Space Flight Operations Contract

HAL/S COMPILER SYSTEM SPECIFICATION

PASS 32.0/BFS 17.0

November 2005

DRD - 1.4.3.8-a

Contract NAS9-20000

United Space Alliance

HAL/S COMPILER SYSTEM SPECIFICATION

Approved by

Original Approval Obtained Barbara Whitfield, Manager HAL/S Compiler and Application Tools

Original Approval Obtained Monica Leone, Director Application Tools Build and Data Reconfiguration

Revision Log

The HAL/S-FC Compiler System Specification has been revised and issued on the following dates¹:

<u>Issue</u>	Revision	<u>Date</u>	Change Authority	Sections Changed
29.0/14.0		03/10/1999	CR12935A	3.1.1.3 -p. 3-5, 3-6 App. B -p. B-5, B-8
			CR12940	2.6.1 -p. 2-6 2.6.2 -p. 2-6, p.2-7, 2.6.6 -p. 2-9 3.3 -p. 3-60, 3-61
			CR13043	5.2.3 -p. 5-2 5.2.7 -p. 5-11 5.3.3 -p. 5-168, 5-175 5.3.4 -p. 5-240
			DR109091	2.6.2 -р. 2-7
			DR109089	3.1.1.3 -р. 3-5
			Cleanup	-p. 2-4 -p. 3-4 - pp. 5-9, 5-10, 5-12, 5-34, 5-35, 5-37, 5-42 thru 5-45, 5-47, 5-50, 5-55, 5-61, 5-63, 5-64, 5-67, 5- 68, 5-70, 5-72, 5-74, 5-75, 5-80, 5-82, 5-85, 5-93, 5-94, 5-96, 5- 99, 5-101, 5-103, 5-106, 5-111, 5- 113, 5-114, 5-116, 5-118 thru 5- 125, 5-128 thru 5-131, 5-134 thru 5-136, 5-139 thru 5-143, 5-145, 5-147 thru 5-149, 5-151 thru 5- 163, 5-166, 5-167, 5-169 thru 5- 188, 5-190, 5-192, 5-194 thru 5- 221, 5-226, 5-227, 5-230, 5-234 thru 5-236, 5-240, 5-242, 5-246, 5-247, 5-250, 5-257, 5-264, 5- 267, 5-271, 5-272, 5-274, 5-278, 5-285, 5-287, 5-289, 5-293, 5- 295, 5-296, 5-299, 5-300, 5-307, 5-315, 5-317, 5-319, 5-322, 5- 323, 5-325 thru 5-342 -p. 6-4 -p. 7-5 -p. B-5

^{1.} A table containing the Revision History of this document prior to the USA contract can be found in Appendix B.

30 0/15 0	06/12/00	CR12214	42 -n 4-2
50.0/15.0	00/12/00	01(12214	$\Delta p \Delta p \Delta - p \Delta - 3$
		CP12620	
		CR13211	App. A -p. A-3
		CR13217	1.3 -p. 1-2
			5.1.15.3 - p. 3-60
			App B -pp B-5 B-8
		CR13222	5243 -pp 5-3 tbru 5-8
		ONIGZZZ	5.3.1 -pp. 5-39
			5.3.2 -pp. 5-59. 5-79. 5-82. 5-83.
			5-116, 5-118
			5.3.3 -pp. 5-133 thru 135, 5-141
			thru 5-144, 5-146, 5-
			5.3.4 -pp. 5-241
			5.3.0 -pp. $5-2.945.3.7 -pp. 5-330 5-331$
			7.2.3 _n 7-2
24.0/40.0	00/07/04		
31.0/10.0	09/07/01	CR 13454	$2.0.3 - \mu 2 - 7$ 3.1.1.1 - n.3 - 2
			3 1 1 3 -n 3-5
			3.1.1.5 -р 3-9
			3.1.10.4 -p 3-47
			3.1.12.5 -p 3-56
			3.1.14.1 -p 3-62
			3.1.14.2 -p 3-63
			3.1.15.2 -p 3-64
			3.1.17 -p 3-70 6.3 -p 6-28
			6.3 -p 6-34
		CR13/62	sec 1.0 -p 1-1 to 1-10
		CR13402	2112 p 2324
		DD1112	2.1.1.2 - p - 5.3, 5 - 4
		DR111309	3.1.15.4 -p 3-69
		DR111364	3.1.5.3 -p 3-31 3.1.7.4 -p 3-30
		Cleanup	Drofooo
22.0/17.0	44/0005		
32.0/17.0	11/2005	CK13538	3.1.1.3 -pp. 3-5 thru 3-7
			$3.1.14.1$ - $\mu\mu$. 3-02, 3-03 3.1.14.2 -nn 3-63 3-64
			3.1.15.2 -p 3-66
			3 1 15 4 - 3-70 3-71

CR13570	3.1.15.5 -pp. 3-71, 3-72 3.3.4 -p 3-75 3.3.6 -p 3-75 8.3.2 -p 8-3 8.4 -p 8-4
CR13652	3.1.1.3 -pp. 3-6, 3-7 3.1.14.1 -p 3-62 3.1.14.2 -p. 3-64, 3-65 3.1.15.3 -p 3-69 3.1.17 -p 3-72 4.2.3.3 -p. 4-6 8.3.1 -p 8-3 8.4 -p 8-4
CR13811	3.1.1.3 -р 3-5
CR13833A	2.10 -р 2-11
CR14216A	Preface 1.3 -p 1-2 4.2.1.2 -p 4-2 7.1.2 -p 7-2

List of Effective Pages

The current status of all pages in this document is as shown below:

Page No.	Change No.
All	32.0/17.0

I

Preface

The HAL/S FC Compiler System Specification was developed by Intermetrics, Inc. and is currently maintained by the HAL/S project of United Space Alliance. The manual identifies the informational interfaces with the HAL/S-FC compiler and between the compiler and the external environment.

Over the years, numerous changes have been made to the HAL/S-FC compiler design and this document has been modified to reflect these changes. However only a small number of these changes have been incorporated into the HAL/S-360 compiler and now this document is only an approximation of that compiler's design. Earlier versions of the predecessor of this document (IR-182) contain a more accurate representation of the design of the HAL/S-360 compiler's components. The earliest of these versions should be referenced when attempting to understand the design of the HAL/S-360 compiler, and this document should be referenced when attempting to understand the design of the HAL/S-FC compiler.

The primary responsibility is with USA, Department, 01635A7.

Questions concerning the technical content of this document should be directed to Danny Strauss (281-282-2647), MC USH-635L.

This page intentionally left blank.

1.0 Introduction	1-1
1.1 Scope of Document	1-1
1.2 Outline of the Document	1-1
1.3 Status of Document	1-2
2.0 Phase 1 - Syntax Analysis	2-1
2.1 Primary Source Input	2-1
2.2 Secondary Source Input - The Include System	2-2
2.3 Access Rights Implementation	2-2
2.4 Compiler Directive Parsing	2-4
2.5 Template Checking and Generation	2-4
2.6 Listing Generation	2-5
2.6.1 Options	2-5
2.6.2 Primary Formatted Listing	2-6
2.6.3 Error Messages	2-7
2.6.4 Block Summaries	2-8
2.6.5 Compilation Layout Summary	2-9
2.6.6 Symbol & Cross Reference Table Listing	2-9
2.6.7 Built-in Function Cross Reference	2-9
2.6.8 Replace Macro Text	2-9
2.6.9 Unformatted Source Listing	2-9
2.7 Symbol Table Generation	2-10
2.8 Statement Table Generation	2-10
2.9 Literal Table Creation	2-10
2.10 HALMAT Creation	2-11
2.11 The Optimizer	2-11
3.0 PHASE 2 - Code Generation	3-1
3.1 Code Generation	3-1
3.1.1 Bases and Conventions	3-1
3.1.1.1 Register Usage	3-2
3.1.1.2 Storage Allocation	3-2
3.1.1.3 Addressing Concepts	3-4
3.1.1.4 Condition Codes	3-8
3.1.1.5 ZCONs and the Calling Mechanisms	3-8
3.1.1.6 The Runtime Stack	3-9
3.1.1.7 Local Block Data Areas	3-11
3.1.1.8 Parameter Passing Conventions for User-Written Routines	3-12
3.1.2 Integer and Scalar Operations	3-15
3.1.2.1 Arithmetic Operators	3-15
3.1.2.2 Comparison Operators	3-17
3.1.2.3 Conversions	3-18
3.1.2.4 Assignments	3-19
3.1.3 Bit String Operations	3-20

3.1.3.1 Bit String Operators	3-20
3.1.3.2 Bit String Comparisons	3-21
3.1.3.3 Component Subscripting	3-21
3.1.3.4 Bit Conversions	3-22
3.1.3.5 Bit Assignments	3-22
3.1.3.6 Partitioned Bit Assignments	3-23
3.1.3.7 Bit Tests	3-24
3.1.4 Character String Operations	3-24
3.1.4.1 Character String Operators	3-24
3.1.4.2 Character String Comparisons	3-24
3.1.4.3 Component Subscripting	3-25
3.1.4.4 Character String Conversions	3-25
3.1.4.5 Character String Assignments	3-26
3.1.5 Vector Matrix Operations	3-26
3.1.5.1 Vector-Matrix Operators	3-26
3.1.5.2 Conditional Operators	3-30
3.1.5.3 Component Subscripting	3-31
3.1.5.4 Conversions	3-32
3.1.5.5 Assignments	3-33
3.1.6 Structure Operations	3-36
3.1.6.1 Structure Comparisons	3-36
3.1.6.2 Structure Assignment	3-37
3.1.7 Indexing and Arrayed Statements	3-37
3.1.7.1 Linear Array Indexing	3-37
3.1.7.2 Non-Linear Array Indexing	3-37
3.1.7.3 Array Indexing	3-38
3.1.7.4 Arrayness and Loop Generation	3-38
3.1.8 PROCEDURE/FUNCTION Calls	3-40
3.1.9 Block Definition	3-42
3.1.9.1 PROGRAM and TASK Definition	3-42
3.1.9.2 PROCEDURE and FUNCTION Definition	3-42
3.1.10 Flow of Control Statements	3-43
3.1.10.1 IF THEN ELSE	3-43
3.1.10.2 DO FORLoops	3-43
3.1.10.3 DO WHILE/UNTIL	3-46
3.1.10.4 DO CASE	3-47
3.1.10.5 GO TO, REPEAT, EXIT	3-48
3.1.10.6 RETURN	3-49
3.1.10.7 ON ERROR/OFF ERROR/SEND ERROR	3-49
3.1.11 Built-In Functions	3-50
3.1.11.1 Inline Built-in Functions	3-50
3.1.11.2 Out of Line Functions	3-52

3.1.11.3 Shaping Functions	3-53
3.1.12 Real Time Statements	3-54
3.1.12.1 WAIT Statement	3-54
3.1.12.2 CANCEL, TERMINATE Statements	3-54
3.1.12.3 SIGNAL, SET, RESET Statements	3-55
3.1.12.4 UPDATE PRIORITY Statement	3-55
3.1.12.5 SCHEDULE Statement	3-55
3.1.13 I/O Statements	3-56
3.1.13.1 Initiation	3-56
3.1.13.2 Input	3-56
3.1.13.3 Output	3-59
3.1.14 NAME Operations	3-62
3.1.14.1 NAME Comparisons	3-62
3.1.14.2 NAME Assignment	3-63
3.1.15 %MACROS	3-66
3.1.15.1 %SVC	3-66
3.1.15.2 %NAMECOPY	3-66
3.1.15.3 %COPY	3-66
3.1.15.4 %NAMEADD	3-70
3.1.15.5 %NAMEBIAS	3-71
3.1.16 NONHAL References	3-72
3.1.17 Block Move Algorithm	3-72
3.2 Object Code Naming Conventions	3-74
3.3 Printed Data from Phase 2	3-74
3.3.1 Formatted Assembly Listing	3-74
3.3.2 Symbol Information	3-75
3.3.3 RLD Information	3-75
3.3.4 Variable Offset Table	3-75
3.3.5 Memory Map Table	3-75
3.3.6 Structure Template Layout Table	3-75
3.4 Symbol Table Augmentation	3-75
3.5 Statement Table Augmentation	3-76
4.0 Incremental #D (DATA_REMOTE Directive) REQUIREMENTS AND CODE DESI	GN
4-1	
4.1 Introduction	. 4-1
4.2 Requirements and Code Design	. 4-1
4.2.1 Provide for Selective Migration of #D Data	. 4-1
4.2.1.1 Interpretation	. 4-1
4.2.1.2 Detailed Implied/Derived Requirements	. 4-2
4.2.1.3 Compiler Implementation Design	. 4-3
4.2.2 Provide for Management of Extended Addressing Feature	4-4
4.2.2.1 Interpretation	. 4-4

4.2.2.2 Detailed Implied/Derived Requirements	4-4
4.2.2.3 Compiler Implementation Design	4-5
4.2.3 Enforce Compiler Restrictions on #D Data	4-5
4.2.3.1 Interpretation	4-5
4.2.3.2 Detailed Implied/Derived Requirements	4-6
4.2.3.3 Current Error Message Usage	4-6
4.2.3.4 FCOS Restrictions on #D Data	4-7
4.2.3.5 Compiler Implementation Design	4-8
4.2.4 Manipulate #D Data Using Extended Addressing Techniques	4-9
4.2.4.1 Interpretation	4-9
4.2.4.2 Detailed Implied/Derived Requirements	4-9
4.2.4.3 Compiler Implementation Design	-10
5.0 PHASE 3 - SIMULATION DATA FILE GENERATION	5-1
5.1 SDF Generation	5-1
5.1.1 Overall SDF Design	5-1
5.2 Phase 3 Printed Data	5-2
6.0 RUNTIME LIBRARY	6-1
6.1 Introduction	6-1
6.2 Basics and Conventions	6-1
6.2.1 Origin and Format	6-1
6.2.2 Purpose	6-2
6.2.3 Intrinsics and Procedure Routines	6-2
6.2.4 Register Conventions in Runtime Library Routines	6-2
6.2.4.1 General Purpose Registers R0-R7.	6-2
6.2.4.2 Floating Point Registers F0-F7.	6-2
6.2.4.3 Interface Conventions.	6-2
6.2.5 Referencing Conventions	6-8
6.2.5.1 CSECT Names.	6-8
6.2.5.2 ZCONs	6-8
6.2.6 Coding Structure	6-9
6.2.7 The Macro Library	6-9
6.2.8 Precision Requirements6	-16
6.2.9 Usage Restrictions6	-16
6.3 Library Routine Descriptions6	-24
6.3.1 Arithmetic Routine Descriptions	-36
6.3.2 Algebraic Routine Descriptions	-54
6.3.3 Vector/Matrix Routine Descriptions6-1	122
6.3.4 Character Routine Descriptions	232
6.3.5 Array Function Routine Descriptions	257
6.3.6 Miscellaneous Routine Descriptions	273
6.3.7 REMOTE Routine Descriptions	322
7.0 System Interfaces	7-1

7.1 Interr	nal System Interfaces	7-1
7.1.1	Macro Instructions	7-1
7.1.2	Dynamic Invocation of the Compiler	7-2
7.1.3	OS/360 Access Methods	7-2
7.2 User	or External System Interfaces	7-2
7.2.1	User-defined Options	7-2
7.2.2	Job Control Language Specification	7-3
8.0 PASS/B	FS Differences	8-1
8.1 Introd	duction and Background	8-1
8.2 Interf	ace Differences (Required)	8-1
8.2.1	Operating Systems (BOS vs. FCOS)	8-1
8.2.2	Linkage Editors (PILOT vs. AP101)	8-2
8.2.3	Compiler Features	8-2
8.3 Com	piler Feature Differences (Not Required)	8-3
8.3.1	Changes Due To CRs/DRs	8-3
8.3.2	Functions Not Implemented In BFS Compiler	8-3
8.4 BFS/	Pass Differences By Compiler Subsystem	8-4
8.5 Sumi	mary of PASS/BFS Differences	8-5
Appendix A	Error Classifications	A-1
Appendix B	Revision History	B-1

This page intentionally left blank.

List of Tables

Table 6-1	Index of Library Entry Name	6-356
Table 8-1	SVC Options	

List of Tables

This page intentionally left blank.

List of Figures

rigure 3-1 Algorithm for Calculating the Oth Element Offset	3-3
Figure 3-2 Stack Layout	3-10
Figure 3-3	3-14
Figure 4-1 Provide for Selective Migration of #D Data	4-3
Figure 4-2 Provide for Management of Extended Addressing Feature	4-5
Figure 4-3 Enforce Compiler Restrictions on #D Data	4-8
Figure 4-4 Manipulate #D Data Using Extended Addressing Techniques	4-10
Figure 6-1 Basic LRD Form	6-27
Figure 6-2 Extension LRD Form	6-28
Figure 8-1	8-4
Figure 8-2	8-5
Figure 8-3	8-6

This page intentionally left blank.

1.0 Introduction

1.1 Scope of Document

This document specifies the informational interfaces within the HAL/S-FC compiler, and between the compiler and the external environment. An overall description of the compiler, and the hardware and software compatibility requirements between compiler and environment are detailed in the HAL/S-FC Compiler System Functional

Specification.² Familiarization with the Functional Specification is presumed throughout this document.

This Compiler System Specification is for the HAL/S-FC compiler and its associated run time facilities which implement the full HAL/S language.³ The HAL/S-FC compiler is designed to operate "stand-alone" on any compatible IBM 360/370 computer and within the Software Development Facility (SDF) at NASA/JSC, Houston, Texas.

1.2 Outline of the Document

The HAL/S-FC compiler system consists of:

- 1. a seven phase language processor (compiler) which produces object modules compatible with AP-101 Space Shuttle Support Software and a set of simulation tables to aid in run time verification.
- 2. a comprehensive run-time library which provides an extensive set of mathematical, conversion, and language support routines.

The organization of this document is based upon the organization of the compiler system. Each part of the system is considered as a separate entity with its own specific function and interfaces to other parts. Hence, there are four sections which cover the parts of the system as follows:

- Section 2 describes Phase 1 and the syntax analysis phase of the compiler.
- Section 3 describes Phase 2 and the code generation phase and specifies in detail the code patterns for specific HAL/S constructs.
- Section 4 describes Phase 3 and the operation of the Simulation Data File generator.
- Section 5 describes the Runtime Library and the concepts used in the library and also gives specific information about each library routine including size, speed, and algorithm.

In addition to this part-by-part documentation, the compiler system, taken as a whole, exhibits properties and interfaces which are not specific to any one of the pieces. General information about such topics as the compiler's operating environment and user-written interfaces to emitted object code are contained in Section 6. Several Appendices are included which deal with tabular data used in the compiler system.

^{2.} HAL/S-FC Compiler System Functional Specification, 24 July 1974, IR-59

^{3.} HAL/S Language Specification, USA003088

1.3 Status of Document

This document, plus the HAL/S-FC Compiler System Functional Specification for the AP-101 comprise the complete HAL/S-FC Compiler System Specification.

The HAL/S-FC compiler inherits some of its operational features from the HAL/S-360 compiler system for which a similar Specification exists. In addition, many features of the HAL/S-FC system are under control of Interface Control Documents which are subject to update. When appropriate within this document, references are made to these companion documents as sources of supplementary material and in some cases as primary sources of detailed information.

The following list of documents represents the set of additional documents which reflect design and control of the HAL/S-FC compiler system:

- HAL/S-FC Compiler System Functional Specification for the AP-101, IR–59.
- Interface Control Document: HAL/FCOS, (a.k.a. HAL/FCOS ICD), USA001460.
- Interface Control Document: HAL/S-FC/SDL, (a.k.a. HAL/SDL ICD), USA001556.
- HAL/S-360 Compiler System Specification, USA001528.
- HAL/S Language Specification, USA003088.
- SPF Optical Disk Flight Software Products Indexing Requirements Interface Control Document, JSC-26622 Section 2.1.9.

2.0 Phase 1 - Syntax Analysis

The Syntax Analysis Phase performs syntactic and semantic analysis of the user's HAL/S source programs. It performs all functions necessary to allow an independent Phase 2 program to generate code for the target computer. The basic design of the HAL/S system includes use of a single Phase 1 for a variety of target machine Phase 2s. Thus, the Phase 1 used by the HAL/S-FC compiler is the same one used in the HAL/S-360 compiler. In this section on Phase 1, data which is supplied in detail in the HAL/S-360 Compiler System Specification is not repeated. Instead, reference is made to the proper section of that document.

This section deals with the following Phase 1 functions:

- Primary Source Input
- Secondary Source Input
- ACCESS System Implementation
- Compiler Directives
- Template Checking and Generation
- Printed Data
- Symbol Table Creation
- Statement Table Generation
- Literal Table Generation
- HALMAT Creation
- The Optimizer

2.1 Primary Source Input

Phase 1 accepts primary source input in the form of fixed length logical records. This input must be defined by the SYSIN DD statement in the JCL invoking the compiler. The first byte of each record is used to define the type of the record as follows:

- M main line
- E exponent line
- S subscript line
- D compiler directive
- C comment

(Other letters can be used if modified via the "CARDTYPE" compiler option to a legal type.)

For stand-alone operation the source records are 80 bytes in length and may contain data in columns 2-80. Optionally, the user may designate, via the "SRN" compiler option, that the source scanning is to stop at position 72 and also that positions 73-78 are to be printed on the listing as "Statement Reference Numbers".

When operating in the SDL environment, indicated by use of the "SDL" compiler option, the source records must still be all the same length but that length may be from 80 to

132 characters. When in the SDL mode, the compiler accepts source data from record positions 2 through 72. In addition, when the records are of sufficient length, the following fields are recognized and all except the change authorization field are printed on the primary source listing:

- Record Sequence Number positions 73 through 78;
- Record Revision Indicator positions 79 and 80;
- Change Authorization Field positions 81-88
- Portions of records beyond position 88 are ignored.

The compiler's primary input may optionally be in a compressed source format as defined in the *HAL/SDL ICD*. No special notification of use of compressed source is needed. Phase 1 determines the type of input by examining the first record. Catenated datasets defined as primary compiler input must all be either in compressed or noncompressed format for one invocation of the compiler.

2.2 Secondary Source Input - The Include System

The user may direct the compiler to an alternate input source by use of an INCLUDE compiler directive in the primary input. The exact form of the INCLUDE directive may be found in Section 5.2 of the HAL/S-FC User's Manual.

The INCLUDE directive defines a member name in a partitioned dataset. Phase 1 uses a FIND macro to locate the member on the INCLUDE DD card. If the FIND is unsuccessful, an identical FIND is issued for the OUTPUT6 DD card. A member, when located, is read to its end by the compiler. The records are processed identically to primary (SYSIN) input with the exception that further INCLUDE directives within INCLUDE'd source are not allowed. The same source margins are applied to the INCLUDE'd source as are applied to the primary input. In addition, the compiler prints a line in the primary source listing indicating the catenation sequence number of the DD card on which the member was found and the RVL field from the PDS directory entry for the member. The RVL field is the first 2 bytes of user data after any TTRNs.

The individual members which are INCLUDE'd may be in either compressed or uncompressed format, independent of whether the primary input was compressed. The form of each INCLUDE'd member is determined by the compiler from the first record read.

Partitioned datasets may be catenated together in the JCL to form the INCLUDE DD sequence, but such datasets must have identical DCB attributes.

2.3 Access Rights Implementation

The HAL/S language allows managerial restrictions to be placed upon the usage of user-defined variables and external routines. The existence of such a restriction is indicated by the use of the ACCESS attribute as described in the HAL/S Language Specification. The manner in which the restrictions are enforced in the HAL/S-FC compiler system is described below.

Any variable in a COMPOOL template or any external routine to which the ACCESS attribute has been applied is considered to be restricted for the compilation unit which is being compiled. The restriction is slightly different for variables than for blocks:

- a. Variables with the ACCESS attribute may not have their values changed.
- b. Block names may not be used at all.

These restrictions may be selectively overridden for individual variable and block names. The selection of which ACCESS controlled names are to be made available to the unit being compiled is performed by processing an external dataset. The external dataset is known as the Program Access File (PAF). The PAF must have partitioned organization and is specified by the following JCL:

//HAL.ACCESS DD DSN=<PAF name>, <other parameters>

where the <PAF name> is the dataset name of the PAF without any member specification.

Each member of the PAF contains the information about ACCESS controlled names which are to be made available to one unit of compilation. The member name is defined by a Program Identification Name (PIN). The PIN is specified to the HAL/S-FC compiler by using the PROGRAM compiler directive in the primary input stream:

col 1 D PROGRAM ID = <id>

The <id> field of the directive is a 1 to 8 character identifying name which is used to select the member of the PAF to be processed for the current compilation's ACCESS information. The appearance of the PROGRAM directive in the compiler's input stream causes immediate processing of the PAF member specified.

The format of an individual PAF member is described below.

- a. Column 1 of each record is ignored except when column 1 contains the character "C", in which case the entire record is ignored.
- b. The portion of each record which is processed is the same portion which is processed in the primary compiler input (SYSIN).
- c. COMPOOL elements which are to be made available to the compilation are specified as:

<COMPOOL-name>(\$ALL)

<COMPOOL-name>(<var-name>, <var-name>,...<var-name> or

The first format specifies access to individual variables within the named COMPOOL. The second format specifies access to all variables within the named COMPOOL.

d. Access to external block names is specified as:

\$BLOCK(<ext-name>, <ext-name>,...<ext-name>)

e. Blanks are allowed anywhere in the record except that names may not be broken by a blank.

- f. Either of the constructions (c) or (d), above, may span more than one record.
- g. The name of the particular COMPOOL in the form (c) above may appear more than once; i.e. the variables in a particular COMPOOL do not have to be specified at one time. Similarly, the form \$BLOCK may appear more than once.

Some validity checking is performed by the compiler while processing the PAF member. Warnings are issued for the following conditions:

- 1. A syntax error on a PAF record- the bad record is printed.
- 2. Names mentioned in the PAF are not defined.
- 3. Elements of \$BLOCK in the PAF are not defined.
- 4. Requests for names which are not ACCESS protected.
- 5. Variables found, but not within the COMPOOL specified.
- 6. Names used in the context of a COMPOOL-name which are not COMPOOLs.

If, at the time the PROGRAM directive is encountered, there have been no ACCESScontrolled variables declared, the PAF is not opened. If a user does not require access to any, the PROGRAM directive and associated PAF members may be omitted.

2.4 Compiler Directive Parsing

When an input record is found which contains a "D" in column one, Phase 1 scans the remainder of the card for a valid compiler directive. A list of legal compiler directives and their function is listed in Section 5.2 of the HAL/S-FC User's Manual.

Directive processing is done independently of HAL/S source language parsing, i.e. words used on Directive cards are not necessary HAL/S language keywords. Similarly, HAL/S language keywords are not recognized as such on Directive cards.

2.5 Template Checking and Generation

Phase 1 assumes the task of source template verification and generation. Every compilation unit in the HAL/S-FC system has a source template. When the block header for a unit of compiler is encountered, Phase 1 begins to construct the source template for that unit as follows.

The member name for the template being created is determined. This is done by taking the "characteristic name" for the unit and preceding it by the characters '@@'. The characteristic name for any unit is created by taking the block name, removing any underscore characters, and then padding or truncating the result to 6 characters. An attempt is made to locate a member of this name on either the INCLUDE or OUTPUT6 DD cards. If such a member is found, the contents of the member are compared with an internal, temporary template created as the compilation proceeds. If the existing template and the internal one agree, a template update is not required, and the existing template remains intact. If the templates do not agree, the internal template is written to the OUTPUT6 DD card and STOW'ed with the current member name. If the initial search for an existing template fails, the generated template is automatically written and STOW'ed on the OUTPUT6 DD card. The PDS directory entry for a template member is created with two bytes of user data. The two bytes are initialized to X'F0F0'.

Phase 1 also sets appropriate bits in a field which is passed back to the caller of the compiler as the high order byte of register 15. The definitions of these bit settings is defined in the *HAL/SDL ICD*.

Generation of the internal template is performed during syntax analysis on a token by token basis. As statements are encountered which are required in the template, the tokens from the statements are added to an internal buffer. When a new token will no longer fit in the buffer, the buffer is written and cleared for continuation. Thus, the templates take the form of strings of HAL/S tokens separated by one block. The template statements are continued from one line to the next without regard for statement boundaries, thus producing the template in the most compact form possible.

For the comparison of existing templates with new, generated templates, the generated records are compared character for character with the existing records. Any mismatch is considered to indicate a change in the template.

Templates are never generated using the compressed source format mentioned in Section 2.1. The generated templates conform to the source margins in effect for the compilation (e.g. for an SDL mode compilation, templates are created with source in position 2 through 72 of the records. When template records are written to the OUTPUT6 DD card, the records are padded with blanks or truncated as necessary to conform to the LRECL specification for that DD card.

When a template has been found to have changed, the compiler updates a "Version number" associated with the template. For an existing template, the version number is found on a VERSION compiler directive card at the end of the existing template member. If a new template is needed, the version number is incremented by one and placed on a new VERSION directive card at the end of the generated template. The version number is limited to the range 1 to 255. Upon reaching 255, the next incrementation causes the number to begin again at 1. When no existing template can be located, the version is set to 1.

When templates produced by the compiler are referenced in subsequent compilations by use of an INCLUDE for the template, the version numbers from the referenced templates are emitted into the produced object code on special SYM records which indicate the versions of all external references. In addition, the emitted object code for any compilation unit contains a SYM record indicating the version number of the template created for that compilation unit. This information permits the checking, if desired, of proper integration of separately compiled units by providing information necessary for cross-checking of inter-module references.

2.6 Listing Generation

2.6.1 Options

All Type 1 and Type 2 options listed in the HAL/S-FC User's manual except debug options and HAL/S-360 unique options are printed in alphabetical order. For Type 1 options, just the option is printed if the option is on. If the option is off, the option is prepended with a "NO".

2.6.2 Primary Formatted Listing

The central printed output of the compiler is the primary source listing. This listing is designed to document the actions taken by the compiler during its generation of an executable form of the user's source program in an indented, annotated format. Additional information, such as block summaries and symbol table listings, are also part of the primary source listing.

The formatting of the primary source listing leads to the documentation of the users program in two ways: 1) variable annotation, and 2) logical indenting.

- 1. Variable annotation Each user-defined data symbol, when printed on the primary source listing, receives "marks" appropriate to the type and organization of the symbol. This annotation is that which is defined by the *HAL/S Language Specification*.
- 2. Logical indenting Each statement printed on the primary source listing is formatted and indented to show internal statement structure, and to show the statements' hierarchical and nesting relationships to other statements in the compilation. The indention increment is 2 spaces.

When operating in the SDL, additional information is provided on the primary source listing. The Record Sequence Number and Record Revision Indicator fields (see Section 2.1) are printed on the primary source listing next to the statements to which they apply. The revision level is printed to the right of the statement immediately following the vertical bar. Another vertical bar separates the revision level from the current scope. Additional details of the specific operations performed during SDL operation may be found in the *HAL/SDL ICD*.

All lines are single-spaced except for the following: there is a blank line before a group of one or more E-lines, C-lines or D-lines and after a group of one or more S-lines.

For D INCLUDES, the first statement number associated with the include is printed.

If there is an IF-THEN or IF-THEN-ELSE statement followed by a simple DO, the DO appears on the same line as the IF-THEN or ELSE except when the combination of the statements is too long for a single line. The combined IF-THEN and DO statements (including the semicolon of the DO) will be broken into multiple lines following regular compiler rules. The statement number for the IF-THEN will be printed as the statement number for each line. If the THEN and the DO or the ELSE and the DO are separated by a C-line or a D-line, the DO will be placed on its own line with its own statement number.

Normally, the current scope is printed to the right of each line in the compilation listing. The value in the scope field will be truncated if it exceeds the maximum line length. The following list indicates instances where the current scope will be replaced by a different value:

- a. The scope field for END statements contains the statement number of the corresponding DO statement.
- b. The scope field for the first statement line (that is not a label) of a case in a DO CASE group contains the case number.

- c. The scope field for an IF-THEN followed by a simple DO is replaced by "DO=ST#", where ST# is the statement number of the DO. Usually, the scope is replaced with the statement number of the DO for each line of a multi-line statement. However, because of certain compiler limitations or other uses of the scope field, the "DO=ST#" may not appear on all of the lines. Following are the known cases:
 - 1. If the length of the statement exceeds a certain compiler-limited size, the statement number of the DO will not be printed for the first line(s) of the statement.
 - If a C-line or D-line is placed inside the IF-THEN statement, the "DO=ST#" will only be placed in the current scope for the lines following the last C-line or Dline.
 - 3. If the multi-line IF-THEN-DO is the first statement of a case in a DO CASE group, the scope field of the first line will contain the case number.

Only one of a-c from above will be placed in the scope field for a given line, with the order of precedence as listed above.

Depending on the contents of the macro, the formatting of statements containing replace macros may vary from the requirements listed above.

2.6.3 Error Messages

When compilation errors are detected by Phase 1, an error message is printed in the primary listing at the point of detection. All error messages have an identifying code associating with them.

The code is assigned to messages according to a general system which groups errors according to a class and a subclass. Multiple errors within a class/subclass combination are assigned unique numbers within the group. Thus, every possible error in the HAL/S-FC compiler system has a unique identifying code.

The text of all error messages is maintained on a direct access dataset. The compiler retrieves error message text as needed from this dataset. During compilation, the ERROR DD card defines the error message dataset. This file has partitioned organization and contains one member for each error message. The member names are identical to the identifying code assigned to the errors.

The record format of the error library is FB and the logical record length is 80 bytes. The first record of each member defines the severity of that error. The severity is a single EBCDIC number in position one of the first record. The severities and their effects are:

- Severity 0 messages will be warning messages (Severity 1) that have been downgraded. Processing will continue, and object code will be generated.
- Severity 1 messages will be minor errors in which compilation will be allowed to continue. Since these errors could produce bad object code, compilation will abort and no object code will be generated.

Severity 2	messages will be major errors. These errors usually involve
•	unimplemented features. Compilation will abort as results will be
	unpredictable. No object code will be generated.

- Severity 3 messages will be severe errors that require user action. Compilation will abort immediately and no object code will be generated.
- Severity 4 messages will be internal compiler errors. Compilation will abort immediately and no object code will be generated. Compiler support personnel should be notified, and a compiler DR usually results.

Within the text of an error message, locations into which specific descriptive information may be placed are denoted by the appearance of two question marks (??). For errors which have this feature, the compiler supplies additional description text (such as the name of an identifier) to make the printed error message as specific and informative as possible.

2.6.4 Block Summaries

The HAL/S-FC compiler provides additional information on the primary listing at the close of HAL/S code blocks. The blocks for which summaries are given are PROGRAM, TASK, FUNCTION, and UPDATE.

Information contained in block summaries consists of lists of labels or variable names used in various contexts within the block. The title "BLOCK SUMMARY" begins the list. For all potentially summarized contexts within the block, a descriptive heading is printed followed by the list of names involved. A "*" next to any name in the block summary indicates that the name appears in a context which changes its value. The headings are listed below.

PROGRAMS AND TASKS SCHEDULED PROGRAMS AND TASKS TERMINATED PROGRAMS AND TASKS CANCELED EVENTS SIGNALED, SET, OR RESET EVENT VARIABLES USED PROGRAM OR TASK EVENTS USED PRIORITIES UPDATED EXTERNAL PROCEDURES CALLED EXTERNAL FUNCTIONS INVOKED OUTER PROCEDURES CALLED OUTER FUNCTIONS INVOKED ERRORS SENT COMPOOL VARIABLES USED COMPOOL STRUCTURE TEMPLATES USED COMPOOL REPLACE DEFINITIONS USED OUTER VARIABLES USED OUTER REPLACE DEFINITIONS USED OUTER STRUCTURE TEMPLATES USED

2.6.5 Compilation Layout Summary

Immediately preceding the Symbol Table printout at the CLOSE of the HAL/S program, there is a compilation layout map, indicating the way in which PROGRAMS, TASKS, PROCEDURES, FUNCTIONS, and UPDATE blocks were defined. The indent level in this printout indicates the nesting level definition of the block shown. This serves to give a quick overview of the compilation structure.

2.6.6 Symbol & Cross Reference Table Listing

The symbol and cross reference table printed at the end of a HAL/S compilation listing provides a detailed accounting of all programmer-defined symbols. The table listing is organized into two parts: a structure template listing and an alphabetized total listing. These parts are labeled appropriately and are separated by a page break.

Any structure templates defined in the compilation appear first in the symbol and cross reference table. The template names appear in alphabetical order. All structures declared using each template are listed alphabetically after "USED BY" under the template in the attributes and cross reference area. The body of each template (i.e. the levels defined under the template name) is also listed under the template name in the order of definition. This ordering provides a quick reference to the organization of the structure template.

Following any listing of the templates, an alphabetized listing of all programmer-defined symbols is printed. Symbols previously listed as element of a structure template are included in this list. However, the list is completely alphabetized and template organization is not shown. When a particular symbol is independently defined in more than one name scope, the symbol is multiply listed in order of definition.

2.6.7 Built-in Function Cross Reference

Phase 1 also produces a listing of any HAL/S built-in functions used in a compilation. The printout shows the statement numbers at which the references to the built-in functions occurred.

2.6.8 Replace Macro Text

If any HAL/S REPLACE statements were used in the compilation, the text of the macro is printed in the symbol table listing in the attributes and cross reference area.

2.6.9 Unformatted Source Listing

Under control of the "LISTING2" compiler option, Phase 1 will optionally produce, on the file defined by the LISTING2 DD card, a listing of the input (both SYSIN and INCLUDE) source records as read by the compiler. No special annotation, formatting, or indenting is performed. In the case of input in the SDL compressed format, the LISTING2 option produces the records in their uncompressed format.

2.7 Symbol Table Generation

Phase 1 is responsible for initial creation of the compiler's internal symbol table. The symbol table consists of a group of arrays which describe all of the properties of declared variables and labels. The capacity of the symbol table is under user control by means of the SYTSIZE compiler option. This table, as created by Phase 1, is located in an area common to all compiler phases. Thus, Phase 2 inherits the initialized table from Phase 1.

Design of the HAL/S-FC compiler includes, as a basic concept, the use of a Phase 1 and Phase 1/Phase 2 interface identical to that of the HAL/S-360 compiler. Thus, the description of the internal symbol table to be found in the HAL/S-360 Compiler System Specification, Appendix B.2 is sufficient to define the HAL/S-FC table.

2.8 Statement Table Generation

The statement table passes information about executable statements from Phase 1 of the compiler to Phase 3. This information allows Phase 3 to include statement type and target variable information in the Simulation Data Files.

Due to the use of a common Phase 1 in the HAL/S-360 and HAL/S-FC compiler systems, the Statement Table description in the *HAL/S-360 Compiler System Specification* document is sufficient to describe the HAL/S-FC table (See Appendix B.3 of that document).

The basic table description includes reference to an "extension" field in which statement memory addresses and/or SRN data is stored. Use of this field is activated by use of certain compiler options:

SRN data is included in the Statement Table if either of the SRN or SDL compiler options are used.

Beginning and ending addresses for individual HAL/S statements are included in the Statement Table when the ADDRS compiler option is used.

The Statement Table is produced on the file specified by the FILE6 DD card. No Statement Table data is communicated via in-memory tables.

2.9 Literal Table Creation

The format of the HAL/S-FC literal table is identical to that used by the HAL/S-360 compiler as described in Appendix B.1 of the HAL/S-360 Compiler System Specification.

The size of the area in which character literal data is stored is under user control via the LITSTRINGS compiler option. This character literal area is communicated to subsequent phases of the compiler through common memory locations.

The portion of the literal table which contains arithmetic literal, bit literal, and pointers to character literal is passed to later phases via the dataset defined by the FILE2 DD card.

2.10 HALMAT Creation

HALMAT is the intermediate code medium by which the structure of the compiled HAL/S-FC is passed to Phase 2 for code generation. The HAL/S-FC compiler uses a similar Phase 1 as the HAL/S-360 compiler. A description of HALMAT as used by the HAL/S-360 compiler can be found in Appendix A of the HAL/S-360 Compiler System Specification and a description of the HAL/S-FC HALMAT can be found in Appendix A of the HAL/S-FC Compiler System Program Description Document.

HALMAT is passed to Phase 2 through use of auxiliary storage as defined by the FILE1 DD card.

2.11 The Optimizer

The HALMAT produced by Phase 1 is a direct representation of the HAL/S program being compiled. A separate phase of the compiler exists between Phases 1 and 2 which examines and manipulates the HALMAT in order to produce an optimized HALMAT representation. This phase, known as Phase 1.5, is conceptually a part of Phase 1. Its operation is transparent to the user as it produces no standard printouts.

The Optimizer performs the following functions:

- Common subexpression elimination, including subscript computations
- _ Additional literal folding
- Pulling loop invariant subexpressions out of loops
- Replacement of unneeded divisions by multiplications
- Suppression of unnecessary matrix transpose operations
- Indicate linear operations on Vectors and Matrices to allow for in-line code.
- Indication of procedures which cannot be leaf procedures (as an aid to Phase 2)
- Indicate the next use of variables and subexpressions, to assist register allocation in the code generator

These operations are carried out by modifying the HALMAT, literal table, and symbol table.

While the Optimizer is a separate phase, it is conceptually a part of Phase 1 and is described in the *HAL/S-360 Compiler System Specification*.

This page intentionally left blank.

3.0 PHASE 2 - Code Generation

The code generation phase of the HAL/S-FC compiler has the primary function of producing machine language instructions for the AP-101. Phase 2 also performs other tasks which are also the subject of this chapter.

This section deals with the following Phase 2 functions:

- Code Generation
- Naming Conventions
- Printed Data
- Symbol Table Augmentation
- Statement Table Augmentation

3.1 Code Generation

3.1.1 Bases and Conventions

Phase 2 produces AP-101 machine language instructions which perform the operations indicated by each line of HALMAT received from the syntax and semantic analysis phase. This section describes in detail the ground rules which the code generation phase follows in producing object code. The following terms will be used throughout the ensuing text:

- R A general accumulator (integer or scalar);
- X An indexing register (for subscripting);
- B A base register containing a base address used to compute the effective address of a variable, constant, temporary, or program label.
- OFFSET The constant term which, when subtracted from the actual data address of a variable, yields the address of the 0'th item of the aggregate data collection (note that all HAL subscripts start counting from 1). This is 0 when the variable is a single item.
- VAR The address of a declared non-parameter HAL/S variable. For addressing purposes, it is actually the base address of the actual data minus the OFFSET. Single valued integer, scalar, or bit input parameters also will use this form.
- PAR The address of a formal parameter passed "by reference". This includes any assigned parameters, plus any input parameters which are not simple integer or scalar variables. Note that PAR actually contains an address.
- DELTA The constant indexing term in a subscript calculation. This term may also reflect the displacement of a structure terminal within a structure template.
- OP Any AP-101 machine instruction.
- Note When VAR or PAR appears in machine instruction constructions, it represents the displacement difference between the data address and the base address contained in the base register B.

3.1.1.1 Register Usage

The following register assignments are used by the code generator:

- F0-F5 Used for floating point accumulators and parameters.
- F6-F7 Used for floating point accumulators only.
- R0 Stack register. This register points to the caller's register save area in the run time stack. In addition, all formal parameters, temporaries, and AUTOMATIC variables in REENTRANT procedures are based on this register.
- R1 Global data addressing register. This register is used to address all of the declared variables and literals within a compilation unit.
- R2 Work addressing register. This register is used to pass address parameters, dereference NAME variables, and set up any other dynamic addressing.
- R3 Local addressing register. This register is used in SRS instructions only to address a certain subset of the local data in a block. When the DATA_REMOTE directive is in effect (see Section 4.0), register 2 can only be loaded with non-local data addresses (COMPOOL, etc.) and register 3 can only be loaded with local data addresses.
- R4 Linkage register. This register records the return address for all subroutine linkages. It may also be used for an integer accumulator.
- R5- R7 Used for integer accumulators, index registers, and parameter passage where applicable.

3.1.1.2 Storage Allocation

The HAL/S-FC compiler arranges data in memory such that the least number of base registers need be dedicated in addressing.

Data is grouped into three major categories: single value (constant offset=0), aggregate (character, vector-matrix, structure without copies), and array (including structure with copies). Within each group, data is ordered such that data requiring the same boundary alignment is adjacent, minimizing the storage lost due to hardware alignment requirements. Within the array group, ordering is further carried on such that multidimensional arrays (with larger offsets) come after single dimensional arrays. These above orderings are carried on independently for: 1) program data, and 2) each COMPOOL block contained in the compilation unit. Note that program data includes all variables within the compilation unit including those defined in procedures, functions, or any other block.

Structure templates, unless declared as RIGID, are internally ordered such that the minimum boundry alignment within any node level is required. Template matching requirements guarantee that templates exhibiting identical properties will be identically reordered.

After all groupings are complete, storage assignments are made, with the required base-displacement combinations being generated to properly access the data. The storage addresses assigned refer to the actual data beginning, but for arrayed data types, the base-displacement address includes a negative offset value (COMPOOL variables that are not referenced do not have base-displacement addressing generated). This negative offset value is commonly referred to as an imaginary *0th element*.

Figure 3-1 Algorithm for Calculating the 0th Element Offset

Example:						
DECLARE	A SCALA	AR,				
	B INTEG	SER,				
	C CHARA	$\Delta CTER(7)$,				
	D ARRAY	(5) DOUE	3LE;			
DECLARE	E ARRAY	E ARRAY(5),				
	F ARRAY	(3,3) VE	ECTOR,			
	G MATRI	IX;				
DECLARE H DOUBLE,						
	I ARRAY	(5,5) IN	ITEGER;			
<u>Alignment</u>	<u>Name</u>	Location	<u>Base</u>	Displacement	<u>(In Decimal)</u> 0 th element	
Halfword	В	00002	1	0002	0	
Fullword	А	00004	1	0004	0	
Doubleword	Н	80000	1	0008	0	
Halfword	С	0000C	1	000C	0	
Halfword	I	00011	1	000B	-6	
Fullword	Е	0002A	1	0028	-2	
Doubleword	D	00034	1	0030	-4	
Fullword	G	00048	1	0046	-2	
Fullword	F	0005A	1	0040	-26	

Note that all formal parameters and all AUTOMATIC variables in a RENTRANT PROCEDURE or FUNCTION are based off the stack register (0).

3.1.1.3 Addressing Concepts

This section describes the general addressing rules for data. To the extent possible, data can be directly addressed via some combination of base register and bit displacement (eleven bits for indexed addressing). This is not possible whenever the data item is a formal parameter other than a simple integer or scalar, or any formal parameter scoped in from an outer to an inner procedure. The skeletal forms given in Section 3.2 assume the most commonly used addressing forms. The rules described here should be superimposed upon these skeletal forms to interpret all possible combinations of operations between operands.

Simple Addressing Forms

Simple Variable

OP R, VAR (B)

Simple Aggregate Component (array or vector-matrix)

OP R, VAR+DELTA(X, B)

Simple Integer-Scalar formal parameter

OP R, VAR(0)

Simple Aggregate formal parameter
L B, PAR(0)

OP R, DELTA(X, B)

NAME Variable in dereference context

- LH B,VAR(B)
- OP R, DELTA(X, B)

NAME Variable in dereference context (ASSIGN formal parameter)

- L B,VAR(B)
- LH B,0(B)
- OP R, DELTA(X, B)

When the DATA_REMOTE directive is in effect (see Section 4.0), if register 1 or 3 is loaded with a new base address and used in operation OP as base B, then it will be restored immediately after OP to its original local data pointer value with:

LH B, stack location(0)

However, if the next instruction is a conditional branch, then it will be restored with:

LH B, stack_location(0)

SLL B,16

REMOTE Variable

OP@# R,ZCON(X,1)

ZCON DC Z(0,VAR,0)

NAME REMOTE variable in dereference context is basically the same as a REMOTE variable, except the NAME variable is used in place of the ZCON

OP@# R,VAR(X,1)

NAME REMOTE variable in dereference context that lives REMOTE

```
L@# R,ZCON(X,1)
ST R,stack_location(0)
OP@# R,stack_location(X,0)
```

REMOTE formal pass-by-reference (address) parameter

```
OP@# R,stack location(X,0)
```

Address Passage Addressing Forms

For parameter passing to procedures, functions, and library routines, it is often necessary to pass address pointers instead of data. The following sequences could be used anywhere the instruction LA appears in the generated code sequence.

Unsubscripted variable:

LA R,VAR(B)

Subscripted variable:

SLL X,<index alignment>

LA R, VAR (X, B)

Unsubscripted REMOTE variable:

L R, ZCON(1)⁴

Subscripted REMOTE variable:

```
SLL X,<index alignment> or SLL R,<index alignment>
L R,ZCON(1)<sup>4</sup>
AR R,X
```

Non-aggregate variable to REMOTE library or to REMOTE parameter in HAL/S procedure or function:

```
LA R,VAR(B)
OHI R,x'8000' (PASS only)
IAL R,x'0800'
```

Subscripted variable to REMOTE library or to REMOTE parameter in HAL/S procedure or function:

```
SLL X,<index alignment>
LA R,VAR(X,B)
OHI R,x'8000' (PASS only)
IAL R,x'0000'
```

Unsubscripted aggregate variable to REMOTE library or to REMOTE parameter in HAL/S procedure or function:

```
LA R,VAR(B)
OHI R,x'8000' (PASS only)
IAL R,x'0000'
```

Non-aggregate variable to REMOTE library or to REMOTE parameter in HAL/S procedure or function through a NAME dereference:

```
LH R,Name_Var
IAL R,x'0800'
SRA R,1
SRR R,31
OHI R,x'8000' (PASS only)
```

Subscripted variables to REMOTE library or to REMOTE parameter in HAL/S procedure or function through a NAME dereference:

```
LH B,Name_Var
LA R,<INDEX>(B)
SRA R,1
SRR R,31
OHI R,x'8000'(PASS only)
```

Unsubscripted aggregate variable to REMOTE library or to REMOTE parameter in HAL/S procedure or function through a NAME dereference:

```
LH R,Name_Var
SRA R,1
SRR R,31
OHI R,x'8000' (PASS only)
```

^{4.} ZCON DC Z(0,VAR,0).

Subscripted variable to REMOTE library.

(stack variable only)

SLL X,<index alignment> LA R,VAR(X,B) IAL R,x'0400'

Note that the compiler emits an RLD card that informs the linkage editor to insert the proper CSECT value into the last four bits inserted by the IAL instruction for non-NAME non-stack variables, to conform to the ZCON format.

For stack variable (B=0), this cannot be done because the stack CSECT is undefined at compile time. The '0400' sets the ZCON's C bit which will allow correct address expansion for either CSECT 0 or 1, which is where the stack is located.

Indexing:

The computation for all indexing is done as follows. All constant index terms are factored out from the variable terms. The variable terms are computed according to the natural sequence of unwinding aggregate data. The constant terms are similarly computed to form a DELTA. The variable subscript in register X is shifted according to the halfword width of the data being indexed, except for those instructions which perform automatic index alignment. The DELTA is similarly shifted at compile time. If $0 \le DELTA < 2048$, it is used in the variable displacement. Otherwise, it is added to X if X is non-zero, or loaded into a newly created X if X is zero (i.e. the subscript contains no variable terms).

3.1.1.4 Condition Codes

The following table lists the allowable relational operations and the resultant condition code - referred to as COND throughout the remainder of this section. Note that the AP-101 conditional branch instructions branch on the "not true" condition.

<op< th=""><th>></th><th>COND</th></op<>	>	COND
=		3
7=		4
<		5
>		6
¬< or	>=	2
¬> or	<=	1

3.1.1.5 ZCONs and the Calling Mechanisms

Throughout the descriptions of generated code of Section 3.1, branches to other CSECTs (comsub or library) are generally indicated as:

ACALL <routine name>

The actual implementation of this linkage is to go not directly to the named routine, but instead to branch indirectly through a long address constant (ZCON) located in sector 0 of the machine.

When the target of the branch is a compiler-generated CSECT (a COMSUB), the ZCON referenced will be one created during compilation of the COMSUB. The long indirect address will be in a CSECT named #Znnnnnn (see Section 3.2) which will in turn refer to the real code CSECT.

When the target of the branch is a library routine, the ZCON referenced will be one provided with the library. Its name will be #Qnnnnnn and it will in turn refer to the proper library code CSECT. Certain library routines, for reasons of execution speed, are referenced directly by compiler-emitted code without going through a ZCON. These routines are designated in the BANK0 column of the library documentation. This direct addressing requires that these routines reside either in sector zero or in the same sector as the compiler code which references them.

The use of ACALL in the descriptions implies an external call. In actuality, the instruction generated may be either:

SCAL 0,<routine name>

or

BAL 4,<routine name>

depending on whether the library routine has been designated as PROCEDURE or INTRINSIC type.

Some of the parameter setups show the use of P1, P2, and P3 for parameter registers. The following table shows the actual register values for P1, P2, and P3 depending upon the nature of the library routine (see library documentation for specific details).

	P1	P2	P3
Intrinsics	1	2	3
Procedure-			
P1 used	2	4	7
P1 not used	Х	2	4

When the DATA REMOTE directive is in effect (see Section 4.0), the ACALL will be preceded by the instruction LDM \$ZDSECLR to clear the DSE registers, and will be followed by the instruction LDM \$ZDSESET to set the DSE registers upon return.

3.1.1.6 The Runtime Stack

The HAL/S-FC compiler system employs a runtime stack mechanism as an integral part of its operation. The stack mechanism is used to provide subroutine linkage areas, temporary work areas, error environments, and to provide reentrancy of code blocks when needed. The actual memory used as a stack space for a given HAL/S process is provided by the flight computer operating system (FCOS). The determination of the size required for a particular stack is made by the flight computer support software linkage editor. The linkage editor determines stack size (and upon special request will create a stack CSECT) from information provided on SYM cards in the modules being link edited. The HAL/S-FC compiler emits the SYM cards as part of its object modules. The runtime library uses a system of macros to generate the properly named DSECTs and SYM entries for stack size computation.

The details of formats and requirements relating to stack generation can be found in the *HAL/SDL ICD*. That document also contains the detailed description of the "stack frame", that portion of a total stack which is used by an individual subroutine when that subroutine has been invoked. The description of the basic stack frame is reproduced here for reference.

The active stack frame is pointed to by the pointer in register R0. The back link to the previous stack frame is established when a new level is entered. A pointer, NEW R3, is established for any block with a local data area. If a local data area is not present, e.g. in the case of a HAL/S-FC library routine, NEW R3 is set to zero. See Section 3.1.1.7 for a definition of the local data area.

Figure 3-2 Stack Layout

3.1.1.7 Local Block Data Areas

During execution of a HAL/S-FC program, certain machine registers have dedicated uses as described in Section 3.1.1.1. In particular, register R3 is a local addressing register which points to the local Block Data Area for the block in execution. These R3 values are saved on the runtime stack as indicated in Section 3.1.1.6. The format of a local Block Data Area is the subject of this section. The HAL/SDL ICD contains the controlling definitions of these areas.

Block Data Areas are created by the compiler and are part of the #Dnnnnn CSECT generated for a compilation unit. A Block Data Area may exist for any Program, Procedure, Function, Update Block, or Task. The compiler-emitted code for block entry (as defined in Section 3.1.1.6) loads R3 with the address of the Block Data Area for the block being entered. The format of such an area is shown in the following diagram.

<u>Fields</u>

BL

1	Block ID					
2	XU	ONERRS	ERRDISP			
3	TYPE	UNUSED	RESERVE SVC#			
4	UNU	JSED	RELEASE SVC#			
5	LOCK ID					

2 } only required if XU=1

2

2 2.]

2 J

<u>Field</u>

Definition

1.	Block ID	A 16 bit field uniquely identifying the HAL block. The first 9 bits are a "compilation number" supplied by the user via the COMPUNIT compiler option. The last 7 bits are a block count generated internally for each new block within a compilation unit.
2.	XU	EXCLUSIVE/UPDATE flag (1 bit). Set to one if block is either an UPDATE block or has the EXCLUSIVE attribute.
	ONERRS	(6 bits). The number of discrete errors for which an ON ERROR statement exists in the block.
	ERRDISP	(9 bits). The displacement in half words from the stack frame pointer register (R0) to the error vector.
3.	TYPE	(1 bit). Set to zero for EXCLUSIVE procedure or function. If an UPDATE block, set to one if shared data variables are read only. Set to zero if shared data variables are to be written.
	Reserve SVC#	(8 bits). SVC number for the reserve SVC:
		15 for a code block
		16 for a data area.
4.	Release SVC#	(8 bits). SVC number for release SVC:
		17 for a code block
		18 for a data area.

5. Lock ID (15 bits). An indicator of which code block or data areas are being used. For a code block this is the address of the EXCLUSIVE DATA CSECT of the procedure/function. For a data area this is a bit pattern indicating which data areas (by lock groups) are involved. If the "master lock" was specified, the bit pattern will be all ones.

3.1.1.8 Parameter Passing Conventions for User-Written Routines

To the extent possible, HAL/S parameters are passed via registers. Scalar parameters are passed in floating point registers. All others are passed in general registers. The following rules describe how the registers are designated, and what they contain for each type of parameter.

General purpose registers 5-7 and floating point registers 0, 2, 4 are available for parameter passing. If the supply of registers is exhausted before the parameter list, the balance of the parameters are passed in memory locations. All parameters are located via the stack register (0).

Allocation of general and floating registers is carried on in parallel. If no scalar parameters exist, no floating point registers will contain parameters.

General purpose registers 5 through 7 are automatically contained in the stack beginning at displacement 12_{10} . Floating point registers are not automatically saved, and it is the responsibility of the called program to do so. Storage locations are reserved in the stack for this purpose as described below. Parameters which cannot be passed in registers are automatically stored in the called procedure's stack by the caller. The allocation of these stack locations is identical to the allocation for floating point values. Note that, unlike ordinary HAL/S variable allocation, parameter allocation is <u>not</u> subject to reordering to minimize alignment conflicts.

The first available stack location is at 18_{10} off the stack register. All parameters are assigned storage in order starting at this point (the exception being parameters contained in general registers 5 through 7, which are allocated space in the register save area as described above). Any necessary alignment is performed as needed.

Arguments are either input type or ASSIGN type (Input types are those whose values will not be changed by the called routine). The actual information which is passed for a particular argument is dependent upon the following factors:

- whether the argument is input or ASSIGN;
- whether the HAL/S data type of the argument is an aggregate (i.e. more than one element, as in a matrix);
- whether the argument has any arrayness or structure copies to be passed; and
- whether any arrayness or structure copies are defined via an ARRAY(*) or -STRUCTURE(*) specification.

The following table and list show the information which is passed for an argument with particular attributes.

Data Type	Integer	Scalar	Bit	Character(*)	Vector	Matrix	Structure
Argument Type	•						
Input (no arrayness or copies)	1	2	3	4	5	6	7
ASSIGN (no arrayness or copies)	8	8	8	4	5	6	7
Input or Assign (with arrayness or copies)	9†	9†	9†	10 [†]	9†	9†	11 [†]

[†] If the parameter is declared as ARRAY(*) or -STRUCTURE(*), an additional parameter word is passed containing the value of the unspecified dimension.

Key Information Passed

- 1 A halfword or fullword of data.
- 2 A single or double precision floating point value.
- 3 Up to 32 bits of data (halfword or fullword depending upon declared size).
- 4 Address of the max-size byte of the character string.
- 5 Address of the 0th item in the VECTOR (i.e. 1 item width ahead of the actual vector).
- 6 Address of the 0th item as if the MATRIX were a VECTOR of length m x n.
- 7 Address of the first location in the structure as defined by its template. (Note that item position within a template is subject to compiler reordering unless RIGID is used).
- 8 Address of the data item.
- 9 Address of the 0th item of the array.
- 10 Two items are passed. The first is the address of the 0th array item. The second is the number of halfwords of memory occupied by one character string element (including the halfword containing the max and current size bytes).
- 11 The address of the first data in the 0th copy.

For all cases where auxiliary values are allocated for a single parameter (i.e. CHARACTER(*) ARRAY or ARRAY(*)), the parameters (up to 3) <u>must</u> be contiguous. Thus, if more pointers are required than registers are available, then the whole parameter sequence will be pushed into the stack.

Example:

P: PROCEDURE(X,Y,I,J,K,Z,C,L); DECLARE SCALAR,X,Y,Z DOUBLE; DECLARE INTEGER,I,J ARRAY(*),K,L; DECLARE CHARACTER(*) ARRAY(*),C; Upon entry to this procedure, the stack and registers are as follows:

Figure 3-3

3.1.2 Integer and Scalar Operations

Nomenclature

The register R is any of the available set of accumulators. The terms I, I_2 , S, and S_2 refer to the single and double precision versions of Integer and Scalar values respectively. It is assumed that any implicit precision or type conversions have been accomplished prior to generating the code sequences shown below.

3.1.2.1 Arithmetic Operators

Integer and scalar arithmetic operators generally employ two operands, denoted as X and Y. X is assumed to be loaded into register R_x unless otherwise noted. If Y is also in a register, it is represented by the form R_y .

Operation	<u>Type</u>	<u>Code</u>	Alternate	<u>e Code</u>	
X + Y:	I	AH	R _x ,Y	AHI	R_x , Y^{\dagger}
	I_2	A	R _x ,Y	AR	R_x , R_y
	S	AE	R _x ,Y	AER	R_x, R_y
	S_2	AED	R _x ,Y	AEDR	R_x, R_y
X- Y:	Similar to used (Fo	o X + Y e or examp	except that le, SH in l	it the su place of	btract operator is AH in the above list).
(Multiply)					
X Y:	I	MH	R _x ,Y	MIH	R _x ,Y [†]
		SLL	R _x ,15		
	I ₂	М	R _x ,Y	MR	R_x , R_y
		SRDA	R_x ,1		-
	S	ME	R_x ,Y	MER	R _x , R _y
	S ₂	MED	R _x ,Y	MEDR	R_x , R_y

[†] Used if Y is a literal.

Note that the shift operations used in the integer multiplications are required to correctly normalize the result in the proper registers

Certain constant multipliers are optimized to avoid using actual multiply instructions. They are described below.

