6).

repeat The repeat command iterates another command a specified number of times.

root ’ The directory that is at the top of the entire directory structure is called the root direc-
tory since it is the ‘root’ of the entire tree structure of directories. The name used in
pathnames to indicate the root is ‘/’. Pathnames starting with ‘/° are said to be absolute
since they start at the root directory. Root is also used as the part of a pathname that is
left after removing the extension. See filename for a further explanation (1.6).

RUBOUT The RUBOUT or DELETE key is often used to erase the previously typed character; some
" users prefer the BACKSPACE for this purpose. On older versions of UNIX this key served

USD:4-42

scratch file

script

set

setenv

shell

shell script
signal

sort

source

special character
standard

status

stop
string

stty

substitution

suspended

switch

An Introduction to the C shell

as the INTR character.

Files whose names begin with a ‘#’ are referred to as scratch files, since they are
automatically removed by the system after a couple of days of non-use, or more fre-
quently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command scripts. It is
often possible to perform simple tasks using these scripts without writing a program in a
language such as C, by using the shell to selectively run other programs (3.3, 3.10).

The builtin set command is used to assign new values to shell variables and to show the
values of the current variables. Many shell variables have special meaning to the shell
itself. Thus by using the set command the behavior of the shell can be affected (2.1).
Variables in the environment ‘environ (5)’ can be changed by using the setenv builtin
command (2.8). The printenv command can be used to print the value of the variables
in the environment.

A shell is a command language interpreter. It is possible to write and run your own
shell, as shells are no different than any other programs as far as the system is con-
cemned. This manual deals with the details of one particular shell, called csh.

See script (3.3, 3.10).

A signal in UNIX is a short message that is sent to a running program which causes
something to happen to that process. Signals are sent either by typing special control
characters on the keyboard or by using the kill or stop commands (1.8, 2.6).

The sort program sorts a sequence of lines in ways that can be controlled by argument
flags (1.5).

The source command causes the shell to read commands from a specified file. It is most
useful for reading files such as .cshrc after changing them (2.8).

See metacharacters and the appendix to this manual.

We refer often to the standard input and standard output of commands. See input and
output (1.3, 3.8).

A command normally returns a status when it finishes. By convention a status of zero
indicates that the command succeeded. Commands may return non-zero status to indi-
cate that some abnormal event has occurred. The shell variable sratus is set to the
status returned by the last command. It is most useful in shell commmand scripts (3.6).

The stop command causes a background job to become suspended (2.6).

A sequential group of characters taken together is called a string. Strings can contam
any printable characters (2.2).

The stty program changes certain parameters inside UNIX whlch determine how your ter-
minal is handled. See ‘stty (1)’ for a complete description (2.6).

The shell implements a number of substitutions where sequences indicated by metachar-
acters are replaced by other sequences. Notable examples of this are history substitution
keyed by the metachdracter *!” and variable substitution indicated by ‘$’. We also refer
to substitutions as expansions (3.4).

A job becomes suspended after a STOP signal is sent to it, either by typing a control-z at
the terminal (for foreground jobs) or by using the stop command (for background jobs).
When suspended, a job temporarily stops nmning until it is restarted by either the fg or
bg command (2.6).

The switch command of the shell allows the shell to select one of a number of sequences
of commands based on an argument smng It is similar to the switch statement in the
language C (3.7).

An Introduction to the C shell USD:443

termination When a command which is being executed finishes we say it undergoes termination or
terminates. Commands normally terminate when they read an end-of-file from their
standard input . 1t is also possible to terminate commands by sending them an interrupt
or quit signal (1.8). The kill program terminates specified jobs (2.6).

then The then command is part of the shell’s ‘if-then-else-endif’ control construct used in
command scripts (3.6).
time The time command can be used to measure the amount of CPU and real time consumed

by a specified command as well as the amount of disk /o, memory utilized, and number
of page faults and swaps taken by the command (2.1, 2.8).

tset The tset program is used to set standard erase and kill characters and to tell the system
what kind of terminal you are using. It is often invoked in a .login file (2.1).
tty ~ The word #y is a historical abbreviation for ‘teletype’ which is frequently used in UNIX

to indicate the port to which a given terminal is connected. The 1ty command will print
the name of the tty or port to which your terminal is presently connected.

unalias The unalias command removes aliases (2.8).

UNIX UNIX is an operating system on which csh runs. UNIX provides facilities which allow
csh to invoke other programs such as editors and text formatters which you may wish to
use.

unset The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion
See variables and expansion (2.2, 3.4).

variables Variables in csh hold one or more strings as value. The most common use of variables

is in controlling the behavior of the shell. See path, noclobber, and ignoreeof for
examples. Variables such as argv are also used in writing shell programs (shell com-
mand scripts) (2.2).

verbose The verbose shell variable can be set to cause commands to be echoed after they are his-
tory expanded. This is often useful in debugging shell scripts. The verbose variable is
set by the shell’s —v command line option (3.10).

we The we program calculates the number of characters, words, and lines in the files whose
names are given as arguments (2.6).

while The while builtin control construct is used in shell command scripts (3.7).

word A sequence of characters which forms an argument to a command is called a word.
Many characters which are neither letters, digits, ‘~’, ‘.’ nor */* form words all by them-

selves even if they are not surrounded by blanks. Any sequence of characters may be
made into a word by surrounding it with ‘” characters except for the characters ‘”’ and
‘" which require special treatment (1.1). This process of placing special characters in
words without their special meaning is called quoting .

working directory
At any given time you are in one particular directory, called your working directory .
This directory’s name is printed by the pwd command and the files listed by Is are the
ones in this directory. You can change working directories using chdir.

write The write command is an obsolete way of communicating with other users who are
logged in to UNIX (you have to take turns typing). If you are both using display termi-
nals, use talk(1), which is much more pleasant.

DC - An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIX?T time-
sharing system to do arbitrary-precision integer arithmetic. It has provision for manipu-
lating scaled fixed-point numbers and for input and output in bases other than decimal.

The size of numbers that can be manipulated is limited only by available core
storage. On typical implementations of UNIX, the size of numbers that can be handled
varies from several hundred digits on the smallest systems to several thousand on the
largest.

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing system in the
form of an interactive desk calculator. It works like a stacking calculator using reverse Polish notation.
Ordinarily DC operates on decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the familiar style of
higher-level programming languages and compiles output which is interpreted by DC. Some of the com-
mands described below were designed for the compiler interface and are not easy for a human user to
manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by taking the
top number or two off the stack, performing the desired operation, and pushing the result on the stack, If
an argument is given, input is taken from that file until its end, then from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional commands
that are intended to be invoked by compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-line characters are 1gnored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string of the digits
0-9 and the capital letters A-F which are treated as digits with values 10-15 respectively. The
number may be preceded by an underscore to input a negative number. Numbers may contain
decimal points.

1 UNIX is a trademark of Bell Laboratories.

USD:5-2 DC - An Interactive Desk Calculator

+—-* %"

The top two values on the stack are added (+), subtracted (—), multiplied (*), divided (/), remaindered
(%), or exponentiated (*). The two entries are popped off the stack; the result is pushed on the stack
in their place. The result of a division is an integer truncated toward zero. See the detailed descrip-
tion below for the treatment of numbers with decimal points. An exponent must not have any digits
after the decimal point.

The top of the main stack is popped and stored into a register named x, where x may be any charac-
ter. Ifthesxscapnahzed,xnsueatedasastackandﬂ\evaluenspushedontou. Any character, even
blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the 1 is capitalized,
register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command 1 and is treated as an error
by the command L.

[..]

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and executes it as a
string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capitalized, the
top value on the stack is popped and the string execution level is popped by that value.

<x >x =x lex I>x !=x

The top two elements of the stack: are popped and compared. Register x is executed if they obey the
stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is truncated to
an integer. For the treatment of numbers with decimal points, see the detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX command
terminates.

DC - An Interactive Desk Calculator USD:5-3

c
All values on the stack are popped; the stack becomes empty.

i
The top value on the stack is popped and used as the number radix for further input. If i is capital-
ized, the value of the input base is pushed onto the stack. No mechanism has been provided for the
input of arbitrary numbers in bases less than 1 or greater than 16.

o
The top value on the stack is popped and used as the number radix for further output. If o is capital-
ized, the value of the output base is pushed onto the stack.

k
The top of the stack is popped, and that value is used as a scale factor that influences the number of
decimal places that are maintained during multiplication, division, and exponentiation. The scale
factor must be greater than or equal to zero and less than 100. If k is capitalized, the value of the
scale factor is pushed onto the stack.

z
The value of the stack level is pushed onto the stack.

?
A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form of a
string of digits to the base 100 stored one digit per byte (centennial digits). The string is stored with the
low-order digit at the beginning of the string. For example, the representation of 157 is 57,1. After any
arithmetic operation on a number, care is taken that all digits are in the range 0—99 and that the number has
no leading zeros. The number zero is represented by the empty string.

Negative numbers are represented in the 100’s complement notation, which is analogous to two’s
complement notation for binary numbers. The high order digit of a negative number is always —1 and all
other digits are in the range 0—99. The digit preceding the high order —1 digit is never a 99. The represen-
tation of ~157 is 43,98,-1. We shall call this the canonical form of a number. The advantage of this kind
of representation of negative numbers is ease of addition. When addition is performed digit by digit, the
result is formally correct. The result need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can be
carried out and the handling of carries done later when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the number of
assumed decimal digits after the decimal point. The representation of .001 is 1,3 where the scale has been
italicized to emphasize the fact that it is not the high order digit. The value of this extra byte is called the
scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and writing of
numbers internally is done through the allocator. Associated with each string in the allocator is a four-
word header containing pointers to the beginning of the string, the end of the string, the next place to write,
and the next place to read. Communication between the allocator and DC is done via pointers to these
headers.

USD:54 DC - An Interactive Desk Calculator

The allocator initially has one large string on a list of free strings. All headers except the one point-
ing to this string are on a list of free headers. Requests for strings are made by size. The size of the string
actually supplied is the next higher power of 2. When a request for a string is made, the allocator first
checks the free list to see if there is a string of the desired size. If none is found, the allocator finds the next
larger free string and splits it repeatedly until it has a string of the right size. Left-over strings are put on
the free list. If there are no larger strings, the allocator tries to coalesce smaller free strings into larger
ones. Since all strings are the result of splitting large strings, each string has a neighbor that is next to it in
core and, if free, can be combined with it to make a string twice as long. This is an implementation of the
‘buddy system’ of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system for more
space. The amount of space on the system is the only limitation on the size and number of strings in DC.

If at any time in the process of trying to allocate a string, the allocator runs out of headers, it also asks the
system for more space. ‘

There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing, and
backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the characters of
a string are read or written in succession by a series of read or write calls. The write pointer is interpreted
as the end of the information-containing portion of a string and a call to read beyond that point returns an
end-of-string indication. An attempt to write beyond the end of a string causes the allocator to allocate a
larger space and then copy the old string into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the operation
are popped from the main stack and their scale factors stripped off. Zeros are added or digits removed as
necessary to get a properly scaled result from the internal arithmetic routine. For example, if the scale of
the operands is different and decimal alignment is required, as it is for addition, zeros are appended to the
operand with the smaller scale. After performing the required arithmetic operation, the proper scale factor
is appended to the end of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is the bound on
the number of decimal places retained in arithmetic computations. scale may be set to the number on the
top of the stack truncated to an integer with the k command. K may be used to push the value of scale on
the stack. scale must be greater than or equal to 0 and less than 100. The descriptions of the individual
arithmetic operations will include the exact effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number with the
lower scale to give both numbers the same scale. The number with the smaller scale is multiplied by 10 if
the difference of the scales is odd. The scale of the result is then set to the larger of the scales of the two
operands. ‘

Subtraction is performed by negating the number to be subtracted and proceeding as in addition.

Finally, the addition is performed digit by digit from the low order end of the number. The carries
are propagated in the usual way. The resulting number is brought into canonical form, which may require
stripping of leading zeros, or for negative numbers replacing the high-order configuration 99,~1 by the
digit 1. In any case, digits which are not in the range 0~99 must be brought into that range, propagating
any carries or borrows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made positive.
Then multiplication is performed in a digit by digit manner that exactly mimics the hand method of multi-
plying. The first number is multiplied by each digit of the second number, beginning with its low order
digit. The intermediate products are accumulated into a partial sum which becomes the final product. The
product is put into the canonical form and its sign is computed from the signs of the original operands.

DC - An Interactive Desk Calculator USD:5-5

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is larger
than the internal register scale and also larger than both of the scales of the two operands, then the scale of
the result is set equal to the largest of these three last quantities.

Division
The scales are removed from the two operands. Zeros are appended or digits removed from the divi-

dend to make the scale of the result of the integer division equal to the internal quantity scale. The signs
are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the two
numbers is computed. If the divisor is longer than the dividend, zero is returned. Otherwise the top digit of
the divisor is divided into the top two digits of the dividend. The result is used as the first (high-order) digit
of the quotient. It may turn out be one unit too low, but if it is, the next trial quotient will be larger than 99
and this will be adjusted at the end of the process. The trial digit is multiplied by the divisor and the result
subtracted from the dividend and the process is repeated to get additional quotient digits until the remaining
dividend is smaller than the divisor. At the end, the digits of the quotient are put into the canonical form,
with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity returned
is the remains of the dividend at the end of the divide process. Since division truncates toward zero,
remainders have the same sign as the dividend. The scale of the remainder is set to the maximum of the
scale of the dividend and the scale of the quotient plus the scale of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result have
a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton’s method with successive approximations by the rule
Xnst = Volxa+L)
R
The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1. If the
exponent is negative, then it is made positive and the base is divided into one. The scale of the base is
removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the result is
obtained as a product of those powers of the base that correspond to the positions of the one-bits in the
binary representation of the exponent. Enough digits of the result are removed to make the scale of the
result the same as if the indicated multiplication had been performed.

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale stored with a
number is simply the number of fractional digits input. Negative numbers are indicated by preceding the
number with a _ (an underscore). The hexadecimal digits A—F correspond to the numbers 10-15 regard-
less of input base. The i command can be used to change the base of the input numbers. This command
pops the stack, truncates the resulting number to an integer, and uses it as the input base for all further
input. The input base is initialized to 10 but may, for example be changed to 8 or 16 to do octal or hexade-
cimal to decimal conversions. The command I will push the value of the input base on the stack.

USD:5-6 ' DC - An Interactive Desk Calculator

Output Commands :

The command p causes the top of the stack to be printed. It does not remove the top of the stack.
All of the stack and internal registers can be output by typing the command f. The o command can be used
to change the output base. This command uses the top of the stack, truncated to an integer as the base for
all further output. The output base in initialized to 10. It will work correctly for any base. The command
O pushes the value of the output base on the stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output; they have

no effect on arithmetic computations. Large numbers are output with 70 characters per line; a \ indicates a

continued line. All choices of input and output bases work correctly, although not all are useful. A partic-

" ularly useful output base is 100000, which has the effect of grouping digits in fives. Bases of 8 and 16 can
be used for decimal-octal or decimal-hexadecimal conversions.

Internal Registers |

Numbers or strings may be stored in internal registers or loaded on the stack from registers with the
commands s and 1. The command sx pops the top of the stack and stores the result in register x. x can be
any character. lx puts the contents of register x on the top of the stack. The I command has no effect on
the contents of register x. The s command, however, is destructive.

Stack Commands

The command ¢ clears the stack. The command d pushes a duplicate of the number on the top of the
stack on the stack. The command z pushes the stack size on the stack. The command X replaces the
number on the top of the stack with its scale factor. The command Z replaces the top of the stack with its
length. :

Subroutine Definitions and Calls

Enclosing a string in [] pushes the ascii string on the stack. The q command quits or in executing a
string, pops the recursion levels by two.

Internal Registers — Programming DC

The load and store commands together with [] to store strings, x to execute and the testing com-
mands ‘<’, ‘>’, ‘=, ‘I<’, ‘15’, ‘1=’ can be used to program DC. The x command assumes the top of the
stack is an string of DC commands and executes it. The testing commands compare the top two elements
on the stack and if the relation holds, execute the register that follows the relation. For example, to print
the numbers 0-9,

[lipl+ si lil0>a)sa
Osi lax

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, DC can be thought of as having indi-
vidual stacks for each register. These registers are operated on by the commands S and L. Sx pushes the
top value of the main stack onto the stack for the register x. Lx pops the stack for register x and puts the
result on the main stack. The commands s and 1 also work on registers but not as push-down stacks. 1
doesn’t effect the top of the register stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an index into
the array x. The next element on the stack is stored at this index in x. An index must be greater than or
equal to 0 and less than 2048. ;x is the command to load the main stack from the array x. The value on the
top of the stack is the index into the array x of the value to be loaded.

DC - An Interactive Desk Calculator , USD:5-7

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX command and passes it to UNIX to execute.
One other compiler command is Q. This command uses the top of the stack as the number of levels of
recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose program could
be (and in fact has been) used for a variety of other tasks. The allocator has some value for input and for
compiling (i.e. the bracket [...] commands) where it cannot be known in advance how long a string will be.
The result was that at a modest cost in execution time, all considerations of string allocation and sizes of
strings were removed from the remainder of the program and debugging was made easier. The allocation
method used wastes approximately 25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet the
base cannot exceed 127 because of hardware limitations and at the cost of 5% in space, debugging was
made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to sub-
routine execution to be implemented in essentially the same way. The result was a considerable degree of
logical separation of the final program into modules with very little communication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an under-
standable means of proceeding after a change of base or scale when numbers had already been entered. An
earlier implementation which had global notions of scale and base did not work out well. If the value of
scale were to be interpreted in the current input or output base, then a change of base or scale in the midst
of a computation would cause great confusion in the interpretation of the results. The current scheme has
the advantage that the value of the input and output bases are only used for input and output, respectively,
and they are ignored in all other operations. The value of scale is not used for any essential purpose by any
part of the program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no case
should any significant digits be thrown away if, on appearances, the user actually wanted them. Thus, if
the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give him the result 5.017 without
requiring him to unnecessarily specify his rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more digits than
their operands and it seemed reasonable to give as a minimum the number of decimal places in the
operands but not to give more than that number of digits unless the user asked for them by specifying a
value for scale. Square root can be handled in just the same way as multiplication. The operation of divi-
sion gives arbitrarily many decimal places and there is simply no way to guess how many places the user
wants. In this case only, the user must specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the quotient and
remainder. This is easy to implement; no digits are thrown away.

References
{11 L.L. Chery, R. Morris, BC — An Arbitrary Precision Desk-Calculator Language.
[2] K. C.Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on the
PDP-11 under the UNIXt time-sharing system. The output of the compiler is interpreted
and executed by a collection of routines which can input, output, and do arithmetic on
indefinitely large integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator. Overflow
does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode opera-
tion. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit result in
about ten seconds.

A small collection of library functions is also available, including sin, cos, arctan,
log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are
- to do computation with large integers,
- to do computation accurate to many decimal places,
— conversion of numbers from one base to another base.

Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time-sharing
system [1]. The compiler was written to make conveniently available a collection of routines (called DC
[51) which are capable of doing arithmetic on integers of arbitrary size. The compiler is by no means
intended to provide a complete programming language. It is a minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is made for
input and output in bases other than decimal. Numbers can be converted from decimal to octal by simply
setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of storage avail-
able on the machine. Manipulation of numbers with many hundreds of digits is possible even on the smal-
lest versions of UNIX.

The syntax of BC has been deliberately selected to. agree substantially with the C language [2].
Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if you
type in the line:

1 UNIX is a trademark of Bell Laboratories.

USD:6-2 BC- An Arbm'ary Precision Desk-Calculator Language

142857 + 285714
the program responds immediately with the line
428571

The operators —, *, /, %, and * can also be used; they indicate subtraction, multiplication, division,
remaindering, and exponentiation, respectively. Division of integers produces an integer result truncated
toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated (the
‘unary’ minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just as in For-
tran, with * having the greatest binding power, then * and % and /, and finally + and —. Contents of
parentheses are evaluated before material outside the parentheses. Exponentiations are performed from
right to left and the other operators from left to right. The two expressions

a’b’c and a"(b"c)
are equivalent, as are the two expressions

a*b*c and (a*b)*c
BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value of an

expression can be assigned to a register in the usual way. The statement

Xx=x+3

has the effect of increasing by three the value of the contents of the register named x. When, as in this
case, the outermost operator is an =, the assignment is performed but the result is not printed. Only 26 of
these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling below).
The lines

x = sqrt(191)
X

produce the printed result
13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’, initially set
to 10, determines the base used for interpreting numbers read in. For example, the lines

ibase=8
11

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the input
base back to decimal by typing ‘

BC — An Arbitrary Precision Desk-Calculator Language USD:6-3

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those who deal in
hexadecimal notation, the characters A-F are permitted in numbers (no matter what base is in effect) and
are interpreted as digits having values 10-15 respectively. The statement

ibase= A

will change you back to decimal input base no matter what the current input base is. Negative and large
positive input bases are permitted but useless. No mechanism has been provided for the input of arbitrary
numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The lines

obase = 16
1000

will produce the output line
3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted, and
they are sometimes useful. For example, large numbers can be output in groups of five digits by setting
‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued end
with\. Decimal output conversion is practically instantaneous, but output of very large numbers (i.e., more
than 100 digits) with other bases is rather slow. Non-decimal output conversion of a one hundred digit
number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of internal com-
putation or on the evaluation of expressions, but only affect input and output conversion, respectively.

Scaling
A third special internal quantity called ‘scale’ is used to determine the scale of calculated quantities.

Numbers may have up to 99 decimal digits after the decimal point. This fractional part is retained in
further computations. We refer to the number of digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the result has
a scale determined by the following rules. For addition and subtraction, the scale of the result is the larger
of the scales of the two operands. In this case, there is never any truncation of the result. For multiplica-
tions, the scale of the result is never less than the maximum of the two scales of the operands, never more
than the sum of the scales of the operands and, subject to those two restrictions, the scale of the result is set
equal to the contents of the internal quantity ‘scale’. The scale of a quotient is the contents of the internal
quantity ‘scale’. The scale of a remainder is the sum of the scales of the quotient and the divisor. The
result of an exponentiation is scaled as if the implied multiplications were performed. An exponent must
be an integer. The scale of a square root is set to the maximum of the scale of the argument and the con-
tents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits being discarded
when necessary. In every case where digits are discarded, truncation and not rounding is performed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to 0. In case
you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like other vari-
ables. The line

scale =scale + 1
increases the value of ‘scale’ by one, and the line

scale

USD:64 | BC - An Arbitrary Precision Desk-Calculator Language

causes the current value of ‘scale’ to be printed. ;

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in internal com-
putation even when ‘ibase’ or ‘obase’ are not equal to 10, The internal computations (which are still con-
ducted in decimal, regardless of the bases) are performed to the specified number of decimal digits, never
hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to collide with
simple variable names. Twenty-six different defined functions are permitted in addition to the twenty-six
variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by one or more state-
ments, which make up the body of the function, ending with a right brace }. Return of control from a func-
tion occurs when a return statement is executed or when the end of the function is reached. The return
statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression in parentheses.
Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the definition.
These automatic variables are allocated space and initialized to zero on entry to the function and thrown
away on return. The values of any variables with the same names outside the function are not disturbed.
Functions may be called recursively and the automatic variables at each level of call are protected. The
parameters named in a function definition are treated in the same way as the automatic variables of that
function with the single exception that they are given a value on entry to the function. An example of a
function definition is

define a(x,y){
auto z
z =Xx*y
return(z)
}

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of arguments is
used.

Functions with no arguments are defined and called using parentheses with nothing between them:
b().
If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line
x = a(a(3,4),5)

would cause the value of x to become 60.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-5

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a subscripted
variable (an array element). The variable name is called the array name and the expression in brackets is
called the subscript. Only one-dimensional arrays are permitted. The names of arrays are permitted to col-
lide with the names of simple variables and function names. Any fractional part of a subscript is discarded
before use. Subscripts must be greater than or equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return statements.

An array name may be used as an argument to a function, or may be declared as automatic in a func-
tion definition by the use of empty brackets:

f(al])
define f(a[])
auto af]

When an array name is so used, the whole contents of the array are copied for the use of the function, and
thrown away on exit from the function. Array names which refer to whole arrays cannot be used in any
other contexts.

Control Statements

The ‘if*, the ‘while’, and the ‘for’ statements may be used to alter the flow within programs or to
cause iteration. The range of each of them is a statement or a compound statement consisting of a collec-
tion of statements enclosed in braces. They are written in the following way

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

or
if(relation) {statements}

while(relation) {statements}
for(expression1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form
x>y

where two expressions are related by one of the six relational operators <, >, <=, >=, ==, or !=, The rela-
tion == stands for ‘equal to’ and != stands for ‘not equal to’. The meaning of the remaining relational
operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are legal, so you will
not get a diagnostic message, but = really will not do a comparison. :

The ‘if’ statement causes execution of its range if and only if the relation is true. Then control passes
to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is true. The
relation is tested before each execution of its range and if the relation is false, control passes to the next
statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if true, the
statements-in the range of the ‘for’ are executed. Then ‘expression2’ is executed. The relation is tested,
and so on. The typical use of the ‘for’ statement is for a controlled iteration, as in the statement

for(i=1; i<=10; i=i+1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control statements.

USD:6-6 BC.; An Arbitrary Precision Desk-Calculator Language -

define f(n){

auto i, x

x=1 ~

for(i=1; i<=n; i=i+1) x=x*i
return(x)

}
The line
f(a)

will print g factorial if a is a positive integer. Here is the definition of a function which will compute
values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){

autox, j

x=1

for(j=1; je=m; j=j+1) x=x*(n—j+1)/j
return(x)

}

The following function computes values of the exponential function by summing the appropriate series
without regard for possible truncation errors:

scale = 20
define e(x){
autoa,b,c,d, n
a=1
b=1
c=1
d=0
n=1
while(1==1){
- a=a*™x
b =b*n
c=c+ab
n=n+1
if(c==d) return(c)
d=c
}
} :
Some Details

There are some language features that every user should know about even if he will not use them.

Normally statements are typed one to a line. It is also permissible to type several statements on a
line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used anywhere that an
expression can. For example, the line '

(x=y+17)
not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = afi=i+1]

BC — An Arbitrary Precision Desk-Calculator Language USD:6-7

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language. Con-
sult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as x=(y=z)
X=+y X = X+y
X=—Yy X = X-y
x=*y x = x*y
x=/y x=xly
x=%y x=x%y
x="y x=x"y
X++ (x=x+1)-1
X— (x=x-1)+1
++X x=x+1
—x x=x~-1

Even if you don’t intend to use the constructs, if you type one inadvertently, something correct but unex-
pected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real difference
between x =— y and x=—y. The first replaces x by x~y and the second by -y.

Three Important Things

1. To exit a BC program, type ‘quit’.

2. There is a comment convention identical to that of C and of PL/I. Comments begin with ‘/*’ and
end with ‘*/°,

* 3. There is a library of math functions which may be obtained by typing at command level
be -1

This command will load a set of library functions which, at the time of writing, consists of sine (named
‘s’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘I'), exponential (‘e’) and Bessel functions of imeger
order (‘j(n,x)’). Doubtless more functions will be added in time. The library sets the scale to 20. You can

reset it to something else if you like. The design of these mathematical library routines is discussed else-
where [3].

If you type
bc file ...

BC will read and execute the named file or files before accepting commands from the keyboard. In this
way, you may load your favorite programs and function definitions.

Acknowledgement
The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

References
[11 K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories, 1978.
[2] B.W.Kemighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

(31 R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories internal
memorandum, 1975.

[4] S. C. Johnson, YACC — Yet Another Comp:ler-Compzler Bell Laboratones Computing Science
Technical Report #32, 1978.

{51 R.Morris and L. L. Cherry, DC ~ An Interactive Desk Calculator.

USD:6-8 BC - An Arbitrary Precision Desk-Calculator Language

Appendix

1.‘ Notation

In the following pages syntactic categories are in italics; literals are in bold; material in brackets [] is
optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators may
be blanks, tabs or comments. Newline characters or semicolons separate statements.

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers

There are three kinds of identifiers — ordinary identifiers, array identifiers and function identifiers.
All three types consist of single lower-case letters. Array identifiers are followed by square brackets, pos-
sibly enclosing an expression describing a subscript. Arrays are singly dimensioned and may contain up to
2048 elements. Indexing begins at zero so an array may be indexed from Q to 2047. Subscripts are trun-
cated to integers. Function identifiers are followed by parentheses, possibly enclosing arguments. The
three types of identifiers do not conflict; a program can have a variable named x, an array named x and a
function named x, all of which are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal digits
A-F are also recognized as digits with values 10-15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Precedence is the
same as the order of presentation here, with highest appearing first. Left or right associativity, where appli-
cable, is discussed with each operator.

BC ~ An Arbitrary Precision Desk-Calculator Language USD:6-9

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions are legal
on the left side of an assignment. The value of a named expression is the value stored in the place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name | expression]
Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the number of digits
after the decimal point to be retained in arithmetic operations. scale has an initial value of zero. ibase and
obase are the input and output number radix respectively. Both ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression [, expression...]])

A function call consists of a function name followed by parentheses containing a comma-separated
list of expressions, which are the function arguments. A whole array passed as an argument is specified by
the array name followed by empty square brackets. All function arguments are passed by value. As a
result, changes made to the formal parameters have no effect on the actual arguments. If the function ter-
minates by executing a return statement, the value of the function is the value of the expression in the
parentheses of the return statement or is zero if no expression is provided or if there is no return statement.

3.1.2.2, sqrt(expression)

The result is the square root of the expression. The result is truncated in the least significant decimal
place. The scale of the result is the scale of the expression or the value of scale, whichever is larger.

3.1.2.3. length (expression)
The result is the total number of significant decimal digits in the expression. The scale of the result
is zero.

3.1.2.4. scale (expression)
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants
Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to alter
the normal precedence.

3.2. Unary operators
The unary operators bind right to left.

USD:6-10 BC - An Arbitrary Precision Desk-Calculator Language

3.2.1. —expression
The result is the negative of the expression.

3.2.2. ++named-expression

The named expression is incremented by one. The result is the value of the named expression after
incrementing. ‘
3.2.3. — named-expression

The named expression is decremented by one. The result is the value of the named expression after
decrementing.

3.2.4. named-expression ++

The named expression is incremented by one. The result is the value of the named expression before
incrementing,

3.2.5. named-expression —

The named expression is decréemented by one. The result is the value of the named expression
before decrementing.

3.3. Exponentiation operator
The exponentiation operator binds right to left.

3.3.1. expression " expression

The result is the first expression raised to the power of the second expression. The second expression
must be an integer. If a is the scale of the left expression and b is the absolute value of the right expres-
sion, then the scale of the result is: '

min (axb, max (scale,a))

3.4, Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If @ and b are the scales of the two expressions, then
the scale of the result is:

min (a+b, max (scale,a,b))

3.4.2. expression/ expression
The result is the quotient of the two expressions. The scale of the result is the value of scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More precisely, a%b
is a-a/b*b.

The scale of the result is the sum of the scale of the divisor'and the value of scale

3.5. Additive operators
The additive operators bind left to right.

BC — An Arbitrary Precision Desk-Calculator Language USD:6-11

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of the scales of
the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the maximum of the
scales of the expressions.

3.6. éssignment operators
The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named expression
on the left.

3.6.2. named-expression =+ expression
3.6.3. named-expression =— expression
3.6.4. named-expression =* expression
3.6.5. named-expression =/ expression
3.6.6. named-expression =% expression

3.6.7. named-expression =" expression

The result of the above expressions is equivalent to ‘‘named expression = named expression OP
expression’’, where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if, while, or
inside a for statement.

4.1, expression < expression
4.2, expression > expression
4.3. expression <= expression
4.4, expression >= expression
4.5. expression == expression
4.6. expression = expression

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers that are to be
local to a function need be declared with the auto command. The arguments to a function are local to the
function. ‘All other identifiers are assumed to be global and available to all functions. All identifiers, global
and local, have initial values of zero. Identifiers declared as auto are allocated on entry to the function and
released on returning from the function. They therefore do not retain values between function calls. auto
arrays are specified by the array name followed by empty square brackets.

USD:6-12 BC - An Arbitrary Precision Desk-Calculator Language

Automatic variables in BC do not work in exactly the same way as in either C or PL/I. On entry to a
function, the old values of the names that appear as parameters and as automatic variables are pushed onto
a stack. Until return is made from the function, reference to these names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control statements,
execution is sequential,

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

6.2. Compound statements
Statements may be grouped together and used when one statement is expected by surrounding them
with { }.

6.3. Quoted string statements
"any string"
This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement
The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execution of the
statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
first-expression
while (relation) {

Statement

last-expression

}
All three expressions must be present.

6.7. Break statements

break
break causes termination of a for or while statement,

6.8. Auto statements
auto identifier [,identifier]

The auto statement causes the values of the identifiers to be pushed down. The identifiers can be
ordinary identifiers or array identifiers. Array identifiers are specxﬁed by following the array name by
empty square brackets. The auto statement must be the first statement in a function definition.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-13

6.9. Define statements
define([parameter [,parameter...]1]1){
Statements '}

The define statement defines a function. The parameters may be ordinary identifiers or array names.
Array names must be followed by empty square brackets.

6.10. Return statements
return

return(expression)

The return statement causes termination of a function, popping of its auto variables, and specifies the
result of the function. The first form is equivalent to return(0). The result of the function is the result of
the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it is first
encountered. Because it is not treated as an executable statement, it cannot be used in a function definition
or in an if, for, or while statement.

MAIL REFERENCE MANUAL

Kurt Shoens
Revised by
Craig Leres

Version 5.2

June 24, 1987

1. Introduction

Mail provides a simple and friendly environment for sending and receiving mail. It divides incoming
mail into its constituent messages and allows the user to deal with them in any order. In addition, it pro-
vides a set of ed-like commands for manipulating messages and sending mail. Mail offers the user simple
editing capabilities to ease the composition of outgoing messages, as well as providing the ability to define
and send to names which address groups of users. Finally, Mail is able to send and receive messages
across such networks as the ARPANET, UUCP, and Berkeley network.

This document describes how to use the Ma:l program to send and receive messages. The reader is

not assumed to be familiar with other message handling systems, but should be familiar with the UNIX'
shell, the text editor, and some of the common UNIX commands. ‘‘The UNIX Programmer’s Manual,’” *‘An
Introduction to Csh,”’ and *‘Text Editing with Ex and Vi’’ can be consulted for more information on these
topics.

Here is how messages are handled: the mail system accepts incoming messages for you from other
people and collects them in a file, called your system mailbox. When you login, the system notifies you if
there are any messages waiting in your system mailbox. If you are a csh user, you will be notified when
new mail arrives if you inform the shell of the location of your mailbox. On version 7 systems, your sys-
tem mailbox is located in the directory /usr/spool/mail in a file with your login name. If your login name is
‘‘sam,’” then you can make csh notify you of new mail by including the following line in your .cshrc file:

set mail=/usr/spool/mail/sam

When you read your mail using Mail, it reads your system mailbox and separates that file into the indivi-
dual messages that have been sent to you. You can then read, reply to, delete, or save these messages.
Each message is marked with its author and the date they sent it.

! UNIX is-a trademark of Bell Laboratories.

USD:7-2 ‘ ‘ Mail Reference Manual

2. Common usage

The Mail command has two distinct usages, according to whether one wants to send or receive mail.
Sending mail is simple: to send a message to a user whose login name is, say, ‘‘root,’”’ use the shell com-
mand: ’ :

% Mail root
then type your message. When you reach the end of the message, type an EOT (control-d) at the begin-

ning of a line, which will cause Mail to echo *‘EOT’’ and return you to the Shell. When the user you sent
mail to next logs in, he will receive the message:

You have mail.
to alert him to the existence of your message.
If, while you are composing the message you decide that you do not wish to send it after all, you can
abort the letter with a RUBOUT. Typing a single RUBOUT causes Mail to print
(Interrupt -- one more to kill letter) ‘

Typing a second RUBOUT causes Mail to save your partial letter on the file ‘‘dead.letter’” in your home
directory and abort the letter. Once you have sent mail to someone, there is no way to undo the act, so be
careful.

The message your recipient reads will consist of the message you typed, preceded by a line telling
who sent the message (your login name) and the date and time it was sent.

If you want to send the same message to several other people, you can list their login names on the
command line. Thus,

% Mail sam bob john

Tuition fees are due next Friday. Don’t forget!!
<Control-d>

EOT

%

will send the reminder to sam, bob, and john.
If, when you log in, you see the message,

You have mail.
you can read the mail by typing simply:

% Mail
Mail will respond by typing its version number and date and then listing the messages you have waiting.
Then it will type a prompt and await your command. The messages are assigned numbers starting with 1 -
you refer to the messages with these numbers. Mail keeps tack of which messages are new (have been sent
since you last read your mail) and read (have been read by you). New messages have an N next to them in

the header listing and old, but unread messages have a U next to them. Mail keeps track of new/old and
read/unread messages by putting a header field called **Status’’ into your messages.

To look at a specific message, use the type command, which may be abbreviated to simply t. For
example, if you had the following messages:
N1lroot Wed Sep2109:21 "Tuition fees"
N2sam Tue Sep 2022:55

you could examine the first message by giving the command:
typel

which might cause Mail to respond with, for example:
Message 1:
From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
Status: R

Mail Reference Manual USD:7-3

Tuition fees are due next Wednesday. Don’t forget!!

Many Mail commands that operate on messages take a message number as an argument like the type com-
mand. For these commands, there is a notion of a current message. When you enter the Mail program, the
current message is initially the first one. Thus, you can often omit the message number and use, for exam-
ple,

t

to type the current message. As a further shorthand, you can type a message by simply giving its message
number. Hence,

1
would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another. You can
read the next message in Mail by simply typing a newline. As a special case, you can type a newline as
your first command to Mail to type the first message.

If, after typing a message, you wish to immediately send a reply, you can do so with the reply com-
mand. Reply, like type, takes a message number as an argument. Mail then begins a message addressed to
the user who sent you the message. You may then type in your letter in reply, followed by a <control-d> at
the beginning of a line, as before. Mail will type EOT, then type the ampersand prompt to indicate its
readiness to accept another command. In our example, if, after typing the first message, you wished to
reply to it, you might give the command:

reply
Mail responds by typing:

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode described at the
beginning of this section and Mail will gather up your message up to a control-d. Note that it copies the
subject header from the original message. This is useful in that correspondence about a particular matter
will tend to retain the same subject heading, making it easy to recognize. If there are other header fields in
the message, the information found will also be used. For example, if the letter had a “*To:*’ header listing
several recipients, Mail would arrange to send your replay to the same people as well. Similarly, if the ori-
ginal message contained a ‘‘Cc:’’ (carbon copies to) field, Mail would send your reply to those users, too.
Mail is careful, though, not too send the message to you, even if you appear in the ‘‘To:”* or “‘Cc:”’ field,
unless you ask to be included explicitly. See section 4 for more details.

After typing in your letter, the dialog with Mail might look like the following:
reply
To: root
Subject: Tuition fees

Thanks for the reminder
EOT
&

The reply command is especially useful for sustaining extended conversations over the message Sys-
tem, with other ‘‘listening’’ users receiving copies of the conversation. The reply command can be abbre-
viated to r. :

Sometimes you will receive a message that has been sent to several people and wish to reply only to
~ the person who sent it. Reply with a capital R replies to a message, but sends a copy to the sender only.

If you wish, while reading your mail, to send a message to someone, but not as a reply to one of your
messages, you can send the message directly with the mail command, which takes as arguments the names
of the recipients you wish to send to. For example, to send a message to ‘‘frank,’’ you would do:

mail frank

USD:7-4 » , Mail Reference Manual

This is to confirm our meeting next Friday at 4.
EOT :
&

The mail command can be abbreviated to m.