Operation	<u>Type</u>	<u>Code</u>		<u>Alterna</u>	<u>ate Code</u>
	I 2 ⁿ	SLL	$R_{I}, n, n > 1$		
		AR	$R_{I}, R_{I}, n=1$		
	$I_2 2^n$	SLL	$R_{I}, n, n > 1$		
		AR	$R_{I}, R_{I}, n=1$		
	X 1	no co	de for any type	9	
	S 2	AER	R_s , R_s		
	S ₂ 2	AEDR	R_s , R_s		
X/Y	S	SER	R_x +1, R_x +1	SER	R_x +1, R_x +1
		DE	R _x ,Y	DER	R_x , R_y
	S ₂	DED	R _x ,Y	DEDR	R_x , R_v

The DED and	d DEDR i	nstructio	ons are broken	on the A	P-101S machine. Thus, the
compiler emi	ts the foll	owing c	ode sequences	s in place	e of these instructions:
Operation	<u>Type</u>	<u>Code</u>		<u>Alterna</u>	<u>te Code</u>
X/Y	S ₂	LER	R_{a+1} , R_{x+1}	LER	R _{a+1} , R _{x+1}
		LER	R_a, R_x	LER	R _a , R _x
		DE	R _X ,Y	DER	R _X , R _y
		LER	R_{b+1} , R_{x+1}	LER	R_{b+1} , R_{x+1}
		LER	R_{b}, R_{x}	LER	R _b , R _x
		MED	R _b ,Y	MEDR	R _b , R _y
		SEDR	R _b ,R _a	SEDR	R _b ,R _a
		DE	R _b ,Y	DER	R _b , R _y
		SEDR	R_X , R_b	SEDR	R _X , R _b
where the res	sult reside	es in the	e R _x ,R _{x+1} regis ⁻	ter pair.	
In the specia	l case wh	ere a do	puble precision	result is	divided by itself, a double
precision "1"	is loaded	l directly	r into the result	register le segue	rather than executing the
Operation	Typo	Codo		ie seque	
	Type		D 1		
X/X	S_2	ГЕ.ГТ	R _x ,1		
		LFLI	R_{x+1} ,0		

where the result resides in the R_x , R_{x+1} register pair.

X**Y: The exponentiation is performed by subroutine. The patterns shown for I and S are identical to those which will be generated for I_2 and S_2 , except for the obvious differences:

I**I	LH	5,X)	
	CVFL	0,5*		
	LH	б,Ү		
S**I	LH	6,Y (see note)	}	Argument Setup
	LE	0,X		
S**S	LE	2,Y		
	LE	0,X	J	
	ACALL	lphapwr eta	}	Actual Call

where α and β represent the types of operands X and Y respectively:

Type of X	α	Type of Y	β
Single precision integer	J	single precision integer	Н
double precision integer	} E	double precision integer	Ι
single precision scalar	J	single precision scalar	Е
double precision scalar	D	double precision scalar	D
single precision integer	H*		
double precision integer	*		

Return is in F0 for α of E or D; in R5 for α of H or I.

- * if Y operand is a positive integer literal, the CVFL conversion is eliminated and the PWR routine invoked is α PWRH or α PWRI.
- Note: Scalar expressions raised to integer literal powers from 1 to 16 are performed in line via repeated multiplication, using the binary powers algorithm. The following examples should serve to illustrate the method.

<u>Operation</u>	<u>Type</u>	<u>Code</u> <u>Alternate Code</u>
X**1:		No code generated.
X**2:	S	MER R _x , R _x
X**3:	S	LER R _T , R _x
		MER R _x , R _x
		MER R _T , R _x
		(result in R_{T})
X**6:	S	MER R _x , R _x
		LER R _T , R _x
		MER R _x , R _x
		MER R_{T} , T_{x}
		(result in R_{T})

For type S_2 , the instruction MEDR is used in place of MER. Two LERs must be used in place of one.

<u>Operation</u>	<u>Type</u>	<u>Code</u>
+X		No code generated
- X	I, I_2	LACR R _x , R _x
	S	LECR R_x, R_x
	S_2	LED R _x ,X
		LECR R_x, R_x

3.1.2.2 Comparison Operators

The full complement of relational operators is allowed for Integer or Scalar operations between single quantities. Only equal or not equal operators are allowed for arrayed comparisons. No logical variables are created by comparisons. Instead, branching to one of two points is used for true/false relations.

Operation	<u>Туре</u>	<u>Code</u>		<u>Alternat</u>	<u>e Code</u>
X <op> Y:</op>	I	CH	R _x ,Y		
		BC	COND,not-true-label		
	I ₂	С	R _x ,Y	CR	R_x, R_y
		BC	COND,not-true-label		-
	S	CE	R _x , R _y	CER	R_x, R_y
		BC	COND, not-true-label		-
	S_2	SED	R _x ,Y	SEDR	R_x, R_y
		BC	COND,not-true-label		1

Note: For comparisons to the literal 0, the condition code is used directly. If the condition code is not valid, the instruction LR or LER is used to set it.

3.1.2.3 Conversions

Where necessary, conversions are performed in intrinsic or library functions. Some conversions do not require any generation of code.

Integer Conversions

<u>Operation</u>	<u>Code</u>	
I TO S	LH CVFL	R _x ,X F _x ,R _x
I TO S ₂	LH CVFL SER	R_x, X F_x, R_x F_{x+1}, F_{x+1}
I ₂ TO S	L ACALL	5,X ITOE
I ₂ TO S ₂	L ACALL	5,X ITOD
I,I ₂ TO BIT	No code	e necessary
I TO CHAR	LH LA ACALL	5,X 2,temp-string-area [†] HTOC
I ₂ TO CHAR	L LA ACALL	5,X 2,temp-string-area [†] ITOC
I TO I ₂	SRA	R _x ,16
I ₂ TO I	SLL	R _x ,16

[†] temp-string-area contains converted string.

Scalar Convers	<u>ions</u>					
Operation	<u>Code</u>		<u>Alternate</u>	Code		
S TO I,I ₂	LE	0,X	LER	0, $R_{\rm x}$		
_	ACALI	Δ ατοβ				
S_2 TO I, I_2	LED	0,X	LEDR	0, $R_{\rm x}$		
	ACALI	Δ ατοβ				
TYPE OF SC	ALAR	α ΤΥΡΙ	E OF INTE	GER	β	
Single Prec	sision	E S	ingle Precis	sion	Н	
Double Pred	cision	D D	ouble Precis	sion	Ι	
S, S_2 TO BIT Same as for scalar to integer						
S TO CHAR	LE	0,X				
	LA	2,temp-	string-a	$area^{\dagger}$		
	ACALL	ETOC				
S_2 TO CHAR	LED	0,X				
	LA	2,temp-	string-a	$area^{\dagger}$		
		DECC				
	ACALL	DTOC				
s to s ₂	ACALL LE	R _x ,X				

[†] temp-string-area contains converted string.

3.1.2.4 Assignments

For all assignments, type conversion may take place across the assignment operator. For multiple assignments, the left hand side operands are grouped by data type to minimize the number of conversions performed. The order in which the groups are processed is determined by the following table:

Right	Hand	Operand	Туре
-------	------	---------	------

Left Hand				
Type Ordering I	<u> </u>	<u>S S</u> 2	9	
First	I	I ₂	S	S_2
	I_2	Char	Char	Char
	Char	S_2	S_2	S
	S_2	S	I ₂	I ₂
	S	I	I	I
Last	Vector	r-Matri	x	

Character is always performed before any right hand side conversion is performed.

The following sequences assume that R_x has already had the required integer or scalar conversions performed as described in Section 3.1.2.3.

<u>Operation</u>	<u>Type of Y</u>	<u>Code</u>	
Y = X;	Iţ	STH	R_x ,Y
	I ₂	ST	R _x ,Y
	S	STE	R_x ,Y
	S_2	STED	R_x ,Y

[†] If X is an integer literal of value 0 or-1, then the following code will be generated:

Y = 0;	1	ZH	Y
Y = -1;	I	SHW	Y

 R_x is also marked as now containing the value Y. Subsequent usages of Y may use this register in lieu of the copy of Y in memory until such time as the contents of this register are destroyed or a label is generated.

3.1.3 Bit String Operations

3.1.3.1 Bit String Operators

Bit string operators include the following: AND (&), OR (|), and CAT (||). They generally employ two operands, denoted here as X and Y (of lengths N_x and N_y respectively). X is assumed to be loaded into register R_x unless otherwise noted. If Y is also in a register, it is represented as R_y . Note that the & and | operations will pad the bit length of the shorter bit string to the length of the longer bit string.

<u>Bit Length</u>	<u>Code</u>		Altern	ate Code
N_x , $N_y \leq 16$	NR	R _x , R _y	NHI	R_x , 'Y' [†]
N _x , N _y >16	Ν	R _x , Y	NR	R_x, R_y
N_x , $N_y \leq 16$	OR	R _x , R _y	OHI	R_x , 'Y' [†]
N _x , N _y >16	0	R _x , Y	OR	R_x, R_y
N _v ≤16	SLL	R _x , N _y		
-	OR	R _x , R _y		
N _y >16	SLL	R_x, N_y		
	0	R _x , Y	OR	R_x , R_y
	$\frac{\text{Bit Length}}{N_x, N_y \le 16}$ $N_x, N_y \ge 16$ $N_x, N_y \le 16$ $N_x, N_y \ge 16$ $N_y \le 16$ $N_y \ge 16$	$\begin{array}{c c} \underline{Bit \ Length} & \underline{Code} \\ N_x, N_y \leq 16 & NR \\ N_x, N_y > 16 & N \\ \end{array} \\ \begin{array}{c} N_x, N_y \leq 16 & OR \\ N_x, N_y > 16 & O \\ \end{array} \\ \begin{array}{c} OR \\ N_y \leq 16 & SLL \\ OR \\ N_y > 16 & SLL \\ O \\ \end{array} \\ \end{array}$	Bit LengthCode $N_x, N_y \le 16$ NR R_x, R_y $N_x, N_y > 16$ N R_x, Y $N_x, N_y \le 16$ OR R_x, R_y $N_x, N_y > 16$ OR R_x, Y $N_y \le 16$ SLL R_x, N_y $N_y > 16$ SLL R_x, R_y $N_y > 16$ SLL R_x, N_y OR R_x, Y	$\begin{array}{c c} \underline{Bit \ Length} & \underline{Code} & \underline{Altern} \\ N_x, N_y \leq 16 & NR & R_x, R_y & NHI \\ N_x, N_y > 16 & N & R_x, Y & NR \\ \end{array}$

[†] Used only when Y is a bit literal.

3.1.3.2 Bit String Comparisons

The only possible relational operators for bit strings, as with bit operators, are = or \emptyset = (see Section 3.1.1.4). The bit strings are padded to be of equal lengths. No logical variables are created by comparisons. Instead, branching to the "not-true-label" occurs with the "not true" condition.

Operation	Bit Length	<u>Code</u>		<u>Alterr</u>	nate Code
X <op>Y</op>	$N_x, N_y \leq 16$	CH	R _x ,Y	CHI	R_x , 'Y' [†]
	-	BC	COND,not-true-label		
	$\mathrm{N_x}$, $\mathrm{N_y}{>}16$	С	R _x ,Y	CR	R_x, R_y
	1	BC	COND,not-true-label		1

[†] Used only when Y is a bit literal.

3.1.3.3 Component Subscripting

Component subscripting for bit strings consists of shifting and &'ing out unwanted components of the subscripted bit string. The resultant bit string length, N_r, determines

a binary mask, whose decimal value is 2^{Nr}-1, and bit number "I" of the original bit string is the last component of the resultant bit string.

<u>Operation</u>	<u>Bit Length</u>	<u>Code</u>	
X _{subscript}	N_x	SRL	R_x , N_x -I
		Ν	$\mathtt{R}_{\mathtt{x}}, \mathtt{mask}^{\dagger}$
X _{variable}	N _x	LAC	R_{I}, R_{I}
subscript		R	
		AHI	$\mathtt{R}_{\mathtt{I}}$, $\mathtt{N}_{\mathtt{x}}$
		SRL	R_x ,0(R_I)
		Ν	$\mathtt{R}_{\mathtt{x}}, \mathtt{mask}^{\dagger}$

[†] The mask value is equal to $(2^{N_r}-1)$

Examples of Subscript Forms					
Subscript	I	N _r			
3 TO 10 6 AT 11 9 8 AT J K	10 16 9 J + 7 K	8 6 1 8 1			

3.1.3.4 Bit Conversions

When necessary, conversions are performed in intrinsic or library functions. Some conversions do not require any generation of code.

<u>Oper</u>	atio	<u>n</u>	Bit Length	<u>Code</u>		Alte	ernate	Code		
BIT	то	I		No code	e nec	essary				
BIT	ТО	I_2		LH	R_x ,X	}	SRA		R., 16	
				SRA	$R_x, 1$	6 J	biui		11 _X , 10	
BIT	ТО	S,S ₂	N _x <16	LH	5,X		LR		5, $R_{\rm x}$	
				СУРЪ	0,5					
			N _x >16	L ACALL	5,X ITOE		LR		5, R _x	
BIT	то	CHAR	$N_x < 16$	LH	5,X					
				SRL	5,16	J				
			N _x >16	L	5,X	}	set argu	up o ument	f bit-	type
				LA LHI ACALL	2,te 6,N _x BTOC	mp-str:	ing-a	.rea [†]	}	actual calling sequence
BIT	то	CHAR _@	<radix></radix>	Same as replace <radix> BIN OCT</radix>	s BIT ed as	TO CHA follow routine BTOC OTOC	AR ex ws:	cept	call t	to BTOC is
				DEC		KTOC				
				HEX		XTOC				
BIT	ТО	BIT	[N _x >N _y] N _v <16]	NHI		R_x , 2^{Ny} -	-1			
		1	N _y >16	N		R_x , mas	k ^{††}			

temp-string-area contains converted string.

^{††} The value of the mask is 2^{N_y} -1.

3.1.3.5 Bit Assignments

The following sequences assume that R_x has already had the required conversions performed as described in Sections 3.1.3.3 or 3.1.3.4.

Operation	Length of Bit String Y	<u>Code</u>	
Y = X	N _y <u><</u> 16	STH	R_x , Y^{\dagger}
	N _y >16	ST	R_x, Y^{\dagger}

[†] Note: If $N_x > N_y$ and N_Y is not exactly 16 or 32, then the following instruction must be added: NR_x, F'2^Nr-1'.

If the right hand side of the assignment (X) is a BIT literal as described below, and $N_{y\leq}$ 16, then the following code is generated:

Y	=	BIN'0';	N _v <16	ZH	Y
Y	=	BIN(16)'1';	N _v =16	SHW	Y

3.1.3.6 Partitioned Bit Assignments

The following sequences assume that R_x has already had the required conversions performed as described in Section 3.1.3.3 or 3.1.3.4. Definitions of I, N_y , and N_r are as described in Section 3.1.3.3.

<u>Operation</u>	<u>Length of Bit String Y</u>	<u>Code</u>	
Y _{subscript} =X;	N _y <16	LH	R _x ,X
-	-	LH	R _y ,Y
		SLL	$\bar{R_x}, N_y$ -I
		XR	R_x, R_y
		NHI	R_x , mask [†]
		XR	\mathtt{R}_{x} , \mathtt{R}_{y}
		STH	R _x ,Y
Y _{subscript} =X;	17 <u><</u> N _y <32	L	R _y ,Y
		L	R _x ,X
		SLL	$R_y, N_y - I$
		XR	R _y ,R _x
		N	R _y ,mask ^{††}
		XR	R_y, R_x
		ST	R _y ,Y

[†] Mask: The mask used in a bit store is computed as follows: $(2^{N_r}-1)(2^{N_x}-1)$. In other words, the mask is a sequence of N_r bits shifted left N_x-I bits.

^{††} The value of the mask is 2y-1.

If the right hand side of the assignment (X) is a BIT literal containing either BIN'0' or $BIN(N_y)$ '1' then if $N_{y\leq}$ 16 and Y is addressable in SRS format, then the following code is generated:

Y _{11 TO 13} =BIN'0';	$N_y = 16$	ZB	Y,B'111000'
Y _{10 TO 12} =BIN'111';	$N_y = 16$	SB	Y,B'1110000'

If N_v >16 then the following code is generated:

Y _{13 TO 20} =BIN'0';	N _y =32	L NST	R _x ,=X'FFF00FFF' R _x ,Y
Y _{17 TO 20} =BIN'111';	N _Y =32	L OST	R _x ,=X'00007000' R _x ,Y

3.1.3.7 Bit Tests				
IF X	$N_x = 1$		TH	Х
			ΒZ	<not label="" true=""></not>
IF X ₁₀	$N_x = 16$		TB	X,B'1000000'
			ΒZ	<not label="" true=""></not>
		or		
			LH	R _x ,X
			SRL	R,6
			NHI	R,B'1'
			ΒZ	<not label="" true=""></not>
IF — X	Same as	IF X except BZ	change	ed to BNZ instruction.

3.1.4 Character String Operations

3.1.4.1 Character String Operators

The only character string operator is the CAT (||) operator employing two character string operands denoted here as X and Y (of lengths N_x and N_y respectively). Unless otherwise noted, X is assumed to be loaded into register R_x . If Y is also in a register, it is represented as R_y .

Operation	<u>Code</u>	
Х Ү	LA	РЗ,Ү
	LA	P2,X
	LA	P1,temp-string-area
	ACALL	CATV

3.1.4.2 Character String Comparisons

The full set of relational operators are allowed for character strings (see Section 3.1.1.4 for condition codes). Characters with different lengths are always unequal. No logical variables are created by comparisons. Instead, branching to the "not-true-label" occurs with the "not true" condition.

Operation		<u>Code</u>	
X <op> Y</op>		LA	РЗ,Ү
<0P>	α	LA	P2,X
=,		ACALL	CPRa
=		BC	COND,not-true-label
< , > ,			
<=,	С		
>=			

3.1.4.3 Component Subscripting

Component subscripting for character strings consists of setting the initial, N_i , and final, N_f , index values of the subscripted components into registers 5 and 6 respectively, and then branching to the CASP intrinsic.

OperationCodeAlternate CodeY=X_subscript;LAP1,YLH5,NiLH6,NfLRACALLCASP

3.1.4.4 Character String Conversions

Where necessary, conversions are performed in intrinsic or library functions.

<u>Operation</u>	<u>Code</u>			
CHAR TO I	LA 2,char ACALL CTOH			
CHAR TO I ₂	LA 2,char ACALL CTOI			
CHAR TO S	LA 2,char ACALL CTOE			
CHAR TO S ₂	LA 2,char ACALL CTOD			
CHAR TO BIT	LA 2,char ACALL CTOB			
CHAR TO BIT _{@<radix></radix>}	Same as CHAP replaced as < <u>radix></u> BIN OCT DEC HEX	TO BIT except follows: routine CTOB CTOO CTOK CTOX	call to	BTOC is

3.1.4.5 Character String Assignments

Either the receiver variable or the assigned variable in a character string assignment may be subscripted. The possible forms are shown below. When subscripting is used, a partitioning of a character string results. The initial element of this partitioned character string is signified by its index: N_i . Similarly the final element has the index N_f . Some examples of HAL/S subscript forms and the resulting N_i and N_f values are:

	Subscript Form	N _i	N _f
	1 TO 3 5 AT 2	1 2	3 6
Operation Y=X	<u>Code</u> LA LA ACALL	P2,X P1,Y CAS [†]	
Y _{subscript} =X	LA LA LHI LHI ACALL	P2,X P1,Y 5,N _{iy} 6,N _{fy} CPAS [†]	
Y=X _{subscript}	LA LA LHI LHI ACALL	P2,X P1,Y 5,N _{ix} 6,N _{fx} CASP [†]	
Y _{subscript} =X _{subsc}	eript LA LA LHI LHI L ACALL	P2,X P1,Y 5,N _{ix} 6,N _{fx} 7,H'N _{iy,} , CPASP ¹⁵	N _{fy} '

[†] For REMOTE data, CASR is called instead of CAS, CASRP for CASP, etc.

3.1.5 Vector Matrix Operations

3.1.5.1 Vector-Matrix Operators

Vector Matrix operators usually operate on two arguments according to the conventions stated in Section 5.2. Since 3-vectors, and 3x3-matrices have special library routines, their code is listed in the column labeled "3-code", while the code for any other vectors or matrices is listed in the "n-code" column.

Operation	<u>Type</u>	<u>n-code</u>			<u>3-code</u>	
V1+V2	single	L	R,=H'1,n-1'		L	R,=H'1,2'
	loop:	LE	FR,V2(R)	loop:	LE	FR,V2(R)
		AE	FR,V1(F)		AE	FR,V1(R)
		STE	FR,temp-area(R)		STE	FR,temp-area(R)
		BIX	R,loop		BIX	R,loop
V1+V2	double	L	R,=H'1,n-1'		L	R,=H'1,2'
	loop:	LED	FR,V2(R)	loop:	LED	FR,V2(R)
		AED	FR,V1(R)		AED	FR,V1(R)
		STED	<pre>FR,temp-area(R)</pre>		STED	FR,temp-area(R)
		BIX	R,loop		BIX	R,loop
V1-V2	Same a instruct an AED	as V1+V ion for s).	2 except that an SE i ingle precision. For o	nstruct double	ion is us precisio	ed instead of an AE n, an SED is used instead of
-V1	sinale	T.	R.=H'1.n-1'		T,	R.=H'1.2'
	loop:	- LE	FR.V1(R)	loop.	- LE	FR.V1(R)
	1000	LECR	FR, FR		LECR	FR.FR
		STED	FR.temp-area(R)		STED	FR.temp-area(R)
		BIX	R,loop		BIX	R,loop
-V1	double	Same a	as -V1 single, except ion.	that an	LED is	used in place of the LE
V1 V2	single	LA	P3,V2		LA	P3,V2
V1: length n	· ·	LA	P2,V1		LA	P2,V1
V2: length m		LA	P1,temp-area		LA	P1,temp-area
result is nxm		LHI	5,n		ACALL	VO6S3
matrix		LHI	6,m [†]			
		ACALL	VO6SN			
V1 V2	double	Same a VO6DN	as for single precision I and VO6D3 for n-ve	, exce ectors a	pt that th and 3-ve	ne routines branched to are ctors respectively.
V1*V2	single	(illegal	operation)		LA	P3,V2
					LA	P2,V1
					LA	P1,temp-area
					ACALL	VX6S3
V1*V2	double	Same a than V	as for single precision (6S3.	, exce	pt that V	X6D3 is branched to, rather
V1•V2	sinale	LA	P3,V2		LA	P3,V2
		LA	P2,V1		LA	, P2,V1
		LHI	, 5,n		ACALL	VV6S3 ^{††}
		ACALL	VV6SN ^{††}			

[†] If both V1 and V2 are the same size, then this instruction will be: LR 6,5.

⁺⁺ The scalar result of the dot product is left in register F0.

Operation V1•V2	<u>Type</u> double	<u>n-code</u> Same a VV6DN	<u>3-code</u> as for single precision, except that the routines branched to are I and VV6D3 for n-vectors and 3-vectors respectively.			
M1+2 OR } M1-2	Same c product	ode as t of the r	that for adding or subtracting two vectors of length equal to the row size and the column size of M1 and M2.			
V1 M2	single	LA	P3,M2		LA	P3,M2
V1:length n		LA	P2,V1		LA	P2,V1
M2:nxm		LA	P1,temp-area		LA	P1,temp-area
		LHI	5,n		ACALL	VM6S3
		LHI	6,m [†]			
		ACALL	VM6SN			
V1 M2	double	Same a VM6DN respect	is for single precision I and VM6D3 for the ively.	n, excer genera	ot that th al case a	ne routines branched to are and the size 3 cases
M1 V1	single	LA	P3,V1		LA	P3,V1
M1:nxm		LA	P2,M1		LA	P2,M1
V1:m		LA	P1,temp-area		LA	P1,temp-area
		LHI	5,n		ACALL	MV6S3
		LHI	6,n			
		ACALL	MV6SN			
M1 V1		double	Same as for single to are MV6DN (n co	precisio ode) an	on, exce d MV6D	pt that routines branched 3 (3 code).
V1 I ^{††} ,	single	L	R,=H'1,n-1'		L	R,=H'1,2'
V1 I2 ^{††} ,						
V1 S	loop:	LE	FR,V1(R)	loop:	LE	FR,V1(R)
		ME	FR,S		ME	FR,S
		STE	FR,temp-area(R)	STE	FR,temp-area(R)
		BIX	R,loop		BIX	R,loop
V1 S2	double	L	R,=H'1,n-1'		L	R,=H'1,2'
	loop:	LED	FR,V1(R)	loop:	LED	FR,V1(R)
		MED	FR,S2		MED	FR,S2
		STED	FR,temp-area(R)	STED	FR,temp-area(R)
		BIX	R,loop		BIX	R,loop

[†] If M2 is of size nxn, then this instruction is: LR 6,5.

⁺⁺ Note that in the case of single and double precision integers, they are first converted to scalar form whose value is in F0.

<u>Operation</u>	<u>Type</u>	<u>n-code</u>			<u>3-code</u>			
V1/I	Same	as for V1 I, etc., except that a DE instruction is used instead of ME.						
V1/S	(DED)	is used	is used instead of MED for double precision.)					
I V1,I2 V1,		Exactly	the sam	e as for V1 I, et	с.			
S V1,S2 V1		,						
		•						
M1 I,M1 I2, M1 S,M1 S2		Same at the row	s for V1 size and	I, etc., except th the column siz	at the leng	th value (n) is the product of		
M1/I,M1/I2		Same a	s for V1/	I, etc., except th	at the leng	th value (n) is the product of		
M1/5,M1/52		the row	size and					
I M1,I2 M1		Exactly	the sam	e as for V1 I, et	c., except	that the length specified in		
S M1,S2 M1		R5 is ec	jual to th	ne product of the	e row size a	and the column size of M1.		
M1 ^{**i}		single	LHI	6 <i>.</i> i	Same as	for "n-code" where n=3.		
(where i is ei	ther	5	LA	P3,temp-sto	rage-are	ea		
a literal or a constant inter	a Jer)		LA LA	P2,M1 P1.temp-stc	rage-are	22		
	502,		LHI	5,n	10.90 0.10			
			ACALL	MM17SN				
M1 ^{**1}		double	Same a	as for single pre	cision, exc	ept branches to the		
M1 ^{**0}		single	LA	P2,M1				
			LA	P1,temp-stc	rage-are	a		
			LHI ACALL	5,n MM15SN				
M1 ^{**0}		double	Same a	as for single pre	cision, exc	ept branches to MM15DN.		
M1** ¹		single	LA	P2,M1	LA	P2,M1		
Ml: m x n			LA	Pl,temp- storage- area	LA ACALL	Pl,temp-storage- area MM11S3		
			LA	5,n				
			LA	6,m				
			ACALĹ	MMIISN				
M1 ^{**T}		double	Same a branche and 3 x	as for single pre ed to is either N 3 matrices res	cision, exc IM11DN or pectively.	ept that the routine MM11D3 for n x n matrices		

[†] See Section 3.1.2.1 for important information regarding the DED instruction.

<u>Op</u>	eratio	<u>n</u>			<u>Type</u>	<u>n-code</u>			<u>3-code</u>	
M1	M2					single	LA	P3,M2	LA	P3,M2
	M1:	k	x	m			LA	P2,M1	LA	P2,M1
	M2:	m	x	n			LA	P1,temp-area	LA	P1,temp-area
							LHI	5,k	ACALL	MM6S3
							LHI	6,m [†]		
							LHI	7,n [†]		
							ACALL	MM6SN		
M1	M2					double	Same as to are M	s for single precisi M6DN and MM6[ion, excep D3 for the	t that the routines branched general case and the 3 x 3

case respectively.

[†] Either of the instructions may be of the form: LR 6,5 if n=k, etc.

3.1.5.2 Conditional Operators

The only comparison operators allowed for comparing vector and matrices are = or \neg =. Since these comparisons are done on an element-by-element basis, the same routines that are used for size-n vectors are also used for size n x m matrices which are considered to be vectors of length n x m. No logical variables are created by comparisons. Instead, branching to the "not-true-label" occurs with the "not true" condition.

<u>Operation</u>	<u>Type</u>	<u>n-code</u>		<u>3-code</u>	
V1 <op> V2</op>	single	LA LA LHI ACALI BC	P3,V2 P2,V1 5,n VV8SN COND,not-true-labe	LA LA ACALL BC l	P3,V2 P2,V1 VV8S3 COND,not-true-label
V1 <op>V2</op>	double	Same as VV8DN a	for single precision, except nd VV8D3 for n-vectors and	that the r d 3-vector	outines branched to are s respectively.
M1 <op>M2 M1,M2:mxn</op>	single	LA LA LHI ACALL BC	P3,M2 P2,M1 5,mxn VV8SN COND,not-true-label	LA LA LHI ACALL BC	P3,M2 P2,M1 5,9 VV8SN COND,not-true-label
M1 <op>M2</op>	double	Same as VV8DN.	for single precision, except	that the r	outine branched to is

3.1.5.3 Component Subscripting

Possible components of matrices include submatrices, vectors, column vectors, and single components. Possible components of vectors include subvectors and single components. The resultant type of component is determined by the subscripts used. Note that double precision operations are not shown - their code is identical except that: a) the called routines will be VV1DN rather than VV1SN, etc.; b) the index multiplier is 4 instead of 2. Register 7, when used, contains skip values between elements in partitioned matrices (see Section 3.1.1.3).

<u>Operation[†]</u> Y=V _{x1}	LE STE	<u>n-code</u> R _x ,V _x +2i R _x ,Y	<u>3-code</u> N.A.	
Y=V _{xi}	LH LE STE	R _I ,I R _x ,V _x (R _I) R _x ,Y	N.A.	
V _{Yi} =X;	LH LE STE	R _I , I R _x , X R _x , V _Y (R _I)	N.A.	
V _{yn AT I} =V _{xn AT I} ;	LH AR LA LA LHI ACALL	R _I , I R _I , R _I P2, V _x (R _I) P1, V _y (R _I) 5, n VV1SN	LH AR LA LA ACALL	R _I ,I R _I ,R _I P2,V _x (R _I) P1,V _y (R _I) VV1S3
My=M _{xm AT I,n AT J}				
assumes M _y is an	m by n LH MHI SLL AH LA LA LA LHI LHI LHI ACALL	MATRIX R_{I}, I $R_{I}, < column size of$ $R_{I}, 15$ R_{I}, J R_{I}, R_{I} $P2, M_{x}(R_{I})$ 7, F'delta, 0' $P1, M_{y}$ 5, m 6, n MM1SNP	<same> M_x></same>	

[†] i indicates integer literal, I indicates integer variable.

		<u>n-code</u>	<u>3-code</u>
LH	R _I ,I	LH	R _I ,I
AR	R_{I}, R_{I}	AR	R_{I}, R_{I}
LA	P2,V _x	LA	P2, $V_{\rm x}$
LHI	6,0	LHI	6,0
LHI	7,delta	LHI	7,delta
LA	P1, $M_{x}(R_{I})$	LA	$\texttt{Pl,M}_{x}(\texttt{R}_{\texttt{I}})$
LHI	5,n	ACALL	VV1S3P
ACALL	VV1SNP		
	LH AR LA LHI LHI LA LHI ACALL	LH R_I, I AR R_I, R_I LA $P2, V_X$ LHI $6, 0$ LHI $7, delta$ LA $P1, M_X(R_I)$ LHI $5, n$ ACALLVV1SNP	$n-code$ LH LH AR R_I, R_I AR LA $P2, V_X$ LA LHI $6, 0$ LHI LHI $7, delta$ LHI LA $P1, M_X(R_I)$ LA LHI $5, n$ ACALL ACALL VV1SNP $Arrow Presson $

[†] i indicates integer literal, I indicates integer variable.

3.1.5.4 Conversions

MATRIX/VECTOR conversions are done by considering matrices as vectors, and assigning the required components to the receiver variable. More than 1 argument requires multiple calls to the vector assign routine (as shown in the second sequence below). Use of double precision operands will cause branches to VV1DN. Otherwise, the code is unchanged.

<u>Operation</u>	<u>n-code</u>	
VECTOR (M _x)	LA	P2,M _x
Produces vector of size equal to product	LA	P1,temp-area
of dimension of matrix: n x m.	LHI	5,nxm
	ACALL	VV1SN
MATRIX $(V_x, V_y, V_z)^{\dagger}$	LA	P2, V.
× × y 2	LA	P1,temp-area
	LHI	5, n _x
	ACALL	VV1SN
	LA	P2,V _v
	LA	P1,temp-area+DELTA1
	LHI	5, n _v
	ACALL	VVISN
	LA	P2,V _z
	LA	P1,temp-area+DELTA2
	LHI	5, n _z
	ACALL	VV1SN

⁺ This is An example using several vectors to illustrate the multiple calling of the VV1SN (or VV1S3) routine. It also applies to the VECTOR shaping functions.

3.1.5.5 Assignments

Vectors and matrices may be assigned to other vectors and matrices of the same dimensions. In addition, they may have all elements set to zero by a statement of the form:

* M=0; or	$\overline{V}=0$;							
Operation	<u>Type</u>	<u>n-coc</u>	<u>le</u>		<u>3-code</u>	2		
$V_x = V_y$	single	L	R,=H'1,n-1'		L	R,=H'1,2'		
1	loop:	LE STE BIX	FR,V _y (R) FR,Vx(R) R,loop	loop:	LE STE BIX	FR,V _y (R) FR,Vx(R) R,loop		
$V_x = 0$	single loop:	L SER STE	R,=H'1,n-1' FR,FR FR,V _x (R)		L SER STE	R, =H'1,2' FR,FR FR,V _x (R)		
$M_x = M_y$		Same (m n)	e as for V _x =V _y , ex -1.	cept tha	BIX t the loc	pp count, n-1, is replaced by		
$M_x = 0$		Same as for $V_x=0$, except that the loop count, n-1, is replaced by (m n)-1.						
$V_x = V_y$ $M_x = M_y$	double	Same instru	Same as single, but use LED, STED sequence instead of LE, STE instructions.					
$V_x = 0$ $M_x = 0$	double	Same STE	e as single, but u instructions.	ise SEDF	R, STEI	D sequence instead of SER,		
For the fol	lowing or	oratio	one the compiler	will attam	not to a	enerate in-line code		

For the following operations the compiler will attempt to generate in-line code sequences, including as many operations within a single loop as possible:

VECTOR/MATRIX ADD VECTOR/MATRIX SUBTRACT VECTOR/MATRIX NEGATE VECTOR/MATRIX-SCALAR PRODUCT VECTOR/MATRIX-SCALAR DIVIDE VECTOR/MATRIX ASSIGNMENT

In many cases, the stores into temp-areas, as shown in the prototype instruction sequences, will not be necessary, unless the resultant VECTOR or MATRIX needs to be passed from one loop to another, or to a library routine. For example:

HAL/S			<u>Code</u>
DECLARE			
VECTOR,V,W,X,Y,Z;			
V=V+(W+X) * Y - Z;		L	R,=H'1,2'
	L1	LE	FR,W(R)
		AE	FR,X(R)
		STE	FR,temp1(R)
		BIX	R,L1
		LA	P3,4
		LA	P2,temp1
		LA	P1,temp2
		ACALL	VX6S3
		L	R,=H'1,2'
	L2	LE	FR,V(R)
		AE	FR,temp2(R)
		SE	FR,Z(R)
		STE	FR,V(R)
		BIX	R,L2

In those cases where in-line code is not generated, the temporary area used to store the result of the last HALMAT operation before an assignment can be eliminated if the vector-matrix statement is of a suitable "form" for optimization and one of four conditions holds. The statement may not have multiple receivers; the single receiver must be a consecutive partition or be nonpartitioned. The precision of the right-handside of the statement must match the precision of the receiver. The receiver cannot be a remote variable, and neither the receiver nor the operand(s) of the final HALMAT operation can be name variables, or the terminal of a subscripted structure. Also, variable subscripts on any variables do not allow optimization processing to continue.

Statements that meet these basic requirements can then be checked for the occurrence of a necessary and sufficient condition for optimization. The result of the final operation before the assignment will be stored directly in the receiver if at least one of the following conditions is true:

1. The receiver is <u>nonpartitioned</u> and the last operation before the assignment HALMAT is a "Class 3" operation. Class 3 operations include matrix-scalar and vector-scalar multiplication and division, vector-matrix addition and subtraction, vector and matrix negation and the built-in function, UNIT.

The last operation is a "Class 1" operation. The class contains only "matrix raised to 0th power." The result, the identity matrix, can be stored directly in any <u>consecutive</u> receiver.

- 2. The operand(s) are in temporary work areas. Nonconsecutive partitions are moved to work areas when the operands are processed. The result of a previous operation is also in a work area. Operands in work areas are disjoint from the receiver. This is important for "class 2" operations that use the elements of the vector or matrix, vector-vector, and matrix-matrix arithmetic, and matrix transpose and exponentiation (also, the built-in functions, TRANSPOSE and INVERSE). This condition can also hold for class 1 and class 3 operations. If the operation has two operands, <u>both</u> must be in work areas for this condition to be true.
- 3. The operand(s) are nonidentical to the receiver. A receiver-operand pair is nonidentical if the operand is in a work area, or if neither variable is a formal parameter and the variables have different symbol table references, or if <u>only one</u> of the variables in a formal parameter and the NEST level of the nonparameterized variable is greater than or equal to the NEST level of the parameterized variable (again, symbol table reference cannot be the same).

```
EXAMPLE1: PROGRAM;
   DECLARE MATRIX(3,3),S,T;
   PROC: PROCEDURE(A) ASSIGN(B);
          DECLARE MATRIX(3,3),A,B,C;
          SUBPROC: PROCEDURE(X) ASSIGN(Y);
                     DECLARE MATRIX(3,3),X,Y,P,Q;
                     Y_{2 \text{ TO } 3, *} = X_{2 \text{ TO } 3, *} + C_{2 \text{ TO } 3, *};
                    B_{2 TO 3, *} = P_{2 TO 3, *} + Q_{2 TO 3, *};
          CLOSE SUBPROC;
   CALL SUBPROC(A) ASSIGN(C);
   CLOSE PROC;
   CALL PROC(S) ASSIGN(T);
CLOSE EXAMPLE1;
where
   X&Y are parameters, C is not
        NEST LEVEL(Y) = 2,
        NEST LEVEL(C) = 1.
   Y can be C - cannot assign directly.
   P&Q not parameters - ok to assign directly
        NEST LEVEL(P) = 2,
        NEST LEVEL(A) = 1.
```

4. The operand(s) are disjoint with the receiver. A receiver-operand pair can be disjoint in two ways. If the pair is nonidentical it is, by default, disjoint. If <u>both</u> the receiver and the operand are consecutively partitioned, they are disjoint if the partitions do not overlap in any way. If the receiver and the operand have the same symbol table reference (are identical) then the two partitions can be disjoint in either "direction".

For example, let A be a 4-by-4 matrix. Then,

 $\begin{array}{cccccccc} A_1 & _{TO 2, \star} & = A_3 & _{TO 4, \star} & + & ... & and \\ A_3 & _{TO 4, \star} & = A_1 & _{TO 2, \star} & + & ... & and & both & disjoint pairs. \end{array}$

If the receiver and operand are possibly identical, then the pair can only be disjoint if all of the operand partition comes after the receiver partition.

```
EXAMPLE2: PROGRAM;

DECLARE MATRIX(6,3),A,D,E;

PROC: PROCEDURE(B,C);

DECLARE MATRIX(4,3),B,C;

A_{1 \text{ TO } 2,*} = B_{3 \text{ TO } 4,*} + C_{3 \text{ TO } 4,*}; Pairs A-B & A-C disjoint

A_{3 \text{ TO } 4,*} = B_{1 \text{ TO } 2,*} + C_{3 \text{ TO } 4,*}; Pairs A-B & A-C disjoint

CLOSE PROC;

CALL PROC(A<sub>3 TO 6,*</sub>,D<sub>3 TO 6,*</sub>);

A_{3 \text{ TO } 4,*} = D_{3 \text{ TO } 4,*} + E_{1 \text{ TO } 2,*}; (B<sub>1 TO 2,*</sub> is really A<sub>3 TO 4,*</sub>)

A_{3 \text{ TO } 4,*} = D_{3 \text{ TO } 4,*} + E_{1 \text{ TO } 2,*}; A,D,E are, by default, disjoint

because they are nonidentical

CLOSE EXAMPLE2;
```

If the operation has two operands, both receiver-operand pairs must be disjoint for this condition to be true. The nonidentical and disjoint checks are made at the same time, so this condition also holds if one pair is disjoint by disjoint partitioning and one pair is disjoint by being nonidentical.

3.1.6 Structure Operations

3.1.6.1 Structure Comparisons

Structure comparisons may only be = or \neg =. The comparisons are done by comparing corresponding terminal elements of the two structure operands in order of their natural sequence. Each terminal element is referenced by adding the displacement of the element to the address of the structure (see Section 3.1.1.3). No logical variables are created. Instead, branching to the "not-true-label" occurs with the "not-true" condition.

```
OperationCodeX<OP>YLA 2,XLA 3,Yfor each terminal{LA 2,terminal#1(X)LA 3,terminal#1(Y)LHI 5,widthBAL 4,CSTRUCBC COND,not-true-label...........................................................................................</tr
```

3.1.6.2 Structure Assignment

The assignment of both major and minor structures is done via the BLOCK MOVE algorithm. (Generally, this is an MVH code sequence.)

Operation		<u>Code</u>	
Y=X		L	R _v ,Const1
(neither X nor Y	REMOTE)	L	R_x , Const2
		MVH	R _v ,R _x
			2
		•	
		•	
		DC	Y(Y)
	const1	DC	H'n' [†]
		•	
		•	
	const2	DC	Z(X)
Y=X		LA	P2,X
(X or Y REMOTE)		LA	P1,Y
		LHI	5,width
		ACAL	MSTR
		L	

[†] n is width of x in halfwords.

3.1.7 Indexing and Arrayed Statements

3.1.7.1 Linear Array Indexing

Linear array indexing is the use of subscripts, on an arrayed data type, to produce a one-dimensional resultant array. In the generated code, only one register - R_a - is needed to keep track of the index value. An initial entry to the array loop (see Section 3.1.7.4), R_a is initialized to a value of 1. On each pass through the loop, R_a is used to define a DELTA value to index the arrayed data (see Section 3.1.3.3). Following this, at the end of the loop R_a is incremented by 1, and is tested to determine if all of the data has been utilized, as described in Section 3.1.7.4. R_a is any available indexing register. Its contents may not be altered during the course of an arrayed statement. If the index in R_a must be shifted to access the word or doubleword data, it must be moved to another register to perform this shift.

3.1.7.2 Non-Linear Array Indexing

Non-linear array indexing has more than one index which can change values to produce a multi-dimensional resultant array. The actual code generated, though, can only utilize one register - R_a - for indexing. Thus, temporary storage is needed to store all but the inner-most index. As with linear indexing, all index values (both in R_a and

temporary storage) are initialized to 1. The DELTA value defining the index of each arrayed data item is then computed on the basis of the value of R_a and the index values stored in memory (see Section 3.1.3.3). Following this, each index value is tested against the size of the corresponding <u>dimension</u> (of the resultant array) to determine if all of the data has been utilized and/or which indices are incremented for the next iteration. An example of this is given in Section 3.1.7.4.

3.1.7.3 Array Indexing

Arrays may be used in their entirety in HAL/S without explicit subscripting (for example assignment of two equally dimensioned arrays). However, the code generated is very similar to that for non-linear indexing, except that the indices are tested against the size of the corresponding declared dimensions of the arrays, rather than against the size of the corresponding dimensions of the subscripted array. An example of this is shown in the next section.

3.1.7.4 Arrayness and Loop Generation

This section has an example of each possible form of array loops, and how indexing is achieved within them. In general, an array loop consists of the following sections:

- a. initialization of index values;
- b. computation of address of array element from index value (see Section 3.1.3.3);
- c. actual operation to be performed on the array element(s) (i.e. assignment, comparison, etc.);
- d. incrementing and testing index values.

It should be noted that non-linear and array indexing produce multiple loops and indices. Since only a single register is available for indexing, temporary storage of index values for outer loops is employed.

<u>Operation</u>	<u>Type</u>			<u>Code</u>		
Linear Indexing:				L	7,=H'1,2'	}(1)
$[X] = [Y]_{3 \text{ AT } 2}$	[X]:	ARRAY(3)	SCALAR loop:	LED	2,Y+4(7))
						}(2)
	[Y]:	ARRAY(5)	SCALAR	STE	2,X(7)	J
		DOUBLE				
				BIX	7,loop	}(3)

Notes on above example:

- 1. initialize
- 2. assignment
- 3. increment and test index

Operation Non-Linear [I] = [V] _{1,2} [I]:	<u>Type</u> Indexing: TO 3,*:2 ARRAY(2,4) INTEGER	<u>Code</u>		
[V]:	ARRAY(2,3,4)VECTOR outer-loop:	L ST	7,=H'1,1' 7,temp1	} (1)
	inner-loop:	L LH SLL AR	7,=H'1,3' 6,templ 6,2 6,7	$\left. \right\} (2)$
		MHI SLL	6,H'3' 6,15	
		LH SLL AR	5,temp1 5,2 5,7	{(4)
		LE STH ACALL LH STH	0,V+100(6) 5,temp2 ETOH 6,temp2 5,I(6)) }(5)
		BIX L BIX	7,inner-loop 7,templ 7,outer-loop	}(6) }(7)

Notes on above example:

- initialization and storage of first index value initialization of second index value 1.
- 2.
- 3.
- indexing of [V] indexing of [I] 4.
- 5. assignment of scalar value to an integer value
- incrementing and testing second index value 6.
- incrementing and testing first index value 7.

Operation	<u>Type</u> *	<u>Code</u>		
[M] = [N]	[M],[N]:		L	R_M , const1
	ARRAY(2,3)		L	R_N , const2
	MATRIX(2,4)		MVH	R_M , R_N
			•	
			•	
			•	
		const1	DC	Y(M)
			DC	Н`96'
		const2	DC	Z(N)

Note: 96 is the size of N, (i.e. N is 2x3x2x4x2 = 96 halfwords long).

3.1.8 PROCEDURE/FUNCTION Calls

The PROCEDURE/FUNCTION calling process consists of two parts:

- a. argument set up; and
- b. the actual branch to the subroutine.

Argument set up uses registers 5-7 as needed for passing integers or bit strings, and/or pointers to vectors, matrices, character strings, arrays or structures. Floating point registers 0, 2, and 4 are similarly used to pass scalar arguments. Once all of these registers are utilized, all remaining arguments are placed in a run time stack for the procedure or function.

The actual code generated sets up the arguments in the order that they appear in the HAL/S PROCEDURE or FUNCTION block definition statement. For example, if the function is:

```
F: FUNCTION(integer_1,scalar_1, scalar_2,vector_1,integer_2);
```

then the registers are loaded in the order:

```
register 7 using LH or L
register 6 using LA to load the pointer to vector_1
register F2 using LE or LED
register F0 using LE or LED depending on the precision of scalar_1
register 5 using LH or L depending on the precision of integer 1
```

Once all arguments are set up, the actual branch is a BAL or SCAL instruction to the CSECT defined for the procedure or function.

A leaf PROCEDURE/FUNCTION is one which has no stack requirements (i.e. no parameters, no stack temporaries, no local addressable data, no ON ERROR statements, and no intrinsic library calls). Such procedures may be called via BAL R4, <routine name>. These routines are exited using BCR 7,R4.

Operation	<u>Args</u>	<u>Code</u>	<u>)</u>	Alternate Code		
Argument Setup	<3 non-scalar	LH	7,arg3	L 7,arg3 or L 7,arg3 A		
	and <u><</u> 3 scalar	LH	6,arg2	L6,arg2 or L6,arg2 A		
		LH	5,argl	L 5,argl or L 5,argl A		
		LE	4,scalar-arg3	L 4,scalar-arg3 E D		
		LE	2,scalar-arg2	L 2,scalar-arg2 E D		
		LE	0,scalar-arg1	L 0,scalar-arg1 E D		
Actual	Call		ACALL	csect-name		
-------------------------------	----------------	---	------------------------	---	-----------------	--------------------------------
Operation Argumer Setup	<u>n</u> 1t	Args >3 non-scalar and/or >3 scalar	Code LH STH	R,argn R,stack	Altern	ate Code
			•		 1) 5	non-scalar stores stack
			LH STH LE STE	R,arg4 R,stack FR,scalar-argn FR,stack	 	
			•		 2) 	scalar stores into stack
			LE STE LH	FR,scalar-arg4 FR,stack 5,arg1	 	
					 } 3) 	
Actual	Call		LE ACALL	2,scalar-arg2 csect-name]	

Notes on above example:

- 1.,
- Any additional arguments are generally loaded into any unused register and stored. The actual load op codes may be: L, LH, LA, LE, or LED, depending on the type of argument. Similarly, the stores op codes may be ST, STH, STE, or STED. If the argument already exists in a register, then the code generated will be only a store from that register into the stack. 2.
- Loading of the first 3 non-scalar, and the first 3 scalar arguments. This is 3. identical to the code shown in the first example above.

3.1.9 Block Definition

3.1.9.1 PROGRAM and TASK Definition

Operation		<u>Code</u>	
PROGRAM or TASK definition	block-name:	LA	0,stack-start [†]
		LA NHI STH IAL LA LDM STH	<pre>1,program-data-csect 1,x'7FFF'^{††} 1,5(0) 0,stack-size 3,local-data-area(1) \$ZDSESET^{††} 3,9(0)</pre>

[†] Omitted if SDL option is turned on.

^{††} Only occurs if the DATA_REMOTE directive is in effect (See Section 4.0).

3.1.9.2 PROCEDURE and FUNCTION Definition

Both PROCEDURE and FUNCTION definitions are similar to PROGRAM and TASK definitions. However, floating point store instructions are needed to save any scalar argument passed via registers.

Operation	<u>Code</u>	<u>e</u> †	[Alternate Code]
PROCEDURE or			
FUNCTION			
definition			
			[COMSUB only: LA 1,Program-data-
			csect]
block-name:	NHI	1,x'7FFF'	† †
	STH	1,5(0)	
	IAL	0,stack-s	ize
	LA	3,Local-da	ata-area(1)
			[COMSUB only: LDM \$ZDSESET ^{††}]
	STH	3,9(0)	
			[EXCLUSIVE only:
			SVC Local-dataarea+2(1)]
	STE	0,stack	[STED 0,stack]
	STE	2,stack	[STED 2,stack]
	STE	4,stack	[STED 4,stack]

[†] If PROCEDURE or FUNCTION is leaf (has no calls and no stack requirements) then no code is generated for the block entry.

^{††} Only occurs if the DATA_REMOTE directive is in effect (See Section 4.0).

3.1.10 Flow of Control Statements

3.1.10.1 IF ... THEN ... ELSE

The code shown below is for the most general form of the IF...THEN...ELSE statement. It is assumed that the condition code from the conditional expression has been generated (see previous subsections on conditional operations).

```
      Operation
      Code

      IF<cond exp>THEN<...>ELSE <...>
      BC cond, else-label

      else-label:
      BC 7, next-statement

      else-label:
      Image: Code for ELSE clause

      next-statement:
      Image: Code for ELSE clause

      IF<cond exp>THEN
      BC cond, next-statement

      IF<cond exp>THEN
      BC cond, next-statement

      IF<cond exp>THEN
      BC cond, next-statement

      IF<cond exp>THEN
      Image: Code for THEN clause

      IF
      Image: Code for THEN clause

      Image: Code for THEN clause
      Image: Code for THEN clause

      Image: Code for THEN clause
      Image: Code for THEN clause

      Image: Code for THEN clause
      Image: Code for THEN clause

      Image: Code for THEN clause
      Image: Code for THEN clause

      Image: Code for THEN clause
      Image: Code for THEN clause

      Image: Code for THEN clause
      Image: Code for THEN clause

      Image: Code for THEN clause
      Image: Code for THEN clause

      Image:
```

3.1.10.2 DO FOR...Loops

The DO FOR loop has two forms: the iterative, and the discrete. They may also cause termination of the loop by use of the clause UNTIL < >, or WHILE < >. The use of these clauses is shown for the case of the iterative DO FOR forms where the additional code needed has been labeled "UNTIL code" and "WHILE code". This same additional code is generated for the discrete DO FOR and is placed immediately before the executable code within the DO group (the same process as is illustrated with the iterative DO FOR). Note that the code only shows the use of a single precision integer index; double precision integers, and single or double precision scalars follow the same algorithm with the exception that the corresponding full word, or floating point instructions are used when dealing with the index variable.

$\frac{\text{Operation}}{\text{DO FOR I}} = a \text{ TO b BY c:}^{\dagger}$		Cod	<u>e</u> 7,a
	loop-begin:	BC	7,test-label
		•	
		•	executable code within DO group
menaat ^{††} .		т.н	7 T ^{†††}
repeat :		дит	7,1
	test-label·	STH	7 T
	cebe inder.	CHT	7.b
		BC	6,loop-begin
	exit-label:		, 1 5
			code for statement
			following DO group
DO FOR $I = a$ TO b BY c		ZH	temp-area UNTIL code
UNTIL <cond exp="">;</cond>			_
•		LНI	7,a
		BC	7 test-label
END:	loon-begin.	TS	temp-area
	reep begin.	BC	4, first-statement ^{††††}
			cond for exp
		•	}UNTIL code
		BC	cond,exit-label
first	-statement:	•	
		•	executable code within DO group
	repeat # :	LH	7,I
	-	AHI	7, c
	test-label:	STH	7,I
		CHI	7,b
		BC	6,loop-begin
	exit-label:	•	code for statement
		•	TOTTOWING DO GLORD

[†] Assumes a, b, and c are literal values.

^{††} This is referenced by the REPEAT STATEMENT (see Section 3.1.10.5).

^{†††} This instruction may be omitted if the REPEAT label is not actually used, and the loop index I is already in the designated register.

^{††††} This is done to avoid testing the <cond exp> until after executing through the loop at least once.

<u>Operation</u>	<u>Code</u>	
DO FOR $I = a$ TO b BY c		
WHILE <cond exp=""></cond>		
	LHI 7,a	
·	BC /, Lest-Tabel	
END;	code for cond exp	ode
	BC cond, exit-label	
	. executable code within DO gr	roup
	Т.Н. 7.Т	
	AHI 7.c	
test-label:	STH 7,I	
	CHI 7, b	
	BC 6,loop-begin	
exit-label:	. code for statement	
	. following DO group	
DO FOR $I = a_1, a_2, \dots, a_n$ label-1:	LHI 7,a ₁	
•	Dat 4 toot label	
	BAL 4, LESC-IADEI	
END; label-2:	LHI 7,a ₂	
	BAL 4,test-label	
label-n:	LHI 7, a _n	
	LA 4,exit-label	
test-label:	ST 4,temp-area	
	STH 7,I	
	. executable code within DO g	roup
repeat [†] :	L 4,temp-area	
-	BCR 7,4	
exit-label:	. code for statement	
	. following DO group	
DO FOR I = I1 TO I2 BY I3	LH 5.I2	
	-,	
	STH 5.temp-test	
	-,	
END:	Т.Н. 6.Т.3	

[†] This is referenced by the REPEAT statement (see Section 3.1.10.5).

Operation	<u>Code</u>	
	LH	7,I1
(I1,I2,I3: variables)	STH	6,temp-incr
	BC	7,test-label
loop-begin:		
	•	executable code within DO group
	•	
repeat [†] :	LH	7,I
	AH	7,temp-incr
test-label:	STH	7,I
	LH	5,temp-incr
	LA	5,loop-begin
	BC	5,positive-test ^{††}
	CH	7,temp-test
	BCR	5,5
	BC	7,exit-label
positive-test:	CH	7,temp-test
	BCR	6,5
exit-label:	•	code for statement
	•	following DO group

[†] This is referenced by the REPEAT statement (see Section 3.1.10.5).

^{††} This branch is determined by the condition code set by the previous LH 5, temp-incr instruction.

3.1.10.3 DO WHILE/UNTIL

Both of these forms of DO groups are essentially the same except that the DO UNTIL does not test its conditional expression until it has finished executing the code once. In both cases, the condition is tested as detailed in preceding subsections.

 Operation
 Code

 DO WHILE <cond exp> repeat:
 .

 Code for conditional expression
 .

 BC
 cond, exit-label

 .
 .

 BC
 code for statements within DO group

 .
 .

 BC
 7, repeat

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 Operation
 Code

 DO UNTIL <cond exp>
 BC
 7,first-statement

 repeat:
 .
 code for conditional expression

 .
 BC
 cond, exit-label

 first-statement:
 .
 code for statements within D0 group

 .
 BC
 7,repeat

 .
 code for statements within D0 group

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

 .
 .
 .

3.1.10.4 DO CASE

The DO CASE statement is used to select one of a collection of statements for processing.

<u>Operation</u>	<u>Code</u>	
DO CASE I;	LH	R _c ,I
<statement 1=""></statement>	BC	6,else-case-label [†]
<statement 2=""></statement>	LA	2, case-vector
	CH	R _c ,0(2) [†]
	BC	1,else-case-label [†]
	LH	2,0(R _c ,2)
<statement n=""></statement>	BCR	7,2
END;		
	code abov DATA_REMO LH R _c ,I BC 6,el LA 3,ca CH R _c ,0 IHL 3,9(SLL 3,16 BC 1,el LA 1,ca LH 2,0(LH 1,5(BCR 7,2	Te is replaced by the following if the TE directive is in effect (see Section 4.0) se-case label [†] .se-vector (3) [†] $0)^{†}$ t se-case-label [†] .se-vector $R_c, 1)$ 0)

[†] Bounds checks on case number. Omitted if ELSE not specified.

<u>Operation</u>	<u>Code</u>				
else-case-label:					
	<else code="" statement=""></else>				
	BC 7,exit-case-label				
	<statement 1=""></statement>				
	BC 7,exit-case-label				
	<state< td=""><td>ment 2></td></state<>	ment 2>			
	BC 7,e	xit-case-label			
	•				
	•				
	•				
	<state< td=""><td>ment n></td></state<>	ment n>			
<pre>exit-case-label:</pre>					
	<u>Data</u>				
case-vector	DC	H'n'			
	DC	Y(statement 1)			
	DC	Y(statement 2)			
	•				
	•				
	•				
	DC	Y(statement n)			

3.1.10.5 GO TO, REPEAT, EXIT

All of these statements take the form of unconditional branches. It should be noted that REPEAT and EXIT statements may only be used inside DO groups. See Sections 3.1.10.2 and 3.1.10.3 for the locations of the "repeat" and "exit-label" within a DO group.

Operation	<u>Code</u>		
GO TO label	BC	7,label	
REPEAT REPEAT label	BC	7,repeat	"repeat" is the location of the code which determines whether DO group iteration is finished or not.
EXIT EXIT label	BC	7,exit-label	"exit-label" is the location of the code immediately following the end of the DO group.

3.1.10.6 RETURN

The RETURN statement will branch back from the code for a function to the code immediately following the function's invocation.

<u>Operation</u>	<u>Code</u>		
Procedures & Func	tions		
RETURN	EXCLUSIVE only:	SVC	Local-data-area+3(1)
	normal:	LDM	\$ZDSECLR [†]
		SRET	7,0
	leaf:	BCR	7,4
Drograma (Maglea			

Programs & Tasks

[†] Only occurs if the DATA_REMOTE directive is in effect (see Section 4.0) and the procedure/function is a COMSUB.

3.1.10.7 ON ERROR/OFF ERROR/SEND ERROR

<u>Operation</u>		<u>Code</u>		
ON ERROR _{n:m} <stmt></stmt>		LA	4, <stmt></stmt>	
		STH	4,error table entry 1	
		LHI	4, <action>[†]</action>	
		STH	4,error table entry 0	
		BC	7,next-statement	
	<stmt>:</stmt>		<code for="" stmt=""></code>	
	next-statement:	•		
		•	code for next statemen	t
		•		
	SIGNAL			
ON ERROR _{n:m} System[A	ND SET <event>]</event>			
	RESET			
		LA STH	4, <event>† 4,error table entry 1</event>	only if event action phase
		LHI STH	4, <action> 4,error table entry 0</action>	presene
	SIGNAL			
ON ERROR _{n:m} IGNORE[A	ND SET <event>]</event>			
	RESET			
		LA STH	4, <event> 4,error table entry 1</event>	only if event action phase
		LHI STH	4, <action>[†] 4,error table entry 0</action>	Jpresent
SEND ERROR _{n:m}		SVC		
OFF ERROR _{n:m}		ZH	4,error table entry 0	

[†] <action> contains action code, error code, and the error group as defined in HAL/FCOS ICD.

3.1.11 Built-In Functions

3.1.11.1 Inline Built-in Functions

The following built-in functions emit the inline code shown in the following sequences. In all cases, it is assumed that Rx contains the argument except when a specific load instruction is shown. The results will always be in register Ry.