Normally, each message you receive is saved in the file mbox in your login directory at the time you
leave Mail. Often, however, you will not want to save a particular message you have received because it is
only of passing interest. To avoid saving a message in mbox you can delete it using the delete command.
In our example,

delete 1

will prevent Mail from saving message 1 (from root) in mbox. In addition to not saving deleted messages,
Mail will not let you type them, either. The effect is to make the message disappear altogether, along with
its number. The delete command can be abbreviated to simply d.

Many features of Mail can be tailored to your liking with the set command. The set command has
two forms, depending on whether you are setting a binary option or a valued option. Binary options are
either on or off. For example, the ‘‘ask’ option informs Mail that each time you send a message, you want
it to prompt you for a subject header, to be included in the message. To set the ‘‘ask’’ option, you would
type

set ask

Another useful Mail option is ‘‘hold.”’ Unless told otherwise, Mail moves the messages from your
system mailbox to the file mbox in your home directory when you leave Mail. If you want Mail to keep
your letters in the system mailbox instead, you can set the ‘‘hold’’ option.

Valued options are values which Mail uses to adapt to your tastes. For example, the “SHELL”
option tells Mail which shell you like to use, and is specified by

set SHELLs/bm/csh_

for example. Note that no spaces are allowed in ‘‘SHELL=/bin/csh.”’ A complete list of the Mail options
appears in section 5.

Another important valued option is “‘crt.”” If you use a fast video terminal, you will find that when
you print long messages, they fly by too quickly for you to read them. With the ‘‘crt’’ option, you can
make Mail print any message larger than a given number of lines by sending it through the paging program
more. For example, most CRT users with 24-line screens should do:

set crt=24

to paginate messages that will not fit on their screens. More prints a screenful of information, then types --
MORE--. Type a space to see the next screenful,

Another adaptation to user needs that Mail provides is that of aliases. An alias is simply a name
which stands for one or more real user names. Mail sent to an alias is really sent to the list of real users
associated with it. For example, an alias can be defined for the members of a project, so that you can send
mail to the whole project by sending mail to just a single name. The alias command in Mail defines an
alias. Suppose that the users in a project are named Sam, Sally, Steve, and Susan. To define an alias called
“‘project’’ for them, you would use the Mail command:

alias project sam sally steve susan

The alias command can also be used to provide a convenient name for someone whose user name is incon-
venient. For example, if a user named ‘‘Bob Anderson’’ had the login name “anderson,"” you might want
to use:

alias bob anderson
so that you could send mail to the shorter name, “‘bob.”’

While the alias and set commands allow you to customize Mail, they have the drawback that they
must be retyped each time you enter Mail. To make them more convenient to use, Mail always looks for
two files when it is invoked. It first reads a system wide file ‘‘/usr/lib/Mail.rc,” then a user specific file,
*“.mailrc,”” which is found in the user’s home directory. The system wide file is maintained by the system-

Mail Reference Manual USD:7-5

administrator and contains set commands that are applicable to all users of the system, The ‘‘.mailrc’’ file
is usually used by each user to set options the way he likes and define individual aliases. For example, my
.mailrc file looks like this:

set ask nosave SHELL=/bin/csh

As you can see, it is possible to set many options in the same set command. The ‘‘nosave’’ option is
described in section §.

Mail aliasing is implemented at the system-wide level by the mail delivery system sendmail. These
aliases are stored in the file /ust/lib/aliases and are accessible to all users of the system. The lines in
/usr/lib/aliases are of the form:

alias: name,, name,, name,

where alias is the mailing list name and the name, are the members of the list. Long lists can be continued
onto the next line by starting the next line with a space or tab. Remember that you must execute the shell

command newaliases after editing /ust/lib/aliases since the delivery system uses an indexed file created by
newaliases.

We have seen that Mail can be invoked with command line arguments which are people to send the
message to, or with no arguments to read mail. Specifying the —f flag on the command line causes Mail to
read messages from a file other than your system mailbox. For example, if you have a collection of mes-
sages in the file ‘‘letters’’ you can use Mail to read them with:

% Mail —f letters

You can use all the Mail commands described in this document to examine, modify, or delete messages
from your ‘‘letters’’ file, which will be rewritten when you leave Mail with the quit command described
below.

Since mail that you read is saved in the file mbox in your home directory by default, you can read
mbox in your home directory by using simply

% Mail —f

Normally, messages that you examine using the type command are saved in the file ‘*‘mbox’’ in your
home directory if you leave Mail with the quit command described below. If you wish to retain a message
in your system mailbox you can use the preserve command to tell Mail to leave it there. The preserve
command accepts a list of message numbers, just like type and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your system
mailbox automatically. If you wish to have such a message saved in mbox without reading it, you may use
the mbox command to have them so saved. For example,

mbox 2

in our example would cause the second message (from sam) to be saved in mbox when the quit command
is executed. Mbox is also the way to direct messages to your mbox file if you have set the ‘‘hold’’ option
described above. Mbox can be abbreviated to mb.

When you have perused all the messages of interest, you can leave Mail with the quit command,
which saves the messages you have typed but not deleted in the file mbox in your login directory. Deleted
messages are discarded n'remevably, and messages left untouched are preserved in your system mailbox so
that you will see them the next time you type:

% Mail ‘
The quit command can be abbreviated to simply q.

If you wish for some reason to leave Mail quickly without altering either your system mailbox or
mbox, you can type the x command (short for exit), which will immediately return you to the Shell without
changing anything.

If, instead, you want to execute a Shell command without leaving Mail, you can type the command
preceded by an exclamation point, just as in the text editor. Thus, for instance:

!date

USD:7-6 ' Mail Reference Manual

will print the current date without leaving Mail.

_Finally, the help command is available to print out a brief summary of the Mail commands, using
only the single character command abbreviations.

3. Maintaining folders

Mail includes a simple facility for maintaining groups of messages together in folders. This section
describes this facility.

To use the folder facility, you must tell Mail where you wish to keep your folders. Each folder of
messages will be a single file. For convenience, all of your folders are kept in a smgle directory of your
choosing. To tell Mail where your folder directory i is, puta line of the form

set folder=letters

in your .mailrc file. If, as in the example above, your folder dxrecwry does not begin with a */,” Mail will
assume that your folder directory is to be found starting from your home directory. Thus, if your home
directory is /usr/person the above example told Mail to find your folder directory in /usr/person/letters.

Anywhere a file name is expected, you can use a folder name, preceded with ‘+.” For example, to
put a message into a folder with the save command, you can use:

save +classwork

to save the current message in the classwork folder. If the classwork folder does not yet exist, it will be
created. Note that messages which are saved with the save command are automatically removed from your
system mailbox.

In order to make a copy of a message in a folder without causing that message to be removed from
your system mailbox, use the copy command, which is identical in all other respects to the save command.
For example,

copy +classwork
copies the current message into the classwork folder and leaves a copy in your system mailbox.
The folder command can be used to direct Mail to the contents of a different folder. For example,
folder +classwork

directs Mail to read the contents of the classwork folder. All of the commands that you can use on your
system mailbox are also applicable to folders, including type, delete, and reply. To inquire which folder
you are currently editing, use simply:

folder

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the —f option described in section 2. For
example:

% Mail —f +classwork
will cause Mail to read your classwork folder without looking at your system mailbox.

Mail Reference Manual ' USD:7-7

4. More about sending mail

4.1. Tilde escapes

While typing in a message to be sent to others, it is often useful to be able to invoke the text editor on
the partial message, print the message, execute a shell command, or do some other auxiliary function. Mail
provides these capabilities through tilde escapes, which consist of a tilde (") at the beginning of a line, fol-
lowed by a single character which indicates the function to be performed. For example, to print the text of
the message so far, use:

P

which will print a line of dashes, the recipients of your message, and the text of the message so far. Since
Mail requires two consecutive RUBOUT’s to abort a letter, you can use a single RUBOUT to abort the output
of “p or any other ~ escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text editor on it using the
escape

-

e
which causes the message to be copied into a temporary file and an instance of the editor to be spawned.
After modifying the message to your satisfaction, write it out and quit the editor. Mail will respond by typ-
ing

(continue)
after which you may continue typing text which will be appended to your message, or type <control-d> to

end the message. A standard text editor is provided by Mail. You can override this default by setting the
valued option ‘“EDITOR’’ to something else. For example, you might prefer:

set EDITOR=/usr/ucb/ex

Many systems offer a screen editor as an alternative to the standard text editor, such as the vi editor
- from UC Berkeley. To use the screen, or visual editor, on your current message, you can use the escape,

v

“v works like “e, except that the screen editor is invoked instead. A default screen editor is defined by
Mail. If it does not suit you, you can set the valued option *‘VISUAL’’ to the path name of a different edi-
tor.

It is often useful to be able to include the contents of some file in your message; the escape
°r filename

is provided for this purpose, and causes the named file to be appended to your current message. Mail com-
plains if the file doesn’t exist or can’t be read. If the read is successful, the number of lines and characters
appended to your message is printed,- after which you may continue appending text. The filename may
contain shell metacharacters like * and ? which are expanded according to the conventions of your shell.

As a special case of T, the escape
d
reads in the file ‘‘dead.letter’’ in your home directory. This is often useful since Mail copies the text of
your message there when you abort a message with RUBOUT.
To save the current text of your message on a file you may use the
“w filename

escape. Mail will print out the number of lines and characters written to the file, after which you may con-
tinue appending text to your message. Shell metacharacters may be used in the filename, as in r and are
expanded with the conventions of your shell.

If you are sending mail from within Mail's command mode you can read a message sent to you into
the message you are constructing with the escape:

‘mé4

USD:7-8 ‘ Mail Reference Manual

which will read message 4 into the current message, shifted right by one tab stop. You can name any non-
deleted message, or list of messages. Messages can also be forwarded without shifting by a tab stop with
“f. This is the usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the list of message
recipients, you can do so with the escape

“tnamel name2 ...

You may name as few or many additional recipients as you wish. Note that the users originally on the reci-
pient list will still receive the message; you cannot remove someone from the recipient list with “t.

If you wish, you can associate a subject with your message by using the escape
“s Arbitrary string of text

which replaces any previous subject with ‘‘ Arbitrary string of text." The subject, if given, is sent near the
top of the message prefixed with *‘Subject:’ You can see what the message will look like by using “p.

For political reasons, one occasionally prefers to list certain people as recipients of carbon copies of
a message rather than direct recipients. The escape

“c namel name2 ...

adds the named people to the **Cc:”’ list, similar to "t. Again, you can execute “p to see what the message
will look like.

The recipients of the message together constitute the ‘“To:”* field, the subject the ‘‘Subject:’’ field,
and the carbon copies the ‘‘Cc:”” field. If you wish to edit these in ways impossible with the "t, ”s, and "¢
escapes, you can use the escape

"h

which prints ‘“To:’’ followed by the current list of recipients and leaves the cursor (or printhead) at the end
of the line. If you type in ordinary characters, they are appended to the end of the current list of recipients.
You can also use your erase character to erase back into the list of recipients, or your kill character to erase
them altogether. Thus, for example, if your erase and kill characters are the standard (on printing termi-
nals) # and @ symbols,

“h
To: root kurt####bill

would change the initial recipients ‘‘root kurt’’ to ‘‘root bill.”” When you type a newline, Mail advances to
the ‘‘Subject:’” field, where the same rules apply. Another newline brings you to the “‘Cc:’’ field, which
may be edited in the same fashion. Another newline leaves you appending text to the end of your message.
You can use “p to print the current text of the header fields and the body of the message.

To effect a temporary escape to the shell, the escape
“‘command

is used, which executes command and returns you to mailing mode without altering the text of your mes-
sage. If you wish, instead, to filter the body of your message through a shell command, then you can use

“jcommand

which pipes your message through the command and uses the output as the new text of your message. If
the command produces no output, Mail assumes that something is amiss and retains the old version of your
message. A frequently-used filter is the command fimt, designed to format outgoing mail.

To effect a temporary escape to Mail command mode instead, you can use the
“:Mail command
escape. This is especially useful for retyping the message you are replying to, using, for example:
-t | ,
1t is also useful for setting options and modifying aliases.

If you wish (for some reason) to send a message that contains a line beginning with a tilde, you must
double it. Thus, for example,

Mail Reference Manual USD:7-9

“"This line begins with a tilde.
sends the line
“This line begins with a tilde.
Finally, the escape
“?
prints out a brief summary of the available tilde escapes.

On some terminals (particularly ones with no lower case) tilde’s are difficult to type. Mail allows
you to change the escape character with the ‘‘escape’’ option. For example, I set

set escape=] :

and use a right bracket instead of a tilde. If I ever need to send a line beginning with right bracket, I double
it, just as for ~. Changing the escape character removes the special meaning of ~.

4.2. Network access

This section describes how to send mail to people on other machines. Recall that sending to a plain
login name sends mail to that person on your machine. If your machine is directly (or sometimes, even,
indirectly) connected to the Arpanet, you can send messages to people on the Arpanet using a name of the
form

name@host.domain

where name is the login name of the person you're trying to reach, host is the name of the machine on the
Arpanet, and domain is the higher-level scope within which the hostname is known, e.g. EDU (for educa-
tional institutions), COM (for commercial entities), GOV (for governmental agencies), ARPA for many
other things, BITNET or CSNET for those networks.

If your recipient logs in on a machine connected to yours by UUCP (the Bell Laboratories supplied
network that communicates over telephone lines), sending mail can be a bit more complicated. You must
know the list of machines through which your message must travel to arrive at his site. So, if his machine
is directly connected to yours, you can send mail to him using the syntax:

host!name

where, again, host is the name of the machine and name is the login name. If your message must go
through an intermediary machine first, you must use the syntax:

intermediary'host!name

and so on. Itis actually a feature of UUCP that the map of all the systems in the network is not known any-
where (except where people decide to write it down for convenience). Talk to your system administrator
about good ways to get places; the uuname command will tell you systems whose names are recognized,
but not which ones are frequently called or well-connected.

When you use the reply command to respond to a letter, there is a problem of figuring out the names
of the users in the ““To:”’ and *‘Cc:”’ lists relative to the current machine, If the original letter was sent to
you by someone on the local machine, then this problem does not exist, but if the message came from a
remote machine, the problem must be dealt with. Mail uses a heuristic to build the correct name for each
user relative to the local machine. So, when you reply to remote mail, the names in the ‘*To:’’ and ‘‘Cc:”
lists may change somewhat.

4.3. Special recipients

As described previously, you can send mail to either user names or alias names. It is also possible to
send messages directly to files or to programs, using special conventions. If a recipient name has a ‘/’ in it
or begins with a ‘+’, it is assumed to be the path name of a file into which to send the message. If the file
already exists, the message is appended to the end of the file. If you want to name a file in your current
directory (ie, one for which a ‘/* would not usually be needed) you can precede the name with ‘./” So, to
send mail to the file ‘“memo’’ in the current directory, you can give the command:

% Mail /memo

USD:7-10 Mail Reference Manual

If the name begins with a ‘+,’ it is expanded into the full path name of the folder name in your folder direc-
tory. This ability to send mail to files can be used for a variety of purposes, such as maintaining a journal
and keeping a record of mail sent to a certain group of users. The second example can be done automati-
cally by including the full pathname of the record file in the alias command for the group. Using our previ-
ous alias example, you might give the command:

alias project sam sally steve susan /usr/project/mail_record

Then, all mail sent to "project” would be saved on the file ‘‘/usr/project/mail_record’’ as well as being sent
to the members of the project. This file can be examined using Mail —f.

It is sometimes useful to send mail directly to a program, for example one might write a project bill-
board program and want to access it using Mail. To send messages to the billboard program, one can send
mail to the special name ‘|billboard’ for example. Mail treats recipient names that begin with a ‘|’ as a pro-
gram to send the mail to. An alias can be set up to reference a |’ prefaced name if desired. Caveats: the
shell treats ‘|’ specially, so it must be quoted on the command line. Also, the ‘| program’ must be presented
as a single argument to mail. The safest course is to surround the entire name with double quotes. This
also applies to usage in the alias command. For example, if we wanted to alias ‘rmsgs’ to ‘rmsgs —s’ we
would need to say:

alias rmsgs "| rmsgs -s"

Mail Reference Manual USD:7-11

5. Additional features

This section describes some additional commands useful for reading your mail, setting options, and
handling lists of messages.

5.1, Message lists

Several Mail commands accept a list of messages as an argument. Along with type and delete,
described in section 2, there is the from command, which prints the message headers associated with the
message list passed to it. The from command is particularly useful in conjunction with some of the mes-
sage list features described below.

A message list consists of a list of message numbers, ranges, and names, separated by spaces or tabs.
Message numbers may be either decimal numbers, which directly specify messages, or one of the special
characters ““T** *“”* or ‘‘$” to specify the first relevant, current, or last relevant message, respectively.
Relevant here means, for most commands *‘not deleted’’ and “‘deleted’’ for the undelete command.

A range of messages consists of two message numbers (of the form described in the previous para-
graph) separated by a dash. Thus, to print the first four messages, use

type 14
and to print all the messages from the current message to the last message, use
type ~$
A name is a user name. The user names given in the message list are collected together and each
message selected by other means is checked to make sure it was sent by one of the named users. If the

message consists entirely of user names, then every message sent by one those users that is relevant (in the
sense described earlier) is selected. Thus, to print every message sent to you by ‘‘root,”” do

type root
~ As a shorthand notation, you can specify simply ‘‘*’’ to get every relevant (same sense) message.
Thus, .
type *
prints all undeleted messages,
delete *
deletes all undeleted messages, and
undelete *
undeletes all deleted messages.

You can search for the presence of a word in subject lines with /., For example, to print the headers
of all messages that contain the word *“PASCAL,”’ do:

from /pascal
Note that subject searching ignores upper/lower case differences.

5.2. List of commands
This section describes all the Mail commands available when receiving mail.
! Used to preface a command to be executed by the shell.

— The — command goes to the previous message and prints it. The — command may be given a decimal
number 2 as an argument, in which case the nth previous message is gone to and printed.

Print Like print, but also print out ignored header fields. See also print and ignore.

Reply
Note the capital R in the name. Frame a reply to a one or more messages. The reply (or replies if
you are using this on multiple messages) will be sent ONLY to the person who sent you the message

(respectively, the set of people who sent the messages you are replying to). You can add people
using the "t and “c tilde escapes. The subject in your reply is formed by prefacing the subject in the

USD:7-12 ' Mail Reference Manual

original message with ‘‘Re:”’ unless it already began thus. If the original message included a
“‘reply-to’’ header field, the reply will go only to the recipient named by *‘reply-to.”” You type in
your message using the same conventions available to you through the mail command. The Reply
command is especially useful for replying to messages that were sent to enormous distribution
groups when you really just want to send a message to the originator. Use it often.

Type Identical to the Print command.

alias Define a name to stand for a set of other names. This is used when you want to send messages toa
certain group of people and want to avoid retyping their names. For example

alias project john sue willie kathryn
creates an alias project which expands to the four people John, Sue, Willie, and Kathryn.

alternates

If you have accounts on several machines, you may find it convenient to use the /usr/libvaliases on all
the machines except one to direct your mail to a single account. The alternates command is used to
inform Mail that each of these other addresses is really you. Alternates takes a list of user names and
remembers that they are all actually you. When you reply to messages that were sent to one of these
alternate names, Mail will not bother to send a copy of the message to this other address (which
would simply be directed back to you by the alias mechanism). If alternates is given no argument, it
lists the current set of alternate names. Alternates is usually used in the .mailrc file,

chdir The chdir command allows you to change your current directory. Chdir takes a smgle argument,
which is taken to be the pathname of the directory to change to. If no argument is given, chdir
changes to your home directory.

copy The copy command does the same thmg that save does, except that it does not mark the messages it
is used on for deletion when you quit.

delete
Deletes a list of messages. Deleted messages can be reclaimed with the undelete command.

dp These

commands delete the current message and print the next message. They are useful for quickly read-
ing and disposing of mail.

edit To edit individual messages using the text editor, the edit command is provided. The edit command
takes a list of messages as described under the type command and processes each by writing it into
the file Messagex where x is the message number being edited and executing the text editor on it.
When you have edited the message to your satisfaction, write the message out and quit, upon which
Mail will read the message back and remove the file. Edit may be abbreviated to e.

else Marks the end of the then-part of an if statement and the beginning of the part to take effect if the
condition of the if statement is false.

endif Marks the end of an if statement.

exit Leave Mail without updating the system mailbox or the file your were reading. Thus, if you acciden-
tally delete several messages, you can use exit to avoid scrambling your mailbox.

file The same as folder.

folders
List the names of the folders in your folder directory.

folder
The folder command switches to a new mail file or folder. With no arguments, it tells you which file
you are currently reading. If you give it an argument, it will write out changes (such as deletions)
you have made in the current file and read the new file. Some special conventions are recognized for
the name:

Mail Reference Manual USD:7-13

Name Meaning

Previous file read

% Your system mailbox
%name Name’s system mailbox
& Your “/mbox file

+folder A file in your folder directory

from The from command takes a list of messages and prints out the header lines for each one; hence

from joe
is the easy way to display all the message headers from ‘joe.”’

headers

help
hold

if

When you start up Mail to read your mail, it lists the message headers that you have. These headers
tell you who each message is from, when they were sent, how many lines and characters each mes-
sage is, and the ‘‘Subject:”’ header field of each message, if present. In addition, Mai! tags the mes-
sage header of each message that has been the object of the preserve command with a “‘P.”’ Mes-
sages that have been saved or written are flagged with a ‘“*.”’ Finally, deleted messages are not
printed at all. If you wish to reprint the current list of message headers, you can do so with the
headers command. The headers command (and thus the initial header listing) only lists the first so
many message headers. The number of headers listed depends on the speed of your terminal. This
can be overridden by specifying the number of headers you want with the window option. Mail
maintains a notion of the current ‘‘window”’ into your messages for the purposes of printing headers.
Use the z command to move forward and back a window. You can move Mail's notion of the
current window directly to a particular message by using, for example,

headers 40

to move Mail's attention to the messages around message 40. The headers command can be abbre-
viated to h.

Print a brief and usually out of date help message about the commands in Mail. The man page for
mail is usually more up-to-date than either the help message or this manual.
Arrange to hold a list of messages in the system mailbox, instead of moving them to the file mbox in
your home directory. If you set the binary option hold, this will happen by default.
Commands in your *“.mailrc’’ file can be executed conditionally depending on whether you are send-
ing or receiving mail with the if command. Fer example, you can do:

if receive

commands...

endif

An else form is also available:

if send

commands...
else

commands...
endif

Note that the only allowed conditions are receive and send.

ignore

list

Add the list of header fields named to the ignore list. Header fields in the ignore list are not printed
on your terminal when you print a message. This allows you to suppress printing of certain
machine-generated header fields, such as Via which are not usually of interest. The Type and Print
commands can be used to print a message in its entirety, including ignored fields. If ignore is exe-
cuted with no arguments, it lists the current set of ignored fields.

List the vaild Mail commands.

USD:7-14 | . Mail Reference Manual

mail Send mail to one or more people. If you have the ask option set, Mail will prompt you for a subject
to your message. Then you can type in your message, using tilde escapes as described in section 4 to
edit, print, or modify your message. To signal your satisfaction with the message and send it, type
control-d at the beginning of a line, or a . alone on a line if you set the option dot. To abort the mes-
sage, type two interrupt characters (RUBOUT by default) in a row or use the “q escape.

mboxIndicate that a list of messages be sent to mbox in your home directory when you quit. This is the
default action for messages if you do nor have the hold option set.

next The next command goes to the next message and types it. If given a message list, next goes to the
first such message and types it. Thus,

next root

goes to the next message sent by “‘root’’ and types it. The next command can be abbreviated to sim-
ply a newline, which means that one can go to and type a message by simply giving its message
number or one of the magic characters ***** .’ or *‘$"’. Thus,

prints the current message and
4
prints message 4, as described previously.

preserve
Same as hold. Cause a list of messages to be held in your system mailbox when you quit.

print Takes a message list and types out each message on the terminal.

quit Leave Mail and update the file, folder, or system mailbox your were reading. Messages that you
have examined are marked as ‘‘read’’ and messages that existed when you started are marked as
“old.”” If you were editing your system mailbox and if you have set the binary option hold, all mes-
sages which have not been deleted, saved, or mboxed will be retained in your system mailbox. If
you were editing your system mailbox and you did not have hold set, all messages which have not
been deleted, saved, or preserved will be moved to the file mbox in your home directory.

reply Frame a reply to a single message. The reply will be sent to the person who sent you the message to
which you are replying, plus all the people who received the original message, except you. You can
add people using the "t and “c tilde escapes. The subject in your reply is formed by prefacing the
subject in the original message with ‘‘Re:’’ unless it already began thus. If the original message
included a ‘‘reply-to’’ header field, the reply will go only to the recipient named by ‘‘reply-to.”’ You
type in your message using the same conventions available to you through the mail command.

save It is often useful to be able to save messages on related topics in a file. The save command gives you

ability to do this. The save command takes as argument a list of message numbers, followed by the

name of the file on which to save the messages. The messages are appended to the named file, thus

allowing one to keep several messages in the file, stored in the order they were put there. The save

- command can be abbreviated to s. An example of the save command relative to our running exam-
pleis:

s 1 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor are they selected by the next
command described above, unless explicitly specified.

set Set an option or give an option a value. Used to customize Mail. Section 5.3 contains a list of the
options. Options can be binary, in which case they are on or off, or valued. To set a binary option
option on, do

set option
To give the valued option option the value value, do
set option=value
Several options can be specified in a single set command.

Mail Reference Manual USD:7-15

shell The shell command allows you to escape to the shell. Shell invokes an interactive shell and allows
you to type commands to it. When you leave the shell, you will return to Mail, The shell used is a
default assumed by Mail; you can override this default by setting the valued option ‘‘SHELL,”’ eg:

set SHELL =/bin/csh

source
The source command reads Mail commands from a file. It is useful when you are trying to fix your
‘“.mailrc’’ file and you need to re-read it.

top The top command takes a message list and prints the first five lines of each addressed message. It
may be abbreviated to to. If you wish, you can change the number of lines that top prints out by set-
ting the valued option ‘‘toplines.’’ On a CRT terminal,
set toplines=10
might be preferred.
type Print a list of messages on your terminal. If you have set the option cr¢ to a number and the total

number of lines in the messages you are printing exceed that specified by crt, the messages will be
printed by a terminal paging program such as more.

undelete
The undelete command causes a message that had been deleted previously to regain its initial status.
Only messages that have been deleted may be undeleted. This command may be abbreviated to u.

unset Reverse the action of setting a binary or valued option.

visuallt is often useful to be able to invoke one of two editors, based on the type of terminal one is using.
To invoke a display oriented editor, you can use the visual command. The operation of the visual
command is otherwise identical to that of the edit command.

Both the edit and visual commands assume some default text editors. These default editors can be
overridden by the valued options ‘‘EDITOR’’ and ‘“VISUAL’’ for the standard and screen editors.
You might want to do:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

write The save command always writes the entire message, including the headers, into the file. If you
want to write just the message itself, you can use the write command. The write command has the
same syntax as the save command, and can be abbreviated to simply w. Thus, we could write the
second message by doing:

w2 file.c

As suggested by this example, the write command is useful for such tasks as sending and receiving
source program text over the message system.

z Mail presents message headers in windowfuls as described under the headers command. You can
move Mail’s attention forward to the next window by giving the

Z+
command. Analogously, you can move to the previous window with:
z—

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This section
describes each of the options in alphabetical order, including some that you have not seen yet. To avoid
confusion, please note that the options are either all lower case letters or all upper case letters. When I start
a sentence such as: ‘‘Ask’’ causes Mail to prompt you for a subject header, I am only capitalizing ‘‘ask’’
as a courtesy to English.

EDITOR

The valued option ‘“EDITOR’’ defines the pathname of the text editor to be used in the edit com-
mand and “e. If not defined, a standard editor is used.

USD:7-16 . Mail Reference Manual

SHELL
The valued option ‘‘SHELL”’ gives the path name of your shell. This shell is used for the ! com-
mand and ! escape. In addition, this shell expands file names with shell metacharacters like * and ?
in them.

VISUAL
The valued option ‘‘VISUAL”’ deﬁnes the pathname of your screen editor for use in the visual com-
mand and “v escape. A standard screen editor is used if you do not define one.

append
The “‘append’’ option is binary and causes messages saved in mbox to be appended to the end rather
than prepended. Normally, Mailwill mbox in the same order that the system puts messages in your
system mailbox. By setting ‘‘append,”’ you are requesting that mbox be appended to regardless. Itis
in any event quicker to append.

ask ‘‘Ask’ is a binary option which causes Mail to prompt you for the subject of each message you
send. If you respond with simply a newline, no subject field will be sent.

askec **Askcc’’ is a binary option which causes you to be prompted for additional carbon copy recipients
at the end of each message. Responding with a newline shows your satisfaction with the current list.

autoprint
‘“Autoprint’’ is a binary option which causes the delete command to behave like dp — thus, after
deleting a message, the next one will be typed automatically. This is useful to quickly scanning and
deleting messages in your mailbox.

debug
The binary option ‘‘debug’’ causes debugging information to be displayed. Use of this option is the
same as useing the

—d command line flag.

dot “‘Dot” is a binary option which, if set, causes Mail to interpret a period alone on a line as the termi-
nator of a message you are sending.
escape
To allow you to change the escape character used when sendxng mail, you can set the valued opuon
‘‘escape.”’ Only the first character of the ‘‘escape’’ option is used, and it must be doubled if it is to
appear as the first character of a line of your message. If you change your escape character, then ~
loses all its special meaning, and need no longer be doubled at the beginning of a line.

folder
The name of the directory to use for storing folders of messages. If this name begins with a ‘/* Mail
considers it to be an absolute pathname; otherwise, the folder directory is found relative to your
home directory.

hold The binary option ‘‘hold”’ causes messages that have been read but not manually dealt with to be
held in the system mailbox. This prevents such messages from being automatically swept into your
mbox.

ignore
The binary option “‘ignore’’ causes RUBOUT characters from your terminal to be ignored and echoed
as @’s while you are sending mail. RUBOUT characters retain their original meaning in Mail com-
mand mode. Setting the ‘“ignore’’ option is equivalent to supplymg the —i flag on the command line
as described in section 6.

ignoreeof
An option related to ‘“dot’’ is *‘ignoreeof’’ which makes Mail refuse to accept a control—d as the end
of a message. ‘‘Ignoreeof’’ also applies to Mail command mode.

keep The “‘keep’’ option causes Mail to truncate your system mailbox instead of deleting it when it is
empty. This is useful if you elect to protect your mailbox, which you would do with the shell com-
mand:

chmod 600 /usr/spool/mail/yourname
where yourname is your login name. If you do not do this, anyone can probably read your mail,

Mail Reference Manual USD:7-17

although people usually don’t.

keepsave
When you save a message, Mail usually discards it when you quit. To retain all saved messages, set
the ‘‘keepsave’’ option.

metoo
When sending mail to an alias, Mail makes sure that if you are included in the alias, that mail will
not be sent to you. This is useful if a single alias is being used by all members of the group. If how-
ever, you wish to receive a copy of all the messages you send to the alias, you can set the binary
option ‘‘metoo.”’

noheader
The binary option ‘‘noheader’’ suppresses the printing of the version and headers when Mail is first
invoked. Setting this option is the same as using —N on the command line.

nosave
Normally, when you abort a message with two RUBOUTs, Mail copies the partial letter to the file
‘‘dead.letter’’ in your home directory. Setting the binary option ‘‘nosave’’ prevents this.

quiet The binary option ‘‘quiet’’ suppresses the printing of the version when Mail is first invoked, as well
as printing the for example ‘‘Message 4:"’ from the type command.

record :
If you love to keep records, then the valued option ‘‘record’’ can be set to the name of a file to save
your outgoing mail. Each new message you send is appended to the end of the file.

screen
When Mail initially prints the message headers, it determines the number to print by looking at the
speed of your terminal. The faster your terminal, the more it prints. The valued option ‘‘screen’’
overrides this calculation and specifies how many message headers you want printed. This number is
also used for scrolling with the z command.

sendmail
To alternate delivery system, set the ‘‘sendmail’’ option to the full pathname of the program to use.
Note: this is not for everyone! Most people should use the default delivery system.

toplines
The valued option ‘‘toplines’’ defines the number of lines that the “‘top’’ command will print out
instead of the default five lines.

verbose
The binary option "verbose" causes Mail to invoke sendmail with the —v flag, which causes it to go
into versbose mode and announce expansion of aliases, etc. Setting the "verbose" option is
equivalent to invoking Mail with the —v flag as described in section 6.

USD:7-18 ’ Mail Reference Manual

6. Command line options

This section describes command line options for Mail and what they are used for.
~N Suppress the initial printing of headers.
-d Tumon debugging information. Not of general interest.

—f fileShow the messages in file instead of your system mailbox. If file is omitted, Mail reads mbox in your
home directory.

—-i Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious RUBOUT or
DELETE characters. It’s usually more effective to change your interrupt character to control—c, for
which see the sty shell command.

-n Inhibit reading of /usr/lib/Mail.rc. Not generally useful, since /usr/lib/Mail.rc is usually empty.

- string
Used for sending mail. String is used as the subject of the message being composed. If string con- -
tains blanks, you must surround it with quote marks.

—u name
Read names’s mail instead of your own. Unwitting others often neglect to protect their mailboxes,
but discretion is advised. Essentially, —u user is a shorthand way of doing —f /usr/spool/user.

-v Use the —v flag when invoking sendmail. This.feature may also be enabled by setting the the option
"verbose".

The following command line flags are also recognized, but are intended for use by programs invok-
ing Mail and not for people.
-T file

Arrange to print on file the contents of the article-id fields of all messages that were either read or
deleted. —T is for the readnews program and should NOT be used for reading your mail.

—h number
Pass on hop count information. Mai! will take the number, increment it, and pass it with —h to the
mail delivery system. —h only has effect when sending mail and is used for network mail forward-
ing.

~I name
Used for network mail forwarding: interpret name as the sender of the message. The name and—r
are simply sent along to the mail delivery system. Also, Mail will wait for the message to be sent
and return the exit status. Also restricts formatting of message.

Note that —-h and —r, which are for network mail forwarding, are not used in practice since mail for-
warding is now handled separately. They may disappear soon.

7. Format of messages

This section describes the format of messages. Messages begin with a from line, which consists of
the word ““From” followed by a user name, followed by anything, followed by a date in the format
returned by the ctime library routine described in section 3 of the Unix Programmer’s Manual. A possible
ctime format date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone indication, which should be
three capital letters, such as PDT.

Following the from line are zero or more header field lines. Each header field line is of the form:
name: information
Name can be anything, but only certain header fields are recognized as having any meaning. The recog-
nized header fields are: article-id, bce, cc, from, reply-to, sender, subject, and to. Other header fields are
also significant to other systems; see, for example, the current Arpanet message standard for much more on

this topic. A header field can be continued onto following lines by making the first character on the follow-
ing line a space or tab character.

Mail Reference Manual USD:7-19

If any headers are present, they must be followed by a blank line. The part that follows is called the
body of the message, and must be ASCII text, not containing null characters. Each line in the message
body must be terminated with an ASCII newline character and no line may be longer than 512 characters.
If binary data must be passed through the mail system, it is suggested that this data be encoded in a system
which encodes six bits into a printable character. For example, one could use the upper and lower case
letters, the digits, and the characters comma and period to make up the 64 characters. Then, one can send a
16-bit binary number as three characters. These characters should be packed into lines, preferably lines
about 70 characters long as long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This blank line
must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message each time
it is forwarded through a machine,

It should be noted that some network transport protocols enforce limits to the lengths of messages.

USD:7-20 » Mail Rel‘erence Manual

8. Glossary
This section contains the definitions of a few. phrases peculiar to Mail.
alias An alternative name for a person or list of people.
flag An option, given on the command line of Mail, prefaced with a —. For example, —f is a flag.

header field ,
At the beginning of a message, a line which contains information that is part of the structure of the
message. Popular header fields include o, cc, and subject.

mail A collection of messages. Often used in the phrase, ‘‘Have you read your mail?’’
mailbox
The place where your mail is stored, typically in the directory /ust/spool/mail.

message
A single letter from someone, initially stored in your mailbox.

message list
A string used in Mail command mode to describe a sequence of messages.

option
A piece of special purpose information used to tailor Mail to your taste. Options are specified with
the set command.

Mail Reference Manual

USD:7-21

9. Summary of commands, options, and escapes
This section gives a quick summary of the Mail commands, binary and valued options, and tilde

escapes.

The following table describes the commands:

Command

Description

!

Print
Reply
Type
alias
alternates
chdir
copy
delete
dt
endif
edit
else
exit

file
folder
folders
from
headers
help
hold

if
ignore
list
local
mail
mbox
next
preserve
quit
reply
save

set
shell
top
type
undelete
unset
visual
write

z

Single command escape to shell

Back up to previous message

Type message with ignored fields

Reply to author of message only

Type message with ignored fields

Define an alias as a set of user names

List other names you are known by

Change working directory, home by default
Copy a message to a file or folder

Delete a list of messages

Delete current message, type next message

End of conditional statement; see if

Edit a list of messages

Start of else part of conditional; see if

Leave mail without changing anything
Interrogate/change current mail file

Same as file

List the folders in your folder directory

List headers of a list of messages

List current window of messages

Print brief summary of Mail commands

Same as preserve

Conditional execution of Mail commands
Set/examine list of ignored header fields

List valid Mail commands

List other names for the local host

Send mail to specified names

Arrange to save a list of messages in mbox

Go to next message and type it

Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message

Append messages, headers included, on a file
Set binary or valued options

Invoke an interactive shell v
Print first so many (5 by default) lines of list of messages
Print messages

Undelete list of messages

Undo the operation of a set

Invoke visual editor on a list of messages
Append messages to a file, don’t include headers
Scroll to next/previous screenful of headers

USD:7-22 Mail Reference Manual

The following table describes the options. Each option is shown as being either a binary or
valued option,

Option Type Description
EDITOR valued Pathname of editor for “e and edit
SHELL valued Pathname of shell for shell, “! and !
VISUAL valued Pathname of screen editor for “v, visual
append binary Always append messages to end of mbox

ask binary Prompt user for Subject: field when sending
askcc binary Prompt user for additional Cc’s at end of message
autoprint binary Print next message after delete

crt valued Minimum number of lines before using more
debug binary Print out debugging information

dot binary Accept . alone on line to terminate message input
escape valued Escape character to be used instead of

folder valued Directory to store folders in

hold binary Hold messages in system mailbox by default
ignore binary Ignore RUBOUT while sending mail

ignoreeof binary Don’t terminate letters/command input with TD
keep binary Don’t unlink system mailbox when empty
keepsave binary Don’t delete saved messages by default

metoo binary Include sending user in aliases

noheader binary Suppress initial printing of version and headers
nosave binary Don’t save partial letter in dead.letter

quiet binary Suppress printing of Mail version and message numbers
record valued File to save all outgoing mail in

screen valued Size of window of message headers for z, etc.

sendmail valued Choose alternate mail delivery system
toplines valued Number of lines to print in top
verbose binary Invoke sendmail with the —v flag

The following table summarizes the tilde escapes available while sending mail.