<u>Operation</u>	<u>Type</u>	<u>Code</u>	
ABS(arg)	scalar, single	LE	Ry,arg
		LECR	Ry,Ry
		BC	2,*-1
	scalar, double	LED	Ry,arg
		LECR	Ry,Ry
		BC	2,*-1
	integer, single	LH	Ry,arg
		LACR	Ry,Ry
		BC	2,*-1
	integer, double	L	Ry,arg
		LACR	Ry,Ry
		BC	2,*-1
LENGTH (char)	character string	LH	Ry,char
		NHI	Ry,255
SIGN (arg)	scalar, single	LE	Rx,arg
		LFLI	Ry,1
		LER	Rx,Rx
		BC	5,continue
		LECR	Ry,Ry
	continue:		
			•
	scalar, double	LED	Rx, arg
		LED	Ry, D'411000000000
		ם מחד ד	
		LEDK	KX, KX
		BC	5, continue
		LECK	ку, ку
	continuo.		•
	concinue:		•
	integer, single	Т.Н	• Rx.arg
	, ~	LFXI	,
		LR	Rx,Rx
		BC	5,continue
	0.50		Neversher 000

USA003089 32.0/17.0

<u>Operation</u>	Туре	<u>Code</u> LACR	Ry,Ry
	continue:		•
	integer, double	L T.	Rx,arg Rv =F'1'
		LR	Rx , Rx
		BC	5, continue
		LACR	Ry,Ry
			•
	continue:		
			•
SIGNUM(arg)	scalar, single	LE	Rx,arg
		LFLI	Ry,1
		LER	Rx,Rx
		BC	1,continue
		BC	4,equal
		LECR	Ry,Ry
		BC	7,continue
	equal:	SER	Ry,Ry
	continue:		•
			•
	integer, single	LH	Rx,arg
		LFXI	Ry,1
		LR	Rx,Rx
		BC	1,continue
		BC	4,equal
		LACR	Ry,Ry
	_	BC	7,continue
	equal:	SR	Ry,Ry
	continue:		•
	·	Ŧ	•
	integer, double	ட் -	Rx, arg
		Ц	Ry, =F' + T'
			RX, RX
		BC	1, concinue
		EC T A CD	4,equai
		DACK	ry,ry 7 continuo
	2-51		November 2005
	0.01		

<u>Operation</u>	<u>Type</u> equal:	<u>Code</u> SR	Ry,Ry
	continue:		•
$SUBBIT_{m TO n}(arg)$	integer, single or bits of length	SRL	Ry,16-n
-07-	<u><</u> 16	NHI	Ry,mask [†]
SUBBIT _{n-m+1 AT m} (arq)			
	integer double, or bits of length	SRL n	Ry,32-n
	>16, or scalar single	Ν	Ry,F'mask' [†]
SHL(x,n)	integer	SLL	Rx,n
SHR(x,n)	integer	SRA	Rx,n
XOR(X,Y)	Bit,n <u><</u> 16	LH	Ry,Y
		XR	Rx,Ry
	Bit,n>16	Х	Rx,Y
	0	r XR	Rx,Ry
MIDVAL(X,Y,Z)	scalar	LE	F0,X
		LE	F1,Y
		MVS	FO,Z

[†] The mask value is: $2^{(n-m+1)}$ -1.

3.1.11.2 Out of Line Functions

Out of line functions require branches to the runtime library.

The registers needed for parameter passing, and the name of the library routine branched to, are specified in the tables of Section 5. Examples are given for representative argument types.

Operation	Type of X	<u>Code</u>	
COS(X)	scalar,single	LE	0,X
		ACALL	COS
SQRT(X)	scalar,double	LED	0,X
		ACALL	DSQRT
ABVAL(X)	vector(3),double	LA	2,X
		ACALL	VV9D3
TRANSPOSE(X)	<pre>matrix(m,n),double</pre>	LA	P2,X
		LA	P1,temp-area

Operation	Type of X	<u>Code</u>	
		LA	5,n
		LA	6,m
		ACALL	MM11DN
	<pre>matrix(3,3),single</pre>	LA	P2,X
		LA	P1,temp-area
		ACALL	MM11S3
UNIT(X)	vector(3),single	LA	P2,X
		LA	P1,temp-area
		ACALL	VV10S3
RANDOMG		ACALL	RANDG
TRIM(X)	character	LA	P2,X
		LA	P1,temp-area
		ACALL	CTRIMV
MAX(X)	array(n)	LA	2,X
		LHI	5,n
		ACALL	EMAX

3.1.11.3 Shaping Functions

Shaping functions are explicit invocations of type conversion. The generated code for shaping functions has been described in previous subsections where conversions have been described (see Sections 3.1.2.3, 3.1.3.4, 3.1.4.4, and 3.1.5.4).

In addition, when conversion functions are used in a true "shaping" sense, (e.g. MATRIX(<integer array>)), a subroutine is used to move contiguous elements, with possible conversion, to a result location of the desired shape.Example:

MATRIX(A) where A is a 9 element integer array

LA	P2,A1
LA	P1, <result loc=""></result>
LHI	6,X'0002'flags ⁵ size
LHI	5,9
ACALL	QSHAPQ

5. Flags: 1st 8 bits indicate input data type. 2nd 8 bits indicate output data type.

Values: 0 = H

- 1 = I
- 2 = E
- 3 = D

3.1.12 Real Time Statements

All REAL TIME statements are implemented by means of a supervisor call (SVC) instruction which has as its address a pointer to a parameter list. The first halfword of this parameter list contains a number which identifies the type of real time call. The remainder of the parameter list varies with the service being requested.

The specific forms of the SVC parameter lists are those described in the *HAL/FCOS ICD*.

For real time statements in non-REENTRANT blocks, the SVC parameter lists are in the block's data area. Any invariant portions of the parameter lists are implemented by initialized data. Parts of the parameter lists which are runtime-dependent are created by execution of in-line code preceding the SVC instruction.

For real time statements in REENTRANT blocks, the SVC parameter lists are dynamically created in the stack by executable code preceding the SVC instruction.

3.1.12.1 WAIT Statement

The WAIT statement may use registers 0, 1 to contain a double precision time value specified in seconds. If the UNTIL option is specified, the time value is expressed as mission elapsed time. Any other times are "Delta Time" from the current mission elapsed time. If a time value is not specified in the WAIT statement, then the registers will not be affected.

Operation	<u>Type</u>	<u>Code</u>	2
WAIT n	n: literal	LED	0,D'floating point form
			of n'
		SVC	parameter-list
WAIT X	X: scalar double	LED	0,X
		SVC	parameter-list
WAIT FOR DEPENDE	INT	SVC	parameter-list
WAIT FOR X	X: event value	SVC	parameter-list
WAIT UNTIL X	X: scalar double	LED	0,X
		SVC	parameter-list

3.1.12.2 CANCEL, TERMINATE Statements

<u>Operation</u>		<u>Code</u>		
CANCEL	J			
CANCEL <task id=""></task>				
TERMINATE	}	SVC parameter-list		
TERMINATE <task id=""></task>	J			

3.1.12.3 SIGNAL, SET, RESET Statements

<u>Operation</u>	<u>Type</u>		Code
SIGNAL <event var=""></event>	latched or unlatched)	
SET <event var=""></event>	latched	}	SVC parameter-list
RESET <event var=""></event>	latched	J	

3.1.12.4 UPDATE PRIORITY Statement

<u>Operation</u>	Тур	<u>e</u>	<u>Code</u>
UPDATE PRIORITY TO i)		
UPDATE PRIORITY <taskid> TO</taskid>	i }	i: integer	SVC parameter-list
	J		

3.1.12.5 SCHEDULE Statement

In the following code generation sequences, a schematic representation of possible SCHEDULE statement forms has been used. The symbol [] means that one of the contained elements may appear in the statement form without affecting the generated code. The symbol {} means that one of the contained elements <u>must</u> be included in the statement form - but which one does not affect the code generated.

In general, the code differs only when time values are specified in the SCHEDULE statement. This requires that the time values be specified in double precision format in certain registers as shown below.

Operation	<u>Co</u>	<u>de</u>
SCHEDULE <label>[ON<eventexp>]PRIORITY(I)[DEPENDENT] [WHILE<event exp="">] UNTIL<event exp="">]</event></event></eventexp></label>	SVC	parameter-list
SCHEDULE < label> { AT X } PRIORITY(I) [DEPENDENT] [WHILE <event exp="">]</event>	LED	0,D'X'
(IN X) [UNIIL/event exp>]	SVC	parameter-list
SCHEDULE <label>[ON<eventexp>] PRIORITY(I) [DEPENDENT], REPEAT { AFTER X } { EVERY X }</eventexp></label>	LED	2,D'X'
	SVC	parameter-list
SCHEDULE <label>[ON<eventexp>] PRIORITY(I) [DEPENDENT] UNTIL X</eventexp></label>	LED	4,D'X'
	SVC	parameter-list
$SCHEDULE < label > \left\{ \begin{array}{c} AT \ X \\ IN \ X \end{array} \right\} PRIORITY(I) [DEPENDENT], REPEAT \left\{ \begin{array}{c} AFTER \ Y \\ EVERY \ Y \end{array} \right\} \left[\begin{array}{c} WHILE < event \ exp > \\ UNTIL < event \ exp > \end{array} \right]$	LED LED SVC	0,D'X' 2,D'Y' parameter-list
SCHEDULE <label></label>	LED LED SVC	0,D'X' 4,D'Y' parameter-list
SCHEDULE <label>[ON<eventexp>]PRIORITY(I)[DEPENDENT], REPEAT AFTER X UNTIL Y EVERY X</eventexp></label>	LED LED	2,D'X' 4,D'Y'

Operation

<u>Code</u>

LED 0,D'X'

LED 2,D'Y'

LED 4,D'Z'

SVC parameter-list

SVC parameter-list

```
SCHEDULE < label > \left\{ \begin{array}{c} AT \ X \\ IN \ X \end{array} \right\} PRIORITY(I) [DEPENDENT], REPEAT \left\{ \begin{array}{c} AFTER \ y \\ EVERY \ y \end{array} \right\} UNTIL Z
```

3.1.13 I/O Statements

The READ statement will compile successfully, but will generate incorrect results for BFS and produce an error in the linkage editor for PASS. The error is not generated for BFS because it uses a different linkage editor. The user will see the following message in the map file for PASS:

```
IEW0264 - TABLE OVERFLOW - INPUT LOAD MODULE CONTAINS TOO MANY EXTERNAL SYMBOLS IN ESD
```

This is accepted as a known error due to the fact that neither the BFS nor PASS flight software use either the READ or READALL statements. (DR 102959, 10/22/90)

3.1.13.1 Initiation

Initiation of either READ, READALL, or WRITE statements consists of a branch to the IOINIT library routine. Register 1 contains the I/O channel number and register 0 indicates the type of I/O to be initiated.

<u>Operation</u>	<u>Type</u>	<u>Code</u>	
READ(n)		LHI	6,n
		LHI	5,0
		ACALL	IOINIT
READALL(n)		LHI	6,n
		LHI	5,1
		ACALL	IOINIT
WRITE(n)		LHI	6,n
		LHI	5,3
		ACALL	IOINIT

3.1.13.2 Input

In all cases, the code sequences below follow the I/O initiation process described in the previous subsection. It is assumed that any conversions have been done previous to the code sequences shown; the resultant type determines which type of code sequence is generated. Note that vector and matrix partitioning require that the first element of the partition be known; additionally, matrices require a DELTA value to be known to skip over those elements (in the "natural sequence") which are not part of the resulting partitioned Matrix (see Section 3.1.2.3).

Operation READ(), I,	<u>Type</u> integer, single	<u>Code</u>	
		•	initiation
		LA	2,I
		ACALL	HIN
		•	
	interer double	•	initiation
	inceger, double	• T. 7\	о т
			2,1 TTN
		ACAUU	
		•	initiation
READ(),,S,111	scalar, single		
	. 5	LA	2,S
		ACALL	EIN
			initiation
	scalar, double	•	
		LA	2,S
		ACALL	DIN
READ(),V,	<pre>vector(n);single</pre>	•	
		•	initiation
		•	
		LA	2,V
		XR	7,7
		LHI	5,1
		LHI	6,n
		ACALL	MMRSNP
READ(),V,	partitioned vector	•	
	of length n whose	•	initiation
	first element is	•	
	located at 'V+	LA	2,V+displacement
	displacement'	XR	7,7
		LHI	5,1
		LHI	6, n
		АСАЦЬ	MMRSNP
	vector(n); double	same e:	xcept branches to
	(partitioned or	ININKDINP	
	not partitioned)		

Operation	<u>Type</u>	<u>Code</u>	
READ(),M,	<pre>matrix(m,n); single</pre>	• •	initiation
		• LA	2,M
		XR	7,7
		LHI	5,m
		LHI	6,n
		ACALL	MMRSNP
READ(),M,	partitioned matrix	•	
	whose resultant	•	initiation
	size is mxn, first	•	
	element is M + displacement	LA LHT	2,M+displacement
	d10p1d00m0101	Т.НТ	5.m
		т.нт	5, 6 n
		ACALL	MMRSNP
	<pre>matrix(m,n); double</pre>	Same e	xcept branches to
	(partitioned or not partitioned)		
READ(), C,	character string	•	
or READALL(), C	,	•	initiation
		Т.А	2.0
		ACALL	CIN
READ()	partitioned		
C _{m TO n} ,	character string	•	initiation
or READALL(),		•	
C _{m TO n} ,		LA	2,C
		LHI	5,m
		LHI	6,n
		ACALL	CINP
READ(), C _n ,	single partitioned	•	
or READALL(),	character string	•	initiation
~ <u>n</u> ,		LA	2,C
		LHI	5,n
		LR	6,5
		ACALL	CINP

Operation	<u>Type</u>	(- -	<u>Code</u>	
READ(), B,	length n)	(OI		initiation
			•	
			LHI	6,n
			ACALL	\mathtt{BIN}^\dagger
			BC	4,around
			ST	б,В
		around:	•	
			•	
			•	

```
Arrayed Input The actual code generated depends on the type of array. Thus, the code will consist of an array loop (see Section 3.1.7.4) which contains the proper code for inputting of each array element using the code shown above (corresponding to the array element type).
```

[†] BIN returns the bit string input in register R6.

3.1.13.3 Output

In all cases, the code sequences below follow the I/O initiation processes described in Section 3.1.13.1. It is assumed that any conversions have been done previous to the code sequences shown; the resultant type determines which type of code sequence is generated. Note that vector and matrix partitioning require that the first element of the partition be known; additionally, matrices require a "delta" value be known to skip over those elements (in the "natural sequence") which are not part of the resulting partitioned matrix.

<u>Operation</u>	<u>Type</u>	<u>Code</u>	
WRITE(),I,	integer, single	•	
			initiation
		LH	5,I
		ACALL H	OUT
	integer, double	•	
		•	initiation
		•	
		L	5,I
		ACALL I	OUT
WRITE(),S,	scalar, single	•	
		•	initiation
		•	
		LE	0,S
		ACALL E	OUT

<u>Operation</u>	<u>Type</u>	<u>Code</u>	
	scalar, double	LED	0,S
		ACALL D	OUT
WRITE(),V,	<pre>vector(n); single</pre>	•	
		•	initiation
		LA	2,V
		XR	7,7
		LHI	5,1
		LHI	6,n
		ACALL M	MWSNP
WRITE(),V,	partitioned vector		
	of length n whose		
	first element is		initiation
	located at	•	
	'V+displacement'		
		LA	2,V+displacement
		XR	7,7
		LHI	5,1
		LHI	6,n
		ACALL M	MWSNP
	<pre>vector(n); double</pre>	same ex	cept branches to
	(partitioned or	MMWDNP	-
	_ non-partitioned)		
WRITE(),M,	<pre>matrix(m,n); single</pre>		
			initiation
		LA	2,M
		XR	7,7
		LHI	, 5.m
		Т.НТ	6.n
		ACALL M	MWSNP
WRTTE() M	partitioned matrix		
······································	of regultant size		
	myn whose first	•	initiation
	element is M +	•	Inferderon
		Т.НТ	7 delta
		Т.НТ	5 m
		т.нт	5, m
		асаць М	TAMOINE

<u>Operation</u>	Type matrix(m,n);double (partitioned or not partitioned)	<u>Code</u> same ex to MMWI	xcept branches DNP
WRITE(),C,	character string	•	initiation
		LA ACALL (2,C COUT
WRITE(), C _{m TO n}	partitioned character string	• •	initiation
		· LA LHI	2,C 5,m
		LR ACALL C	6,n OUTP
WRITE(),C _n ,	single partitioned character string		initiation
		LA	2,C
		LHI LR ACALL (5,m 6,5 COUTP
WRITE(),B,	bit string (of length n)	•	initiation
		L LHI	5,B 6,n
Arraved Output	The actual code generated	I LLADA	BOUT s on the type of arra

Arrayed Output The actual code generated depends on the type of array. Thus, the code will consist of an array loop (see Section 3.1.7.4) to cause iterative outputting of each array element using the code shown above (corresponding to the array element type).

3.1.14 NAME Operations

3.1.14.1 NAME Comparisons

NAME comparisons may only be = or \neg =.

```
Operation
                     Code
NAME(X) < OP > NAME(Y)
                       X and Y are NAME variables
                          [LH Rx,X
                                                     ]
                                                     1
                          [LH Ry,Y
                          -or-
                       X and Y are NAME REMOTE variables
                          ГL
                               Rx,X
                                                     1
                          [L
                                                     1
                               Ry,Y
                        the ZCON index inhibit bits are
                        ignored for the comparison
                          [LHI Ri,x`FFFF0000'
                                                     1
                          [IAL Ri,x`F7FF'
                                                     ]
                          [NR Rx,Ri
                                                     1
                                                     1
                          [NR Ry,Ri
                          -or-
                        X is a declared variable, Y is a NAME
                       variable
                          [LA Rx,X
                                                     1
                                                     ]
                          [LH Ry,Y
                          -or-
                       X is a declared REMOTE variable,
                       Y is a NAME REMOTE variable
                               Rx,ZCON(X)
                          [L
                                                     ]
                          ΓL
                               Ry,Y
                                                     1
                       the ZCON index inhibit bits are
                        ignored for the comparison
                          [LHI Ri,x`FFFF0000'
                                                     ]
                                                     ]
                          [IAL Ri,x`F7FF'
                                                     ]
                          [NR Rx,Ri
                          [NR Ry,Ri
                                                     ]
                          -or-
                       X is a declared local variable, Y is
                       a NAME REMOTE
                          [LA Rx,X
                                                     ]
                          [OHI Rx,x'8000'
                                                    ](PASS only)
                          [IAL Rx,x'0800' or x'0000']
                          [L Ry,Y
                                                     1
```

Op

<u>Operation</u>	<u>Cc</u>	<u>de</u>			
		the ZCC	N index in	hibit bits	are
		ignored	d for the co	omparison	
		[LHI	Ri,x`FFFFO	0000′]
		[IAL	Ri,x`F7FF′]
		[NR	Rx,Ri]
		[NR	Ry,Ri]
		-or-			
		X is a	NAME varia	ble, Y is a	NAME REMOTE
		[L	Ry,Y]
		[LH	Rx,X]
		[IAL	Rx,x`0800′]
			(non-aggre	egate varial	oles only)
		[SRA	Rx,1]
		[SRR	Rx,31]
		[OHI	Rx,X`8000′](PASS only)
		the ZCC for the	ON index in comparison	hibit bits n	are ignored
		[LHI	Ri,x`FFFFO	0000']
		[IAL	Ri,x`F7FF′]
		[NR	Rx,Ri]
		[NR	Ry,Ri		1
The following	apply to	all of	the above of	examples:	-
2		CR	Rx,Ry	-	
		BC	COND, not-	true-label	
		BC	7, true-la	abel	
The following	apply to	[LHI [IAL [NR all of CR BC BC	Ri,x`FFFF0 Ri,x`F7FF' Rx,Ri Ry,Ri the above of Rx,Ry COND, not- 7, true-la	examples: true-label	

Note that the compiler emits an RLD card that informs the linkage editor to insert the proper CSECT value into the last four bits inserted by the IAL instruction for non-NAME non-stack variables, to conform to the ZCON format.

3.1.14.2 NAME Assignment

The variable Y in the following examples may only be a NAME variable. The variable X may be either an actual or NAME variable having declared properties identical to Y (refer to Language Specification).

<u>Operation</u>	<u>Code</u>	
NAME $(Y) =$ NAME (X)	X and Y are NAME variables	
	[LH Rx,X]	
	[STH Rx,Y]	
	-or-	
	X and Y are NAME REMOTE variables	
	[L Rx,X]	
	[ST Rx,Y]	
	-or-	

Operation

0000	
X is a declared local variable, Y is not	
REMOTE	
[LA Rx,X]	
[STH Rx,Y]	
-or-	
X is a declared REMOTE variable, Y is a	
NAME REMOTE	
[L Rx,ZCON(X)]	
[ST Rx,Y]	
-or-	
X is a declared local variable, Y is a	
NAME REMOTE	
[LA Rx,X]	
[OHI Rx,x'8000'] (PASS only)	
[IAL Rx,x`0800' or x`0000']	
[ST Rx,Y]	
-or-	
X is a NAME variable, Y is a NAME REMOTE	
[LH Rx,X]	
[IAL Rx,x`0800′]	
(non-aggregate variables only)	
[SRA Rx,1	
[SRR Rx,31]	
[OHI Rx,x`8000'](PASS only)	
[ST Rx,Y]	

Note that the compiler emits an RLD card that informs the linkage editor to insert the proper CSECT value into the last four bits inserted by the IAL instruction for non-NAME non-stack variables, to conform to the ZCON format.

-or-

Operation

<u>Code</u> X and Y are declared local variables, but X was previously converted to a ZCON to accomodate a NAME REMOTE left-hand side variable in a multiple assignment [LA Rx,X 1 • [YCON to ZCON conversion] • • ZCON [LR Ry,Rx] [SLL Ry,31] to YCON] Ry,x'7FFF' [OHI con-] [NR Rx,Ry version Rx,Y] [ST

3.1.15 %MACROS

The following %MACROS are recognized by the HAL/S-FC compiler and produce the indicated code.

3.1.15.1 %SVC

The %SVC statement generates a true SVC instruction in which the address portion points to the operand specified.

Operation		<u>Code</u>	į
%SVC	(α)	SVC	α

3.1.15.2 %NAMECOPY

This operation works in the same manner as NAME assignments except that the operands must be structures, but not necessarily having identical properties. See Section 3.1.14.2 for more examples.

Operation	<u>Code</u>	
<pre>%NAMECOPY(Y,X);</pre>	LA	Rx,X
where X is actual variable	STH	Rx,Y

3.1.15.3 %COPY

The %COPY statement is used to move data from one location to another without regard to data types. This operation uses the block move algorithm. See section 3.1.17 for examples of the variances of that algorithm. The general form is: %COPY(dest, source, count);

where:

source is the variable name from which data will be moved;

dest is the variable name into which data will be moved; and

count is optional and if present indicates the number of halfwords to be moved from source to dest. If count is omitted, the size of the source operand is used to determine a count.

NAME variables are dereferenced in all cases. Use of a NAME variable as dest or source operand will refer to the data pointed to by the NAME variable. The count may also be a NAME variable in which case the count is taken from the storage location pointed to by the NAME variable.

Error checking for %COPY statements is performed when the third argument is a literal or omitted. The following errors may be emitted:

FN105: When the source or destination dereferences a Name variable.

- FN106: When the element boundary is exceeded for non-remote locally declared variables. For example, if the source or destination is a scalar (size of scalar is two halfwords), and the number of halfwords to copy is 4, then the boundary of the variable has been exceeded and an FN106 is emitted. If the source or destination is an array, or element of an array, an FN106 error message is emitted when the location of the array element plus the number of halfwords to copy exceeds the ending position of the array.
- FN107: When runtime addressing is generated for a non-remote locally declared variable involved in a %COPY statement. Runtime addressing means the compiler cannot determine the address of a variable during compilation.
- FN108: When the source or destination dereferences a pass-by-reference formal parameter.

The move halfword instruction (MVH) is used to implement the %COPY statement when feasible. If possible, the compiler will optimize the %COPY sequence by performing LED, STED, L, ST or LH, STH sequences instead of using the MVH instruction. This optimization occurs when the compiler is able to determine that no more than eight halfwords need to be moved and that the data alignments match for both source and receiving data areas. When the destination operand of a %COPY statement is REMOTE, a call to MSTR is used to implement the move. Since MSTR expects ZCON inputs, the compiler will perform a YCON to ZCON conversion if the source operand is LOCAL data. The following examples show some of the possible sequences.

A %COPY Warning:

Since the %COPY macro moves data without regard to data type, it can be used to move one character string over another character string even if the character string sizes do not match. A HAL/S CHARACTER string is defined as one halfword descriptor, aligned on a halfword boundary, followed by the data (two characters packed into each halfword of memory). The string descriptor is organized into two one-byte values: the upper byte contains the maximum number of characters the string can hold and the lower byte contains the actual number of characters in the string.

When the %COPY source is a smaller string than the destination, the destination string's descriptor gets overwritten causing the string to internally become smaller and causing unexpected results in all subsequent uses of the destination. Conversely, when the source is bigger than the destination and the 3rd argument is a literal count or is omitted, the compiler correctly emits a FN106 error ("ELEMENT OR CSECT BOUNDARY EXCEEDED FOR DESTINATION OF %COPY") if the character strings are declared locally and are non-REMOTE.

Examples:

1. Strings A and B are declared as CHARACTER(20). When the following %COPY statement:

%COPY(A,B);

is executed, 11 halfwords (10 halfwords (20 bytes of character data / 2) + 1 halfword of descriptor) are copied in to the memory location containing A. This %COPY statement does not pose any problems because the length of the source and destination strings are the same.

- 2. String X is declared as CHARACTER(20) and string Z is declared as CHARACTER(15). When the following:
 - %COPY(X,Z);

is executed, 9 halfwords (8 halfwords ((15 bytes of character data + 1 byte of pad) / 2) + 1 halfword of descriptor) are copied into the memory location containing CHARACTER X. The new maximum character size of string X would be 15. This occurs because the %COPY macro moves the 9 halfwords representing string Z over the first 9 halfwords of string A, and in the process, overwriting X's string descriptor. After this statement, and for the duration of the program's execution, the internal character size of X is 15, not 20, as originally declared! Furthermore, this situation could lead to some unexpected execution results. For example: after the above %COPY statement character B is assigned into character X ("X = B;") by calling the CASR run-time library, the character assignment would not take place. This happens because CASR's checks would detect the size of character X is internally smaller than string B.

3. Using the values in example 2 above, if the user codes the following %COPY statement:

%COPY(Z,X);

the compiler would correctly emit a FN106 error when the 3rd argument is omitted because the destination operand is smaller than the source operand.

- Note: The compiler can allow an assignment to exceed the bounds of the receiving data. There are two methods of doing this that could cause problems, and thus should be avoided:
 - a. A %COPY statement with a variable halfword count field larger than the size of the destination when the destination is local data (this may also go beyond the bounds of a CSECT). The compiler performs bound checking when a literal count is provided but cannot perform these checks when a variable count is used. Local data can be rearranged whenever a compilation unit is modified.
 - b. Overindexing an arrayed variable (subscript is greater than the receiving data's declared arrayness).

The compiler assumes that arrayed assignments and %COPY are not used in this manner and does not update registers that may have been modified as a result of a violation of these rules.

_

<u>Operation</u>	<u>Code</u>	
%COPY(X,Y)	L	Rx,YCON(X, size of Y)
	L	Ry,ZCON(Y)
	MVH	Rx,Ry
%COPY(X,Y,n)	L	Rx,YCON(X,n)
	L	Ry,ZCON(Y)
	MVH	Rx,Ry
%COPY(X,Y,5)	L	Ry,Y
	ST	Ry,X
	L	Ry,Y+2
	ST	Ry,X+2
	LH	Ry,Y+4
	STH	Ry, X+4
%COPY(X,Y);	L	R4,ZCON(Y)
where X and Y are	LFXI	R5,size of Y
REMOTE	L	R2,ZCON(X)
	SCAL@#	MSTR
%COPY(X,Y);	LA	R4,Y
where X is REMOTE	OHI	R4,'8000' (PASS only)
and Y is local	IAL	R4,'0000'
	LFXI	R5,size of Y
	L	R2,ZCON(X)
	SCAL@#	MSTR

3.1.15.4 %NAMEADD

The %NAMEADD statement adds an integer to a given NAME variable and assigns the result into a separate NAME variable. It consists of three operands as seen below:

%NAMEADD(X, Y, Z)

where:

- X is any NAME variable.
- Y can be either any NAME variable or any HAL variable which is legal in the context NAME(V).
- Z is either an integer literal or variable which specifies the amount to be added (which may be negative) from the second operand. (Note: literals must not be signed.)

The source (Y) cannot be REMOTE if the destination (X) is non-REMOTE.

The result of the %NAMEADD statement which is placed into the NAME variable, X, is equal to the NAME value of Y plus the integer Z.

Operation	<u>Code</u>	
<pre>%NAMEADD(X,Y,5);</pre>	LA	Rx,Y+5
where Y is a non-NAME variable	STH	Rx,X
and X is non-REMOTE		
<pre>%NAMEADD(X,Y,Z);</pre>	LA	Rx,Y
where Y is a non-NAME variable	AH	Rx,Z
and X is non-REMOTE	STH	Rx,X
<pre>%NAMEADD(X,Y,8);</pre>	LH	Rx,Y
where Y is a NAME variable	LA	Rx,8(Rx)
and X is non-REMOTE	STH	Rx,X
<pre>%NAMEADD(X,Y,8);</pre>	L	Rx,ZCON(Y)
where Y is a non-NAME REMOTE	AHI	Rx,8
variable and X is NAME REMOTE	ST	Rx,X
<pre>%NAMEADD(X,Y,8);</pre>	L	Rx,Y
where Y is NAME REMOTE	AHI	Rx,8
and X is NAME REMOTE	ST	Rx,X

In either of the last two examples above, code may be inserted immediately before the ST instruction to clear the ZCON index inhibit bit according to the type of X.

Operation	<u>Code</u>		
<pre>%NAMEADD(X,Y,8);</pre>	LA	Rx,Y+8	
where Y is a non-NAME	OHI	Rx,x`8000′	(PASS only)
variable			

and X is NAME REMOTE	IAL	Rx,x`0800' or x`0000' (linker fills in sector num- ber)
	ST	Rx,X
<pre>%NAMEADD(X,Y,8); where Y is a NAME variable</pre>	LH LA	Rx,Y Rx,8(Rx)
and X is NAME REMOTE	STH	Rx,x`0800' (non-aggregate variables only)
	SRA SRR OHI ST	Rx,1 Rx,31 Rx,x`8000' (PASS only) Rx,X

If X is of aggregate type (i.e. ARRAY(3) SCALAR) and Y is of REMOTE singular type (i.e. SCALAR) then the following code is inserted to clear the index inhibit bit:

LFXI	Ri,-1
IAL	Ri,x"F7FF"
NR	Rx,Ri

3.1.15.5 %NAMEBIAS

By convention, the compiler uses an address for aggregate data that is offset a certain number of halfwords (depending on data type) before the actual beginning of the data (see Section 3.1.1.2). The %NAMEBIAS statement performs this zeroth element calculation by determining the positive value needed to point to the first element of the data. It consists of two operands as seen below:

%NAMEBIAS(X,Y)

where,

X is a destination variable of integer type

Y is a source variable of any data type (unsubscripted)

The result of the %NAMEBIAS statement is placed into the variable X. Please note that the offset of a NAME variable is the offset of the variable to which it points.

<u>Operation</u>	<u>Code</u>	
%NAMEBIAS(X,Y)	LFXI/LHI/L	Ry,zeroth element offset of Y
where X is a non-NAME variable	STH/ST	Ry,X

November 2005

%NAMEBIAS(X,Y) where X is a NAME variable	LFXI/LHI/L LH STH/ST	Ry,zeroth element offset of Y Rx,X Ry,disp(Rx)
%NAMEBIAS(X,Y) where X is REMOTE	LFXI/LHI/L STH@#/ST@#	Ry,zeroth element offset of Y Ry,X
%NAMEBIAS(X,Y) where Y has zero offset	ZH/ZH@#	Rx

3.1.16 NONHAL References

Definition and use of the NONHAL construct in the HAL/S-FC compiler system results in an unimplemented feature message from the code generator.

3.1.17 Block Move Algorithm

For assignments involving arrays, structures, or vectors and matrices, the block move algorithm will be applied when:

- 1. both source and destination data specifications occupy contiguous storage;
- 2. the data types for source and destination match in type and precision; and
- 3. neither source nor destination variables are NAME variables.

The default block move sequence is as follows:

X=Y;	L	Rx,=Y(X,size of Y)
	L	Ry,=Z(Y)
	MVH	Rx,Ry
When X is declared REMOTE:		
	LA	Р2, Ү
	OHI	P2,x'8000' (PASS only)
	IAL	P2,x'0800' or x'0000'
	LFXI	5,size of Y
	L	P1,ZCON(X)
	ACALI	MSTR
When both X and Y are declared	d REMO	DTE:
	L	P2,ZCON(Y)
	LFXI	size of Y
	L	P1,ZCON(X)
	ACALI	MSTR

When the DATA_REMOTE directive is in effect (see Section 4.0) and the destination variable X is local data:

L 3,=Y(X, size of Y) ZRB 3,x'8000' L Ry,=Z(Y) MVH 3,Ry LH 3,9(0)

In certain block move applications where the following is true:

- a. variable indexing is not specified;
- b. no NAME or ASSIGN parameters are specified;
- c. source and data word alignments match and 8 or fewer halfwords are being moved, or two or fewer halfwords are being moved;

then the MVH sequence is replaced by the appropriate number of LED/STED (4 halfwords apiece), L/ST (2 halfwords apiece), and LH/STH instruction pairs to accomplish the movement.

The following examples illustrate:

```
DECLARE ARRAY (3),
        A, B, C INTEGER,
        D INTEGER;
DECLARE ARRAY (3) INTEGER,
               E,F;/*E,F on odd boundary*/
               A=B;
                                 0,B
                        LED
                         STED
                                 0,A
                                 0, B+4
                        LE
                         STE
                                 0,A+4
              C=D;
                                 4,D
                        L
                        ST
                                 4,C
                                 4, D+2
                        LH
                         STH
                                 4, C+2
              E = F;
                                 5,F
                        LH
                         STH
                                 5,E
                        L
                                 5, F+1
                         ST
                                 5, E+1
```

B=E;

uses MVH since >2 halfwords and alignments not matching.

3.2 Object Code Naming Conventions

Each successful HAL/S compilation produces several named control sections (CSECTs). The CSECT names are derived according to the following rules:

- a. HAL/S compilation unit names are transferred to the emitted object code by using only the first six characters of the HAL/S name. The name will be padded or truncated to six characters where necessary.
- b. Any occurrence of the underscore character (_) in the first six characters of a PROGRAM, PROCEDURE, FUNCTION, TASK, or COMPOOL is eliminated. The resulting characters are joined together to produce the characteristic name of the compilation unit (e.g. A_B_C becomes ABC). Additional characters are placed on the front of the resultant name to form the final name for each of the individual situations in which the name is used. All CSECT names therefore take the form:

ccNNNNN

where the value of cc for individual cases is:

PROGRAM	:	\$0
TASKs	:	\$c c=(1-9,A-Z)
COMSUBs	:	#C
Internal procs	:	an $a=(A-Z), n=(0-9)$
DECLAREd data	:	#D
COMPOOL	:	#P
Process Directory Entries	:	#E
Z-con to comsub	:	#Z
REMOTE data	:	#R
Exclusive data	:	#X

In addition to CSECTs produced by the compiler, the HAL/S-FC system defines other CSECTs, some of which are referenced by compiler-emitted code. These CSECT types and their naming conventions are:

Z-con to library routine: #Q Data for library routines: #L

3.3 Printed Data from Phase 2

3.3.1 Formatted Assembly Listing

Under control of the LIST compiler option, Phase 2 will produce a formatted, mnemonic listing of the object code produced for the compilation unit. This includes showing the statement number in which a label is located when a branch to a label is done. Also, the registers are identified with one of the following letters in front of the register number: "R" for general or "F" for floating point. The nominal execution time for each instruction (as defined in the "*Space Shuttle Model AP101-S Principles of Operation*", Chapter 17) is provided. When a literal value is referenced, the register contents and decimal value for floating point instructions or the HEX and decimal values for non-floating point instructions are shown. For RS instructions with a base register of 3, the displacement is used instead of the base register. In this case, nothing is printed instead of "R3". For BC instructions, alternate mnemonics are printed in the symbolic

operand field to clarity the intent of the branch. In addition to the assembler-type mnemonic instruction listing, a full hexadecimal listing of the emitted code is also produced.

This object code listing is normally appended to the Phase 1 primary source listing as defined by the SYSPRINT DD card. However, use of the SDL compiler in addition to the LIST option causes the object code listing to be produced through the OUTPUT7 DD card. The listing thus produced is compatible with the ABSLIST function of the AP-101 Link Editor. The *HAL/SDL ICD* contains the detailed description of the ABSLIST format.

3.3.2 Symbol Information

Included in the listing is a table containing the symbol, type, ID, address, length (in both HEX and decimal) and block name.

3.3.3 RLD Information

The RLD information is printed in a table containing the position pointer, relocation pointer, flags, address and CSECT name for both position and relocation pointers. This section includes a title and a legend explaining each of the columns.

3.3.4 Variable Offset Table

The Variable Offset Table contains the location, base register, displacement, bias (zeroth element offset), name and length for each variable. This section includes a title and a legend explaining each of the columns.

3.3.5 Memory Map Table

A Memory Map table for local data is printed for the current compilation unit. It contains the variable name, length, offset, base register, displacement and scope. It also contains local block data information and alignment gap information.

3.3.6 Structure Template Layout Table

The Structure Template Layout Table contains the displacement from the root node, the length, the bias (zeroth element offset) and the name of each terminal and node in the template. Alignment gap information is also provided.

3.4 Symbol Table Augmentation

Phase 2 inherits an initialized symbol table from Phase 1. In the course of generating code, Phase 2 makes additions to the symbol table which are inherited, in turn, by Phase 3. These additions are generally in the area of data addressing.

Information is added in two of the symbol tables parallel arrays:

- The SYT_ADDR array is filled with data offset information indicating the relative location of data items within CSECTs
- The EXTENT array is filled with information about the size of the storage allocated to individual data items.

3.5 Statement Table Augmentation

Phase 3 inherits, in a secondary storage device, the statement table produced by Phase 1. If the ADDRS compiler option is in effect, Phase 1 leaves room in the statement table for beginning and ending addresses of individual HAL/S statements. This information is filled in by Phase 2 after the generation of the executable code has been performed. The completed statement table is then left for use by Phase 3.
4.0 Incremental #D (DATA_REMOTE Directive) REQUIREMENTS AND CODE DESIGN

4.1 Introduction

Incremental #D was a major enhancement to the compiler implemented in Phase 1 (Syntax Analysis), Phase 2 (Code Generation), and Phase 3 (SDF Generation), with the majority of the implementation in Phase 2. The following is taken from detailed requirements for Incremental #D as originally written.

The purpose of this chapter is to identify the detailed requirements, and to review the compiler source code design that satisfies these requirements, for the implementation of Support Software Change Request (SSCR) 11096 titled "Implement the Incremental #D Option". The HAL/S FC compiler that is modified to implement the features of the Incremental #D option will be Release 24.0, and will also be known as the #D compiler.

4.2 Requirements and Code Design

The four primary requirements for the Incremental #D option are given in this section. Following each primary requirement is an interpretation of what that requirement means from the compiler's perspective, the implied or derived detailed requirements which the design must satisfy, and a high-level picture of the compiler source code design.

When applicable, the code sections in the design pictures have been labeled with the number of the requirement that is satisfied (without the chapter number; i.e., requirement 4.2.1.2.1 is shown as 1.2.1). Note that after requirement 4.2.1.2.1 is met (see section 4.2.1.3), all remaining code segments shown throughout the document are only executed if the #D Directive was used. The if-then constructs that each of these code segments are imbedded in are not shown in order to avoid clutter and repetition.

No formal requirement exists for the compiler with regard to constraints on execution performance or Flight Software object code growth impacts incurred upon implementing and using the Incremental #D option.

4.2.1 Provide for Selective Migration of #D Data

• Provide for selective migration of program data CSECTs into upper memory via use of Extended Addressing hardware feature.

4.2.1.1 Interpretation

The HAL/S FC compiler will have some type of mechanism which will allow the HAL/S programmer to specify that all program local data declared within a single compilation unit (#D CSECT), will be referenced using Data Sector Extension (DSE) Addressing techniques. This type of addressing will allow the #D CSECT to be located in any memory sector.

I

4.2.1.2 Detailed Implied/Derived Requirements

- 4.2.1.2.1 The HAL/S FC Compiler shall {1} support a #D directive, "DATA REMOTE", which will allow the #D CSECT to be placed into any memory sector (where previously it was restricted to sector 0 or 1). A single upper memory sector shall {2} be reserved for #D data and will be referred to as the **DSE Sector**. The data in this CSECT will be referred to as **Remote #D data**.
- 4.2.1.2.2 The #D Directive shall {1} have the same placement restrictions as the "D INCLUDE TEMPLATE" directive, and the coding of more than one #D Directive shall {2} produce the same result as coding one.
- 4.2.1.2.3 The #D Directive shall be illegal for COMPOOL compilation units.
- 4.2.1.2.4 When the #D directive is used, the REMOTE attribute shall be ignored for all locally declared data <u>except</u> NAME variables. Such data will be processed as Remote #D data.
- 4.2.1.2.5 The compiler shall set a flag (known as the DATA_REMOTE flag) in the Simulation Data File (SDF) to indicate when the #D directive is used, for the benefit of post processing tools.
- 4.2.1.2.6 When the #D directive is used, the REMOTE attribute of the module shall {1} be set in order to provide for auto placement of that module's #D CSECT in a REMOTE bank by the PRELINK tool. After code generation, the REMOTE attribute of the module shall {2} be cleared so that the SDF flags for the module are not changed.
- 4.2.1.2.7 The requirements, restrictions, and impacts of Incremental #D described in this chapter shall {1} be in effect <u>only</u> when the #D directive is used. When the #D directive is <u>not</u> used, the #D compiler shall {2} produce object code which is identical to that produced by its predecessor compiler (except for changes due to any implemented DR fixes).

4.2.1.3 Compiler Implementation Design

COMMON DATA	NEW DATA_REMOTE Boolean 1.0		
	symbol table REMOTE at	tribute flags	
PASS1	PASS2		PASS3
DWNTABLE			
CERRDECL			
add new error class CLASS_XR (1.0)			
	-		
STREAM.PROCESS_COMMENT			
If COMPOOL then error XR2 (1.2.3)			
If wrong placement then error XR1 (1.2.2)			
set DATA_REMOTE Boolean (1.2.1)			
IMPORTANT: All subsequent code segments are a	nhy executed if DATA REMOTE is set. T	ha chack for this Roolaan	
being set has been left out to avoid repetition	The executed in DATA_REMOTE is set.		(4.0.7)
			(1.2.7)
SYNTHESIZE	NEW CSECT TYPE	##DRIVER	
in processing declared data:	a support routine to indicate if a data	use old PATCH_FLAG as	1
if REMOTE attribute then error XR3	item is #D data:	the new	
(1.2.4)	return '#D' for locally declared data	DATA_REMOTE_FLAG	or
	with REMOTE attribute set	SDFS	(1.2.5)
		INITIALISE	
		set DATA_REMOTE_FL	AG
		(1.2.5)	
	INITIALISE.PROCENTRY		
	IF NOT EXTERNAL		
	then set module's REMOTE attribute		
	(1.2.6)		
		2	
	INITIALISE.SET_NEXT_AND_LOKS		
	if CSECT_TYPE=#R then		
	clear REMOTE attribute		
	(1.2.4)		
	(4.2.1)		
		1	
	EMIT_ESD_CARDS		
	It module's REMOTE attribute		
	and clear module's REMOTE attribute		
	(1.2.6)		

Figure 4-1 Provide for Selective Migration of #D Data

4.2.2 Provide for Management of Extended Addressing Feature

- Provide for management of the Extended Addressing feature at the appropriate points in the code:
 - a. Prolog
 - b. Common Subroutine CALL locations.
 - c. Runtime Library CALL locations.
 - d. Epilog

4.2.2.1 Interpretation

DSE management is defined as the techniques used to either clear or load the Data Sector Extension (DSE) of a register which is used to address the DSE sector.

DSE management shall be used only in modules compiled with the #D directive.

DSE management shall occur upon entry to a module, around all calls to external procedures and calls to Runtime Library (RTL) routines, and immediately before exit from a module.

4.2.2.2 Detailed Implied/Derived Requirements

- 4.2.2.2.1 Two fullword constants, \$ZDSESET and \$ZDSECLR, shall be supplied by FCOS to provide the compiler a means of setting and clearing DSE registers with the proper values.
- 4.2.2.2.2 For compilation units using the #D directive, the compiler shall generate object code in the prolog of each PROGRAM/COMSUB, which will initialize the DSEs of registers R1 and R3 with the Remote #D CSECT.
- 4.2.2.2.3 When the #D directive is used, the DSEs associated with the Remote #D registers shall be set to zero immediately prior to any external procedure and prior to any RTL call which utilizes R1 or R3 as a base register.
- 4.2.2.2.4 Immediately upon return from an external procedure or any RTL call which utilizes R1 or R3 as a base register, the DSEs associated with the Remote #D registers shall be restored to their previous values.
- 4.2.2.5 Before the exit from a COMSUB compilation unit using the #D directive, the DSEs associated with the Remote #D registers shall be set to zero. This is not done for PROGRAMs, as the SVC instruction that ends a PROGRAM needs the DSEs set to work properly.

4.2.2.3 Compiler Implementation Design

COMMON DATA	NEW DATA_REMOTE Boolean 1.0		
PASS1	PASS2		PASS3
	##DRIVER		
	add new LDM instruction	(2.0)	
	INITIALISE.SETUP_DATA		
	set up external recognition of data contents \$Z	DSESET	
	and \$ZDSECLR	(2.2.1)	
			-
	GENERATE.EMIT_CALL		
	clear DSEs with LDM before call	(2.2.3)	
	set DSEs with LDM after call	(2.2.4)	J
			1
	GENERATE.BLOCK_OPEN	(2,2,2)	
	set DSES with LDM in prolog	(Z.Z.Z)]
			1
	clear DSEs with I DM in epilog of COMSUBS	(2 2 5)	
	cical DOES with EDW in epilog of COMBODS	(2.2.3)	J

Figure 4-2 Provide for Management of Extended Addressing Feature

4.2.3 Enforce Compiler Restrictions on #D Data

- Have all program data items take on the attribute "lives REMOTE"; enforce normal compiler restrictions on those data items:
 - a. No assignments of Remote #D address into (16 bit) NAME variable.
 - b. No declaration of Remote #D data as EVENT type.

4.2.3.1 Interpretation

For the purposes of syntactical and semantic analysis only, all data which is declared locally, and is within a single compilation unit compiled with the #D directive, shall be processed as if it had been declared with the REMOTE attribute. Again, this data will be referred to as **Remote #D data**.

All restrictions and limitations which currently exist for REMOTE data references will also exist for Remote #D data references. Refer to Section 8.10 of the HAL/S-FC User's Manual for more information.

Specifically, these restrictions are: a) no assignments of Remote #D addresses into (16-bit) NAME variables; b) not allowing the declaration of Remote #D EVENT variables.

4.2.3.2 Detailed Implied/Derived Requirements

- 4.2.3.2.1 The compiler shall internally "turn on" the REMOTE attribute for all local variables which are declared within a compilation unit containing the #D directive.
- 4.2.3.2.2 Once the REMOTE attribute is "turned on" for Remote #D data, the compiler shall process the HAL source code using existing error analysis techniques and error messages.
- 4.2.3.2.3 Because the REMOTE attribute must be "turned off" during code generation (see section 4.2.4.2), supplemental error checking shall be used for parameter checking.
- 4.2.3.2.4 It shall be legal to assign Remote #D addresses into (32-bit) NAME REMOTE variables. This requires a conversion of a YCON (16-bit offset) plus associated DSE into ZCON format.
- 4.2.3.2.5 In order for Remote #D data to be passed by reference to REMOTE Runtime Library routines the way current REMOTE data is handled, the YCON to ZCON conversion of 4.2.3.2.4 shall be used.
- 4.2.3.2.6 The HAL/S WRITE statement shall be the means by which Remote #D data can be output during testing.

4.2.3.3 Current Error Message Usage

The following existing errors will be used to indicate when the use of Remote #D data has violated a compiler restriction:

- DI107 SEVERITY 1 ATTEMPT TO INITIALIZE A NON-REMOTE NAME WITH A REMOTE VARIABLE
- XQ102 SEVERITY 2 ATTEMPT TO ASSIGN NAME OF REMOTE DATA ITEM TO A 16 BIT NAME VARIABLE
- FT111 SEVERITY 2 MISMATCHED ARGUMENTS IN %NAMECOPY STATEMENT. REMOTE SOURCE NOT ALLOWED WITH NON-REMOTE DESTINATION IN %NAMECOPY STATEMENT
- FT110 SEVERITY 2 MISMATCHED ARGUMENTS IN %NAMEADD STATEMENT. REMOTE SOURCE NOT ALLOWED WITH NON-REMOTE DESTINATION IN %NAMEADD STATEMENT
- FT112 SEVERITY 2 PARAMETER #?? MAY NOT BE NAME(NAMEVAR) IF NAMEVAR LIVES REMOTE
- DA9 SEVERITY 2 ILLEGAL ATTRIBUTE SPECIFIED FOR EVENT DATA TYPE

4.2.3.4 FCOS Restrictions on #D Data

Due to FCOS restrictions, certain real time operations cannot occur with DATA_REMOTE in effect (i.e. outside of sector 0/1). An XR4 error message (severity 2) will be generated for any of the following conditions when DATA_REMOTE is in effect:

- EQUATE EXTERNAL to a #D symbol;
- SCHEDULE statement with an ON, WHILE or UNTIL event option in a non-reentrant module;
- WAIT FOR statement in a non-reentrant module.

4.2.3.5	Compiler	Implementation Design	
---------	----------	-----------------------	--

COMMON DATA	NEW DATA_REMOTE Boolean		
			-
	symbol table REMOTE attribute flags]
PASS1	PASS2		PASS3
SYNTHESIZE			I
In processing declared data:	new GENERATE.PARM_STAT		
set REMOTE attribute (3.2.1)	then error ET109	(3.2.2)	
		(3.2.3)	J
			ן
	CHAR CALL CTON		
	COMPARE STRUCTURE		
	GEN CLASSOUSE MSTRUC		
	GEN CLASS0		
	setup to call REMOTE RTL routine if		
	CSECT_TYPE of parameter is #D	(3.2.5)	
		(0.2.0)	1
	GENERATE.BIT_STORE		
	CHAR_CALL, CTON,		
	GEN_CLASS0		
	GEN_CLASS1		
		(3.2.3)	J
			1
	CET OPERAND		
	If CSECT_TYPE of data is #D		
	then set Boolean LIVES REMOTE to trigge	r	
	NAME error-checking		
		(3.2.2)	
			1
	GENERATE.CLASS0.SET_IO_LIST		
	if CSECT_TYPE of aggregate is #D		
	copy to stack before calling output RTI		
	routine		
		(3.2.6)	
	GENERATE.FORCE_ADDRESS		
	if data assigned to NAME_REMOTE does		
	then convert to YCON+DSE to 7CON		
		(3,2,4)	
	<u></u>	<u> </u>	J

Figure 4-3 Enforce Compiler Restrictions on #D Data

4.2.4 Manipulate #D Data Using Extended Addressing Techniques

Manipulation of program data addresses should make use of Extended Addressing techniques where appropriate.

4.2.4.1 Interpretation

The HAL/S FC compiler normally uses ZCON (32-bit indirect address constant) addressing to manipulate (load and store) REMOTE data. Remote #D data will be manipulated using YCON (16-bit base register) addressing techniques.

The DSEs of the registers used to address the Remote #D data shall contain the DSE sector number. This allows standard YCON addressing to be used to point to REMOTE data. Although all eight general registers have associated DSE registers, it is only valid for the compiler to use the DSEs associated with registers R0, R1, R2, and R3, as FCOS only preserves these four during context switches.

There <u>may</u> be some circumstances where DSE addressing can not be appropriately used, and ZCON addressing must be used instead; for instance, in assignments of Remote #D addresses to NAME REMOTE variables (see section 4.2.3.2).

4.2.4.2 Detailed Implied/Derived Requirements

- 4.2.4.2.1 Once the Remote #D registers and their DSEs have been initialized, the Remote #D data shall be referenced and manipulated in the same manner as local #D data is manipulated today. This requires the REMOTE attribute of Remote #D data to be "turned off", which in turn ensures that the SDF flags for local #D data are not changed.
- 4.2.4.2.2 When the #D directive is used, general purpose registers R1 and R3 shall be reserved for addressing Remote #D data, and only Remote #D data. These registers will be referred to as the Remote #D registers.
- 4.2.4.2.3 When the #D directive is used, the #D compiler shall enforce restrictions such that when base addressing is used, only general register R2 (and no others) is used to reference COMPOOL data. Otherwise, immediate addressing (no-base) is used for referencing COMPOOL data.
- 4.2.4.2.4 When the #D directive is used, special handling of the Remote #D registers and their DSEs shall be required for the MVH instruction to function properly.

4.2.4.3 Compiler Implementation Design

COMMON DATA	NEW DATA_REMOTE Boolean		
			-
	symbol table REMOTE attribute flags		
PASS1	PASS2		PASS3
	INITIALISE.SET NEST AND LOCKS]
	if CSECT TYPE = #R then	(1.2.4)	
	clear REMOTE attribute	(4.2.1)	
			1
	new GENERATE. CHECK_RESTORE In R1/R3 for base		
	then restore P1/P2		
		(4.2.2)	
	GENERATE EMITRY		1
	if P1/P3 has been changed from the original#D pointer		
		(())	
	then call CHECK_RESTORE	(4.2.2)	
			1
	new GENERATE.REG_STAT]
	perform register restriction:		
	four basic cases:		
	1) loading MVH source operand:		
	no change in register allocation		
	2) loading address for RTL call:		
	no change in register allocation		
	3) target register is R1 or R3:		
	if loading NAME or formal parameter		
	then use R2 instead if loading non #D data		
	then use R2 instead		
	4) target register is R2:	(4.0.0)	
	If loading #D data	(4.2.2)	
	then use R3 instead	(4.2.3)]
	GENERATE GET. R		1
	GUARANTEE ADDRESSABLE		
	FORCE ADDRESS CHECK SI		
	ADDRESS STRUCTURE		
	REF STRUCTURE		
	FORCE ADDRESS LIT		
	call REG_STAT after current allocation methods select a	(4 2 2)	
	target register	(4.2.3)	
			1
	GENERATE.USE_MVH,		
	if CSECT_TYPE of destination is #D		
	then call GET_R to use R3 after a load of R3, clear its	(4.2.4)	
	וווגט		J

Figure 4-4 Manipulate #D Data Using Extended Addressing Techniques

5.0 PHASE 3 - SIMULATION DATA FILE GENERATION

Phase 3 of the HAL/S-FC compiler has the primary function of providing Simulation Data Files (SDFs) for each unit of compilation. Phase 3 also produces user-oriented printouts upon special request. This section deals with the following Phase 3 functions:

- SDF generation
- Printed data

5.1 SDF Generation

Phase 3 synthesizes the SDF for a compilation unit from data received from previous Phases of the compiler. This data is primarily in two areas: a) The symbol table, created by Phase 1 and augmented by Phase 2, and b) The statement table similarly created by Phase 1 and 2.

The detailed format of an SDF is controlled by the *HAL/SDL ICD*. The reader is referred there for details of SDF design beyond the overview presented in the next section.

5.1.1 Overall SDF Design

A Simulation Data File (SDF) is an organized and directoried collection of block, symbol, and statement data which is created by the HAL/S compiler from a single unit of compilation and stored in a permanent form for later use by simulation processors.

There are basically three types of information contained in an SDF. These are:

- 1. <u>Symbol Data</u> contains the attributes of HAL/S symbols (labels and variables) such as name, class and type, relative core address, number of bytes in core occupied, etc. Also contains arrayness and dimensionality for arrayed variables, template linkages for elements of structures, and cross-reference information listing all statements within the compilation unit that may assign values to the symbol.
- Statement Data contains the attributes of HAL/S statements such as type, Statement Reference Numbers (SRNs) if specified by the user, indices for all labels attached to each statement, and indices for all variables which may be assigned values by that statement. Also may optionally contain the relative core addresses of the first and last executable instructions emitted for that statement.
- 3. <u>Block and Directory Data</u> contains information about each HAL/S block and the symbols and statements contained within that block, plus information concerning the layout and organization of the SDF which minimizes the time needed to access desired data entries.

An SDF is produced for all compilation units unless suppressed by the user (the TABLES/NOTABLES option). In the case of COMPOOL compilations, the SDF becomes somewhat simplified, having no executable statements and, consequently, no cross-reference data for its symbols.

SDFs are created as members of Partitioned Data Sets (PDSs) and are assigned names o

f the form ##CCCCCC, where CCCCCC is the first six characters of the compilation unit name with any and all underscore characters removed. (Example: the SDFs for the compilation units SAMPLER and TEST_SAMPLE would be assigned the names ##SAMPLE and ##TESTSA, respectively). The members are written in fixed record format with a block size and logical record length of 1680.

The structure of the SDF will support three efficient types of access:

- 1. Given the name of a symbol, and the name of the block in which it was declared, obtain the attributes of the symbol.
- 2. Given a Statement Reference Number (SRN), obtain the attributes of the statement.
- 3. Given an Internal Statement Number (ISN), obtain the attributes of the statement.

In access methods 1 and 2, the SDF directory plays a key role. When the symbol name and its block are given, the directory will identify which particular physical record of the SDF contains the corresponding fixed-length Symbol Node. Once this record has been read into core, a simple and fast binary search will locate the symbol node which in turn "points" directly to the attributes of the symbol which are contained within a variablelength Symbol Data Cell. A virtually identical procedure can be used to locate statement data when the SRN is given. In this case, the fixed-length nodes involved in the binary search are called Statement Nodes, and their corresponding variable-length data cells are called Statement Data Cells.

In contrast to access methods 1 and 2, which require directory help followed by binary searches, method 3 is direct. This is because there is a one-to-one correspondence between the ISN (compiler-generated Internal Statement Number) and the order of the Statement Nodes. The *HAL/SDL ICD* contains detailed descriptions of the SDF organization.

5.2 Phase 3 Printed Data

For each invocation of Phase 3, a set of tabular data is printed. The information presented deals with parameters relating to the SDF produced, such as number of SDF pages, numbers of block, symbol, and statement nodes, etc.

In addition to the information which is always printed, two optional printouts are available. Under control of the TABLST compiler option, the user may request that symbolic, structured dump of the SDF be provided. In addition, under control of the TABDMP compiler option, the user may request that the contents of the SDF be displayed in a hexadecimal format, page by page.

Immediately following the Phase 3 output, but before any optional output from TABDMP or TABLST, an advisory section is printed starting on a new page. This section contains information for the programmer about improvements that could be made to the source

code of the program.

This page intentionally left blank.

6.0 RUNTIME LIBRARY

6.1 Introduction

This section describes the HAL/S-FC runtime library as used to support the HAL/S-FC compiler. The Primary Avionics Software System (PASS) and Backup Flight Software (BFS) versions of the HAL/S-FC compiler use the same source code to build their respective runtime libraries. The material is organized to present both general design concepts and detailed interface and algorithm information. Following an introductory discussion of general conventions used throughout the library, descriptions of the individual routines are grouped according to the basic type of the routine. Each group is introduced by a quick-reference chart containing basic interface data.

6.2 Basics and Conventions

6.2.1 Origin and Format

The HAL/S-FC compilers are supplied with runtime libraries. The library for PASS is a partitioned dataset (PDS) containing members in AP-101 load module format. The library for BFS is a PDS that contains object modules in the Eclipse format.

The runtime library objects are built by assembling the identically named members of a source library that consists of statements written in AP-101 Basic Assembly Language (BAL). Each source library member is assembled with the value of the &SYSPARM system variable set to 'PASS' and 'BFS' respectively. The &SYSPARM variable is used in the macro library routines to isolate code sequences that are unique to either PASS or BFS. A macro library is used to standardize frequently used sequences of source code.

The runtime libraries are built from these runtime library objects using methods that differ substantially between PASS and BFS. For PASS, some source library members have more than one entry point, in which case library ALIAS names are generated for each entry using the FIXOBJ tool. The AP-101 link editor is then invoked to generate the library in load module format. For BFS, the object modules are converted from AP-101 to Eclipse format using the SATSOBJ tool. The input commands to SATSOBJ specify that members beginning with '#L' are to be tagged as DATA type and all other library members as CODE type. The type assigned to a library member is used by the PILOT (Program Integration and Loading Tool) program to determine where the member should be placed in memory. The BFS runtime library is also marked with Version 0 to ensure compatibility with other objects generated by flight software.

Also included with the HAL/S-FC compilers are the ZCON libraries associated with PASS and BFS. The PASS ZCON library is created by assembling its associated source code using the same procedures that are used for the PASS runtime library. The BFS ZCON library is created using a special tool, BLDQCON, that simply requires a member list from the runtime library PDS as its input. The BFS ZCON library is also marked with Version 0 to ensure compatibility with other objects generated.

6.2.2 Purpose

The runtime library is used to supply routines, data and interfaces which are needed to execute a HAL/S program or group of programs which are not produced by the compiler's code generator. Most of the library consists of subroutines which are called from compiler generated code in a HAL/S statement.

6.2.3 Intrinsics and Procedure Routines

The library routines are divided into two groups: intrinsics and procedures. The main distinction is that procedure routines save the passed contents of all fixed point registers, while intrinsics do not. For this reason, a procedure can call another routine (e.g., vector (VV10S3) magnitude calls SQRT), but an intrinsic cannot. Intrinsics do not have a new stack level and therefore do not have any stack work areas. Because intrinsics do not save all passed contents of fixed point registers, they cannot restore them and must not destroy any register contents that must be returned to the calling program. Expansions of the macros within intrinsic routines are different from the expansions within procedure routines.

6.2.4 Register Conventions in Runtime Library Routines

6.2.4.1 General Purpose Registers R0-R7.

R1-R3, R5-R7	: free use;
R4	: return address during calling and exiting intrinsics, otherwise free use;
R0	: stack base;
Parameters	 Intrinsics: any or all of R1, R2, R3, R5, R6, R7 can be used for parameter passing. Procedures: any or all of R2, R4, R5, R6, R7 can be used for parameter passing.

6.2.4.2 Floating Point Registers F0-F7.

Internal compiler tables indicate which floating point registers are used by each RTL routine. Any register which is used in an RTL routine will be reloaded after returning from that routine before further use. The only exception to this rule is registers which are not flagged in the compiler's internal tables, but are instead saved and restored by the RTL routine upon entry and exit from the routine.

6.2.4.3 Interface Conventions.

In addition to the parameter passing conventions summarized in general form in the previous two sections and given in detail in the individual library routine descriptions, the compiler has information defining the linkage conventions and register usage for each routine.