1

Escape Arguments Description
! command Execute shell command
c name ... Add names to Cc: field
-d : Read dead.letter into message
‘e Invoke text editor on partial message
f messages Read named messages
"h Edit the header fields
m messages Read named messages, right shift by tab
P Print message entered so far
q Abort entry of letter; like RUBOUT
T Sfilename Read file into message
s string Set Subject: field to string
“t name ... Add names to To: field
v Invoke screen editor on message
W filename Write message on file
I

command Pipe message through command
string Quote a ~ in front of string

Mail Reference Manual

USD:7-23

The following table shows the command line flags that Mail accepts:

Flag

Description

-N

-T file
-d
—ffile
~h number
-i

-n

~I name
-8 string
—u name
-V

Suppress the initial printing of headers
Article-id’s of read/deleted messages to file
Turn on debugging

Show messages in file or “mbox

Pass on hop count for mail forwarding
Ignore tty interrupt signals

Inhibit reading of /usr/lib/Mail.rc

Pass on name for mail forwarding

Use string as subject in outgoing mail
Read name’s mail instead of your own
Invoke sendmail with the —v flag

Notes: —T, —d, —h, and —r are not for human use.

THE RAND MH
MESSAGE HANDLING
SYSTEM:
USER’S MANUAL

UCI/UCB Version

Marshall T. Rose
John L. Romine

Based on the original manual by
Borden, Gaines, and Shapiro

July 2, 1987
6.4 #2[UCI]

CONTENTS

READ THISccinucrnsrsnssncssssnsssnsassnsassoscssasssssasssssssssssosssssassssssssssssssssssssssssssssssssnsassossssstassssessossesssssssssssssassssossss

FOREWORD

ACKNOWLEDGMENTS

PREFACE

SUMMARY

Section

1. INTRODUCTIONucosiivnnnnisnsnsisssesssssssrassesssssessssssssssssssssssssssasssssassosssssscsssnssesssssessssssstssassssssssasesssosesseses

2. OVERVIEW ... icirennrersnennennsnmmsasssmssenssessssssssssssesssssssssssssssssassasasssssssasssassssasssassesssassassesssssarasssssosenseses

3. TUTORIAL

4. DETAILED DESCRIPTIONcccoccininiinntinnrasncsessassessssssasssssssssnssossssasssmsssassssssssnsnssssssssasssassosssssssonenssses
THE USER PROFILE
MESSAGE NAMING .
OTHER MH CONVENTIONScouciuieriencessasinsessssessecsssssssssssnssssssssssasssssssssassasssesssssssnssssssesmonsns
MH COMMANDScocuieeinininsasisisssismssssssssessasassssssssssssssssssssssssssessosssssassssssssssssssssssssanssssssesssssssesssessns

iv

10

11
12
13
14
16
18
20
22
25
27
29
33

38
40
41

45
46
49
50

RCVSTORE 52

REFILE 53
REPL 55
RMF 58
RMM 59
SCAN 60
SEND 62
SHOW 64
SORTM 66
VMH 67
WHATNOW 69
WHOM 71
MORE DETAILS . 72
MH-ALIAS 73
MH-FORMAT 76
MH-MAIL 79
MH-PROFILE . 82

AP 87
CONFLICTcuicvereemriseenecserenesssanenssssssesesssassassasssenssesessssasssnsssessssessssassssssasesssssssnsassssassnsseseanssses 88

DP 89
INSTALL-MH 90
POST ... 91

5. REPORTING PROBLEMS 93
6. ADVANCED FEATUREScccccivueverenmasssasacsnssnssesessessssssosseseasasssssssasssasssnsassssensassesesssasasasass 94
USER-DEFINED SEQUENCES R 94
Pick and User-Defined Sequences resreassereresasrenmasssntasesaenasasrinens 94
Mark and User—Defined SEQUENCESccrveeeacaercrasassessnssesrssssonsnarassssenssssssassssssessassassssssesasssssns 95
Public and Private User—Defined Sequences ceseeenseressnssasarereaserens e sssensnsrasessssestsnriss 95
SEQUENCE NEBALIONceiveeenrresssiresassnserssssasssaserasasasssssessessreressasassssssssnnasasssssasassssessnsnsssnssstscs 95

The Previous Sequence - treresaenserestssasatssssss s e anassaenss 96

The UnSEen SEQUENCEccceeererencacracssenensssesrercsssassesessaass R— 96
COMPOSITION OF MAIL . 96
The Draft Folder - 96
What Happens if the Draft EXiStScccvevivunsininscnsinssnisssisnisssssisinsusasasssssscnsassssssesassssessasssssoss 98

The Push Option at What now? Level “ “ 98
Options at What now? Level 98
Digests . 99
FOLDER HANDLING ‘ 100
Relative Folder Addressing 100

The Folder—Stack 100

Appendix

A. Command Summary 102

B. Message Name BNF ... 105

REFERENCES .

106

READ THIS

Although the MH system was originally developed by the Rand Corporation, and is now in the public domain,
the Rand Corporation assumes no responsibility for MH or this particular version of MH.

In addition, the Regents of the University of California issue the following disclaimer in regard to the
UCI/UCB version of MH:

‘* Although each program has been tested by its contributor, no warranty, express or implied, is made by the

mmbutotordleUmversxtyofCahforma,aswmeaccmacyandfuncnmmgofthepmgrammdrelated
program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is
assumed by the contributor or the University of California in connection herewith.”’

This version of MH is in the public domain, and as such, there are no real restrictions on its use. The MH
source code and documentation have no licensing restrictions whatsoever. As a courtesy, the authors ask only that
you provide appropriate credit to the Rand Corporation and the University of California for having developed the
software.

MH is a software package that is supported neither by the Rand Corporation nor the University of California.
However, since we do use the software ourselves and plan to continue using (and improving) MH, bug reports and
their associated fixes should be reported back to us so that we may include them in future releases. The current
computer mailbox for MH is Bug—-MH@UCLEDU (in the ARPA Internet), and ..!ucbvax!ucivax!bug—mh
(UUCP). Presently, there are two Internet discussion groups, MH-Users@UCLEDU and
MH-Workers@UCLEDU. If there is sufficient interest, corresponding Usenet news groups may be established
along with the appropriate gateways.

The Rand MH Message Handling System USD:8-i

FOREWORD

This document describes the Rand MH Message Handling System. Its primary purpose is to serve as a user’s
manual. It has been heavily based on a previous version of the manual, prepared by Bruce Borden, Stockton
Gaines, and Norman Shapiro.

MH is a particularly novel system, and thus it is often more prone to change than other pieces of production
software. As such, some specific points in this manual may not be correct in the future. In all cases, the on-line

sections of this manual, available through the UNIX! man command, should present the most current information.

When reading this document as a user’s manual, certain sections are more interesting than others. The Pre-
face and Summary are not particularly interesting to those interested in leaming MH. The Introduction is slightly
more interesting, as it touches upon the organization of the remainder of this document. The most useful sections
are the Overview, Tutorial, and Detailed Description. The Overview should be read by all MH users, regardless of
their expertise (beginning, novice, advanced, or hacker). The Tutorial should be read by all beginning and novice
MH users, as it presents a nice description of the MH system. The Detailed Description should be read by the
day-to—day user of MH, as it spells out all of the realities of the MH system. The Advanced Features section
discusses some powerful MH capabilities for advanced users. Appendix A is particularly useful for novices, as it
summarizes the invocation syntax of all the MH commands.

There are also several other documents which may be useful to you: The Rand MH Message Handling Sys-
tem: Tutorial, which is a tutorial for MH; The Rand MH Message Handling System: The UCI BBoards Facility,
which describes the BBoards handling under MH; MH.5: How to process 200 messages a day and still get some real
work done, which was presented at the 1985 Summer Usenix Conference and Exhibition in Portland, Oregon; MH:
A Multifarious User Agent, which has been accepted for publication by Computer Networks; MZnet: Mail Service
for Personal Micro—Computer Systems, which was presented at the First International Symposium on Computer
Message Systems in Nottingham, U.K.; and, Design of the TII Prototype Trusted Mail Agent, which describes a
proprietary ‘‘trusted’’ mail system built on MH. All of these documents exist in the mh.6 distribution sent to your
site. There’s also a document, Changes to the Rand MH Message Handling System: MH.6, which describes
user—visible changes made to MH since the last major release.

This manual is very large, as it describes a large, powerful system in gruesome detail. The important thing to
remember is:

DON’T PANIC?

As explained in the tutorial, you really need to know only 5§ commands to handle most of your mail.

Very advanced users may wish to consult The Rand MH Message Handling System: Administrator's Guide,
which is also present in the mh.6 distribution sent to your site.

! UNIX is a trademark of AT&T Bell Laboratories.
2 Note the large, friendly letters.

USD:8-ii The Rand MH Message Handling System

ACKNOWLEDGMENTS

The MH system described herein is based on the original Rand MH system. It has been extensively developed
(perhaps too much so) by Marshall T. Rose and John L. Romine at the University of California, Irvine. Einar A,
Stefferud, Jerry N. Sweet, and Terry P. Domae provided numerous suggestions to improve the UCI version of MH.
Of course, a large number of people have helped MH/ along. The list of ‘‘MH immortals’’ is too long to list here.
However, Van Jacobson deserves a special acknowledgement for his tireless work in improving the performance of
MH. Some programs have been speeded-up by a factor of 10 or 20. All of users of MH, everywhere, owe a special
thanks to Van.

This manual is based on the original MH manual written at Rand by Bruce Borden, Stockton Gaines, and Nor-
man Shapiro.

The Rand MH Message Handling System USD:8-iii

PREFACE

This report describes a system for dealing with messages transmitied on a computer. Such messages might
originate with other users of the same computer or might come from an outside source through a network to which
the user’s computer is connected. Such computer-based message systems are becoming increasingly widely used,
both within and outside the Department of Defense.

The message handling system MH was developed for two reasons. One was to investigate some research
ideas concerning how a message system might take advantage of the architecture of the UNIX time-sharing operat-
ing system for Digital Equipment Corporation PDP-11 and VAX computers, and the special features of UNIX's
command-level interface with the user (the ‘‘shell’’). The other reason was to provide a better and more adaptable
base than that of conventional designs on which to build a command and control message system. The effort has
succeeded in both regards, although this report mainly describes the message system itself and how it fits in with
UNIX. :

The present report should be of interest to three groups of readers. First, it is a complete reference manual for
the users of MH. Second, it should be of interest to those who have a general knowledge of computer-based mes-
sage systems, both in civilian and military applications. Finally, it should be of interest to those who build large
subsystems that interface with users, since it illustrates a new approach to such interfaces.

The original MH system was developed by Bruce Borden, using an approach suggested by Stockton Gaines
and Norman Shapiro. Valuable assistance was provided by Phyllis Kantar in the later stages of the system’s imple-
mentation, Several colleagues contributed to the ideas included in this system, particularly Robert Anderson and
David Crocker. In addition, valuable experience in message systems, and a valuable source of ideas, was available
to us in the form of a previous message system for UNIX called MS, designed at Rand by David Crocker.

This report was originally prepared as part of the Rand project entitled ‘‘Data Automation Research’’, spon-
sored by Project AIR FORCE.

USD:8-iv The Rand MH Message Handling System

SUMMARY

Electronic communication of text messages is becoming commonplace. Computer-based message
systems—software packages that provide tools for dealing with messages—are used in many contexts. In particular,
message systems are becoming increasingly important in command and control and intelligence applications.

This report describes a message handling system called MH. This system provides the user with tools to com-
pose, send, receive, store, retrieve, forward, and reply to messages. MH has been built on the UNIX time-sharing
system, a popular operating system developed for the DEC PDP-11 and VAX classes of computers.

A complete description of MH is given for users of the system. For those who do not intend to use the sys-
tem, this description gives a general idea of what a message system is like. The system involves some new ideas
about how large subsystems can be constructed.

The interesting and unusual features of MH include the following: The user command interface to MH is the
UNIX ““‘shell’’ (the standard UNIX command interpreter). Each separable component of message handling, such as
message composition or message display, is a separate command. Each program is driven from and updates a
private user environment, which is stored as a file between program invocations. This private environment also con-
tains information to *‘custom tailor’’ MH to the individual’s tastes. MH stores each message as a separate file under
UNIX, and it utilizes the tree-structured UNIX file system to organize groups of files within separate directories or
‘‘folders’’. All of the UNIX facilities for dealing with files and directories, such as renaming, copying, deleting,
cataloging, off-line printing, etc., are applicable to messages and directories of messages (folders). Thus, important
capabilities needed in a message system are available in MH without the need (often seen in other message systems)
for code that duplicates the facilities of the supporting operating system. It also allows users familiar with the shell
to use MH with minimal effort.

The Rand MH Message Handling System USD:8-v

1. INTRODUCTION

Although people can travel cross-country in hours and can reach others by telephone in seconds, communica-
tions still depend heavily upon paper, most of which is distributed through the mails.

There are several major reasons for this continued dependence on written documents. First, a written docu-
ment may be proofread and corrected prior to its distribution, giving the author complete control over his words.
Thus, a written document is better than a telephone conversation in this respect. Second, a carefully written docu-
ment is far less likely to be misinterpreted or poorly transiated than a phone conversation. Third, a signature offers
reasonable verification of authorship, which cannot be provided with media such as telegrams.

However, the need for fast, accurate, and reproducible document distribution is obvious. One solution in
widespread use is the telefax. Another that is rapidly gaining popularity is electronic mail. Electronic mail is simi-
lar to telefax in that the data to be sent are digitized, transmitted via phone lines, and turned back into a document at
the receiver. The advantage of electronic mail is in its compression factor. Whereas a telefax must scan a page in
very fine lines and send all of the black and white information, electronic mail assigns characters fixed codes which
can be transmitted as a few bits of information. Telefax presently has the advantage of being able to transmit an
arbitrary page, including pictures, but electronic mail is beginning to deal with this problem. Electronic mail also
integrates well with current directions in office automation, allowing documents prepared with sophisticated equip-
ment at one site to be quickly transferred and printed at another site.

Currently, most electronic mail is intraorganizational, with mail transfer remaining within one computer. As
computer networking becomes more common, however, it is becoming more feasible to communicate with anyone
whose computer can be linked to your own via a network.

The pioneering efforts on general-purpose electronic mail were by organizations using the DoD ARPAnet[1].
The capability to send messages between computers existed before the ARPAnet was developed, but it was used
only in limited ways. With the advent of the ARPAnet, tools began to be developed which made it convenient for
individuals or organizations to distribute messages over broad geographic areas, using diverse computer facilities.
The interest and activity in message systems has now reached such proportions that steps have been taken within the
DoD to coordinate and unify the development of military message systems. The use of electronic mail is expected
to increase dramatically in the next few years. The utility of such systems in the command and control and intelli-
gence environments is clear, and applications in these areas will probably lead the way. As the costs for sending
and handling electronic messages continue their rapid decrease, such uses can be expected to spread rapidly into
other areas and, of course, will not be limited to the DoD.

A message system provides tools that help users (individuals or organizations) deal with messages in various
ways. Messages must be composed, sent, received, stored, retrieved, forwarded, and replied to. Today’s best
interactive computer systems provide a variety of word-processing and information handling capabilities. The mes-
sage handling facilities should be well integrated with the rest of the system, so as to be a graceful extension of
overall system capability.

The message system described in this report, MH, provides most of the features that can be found in other
message systems and also incorporates some new ones. It has been built on the UNIX time-sharing system[2], a
popular operating system for the DEC PDP-11' and VAX-11 classes of computers. A ‘‘secure’’ operating system
similar to UNIX is currently being developed([3], and that system will also run MH.

This report provides a complete description of MH and thus may serve as a user’s manual, although parts of
the report will be of interest to non-users as well. Sections 2 and 3, the Overview and Tutorial, present the key ideas
of MH and will give those not familiar with message systems an idea of what such systems are like.

MH consists of a set of commands which use some special files and conventions. The final section is divided
into three parts. The first part covers the information a user needs to know in addition to the commands. Then, each
of the MH commands is described in detail. Finally, other obscure details are revealed. A summary of the com-
mands is given in Appendix A, and the syntax of message sequences is given in Appendix B.

! PDP and VAX are trademarks of Digital Equipment Corporation.

The Rand MH Message Handling System USD:8-2

A novel approach has been taken in the design of MH. Instead of creating a large subsystem that appears as a
single command to the user (such as MS[4]), MH is a collection of separate commands which are run as separate
programs. The file and directory system of UNIX are used directly. Messages are stored as individual files
(datasets), and collections of them are grouped into directories. In contrast, most other message systems store mes-
sages in a complicated data structure within a monolithic file. With the MH approach, UNIX commands can be
interleaved with commands invoking the functions of the message handler. Conversely, existing UNIX commands
can be used in connection with messages. For example, all the usual UNIX editing, text-formatting, and printing
facilities can be applied directly to individual messages. MH, therefore, consists of a relatively small amount of
new code; it makes extensive use of other UNIX software to provide the capabilities found in other message sys-
tems. ~

2. OVERVIEW

There are three main aspects of MH : the way messages are stored (the message database), the user’'s
profile (which directs how certain actions of the message handler take place), and the commands for dealing with
messages.

Under MH, each message is stored as a separate file. A user can take any action with a message that he could
with an ordinary file in UNIX. A UNIX directory in which messages are stored is called a folder. Each folder con-
tains some standard entries to support the message-handling functions. The messages in a folder have numerical
names. These folders (directories) are entries in a particular directory path, described in the user profile, through
which MH can find message folders. Using the UNIX ““link’’ facility, it is possible for one copy of a message to be
‘“filed’’ in more than one folder, providing a message index facility. Also, using the UNIX tree-structured file sys-
tem, it is possible to have a folder within a folder, nested arbitrarily deep, and have the full power of the MH com-
mands available.

Each user of MH has a user profile, a file in his SHOME (initial login) directory called .mh_profile. This
profile contains several pieces of information used by the MH commands: a path name to the directory that contains
the message folders and parameters that tailor MH commands to the individual user’s requirements. There is also
another file, called the user context, which contains information concerning which folder the user last referenced
(the *‘current’’ folder). It also contains most of the necessary state information concerning how the user is dealing
with his messages, enabling MH to be implemented as a set of individual UNIX commands, in contrast to the usual
approach of a monolithic subsystem.

In MH, incoming mail is appended to the end of a file in a system spooling area for the user. This area is
called the mail drop directory, and the file is called the user’s mail drop. Normally when the user logins in, s/he is
informed of new mail (or the MH program msgchk may be run). The user adds the new messages to his/her collec-
tion of MH messages by invoking the command inc. The inc (incorporate) command adds the new messages to a
folder called ‘‘inbox’’, assigning them names which are consecutive integers starting with the next highest integer
available in inbox. inc also produces a scan summary of the messages thus incorporated. A folder can be com-
pacted into a single file, for easy storage, by using the packf command. Also, messages within a folder can be sorted
by date and time with the sortm command.

There are four commands for examining the messages in a folder: show, prev, next, and scan. The show
command displays a message in a folder, prev displays the message preceding the current message, and next
displays the message following the current message. MH lets the user choose the program that displays individual
messages. A special program, mhl, can be used to display messages according to the user’s preferences. The scan
command summarizes the messages in a folder, normally producing one line per message, showing who the mes-
sage is from, the date, the subject, etc.

The user may move a message from one folder to another with the command refile. Messages may be
removed from a folder by means of the command rmm. In addition, a user may query what the current folder is and
may specify that a new folder become the current folder, through the command folder. All folders may be summar-
ized with the folders command. A message folder (or subfolder) may be removed by means of the command rmy.

A set of messages based on content may be selected by use of the command pick. This command searches
through messages in a folder and selects those that match a given set of criteria. These messages are then bound to
a ‘‘sequence’’ name for use with other MH commands. The mark command manipulates these sequences.

There are five commands enabling the user to create new messages and send them: comp, dist, forw, repl, and
send. The comp command provides the facility for the user to compose a new message; dist redistributes mail to
additional addressees; forw enables the user to forward messages; and rep! facilitates the generation of a reply to an
incoming message. The last three commands may optionally annotate the original message. Messages may be arbi-
trarily annotated with the anno command. Once a draft has been constructed by one of the four above composition
programs, a user—specifiable program is run to query the user as to the disposition of the draft prior to sending. MH
provides the simple whatnow program to start users off. If a message is not sent directly by one of these commands,
it may be sent at a later time using the command send. MH allows the use of any UNIX editor when composing a
message. For rapid entry, a special editor, prompter, is provided. For programs, a special mail-sending program,

USD:8-3 - The Rand MH Message Handling System

The Rand MH Message Handling System USD:8-4

mhmail, is provided.

MH supports a personal aliasing facility which gives users the capability to considerably shorten address
typein and use meaningful names for addresses. The ali program can be used to query MH as to the expansion of a
list of aliases. After composing a message, but prior to sending, the whom command can be used to determine
- exactly who a message would go to.

MH provides a natural interface for telling the user’s shell the names of MH messages and folders. The
mbhpath program achieves this capability.

The burst command can be used to ‘‘shred’’ digests of messages into individual messages.

All of the elements summarized above are described in more detail in the following sections. Many of the
normal facilities of UNIX provide additional capabilities for dealing with messages in various ways. For example,
it is possible to print messages on the line-printer without requiring any additional code within MH . Using stan-
dard UNIX facilities, any terminal output can be redirected to a file for repeated or future viewing. In general, the
ﬂexxbxhtyandcapablhnesofﬂleUND(mterfacewnththeusermpmservedasamsultofmemcgranonofuﬂmto
the UNIX structure.

3. TUTORIAL

This tutorial provides a brief introduction to the MH commands. It should be sufficient to allow the user to
read his mail, do some simple manipulations of it, and create and send messages.

A message has two major pieces: the header and the body. The body consists of the text of the message
(whatever you care to type in). It follows the header and is separated from it by an empty line. (When you compose
a message, the form that appears on your terminal shows a line of dashes after the header. This is for convenience
and is replaced by an empty line when the message is sent.) The header is composed of several components, includ-
ing the subject of the message and the person to whom it is addressed. Each component starts with a name and a
colon; components must not start with a blank. The text of the component may take more than one line, but each
continuation line must start with a blank. Messages typically have ‘‘To:’’, “‘cc:’’, and ‘‘Subject:”’ components.
When composing a message, you should include the *‘To:’’ and *‘Subject:’’ components; the “‘cc:’’ (for people you
want to send copies to) is not necessary.

The basic MH commands are inc, scan, show, next, prev, rmm, comp, and repl. These are described below.
inc v :
When you get the message ‘“You have mail’’, type the command inc. You will get a “*scan listing’’ such as:

7+ 713 Cas revival of measurement work
8 10/ 9 Norm NBS people and publications
9 11/26 To:norm question «Are there any functions _
This shows the messages you received since the last time you executed this command (inc adds these new
messages to your inbox folder). You can see this list again, plus a list of any other messages you have, by using the
scan command.

scan

The scan listing shows the message number, followed by the date and the sender. (If you are the sender, the
addressee in the ‘“To:’’ component is displayed. You may send yourself a message by including your name among
the ‘“To:’’ or ‘‘cc:”’ addressees.) It also shows the message’s subject; if the subject is short, the first part of the
body of the message is included after the characters «.

show

This command shows the current message, that is, the first one of the new messages after an inc. If the mes-
sage is not specified by name (number), it is generally the last message referred to by an MH command. For exam-
ple, , . : .

show § will show message 5.
You can use the show command to copy a message or print a message.

show > x will copy the message to file x.
show | lpr will print the message, using the [pr command.

next will show the message that follows the current message.
prev will show the message previous to the current message.
rmm will remove the current message.

rmm 3 will remove message 3.

USD:8-5 The Rand MH Message Handling System

The Rand MH Message Handling System , USD:8-6

comp

The comp command puts you in the editor to write or edit a message. Fill in or delete the ‘“To:"’, “‘cc:’’, and
‘‘Subject:”’ fields, as appropriate, and type the body of the message. Then exit normally from the editor. You will
be asked ‘““What now?’’. Type a carriage return to see the options. Typing send will cause the message to be sent;
typing quit will cause an exit from comp, with the message draft saved.

If you quit without sending the message, it will be saved in a file called <name>/Mail/draft (where <name> is
your SHOME directory). You can resume editing the message later with ‘‘comp —use’’; or you can send the mes-
sage later, using the send command.

comp —editor prompter

This command uses a different editor and is useful for preparing ‘‘quick and dirty’’ messages. It prompts you
for each component of the header. Type the information for that component, or type a carriage return to omit the
component. After that, type the body of the message. Backspacing is the only form of editing allowed with this edi-
tor. When the body is complete, type a carriage return followed by <EOT> (usually <CTRL-D>). This completes
the initial preparation of the message; from then on, use the same procedures as with comp (above).

repl
repl n

This command makes up an initial message form with a header that is appropriate for replying to an existing
message. The message being answered is the current message if no message number is mentioned, or n if a number
is specified. After the header is completed, you can finish the message as in comp (above).

This is enough information to get you going using MH. There are more commands, and the commands
described here have more features. Subsequent sections explain MH in complete detail. The system is quite power-
ful if you want to use its sophisticated features, but the foregoing commands suffice for sending and receiving mes-
sages.

There are numerous additional capabilities you may wish to explore. For example, the pick command will
select a subset of messages based on specified criteria such as sender and/or subject. Groups of messages may be
designated, as described in Sec. IV, under Message Naming. The file .mh_profile can be used to tailor your use of
the message system to your needs and preferences, as described in Sec. IV, under The User Profile. In general, you
may learn additional features of the system selectively, according to your requirements, by studying the relevant
sections of this manual. There is no need to learn all the details of the system at once.

4. DETAILED DESCRIPTION

This section describes the MH system in detail, including the components of the user profile, the conventions
for message naming, and some of the other MH conventions. Readers who are generally familiar with computer
systems will be able to follow the principal ideas, although some details may be meaningful only to those familiar
with UNIX. '

THE USER PROFILE

The first time an MH command is issued by a new user, the system prompts for a ‘‘Path’’ and creates an MH
‘‘profile”’. ~

Each MH user has a profile which contains tailoring information for each individual program. Other profile
entries control the MH path (where folders and special files are kept), folder and message protections, editor selec-
tion, and default arguments for each MH program. Each user of MH also has a context file which contains current
state information for the MH package (the location of the context file is kept in the user’s MH directory, or may be
named in the user profile). When a folder becomes the current folder, it is recorded in the user’s context. (Other
state information is kept in the context file, see the manual entry for mh—profile (5) for more details.) In general,
the term *‘profile entry’’ refer to entries in either the profile or context file. Users of MH needn’t worry about the
distinction, MH handles these things automatically.

The MH profile is stored in the file .mh_profile in the user’s SHOME directory'. It has the format of a mes-
sage without any body. That is, each profile entry is on one line, with a keyword followed by a colon (:) followed
by text particular to the keyword.
=> This file must not have blank lines.

The keywords may have any combination of upper and lower case. (See the information of mh—mail later on in this
manual for a description of message formats.)

For the average MH user, the only profile entry of importance is ‘‘Path’’. Path specifies a directory in which
MH folders and certain files such as ‘‘draft’’ are found. The argument to this keyword must be a legal UNIX path
that names an existing directory. If this path is not absolute (i.e., does not begin with a /), it will be presumed to
start from the user’s SHOME directory. All folder and message references within MH will relate to this path unless
full path names are used.

Message protection defaults to 644, and folder protection to 711. These may be changed by profile entries
‘‘Msg-Protect’’ and ‘‘Folder-Protect’’, respectively. The argument to these keywords is an octal number which is
used as the UNIX file mode?.

When an MH program starts running, it looks through the user’s profile for an entry with a keyword matching
the program’s name. For example, when comp is run, it looks for a ‘‘comp’’ profile entry. If one is found, the text
of the profile entry is used as the default switch setting until all defaults are overridden by explicit switches passed
to the program as arguments. Thus the profile entry ‘‘comp: —form standard.list’’ would direct comp to use the file
‘‘standard.list’’ as the message skeleton. If an explicit form switch is given to the comp command, it will override
the switch obtained from the profile.

In UNIX, a program may exist under several names, either by linking or aliasing. The actual invocation name
is used by an MH program when scanning for its profile defaults®. Thus, each MH program may have several names

by which it can be invoked, and each name may have a different set of default switches. For example, if comp is
invoked by the name icomp, the profile entry “‘icomp’’ will control the default switches for this invocation of the

! By defining the environment variable $SMH, you can specify an alternate profile to be used by MH commands.
2 See chmod (1) in the UNIX Programmer’s Manual [5).

3 Unfortunately, the shell does not preserve aliasing information when calling a program, hence if a program is invoked by an alias different
than its name, the program will examine the profile entry for its name, not the alias that the user invoked it ag. The correct solution is to create a
(soft) link in your SHOME!/bin directory to the MH program of your choice. By giving this link a different name, you can use an alternate set of
defaults for the command.

USD:8-7 The Rand MH Message Handling System

The Rand MH Message Handling System USD:8-8

comp program. This provides a powerful definitional facility for commonly used switch settings.

The default editor for editing within comp, repl, forw, and dist, is usually prompter, but might be something
else at your site, such as /usr/ucblex or /binle. A different editor may be used by specifying the profile entry ‘‘Edi-
tor: ’’. The argument to ‘‘Editor’’ is the name of an executable program or shell command file which can be found
via the user’s S$PATH defined search path, excluding the current directory. The ‘‘Editor:’’ profile specification may
in turn be overridden by a ‘—editor <editor>’ profile switch associated with comp, repl, forw, or dist. Finally, an
explicit editor switch specified with any of these four commands will have ultimate precedence.

During message composition, more than one editor may be used. For example, one editor (such as
prompter) may be used initially, and a second editor may be invoked later to revise the message being composed
(see the discussion of comp in Section S for details). A profile entry *‘<lasteditor>—next: <editor>’’ specifies the
name of the editor to be used after a particular editor. Thus ‘‘comp: —e prompter’’ causes the initial text to be col-
lected by prompter, and the profile entry ‘‘prompter—next: ed’’ names ed as the editor to be invoked for the next
round of editing.

Some of the MH commands, such as show, can be used on message folders owned by others, if those folders
are readable. However, you cannot write in someone else’s folder. All the MH command actions not requiring
write permission may be used with a *‘read-only’’ folder.

Table 1 lists examples of some of the currently defined profile entries, typical arguments, and the programs
that reference the entries.

USD:8-9 The Rand MH Message Handling System

Table 1
PROFILE COMPONENTS
MH Programs that
Keyword and Argument use Component
Path: Mail All
Current-Folder: inbox Most
Editor: /usr/ucb/ex comp, dist, forw, repl
Msg-Protect: 644 inc
Folder—Protect: 711 inc, pick, refile
<program>: default switches All
prompier—next: ed comp, dist, forw, repl

Path should be present. Current—Folder is maintained automatically by many MH commands (see the Con-
text sections of the individual commands in Sec. IV). All other entries are optional, defaulting to the values
described above.

MESSAGE NAMING

Messages may be referred to explicitly or implicitly when using MH commands. A formal syntax of message
names is given in Appendix B, but the following description should be sufficient for most MH users. Some details
of message naming that apply only to certain commands are included in the description of those commands.

Most of the MH commands accept arguments specifying one or more folders, and one or more messages to
operate on. The use of the word ‘‘msg’’ as an argument to a command means that exactly one message name may
be specified. A message name may be a number, such as 1, 33, or 234, or it may be one of the ‘‘reserved’’ message
names: first, last, prev, next, and cur. (As a shorthand, a period (.) is equivalent to cur.) The meanings of these
names are straightforward: “‘first’”’ is the first message in the folder; ‘‘last’’ is the last message in the folder;
‘‘prev’’ is the message numerically previous to the current message; ‘‘next’’ is the message numerically following
the current message; ‘‘cur’’ (or *‘.”’) is the current message in the folder. In addition, MH supports
user—defined—sequences; see the description of the mark command for more information.

The default in commands that take a ‘‘msg’’ argument is always ‘‘cur’’.

The word ‘‘msgs’’ indicates that several messages may be specified. Such a specification consists of several
message designations separated by spaces. A message designation is either a message name or a message range. A
message range is a specification of the form namel-name2 or namel:n, where namel and name2 are message
names and n is an integer. The first form designates all the messages from namel to name?2 inclusive; this must be a
non-empty range. The second form specifies up to n messages, starting with name1 if namel is a number, or first,
cur, or next, and ending with namel if namel is last or prev. This interpretation of n is overridden if n is preceded
by a plus sign or a minus sign; +n always means up to n messages starting with namel, and —n always means up to n
messages ending with namel, Repeated specifications of the same message have the same effect as a single
specification of the message. Examples of specifications are:

157-1122
first 6 8 next
first-10
last:5

The message name “‘all’’ is a shorthand for *“first—last’’, indicating all of the messages in the folder.

In commands that accept ‘‘msgs’’ arguments, the default is either cur or all, depending on which makes more
sense.

The Rand MH Message Handling System USD:8-10

In all of the MH commands, a plus sign preceding an argument indicates a folder name. Thus, ‘‘+inbox’’ is
the name of the user’s standard inbox. If an explicit folder argument is given to an MH command, it will become -
the current folder (that is, the ‘‘Current-Folder:’’ entry in the user’s profile will be changed to this folder). In the
. case of the refile command, which can have multiple output folders, a new source folder (other than the default
current folder) is specified by ‘—src +folder’.

OTHER MH CONVENTIONS

One very powerful feature of MH is that the MH commands may be issued from any current directory, and the
proper path to the appropriate folder(s) will be taken from the user’s profile. If the MH path is not appropriate for a
specific folder or file, the automatic prepending of the MH path can be avoided by beginning a folder or file name
with /, or with / or ./ component. Thus any specific absolute path may be specified along with any path relative to
the current working directory.

Arguments to the various programs may be given in any order, with the exception of a few switches whose
arguments must follow immediately, such as ‘~src +folder’ for refile.

Whenever an MH command prompts the user, the valid options will be listed in response to a <RETURN>.
(The first of the listed options is the default if end-of-file is encountered, such as from a command file.) A valid
response is any unique abbreviation of one of the listed options.

Standard UNIX documentation conventions are used in this report to dmnbe MH command syntax. Argu-
ments enclosed in brackets ([]) are optional; exactly one of the arguments enclosed within braces ({ }) must be
specified, and all other arguments are required. The use of ellipsis dots (...) indicates zero or more repetitions of the
previous item. For example, ‘‘+folder ...”” would indicate that one or more ‘‘+folder’’ arguments is required and
**[+folder ...]”’ indicates that O or more ‘‘+folder’’ arguments may be given.

MH departs from UNIX standards by using switches that consist of more than one character, e.g. ‘—header’.
To minimize typing, only a unique abbreviation of a switch need be typed; thus, for ‘~header’, ‘—hea’ is probably
sufficient, depending on the other switches the command accepts. Each MH program accepts the switch ‘—help’
(which must be spelled out fully) and produces a syntax description and a list of switches. In the list of switches,
parentheses indicate required characters. For example, all ‘~help’ switches will appear as ‘‘—(help)’’, indicating
that no abbreviation is accepted. Furthermore, the ‘~help’ switch tells the version of the MH program you invoked.

Many MH switches have both on and off forms, such as ‘~format’ and ‘~noformat’. In many of the descrip-
tions which follow, only one form is defined; the other form, often used to nullify profile switch settings, is assumed
to be the opposite.

USD:8-11

MH COMMANDS

The Rand MH Message Handling System

The MH package comprises several programs:

ali (1)
anno (1)
burst (1)
comp (1)
dist(1)
folder (1)
folders (1)
forw (1)
inc (1)
mark (1)
mhl (1)
mhmail (1)
mhook (1)
mhpath (1)
msgchk (1)
msh (1)
next (1)
packf (1)
pick (1)
prev (1)
prompter (1)
revstore (1)
refile (1)
repl (1)
rmf (1)
rmm (1)
scan (1)
send (1)
show (1)
sortm (1)
vmh (1)
whatnow (1)
whom (1)

These programs are described below. The form of the descriptions conforms to the standard form for the

description of UNIX commands.

- list mail aliases

- annotate messages

— explode digests into messages

~ COmpose a message

- redistribute a message to additional addresses
- set/list current folder/message

— list all folders

— forward messages

— incorporate new mail

— mark messages

— produce formatted listings of MH messages
— send or read mail

— MH receive—mail hooks

— print full pathnames of MH messages and folders
— check for messages

— MH shell (and BBoard reader)

— show the next message

— compress a folder into a single file

- select messages by content

- show the previous message

— prompting editor front end

- incorporate new mail asynchronously

— file messages in other folders

— reply to a message

— remove folder

— remove messages

— produce a one line per message scan listing
- send a message

— show (list) messages

— sort messages

- visual front-end to MH

— prompting front—end for send

- report to whom a message would go

ALI() The Rand MH Message Handling System USD:8-12

NAME
ali - list mail aliases
SYNOPSIS
ali [-alias aliasfile] (—list] [-nolist] [-normalize] [-nonormalize] [—user] [-nouser] aliases ... [~help]
DESCRIPTION
Ali searches the named mail alias files for each of the given aliases. It creates a list of addresses for those
aliases, and writes that list on standard output. If the ‘~list’ option is specified, each address appears on a
separate line; otherwise, the addresses are separated by commas and printed on as few lines as possible.
The ‘~user’ option directs ali to perform its processing in an inverted fashion: instead of listing the
addresses that each given alias expands to, ali will list the aliases that expand to each given address. If the
‘~normalize’ switch is given, ali will try to track down the official hostname of the address.
Each alias is processed as described in mh—alias (5).
Flles
$HOME/.mh_profile The user profile
letc/passwd - List of users
/etc/group List of groups
Profile Components
None
See Also
mh-—alias(5)
Defaults
‘~alias /usr/new/lib/mh/MailAliases’
‘—nolist’
‘~nonormalize’
‘~nouser’
Context
None
Bugs

The ‘—user’ option with ‘—nonormalize’ is not entirely accurate, as it does not replace local nicknames for
hosts with their official site names.

[mh.6] ' MH UCI/UCB version

USD:8-13 The Rand MH Message Handling System ANNO(1)

NAME

anno — annotate messages

SYNOPSIS

anno [+folder] [msgs] [-component field] [-inplace] [-noinplace] [-text body] [~help]

DESCRIPTION

Anno annotates the specified messages in the named folder using the field and body. Annotation is option-
ally performed by dist, forw, and repl, to keep track of your distribution of, forwarding of, and replies to a
message. By using anno, you can perform arbitrary annotations of your own. Each message selected will
be annotated with the lines

field: date
field: body

The ‘~inplace’ switch causes annotation to be done in place in order to preserve links to the annotated mes-
sage.

The field specified should be a valid 822-style message field name, which means that it should consist of
alphanumerics (or dashes) only. The body specified is arbitrary text.

If a ‘—component field’ is not specified when anno is invoked, anno will prompt the user for the name of
field for the annotation.

Flles
$SHOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder
See Also
dist (1), forw (1), repl (1)
Defaults
‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘-~noinplace’
Context

[mh.6]

If a folder is given, it will become the current folder. The first message annotated will become the current
message. '

MH UCI/UCB version

BURST(1) The Rand MH Message Handling System USD:8-14

NAME
burst — explode digests into messages

SYNOPSIS
burst [+folder] [msgs] [-inplace] [~noinplace] [—quiet] [-noquiet] [-verbose] [-noverbose] [—help]

DESCRIPTION

Burst considers the specified messages in the named folder to be Internet digests, and explodes them in that
folder.

If ‘—inplace’ is given, each digest is replaced by the ‘‘table of contents’’ for the digest (the original digest
is removed). Burst then renumbers all of the messages following the digest in the folder to make room for
each of the messages contained within the digest. These messages are placed immediately after the digest.

If ‘~noinplace’ is given, each digest is preserved, no table of contents is produced, and the messages con-
tained within the digest are placed at the end of the folder. Other messages are not tampered with in any
way.

The ‘—quiet’ switch directs burst to be silent about reporting messages that are not in digest format.
The ‘—verbose’ switch directs burst to tell the user the general actions that it is taking to explode the digest.

It turns out that burst works equally well on forwarded messages and blind—carbon—copies as on Internet
digests, provided that the former two were generated by forw or send,

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder
Msg—Protect: To set mode when creating a new message

See Also
Proposed Standard for Message Encapsulation (aka RFC-934),
inc(1), msh(1), pack(1)

Defaults
‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘~noinplace’
‘~noquiet’
‘—noverbose’

Context
If a folder is given, it will become the current folder. If ‘~inplace’ is given, then the first message burst
becomes the current message. This leaves the context ready for a show of the table of contents of the
digest, and a next to see the first message of the digest. If ‘—noinplace’ is given, then the first message
extracted from the first digest burst becomes the current message. This leaves the context in a similar, but
not identical, state to the context achieved when using ‘~inplace’,

[mh.6] MH ' UCI/UCB version

USD:8-18 The Rand MH Message Handling System BURST(1)

[mh.6]

The burst program enforces a limit on the number of messages which may be burst from a single message.
This number is on the order of 1000 messages. There is usually no limit on the number of messages which
may reside in the folder after the bursting.

Although burst uses a sophisticated algorithm to determine where one encapsulated message ends and
another begins, not all digestifying programs use an encapsulation algorithm. In degenerate cases, this
usually results in burst finding an encapsulation boundary prematurely and splitting a single encapsulated
message into two or more messages. These erroneous digestifying programs should be fixed.

Furthermore, any text which appears after the last encapsulated message is not placed in a seperate
message by burst. In the case of digestified messages, this text is usally an ‘‘End of digest’’ string. As a
result of this possibly un—friendly behavior on the part of burst, note that when the ‘—inplace’ option is
used, this trailing information is lost. In practice, this is not a problem since correspondents usually place
remarks in text prior to the first encapsulated message, and this information is not lost.

MH UCI/UCB version

COMP(1) The Rand MH Message Handling System USD:8-16

NAME

comp — compose a message

SYNOPSIS

comp [+folder] [msg] [draftfolder +folder] [—draftmessage msg) [-nodraftfolder] [—editor editor]
[~noedit] [file file] [~form formfile] [-use] [-nouse] [-~whatnowproc program]
[-nowhatnowproc] [-help]

DESCRIPTION

Flles

[mh.6]

Comp is used to create a new message to be mailed. It copies a message form to the draft being composed
and then invokes an editor on the draft (unless ‘—noedit’ is given, in which case the initial edit is
suppressed).

The default message form contains the following elements:

To:
cc
Subject:

If the file named ‘‘components’’ exists in the user’s MH directory, it will be used instead of this form. The
file specified by ‘~form formfile’ will be used if given. You may also start comp using the contents of an
existing message as the form. If you supply either a ‘+folder’ or ‘msg’ argument, that message will be
used as the form. You may not supply both a ‘~form formfile’ and a ‘+folder’ or ‘msg’ argument. The line
of dashes or a blank line must be left between the header and the body of the message for the message to be
identified properly when it is sent (see send (1)). The switch ‘—use’ directs comp to continue editing an
already started message. That is, if a comp (or dist, repl, or forw) is terminated without sending the draft,
the draft can be edited again via ‘‘comp —use’’.

If the draft already exists, comp will ask you as to the disposition of the draft. A reply of quit will abort
comp, leaving the draft intact; replace will replace the existing draft with the appropriate form; list will
display the draft; use will use the draft for further composition; and refile +folder will file the draft in the
given folder, and give you a new draft with the appropriate form. (The ‘+folder’ argument to refile is
required.)

The ‘~draftfolder +folder’ and ‘—draftmessage msg’ switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

The ‘file file’ switch says to use the named file as the message draft.

Upon exiting from the editor, comp will invoke the whatnow program. See whatnow (1) for a discussion
of available options. The invocation of this program can be inhibited by using the ‘-nowhatmowproc’
switch. (In truth of fact, it is the whatnow program which starts the initial edit. Hence, ‘~nowhatnowproc’
will prevent any edit from occurring.)

/ust/new/lib/mh/components The message skeleton
or <mh—dir>/components Rather than the standard skeleton
$HOME/.mh_profile The user profile
<mh—dir>/draft The draft file
MH UCI/UCB version

USD:8-17

Profile Componeats
Path:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:

whatnowproc:

See Also

The Rand MH Message Handling System

To determine the user’s MH directory

To find the default draft—folder

To override the default editor

To set mode when creating a new message (draft)
Program to refile the message

Program to ask the ‘‘What now?’’ questions

disy(1), forw(1), repl(1), send(1), whatnow(1)

‘+folder’ defaults to the current folder
‘msg’ defaults to the current message

Defaults
‘—nodraftfolder’
‘~nouse’
Context
None
Bugs

COMP(1)

If whatnowproc is whatnow, then comp uses a built—in whatnow, it does not actually run the whatnow
program. Hence, if you define your own whatnowproc, don’t call it whatnow since comp won’t run it.

[mh.6]

MH

UCY/UCB version

DIST(1) The Rand MH Message Handling System USD:8-18

NAME
dist - redistribute a message to additional addresses

SYNOPSIS
dist [+folder] [msg] [-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder]
[—editor editor] [-noedit] [-form formfile] [-inplace} [-noinplace] {~whatnowproc program]
[-nowhatnowproc] [~help]

DESCRIPTION

Dist is similar to forw. It prepares the specified message for redistribution to addresses that (presumably)
are not on the original address list.

The default message form contains the following elements:

Distribution-to:
Distribution-cc:

If the file named ‘‘distcomps’” exists in the user’s MH dmectory it will be used instead of this form. In
either case, the file specified by ‘—form formfile’ will be used if given. The form used will be prepended to
the message being resent.

If the draft already exists, dist will ask you as to the disposition of the draft. A reply of quit will abort dist,
leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will display
the draft.

Only those addresses in ‘‘Resent-To:’’, ‘‘Resent—cc:”’, and ‘‘Resent—Bcc:”’ will be sent. Also, a
*‘Resent—Fcc: folder’” will be honored (see send (1)). Note that with dist, the draft should contain only
‘‘Resent—xxx:’’ fields and no body. The headers and the body of the original message are copied to the
draft when the message is sent. Use care in constructing the headers for the redistribution.

If the ‘~annotate’ switch is given, the message being distributed will be annotated with the lines:

Resent: date
Resent: addrs

where each address list contains as many lines as required. This annotation will be done only if the mes-
sage is sent directly from dist. If the message is not sent immediately from dist, ‘‘comp —use’’ may be
used to re—edit and send the constructed message, but the annotations won’t take place. The '—inplace’
switch causes annotation to be done in place in order to preserve links to the annotated message.

See comp (1) for a description of the ‘—editor’ and ‘—noedit’ switches. Note that while in the editor, the
message being resent is available through a link named ‘‘@’’ (assuming the default whatnowproc). In
addition, the actual pathname of the message is stored in the environment variable $editalt, and the path-
name of the folder containing the message is stored in the environment variable $mhfolder.

The ‘—draftfolder +folder’ and ‘~draftmessage msg’ switches invoke the MH draft folder facility. This is

an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

Upon exiting from the editor, dist will invoke the whatnow program. See whatnow (1) for a discussion of .

available options. The invocation of this program can be inhibited by using the ‘—nowhatnowproc’ switch.

(In truth of fact, it is the whatnow program which starts the initial edit. Hence, ‘~nowhatnowproc’ will

prevent any edit from occurring.)

[mh.6] | MH UCI/UCB version

USD:8-19 The Rand MH Message Handling System DIST(1)

Flles

/usr/new/libymhvdistcomps The message skeleton

or <mh—dir>/distcomps Rather than the standard skeleton
$SHOME/.mh_profile The user profile

<mh-dir>/draft The draft file

Profile Components

See Also

Defaults

Context

History

Bugs

[mh.6}

Path: To determine the user’s MH directory
Current-Folder: To find the defauit current folder
Draft-Folder: To find the default draft—folder

Editor: To override the default editor

fileproc: Program to refile the message
whatnowproc: Program to ask the ‘‘What now?’’ questions

comp(1), forw(1), repl(1), send(1), whatnow(1)

‘+folder’ defaults to the current folder
‘msg’ defaults to cur

‘-~noannotate’

‘—nodrafitfolder’

‘~noinplace’

If a folder is given, it will become the current folder. The message distributed will become the current
message.

Dist originally used headers of the form ‘‘Distribute—xxx:’’ instead of ‘‘Resent—xxx:’’. In order to
conform with the ARPA Internet standard, RFC-822, the ‘‘Resent—xxx:"’ form is now used. Dist will
recognize *‘Distribute—xxx:"’ type headers and automatically convert them to ‘‘Resent—xxx:’’.

Dist does not rigorously check the message being distributed for adherence to the transport standard, but
post called by send does. The post program will balk (and rightly so) at poorly formatted messages, and
dist won’t correct things for you.

If whatnowproc is whatnow, then dist uses a built-in whatnow, it does not actually run the whatnow
program. Hence, if you define your own whatnowproc, don’t call it whatnow since dist won’t run it.

If your current working directory is not writable, the link named ‘@’ is not available.

MH UCL/UCB version

FOLDER(I) The Rand MH Message Handling System USD:8-20

NAME

folder, folders — set/list current folder/message

SYNOPSIS

folder [+folder] {msg] [-all] [—fast] [-nofast] [~header] [-noheader] [—pack] [-nopack] {—recurse]
[-norecurse] [—total] [-nototal] [-print] [-noprint] [-list] [-nolist] [-push] [-pop] [~help]

folders

DESCRIPTION

[mh.6]}

Since the MH environment is the shell, it is easy to lose track of the current folder from day to day.

When folder is given the ‘—print’ switch (the default), the current folder and/or message may be set, or all
folders may be listed. When a ‘+folder’ argument is given, this corresponds to a ‘‘cd’’ operation in the
CShell; when no ‘+folder’ argument is given, this carresponds roughly to a *‘pwd’’ operation in the CShell.

Folder will list the current folder, the number of messages in it, the range of the messages (low-high), and
the current message within the folder, and will flag extra files if they exist. An example of the output is:

inbox+ has 16 messages (3— 22);cur= §.

If a ‘+folder’ and/or ‘msg’ are specified, they will become the current folder and/or message. Specifying
‘~all’ will produce a line for each folder in the user’s MH directory, sorted alphabetically. These folders
are preceded by the read—only folders, which occur as ‘‘atr—cur—'’ entries in the user’s MH context. For

example,

Folder # of messages (range) cur msg (other files)
/fsd/rs/m/tacc has 35 messages (1- 35); cur= 23,
/md/phyl/Mail/EP has 82 messages (1-108); cur= 82,

ff has no messages.

inbox+ has 16 messages (3- 22);cur= 3§,

mh has 76 messages (1- 76); cur= 70.

notes has 2messages(1- 2);cur= 1,

ucom has 124 messages (1-124); cur= 6; (others).
TOTAL-= 339 messages in 7 folders

The *“+’’ after inbox indicates that it is the current folder. The ‘‘(others)’’ indicates that the folder ‘ucom’
has files which aren’t messages. These files may either be sub—folders, or files that don’t belong under the
MH file naming scheme.

The header is output if either an ‘~all’ or a ‘~header’ switch is specified; it is suppressed by ‘—noheader’.
Also, if folder is invoked by a name ending with ‘‘s’’ (e.g., folders), ‘~all’ is assumed. A ‘—total’ switch
will produce only the summary line.

If a ‘+folder’ and/or ‘msg’ is given along with the ‘-all’ switch, folder will, in addition to setting the
current folder and/or message, list the top—level folders for the current folder (with ‘~norecurse’) or list all
folders under the current folder recursively (with ‘—recurse’).

If ‘“—fast’ is given, only the folder name (or names in the case of ‘—all’) will be listed. (This is faster
because the folders need not be read.)

The ‘~pack’ switch will compress the message names in a folder, removing holes in message numbering.
The ‘—recurse’ switch will list each folder recursively. Use of this option effectively defeats the speed

enhancement of the ‘—fast’ option, since each folder must be searched for subfolders. Nevertheless, the
combination of these options is useful.

MH UCI/UCB version

USD:8-21 The Rand MH Message Handling System FOLDER(1)

If the specified (or default) folder doesn’t exist, the user will be queried if the folder should be created.
(This is the easy way to create an empty folder for use later.)

The ‘—push’ switch directs folder to push the current folder onto the folder—stack, and make the ‘+folder’
argument the current folder. If ‘+folder’ is not given, the current folder and the top of the folder—stack are
exchanged. This corresponds to the “‘pushd’’ operation in the CShell.

The ‘—pop’ switch directs folder to discard the top of the folder—stack, after setting the current folder to
that value. No ‘+folder’ argument is allowed. This corresponds to the ‘‘popd’’ operation in the CShell.
The ‘—push’ switch and the ‘—pop’ switch are mutually exclusive: the last occurrence of either one over-
rides any previous occurrence of the other.

The “~list’ switch directs folder to list the contents of the folder—stack. No ‘+folder’ argument is allowed.

After a successful ‘~push’ or ‘—pop’, the ‘-list’ action is taken. This corresponds to the ‘‘dirs’’ operation
in the CShell.

Files
$HOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder
Folder—Protect: To set mode when creating a new folder
Folder-Stack: To determine the folder stack
Isproc: Program to list the contents of a folder
See Also
refile(1), mhpath(1)
Defaults
‘+folder’ defaults to the current folder
‘msg’ defaults to none
‘~nofast’
‘—noheader’
‘~nototal’
‘~nopack’
‘~norecurse’
‘—print’ is the default if no ‘—list’, ‘—push’, or ‘—pop’ is specified
Context
If ‘+folder’ and/or ‘msg’ are given, they will become the current folder and/or message.
History ’

[mh.6]

In previous versions of MH, the ‘—fast’ switch prevented context changes from occurring for the current
folder. This is no longer the case: if ‘+folder’ is given, then folder will always change the current folder to
that.

MH UCI/UCB version

FORW(1) The Rand MH Message Handling System USD:8-22

NAME

forw — forward messages

SYNOPSIS

forw [+folder] [msgs] [-annotate] [-noannotate] [—draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [—editor editor] [-noedit] [filter filterfile] [~form formfile] [—format]
[-noformat] [-inplace] [~noinplace] [-whatnowproc program] [-nowhatnowproc] [-help]

forw [+folder] [msgs] [—digest list] [—issue number] [-volume number] [other switches for forw] [-help]

DESCRIPTION

{mh.6]

Forw may be used to prepare a message containing other messages. It constructs the new message from
the components file or ‘~form formfile’ (see comp), with a body composed of the message(s) to be for-
warded. An editor is invoked as in comp, and after editing is complete, the user is prompted before the
message is sent.

The default message form contains the following elements:

To:
cc:
Subject:

If the file named ‘‘forwcomps’’ exists in the user’s MH dlrectory it will be used instead of this form. In
either case, the file specified by ‘—form formfile’ will be used if given.

If the draft already exists, forw will ask you as to the disposition of the draft. A reply of quit will abort
forw, leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will
display the draft.

If the ‘~annotate’ switch is given, each message being forwarded will be annotated with the lines

Forwarded: date
Forwarded: addrs

where each address list contains as many lines as required. This annotation will be done only if the mes-
sage is sent directly from forw. If the message is not sent immediately from forw, ‘‘comp —use’’ may be
used to re—edit and send the constructed message, but the annotations won’t take place. The ’—inplace’
switch causes annotation to be done in place in order to preserve links to the annotated message.

See comp (1) for a description of the ‘~editor’ and ‘—noedit’ switches.

Although forw uses the ‘~form formfile’ switch to direct it how to construct the beginning of the draft, the
‘—filter filterfile’, ‘~format’, and ‘—noformat’ switches direct forw as to how each forwarded message
should be formatted in the body of the draft. If ‘—noformat’ is specified, then each forwarded message is
output exactly as it appears. If ‘—format’ or ‘—filter filterfile’ is specified, then each forwarded message is
filtered (re—formatted) prior to being output to the body of the draft. The filter file for forw should be a
standard form file for mhl, as forw will invoke mhl to format the forwarded messages. The default message
filter (what you get with ‘—format’) is:

MH UCI/UCB version

USD:8-23 The Rand MH Message Handling System FORW(1)

width=80,0overflowtext=,overflowoffset=10
leftadjust,compress,compwidth=9

From:

Date:formatfield="%<(nodate{text})%{text}%|% (putstr(tws {text}))%>"
To:

cc:
Subject:
i:ody:nooomponem,ova'ﬂowoffsetso,noleftadjnst,nocompress

If the file named ‘‘mhl.forward’’ exists in the user’s MH directory, it will be used instead of this form. In
either case, the file specified by ‘—filter filterfile’ will be used if given. To summarize: ‘-noformat’ will
reproduce each forwarded message exactly, ‘—format’ will use mhl and a default filterfile, ‘‘mhl.forward’’,
to format each forwarded message, and ‘—filter filterfile’ will use the named filterfile to format each for-
warded message with mhl.

Each forwarded message is separated with an encapsulation delimiter so that when received, the message is
suitable for bursting by burst (1).

For users of prompter (1), by specifying prompter’s ‘-prepend’ switch in the .mh_profile file, any com-
mentary text is entered before the forwarded messages. (A major win!) ’

The ‘—draftfolder +folder’ and ‘~draftmessage msg’ switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

Upon exiting from the editor, forw will invoke the whatnow program. See whatnow (1) for a discussion of
available options. The invocation of this program can be inhibited by using the ‘~nowhatnowproc’ switch.
(In truth of fact, it is the whatnow program which starts the initial edit. Hence, ‘—nowhatnowproc’ will
prevent any edit from occurring.)

The ‘—digest list’, ‘—issue number’, and ‘~volume number’ switches implement a digest facility for MH.
See the MH user’s manual for more information.

Files
/usr/new/lib/mh/forwcomps The message skeleton
or <mh—dir>/forwcomps Rather than the standard skeleton
/ust/new/lib/mh/digestcomps The message skeleton if ‘~digest’ is given
or <mh—dir>/digestcomps Rather than the standard skeleton
/usr/new/lib/mh/mhl.forward The message filter
or <mh—dir>/mhl.forward Rather than the standard filter
$HOME/.mh_profile The user profile
<mh—dir>/draft The draft file

Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder
Draft-Folder: To find the default draft—folder
Editor: To override the default editor
Msg—Protect: To set mode when creating a new message (draft)
fileproc: Program to refile the message
mhlproc: Program to filter messages being forwarded
whatnowproc: Program to ask the ‘“What now?’’ questions

See Also

[mh.6]

Proposed Standard for Message Encapsulation (aka RFC-934),
compy(1), dist(1), repl(1), send(1), whatnow(1)

MH UCI/UCB version

FORW(1) The Rand MH Message Handling System USD:8-24

Defaults
‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘~noannotate’
‘~nodraftfolder’
‘~noformat’
‘~noinplace’

Context
If a folder is given, it will become the current folder. The first message forwarded will become the current
message.

Bugs
If whatnowproc is whatnow, then forw uses a built-in whatnow, it does not actually run the whatmow
program. Hence, if you define your own whatnowproc, don’t call it whatnow since forw won’t run it.

When forw is told to annotate the messages it forwards, it doesn’t actually annotate them until the draft is
successfully sent. If from the whatnowproc, you push instead of send, it’s possible to confuse forw by
re—ordering the file (e.g., by using ‘folder —pack’) before the message is successfully sent. Dist and repl
don’t have this problem. ’

[mh.6] MH UCI/UCB version

USD:8-25 The Rand MH Message Handling System INC(1)

NAME

inc — incorporate new mail

SYNOPSIS

inc [+folder] [—audit audit—file] [-noaudit] [-changecur] [-nochangecur] [-form formatfile]
[~format string] [-file name] [-silent] [-nosilent] [-truncate] [-notruncate] [-width columns]
[~help]

DESCRIPTION

[mh.6]

Inc incorporates mail from the user’s incoming mail drop into an MH folder. If ‘4+folder’ isn’t specified,
the folder named “‘inbox’’ in the user’s MH directory will be used. The new messages being incorporated
are assigned numbers starting with the next highest number in the folder. If the specified (or default) folder
doesn’t exist, the user will be queried prior to its creation. As the messages are processed, a scan listing of
the new mail is produced.

If the user’s profile contains a ‘‘Msg—Protect: nnn’’ entry, it will be used as the protection on the newly
created messages, otherwise the MH default of 0644 will be used. During all operations on messages, this
initially assigned protection will be preserved for each message, so cimod(1) may be used to set a protec-
tion on an individual message, and its protection will be preserved thereafter.

If the switch ‘—audit audit—file’ is specified (usually as a default switch in the profile), then inc will append
a header line and a line per message to the end of the specified audit—file with the format:

«inc date
<scan line for first message>
<scan line for second message>
<etc.>

This is useful for keeping track of volume and source of incoming mail. Eventually, repl, forw, comp, and
dist may also produce audits to this (or another) file, perhaps with ‘‘Message-Id:”’ information to keep an
exact correspondence history. ‘‘Audit-file’’ will be in the user’s MH directory unless a full path is
specified.

Inc will incorporate even improperly formatted messages into the user’s MH folder, inserting a blank line
prior to the offending component and printing a comment identifying the bad message.

In all cases, the user’s mail drop will be zeroed, unless the ‘—notruncate’ switch is given.

If the profile entry ‘‘Unseen—Sequence’’ is present and non—empty, then inc will add each of the newly
incorporated messages to each sequence named by the profile entry. This is similar to the
‘‘Previous—Sequence’’ profile entry supported by all MH commands which take ‘msgs’ or ‘msg’ argu-
ments. Note that inc will not zero each sequence prior to adding messages.

The interpretation of the ‘—form formatfile’, ‘~format string’, and ‘~width columns’ switches is the same as
in scan (1).

By using the ‘-file name’ switch, one can direct inc to incorporate messages from a file other than the
user’s maildrop. Note that the name file will NOT be zeroed, unless the ‘~truncate’ switch is given.

If the environment variable SMAILDROP is set, then inc uses it as the location of the user’s maildrop
instead of the default (the ‘-file name’ switch still overrides this, however). If this environment variable is
not set, then inc will consult the profile entry ‘“MailDrop’’ for this information. If the value found is not
absolute, then it is interpreted relative to the user’s MH directory. If the value is not found, then inc will
look in the standard system location for the user’s maildrop.

The ‘-silent’ switch directs inc to be quiet and not ask any questions at all. This is useful for putting inc in

MH UCI/UCB version

INC(1) The Rand MH Message Handling System
the background and going on to other things.

Files
$SHOME/.mh_profile The user profile
/usr/new/lib/mh/mtstailor tailor file
/usr/spool/mail/$USER Location of mail drop

Profile Components
Path: To determine the user’s MH directory

See Also

Defaults

Context

Bugs

[mh.6]

Alternate—Mailboxes: To determine the user’s mailboxes

Folder-Protect: To set mode when creating a new folder

Msg-Protect: To set mode when creating a new message and audit—file
Unseen—Sequence: To name sequences denoting unseen messages

mhmail(1), scan(1), mh~mail(5), post(8)

‘+folder’ defaults to *‘inbox’’

‘-noaudit’

‘~changecur’

‘~format’ defaulted as described above

‘~nosilent’

‘~truncate’ if ‘—file name’ not given, ‘~notruncate’ otherwise
‘~width’ defaulted to the width of the terminal

USD:8-26

The folder into which messages are being incorporated will become the current folder. The first message
incorporated will become the current message, unless the ‘—nochangecur’ option is specified. This leaves

the context ready for a show of the first new message.

The argument to the ‘—format’ switch must be interpreted as a single token by the shell that invokes inc.

Therefore, one must usually place the argument to this switch inside double—quotes.

MH

UCI/UCB version

USD:8-27 The Rand MH Message Handling System MARK(1)

NAME

mark — mark messages

SYNOPSIS

mark [+folder] [msgs] [-sequence name ...] [-add] [—delete] [-list] [-public] [-nopublic] [-zero]
[-nozero] [-help]

DESCRIPTION

[mh.6]

The mark command manipulates message sequences by adding or deleting message numbers from
folder—specific message sequences, or by listing those sequences and messages. A message sequence is a
keyword, just like one of the ‘‘reserved’’ message names, such as ‘‘first’”” or ‘‘next’’. Unlike the
‘‘reserved’’ message names, which have a fixed semantics on a per—folder basis, the semantics of a mes-
sage sequence may be defined, modified, and removed by the user. Message sequences are folder—specific,
e.g., the sequence name ‘‘seen’’ in the context of folder ‘‘+inbox’’ need not have any relation whatsoever
to the sequence of the same name in a folder of a different name.

Three action switches direct the operation of mark. These switches are mutually exclusive: the last
occurrence of any of them overrides any previous occurrence of the other two.

The ‘~add’ switch tells mark to add messages to sequences or to create a new sequence. For each sequence
named via the ‘—sequence name’ argument (which must occur at least once) the messages named via
‘msgs’ (which defaults to ‘‘cur’’ if no ‘msgs’ are given), are added to the sequence. The messages to be
added need not be absent from the sequence. If the ‘—zero’ switch is specified, the sequence will be emp-
tied prior to adding the messages. Hence, ‘~add —zero’ means that each sequence should be initialized to
the indicated messages, while ‘—add —nozero’ means that each sequence should be appended to by the indi-
cated messages.

The ‘—delete’ switch tells mark to delete messages from sequences, and is the dual of ‘—add’. For each of
the named sequences, the named messages are removed from the sequence. These messages need not be
already present in the sequence. If the ‘—zero’ switch is specified, then all messages in the folder are
appended to the sequence prior to removing the messages. Hence, ‘—delete —zero’ means that each
sequence should contain all messages except those indicated, while ‘—delete —nozero’ means that only the
indicated messages should be removed from each sequence. As expected, the command
‘mark —sequence seen —delete all’ deletes the sequence ‘‘seen’’ from the current folder.

When creating (or modifying) a sequence, the ‘—public’ switch indicates that the sequence should be made
readable for other MH users. In contrast, the ‘—nopublic’ switch indicates that the sequence should be
private to the user’s MH environment.

The ‘—list’ switch tells mark to list both the sequences defined for the folder and the messages associated
with those sequences. Mark will list each sequence named via ‘—sequence name’ (or all of them if
‘~sequence’ isn’t used), and the messages associated with that sequence. The ‘-zero’ switch does not
affect the operation of ‘~list’.

The current restrictions on sequences are:

The name used to denote a message sequence must consist solely of alphabetic characters, and can not
be one of the ‘‘reserved’’ message names (e.g., ‘‘first’”’, “‘cur’’, and so forth).

Only a certain number of sequences may be defined for a given folder. This number is usually limited
to 10.

The name used to denote a message sequence can not occur as part of a message range, e.g., Constructs
like “‘seen:20’’ or “‘seen—10"’ are forbidden.

MH UCI/UCB version

MARK(1) The Rand MH Message Handling System
Files
$HOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder
See Also
pick (1)
Defaults

‘+folder’ defaults to the current folder

‘~add’ if ‘msgs’ is specified, ‘-list’ otherwise

‘msgs’ defaults to cur (or all if “—list’ is specified)
‘~nopublic’ if the folder is read—only, ‘—public’ otherwise
‘~nozero’

Context

If a folder is given, it will become the current folder.

[mh.6] MH

USD:8-28

UCI/UCB version

USD:8-29 The Rand MH Message Handling System MHL(1)

NAME

mhl - produce formatted listings of MH messages

SYNOPSIS

/ustr/new/lib/mh/mhl [-bell] [-nobell] [—clear] [-noclear] [-folder +folder] [~form formfile] [-length lines]
[~width columns] {~moreproc program] [-nomoreproc] [files ...] [—help]

DESCRIPTION

[mh.6]

Mhl is a formatted message listing program. It can be used as a replacement for more (1) (the default
showproc). As with more, each of the messages specified as arguments (or the standard input) will be
output, If more than one message file is specified, the user will be prompted prior to each one, and a
<RETURN> or <EOT> will begin the output, with <RETURN> clearing the screen (if appropriate), and
<EOT> (usually CTRL~D) suppressing the screen clear. An <INTERRUPT> (usually CTRL~C) will
abort the current message output, prompting for the next message (if there is one), and 2 <QUIT> (usually
CTRL-\) will terminate the program (without core dump).

The ‘~bell’ option tells mhl to ring the terminal’s bell at the end of each page, while the ‘—clear’ option
tells mhl to clear the scree at the end of each page (or output a formfeed after each message). Both of these
switches (and their inverse counterparts) take effect only if the profile entry moreproc is defined but empty,
and mhl is outputting t0 a terminal. If the moreproc entry is defined and non-empty, and mhl is outputting
to a terminal, then mhl will cause the moreproc to be placed between the terminal and mh!l and the switches
are ignored. Furthermore, if the ‘—clear’ switch is used and mh!’s output is directed to a terminal, then mhl
will consult the $STERM and STERMCAP environment variables to determine the user’s terminal type in
order to find out how to clear the screen. If the ‘—clear’ switch is used and mhl’s output is not directed to a
terminal (e.g., a pipe or a file), then mh! will send a formfeed after each message.

To override the default moreproc and the profile entry, use the ‘—moreproc program’ switch.

The ‘-length length’ and ‘-width width’ switches set the screen length and width, respectively. These
default to the values indicated by STERMCAP, if appropriate, otherwise they default to 40 and 80, respec-
tively. .

The default format file used by mh! is called mhl format (which is first searched for in the user’s MH direc-
tory, and then sought in the /usr/new/lib/mh directory), this can be changed by using the ‘—form formatfile’
switch.

Finally, the ‘—folder +folder’ switch sets the MH folder name, which is used for the ‘‘messagename:’’ field
described below. The environment variable $mhfolder is consulted for the default value, which show,
next, and prev initialize appropriately.

MAhl operates in two phases: 1) read and parse the format file, and 2) pi'oc&cs each message (file). During
phase 1, an internal description of the format is produced as a structured list. In phase 2, this list is walked
for each message, outputting message information under the format constraints from the format file.

The ‘‘mhl.format’’ form file contains information controlling screen clearing, screen size, wrap—around
control, transparent text, component ordering, and component formatting. Also, a list of components to
ignore may be specified, and a couple of ‘‘special’’ components are defined to provide added functionality.
Message output will be in the order specified by the order in the format file.

Each line of mhl.format has one of the formats:
;comment
:Cleartext

variable[,variable...]
component:[variable,...]

MH UCI/UCB version

MHL1) The Rand MH Message Handling System USD:8-30

[mh.6]

A line beginning with a ‘;’ is a comment, and is ignored. A line beginning with a *:’ is clear text, and is
output exactly as is. A line containing only a “:’ produces a blank line in the output. A line beginning with
‘‘component:” defines the format for the specified component, and finally, remaining lines define the glo-
bal environment.

For example, the line:
width=80,length=40,clearscreen,overflowtext="***" overflowoffset=5

defines the screen size to be 80 columns by 40 rows, specifies that the screen should be cleared prior to
each page, that the overflow indentation is 5, and that overflow text should be flagged with “‘***’’,

Following are all of the current variables and their arguments. If they follow a component, they apply only
to that component, otherwise, their affect is global. Since the whole format is parsed before any output
processing, the last global switch setting for a variable applies to the whole message if that variable is used
in a global context (i.e., bell, clearscreen, width, length).

variable type semantics

width integer screen width or component width

length integer screen length or component length

offset integer positions to indent ‘‘component: *’

overflowtext string text to use at the beginning of an
overflow line

overflowoffset integer positions to indent overflow lines

compwidth integer positions to indent component text
after the first line is output

uppercase flag output text of this component in all
upper case ‘

nouppercase flag don’t uppercase

clearscreen flag/G clear the screen prior to each page

noclearscreen flag/G don’t clearscreen

bell flag/G ring the bell at the end of each page

nobell flag/G don’t bell

component string/LL name to use instead of ‘‘component’’ for
this component

nocomponent flag don’t output ‘‘component: ’’ for this
component

center flag center component on line (works for
one-line components only)

nocenter flag don’t center

leftadjust flag strip off leading whitespace on each
line of text

noleftadjust flag don’t leftadjust -

compress flag change newlines in text to spaces

nocompress flag don’t compress

formatfield string format string for this component
addrfield flag field contains addresses
datefield . flag field contains dates

To specify the value of integer—valued and string-valued variables, follow their name with an equals—sign
and the value. Integer—valued variables are given decimal values, while string-valued variables are given
arbirtray text bracketed by double—quotes. If a value is suffixed by *‘/G’* or *“/L"’, then its value is useful
in a global-only or local—only context (respectively).

A line of the form:

ignores=component,...

MH UCL/UCB version

USD:8-31 The Rand MH Message Handling System MHL(1)

specifies a list of components which are never output.

The component ‘‘MessageName’’ (case—insensitive) will output the actual message name (file name) pre-
ceded by the folder name if one is specified or found in the environment. The format is identical to that
produced by the ‘~header’ option to show.

The component ‘‘Extras’’ will output all of the components of the message which were not matched by
explicit components, or included in the ignore list. If this component is not specified, an ignore list is not
needed since all non—specified components will be ignored.

If “‘nocomponent’’ is NOT specified, then the component name will be output as it appears in the format
file.

The default format is:

:--using template mhl.format--

overflowtext="***" overflowoffset=5

leftadjust,compwidth=9

ignores=msgid, message-id,received
Date:formatfield="%<(nodate{text})%{text}%|%(putstr(pretty { text}))%>"
To:

cc:

From:

Subject:

.extras:nocomponent
i>ody:nocomponent,overﬂowtext=,overﬂowoffset=0,noleftadjust

The variable *‘formatfield’’ specifies a format string (see mh—format(5)). The variables ‘‘addrfield”’ and
“‘datefield’’ (which are mutually exclusive), control the interpretation of the escapes.

By default, mhl does not apply any formatting string to fields containing address or dates (see mh—mail (5)
for a list of these fields). Note that this results in faster operation since mhl must parse both addresses and
dates in order to apply a format string to them. If desired, mhl can be given a default format string for
either address or date fields (but not both). To do this, on a global line specify either the variable addrfield
or the variable datefield, along with the variable formatfield.

Files
/usr/new/lib/mh/mhl.format The message template
or <mh~dir>/mhl.format Rather than the standard tempiate
$HOME/.mh_profile The user profile
Profile Components
moreproc: Program to use as interactive front—end
See Also A
show(1), ap(8), dp(8)
Defaults

[mh.6]

‘~bell’
‘—noclear’
‘~length 40
‘~width 80’

MH UCI/UCB version

MHL(1) The Rand MH Message Handling System USD:8-32

Context
None

Bugs '
There should be some way to pass ‘bell’ and ‘clear’ information to the front—end.

On hosts where MH was configured with the BERK option, address parsing is not enabled.

[mh.6] MH UCI/UCB version

USD:8-33 The Rand MH Message Handling System MHMAIL(1)

NAME

mhmail — send or read mail

SYNOPSIS

mhmail [addrs ... [-body text] [-cc addrs ...] [~from addr] [-subject subject]] [~help]

DESCRIPTION

Files

MHmail is intended as a replacement for the standard Bell mail program (bellmail (1)), compatible with
MH. When invoked without arguments, it simply invokes inc (1) to incorporate new messages from the
user’s maildrop. When one ar more users is specified, a message is read from the standard input and
spooled to a temporary file. MHmail then invokes post (8) with the name of the temporary file as its argu-
ment to deliver the message to the specified user.

The ‘—subject subject’ switch can be used to specify the ‘‘Subject:’* field of the message. The ‘—body text’
switch can be used to specify the text of the message; if it is specified, then the standard input is not read.
Normally, addresses appearing as arguments are put in the ““To:’’ field. If the ‘—cc’ switch is used, all
addresses following it are placed in the ‘‘cc:’’ field.

By using ‘~from addr’, you can specify the ‘‘From:”’ header of the draft. Naturally, post will fill-in the
‘“‘Sender:”’ header correctly.

This program is intended for the use of programs such as a¢ (1), which expect to send mail automatically
to various users. Normally, real people (as opposed to the ‘‘unreal’’ ones) will prefer to use comp (1) and
send (1) to send messages.

/usr/new/mb/inc - Program to incorporate a maildrop into a folder
/usr/new/lib/mh/post Program to deliver a message
/tmp/mhmail* Temporary copy of message

Profile Components

See Also

Defaults

Context

[mh.6]

None

inc(1), post(8)
None

If inc is invoked, then inc’s context changes occur.

MH UCV/UCB version

MHOOK(1) The Rand MH Message Handling System USD:8-34

NAME
mhook — MH receive—mail hooks

SYNOPSIS
$HOME/.maildelivery

/usr/new/lib/mh/rovdist address ... [~help]

/usr/new/lib/mh/rcvpack ﬁle [—help]

fust/new/lib/mivrcvity [command ...] [-help]
DESCRIPTION

A receive-mail hook is a program that is run whenever you receive a mail message. You do NOT invoke
the hook yourself, rather the hook is invoked on your behalf by SendMail, when you include the line

*‘| tusr/new/lib/mh/slocal’’
in your .forward file in your home directory.

The .maildelivery file, which is an ordinary ASCII file, controls how local delivery is performed. This file
is read by slocal.

The format of each line in the .maildelivery file is
field pattern action result string
where

field:
The name of a field that is to be searched for a pattern. This is any field in the headers of the mes-
sage that might be present. In addition, the following special fields are also defined:
source: the out—of—band sender information
addr; the address that was used to cause delivery to the recipient
default: this matches only if the message hasn’t been delivered yet
*: this always matches

pattern: ,
The sequence of characters to match in the specified field. Matching is case—insensitive but not
RE-based.

action: .
The action to take to deliver the message. This is one of

Hle ox >:Append the message to the file named by string. The standard maildrop delive;'y process
is used. If the message can be appended to the file, then this action succeeds.
When writing to the file, a new field is added:
Delivery-Date: date
which indicates the date and time that message was appended to the file.

pipe or [:
Pipe the message as the standard input to the command named by string, using the
Bourne shell sk (1) to interpret the string. Prior to giving the string to the shell, it is
expanded with the following built—in variables:

[mh.6] MH UCI/UCB version

USD:8-35 The Rand MH Message Handling System MHOOK(1)

[mh.6]

$(sender): the return address for the message

$(address): the address that was used to cause delivery to the recipient
$(size): the size of the message in bytes

$(reply—to): either the ‘‘Reply-To:”’ or ‘‘From:’’ field of the message
$(info): miscellaneous out—of—band information

When a process is invoked, its environment is: the user/group id:s are set to recipient’s
id:s; the working directory is the recipient’s directory; the umask is 0077; the process has
no /dev/tty; the standard input is set to the message; the standard output and diagnostic
output are set to /dev/null; all other file—descriptors are closed; the environment variables
SUSER, SHOME, SSHELL are set appropriately, and no other environment variables
exist,

The process is given a certain amount of time to execute. If the process does not exit
within this limit, the process will be terminated with extreme prejudice. The amount of
time is calculated as ((size x 60) + 300) seconds, where size is the number of bytes in the
message.

The exit status of the process is consulted in determining the success of the action. An
exit status of zero means that the action succeeded. Any other exit status (or abnormal
termination) means that the action failed. '

In order to avoid any time limitations, you might implement a process that began by fork-
ing. The parent would return the appropriate value immediately, and the child could con-
tinue on, doing whatever it wanted for as long as it wanted. This approach is somewhat
risky if the parent is going to return an exit status of zero. If the parent is going to return
a non—zero exit status, then this approach can lead to quicker delivery into your mail-

drop.

gpipe or <caret>:
Similar to pipe, but executes the command directly, after built—in variable expansion,
without assistance from the shell.

destroy:
This action always succeeds.

result:
Indicates how the action should be performed:

A:
Perform the action. If the action succeeded, then the message is considered delivered.

Perform the action. Regardless of the outcome of the action, the message is not con-
sidered delivered.

Perform the action only if the message has not been delivered. If the action succeeded,
then the message is considered delivered.