This section contains that information in a list formatted in four columns as follows:

NAME	The primary or secondary entry point name.
CALL TYPE	Either PROCEDURE or INTRINSIC to distinguish between
	routines which must be called via the SCAL instruction and
	those that must be called using BAL.
BANK0	YES indicates that the routine will always reside in Sector 0 of
	the GPC and may therefore always be called directly (no ZCON
	needed). NO indicates that the routine may reside in a sector
	other than 0 and must therefore be called via a long indirect
	address constant (ZCON).
Registers assumed	A list of registers which the compiler assumes to be modified
to be modified	across a call to the routine. Any registers not listed may be
	assumed to remain unmodified and therefore to maintain their
	previous contents. Underlined registers are not actually
	modified by the RTL routine, but the compiler still assumes that
	they are.

Any modifications to compiler or library should be made carefully so as to maintain this interface properly.

	ROUTINE	CALL TYPE	BANK0	REGISTERS ASSUMED TO BE MODIFIED
1	ACOS	PROCEDURE	NO	F0, F1, F2, F3, F4, <u>F5</u>
2	ACOSH	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
3	ASIN	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
4	ASINH	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
5	ATAN	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
6	ATANH	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
7	BIN	PROCEDURE	NO	F0, F1
8	BOUT	PROCEDURE	NO	F0, F1
9	BTOC	INTRINSIC	NO	R1, R2, R3, R4, R5, R6, R7
10	CAS	INTRINSIC	NO	R1, R2, R3, R4, R5
11	CASP	INTRINSIC	NO	R1, R2, R3, R4, R5, R6
12	CASPV	INTRINSIC	NO	R1, R2, R3, R4, R5, R6
13	CASR	PROCEDURE	NO	NONE
14	CASRP	PROCEDURE	NO	NONE
15	CASRPV	PROCEDURE	NO	NONE
16	CASRV	PROCEDURE	NO	NONE
17	CASV	INTRINSIC	NO	R1, R2, R3, R4, R5,
18	CAT	INTRINSIC	NO	R1, R2, R3, R4, R5, R6, R7, F0, F1
19	CATV	INTRINSIC	NO	R1, R2, R3, R4, R5, R6, R7, F0, F1
20	CEIL	INTRINSIC	YES	R4, R5, F0, F1
21	CIN	PROCEDURE	NO	NONE
22	CINDEX	PROCEDURE	NO	R5, F0, F1, F2, F3, F4, F5
23	CINP	PROCEDURE	NO	F0, F1
24	CLJSTV	PROCEDURE	NO	F0, F1
25	COLUMN	PROCEDURE	NO	F0, F1
26	COS	INTRINSIC	NO	R2, R3, <u>R4</u> , , F0, F1, F2, F3, F4, <u>F5</u>
27	COSH	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
28	COUT	PROCEDURE	NO	NONE
29	COUTP	PROCEDURE	NO	NONE
30	CPAS	PROCEDURE	NO	F0, F1
31	CPASP	PROCEDURE	NO	F0, F1
32	CPASR	PROCEDURE	NO	F0, F1
33	CPASRP	PROCEDURE	NO	F0, F1

	ROUTINE	CALL TYPE	BANK0	REG	ISTE	RS A	SSUM	ED TO) ВЕ	MODI	FIED)
34	CPR	INTRINSIC	NO	R2,	R3,	R4,	R5,	R6				
35	CPRA	PROCEDURE	NO	NON	Ε							
36	CPRC	INTRINSIC	NO	R2,	R3,	R4,	R5,	R6				
37	CPSLD	PROCEDURE	NO	R5,	FO,	F1						
38	CPSLDP	PROCEDURE	NO	R5,	FO,	F1						
39	CPSST	PROCEDURE	NO	R5,	FO,	F1						
40	CPSSTP	PROCEDURE	NO	R5,	F0,	F1						
41	CRJSTV	PROCEDURE	NO	FO,	F1							
42	CSHAPQ	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5			
43	CSLD	PROCEDURE	NO	R5,	FO,	F1						
44	CSLDP	PROCEDURE	NO	R5,	FO,	F1						
45	CSST	PROCEDURE	NO	R5,	F0,	F1						
46	CSSTP	PROCEDURE	NO	R5,	F0,	F1						
47	CSTR	PROCEDURE	NO	NON	E							
48	CSTRUC	INTRINSIC	NO	R2,	R3,	R4,	R5,	R6				
49	CTOB	PROCEDURE	NO	R5,	FO,	F1						
50	CTOD	PROCEDURE	NO	F0,	F1,	F2,	F3,	F4,	F5			
51	CTOE	PROCEDURE	NO	F0,	F1,	F2,	F3,	F4,	F5			
52	СТОН	PROCEDURE	NO	R5,	FO,	F1						
53	CTOI	PROCEDURE	NO	R5,	FO,	F1						
54	CTOK	PROCEDURE	NO	R5,	F0,	F1						
55	CTOO	PROCEDURE	NO	R5,	F0,	F1						
56	CTOX	PROCEDURE	NO	R5,	F0,	F1						
57	CTRIMV	PROCEDURE	NO	F0,	F1							
58	DACOS	PROCEDURE	NO	F0,	F1,	F2,	F3,	F4,	F5,	F6,	F'7	
59	DACOSH	PROCEDURE	NO	F0,	FΊ,	F2,	F3,	F4,	F.5			
60	DASIN	PROCEDURE	NO	FO,	FI,	FZ,	F3,	F4,	F'5			
61	DASINH	PROCEDURE	NO	FU,	FI,	FΖ,	F3,	F4,	F'5			
62	DATAN	PROCEDURE	NO	FU, FO	F1,	FZ, EO	F3, E2	F4,	F 5 FF			
63	DATANH	PROCEDURE	NO	FU,	Γ⊥, □1	FZ,	гз, по	F4,	F 5			
64 CE	DATAN2	TNEDTNETC	NU	FU,	Γ⊥, DE	FZ, EO	F3, E1	F4,	FS			
65	DCEIL	DROCEDURE	ILS	R4,	кэ, 171	FU, EO	гт гр	17.4	TP F	БС		
67	DCOSH	PROCEDURE	NO	F0, F0	г⊥, ⊏1	г <i>∠</i> , ⊏р	гэ, гэ	гч, ги	rs, re	гo		
68	DEVD	DROCEDURE	NO	FO, FO	г⊥, ⊑1	г <i>∠</i> , ⋤р	гэ, гз	гч,	гэ			
69	DELOOR	INTRINCIC	VFC	P0,	ΡΞ,	F2,	F 3 F 1					
70	DIN	PROCEDURE	NO	F0	ਸ਼ ਹ ,	10,	1 1					
71	DLOG	PROCEDURE	NO	F0,	F1	F2	FЗ	F4	FS			
72	DMAX	INTRINSIC	NO	R2,	R4.	R5.	F0.	F1	10			
73	DMDVAL	PROCEDURE	NO	F0.	F1.	F2.	- 0, F3.	F4.	F5			
74	DMIN	INTRINSIC	NO	R2,	, R4,	R5,	F0,	F1				
75	DMOD	INTRINSIC	NO	, R4,	, F0,	F1,	F2,	F3,	F4,	F5,	F6,	F7
76	DOUT	PROCEDURE	NO	F0,	F1							
77	DPROD	INTRINSIC	NO	R2,	R4,	R5,	FO,	F1				
78	DPWRD	PROCEDURE	NO	F0,	F1,	F2,	F3,	F4,	F5			
79	DPWRH	PROCEDURE	NO	FO,	F1,	F2,	F3	-				
80	DPWRI	PROCEDURE	NO	FO,	F1,	F2,	F3					
81	DROUND	INTRINSIC	YES	R4,	R5,	FO,	F1					
82	DSIN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5,	F5		
83	DSINH	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5			
84	DSLD	PROCEDURE	NO	R5	-	-		-				
85	DSNCS	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5,	F6		
86	DSQRT	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5			
87	DSST	PROCEDURE	NO	NON	Ε							
88	DSUM	INTRINSIC	NO	R2,	R4,	R5,	F0,	F1				
89	DTAN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5			

	ROUTINE	CALL TYPE	BANK0	REGISTERS ASSUMED TO BE MODIFIED
90	DTANH	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
91	DTOC	PROCEDURE	NO	F0, F1, F2, <u>F3</u> , <u>F4</u> , <u>F5</u>
92	DTOH	INTRINSIC	YES	R4, R5, F0, F1
93	DTOI	INTRINSIC	YES	R4, R5, F0, F1
94	DTRUNC	INTRINSIC	YES	R4, R5, F0, F1
95	EATAN2	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
96	EIN	PROCEDURE	NO	F0, F1
97	EMAX	INTRINSIC	NO	R2, R4, R5, F0, F1
98	EMIN	INTRINSIC	NO	R2, R4, R5, F0, F1
99	EMOD	INTRINSIC	NO	R4, F0, F1, F2, F3, F4, F5
100	EOUT	PROCEDURE	NO	F0.F1
101	EPROD	INTRINSIC	NO	R2, R4, R5, F0, F1
102	EPWR3	PROCEDURE	NO	F0. F1. F2. F3. F4. F5
103	EPWRH	PROCEDURE	NO	F0. F1. F2. F3
104	EPWRT	PROCEDURE	NO	F0 F1 F2 F3
105	ESIIM	INTRINSIC	NO	R2 R4 R5 F0 F1
106	FTOC	PROCEDURE	NO	E_{2} , E_{1} , E_{2} , E_{3} , E_{4} , E_{5}
107	ETOH	INTRINSIC	VFC	P_4 P5 F0 F1
100	ETON	INTRINSIC	VEC	$\underline{\mathbf{R}}_{4}$, \mathbf{R}_{5} , \mathbf{F}_{0} , $\underline{\mathbf{F}}_{1}$
100	EIOI	DROCEDURE	NO	R_{+} , R_{2} , r_{0} , r_{1}
110	EAP	TNI TNE	NU	Γ_{0} , Γ_{1} , Γ_{2} , $\underline{\Gamma_{3}}$
111	CTDVTE	INDING	NO	
110	GIBYIE	INTRINSIC	NO	R2, R4, R5, F0, <u>F1</u>
112	HIN	TNUDINGIO	NO	
113	HMAX	INTRINSIC	NO	R2, R4, R5, R6
114	HMIN	INTRINSIC	NO	R2, R4, R5, R6
115	HMOD	INTRINSIC	NO	R2, R4, R5, R6, R7
116	HOU'I'	PROCEDURE	NO	FO, FI
117	HPROD	INTRINSIC	NO	R2, R4, R5, R6
118	HPWRH	PROCEDURE	NO	R5
119	HREM	INTRINSIC	NO	R2, R4, R5, R6, R7
120	HSUM	INTRINSIC	NO	R2, R4, R5, R6
121	HTOC	PROCEDURE	NO	NONE
122	IIN	PROCEDURE	NO	FO, F1
123	IMAX	INTRINSIC	NO	R2, R4, R5, R6
124	IMIN	INTRINSIC	NO	R2, R4, R5, R6
125	IMOD	INTRINSIC	NO	R2, R4, R5, R6, R7
126	IOINIT	PROCEDURE	NO	FO, F1
127	IOUT	PROCEDURE	NO	FO, F1
128	IPROD	INTRINSIC	NO	R2, R4, R5, R6, R7
129	IPWRH	PROCEDURE	NO	R5
130	IPWRI	PROCEDURE	NO	R5
131	IREM	INTRINSIC	NO	R2, R4, R5, R6, R7
132	ISUM	INTRINSIC	NO	R2, R4, R5, R6
133	ITOC	PROCEDURE	NO	NONE
134	ITOD	INTRINSIC	YES	R4, R5, F0, F1
135	ITOE	INTRINSIC	YES	R4, R5, F0, F1
136	KTOC	INTRINSIC	NO	R1, R2, R3, R4, R5, R6, R7, F0, F1
137	LINE	PROCEDURE	NO	F0, F1
138	LOG	PROCEDURE	NO	F0, F1, F2, F3, F4, F5
139	MMRDNP	PROCEDURE	NO	NONE
140	MMRSNP	PROCEDURE	NO	NONE
141	MMWDNP	PROCEDURE	NO	F0, F1
142	MMWSNP	PROCEDURE	NO	F0, F1
143	MMODNP	INTRINSIC	NO	R1, R3, R4, R5, R6, R7, F0, F1
144	MMOSNP	INTRINSIC	NO	R1, R3, R4, R5, R6, R7, F0, F1
145	MM1DNP	INTRINSIC	NO	R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3
-				

	ROUTINE	CALL TYPE	BANK0	REG	ISTE	RS A	SSUM	ED T	о ве	MOD	IFIE	D				
146	MM1SNP	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1				
147	MM1TNP	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3		
148	MM1WNP	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3		
149	MM11DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3		
150	MM11D3	INTRINSIC	NO	R1,	R2,	R4,	R5,	R7,	F0,	F1,	F2,	F3,	F4,	F5		
151	MM11SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1				
152	MM11S3	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1,	F2,	F3					
153	MM12DN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
154	MM12D3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
155	MM12SN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
156	MM12S3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
157	MM13DN	INTRINSIC	NO	R2,	R4,	R5,	R6,	F0,	F1							
158	MM13D3	INTRINSIC	NO	R2,	R4,	FO,	F1									
159	MM13SN	INTRINSIC	NO	R2,	R4,	R5,	R6,	FO,	F1							
160	MM13S3	INTRINSIC	NO	R2,	R4,	FO,	F1									
161	MM14DN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
162	MM14D3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
163	MM14SN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
164	MM14S3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
165	MM15DN	INTRINSIC	NO	R1,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3				
166	MM15SN	INTRINSIC	NO	R1,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3				
167	MM17DN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
168	MM17D3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
169	MM17SN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
170	MM17S3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
171	MM6DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3,	F4,	F5
172	MM6D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3,	F4,	F5
173	MM6SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3,	F4,	F5
174	MM6S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	F0,	F1,	F2,	F3,	F4,	F5
175	MRODNP	PROCEDURE	NO	FO,	F1											
176	MROSNP	PROCEDURE	NO	FO,	F1											
177	MR1DNP	PROCEDURE	NO	FO,	F1											
178	MR1SNP	PROCEDURE	NO	FO,	F1											
179	MR1TNP	PROCEDURE	NO	FO,	F1											
180	MR1WNP	PROCEDURE	NO	FO,	F1											
181	MSTR	PROCEDURE	NO	NON	Е											
182		NOT USED														
183	MV6DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3,	F4,	F5
184	MV6D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R6,	F0,	F1,	F2,	F3				
185	MV6SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1,	F2,	F3,	F4,	F5
186	MV6S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	FO,	F1,	F2,	F3					
187	OTOC	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1				
188	OUTER1	PROCEDURE	NO	FO,	F1											
189	PAGE	PROCEDURE	NO	FO,	F1											
190	OSHAPO	PROCEDURE	NO	F0,	F1											
191	RANDG	PROCEDURE	NO	FO,	F1,	F2,	F3									
192	RANDOM	PROCEDURE	NO	FO,	F1,	F2,	F3									
193	ROUND	INTRINSIC	YES	R4,	R5,	F0,	F1									
194	SIN	INTRINSIC	NO	R2,	R3,	R4,	FO,	F1,	F2,	F3,	F4,	F5				
195	SINH	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
196	SKIP	PROCEDURE	NO	FO.	, F1	,		,	-							
197	SNCS	INTRINSIC	NO	R2.	R3,	R4,	FO,	F1,	F2,	F3,	F4,	F5				
198	SQRT	INTRINSIC	NO	R1,	R4,	R5,	R6,	R7,	F0,	F1,	F2,	F3				
199	STBYTE	INTRINSIC	NO	, R1,	, R4,	, R5,	, F0,	, F1	,	,	,					
200	TAB	PROCEDURE	NO	, F0,	F1	- /										
201	TAN	PROCEDURE	NO	FO.	F1,	F2,	F3.	F4,	F5							
		-		. /					-							

	ROUTINE	CALL TYPE	BANK0	REG	ISTER	RS A	SSUM	ED T	о ве	MOD	IFIE	D				
202	TANH	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
203	TRUNC	INTRINSIC	YES	R4,	R5,	FO,	F1									
204	VM6DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	F0,	F1,	F2,	F3,	F4,	F5
205	VM6D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	F0,	F1,	F2,	F3,	F4,	F5		
206	VM6SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	F0,	F1,	F2,	F3,	F4,	F5
207	VM6S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	F0,	F1,	F2,	F3				
208	VO6DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	F0,	F1,	F4,	F5		
209	VO6D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	F0,	F1					
210	VOGSN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	F0,	F1,	F4,	F5		
211	VO6S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	F0,	F1					
212	VRODN	PROCEDURE	NO	FO,	F1											
213	VRODNP	PROCEDURE	NO	FO,	F1											
214	VROSN	PROCEDURE	NO	FO,	<u>F1</u>											
215	VROSNP	PROCEDURE	NO	FO,	<u>F1</u>											
216	VR1DN	PROCEDURE	NO	FO,	F1											
217	VR1DNP	PROCEDURE	NO	FO,	F1											
218	VR1SN	PROCEDURE	NO	FO,	<u>F1</u>											
219	VR1SNP	PROCEDURE	NO	FO,	<u>F1</u>											
220	VR1TN	PROCEDURE	NO	FO,	F1											
221	VR1TNP	PROCEDURE	NO	FO,	F1											
222	VR1WN	PROCEDURE	NO	FO,	F1											
223	VR1WNP	PROCEDURE	NO	FO,	F1											
224	VVODN	INTRINSIC	NO	R1,	R4,	R5,	F0,	F1								
225	VVODNP	INTRINSIC	NO	R1,	R4,	R5,	R7,	FO,	F1							
226	VVOSN	INTRINSIC	NO	R1,	R4,	R5,	FO									
227	VVOSNP	INTRINSIC	NO	R1,	R4,	R5,	R7,	FO,	F1							
228	VV1DN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1							
229	VV1DNP	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
230	VV1D3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3,	F4,	F5				
231	VV1D3P	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
232	VV1SN	INTRINSIC	NO	R1,	R2,	R4,	R5,	F0,	F1							
233	VV1SNP	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
234	VV1S3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3,	F4,	F5				
235	VV1S3P	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
236	VV1TN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1							
237	VV1TNP	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
238	VV1T3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3,	F4,	F5				
239	VV1T3P	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
240	VV1WN	INTRINSIC	NO	R1,	R2,	R4,	R5,	F0,	F1							
241	VV1WNP	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
242	VV1W3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1								
243	VV1W3P	INTRINSIC	NO	R1,	R2,	R4,	R5,	R6,	R7,	FO,	F1					
244	VV10DN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
245	VV10D3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5							
246	VV10SN	PROCEDURE	NO	FO,	F1,	F2,	F3,	<u>F4</u> ,	F5							
247	VV10S3	PROCEDURE	NO	FO,	F1,	F2,	F3,	<u>F4</u> ,	F5							
248	VV2DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	FO,	F1						
249	VV2D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	FO,	F1,	F2,	F3,	F4,	F5			
250	VV2SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	F0,	F1						
251	VV2S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	FO,	F1,	F2,	F3,	F4,	F5			
252	VV3DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	F0,	F1						
253	VV3D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	F0,	F1							
254	VV3SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	F0,	F1						
255	VV3S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	FO,	F1,	F2,	F3,	F4,	F5			
256	VV4DN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1,	F2,	F3					
257	VV4D3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3						

November 2005

	ROUTINE	CALL TYPE	BANK0	REG	ISTE	RS A	SSUM	ED TO) BE	MOD	IFIEI	D	
258	VV4SN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1,	F2,	F3		
259	VV4S3	INTRINSIC	NO	R1,	R2,	R4,	FO,	<u>F1</u>]	F2, 1	F3			
260	VV5DN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1,	F2,	F3,	F4,	F5, F6,F7
261	VV5D3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3,	F4,	F5,	F6,F7
262	VV5SN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1,	F2,	F3		
263	VV5S3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3			
264	VV6DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	FO,	F1,	F2,	F3	
265	VV6D3	INTRINSIC	NO	R2,	R3,	R4,	FO,	F1,	F2,	F3			
266	VV6SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	F0,	F1,	F2,	F3	
267	VV6S3	INTRINSIC	NO	R2,	R3,	R4,	FO,	F1,	F2,	F3			
268	VV7DN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1				
269	VV7D3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3,	F4,	F5	
270	VV7SN	INTRINSIC	NO	R1,	R2,	R4,	R5,	FO,	F1				
271	VV7S3	INTRINSIC	NO	R1,	R2,	R4,	FO,	F1,	F2,	F3,	F4,	F5	
272	VV8DN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	FO,	F1			
273	VV8D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	F0,	F1			
274	VV8SN	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	FO,	F1			
275	VV8S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	FO,	F1			
276	VV9DN	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5				
277	VV9D3	PROCEDURE	NO	FO,	F1,	F2,	F3,	F4,	F5				
278	VV9SN	PROCEDURE	NO	FO,	F1,	F2,	F3,	<u>F4</u> ,	F5				
279	VV9S3	PROCEDURE	NO	FO,	F1,	F2,	F3						
280	VX6D3	INTRINSIC	NO	R1,	R2,	R3,	R4,	FO,	F1,	F2,	F3,	F4,	F4
281	VX6S3	INTRINSIC	NO	R1,	R2,	R3,	R4,	FO,	F1,	F2,	F3		
282	XTOC	INTRINSIC	NO	R1,	R2,	R3,	R4,	R5,	R6,	R7,	FO,	F1	

6.2.5 Referencing Conventions

6.2.5.1 CSECT Names.

In order to comply with the CSECT naming standards described in the *HAL/SDL ICD*, all library code CSECTs begin with two alphabetic characters (A-Z)¹. All library primary names and aliases are unique to 6 characters.

Whenever a data CSECT is needed for a particular library module, it is given the CSECT name #Lnnnnn, where nnnnn is the first 6 characters of the primary entry name.

6.2.5.2 ZCONs.

For each primary entry point and alternate entry point in the runtime library, a member exists in a separate ZCON library. The members in the ZCON library contain address constants which refer to the actual entry points. Thus, for the library routine named SIN which has an entry point named COS, there are two members in the ZCON library named #QSIN and #QCOS. These #Q modules contain references to the respective entry points. The individual ZCONs in the ZCON library are created by assembly code like the following:

^{1.} Sector 0 routines are an exception: their CSECT names begin with #0. This is to conform to link editor conventions for routines which must reside in sector 0. Sector 0 routines are identified in the list in Section 6.2.4.3 and in the boxed area of the individual library routine description.

#QSIN CSECT DC Z(SIN,,X'E') EXTRN SIN END

Some library routines make reference to other library routines via the ACALL macro (see Section 6.2.7). The ACALL macro references a library routine via a ZCON as is done when compiler-emitted code references a library routine.

6.2.6 Coding Structure

The following outline represents the standard coding structure of all library members.

- 1 TITLE
- 2 WORKAREA macro definition used only if additional stack storage was needed
- 3 AMAIN
- 4 * Comment card describing the function of the primary entry point
- 5 INPUT
- 6 OUTPUT
- 7 Body of executable code including use of WORK, AERROR, AEXIT macros where needed and alternate entry points defined using the AENTRY macro, function comment card, and INPUT and OUTPUT macros in the same manner as the primary entry point.
- 8 DC constant area addressed via PC relative mode
- 9 ADATA, followed by a DC constant area addressed via base and displacement mode. Used only if constants need to be indexed.
- 10 ACLOSE

6.2.7 The Macro Library

To standardize interface conventions, automate production of commonly used code sequences, and impose a structure to the runtime library, a series of macros are used. This section describes the function, use, and expansion of these macros. Lower case letters are used to indicate variable fields. Square brackets [] indicate optional fields, braces {} indicate a choice of required fields.

AMAIN

name AMAIN
$$\left[\begin{array}{c} INTSIC &= \left\{ YES \\ INTERNAL \right\} \\ ACALL &= YES \\ SECTOR &= 0 \end{array}\right]$$

Function:

Defines "name" as the primary entry point of a routine.

INTSIC=YES:

Defines the routine (and any entry points) as an intrinsic. If the INTSIC operand is omitted, the routine is defined as a procedure.

INTSIC=INTERNAL:

Defines an intrinsic which is called only by other routines in the library. At present, this is only GTBYTE and STBYTE.

ACALL=YES:

(Valid only for procedure routines) Allows use of the ACALL macro within the routine (See ACALL description).

SECTOR=0:

Defines the routine (intrinsic or procedure) as a Sector 0 routine.

Expansion:

The macro first defines the primary entry "name" (the AMAIN label) as the CSECT name, unless SECTOR=0 was specified. In the latter case, the CSECT name is generated by prefixing "name" with #0, and the primary entry "name" is defined using the DS and ENTRY statements. The options selected via the AMAIN operands are saved in global SETB variables for testing by the other macros. If either INTSIC option was selected, the macro ends. Otherwise, a procedure is being defined, so the STACK DSECT is generated.

The STACK DSECT consists of a standard 18 halfword area, including symbols for the saved copies of the fixed point register parameters (ARG2, ARG4, ARG5, ARG6, ARG7), followed by the WORKAREA macro. The WORKAREA macro is the means by which additional storage beyond the standard stack of 18 halfwords may be defined. If such storage is needed a local WORKAREA macro must have been defined earlier in the source which contains the appropriate DS assembler statements. These statements are thus incorporated as the remainder of the STACK DSECT. If additional storage is not needed, the local WORKAREA macro is not defined. As a result, the system WORKAREA macro is invoked, which does not define any storage, leaving the STACK DSECT at its standard length. The system WORKAREA macro also sets a global SETB variable, which is tested later by the AMAIN macro to determine if the stack is standard or augmented. The STACK DSECT is then terminated by resuming the original CSECT. The STACK DSECT is defined in this sequence so that the assembler will output the SYM records in the order expected by the link editor's stack size algorithm. A USING statement is generated to give addressability to the stack area. Finally, the executable code of the entry prologue is generated. For PASS, this consists of an NIST instruction to zero the 10th halfword of the new stack frame, establishing a null ON ERROR environment. The Backup Operating System (BOS) does not require NIST, therefore, BFS does not use NIST. In addition, if both ACALL=YES is specified and a local WORKAREA provided, the default stack size of 18 set up by the SCAL microcode will be insufficient, so an IAL to set up the new stack size is generated.

AENTRY

name AENTRY

Function:

Defines "name" as a secondary entry point.

Expansion:

"name" is externally defined using the DS and ENTRY statements. If the routine was defined as an intrinsic, the macro ends. Otherwise, the executable code of the entry prologue is generated in the same manner as the AMAIN macro.

AEXIT

name AEXIT	$\begin{bmatrix} CC &= \begin{cases} KEEP \\ (rx) \\ EQ \\ NE \end{cases}$	}
	COND = code	

Function:

Cause return of control from a procedure or intrinsic routine.

<u>:CC</u>

Used to pass a condition code back to the caller. It can be used only if OUTPUT CC was specified (See OUTPUT macro).

Valid for Intrinsics Only:

CC=KEEP:

Passes back the condition code as is.

<u>CC=(rx)</u>:

Passes back the condition code generated by a LR rx, rx.

Valid for Procedures Only:

<u>CC=EQ:</u>

Passes back an equal (B'00') condition code.

<u>CC=NE</u>:

Passes back a not equal (B'11') condition code.

Note: The CC= operand is used in the following 8 routines:

CPR, CPRA, CSTR, CSTRUCT, VV8DN, VV8D3, VV8SN, and VV8S3.

COND=code:

Used to do a conditional return, i.e. based on the current condition code. Valid for procedures only. "Code" is either a number used as the mask on a BC opcode, or a letter or letter pair representing the mask in the extended BC mnemonic op codes (E, Z, NE, NZ, H, O, L, M, HE, LE, NL, NM, NH, NO). This operand may be used to improve the efficiency of some routines. If used, be sure valid executable code follows it, so the fall through case is valid.

Expansion:

The code generated by the AEXIT macro depends primarily on whether the routine is an intrinsic or procedure, and secondarily on what operands were supplied, and, in the case of intrinsics, what fixed point registers were used. The expansions for intrinsics and procedures are described separately.

Intrinsics:

If register(s) R1 and/or R3 have been defined (see INPUT, OUTPUT, and WORK macros), it is assumed they have been modified and must be restored from the stack, since they are the addressing registers for compiled code. This is done via the appropriate LH instruction(s), or IHL and SLL instructions if CC=KEEP was specified, since LH would destroy the existing condition code. If CC=(rx) was specified, a LR rx,rx is generated to set the condition code. Finally, a BCRE or BCR is generated to cause a return to the caller. A BCR is generated if SECTOR=0 or INTSIC=INTERNAL was specified on the AMAIN macro.

Procedures:

If CC=EQ or CC=NE was specified, the condition code bits in the return PSW in the stack are zeroed or set via the ZB or SB instruction. Then, an SRET instruction is generated with a mask of 7 if the COND operand was omitted or the appropriate mask if it was supplied.

I2DEDR

name I2DEDR dpscalar1, dpscalar2, dpscalar3, dpscalar4

Function:

I2DEDR was substituted for DEDR in DMOD in order to avoid incorrect results caused by some inputs. See CR11164 and DR106660.

IBMCEDR

name IBMCEDR dpscalar1, dpscalar2 Function:

IBMCEDR was substituted for CEDR in DMDVAL and DMOD in order to avoid incorrect results caused by an incorrectly set condition code. See CR11163 and DR106644.

INPUT

INPUT {register spec type comments NONE }

Function:

Defines input interface of primary or alternate entry point and symbolic names for the register(s).

Register Spec:

One of R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5, F6, or F7. If there is no input (RANDOM, RANDG only), code NONE. If there is more than one, use continuation lines for each subsequent one (see examples).

Type Comments:

<u>type</u>	precision	<u>units</u>
SCALAR MATRIX(3,3) MATRIX(N,N) VECTOR(3) VECTOR(N)	SINGLE/DOUBLE	<u>unns</u> RADIANS
INTEGER (N)		
CHARAC'TER		

Examples:

		col _. 16				col.	72
		\checkmark				\checkmark	
(1)	INPUT	FO	SCALAR	SINGLE	RADIANS	Х	
(2)	INPUT	R2,	VECTOR (N)	DOUBLE		Х	
		R3,	VECTOR (N)	DOUBLE		Х	
		R5	INTEGER (N)	SINGLE			

Note: R1 and R3 are illegal inputs for procedure routines and R4 is illegal for intrinsic routines.

Expansion:

For each register spec supplied, the macro checks for a valid register symbolic, or for the special case of NONE. If the symbolic register name has not been previously defined, an EQU statement is generated to define it. The macro also tests for the illegal use of R1 or R3 for a procedure parameter and R4 for an intrinsic. A global arrayed SETB variable is set, which in conjunction with the AMAIN, AENTRY, and ACLOSE macros, will guarantee that an INPUT macro has been supplied for each entry point (see ACLOSE macro).

OUTPUT

OUTPUT {register spec type comments} NONE CC

Function:

Defines output interface of primary or alternate entry point.

Operand form is identical to that of INPUT macro, with the addition of CC as a possibility. This indicates that the condition code is the output of the routine. If CC is specified, the CC= option of the AEXIT macro must be used.

Expansion:

Same as for INPUT macro, except for special processing for the CC operand. If CC is supplied, a global SETB variable is set which is tested by the AEXIT macro for consistency with its CC operand.

WORK

WORK {register spec}

Function:

Defines work registers.

Expansion:

Similar to INPUT and OUTPUT, except that this macro is required only if additional register symbols need to be defined.

ABAL

ABAL name

Function:

Calls the intrinsic routine "name", valid only in a procedure routine.

Expansion:

When the runtime library routine that uses ABAL is compiled and the routine "name" is in sector 0 then ABAL generates a BAL 4, name. If the routine "name" is not in sector 0, then ABAL generates object code to call the intrinsic routine "name" indirectly. An EXTRN statement is also generated if "name" has not been previously defined.

ACALL

ACALL name

Function:

Calls the procedure routine "name", valid only in a procedure routine defined with ACALL=YES option.

Expansion:

ACALL generates object code to call the procedure routine "name" indirectly. An EXTRN statement is also generated if "name" has not been previously defined.

AERROR

AERROR number cause comment

Function:

Generates a send error SVC instruction to signal a run time error to the FCOS.

Number:

The error number.

Cause Comment:

Brief description of the cause of the error.

Expansion:

This macro accumulates, in GBLA variables, all errors sent within one assembly. It also checks to see that the error number indicates as an argument to AERROR is less than a maximum value. The actual code emitted is an SVC in which the operand is the label of an SVC parameter list to be emitted by the ADATA or ACLOSE macro via the ERRPARMS macro. If any error is sent more than once in an assembly, AERROR insures that only one SVC parameter list for that error is used.

ADATA

Function:

Defines the start of a separate data CSECT for indexable constant data.

Expansion:

A CSECT is created with the name #Lnnnnn where nnnnn is the first 6 characters of the primary CSECT name defined by the AMAIN macro. The ADATA macro ends leaving the data CSECT in effect so that any user-defined data following the macro call will be part of the data CSECT. The ERRPARMS macro is invoked so that any possible AERROR SVC parameter lists will appear before the indexed data. This is necessary so that the assembler will use the direct addressing mode instead of base and displacement.

ACLOSE

ACLOSE

Function:

Terminates the assembly.

Expansion:

The macro first invokes the ERRPARMS macro to create the AERROR SVC parameter lists. (See ERRPARMS macro). It then checks via arrayed global SETB variables if INPUT and OUTPUT macros were supplied for each entry point. Finally, it generates an END assembler statement, terminating the assembly.

ERRPARMS

ERRPARMS

Function:

Generates SVC parameter lists for the AERROR macro.

Expansion:

This macro is invoked by the ADATA and ACLOSE macro. It first tests a global SETB variable to see if it has already been invoked, in which case the macro does nothing. Otherwise, it generates a CSECT statement to define the data CSECT (FCOS parameter lists must reside in the data sector). The CSECT name is #Lname, where "name" is the primary entry name. The parameter lists are generated by looping through arrayed global SETA variables in which the AERROR macro saved the unique error numbers. ERRPARMS is invoked by the ADATA macro because the parameter lists must be before any indexed data following the optional ADATA macro. It is invoked by the ACLOSE macro in case the ADATA macro is not used.

WORKAREA

WORKAREA

Function:

An automatically invoked, user-created macro used to define extensions of the stack area for temporary reentrant storage. The WORKAREA macro is invoked by the AMAIN macro in procedure routines. A system supplied default is invoked in the absence of a user-created macro.

Expansion:

The system WORKAREA macro merely sets a global SETB variable which is tested by the AMAIN macro to determine whether the system or user macro is being expanded.

NOTE: Listings of the members of the MACRO library have been deleted from this document.

6.2.8 Precision Requirements

Single precision runtime library routines are required to return results that are accurate to 6 significant decimal digits. Double precision routines are required to return results that are accurate to 8 significant decimal digits.

Exceptions to this requirement are documented in the "Comments" section of the appropriate runtime library routine descriptions (Chapter 6.3).

6.2.9 Usage Restrictions

Several runtime library routines are not currently used by PASS or BFS FSW. Therefore, SSCR 11053 (Restrict Runtime Library Use) was written to require the compiler to prohibit access by the user to these routines. A mechanism for prohibiting access shall be implemented so that a new compiler release is not required should the set of supported routines change.

An asterisk (*) in the VERIFIED column indicates a routine that has been verified but its usage is still restricted by the compiler with an XS3 warning message. The routine will be unrestricted in a future compiler release.

Some of the routines are secondary entry points within another routine. These are identifiable in the table below by giving the primary entry point's name in the "Alias Of" column.

Since June 1989, the RTL routines identified as Unverified have not been audited for flight issues. Therefore, if these routines are ever used by the FSW, they should be audited to prevent possible FSW execution errors.

MEMBER NAME	ALIAS OF	VERIFIED
ACOS		YES
ACOSH		NO
ASIN	ACOS	YES
ASINH		NO
ATAN	EATAN2	YES
ATANH		NO
BIN	HIN	NO
BOUT	IOINIT	NO
BTOC		NO
CAS	CASV	YES
CASP	CASPV	NO
CASPV		YES
CASR	CASRV	YES
CASRP	CASRPV	NO
CASRPV		NO
CASRV		NO
CASV		YES
CAT	CATV	NO
CATV		YES
CEIL	ROUND	YES
CIN		NO
CINDEX		NO
CINP		NO
CLJSTV		NO
COLUMN	IOINIT	NO
COS	SNCS	YES
COSH	SINH	NO
COUT	COUTP	NO
COUTP		NO
CPAS		YES
CPASP		YES
CPASR		NO
CPASRP		NO
CPR		YES
CPRA		NO
CPRC	CPR	NO
CPSLD	CSLD	NO
CPSLDP	CSLD	NO
CPSST	CSLD	NO

MEMBER NAME	ALIAS OF	VERIFIED
CPSSTP	CSLD	NO
CRJSTV		NO
CSHAPQ		NO
CSLD		NO
CSLDP	CSLD	NO
CSST	CSLD	NO
CSSTP	CSLD	NO
CSTR		NO
CSTRUC		YES
СТОВ		NO
CTOD	CTOE	NO
CTOE		NO
СТОН	CTOI	NO
CTOI		NO
СТОК	CTOI	NO
СТОО	CTOX	NO
CTOX		NO
CTRIMV		NO
DACOS		YES
DACOSH		NO
DASIN	DACOS	YES
DASINH		NO
DATAN	DATAN2	YES
DATAN2		YES
DATANH		NO
DCEIL	ROUND	YES
DCOS	DSNCS	YES
DCOSH	DSINH	NO
DEXP		YES
DFLOOR	ROUND	YES
DIN	HIN	NO
DLOG		YES
DMAX		NO
DMDVAL		YES
DMIN		NO
DMOD		YES
DOUT	IOINIT	NO
DPROD		NO
DPWRD		YES

MEMBER NAME	ALIAS OF	VERIFIED
DPWRH	DPWRI	YES
DPWRI		NO
DROUND	ROUND	YES
DSIN	DSNCS	YES
DSINH		NO
DSLD		NO
DSNCS		YES
DSQRT		YES
DSST		NO
DSUM		NO
DTAN		YES
DTANH		NO
DTOC	ETOC	NO
DTOH	ETOH	YES
DTOI	ROUND	YES
DTRUNC	ROUND	YES
EATAN2		YES
EIN	HIN	NO
EMAX		YES
EMIN		YES
EMOD		YES
EOUT	IOINIT	NO
EPROD		NO
EPWRE		YES
EPWRH	EPWRI	YES
EPWRI		NO
ESUM		NO
ETOC		NO
ETOH		YES
ETOI	ROUND	YES
EXP		YES
FLOOR	ROUND	NO
GTBYTE		YES
HIN		NO
HMAX		YES
HMIN		YES
HMOD	IMOD	YES
HOUT	IOINIT	NO
HPROD		NO

MEMBER NAME	ALIAS OF	VERIFIED
HPWRH	IPWRI	NO
HREM	IREM	YES
HSUM		YES
HTOC	ITOC	YES
IIN	HIN	NO
IMAX		NO
IMIN		NO
IMOD		YES
INTRAP	IOINIT	NO
IOINIT		NO
IOUT	IOINIT	NO
IPROD		NO
IPWRH	IPWRI	NO
IPWRI		NO
IREM		YES
ISUM		NO
ITOC		NO
ITOD		YES
ITOE		YES
KTOC		NO
LINE	IOINIT	NO
LOG		YES
MMODNP		YES
MMOSNP		NO
MM11D3		YES
MM11DN		YES
MM11S3		YES
MM11SN		NO
MM12D3		YES
MM12DN		NO
MM12S3		NO
MM12SN		NO
MM13D3		NO
MM13DN		NO
MM13S3		YES
MM13SN		NO
MM14D3		YES
MM14DN		NO
MM14S3		NO

MEMBER NAME	ALIAS OF	VERIFIED
MM14SN		NO
MM15DN		YES
MM15SN		NO
MM17D3		NO
MM17DN	MM17D3	NO
MM17S3		NO
MM17SN	MM17S3	NO
MM1DNP		YES
MM1SNP		NO
MM1TNP		NO
MM1WNP		NO
MM6D3		YES
MM6DN		YES
MM6S3		YES
MM6SN		NO
MMRDNP		NO
MMRSNP		NO
MMWDNP		NO
MMWSNP		NO
MRODNP		NO
MROSNP		NO
MR1DNP		NO
MR1SNP		NO
MR1TNP		NO
MR1WNP		NO
MSTR		YES
MV6D3		YES
MV6DN		YES
MV6S3		YES
MV6SN		NO
OTOC	XTOC	NO
OUTER1	IOINIT	NO
PAGE	IOINIT	NO
QSHAPQ		NO
RANDG	RANDOM	NO
RANDOM		NO
ROUND		YES
SIN	SNCS	YES
SINH		NO

MEMBER NAME	ALIAS OF	VERIFIED
SKIP	IOINIT	NO
SNCS		YES
SQRT		YES
STBYTE		YES
ТАВ	IOINIT	NO
TAN		YES
TANH		NO
TRUNC	ROUND	YES
VM6D3		YES
VM6DN		YES
VM6S3		YES
VM6SN		NO
VO6D3		YES
VO6DN		YES
VO6S3		YES
VO6SN		NO
VRODN		NO
VRODNP		NO
VROSN		NO
VROSNP		NO
VR1DN		NO
VR1DNP		NO
VR1SN		YES
VR1SNP		NO
VR1TN		NO
VR1TNP		NO
VR1WN		NO
VR1WNP		NO
VVODN		YES
VVODNP		YES
VVOSN		YES
VVOSNP		NO
VV10D3		YES
VV10DN	VV10D3	NO
VV10S3		YES
VV10SN	VV10S3	NO
VV1D3		YES
VV1D3P		YES
VV1DN		YES
MEMBER NAME	ALIAS OF	VERIFIED
-------------	----------	----------
VV1DNP	VV1D3P	YES
VV1S3		YES
VV1S3P		YES
VV1SN		YES
VV1SNP	VV1S3P	NO
VV1T3		YES
VV1T3P		YES
VV1TN		YES
VV1TNP	VV1T3P	NO
VV1W3		YES
VV1W3P		NO
VV1WN		YES
VV1WNP	VV1W3P	NO
VV2D3		YES
VV2DN		NO
VV2S3		YES
VV2SN		NO
VV3D3		YES
VV3DN		YES
VV3S3		YES
VV3SN		NO
VV4D3		YES
VV4DN		YES
VV4S3		YES
VV4SN		NO
VV5D3		YES
VV5DN		NO
VV5S3		YES
VV5SN		NO
VV6D3		YES
VV6DN		YES
VV6S3		YES
VV6SN		YES
VV7D3		YES
VV7DN		NO
VV7S3		YES
VV7SN		NO
VV8D3		NO
VV8DN	VV8D3	NO

MEMBER NAME	ALIAS OF	VERIFIED
VV8S3		YES
VV8SN	VV8S3	NO
VV9D3	VV10D3	YES
VV9DN	VV10D3	NO
VV9S3		YES
VV9SN	VV10S3	YES
VX6D3		YES
VX6S3		YES
XTOC		NO

6.3 Library Routine Descriptions

This section contains descriptive material for all routines in the HAL/S-FC runtime library. The routines have been grouped into seven categories. The routines within each category are described in one sub section as follows:

- 6.3.1 Arithmetic
- 6.3.2 Algebraic
- 6.3.3 Vector/Matrix
- 6.3.4 Character
- 6.3.5 Array Functions
- 6.3.6 Miscellaneous
- 6.3.7 Remote Operations

This documentation is based upon the "load module" as a basic unit. A load module is the entity created by a single invocation of the AP-101 linkage editor. It has a primary member name and may have up to 16 alias names. The primary and alias names indicate entry points to the module.

For each load module in the runtime library, an LRD form will be found in the succeeding sections. The basic LRD form is shown in Figure 6-1. The circled numbers in the figure are explained below.

- O The boxed area of the form (- ⑦ below) contains information relating to qualities and attributes of the load module apart from any of its entry points.
- In the upper right portion of every routine or entry point description, the name of the primary entry point will be seen. This serves as a quick reference aid in locating the documentation for a load module.
- ② Source Member Name The name of the member in the assembler language source PDS of the library. This name is always the same as the primary entry point name.

- Size of Code Area Each library module contains one code CSECT, regardless of the number of entry points. This number is the count of halfwords of code that would be used if the module were loaded. A module will be loaded if any one of its entry points is referenced.
- Stack requirement If a module is not an intrinsic (see ±), it will have a requirement for runtime stack space. The minimum required will be one standard stack frame (18 Hw). The number listed on the form indicates the module's total stack requirement. If the module is an intrinsic, zero will be indicated. Individual entry points in one module cannot have different stack requirements. Therefore, the stack requirement is an attribute of the module.
- ⑤ Data CSECT size If the module contains a #L CSECT, its size is indicated. Otherwise, a zero is indicated. This number shows the number of halfwords of data area that will be used if the module is loaded.
- 6 Intrinsic/Procedure The appropriate box is marked. Entry points in a module are either all intrinsic or all procedure, hence this is a quality of the module. Sector 0 routines are noted here.
- ⑦ Other modules referenced A list of other load modules referenced in EXTRN statements by this load module. If this module is loaded, the indicated modules will also be loaded.
- 8 Entry point descriptions Following the aggregate attributes of the module in 0-7 above, the descriptions of specific entry points follow.
- Primary Entry Name The name of the code CSECT in the module and the primary entry for the module in the library load module PDS.
- \odot Function A brief prose description of what this entry point does.
- Invoked By Entry points may be referenced directly from compiler-emitted code, from other library modules, or both. The appropriate boxes are marked. If the upper box is marked, an example of a HAL/S construct which results in reference to the entry point is shown. If the lower box is marked, the names of other modules which refer to this entry point are listed. If any of the other modules listed here are loaded, this module will also be brought in.
- Execution Time The time, in microseconds, needed to perform this entry point's function. These times are obtained from examinations of trace listings of simulations of the execution of the particular library routine or entry point on Version 11.3 of the GPC simulator in detailed timing mode. Times include times for referenced routines unless specifically stated.

- Input Arguments The data that the entry point receives as input is listed. "Type" indicates the nature of the data (integer, scalar, etc.). "Precision", where applicable, is generally SP for single precision and DP for double precision. "How Passed" indicates the method of communication of the data. In the case of DP scalar arguments, this field may indicate the first floating point register of an even/odd pair. "Units", when applicable, specifies the units presumed for an argument.
- Output Results The data that is considered the "answer" from the entry point. The fields are used in the same way as in .
- Errors Detected If invocation of this entry point can result in a Send Error SVC being executed, the error #, cause, and standard fixup for all such errors are indicated.
- G Comments Any special behavior of this entry point or notes to users are entered here.
- Algorithm The steps taken by the entry point to produce its results are shown. When appropriate, references are made to other entry point descriptions for further documentation.

In addition to the basic LRD form of Figure 6-1, which documents module attributes and the primary entry point, an extension LRD form is used to document additional alias entry points within a module. The extension LRD is shown in Figure 6-2. The circled numbers are explained below:

- $_{(B)}$ The primary entry name of the module is displayed. This is the same name as is displayed in the basic LRD form $_{()}$ to which this extension form is appended.
- Image Secondary Entry Name The name of the secondary entry point being documented.
- The remainder of the extension form is identical to the primary entry point description entries (1) through (1), and describe the function and interface to this entry.

HAL/S-FC LIBRARY ROUTINE DESCRIPTIO	N
② Source Member Name: ③ Size of Code Area:	Hw
Stack Requirement: Hw	Hw
Intrinsic 6 Procedure	
 Other Library Modules Referenced: 	
Drimony Entry Nomo:	
 9 Function: 9 Function: 	
 Invoked By: Compiler emitted code for HAL/S construct of the form: 	
Other Library Modules:	
12 Execution time (microseconds):	
13Input Arguments:TypePrecisionHow PassedUr	<u>nits</u>
 Output Results: <u>Type</u> <u>Precision</u> <u>How Passed</u> <u>Ur</u> 	<u>nits</u>
<pre> Errors Detected: <u>Error # Cause Fixup</u> </pre>	
6 Comments:	
⑦ Algorithm:	

Figure 6-1 Basic LRD Form

B Secondary Entry Name_									
② Function:	Function:								
Invoked By: Compiler emitted code for HAL/S construct of the form:									
Other Library	Modules								
Input Arguments: <u>Type</u>	Precision	How Passed	<u>Units</u>						
Output Results: <u>Type</u>	Precision	How Passed	<u>Units</u>						
Errors Detected: Error #	<u>Cause</u>	<u>Fixup</u>							
Comments: Algorithm:									

Figure 6-2 Extension LRD Form

18

The following table shows the routines which are assigned to each group. The table contains a list of primary and secondary entry points with each secondary indented under its primary entry. With each primary entry point, basic descriptive information is shown along with the sizes of the CSECTs in the module and the module's stack requirement. A final entry shows the timing information for the entry point. Secondary entry points have only the descriptive information and the timing for the entry. In cases where the timing information is too involved to be listed in the space available, the notice "See LRD" indicates that the detailed write-up of the module (on an LRD form in the proper subsection) should be referenced. In all cases, information in the table is taken from the LRDs and further details on the routines' performance can be found in those detailed descriptions.

<u>ENTRY</u>	FUNCTION	PREC.	CODE	DATA	<u>STACK</u>	TIME	<u>Page</u>
DMDVAL	MIDVAL(D,D,D)	D	20	0	18	41.4	6-36
DMOD	MOD(D,D)	D	152	4	0	74.6	6-38
EMOD	MOD(S,S)	S	52	4	0	46.6	6-40
IMOD	MOD(I,I)	I	20	2	0	29.4	6-41
HMOD	MOD(H,H)	Н				29.4	6-42
IREM	REMAINDER(I,I)	I	14	2	0	27.0	6-43
HREM	REMAINDER(H,H)	Н				27.0	6-44
ROUND	ROUND(S)	I	84	2	0	39.0	6-45
CEIL	CEILING(S)	I				See LRD	6-46
DCEIL	CEILING(D)	I				See LRD	6-47
DFLOOR	FLOOR(D)	I				See LRD	6-48
DROUND	ROUND(D)	I				33.8	6-49
DTOI	$D \rightarrow I$	I				33.8	6-50
DTRUNC	TRUNCATE(D)	I				28.6	6-51
ETOI	S →I	I				39.0	6-52
FLOOR	FLOOR(S)	I				See LRD	6-52
TRUNC	TRUNCATE(S)	I				31.4	6-53

ARITHMETIC ROUTINES (Section 6.3.1)

ALGEBRAIC ROUTINES (Section 6.3.2)

<u>ENTRY</u>	FUNCTION	PREC.	<u>CODE</u>	DATA	<u>STACK</u>	TIME	<u>Page</u>
ACOS	ARCCOS(S)	S	102	2	24	See LRD	6-54
ASIN	ARCSIN(S)	S				See LRD	6-55
ACOSH	ARCCOSH(S)	S	36	2	20	See LRD	6-57
ASINH	ARCSINH(S)	S	64	0	20	See LRD	6-58
ATANH	ARCTANH(S)	S	58	2	18	See LRD	6-59
DACOS	ARCCOS(D)	D	230	2	26	See LRD	6-60
DASIN	ARCSIN(D)	D				See LRD	6-61
DACOSH	ARCCOSH(D)	D	50	2	22	See LRD	6-63
DASINH	ARCSINH(D)	D	94	0	22	See LRD	6-64
DATANH	ARCTANH(D)	D	132	2	26	See LRD	6-65
DATAN2	ARCTAN2(D,D)	D	194	26	18	248.4	6-66
DATAN	ARCTAN(D)	D				237.3	6-68
DEXP	EXP(D)	D	154	66	18	290.5	6-69
DLOG	LOG(D)	D	184	2	30	282.2	6-71
DPWRD	D**D	D	40	4	22	See LRD	6-73
DPWRI	D**I	D	40	2	18	See LRD	6-74
DPWRH	D**H	D				See LRD	6-76
DSINH	SINH(D)	D	130	2	22	See LRD	6-77
DCOSH	COSH(D)	D				422.6	6-79
DSNCS	S**I	D	54	2	26	See LRD	6-80
DCOS	COS(D)	D				261.8-264.2	6-83
DSIN	SIN(D)	D	102	62	20	267.0	6-84
DSQRT	SQRT(D)	D	70	2	26	345.2	6-85
DTAN	TAN(D)	D	196	4	38	302.2	6-88
DTANH	TANH(D)	D	94	0	22	See LRD	6-91
EATAN2	ARCTAN2(S,S)	S	132	10	18	120.0	6-93
ATAN	ARCTAN(S)	S				116.5	6-96
EPWRE	S**S	S	32	4	22	See LRD	6-97
EPWRI	S**I	S	38	2	18	See LRD	6-98
EPWRH	S**H	S				See LRD	6-100
EXP	EXP(S)	S	108	2	18	141.8	6-101
IPWRI	**	I	46	2	18	See LRD	6-103
HPWRH	H**H	Н				See LRD	6-106
IPWRH	I**H	I				See LRD	6-105
LOG	LOG(S)	S	90	2	18	140.5	6-107
SINH	SINH(S)	S	80	2	18	See LRD	6-109
COSH	COSH(S)	S				228.9	6-111
SNCS	SIN(S),COS(S)	S	122	28	0	See LRD	6-112
COS	COS(S)	S				122.1-123.1	6-115
SIN	SIN(S)	S	70	30	0	123.6-124.5	6-116
SQRT	SQRT(S)	S	48	14	0	88.3	6-117
TAN	TAN(S)	S	112	4	20	164.0	6-119
TANH	TANH(S)	S	56	0	18	See LRD	6-121

VECTOR/MATRIX ROUTINES (Section 6.3.3)

<u>ENTRY</u>	FUNCTION	<u>SIZE</u>	PREC	CODE	DATA	<u>STACK</u>	TIME	PAGE
MM0DNP	Scalar to Partitioned Matrix Move	n,m	D	12	0	0	6.8+n(4.0+8.0m)	6-122
MM0SNP	п	n,m	S	10	0	0	6.4+n(4.4+6.4m)	6-124
MM1DNP	Partitioned Matrix Move	n,m	D	18	0	0	10.8+n(5.4+12.2m)	6-125
MM1SNP	"	n,m	S	16	0	0	10.8+n(5.4+9.4m)	6-127
MM1TNP	"	n,m	D-S	16	0	0	10.4+n(5.8+10.6)	6-129
MM1WNP	"	n,m	S-D	18	0	0	13.6+n(5.0+11.0m)	6-131
MM6DN	Matrix Multiply	(m,n),(n,λ)	D	42	0	0	22.2+m(10.8+λ(21.2+27.n))	6-133
MM6D3	"	(3,3),(3,3)	D	32	0	0	671.6	6-134
MM6SN	"	(m,n),(n,λ)	S	40	0	0	$22.2+m(10.8+\lambda(20.2+18.0n))$	6-135
MM6S3	u .	(3,3),(3,3)	S	24	0	0	409.6	6-136
MM11DN	Matrix Transpose	n,m	D	16	0	0	8.0+m(5.8+12.2n)	6-137
MM11D3	"	3,3	D	22	0	0	93.6	6-138
MM11SN	"	m,n	S	16	0	0	8.4+m(5.8+9.4n)	6-139
MM11S3	"	3,3	S	18	0	0	71.8	6-140
MM12DN	Matrix Determinant	n,n	D	150	0	22	See LRD	6-141
MM12D3	II.	3,3	D	44	0	18	229.6	6-143
MM12SN	"	n,n	S	138	0	20	See LRD	6-144
MM12S3	"	3,3	S	26	0	18	116.0	6-146
MM13DN	Matrix Trace	n,n	D	10	0	0	12.0+10.2n	6-147
MM13D3		3,3	D	8	0	0	19.8	6-148
MM13SN		n,n	S	8	0	0	8.8+6.2n	6-149
MM13S3		3,3	S	4	0	0	9.8	6-150
MM14DN	Matrix Inverse	n,n	D	258	2	20	63.0+129.5n+43.0n ² +65.4n ³	6-151
MM14D3	"	3,3	D	128	2	18	795.4	6-152
MM14SN	"	n,n	S	242	2	20	52.0+39.2n+10.5n ² +54.6n ³	6-153
MM14S3	n	3,3	S	80	2	18	458.8	6-155
MM15DN	Identity Matrix	n,n	D	18	0	0	15.6+5.0n+11.2n ²	6-156
MM15SN	n	n,n	S	14	0	0	10.0+5.2n+9.6n ²	6-157
MM17D3	Matrix to a Power	3.3	D	86	0	20	See LRD	6-158
MM17DN	"	n.n	D		•		See LRD	6-159
MM1792	п	2.2	c	70	0	20	SocieD	6 160
MM17SN	u .	5,5 n n	5	10	0	20		6-161
	•• •• •• ••	, , , , , , , , , , , , , , , , , , ,	0					0-101
MV6DN	Matrix times Vector	(m,n),n	D	24	0	0	12.0+m(19.3+26.0n)	6-162
MV6D3		(3,3),3	D	22	0	0	304.4	6-163
MV6SN		(m,n),n	S	18	0	0	11.2+m(11.0+18.4n)	6-164
MV653		(3,3),3	5	20	0	0	137.6	6-165
	vector times Matrix	n,(n,m)	D	26	0	0	23.2+m(23.2+27.6n)	6-166
		3,(3,3)		24	0	0	227.8	0-107
VIVIOSIN		n,(n,m)	5	22	0	0	12.4+m(19.2+18.2n)	6 1 6 0
	Vector Outer Breduct	3,(3,3)	3	10	0	0	141.2	6 170
	"	n,m 2.2		20	0	0	12.8+11(5.8+24.411)	6 171
	"	3,3	D S	22	0	0	251.0	0-171
VOGSN	п	11,111	3 c	20	0	0	14.2+11(5.6+14.411)	6 172
	Scolar to Vector Move	5,5	5	20	0	0	70,51	6 174
	Scalar to Column Voctor Movo	n		6	0	0	7.0+3.111 7.0+7.2n	6 175
	Scalar to Voctor Movo	11 D	D C	6	0	0	7.0+7.21	6 176
	Scalar to Column Voctor Move	ll n	3 6	6	0	0		6 177
	Vector Move	n	5	0	0	0	4 2 10 2n	6 170
		3		0 1/	0	0	4.27 IU.211 25 2	6-170
	Column Vector Move	3		18	0	0	See LRD	6-190
		n	D	10	0	5	See LRD	6-181
			5				SSS LIND	5 101

VECTOR/MATRIX ROUTINES (Section 6.3.3)

ENTRY	FUNCTION	SIZE	PREC	CODE	DATA	STACK	тіме	PAGE
VV1SN	Vector Move	n	S	8	0	0	4.2+7.8n	6-182
VV1S3	n	3	S	8	0	0	16.8	6-183
VV1S3P	Column Vector Move	3	S	14	0	0	See LRD	6-184
VV1SNP	"	n	S				See LRD	6-185
VV1TN	Vector Move	n	D-S	8	0	0	4.2+9.0n	6-186
VV1T3	Vector Move	3	D-S	12	0	0	21.2	6-187
VV1T3P	Column Vector Move	3	D-S	14	0	0	See LRD	6-188
VV1TNP	n	n	D-S				See LRD	6-189
VV1WN	Vector Move	n	S-D	10	0	0	8.4+9.0n	6-190
VV1W3	"	3	S-D	12	0	0	23.8	6-191
VV1W3P	Column Vector Move	3	S-D	18	0	0	See LRD	6-192
VV1WNP	"	n	S-D				See LRD	6-193
VV2DN	Vector Add/Matrix Add	n	D	14	0	0	8.8+20.6n	6-194
VV2D3	Vector Add	3	D	22	22	0	51.4	6-195
VV2SN	Vector Add/Matrix Add	n	S	10	0	0	8.2+13.6n	6-196
VV2S3	Vector Add	3	S	12	0	0	29.6	6-197
VV3DN	Vector Subtract/Matrix Subtract	n	D	16	0	0	6.0+22.7n	6-198
VV3D3	Vector Subtract	3	D	24	0	0	55.4	6-199
VV3SN	Vector Subtract/Matrix Subtract	n	S	10	0	0	8.4+13.6n	6-200
VV3S3	Vector Subtract	3	S	12	0	0	29.6	6-201
VV4DN	Vector or Matrix Times Scalar	n	D	8	0	0	7.0+23.4n	6-202
VV4D3	Vector Times Scalar	3	D	18	0	0	68.4	6-203
VV4SN	Vector or Matrix Times Scalar	n	S	8	0	0	7.0+14.0n	6-204
VV4S3	Vector Times Scalar	3	S	12	0	0	38.4	6-205
VV5DN	Vector or Matrix Divided by Scalar	n	D	16	2	0	37.0+24.2n	6-206
VV5D3	Vector Divided by Scalar	3	D	26	2	0	98.4	6-207
VV5SN	Vector or Matrix Divided by Scalar	n	S	14	2	0	7.2+18.0n	6-208
VV5S3	Vector Divided by Scalar	3	S	18	2	0	50.6	6-209
VV6DN	Vector Dot Product	n	D	12	0	0	16.4+25.4n	6-210
VV6D3		3	D	16	0	0	71.8	6-211
VV6SN		n	S	12	0	0	15.2+16.8n	6-212
VV6S3		3	S	10	0	0	41.8	6-213
VV7DN	Vector or Matrix Negate	n	D	8	0	0	7.0+11.4n	6-214
VV7D3	Vector Negate	3	D	18	0	0	32.4	6-215
VV/SN	Vector or Matrix Negate	n	S	8	0	0	7.0+9.0n	6-216
VV753	Vector Negate	3	5	12	0	0	23.4	6-217
VV8D3	Vector Compare	3	D				See LRD	6-218
VV8DN	Vector or Matrix Compare	n	D				See LRD	6-219
VV8S3	Vector Compare	3	S	12	0	0	See LRD	6-220
VV8SN	Vector or Matrix Compare	n	S				See LRD	6-221
VV9S3	Vector Magnitude	3	D				168.3	6-222
VV10D3	Unit Vector	3	D	56	2	20	402.7	6-223
VV9DN	Vector Magnitude	n	D				226.6+24.4n	6-225
VV9D3	"	3	D				300.2	6-224
VV10DN	Unit Vector	n	D				259.7+47.8n	6-226
VV10S3	Unit Vector	3	S	50	2	24	236.4	6-227
VV9SN	Vector Magnitude	n	S				118.9+14.0n	6-228
VV10SN	Unit Vector	n	S				130.6+32.8n	6-229
VX6D3	Vector Cross Product	3	D	36	0	0	137.6	6-230
VX6S3		3	S	22	0	0	78.0	6-231

CHARACTER ROUTINES (Section 6.3.4)

<u>ENTRY</u>	FUNCTION	CODE	<u>DATA</u>	<u>STACK</u>	<u>TIME</u>	<u>PAG</u> E
CASPV	Partitioned Assign to VAC	64	2	0	See LRD	6-232
CASP	Partitioned Assign				See LRD	6-234
CASV	Assign to VAC	28	0	0	29.2(n=0)	6-235
					See LRD	
CAS	Assign				32.0(n=0)	6-237
					See LRD	
CATV	Catenate into VAC	76	0	0	See LRD	6-238
CAT	Catenate into Data				See LRD	6-240
CINDEX	INDEX Function	52	0	18	See LRD	6-241
CLJSTV	LJUST	40	2	18	See LRD	6-243
CPAS	Assign to Partition	80	2	20	See LRD	6-245
CPASP	Partition Assign to Partition	16	0	146	See LRD	6-247
CPR	Compare (= or ¬=)	46	0	0	See LRD	6-248
CPRC	Compare (all relations except = and \neg =)					6-250
CPRA	Arrayed Compare	20	0	22	See LRD	6-251
CRJSTV	RJUST	46	2	18	See LRD	6-253
CTRIMV	TRIM	94	0	18	See LRD	6-255

ARRAY ROUTINES (Section 6.3.5)

<u>ENTRY</u>	FUNCTION	PREC	CODE	DATA	<u>STACK</u>	TIME	PAGE
DMAX	MAX(DA)	D	10	0	0	See LRD	6-257
DMIN	MIN(DA)	D	10	0	0	See LRD	6-258
DPROD	PROD(DA)	D	14	0	0	See LRD	6-259
DSUM	SUM(DA)	D	6	0	0	7.2+11.6n	6-260
EMAX	MAX(SA)	S	8	0	0	See LRD	6-261
EMIN	MIN(SA)	S	8	0	0	See LRD	6-262
EPROD	PROD(SA)	S	10	0	0	See LRD	6-263
ESUM	SUM(SA)	S	6	0	0	5.2+6.6n6-264	6-264
HMAX	MAX(HA)	н	8	0	0	See LRD	6-265
HMIN	MIN(HA)	Н	8	0	0	See LRD	6-266
HPROD	PROD(HA)	Н	12	0	0	See LRD	6-267
HSUM	SUM(HA)	н	6	0	0	4.4+5.4n	6-268
IMAX	MAX(IA)	I	8	0	0	See LRD	6-269
IMIN	MIN(IA)	I	8	0	0	See LRD	6-270
IPROD	PROD(IA)	I	22	0	0	See LRD	6-271
ISUM	SUM(IA)	I	6	0	0	4.4+5.4n	6-272

MISCELLANEOUS ROUTINES ((Section 6.3.6)

<u>ENTRY</u>	FUNCTION	CODE	DATA	STACK	TIME	PAGE
BTOC	Bit to Character Conversion	28	0	0	161.0(16 bits)	6-273
CSHAPQ	Shaping Function	40	4	18	See LRD	6-274
CSLD	SUBBIT Load of Character	246	4	22	See LRD	6-276
CPSLD	Partitioned SUBBIT Load of Character				71.8	6-277
CPSST	Partitioned SUBBIT Store to Character				114.4	6-279
CPSLDP	Partitioned SUBBIT Load of Partitioned Character				See LRD	6-278
CPSSTP	Partitioned SUBBIT Store to Partitioned Character				See LRD	6-281
CSLDP	SUBBIT Load of Partitioned Character				See LRD	6-282
CSST	SUBBIT Store to Character				See LRD	6-283
CSSTP	SUBBIT Store to Partitioned Character				See LRD	6-284
CSTRUC	Structure Compare	12	0	0	5.4+10.4n	6-285
СТОВ	Character to Bit Conversion	32	2	18	See LRD	6-286
CTOE	Character to SP Scalar Conversion	287	2	30	See LRD	6-288
CTOD	Character to DP Scalar Conversion				See LRD	6-291
CTOI	Character to DP Integer Conversion	104	2	20	See LRD	6-292
СТОН	Character to SP Integer Conversion				See LRD	6-294
СТОК	Character to Bit Conversion, DEC Radix				See LRD	6-295
СТОХ	Character to Bit Conversion, HEX Radix	58	4	18	See LRD	6-296
СТОО	Character to Bit Conversion, OCT Radix				See LRD	6-298
DSLD	SUBBIT Load of DP Scalar	22	2	18	36.5	6-299
DSST	SUBBIT Store into DP Scalar	54	2	18	64.6	6-300
ETOC	SP Scalar to Character Conversion	278	64	20	336.9	6-301
DTOC	DP Scalar to Character Conversion				602.5	6-303
ETOH	SP Scalar to SP Integer Conversion	14	0	0	15.4	6-304
DTOH	DP Scalar to SP Integer Conversion				17.4	6-306
GTBYTE	Character Fetch	14	0	0	See LRD	6-307
ITOC	DP Integer to Character Conversion	104	0	28	254.6	6-308
HTOC	SP Integer to Character Conversion				189.6	6-309
ITOD	DP Integer to DP Scalar Conversion	20	0	0	15.6	6-310
ITOE	DP Integer to SP Scalar Conversion	6	0	0	12.0	6-311
KTOC	Bit to Character Conversion, DEC Radix	70	0	0	262.5(16 bits)	6-312
MSTRUC	Structure Move	8	0	0	4.2+9.4n	-
QSHAPQ	Shaping Functions	74	0	18	42.6+31.8n	6-314
RANDOM	Random Number Generator, Uniform Dist.	46	2	18	54.4	6-316
RANDG	Random Number Generator, Gaussian Dist.				575.8	6-317
STBYTE	Character Store	22	0	0	See LRD	6-318
XTOC	Bit to Character Conversion, HEX Radix	68	0	0	See LRD	6-319
OTOC	Bit to Character Conversion, OCT Radix				See LRD	6-321

REMOTE ROUTINES (Section 6.3.7)

<u>ENTRY</u>	FUNCTION	CODE	DA	<u>ATA</u>	STACK	<u>_</u>	<u>IME</u> PAGE	
A. CHAR	ACTER ROUTINES							
CASRPV	Partitioned Assign to VAC	86	2		22	S	See LRD	6-323
CASRP	Partition Assign					S	See LRD	6-325
CASRV	Assign to VAC	36	0		18	S	See LRD	6-326
CASR	Assign					5	See LRD	6-327
CPASR	Assign to Partition	132	2		24	S	See LRD	6-328
CPASRP	Partition Assign to Partition	16	0		146	S	See LRD	6-330
B. STRU	CTURE ROUTINES							
CSTR	Structure Compare	18	0		18	S	See LRD	6-332
MSTR	Structure Move	10	0		18	S	See LRD	6-343
C. VECTO	OR AND MATRIX ROUTINES							
MR0DNP	Scalar to Partitioned Matrix Move	n,m	D	16	0	20	22.8+n(5.6+9.8m)	6-333
MR0SNP	"	n,m	S	16	0	20	22.8+n(5.6+8.6m)	6-334
MR1DNP	Partitioned Matrix Move	n,m	D	22	0	20	28.4+n(8.2+15.0m)	6-336
MR1SNP	"	n,m	S	22	0	22	28.4+n(8.2+12.6m)	6-338
MR1TNP	"	n,m	D-S	24	0	22	31.2+n(7.6+13.8m)	6-340
MR1WNP	"	n,m	S-D	24	0	22	32.8+n(8.2+15.8m)	6-342
VR0DN	Scalar to Vector Move	n	D	6	0	18	16.4+9.2n	6-344
VR0DNP	Scalar to Column Vector Move	n	D	10	0	18	21.2+10.0n	6-345
VR0SN	Scalar to Vector Move	n	S	6	0	18	16.4+8.0n	6-346
VR0SNP	Scalar to Column Vector Move	n	S	10	0	18	21.2+8.8n	6-347
VR1DN	Vector Move	n	D	8	0	18	16.4+15.0n	6-348
VR1DNP	Column Vector Move	n	D	20	0	18	See LRD	6-349
VR1SN	Vector Move	n	S	8	0	18	16.4+12.6n	6-350
VR1SNP	Column Vector Move	n	S	20	0	18	See LRD	6-351
VR1TN	Vector Move	n	D-S	8	0	18	16.4+13.8n	6-352
VR1TNP	Column Vector Move	n	D-S	20	0	18	See LRD	6-353
VR1WN	Vector Move	n	S-D	10	0	18	20.6+13.8n	6-354
VR1WNP	Column Vector Move	n	S-D	22	0	18	See LRD	6-355

6.3.1 Arithmetic Routine Descriptions

This subsection presents the detailed descriptions of a class of routines generally denoted as "Arithmetic". Appendix C of the HAL/S Language Specification contains a list of HAL/S functions which are implemented by the routines described here.