The file is always read completely, so that several matches can be made and several actions can be taken.
The .maildelivery file must be owned either by the user or by root, and must be writable only by the owner.
If the .maildelivery file can not be found, or does not perform an action which delivers the message, then
the file /usr/new/lib/mh/maildelivery is read according to the same rules. This file must be owned by the
root and must be writable only by the root. If this file can not be found or does not perform an action
which delivers the message, then standard delivery to the user’s maildrop, /usr/spool/mail/$USER, is per-
formed.

MH UCI/UCB version

MHOOK(1) The Rand MH Message Handling System USD:8-36

Files

See Also

Context

[mh.6]

Arguments in the .maildelivery file are separated by white—space or comma. Since double—quotes are
honored, these characters may be included in a single argument by enclosing the entire argument in
double—quotes. A double—quote can be included by preceeding it with a backslash.

To summarize, here’s an example:

#field pattern action result string
lines starting with a ’#’ are ignored, as are blank lines

#\

file mail with mmdf2 in the *“To:’’ line into file mmdf2.log

To mmdf2 file A mmdf2.log

Messages from mmdf pipe to the program err-message-archive
From mmdf pipe A err-message-archive

Anything with the *‘Sender:’’ address *‘uk-mmdf-workers’’

file in mmdf2 log if not filed already

Sender uk-mmdf-workers file ? mmdf2.log

“To:”’ unix — put in file unix-news

To Unix > A unix-news

if the address is jpo=mmdf — pipe into mmdf-redist

addr jpo=mmdf = | A mmdf-redist

if the address is jpo=ack — send an acknowledgement copy back
addr jpo=ack | R “resend —r $(reply-to)’’
anything from steve — destroy!

From steve destroy A-

anything not matched yet — put into mailbox

default - > ? mailbox

always run rcvalert

* - | R rcvalert

Four programs are currently standardly available, rcvdist (redistribute incoming messages to additional
recipients), rcvpack (save incoming messages in a packf'd file), and revty (notify user of incoming mes-
sages). The fourth program, rcvstore (1) is described separately. They all reside in the /usr/new/lib/mh/
directory.

The revdist program will resend a copy of the message to all of the addresses listed on its command line.

The rcvpack program will append a copy of the message to the file listed on its command line. Its use is
obsoleted by the .maildelivery.

The rcvtty program executes the named file with the message as its standard input, and gives the resulting
output to the terminal access daemon for display on your terminal. If the terminal access daemon is una-
vailable on your system, then rcvity will write the output to your terminal if, and only if, your terminal has
‘‘world—writable’’ permission. If no file is specified, or is bogus, etc., then the rcvery program will give a
one-line scan listing to the terminal access daemon.

/usr/new/lib/mh/mtstailor tailor file
$HOME/.maildelivery The file controlling local delivery
{usr/new/lib/mh/maildelivery Rather than the standard file

rcvstore (1) ‘

None

MH UCI/UCB version

USD:8-37 The Rand MH Message Handling System MHOOK(1)

History
For compatibility with older versions of MH, if slocal can’t find the user’s .maildelivery file, it will attempt
to execute an old—style rcvmail hook in the user’s SHOME directory. In particular, it will first attempt to
execute
.mh_receive file maildrop directory user
failing thqt it will attempt to execute
$HOME/bin/rcvmail user file sender
before giving up and writing to the user’s maildrop.
In addition, whenever a hook or process is invoked, file—descriptor three (3) is set to the message in
addition to the standard input.

Bugs
Only two return codes are meaningful, others should be.

[mh.6] MH UCY/UCB version

MHPATH(1) The Rand MH Message Handling System USD:8-38

NAME

mhpath ~ print full pathnames of MH messages and folders

SYNOPSIS

mhpath [+folder] [msgs] [—help]

DESCRIPTION

[mh.6]

Mhpath expands and sorts the message list ‘msgs’ and writes the full pathnames of the messages to the
standard output separated by newlines. If no ‘msgs’ are specified, mhpath outputs the folder pathname
instead,

Contrasted with other MH commands, a message argument to mhpath may often be intended for writing.
Because of this: 1) the name ‘‘new’’ has been added to mhpath’s list of reserved message names (the oth-
ers are ‘‘first’”’, “‘last”, ‘“‘prev’’, “‘next”’, ‘‘cur’’, and ‘‘all’’). The new message is equivalent to the mes-
sage after the last message in a folder (and equivalent to 1 in a folder without messages). The ‘‘new’’ mes-
sage may not be used as part of a message range. 2) Within 2 message list, the following designations may
refer to messages that do not exist: a single numeric message name, the single message name ‘‘cur’’, and
(obviously) the single message name ‘‘new’’. All other message designations must refer to at least one
existing message. 3) An empty folder is not in itself an error.

Message numbers greater than the highest existing message in a folder as part of a range designation are
replaced with the next free message number.

Examples: The current folder foo contains messages 3 5 6. Curis 4.

% mhpath
/r/phyVMail/foo

% mhpath all

/t/phyl/Mail/foo/3
/r/phyl/Mail/foo/S
/r/phyVMail/foo/6

% mhpath 2001
/t/phyVMail/foor7

% mhpath 1-2001
/r/phyl/Mail/foo/3
/t/phyVMail/foo/5
/r/phylVMaiV/foo/6

% mhpath new
/r/phylV/Mail/foo/7

% mhpath last new
/t/phyl/Mail/foo/6
/t/phyVMail/foo/7

% mhpath last—new
bad message list ‘‘last-new’’,

% mhpath cur
/t/phylVMail/foo/d

% mhpath 1-2
no messages in range ‘‘1-2"’,

MH UCI/UCB version

USD:8-39 The Rand MH Message Handling System MHPATH(1)

% mhpath first:2
/r/phyVMail/foo/3
/riphyVMail/foo/S

% mhpath 12
Iriphyl/Mail/foo/1
/r/phyVMail/foo/2
MHpath is also useful in back—quoted operations:

% cd ‘mhpath +inbox*

% echo ‘mhpath +*
/riphyVMail
Flles
$HOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder
See Also
folder(1)
Defauits
‘+folder’ defaults to the current folder
‘msgs’ defaults to none
Context
None
Bugs

Like all MH commands, mhpath expands and sorts [msgs]. So don’t expect
mv ‘mhpath 501 500° -

to move 501 to 500. Quite the reverse. But
mv ‘mhpath 501° ‘mhpath 500°

will do the trick.

Out of range message 0 is treated far more severely than large out of range message numbers.

{mh.6] MH UCI/UCB version

MSGCHK(1) The Rand MH Message Handling System

NAME
msgchk — check for messages

SYNOPSIS
msgchk [users ...] [-help]

DESCRIPTION

USD:8-40

The msgchk program checks all known mail drops for mail waiting for you to receive. For those drops
which have mail for you, msgchk will indicate if it believes that you have seen the mail in question before.

Filles
$HOME/.mh_profile
/usr/new/lib/mh/mtstailor
/ust/spool/mail/$USER

Profile Components
None

See Also
inc(1)

Defaults
‘user’ defaults to the current user

Context
None

[mh.6]

The user profile
tailor file
Location of mail drop

MH

UCI/UCB version

USD:8-41 The Rand MH Message Handling System MSH(1)

NAME

msh — MH shell (and BBoard reader)

SYNOPSIS

msh [-prompt string] [-scan] [~noscan] [-topcur] [-notopcur] [file] [~help]

DESCRIPTION

[mh.6]

msh is an interactive program that implements a subset of the normal MH commands operating on a single
file in packf'd format. That is, msh is used to read a file that contains a number of messages, as opposed to
the standard MH style of reading a number of files, each file being a separate message in a folder. msh’s
chief advantage is that the normal MH style does not allow a file to have more than one message in it.
Hence, msh is ideal for reading BBoards, as these files are delivered by the transport system in this format.
In addition, msh can be used on other files, such as message archives which have been packed (see
packf (1)). Finally, msh is an excellent MH tutor. As the only commands available to the user are MH
commands, this allows MH beginners to concentrate on how commands to MH are formed and (more or
less) what they mean.

When invoked, msh reads the named file, and enters a command loop. The user may type most of the nor-
mal MH commands. The syntax and semantics of these commands typed to msk are identical to their MH
counterparts. In cases where the nature of msh would be inconsistent (e.g., specifying a ‘+folder’ with
some commands), msh will duly inform the user. The commands that msk currently supports (in some
slightly modified or restricted forms) are:

ali
burst
comp
dist
folder
forw
inc
mark
mhmail
msgchk
next
packf
pick
prev
refile
repl
rmm
scan
send
show
sortm
whatnow
whom

In addition, msh has a ‘‘help’’ command which gives a brief overview. To terminate msh, type CTRL-D,
or use the ‘‘quit’’ command. If msh is being invoked from bbc, then typing CTRL-D will also teli bbc to
exit as well, while using the “‘quit’’ command will return control to bbc, and bbc will continue examining
the list of BBoards that it is scanning.

If the file is writable and has been modified, then using ‘‘quit’’ will query the user if the file should be
updated. .

The ‘—prompt string’ switch sets the prompting string for msh.

MH UCI/UCB version

MSH(1) The Rand MH Message Handling System USD:8-42

You may wish to use an alternate MH profile for the commands that msh executes; see mh-profile (5) for
details about the $MH environment variable.

When invoked from bbc, two special features are enabled: First, the ‘—scan’ switch directs msh to do a
‘scan unseen’ on start-up if new items are present in the BBoard. This feature is best used from bbc,
which correctly sets the stage. Second, the mark command in msh acts specially when you are reading a
BBoard, since msh will consult the sequence ‘‘unseen’’ in determining what messages you have actually
read. When msh exits, it reports this information to bbc. In addition, if you give the mark command with
no arguments, msh will interpret it as ‘mark —sequence unseen —delete —nozero all’ Hence, to discard all
of the messages in the current BBoard you're reading, just use the mark command with no arguments.

When invoked from vmh, another special feature is enabled: The ‘topcur’ switch directs msh to have the
current message ‘‘track’’ the top line of the vmh scan window. Normally, msh has the current message
““track’’ the center of the window (under ‘~notopcur’, which is the default).

msh supports an output redirection facility. Commands may be followed by one of

> file write output to file
>> file append output to file
| command pipe output to UNIX command

If file starts with a “~* (tilde), then a csh-like expansion takes place. Note that command is interpreted by
sh (1). Also note that msh does NOT support history substitutions, variable substitutions, or alias substitu-
tions,

When parsing commands to the left of any redirection symbol, msh will honor ‘\’ (back—slash) as the quote
next—character symbol, and ‘"’ (double—quote) as quote-~word delimiters. All other input tokens are
separated by whitespace (spaces and tabs).

Files
$HOME/.mh_profile The user profile
/usr/new/lib/mh/mtstailor tailor file
Profile Components
Path: To determine the user’s MH directory
Msg-Protect; To set mode when creating a new ‘file’
fileproc: Program to file messages
showproc: Program to show messages
See Also
bbe(1)
Defaults
‘file’ defaults to ‘‘/msgbox’’
‘~prompt (msh) ’
‘—noscan’
‘~notopcur’
Context
None

[mh.6] MH UCI/UCB version

USD:8-43 The Rand MH Message Handling System MSH(1)

[mh.6]

The argument to the ‘~prompt’ switch must be interpreted as a single token by the shell that invokes msh.
Therefore, one must usually place the argument to this switch inside double—quotes.

There is a strict limit of messages per file in packf’d format which msh can handle. Usually, this limit is
1000 messages.

Please remember that msh is not the CShell, and that a lot of the nice facilities provided by the latter are not
present in the former.

In particular, msh does not understand back—quoting, so the only effective way to use pick inside msh is to
always use the ‘~seq select’ switch. Clever users of MH will put the line

pick: —seq select —list
in their .mh_profile file so that pick works equally well from both the shell and msh.
The msh program inherits most (if not all) of the bugs from the MH commands it implements.

MH UCI/UCB version

NEXT(1) The Rand MH Message Handling System USD:8-44

NAME
next — show the next message
SYNOPSIS
next [+folder] [~header] [~noheader] [-showproc program] [-noshowproc] {switches for showproc]
{~help]
DESCRIPTION
Next performs a show on the next message in the specified (or current) folder. Like show, it passes any
switches on to the program showproc, which is called to list the message. This command is almost exactly
equivalent to ‘‘show next’’. Consult the manual entry for show (1) for all the details.
Files
$HOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder
showproc: Program to show the message
See Also
show(1), prev(1)
Defaults
‘+folder’ defaults to the current folder
‘—format’
‘~header’
Context
If a folder is specified, it will become the current folder. The message that is shown (i.e., the next message
in sequence) will become the current message.
Bugs

next is really a link to the show program. As a result, if you make a link to next and that link is not called
next, your link will act like show instead. To circumvent this, add a profile—entry for the link to your MH
profile and add the argument next to the entry.

[mh.6] MH UCI/UCB version

USD:8-45 The Rand MH Message Handling System PACKF(1)

NAME

packf — compress a folder into a single file

SYNOPSIS

packf [+folder] [msgs] [~file name] [~help]

DESCRIPTION

Packf takes messages from a folder and copies them to a single file. Each message in the file is separated
by four CTRL~A’s and a newline. Messages packed can be unpacked using inc.

If the name given to the ‘~file name’ switch exists, then the messages specified will be appended to the end
of the file, otherwise the file will be created and the messages appended.

Flles
$HOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder
Msg-Protect: To set mode when creating a new ‘file’
See Also
inc(1)
Defaults
‘+folder’ defaults to the current folder
‘msgs’ defaults to all
‘~file /msgbox’
Context

[mh.6]

If a folder is given, it will become the current folder. The first message packed will become the current
message.

MH UCY/UCB version

PICK(1) The Rand MH Message Handling System USD:8-46

NAME

pick — select messages by content

SYNOPSIS . .
pick | —cc [+folder] [msgs] [~help]
—date [-before date] [—after date] [-datefield field]
~from
4 —search > pattern [-and ...] [-or ...] [-not ...] [-Ibrace ... —rbrace]
-subject
-t0 [-sequence name ...] [-public] [-nopublic] [-zero] [-nozero]
| ——component) [list] [-nolist]

typically:
scan ‘pick —from jones*
pick —to holloway —sequence select
show ‘pick —before friday*

DESCRIPTION

[mh.6]

Pick searches messages within a folder for the specified contents, and then identifies those messages. Two
types of search primitives are available: pattern matching and date constraint operations.

A modified grep(1) is used to perform the matching, so the full regular expression (see ed(1)) facility is
available within ‘pattern’. With ‘~search’, ‘pattern’ is used directly, and with the others, the grep pattern
constructed is:

‘‘component[\t]*:.*pattern’’

This means that the pattern specified for a ‘~search’ will be found everywhere in the message, including
the header and the body, while the other pattern matching requests are limited to the single specified com-
ponent. The expression

‘~—component pattern’

is a shorthand for specifying

"

‘~search ‘‘component[\t]*: *pattern

It is used to pick a component which is not one of ‘‘To:”’, *‘cc:”’, ‘‘Date:’’, ‘‘From:”’, or ‘‘Subject:’’. An
example is ‘pick —reply—to pooh’.

Pattern matching is performed on a per-line basis. Within the header of the message, each component is
treated as one long line, but in the body, each line is separate. Lower—case letters in the search pattern will
match either lower or upper case in the message, while upper case will match only upper case.

Independent of any pattern matching operations requested, the switches ‘—after date’ or ‘~before date’ may
also be used to introduce date/time contraints on all of the messages. By default, the ‘‘Date:"’ field is con-
sulted, but if another date yielding field (such as ‘‘BB—-Posted:’’ or ‘‘Delivery—Date:’’) should be used, the
‘—datefield field’ switch may be used. Pick will actually parse the date fields in each of the messages
specified in ‘msgs’ (unlike the ‘—date’ switch described above which does a pattern matching operation),
and compare them to the date/time specified by use of the ‘—after’ and ‘~before’ switches. If ‘~after’ is
given, then only those messages whose ‘‘Date:”’ field value is chronologically after the date specified will
be considered. The ‘~before’ switch specifies the complimentary action.

Both the ‘—after’ and ‘-before’ switches take legal 822-style date specifications as arguments. Pick will

default certain missing fields so that the entire date need not be specified. These fields are (in order of
defaulting): timezone, time and timezone, date, date and timezone. All defaults are taken from the current

MH UCI/UCB version

USD:8-47 The Rand MH Message Handling System PICK(1)

date, time, and timezone. In addition to 822—style dates, pick will also recognize any of the days of the
week (‘‘sunday’’, ‘‘monday’’, and so on), and the special dates ‘‘today’’, ‘‘yesterday’’, and ‘‘tomorrow’’.
All days of the week are judged to refer to a day in the past (e.g., telling pick *‘saturday’’ on a ‘‘tuesday’’
means ‘‘last saturday’’ not ‘‘this saturday’’). Finally, in addition o these special specifications, pick will
also honor a specification of the form ‘‘~dd’’, which means ‘‘dd days ago’’.

Pick supports complex boolean operations on the searching primitives with the ‘-and’, ‘—or’, ‘~not’, and
‘~lbrace ... ~rbrace’ switches. For example,

pick —after yesterday —and —lbrace —from freida —or —from fear —rbrace
identifies messages recently sent by ‘‘frieda’’ or ‘‘fear’’.
The matching primitives take precedence over the ‘—not’ switch, which in turn takes precedence over
‘—and’ which in turn takes precedence over ‘—or’. To override the default precedence, the ‘—lbrace’ and
‘~rbrace’ switches are provided, which act just like opening and closing parentheses in logical expressions.

Once the search has been performed, if the ‘-list’ switch is given, the message numbers of the selected
messages are written to the standard output separated by newlines. This is extremely useful for quickly
generating arguments for other MH programs by using the ‘‘backquoting’’ syntax of the shell. For exam-
ple, the command '

scan ‘pick +todo —after ‘‘31 Mar 83 0123 PST**
says to scan those messages in the indicated folder which meet the appropriate criterion. Note that since
pick ’s context changes are written out prior to scan ’s invocation, you need not give the folder argument
to scan as well.
Regardless of the operation of the ‘-list’ switch, the ‘—sequence name’ switch may be given once for each
sequence the user wishes to define. For each sequence named, that sequence will be defined to mean
exactly those messages selected by pick. For example,

pick —from frated ~seq fred

defines a new message sequence for the current folder called ‘‘fred’’ which contains exactly those mes-
sages that were selected.

Note that whenever pick processes a ‘~sequence name’ switch, it sets ‘—nolist’.
By default, pick will zero the sequence before adding it. This action can be disabled with the ‘—nozero’
switch, which means that the messages selected by pick will be added to the sequence, if it already exists,
and any messages already a part of that sequence will remain so.

The ‘~public’ and ‘~nopublic’ switches are used by pick in the same way mark uses them.

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder

See Also

[mh.6)]

mark(1)

MH UCY/UCB version

PICK(1) The Rand MH Message Handling System USD:8-48

Defaults

Context

History

Bugs

[mh.6]

‘+folder’ defaults to the current folder

‘msgs’ defaults to all

‘—datefield date’

‘—nopublic’ if the folder is read~only, ‘—public’ otherwise
‘—m’

‘~list’ is the default if no ‘—sequence’, ‘—nolist’ otherwise

If a folder is given, it will become the current folder.

In previous versions of MH, the pick command would show, scan, or refile the selected messages. This
was rather “‘inverted logic’’ from the UNIX point of view, so pick was changed to define sequences and
output those sequences. Hence, pick can be used to generate the arguments for all other MH commands,
instead of giving pick endless switches for invoking those commands itself.

Also, previous versions of pick balked if you didn’t specify a search string or a date/time constraint. The
current version does not, and merely matches the messages you specify. This lets you type something like:

show ‘pick last:20 —seq fear
instead of typing

mark —add —nozero —seq fear last:20
show fear

Finally, timezones used to be ignored when comparing dates: they aren’t any more.

The argument to the ‘~after’ and ‘~before’ switches must be interpreted as a single token by the shell that
invokes pick. Therefore, one must usually place the argument to this switch inside double—quotes.
Furthermore, any occurance of ‘—datefield’ must occur prior to the ‘—after’ or ‘~before’ switch it applies to.

If pick is used in a back—quoted operation, such as
scan ‘pick —from jones*

and pick fails (e.g., no messages are from ‘‘jones’’), then the shell will still run the outer command (e.g.,
“‘scan’’). Since no messages were matched, pick produced no output, and the argument given to the outer
command as a result of backquoting pick is empty. In the case of MH programs, the outer command now
acts as if the default ‘msg’ or ‘msgs’ should be used (e.g., ‘‘all’’ in the case of scan). To prevent this
unexpected behavior, if ‘~list’ was given, and if its standard output is not a tty, then pick outputs the illegal
message number ‘‘0’’ when it fails. This lets the outer command fail gracefully as well.

MH UCI/UCB version

USD:8-49 The Rand MH Message Handling System PREV(1)

NAME
prev — show the previous message
SYNOPSIS
prev [+folder] [~header] [-noheader] [—-showproc program] [-noshowproc] [-switches for showproc]
[~help]
DESCRIPTION
Prev perfoms a show on the previous message in the specified (or current) folder. Like show, it passes any
switches on to the program named by showproc, which is called to list the message. This command is
almost exactly equivalent to ‘‘show prev’’. Consult the manual entry for show (1) for all the details.
Flles
$HOME/.mh_profile The user profile
Profile Componeats
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder
showproc: Program to show the message
See Also
show(1), next(1)
Defaults
‘+folder’ defaults to the current folder
‘~format’
‘~header’
Context
If a folder is specified, it will become the current folder. The message that is shown (i.e., the previous
message in sequence) will become the current message.
Bugs

prev is really a link to the show program. As a result, if you make a link to prev and that link is not called
prev, your link will act like show instead. To circumvent this, add a profile—entry for the link to your MH
profile and add the argument prev to the entry.

[mh.6] MH UCI/UCB version

PROMPTER(1) The Rand MH Message Handling System USD:8-50

NAME

prompter — prompting editor front—end

SYNOPSIS

prompter [—erase chr] [-kill chr] [-prepend] [-noprepend] [-rapid] [-norapid] file [-help]

DESCRIPTION

[mh.6]

This program is normally not invoked directly by users but takes the place of an editor and acts as an editor
front—end. It operates on an 822-style message draft skeleton specified by file, normally provided by
comp, dist, forw, or repl.

Prompter is an editor which allows rapid composition of messages. It is particularly useful to network and
low~speed (less than 2400 baud) users of MH. It is an MH program in that it can have its own profile entry
with switches, but it is not invoked directly by the user. The commands comp, dist, forw, and repl invoke
prompter as an editor, either when invoked with ‘-—editor prompter’, or by the profile entry
‘‘Editor; prompter’’, or when given the command ‘edit prompter’ at ‘‘What now?’’ level.

For each émpty component prompter finds in the draft, the user is prompted for a response; A <RETURN>
will cause the whole component to be left out. Otherwise, a ‘\’ preceding a <RETURN> will continue the

response on the next line, allowing for multiline components. Continuation lines must begin with a space
or tab.

Each non—empty component is copied to the draft and displayed on the terminal.

The start of the message body is denoted by a blank line or a line of dashes. If the body is non-empty, the
prompt, which isn’t written to the file, is

Hcomanae Enter additional text’’,
or (if ‘~prepend’ was given)

EREEERER Enter initial text’’.
Message—-body typing is terminated with an end—of-file (usually CTRL-D). At this point control is
mu?ry the calling program, where the user is asked ‘‘What now?’’. See whatnow for the valid options

By using the ‘~prepend’ switch, the user can add type—in to the beginning of the message body and have
the rest of the body follow. This is useful for the forw command.

By using the ‘~rapid’ switch, if the draft already contains text in the message—body, it is not displayed on
the user’s terminal. This is useful for low—speed terminals.

The line editing characters for kill and erase may be specified by the user via the arguments ‘kill chr’ and
‘—erase chr’, where chr may be a character; or “‘\nnn’, where ‘‘nnn’’ is the octal value for the character.

An interrupt (usually CTRL-C) during component typing will abort prompter and the MH command that
invoked it. An interrupt during message-body typing is equivalent to CTRL~D, for historical reasons.
This means that prompter should finish up and exit.

The first non—flag argument to prompter is taken as the name of the draft file, and subsequent non—flag
arguments are ignored.

MH UCI/UCB version

USD:8-51 The Rand MH Message Handling System
Flles
$HOME/.mh_profile The user profile
/tmp/prompter* : Temporary copy of message
Profile Components
prompter—next: To name the editor to be used on exit from prompter
Msg-Protect: To set mode when creating a new draft
See Also

comp(1), dist(1), forw(1), repl(1), whatnow(1)

Defaults

‘—prepend’
‘~norapid’

Context
None

Bugs
Prompter uses stdio (3), so it will lose if you edit files with nulls in them.

[mh.6] MH

PROMPTER(1)

UCI/UCB version

RCVSTORE(1) The Rand MH Message Handling System USD:8-52

NAME

rcvstore — incorporate new mail asynchronously

SYNOPSIS

/usr/new/libymh/rcvstore [+folder] [—create] [—-nocreate] [-sequence name ...] [—public] [-nopublic]
[~zero] [~nozero] [help]

DESCRIPTION

Rcvstore incorporates a message from the standard input into an MH folder. If ‘+folder’ isn’t specified, the
folder named ‘‘inbox’’ in the user’'s MH directory will be used instead. The new message being incor-
porated is assigned the next highest number in the folder. If the specified (or default) folder doesn’t exist,
then it will be created if the ‘—create’ option is specified, otherwise rcvstore will exit.

If the user’s profile contains a ‘‘Msg—Protect: nnn’’ entry, it will be used as the protection on the newly
created messages, otherwise the MH default of 0644 will be used. During all operations on messages, this
initially assigned protection will be preserved for each message, so chmod(1) may be used to set a protec-
tion on an individual message, and its protection will be preserved thereafter.

Rcvstore will incorporate anything except zero length messages into the user’s MH folder.

If the profile entry ‘‘Unseen—Sequence’’ is present and non—empty, then rcvstore will add the newly incor-
porated message to each sequence named by the profile entry. This is similar to the ‘‘Previous—Sequence’’
profile entry supported by all MH commands which take ‘msgs’ or ‘msg’ arguments. Note that rcvstore
will not zero each sequence prior to adding messages.

Furthermore, the incoming messages may be added to user-defined sequences as they arrive by appropriate
use of the ‘~sequence’ option. As with pick, use of the ‘—zero’ and ‘—nozero’ switches can also be used to
zero old sequences or not. Similarly, use of the ‘—public’ and ‘—nopublic switches may be used to force
additions to public and private sequences.

Flles
$SHOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Folder-Protect: To set mode when creating a new folder
Msg-Protect: To set mode when creating a new message
Unseen-Sequence: To name sequences denoting unseen messages
See Also
inc(1), pick(1), mh—mail(5)
Defauits
‘+folder’ defaults to *‘inbox’’
‘~create’
‘~nopublic’ if the folder is read-only, ‘—public’ otherwise
‘~nozero’
Context

[mh.6]

No context changes will be attempted, with the exception of sequence manipulation.

MH UCI/UCB version

USD:8-53 The Rand MH Message Handling System REFILE(1)

NAME

refile - file message in other folders

SYNOPSIS

refile [msgs] [—draft] [-link] [-nolink] [~preserve] [-nopreserve] [~src +folder] [file file] +folder ...
[~help]

DESCRIPTION

Flles

Refile moves (mv (1)) or links (/n (1)) messages from a source folder into one or more destination folders.
If you think of a message as a sheet of paper, this operation is not unlike filing the sheet of paper (or
copies) in file cabinet folders. When a message is filed, it is linked into the destination folder(s) if possible,
and is copied otherwise. As long as the destination folders are all on the same file system, multiple filing
causes little storage overhead. This facility provides a good way to cross—file or multiply—index messages.
For example, if a message is received from Jones about the ARPA Map Project, the command

refile cur +jones +Map
would allow the message to be found in either of the two folders ‘jones’ or ‘Map’.
The option ‘~file file’ directs refile to use the spediﬁed file as the source message to be filed, rather than a
message from a folder. Note that the file should be a validly formatted message, just like any other MH
message. It should NOT be in mail drop format (to convert a file in mail drop format to a folder of MH
messages, see inc (1)).

If a destination folder doesn’t exist, refile will ask if you want to create it. A negative response will abort
the file operation.

The option ‘-link’ preserves the source folder copy of the message (i.e., it does a In(1) rather than a mv(1)),
whereas, ‘—nolink’ deletes the filed messages from the source folder. Normally, when a message is filed, it
is assigned the next highest number available in each of the destination folders. Use of the ‘—preserve’
switch will override this message renaming, but name conflicts may occur, so use this switch cautiously.

If “~link’ is not specified (or ‘—nolink’ is specified), the filed messages will be removed (unlink (2)) from
the source folder, similar to the way mv (1) works.

If the user has a profile component such as

rmmproc: /bin/rm
then instead of simply renaming the message file, refile will call the named program to delete the file. |
The ‘~draft’ switch tells refile to file the <mh—dir>/draft.

$HOME/.mh_profile The user profile

Profile Components

See Also

[mh.6]

Path: To determine the user’s MH directory
Current—Folder: To find the default current folder
Folder-Protect: To set mode when creating a new folder
rmmproc: Program to delete the message

folder(1)

MH UCI/UCB version

REFILE(1) The Rand MH Message Handling System USD:8-54

Defaults
‘~src +folder’ defaults to the current folder
‘msgs’ defaults to cur
‘~nolink’
‘—nopreserve’
Context

If ‘—src +folder’ is given, it will become the current folder. If neither ‘~link’ nor ‘all’ is specified, the
current message in the source folder will be set to the last message specified; otherwise, the current
message won’t be changed.

If the Previous—Sequence profile entry is set, in addition to defining the named sequences from the source

folder, refile will also define those sequences for the destination folders. See mh—profile (1) for
information concerning the previous sequence.

{mh.6] MH UCI/UCB version

USD:8-58 The Rand MH Message Handling System REPL(1)

NAME

repl — reply to a message

SYNOPSIS

repl [+folder] [msg] (—annotate] [-noannotate] [—cc all/to/cc/me] [-nocc all/to/cc/me]
[—draftfolder +folder] [~draftmessage msg] [-nodraftfolder] [—editor editor] [-noedit]
[~fcc +folder] [filter filterfile] [~form formfile] [~format] [-noformat] [—inplace] [-noinplace]
[—query] [-noquery] [-width columns] {-whatnowproc program] [~nowhatnowproc] [-help]

DESCRIPTION

[mh.6] |

Repl aids a user in producing a reply to an existing message. Repl uses a reply template 0 guide its actions
when constructing the message draft of the reply. In its simplest form (with no arguments), it will set up a
message—form skeleton in reply to the current message in the current folder, and invoke the whatnow shell.
The default reply template will direct repl to construct the composed message as follows:

To: <Reply-To> or <From>

cc: <cc>, <To>, and yourself

Subject: Re: <Subject>

In—reply—to: Your message of <Date>.
<Message—-Id>

where field names enclosed in angle brackets (< >) indicate the contents of the named field from the mes-
sage to which the reply is being made. The ‘—cc type’ switch takes an argument which specifies who gets
placed on the ‘‘cc:’’ list of the reply. The ‘~query’ switch modifies the action of ‘~cc type’ switch by
interactively asking you if each address that normally would be placed in the ‘“To:"’ and “‘cc:’’ list should
actually be sent a copy. (This is useful for special-purpose replies.) Note that the position of the ‘—cc’ and
‘~nocc’ switches, like all other switches which take a positive and negative form, is important.

If the file named “‘replcomps’’ exists in the user’s MH directory, it will be used instead of the default form.
In either case, the file specified by ‘—form formfile’ will be used if given.

If the draft already exists, rep! will ask you as to the disposition of the draft. A reply of quit will abort
repl, leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will
display the draft.

See comp (1) for a description of the ‘—editor’ and ‘~noedit’ switches. Note that while in the editor, the
message being replied to is available through a link named ‘‘@’’ (assuming the default whamowproc). In
addition, the actual pathname of the message is stored in the environment variable $editalt, and the path-
name of the folder containing the message is stored in the environment variable $mhfolder.

Although repl uses the ‘—form formfile’ switch to direct it how to construct the beginning of the draft, the
‘~filter filterfile’ switch directs repl as to how the message being replied—to should be formatted in the
body of the draft. If ‘—filter’ is not specified, then the message being replied—to is not included in the body
of the draft. If ‘—filter filterfile’ is specified, then the message being replied—to is filtered (re—formatted)
prior to being output to the body of the draft. The filter file for repl should be a standard form file for mhl,
as repl will invoke mhl to format the message being replied—to. There is no default message filter (‘—filter’
must be followed by a file name). A filter file that is commonly used is:

i>ody:nocomponem,compwidm=9,offset=9

which says to output a blank line and then the body of the message being replied—to, indented by one
tab—stop.

If the ‘—annotate’ switch is given, the message being replied—to will be annotated with the lines

MH UCVI/UCB version

REPL(1) The Rand MH Message Handling System USD:8-56

Replied: date
Replied: addrs

where the address list contains one line for each addressee. The annotation will be done only if the mes-
sage is sent directly from repl. If the message is not sent immediately from repl, ‘‘comp —use’’ may be
used to re—edit and send the constructed message, but the annotations won’t take place. The ‘—inplace’
switch causes annotation to be done in place in order to preserve links to the annotated message.

With the ‘~format’ switch one can indicate if Internet—style formatting should be used (or not be used with
‘~noformat’). If present (the default), then lines beginning with the fields *To:*’, “‘cc:’’, and *’Bec:”” will
be standardized and have duplicate addresses removed. In addition, the ‘—~width columns’ switch will
guide repl’s formatting of these fields.

The ‘—fcc +folder’ switch can be used to automatically specify a folder to receive Fcc:s. More than one
folder, each preceeded by ‘—fcc’ can be named.

A reply template is simply a format file. See mh—format (5) for the details.

In addition to the standard escapes, rep! also recognizes the following additional escape:
escape substitution
fcc any ‘~fcc folder’ switches

The ‘—draftfolder +folder’ and ‘—draftmessage msg’ switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

Upon exiting from the editor, rep! will invoke the whatnow program. See whatnow (1) for a discussion of
available options. The invocation of this program can be inhibited by using the ‘—nowhatnowproc’ switch.
(In truth of fact, it is the whatnow program which starts the initial edit. Hence, ‘~nowhatnowproc’ will
prevent any edit from occurring.)

Files
/usr/new/lib/mh/replcomps The reply template
or <mh—dir>/replcomps Rather than the standard template
$HOME/.mh_profile The user profile
<mh—dir>/draft The draft file
Profile Components
Path: To determine the user’s MH directory
Alternate-Mailboxes: To determine the user’s mailboxes
Current—Folder: To find the default current folder
Draft-Folder: To find the default draft—folder
Editor: To override the default editor
Msg-Protect: To set mode when creating a new message (draft)
fileproc: Program to refile the message
mhlproc: Program to filter message being tephed—to
whatnowproc: Program to ask the ‘‘What now?’’ questions
See Also

[mh.6]

comp(1), dist(1), forw(1), send(1), whatnow(1), mh—format(5)

MH UCVUCB version

USD:8-57 The Rand MH Message Handling System REPL(1)

Defaults
‘+folder’ defaults to the current folder
‘msg’ defaults to cur
‘~nocc all’ at ATHENA sites, ‘—cc all’ otherwise
‘~format’
‘~noannotate’
‘—nodraftfolder’
‘—noinplace’

6 nm t]

‘~width 72’
Context
If a folder is given, it will become the current folder. The message replied—to will become the current
message.
Bugs
If any addresses occur in the reply template, addresses in the template that do not contain hosts are
defaulted incorrectly. Instead of using the localhost for the default, repl uses the sender’s host. Moral of
the story: if you’re going to include addresses in a reply template, include the host portion of the address.

If whatnowproc is whatnow, then repl uses a built-in whatnow, it does not actually run the whatnow
program. Hence, if you define your own whatnowproc, don’t call it whatnow since repl won’t run it.

If your current working directory is not writable, the link named ‘‘@”’ is not available.

[mh.6] MH UCI/UCB version

RMF(1) The Rand MH Message Handling System USD:8-58

NAME
- rmf — remove folder

SYNOPSIS ’
rmf [+folder] [-interactive] [-nointeractive] [—help]

DESCRIPTION

Rmf removes all of the messages (files) within the specified (or default) folder, and then removes the folder
(directory) itself. If there are any files within the folder which are not a part of MH, they will not be
removed, and an error will be produced. If the folder is given explicitly or the ‘—nointeractive’ option is
given, then the folder will be removed without confirmation. Otherwise, the user will be asked for
confirmation. If rmf can’t find the current folder, for some reason, the folder to be removed defaults to
‘+inbox’ with confirmation.

Rmf irreversibly deletes messages that don’t have other links, so use it with caution.

If the folder being removed is a subfolder, the parent folder will become the new current folder, and rmf
will produce a message telling the user this has happened. This provides an easy mechanism for selecting a
set of messages, operating on the list, then removing the list and returning to the current folder from which
the list was extracted.

Rmf of a read—only folder will delete the private sequence and cur information (i.e., ‘‘atr—seq—folder’’
entries) from the profile without affecting the folder itself.

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user’s MH directory
Current—Folder: To find the default current folder

See Also
rmm(1)

Defauilts
‘+folder’ defaults to the current folder, usually with confirmation
‘~interactive’ if +folder’ not given, ‘—nointeractive’ otherwise

Context
Rmf will set the current folder to the parent folder if a subfolder is removed; or if the current folder is
removed, it will make ‘‘inbox’’ current. Otherwise, it doesn’t change the current folder or message.

Bugs
Although intuitively one would suspect that rmf works recursively, it does not. Hence if you have a
sub—folder within a folder, in order to rmf the parent, you must first 7mf each of the children.

[mh.6] MH UCI/UCB version

USD:8-59 The Rand MH Message Handling System RMM(1)

NAME
rmm - remove messages
SYNOPSIS
rmm [+folder] [msgs] [—help]
DESCRIPTION
Rmm removes the specified messages by renaming the message files with preceding commas. Many sites
consider files that start with a comma to be a temporary backup, and arrange for cron (8) to remove such
files once a day.
If the user has a profile component such as
rmmproc: /bin/rm
then instead of simply renaming the message file, rmm will call the named program to delete the file. Note
that at most installations, cron (8) is told to remove files that begin with a comma once a night.
Some users of csh prefer the following:
alias rmm ’refile +d’
where folder +d is a folder for deleted messages, and
alias mexp 'rm ‘mhpath +d all*’
is used to ‘‘expunge’’ deleted messages.
The current message is not changed by rmm, so a next will advance to the next message in the folder as
expected.
Files
$HOME/.mh_profile The user profile
Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder
rmmproc: Program to delete the message
See Also
rmf(1)
Defaults
‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
Context

[mh.6]

If a folder is given, it will become the current folder.

MH UCY/UCB version

SCAN(1) The Rand MH Message Handling System USD:8-60

NAME

scan ~ produce a one line per message scan listing

SYNOPSIS

scan [+folder] [msgs] [—clear] [-noclear} [-form formatfile] [~format string] [~header]) (—noheader]
[-width columns] {-help)

DESCRIPTION

[mh.6]

Scan produces a one-line-per—message listing of the specified messages. Each scan line contains the mes-
sage number (name), the date, the ‘“‘From:”’ field, the ‘‘Subject’’ field, and, if room allows, some of the
body of the message. For example:

15+ 7/ § Dcrocker nned «Last week I asked some of
16 - 7/ § dcrocker message id format «I recommend
18 7/ 6 Obrien Re: Exit status from mkdir

19 7/ 7 Obrien *‘scan’’ listing format in MH

The ‘+’ on message 15 indicates that it is the current message. The ‘—’ on message 16 indicates that it has
been replied to, as indicated by a ‘‘Replied:”’ component produced by an ‘-annotate’ switch to the repl
command,

If there is sufficient room left on the scan line after the subject, the line will be filled with text from the
body, preceded by <<, and terminated by >> if the body is sufficiently short. Scan actually reads each of
the specified messages and parses them to extract the desired fields. During parsing, appropriate error mes-
sages will be produced if there are format errors in any of the messages.