	HAL/S-FC LIBRA	ARY ROUTINE	DESCRIPTION	
Source Mem	ber Name: <u>DMD'</u>	VAL Size of C	ode Area	84 Hw
Stack Require	ement: <u>18</u> H	w Data C	SECT Size:	0 Hw
Intrins	sic	X	Procedure	
Other Library	Modules Refere	enced: <u>None</u>		
ENTRY POINT D	ESCRIPTIONS			
Primary Entry Na	ame: DMDVAL			
Eunction: Einde r	nid value of thro	o doublo procisio	on scalar argun	vonte
			Shi Scalar argun	
Invoked By:				
X Compiler	emitted code to	r HAL/S construe	ct of the form:	
MIDVAL (A,B,C), when	re A, B, C	are double	precision
scalars				
	rary modules:			
Execution Time (microseconds):			
Input Arguments:	:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar(A)	DP	F0	-	
Scalar(B)	DP	F2	-	
Scalar(C)	DP	F4	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None		-		
Comments:				
Registers Unsafe	Across Call: F0	,F1,F2,F3,F4,F5	5.	

Algorithm:

				DMOD
ł	HAL/S-FC LIBRAF	RY ROUTINE DESCR	RIPTION	
Source Memb	per Name: <u>DMOD</u>	Size of Code Ar	ea <u>152</u>	Hw
Stack Require	ement: <u>0</u> Hw	Data CSECT	Size: <u>4</u>	Hw
			edure	
Other Library	Modules Referen	ced: <u>None</u>		
ENTRY POINT D	ESCRIPTIONS			
Primary Entry Na	ime: <u>DMOD</u>			
Function: Calclat	es HAL/S MOD fu	nction in double preci	ision.	
Invoked By:				
X Compiler	emitted code for H	IAL/S construct of the	e form:	
MOD(A,B), where at l	east one of A	or B is a	a double
	precision s	scalar.		
Other Libr	ary Modules:			
Execution Time (microseconds):			
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar(A)	DP	F0/F1	-	
Scalar(B)	DP	F2/F3	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0/F1	-	
Errors Detected:				
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>	
19	MOD domain erro	or when B=0, A < 0	Return 0	
33	A/B approx. > 10	6 ¹⁴	Return 0	

Comments:

The precision of the result of the MOD(A,B) function is limited by the precision of the inputs A and B. Specifically, the EMOD output will be precise to six significant digits of the input of greatest magnitude. Similarly, the DMOD output will be precise to eight significant digits of the input of greatest magnitude. A fixup value of zero is returned by MOD(A,B) if:

- 1. It is a positive operand case and the result computed for MOD(A,B) is greater than |B|, or
- 2. It is a negative operand case and the result computed for MOD(A,B) is less than zero.

Warning:

The DMOD routine uses the formula MOD(A,B)=A-|B|*FLOOR(A/|B|).

(-2.4308653429145086E-63<u><</u>A<u><</u>2.4308653429145086E-63).

An exponent overflow can also be generated during the divide operation (I2DEDR macro for DMOD, DER for EMOD) when A and B differ in order of magnitude as described in the AP101 POO for the operation A/|B|. For overflow, A would be greater than B by approximately half of the floating point exponential range.

Registers Unsafe Across Call: R4,F0,F1,F2,F3,F4,F5,F6,F7.

Algorithm:

First check for mod domain error (B=0 and A < 0) and signal an error 19 and return a fixup value of zero. If B< >0, then take |B|. For positive A values, MOD(A,B) is computed as A-(|B|*FLOOR(A/|B|)). For positive A values, a pre-divide check is performed, and if A < |B| then return A as the answer. For negative A values, MOD(A,B) is computed as A+(|B|*FLOOR(|A|/|B|)). For negative A values, a predivide check is performed, and if |A|<|B| then return A+|B| as the answer. For both positive and negative A's, the FLOOR function is accomplished by adding and then subtracting a value BIGNUM (X'4E8000000000000' for DMOD and quotient to be lost, leaving only the integer portion. The positive and negative A parts of the algorithm then converge for pre-exit validation of the result. If the answer is negative, then add in one more |B|. If the answer is still negative, then log a GPC error and return a fixup value of zero. If the answer is positive or zero, check that it is less than |B|. If not, subtract one |B| from the answer and check it again. If the answer is still greater than or equal to |B| then log a GPC error and return a fixup value of zero.

			EMOD
I	HAL/S-FC LIBRA	ARY ROUTINE DES	CRIPTION
Source Memi Stack Require X Intrins Other Library	per Name: <u>EMOI</u> ement: <u>0</u> Hw sic Modules Refere	D Size of Code Data CSE(Pro enced: <u>None</u>	Area <u>52</u> Hw CT Size: <u>4</u> Hw ocedure
ENTRY POINT D	ESCRIPTIONS		
Primary Entry Na Function: Calcula	ime: <u>EMOD</u> ates HAL/S MOD	function in single p	recision.
Invoked By: X Compiler MOD (A, B	emitted code for), where A	HAL/S construct of and B are s	the form: single precision
Other Libr	scalars. ary Modules:		
Execution Time (microseconds):		
Input Arguments: <u>Type</u> Scalar(A) Scalar(B)	<u>Precision</u> SP SP	<u>How Passed</u> F0 F2	<u>Units</u> - -
Output Results: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: Error # 19 33	<u>Cause</u> MOD domain ei A/B approx.>1	rror when B=0,A<0 6 ⁶	<u>Fixup</u> Return 0 Return 0
Comments: See DMOD. Registers Un	safe Across Cal	l: R4,F0,F2,F4,F5.	
Algorithm:			

See DMOD.

				IMOD
	HAL/S-FC LIB	RARY ROUTINE DES	CRIPTION	
Source Mem	ber Name: <u>IMC</u>	DD Size of Code	Area <u>152</u>	Hw
Stack Requir	ement: <u>0</u> H	w Data CSE	CT Size: <u>4</u>	Hw
x Intrine	sic	Pr	ocedure	
Other Library	/ Modules Refe	erenced: <u>None</u>		
ENTRY POINT [DESCRIPTION	<u>S</u>		
Primary Entry Na	ame: <u>IMOD</u>			
Function: Calcula	ates HAL/S MC	DD(A,B) in double pred	cision.	
Invoked By:				
X Compiler	emitted code fo	or HAL/S construct of t	he form:	
MOD(A,B)), where A	and B are both i	ntegers and a	at least
	A or B i	s a fullword int	eger value.	
Other Libr	ary Modules:			
Execution Time	(microseconds): 29.4		
Input Arguments	:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer(A)	DP	R5	-	
Integer(B)	DP	R6	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer	DP	R5	-	
Errors Detected:	_			
Error #	Cause		<u>Fixup</u>	
19	MOD not defi	ned for A<0 and B=0	Return A	
Comments:				
MOD(A,B) is	s defined to be	the smallest non-nega	tive value that ca	an be reached by
starting from	A and adding	or subtracting B as o	ften as is necess	sary.
Registers Ur	nsate Across C	all: R2,R4,R5,R6,R7.		
Algorithm:				
If $B = 0$				
lf بد	A≥0 Return A	appareted		
If B ≁ 0	A <u #19<="" eitot="" td=""><td>generaleu</td><td></td><td></td></u>	generaleu		

MOD(A,B) = A - [(|B|(A/|B|)]

If this result < 0, then add |B| to this to make it positive.

For all values of A and B, the result is always non-negative.

For A \geq 0, MOD = REMAINDER(A,B). These equations are used because AP-101 division (scalar or integer) does not yield a remainder.

Secondary Entry Name: <u>HMOD</u>

Function: Performs HAL/S MOD(A,B) where both A and B are single precision integers. Invoked By:

X Compiler emitted code for HAL/S construct of the form:

MOD(A,B), where A and B are both integers and at least A or B is a fullword integer value.

Other Library Modules:

Execution Time (microseconds): 29.4

Input Arguments:

<u>Type</u> Integer(A) Integer(B)	<u>Precision</u> SP SP	<u>How Passed</u> R5 R6	<u>Units</u> - -
Output Results: <u>Type</u> Integer	<u>Precision</u> SP	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: <u>Error #</u> Same as IMOD	<u>Cause</u>	<u>Fixup</u>	

Comments:

MOD(A,B) is defined to be the smallest non-negative value that can be reached by starting from A and adding or subtracting |B| as often as is necessary. Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:

Same as IMOD

			IREM
H H	IAL/S-FC LIBRARY RO		PTION
Source Memb	er Name: <u>IREM</u> S	Size of Code Are	ea <u>16</u> Hw
	ic		dure
Other Library	Modules Referenced: <u>N</u>	lone	
ENTRY POINT D	ESCRIPTIONS		
Primary Entry Na	me: IREM		
Function: Calcula	tes integer remainder of	⁻ (A,B).	
Invoked By:			
X Compile	r emitted code for HAL/S	S construct of th	e form:
MOD(A,I	B), where A and integers.	B are bot	h single precision
Other Lil	orary Modules:		
Execution Time (r	nicroseconds): 27.0		
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Integer(A)	DP)	R5	-
Integer(B)	> one can be SP	R6	_
		i to	
Type	Precision	How Passed	Units
Integer	DP	R5	-
Errors Detected:			
Error #	<u>Cause</u>	<u>Fixup</u>	
16	Zero denominator (B)	Return A	
Comments:			
Registers Uns	safe Across Call: R2,R4	,R5,R6,R7.	
Algorithm:			

If B=0, then error. For $B \neq 0$, the remainder is found using REMAINDER(A,B) = [A - B*(A/B)]. The result can be negative.

Secondary Entry	y Name: <u>HREM</u>				
Function: Calcu	lates integer ren	nainder of A/B.			
Invoked By:					
X Compi	ler emitted code	for HAL/S const	ruct of the form	า:	
REMAI	NDER(A,B), wi	here A and recision inte	d B are egers.	both	single
Other I	Library Modules:				
Execution Time	(microseconds)	: 27.0			
Input Arguments	S:				
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Integer(A)	SP	R5	-		
Integer(B)	SP	R6	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Integer	SP	R5	-		
Errors Detected	:				
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>		
16	Zero denomina	ator (B)	Return A		
Comments:					

Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:

Same as IREM.

ROUND					
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member Name: <u>ROUND</u> Size of Code Area <u>80</u> Hw					
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw					
x Intrinsic - Sector - 0 Procedure					
Other Library Modules Referenced: None					
ENTRY POINT DESCRIPTIONS					
Primary Entry Name: <u>ROUND</u>					
Function: Converts single precision scalar to fullword integer.					
nvoked By:					
X Compiler emitted code for HAL/S construct of the form:					
ROUND(X), where X is a single precision scalar.					
X Other Library Modules:					
Execution Time (microseconds): 30.0					
nput Arguments:					
<u>Type</u> <u>Precision</u> <u>How Passed</u> <u>Units</u>					
Scalal SF FU -					
Output Results:					
<u>Type</u> <u>Precision</u> <u>How Passed</u> <u>Units</u>					
Integer DP R5 -					
Errors Detected:					
Error # Cause Fixup					
15 Scalar too large for integer Return either:					
Conversion Positiax – X71111111 Of Negmax = X'80000000'					
Comments:					

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

Second register of a floating point register pair is cleared then routine merges into the double precision float-to- fix routine, DROUND.

ROUND

Secondary Entry Name: CEIL

Function: Performs HAL/S CEILING function: Returns smallest integer \geq the argument. Invoked By:

Compiler emitted code for HAL/S construct of the form: Х

CEILING(X), where X is a single precision scalar.

Other Library Modules:

Execution Time (microseconds): 31.4 if X > 0

40.8 if X < 0

Input Arguments	:		
<u>Type</u>	Precision	<u>How Passed</u>	<u>Units</u>
Scalar	SP	F0	-
Output Results:	Precision	How Passed	Linite
<u>Type</u> Integer		DE	
integer	DP	KO	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
15	Scalar too larg	ge for integer	Return either: Posmax = X'7FFFFFFF' or Negmax = X'80000000'

Comments:

See DCEIL.

Registers Unsafe Across Call: R4,R5,F0,F1.

An invalid result of 0 is returned for arguments between 0 < N < 1.0 X 16 E-14.

Algorithm:

Second register of floating point register pair is cleared, then routine merges with DCEIL.

ROUND

Secondary Entry Name: DCEIL

Function: Performs HAL/S CEILING function: Finds the smallest integer ≥ the argument.

Invoked By:

Compiler emitted code for HAL/S construct of the form: Х

CEILING(X), where X is a double precision scalar.

Other Library Modules:

Execution Time (microseconds): 26.6 if $X \ge 0$

conversion

36.0 if X < 0

Input Arguments:

<u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0, F1	<u>Units</u> -
Output Results: <u>Type</u> Integer	<u>Precision</u> DP	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected Error <u>#</u> 15	t: <u>Cause</u> Scalar too larç conversion	ge for integer	<u>Fixup</u> Return either: Posmax = X'7FFFFFFF' or

Comments:

Negative args become less negative after CEILING, positive args more positive.

Negmax = X'8000000'

-3	α	-2	-1	0	1	β	2	3
		Ι	Ι					
<	CE	 EILIN(G(α)			CE	 EILIN(→ G(β)

Registers Unsafe Across Call: R4,R5,F0,F1.

An invalid result of 0 is returned for arguments between $0 < N < 1.0 \times 16 E-14$.

Algorithm:

Same as DROUND, except positive arguments are rounded up by almost 1. Negative arguments are not rounded.

ROUND

Secondary Entry Name: DFLOOR

Function: Performs HAL/S FLOOR function: Finds the largest integer \leq the argument. Invoked By:

X Compiler emitted code for HAL/S construct of the form:

FLOOR(X), where X is a double precision scalar.

Other Library Modules:

Execution Time (microseconds): 27.0 if $X \ge 0$

36.4 if X < 0

Input Arguments			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0, F1	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Integer	DP	R5	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
15	Scalar too lar	ge for integer	Return either:
	conversion	- •	Posmax = X'7FFFFFF' or Negmax = X'80000000'

Comments:

Negative arguments become more negative, positive arguments less positive.

-3	α	-2	-1	0	1	2	β	3
		Ι	Ι					
↓ FLOO	R(α)				FL	 DOR(β)	\longrightarrow

Registers Unsafe Across Call: R4,R5,F0,F1.

An invalid result of 0 is returned from the DFLOOR function for arguments between -1.0 X 16 E-14 < N < 0.

Algorithm:

Same as DROUND, except argument is rounded down by almost 1 (X'40FFFFFFFFFFFFF) if negative. Positive arguments are not rounded.

Secondary Entry Name: DROUND

Function: Converts double precision scalar to fullword integer.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

 $\ensuremath{\texttt{ROUND}}\left(X\right)$, where X is a double precision scalar.

Other Library Modules:

Execution Time (microseconds): 33.8

Input Arguments:

<u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0, F1	<u>Units</u> -	
Output Resu	lts:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer	DP	R5	-	
Errors Detec	ted:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>	

<u>Error #</u>	Cause				Fixup
15	Scalar too	large	for	integer	Return either:
	conversion	-		•	Posmax = X'7FFFFFFF' or
					Negmax = X'80000000'

Comments:

Negative arguments are converted to the next more negative integer value; positive args to the next greater positive integer value, unless the original argument is an integer (argument rounded up or down by not quite 1 before truncating decimal places). Values such as xx.5 are rounded down to xx.0 and values such as -xx.5 are rounded up to -xx.0.

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

The argument is checked for negative/not negative. If the argument is negative, the value is rounded down by subtracting just under 1/2. The resulting value is then checked against MAXNEG(X'C88000000FFFFFF'). If within the legal range, the integer part of the scalar is shifted to the second register of the floating point register pair. This remaining integer value is then put in a fixed point register and complemented to leave it in the correct two's complement fixed point form. If the argument is not negative, the value is rounded up by adding almost 1/2, and the resulting value is compared to MAXPOS(X'487FFFFFFFFFFFFFFFF). Then, as with negative values, it is shifted to leave the integer part in floating point format and loaded into a fixed point register.

Secondary Entry Function: Conver	Name: <u>DTOI</u> ts double precisi	on scalar to fullword in	teger.					
Invoked By: X Compil I = D	nvoked By: X Compiler emitted code for HAL/S construct of the form: I = D; where I is a double precision integer, and D is a double precision scalar.							
Execution Time (.lbrary Modules:	22.8						
	microseconus).	00.0						
Input Arguments: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -					
Output Results: <u>Type</u> Integer	<u>Precision</u> DP	<u>How Passed</u> R5	<u>Units</u> -					
Errors Detected: Error <u>#</u> 15	<u>Cause</u> Scalar too conversion	large for integer	<u>Fixup</u> Return either: Posmax = X'7FFFFFFF' or Negmax = X'80000000'					
Comments: DTOI is ident	tical entry point to	o DROUND.						

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

Algorithm: Same as DROUND.

Secondary Entr Function: Per that	Secondary Entry Name: <u>DTRUNC</u> Function: Performs HAL/S TRUNCATE function: Finds the signed value that is the largest integer < absolute value of the argument.						
Invoked By: X Compile TRUNCA scalar Other Li	<pre>Invoked By: X Compiler emitted code for HAL/S construct of the form: TRUNCATE(X), where X is a double precision scalar. Other Library Modules:</pre>						
Execution Time	e (microseconds):	28.6					
Input Argument <u>Type</u> Scalar	ts: <u>Precision</u> DP	<u>How Passed</u> F0, F1	<u>Units</u> -				
Output Results <u>Type</u> Integer	: <u>Precision</u> DP	<u>How Passed</u> R5	<u>Units</u> -				
Errors Detected: <u>Error # Cause</u> 15 Scalar too large for integer Return either: conversion Conversion Conve							
Comments:		-l					

After truncation, negative and positive arguments are closer to 0; no rounding done before truncation.

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

Same as DROUND, except argument is not rounded up or down.

Secondary Entr Function: Conv	Secondary Entry Name: <u>ETOI</u> Function: Converts single precision scalar to fullword integer.						
nvoked By:							
I=S wh si Other Li	I=S where I is a double precision integer, S is a single precision scalar. Other Library Modules:						
Execution Time	e (microseconds	s): 39.0					
Input Arguments: <u>Type Precision How Passed Units</u> Scalar SP F0 -							
Output Results: <u>Type</u> Integer	: <u>Precision</u> DP	<u>How Passed</u> R5	<u>Units</u> -				
Errors Detected: <u>Error # Cause</u> 15 Scalar too large for integer conversion Fixup Return either: Posmax =X'7FFFFFF' or Negmax = X'80000000'							
Comments:	ntical entry poir	nt to ROLIND: also se					
	naou onay pon	it to i to oi to, uibo bo					

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

Same as ROUND.

Secondary Entry Name: FLOOR

Function: Performs HAL/S FLOOR function: Returns largest integer \leq the argument.

Note: The compiler now uses inline code for the FLOOR function instead of calling this routine.

The compiler uses the convert to fixed point instruction which is valid only in the range:

.7FFFFF X 16E04 (16) ≥ N ≥ -.800000 X 16E04 (16)

<u>~</u> 32767.99 (10) <u>≥</u> N <u>≥</u> -32768(10)

A convert overflow will occur for FLOOR arguments outside this range.

An invalid result is returned from the FLOOR function for arguments between -16 and 0 which have a fractional portion whose absolute value is smaller than $1/16^{**4}$ (I.E. - (X + $1/16^{**4}$) < N <-X where X is an integer between 0 and 15 inclusive).

Secondary Entry Name: TRUNC

Function: Performs HAL/S TRUNCATE function: Returns signed value that is the largest integer \leq absolute value of the argument.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

TRUNCATE(X), where X is a single precision scalar.

Other Library Modules:

Execution Time (microseconds): 31.4

Input Arguments	:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Integer	DP	R5	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
15	Scalar too lar conversion	ge for integer	Return either: Posmax =X'7FFFFFFF' or Negmax =X'80000000'

Comments:

See DTRUNC

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

Second register of floating point register pair is cleared, then routine merges with DTRUNC.

6.3.2 Algebraic Routine Descriptions

This subsection presents the detailed descriptions of "Algebraic" routines as defined in Appendix C of the *HAL/S Language Specification*.

ACOS			
	HAL/S-FC LI	BRARY ROUTINE	DESCRIPTION
Source M	lember Name: <u>A</u>	<u>COS</u> Size of Co	de Area <u>116</u> Hw
Stack Re	quirement: 24	_Hw Data CS	ECT Size: <u>2</u> Hw
	trinsic	X	Procedure
Other Lib	rary Modules Re	eferenced: <u>SQRT</u>	
<u>ENTRY POIN</u>	NT DESCRIPTIC	<u>DNS</u>	
Primary Entry	y Name: <u>ACOS</u>		
Function: Co	mputes arc-cosii	ne(x) of scalar argu	ument.
Invoked By:			
X Compi	ler emitted code	for HAL/S constru	ct of the form:
ARCCC	S(X), where	X is a single	precision scalar.
Other	Library Modules	:	
Execution Tir	ne (microsecono	ds): 0.5 < X <u><</u> 1: 2	25.5
	,	2.441406252 x	10 ⁻⁴ < X < 0.5: 132.7
		X <u><</u> 2.4414062	252×10^{-4} : 71.5
Input Argume	ents:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	-
Output Resul	ts:		
Type	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	Radians
Errors Detect	ted:		
<u>Error #</u>	<u>Cause</u>		Fixup
10	Argument outs	side range-1 <u><</u> x <u><</u>	1 Return π for x<-1
-			
Comments:			
Registers	3 Unsafe Across	Call: F0,F1,F2,F3,	F4.

Algorithm:

ACOS(X) is computed as $\pi/2$ - ARCSIN(X).

ACOS

Secondary Entry Name: ASIN Function: Computes arc-sine of scalar argument. Invoked By: Х Compiler emitted code for HAL/S construct of the form: ARCSIN(X), where X is a single precision scalar. Other Library Modules: Execution Time (microseconds): Input Arguments: How Passed <u>Type</u> Precision Units Scalar SP F0 **Output Results:** How Passed Type Precision Units F0 Scalar SP Radians **Errors Detected:** Error # <u>Cause</u> Fixup 10 Argument outside range $-1 \le x \le 1$ Return- $\pi/2$ if x<-1 Return $\pi/2$ if x>1

Comments:

For a very small number of input arguments, the ASIN routine will return results that are accurate to 5 significant decimal digits (instead of the 6 significant decimal digits that are generally required for single precision routines). For most of the range of the ASIN routine, results are returned that are accurate to 6 significant decimal digits.

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

The value of X is restricted to $0 \le X \le 1$ by using the identity arcsin(-X) = -arcsin(X), and further to $0 \le |X| \le 0.5$

by the identity arcsin (X)= $\frac{\pi}{2}$ - 2*arcsin $\left(\sqrt{\frac{1-x}{2}}\right)$

For $0 \le |X| \le 0.5$, Z = |X|, and for 0.5 < |X| < 1.0, $Z = \left(\sqrt{\frac{1-|x|}{2}}\right)$

Arcsin(Z) is then computed as a truncated continued fraction in Z^{2} , multiplied by W (where W = Z for 0.5 < |X| < 1.0 and W = 2Z for $0 \le |X| \le 0.5$). The form of the approximation is:

arcsin (X)
$$\approx$$
 W + $\frac{W^* d_1^* Z^2}{c_1^2 + Z^2 + \frac{d_2^2}{c_2^2 + Z^2}}$

where the values of the constants are:

For arguments $|X| < 2.4414063 * 10^{-4}(16^{-3})$, $\operatorname{arcsin}(X)$ is computed as $\operatorname{arcsin}(X) = X$.

					
				ACO	<u>SH</u>
		HAL/S-FC LIBR/	ARY ROUTINE L		
	Source Mem	ber Name: ACO	SH Size of Cod	e Area <u>36</u> HW	
	Stack Requir	ement: <u>20</u> H	W Data CSE	ECT SIZE: <u>2</u> HW	
		SIC / Madulaa Dafar			
			enceu. <u>LOG,3C</u>		
<u>EN</u>	IRY POINT L	DESCRIPTIONS			
Prin	nary Entry Na	ame: <u>ACOSH</u>			
Fun	ction: Compu	utes hyperbolic a	arc-cosine in sing	gle precision.	
Invo	oked By:				
Х	Compiler	r emitted code fo	r HAL/S constru	ct of the form:	
	ARCCOSH	H(x), where x	k is a single	e precision scalar.	
	Other Lib	orary Modules:			
Exe	cution Time	(microseconds):			
Inpu	ut Arauments	:			
Ťy	pe	Precision	How Passed	<u>Units</u>	
Sc	alar	SP	F0	-	
Out	put Results:				
Ty	<u>pe</u>	Precision	How Passed	<u>Units</u>	
Sc	alar	SP	F0	-	
Frre	ors Detected:				
Er	ror #	Cause	Fixup		
59		ARG < 1	Return 0		
Cor	nments:				
001	Registers I Ir	safe Across Cal	II. E0 E1 E2 E3 E	4 F5	
			1. 1 0,1 1,1 2,1 0,1	-,, 0.	
Algo	oritnm:				
	Using the ex	ternal SQRT and	a LOG functions	:	

 $\operatorname{arccosh}(x)=\ln\left(x+\sqrt{x^2+1}\right)$

			ASI	NH			
- H	HAL/S-FC LIBRA	RY ROUTINE [DESCRIPTION				
Source Mem	ber Name: <u>ASIN</u>	H Size of Cod	e Area <u>64</u> Hw				
Stack Require	ement: <u>20</u> Hv	v Data CSE	ECT Size: <u>0</u> Hw				
	SIC Maakulaa Dafaaa		Procedure				
Other Library	Other Library Modules Referenced: <u>LOG,SQR1</u>						
ENTRY POINT D	DESCRIPTIONS						
Primary Entry Na	ame: <u>ASINH</u>						
Function: Compu	ites hyperbolic a	rc-sine in single	precision.				
Invoked By:							
X Compiler	emitted code for	HAL/S construc	ct of the form:				
ARCSINH	(X), where X	is a single	precision scalar.				
Other Lib	rary Modules:						
Execution	Time	X <8.876589I	E-4: 31.5				
(microseconas)	:	8 8726580E-A	L-1X1-2 1632850E-1.85 /				
		2 1632850E-1	<u><</u> X <1 6777216F+7 [⋅] 314	1			
		X >1.6777216	6E+7: 141.2				
Input Arguments							
Type	Precision	How Passed	Units				
Scalar	SP	F0	-				
Output Results:							
<u>Type</u>	Precision	How Passed	<u>Units</u>				
Scalar	SP	F0	-				
Errors Detected:							
Error #	<u>Cause</u>	<u>Fixup</u>					
None							
Comments:							
Registers Ur	safe Across Cal	l: F0,F1,F2,F3,F	F4,F5.				
Algorithm:							
Using the ex	ternal SQRT and	LOG routines,					
For X <8.87	26589E-4, arcsir	h(X) = X					
			1, 3, 5				
For 8.872658	89E-4 <u><</u> X <u><</u> 2.1632	2850E-1, arcsin	$h(X) = X - \frac{X^3}{6} + \frac{X^3}{40} X^3$				
Ear 2 16220		7016517 0100	$h(\mathbf{X})$ in $\left(\sqrt{2} \right)$				
FUI 2.10328	00ב-ו< ג <1.6//	$i \ge 10 \pm +1$, arcsil	$\lim(\Lambda) = \lim (X + \sqrt{x^2} + 1)$				
For X ≥1.67	77216E+7, arcsii	nh(X) = 1n(X) +	1n(2)				
			ATANH				
----------------	-----------------------	--	---				
	HAL/S-FC LIBF	RARY ROUTINE	DESCRIPTION				
Source Me	mber Name: <u>ATA</u>	<u>NH</u> Size of Co	de Area <u>58</u> Hw				
Stack Requ	uirement: <u>18</u> I	Hw Data CS	ECT Size: <u>2</u> Hw				
Intr	insic	X	Procedure				
Other Libra	ary Modules Refe	renced: <u>LOG</u>					
ENTRY POINT	FDESCRIPTION	<u>S</u>					
Primary Entry	Name: ATANH						
Function: Com	putes hyperbolic	arc-tangent in si	ngle precision.				
Invoked By:		0	0				
	er emitted code f	or HAL/S constru	uct of the form:				
аталн	(X) where X	is a single	precision scalar				
Other L	Library Modules:	10 4 5111910	precipion poarar				
Execution Time	e (microseconds)	: X <4.113892E	-5: 33.9				
		4.113892E-5 <u>< </u> X	<u> <</u> 1.875E-1: 85.7				
	1.	.875E-1< X : 228	.2				
Input Argumen	nts:						
<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>				
Scalar	SP	F0	-				
Output Results	8:						
Type	Precision	How Passed	<u>Units</u>				
Scalar	SP	F0	-				
Errors Detecte	d:						
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>				
60	Argument outsid	le range:-1 <x<1< td=""><td>Return 0</td></x<1<>	Return 0				
Comments:							
Registers	Unsafe Across C	all: F0.F1.F2.F3.	F4.F5.				
Algorithm		ani i oji i ji <u>_</u> ji oj	,				
Algorithm.	ovtornal LOC fun	ation					
		cuon,					
F0I ∧ <4.	1130977E-5, alci	$\operatorname{ann}(X) = X$					
For 4.1138	3977E-5< X <1.87	75E-1, arctanh(X	$) = X + \frac{1}{3}X^{3} + \frac{1}{5}X^{5}$				
		$\frac{1}{2} \ln \left(\frac{1+1}{2} \right)$	\mathbf{x}				
For 1.875E	E-1< X <1, arctan	h(X) = 2 1.	×Ј				
	• • ·						

	HAL/S-FC LIE	BRARY ROUTIN	E DESCRIPTION	DACOS
Source M	1ember Name: <u>D</u>	ACOS Size of C	ode Area <u>230</u>	Hw
Stack Re	quirement: 26	Hw Data C	SECT Size: 2 Hw	1
In	itrinsic	X	Procedure	
Other Lib	orary Modules Ref	erenced: <u>DSQI</u>	<u>रा</u>	
ENTRY POI	NT DESCRIPTIO	<u>NS</u>		
Primary Entr	y Name: <u>DACOS</u>			
Function: Co	mputes ARCCOS	S(X) in double pr	ecision.	
Invoked By:				
X Com	piler emitted code	e for HAL/S cons	truct of the form:	
ARCC	COS(X), where	X is a do	ouble precision	
scal	ar.			
Othe	r Library Modules	:		
Execution Til	me (microsecond	s): X <u><</u> 3.725290	3E-9 (16 ⁻⁷): 89.1	
		3.7252903E-	9< X ≤0.5: 263.1	
		0.5< X <1:46	0.5	
		X =1:79.7		
	ents: Procision	How Passad	Unite	
<u>Type</u> Scalar	<u>Precision</u> DP	HOW Passed	<u>Units</u>	
		10		
	ItS: Precision	How Passed	Linite	
<u>Type</u> Scalar	DP	<u>F0</u>	Radians	
	to di		radiano	
Error #	Cause			Fixup
10	Araument outsic	de range(-1 - eps	ilon)< X< (1+epsilon)	Return π if x<-
	where epsilon=h	nex'3AFFFFFF	000000'	1
	(approximately &	5.9604644E-08)		Return 0 if x>1
Comments:				
The fixup	value will be retu	urned, but an err	or will not be issued un	til the argument is
X >1 + e	epsilon.			

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

Computed as $\pi/2$ - ARCSIN(X)

DACOS

Secondary Entry Name: DASIN

Function: Computes ARCSIN(X) in double precision.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

ARCSIN(X), where X is a double precision scalar.

Other Library Modules:

Execution Time (microseconds):

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	-

Output Results:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	Radians

Errors Detected:

<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>
10	Argument outside range(-1 - epsilon)≤X≤ (1 + epsilon) where epsilon=hex'3AFFFFFFF0000000' (approximately 5.96046445E-08)	Return- $\pi/2$ if x<-1 Return $\pi/2$ if x >1

Comments:

The fixup value will be returned, but an error will not be issued until the argument is |X| > 1 + epsilon.

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

The value of X is restricted to $0 \le X \le 1$ by using the identity $\arcsin(-X) = -\arcsin(X)$, and further to $0 \le X \le 1/2$

by the identity arcsin (X)= $\frac{\pi}{2}$ -2*arcsin $\left(\sqrt{\frac{1-x}{2}}\right)$

For
$$0 \le |X| \le 0.5$$
, $Z = |X|$, and for $0.5 < |X| < 1.0$, $Z = \left(\sqrt{\frac{1 - |x|}{2}}\right)$

Arcsin(Z) is then computed as a truncated continued fraction in Z^2 , multiplied by W.

The form of the approximation is:

arcsin(Z)=W + W*Z²
$$\begin{pmatrix} C_1 + \frac{d_1}{Z^2 + C_2 + \frac{d_2}{Z^2 + C_3 + \frac{d_3}{Z^2 + C_4 + \frac{d_4}{Z^2 + C_5}}} \end{pmatrix}$$

(where W=Z for 0.5<|X|<1.0, and W=2Z for $0 \le |X| \le 0.5$) where the values of the constants are:

C ₁ = X'3F180CD96B42A610'	= .00587162904063511
d ₁ = X'C07FE6DD798CBF27'	=49961647241138661
C ₂ = X'C1470EC5E7C7075C'	=-4.44110670602864049
d ₂ = X'C1489A752C6A6B54'	=-4.53770940160639666
C ₃ = X'C13A5496A02A788D'	=-3.64565146031194167
d ₃ = X'C06B411D9ED01722'	=41896233680025977
$C_4 = X'C11BFB2E6EB617AA'$	=-1.74882357832528117
d ₄ = X'BF99119272C87E78'	=03737027365107758
C ₅ = X'C11323D9C96F1661'	=-1.19625261960154476

For arguments $|X| < 3.7252903 \text{ E-9(16}^{-7})$, $\operatorname{arcsin}(X)$ is computed as $\operatorname{arcsin}(X) = X$.

					<u>-031</u>
Sour	ce Memł	per Name [,] DAC(OSH Size of Co	de Area 50 Hw	,
Stac	k Require	ement: 22 H	w Data CS	SECT Size: 2 Hw	
	Intring	sic		Procedure	
Othe	r Library	Modules Refere	enced: DLOG, [DSQRT	
ENTRY	POINT D	ESCRIPTIONS			
Primary	Entry Na	me: <u>DACOSH</u>			
Function	: Compu	ites hyperbolic a	rc-cosine in dou	ble precision.	
Invoked	By:				
XC	Compiler	emitted code for	r HAL/S construc	ct of the form:	
A	RCCOSH	(X), where I	X is a double	e precision scalar	
	Other Lib	rary Modules:			
Executio	n Time (microseconds):	1≤X<6.7108864	E+7: 403.4	
			6.7108864E+7<	X: 332.4	
Input Are	guments				
<u> </u>	5	Precision	How Passed	<u>Units</u>	
Scalar		DP	F0	-	
Output F	Results:				
Type		Precision	How Passed	<u>Units</u>	
Scalar		DP	F0	-	
Errors D	etected:				
Error #		<u>Cause</u>		<u>Fixup</u>	
59		Argument<1- E	PSILON	Return 0	
Note:	The fixu	up value will be	returned but an	error will not be issued	d until
	x<0.999	9999940395355	5 where EPSILC	N=hex'3AFFFFFFF000	0000'
	(approx	imately 5.96046	445E-08).		
Comme	nts:				
Reg	isters Un	safe Across Cal	I: F0,F1,F2,F3,F	4,F5.	
Algorithr	n.				
Usin	a the ext	ternal DSQRT a	nd DI OG functio	ons	
Con	9 OK			,	

For $1 \le x < 6.7108864 \times 10^7$, $arccosh(x)=1n (x + \sqrt{x^2 - 1})$

For x \ge 6.7108864 x 10⁷, arccosh(x) = 1n(x) + 1n(2)

				DASINH
	HAL/S-FC LIB	RARY ROUTINE	DESCRIPTION	
Source Me	mber Name: <u>DA</u>	SINH Size of Co	ode Area <u>96</u>	_ Hw
Stack Req	uirement: 22	Hw Data CS	SECT Size: 0	Hw
	rinsic	X		
Other Libra	ary Modules Refe	erenced: <u>DLOG,</u>	DSQRT	
ENTRY POIN	T DESCRIPTION	IS		
Primary Entry	Name: <u>DASINH</u>			
Function: Corr	putes hyperbolic	arc-sine in doubl	e precision.	
Invoked By:				
X Compi	er emitted code f	for HAL/S constru	ct of the form:	
ARCSI	NH(X), where	e X is a doubl	e precision sca	alar.
Other I	_ibrary Modules:			
Execution Tim	e (microseconds): X ≤1.353860E-	8: 33.6	
		1.353860E-8< X	≤6.25E-2: 185.4	
		6.25E-02< X <6.	7108864E+7: 570.8)
		6.7108864E+7≤	X : 348.2	
	ItS: Procision	How Passod	Linite	
<u>Type</u> Scalar	DP	F0	<u>-</u>	
		10		
	S: Dracicion	How Docood	Linita	
<u>Type</u> Scalar		FO	<u>-</u>	
		10	-	
Errors Detecte	ed:	Figure		
<u>EIIUI #</u> Nono	Cause	<u>rixup</u>		
Comments:				
Registers	Unsafe Across C	all: F0,F1,F2,F3,F	-4,F5.	
Algorithm:				
Using the	external DSQRT	and DLOG functi	ons,	
For X <1.	353860E-8, arcsi	inh(X) = X		
FOF 1.353	300⊑-8< Χ <0.25	$rac{1}{r}$ = -2, arcsinn(X) =		
Х-	$\frac{1}{2}X^{3} + \frac{3}{2}X^{5} - \frac{1}{2}$	$\frac{5}{2}X^7 + \frac{105}{2}X^9 - $	<u>945</u> X ¹¹	
	6 40 33	36 3456	42240	

For 6.25E-2<|X|<6.7108864E+7, arcsinh(X) =1n(X+ $\sqrt{x^2 - 1}$)

For $6.7108864E+7 \le |X|$, $\operatorname{arcsinh}(X) = 1n(X) + 1n(2)$

			<u></u>	<u>ATANH</u>
	HAL/S-FC LIE	BRARY ROUTINE	DESCRIPTION	
Source M	ember Name: DA	TANH Size of C	ode Area <u>132</u>	Hw
Stack Rec	juirement: <u>26</u>	Hw Data C	SECT Size: <u>2</u> Hw	
	trinsic		Procedure	
Other Libi	rary Modules Refe	erenced: <u>DLOG</u>		
ENTRY POIN	IT DESCRIPTION	<u>15</u>		
Primary Entry	v Name: <u>DATANH</u>			
Function: Cor	mputes hyperbolic	c arc-tangent in d	ouble precision.	
Invoked By:				
X Comp	iler emitted code	for HAL/S constru	uct of the form:	
ARCTA	ANH(X), where	e X is a doub	le precision scala	ır.
Other	Library Modules:			
Execution Tin	ne (microseconds): X <1.0745594	6E-8: 42.6	
		1.07455946E-8	<u>< </u> X <6.25E-2: 186.6	
		6.25E-2 <u><</u> X : 39	9.0	
Input Argume	nts:	Llaw Daarad	l la ta	
<u>Type</u> Seeler	Precision	How Passed	Units	
Scalar	DP	FU	-	
	IS: Dracicion		Llaita	
<u>Type</u> Scalar	Precision DP	HOW Passed	<u>Units</u>	
	DF	10	-	
Errors Detect	ed:			
Error #	<u>Cause</u>	a range: (1 ED)		<u>Fixup</u> Doturn 0
60	EPSILON) where	e EPSILON = hex	<pre>SILON)<<<(1 +</pre>	Return 0
	(approximately 5	5.96046445E-08)		
Comments:				
Registers	Unsafe Across C	all: F0,F1,F2,F3,	.F4,F5.	
Algorithm		, , , ,	,	
Save sign	of argument X			
X=IXI (for	ce positive. arcta	nh(-X)= -arctanh((X))	
lf X>1: Re	eturn 0, indicate e	error		
lf X<1.07	455946E-08: Retu	urn X		
			$X^3 X^5 X^7$	X ⁹
111.0745	0946E-08 <u><</u> X<6.25	DUE-UZ: arctann()	$x = x + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{7}$	9
If 6.250E	- 02 <u><</u> X: arctanh (X)= 1/2 1n ((1+X))/(1-X))	
(uses the	external DLOG li	brary function)	والمتعالية والمعالية والمعالية والمعالية	ing of V
INOTE: FOR	non-zero results,	, set the sign of th	ie result to the original s	sign of X.

			DATANUO
ŀ	HAL/S-FC LIBRARY		SCRIPTION
Source Membe	er Name: <u>DATANH 2</u>	2 Size of Code	Area <u>342</u> Hw
	nent: <u>26</u> Hw C		rocedure
Other Library N	Nodules Referenced	l:	
<u>ENTRY POINT DE</u>	SCRIPTIONS		
Primary Entry Nam Function: Comput precision.	ne: <u>DATAN2</u> es arctan by fraction	on approximati	on in the range $(-\pi,\pi)$ in double
Invoked By:			
X Compiler e	mitted code for HAL	/S construct of	the form:
ARCTAN2 ()	X,Y), where X a correspon respectiv argument.	nd Y are do ding to rely of the	sine and cosine intended arc tangent
Other Libra	ry Modules:		
Execution Time (m	icroseconds): 248.4	ļ.	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar (sin) Scalar (cos)	DP DP	F0 F2	-
Output Results:			
<u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> Radians
Errors Detected:			
<u>Error #</u> 62	<u>Cause</u> arg 1 = arg 2 = 0	<u>Fixup</u> Return 0	
Comments:Registe	ers Unsafe Across C	Call: F0,F1,F2,F	3,F4,F5.
Algorithm:			
Same algorith approximation	nm as EATAN2, formula is different	but values o for the double p	f constants and the fractional precision, as follows.
Again, Z= $\begin{vmatrix} \sin \theta \\ \cos \theta \end{vmatrix}$	$\frac{ \mathbf{x} }{ \mathbf{x} }$. Special cases:		
(1) If cos x< (2) sin x=co	to and Z<16 ⁻¹⁴ , retu s x=0, signal error a	rn <u>+</u> π and return 0.	

(2) SIN x=cos x=0, signal error and (3) sin x≠0, cos x=0, return $\pm \pi/2$.

- (4) sin x \neq 0, cos x \neq 0, but Z>16¹⁴, return <u>+</u> π /2.
- (5) If (Z or 1/Z)<16⁻⁷, return Z.
- (6) If exponent of sin(x)- exponent of cos(x)>15, return $\pm \pi/2$.
- (7) If exponent of sin(x)- exponent of cos(x) <-51, return arctan(0).

The fractional approximation after reduction of Z to \leq tan 15° is:

 $Tan^{-1}(Z) = Z + Z * Z^{2} * F$, where $F = C1 + C2/(Z^2 + C3 + C4/(Z^2 + C5 + (C6/(Z^2 + C7)))).$ C1 = X'BF1E31FF1784B965' (-0.7371899082768562E-2) C2 = X'C0ACDB34C0D1B35D'(-0.6752198191404210)C3 = X'412B7CE45AF5C165' (0.2717991214096480E+1) C4 = X'C11A8F923B178C78' (-0.1660051565960002E+1) C5 = X'412AB4FD5D433FF6'(0.2669186939532663E+1) C6 = X'C02298BB68CFD869' (-0.1351430064094942)C7 = X'41154CEE8B70CA99' (0.1331282181443987E+1)

As in EATAN2, the intermediate result is adjusted to the proper section in the first quadrant, as follows:

	+0
\rightarrow	+π/6
\rightarrow	$(-\pi/2 + 1)$ then-1 (to preserve significant bits)
\rightarrow	$(-\pi/3 + 1)$ then-1 (to preserve significant bits)
	\rightarrow \rightarrow \rightarrow

The resulting angle is adjusted to the proper quadrant as in EATAN2 (according to sign of sin x and cos x).

DATAN2

Secondary Entry Name: <u>DATAN</u> Function: Computes arc tangent by fractional approximation in the range $(-\pi/2, +\pi/2)$ in double precision.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

ARCTAN(X), where X is a double precision scalar.

Other Library Modules:

Execution Time (microseconds): 237.3

Input Arguments: Type Precision How Passed <u>Units</u> Scalar DP F0 -Output Results: How Passed Type Precision Units Scalar DP F0 Radians Errors Detected: Error # Cause Fixup None

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

Same as ARCTAN, but see DATAN2 for changes in values of DP constants and TAN⁻¹ formula.

			DE	VD
	HAL/S-FC LIBF	ARY ROUTINE	DESCRIPTION	
Source Mem	ber Name: <u>DEXF</u>	Size of C	ode Area <u>158</u> Hw	
Stack Require	ement: <u>18</u> H\ aia	v Data C	SECT SIZE: <u>66</u> HW	
	SIC Modules Refere	nced: None	Procedure	
		nceu. <u>none</u>		
Primary Entry Na	ame: <u>DEXP</u>			
Function: Compu	ites e ^x in double	precision.		
Invoked By:				
X Compiler e	emitted code for	HAL/S construct	of the form:	
EXP(X),	where X is a	double pred	cision scalar.	
X Other Libra	ary Modules:			
DPWRD, DSINH	, DTANH			
Execution Time (microseconds):	290.5		
Input Arguments	:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Errors Detected:				
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>		
6	X>174.673085	Return maximu	um positive floating point nur	mber
Comments:				
Gives expor	nent underflow i	f argument les	s than -180.21825 no F	א ודא

Gives exponent underflow it argument less than -180.21825 -- no RTL error number; GPC error group 3 code 9. The error will not be detected if the program status word masks out the underflow errors.

Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:

First, decompose X as P'log2 + R', where P' is the integer part and first hexadecimal place of the result of dividing the high-order part of X by LOG2H, which is a single precision approximation to log2, rounded up. This is done in 80-bit precision in order to yield a true 56-bit value for R', by expressing log2 = LOG2H + LOG2L, where LOG2L is a double precision scalar. R' has the same sign as X, and |R'| might be slightly > $\frac{log2}{16}$.

Now, if R'>0, subtract $\frac{\log 2}{16}$ from it until it becomes ≤ 0 , each time adding $\frac{1}{16}$ to P'.

If R' $\leq -\frac{\log 2}{16}$, add $\frac{\log 2}{16}$ to it until it becomes >- $\frac{\log 2}{16}$, each time subtracting $\frac{1}{16}$ from P'.

At the end of this, we have

X = P * log2 + R, P an integral multiple of $\frac{1}{16}$, and - $\frac{\log 2}{16} < R \le 0$.

Represent P as 4A - B - C/16 , where A, B, and C are integers, 0 < B \leq 3, 0 \leq C \leq 15. Then:

 $e^{x} = 16^{A*2} \cdot B^{*2} \cdot C^{/16*} e^{R}$

To calculate this, we compute e^{R} with a polynomial approximation of the form:

 $e^{r} = 1 + c_1 r + c_2 r^2 + c_3 r^3 + c_4 r^4 + c_5 r^5 + c_6 r^6$ where the values of the constants are:

c ₁ = X'40FFFFFFFFFFFFCFC'	= .99999999999999892
c ₂ = X'407FFFFFFFFAB64A'	= .4999999999951906
c ₃ = X'402AAAAAA794AA99'	= .1666666659481656
c ₄ = X'3FAAAA9D6AC1D734'	= .0416666173078875
c ₅ = X'3F2220559A15E158'	= .00833161772003906
c ₆ = X'3E591893'	= .001359497

Then, 2^{-C/16} is computed by table lookup, 2^{-B} by shifting, and 16^A by adding A to the exponent of the answer.

	HAL/S-F		
Source	Member Name:	DLOG Size	e of Code Area 184 Hw
Stack R	equirement: 3	8 <u>0 Hw</u> C	Data CSECT Size: 2 Hw
	Intrinsic		x Procedure
Other Li	brary Modules	Referenced: <u>N</u>	one
ENTRY PO	INT DESCRIPT	IONS	
Primary Ent	try Name: DLO	3	
Function: C	omputes 1n(X)	in double precisi	on.
Invoked By:	:		
X Corr	npiler emitted co	ode for HAL/S co	nstruct of the form:
LOG	(X), where X	K is a double	e precision scalar.
X Othe	er Library Modu	les:	
DPWRD, D	ASINH, DATAN	H, DACOSH	
Execution T	ime (microseco	onds): 282.2	
Input Argun	nents:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	-
Output Res	ults:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	-
Errors Dete	cted:		
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
7	Argument outs	side range X > 0	If X<0 return 1n(X); if X=0, return maximum negative floating point
_			numper
Comments:			
Registe	ers Unsate Acro	ss Call: F0,F1,F2	2,+3,+4,+5.

Algorithm:

We write X = $16^{P} * 2^{-Q} * M$, where $\frac{1}{2} \le M < 1$, P, Q are integers, $0 \le Q \le 3$. P, Q, and M are found by fixed-point calculations. Define A=1, B=0, if M> $\sqrt{2}/2$, and A=1/2, B=1 otherwise. Let Z=(M-A)/(M+A).

Then 1n(X) = (4P-Q-B)1n(2)+1n((1+Z)/(1-Z)) is computed by an approximation of the form:

W+C₁ W³
$$\left(W^2 + C_2 + \frac{C_3}{W^2 + C_4 + \frac{C_5}{W^2 + C_6}} \right)$$

where W=2Z, and the values of the constants are:

$$\begin{array}{ll} c_1 = X'3DDABB6C9F18C6DD' & = 0.2085992109128247E-3 \\ c_2 = X'422FC604E13C20FE' & = 0.4777351196020117E+2 \\ c_3 = X'C38E5A1C55CEB1C4' & = -0.2277631917769813E+4 \\ c_4 = X'C16F2A64DDFCC1FD' & = -6.947850100648906 \\ c_5 = X'C12A017578F548D1' & = -2.625356171124214 \end{array}$$

c₆ = X'C158FA4E0E40C0A5' = -5.561109595943017

ſ				7	םם/אוםר
		HAL/S-FC I IBF		DESCRIPTION	
	Source Meml	ber Name: DPW	RD Size of C	ode Area 40 H	w
	Stack Require	ement: <u>22</u> Hw	v Data C	SECT Size: 2 Hw	V
	Intrin	sic	X	Procedure	
	Other Library	Modules Refere	enced: <u>DEXP,C</u>	DLOG,DSQRT	
E		DESCRIPTIONS			
P	rimary Entry Na	ame: DPWRD			
F	unction: Perfor	ms exponentiat	ion of double p	precision scalar to do	uble precision
	power.	·			·
Ir	nvoked By:				
	X Compiler	emitted code for	HAL/S construc	ct of the form:	
L	X**Y,	where X and	Y are scala	rs and at least i	X or Y
		is double pr	recision.		
	Other Lib	rary Modules:			
E	Execution Time (microseconds):			
Ir	nput Arguments:				
	<u>Type</u>	Precision	How Passed	<u>Units</u>	
	Scalar(X)	DP	F0	-	
	Scalar(Y)	DP	F2	-	
C	Output Results:				
	<u>Type</u>	Precision	How Passed	<u>Units</u>	
	Scalar	DP	F0	-	
Е	Frors Detected:				
	<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>		
	4	X=0; Y <u>≤</u> 0	Return 0		
	24	X<0	Return X		

Comments:

Other than Errors 4 and 24, no additional range or overflow checking is performed. Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

If exponent = 0.5, compute $X^{0.5}$ as \sqrt{X} (by using the external DSQRT function), otherwise $X^{Y} = e^{Y \text{ Log } X}$, using the external DEXP and DLOG functions. The call to DEXP could result in error #6 if Y Log X is sufficiently large.

			DDW/DI	
HAL/S-FC LIBRARY ROUTINE DESCRIPTION				
Source Member Na		Size of Code	Area <u>54</u> Hw	
Stack Requirement:	<u>26</u> HW		T Size: <u>2</u> Hw	
			ocedure	
Other Library Modu	les Reference	ed: <u>INOINE</u>		
ENTRY POINT DESCR	<u>IPTIONS</u>			
Primary Entry Name: D	<u>PWRI</u>			
Function: Exponentiation	n of a double	precision scalar	to a fullword integer power.	
Invoked By:				
X Compiler emitte	d code for HA	L/S construct of	the form:	
X**I where I	X and Y ar	re scalars an	d at least X or Y	
is doul	ble precis	ion.		
Other Library Me	odules:			
Execution Time (micros	econds):			
Input Arguments:				
<u>Type</u>	Precision	<u>How Passed</u>	<u>Units</u>	
Scalar(base)	DP	F0	-	
Integer(exponent)	DP	R6	-	
Output Results:				
Type	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Frrors Detected				
Frror #	Cause		Fixup	
4	Zero raised t	to power≤0	Return 0	
Comments:		-		
Registers Unsafe Across Call: F0.F1.F2.F3.				

Other than detection of Error 4, no additional range or exponent overflow checking is done. According to the *Space Shuttle Model AP101-S Principles of Operation*, an exponent overflow occurs when the result exponent exceeds 16**63 and an exponent underflow occurs when the result exponent is less than 16**-64. For base ** |exp|, if |base|>1 then an exponent overflow is possible. If exp<0 and 0<|base|<1 then an exponent underflow is possible. If the exponent underflow mask bit is zero (inhibiting the interrupt) then the result is a true zero. This will cause a divide by zero GPC error when the reciprocal of the result is taken. If the exponent underflow mask bit is one (enabling the interrupt) then the reciprocal of the result is taken.

Algorithm:

If I is the fullword exponent, D the base, write

$$I = \sum_{i=0}^{32} e_i 2^i$$
, where $e_i = 0$ or 1.

Then:

$$D^{I} = D^{\sum_{i} e_{i} 2^{i}} = \prod_{i=0}^{32} D^{e_{i} 2^{i}} = \prod_{e_{i}=1} D^{2^{i}}$$
, if any $e_{i} = 1$, and $= 1$ otherwise.

To compute $\Pi_{e_i=1}D^{2^i}$, it is only necessary to compute successively $D^{2^i} = D, D^2, D^4$,

 D^8 ,..., and multiply the result by D^{2^i} whenever the i-th bit of the exponent is 1. This is determined by shifting bits one by one out of the exponent, and testing each one for a value of one. The loop terminates when the remaining part of the exponent is zero. Operations are done on absolute value of exponent. If exponent was negative, the reciprocal of the result is taken as the final result.

<u>DPWRI</u>

Secondary Entry Name: DPWRH

Function: Exponentiation of a double precision scalar to a halfword integer power.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

X**I where X is a double precision scalar; I is a single precision integer.

Other Library Modules:

Execution Time (microseconds):

Input	Arguments:	
-------	------------	--

<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar(X)	DP	F0	-	
Integer(I)	SP	R6	-	
Output Result	S:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Errors Detecte	ed:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>	
4	Zero raised to	Zero raised to power ≤ 0		

Comments:

Other than detection of Error 4, no additional range or exponent overflow checking is done. According to the *Space Shuttle Model AP101-S Principles of Operation,* an exponent overflow occurs when the result exponent exceeds 16**63 and an exponent underflow occurs when the result exponent is less than 16**-64. For base ** |exp|, if |base|>1 then an exponent overflow is possible. If exp<0 and 0<|base|<1 then an exponent underflow is possible. If the exponent underflow mask bit is zero (inhibiting the interrupt) then the result is a true zero. This will cause a divide by zero GPC error when the reciprocal of the result is taken. If the exponent underflow mask bit is one (enabling the interrupt) then the reciprocal of the result is taken.

Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:

The halfword exponent is shifted right to convert it to a fullword, then the DPWRI algorithm is used.

	HAL/S-FC LI	BRARY ROUTINE DI	ESCRIPTION	
Source Me	ember Name: DS	INHI Size of Cod	e Area <u>130</u>	Hw
Stack Req	uirement: 22 H	Hw Data CSE	ECT Size: 2 H	w
Int	rinsic	X	Procedure	
Other Libra	ary Modules Refe	erenced: <u>DEXP</u>		
ENTRY POIN	T DESCRIPTION	<u>IS</u>		
Primary Entry	Name: <u>DSINH</u>			
Function: Com	nputes hyperbolic	sine in double precis	sion.	
Invoked By:	la na sustitua di sa da d	(f the fame.	
	er emitted code i			
	X), where X :	is a double prec	cision scalar.	
Execution Tim	e (microseconds): 8.81374E-1 <u>< </u> X <u><</u> 1.	75366E+2: 434.1	7
		2.063017E-10 <u><</u> X <	<8.81374E-01: 196. 45.8	(
	ate :	∧ <2.000017E ⁻ 10.	-5.0	
Type	Precision	How Passed	Units	
Scalar	DP	F0	-	
Output Result	6:			
Type	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Errors Detecte	ed:			
<u>Error #</u>	<u>Cause</u>		Fixup	
9	Argument outsic	de range: X ≤175.360	6 Return maxim floating point nu	um positive mber
Comments:				
Registers	Unsafe Across C	all: F0,F1,F2,F3,F4,F	-5.	
Algorithm:				
lf X <1.62	6459E-10, then s	$\sinh(X) = X.$		
lf 1.6264	59E-10 <u><</u> X <.881	375, then sinh(X)	is computed via	a polynomial
approxima	ation.			

The form of the polynomial approximation is:

$$\sinh(X) = X + C_1 X^3 + C_2 X^5 + C_3 X^7 + C_4 X^9 + C_5 X^{11} + C_6 X^{13}$$

where the values of the constants are:

 $\begin{array}{lll} C_1 = X'402AAAAAAAAAAAAAAD' &= 0.166666666666666653\\ C_2 = X'3F22222222BACE' &= 0.833333333367232E-2\\ C_3 = X'3DD00D00CB06A6F5' &= 1.984126981270711E-4\\ C_4 = X'3C2E3BC881345D91' &= 2.755733025610683E-6\\ C_5 = X'3A6B96B8975A1636' &= 2.504995887597646E-8\\ C_6 = X'38B2D4C184418A97' &= 1.626459177981471E-10\\ \end{array}$

Otherwise, $\sinh(|X|)$ or $\cosh(|X|)$ is calculated using EXP. The number V, equal to 0.4995050, is introduced to control rounding errors and the formula is as follows:

$$\sinh(X) = \frac{1}{2v} \left(e^{(X + \log v)} - \frac{v^2}{e^{(X + \log v)}} \right)$$
$$\cosh(X) = \frac{1}{2v} \left(e^{(X + \log v)} - \frac{v^2}{e^{(X + \log v)}} \right)$$

The identities $\sinh(-X) = -\sinh(X)$ and $\cosh(-X) = \cosh(X)$ are used to recover $\sinh(X)$ and $\cosh(X)$ from $\sinh(|X|)$ and $\cosh(|X|)$.

<u>DSINH</u>

Secondary Entry Name: DCOSH

Function: Computes hyperbolic cosine in double precision.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

COSH(X), where X is a double precision scalar.

Other Library Modules:

Execution Time (microseconds): |X|<1.75366E+2: 422.6

Input Argun	nents:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	-
Output Res	ults:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	-
Errors Dete	ected:		
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
9	Argument out	side range X <u><</u> 175.366	Return maximum positive floating point number
Comments:			

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

See DSINH Algorithm.

			DSNCS
HAL/S-F	C LIBRARY ROU	TINE DESCRIPTI	ION
Source Member Name	: <u>DSNCS</u> Size	e of Code Area	<u>140</u> Hw
Stack Requirement: 2	<u>28</u> Hw D	ata CSECT Size:	<u>64</u> Hw
Intrinsic		x Procedure	
Other Library Modules	Referenced: <u>N</u>	<u>DNE</u>	
ENTRY POINT DESCRIPT	IONS		
Primary Entry Name: DSN	<u>CS</u>		
Function: Computes sine(X	() and cosine(X) i	n double precisior	۱.
Invoked By:			
X Compiler emitted co	ode for HAL/S col	nstruct of the form	:
SIN(X) and COS(2	X), where X i	s a double pr	ecision scalar
	both invo	cations.	CHE Same LOI
Other Library Modu	les:		
Execution Time (microseco	onds):		
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	Radians
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	FO	-
Scalar(COS Result)	DP	F2	-
Errors Detected:			
Error # Cause			Fixup
8 Argument o (approximation)	utside range: X - tely π * 2 ¹⁸)	<823296.0625	Return $\frac{\sqrt{2}}{2}$
Comments:			
The actual value (X'401921FB54442D1	es of $32/\pi$ 7') are not used.	(X'41A2F9836E Instead, an appr	4E4414') and $\pi/32$
32/π(X'41A2F9836E4E	45C9') because	the lower halfwor	d of this value (45C9) is
used as the maximum	limit of the DCOS	, DSIN, and DSN	CS routines. Similarly, an
approximate value is	used for $\pi/32$ (X	(401921FB54442	0B9') because the lower
nalfword of this value (2	20B9) is used as	the underflow limit	t of the DCOS, DSIN, and

The precision of the DSNCS outputs is limited to 8 significant digits relative to 1.0 (or +/-1E-8)

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

DSNCS routines.

Algorithm:

Register 5 is first set to indicate the sign of the argument (x) and which entry point was used. For |x| < X'2510000' (floating point), x gets set to zero to prevent underflow. The argument is then multiplied by $32/\pi$; the integer portion of this result is converted to fixed point and the fractional portion (remainder) is retained in floating point (Δ). The fixed point number is an integer multiple of the number of $\pi/32$ sections that comprise the number, divided into the following logical sections:

- the number of $2\pi s$ in the original number,
- the octant in which the argument lies (within the range 0 to 2π),
- the number of the $\pi/32$ interval in which the argument lies within a range of 0 to $\pi/4$ (used as an index value into a table of sine and cosine values).

If the octant is odd, the argument has to be complemented. This is done by complementing each of the index bits and taking $\Delta = 1 - \Delta$. The table of index values are good for only odd $\pi/32$ intervals, so for the even index values $\Delta = \Delta - 1$. However, this is not done for an index value of zero. An index value of zero indicates that the argument is in the range of $n\pi/2 - \pi/32 \le x \le n\pi/2 + \pi/32$, $n=0, \pm 1$, $\pm 2,...$, in which case Δ is left unchanged and the index value made negative for later use. At this time the octant is isolated and saved for later use and the number of $2\pi s$ is no longer needed and dropped.

STEP A): The floating point remainder (Δ) represents the normalized increment of the argument relative to one of the table arguments. At this point, the sine and cosine of this increment can be evaluated with the following polynomials:

$$\sin \Delta \frac{\pi}{32} = \Delta \left(\frac{\pi}{32} + \Delta^2 (AS\Delta^2 + BS) \right)$$

$$\cos\Delta\frac{\pi}{32} = 1.0 + 2\Delta^2(AC\Delta^2 + BC)$$

Where:

AS = X'3B14634A' BS = X'BDA55DE5' AC = X'3C2075A1' BC = X'BE9DE937'

STEP B): If the sign of the index value (previously computed) is not negative then the following trigonometric identities are used to compute the sine and/or cosine:

$$\begin{aligned} \sin x = \sin(\mathsf{TS}_{i} + \Delta \frac{\pi}{32}) &= (\sin \mathsf{TS}_{i})(\cos \Delta \frac{\pi}{32}) + (\cos \mathsf{TS}_{i})(\sin \Delta \frac{\pi}{32}) \\ \cos x &= \cos(\mathsf{TC}_{i} + \Delta \frac{\pi}{32}) = (\cos \mathsf{TC}_{i})(\cos \Delta \frac{\pi}{32}) + (\sin \mathsf{TC}_{i})(\sin \Delta \frac{\pi}{32}) \end{aligned}$$

The appropriate equation and values for TS_i and TC_i are determined by the octant value.

<u>Octant</u>	Equation	<u> </u>
0	Sin	0
1	Cos	0
2	Cos	1
3	Sin	1
4	Sin	1
5	Cos	2
6	Cos	2
7	Sin	3

and TS and TC are given by the table:

 TS_0 = D'.09801714032875' TS₁ = D'.290284677254' TS_2 = D'.4713967368259' TS₃ = D'.6343932841633' TC_0 = D'.9951847266737' TC₁ = D'.9569403357347' TC_2 = D'.8819212643506' TC₃ = D'.7730104533640'

If the index value is negative the sine or cosine computed from STEP A is used without the table or the above equations. Finally, the sign of the result is complemented if the octant number is greater than 3. If the entry point was DSNCS then the octant is incremented by 2 (MOD 8) and the logic STEP B is executed again.

Output is passed back in the register pair F0/F1 if DSIN or DCOS was called. If the entry point was DSNCS then the output is in F0/F1 for Sin and F2/F3 for Cos.

DSNCS

Secondary Entry Name: DCOS				
Function: Comp	utes cosine(x) in a	double precision.		
Invoked By:				
X Compile	r emitted code for	HAL/S construc	t of the forn	n:
COS(X)	, where X is	a double pre	cision so	calar.
Other Lik	orary Modules:			
Execution Time	(microseconds): -	π <u><</u> X <u><</u> π: 261.8		
	Х	x or X<-π: 264.	2	
Input Arguments):			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	Radians	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Errors Detected:				
<u>Error #</u>	<u>Cause</u>			<u>Fixup</u>
8	Argument outsid	e range X ~8233	206 0625	Return $\frac{\sqrt{2}}{\sqrt{2}}$
0	α	יס18י אס18י	20.0020	2
	(approximately n	∠)		

Comments:

For most of the range of input arguments to the DCOS routine, results are returned that are accurate to 5 significant decimal digits (instead of the 8 significant decimal digits that are generally required for double precision routines).

The value used in the routine for $\pi(2^{18})$ is hex'45C90000'=823296. Because a halfword instruction is used in the limit test, the first error occurs when |X|=823296.0625.

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

See DSNCS Algorithm.

DSNCS

Secondary Entry Function: Compu	Name: <u>DSIN</u> ites sine(x) in do	uble precision.			
<pre>nvoked By: X Compiler emitted code for HAL/S construct of the form: SIN(X), where X is a double precision scalar. Other Library Modules:</pre>					
Execution Time (microseconds): 2	267			
Input Arguments: <u>Type</u> Scalar	Precision DP	<u>How Passed</u> F0	<u>Units</u> Radians		
Output Results: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -		
Errors Detected: Error # Cause Fixup					
8	Argument outside range $ X < 823296.0625$ Return $\frac{\sqrt{2}}{2}$ (approximately $\pi^* 2^{18}$)				

Comments:

For most of the range of input arguments to the DSIN routine, results are returned that are accurate to 5 significant decimal digits (instead of the 8 significant decimal digits that are generally required for double precision routines). The value used in the routine for $\pi^*(2^{18})$ is hex'45C90000' = 823296. Because a halfword instruction is used in the limit test, the first error occurs when |X| = 823296.0625.

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

See DSNCS Algorithm.

			20	SORT	
HAL/S-EC LIBRARY ROLITINE DESCRIPTION					
Source Member Name: DSORT Size of Code Area 184 Hw					
Stack Require	Stack Requirement: 18 Hw Data CSECT Size: 8 Hw				
	sic		Procedure		
Other Library	Modules Refere	enced: None			
ENTRY POINT D	DESCRIPTIONS				
Primary Entry Na	ame: DSORT				
Function: Comp	ites square root	in double precisi	on		
Invokod By:					
X Compiler	emitted code for	HAL/S construc	t of the form [.]		
			rogigion ggalar		
	$), where A \perp$	s a double p	recision scalar.		
	ary modules:				
DACOS, DASINI	H, DPWRD, VV1	0D3, DACOSH			
Execution Time (microseconds): 345.2					
Input Arguments	:				
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar	DP	F0	-		
Output Results:					
Type	Precision	How Passed	Units		
Scalar	DP	F0	-		
Frrors Detected:					
Error #	Cause	Fixup			
5	X<0	Return sqrt (X)		
Comments:					
Prior to Rel	ease 11.0 of the	HAL/S-FC. cor	mailer this routine comp	uted sau	
				4.04	

Prior to Release 11.0 of the HAL/S-FC compiler, this routine computed square roots in full (8/56) precision. PCR 4791 was incorporated in Release 11.0 and reduced precision to 8/31. For further information refer to PCR 4791. Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

Since the input value X_0 is in floating point format, it can be viewed as an exponent value 16^{2P+Q} and a mantissa value M. The input value X can therefore be represented as:

$$X_0 = 16^{2P+Q} \cdot M_0$$

where Q = 0 if the characteristic is even and Q = 1 if the characteristic is odd (i.e. Q represents the LSB of the characteristic). If Q is subtracted from the characteristic then the remaining portion of the characteristic can be represented as a multiple of 2 (i.e. 2P). The input value is assumed to be normalized so the value of M can be defined as

$$\frac{1}{16} \le M_0 < 1$$

A first approximation of \sqrt{X}_0 is made by processing each part of the input argument (characteristic & mantissa) separately. The characteristic of \sqrt{X}_0 is computed by adding 1 to the characteristic of X_0 and dividing by 2. Therefore:

$$C_{x1} = \frac{(C_{x0} + 1)}{2}$$

where C_{x1} is the characteristic of the first approximation and C_{x0} is the characteristic of the input value.

The square root of the mantissa, M_1 , is computed using a quadratic equation of the form:

$$M_1 = AM_0^2 + BM_0 + C$$

where A, B, and C are precomputed halfword constants and M_0 is the mantissa of the input value X in halfword fixed point format. Two values are possible for each of the constants A, B, and C. The assumed values of these constants are dependent on the value of the fixed point mantissa:

M ₀	<0.25	M ₀ ≥0.25
А	HEX'AF76'	HEX'F5EF'
В	HEX'433E'	HEX'219F'
С	HEX'0427'	HEX'084D'

The characteristic C_{X1} and mantissa M_1 are then recombined by shifting and 'ORing' producing a floating point format first approximation X_1 . This value is then used in the first of two Newton-Raphson iterations. The form of the first is:

$$X_2 = \frac{1}{2} \left(\frac{X_0}{X_1} + X_1 \right)$$

The value X2 is then used in a second iteration of Newton-Raphson of the form:

$$X_3 = X_2 + \frac{X_0 - X_2^2}{2X_2}$$

The final result X_3 is returned, in double precision floating point format, to the calling routine via F0.

Warning:

The DSQRT will return correct results if the argument is less than 7.2368577E+75. For arguments \geq 7.2368577E+75, floating point exponent overflow occurs and incorrect results are returned.

	HAL/S-EC LIB		DESCRIPTION	DIAN	
Source Member Name: DTAN Size of Code Area 196 Hw					
Stack Reg	uirement: 38 H	lw Data C	SECT Size: 4 Hv	N	
	trinsic	X	Procedure		
Other Libra	ary Modules Refe	renced: <u>None</u>			
ENTRY POIN	T DESCRIPTION	<u>S</u>			
Primary Entry	Name: <u>DTAN</u>				
Function: Com	nputes tangent in o	double precision.			
Invoked By:					
X Compi	ler emitted code fo	or HAL/S construc	t of the form:		
TAN (X), where X is	a double pre	cision scalar.		
Other I	Library Modules:				
Execution Tim	e (microseconds)	:			
Input Argumer	nts:				
Type	Precision	How Passed	<u>Units</u>		
Scalar	DP	F0	Radians		
Output Results	S:				
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar	DP	F0	-		
Errors Detecte	ed:				
Error #	Cause		<u>Fixup</u>		
11	Argument ou	itside range:	Return 1		
	X <π∗2 ³⁰				
12	Argument too ne	ar a singularity of	Return maximum	positive	
-	the tangent funct		noating point numbe	I	
Comments:					
Error gets	very large near a	singularity, before	e error #12 is sent.		
The val	ue used in	the routine for	or π∗2 ⁵⁰ is hex'	4DC90FDA' ≈	
3.5371187	70600810E+15.				
Registers	Unsate Across Ca	all: F0,F1,F2,F3,F	4,⊢5.		
Algorithm:					
	4				

The integer part of $|X_* \frac{4}{\pi}|$ is the octant. If the octant is even, let w = fraction part of $|X|_* = \frac{4}{\pi}$. If the octant is odd, let w = -(1 - fraction) part of $|X|_* = \frac{4}{\pi}$. Next, compute two polynomials P(w) and Q(w). If $w \ge 2^{-46}$, then the forms of the polynomials are: $P(w) = w(a_0 + a_1w^2 + a_2w^4 + w^6)$ $Q(w) = b_0 + b_1 w^2 + b_2 w^4 + b_3 w^6$ If w < 2⁻⁴⁶, then with u = w if $|X|_* \frac{4}{\pi}$ <1, and u = -w otherwise. $P(w) = w(a_0 + u)$ $Q(w) = b_0 + b_3 u$ where the values of the constants are: a₀ = X'C58AFDD0A41992D4' =-569309.04006345 a₁ = X'44AFFA6393159226' = 45050.3889630777 a₂ = X'C325FD4A87357CAF' =-607.8306953515 b₀ = X'C5B0F82C871A3B68' =-724866.7829840012 b₁ = X'4532644B1E45A133' = 206404.6948906228 b₂ = X'C41926DBBB1F469B' =-6438.8583240077 b₃ = X'422376F171F72282' = 35.4646216610

If $w \le$ the comparand derived earlier and the octant = 1 or 2 (mod 4), then error 12 is sent. Otherwise, Q(w)/P(w) is returned with its sign adjusted. In octants = 0 or 3 (mod 4), P(w)/Q(w) is returned, with the sign adjusted according to tan(-x) = -tan(x). The justification for this computation is that

$$\frac{\mathsf{P}(\mathsf{w})}{\mathsf{Q}(\mathsf{w})} = \tan\left(\mathsf{W}^*\frac{\pi}{4}\right) \text{ and } \frac{\mathsf{Q}(\mathsf{w})}{\mathsf{P}(\mathsf{w})} = \cot\left(\mathsf{W}^*\frac{\pi}{4}\right)$$

and simple trigonometric identities give, for R=fraction part of X_{*} $\frac{4}{\pi}$:

Octant (mod 4) Formula for tan $0 tan(|x|) = tan\left(R^*\frac{\pi}{4}\right)$ $1 tan(|x|) = cot\left((1-R)^*\frac{\pi}{4}\right)$ $2 tan(|x|) = -cot\left(R^*\frac{\pi}{4}\right)$ $3 tan(|x|) = -tan\left((1-R)^*\frac{\pi}{4}\right)$ which is the result of the computation as performed.

Notes:

DTAN does not always meet the 8 significant decimal digit precision requirement for double precision RTL routines because of a limitation in the algorithm. The algorithm multiplies the input value (X) by $4/\pi$ to determine the octant. The integer part of the product $|X^*4/\pi|$ is the octant. Depending on whether the octant is even or odd, the fraction part or the sign inverse of one minus the fraction part of $|X^*4/\pi|$ is input into a set of polynomial equations to determine the tangent value. The precision limitation is caused by using this fractional number.

Double precision floating point numbers on the AP-101 system are represented by 64 bits where the first bit is the sign, the next 7 bits give a hexadecimal exponent biased by 64, and the final 56 bits are a fractional mantissa.

(-1)^{sign} * 16^(exponent -bias) * fraction

The fraction is composed as follows:

$$f = bit9^{*}2^{-1} + bit10_{*}2^{-2} + bit11^{*}2^{-3} + ... + bit64_{*}2^{-56}$$

This means that if the number being represented is completely fractional (zero on the left of the radix point) it can be as accurate as $1x2^{-56}$ or approximately $1.39x10^{-17}$. As the input value gets larger, more of the bits in the mantissa are used to represent the integer portion of the number to the left of the radix point which is used to determine the octant. This leaves fewer bits to represent the fractional part of the number which determines the tangent value.

For exponents equivalent to 2^{50} this means that the bits used for the fraction can only be as accurate as

$$2^{50} \cdot 2^{-56} = 2^{-6}$$
 or $1.5625 \cdot 10^{-2}$

In order to retain eight digits of accuracy in the fractional portion of the mantissa, and therefore the tangent value, the exponent of the input must be no larger than the equivalent of 2^{29} .

	HAL/S-FC LIBE		DESCRIPTION			
Source Mem Stack Require Intrin Other Library	ber Name: <u>DTAN</u> ement: <u>30</u> Hw sic Modules Refere	I <u>H</u> Size of C Data C x enced: <u>DEXP</u>	ode Area <u>154</u> Hw SECT Size: <u>0</u> Hw Procedure			
ENTRY POINT DESCRIPTIONS						
Primary Entry Na Function: Compu	Primary Entry Name: <u>DTANH</u> Function: Computes hyperbolic tangent in double precision.					
Invoked By: X Compiler emitted code for HAL/S construct of the form: TANH(X), where X is a double precision scalar.						
Execution Time (microseconds).	XI<3 72529E-9	47 8			
3.72529E-9< X ≤ 5.4931E-1: 177.9 5.4931E-1< X < 2.0101E+1: 420.6 2.0101E+1< X : 54.6						
Input Arguments <u>Type</u> Scalar	: <u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -			
Output Results: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -			
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>				
Comments: Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.						
Algorithm: If X >20.101, return +1 or -1, according to the sign of X.						

If 0.54931<u><</u>|X|<u><</u>20.101, then (using DEXP),

Restore sign with tanh(-X) = -tanh(X). For $|X| \le 16^{-7}$, tanh(X) = X.

For other values of X, $16^{-7} < |X| < 0.54931$, use a continued fraction approximation:

$$tanh(X) = X + X^{3} \left(\begin{array}{c} C_{0} \\ \hline X^{2} + C_{1} + \frac{C_{2}}{X^{2} + C_{3} + \frac{C_{4}}{X^{2} + C_{5}}} \end{array} \right)$$

where the values of the constants are:

$$\begin{array}{lll} C_0 = X'C0F6E12F40F5590A' & =-.9643735440816707 \\ C_1 = X'419DA5D6FD3DBC84' & = 9.8529882328255392 \\ C_2 = X'C31C504FEF537AF6' & =-453.01951534852503 \\ C_3 = X'424D2FA31CAD8D00' & = 77.186082641955181 \\ C_4 = X'C3136E2A5891D8E9' & =-310.8853383729134 \\ C_5 = X'4219B3ACA4C6E790' & = 25.701853083191565 \end{array}$$

			FATAN2	
	HAL/S-FC LIB	RARY ROUTINE		
Source Member Stack Requirer Intrins Other Library I	er Name: <u>EATA</u> ment: <u>18</u> Hv ic Modules Refere	A <u>N2</u> Size of C w Data C anced: <u>NONE</u>	ode Area <u>148</u> Hw SECT Size: <u>10</u> Hw	
	ESCRIPTIONS			
Primary Entry Nan Function: Comp $(-\pi,\pi)$ i	ne: <u>EATAN2</u> utes arctangen in single precis	t by fractional a ion.	oproximation in the range	
Invoked By:				
X Compiler e	mitted code for	HAL/S construct	t of the form:	
ARCTAN2 (1	X,Y), where corre respe argum wy Modules:	X and Y are sponding t ctively of ent.	single precision scalars to sine and cosine the intended arctangent	70 11 11
Execution Time (m	nicroseconds):	120.0		
Input Arguments: <u>Type</u> Scalar(sin) Scalar(cos)	<u>Precision</u> SP SP	<u>How Passed</u> F0 F2	<u>Units</u> - -	
Output Results: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> Radians	
Errors Detected: <u>Error #</u> 62	<u>Cause</u> arg 1 = arg 2	= 0	<u>Fixup</u> Return 0	
Comments:				
For a very smathat are accur	all number of in ate to 5 signific	nput arguments, cant decimal dig	the EATAN2 routine will return re its (instead of the 6 significant dec	su cim

For a very small number of input arguments, the EATAN2 routine will return results that are accurate to 5 significant decimal digits (instead of the 6 significant decimal digits that are generally required for single precision routines). For most of the range of the EATAN2 routine, results are returned that are accurate to 6 significant decimal digits.

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

The pointer to the data area that contains quadrant section constants is set and the sign of sin(x) is saved. The value Z = |sin(x)|/|cos(x)| is checked for several special cases.

- (1) If $\cos(x) < 0$ and $Z < 16^{-6}$, then return $\pi * SIGNUM(\sin(x))$.
- (2) If sin(x) = cos(x) = 0, then signal error and return 0.
- (3) If $sin(x) \neq 0$, cos(x) = 0, then return $\pm \pi/2 * SIGNUM(sin(x))$.
- (4) If $sin(x) \neq 0$, $cos(x) \neq 0$, but Z>16⁶, again return $\pm \pi/2 = (\pi/2 \cdot SIGNUM(sin(x)))$.
- (5) If (Z or 1/Z)<16⁻³, return Z.
- (6) If exponent of sin(x) exponent of $cos(x) \ge 7$, return $\pm \pi/2$.

Now, all of the special cases have been checked for. If the routine gets this far, it is time to reduce Z = tan x so that Z < tan $\pi/12(\tan 15^\circ)$

There are four cases to examine for Z in the 1st quadrant.

A) Z>1. Use 1/Z.

```
tan 15°<1/Z<u><</u>1
1/Z<u><</u>tan 15°
```

tan 15°<Z<u><</u>1 Z<u><</u>tan 15°

For Z or 1/Z>tan 15°, the reduction

 $\tan^{-1}(Z) = \pi/6 + \tan(Y)$, where $Y = (Z\sqrt{3} - 1)/(Z + \sqrt{3})$ is used. To protect significant bits, Y is computed as

 $Y = (Z (\sqrt{3} - 1) - 1 + Z)/(Z + \sqrt{3})$

Once Z or $1/Z \le \tan 15^\circ$, the formula for arctan Z can be applied.

$$\frac{\tan^{-1}(Z)}{Z} = D + CZ^2 + (B/(Z^2 + A)),$$

where the constants have the following values (hex values are used in the routine):

А	=	X'41168A5E'	=	1.4087812
В	=	X'408F239C'	=	0.55913711
С	=	X'BFD35F49'	=	-0.051604543
D	=	X'409A6524'	=	0.60310579

To adjust the angle to the proper section, the appropriate section constant is added to or subtracted from the intermediate result, as follows:

Z <u><</u> tan	15°	\rightarrow	+ 0 (E'0')
tan	15° <z<u><1</z<u>	\rightarrow	+ π/6 (X'40860A92')
1/Z <u><</u> tan	15°	\rightarrow	- π/2 (X'C11921FB')
tan	15° <u><</u> 1/Z <u><</u> 1	\rightarrow	- π/3 (X'C110C152)
We now have the correct angle for the first quadrant. All that remains is to fix the quadrant. If the cos(x)<0, then $tan^{-1}(X) = \pi - tan^{-1}(Z)$. That fixes the angle to agree with the sign of cos(x). Now make the sign of the answer agree with the sign of sin(x), i.e. $-tan^{-1}(Z)$ for -sin(x) and $+tan^{-1}(Z)$ for +sin(x). The result, in radians, is in the correct quadrant in the range $(-\pi, +\pi)$.

EATAN2

Secondary Entr Function: Cor $(-\pi/2)$	ry Name: <u>ATAN</u> mputes arctange 2, + π/2) in singl	ent by fractional a e precision.	pproximation in the range
Invoked By: X Compile ARCTAN Other Li Execution Time	er emitted code f (X), where X brary Modules: (microseconds)	or HAL/S constru 1 is a single 1: 116.5	ct of the form : precision scalar.
Input Argument <u>Type</u> Scalar	s: <u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -
Output Results: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> Radians
Errors Detected Error # None	l: <u>Cause</u>	<u>Fixup</u>	

Comments:

For a very small number of input arguments, the ATAN routine will return results that are accurate to 5 significant decimal digits (instead of the 6 significant decimal digits that are generally required for single precision routines). For most of the range of the ATAN routine, results are returned that are accurate to 6 significant decimal digits.

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

Very similar to EATAN2, but the only special case that can be checked is $Z = |\tan(x)| < (16)^{-3}$. If Z is this small, then return Z to avoid an underflow exception later on. The algorithm for reduction and computation of $\tan^{-1}(Z)$ is the same as EATAN2 again until quadrant fixing time. Since ARCTAN has only one arg, the result can only be adjusted in the range $(-\pi/2, +\pi/2)$. The $\tan^{-1}(Z)$ is computed for the first quadrant.

If the argument, tan(x), is negative, the result is made negative.

				FPWRF
HAL	/S-FC LIBRAF	RY ROUTINE DE	ESCRIPTION	
Source Member N	ame: EPWRE	Size of Code	e Area 32 H	lw
Stack Requiremen	t: 22 Hw	Data CSE	ECT Size: 4 Hw	
Intrinsic		XF	Procedure	
Other Library Mod	ules Referenc	ed: <u>EXP,LOG,S</u>	<u>SQRT</u>	
ENTRY POINT DESC	RIPTIONS			
Primary Entry Name: I	<u>EPWRE</u>			
Function: Exponentiat	ion of a single	precision scalar	to a single precision	n scalar power.
Invoked By:				
X Compiler emit	ed code for H	AL/S construct of	of the form:	
X**Y, where	• X and Y a	re single pr	ecision scalars	5.
Other Library I	Modules:			
Execution Time (micro	seconds): If Y	′ = .5: 124.7		
·	If Y	∕≠ .5: 337.1		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar (base)	SP	F0	-	
Scalar (exponent)	SP	F2	-	
Output Results:				
<u>Type</u>	Precision	<u>How Passed</u>	<u>Units</u>	
Scalar	SP	F0	-	
Errors Detected:				
Error #	<u>Cause</u>		<u>Fixup</u>	
4	Zero raised t	to power ≤0	Return 0	
24	Base<0		Use base	
Comments:				
For most of the ra	nge, the EPW	RE routine will r	eturn results that ar	e accurate to 4
significant decima	al digits (inste	ead of the 6 s	significant decimal	digits that are
generally required	for single pre	cision routines).		
Except for the de	etection of err	ors 4 and 24,	no range or overflo	w checking is
performea.				

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

If exponent = 0.5 compute $X^{0.5}$ as \sqrt{X} (by using the external SQRT function). Otherwise, $X^{Y} = e^{Y \ln X}$, using the external EXP and LOG functions.

			EPWRI
HAL/S- Source Member Nam Stack Requirement: Intrinsic Other Library Module	FC LIBRARY ROUTINE DE ne: <u>EPWRI</u> Size of Code <u>18</u> Hw Data CSE <u>x</u> F s Referenced: <u>NONE</u>	ESCRIPTION e Area <u>38</u> ECT Size: <u>2</u> Procedure	<u></u> <u>3_</u> Hw Hw
ENTRY POINT DESCRI	PTIONS		
Primary Entry Name: <u>EP</u> Function: Exponentiation power.	WRI n of a single precision sca	alar to a double	e precision integer
Invoked By: X Compiler emitted X**T, where X	code for HAL/S construct o	f the form:	nd T is a
double	precision integer.	511 500101, a.	
Execution Time (microse 38.2 + (n-1) * 16.2 + n = number of signifie m = number of signifie	conds): 6.0m + 14.2 (if exponent ne cant digits in binary represe icant 1's in binary represent	egative), where ntation of expoi ation of expone	nent . ent .
Input Arguments: <u>Type</u> Scalar (base) Integer (exponent)	<u>Precision</u> SP DP	<u>How Passed</u> F0 R6	<u>Units</u> - -
Output Results: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: Error <u>#</u> 4	<u>Cause</u> Zero raised to power <u><</u> 0	<u>Fixup</u> Return 0	
Comments:			
Other than detection is done. According t an exponent overflow exponent underflow base ** exp , if bas 0< base <1 then an mask bit is zero (inf cause a divide by ze	of Error 4, no additional rat to the <i>Space Shuttle Mode</i> w occurs when the result occurs when the result ex se >1 then an exponent or exponent underflow is pos nibiting the interrupt) then t ro GPC error when the rec	nge or exponent I AP101-S Princ exponent excee ponent is less verflow is possi ssible. If the e the result is a tr iprocal of the res	t overflow checking ciples of Operation, eds 16**63 and an than 16**-64. For ble. If exp<0 and xponent underflow rue zero. This will sult is taken. If the

exponent underflow mask bit is one (enabling the interrupt) then the operands are

unchanged. This could cause an exponent overflow when the reciprocal of the result is taken.

Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:

Let I = |exponent|, E = base. Write

 $I = \sum_{i=0}^{32} e_i^{2^i}$, where $e_i = 0$ or 1 for all i.

Then

 $E^{I} = E^{\Sigma_{i} e_{i} 2^{i}} = \pi_{i} E^{e_{i} 2^{i}} = \pi_{e_{i} = 1} E^{2^{i}}$ if some $e_{i} = 1$, and = 1 otherwise.

was positive, return E^I. Otherwise, return the reciprocal of E^I.

The product $\pi_{e_i=1}E^{2^i}$ is computed in a loop. Each time around the loop, E^{2^k} is multiplied by itself to give $E^{2^{k+1}}$. The k+1-st bit is shifted out of the exponent. If it is 1 $E^{2^{k+1}}$, is multiplied into the result. If not, the result is left alone. When the remaining exponent is zero, the loop is finished and the result is E^1 . If the exponent

November 2005

<u>EPWRI</u>

Secondary Entry Name: EPWRH

Function: Exponentiation of a single precision scalar to a single precision integer power. Invoked By:

X Compiler emitted code for HAL/S construct of the form:

X**I, where X is a single precision scalar, and I is a single precision integer.

Other Library Modules:

Execution Time (microseconds): same as EPWRI, except constant is 38.8.

Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar (base)	SP	F0	-
Integer (exponent)	SP	R6	-
Output Results:			
Type	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
4	Zero raised	Return 0	

Comments:

For most of the range of the EPRWH routine, results are returned that are accurate to 4 significant decimal digits (instead of the 6 significant decimal digits that are generally required for single precision routines).

Other than detection of Error 4, no additional range or exponent overflow checking is done. According to the *Space Shuttle Model AP101-S Principles of Operation*, an exponent overflow occurs when the result exponent exceeds 16**63 and an exponent underflow occurs when the result exponent is less than 16**-64. For base ** |exp|, if |base|>1 then an exponent overflow is possible. If exp<0 and 0<|base|<1 then an exponent underflow is possible. If the exponent underflow mask bit is zero (inhibiting the interrupt) then the result is a true zero. This will cause a divide by zero GPC error when the reciprocal of the result is taken. If the exponent underflow mask bit is one (enabling the interrupt) then the reciprocal of the result is taken.

Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:

Halfword exponent is shifted right to convert to a fullword. Then, EPWRI routine is used.

			EVD
I Source Member Stack Requirer Intrins Other Library I	HAL/S-FC LIBRA er Name: <u>EXP</u> ment: <u>18</u> Hw ic Modules Reference	RY ROUTINE DESCRI Size of Code Area Data CSECT Si X Proced ced: <u>NONE</u>	EXP PTION <u>108</u> Hw ze: <u>2</u> Hw lure
Primony Entry Non	<u>ESCRIPTIONS</u>		
Function: Compute	$\frac{D}{D} = \frac{D}{D} = \frac{D}$	ocision	
I unction. Compute	es e in single pr		
X Compiler e EXP(X), X Other Libra	emitted code for H where X is a ary Modules:	HAL/S construct of the f single precision	orm: scalar
TANH, EPWRE, S	INH		
Execution Time (m	nicroseconds): 14	1.8	
Input Arguments: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -
Output Results: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: Error # 6	<u>Cause</u> X>174.67308	<u>Fixup</u> Return maximum posi	tive floating point number
Comments:			
Gives expone	ent underflow if a	argument is less than	-180.21826No RTL error

number; GPC error group 3 code 9. The error will not be detected if the program status word masks out the underflow errors.

Registers Unsafe Across Call: F0,F1,F2.

Warning: For values in the range $-180.21826 \le X \le -180.21806$ the EXP routine returns values accurate to only 5 significant digits, instead of the expected 6.

Algorithm:

Let X (log₂e) = 4R-S-T, where R and S are integers, $0 \le S \le 3$, and $0 \le T \le 1$.

Then $exp(X) = 16^{R} * 2^{-S} * 2^{-T}$

 2^{-T} is computed by a fractional approximation of the form:

$$2^{-T}=1+\frac{2T}{CT^2-T+D+\frac{B}{A+T^2}}$$

The computation is carried out in fixed-point, and the values and scaling of the constants are:

The multiplication by 2^{-S} is carried out by shifting right S places, and the multiplication of 16^{R} is done by adding R to the floating exponent.

			IPWRI	
HAL/S	-FC LIBRARY F	ROUTINE DESCRIP	TION	
Source Member Nar	ne:I <u>PWRI</u>	Size of Code Area	46 Hw	
Stack Requirement:	<u>18</u> Hw	Data CSECT Size	e: <u>2</u> Hw	
Intrinsic		x Procedu	re	
Other Library Modul	es Referenced:	NONE		
ENTRY POINT DESCR	IPTIONS			
Primary Entry Name: IP	WRI			
Function: Computes d	ouble precision	integer to positive	e double precision int	teaer
power.				5
Invoked By:				
X Compiler emitte	d code for HAL/S	S construct of the fo	rm:	
arg 1 ** arg	2, where ar	g 1 is a double	e precision intege	er
	variable	, and arg 2 is	a positive doub	le
	precisio	n integer lit	eral. A litera	al
	which ha	s a magnitude g	reater than 32,70	67
	is consi	dered to be a d	louble precision	
Other Library Me	odules:			
Execution Time (microse	econds): k+16.4	(n-1)+7.0m+0.4(n-2)) if n <u>></u> 2, where k=44.6,	
	n = # of	significant digits in b	inary representation of	arg2,
	m = # o	f significant ones in	binary representation of	of
	arg2.			
Input Arguments:				
<u>Type</u>	<u>Precision</u>	<u>How Passed</u>	<u>Units</u>	
Integer (base)	DP	R5	-	
Integer (exponent)	DP	R6	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer	DP	R5	-	
Errors Detected:				
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>	
4	Zero raised to) power <u><</u> 0	Return 0	
Comments:				

Except for Error 4, no range or overflow checking is performed. Registers Unsafe Across Call: R5

Shift all halfwords to convert to fullwords. Let B = base, I = exponent.

Write I= $\sum_{i=0}^{32} e_i 2^i$ where $e_i = 1$ for each i. Then:

$$B^{I} = \Pi_{i}B^{e_{2}i} = \Pi_{e_{i}=1}B^{2^{i}}$$
 if some $e_{i} = 1$, and $= 1$ otherwise.

The product $\Pi_{e_i=1}B^{2^i}$ is computed in a loop. Each time around the loop, B^{2k} is multiplied by itself to give B^{2k+1} . The k+1-st bit is shifted out of the exponent and tested. If it is 1, the partial result is multiplied by B^{2k+1} . If not, the partial result is left as is. When the remaining exponent is 0, the result is E^I and the exit is taken from the loop. The answer is stored in ARG5 to be available after registers are restored.

<u>IPWRI</u>

Secondary Entry Name: IPWRH

Function: Computes double precision integer to positive single precision integer power. Invoked By:

Compiler emitted code for HAL/S construct of the form:

arg 1 ** arg 2, where arg 1 is a double precision integer variable, and arg 2 is a positive single precision integer literal. A literal which has a magnitude between 0 and 32,767 is considered to be a single precision

Х

Other Library Modules:

Execution Time (microseconds): Same as for IPWRI, except k = 46.6.

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Integer (base)	DP	R5	-
Integer (exponent)	SP	R6	-
Output Results: <u>Type</u> Integer	<u>Precision</u> DP	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: Error # 4	<u>Cause</u> Zero raised to	<u>Fixu</u> power < 0 Retu	<u>2</u> rn 0

Comments:

Except for the detection of error 4 no range or overflow checking is performed. Registers Unsafe Across Call: R5

Algorithm:

See IPWRI.

<u>IPWRI</u>

Secondary Entry Name: HPWRH

Function: Computes single precision integer to positive single precision integer power. Invoked By:

arg 1 ** arg 2, where arg 1 is a double precision integer variable, and arg 2 is a positive single precision integer literal. A literal which has a magnitude between 0 and 32,767 is considered to be a single precision.

Other Library Modules:

Execution Time (microseconds): Same as for IPWRI, except k = 49.4.

Input Arguments:

Х

<u>Type</u> Integer (base) Integer (exponent)	<u>Precision</u> SP SP	<u>How Passed</u> R5 R6	<u>Units</u> - -
Output Results: <u>Type</u> Integer	<u>Precision</u> SP	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: <u>Error #</u> 4	<u>Cause</u> Zero raised to p	ower <u><</u> 0	<u>Fixup</u> Return 0
Comments:			

Registers Unsafe Across Call: R5

Algorithm:

See IPWRI.

[LOG	1
	HAL/S-FC	LIBRARY ROUT	INE DESCRIPTION	
Source Me	ember Name: <u>L</u>	<u>.OG</u> Size	of Code Area <u>80</u> Hw	
Stack Req	uirement: <u>18</u>	_Hw Da	ta CSECT Size: <u>2</u> Hw	
Int	rinsic		x Procedure	
Other Libra	ary Modules Re	eferenced: <u>NON</u>	<u>IE</u>	
ENTRY POIN	T DESCRIPTIC	<u>DNS</u>		
Primary Entry	Name: <u>LOG</u>			
Function: Com	putes the natu	ral log(X) in sing	le precision.	
Invoked By:				
X Comp	iler emitted cod	le for HAL/S con	struct of the form:	
LOG (X	(), where X	is a single	precision scalar.	
X Other	Library Module	es:		
ASINH, ATAN	H, EPWRE, AC	COSH		
Execution Tim	e (microsecono	ds): 140.5		
Input Argumer	nts:	,		
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	SP	F0	-	
Output Result	s:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	SP	F0	-	
Errors Detecte	ed:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>	
7	Argument ou	tside range X>0	For X<0, return LOG(X)	
			For $X = 0$, return maximum nega	tive
			noaling point number	
Comments:				

Registers Unsafe Across Call: F0,FI,F2,F3,F4,F5.

Algorithm:

Write X = $16^{P} * 2^{-Q} * M$, where P and Q are integers, $0 \le Q \le 3$, and $1/2 \le M \le 1$. P, Q, and M are found by fixed-point calculations. Let A = 1, B = 0, if M $> \frac{\sqrt{2}}{2}$, and A = 1/2, B = 1 otherwise.

Let Z=(M-A)/(M+A). Then log(X) = (4P-Q-B)log 2 + log((1+Z)/(1-Z)).

Log((1+Z)/(1-Z)) is computed by an approximation of the form:

$$W+W\left(\frac{RW^2}{S-W^2}\right)$$

where W = 2Z, and the values of the constants are:

R = X'408D8BC7' = 0.55291413

S = X'416A298C' = 6.6351437

	HAL/S-FC L	IBRARY ROUTINE DE	SCRIPTION	<u>VH</u>
Source M	lember Name: SI	NH Size of Code	Area 82 Hw	
Stack Red	quirement: 18	Hw Data CSE	CT Size: <u>2</u> Hw	
Ir	ntrinsic	X P	rocedure	
Other Lib	rary Modules Re	ferenced: EXP		
<u>ENTRY POIN</u>	IT DESCRIPTIO	<u>NS</u>		
Primary Entry	/ Name: <u>SINH</u>			
Function: Co	mputes hyperboli	ic sine in single precisio	on.	
Invoked By:				
X Comp	oiler emitted code	e for HAL/S construct of	f the form:	
SINH	(X) where X	is a single preci	sion scalar.	
Other	Library Modules	5:		
Execution Tir	ne (microsecond	s): 1≤ X ≤1.75366E+2:	235.6	
		2.0394E-4 ≤ X <1: 8	80.7	
		X <2.0394E-4: 40.0		
Input Argume	ents:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	SP	FU	-	
Output Resul	ts:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	58	FU	-	
Errors Detect	ed:		<u>-</u> .	
Error #	<u>Cause</u>	de renges VI<175 266	<u>FIXUP</u> Boturn movimum posit	i. (o
9	Argument outsi	de range: X ≤175.366	floating point number	ive
Commontor				
Comments:	Linanta Anrana			
Registers	s Unsale Across	Call. FU,FI,FZ,F3,F4,F3).	
Algorithm:				
If X<2.04	E-4, then sinh(X	$x = X$. If 2.04E-4 $\leq X < 1$	1, then sinh(X) is compu	ited via a
	of the polynomic	alie:		

 $sinh(X) = X + C_1X^3 + C_2X^5 + C_3X^7$ where the values of the constants are:

C ₁ = X'402AAAB8'	= 0.16666734
C ₂ = X'3F221E8C'	= 0.008329912
C ₃ = X'3DD5D8B3'	= .2039399E-3

Otherwise, sinh(|X|) or cosh(|X|) is calculated using EXP. The number V, equal to 0.4995050, is introduced to control rounding errors and the formula is as follows:

$$\sinh(X) = \frac{1}{2v} \left(e^{(X + \log v)} - \frac{v^2}{e^{(X + \log v)}} \right)$$

$$\cosh(X) = \frac{1}{2v} \left(e^{(X + \log v)} - \frac{v^2}{e^{(X + \log v)}} \right)$$

the identities $\sinh(-X) = -\sinh(X)$ and $\cosh(-X) = \cosh(X)$ are used to recover $\sinh(X)$ and $\cosh(X)$ from $\sinh(|X|)$ and $\cosh(|X|)$.

<u>SINH</u>

					<u> </u>
Secondary El Function: Cor	ntry Name: <u>CC</u> mputes hypert	<u>DSH</u> polic cosine in s	ingle precis	sion.	
Invoked By:	. ,		0		
X Comp	iler emitted co	ode for HAL/S c	onstruct of	the form:	
COSH	(X) where Σ	K is a singl	e precis	sion scalar.	
Other	Library Modu	es:			
Execution Tin	ne (microseco	nds): 228.9			
Input Argume <u>Type</u> Scalar	ents: <u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -		
Output Resul <u>Type</u> Scalar	ts: <u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -		
Errors Detect Error # 9	ed: <u>Cause</u> Argument ou	tside range: X	≤175.366	<u>Fixup</u> Return maximum floating point numbe	positive er
Comments:					
Registers	S Unsafe Acros	ss Call: F0,FI,F	2,F3,F4,F5		

Algorithm:

See SINH Algorithm.

			<u>SNCS</u>				
HAL/S-FC LIBRARY ROUTINE DESCRIPTION							
Source Member Name: <u>SNCS</u> Size of Code Area <u>122</u> Hw							
Stack Requirement:	Stack Requirement: 0 Hw Data CSECT Size: 28 Hw						
Intrinsic	Intrinsic x Procedure						
Other Library Modul	es Referenced:	<u>NONE</u>					
ENTRY POINT DESCR	IPTIONS						
Primary Entry Name: SN	<u>NCS</u>						
Function: Computes sin	e(X) and cosine	e(X) in single precis	ion.				
Invoked By:							
X Compiler emitted	d code for HAL/	S construct of the fo	orm:				
SIN(X) and C	OS(X) where	X is a single	precision scalar				
	that :	is recognized	as the same for				
	both i	nvocations.					
Other Library Mo	odules:						
Execution Time (microse	econds): (TBD)						
Input Arguments:							
<u>Type</u>	Precision	How Passed	<u>Units</u>				
Scalar	SP	F0	Radians				
Output Results:							
<u>Type</u>	Precision	How Passed	<u>Units</u>				
Scalar	SP	F0	-				
Scalar (COS result)	SP	F2	-				
Errors Detected:							
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>				
8	Argument out	side range:	Return $\frac{\sqrt{2}}{2}$				
-	X <π∗2 ¹⁸	U	2				
a	, <u>,</u> <u>–</u>						
Comments:							

For a very small number of input arguments, the SNCS routine will return results that are accurate to 5 significant decimal digits (instead of the 6 significant digits that are generally required for single precision routines). For most of the range of the SNCS routine, results are returned that are accurate to the 6 significant decimal digits.

Called as a library by compiler: uses only fixed-point registers R1 and R3 which are restored at exit from an intrinsic.

The value used in the routine for $\pi \cdot 2^{18}$ is hex'45C93E10'≈824289.

Registers Unsafe Across Call: R2,R3,F0,FI,F2,F3,F4.

 Q_0

Let $|X|_* \frac{4}{\pi} = Q + R$, Q an integer, $0 \le R < 1$. Add 4 to Q if the sine is desired and X<0, and add 2 to Q if the cosine is desired. Since sin $(-x) = \sin(x+\pi)$, and cos $(x) = \sin\left(\frac{\pi}{2} + x\right)$ This reduces the problem of computing sin(x) for $x \ge 0$.

Since Q has been adjusted, it is only necessary to compute $\sin\left(\frac{\pi}{4}*(Q+R)\right)$

If $Q_0 = Q \mod 8$, then this is equal to $\sin\left(\frac{\pi}{4}*(Q_0 + R)\right)$.

The eight cases of this yield, through simple trigonometric identities:

$$= 0: \sin \left(\mathbb{R} * \frac{\pi}{4} \right)$$

$$1: \cos \left((1-\mathbb{R}) * \frac{\pi}{4} \right)$$

$$2: \cos \left(\mathbb{R} * \frac{\pi}{4} \right)$$

$$3: \sin \left((1-\mathbb{R}) * \frac{\pi}{4} \right)$$

$$4: -\sin \left(\mathbb{R} * \frac{\pi}{4} \right)$$

$$5: -\cos \left((1-\mathbb{R}) * \frac{\pi}{4} \right)$$

$$6: -\cos \left(\mathbb{R} * \frac{\pi}{4} \right)$$

$$7: -\sin \left((1-\mathbb{R}) * \frac{\pi}{4} \right)$$

Let $R_0 = R$ in octants 0, 2, 4, 6 and $R_0 = 1$ -R in octants 1, 3, 5, 7.

We compute sin $(R_{0^*}\frac{\pi}{4})$ in octants 0, 3, 4, 7 and cos $(R_{0^*}\frac{\pi}{4})$ in octants 1, 2, 5, 6, and negate the result in octants 4, 5, 6, 7.

Sin (R_{0*} $\frac{\pi}{4}$) and cos(R_{0*} $\frac{\pi}{4}$) are computed by polynomial approximations.

The form of the approximation for sine is:

sin (
$$R_{0^*} \frac{\pi}{4}$$
) = $R_0(a_0 + a_1 R_0^2 + a_2 R_0^4 + a_3 R_0^6)$

where the values of the constants are:

a ₀ = X'40C90FDB'	= .78539819
a ₁ = X'C014ABBC'	=080745459
a ₂ = X'3EA32F62'	= .0024900069
a ₃ = X'BD25B368'	=000035943

The form of the approximation for cosine is:

$$\cos \left(\mathsf{R}_{0^{\star}} \frac{\pi}{4} \right) = 1 + a_1 \mathsf{R}_0^2 + a_2 \mathsf{R}_0^4 + a_3 \mathsf{R}_0^6$$

where the values of the constants are:

a₃ = X'BE14F17D' =-.000319570

<u>SNCS</u>

Secondary Entry Name: <u>COS</u> Function: Computes cosine(X) in single precision.					
X Comp	oiler emitted code fo	r HAL/S construct o	of the form:		
COS (X), where X is	a single prec	ision scalar.		
Execution Tir	me (microseconds):	-π <u><</u> X <u><</u> π: 124.5			
		$X > \pi$ or $X < -\pi$: 123	3.6		
Input Argume <u>Type</u> Scalar	ents: <u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> Radians		
Output Resul <u>Type</u> Scalar	ts: <u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -		
Errors Detected: Error # Cause					
8	Argument outside	range X <π∗2 ¹⁸	Return $\frac{\sqrt{2}}{2}$		

Comments:

For a very small number of input arguments, the COS routine will return results that are accurate to 5 significant decimal digits (instead of the 6 significant decimal digits that are generally required for single precision routines). For most of the range of the COS routine, results are returned that are accurate to 6 significant decimal digits.

The value used in the routine for $\pi * 2^{18}$ is hex'45C93E10'≈824289.

Registers Unsafe Across Call: R2,R3, F0,FI, F2,F3,F4.

Algorithm:

See SNCS Algorithm.

<u>SNCS</u>

Secondary Entry Name: <u>SIN</u> Function: Computes sine(X) in single precision.					
<pre>Invoked By: X Compiler emitted code for HAL/S construct of the form: SIN(X), where X is a single precision scalar. Other Library Modules: Execution Time (microscoopde):</pre>					
	$X > \pi \text{ or } X < -\pi$	τ: 123.6			
Input Arguments: <u>Type</u> <u>Precision</u> Scalar SP	<u>How Passed</u> F0	<u>Units</u> Radians			
Output Results: <u>Type Precision</u> Scalar SP	<u>How Passed</u> F0	<u>Units</u> -			
Errors Detected: Error # Cause		<u>Fixup</u>			
8 Argume	ent outside range $ X < \pi \cdot 2^{18}$	Return $\frac{\sqrt{2}}{2}$			

Comments:

For a very small number of input arguments, the SIN routine will return results that are accurate to 5 significant digits (instead of the 6 significant decimal digits that are generally required for single precision routines). For most of the range of the SIN routine, results are returned that are accurate to 6 significant decimal digits. See SNCS comments.

The value used in the routine for $\pi \cdot 2^{18}$ is hex'45C93E10'~824289.

Registers Unsafe Across Call: R2,R3, F0,FI, F2,F3,F4.

Algorithm:

See SNCS Algorithm.

	HAL/S-FC	LIBRARY ROUTI	SQRT NE DESCRIPTION		
Source Member Name: <u>SQRT</u> Size of Code Area <u>48</u> Hw					
Stack Red	quirement: <u>0</u>	Hw Data	a CSECT Size: <u>14</u> Hw		
x Ir	ntrinsic		Procedure		
Other Lib	rary Modules R	eferenced: NON	Ē		
	IT DESCRIPTI	ONS			
Primary Entry	Vame: SORT				
Function: Cor	moutes square	root in single prec	ision		
Invokod Pv:					
	ilor omittad cor	to for HAL/S const	truct of the form:		
SQRT	(X), where 2	x is a single	precision scalar.		
X Other	Library Module	es:			
ACOS, ASINI	H, EPWRE, VV	10S3, ACOSH			
Execution Tin	ne (microsecon	ids): 88.3			
Input Araume	ents:				
Tvpe	Precision	How Passed	Units		
Scalar	SP	F0	-		
	to				
	Drocision	How Passod	Unite		
<u>Type</u> Scalar		<u>F0</u>			
	0	10	-		
Errors Detect	ed:		– :		
Error #	Cause				
5	Argument ou	tside range: X <u>></u> 0	Return SQRT (X)		
Comments:					
Registers	Unsafe Acros	s Call: RI,R4,R5,R	6,R7,F0,FI,F2,F3.		
Algorithm					

Write X =
$$16^{2P-Q} * M$$
, where $\frac{1}{16} \le M < 1$. Then, $\sqrt{X} = 16^{P} * 4^{-Q} * \sqrt{M}$. This fact is

used to obtain a good first approximation to \sqrt{X} by approximating \sqrt{M} by a hyperbolic approximation. The form of the approximation is, for Q=0

$$\sqrt{M} = a - \frac{b}{\left(\frac{C}{2}\right) + \left(\frac{M}{2}\right)} \left[\frac{C}{2} + \frac{M}{2}\right]$$
 is to avoid fixed-point overflow for large M]

where the calculations are done in fixed-point.

The values of the constants are:

a = X'0IAE7D00' = 1.6815948 at bit 7 b = X'FF5B02FI' = -1.2889728 at bit 7 $\frac{C}{2}$ = X'35CFC610' = 0.42040325 at bit 0 For Q = 1, $\frac{a}{4}$ and $\frac{b}{4}$ are used instead of a and b. $\frac{a}{4}$ = X'006B9F40' = 0.4203987 at bit 7 $\frac{b}{4}$ = X'FFD6C0BD' = -0.3222432 at bit 7

The first approximation is improved with two passes of the Newton-Raphson iteration. The form of the first is:

$$Y_1 = \frac{1}{2} \left(\frac{X}{Y_0} + Y_0 \right)$$

The form of the second, to minimize truncation errors, is:

$$Y_2 = \frac{1}{2} \left(Y_1 + Y_0 - \frac{X}{Y_1} \right) + \frac{X}{Y_1}$$

 Y_2 is returned as the answer.

				<u>TAN</u>			
HAL/S-FC LIBRARY ROUTINE DESCRIPTION							
Source Member Name: <u>TAN</u> Size of Code Area <u>116</u> Hw							
Stack Re	Stack Requirement: 20 Hw Data CSECT Size: 4 Hw						
	ntrinsic		Procedure				
ENTRY POI	NT DESCRIPTION	<u>NS</u>					
Primary Entry	y Name: <u>TAN</u>						
Function: Co	mputes tangent ir	n single precision.					
Invoked By:							
X Com	piler emitted code	e for HAL/S construct	t of the form:				
TAN (X), where X	is a single pre	cision scalar.				
Othe	r Library Modules	:					
Execution Tir	me (microsecond	s): 164.0					
Input Argume	ents:						
<u>Type</u>	Precision	How Passed	<u>Units</u>				
Scalar	SP	F0	Radians				
Output Resu	lts:						
<u>Type</u>	Precision	How Passed	<u>Units</u>				
Scalar	SP	F0	-				
Errors Detected:							
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>				
11	Argument outsic	de range: X <π∗2 ¹⁸	Return 1				
12	Argument too clo	ose to singularity of	Return maximur	n			
	tangent function		positive floating poir number	nt			

Comments:

For a very small number of input arguments, the TAN routine will return results that are accurate to 5 significant decimal digits (instead of the 6 significant decimal digits that are generally required for single precision routines). For most of the range of the TAN routine, results are returned that are accurate to 6 significant decimal digits.

The value used in the routine for $\pi \cdot 2^{18}$ is hex'45C93E10'~824289.

Registers Unsafe Across Call: F0,FI,F2,F3,F4,F5.

Algorithm:

Let $|X| * \frac{4}{\pi} = Q+R$. Q an integer, $0 \le R < 1$. Give the characteristic of $|X|_* \frac{4}{\pi}$ to X'00000008' for later use as a comparand, to determine nearness of X to a

singularity.

We have the following table:

Q mod 4 tan(X) $tan(|X|) = tan(R*\frac{\pi}{4})$ $tan(|X|) = cot((1-R)*\frac{\pi}{4})$ $tan(|X|) = -cot(R*\frac{\pi}{4})$ $tan(|X|) = -tan((1-R)*\frac{\pi}{4})$

For Q mod 4 even, let w = R, and for Q mod 4 odd, let w = 1-R. If $|W| < 16^{-3}$, then Q(W)=b₀. Compute two polynomials in w, as polynomials in u = $\frac{w^2}{2}$:

$$P(w) = w (a_0 + u)$$

$$Q(w) = b_0 + b_1 u + b_2 u^2$$

then $tan(w) = \frac{P(w)}{Q(w)}$, $cot(w) = \frac{Q(w)}{P(w)}$ and the above table describes how tan(x) is computed. Finally, tan(x) is computed using the identity tan(-x)=-tan(x). The values of the constants are: $a_0 = X'C1875FDC' = -8.4609032$

 $b_0 = X'CIAC5D33' =-10.7727537$ $b_1 = X'415B40FD' = 5.7033663$ $b_2 = X'C028C93' =-.15932077$

NOTE: When |x| is close to zero ($|x| < 10^{-10}$), zero is returned, and not the value x.