The ‘~header’ switch produces a header line prior to the scan listing. Currently, the name of the folder and
the current date and time are output (see the HISTORY section for more information).

If the ‘—clear’ switch is used and scan’s output is directed to a terminal, then scan will consult the STERM
and STERMCAP environment variables to determine your terminal type in order to find out how to clear
the screen prior to exiting. If the ‘—clear’ switch is used and scan’s output is not directed to a terminal
(e.g., a pipe or a file), then scan will send a formfeed prior to exiting.

For example, the command:
| (scan —clear —header; show all —show pr-f) | Ipr

produces a scan listing of the current folder, followed by a formfeed, followed by a formatted listing of all
messages in the folder, one per page. Omitting ‘~show pr —f* will cause the messages to be concatenated,
separated by a one-line header and two blank lines.

If scan encounters a message without a “‘Date:’’ field, rather than leaving that portion of the scan hstmg
blank, the date is filled—in with the last write date of the message, and post—ﬁxed with a ‘*’. This is partic-
ularly handy for scanning a draft folder, as message drafts usually aren’t allowed to have dates in them,

To override the output format used by scan, the ‘~format string’ or ‘—format file’ switches are used. This
permits individual fields of the scan listing to be extracted with ease. The string is simply a format string
and the file is simply a format file. See mh—format (5) for the details.

In addition to the standard escapes, scan also recognizes the following additional escape:
escape substitution
body the (compressed) first part of the body

On hosts where MH was configured with the BERK option, scan has two other switches: ‘—reverse’, and
‘~noreverse’. These make scan list the messages in reverse order. In addition, scan will update the MH

MH UCI/UCB version

USD:8-61 The Rand MH Message Handling System SCAN(1)

context prior to starting the listing, so interrupting a long scan listing preserves the new context. MH pur-

ists hate both of these ideas.
Files
$HOME/.mh_profile The user profile
Profile Components
Path; To determine the user’s MH directory
Alternate-Mailboxes: To determine the user’s mailboxes
Current—Folder: To find the default current folder
See Also
inc(1), pick(1), show(1), mh—format(5)
Defaults
‘+folder’ defaults to the folder current
‘msgs’ defaults to all
‘~format’ defaulted as described above
‘~noheader’
‘~width’ defaulted to the width of the terminal
Context
If a folder is given, it will become the current folder.
History
Prior to using the format string mechanism, ‘—header’ used to generate a heading saying what each column
in the listing was. Format strings prevent this from happening.
Bugs

The argument to the ‘~format’ switch must be interpreted as a single token by the shell that invokes scan.
Therefore, one must usually place the argument to this switch inside double—quotes.

[mh.6] MH UCI/UCB version

SEND(1) The Rand MH Message Handling System USD:8-62

NAME :
send - send a message

SYNOPSIS '
send [—alias aliasfile] [-draft] [-drafifolder +folder]) [—draftmessage msg] [-nodraftfolder] [—filter filterfile]
[-nofilter] [-format] [-noformat] [-forward] [-noforward] [-msgid] [-nomsgid] [—push]

[-nopush] [-verbose] [-noverbose] [—watch] [-nowatch] [-width columns] [file ...] [-help]

DESCRIPTION

Send will cause each of the specified files to be delivered (via post (8)) to each of the destinations in the
*“To:”’, *‘cc:”, *“‘Bec:’’, and ‘‘Fec:’’ fields of the message. If send is re—distributing a message, as
invoked from dist, then the corresponding ‘‘Resent-xxx’’ fields are examined instead.

If ‘~push’ is specified, send will detach itself from the user’s terminal and perform its actions in the back-
ground. If push 'd and the draft can’t be sent, then the ‘~forward’ switch says that draft should be for-
warded with the failure notice sent to the user. This differs from putting send in the background because
the output is trapped and analyzed by MH.

If ‘~verbose’ is specified, send will indicate the interactions occurring with the transport system, prior to
actual delivery. If ‘~watch’ is specified send will monitor the delivery of local and network mail. Hence,
by specifying both switches, a large detail of information can be gathered about each step of the message’s
entry into the transport system.

The ‘—draftfolder +folder’ and ‘—draftmessage msg’ switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

Send with no file argument will query whether the draft is the intended file, whereas ‘—draft’ will suppress
this question. Once the transport system has successfully accepted custody of the message, the file will be
renamed with a leading comma, which allows it to be retrieved until the next draft message is sent. If there
are errors in the formatting of the message, send will abort with a (hopefully) helpful error message.

If a ““Bec:”’ field is encountered, its addresses will be used for delivery, and the ‘“‘Bec:’’ field will be
removed from the message sent to sighted recipients. The blind recipients will receive an entirely new
message with a minimal set of headers. Included in the body of the message will be a copy of the message
sent to the sighted recipients. If ‘—filter filterfile’ is specified, then this copy is filtered (re—formatted) prior
to being sent to the blind recipients.

Prior to sending the message, the fields ‘‘From: user@local’’, and ‘‘Date: now’’ will be appended to the
headers in the message. If the environment variable $SIGNATURE is set, then its value is used as your
personal name when constructing the ‘‘From:’’ line of the message. If this environment variable is not set,
then send will consult the profile entry ‘‘Signature’’ for this information. On hosts where MH was
configured with the UCI option, if $SIGNATURE is not set and the ‘‘Signature’’ profile entry is not
present, then the file SHOME/ signature is consulted. If ‘~msgid’ is specified, then a ‘‘Message-ID:”’
field will also be added to the message.

If send is re—distributing a message (when invoked by dist), then ‘‘Resent—"" will be prepended to each of
these fields: *‘From:”’, “‘Date:’’, and ‘‘Message—ID:"’. If the message already contains a ‘‘From:”’ field,
then a ‘‘Sender: user@local’’ field will be added as well. (An already existing ‘‘Sender:’’ field is an
error!)

By using the ‘—format’ switch, each of the entries in the ‘“To:”’ and *‘cc:”’ fields will be replaced with
‘‘standard’’ format entries. This standard format is designed to be usable by all of the message handlers on
the various systems around the Internet. If ‘~noformat’ is given, then headers are output exactly as they
appear in the message draft.

[mh.6] MH UCV/UCB version

USD:8-63

Files

The Rand MH Message Handling System

SEND(1)

If an “‘Fec: folder’’ is encountered, the message will be copied to the specified folder for the sender in the
format in which it will appear to any non—Bcc receivers of the message. That is, it will have the appended
fields and field reformatting. The “‘Fcc:”’ fields will be removed from all outgoing copies of the message.

By using the ‘~width columns’ switch, the user can direct send as to how long it should make header lines

containing addresses.

By using the ‘—alias aliasfile’ switch, the user can direct send to consult the named files for alias definitions
(more than one file, each preceded by ‘-alias’, can be named). See mh—alias (5) for more information.

$HOME/.mh_profile The user profile

Profile Components

See Also

Defauits

Context

[mh.6]

Path: To determine the user’s MH directory
Draft—Folder: To find the default draft—folder
Signature: To determine the user’s mail signature
mailproc:"Program to post failure notices

postproc: Program to post the message

comp(1), dist(1), forw(1), repl(1), mh-alias(5), post(8)

‘file’ defaults to <mh—dir>/draft
‘~alias /ust/new/lib/mh/MailAliases’
‘—nodraftfolder’

‘—nofilter’

‘~format’

‘~forward’

‘~nomsgid’

‘~nopush’

‘—noverbose’

‘~nowatch’

‘~width 72’

None

MH

UCY/UCB version

SHOW(1) The Rand MH Message Handling System - USD:8-64

NAME
show — show (list) messages

SYNOPSIS
show [+folder] [msgs] [—draft] [-header] [-noheader] [-showproc program] [-noshowproc]

[switches for showproc] [-help]

DESCRIPTION
Show lists each of the specified messages to the standard output (typically, the terminal). Typically, the
messages are listed exactly as they are, with no reformatting. A program named by the showproc profile
component is invoked to do the listing, and any switches not recognized by show are passed along to that
program. The default program is known as more (1). To override the default and the showproc profile
component, use the ‘~showproc program’ switch. For example, ‘—show pr’ will cause the pr (1) program
to list the messages. The MH command mhl can be used as a showproc to show messages in a more uni-
form format. Normally, this program is specified as the showproc is the user’s .mh_profile. See mhl (1)
for the details. If the ‘~noshowproc’ option is specified, ‘/bin/cat’ is used instead of showproc.
The ‘-header’ switch tells show to display a one-line description of the message beiﬂg shown. This
description includes the folder and the message number.
If no ‘msgs’ are specified, the current message is used. If more than one message is specified, more will
prompt for a <RETURN> prior to listing each message. more will list each message, a page at a time.
When the end of page is reached, more will ring the bell and wait for a <SPACE> or <RETURN>. If a
<RETURNS> is entered, more will print the next line, whereas <SPACE> will print the next screenful. To
exit more, type “‘q”’.
If the standard output is not a terminal, no queries are made, and each file is listed with a one-line header
and two lines of separation.
‘‘show —draft’’ will list the file <mh—dir>/draft if it exists.
If the profile entry ‘‘Unseen—Sequence’’ is ﬁresent and non-empty, then show will remove each of the
messages shown from each sequence named by the profile entry. This is similar to the
‘‘Previous—Sequence’ profile entry supported by all MH commands which take ‘msgs’ or ‘msg’ argu-
ments.

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder
Unseen~Sequence: To name sequences denoting unseen messages
showproc: Program to show messages

See Also

' mhi(1), more(1), next(1), pick(1), prev(1), scan(1)

Defaults

[mh.6]

‘+folder’ defaults to the current folder
‘msgs’ defaults to cur

‘~format’

‘~header’

MH UCL/UCB version

USD:8-65 The Rand MH Message Handling System SHOW(1)

Context

Bugs

[mh.6]

If a folder is given, it will become the current folder. The last message shown will become the current
message.

The ‘~header’ switch doesn’t work when ‘msgs’ expands to more than one message. If the showproc is
mhl, then is problem can be circumvented by referencing the ‘‘messagename’’ field in the mhl format file.
Show updates the user’s context before showing the message. Hence if show will mark messages as seen
prior to the user actually seeing them. This is generally not a problem, unless the user relies on the
‘‘unseen’’ messages mechanism, and interrupts show while it is showing ‘‘unseen’’ messages.

If showproc is mhl, then show uses a built—in mhl: it does not actually run the mhl program. Hence, if you
define your own showproc, don’t call it mhl since show won’t run it.

If more (1) is your showproc (the default), then avoid running show in the background with only its
standard output piped to another process, as in

show | imprint &

Due to a bug in more, show will go into a ‘‘tty input’’ state. To avoid this problem, re~direct show’s
diagnostic output as well. For users of csh:

show |& imprint &
For users of sh:

show 2>&1 | imprint &

MH UCY/UCB version

SORTM(1) The Rand MH Message Handling System v USD:8-66

NAME
SOrtm — sort messages

SYNOPSIS : .
sortm {+folder] [msgs] [~datefield field] [-verbose] [-noverbose] [-help]

DESCRIPTION
Sortm sorts the specified messages in the named folder aceordmg to the chronological order of the ‘‘Date:"’
field of each message. Messages which are in the folder, but not specified by ‘msgs’, are moved to the end

- of the folder. If a message does not exist (the folder has a gap), sortm may fill the gap if convenient.

The ‘~verbose’ switch directs sortm to tell the user the general actions that it is taking to place the folder in
sorted order.
The ‘~datefield field’ switch tells sortm the name of the field to use when making the date comparison. If
the user has a special field in each message, such as ‘‘BB-Posted:’’ or ‘‘Delivery-Date:’’, then the
‘~datefield’ switch can be used to direct sortm which field to examine.

Files
$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user’s MH directory
Current-Folder: To find the default current folder

~ See Also

folder (1)

Defaults
‘+folder’ defaults to the current folder
‘msgs’ defaults to all
‘~datefield date’
‘~noverbose’

Context
If a folder is given, it will become the current folder. If the current message is moved, sortm will preserve
its status as current.

History
Timezones used to be ignored when comparing dates: they aren’t any more.

Bugs

If sortm encounters a message without a date-field, or if the message has a date—field that sortm cannot
parse, then sortm attempts to keep the message in the same relative position. This does not always work.
For instance, if the first message encountered lacks a date which can be parsed, then it will usually be
placed at the end of the messages being sorted.

When sortm complains about a message which it can’t temporarlly order, it complains about the message
number prior to sorting. It should indicate what the message number will be after sorting.

[mh.6] MH , UCI/UCB version »

USD:8-67 The Rand MH Message Handling System YMH(1)

NAME

vmh - visual front-end to MH

SYNOPSIS

vmh [-prompt string] [~vmhproc program] [-novmhproc] [switches for vmhproc] [-help]

DESCRIFTION

Files

vmh is a program which implements the server side of the MH window management protocol and uses
curses (3) routines to maintain a split-screen interface to any program which implements the client side of
the protocol. This latter program, called the vmhproc, is specified using the ‘—~vmhproc program’ switch.

The upshot of all this is that one can run msh on a display terminal and get a nice visual interface. To do
this, for example, just add the line

mshproc: vmh
to your .mh_profile. (This takes advantage of the fact that msh is the default vimhproc for vmh.)

In order to facilitate things, if the ‘—novmhproc’ switch is given, and vmh can’t run on the user’s terminal,
the vmhproc is run directly without the window management protocol.

After initializing the protocol, vk prompts the user for a command to be given to the client. Usually, this
results in output being sent to one or more windows. If a output to a window would cause it to scroll, vmh
prompts the user for instructions, roughly permitting the capabilities of less or more (e.g., the ability to
scroll backwards and forwards):

SPACE advance to the next windowful
RETURN * advance to the next line
* retreat to the previous line
* advance to the next ten lines
* retreat to the previous ten lines
* go to an arbitrary line
(preceed g with the line number)
* go to the end of the window
(if a line number is given, this acts like ‘g’)
CTRL-L refresh the entire screen
h print a help message
q abort the window

QO e o<

(A ‘* indicates that a numeric prefix is meaningful for this command.)

Note that if a command resulted in more than one window’s worth of information being displayed, and you
allow the command which is generating information for the window to gracefully finish (i.e., you don’t use
the ‘q’ command to abort information being sent to the window), then vmh will give you one last change to
peruse the window. This is useful for scrolling back and forth. Just type ‘q’ when you’re done.

To abnorxhally terminate vmh (without core dump), use <QUIT> (usually CTRL-\).. For instance, this does
the “‘right’’ thing with bbc and msh.

$HOME/.mh_profile The user profile

Profile Components

[mh.6]

Path: To determine the user’s MH directory

MH UCI/UCB version

VMH(1) ~ The Rand MH Message Handling System USD:8-68

See Also
msh(1)

Defaults

‘~prompt (vmh) ’
‘~vmhproc msh’

Context
None

Bugs
The argument to the ‘—prompt’ switch must be interpreted as a single tokenbytheshelldmtmvokesmh
Therefore, one must usually place the argument to this switch inside double—quom

At present, there is no way to pass signals (e.g., interrupt, quit) to the client. However, generating QUIT
when vmbh is reading a command from the terminal is sufficient to tell the client to go away quickly.

Acts strangely (loses peer or botches window management protocol with peer) on random occasions.

[mh.6] MH ‘ UCL/UCB version

USD:8-69 The Rand MH Message Handling System WHATNOW(1)

NAME

whatnow — prompting front—end for send

SYNOPSIS

whatnow [—draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [—editor editor] [-noedit]
[-prompt string] [file] [-help]

DESCRIPTION

Files

[mh.6]

Whatnow is the default program that queries the user about the disposition of a composed draft. It is nor-
mally invoked by one of comp, dist, forw, or repl after the initial edit.

When started, the editor is started on the draft (unless ‘—noedit’ is given, in which case the initial edit is
suppressed). Then, whatnow repetitively prompts the user with ‘“What now?’’ and awaits a response. The
valid responses are
display to list the message being distributed/replied—to on
the terminal
edit to re—edit using the same editor that was used on the
preceding round unless a profile entry
‘‘<lasteditor>—next: <editor>’’ names an alternate editor
edit <editor> to invoke <editor> for further editing
list to list the draft on the terminal
push to send the message in the background
quit to terminate the session and preserve the draft
quit —delete to terminate, then delete the draft
refile +folder to refile the draft into the given folder
send to send the message
send —watch to cause the delivery process to be monitored
whom to list the addresses that the message will go to
whom —check to list the addresses and verify that they are
acceptable to the transport service

For the edit response, any valid switch to the editor is valid. Similarly, for the send and whom responses,
any valid switch to send (1) and whom (1) commands, respectively, are valid. For the push response, any
valid switch to send (1) is valid (as this merely invokes send with the ‘—push’ option). For the refile
response, any valid switch to the fileproc is valid. For the display and list responses, any valid argument to
the Iproc is valid. If any non—switch arguments are present, then the pathname of the draft will be
excluded from the argument list given to the [proc (this is useful for listing another MH message).

See mh—profile (5) for further information about how editors are used by MH. It also discusses how com-
plex environment variables can be used to direct whatnow’s actions.

The ‘~prompt string’ switch sets the prompting string for whatnow.
The ‘—draftfolder +folder’ and ‘—draftmessage msg’ switches invoke the MH draft folder facility. This is

an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

$HOME/.mh_profile The user profile
<mh—dir>/draft The draft file
MH UCI/UCB version

WHATNOW(1) The Rand MH Message Handling System USD:8-70

Profile Componeats
, Path: - To determine the user’s MH directory

Draft-Folder: To find the default draft—folder
Editor: To override the default editor
<lasteditor>—next: To name an editor to be used after exit from <lasteditor>
fileproc: Program to refile the message -
lproc; Program to list the contents of a message
sendproc: Program to use to send the message
whomproc: Program to determine who a message would go to

See Also
send(1), whom(1)

Defaults
- ‘“~prompt ‘“What Now? ’*’
Context
None -
Bugs

The argument to the ‘—prompt’ switch must be interpreted as a single token by the shell that invokes
whatnow. Therefore, one must usually place the argument to this switch inside double—quotes.

If sendproc is send, then whatnow uses a built—in send, it does not actually run the send program. Hence, if
you define your own sendproc, don’t call it send since whatnow won’t run it.

{mh.6] MH ' UCI/UCB version

USD:8-71 The Rand MH Message Handling System WHOM(1)

NAME

whom - report to whom a message would go

SYNOPSIS

whom [-alias aliasfile] [—check] [-nocheck] [—draft] [—draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [file] [help]

DESCRIPTION

[mh.6]

Whom is used to expand the headers of a message into a set of addresses and optionally verify that those
addresses are deliverable at that time (if ‘~check’ is given). '

The ‘~draftfolder +folder’ and ‘—draftmessage msg’ switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for

By using the “-alias aliasfile’ switch, the user can direct send to consult the named files for alias definitions
(more than one file, each preceeded by ‘-alias’, can be named). See mh—alias (5) for more information.

Files
$HOME/.mh_profile The user profile
‘ Profile Components
Draft-Folder: To find the default draft—folder
postproc: Program to post the message
See Also
mh-—alias(5), post(8)
Defaults)
‘file’ defaults to <mh—dir>/draft
‘~nocheck’
‘—alias /usr/new/lib/mh/MailAliases’
Context
None
Bugs

With the ‘—check’ option, whom makes no guarantees that the addresses listed as being ok are really
deliverable, rather, an address being listed as ok means that at the time that whom was run the address was
thought to be deliverable by the transport service. For local addresses, this is absolute; for network
addresses, it means that the host is known; for uucp addresses, it (often) means that the UUCP network is
available for use.

MH UCI/UCB version

The Rand MH Message Handling System USD:8-72

MORE DETAILS

This section describes some of the mare intense points of the MH system, by expanding on topics previously
discussed. The format presented conforms to the standard form for the description of UNIX documentation.

USD:8-73 The Rand MH Message Handling System MH-ALIAS(S)

NAME

mh-alias — alias file for MH message system

SYNOPSIS

any MH command

DESCRIPTION

[mh.6]

This describes both MH personal alias files and the (primary) alias file for mail delivery, the file
fusr/new/lib/mh/MailAliases

It does mot describe aliases files used by the message transport system. Each line of the alias file has the
format:

alias : address—group

alias ; address—group
or

< alias—file

where:

address—group := address—list

I X3 <n ﬁle
I (‘=” UNIX_group
| ‘““+”" UNIX-group
!

Coer?

address-list := address
| address-list, address

Continuation lines in alias files end with ‘\’ followed by the newline character.
Alias—file and file are UNIX file names. UNIX-group is a group name (or number) from /etc/group. An
address is a ‘‘simple’’ Intemnet—style address. Througout this file, case is ignored, except for alias—file

names.

If the line starts with a ‘<’, then the file named after the ‘<’ is read for more alias definitions. The reading
is done recursively, so a ‘<’ may occur in the beginning of an alias file with the expected results.

If the address—group starts with a ‘<’, then the file named after the ‘<’ is read and its contents are added to
the address—list for the alias.

If the address—group starts with an ‘=’, then the file /etc/group is consulted for the UNIX—group named
after the ‘=", Each login name occurring as a member of the group is added to the address-list for the alias.

In contrast, if the address—group starts with a ‘+’, then the file /etc/group is consulted to determine the
group—id of the UNIX—group named after the ‘+’. Each login name occurring in the /etc/passwd file whose
group—id is indicated by this group is added to the address-list for the alias.

If the address—group is simply ‘*’, then the file /etc/passwd is consulted and all login names with a userid
greater than some magic number (usually 200) are added to the address-list for the alias.’

In match, a trailing * on an alias will match just about anything appropriate. (See example below.)

An approximation of the way aliases are resolved at posting time is (it’s not really done this way):

MH UCI/UCB version

MH-ALIAS(5) ~ The Rand MH Message Handling System USD:8-74

1) Build a list of all addresses from the message to be delivered, eliminating duplicate addresses.

2) If this draft originated on the local host, then for those addresses in the message that have no
host specified, perform alias resolution.

3) For each line in the alias file, compare ‘“alias’’ against all of the existing addresses. If a match, -
remove the matched *“alias’’ from the address list, and add each new address in the address—group
to the address list if it is not already on the list. The alias itself is not usually output, rather the
address—group that the alias maps to is output instead. If ‘‘alias’ is terminated with a *;’ instead
of a ‘’, then both the ‘‘alias’’ and the address are output in the correct format. (This makes
replies possible since MH aliases and personal aliases are unknown to the mail transport systen.)

Since the alias file is read line by line, forward references work, but backward references are not recog-
nized, thus, there is no recursion.

Example:
</usr/new/lib/mh/BBoardAliases
sgroup: fred, fear, freida
fred: frated@UCI
UNIX—-committee: <unix.aliases
staff: =staff
wheels: +wheel
everyone: *
news.*: news

The first line says that more aliases should immediately be read from the file
lusrinewl/lib/mhiBBoardAliases. Following this, ‘‘fred”’ is defined as an alias for ‘‘frated@UCI’’, and
‘‘sgroup’’ is defined as an alias for the three names ‘‘frated@UCI’’, *’fear’’, and ’’freida’’. Next, the
definition of ‘‘UNIX—committee’’ is given by reading the file unix.aliases in the users MH directory,
“staff” is defined as all users who are listed as members of the group “‘staff’’ in the /etc/group file, and

‘‘wheels” is defined as all users whose group—id in /etc/passwd is equivalent to the ‘‘wheel’’ group.
Finally, “‘everyone’’ is defined as all users with a user—id in /etc/passwd greater than 200, and all aliases of
the form ‘‘news.<anything>"’ are defined to be ‘‘news’’.

The key thing to understand about aliasing in MH is that aliases in MH alias files are expanded into the
headers of messages posted. This aliasing occurs first, at posting time, without the knowledge of the mes-
sage transport system. In contrast, once the message transport system is given a message to deliver to a list
of addresses, for each address that appears to be local, a system—wide alias file is consulted. These aliases
are NOT expanded into the headers of messages delivered.

Helpful Hints

[mh.6]

To use aliasing in MH quickly, do the following:

First, in your .mh_profile, choose a name for your primary alias file, say ‘‘aliases’’, and add three
lines:

ali: —alias aliases
send: —alias aliases
whom: —alias ailases
Second, create the file “‘aliases”” in your MH directory.

Third, start adding aliases to your ‘‘aliases’’ file as appropriate.

MH UCI/UCB version

USD:8-7§ The Rand MH Message Handling System MH-ALIAS(S)

Flles

{/usr/new/lib/mh/MailAliases Primary alias file

Profile Components

See Also

Defaults

Context

History

Bugs

[mh.6]

None
ali(1), send(1), whom(1), group(S), passwd(5), conflict(8), post(8)
None
None

In previous releases of MH, only a single, system—wide mh-alias file was supported. This led to a number
of problems, since only mail-system administrators were capable of (un)defining aliases. Hence, the
semantics of mh—alias were extended to support personal alias files. Users of MH no longer need to bother
mail-system administrators for keeping information in the system—wide alias file, as each MH user can
create/modify/remove aliases at will from any number of personal files.

Although the forward-referencing semantics of mh—alias files prevent recursion, the ‘‘< alias—file’’
command may defeat this. Since the number of file descriptors is finite (and very limited), such infinite
recursion will terminate with a meaningless diagnostic when all the fds are used up.

MH UCL/UCB version

MH-FORMAT(5) The Rand MH Message Handling System - USD:8-76

NAME

mh—format — format file for MH message system

SYNOPSIS

some MH commands

DESCRIPTION

[mh.6]

Several MH commands utilize either a format string or a format file during their execution. For example,
scan (1) uses a format string which directs it how to generate the scan listing for each message; repl (1)
uses a format file which directs it how to generate the reply to a message, and so on.

Format strings are designed to be efficiently parsed by MH since they represent an integral part of MH.
This means that novice, casual, or even advanced users of MH should deal with them. It suffices to have
your local MH expert actually write new format commands or modify existing ones. This manual section
explains how to do just that.

A format string is similar to a pringf (3) string, but uses multi-letter ‘%’—escapes. When specifying a
string, the usual C backslash characters are honored: “\b’, ‘\f’, ‘\n’, ‘\r’, and “\t’. Continuation lines in for-
mat files end with ‘\’ followed by the newline character.

The interpretation model is based on a simple machine with two registers, num and str. The former con-
tains an integer value, the latter a string value. When an escape is processed, if it requires an argument, it
reads the current value of either num or str; and, if it returns a value, it writes either num or str.

Escapes are of three types: components, functions, and, control. A component escape is specified as
‘%{name}’, and is created for each header found in the message being processed. For example ‘%{date}
refers to the ‘‘Date:’’ field of the appropriate message. A component escape is always string valued.

A control escape is one of: ‘%<escape’, ‘%|’, and ‘%>’, which correspond to if-then—else constructs; if
‘escape’ is non—zero (for integer—valued escapes), or non—empty (for string—valued escapes), then every-
thing up to ‘%|’ or ‘%>’ (whichever comes first) is interpreted; otherwise, then skip to ‘%|’ or ‘%>’
(whichever comes first) and start interpreting again.

A function escape is specified as ‘%(name)’, and is statically defined. Here is the list:

escape argument returnsinterpretation

nonzero integer integer num is non-zero

zero integer integer num is zero

eq integer integer num == width

ne integer integer num !'= width

gt integer integer width > num

null string integer stris empty

nonnull string integer stris non—empty

putstr string print str

putstrf string print str in the specified width

; (e.g., %20(putstrf{subject})

puthum integer print num

putnumf integer print naum in the specified width
(e.g., %4(putnumf(msg))

msg integer message number

cur integer message is current

size integer size of message

strlen string integer length of str

me string - the user’s mailbox

plus integer add width to num

minus integer subtract aum from width

charleft integer space left in output buffer

MH UCL/UCB version

USD:8-77 The Rand MH Message Handling System MH-FORMAT(5)

[mh.6]

timenow integer seconds since the UNIX epoch
When str is a date, these escapes are useful:

escape argument returnsinterpretation

sec string integer seconds of the minute

min string integer minutes of the day

hour string integer hours of the day (24 hour clock)
mday string integer day of the month .

mon string integer month of the year
wday string integer day of the week (Sunday=0)
year string integer year of the century
yday string integer day of the year
dst string integer daylight savings in effect
zone string integer timezone
sday string integer day of the week known
1 for explicit in date
0 for implicit (MH figured it out)

-1 for unknown (MH couldn’t figure it out)
clock string integer seconds since the UNIX epoch
rclock string integer seconds prior to current time
month string string month of the year
Imonth string string month of the year (long form)

tzone string string timezone
day string string day of the week
weekday string string day of the week (long)
tws string string official 822 rendering of the date
pretty string string a more user—friendly rendering
nodate string date wasn’t parseable
When str is an address, these escapes are useful:
escape argument returnsinterpretation
pers string string the personal name of the address
mbox string string the local part of the address
host string string the domain part of the address
path string string the route part of the address
type string integer the type of host

-1 for uucp

0 for local

1 for network

2 for unknown

nohost string integer no host was present in the address

ingrp string integer the address appeared inside a group

gname string string name of the group (present for first
address only)

note string string commentary text

proper string string official 822 rendering of the address

friendly string string a more user—friendly rendering

mymbox string the address refers to the user’s mailbox

formataddr string print str in an address list

With all this in mind, here’s the default format string for scan. It’s been divided into several pieces for rea-
dability. The first part is:

%4(putnumf(msg))%<(cur)+%| %>%<{replied}-%| %>

which says that the message number should be printed in four digits, if the message is the current message
then a ‘+’ else a space should be printed, and if a ‘‘Replied:’’ field is present then a ‘-’ else a space should

MH UCL/UCB version

MH-FORMAT(S) The Rand MH Message Handling System USD:8-78

Files

be printed. Next:
%02(putnumf(mon{date})y %02 (putnumf(mday{date}))

the hours and minutes are printed in two digits (zero ﬁlleﬂ). Next,
%<{date} %|*>

If no “‘Date:’’ field was present, then a ‘*’ is printed, otherwise a space. Next,
%<(mymbox{from})To:% 14(putstf(friendly{to}))

if the message is from me, print ‘To:’ followedbya“user—fnendly” mndermgofﬂneﬁrstaddressmme
““To:” field. Continuing,

%|%17 (putstrf(friendly {from}))%>

if the message isn’t from me, then the print the ‘‘From:"’ address is printed. And finally,
%{subject}<<%{body}>>

the subject and initial body are printed.

Although this seems complicated, in point of fact, this method is flexible enough to extract individual fields
and print them in any format the user desires.

If the ‘—form formatfile’ switch is given, scan will treat each line in the named file as a format string and

act accordingly. This lets the user employ canned scan listing formats. Take a look at the three files
/usr/new/lib/mb/scan.time, /usr/new/lib/mh/scan.size, and /usr/new/lib/mh/scan.timely.

None

Profile Components

See Also
Defauits
Context

Bugs

[mh.6]

None
ap(8), dp(8)
None
None

On hosts where MH was configured with the BERK option, address parsing is not enabled.

MH UCI/UCB version

USD:8-79 The Rand MH Message Handling System MH-MAIL(S5)

NAME

mh-mail - message format for MH message system

SYNOPSIS

any MH command

DESCRIPTION

[mh.6]

MH processes messages in a particular format. It should be noted that although neither Bell nor Berkeley
mailers produce message files in the format that MH prefers, MH can read message files in that antiquated
format.

Each user possesses a mail drop box which initially receives all messages processed by post (8). Inc (1)
will read from that drop box and incorporate the new messages found there into the user’s own mail folders
(typically ‘+inbox’). The mail drop box consists of one or more messages.

Messages are expected to consist of lines of text. Graphics and binary data are not handled. No data
compression is accepted. All text is clear ASCII 7-bit data.

The general ‘‘memo’” framework of RFC-822 is used. A message consists of a block of information in a
rigid format, followed by general text with no specified format. The rigidly formatted first part of a mes-
sage is called the header, and the free-format portion is called the body. The header must always exist, but
the body is optional. These parts are separated by an empty line, i.e., two consecutive newline characters.
Within MH, the header and body may be separated by a line consisting of dashes:

The header is composed of one or more header items. Each header item can be viewed as a single logical
line of ASCII characters. If the text of a header item extends across several real lines, the continuation
lines are indicated by leading spaces or tabs.

Each header item is called a component and is composed of a keyword or name, along with associated text.
The keyword begins at the left margin, may NOT contain spaces or tabs, may not exceed 63 characters (as
specified by RFC-822), and is terminated by a colon (‘:’). Certain components (as identified by their key-
words) must follow rigidly defined formats in their text portions.

The text for most formatted components (e.g., ‘‘Date:”’ and ‘‘Message-1d:’’) is produced automatically.
The only ones entered by the user are address fields such as ““To:”’, ‘‘cc:”’, etc. Internet addresses are
assigned mailbox names and host computer specifications. The rough format is ‘‘local@domain’’, such as
“MH@UCI"’, or ‘“MH@UCI-ICSA.ARPA’’, Multiple addresses are separated by commas. A missing
host/domain is assumed to be the local host/domain.

As mentioned above, a blank line (or a line of dashes) signals that all following text up to the end of the file
is the body. No formatting is expected or enforced within the body.

Following is a list of header components that are considered meaningful to various MH programs.
Date:
Added by post (8), contains date and time of the message’s entry into the transport system.

From:
Added by post (8), contains the address of the author or authors (may be more than one if a
‘““Sender:”’ field is present). Replies are typically directed to addresses in the ‘‘Reply—To:’’ or
“From.”’ field (the former has precedence if present).

MH UCL/UCB version

MH-MAIL(S) The Rand MH Message Handling System ~ USD:8-80

Added by post (8) in the event that the message already has a ‘‘From:”’ line. This line contains
the address of the actual sender. Replies are never sent to addresses in the ‘‘Sender:’’ field.

To:
Contains addresses of primary recipients.
cc: ;
Contains addresses of secondary recipients.
Bcc: v
Still more recipients. However, the ‘‘Bcc:” line is not copied onto the message as delivered, so
these recipients are not listed. MH uses an encapsulation method for blind copies, see send (1).
Fec:
Causes post (8) to copy the message into the specified folder for the sender, if the message was
successfully given to the transport system.
Message—ID:
A unique message identifier added by post (8) if the ‘—msgid’ flag is set.
Subject:
Sender’s commentary. It is displayed by scan (1).
In—Reply-To:
A commentary line added by rep! (1) when replying to a message.
Resent-Date: '
Added when redistributing a message by post (8).
Resent-From:
Added when redistributing a message by post (8).
Resent-To:
New recipients for a message resent by dist (1).
Resent—cc:
Still more recipients. See ‘‘cc:’’ and ‘‘Resent—To:"’.
Resent—Bcc:
Even more recipients. See ‘‘Bcc:’’ and ‘‘Resent-To:”’.
Resent-Fcc:

Copy resent message into a folder. See ‘‘Fcc:’’ and ‘‘Resent-To:”’.

Resent—Message-1d:
A unique identifier glued on by post (8) if the ‘~msgid’ flag is set. See ‘‘Message-Id:”’ and
*‘Resent-To:"".

Resent:
Annotation for dist (1) under the ‘—annotate’ option.

Forwarded:
Annotation for forw (1) under the ‘—annotate’ option.

Replied:
Annotation for rep! (1) under the ‘—annotate’ option.

{mh.6] MH UCI/UCB version

USD:8-81 The Rand MH Message Handling System MH-MAIL(5)

Flles
/usr/spool/mail/SUSER Location of mail drop

Profile Components
None

See Also
Standard for the Format of ARPA Internet Text Messages (aka RFC-822)

Defaults
None

Context
None

[mh.6] MH UCI/UCB version

MH-PROFILE(S) The Rand MH Message Handling System USD:8-82

NAME

.mh_profile - user customization for MH message system

SYNOPSIS

any MH command

DESCRIPTION

[mh.6]

Each user of MH is expected to have a file named .mh_profile in his or her home directory. This file con-
tains a set of user parameters used by some or all of the MH family of programs. Each line of the file is of
the format

profile—~component: value

The possible profile components are exemplified below. Only ‘Path:’ is mandatory. The others are
optional; some have default values if they are not present. In the notation used below, (profile, default)
indicates whether the information is kept in the user’s MH profile or MH context, and indicates what the
default value is.

Path: Mail
Locates MH transactions in directory ‘‘Mail’’. (profile, no default)

context: context
Declares the location of the MH context file, see the HISTORY section below. (profile,
default: <mh—dir>/context)

Current-Folder: inbox
Keeps track of the current open folder. (context, default: +inbox)

Previous—Sequence: pseq .
Names the sequences which should be defined as the ‘msgs’ or ‘msg’ argument given to
the program. If not present, or empty, no sequences are defined. Otherwise, for each
name given, the sequence is first zero’d and then each message is added to the sequence.
(profile, no default)

Sequence—Negation: not
' Defines the string which, when prefixed to a sequence name, negates that sequence.
Hence, “‘notseen’’ means all those messages that are not a member of the sequence
‘‘seen’’. (profile, no default)

Unseen—Sequence: unseen
Names the sequences which should be defined as those messages recently incorporated
by inc. Show knows to remove messages from this sequence once it thinks they have
been seen. If not present, or empty, no sequences are defined. Otherwise, for each name
given, the sequence is first zero’d and then each message is added to the sequence.
(profile, no default)

mh-sequences: .mh_sequences
The name of the file in each folder which defines public sequences. To disable the use of
public sequences, leave the value portion of this entry blank. (profile, default
.mh_sequences)

atr—seq—folder: 172 178-181 212
Keeps track of the private sequence called seq in the specified folder. (context, no
default)

Editor: /usr/ucb/ex

MH UCLI/UCB version

USD:8-83 ‘The Rand MH Message Handling System MH-PROFILE(5)

Defines editor to be used by comp (1), dist (1), forw (1), and repl (1). (profile, default:
prompter)

Msg--Protect: 644
Defines octal protection bits for message files. See chmod (1) for an explanation of the
octal number. (profile, default: 0644)

Folder—-Protect: 711
Defines protection bits for folder directories. (profile, default: 0711)

program; default switches ‘
Sets default switches to be used whenever the mh program program is invoked. For
example, one could override the Editor: profile component when replying to messages
by adding a component such as:
repl: —editor /bin/ed
(profile, no defaults)

lasteditor-next: nexteditor
Names “‘nexteditor’’ to be the default editor after using *‘lasteditor’’. This takes effect at
‘““What now?”’ level in comp, dist, forw, and repl. After editing the draft with ‘‘lastedi-
tor’’, the default editor is set to be ‘‘nexteditor’’. If the user types ‘‘edit’’ without any
arguments to ‘“What now?”’, then ‘‘nexteditor’’ is used. (profile, no default)

bboards: system
Tells bbc which BBoards you are interested in. (profile, default: system)

Folder-Stack: folders
The contents of the folder—stack for the folder command. (context, no default)

mhe:
If present, tells inc to compose an MHE auditfile in addition to its other tasks. MHE is
Brian Reid’s Emacs front-end for MH. An early version is supplied with the mh.6 distri-
bution. (profile, no default)

Alternate—Mailboxes: mh@uci~750a, bug-mh*

[mh.6]

Tells repl and scan which addresses are really yours. In this way, repl knows which
addresses should be included in the reply, and scan knows if the message really ori-
ginated from you. Addresses must be separated by a comma, and the hostnames listed
should be the ‘“‘official’’ hostnames for the mailboxes you indicate, as local nicknames
for hosts are not replaced with their official site names. For each address, if a host is not
given, then that address on any host is considered to be you. In addition, an asterisk (‘*’)
may appear at either or both ends of the mailbox and host to indicate wild—card match-
ing. (profile, default: your user-id)

Draft-Folder: drafts
Indicates a default draft folder for comp, dist, forw, and repl. (profile, no default)

digest—issue—list: 1
Tells forw the last issue of the last volume sent for the digest list. (context, no default)

digest—volume-list: 1
Tells forw the last volume sent for the digest list. (context, no default)

MailDrop: .mail

Tells inc your maildrop, if different from the default. This is superceded by the SMAIL-
DROP environment variable. (profile, default: /ust/spool/mail/$USER)

MH UCI/UCB version

MH-PROFILE(S) The Rand MH Message Handling System USD:8-84

[mh.6]

Signature: Rand MH System (agent: Marshall Rose)
Tells send your mail signature. This is superceded by the $SIGNATURE environment
variable. On hosts where MH was configured with the UCI option, if $SIGNATURE is
not set and this profile entry is not present, the file SHOME/ signature is consulted.
(profile, no defauit)

The following profile elements are used whenever an MH program invokes some other program such as
more (1). Tmmroﬁkcmbeusedmselectalmmpmgrmnftheuserwnshes The default values

are given in the examples.
fileproc: /ust/new/mhvrefile

incproc: lust/new/mb/inc :
installproc: /ust/new/lib/mlvinstall-mh
Iproc: {ust/ucb/more

mailproc: {ust/new/mh/mhmail
mhlproc: /usr/new/lib/mh/mhl
moreproc: /ust/ucb/more
mshproc: /ust/new/mh/msh
packproc: fust/new/mh/packf
postproc: /ust/new/lib/mh/post
rmmproc: none

rmfproc: lust/new/mh/rmf
sendproc: /usr/new/mh/send
showproc: {usr/ucb/more
whatnowproc: /usr/new/mh/whatnow
whomproc: /ust/new/mh/whom

If you define the environment variable $MH, you can specify a profile other than .mh_profile to be read by
the MH programs that you invoke. If the value of $MH is not absolute, (i.e., does not begin with a/), it
will be presumed to start from the current working directory. This is one of the very few exceptions in MH
where non—absolute pathnames are not considered relative to the user’s MH directory.

Similarly, if you define the environment variable SMHCONTEXT, you can specify a context other than
the normal context file (as specified in the MH profile). As always, unless the value of SMHCONTEXT is
absolute, it will be presumed to start from your MH directory.

MH programs also support other environment variables:

$MAILDROP : tells inc the default maildrop
This supercedes the ‘‘MailDrop:’’ profile entry.

$SIGNATURE : tells send and post your mail signature
This supercedes the “‘Signature:’’ profile entry.

$SHOME : tells all MH programs your home directory
$SHELL : tells bbl the default shell to run |

$TERM : tells MH your terminal type
The STERMCAP environment variable is also consulted. In parucular, these tells scan and mhl
how to clear your terminal, and how many columns wide your terminal i ls They aiso tell mh! how
many lines long your terminal screen is.

$editalt : the alternate message
This is set by dist and repl during edit sessions so you can peruse the message being distributed or
replied-to. The message is also available through a link called ‘‘@’’ in the current directory if
your current working directory and the folder the message lives in are on the same UNIX

MH , UCI/UCB version

USD:8-85

The Rand MH Message Handling System MH-PROFILE(S)

filesystem,

$mhdraft : the path to the working draft

This is set by comp, dist, forw, and rep! to tell the whatnowproc which file to ask ‘‘What now?”’
questions about. In addition, dist, forw, and repl! set Smhfolder if appropriate. Further, dist and
repl set $mhaltmsg to tell the whatnowproc about an alternate message associated with the draft
(the message being distributed or replied—t0), and dist sets $mhdist to tell the whatnowproc that
message re—distribution is occurring. Also, $mheditor is set to tell the whatmowproc the user’s
choice of editor (unless overridden by ‘-noedit’). Similarly, $mhuse may be set by comp.
Finally, $mhmessages is set by dist, forw, and repl if annotations are to occur (along with $mhan-
notate, and $mhinplace). It’s amazing all the information that has to get passed via environment
variables to make the ‘““What now?’’ interface look squeaky clean to the MH user, isn’t it? The
reason for all this is that the MH user can select any program as the whatnowproc, including one
of the standard shells. As a result, it’s not possible to pass information via an argument list.

If the WHATNOW option was set during MH configuration (type ‘—help’ to an MH command to
find out), and if this environment variable is set, if the commands refile, send, show, or whom are
not given any ‘msgs’ arguments, then they will default to using the file indicated by $mhdraft.
This is useful for getting the default behavior supplied by the default whatnowproc.

$mhfolder : the folder containing the alternate message

This is set by dist and repl during edit sessions so you can peruse other messages in the current
folder besides the one being distributed or replied-to. The $mhfolder environment variable is also
set by show, prev, and next for use by mhl.

$MHBBRC :

If you define the environment variable SMHBBRC, you can specify a BBoards information file
other than .bbrc to be read by bbc. If the value of SMHBBRC is not absolute, (i.e., does not
begin with a/), it will be presumed to start from the current working directory.

$MHFD :

If the OVERHEAD option was set during MH configuration (type ‘~help’ to an MH command to
find out), then if this environment variable is set, MH considers it to be the number of a
file—descriptor which is opened, read—only to the MH profile. Similarly, if the environment vari-
able SMHCONTEXTFD is set, this is the number of a file-descriptor which is opened read—only
to the MH context. This feature of MH is experimental, and is used to examine possible speed
improvements for MH startup. Note that these environment variables must be set and non—empty
to enable this feature. However, if OVERHEAD is enabled during MH configuration, then when
MH programs call other MH programs, this scheme is used. These file—descriptors are not closed
throughout the execution of the MH program, so children may take advantage of this. This
approach is thought to be completely safe and does result in some performance enhancements.

Files
$HOME/.mh_profile The user profile
or SMH Rather than the standard profile
<mh—dir>/context The user context
or SCONTEXT Rather than the standard context
<folder>/.mh_sequences Public sequences for <folder>
Profile Components
All
See Also
mh(1), environ(5)
Defaults

[mh.6]

None

MH UCVUCB version

MH-PROFILE(S) The Rand MH Message Handling System USD:8-86

Context

Bugs

[mh.6]

All

In previous versions of MH, the current—message value of a writable folder was kept in a file called *“cur’’
in the folder itself. In mh3, the .mh_profile contained the current—message values for all folders,
regardless of their writability.

In all versions of MH since mh.4, the .mh_profile contains only static information, which MH programs
will NOT update. Changes in context are made to the context file kept in the users MH directory. This
includes, but is not limited to: the ‘‘Current—Folder’’ entry and all private sequence information. Public
sequence information is kept in a file called .mh_sequences in each folder.

To convert from the format used in releases of MH prior to the format used in the mh.4 release, install-mh
should be invoked with the ‘~compat’ switch. This generally happens automatically on MH systems
generated with the “‘COMPAT"’ option during MH configuration.

The .mh_profile may override the path of the context file, by specifying a ‘‘context’’ entry (this must be in
lower-case). If the entry is not absolute (does not start with a/), then it is interpreted relative to the user’s
MH directory. As a result, you can actually have more than one set of private sequences by using different
context files.

The shell quoting conventions are not available in the .mh_profile. Each token is separated by whitespace.

There is some question as to what kind of arguments should be placed in the profile as options. In order to
provide a clear answer, recall command line semantics of all MH programs: conflicting switches (e.g.,
‘~header and ‘—noheader’) may occur more than one time on the command line, with the last switch taking
effect. Other arguments, such as message sequences, filenames and folders, are always remembered on the
invocation line and are not superseded by following arguments of the same type. Hence, it is safe to place
only switches (and their arguments) in the profile.

If one finds that an MH program is being invoked again and again with the same arguments, and those
arguments aren’t switches, then there are a few possible solutions to this problem. The first is to create a
(soft) link in your SHOME/bin directory to the MH program of your choice. By giving this link a different
name, you can create a new entry in your profile and use an alternate set of defaults for the MH command.
Similarly, you could create a small shell script which called the MH program of your choice with an
alternate set of invocation line switches (using links and an alternate profile entry is preferable to this
solution).

Finally, the csh user could create an alias for the command of the form:
alias cmd 'cmd argl arg2 ...’
In this way, the user can avoid lengthy type—in to the shell, and still give MH commands safely. (Recall

that some MH commands invoke others, and that in all cases, the profile is read, meaning that aliases are
disregarded beyond an initial command invocation)

MH UCY/UCB version

USD:8-87 The Rand MH Message Handling System AP(8)

NAME
ap — parse addresses 822-style

SYNOPSIS
/usr/new/lib/mh/ap [-form formatfile] [-format string] [~normalize] [~nonormalize] [-width columns]
addrs ... {~help]

DESCRIPTION

Ap is a program that parses addresses according to the ARPA Internet standard. It also understands many
non-standard formats. It is useful for seeing how MH will interpret an address.

The ap program treats each argument as one or more addresses, and prints those addresses out in the
official 822—format. Hence, it is usually best to enclose each argument in double—quotes for the shell.

To override the output format used by ap, the ‘—format string’ or ‘~format file’ switches are used. This
permits individual fields of the address to be extracted with ease. The string is simply a format stringand
thefile is simply a format file. See mA—format (5) for the details.

In addition to the standard escapes, scan also recognizes the following additional escape:
escape substitution
error . a diagnostic if the parse failed

If the ‘~normalize’ switch is given, ap will try to track down the official hostname of the address.
Here is the default format string used by ap:
%<{error}%{error}: %{text}%|%(putstr(proper{text}))%>
which says that if an error was detected, print the error, a ‘:’, and the address in error. Otherwise, output

the 822—proper format of the address.

Files
$HOME/.mh_profile The user profile
fusr/new/lib/mh/mtstailor tailor file

Profile Components
None

See Also

dp(8),
Standard for the Format of ARPA Internet Text Messages (aka RFC-822)

Defaults
‘~format’ defaults as described above
‘~normalize’
‘~width’ defaults to the width of the terminal

Context
None

Bugs
The argument to the ‘~format’ switch must be interpreted as a single token by the shell that invokes ap.
Therefore, one must usually place the argument to this switch inside double—quotes.

On hosts where MH was configured with the BERK option, address parsing is not enabled.

[mh.6] MH UCLUCB version

CONFLICT(8) The Rand MH Message Handling System USD:8-88

NAME
conflict — search for alias/password conflicts

SYNOPSIS
/usr/new/h’b/nm/conﬂlct [-mail name] [-search dlrecwry] [aliasfiles...] [-help]

DESCRIPTION
Conflict is a program that checks to see if the interface between MH and transport system is in good shape

Conffict also checks for maildrops in /usr/spool/mail which do not belong to a valid user. It assumes that
no user name will start with *.’, and thus ignores files in /ust/spool/mail which begin with .. It also checks
for entries in the group (S)ﬁlewhxchdonotbelongwavahdnser,adforuserswhodonothaveavahd
gmupnumber Inaddmonduphcateusasandgmupsmnoted.

If the ‘~mail name’ switch is used, then the results will be sent to the specified name. Otherwise, the
results are sent to the standard output.

The ‘~search directory’ switch can be used to search directories other than /usr/spool/mail and to report
anomalies in those directories. The ‘—search directory’ switch can appear more than one time in an invoca-
tion to conflict.

Conflict should be run under cron (8), or whenever system accounting takes place.

Flles
/ust/new/lib/mh/mtstailor tailor file
letc/passwd List of users
fetc/group ‘ List of groups
/ust/new/mh/mhmail Program to send mail
/usr/spool/mail/ Directory of mail drop

Profile Components
None

See Also
mh-—alias(5)

Defaults
‘aliasfiles’ defaults to /usr/new/lib/mh/MailAliases

Context
None

[mh.6] MH UCI/UCB version

USD:8-89 The Rand MH Message Handling System DP(8)

NAME
dp — parse dates 822-style

SYNOPSIS
/usr/new/lib/mivdp [-form formatfile] [-format string] [-width columns] dates ... [-help]

DESCRIPTION

Dp is a program that parses dates according to the ARPA Intemnet standard. Italsoundastandsmmy
non—standard formats, such as those produced by TOPS-20 smesandsolneUND(smes usmg ctime (3). It
is useful for seeing how MH will interpret a date.

The dp program treats each argument as a single date, and prints the date out in the official 822—format.
Hence, it is usually best to enclose each argument in double—quotes for the shell.

To override the output format used by dp, the ‘~format string’ or ‘~format file’ switches are used. This
permits individual fields of the address to be extracted with ease. The string is simply a format stringand
thefile is simply a format file, See mh—format (5) for the details.

Here is the default format string used by dp:
%<(nodate{text})error: %{text}%|% (putstr(pretty {text}))%>
which says that if an error was detected, print the error, a ‘:’, and the date in error. Otherwise, output the
822—proper format of the date.
Flles

$SHOME/.mh_profile The user profile

Profile Components
None

See Also

ap(8)
Standard for the Format of ARPA Internet Text Messages (aka RFC-822)

Defaults
‘~format’ default as described above
‘~width’ default to the width of the terminal

Context
None

Bugs

The argument to the ‘—format’ switch must be interpreted as a single token by the shell that invokes dp.
Therefore, one must usually place the argument to this switch inside double—quotes.

[mh.6] MH UCI/UCB version

INSTALL-MH(@) The Rand MH Message Handling System USD:8-90

NAME
install-mh - initialize the MH environment

SYNOPSIS
{usr/new/lib/mlyinstall-mh [—auto] [—~compat]

DESCRIPTION

When a user runs any MH program for the first time, the program will invoke install-mh (with the ‘~auto’
switch) to query the user for the initial MH environment. The user does NOT invoke this program directly.
The user is asked for the name of the directory that will be designated as the user’s MH directory. If this
directory does not exist, the user is asked if it should be created. Normally, this directory should be under
the user’s home directory, and has the default name of Mail/. After install-mh has written the initial
.mh_profile for the user, control retums to the original MH program.

As with all MH commands, install-mh first consults the SHOME environment variable to determine the
user’s home directory. If SHOME is not set, then the /etc/passwd file is consulted.

_ When convérting from mh.3 t0 mh.4, install-mh is automatically invoked with the ‘-compat’ switch.
Files
$HOME/.mh_profile The user profile

Profile Components
Path: To set the user’s MH directory

Context
With ‘~auto’, the current folder is changed to *‘inbox’’.

[{mh.6] MH UCI/UCB version

USD:8-91 The Rand MH Message Handling System POST(8)

NAME

post — deliver a message

SYNOPSIS

/usr/new/lib/mh/post [alias aliasfile] [-filter filterfile] [-nofilter] [-format] [-noformat] [-msgid]
[-nomsgid] [-verbose] [-noverbose] [~watch] [-nowatch] [-width columns] file [-help]

DESCRIPTION

Files

Post is the program called by send (1) to deliver the message in file to local and remote users. In fact, all
of the functions attributed to send on its manual page are performed by post, with send acting as a rela-
tively simple preprocessor. Thus, it is post which parses the various header fields, appends From: and
Date: lines, and interacts with the SendMail transport system. Post will not normally be called directly by
the user.

Post searches the “*To:"’, *‘cc:”’, *‘Bee:”’, ‘‘Fec:’’, and “‘Resent—xxx:’’ header lines of the specified mes-
sage for destination addresses, checks these addresses for validity, and formats them so as to conform to
ARPAnet Internet Message Format protocol, unless the ‘—noformat’ flag is set. This will normally cause
‘“‘@local-site’’ to be appended to each local destination address, as well as any local return addresses. The
‘~width columns’ switch can be used to indicate the preferred length of the header components that contain
addresses.

If a ““Bee:” field is encountered, its addresses will be used for delivery, and the ‘‘Bec:’’ field will be
removed from the message sent to sighted recipients. The blind recipients will receive an entirely new
message with a minimal set of headers. Included in the body of the message will be a copy of the message
sent to the sighted recipients. If ‘~filter filterfile’ is specified, then this copy is filtered (re—formatted) prior
to being sent to the blind recipients.

The ‘-alias aliasfile’ switch can be used to specify a file that post should take aliases from. More than one
file can be specified, each being preceded with ‘~alias’. In any event, the primary alias file is read first.

The ‘~msgid’ switch indicates that a ‘‘Message—ID:"’ or ‘‘Resent-Message—ID:’’ field should be added to
the header.

The ‘—verbose’ switch indicates that the user should be informed of each step of the posting/filing process.

The ‘~watch’ switch indicates that the user would like to watch the transport system’s handling of the mes-
sage (e.g., local and ‘‘fast’’ delivery).

Post consults the environment variable $SIGNATURE to determine the sender’s personal name in con-
structing the ‘‘From:’’ line of the message.

/usr/new/lib/mh/mtstailor tailor file
{usr/new/mb/refile Program to process Fec:s
/usr/new/lib/mh/mhl Program to process Bcc:s
/usr/new/lib/mh/MailAliases Primary alias file

Profile Components

See Also

[mh.6]

post does NOT consult the user’s .mh_profile

Standard for the Format of ARPA Internet Text Messages (aka RFC-822),
mhmail(1), send(1), mh-mail(5), mh-alias(5)

MH UCYK/UCB version

POST(8) The Rand MH Message Handling System USD:8-92

Defaults
‘~alias /usr/new/lib/mh/MailAliases’
‘—format’
‘—nomsgid’
‘~noverbose’
‘~width 72’
‘—nofilter’

Context
None

Bugs
‘‘Reply~To:”’ fields are allowed to have groups in them according to the 822 specification, but post won’t
let you use them.

[mh.6] MH UCI/UCB version

5. REPORTING PROBLEMS

If problems are encountered with an MH program, the problems should be reported to the local maintainers of
MH. When doing this, the name of the program should be reported, along with the version information for the pro-
gram. To find out what version of an MH program is being run, invoke the program with the ‘—help’ switch. In
addition to listing the syntax of the command, the program will list information pertaining to its version. This infor-
mation includes the version of MH, the host it was generated on, and the date the program was loaded. A second
line of information, found on versions of MH after #5.380 include MH configuration options. For example,

version: MH 6.1 #1[UCI] (nrtc-gremlin) of Wed Nov 6 01:13:53 PST 1985
options: [BSD42] [MHE] [NETWORK] [SENDMTS] [MMDFII] [SMTP] [POP]

The ‘6.1 #1[UCI]}’ indicates that the program is from the UCI mh.6 version of MH. The program was generated on
the host ‘nrtc-gremlin’ on ‘Wed Nov 6 01:13:53 PST 1985’. It’s usually a good idea to send the output of the
‘~help’ switch along with your report.

If there is no local MH maintainer, try the address Bug-MH. If that fails, use the Internet mailbox Bug-
MH@UCLEDU.

USD:8-93 The Rand MH Message Handling System

6. ADVANCED FEATURES

This section describes some features of MH that were included strictly for advanced MH users. These capa-
bilities permit MH to exhibit more powerful behavior for the seasoned MH users.

USER-DEFINED SEQUENCES

User—defined sequences allow the MH user a tremendous amount of power in dealing with groups of mes-
sages in the same folder by allowing the user to bind a group of messages to a meaningful symbolic name. The user
may choose any name for a message sequence, as long as it consists of alphanumeric characters and does not
conflict with the standard MH reserved message names (e.g., *‘first’’, etc). After defining a sequence, it can be used
wherever an MH command expects a ‘msg’ or ‘msgs’ argument. Although all MH commands expand user—defined
sequences as appropriate, there are two commands that allow the user to define and manipulate them: pick and
mark,

Pick and User—Defined Sequences

Most users of MH will use user—defined sequences only with the pick command. By giving the
‘-sequence name’ switch to pick (which can occur more than once on the command line), each sequence named is
defined as those messages which pick matched according the the selection criteria it was given. Hence,

pick —from frated —seq fred

finds all those messages in the current folder which were from ‘‘frated’’, creates a sequence called ‘‘fred’’, and then
adds them to the sequence. The user could then invoke

scan fred

to get a scan listing of those messages. Note that by default, pick creates the named sequences before it adds the
selected messages to the sequence. Hence, if the named sequence already existed, the sequence is destroyed prior to
being re—defined (nothing happens to the messages that were a part of this sequence, they simply cease to be
members of that sequence). By using the ‘~nozero’ switch, this behavior can be inhibited, as in

pick —from frated —seq. sgroup
pick —from fear —seq sgroup —nozero
pick —from freida —seq sgroup —nozero

finds all those messages in the current folder which were from ‘‘frated’’, ‘‘fear’’, or ‘‘freida’’, and defines the
sequence called ‘‘sgroup’’ as exactly those messages. These operations amounted to an ‘“‘inclusive—or’’ of three
selection criteria, using pick, one can also generate the ‘‘and’’ of some selection criteria as well:

pick —from frated —seq fred
pick —before friday —seq fred fred

This example defines the sequence called ‘‘fred’’ as exactly those messages from ‘‘frated’’ that were dated prior to
Copnr 1
friday’’.
! Of course, it is much easier to simply use the built—in boolean operation of pick to get the desired results:
pick —from frated ~or —from fear —or —from freida —seq sgroup
and

pick —from frated —and —before friday —seq fred

~ The Rand MH Message Handling System USD:8-94

USD:8-95 ' The Rand MH Message Handling System

Pick is normally used as a back—quoted command, for example,
scan ‘pick —from postmaster*

Now suppose that the user decides that another command should be issued, using exactly those messages. Since,
pick wasn’t given a ‘-sequence name’ argument in this example, the user would end-up typing the entire
back—quoted command again. A simpler way is to add a default sequence name to the .mh_profile. For example,

pick: —seq select —list

will tell pick to always define the sequence ‘‘select’” whenever it's run. The ‘-list’ is ‘necessaxy since the
‘~sequence name’ switch sets ‘—nolist’ whenever the former is encountered. Hence, this profile entry makes pick
define the “‘select’’ sequence and otherwise behave exactly as if there was no profile entry at all.

Mark and User—-Defined Sequences

The mark command lets the user perform low-level manipulation of sequences, and also provides a
well-needed debug facility to the implementors/developers/maintainers of MH (the MH-hacks). In the future, a
user—friendly ‘‘front—end’’ for mark will probably be developed to give the MH user a way to take better advantage
of the underlying facilities.

Public and Private User—Defined Sequences

There are two kinds of sequences: public sequences, and private sequences. Public sequences of a folder are
accessible to any MH user that can read that folder and are kept in the .mh_sequences file in the folder. Private
sequences are accessible only to the MH user that defined those sequences and are kept in the user’s MH context
file. By default, pick (and mark) create public sequences if the folder for which the sequences are being defined is
writable by the MH user. Otherwise, private sequences are created. This can be overridden with the ‘—public’ and
‘—private’ switches.

Sequence Negation

In addition to telling an MH command to use the messages in the sequence ‘‘seen’’, as in
refile seen +old

it would be useful to be easily able to tell an MH command to use all messages except those in the sequence. One
way of doing this would be to use mark and define the sequence explicitly, as in

mark —delete —zero seen -seq notseen

which, owing to mark ’s cryptic interpretation of ‘—delete’ and ‘—zero’, defines the sequence ‘‘notseen’’ to be all
messages not in the sequence ‘‘seen’’. Naturally, anytime the sequence ‘‘seen’’ is changed, ‘‘notseen’’ will have to
be updated. Another way to achieve this is to define the entry ‘‘Sequence-Negation:”’ in the .mh_profile. If the
entry was

Sequence—Negation: not

then anytime an MH command was given ‘‘notseen’’ as a ‘msg’ or ‘msgs’ argument, it would substitute all mes-
sages that are not a member of the sequence ‘‘seen’’. Thatis,

refile notseen +new

does just that. The value of the ‘‘Sequence-Negation:’’ entry in the profile can be any string. Hence, experienced
users of MH do not use a word, but rather a special character which their shell does not interpret (users of the CShell
use a single caret or circumfiex (usually shift—6), while users of the Bourne shell use an exclamation—mark). This is
because there is nothing to prevent a user of MH from defining a sequence with this string as its prefix, if the string
is nothing by letters and digits. Obviously, this could lead to confusing behavior if the ‘‘Sequence-Negation:’’

do exactly the same thing as the five commands listed above. Hence, the ‘~nozero’ option to pick is only useful to manipulate existing sequences.

The Rand MH Message Handling System | USD:8-96

entry leads MH to believe dxattwosequencesmopposmbyvmeoftheunam differing bythepreﬁx string.
The Previous Sequence

Many times users find themselves issuing a series of commands on the same sequences of messages. If the
user first defined these messages as a sequence, then considerable typing may be saved. If the user doesn’t have this
foresight, MH provides a handy way of having MH remember the ‘msgs’ or ‘msg’ argument last given to an MH
command. If the entry ‘‘Previous—Sequence:’’ is defined in the .mh_profile, then when the command finishes, it
will define the sequence(s) named in the value of this entry as being exactly those messages that were specified.
Hence, a profile entry of

Previous—Sequence: pseq

directs any MH command that accepts a ‘msg’ or ‘msgs’ argument to define the sequence ‘‘pseq’’ as those messages
when it finishes. More than one sequence name may be placed in this entry, separated with spaces. The one disad-
vantage of this approach is that the MH progams have to update the sequence information for the folder each time
they run (although most programs read this information, usually only pick and mark have to write this information
out).

The Unseen Sequence

Finally, some users like to distinguish between messages which have been previously seen by them, Both inc
and show honorthe profile entry ‘‘Unseen—Sequence’’ to support this activity. Whenever inc places new messages
in a folder, if the entry ‘‘Unseen—Sequence’’ is defined in the .mh_profile, then when the command finishes, inc will
add the new messages to the sequence(s) named in the value of this entry. Hence, a profile entry of

Unseen—Sequence: unseen

directs inc to add new messages to the sequence ‘‘unseen’’. Unlike the behavior of the ‘‘Previous—Sequence’’ entry
in the profile however, the sequence(s) will not be zero’d.

Similarly, whenever show (or next or prev) displays a message, they remove those messages from any
sequences named by the ‘‘Unseen—Sequence’’ entry in the profile.

COMPOSITION OF MAIL
There are a number of interesting advanced facilities for the composition of outgoing mail.

The Draft Folder

The comp, dist, forw, and repl commands have two switches, ‘—draftfolder +folder’ and
‘—draftmessage msg’. If ‘—draftfolder +folder’ is used, these commands are directed to construct a draft message
in the indicated folder. (The ‘‘Draft-Folder:”’ profile entry may be used to declare a default draft folder for use
with comp, dist, forw, and repl) If ‘~draftmessage msg’ is not used, it defaults to ‘new’ (unless the user invokes
comp with ‘—use’, in which case the default is ‘cur’). Hence, the user may have several message compositions in
progress simultaneously. Now, all of the MH tools are available on each of the user’s message drafts (e.g., show,
scan, pick, and so on). If the folder does not exist, the user is asked if it should be created (just like with refile).
Also, the last draft message the user was composing is known as ‘cur’ in the draft folder.

Furthermore, the send command has these switches as well. Hence, from the shell, the user can send off
whatever drafts desired using the standard MH ‘msgs’ convention with ‘—draftmessage msgs’. If no ‘msgs’ are
given, it defaults to ‘cur’.

In addition, all five programs have a ‘-nodraftfolder’ switch, which undoes the last occurrence of
‘—draftfolder folder’ (useful if the latter occurs in the user’s MH profile).

If the user does not give the ‘—draftfolder +folder’ switch, then all these commands act ‘‘normally’’. Note
- that the ‘~draft’ switch to send and show still refers to the file called ‘draft’ in the user’s MH directory. In the
interests of economy of expression, when using comp or send, the user needn’t prefix the draft ‘msg’ or ‘msgs’ with
‘~draftmessage’. Both of these commands accept a ‘file’ or ‘files’ argument, and they will, if given

USD:8-97 The Rand MH Message Handling System

‘—draftfolder +folder’ treat these arguments as ‘msg’ or ‘msgs’.2 Hence,
send -draftf +drafts first
is the same as

send -draftf +drafts -draftm first

To make all this a bit more clear, here are some examples. Let’s assume that the following entries are in the
MH profile:

Draft-Folder: +drafts
sendf: -draftfolder +drafts

Furthermore, let’s assume that the program sendf is a (symbolic) link in the user’s SHOME/bin/ directory to send.
Then, any of the commands

comp
dist
forw
repl

constructs the message draft in the ‘draft’ folder using the ‘new’ message number. Furthermore, they each define
‘cur’ in this folder to be that message draft. If the user were to use the quit option at ‘What now?’ level, then later
on, if no other draft composition was done, the draft could be sent with simply

sendf
Or, if more editing was required, the draft could be edited with
comp -use

Instead, if other drafts had been composed in the meantime, so that this message draft was no longer known as ‘cur’
in the ‘draft’ folder, then the user could scan the folder to see which message draft in the folder should be used for
editing or sending. Clever users could even employ a back-quoted pick to do the work:

comp -use ‘pick +drafts -to bug-mh*
or
sendf ‘pick +drafts -to bug-mh*

Note that in the comp example, the output from pick must resolve to a single message draft (it makes no sense to
talk about composing two or more drafts with one invocation of comp). In contrast, in the send example, as many
message drafts as desired can appear, since send doesn’t mind sending more than one draft at a time.

Note that the argument ‘—draftfolder +folder’ is not included in the profile entry for send, since when comp,
et. al, invoke send directly, they supply send with the UNIX pathname of the message draft, and not a
‘draftmessage msg’ argument. As far as send is concemed, a draft folder is not being used.

It is important to realize that MH treats the draft folder like a standard MH folder in nearly all respects. There
are two exceptions: first, under no circumstancs will the ‘—draftfolder folder’ switch cause the named folder to
become the current folder.* Second, although conceptually send deletes the ‘msgs’ named in the draft folder, it does

2 This may appear to be inconsistent, at first, but it saves a lot of typing.
* Obviously, if the folder appeared in the context of a standard ‘+folder’ argument to an MH program, as in

The Rand MH Message Handling System , ‘ USD:8-98

not call ‘delete-prog’ o perform the deletion. \

What Happens if the Draft Exists v
~ When the comp, dist, forw, and repl commands are invoked and the draft you indicated already exists, these
programs will prompt the user for a reponse directing the program’s action. The prompt is

Draft *‘/ust/src/uci/mh/mhbox/draft’’ exists (xx bytes).
Disposition?

The appropriate responses and their meanings are: replace: deletes the draft and starts afresh; list: lists the draft;
refile: files the draft into a folder and starts afresh; and, quit: leaves the draft intact and exits. In addition, if you
specified ‘—draftfolder folder’ to the command, then one other response will be accepted: new: finds a new draft,
just as if ‘~draftmessage new’ had been given. Finally, the comp command will accept one more response: use:
re-uses the draft, just as if ‘~use’ had been given.

The Push Option at What now? Level

The push option to the ‘‘What now?’’ query in the comp, dist, forw, and repl commands, directs the command
to send the draft in a special detached fashion, with all normal output discarded. If push is used and the draft can
not be sent, then MH will send the user a message, indicating the name of the draft file, and an explanation of the
failure.

The user can also invoke send from the shell with the ‘~push’ switch, which makes send act like it had been
push ’d by one of the composition commands.

By using push, the user can free the shell to do other things, because it appears to the shell that the MH com-
mand has finished. As a result the shell will immediately prompt for another command, despite the fact that the
command is really still running. Note that if the user indicates that annotations are to be performed (with ‘~anno-
tate’ to dist, forw, or repl), the annotations will be performed after the message has been successfully sent. This
action will appear to occur asynchronously. Obviously, if one of the messages that is to be annotated is removed
before the draft has been successfully sent, then when MH tries to make the annotations, it won’t be able to do so.
In previous versions of MH, this resulted in an error message mysteriously appearing on the user’s terminal. In
mh.5 and later versions, in this special circumstance, no error will be generated.

If send is push ’d, then the ‘—forward’ switch is examined if a failure notice is generated. If given, then the
draft is forwarded with the failure notice sent to the user. This allows rapid burst ’ing of the failure notice to
retrieve the unsent draft.

Options at What now? Level

By default, the message composition programs call a program called whatnow before the initial draft compo-
sition. The MH user can specify any program for this. Following is some information about the default ‘‘What
now?’’ level. More detailed information can be found in the whatnow (1) manual entry.

When using the comp, dist, forw, and repl commands at ‘“What now?’’ level, the edit, list, headers, refile, and
(for the dist and rep! commands) the display options will pass on any additional arguments given them to whatever
program they invoke.

In mh.1 (the original Rand MH) and mh.2 (the first UCI version of MH), MH used a complicated heuristic
to determine if the draft should be deleted or preserved after an unsuccessful edit. In mh.3, MH was changed to
preserve the draft always, since comp, et. al., could usually look at a draft, apply another set of heuristics, and
decide if it was important or not. With the notion of a draft folder, in which one by default gets a ‘new’ message
draft, the edit deletion/preservation algorithm was re-implemented, to keep the draft folder from being cluttered with
aborted edits.

Also, note that by default, if the draft cannot be successfully sent, these commands return to ‘‘What now?”’
level. But, when push is used, this does not happen (obviously). Hence, if these commands were expected to

scan +d§ﬁs

it might become the current folder, depending on the context changes of the MH program in question.

USD:8-99 The Rand MH Message Handling System

annotate any messages, this will have to be done by hand, later on, with the anno command.

Finally, if the ‘~delete’ switch is not given to the quit option, then these commands will inform the user of the
name of the unsent draft file.

Digests

The forw command has the beginnings of a digestifying facility, with the ‘-digest list’, ‘~issue number’, and
‘~volume number’ switches.

If forw is given *‘list’’ to the ‘—digest’ switch as the name of the discussion group, and the ‘~issue number’ switch is
not given, then forw looks for an entry in the user’s MH context called *‘digest—issue-list’’ and increments its value
to use as the issue number. Similarly, if the ‘—volume number’ switch is not given, then forw looks for
‘‘digest-volume-list’’ (but does not increment its value) to use as the volume number.

Having calculated the name of the digest and the volume and issue numbers, forw will now process the components
file using the same format string mechanism used by repl. The current ‘%’—escapes are:

escape type substitution
digest string digest name
issue integer issue number
volume integer volume number

In addition, to capture the current date, any of the escapes valid for dp (8) are also valid for forw.
The default components file used by forw when in digest mode is:

\" .s0 /usr/new/lib/mh/digestcomps included inline here so it looks good
From: %{digest}-Request
To: % {digest} Distribution: dist-%{digest};
Subject: %{digest} Digest V%(putnum(msg)) #%(putnum(cur))
Reply-To: % {digest}
%{digest} Digest %(putstr(weekday{date})), %2(putnumf(mday{date})) \
%(putstr(month{date})) 19%02(putnumf(year{date}))

Volume %(putnum(msg)) : Issue %(putnum(cur))

Today’s Topics:

Hence, when the ‘~digest’ switch is present, the first step taken by forw is to expand the format strings in the com-
ponent file. The next step is to compose the draft using the standard digest encapsulation algorithm (even putting an
*“End of list Digest’’ trailer in the draft). Once the draft is composed by forw, forw writes out the volume and issue
profile entries for the digest, and then invokes the editor.

Naturally, when composing the draft, forw will honor the ‘~filter filterfile’ switch, which is given to mhl to filter
each message being forwarded prior to encapsulation in the draft. A good filter file to use, which is called
mhl.digest, is:

The Rand MH Message Handling System USD:8-100

width=80,overflowoffset=10

leftadjust,compress,compwidth=9

Date: fonnatﬁeld="%<(nodate{text})%{text}%l%(putstr(tws{text}))%>
From:

Subject:

i:ody:nocomponent,overﬂowoffseb-o,noleftadjust.nooompress .

FOLDER HANDLING

There are two interesting facilities for manipulating folders: relative folder addressing, which allows a user to
shorten the typing of long folder names; and the folder—stack, which permits a user to keep a stack of current fold-

Relative Folder Addressing

By default, when ‘+folder’ is given, and the folder name is not absolute (does not start with /, J, or ../), then
the UNIX pathname of the folder is interpreted relative to the user’s MH directory. Although this mechanism works
fine for top—level folders and their immediate sub—folders, once the depth of the sub-folder tree grows, it becomes
rather unwieldly:

scan +mh/mh.4/draft/flames

is a lot of typing. MH can’t do anything if the current folder was ‘‘+inbox’’, but if the current folder was, say,
‘‘+mh/mh.4/draft’’, MH has a short-hand notation to reference a sub—folder of the current folder. Using the
‘@folder’ notation, the MH user can direct any MH program which expects a ‘+folder’ argument to look for the
folder relative to the current folder instead of the user’'s MH directory. Hence, if the current folder was
‘‘+mh/mh.4/draft’’, then

scan @flames
would do the trick handily. In addition, if the current folder was *‘+mh/mh.4/draft’’,

scan @../pick
would scan the folder ‘‘+mh/mh.4/pick”’, since, in the UNIX fashion, it references the folder ‘‘pick’’ which is a
sub—folder of the folder that is the parent of the current folder. Since most advanced MH users seem to exhibit a

large degree of locality in referencing folders when they process mail, this convention should receive a wide range
of uses.

The Folder—Stack

The folder-stack mechanism in MH gives the MH user a facility similar to the CShell ’s directory—stack.
Simply put,

folder -ﬁush +foo

makes ‘‘foo’’ the current folder, saving the folder that was previously the current folder on the folder—stack. As
expected,

folder ~pop

takes the top of the folder—stack and makes it the current folder. Each of these switches lists the folder—stack when
they execute. It is simple to write a pushf command as a shell script. It’s one line:

USD:8-101 : The Rand MH Message Handling System

exec folder —push $@
Probably a better way is to link folder to the $SHOME/bin/ directory under the name of pushf and then add the entry
pushf: —push

to the .mh_profile.