				<u>TANH</u>			
HAL/S-FC LIB			DN FR Llui				
Source Member Name: <u>IAN</u>	<u>IH</u> SI Iw	Ize of Code Area	<u>58</u> Hw				
Intrinsic							
Other Library Modules Refe	Other Library Modules Referenced: <u>EXP</u>						
ENTRY POINT DESCRIPTION	<u>S</u>						
Primary Entry Name: <u>TANH</u>							
Function: Computes hyperbolic	tangent in	single precision.					
Invoked By:							
X Compiler emitted code f	or HAL/S	construct of the form:					
TANH(X), where X i	s a sin	gle precision so	calar.				
Other Library Modules:							
Execution Time (microseconds)	: X ≤2.44′	14E-4: 38.2					
	2.4414E-	·4< X ≤7.0E-1: 78.7					
	7.0E-1<µ 9.011≤ X	∧ <9.011. 224.4 : 42.4					
Input Arguments:	1	I					
Type Precision How	Passed	<u>Units</u>					
Scalar SP F0		-					
Output Results:	_						
<u>Type</u> <u>Precision</u> <u>How</u>	Passed	<u>Units</u>					
		-					
Error # Cause Fixu	n						
None	2						
Comments:							
Registers Unsafe Across Ca	all: F0.FI.F	2.F3.F4.F5.					
Algorithm:	-, ,	, -, , -					
If X >9.011, return +1 or -1,	according	g to the sign of X.					
If 0.7 <u><</u> X <u> </u> ≤9.011, then (using	g EXP), ta	$nh(X)=1-2/(1+e^{2 X }).$					
Restore sign with tanh(-X) =	= -tanh(X).	For X <u><</u> 16 ⁻³ , tanh()	<) = X. For	other values			
of X, 16 ⁻³ < X <0.7, use a ra	tional app	roximation where the	values of t	he constants			
are:							
a = X'EF7EA70'	=003782	2895					
D = X UUU8756 c = $X'41278CA0'$	=014565 = 2.4717/	011 198					
0 - / 41210040	- 2.7111-						

6.3.3 Vector/Matrix Routine Descriptions

This subsection presents a class of routines which deal with HAL/S vector/matrix operations. Some of the routines implement HAL/S language built-in functions while others implement HAL/S operators.

			MMODNP			
HA	HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member Name: MM0DNP Size of Code Area 12 Hw						
Stack Requireme	nt: 0 Hw	Data CSE	CT Size: 0 Hw			
			rocedure			
Other Library Mo	dules Refere	enced: NONE				
		<u></u>				
Drimony Entry Name						
Function: Moves a	<u>IVIIVIUDINP</u> double preci	ision scalar to all no	sitions in an n x m partition			
of a doub	le precision	matrix.				
Invokod Dv:						
Compiler omi	ttad cada fa	r UAL/S construct of	the form:			
^М а то в,с то	D=S; when	re M is a double	e precision matrix, and			
	eitr	replaced by the	Line 10' subscripts may			
	De . rule	a given by mat	riv types			
Other Library	Modulos:		TIX CYPES.			
	wouldes.					
Execution Time (mici	roseconds):	6.8 + n(4.0 + 8.0m)				
Input Arguments:						
<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>			
Scalar(s)	DP	F0	-			
Integer(n)	SP	R5	-			
Integer(m)	SP	R6	-			
Integer(outdel)	SP	R7	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Matrix(n,m)	DP	$R1 \rightarrow 0^{th}$ element	-			
Erroro Dotoctodu						
	Causa	Figure				
<u>EIIUI #</u> Nono	Cause	<u>гіхир</u>				
INUTIE						
Comments:						

Registers Unsafe Across Call: R1,R3, R4,R5,R6,F0,F1.

Uses two nested loops:

Outer loop selects row;

Inner loop selects column and moves scalar to current row/column position. Upon exiting inner loop, 'outdel' is added to pointer to output matrix location.

			MMOSNP		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member N	lame: <u>MM0S</u>	SNP Size of Code	Area <u>10</u> Hw		
Stack Requiremer	nt: <u>0</u> Hw	Data CSE	CT Size: <u>0</u> Hw		
			rocedure		
Other Library Mod	luies Refere	nced: <u>NONE</u>			
ENTRY POINT DESC	RIPTIONS				
Primary Entry Name:	MM0SNP				
Function: Fill an n x	m partition	of a single precisi	on matrix with a single precision		
scalar.					
Invoked By:					
Compiler emit	ted code for	HAL/S construct of	the form:		
M _{A то в} ,с то	D =S; whe	re M is a doubl	the precision matrix, and		
	be	replaced by th	LINE IO SUBSCRIPTS MAY		
	rul	es given by mat	crix types.		
Other Library I	Modules:	5 1	2 -		
Execution Time (micro	oseconds): 6	6.4 + n(4.4 + 6.4m)			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar(s)	SP	F0	-		
Integer(n)	SP	R5	-		
Integer(m)	SP	R6	-		
Integer(outdel)	SP	R7	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(n,m)	SP	R1→0 th element	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					
Registers Unsafe	Across Call	: R1,R3, R4,R5,R6,	R7,F0,F1.		
Algorithm:					
Uses two nested	loops, one o	n n; one on m;			
Inner lean coloct	a row and	olump of rocult m	atrix and mayon input applar into		

Inner loop selects row and column of result matrix and moves input scalar into location. At exit of inner loop, pointer to matrix element is incremented by outdel, new row is selected, and inner loop is executed again.

		Ν	/M1DNP		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member Name: <u>MM1DNP</u> Size of Code Area <u>18</u> Hw					
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
	erencea:	NONE			
ENTRY POINT DESCRIPTIC	<u>NS</u>				
Primary Entry Name: MM1DN	<u>1P</u>				
Function: Moves a partition of	f a double p	recision matrix.			
Invoked By:					
X Compiler emitted code	e for HAL/S	construct of the form:			
M2=M1 _{A to b,c to d}	where M	1 and M2 are double p	precision		
	matrices	, and either or both	n of the		
M2 _A to b,c to d=M1;	'AT' su	bscript under rules	aiven by		
	matrix t	ypes.			
Other Library Modules	8:				
Execution Time (microsecond	ls): 10.8 +n	(5.4 + 12.2m) for n x m matrix r	moved.		
Input Arguments:					
Type	Precision	How Passed	<u>Units</u>		
Matrix(n,m)	DP	$R2 \rightarrow 0^{th}$ element	-		
Integer(n)	SP	R5	-		
Integer(m)	SP	R6	-		
Integer(indel, outdel)	DP	R7(indel in highest Hw, outdel in Low Hw)	-		
Output Results:		,			
Type	Precision	How Passed	Units		
Matrix(n,m)	DP	$R1 \rightarrow 0^{\text{th}}$ element	-		
Errore Dotoctod:					
Error # Caus None	<u>se Fixu</u>	ρ			
Comments:					
Registers Unsafe Across	Call: R1,R2	2,R3, R4,R5,R6,R7,F0,F1,F2.			
-					

Loops on # rows;

Loops on # columns;

Load and store current element pointed to by input/output pointers; Increment pointers to next row element;

End column loop;

Increment input pointer by indel;

Increment output pointer by outdel;

End row loop;

		MM1SN	1P		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member Name:	MM1SNP	Size of Code Area <u>16</u> Hw			
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
x Intrinsic Procedure					
Other Library Modules	Referenced:	NONE			
ENTRY POINT DESCRIPT	IONS				
Primary Entry Name: MM1	<u>SNP</u>				
Function: Moves a partition	of a single p	precision matrix.			
Invoked By:					
X Compiler emitted cod	de for HAL/S	construct of the form:			
M2=M1 _{A то в.д то р}	where M	1 and M2 are single preci	sion		
	matrices	, and either or both of the	' TO '		
M2 _{A TO B,C TO D} =M1	; subscrip	ots may be replaced by the	'AT'		
	subscrip	ot under rules given for ma	itrix		
Other Librery Medule	types.				
	35.				
Execution Time (microseco	nds): 10.8 +	n(5.4 + 9.4m) for n x m matrix.			
Input Arguments:					
Type	Precision	How Passed	<u>Units</u>		
Matrix(n,m)	SP	R2→0 th element	-		
Integer(n)	SP	R5	-		
Integer(m)	SP	R6	-		
Integer(indel, outdel)	DP	R7 (high Hw=indel, Low Hw=outdel)	-		
Output Results:					
<u>Type</u> <u>Preci</u>	<u>sion Hov</u>	v Passed	<u>Units</u>		
Matrix(n,m) SP	R1-	→0 th element	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>	Fixup			
None					
Comments:					
Registers Unsafe Acros	ss Call: R1,F	2,R3, R4,R5,R6,R7,F0,F1.			

Loop on # rows; Loop on # columns; Load and store current element pointed to by input/output pointer; Increment pointers to next row; End column loop; Increment input pointer by indel; Increment output pointer by outdel; End row loop;

MM1TNP HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: MM1TNP Size of Code Area 16 Hw Stack Requirement: 0 Hw					
x Intrinsic	foronood.				
	ierencea. <u>i</u>	<u>NONE</u>			
ENTRY POINT DESCRIPTIO	<u>NS</u>				
Primary Entry Name: MM1TN	<u>P</u>				
Function: Moves a partition of precision matrix.	of a double p	precision matrix and st	ores it as a single		
Invoked By:					
X Compiler emitted code	for HAL/S of	construct of the form:			
M2=M1 _{A to b,c to d}	where M2 and M1 i	is a single prec s a double prec	cision matrix, cision matrix.		
M2 _{A TO B,C TO D} =M1;	Both or may be r under rul	either of the '1 eplaced by the ' .es given for mat	O' subscripts AT' subscript rix types.		
Other Library Modules	:	-			
Execution Time (microsecond	s): 10.4 + n((5.8 + 10.6m) for n x m	n move.		
Input Arguments:					
Type	Precision	How Passed	<u>Units</u>		
Matrix(n,m)	DP	R2→0 th element	-		
Integer(n)	SP	R5	-		
Integer(m)	SP	R6	-		
Integer(indel,outdel)	SP	R7	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(n,m)	SP	R1→0 th element	-		
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>			
Comments: Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2.					

Loops on # rows;

Loops on # columns;

Load long input element pointed to by input pointer; Store short into output element pointed to by output pointer; Increment pointer to next element;

End column loops;

Increment input pointer by indel; Increment output pointer by outdel;

End row loop;
			MM1WNP
HAL/S-FC	LIBRARY F	ROUTINE DESCRIF	PTION
Source Member Name:	<u>MM1WNP</u>	Size of Code Area	<u>18</u> Hw
Stack Requirement: 0	_ Hw	Data CSECT Siz	ze: <u>0</u> Hw
x Intrinsic		Procedu	ure
Other Library Modules F	Referenced:	<u>NONE</u>	
ENTRY POINT DESCRIPTI	ONS		
Primary Entry Name: <u>MM1V</u> Function: Moves a partitio precision matrix	<u>VNP</u> n of a single	precision matrix ar	nd stores it as a double
Invoked By:			
X Compiler emitted coo	de for HAL/S	S construct of the fo	rm:
M2=M1 _{A TO B,C TO E}) where M M2 is a	11 is a single a double precis	precision matrix. sion matrix. Both
M2 _A to b,c to d=M1	replace rules g	ed by the 'AT' given for matri	subscripts under x types.
Other Library Module	es:		
Execution Time (microseco	nds): 13.6 +	n(5.0 + 11.0m) for r	n x m move.
Input Arguments:	,	(, , , , , , , , , , , , , , , , , , ,	
Type	Precision	How Passed	Units
Matrix(n,m)	SP	R2→0 th element	-
Integer(n)	SP	R5	-
Integer(m)	SP	R6	-
Integer(indel,outdel)	SP	R7	-
Output Results:			
Type	Precision	How Passed	<u>Units</u>
Matrix(n,m)	DP	R1→0 th element	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Unsafe Acros	s Call: R1,R	2,R3, R4,R5,R6,R7	7,F0,F1,F2.
-			

Clears lower half of floating point register pair.

Loops on # rows;

Loops on # columns;

Load short input element pointed to by input pointer;

Store long (with zeroed second word) into output element pointer;

Increment pointers to next row element;

End column loop;

Increment input pointer by indel;

Increment output pointer by outdel;

End row loop;

			MM6DN		
н	AL/S-FC LIE	BRARY ROUTINE DES	SCRIPTION		
Source Member Name: <u>MM6DN</u> Size of Code Area <u>42</u> Hw					
Stack Requirem	nent: <u>0</u> H	w Data CSEC	CT Size: <u>0</u> Hw		
			ocedure		
	IODUIES RETE	erenced: <u>NONE</u>			
ENTRY POINT DE	<u>SCRIPTION</u>	<u>S</u>			
Primary Entry Nam	e: <u>MM6DN</u>				
Function: Multiplies	s two double	precision matrices.			
Invoked By:			_		
X Compiler em	itted code fo	or HAL/S construct of the	ne form:		
M1 M2,wher	re M1 is a	m x n double prec	ision matrix		
	M2 is a	n x ℓ double preci	sion matrix $m, n \ell \neq 3;$		
Other Library	Modules:				
Execution Time (mi	icroseconds)): 22.2 + m(10.8 + ℓ (2	1.2 + 27.2n))		
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(m,n)	DP	R2→0 th element	-		
Matrix(n,ℓ)	DP	R3→0 th element	-		
Integer(m)	SP	R5	-		
Integer(n)	SP	R6	-		
Integer(ℓ)	SP	R7	-		
Output Results:					
<u>Type</u>	Precision	How Passed	Units		
Matrix(m,ℓ)	DP	R1→0 th element	-		
Errors Detected:					
Error #	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					
Registers Unsa	afe Across C	all: R1,R2,R3, R4,R5,I	R6,R7,F0,F1,F2,F3 F4,F5.		
Algorithm:					

Uses 3 loops:

Innermost (on n) multiplies a row of M1 by a column of M2; The second loop (on ℓ) resets the column pointer; The outer loop (on m) resets the row pointer.

			ND 40		
MM6D3					
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Membe	r Name: <u>Miv</u>	<u>16D3</u> Size of Co	de Area <u>32</u> HW		
Stack Requirem	nent: <u> </u>	w Data CS	BECT SIZE: <u>U</u> HW		
	C Andulan Dafa		Procedure		
ENTRY POINT DE	SCRIPTION	<u>S</u>			
Primary Entry Nam	e: <u>MM6D3</u>				
Function: Multiplies	s two 3 x 3 d	ouble precision mat	rices.		
Invoked By:					
X Compiler en	nitted code f	or HAL/S construct	of the form:		
	nere M1 a	nd M2 are dou	ble precision 3 x	3	
ma	atrices.				
Other Librar	y Modules:				
Execution Time (mi	icroseconds): 671.6			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(M1)	DP	R2→0 th element	-		
Matrix(M2)	DP	R3 \rightarrow 0 th element	-		
Output Results:					
Type	Precision	How Passed	Units		
Matrix(3.3)	DP	$R1 \rightarrow 0^{\text{th}}$ element	-		
Errors Detected:	Causa	Figure			
<u>Effor #</u> None	<u>Cause</u>	FIXUP			
NULLE					
Comments:					

Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7, F0,F1,F2,F3,F4,F5.

Algorithm:

Explicitly multiplies row by column, element by element. Uses BCTB to advance to each new column, and BCTB to advance to each new row.

			MM6SN		
ŀ	HAL/S-FC LI	BRARY ROUTINE D	DESCRIPTION		
Source Member Name: <u>MM6SN</u> Size of Code Area <u>40</u> Hw					
Stack Requirer	nent: <u>0</u> ⊢	lw Data CS	ECT Size: <u>0</u> Hw		
x Intrinsi	С		Procedure		
Other Library N	/lodules Ref	erenced: <u>NONE</u>			
ENTRY POINT DE	SCRIPTION	<u>NS</u>			
Primary Entry Nam	ne: <u>MM6SN</u>				
Function: Multiplies	s two single	precision matrices.			
Invoked By					
X Compiler en	nitted code f	or HAL/S construct c	of the form:		
M1 M2, whe	re M1 is a	a m x n double pr	ecision matrix		
	M2 is a	a n x ℓ double pre	ecision matrix $ m, n \ \ell \neq 3 $;	
Other Librar	y Modules:				
Execution Time (m	icroseconds	s): 22.2 + m(10.8 + ℓ	(20.2 + 18.0n))		
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(m,n)	SP	R2→0 th element	-		
Matrix(n,ℓ)	SP	R3→0 th element	-		
Integer(m)	SP	R5	-		
Integer(n)	SP	R6	-		
Integer(<i>l</i>)	SP	R7	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(m,ℓ)	SP	R1→0 th element	-		
Errors Detected:					
Error #	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					
Registers Uns	afe Across (Call: R1.R2,R3,R4,R	5,R6,R7,F0,F1,F2,F3,F4,F5.		
Algorithm		. , . ,	, , , , , , , -		
Samo as MM6	אס				

			MM6S3
НА	L/S-FC LIBRAI	RY ROUTINE DESCR	IPTION
Source Member	Name: MM6S3	Size of Code Area	a <u>24</u> Hw
Stack Requireme	ent: <u>0</u> Hw	- Data CSECT S	ize: <u>0</u> Hw
x Intrinsic		Proced	lure
Other Library Mo	dules Referenc	ed: <u>NONE</u>	
ENTRY POINT DES	<u>CRIPTIONS</u>		
Primary Entry Name	: MM6S3		
Function: Multiplies t	wo 3 x 3 single	precision matrices.	
Invoked Bv:	-		
X Compiler emitte	d code for HAL	/S construct of the forr	n:
M1 M2, wher	e M1 and M	12 are 3 x 3 si:	ngle precision
matrices.			5 1
Other Library M	odules:		
Execution Time (mic	roseconds): 40	9.6	
Input Arguments:	,		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(M1)	SP	R2→0 th element	-
Matrix(M2)	SP	$R3 \rightarrow 0^{\text{th}}$ element	-
	Provision	How Passad	Lipito
<u>Type</u> Matrix(3.3)	SD		<u>onns</u>
	JF	R1→0 [™] element	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Unsafe	e Across Call: F	R1,R2,R3, R4,R5,R6,R	7,F0,F1,F2,F3,F4,F5.

Same as MM6D3, except the matrices are single precision.

			MM11DN
	HAL/S-FC LIB	RARY ROUTINE DE	SCRIPTION
Source Memb	oer Name: <u>MM</u>	11DN Size of Code	Area <u>16</u> Hw
Stack Require	ment: <u>0</u> Hw	Data CSEC	CT Size: <u>0</u> Hw
x Intrine	Sic	Pi	rocedure
Other Library	Modules Refei	renced: <u>NONE</u>	
<u>ENTRY POINT D</u>	ESCRIPTIONS	<u>6</u>	
Primary Entry Na	me: <u>MM11DN</u>		
Function: Transpo	oses an n x m	double precision matr	ix.
Invoked By:			
X Compiler em	itted code for I	HAL/S construct of the	e form:
TRANSPOSE	(M)or M^{T}	where M is an n	x m double precision
		matrix and m and	l/or n ≠ 3.
Other Library	/ Modules:		
Execution Time (r	nicroseconds)	: 8.0 + m(5.8 + 12.2n)	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(n,m)	DP	R2→0 th element	-
Integer	SP	R5	-
Integer	SP	R6	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(m,n)	DP	R1→0 th element	-
Errors Dotoctod:			
Frror #	Cause	Fixup	
None	0000		
Comments:			
Registers I In	safe Across Ca	all· R1 R2 R3 R4 R5	R6 R7 F0 F1 F2
		an. ivi,ive,ivo, iv i ,ivo,	
Algorithm:			
Uses two hes	lieu loops:		

Outer loop selects column of input matrix;

Inner loop moves elements of selected column to corresponding row of result matrix.

AL/S-FC LIBF r Name: <u>MM1</u> hent: <u>0</u> Hw c odules Refere	ARY ROUTINE DES <u>1D3</u> Size of Code Data CSEC Pr enced: <u>NONE</u>	SCRIPTION Area <u>22</u> I CT Size: <u>0</u> Hw ocedure	Hw
<u>SCRIPTIONS</u>			
e: <u>MM11D3</u>			
transpose of	3 x 3 double precisio	n matrix.	
red code for H 1)or M ^T w	AL/S construct of the where M is a 3 m matrix.	e form: x 3 double pr	recision
Nodules:			
croseconds):	93.6		
<u>Precision</u> DP	<u>How Passed</u> R2→0 th element	<u>Units</u> -	
<u>Precision</u> DP	<u>How Passed</u> R1→0 th element	<u>Units</u> -	
<u>Cause</u>	<u>Fixup</u>		
	AL/S-FC LIBF r Name: $\underline{MM1}$ pent: 0 Hw codules Refere SCRIPTIONS e: $\underline{MM11D3}$ transpose of red code for H 1) or M^T w Modules: croseconds): $\underline{Precision}$ DP $\underline{Precision}$ DP \underline{Cause}	AL/S-FC LIBRARY ROUTINE DES r Name: $\underline{MM11D3}$ Size of Code hent: 0 Hw Data CSEC produles Referenced: NONE SCRIPTIONS e: $\underline{MM11D3}$ transpose of 3 x 3 double precision red code for HAL/S construct of the 1) or M^{T} where M is a 3 :: matrix. Modules: croseconds): 93.6 $\underline{Precision}$ How Passed DP R2 \rightarrow 0 th element $\underline{Precision}$ How Passed DP R1 \rightarrow 0 th element \underline{Cause} Fixup	AL/S-FC LIBRARY ROUTINE DESCRIPTION r Name: <u>MM11D3</u> Size of Code Area <u>22</u> I hent: <u>0</u> Hw Data CSECT Size: <u>0</u> Hw codules Referenced: <u>NONE</u> <u>SCRIPTIONS</u> e: <u>MM11D3</u> transpose of 3 x 3 double precision matrix. red code for HAL/S construct of the form: 1) or M ^T where M is a 3 x 3 double pr matrix. Modules: croseconds): 93.6 <u>Precision</u> <u>How Passed</u> <u>Units</u> DP R2 \rightarrow 0 th element - <u>Precision</u> <u>How Passed</u> <u>Units</u> DP R1 \rightarrow 0 th element - <u>Cause</u> Fixup

Comments:

Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1,F2,F3,F4,F5.

Algorithm:

Uses loop to load elements of one column into registers, then store into row elements of resultant for each pass through the loop.

			<u>MM11SN</u>
HAL/S-FC	LIBRARY R	OUTINE DESCRIPT	ION
Source Member Name:	<u>MM11SN</u> S	Size of Code Area	<u>16</u> Hw
Stack Requirement: 0	_ Hw	Data CSECT Size:	: <u>0</u> Hw
A Intrinsic	Peferenced:		÷
Drimon (Entry Name MM44			
Function: Transpose an n x	<u>SIN</u> m single prov	cision matrix	
Invoked By:	In single prec		
X Compiler emitted co	de for HAL/S	construct of the form).
TRANSPOSE (M) or	M ^T where I	Visannxm	single precision
	matrix	and m and/or n	≠ 3.
Other Library Module	es:		
Execution Time (microsecon	nds): 8.4 + m	(5.8 + 9.4n)	
Input Arguments:			
Type	Precision	How Passed	<u>Units</u>
Matrix(n,m)	SP	R2→0 th element	-
Integer(#rows=n)	SP	R5	-
Integer(#columns=m)	SP	R6	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(m,n)	SP	R1→0 th element	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Unsafe Acros	s Call: R1,R2	2,R3, R4,R5,R6,R7,F	F0,F1.
Algorithm:			

Uses two nested loops:

Outer loop selects which column of input matrix to use; Inner loop loads and stores column elements as row elements of result.

			<u>MM11S3</u>			
Н	HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Membe	r Name: <u>MM1</u>	1S3 Size of Code Area	a <u>18</u> Hw			
Stack Requirem	nent: <u>0</u> Hw	Data CSECT S	ize: <u>0</u> Hw			
x Intrinsio	;	Proced	dure			
Other Library M	odules Refere	enced: <u>NONE</u>				
ENTRY POINT DE	<u>SCRIPTIONS</u>					
Primary Entry Nam	e: <u>MM11S3</u>					
Function: Performs	transpose of	3 x 3 single precision ma	trix.			
Invoked By:						
X Compiler em	itted code for	HAL/S construct of the fo	orm:			
TRANSPOSE	(M) or M^{T} with M	here M is a 3 x 3	3 single precision			
	ma	atrix.				
Other Library	Modules:					
Execution Time (mi	croseconds):	71.8				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Matrix(3,3)	SP	R2→0 th element	-			
Output Results:						
Туре	Precision	How Passed	Units			
Matrix(3,3)	SP	R1→0 th element	-			
Errere Detected						
Error #	Causa	Fixun				
<u>LIIOI #</u> None	Cause	<u>1 IXUP</u>				
Comments:						
Registers Unsa	ite Across Ca	II: K1,K2,K4,K5,F0,F1,F2	<u>.</u>			

Uses loop to load F0, F1, F2 with columns of input matrix and store them as rows of output matrix for columns $1 \rightarrow 3$, rows $1 \rightarrow 3$.

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5. Algorithm:

Same as MM12SN.

			MM12D3		
HAL	/S-FC LIBRA	RY ROUTINE DESCR			
Source Member Name: <u>MM12D3</u> Size of Code Area <u>44</u> Hw					
Stack Requiremen	t: <u>18</u> Hw	Data CSECT S	Size: <u>0</u> Hw		
Intrinsic		x Proce	dure		
Other Library Modu	ules Reference	ced: <u>NONE</u>			
ENTRY POINT DESC	<u>RIPTIONS</u>				
Primary Entry Name: N	<u>/M12D3</u>				
Function: Find the dete	erminant of a	3 x 3 double precision	n matrix.		
Invoked By:					
X Compiler emitted	code for HAL	/S construct of the for	m:		
DET(M), where	M is a do	ouble precision 3	x 3 matrix.		
X Other Library Mod	dules:				
MM14D3					
Execution Time (micro	seconds):				
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(3,3)	DP	R2→0 th element	-		
Output Results:					
Type	Precision	How Passed	Units		
Scalar	DP	F0	-		
Errors Detected					
Error #	Cause	Fixup			
None					
Comments:					
Registers Unsafe	Across Call [.] I	F0.F1.F2.F3.F4.F5			

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5. For singular matrices, an expected value of 0 may not be returned due to lost precision.

Also, exponent overflow range checking is not performed.

Algorithm:

Uses direct code, no loops to calculate determinant. See algorithm for MM12S3.

			MM12SN
Source Member Name		Size of Code Area	138 Hw
Stack Requirement: 2	0 Hw	Data CSECT Size	: 0 Hw
		x Procedur	e
Other Library Modules I	Referenced:	NONE	
ENTRY POINT DESCRIPT	IONS		
Primary Entry Name: MM12	<u>2SN</u>		
Function: Find the determin	ant of an n x	n single precision m	atrix.
Invoked By:			
X Compiler emitted code	for HAL/S co	onstruct of the form:	
DET(M), where M = $n \neq 3$.	isanxn	single precisi	on matrix, and
Other Library Modules	:		
Execution Time (microseco	nds): for n=2	: 44.4	
	for n≥4	:	
minimum time = 47.8 + 7 maximum time = 47.8 +	$.8n^{2} + \sum_{k=11}^{n-1} (3n^{2} + \sum_{k=11}^$	37.6k ² + 64.6k + 85. 1 (41.6k ² + 105.8k +	8) · 3.6n)
The minimum time occurs in	n the event th	at all matrix element	s are positive and where
no row or column switching	is required a	t any point of the co	mputation.
The maximum time occ	urs in the	event that all m	atrix elements require
complementing to obtain the	heir absolute	value, BIG change	s on every comparison,
and row and column switch	ing are requi	red at every point in	the computation.
Input Arguments:	Dresision	Llaw Daaaad	l luite
<u>Type</u> Matrix(n n)	SP	<u>How Passed</u>	<u>Units</u>
Matrix(n,n) workeree		R2→0"' element	_
Integer(n)	SP	R5	-
	<u>.</u>		
Type	Precision	How Passed	Units
Scalar	SP	F0	-

Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsafe Acr	oss Call: F0,	F1,F2,F3,F4,F5	j.
Algorithm:			
DET = 1.0 FOR K = 1 TO N1 DO BIG = 0 I1 = J1 = K FOR I = K TO N DO FOR J = K TO N IF ABS(A(I, BIG = AF I1 = I; J1 = J; END END IF I1 \neq K THEN DO) V DO (J))>BIG THH 3S(A(I,J));	EN DO	find maximal element
DET = -DET FOR J = K TO N	N SWITCH(A()	I1,J),A(K,J))	switch rows
END IF J1 \neq K THEN DC DET = -DET FOR I = K TO N END DET = DET*A(K,K) FOR I = K + 1 TO TEMP1 = -A(1, F) FOR J = K + 1 A(I,J) END END END) N DO ()/A(K,K) TO N DO = A(I,J) +	I,J1),A(J,K)); product o reduce A(K,J) * TEMP:	switch columns of diagonal element
DET = DET*A(N,N) If dim = 2, then spe DET = A(1,1)*A(2,	ecial case: ,2)-A(1,2)*/	last diag	onal element

				
				<u>MM12S3</u>
Source Memb	nal/5-FC Lie	1283 Size of Code	Area 26	Нм
Stack Require	ment: 18 F	Hw Data CSE	CT Size: 0 Hv	V V
Intrins	ic		rocedure	•
Other Library	Modules Refe	erenced: <u>NONE</u>		
ENTRY POINT DI	ESCRIPTION	<u>S</u>		
Primary Entry Nar	ne: <u>MM12S3</u>			
Function: Find the	determinant	of a single precision 3	x 3 matrix.	
Invoked By:				
X Compiler emi	itted code for	HAL/S construct of the	e form:	
DET(M), wh	nere M is a	a single precisio	on 3 x 3 matri	Ĺx.
X Other Library	Modules:			
MM14S3				
Execution Time (n	nicroseconds)): 116.0		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Matrix(3,3)	SP	R2→0 th element	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	SP	F0	-	
Errors Detected:	_			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:			_	
Registers Uns	ate Across C	all: F0,F1,F2,F3,F4,F8	5 .	
Algorithm:				
Uses direct in	line code to c	alculate		
det = M11 M_{22}	$M_{33} + M_{12} M_{23}$	₂₃ M ₃₁ + M ₁₃ M ₂₁ M ₃₂		
- MJ31 MI ₂₂	<u>,</u> IVI ₁₃ - IVI ₃₂ IVI ₃	23 IVI11 - IVI33 IVI21 IVI12		

			MM13DN
HAI	_/S-FC LIBRARY	ROUTINE DESCRIPTIC	N
Source Member N	Name: <u>MM13DN</u>	Size of Code Area	<u>10</u> Hw
Stack Requirement	nt: <u>0</u> Hw	Data CSECT Size:	<u>0</u> Hw
x Intrinsic		Procedure	
Other Library Mod	dules Referenced	d: <u>NONE</u>	
ENTRY POINT DESC	CRIPTIONS		
Primary Entry Name:	<u>MM13DN</u>		
Function: Calculates	TRACE of an n x	n double precision matrix	κ.
Invoked By:			
X Compiler emitted	d code for HAL/S	construct of the form:	
TRACE(M), w	here M is a	n n x n double pre	cision matrix,
a	nd n \neq 3.		
Other Library Mo	odules:		
Execution Time (micr	oseconds): 12.0	+ 10.2n	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(n,n)	DP	R2→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
Type	Precision	How Passed	Units
Scalar	DP	F0	-
Errors Detected:			
Error #	Cause	Fixup	
None			
Comments:			

Registers Unsafe Across Call: R2,R4,R5,R6,F0,F1.

Algorithm:

Creates a skip value of n+1; Uses loop counting down n-1 to zero, each pass summing a diagonal element of the matrix by using the skip value to increment from the previous diagonal element.

			MM13D3
HAL/S Source Member Nar Stack Requirement: x Intrinsic Other Library Modul	B-FC LIBRARY ROU me: <u>MM13D3</u> Size <u>0</u> Hw E es Referenced: <u>NC</u>	ITINE DESCRIPTION e of Code Area <u>8</u> Data CSECT Size: <u>0</u> Procedure <u>DNE</u>	<u>8_</u> Hw _ Hw
ENTRY POINT DESCR	<u>IPTIONS</u>		
Primary Entry Name: <u>MI</u> Function: Calculates TR	<u>M13D3</u> ACE of a 3 x 3 doul	ole precision matrix.	
Invoked By: X Compiler emitted contract (M), where Other Library Module	ode for HAL/S cons e M is a 3 x 3 Iles:	t ruct of the form : double precision	matrix.
Execution Time (microse	econds): 19.8		
Input Arguments: <u>Type</u> Matrix(3,3)	<u>Precision</u> DP	<u>How Passed</u> R2→0 th element	<u>Units</u> -
Output Results: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsafe A	cross Call: R2,R4,F	0,F1.	
Algorithm:			

Direct code, no loops to calculate $M_{11} + M_{22} + M_{33}$.

			MM13SN
н	AL/S-FC LIBRA	RY ROUTINE DESC	RIPTION
Source Membe	r Name: <u>MM138</u>	SN Size of Code Are	ea <u>8</u> Hw
Stack Requirem	nent: <u>0</u> Hw	Data CSECT	Size: <u>0</u> Hw
x Intrinsic	;	Proc	edure
Other Library M	odules Referen	ced: <u>NONE</u>	
ENTRY POINT DE	<u>SCRIPTIONS</u>		
Primary Entry Nam	e: <u>MM13SN</u>		
Function: Calculate	s TRACE of an	n x n single precision	matrix.
Invoked By:			
X Compiler emitt	ed code for HA	L/S construct of the fo	orm:
TRACE(M),	where M is	a single precis	ion n x n matrix,
	n ≠ 3.		
Other Library	Nodules:		
Execution Time (mi	croseconds): 8.	8 + 6.2n	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(n,n)	SP	R2→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			

Registers Unsafe Across Call: R2,R4,R5,R6,F0.

Algorithm:

Creates a skip value of n+1; uses loop counting down n-1 to zero, each pass summing a diagonal element of the matrix by using the skip value to increment from the previous diagonal element.

				MM13S3
	HAL/S-FC LIBR	ARY ROUTINE DES	CRIPTION	
Source Membe	er Name: <u>MM13</u>	<u>3S3</u> Size of Code A	rea <u>4</u> H	w
Stack Require	ment: <u>0</u> Hw	Data CSEC	Г Size: <u>0</u> Нw	1
x Intrins	ic	Pro	cedure	
Other Library	Modules Refere	nced: <u>NONE</u>		
ENTRY POINT DE	<u>ESCRIPTIONS</u>			
Primary Entry Nan	ne: <u>MM13S3</u>			
Function: Calculat	es TRACE of a	3 x 3 single precision	ı matrix.	
Invoked By:				
X Compiler emi	tted code for H	AL/S construct of the	form:	
TRACE(M),	where M	is a 3 x 3 s	ingle preci	sion
	matrix.			
	Modules:			
Execution Time (m	nicroseconds): 9	9.8		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Matrix(3,3)	SP	R2→0 th element	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	SP	F0	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				
Registers Uns	afe Across Call	: R2,R4,F0.		
Algorithm:				
Straight code	to calculate M ₁	₁ + M ₂₂ + M ₃₃ .		

					MM14DN
HAL/S-F	C LIBRARY	ROUTIN	IE DESCR		
Source Member Name	: <u>MM14DN</u>	Size of	Code Area	a <u>288</u>	Hw
Stack Requirement:	<u>28_</u> Hw	Data	CSECT S	Size: <u>2</u> Hw	/
Intrinsic			x Proce	dure	
Other Library Modules	Referenced	: <u>MM15</u>	DN		
ENTRY POINT DESCRIPT	<u>FIONS</u>				
Primary Entry Name: MM1	4DN				
Function: Inverts an n x n o	double preci	sion mati	rix.		
Invoked By:					
X Compiler emitted co	de for HAL/S	S constru	ct of the fo	orm:	
M^{-1} or INVERSE(M)), where I	M is a	n n x	n double	precision
	matrix,	n ≠ 3	•		
Other Library Module	es:				
Execution Time (microseco	onds): for n=	2: 173.8,	I.	-	_
	for n≥	4: 63.0 +	129.5n +	43.0n ² + 65.4	4n ³
Input Arguments:					
<u>Type</u>	Precision	How Pa	assed	<u>Units</u>	
Matrix(n,n)	DP	$R_{4}\rightarrow 0^{tr}$	1	-	
	00	elemen	t		
Integer(n) Matrix(n n) workeree	52	R5 D7		-	
	DF	Π/		-	
Output Results:	Dresisier			Linite	
<u>Type</u> Motrix	Precision	HOW Pa	<u>issea</u>	Units	
Mallix	DF	R2→0"	'element	-	
Errors Detected:	_				
Error #	<u>Cause</u>		<u>Fixup</u>		
27	Singular m	atrix	Return id	entity matrix	
Comments:					

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

Same as MM14SN, except that pivot element divide operation is done by multiplying by reciprocal to save time over use of long divide instruction.

			MM14D3
ŀ	HAL/S-FC LIBRA	ARY ROUTINE DESCR	
Source Membe	er Name: <u>MM14</u>	D3 Size of Code Are	a <u>144</u> Hw
Stack Requirer	ment: <u>26</u> Hw	Data CSECT S	Size: <u>2</u> Hw
Intrinsi	С	x Proce	dure
Other Library N	Aodules Referer	nced: <u>MM12D3,MM15</u>	DN
ENTRY POINT DE	SCRIPTIONS		
Primary Entry Nam	ne: MM14D3		
Function: Inverts a	3 x 3 double pr	ecision matrix.	
Invoked By:			
X Compiler emit	tted code for HA	L/S construct of the for	m:
M^{-1} or INVE	ERSE(M), wher	ce Mis a 3 x 3	double precision
	matr	cix.	
Other Library	Modules:		
Execution Time (m	nicroseconds): 7	95.4	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(3,3)	DP	R4→0 th element	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(3,3)	DP	R2→0 th element	-
Errors Detected			
Error #	Cause		Fixup
27	Attempted inve	rse of singular matrix	Return identity matrix
Comments:	•	-	-

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

For singular matrices, the identity matrix and error message may not be returned due to lost precision in calculating the determinant (refer to MM12D3). A small determinant value could result in exponent overflow during the '1/determinant' calculation. Exponent overflow range checking is not performed.

Algorithm:

Explicit code, no loops; algorithm same as MM14S3 except that external routines used are MM12D3 and MM15DN.

					<u>MM14SI</u>	V	
HAL/S-FC Source Member Name: <u>I</u> Stack Requirement: <u>20</u>	LIBRARY F <u>MM14SN</u>)_ Hw	ROUTIN Size of Data	E DESCRIPT Code Area CSECT Size	TION <u>246</u> e: <u>2</u> Hw	_ Hw v		
Intrinsic Other Library Modules R	eferenced:	MM15	x Procedur SN	e			
ENTRY POINT DESCRIPTION	ONS						
Primary Entry Name: MM14	<u>SN</u>						
Function: Inverts a single pro	ecision n x r	n matrix.					
Invoked By: X Compiler emitted code M ⁻¹ or INVERSE(M),	for HAL/S co where M	onstruct	of the form: a single	precis	ion n	x	n
Other Library Modules:	matix,	II <i>→</i> ⊃.					
Execution Time (microsecon	nds): for n=2 for n <u>></u> 4:	: 107.6, 52.0 +	39.2n + 10.5	n ² + 54.6r	1 ³		
Input Arguments: <u>Type</u> Matrix(n,n)	<u>Precision</u> SP	<u>How Pa</u> R4→0 ^t	<u>assed</u> ^h element	<u>Units</u> -			
Integer(n) Matrix(n,n) workarea	SP SP	R5 R7		-			
Output Results: <u>Type</u> Matrix(n,n)	<u>Precision</u> SP	<u>How P</u> R2→0	<u>'assed</u> th element	<u>Units</u> -			
Errors Detected: Error # 27	<u>Cause</u> Matrix is sir	ngular	<u>Fixup</u> Return ident	tity matrix			
Comments: Registers Unsafe Across	s Call: F0,F′	1,F2,F3,	F4,F5.				
Algorithm: For K = 1, N							
find maximal element save it as 'BIG' pivot o save its row # as ISW save its column # as	in row K to element /(K) JSW(K)	n, colur	nns K to n				
switch K ^{tri} and ISW(K switch K th and JSW(k) ^{u1} row K) th column						

divide K^{th} column except for K^{th} element by - BIG reduce matrix divide K^{th} row except for K^{th} element by BIG replace pivot by reciprocal

DO K = N-1,1

interchange JSW(K)th and Kth rows interchange ISW(K)th and Kth columns.

				<u>MM14S3</u>	
	HAL/S-FC LIBF	RARY ROUTINE DESC	RIPTION		
Source Memb	Source Member Name: <u>MM14S3</u> Size of Code Area <u>80</u> Hw				
Stack Require	Stack Requirement: <u>18</u> Hw Data CSECT Size: <u>2</u> Hw				
Intrine					
Other Library	Other Library Modules Referenced: <u>MM12S3,MM15SN</u>				
ENTRY POINT D	ESCRIPTIONS				
Primary Entry Na	me: <u>MM14S3</u>				
Function: Inverts	a 3 x 3 single p	recision matrix.			
Invoked By:					
X Compiler er	nitted code for I	HAL/S construct of the f	orm:		
M ⁻¹ or IN	VERSE(M), wh	ere M is a 3 x 3	single	e precision	
	ma	trix.			
Other Libra	y Modules:				
Execution Time (r	microseconds):	458.8			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(3,3)	SP	R4→0 th element	-		
	Precision	How Passed	Unite		
<u>Type</u> Matrix(3 3)	SP	$\frac{10w1}{233eu}$	<u>-</u>		
Mathx(0,0)	01	R∠→0 [™] element			
Errors Detected:					
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>		
27	Attempted invo	erse of singular matrix	Return	an identity	
-			ΠαιΠλ		
Comments:					
Registers Un	safe Across Cal	II: F0,F1,F2,F3,F4,F5.			

Explicit code, no loops to calculate:

inverse M = $\frac{adj(M)}{|M|}$, where $adjM_{i,j} = detM_{i\neq3,j\neq3}$ and |M|=detM

uses external determinant routine (MM12S3) and in event of determinant of zero, calls identity matrix routine (MM15SN).

				MM15DN
HA	L/S-FC LIBR	ARY ROUTINE DE	SCRIPTION	
Source Membe	er Name: <u>MM1</u>	5DN Size of Cod	e Area <u>18</u>	Hw
Stack Requirer	ment: <u>0</u> F	lw Data CSE	ECT Size: <u>0</u>	Hw
X Intrinsic		F	rocedure	
Other Library N	Aodules Refer	enced: <u>None</u>		
ENTRY POINT DE	SCRIPTIONS	<u>S</u>		
Primary Entry	Name: <u>MM15</u>	DN		
Function: Creates	an n x n doub	le precision identit	y matrix.	
Invoked By:				
X Compiler em	itted code for	HAL/S construct o	f the form:	
M ⁰ , where	M is an n	x n double pr	ecision matr	cix.
X Other Library	/ Modules:			
MM14DN, MM14D)3			
Execution Time (m	nicroseconds):	15.6 + 5.0n + 11.2	2n ²	
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer(n)	SP	R5	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Matrix(n,n)	DP	R1→0 th	-	
		element		
Errors Detected				
Error #	<u>Cause</u>	Fixup		
None		-		

Comments:

Registers Unsafe Across Call: R1,R4,R5,R6,R7,F0,F1,F2,F3.

Algorithm:

Uses two nested loops, each counting 1 to n.

Inner loop compares both loop indices; if equal, stores 1.0 at current row/column position; otherwise stores 0.0.

				MM15SN
F	HAL/S-FC LIB	RARY ROUTINE DE	ESCRIPTION	
Source Membe	er Name: <u>MM</u>	15SN Size of Cod	e Area <u>14</u>	Hw
Stack Requirer	ment: <u>0</u> Hw	u Data CSE	ECT Size: <u>0</u> H	w
X Intrinsi	С	F	Procedure	
Other Library M	/lodules Refe	renced: <u>NONE</u>		
ENTRY POINT DE	SCRIPTIONS	<u>6</u>		
Primary Entry	Name: <u>MM15</u>	<u>SN</u>		
Function: Creates	an n x n ident	ity matrix.		
Invoked By:				
X Compiler em	itted code for	HAL/S construct of	the form:	
M ⁰ , where	M is a sir	ngle precision :	n x n matrix.	
X Other Library	Modules:			
MM14SN, MM14S	3			
Execution Time (m	icroseconds);	: 10.0 + 5.2n + 9.6n ²	2	
Input Arguments:	,			
Tvpe	Precision	How Passed	Units	
Integer(n)	SP	R5	-	
	Precision	How Passed	Units	
Matrix(n.n)	SP	$P1 \rightarrow 0^{th}$ element	-	
	•			
Errors Detected:	0	— •		
Error #	Cause	<u>Fixup</u>		
none				
Comments:				
Registers Unsa	afe Across Ca	all: R1,R4,R5,R6,R7	,F0,F2.	
Algorithm:				

Uses two nested loops, each counting 1 to n.

Inner loop checks both loop indices; if equal, stores 1.0 at current row/column position; otherwise stores 0.0.

			<u>MM17</u>	D3
HAL/S-FC	LIBRARY F	ROUTINE DESCRI	PTION	
Source Member Name:	MM17D3	Size of Code Area	<u>80</u> Hw	
Stack Requirement: 20	<u>)</u> Hw	Data CSECT Siz	ze: <u>0</u> Hw	
		XProced	ure	
Other Library Modules R	Referenced:	NONE		
ENTRY POINT DESCRIPTI	<u>ONS</u>			
Primary Entry Name: MM17	<u>D3</u>			
Function: Raises a 3 x 3 dou	uble precisio	on matrix to a powe	r.	
Invoked By:				
X Compiler emitted code	for HAL/S c	onstruct of the form	ו:	
M^{I} , where M is a	3 x 3 do	uble precision	matrix and I	is
an integer li	teral >1			
Other Library Modules:				
Execution Time (microsecon	nds):			
Exponent=2: 991.6				
Exponent>2: 1071.2 * (#	<pre># of significa</pre>	nt zeros in expone	nt)	
+2137.2 * (-2105.8	# of ones in	exponent)		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Matrix(3x3)	DP	R4→0 th element	-	
Integer(power)	SP	R6	-	
Matrix(3,3) workarea	DP	R7	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Matrix(3,3)	DP	R2→0 th element	-	
Errors Detected:				
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				
Registers Unsafe Acros	s Call: F0,F	1,F2,F3,F4,F5.		
Algorithm:				
Loads R5 with literal 3 a	nd drops in	MM17DN code.		

<u>MM17D3</u>

Secondary Entry Name: MM17DN						
Function: Raises an n x n double precision matrix to a power.						
Invoked By	:					
X Comp	X Compiler emitted code for HAL/S construct of the form:					
M ^I ,	M^{I} , where M is an n x n double precision matrix and I					
	ls a	n intege w Medulee	r literal	1 >1.		
Other	LIDIA	ry modules	5 .			
Execution 1	Time (microsecor	nds):			
27.8n ³	+ 19.4	4n ² + 6.2n	+ 43.4 if pov	ver = 2.		
124.2 +	- TMU	ILT(KA) + 1	MOVE(KA-	1) + 8.6KB + 3.4 KC	C if power>2.	
where:			0	2		
IMULI	=	9.6 + 6.2n	+ 19.4n [∠] +	27.8n ³		
KA	=	(((# signifi	cant 1s in e	xponent)-1)∗2) + (# (of significant 0s in exponent)	
TMOVE	=	10.2 + 11.	0n ²	. , , , , ,		
KB	=	total numb	per of signifi	cant 1s and 0s in ex	ponent	
KC	=	# of signifi	icant 1s in e	xponent.		
Input Argun	nents	:				
Туре			Precision	How Passed	<u>Units</u>	
Matrix(n,n)		DP	R4→0 th element	-	
Integer(n)			SP	R5	-	
Integer(power)			SP	R6	-	
iviatrix(n,n	Matrix(n,n) workarea DP R7 -					
Output Results:						
<u>Type</u> Matrix(n n	١		<u>Precision</u> DP	<u>How Passed</u>	<u>Units</u>	
$R2 \rightarrow 0^{\text{cl}} \text{ element}^{-}$						
Errors Detected:						
<u>Error #</u> <u>Cause</u> <u>Fixup</u>						
Commonto:						
Registers Unsafe Across Call: F0.F1.F2 F3 F4 F5						

Algorithm:

Same as MM17SN.

			<u>MM17S3</u>				
HAL/S-FC LIBRARY ROUTINE DESCRIPTION							
Source Member Name: <u>MM17S3</u> Size of Code Area <u>78</u> Hw							
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw							
Intrinsic X Procedure							
Other Library Modules R	leferenced:	<u>NONE</u>					
ENTRY POINT DESCRIPTI	ENTRY POINT DESCRIPTIONS						
Primary Entry Name: MM17	<u>S3</u>						
Function: Raises a 3 x 3 sin	gle precision	n matrix to a power.					
Invoked By:							
X Compiler emitted code	for HAL/S co	onstruct of the form:					
$\overline{M^{I}}$, where M is a	3 x 3 sir	ngle precision m	natrix and I is				
an integer l	iteral >1	•					
Other Library Modules:							
Execution Time (microsecor	nds):						
Exponent=2: 623.6	-						
Exponent>2: 681.6 * (#	significant ze	eros in exponent)					
+1358.0 * (#	ones in expo	onent)					
-1305.0		,					
Input Argumonts:							
Type	Precision	How Passed	Units				
Matrix(3x3)	SP	$R4 \rightarrow 0^{\text{th}}$ element	-				
	SP	R6	-				
Matrix(3,3) workarea	SP	R7	-				
Type	Precision	How Passed	Units				
Matrix(3,3)	SP	$R2 \rightarrow 0^{\text{th}}$ element	-				
Errors Detected:							
None							
Commonto:							
Dominients. Registers Upgefe Agrees Call: E0 E2 E2 E4 E5							
Algorithm:							
Loads R5 with literal 3 and drops into MM17SN code.							

<u>MM17S3</u>

Secondary Entry Name: MM17SN Function: Raises an n x n single precision matrix to a power. Invoked By: X Compiler emitted code for HAL/S construct of the form: м^I. where M is a n x n single precision matrix and I is an integer literal >1. Other Library Modules: Execution Time (microseconds): if power=2; then $15.6n^3 + 15.2n^2 + 5.8n + 43.8$ if power>2: same as in MM17DN except TMULT = $10.0 + 5.8n + 15.2n^2 + 15.6n^3$ $TMOVE = 10.2 + 8.6n^2$ Input Arguments: Type Precision How Passed Units $R4 \rightarrow 0^{th}$ element Matrix(n,n) SP R5 Integer(n) SP Integer(power) SP R6 Matrix(n,n)workareas SP R7 Output Results: How Passed Type Precision Units SP Matrix(n,n) $R2 \rightarrow 0^{th}$ element Errors Detected: Error # Cause Fixup None Comments: Registers Unsafe Across Call: F0,F2,F3,F4,F5. Algorithm: Let A = original matrix, R = result matrix, T = temporary matrix. 1. R = A A2. locate first one bit in exponent, remove it, remember bit position 3. go to step 6 4. T = R

- 5. R = T T
- 6. Remove exponent bit at current position, increment position. If bit was 0 go to step 9.
- 7. T = R
- 8. R = T A
- 9. If any bits left in exponent, go to step 4, otherwise R is complete.

			MV6DN		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member Name: <u>MV6DN</u> Size of Code Area <u>24</u> Hw					
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
X Intrinsic	;	P	rocedure		
Other Library M	odules Refere	enced: <u>NONE</u>			
ENTRY POINT DES	<u>SCRIPTIONS</u>				
Primary Entry Name	e: <u>MV6DN</u>				
Function: Multiplies	a double pr	ecision m x n matr	ix by a length n double prec	ision	
vector.					
Invoked By:					
X Compiler emit	tted code for l	HAL/S construct of t	he form:		
MV, where	e M is a d	ouble precision	n m x n matrix, V is		
a ler	ngth n dou	ble precision .	vector, and m and/or		
n ≠ 3	3.				
Other Library	Modules:				
Execution Time (mi	croseconds):				
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(m,n)	DP	R2→0 th element	-		
Vector(n)	DP	$R3 \rightarrow 0^{\text{th}}$ element	-		
Integer(m)	SP	R5	-		
Integer(n)	SP	R6	-		
	Precision	How Passed	Units		
<u>Vector(m)</u>	DP	$\underline{P1}$	-		
vootor(m)	D,	R I→0 [°] element			
Errors Detected:	0	-			
Error #	Cause	<u>Fixup</u>			
None					
Comments:					
Registers Unsa	fe Across Cal	ll: R1,R2,R3,R4,R5,	R6,R7,F0,F1,F2,F3,F4,F5.		
Algorithm:					

Uses 2 nested loops, outer loop selecting rows of matrix, inner loop summing products of vector elements with current row elements.

			M\/6D3		
HAL/S-EC LIBRARY ROUTINE DESCRIPTION					
Source Member Name: MV6D3 Size of Code Area 24 Hw					
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
Other Library Modules Referenced: NONE					
ENTRY POINT DESCRIPTIONS					
Primary Entry Na	me [.] MV6D3				
Function: Multipli	es a double	precision 3 x 3 mat	rix by a length 3 double precision		
vector.		1			
Invoked By:					
X Compiler en	nitted code f	or HAL/S construct of	the form:		
M V, whe	re M is a	double precisio	n 3 x 3 matrix and V is		
a d	ouble pre	cision length 3 ·	vector.		
Other Librar	y Modules:				
Execution Time (r	nicrosecond	s): 304.4			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Matrix(3,3)	DP	R2→0 th element	-		
Vector(3)	DP	R3→0 th element	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)	DP	R1→0 th element	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					
Registers Uns	safe Across	Call: R1,R2,R3,R4,R5	,R6,R7,F0,F1,F2,F3.		

Uses 2 nested loops, outer loop selecting rows of matrix, inner loop summing products of vector elements with current row elements.

			MV6SN	
	HAL/S-FC LIE	BRARY ROUTINE DE	SCRIPTION	
Source Memb	er Name: <u>MV</u>	6SN Size of Code	e Area <u>18</u> Hw	
Stack Require	ment: <u>0</u> Hv	w Data CSE	CT Size: 0 Hw	
X Intrins	ic	P	rocedure	
Other Library I	Modules Refe	renced: <u>NONE</u>		
ENTRY POINT DE	ESCRIPTION	<u>S</u>		
Primary Entry Nar	ne: MV6SN	_		
Function: Multiplie	es a single pre	cision m x n matrix by	/ a length n single precision	vector
Invoked By:	5-1			
X Compiler er	nitted code for	·HAL/S construct of t	he form:	
MV, when	re M is an	m x n single pr	ecision matrix. V is	S
, a le	ength n sin	gle precision ve	ector, m and/or n \neq 3.	-
Other Librar	y Modules:			
Execution Time (n	nicroseconds)	: 11.2 + m(11.0 + 18.4	4n)	
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Matrix(m,n)	SP	$R2 \rightarrow 0^{th}$ element	-	
Vector(n)	SP	$R3 \rightarrow 0^{th}$ element	-	
Integer(m)	SP	R5	-	
Integer(n)	SP	R6	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(m)	SP	$R1 \rightarrow 0^{th}$ element	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				
Registers Uns	afe Across C	all: R1,R2,R3,R4,R5,	R6,R7,F0,F1,F2,F3,F4,F5.	

Uses 2 nested loops, outer loop selecting rows of matrix, inner loop summing products of vector elements with current row elements.

	HAL/S-FC LI	BRARY ROUTINE [DESCRIPTION	<u>IVIV653</u>		
Source Member Name: <u>MV6S3</u> Size of Code Area <u>30</u> Hw						
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw						
X Intrinsi	X Intrinsic Procedure					
Other Library N	Modules Refe	erenced: <u>NONE</u>	-			
ENTRY POINT DE	ESCRIPTION	<u>IS</u>				
Primary Entry Nan	ne: <u>MV6S3</u>					
Function: Multiplie	s a 3 x 3 sinę	gle precision matrix	by a length 3 single p	precision vector.		
Invoked By:						
X Compiler emi	tted code for	HAL/S construct of	the form:			
M V, where	e M is a s	single precisio	n 3 x 3 matrix,	and V		
is a	single p	recision length	3 vector.			
Other Library	Modules:					
Execution Time (m	nicroseconds): 137.6				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Matrix(3,3)	SP	R2→0 th element	-			
Vector(3)	SP	R3→0 th element	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(3)	SP	R1→0 th element	-			
Errors Detected:	Causa	Firms				
<u>Error #</u> None	<u>Cause</u>	Fixup				
Comments:						
Registers Lins	afe Across (all: R1 R2 R3 R4 R	5 R6 F0 F1 F2 F3			
Algorithms			0,1(0,1 0,1 1,1 2,1 0.			
The product o	f oach vooto	r alamant and the	ourrent row element	is summed and		
stored in the p	roper eleme	nt output vector.		is summed and		

ŀ	HAL/S-FC L	IBRARY ROUTINE	DESCRIPTION		
Source Member Name: <u>VM6DN</u> Size of Code Area <u>26</u> Hw					
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
X Intrinsic Procedure					
Other Library N	Adules Ref	erenced: <u>NONE</u>			
ENTRY POINT DE	SCRIPTIO	<u>NS</u>			
Primary Entry Nam Function: Multiplie	ne: <u>VM6DN</u> s length n d	ouble precision vec	tor and n x m double precision matrix		
Invoked By:					
X Compiler emit	tted code fo	r HAL/S construct o	f the form:		
V M, where	e V is a	double precisi	on length n vector, n \neq		
3, ar	nd M is a	double precisi	on n x m matrix, $n \neq 3$.		
Other Library	Modules:				
Execution Time (m	nicrosecond	s): 23.2 + m(23.2 +	27.6n)		
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(n)		R2 \rightarrow 0 th element	-		
Matrix(n,m)	DP	R3→0 th element	-		
Integer(m)	SP	R6	-		
Integer(n)	58	K5	-		
Output Results:	Drasisian	Llow Dooood	Linito		
<u>Type</u> Vector(m)	DP	<u>How Passed</u>	<u>Units</u>		
vector(iii)		R1→0 [™] element			
Errors Detected: Error # None	<u>Cause</u>	Fixup			
Comments:					
Registers Uns	afe Across (Call: R1.R2.R3.R4.F	R5.R6.R7.F0.F1.F2.F3.F4.F5.		
Algorithm:					
Uses two nest	ed loops:				
Outer loop	selects ma	atrix column.			

Inner loop sums products of vector elements with matrix column elements.
			VM6D3		
ŀ	HAL/S-FC L	IBRARY ROUTINE	DESCRIPTION		
Source Membe	Source Member Name: <u>VM6D3</u> Size of Code Area <u>24</u> Hw				
Stack Requirer	ment: <u>0</u> H	Hw Data C	SECT Size: <u>0</u> Hw		
	C		Procedure		
Other Library N	lodules Re	ferenced: <u>NONE</u>			
ENTRY POINT DE	SCRIPTIO	<u>NS</u>			
Primary Entry Nan	ne: <u>VM6D3</u>				
Function: Multiplie	s a length	3 double precisior	n vector by a 3 x 3 double precis	sion	
Invoked By:					
X Compiler em	itted code f	or HAL/S construct	of the form:		
V M wher	re Viga	double precisi	ion length 3 vector and M		
is a	double	precision 3 x	3 matrix.		
Other Library	/ Modules:	-			
Execution Time (m	nicrosecond	s): 227.8			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)	DP	R2→0 th element	-		
Matrix(3,3)	DP	R3→0 th element	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)	DP	R1→0 th element	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					
Registers Uns	afe Across	Call: R1,R2,R3,R4,	R5,F0,F1,F2,F3,F4,F5.		
Algorithm:					
Saves pointer	to input ve	ctor (R2) so that R	2 can be used to address both in	nput	
vector and ma	trix by appr	opriate loading.			
Loops 3 times					
Loads elem	ents of vect	tor into $FU,F2,F4$;			
Sume produ	∠ to point to icts of colur	nn elements with v	ector elements:		
Loops 3 times Loads elem Switches R	: ents of vect 2 to point to	tor into F0,F2,F4;			
Sums products of column elements with vector elements;					

Restores R2 to point at vector;

Makes next pass.

			<u>\</u>	/M6SN		
ŀ	HAL/S-FC LI	BRARY ROUTINE	DESCRIPTION			
Source Membe	Source Member Name: <u>VM6SN</u> Size of Code Area <u>22</u> Hw					
Stack Requirer	ment: <u>0</u> ⊢	lw Data C	SECT Size: <u>0</u> Hw			
X Intrinsi	С		Procedure			
Other Library N	Other Library Modules Referenced: NONE					
ENTRY POINT DE	SCRIPTION	<u>NS</u>				
Primary Entry Nan	ne: VM6SN					
Function: Multiply	a length n si	ngle precision vect	or by a n x m single pred	cision matrix		
Invoked By:						
X Compiler em	itted code fo	or HAL/S construct	of the form:			
V M, wher	re V is a	single precis	sion n-vector, n \neq	3.		
M is	an n x m	n matrix, $n \neq 3$	3.			
Other Library	/ Modules:					
Execution Time (m	nicroseconds	s): 12.4 + m(19.2 +	18.2n)			
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(n)	SP	R2→0 th element	-			
Matrix(n,m)	SP	R3→0 th element	-			
Integer(m)	SP	R6	-			
Integer(n)	SP	R5	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(m)	SP	$R1 \rightarrow 0^{th}$ element	-			
Errors Detected:	0	– .				
<u> Error #</u> None	Cause	<u>Fixup</u>				
Comments:						
Registers Uns	afe Across (Call: R1,R2,R3,R4,	R5,R6,R7,F0,F1,F2,F3,F	⁻ 4,F5.		

Algorithm:

Uses two nested loops; outer loop selecting matrix column, inner loop performs summation of products of vector elements and matrix column elements.