The manual page for folder discusses the analogy between the CShell directory stack commands and the
switches in folder which manipulate the folder—stack. The folder command uses the context entry ‘Folder—Stack:’
to keep track of the folders in the user’s stack of folders. A

Appendix A The Rand MH Message Handling System _ ; USD:8-102

Appendix A
COMMAND SUMMARY

ali [-alias aliasfile] [-list] [-nolist] [-normalize] [Mu] [~user] [-nouser] names ... [-help]
anno [+folder] [msgs] [-component field] [—inplace] [-noinplace] [—text body] [—help]
burst [+folder] [msgs] [~inplace] [-noinplace] [—quiet] [-noquiet] [-verbose] [-noverbose] [—help]

comp [+folder] [msg] [draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [—editor editor]
[~noedit] [file file] [-form formfile] (—use] [-nouse] [~whatnowproc program]
[-nowhatnowproc] [—help]

dist [+folder] [msg] [—annotate] [-noannotate] [—drafifolder +folder] [—draftmessage msg] [—nodraftfolder]
(—editor editor] [-noedit] [-form formfile] [-inplace] [-noinplace} [~whatnowproc program]
[-nowhatnowproc] [—help]

folder [+folder] [msg] [~all] [—fast] [-nofast] [~header] [-noheader] [—-pack] [-nopack] [-recurse]
[-norecurse] [—total] [-nototal} [—print] [-noprint] [-list] [-nolist] [—push] [-pop] [-help]

folders

forw [+folder] [msgs] [-annotate] [-noannotate] (—draftfolder +folder] {—draftmessage msg]
[-nodraftfolder] [—editor editor] [-noedit] [-filter filterfile] [—form formfile] [—format)
[-noformat] [-inplace] [-noinplace] [~whatnowproc program] [-nowhatnowproc] [—help]

forw [+folder] [msgs] [—digest list] [~issue number] [-volume number] [other switches for forw] [-help]

inc [+folder] [-audit audit—file] [-noaudit] [-changecur] [-nochangecur] [-file name] [-form formatfile]
[—format string] [—silent] [-nosilent] [-truncate] [-notruncate] [-width columns] [~help]

mark [+folder] [msgs] [-sequence name ...] [-add] [—delete] [-list] [-public] [-nopublic] [-zero]
[~nozero] [-help]

/usr/new/lib/mh/mhl [-bell] [-nobell] [—clear] [-noclear] [-folder +folder] [-form formfile] [-length lines]
[-width columns] [-moreproc program] [—nomoreproc] [files ...] [~help]

mhmail [addrs ... [-body text] [~cc addrs ...] [-from addr] [-subject subject]] [—help]
mhpath [+folder] [msgs] [~help]

msgchk [users ...] [-help] ‘

msh [—prompt string] [-scan] (~noscan] (~topcur] [-notopeur] [file] [~help)

next [+folder] [-header] [-noheader] [—showproc program] [-noshowproc] [switches for showproc]
[~help]

USD:8-103 The Rand MH Message Handling System Appendix A

packf [+folder] [msgs] [-file name] {—help]

r -
pick | -—cc [+folder] [msgs] [~help]
—date [-before date) [—after date] [—datefield field]
—from
4 —search > pattern [-and ...] [-or ...] [-not ...] [-Ibrace ... —rbrace]

—subject
—to [~sequence name ...] [-public] [-nopublic] [-zero] [-nozero]

 ——component J [list] [-nolist]

prev [+folder] [-header] [-noheader] [-showproc program] [-noshowproc] [switches for showproc]
[~help]

prompter [—erase chr] [-kill chr] [-prepend] [-noprepend] [-rapid] [-norapid] file [-help)

/usr/new/lib/mh/rcvstore [+folder] [-create] [-nocreate] [-sequence name ...] [—public] [-nopublic]
[—zero] [-nozero] [-help]

refile [msgs] [~draft] [-link] [-nolink] [—preserve] [-nopreserve] [-src +folder] [file file] +folder ...
[~help]

repl [+folder] [msg] [—annotate] [-noannotate] [—cc all/to/cc/me] [-nocc all/to/cc/me)
[—draftfolder +folder] [-draftmessage msg] [—nodraftfolder] [—editor editor] [-noedit]

[~fcc +folder] [-filter filterfile] [—form formfile] [-format] [-noformat] [-inplace] [-noinplace]
[—query] [-noquery] [-whatnowproc program] [-nowhatnowproc] [-width columns] [-help]

rmf [+folder] [-interactive] [-nointeractive] [-help]
rmm [+folder] [msgs] [-help]

scan [+folder] [msgs] [—clear] [-noclear] [-form formatfile] [-format string] [-header] [-noheader]
{—width columns] [~help]

send [—alias aliasfile] [—draft] {—draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [filter filterfile]
[~nofilter] [-format] [-noformat] [-forward] [-noforward] [-msgid] [~nomsgid] [—push]
[—nopush] [-verbose] [-noverbose] [-watch] [-nowatch]} [~width columns] [file ...] [~help]

show [+folder] [msgs] [—draft] [~header] [-noheader] [-showproc program] [-noshowproc]
[switches for showproc] [~help]

sortm [+folder] [msgs] [—datefield field] [—verbose] [-noverbose] [—help]

vmh [-prompt string] [-vmhproc program] [—novmhproc] [switches for vinaproc] [~help]

whatnow [—draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [—editor editor] [—noedit]
[—prompt string] [file] [-help]

whom [-alias aliasfile] {—check] [-nocheck] [—draft] [—draftfolder +folder] [-draftmessage msg]
[—nodraftfolder] [file] [—help]

Appendix A The Rand MH Message Handling System USD:8-104
/usr/new/lib/mh/ap [—form formatfile] [-format string] [-normalize] [—mnomﬁlize] [—width columns]
addrs ... [~help] .
/ust/new/lib/mh/conflict [-mail name] [~search directory] [aliasfiles ...] [help]
/usr/new/lib/mh/dp [-form formatfile] [-format string] [-width columns] dates ... [—help]
fust/new/lib/mhy/install-mh [-auto] [~compat]

/usr/new/lib/mh/post [—alias aliasfile] [-filter filterfile] [—nofilter] [-format] [-noformat] [-msgid]
[-nomsgid] [-verbose] [-noverbose] [-watch] [-nowatch] [-width columns] file [~help]

USD:8-105 The Rand MH Message Handling System Appendix B

Appendix B
MESSAGE NAME BNF

msgs ‘= msgspec |
msgs msgspec

msgspec (= msg I
msg-range |
msg-sequence |
user-defined-sequence

msg = msg-name I
<number>

msg-name = “‘first”’
3 ‘last, ’
€ (cur’ ?

¢
.

< ‘next’ 1]
3 ‘preV’ bl

msg-range = msg‘‘-’'msg l
“all! H

msg-sequence := msg‘‘:’’signed-number

signed-number := ‘‘+’’ <number> |
‘.’ <number> |

<number>

Where <number> is a decimal number greater than zero.
Msg-range specifies all of the messages in the given range and must not be empty.

Msg-sequence specifies up to <number> of messages, beginning with ‘“msg’’ (in the case of first, cur, next, or
<number>), or ending with ‘‘msg’’ (in the case of prev or last). +<number> forces ‘‘starting with msg’’, and
—<number> forces ‘‘ending with number’’. In all cases, ‘‘msg’’ must exist.

User—defined sequences are defined and manipulated with the pick and mark commands.

Appendix B The Rand MH Message Handling System USD:8-106

REFERENCES

1. Crocker, D. H,, 1. J. Vittal, K. T. Pogran, and D. A. Henderson, Jr., *‘Standard for the Format of ARPA Network
Text Messages,”” RFC733, November 1977.

2. Thompson, K., and D. M. Ritchie, ‘‘The UNIX Time-sharing System,”’ Communications of the ACM, Vol. 17,
July 1974, pp. 365-375.

3. McCauley, E. J., and P. J. Drongowski, ‘‘°KSOS-The Design of a Secure Operating System,’’ AFIPS Conference
Proceedings, National Computer Conference, Vol. 48, 1979, pp. 345-353.

4. Crocker, David H., Framework and Functions of the ‘‘MS"’ Personal Message System, The Rand Corporation,
R-2134-ARPA, December 1977.)

5. Thompson, K-, and D. M. Ritchie, UNIX Programmer's Manual, 6th ed., Western Electric Company, May 1975
(available only to UNIX licensees).

6. Crocker, D. H., ‘*Standard for the Format of ARPA Internet Text Messages,”” RFC822, August 1982,

THE RAND MH
MESSAGE HANDLING
SYSTEM:
ADMINISTRATOR’S GUIDE

UCI Version

Marshall T. Rose

First Edition:
MH Classic
(Not to be confused with a well-known soft drink)

June 17, 1987
6.4 #2[UCI]

CONTENTS

Section

1. INTRODUCTION

Scope of this document
Summary

. THE MTS INTERFACE
MH-TAILOR
MH-MTS

BBOARDS .
BBOARDS
BBAKA
BBEXP
BBOARDS
BBTAR

. POP
POP
POP

" POPAKA
POPD
POPWRD

MAIL FILTERING
MF
RMALLcocereerinneinssninssrssasssesssessssssnssosssssssssensssnssssssssensnsnasesesensasnsnsnss

. MH HACKING
MH-HACK

. HIDDEN FEATURES

 Debug Facilities
Send
Posting Mail .

. CONFIGURATION OPTIONS

27
27
27
27

1. INTRODUCTION

Scope of this document

This is the Administrator’s Guide to MH. If you don’t maintain an MH system, don’t
read this; the information is entirely too technical. If you are a maintainer, then read this guide
until you understand it, follow the advice it gives, and then forget about the guide.

Before continuing, I'll point out two facts:

This document will never contain all the information
you need to maintain MH.

Furthermore, this document will never contain everything
1 know about maintaining MH.

MH, and mailsystems in general, are more complex than most people realize. A combination
of experience, intuition, and tenacity is required to maintain MH properly. This document can
provide only guidelines for bringing up an MH system and maintaining it. There is a sufficient
amount of customization possible that not all events or problems can be forseen.

Summary

During MH generation, you specify several configuration constants to the mhconfig pro-
gram. These directives take into consideration such issues as hardware and operating system
dependencies in the source code. They also factor out some major mailsystem administrative
decisions that are likely to be made consistantly at sites with more than one host. The manual
entry mh—gen (8) describes all the static configuration directives.

However, when you install MH you may wish to make some site—specific or
host-specific changes which aren’t hardware or even software related. Rather, they are admin-
istrative decisions. That’s what this guide is for: it describes all of the dynamically tailorable
directives.

Usually, after installing MH, you’ll want to edit the /usr/new/lib/mh/mtstailor file. This
file fine-tunes the way MH interacts with the message transport system (MTS). Section 2 talks
about the MTS interface and MTS tailoring.

After that, if you’re running the UCI BBoards facility, or the POP facility, you’ll need to
know how to maintain those systems. Sections 3 and 4 talk about these.

If for some reason you’re not running an MTS that can handle both Internet and UUCP
traffic, you should read—up on mail filtering in Section 5. Although this is considered ‘‘old
technology’’ now, the mechanisms described in Section 5 were really quite useful when first
introduced way back in 1981.

Finally, you may want to know how to modify the MH source tree. Section 6 talks (a lit-
tle bit) about that.

-2-

The last two sections describe a few hidden features in MH, and the configuration
options that were in effect when this guide was generated.

After MH is installed, you should define the address ‘‘Bug—MH’’ to map to either you or
the PostMaster at your site.

In addition, if you want to tailor the behavior of MH for new users, you can create and
edit the file /usr/new/lib/mh/mh.profile. When the install-mh program is run for a user, if this
file exists, it will copy it into the user’s .mh_profile file.

2. THE MTS INTERFACE

The file /usr/new/lib/mh/mtstailor customizes certain host—specific parameters of MH
related primarily to interactions with the transport system. The parameters in this file override
the compiled—in defaults given during MH configuration. Rather than recompiling MH on each
host to make minor customizations, it is easier simply to modify the mtstailor file. All hosts at
a given site normally use the same mtstailor file, though this need not be the case.

It is a good idea to run the conflict (8) program each moming under cron. The following
line usually suffices: :

00 05 * * * /ysr/uci/lib/mh/conflict -mail PostMaster

-3-

MH-TAILOR(S) : 4 ' MH-TAILOR(5)

NAME

{usr/new/lib/mh/mtstailor — system customization for MH message system

SYNOPSIS

any MH command that interacts with the MTS

DESCRIPTION

[mh.6]

The file /ust/new/lib/mh/mtstailor defines run—time options for those MH programs which interact (in some
form) with the message transport system. At present, these (user) programs are: ap, conflict, inc, msgchk,
msh, post, rcvdist, and rcvpack.

The options available along with default values and a description of their meanings are listed below:

localname: .
The host name MH considers local. If not set, depending on the version of UNIX you’re running,
MH will query the system for this value (e.g.,, <whoami.h>, gethostname, etc.). This has no
equivalent in the MH configuration file.

systemname;
The name of the local host in the UUCP ‘‘domain’’. If not set, depending on the version of UNIX
you're running, MH will query the system for this value. This has no equivalent in the MH
configuration file.

mmdfldir: /ust/spool/mail
The directory where maildrops are kept. If this is empty, the user’s home directory is used. This
overrides the ‘‘mail’’ field in the MH configuration file,

mmdfifil;
The name of the maildrop file in the directory where maildrops are kept. If this is empty, the
user’s login name is used. This overrides the ‘““mail’’ field in the MH configuration file.

mmdelim1: \001\001\001\001\n
The beginning—of-message delimiter for maildrops.

mmdelim2; \001\001\001\001\n
The end—of-message delimiter for maildrops.

mmailid: 0
If non-zero, then support for MMailids in /etc/passwd is enabled. Basically, the pw_gecos field in
the password file is of the form

My Full Name <mailid>

The MH internal routines that deal with user and full names will return ‘‘mailid”’ and ‘‘My Full
Name’’ respectively.

lockstyle: 0
The locking-discipline to perform. A value of ‘‘0’’ means to use flock if available, standard
BellMail locking otherwise. A value of ‘‘1’’ means to use BellMail locking always (the name of
the lock is based on the file name). A value of ‘‘2’’ means to use MMDF locking always (the
name of the lock is based on device/inode pairs).

lockldir;
The name of the directory for making locks. If your system doesn’t have the flock syscall, then

MH UCI version

MH-TAILOR(S) -§- MH-TAILOR(S)

Files

this directory is used when creating locks. If the value is empty, then the directory of the file to be
locked is used.

sendmail: /usr/lib/sendmail
The pathname to the sendmail program.

maildelivery: /usr/new/lib/mh/maildelivery
The name of the system—wide default .maildelivery file. See mhook (1) for the details.

everyone: 200
The highest user—id which should NOT receive mail addressed to ‘‘everyone’’.

noshell:
If set, then each user-id greater than ‘‘everyone’’ that has a login shell equivalent to the given
value (e.g., ‘‘/bin/csh’’) indicates that mail for ‘‘everyone’’ should not be sent to them. This is
useful for handling admin, dummy, and guest logins.

A few words on locking: MH has a flexible locking system for making locks on files. There are two
mtstailor variables you should be aware of ‘‘lockstyle’’ and ‘‘lockldir’’. The first controls the method of
locking, the second says where lock files should be created. The ‘‘lockstyle’’ variable can take on three
values: 0, 1, 2. A value of 0 says to use the flock syscall if you're running on 4.2BSD, (otherwise use a
locking style of 1). A value of 1 or 2 specifies that a file should be created whose existance means
‘‘locked’’ and whose non—existence means ‘‘unlocked’’. A value of 1 says to construct the lockname by
appending “‘.lock’’ to the name of the file being locked. A value of 2 says to construct the lockname by
looking at the device and inode numbers of the file being locked. If the ‘‘lockldir’’ variable is not
specified, lock files will be created in the directory where the file being locked resides. Otherwise, lock
files will be created in the directory specified by “‘lockidir’’. Prior to installing MH, you should see how
locking is done at your site, and set the appropriate values.

fusr/new/lib/mh/mtstailor tailor file

Profile Components

See Also

Defaults

Context

[mh.6]

None
mh~gen(8), mh-mts(8)
As listed above

None

MH UCI version

MH-MTS(8) | -6- MH-MTS(8)

NAME

mh-mts - the MH interface to the message transport system

SYNOPSIS

SendMail
MMDF (any release)
stand—alone

DESCRIPTION

Files

MH can use a wide range of message transport systems to deliver mail. Although the MH administrator
usually doesn’t get to choose which MTS to use (since it’s already in place), this document briefly
describes the interfaces.

When communicating with SendMail, MH always uses the SMTP to post mail. Dependmg on the MH
configuration, SendMail may be invoked directly (via a fork and an exec), or MH may open a TCP/IP con-
nection to the SMTP server on the localhost.

When communicating with MMDF, normally MH uses the ‘“‘mm_’’ routines to post mail. However,
depending on the MH configuration, MH instead may open a TCP/IP connection to the SMTP server on the
localhost.

When using the stand—alone system (NOT recommended), MH delivers local mail itself and queues UUCP
and network mail. The network mail pomon will probably have to be modified to reﬂect the local host’s
tastes, since there is no well-known practice in this area for non—4.2BSD hosts.

If you are running a 4.2BSD UNIX system, then it is felt that the best interface is achieved by using either
SendMail or MMDF with the SMTP option. This gives greater flexibility. To enable this option you
append the /smtp suffix to the mts option in the MH configuration. This yields two primary advantages:
First, you don’t have to know where submit or SendMail live. This means that MH binaries (e.g., post)
don’t have to have this information hard—coded, or can run different programs altogether; and, second, you
can post mail with the server on different systems, so you don’t need either MMDF or SendMail on your
local host. Big win in conserving cycles and disk space. Since MH supports the notion of a server
search-list in this respect, this approach can be tolerant of faults.

There are four disadvantages to using the SMTP option: First, only 4.2BSD UNIX is supported. Second,
you need to have an SMTP server running somewhere on any network your local host can reach. Third,
this bypasses any authentication mechanisms in MMDF or SendMail. Fourth, the file /etc/hosts is used for
hostname lookups (although there is an exception file). In response to these disadvantages though: First,
4.2BSD UNIX is the best UNIX around for networking. When other UNIXes get TCP/IP and real net-
working, MH can be modified. Second, there’s got to be an SMTP server somewhere around if you’re in
the Internet or have a local network. Since the server search-list is very general, a wide—range of options
are possible. Third, SMTP should be fixed to have authentication mechanisms in it, like POP. Fourth, MH
won'’t choke on mail to hosts whose official names it can’t verify, it'll just plug along (and besides if you
enable the BERK or DUMB configuration options, MH ignores the hosts file altogether).

/usr/new/lib/mh/mtstailor tailor file

Profile Components

[mh.6]

None

MH UCI version

MH-MTS(@8) ' -7- MH-MTS(8)

See Also
MMDF-II: A Technical Review, Proceedings, Usenix Summer ’84 Conference
SENDMAIL — An Internetwork Mail Router
mh-—tailor(8), post(8) ‘

Defaults
None

Context
None

Bugs
The /ust/new/lib/mh/mtstailor file ignores the information in the MMDF-II tailoring file. It should not.

[mh.6] MH UCI version

3. BBOARDS

If you enable the UCI BBoards facility during configuration, then the initial environment
for bboards was set—~up during installation. A BBoard called ‘“‘system’’ is established, which is
the BBoard for general discussion.

To add more BBoards, become the “‘bboards’’ wuser, and edit the
lusr/spool/bboards/BBoards file. The file support/bboards/Example is a copy of the
lusr/spool/bboards/BBoards file that we use at UCI. When you add a BBoard, you don’t have
to create the files associated with it, the BBoards delivery system will do that automatically.

Private BBoards may be created. To add the fictitious private BBoard ‘*hacks’’, add the
appropriate entry to the BBoards file, create the empty file /usr/spool/bboards/hacks.mbox (or
whatever), change the mode of this file to 0640, and change the group of the file to be the
groupid of the people that you want to be able to read it. Also be sure to add the ‘‘bboards’’
user to this group (in /etc/group), so the archives can be owned correctly.

By using the special INVIS flag for a BBoard, special purpose BBoards may be set-up
which are invisible to the MH user. For example, if a site distributes a BBoard both locally to a
number of machines and to a number of distant machines. It might be useful to have two distri-
bution lists: one for all machines on the list, and the other for local machines only. This is
actually very simple to do. For the main list, put the standard entry of information in the
/usr/spool/bboards/BBoards file, with the complete distribution list. For the local machines
list, and add a similar entry to the /usr/spool/bboards/BBoards file. All the fields should be
the same except three: the BBoard name should reflect a local designation (e.g., ‘‘I-hacks’’),
the distribution list should contain only machines at the local site, and the flags field should
contain the INVIS flag. Since the two entries share the same primary and archive files, mes-
sages sent to either list are read by local users, while only thoses messages sent to the main list
are read by all users.

Two automatic facilities for dealing with BBoards exist: automatic archiving and
automatic aliasing. The file support/bboards/crontab contains some entries that you should
add to your /usr/lib/crontab file to run the specified programs at times that are convenient for
you. The bboards.daily file is run once a day and generates an alias file for MH. By using this
file, users of MH can use, for example, ‘‘unix—wizards’’ instead of ‘‘unix—wizards@brl-vgr’’
when they want to send a message to the ‘‘unix—wizards’’ discussion group. This is a major
win, since you just have to know the name of the group, not the address where it’s located.

The bboards.weekly file is run once a week and handles old messages (those received
more than 12 days ago) in the BBoards area. In short, those BBoards which are marked for
automatic archiving will have their old messages placed in the /usr/spool/bboards/archive/
area, or have their old messages removed. Not only does this make BBoards faster to read, but
it conveniently partitions the new messages from the old messages so you can easily put the old
messages on tape and then remove them. It turns out that this automatic archiving capability is
also a major win. ' ‘

At UCI, our policy s to save archived messages on tape (every two months or so). We
use a program called bbtar to implement our particular policy. Since some BBoards are private
(see above), we save the archives on two tapes: one containing the world—readable archives
(this tape is read-only accessible to all users by calling the operator), and the other containing
the non—world—readable ones (this tape is kept locked—-up somewhere).

If POP is enabled with BBoards, a third directive, POPBBoards, may be enabled. This
allows the MH user to read BBoards on a server machine instead of the local host (thus saving
disk space). For completely transparent behavior, the administrator may set certain variables in
the mtstailor file on the client host. The variable ‘‘bbpophost’’ indicates the host where
BBoards are kept (it doesn’t have to be the POP service host, but this host must run both a POP

-8-

9.

server and the BBoards system). The variable “‘bbpopuser’’ indicates the guest account on this
host for BBoards. This username should not be either the POP user or the BBoards user. Usu-
ally the anonymous FTP user (ftp) is the best choice. Finally, the variable ‘‘popbblist’’ indi-
cates the name of a file which contains a list of hosts (one to a line, official host names only)
which should be allowed to use the POP facility to access BBoards via the guest account. (If
the file is not present, then no check is made.)

The ‘‘popbbuser’’ variable should be set on both the client and service host. The
‘‘popbbhost’’ variable need be set only on the client host (the value, of course, is the name of
the service host). The ‘‘popbblist’’ variable need be set only on the service host.

BBOARDS(S) | -10- ~ BBOARDS(5)

[mh.6]

" NAME
BBoards - BBoards database
SYNOPSIS ,
fusr/spool/bboards/BBoards
DESCRIPTION
The BBoards database contains for each BBoard the following information:
field ‘ value
name the name of the BBoard
aliases local aliases for the BBoard
(separated by commas)
primary file the .mbox file
encrypted password leadership password
leaders local list maintainers (separated by commas)
usernames from the passwd (5) file,
-or groupnames preceded by ‘=" from the
group (5) file
network address the list address
request address the list maintainer’s address
relay the host acting as relay for the local domain
distribution sites (separated by commas)
flags special flags (see <bboards.h>)
This is an ASCI file. Each field within each BBoard’s entry is separated from the next by a colon. Each
BBoard entry is separated from the next by a new-line. If the password field is null, no password is
demanded; if it contains a single asterisk, then no password is valid.
This file resides in the home directory of the login ‘‘bboards’’. Because of the encrypted passwords, it can
and does have general read permission.
Files
/usr/spool/bboards/BBoards BBoards database
See Also
bbaka(8), bbexp(8), bboards (8), bbtar(8)
Bugs »

A binary indexed file format should be available for fast access.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a text editor.
A vibb program is needed.

MH . UCI version

BBAKA(8) -11- BBAKA(8)

NAME
bbaka — generate an alias list for BBoards
SYNOPSIS
/usr/spool/bboards/bbaka [system]
DESCRIPTION
The bbaka program reads the BBoards database and produces on its standard output a file suitable for
inclusion in either the MMDF-II aliases file (if the argument ‘system’ is given). If the argument is not
given, then bbaka produces on its standard output a file suitable for becoming the
/usr/new/lib/mh/BBoards Aliases file.
Flles
fust/spool/bboards/BBoards BBoards database
/ust/new/lib/mh/BBoardsAliases = BBoards aliases file for MH
Profile Components
None
See Also
bboards(5)
Defaults
None
Context
None

[mh.6] MH UCI version

‘BBEXP@8) -12- ’ BBEXP(8)

NAME
bbexp — expunge the BBoards area

SYNOPSIS .
lusr/spool/bboards/bbexp [-first—metric) [-second—metric] [bboards ...]

DESCRIPTION | |
The bbexp program reads the BBoards database and calls msh to archive the named BBoards (or all
BBoards if none are specified). '
The first-metric (which defaults to 12) gives the age in days of the ‘‘BB—Posted:”’ field for messages
which should be expunged. The second—metric (which defaults to 20) gives the age in days of the ‘‘Date:”’
field for messages which should be expunged. Any message which meets either metric will be either
archived or removed, depending on what the BBoards (5) file says.

Flles .
{usr/spool/bboards/BBoards BBoards database

Profile Components
None

See Also
msh(1), bboards(5)

Defaults
None

Context
None

[mh.6] ; MH UCI version v

BBOARDS(8) . -13- BBOARDS(8)

NAME
bboards — BBoards channel/mailer

SYNOPSIS
/usr/mmdf/chans/bboards fd1 fd2 [y]

fusr/new/lib/mh/sbboards bboard ...
/usr/new/lib/mh/sbboards file maildrop directory bboards.bboard

DESCRIPTION

For MMDF, the BBoards channel delivers mail to the BBoards system. For SendMail and stand—alone
MH, the SBBoards mailer performs this task.

For each address given, these programs consult the bboards (5) file to ascertain information about the
BBoard named by the address. The programs then perform local delivery, if appropriate. After that, with
the exception of sbboards running under stand—alone MH, the programs perform redistribution, if appropri-
ate.

For redistribution, the return address is set to be the request address at the local host, so bad addresses
down the line return to the nearest point of authority. If any failures occur during redistribution, a mail
message is sent to the local request address.

Files
/ust/new/lib/mh/mtstailor tailor file
/ust/spool/bboards/BBoards BBoards database

Profile Components
None

See Also
bboards(5), bbaka(8)

Defaults
None

Context
None

[mh.6] MH UCI version

BBTAR(8) -14- BBTAR(8)

. NAME

bbtar — generate the names of archive files to be put to tape

SYNOPSIS

/usr/spool/bboards/bbtar [private] [public]

DESCRIPTION

Flles

mbbmrp:ogramreadstheBBoardsdatahase mdproducsonnsstandardoutputdlenamesofBBoards
archives which should be put to tape, for direct use in a tar (1) command.

If the argument ‘private’ is given, only private BBoards are considered. If the argument ‘public’ is given,
only public BBoards are considered. This lets the BBoards administrator write two tapes, one for general
read—access (the public BBoards), and one for restricted access. The default is all BBoards

For example:

cd archive # change to the archive directory
tar cv ‘bbtar private* # save all private BBoard archives

After the archives have been saved to tape, they are usually removed. The archives are then filled again,
usually automatically by cron jobs which run bbexp (8).

/ust/spooV/bboards/BBoards BBoards database

Profile Components

See Also

Defauits

Context

None
bboards(5), bbexp(8)
None

None

[mh.6] ' MH UCI version

4. POP

For POP (Post Office Protocol) client hosts, you need to edit the
/usr/new/lib/mh/mtstailor file to know about two hosts: the SMTP service host and the POP
service host. Normally, these are the same. Change the ‘‘localname’’ field of the mtstailor
file of MH in the file to be the name of the POP service host. Also set the value of ‘‘pophost’’
to this value. Finally, make sure the value of ‘‘servers’’ includes the name of the SMTP ser-
vice host. The recommended value for “‘servers’’ is:

servers: SMTP-service—host locathost \Q1llocalnet

If you want more information on the Post Office Protocol used by MH, consult the file
support/pop/pop.rfc, which is the MH revision to RFC918.

For POP service hosts, you need to run a daemon, popd (8). The daemon should start at
multi-user boot time, so adding the lines:

if [—f /etc/popd]; then
letc/popd & echo —n ’ pop’ >/dev/console

to the /etc/rc.local file is sufficient. In addition, on both the POP client and service hosts, you
need to deﬁne the port that the POP service uses. Add the line

109/tcp # experimental
to the /etclservnces file (if it’s not already there).

There are two ways to administer POP: In ‘‘naive’’ mode, each user-id in the
passwd (5) file is considered a POP subscriber. No changes are required for the mailsystem on
the POP service host. However, this method requires that each POP subscriber have an entry
in the password file. The POP server will fetch the user’s mail from wherever maildrops are
kept on the POP service host. This means that if maildrops are kept in the user’s home direc-
tory, then each POP subscriber must have a home directory.

In ““smart>> mode (enabled via ‘‘DPOP’’ being given as a configuration option), the list of POP
subscribers and the list of login users are completely separate name spaces. A separate data-
base (simple file similar to the BBoards (5) file) is used to record information about each POP
subscriber. Unfortunately, the local mailsystem must be changed to reflect this. This requires
two changes (both of which are simple): First, the aliasing mechanism is augmented so that
POP subscriber addresses are diverted to a special delivery mechanism. MH comes with a pro-
gram, popaka (8), which generates the additional information to be put in the mailsystem’s
alias file. Second, a special POP channel (for MMDE-II) or POP mailer (for SendMail) per-
forms the actual delivery (mh.6 supplies both). All it really does is just place the mail in the
POP spool area.

These two different philosophies are not compatible on the same POP service host: one
or the other, but not both may be run. Clever mailsystem people will note that the POP
mechanism is really a special case of the more general BBoards mechanism.

In addition, there is one user-visible difference, which the administrator controls the
availability of. The difference is whether the POP subscriber must supply a password to the
POP server: The first method uses the standard ARPA technique of sending a username and a
password. The appropriate programs (inc, msgchk, and possibly bbc) will prompt the user for
this information.

The second method (which is enabled via ‘RPOP” being given as a configuration
option) uses the Berkeley UNIX reserved port method for authentication. This requires that the
two or three mentioned above programs be setuid to root. (There are no known holes in any of

-18-

these programs.)

These two different philosophies are compatible on the same POP service host: to selec-
tively disable RPOP for hosts which aren’t trusted, either modify the .rhosts file in the case of
POP subscribers being UNIX logins, or zero the contents of network address field of the

pop (5) file for the desired POP subscribers. :

POP(5)

NAME

-17- POP(5)

POP - POP database of subscribers

SYNOPSIS

/usr/spool/pop/POP

DESCRIPTION

Flles

See Also

Bugs

[mh.6]

The POP database has exactly the same format as the BBoards (5) database, although many ﬁelds are
unused. Currently, only four fields are examined:

field value

name the POP subscriber

primary file the maildrop for the POP subscriber
(relative to the POP directory)

encrypted password the POP subscriber’s password
network address the remote user allowed to RPOP

This is an ASCII file. Each field within each POP subscriber’s entry is separated from the next by a colon.
Each POP subscriber is separated from the next by a new-line. If the password field is null, then no pass-
word is valid.

To add a new POP subscriber, edit the file adding a line such as

Then, use popwrd to set the password for the POP subscriber. If you wish to allow POP subscribers to
access their maﬂdrops w1thout supplying a password (by using privileged ports), fill-in the network
address field, as in:

mrose:.mrose:::mrose@nrtc-isc::::0
which permits ‘‘mrose@nrtc—isc’’ to access the maildrop for the POP subscriber ‘‘mrose’’. Under the
current implementation, only one network address may be given rpop access to a maildrop for a POP sub-
scriber.
To disable a POP subscriber from receiving mail, set the primary file name to the empty string. To prevent
a POP subscriber from picking—up mail, set the encrypted password to “‘*’’ and set the network address to
the empty string.

This file resides in home directory of the login ‘‘pop’’. Because of the encrypted passwords, it can and
does have general read permission.

/ust/spool/pop/POP POP database
bboards(5), pop(8), popaka(8), popd(8), popwrd(8)

A binary indexed file format should be available for fast access.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a text editor.
A vipop program is needed.

MH UCI version

POP®) | 18- POP@®)

NAME
pop — POP channel/mailer
SYNOPSIS
/usr/mmdf/chans/pop fdl fd2 {y]
lusr/new/lib/mh/spop POP—subscriber ...
DESCRIPTION
For MMDF-I1, the POP channel delivers mail to the POP spool area for later retrieval by POP subscribers.
For SendMail, the SPOP mailer performs this task.
For each address given, these programs consult the pop (5) file to obtain information about the
POP-subscriber named by the address. The programs then deliver the message to the spool area for the
POP-subscriber.
Flles
{usr/new/lib/mh/mtstailor tailor file
{usr/spool/pop/POP POP database
Profile Components
None
See Also
bboards(5), bbaka(8)
Defaults
None
Context
None

[mh.6] . MH ' UCI version

POPAKA(S) : -19- POPAKA(8)

NAME
popaka — generate POP entries for MMDF-1I alias file

SYNOPSIS
fusr/new/lib/mh/popaka

DESCRIPTION

The popaka program reads the POP database and produces on its standard output a file suitable for inclu-
sion in the MMDF-II aliases file. The contents of this file divert mail for POP subscribers to the POP
channel.

Flles :
{usr/spool/pop/POP POP database

Profile Components
None

See Also
pop(5)

Defaults
None

Context
None

[mh.6] MH UCI version

POPD(8) -20- POPD(8)

NAME
popd — the POP server

SYNOPSIS
letc/popd [-p portno] (under /etc/rc.local)

DESCRIPTION

The popd server implements the Post Office protocol, as described in RFC819 (revised, MH internal).
Basically, the server listens on TCP port 109 for connections and enters the POP upon establishing a con-
nection. The ‘~p’ option overrides the default TCP port.

Flies ‘ ’
/usr/spool/pop/POP POP database

Profile Components
None

See Also
Post Office Protocol (revised) (aka RFC-819 with revisions),
pop(5)

Defaults
None

Context
None

History
Previous versions of the server (10/28/84) had the restriction that the POP client may retrieve messages for
login users only. This restriction has been lifted, and true POB support is available (sending mail to a
mailbox on the POP service host which does not map to a user—id in the password file).

[mh.6] MH UCI version

POPWRD(8) -21- POPWRD(8)

NAME
popwrd - set password for a POP subscriber

SYNOPSIS
/usr/new/lib/mh/popwrd POP—subscriber

DESCRIPTION
The popwrd program lets the super—user or the master POP user or a ‘‘leader’’ of a POP subscriber change
the password field for the POP subscriber in the POP database. This program is very similar to the
passwd (1) program.
Since only the super—user and the master POP user may change any other fields of the POP database (using
an ordinary editor), it is possible for the system administrator to delegate responsibility to others to manage
groups of POP subscribers.

Flles
/usr/spool/pop/POP POP database

Profile Components
None

See Also
pop(5)

Defaults
None

Context
None

Bugs

Although popwrd does locking against other invocations of popwrd, editor locking for the POP database in
general is not implemented. A vipop program is needed.

[mh.6] MH UCI version

5. MAIL FILTERING

' There was a time when users on a UNIX host might have had two maildrops: one from
MMDF and the other from UUCP. This was really a bad problem since it prevented using a
single user—interface on all of your mail. Furthermore, if you wanted to send a message to
addresses on different mailsystems, you couldn’t send just one message. To solve all these
problems, the notion of mail filtering was developed that allowed sophisticated munging and
relaying between the two pseudo~domains.

MH will perform mail filtering, transparently, if given the MF configuration option.
However, with the advent of SendMail and further maturation of MMDF, MH doesn’t really
need to do this anymore, since these message transport agents handle it. -

The mail-filtering stuff is t0o complicated. It should be simpler, but, protocol tmnslatxm
really is difficult.

MF(1) -23- MF(1)

NAME
muinc, musift, uminc, umsift — mail filters

SYNOPSIS
/usr/new/lib/mh/muinc

/usr/new/lib/mh/musift [files ...]

/ust/new/lib/mh/uminc

fust/new/lib/mh/umsift [files ...]
DESCRIPTION

The mail filters are a set of programs that filter mail from one format to another. In particular, UUCP- and
MMDPF-style mail files are handled.

muinc filters mail from the user's MMDF maildrop into the user’s UUCP maildrop; similarly, uminc filters
mail from the user’s UUCP maildrop into the user’s MMDF maildrop. These two programs respect each
system’s maildrop locking protocols.

musift filters each file on the command line (or the standard input if no arguments are given), and places the
result on the standard output in UUCP format. The files (or standard input) are expected to be in MMDF
format. umsift does the same thing filtering UUCP formatted files (or input), and places the MMDF for-
matted result on the standard output. No locking protocols are used by these programs.

If the files aren’t in the expected format, the mail filters will try to recover. In really bad cases, you may

lose big.
Files
/usr/spool/mail/ UUCP spool area for maildrops
/ust/spool/mail/$USER Location of standard maildrop
Profile Components
None
See Also
Proposed Standard for Message Header Munging (aka RFC-886),
inc(1)
Defaults
Context
Bugs

Numerous; protocol translation is very difficult.

[mh.6] MH UCI version

RMAILG) 24 RMAIL(3)

NAME
rmail — UUCP interface to mail

SYNOPSIS |

DESCRIPTION
Rmail is intended as a replacement for those systems without SendMail or MMDF. 1t is normally invoked
by uux on behalf of the remote UUCP site. For each address, it decides where to send it: either locally, via
another UUCP link, or via the Internet. '
Rmail implements a crude access control facility by consulting the files Rmail.OkHosts and
Rmail.OkDests in the /usr/new/lib/mh/ directory. Hosts listed in the former file can send messages to
anywhere they please. Hosts listed in the latter file can receive messages from anywhere. Note that a host
listed in the first file is implicitly listed in the second file.

Files '
/usr/new/lib/mh/mtstailor tailor file
/usr/new/lib/mh/Rmail.OkHosts list of privileged hosts
/ust/new/lib/mh/Rmail.OkDests list of privileged destinations

Profile Components
None

See Also
mf(1)

Defaults
None

Context
None

[mh.6] MH UCI version

6. MH HACKING

Finally, here’s a little information on modifying the MH sources. A word of advice how-
ever:

DON’T

If you really want new MH capabilities, write a shell script instead. After all, that’s what
UNIX is all about, isn’t it?
Here’s the organization of the MH source tree.

conf/ configurator tree

config/ compiled configuration constants
dist/ distributor

doc/ manual entries

b/ include files

mts/ MTS-specific areas

mby/ standalone delivery
mmdff MMDF-I, MMDF-II
sendmail/ SendMail, SMTP

miscellany/ various sundries

papers/ papers about MH

sbr/ subroutines

support/ support programs and files
bboards/ UCI BBoards facility
general/ templates
pop/ POP facility

uip/ programs

zotnet/ MTS~independent areas
bboards/ UCI BBoards facility

mf/ Mail Filtering
mts/ MTS constants
tws/ date routines

-28-

MH-HACK(8) -26- MH-HACK(8)
NAME
mh-hack - how to hack MH
SYNOPSIS
big hack attack
DESCRIPTION
This is a description of how one can modify the MH system. The MH distribution has a lot of complex
inter—relations, so before you go modifying any code, you should read this and understand what is going
on.
ADDING A NEW PROGRAM ,
Suppose you want to create a new MH command called ‘‘pickle’’. First, create and edit
‘‘pickle.c” in the uip/ directory. Next edit conf/makefiles/uip to include “‘pickle’’. This file has
directions at the end of it which explain how it should be modified. Next, update any documenta-
tion (described below). At this point you can re-configure MH. See mh—gen(8) for instructions
on how to do this (basically, you want ‘‘mhconfig MH"’).
ADDING A NEW SUBROUTINE
Suppose you want to create a new MH routine called *‘pickle’’. First, create and edit ‘‘pickle.c’’
in the sbr/ directory. Next edit conf/makefiles/sbr to include ‘‘pickle’’. This file has directions at
the end of it which explain how it should be modified. You should modify config/mh.h to define
‘“‘pickle ();”’. Similarly, sbr/llib-Isbr should be modified for lint. At this point you can
re—configure MH.
UPDATING DOCUMENTATION
Edit whatever files you want in conf/doc/. When documenting a new program, such as ‘‘pickle’’,
you should create 2 manual page with the name ‘‘picklerf’’. The file conf/doc/template has a
manual page template that you can use. If you are documenting a new program, then you should
also update three other files: The file conf/doc/mh.rf should be modified to include the ‘‘ NA’
section from ‘‘picklerf’’. The file conf/doc/mh—chart.rf should be modified to include the
*.SY’’ section from ‘‘pickle.rf”’. Finally, the file conf/doc/MH.rf should be modified to include
a ‘“‘.so pickle.me’’. Naturally, none of these changes will be reflected in the configuration until
you actually run mhconfig.
Files
Too numerous to mention. Honest.
See Also
mh-gen(8)
Bugs

Hacking is an art, but most programmers are butchers, not artists.

[mh.6]

MH UCI version

7. HIDDEN FEATURES

The capabilities discussed here should not be used on a production basis, as they are
either experimental or are useful for debugging MH.

Debug Facilities

The mark command has a ‘~debug’ switch which essentially prints out all the internal
MH data structures for the folder you’re looking at.

The pos