) (I 1000
	HAL/S-FC LI	BRARY ROUTINE D	ESCRIPTION	<u>VM6S3</u>
Source Memb	er Name: VM	16S3 Size of Cod	de Area 16 H	łw
Stack Require	ment: 0 H	w Data CS	ECT Size: 0 Hw	
XIntrins	ic		Procedure	
Other Library	Modules Ref	erenced: <u>NONE</u>		
ENTRY POINT DI	ESCRIPTION	<u></u>]
Primary Entry Nar	ne: VM6S3			
Function: Multiplie	es a length 3	single precision vect	or by a 3 x 3 single r	precision matrix
Invoked By:	U	0	, ,	
X Compiler emi	itted code for	HAL/S construct of	the form:	
VM. wher	eVisa	single precision	n length 3 vect	or. Mis
a si	ngle preci	ision 3 x 3 mat:	rix.	
Other Library	Modules:			
Execution Time (n	nicroseconds	s): 141.2		
Input Arguments:				
Type	Precision	How Passed	<u>Units</u>	
Vector(3)	SP	R2→0 th element	-	
Matrix(3,3)	SP	R3→0 th element	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	SP	R1→0 th element	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				
Registers Uns	afe Across C	Call: R1,R2,R3,R4,R	5,F0,F1,F2,F3.	
Algorithm:				
Uses one loop	o, looping thre	ee times, each pass	addressing new colu	umn of matrix for
explicit multin	lication and	summing by plama	nts of vector and st	orina into result

explicit multiplication and summing, by elements of vector and storing into result. R1 is setup to contain both input matrix and output vector pointer in its two halves. Then circular shifts are used to place appropriate pointer into high Hw for use as base.

			VO6DN			
Source Memb	HAL/S-FC LIB		RIPTION			
Stack Require	Source Member Name: <u>VMO6DN</u> Size of Code Area <u>20</u> Hw					
	ic		cedure			
Other Library	Nodules Refer	enced: NONE				
ENTRY POINT DI	ESCRIPTIONS):				
Primary Entry Nar	me: VO6DN	_				
Function: Perform	s vector outer	product of two double	orecision vectors			
Invokod By:						
X Compiler emi	tted code for H	IAL/S construct of the	form:			
	ere V1 and	V2 are double p	precision vectors of			
le	ngth n and	m respectively, w	here n and/or $m \neq 3$.			
Other Library	Modules					
Execution Time (n	nicroseconds):	12.8 + n(5.8 + 24.4m)				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(n)	DP	R2 0 th element	-			
Vector(m)	DP	$R3 \rightarrow 0^{th}$ element	-			
Integer(n)	SP	R5	-			
Integer(m)	SP	R6	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Matrix(n,m)	DP	$R1 \rightarrow 0^{th}$ element	-			
Errors Detected:	-					
Error #	<u>Cause</u>	<u>Fixup</u>				
None						

Comments:

Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F4.

Algorithm:

Uses two loops based on the dimensions of the vectors:

Inner loop (indexing on 'n') multiplies element of V1 by each element of V2 creating a row of result matrix.

Outer loop (indexing on 'm') moves to next element of V1 and moves pointer to next row of result matrix.

			VO6D3
	HAL/S-FC L	IBRARY ROUTINE D	ESCRIPTION
Source Memb	oer Name: <u>VN</u>	<u>AO6D3</u> Size of Cod	de Area <u>22</u> Hw
Stack Require	ement: <u>0</u> H	Iw Data CS	ECT Size: <u>0</u> Hw
	SIC Modulos Pot		Procedure
		<u>NS.</u>	
Primary Entry Na	me: <u>VO6D3</u> too vootor ou	tor product of longth	2 daubla provision voctors
Function. Compu		ter product of length	s double precision vectors.
X Compiler em	itted code fo	r HAL/S construct of t	the form:
V1 V2, wh	nere V1 an	nd V2 are doub	Le precision length 3
, ve	ectors.		F. F. F. S. F. S. F.
Other Library	/ Modules:		
Execution Time (r	microsecond	s): 251.0	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	DP	R2→0 th element	-
Vector(3)	DP	R3→0 th element	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(3,3)	DP	R1→0 th element	-
Errors Detected:			
Error #	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Un	safe Across (Call: R1,R2,R3,R4,R	5,R6,F0,F1.
Algorithm:			
Same algorith	nm as VO6DI	N except that loop ex	tents are set to literally 3.
DO FOR I	1 = 3 TO 1	BY -1;	
DO F M	I\$(I,J) = 3	V1\$(I) V2\$(J);	
END;		· · · ·	

END;

			VO6SN
	HAL/S-FC LI	BRARY ROUTINE D	
Source Memb	er Name: VN	106SN Size of Cod	de Area 20 Hw
Stack Require	ement: <u>0</u> F	lw Data CS	ECT Size: 0 Hw
X Intrins	sic		Procedure
Other Library	Modules Ref	erenced: <u>NONE</u>	
ENTRY POINT D	ESCRIPTION	NS:	
Primary Entry Na	me: <u>VO6SN</u>		
Function: Calcula	tes vector ou	ter product of 2 singl	e precision vectors.
Invoked By:			
X Compiler em	itted code for	HAL/S construct of	the form:
	ere V1 an	d V2 are singl	e precision vectors of
lei	ngth n and	l m respectively	, where n and/or m \neq 3.
Other Library	/ Modules:		
Execution Time (r	nicroseconds	s): 14.2 + n(5.8 + 14.4	4m)
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Vector(m)	SP	R3→0 th element	-
Integer(n)	SP	R5	-
Integer(m)	SP	R6	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(n,m)	SP	R1→0 th element	
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Un	safe Across (Call: R1,R2,R3,R4,R8	5,R6,R7,F0,F1,F4,F5.
Algorithm:			

Same as VO6DN

	HAL/S-EC LI	BRARY ROUTINE DI	SCRIPTION
Source Memb	er Name: <u>VN</u>	<u>IO6SN</u> Size of Cod	e Area <u>20</u> Hw
Stack Require	ment: <u>0</u> H	w Data CSE	ECT Size: <u>0</u> Hw
XIntrins	sic	F	Procedure
Other Library	Modules Refe	erenced: <u>NONE</u>	
ENTRY POINT D	ESCRIPTION	<u>15:</u>	
Primary Entry Na	me: <u>VO6S3</u>		
Function: Calcula	tes vector out	ter product of 2 single	precision length 3 vectors.
Invoked By:	ittad aada far	UAL/S construct of th	a form:
		HAL/S CONSTRUCT OF II	progigion longth 2
vi vz, wii ve	ctors.	u vz are singre	precision rengen s
Other Library	^v Modules:		
Execution Time (r	nicroseconds): 160.6	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	SP	R2→0 th element	-
Vector(3)	SP	R3→0 th element	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(3,3)	SP	R1→0 th element	-
Errors Detected:			
Error #	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Uns	sate Across C	all: R1,R2,R3,R4,R5	,R6,F0,F1.
Algorithm:			

Same algorithm as VO6DN except that loop extents are set to literally 3.

	HAL/S-FC L	IBRARY ROUTINE D	ESCRIPTION			
Source Memb	Source Member Name: VV0DN Size of Code Area 6 Hw					
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw						
X Intrinsic Procedure						
Other Library	Modules Ref	erenced: <u>NONE</u>				
ENTRY POINT D	ESCRIPTIO	NS:				
Primary Entry Na	me: VV0DN					
Function: Initiali	zes all eleme	ents of a double preci	sion vector of length	n, to the		
null ve	ector (0).					
Invoked By:						
X Compiler em	itted code fo	r HAL/S construct of t	he form:			
V=0, where	e V is a d	louble precision	vector.			
X Other Library	y Modules:					
VV10D3						
Execution Time (I	microsecond	s): 7.0 + 5.1n				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Scalar	DP	F0	-			
Integer(n)	SP	F5	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(n)	DP	R1→0 th element	-			
Errors Detected:						
Error #	<u>Cause</u>	<u>Fixup</u>				
None						
Comments:						
Registers Un	safe Across	Call: R1,R4,R5,F0,F1.				

Algorithm:

Uses loop counting down length (n). Stores zero into one element of vector on each pass through loop.

			VV0DNP		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: <u>VV0DNP</u> Size of Code Area <u>6</u> Hw Stack Requirement: <u>0</u> Hw Data CSECT Size: <u>0</u> Hw X Intrinsic Procedure Other Library Modules Referenced: <u>NONE</u>					
Function: Fills o colu	<u>VVUDINP</u> mp.of.a.doub	la provision matrix w	ith zoroo		
		le precision matrix w			
X Compiler emitted	d code for HA	L/S construct of the	form:		
$M_{*,n}=0$, when	ce M is a	double precisio	n matrix.		
Other Library Mo	odules:				
Execution Time (micr	oseconds): 7	′.0 + 7.2n			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar	SD DD	FU P7	-		
Integer(length)	SP	R5	-		
Output Results:	•				
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(length)	DP	$R1 \rightarrow 0^{th}$ element	-		
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>			

Comments:

Registers Unsafe Across Call: R1,R4,R5,R7,F0,F1.

Algorithm:

Loops 'length' times;

Each pass through loop stores zero into vector element pointed to by R1 and then increments R1 by outdel.

				VV0SN	
Source Memb Stack Require X Intrins Other Library	HAL/S-FC LIE er Name: <u>VV(</u> ment: <u>0</u> Hv sic Modules Refe	BRARY ROUTINE DE <u>SN</u> Size of Code Data CSE Prenced: <u>NONE</u>	SCRIPTION Area <u>6</u> Hw CT Size: <u>0</u> Hw ^r ocedure	<u>vvusiv</u>	
ENTRY POINT D	<u>ESCRIPTION</u>	<u>S:</u>			
Primary Entry Nar Function: Genera vector.	me: <u>VV0SN</u> ites a vector	of length n, all of wh	nose elements are	zero, i.e.	null
Invoked By: X Compiler em V = 0, whe X Other Library	Invoked By: X Compiler emitted code for HAL/S construct of the form: V = 0, where V is a single precision vector. X Other Library Modules:				
VV10S3					
Execution Time (r	nicroseconds)	: 7.0 + 5.6n			
Input Arguments: <u>Type</u> Scalar Integer(n)	<u>Precision</u> SP SP	<u>How Passed</u> F0 R5	<u>Units</u> - -		
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> SP	<u>How Passed</u> R1→ 0 th element	<u>Units</u> -		
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>			
Comments:					

Comments:

Registers Unsafe Across Call: R1,R4,R5,F0.

Algorithm:

Uses loop counting down length of vector (n); Stores zero into one element of vector on each pass through loop.

			<u>VV0SNP</u>			
HA	AL/S-FC LIBR	ARY ROUTINE DES	SCRIPTION			
Source Member	Source Member Name: <u>VV0SNP</u> Size of Code Area <u>6</u> Hw					
Stack Requirem	Stack Requirement: <u>0</u> HW Data CSECT Size: <u>0</u> HW					
Other Library Modules Referenced: NONE						
Function: Moves a precision	single precisi matrix.	on scalar to all elem	ents of a column of a single			
Invoked By:						
X Compiler emitte	ed code for H	AL/S construct of the	e form:			
M _{*,n} = S; whe sin	re M is a gle precis	single precisi ion scalar.	on matrix and S is a			
Other Library N	lodules:					
Execution Time (mic	croseconds): 7	7.0 + 6.0n				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Scalar	SP	F0	-			
Integer(outdel)	SP	R/ DE	-			
	35	КJ	-			
Output Results:	Drasisian	How Doood	Linita			
<u>Type</u> Vector(length)	SP	<u>HOW Passed</u>				
vector(length)	01	$R^{1} \rightarrow 0^{\text{m}}$ element				
Errors Detected:	0	F i				
<u>Error #</u> Nono	<u>Cause</u>	FIXUP				
Registers Unsaf	e Across Call	: R1,R4,R5,R7,F0,F	1.			
Algorithm:	mes:					
		an important and an inte		-		

Each pass through loop stores input scalar into vector element pointed to by R1 and then increments R1 by outdel.

	HAL/S-FC LIE	BRARY ROUTINE DES	VV1DN SCRIPTION			
Source Member Name: <u>VV1DN</u> Size of Code Area <u>8</u> Hw Stack Requirement: <u>0</u> Hw Data CSECT Size: <u>0</u> Hw						
Other Library N	Other Library Modules Referenced: NONE					
ENTRY POINT DE	SCRIPTION	<u>S:</u>				
Primary Entry Nan Function: Moves matrice	ne: <u>VV1DN</u> a length n es.	double precision ve	ector. Also used to move			
Invoked By: XCompiler emi	tted code for l	HAL/S construct of the	e form:			
X = Y, wh	ere X is	a length n doubl	le precision vector, Y ion vector $n \neq 3$			
Other Library	Modules:	ii double precisi	ion veccor, n ≠ 5.			
Execution Time (m	nicroseconds)	: 4.2 + 10.2n				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(n)		$R2 \rightarrow 0^{tn}$ element	-			
Integer(n)	SP	K5	-			
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> DP	$\frac{\text{How Passed}}{\text{R1} \rightarrow 0^{\text{th}} \text{ element}}$	<u>Units</u> -			
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>				
Comments: Registers Uns	afe Across Ca	all: R1,R2,R4,R5,F0,F	-1.			
Algorithm:						

Loop n times; using indexing, BCTB on length; load and store each element, last element first.

			VV1D3
	HAL/S-FC LIB	RARY ROUTINE DES	
Source Memb	oer Name: <u>VV1[</u>	<u>D3</u> Size of Code	Area <u>14</u> Hw
Stack Require	ement: <u>0</u> Hw	Data CSEC	CT Size: <u>0</u> Hw
X Intrine	sic	Pr	ocedure
Other Library	Modules Refere	enced: <u>NONE</u>	
ENTRY POINT D	ESCRIPTIONS	<u>:</u>	
Primary Entry Na	me: <u>VV1D3</u>		
Function: Moves	a length 3 partit	ion of a double precis	sion vector.
Invoked By: X Compiler em	litted code for H	AL/S construct of the	form:
$X_{A \text{ TO } B} = Y$	Y _{C TO D} , where part:	e X _{A TO B} and Y itions of double	C _{TOD} are length 3 precision vectors.
Other Library	/ Modules:		-
Execution Time (r	microseconds):	25.2	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	DP	$R2 \rightarrow 0^{th}$ element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	DP	$R1 \rightarrow 0^{th}$ element	-
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments:			
Registers Un	safe Across Ca	ll: R1,R2,R4,F0,F1,F2	2,F3,F4,F5.
Algorithm: Load, then st	ore each eleme	nt.	

			VV	1D3P
HA	L/S-FC LIBR	ARY ROUTINE DES		<u></u>
Source Member	Name: <u>VV1D</u>	<u>Size of Code</u>	Area <u>18</u> Hw	
Stack Requireme	nt: <u>0</u> Hw	Data CSEC	T Size: <u>0</u> Hw	
X Intrinsic		Pro	ocedure	
Other Library Mo	dules Refere	nced: <u>NONE</u>		
ENTRY POINT DES	<u>CRIPTIONS:</u>			
Primary Entry Name	: <u>VV1D3P</u>			
Function: Moves a	length 3 dou	ble precision vector o	or row or column of a	matrix
lo a veci		column of a matrix.		
Invoked By:	d aada far U	NI/C construct of the	form	
		AL/S construct of the		
V=M _A TO B, C'	where M 19 is a lengt	s a double prec h 3 partition.	and V is a 3-ve	A TO B
Other Library M	odules:	fir 5 parereron,		
	raaaaaada);			
46 0 if peither in	out por output	t is contiguous		
40.0 if fieldher inn	ut or output is	s contiguous		
		ooniiguouo.		
Type	Precision	How Passed	Units	
Vector(3)	DP	$R2 \rightarrow 0^{th}$ element	-	
Integer(indel)	SP	R6	-	
Integer(outdel)	SP	R7	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	DP	$R1 \rightarrow 0^{th}$ element	-	
Frrors Detected				
Error #	Cause	Fixup		
None				
Comments:				
Performs single	setup of size	and then uses VV1E	NP.	
Registers Unsafe	e Across Call	: R1,R2,R4,R5,R6,R	7,F0,F1.	
Algorithm:				
Initialize R5 with	literal 3; Fal	I into VV1DNP routin	ne; R6, R7 specify dis	stance in Hw
between input ar	nd output vec	tor elements, respec	tively.	

VV1D3P

Secondary Entry Name: VV1DNP

Function: Moves a length n double precision vector or row or column of a matrix to a row or column vector.

X Compiler emitted code for HAL/S construct of the form:

 $V=M_{A TO B, C}$, where M is a double precision matrix, A TO B is a length n partition, and V is an n-vector, $n \neq 3$.

Other Library Modules:

Execution Time (microseconds):

11.4n + 10.2 if neither input nor output is contiguous.

11.4n + 12.6 if either input or output is contiguous.

Input Arguments:

Type	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R2→0 th element	-
Integer(indel)	SP	R6	-
Integer(outdel)	SP	R7	-
Integer(n)	SP	R5	-
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> DP	<u>How Passed</u> R1→0 th element	<u>Units</u> -
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:

Tests outdel, if 0, sets it to 4 (halfwords); Tests indel, if 0, sets it to 4 (halfwords); Loops 'length' times, adding indel to input pointer and outdel to output pointer each time. Each loop moves current input element to current output element.

			VV1SN
	HAL/S-FC LIB	RARY ROUTINE DES	SCRIPTION
Source Memb	er Name: <u>VV1</u>	SN Size of Code	Area <u>8</u> Hw
Stack Require	ment: <u>0</u> Hw	Data CSEC	CT Size: <u>0</u> Hw
X Intrins	sic	Pr	ocedure
Other Library	Modules Refer	renced: <u>NONE</u>	
ENTRY POINT D	ESCRIPTIONS	<u>S:</u>	
Primary Entry Nar Function: Moves move	me: <u>VV1SN</u> s a length n pa matrices.	rtition of a single prec	ision vector. Also used to
Invoked By:			
X Compiler em	itted code for H	HAL/S construct of the	e form:
V1 _{A TO B} =V2	C TO D, when part vect	The V1 _{A TO B} and V2 Sitions of the cors, $n \neq 3$.	2 _{C TO D} are length n single precision
Other Library	/ Modules		
Execution Time (n	nicroseconds):	: 4.2 + 7.8n	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R1→0 th element	-
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Uns	safe Across Ca	all: R1,R2,R4,R5,F0,F	1.
Algorithm:			
Loop n times	using indexing	and BCTB on length	. Load, then store each element,

last element first.

			\/\/1\$3
	HAL/S-FC I	IBRARY ROUTINE	DESCRIPTION
Source Merr	ber Name: V	<u>V1S3</u> Size of C	Code Area <u>8</u> Hw
Stack Requi	rement: <u>0</u>	Hw Data (CSECT Size: 0 Hw
X Intrii	nsic		Procedure
Other Librar	y Modules Re	eferenced: <u>NONE</u>	
ENTRY POINT	DESCRIPTIC	<u>DNS:</u>	
Primary Entry N	ame: <u>VV1S3</u>		
Function: Moves	s a length 3 p	artition of a single p	recision vector.
Invoked By:			
X Compiler e	mitted code for	or HAL/S construct of	of the form:
V1 _{A TO B} =V	$12_{A TOB}$, wh	nere V1 _{A TO B} an	nd $V2_{A TO B}$ are length 3
Other Libre	pa ry Madulaa	artitions of si	ngle precision vectors.
	ry woulds		
Execution Time	(microsecond	ds): 16.8	
Input Arguments	S:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
vector(3)	58	R2→0 ^{tn} element	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	SP	R1→0 th element	-
Errors Detected Error # None	: <u>Cause</u> l	Fixup	
Comments: Registers U	nsafe Across	Call: R1,R2,R4,F0,	F1,F2,F3,F4,F5.
Algorithm: Simple Load	d-Store seque	ence for each eleme	ent.

			VV/1S3P
НА	L/S-FC LIBRA	ARY ROUTINE DESC	
Source Member	Name: <u>VV1S3</u>	P Size of Code A	rea <u>14</u> Hw
Stack Requireme	nt: <u>0</u> Hw	Data CSECT	Size: <u>0</u> Hw
XIntrinsic		Pro	cedure
Other Library Mo	dules Referen	ced: <u>NONE</u>	
ENTRY POINT DES	<u>CRIPTIONS:</u>		
Primary Entry Name: Function: Moves a 3-vector contiguou	<u>VV1S3P</u> single precisio (or row or c us.	on 3-vector (or row o olumn of a matrix)	or column of a matrix) to a , when elements are not
Invoked By: X Compiler emitte	ed code for HA	AL/S construct of the	form:
V=M _{A TO B,C}	where M is	a single preci	sion matrix, A TO
- , -	Bisa le	ength 3 partitio	on, and V is a 3-
	vector.		
Other Library N	lodules:		
Execution Time (mici	roseconds):		
38.4 if neithe	er input nor ou	tput is contiguous.	
	input or outpu	it is contiguous.	
Input Arguments:	Dessision	Llaw Danaad	L Le See
<u>Type</u> Voctor(2)	Precision SD	How Passed	Units
		$R2 \rightarrow 0^{""}$ element	-
Integer(indei)	5P 8D	K0 D7	
	JF		1100
	Precision	How Passed	Linite
Vector(3)	<u>SP</u>	$\frac{10W1}{233eu}$	-
	01	R I→0 [*] element	
Errors Detected:	Causa	Fixup	
<u>EIIOI #</u> None	Cause	<u>Fixup</u>	
Comments:			
Registers Unsafe	e Across Call:	R1,R2,R4,R5,R6,R7	code. 7,F0,F1.
Algorithm:			
Initialize R5 with between input ar	literal 3; Fall in ad output vect	nto VV1SNP routine; for elements respect	R6, R7 specify distance in Hw ively.

VV1S3P

Secondary Entry Name: VV1SNP

Function: Moves a length n single precision vector or row or column of a matrix to a row or column vector.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

V=M_{A TO B,C}, where M and N are single precision $M_{A TO B,C}=V, \text{ or } matrices, A TO B is a length n partition, and V is an n-vector, n \neq 3.$ Other Library Modules:

Other Library woodles.

Execution Time (microseconds):

8.6n + 10.2 if neither input nor output is contiguous.

8.6n + 12.6 if either input or output is contiguous.

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Integer(indel)	SP	R6	Hw
Integer(outdel)	SP	R7	Hw
Integer(length)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R1 \rightarrow 0 th element	-
Errore Dotoctod:			

<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>
None		

Comments:

Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:

Tests outdel, if 0, sets it to 2 (halfwords).

Tests indel, if 0, sets it to 2 (halfwords).

Loops 'length' times, adding indel to input pointer and outdel to output pointer each time. Each loop moves current input element to current output element.

			<u>VV1TN</u>
HAI	_/S-FC LIBRARY	ROUTINE DESCRIF	PTION
Source Member N	Name: <u>VV1TN</u>	Size of Code Area	<u>8</u> Hw
Stack Requirement	nt: <u>0</u> Hw	Data CSECT Siz	e: <u>0</u> Hw
	tulas Rafarancad		lie
Primary Entry Namo:	<u>)/\/1TN</u>		
Function: Moves a to single	length n partition precision. Also u	of a double precision used to move matrice	vector and converts it s.
Invoked By:	d code for HAL/S	construct of the form	:
V1 _{A TO B} =V2 _{C T}	$_{\rm O~D}$, where V2	_C is a length	n partition of a
	double p	recision vector	and V1 _{A TO B} is a
	length n	partition of a \neq 2	single precision
Other Library Mo	vector, r Mules	1 ≠ 3.	
Execution Time (micr	aaloo	0.0p	
Execution Time (mich	useconus). 4.2 +	9.011	
Input Arguments:	Dragician	How Decod	Linito
<u>Type</u> Vector(n)	<u>Precision</u> DP	<u>How Fassed</u>	<u>-</u>
Integer(n)	SD	$R2 \rightarrow 0^{**}$ element	
	36	KJ	-
Output Results:	Dracicion	Llow Deceed	
<u>Type</u> Vector(n)	SP	<u>How Passed</u>	<u>Units</u>
Vector(II)	01	R1→0"' element	
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments:			
Registers Unsafe	Across Call: R1,	,R2,R4,R5,F0,F1.	
Algorithm:			
Using indexing a	und BCTB on ler	nath. loops. loading	ong and storing short. last
element first.		3. ,p.,	

			\/\/1T3
HA	L/S-FC LIBR	ARY ROUTINE DESC	
Source Member	Name: <u>VV1T</u>	<u>3</u> Size of Code A	rea <u>12</u> Hw
Stack Requireme	nt: <u>0</u> Hw	Data CSECT	Size: <u>0</u> Hw
	dulaa Dafara		cedure
		nced: <u>NONE</u>	
ENTRY POINT DESC	<u>JRIPTIONS:</u>		
Function: Moves a it to single	VV113 length 3 part precision.	tition of a double prec	ision vector and converts
Invoked By:	d code for H	AL/S construct of the f	orm.
	where		onn.
VIA TO B-VZC TO	a sin	gle precision ve	ector and $V2_{C TOD}$ is
	a le	ength 3 partit	ion of a double
	preci	sion vector.	
	Daules		
Execution Time (micr	oseconds): 2	21.2	
Input Arguments:			11.26
<u>Type</u> Vector(3)	Precision	How Passed	<u>Units</u> -
	Ы	R2→0 [™] element	
Output Results:	Provision	How Passad	Unito
<u>Type</u> Vector(3)	SP	$P1 \rightarrow 0^{\text{th}}$ element	<u>-</u>
	•		
Errors Detected: Frror #	Cause	Fixup	
None	0000		
Comments:			
Registers Unsafe	Across Call	: R1,R2,R4,F0,F1,F2,	F3,F4,F5.
Algorithm:			
Simple Load/Stor	re for each e	lement.	

HA Source Member Stack Requireme X Intrinsic Other Library Mo	L/S-FC LIBRA Name: <u>VV1T3</u> ent: <u>0</u> Hw dules Referen	ARY ROUTINE DESC P Size of Code Ar Data CSECT Proc	RIPTION ea <u>14</u> Hw Size: <u>0</u> Hw edure
ENTRY POINT DES	<u>CRIPTIONS:</u>		
Primary Entry Name Function: Moves a column o matrix, w	: <u>VV1T3P</u> length 3 part f a matrix to a hen elements	ition of a double pre a single precision vect are not contiguous.	ecision vector or row or or or row or column of a
Invoked By: X Compiler emitter V=M _{A TO B,C} ,	ed code for HA where V is is a lengt: matrix _{A TO} Modules:	AL/S construct of the f a single preci h 3 partition of B,C	orm: sion 3-vector and M a double precision
	nouules.		
Execution Time (mic 38.4 if neither in 40.8 if either inp	roseconds): out nor output ut or output is	is contiguous. contiguous.	
Input Arguments: <u>Type</u> Vector(3) Integer(indel) Integer(outdel)	<u>Precision</u> DP SP SP	<u>How Passed</u> R2→0 th element R6 R7	<u>Units</u> - -
Output Results: <u>Type</u> Vector(3)	<u>Precision</u> SP	<u>How Passed</u> R1→0 th element	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsafe	e Across Call:	R1,R2,R4,R5,R6,R7,	F0,F1.
Algorithm:			
Loads R5 with lit Falls into VV1TN	eral 3, IP routine.		

<u>VV1T3P</u>

Secondary Entry Name: <u>VV1TNP</u>

Function: Moves a length n partition of a double precision vector or row or column of a matrix to a single precision length n row or column vector, when elements are not contiguous.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

 $V=M_{A TO B,C}$, where V is a length n single precision vector and $M_{A TO B,C}$ is a length n partition of a double precision matrix, $n \neq 3$.

Other Library Modules:

Execution Time (microseconds):

8.6n + 10.2 if neither input nor output is contiguous 8.6n + 12.6 if either input or output is contiguous.

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R2→0 th element	-
Integer(outdel)	SP	R7	-
Integer(indel)	SP	R6	-
Integer(n)	SP	R5	-
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> SP	<u>How Passed</u> R1→0 th element	<u>Units</u> -
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:

If outdel=0, set to 2 (halfwords);

If indel=0, set to 4 (halfwords);

Loops 'length' times, adding indel to input pointer and outdel to output pointer each time. Each loop moves current input element to current output element.

			VV1WN
	HAL/S-FC LI	BRARY ROUTINE D	ESCRIPTION
Source Mem	ber Name: <u>VV</u>	<u>1WN</u> Size of Cod	le Area <u>10</u> Hw
Stack Require	ement: <u>0</u> H	w Data CSI	ECT Size: <u>0</u> Hw
XIntrin	sic		Procedure
Other Library	Modules Refe	erenced: <u>NONE</u>	
<u>ENTRY POINT E</u>	DESCRIPTION	<u>IS:</u>	
Primary Entry Na Function: Mov it to	ime: <u>VV1WN</u> ⁄es a length n a length n pai	partition of a single p rtition of a double pre	precision vector and converts cision vector.
Invoked By:			
X Compiler en	nitted code for	HAL/S construct of t	he form:
V1 _{A TO B} =V2	2 _{C TO D} , whe sin len vec	re V2 _C is a le gle precision ve gth n partition tor, n ≠ 3.	ngth n partition of a ector, and V1 _{A TO B} is a of a double precision
Other Librar	y Modules:		
Execution Time (microseconds	s): 8.4 + 9.0n	
Input Arguments:	:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R1→0 th element	-
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	
Comments:			
Registers Un	safe Across C	Call: R1,R2,R4,R5,F0	,F1.
Algorithm:			
Clear F0,F1.	Loop using ir	ndexing on BCTB, las	st element first.
Load short e	lement into FC), Store long F0/F1 el	ement.

			VV1W3	
н	IAL/S-FC LIBR	ARY ROUTINE DESC	RIPTION	
Source Membe	r Name: <u>VV1W</u>	3 Size of Code Ar	ea <u>12</u> Hw	
Stack Requiren	nent: <u>0</u> Hw	Data CSECT	Size: <u>0</u> Hw	
			edure	
Other Library M	lodules Referer	nced: <u>NONE</u>		
<u>ENTRY POINT DE</u>	SCRIPTIONS:			
Primary Entry Nam Function: Moves to a len	ie: <u>VV1W3</u> a length 3 partit gth 3 partition o	tion of a single precisi f a double precision ve	on vector and converts it ector.	
Invoked By:				
X Compiler emi	tted code for H	AL/S construct of the f	orm:	
V1 _{A TO B} =V2 _C	_{TO D} , where a sing a le precis	V2 _{C TO D} is a leagle precision vec ngth 3 partita sion vector.	ngth 3 partition of tor, and V1 _{A TO B} is ion of a double	
Other Library	Modules:			
Execution Time (m	icroseconds): 2	3.8		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	SP	R2→0 th element	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	DP	R1→0 th element	-	
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>		
Comments:				
Registers Unsa	afe Across Call:	R1,R2,R4,F0,F1.		
Algorithm:				
Clear F1;				
Then explicit c each element c	ode to load (Sl of result vector.	P) each element of in	put vector and store (DP) ir	nto

			VV1W3P
HA	L/S-FC LIBR/	ARY ROUTINE DES	
Source Member N	Name: <u>VV1W</u>	<u>3P</u> Size of Code A	rea <u>18</u> Hw
Stack Requireme	nt: <u>0</u> Hw	Data CSEC1	Size: <u>0</u> Hw
			cedure
Other Library Mod	dules Referer	iced: <u>NONE</u>	
ENTRY POINT DESC	<u>CRIPTIONS:</u>		
Primary Entry Name: Function: Moves a column o matrix, w	<u>VV1W3P</u> length 3 pa f a matrix, to hen elements	artition of a single p a double precision ve are not contiguous.	recision vector or row or ector or row or column of a
Invoked By:			
X Compiler emitted	d code for HA	L/S construct of the f	orm:
V=M _{A TO B,C} , w	here V is	a double precis	tion 3-vector and M_A
T q	_{OB,C} IS recision n	a rengen 5 par natrix.	cicion or a single
Other Library Mo	odules:		
Execution Time (micr	oseconds):		
44.8 if neithe 47.2 if either	r input nor ou input or outp	itput is contiguous. ut is contiguous.	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	SP	R2→0 th element	-
Integer(indel)	SP	R6	-
Integer(outdel)	SP	R7	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	DP	R1→0 th element	-
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Sets up length fo Registers Unsafe	r use by VV1 Across Call:	WNP. R1,R2,R4,R5,R6,R7	′,F0,F1.
Algorithm: Loads R5 with lite	eral 3, falls int	to VV1SNP.	

<u>VV1W3P</u>

Secondary Entry Name: <u>VV1WNP</u>

Function: Moves a length n partition of a single precision row or column of a matrix to a double precision vector or row or column of a matrix, when elements are not contiguous.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

Other Library Modules:

Execution Time (microseconds):

10.2n + 15.0 if either input or output is contiguous.

10.2n + 12.6 if neither input nor output is contiguous.

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Integer(outdel)	SP	R7	Hw
Integer(indel)	SP	R6	Hw
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R1→0 th element	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	

None Comments:

Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:

Clears F1. If outdel=0, set to 4 (halfwords); if indel=0, set to 2 (halfwords); Loop 'length' times, adding indel to input pointer and outdel to output pointer each time. Each loop moves current input element to current output element.

HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: VV2DN Size of Code Area 14 Hw						
Source Member Name: VV/2DN Size of Code Area 14 Hw	HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
	Source Member Name: <u>VV2DN</u> Size of Code Area <u>14</u> Hw					
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw	Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
Other Library Modules Referenced: <u>NONE</u>						
ENTRY POINT DESCRIPTIONS:						
Primary Entry Name: <u>VV2DN</u>						
Function: Add two double precision vectors of length n. Also used to add two matrice	es.					
Invoked By:						
X Compiler emitted code for HAL/S construct of the form:						
V1+V2, where V1 and V2 are double precision vectors of						
length ≠ 3.						
Other Library Modules:						
Execution Time (microseconds): 8.8 + 20.6n						
Input Arguments:						
Type Precision How Passed Units						
Vector(n) DP R2 $\rightarrow 0^{\text{th}}$ element ⁻						
Vector(n) DP $R3 \rightarrow 0^{th}$ element -						
Integer(n) SP R5 -						
Output Results:						
Type Precision How Passed Units						
Vector(n) DP $R1 \rightarrow 0^{th}$ element						
Frrors Detected						
Error # Cause Fixup						
None						
Comments:						
Registers Unsafe Across Call: R1.R2.R3.R4.R5.F0.F1.						
Algorithm:						

Uses indexing in load, add, store sequence controlled by BCTB on length. Loading of an element is done with two LE instructions instead of one LED due to addressing inadequacies of R3 which is the input pointer.

Source Mem Stack Requir XIntrir Other Library	HAL/S-FC LI ber Name: <u>VV</u> rement: <u>0</u> H nsic / Modules Refe	BRARY ROUTINE D <u>2D3</u> Size of Coo w Data CS erenced: <u>NONE</u>	ESCRIPTION le Area ECT Size: _(Procedure	<u>VV2D3</u> N _22_Hw 0_Hw
ENTRY POINT	DESCRIPTION	IS:		
Primary Entry Na Function: Add tw	ame: <u>VV2D3</u> /o double preci	ision 3-vectors.		
Invoked By: X Compiler er V1+V2, wh Other Librar	nitted code for here V1 and ry Modules:	HAL/S construct of 1 V2 are double p	t he form: recision 3	-vectors.
Execution Time	(microseconds): 51.4		
Input Arguments <u>Type</u> Vector(3) Vector(3) Output Results:	: <u>Precision</u> DP DP	How Passed R2 \rightarrow 0 th element R3 \rightarrow 0 th element	<u>Units</u> - -	
<u>Type</u> Vector(3)	DP	$R1 \rightarrow 0^{th}$ element	<u>-</u>	
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>		
Comments: Registers Ur	nsafe Across C	Call: R1,R2,R3,R4,F0),F1,F2,F3,F∠	1,F5.
Algorithm: Loads F0,F V2. Loads element of	F2,F4 with firs F1,F3,F5 wi V2.	t half of each eleme th second half of	each }	Due to addressing peculiarities of R3.
Adds double Stores doub	e from V1 to F0 le into element), F2, F4; is of result.		

H Source Member Stack Requirer X Intrinsi Other Library M	HAL/S-FC LIB er Name: <u>VV2</u> nent: <u>0</u> Hw c /odules Refer	RARY ROUTINE E <u>SN</u> Size of Coo Data CS	<u>VV2SN</u> DESCRIPTION de Area <u>10</u> Hw BECT Size: <u>0</u> Hw Procedure
ENTRY POINT DE	SCRIPTIONS	<u></u>	
Primary Entry Nam Function: Add two	ne: <u>VV2SN</u> single precisio	on vectors of lengt	h n. Also used to add two matrices.
Invoked By: X Compiler emit V1+V2, when lend Other Library	t ted code for F re V1 and gth ≠ 3. Modules :	HAL/S construct of V2 are sing]	the form: Le precision vectors of
Execution Time (m	icroseconds):	8.4 + 13.6n	
Input Arguments: <u>Type</u> Vector(n) Vector(n) Integer(n)	<u>Precision</u> SP SP SP	<u>How Passed</u> R2 \rightarrow 0 th element R3 \rightarrow 0 th element R5	<u>Units</u> - -
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> SP	<u>How Passed</u> R1→0 th element	<u>Units</u> -
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Uns Algorithm: Uses indexing	afe Across Ca in load, add, s	all: R1,R2,R3,R4,R	5,F0,F1. ntrolled by BCTB on length.

H Source Membe Stack Requirem X Intrinsic Other Library M	AL/S-FC LIBF r Name: <u>VV2S</u> hent: <u>0</u> Hw ; lodules Refere	RARY ROUTINE DES <u>53</u> Size of Code A Data CSEC Pro-	CRIPTION Area <u>12</u> Hw T Size: <u>0</u> Hw ocedure
ENTRY POINT DE	SCRIPTIONS	<u>:</u>	
Primary Entry Nam Function: Adds two	e: <u>VV2S3</u> single precisi	on 3-vectors.	
Invoked By: X Compiler emitt V1+V2, when Other Library N Execution Time (mi	ed code for H re V1 and V Modules: croseconds):	AL/S construct of the 2 are single pre 296	form: cision 3-vectors.
Execution time (mi	croseconas).	29.0	
Input Arguments: <u>Type</u> Vector(3) Vector(3)	<u>Precision</u> SP SP	<u>How Passed</u> R2→0 th element R3→0 th element	<u>Units</u> - -
Output Results: <u>Type</u> Vector(3)	<u>Precision</u> SP	<u>How Passed</u> R1→0 th element	<u>Units</u> -
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsa	ife Across Cal	ll: R1,R2,R3,R4,F0,F2	2,F4.
Algorithm: Loads elements Adds element of Stores F0,F2,F	s of V1 into F(of V2 respectiv 4 into elemen),F2,F4. vely. ts of result.	

н	AL/S-FC LIBR	ARY ROUTINE DES	CRIPTION		
Source Member Name: VV3DN Size of Code Area 16 Hw Stack Requirement: 0 Hw Data CSECT Size: 0 Hw X Intrinsic Procedure Other Library Modules Referenced: NONE					
ENTRY POINT DES	SCRIPTIONS:				
Primary Entry Name Function: Subtraction used to	e: <u>VV3DN</u> ets one double subtract matr	e precision length n-v ices.	ector from another. Also		
Invoked By: X Compiler emit V1-V2, whe leng Other Library	ted code for H re V1 and gth ≠ 3. Modules:	IAL/S construct of the V2 are double	form: precision vectors of		
Execution Time (mi	croseconds): 6	6.0 + 22.7n			
Input Arguments: <u>Type</u> Vector(n) V1 Vector(n)V2 Integer(n)	<u>Precision</u> DP DP SP	<u>How Passed</u> R2→0 th element R3→0 th element R5	<u>Units</u> - -		
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> DP	<u>How Passed</u> R1→0 th element	<u>Units</u> -		
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>			
Comments: Registers Unsa	fe Across Call	: R1,R2,R3,R4,R5,F0),F1.		
Algorithm: Exchange content subtract, store s is done with two	ents of R2/R3 sequence cont	for addressing cons rolled by BCTB on ler ns due to use of R3 a	iderations. Uses indexed load, ngth. Load of minuend elements s index.		

			VV3D3			
HAL/S-FC LIBRARY ROUTINE DESCRIPTION						
Source Membe	Source Member Name: <u>VV3D3</u> Size of Code Area <u>24</u> Hw					
Stack Requirer	nent: <u>0</u> Hw	Data CSEC	T Size: <u>0</u> Hw			
X Intrinsi	C		ocedure			
Other Library N	/lodules Refere	enced: <u>NONE</u>				
ENTRY POINT DE	SCRIPTIONS:					
Primary Entry Nam	ne: <u>VV3D3</u>					
Function: Subtracts	s two double p	recision vectors of ler	ngth 3.			
Invoked By:						
X Compiler emit	ted code for H	AL/S construct of the	form:			
V1-V2, whe	re V1 and V2	2 are double pre	ecision 3-vectors.			
Other Library	Modules:					
Execution Time (m	icroseconds): {	55.4				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(3)V1	DP	R2→0 th element	-			
Vector(3)V2	DP	R3→0 th element	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(3)	DP	R1→0 th element	-			
Errors Detected:						
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>				
None						
Comments:						
Registers Unsa	afe Across Call	l: R1,R2,R3,R4,F0,F ²	1.			
Algorithm:						
Exchange con	tents of R2 and	d R3 for addressing c	onsiderations.			
Load minuend	elements into	F0/F1, F2/F3, F4/F5	5 using two LE instructions ea	ich		
because of R3	addressing rul	les.				
Subtract Subtra	Subtract subtranend elements.					

Store results using STED into result location.

			VV3SN		
HA	L/S-FC LIBRA	RY ROUTINE DES	CRIPTION		
Source Member Name: <u>VV3SN</u> Size of Code Area <u>10</u> Hw					
Stack Requireme	nt: <u>0</u> Hw	Data CSEC	T Size: <u>0</u> Hw		
			ocedure		
Other Library Mo	dules Referenc	ed: <u>NONE</u>		l	
ENTRY POINT DESC	<u>CRIPTIONS:</u>				
Primary Entry Name: Function: Subtract used to s	<u>VV3SN</u> s one length r subtract matric	n single precision es.	vector from another. Also		
Invoked By:					
X Compiler emitte	d code for HAL	./S construct of the	form:		
V1-V2, where	e V1 and ' th≠3.	V2 are single	precision vectors	of	
Other Library Mo	odules:				
Execution Time (micr	oseconds): 8.4	1 + 13.6n			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(n)V1	SP	R2 $\rightarrow 0^{\text{th}}$ element	-		
Vector(n)V2	SP	R3→0 th element	-		
Integer(n)	SP	R5	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
vector(n)	58	R1→0 th	-		
		element			
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>			
Comments: Registers Unsafe	e Across Call: F	R1,R2,R3,R4,R5,F(0,F1.		
Algorithm: Uses indexed loa	ad, subtract, sto	ore sequence contr	olled by a BCTB loop on 'le	ngth'.	

			<u>VV3S3</u>		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Membe	er Name: <u>VV3S</u>	<u>3</u> Size of Code Are	ea <u>12</u> Hw		
Stack Requiren	nent: <u> </u>		SIZE: <u>U</u> HW		
	u Iodulas Rafara		aure		
	SCRIPTIONS.				
Primary Entry Nam	ie: <u>VV3S3</u>		0		
	s two single pre	ecision vectors of length	1 3.		
Invoked By:					
	ted code for H/	AL/S construct of the fol	rm:		
V1 - V2, wh	iere V1 a	nd V2 are sing	le precision		
3-	Modulos:				
	wouldes.				
Execution Time (m	icroseconds): 2	29.6			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)V1	SP	R2→0 th element	-		
Vector(3)V2	SP	R3→0 th element	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)	SP	R1→0 th element	-		
Errors Detected					
Frror #	Cause	Fixup			
None	<u></u>	<u></u>			
Comments:					
Registers Lins:	afe Across Call	· R1 R2 R3 R4 F0 F2 F	Δ		
Algorithm:					
Algorithm:					

Load minuend elements into F0,F2,F4. Subtract subtrahend elements from F0,F2,F4 respectively. Store F0,F2,F4 into result elements.

HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member Name: <u>VV4DN</u> Size of Code Area <u>8</u> Hw					
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
X Intrinsic Procedure					
Drimon (Entry Names) () (4DN					
Function: Multiplies each element of a double precision length n vector by a double precision scalar. Also used to multiply matrix by scalar.					
Invoked By:					
X Compiler emitted code for HAL/S construct of the form:					
V S, where V is a double precision vector of length \neq 3 and S is a double precision scalar					
Other Library Modules:					
Execution Time (microseconds): 7.0 + 23.4n					
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(n)	DP	R2→0 th element	-		
Scalar	DP	F0	-		
Integer(n)	SP	R5	-		
Output Results:	Desistent		11.20		
<u>Iype</u> Vector(p)	Precision	How Passed	Units		
vector(n)	DP	R1→0 [™] element	-		
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>			
Comments:					
Registers Uns	afe Across Ca	ll: R1,R2,R4,R5,F0,F	1,F2,F3.		
Algorithm:					
Uses BCTB loop to count down 'length', performing load, multiply, store for each element.					
VV4D3 HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: VV4DN Size of Code Area 18Hw Stack Requirement:0 Hw					
---	--	---	----------------------------	-----------	--
ENTRY POINT DESC	<u>CRIPTIONS:</u>				
Function: Multiplies double pre	<u>VV4D3</u> each elemei ecision scala	nt of a double prec r.	ision vector of leng	th 3 by a	
Invoked By: X Compiler emitted V S, where V is a do Other Library Mo	d code for HA V is lengt puble prec pdules:	L/S construct of the th 3 double pr ision scalar.	e form: recision vector	and S	
Execution Time (micro	oseconds): 6	8.4			
Input Arguments: <u>Type</u> Scalar Vector(3)	<u>Precision</u> DP DP	<u>How Passed</u> F0 R2→0 th element	<u>Units</u> - -		
Output Results: <u>Type</u> Vector(3)	<u>Precision</u> DP	<u>How Passed</u> R1→0 th element	<u>Units</u> -		
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>			
Comments: Registers Unsafe	Across Call:	R1,R2,R4,F0,F1,F	2,F3.		
Algorithm: Simple load, mult	iply, store se	quence for each el	ement.		

			VV4SN		
Н	AL/S-FC LIBR	ARY ROUTINE DES	SCRIPTION		
Source Member	Source Member Name: <u>VV4SN</u> Size of Code Area <u>8</u> Hw				
Stack Requirem	Stack Requirement: 0 Hw Data CSECT Size: 0 Hw				
	odules Refere	ncea: <u>NONE</u>			
ENTRY POINT DES	SCRIPTIONS:				
Primary Entry Name Function: Multiplie scalar.	e: <u>VV4SN</u> es a length n Also used to r	single precision ve nultiply matrix by sca	ector by a single precision alar.		
Invoked By: X Compiler emitte	ed code for H	AL/S construct of the	e form:		
VS, where	V is a si	ngle precision	vector of length \neq		
3 and	S is a sin	ngle precision	scalar.		
Other Library M	lodules:				
Execution Time (mid	croseconds): 7	7.0 + 14.0n			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar	SP	F0	-		
Vector(n)	SP	R2→0 th element	-		
Integer(n)	SP	R5	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(n)	SP	R1→0 th element	-		
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>			
Comments:					
Registers Unsat	fe Across Call	: R1,R2,R4,R5,F0,F	1,F2,F3.		
Algorithm:					
Uses BCTB loc element.	p to count do	own 'length', perform	ning load, multiply, store for each		

				VV4S3	
HA	L/S-FC LIBR	ARY ROUTINE DES	CRIPTION		
Source Member	Name: <u>VV4S3</u>	Size of Code	Area <u>12</u> Hw		
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw					
Other Library Modules Referenced: <u>NONE</u>					
ENTRY POINT DESC	<u>CRIPTIONS:</u>				
Primary Entry Name:	<u>VV4S3</u>				
Function: Multiplies e scalar.	each element	of a single precision	on 3-vector by a s	ingle precision	
Invoked By: X Compiler emitted	d code for HA	L/S construct of the	form:		
VS, where single	V is a sir precision	ngle precision scalar.	3-vector, and	S is a	
Other Library Mo	odules:				
Execution Time (micr	oseconds): 3	8.4			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar	SP	F0	-		
Vector(3)	SP	R2→0 ^{tn} element	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)	SP	R1→0 th element	-		
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>			
Comments: Registers Unsafe	Across Call:	R1.R2.R4.F0.F2.F3	3.		
Algorithm:		····,· •,· •,· •,· •,· •,· •,·			
Simple load, mult	tiply, store for	each element.			

Source Mem Stack Requir XIntrin Other Library	HAL/S-FC LI ber Name: <u>VV</u> ement: <u>0</u> H sic Modules Refe	BRARY ROU <u>'5DN</u> Siz w I erenced: <u>N</u>	JTINE DESC e of Code A Data CSECT	CRIPTION rea <u>24</u> H Size: <u>2</u> Hw cedure	w	
ENTRY POINT D	DESCRIPTION	<u>IS:</u>				
Primary Entry Na Function: Divid scala	ame: <u>VV5DN</u> es a double p r. Also used t	precision vec o divide mat	tor of length rix by scalar.	n by a double	precision	
Invoked By: X Compiler en V/S, wher and Other Librar	<pre>Invoked By: X Compiler emitted code for HAL/S construct of the form: V/S, where V is a double precision vector of length ≠ 3 and S is a double precision scalar Other Library Modules:</pre>					
Execution Time (microseconds	s): 37.0 + 24.	2n			
Input Arguments <u>Type</u> Scalar Vector(n) Integer(n)	: <u>Precision</u> DP DP SP	<u>How Passe</u> F0 R2→0 th ele R5	ed ement	<u>Units</u> - -		
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> DP	<u>How Passe</u> R1→0 th ele	ed ement	<u>Units</u> -		
Errors Detected: Error # 25	<u>Cause</u> Scalar argum	nent is zero	<u>Fixup</u> Store origin	al vector as res	ult	
Comments: Registers Ur	nsafe Across C	Call: R1,R2,F	R4,R5,F0,F1,	F2,F3.		
Algorithm: Test F0; if zo loop to coun each elemer	ero, preset qu t down 'length it.	otient to 1; c 1' performing	otherwise, co I load, multip	mpute 1/S and bly (by 1/S), sto	then use BCTB re sequence for	

			VV5D3			
НА	HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member	Source Member Name: <u>VV5D3</u> Size of Code Area <u>34</u> Hw					
Stack Requireme	Stack Requirement: 0 Hw Data CSECT Size: 2 Hw					
X Intrinsic	X Intrinsic Procedure					
Other Library Mo	dules Referer	nced: <u>NONE</u>				
ENTRY POINT DES	CRIPTIONS:					
Primary Entry Name Function: Divide e	<u>VV5D3</u> ach element	of a double precis	sion length 3 vector by a			
		ai.				
Invoked By:		1 /O a substant of the	f			
	a code for HA	L/S construct of the	form:			
V/S, where double	V is a dou precision	ble precision scalar.	3-vector and S is a			
Other Library M	odules:					
Execution Time (mic	roseconds): 9	8.4				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Scalar	DP	F0	-			
Vector(3)	DP	R2→0 th element	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(3)	DP	R1→0 th element	-			
Errors Detected:						
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>			
25	Scalar argur	nent is zero	Store original vector as resu	ılt		
Comments:						
Registers Unsafe	e Across Call:	R1,R2,R4,F0,F1,F2	2,F3,F4,F5,F6,F7.			

Algorithm:

Test F0; if zero, send error and set quotient to 1;

Otherwise, quotient 1/arg is calculated and then used in a simple load, multiply, and store sequence for each element.

Source Mem Stack Require XIntrin Other Library	HAL/S-FC L ber Name: <u>V</u> ement: <u>0</u> sic Modules Re	IBRARY ROUTINE <u>V5SN</u> Size of C HwData C ferenced: <u>NONE</u>	<u>VV5SN</u> DESCRIPTION ode Area <u>14</u> Hw SECT Size: <u>2</u> Hw Procedure
ENTRY POINT D	DESCRIPTIO	NS:	
Primary Entry Na Function: Divide scalar	ame: <u>VV5SN</u> es single pre r. Also used	ecision vector of le to divide matrix by s	ngth n by a single precision scalar.
Invoked By: X Compiler en V/S, whe	nitted code fo re V is a	or HAL/S construct of single precision	of the form: on vector of length ≠ 3
and Other Librar	S is a si y Modules :	ingle precision	scalar.
Execution Time (microsecond	ls): 7.2 + 18.0n	
Input Arguments <u>Type</u> Scalar Vector(n) Integer(n)	Precision SP SP SP SP	<u>How Passed</u> F0 R2→0 th element R5	<u>Units</u> - -
Output Results: <u>Type</u> Vector(n)	<u>Precision</u> SP	<u>How Passed</u> R1→0 th element	<u>Units</u> -
Errors Detected: Error # 25	<u>Cause</u> Scalar argu	ument is zero	<u>Fixup</u> Store original vector as result
Comments: Registers Ur	safe Across	Call: R1,R2,R4,R5,	F0,F1,F2,F3.
Algorithm:	ero set F0 t	o 1º LISAS BOTB IO	on to count down 'length' perform

Test F0, if zero, set F0 to 1; Uses BCTB loop to count down 'length' performing load, divide, store sequences for each element.

				VV/5S3		
	HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Memb	Source Member Name: <u>VV5S3</u> Size of Code Area <u>18</u> Hw					
Stack Require	ement: <u>0</u>	Hw Data (CSECT Size: <u>2</u> Hw			
	Sic		Procedure			
Other Library	Modules Re	eferenced: <u>NONE</u>				
ENTRY POINT D	ESCRIPTIC	<u>NS:</u>				
Primary Entry Na Function: Divide single	me: <u>VV5S3</u> e each elem precision s	nent of a single pr calar.	ecision vector of length	3 by a		
Invoked By:						
X Compiler em	itted code fo	or HAL/S construct	of the form:			
V/S, when	e V is a	a single preci	sion 3-vector and	l S is a		
sing	gle precis	sion scalar.				
Other Library	/ Modules:					
Execution Time (r	nicroseconc	ls): 50.6				
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Scalar	SP	F0	-			
Vector(3)	SP	R2→0 th element	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(3)	SP	R1→0 th element	-			
Errors Detected:						
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>			
25	Scalar arg	ument is zero	Store original vector as	s result		
Comments:						
Registers Un	safe Across	Call: R1,R2,R4,F0,	F1,F2,F3.			
Algorithm:						

Test F0; if zero, set F0 to floating point 1; then do a simple load, divide, and store sequence for each element.

			<u>VV6DN</u>	
	HAL/S-FC I	IBRARY ROUTINE	DESCRIPTION	
Source Mem	ber Name: <u>V</u>	V6DN Size of C	ode Area <u>12</u> Hw	
Stack Requir	ement: <u>0</u>	Hw Data C	SECT Size: <u>2</u> Hw	
	isic Modulas Re			
)ESCRIPTIC			
Primary Entry Na		<u>,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Function: Forms	dot product	of two double precisi	ion length n vectors.	
Invoked By:				
X Compiler e	emitted code	for HAL/S construct	of the form:	
V1.V2 whe	ere V1 and	d V2 are double	e precision vectors of	
Lei Other Libra	ngth n, n	≠ 3.		
	microsecono	le): 16 1 ± 25 1n		
		3). 10.4 1 20.411		
Type	Precision	How Passed	Units	
Vector(n)	DP	$R2 \rightarrow 0^{\text{th}}$ element	-	
Vector(n)	DP	R3 $\rightarrow 0^{\text{th}}$ element	-	
Integer(n)	SP	R5	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Scalar	DP	F0	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				
Registers Ur	nsafe Across	Call: R1,R2,R3,R4,I	R5,F0,F1,F2,F3.	
Algorithm:				
Loads R3 into R1 for addressability advantages.				
Performs:				
n S				
<u> </u>	v2 _i by loops	counting down n;		

Each pass loads $V1_i$, multiplies by $V2_i$, and adds to accumulated sum in F0.

VV6D3 HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: VV6D3 Size of Code Area 16 Hw Stack Requirement: O Hw Z W X Intrinsic Other Library Modules Referenced: NONE					
ENTRY POINT D	ESCRIPTION	IS:			
Primary Entry Nat Function: Forms of	me: <u>VV6D3</u> dot product of	two double precisio	n 3-vectors.		
Invoked By: X Compiler emitted code for HAL/S construct of the form: V1.V2 where V1 and V2 are double precision 3-vectors. Other Library Modules					
Execution Time (r	nicroseconds): 71.8			
Input Arguments: <u>Type</u> Vector(3) Vector(3)	<u>Precision</u> DP DP	<u>How Passed</u> R2→0 th element R3→0 th element	<u>Units</u> - -		
Output Results: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -		
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>			
Comments:	Comments:				
Registers Unsafe Across Call: R2,R3,R4,F0,F1,F2,F3. Algorithm:					
Moves R3 to Performs:	R1 for addres	sability advantages.			

n

 $\sum_{i \, = 1} \text{V1}_i \, \text{V2}_i$ via straight line code, no loops, accumulating result in F0.

			VV6SN
	HAL/S-FC	LIBRARY ROUTINE	DESCRIPTION
Source Mem	iber Name: <u>V</u>	<u>V6SN</u> Size of Co	ode Area <u>12</u> Hw
Stack Requir	rement: 0	Hw Data C	SECT Size: <u>2</u> Hw
	nsic		Procedure
Other Library	/ Modules Re	eterenced: <u>NONE</u>	
ENTRY POINT I	DESCRIPTIC	<u>DNS:</u>	
Primary Entry Na	ame: <u>VV6SN</u>	<u> </u>	
Function: Forms	dot product	of two length n single	precision vectors.
Invoked By:	mitted and a f	or UAL /S construct of	the form
		d MAL/S construct of	
vi.vz wi n	$\neq 3.$	la vz are single	precision n-vectors,
Other Libra	ry Modules		
Execution Time	(microsecon	ds): 15.2 + 16.8n	
Input Arguments	5:		
<u> </u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Vector(n)	SP	R3→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers U	nsafe Across	Call: R1,R2,R3,R4,F	5,F0,F1,F2,F3.
Algorithm:			
Moves R3 to	R1 for addr	essability advantages	S.
Performs:			
n			

$$\sum_{i=1}^{N} V1_i V2_i$$

by a loop counting down n; Each pass loads $V1_i$, multiplies by $V2_i$, and adds to accumulated sum in F0.

			VV6S3		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Memb	er Name: <u>V</u>	V6S3 Size of Co	de Area <u>10</u> Hw		
Stack Require	ement: <u>0</u> I	Hw Data CS	SECT Size: <u>0</u> Hw		
XIntrins	sic		Procedure		
Other Library	Modules Re	ferenced: <u>NONE</u>			
ENTRY POINT D	ESCRIPTIO	<u>NS:</u>			
Primary Entry Na	me: <u>VV6S3</u>				
Function: Forms	dot product o	of two single precision	n 3-vectors.		
Invoked By:					
X Compiler en	nitted code f	or HAL/S construct o	f the form:		
V1.V2 wh	ere V1	and V2 are	single precision		
3-	vectors.				
Other Librar	y Modules				
Execution Time (r	nicrosecond	ls): 41.8			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)	SP	R2→0 th element	-		
Vector(3)	SP	R3→0 th element	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar	SP	F0	-		
Errors Detected:					
Error #	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					
Registers Uns	safe Across	Call: R2,R3,R4,F0,F	1,F2,F3.		
Algorithm:					

Calculates $V1_1V2_1 + V1_2V2_2 + V1_3V2_3$ via direct code, no loops, accumulating result in F0.

			<u>VV7DN</u>
HAL/	S-FC LIBRARY RU	DUTINE DESCRIPT	ION Ibu
Source Member	Name: <u>VV/DN</u>	Size of Code Area	<u>10</u> HW
Stack Requireme	ent: <u>0</u> Hw	Data CSECT Size	e: <u>0</u> Hw
XIntrinsic		Procedure	e
Other Library Mo	dules Referenced:	<u>None</u>	
ENTRY POINT DE	<u>SCRIPTIONS:</u>		
Primary Entry Name	e: <u>VV7DN</u>		
Function: Vector ne	gate, double precis	ion, length n. Also	used to negate matrices.
Invoked By:			
X Compiler emitt	ed code for HAL/S	construct of the for	m:
-V, where V	'is a double p	recision vecto	r of length n,
n ≠ 3.			
Other Library N	Nodules		
Execution Time (mi	croseconds): 7.0 +	11.4n	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R2→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R1→0 th element	-
Errors Detected:			
Error #	<u>Cause</u>	<u>Fixup</u>	
None			

Comments:

Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.

Algorithm:

Uses loop to count down 'n', each pass performing load, negate, store sequence on current vector element.

					<u>VV7D3</u>	
	H Source Mem Stack Require X	AL/S-FC LIBRA ber Name: <u>VV7[</u> ement: <u>0</u> F	RY ROUTINE DES <u>33</u> Size of Code Hw Data CSEC	CRIPTION Area <u>20</u> T Size: <u>0</u> ocedure	Hw Hw	
	Other Library	Modules Refere	enced: <u>None</u>			
		DESCRIPTIONS	<u>.</u>			
F	fimary Entry Na function: Vector	negate, double	precision for vector	s of lenath 3.		
י וו 	Invoked By: X Compiler emitted code for HAL/S construct of the form: -V, where V is a double precision 3-vector. Other Library Modules					
E	xecution Time (microseconds):	32.4			
Ir	nput Arguments <u>Type</u> Vector(3)	: <u>Precision</u> DP	<u>How Passed</u> R2→0 th element	<u>Units</u> -		
C	Dutput Results: <u>Type</u> Vector(3)	<u>Precision</u> DP	<u>How Passed</u> R1→0 th element	<u>Units</u> -		
E	rrors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>			
C	`ommonte:					

Comments:

Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5.

Algorithm:

Simple, direct code sequence, no loops. Performs 3 loads, 3 negations, 3 stores.

				VV7SN	
HAL	HAL/S-FC LIBRARY ROUTINE DESCRIPTION				
Source Member	Source Member Name: <u>VV7SN</u> Size of Code Area <u>10</u> Hw				
Stack Requirem	ent: <u>0</u> Hv	v Data CSEC	T Size: <u>0</u>	Hw	
X Intrinsic		Pro	ocedure		
Other Library Me	odules Refere	nced: <u>None</u>			
ENTRY POINT DES	SCRIPTIONS:				
Primary Entry Name	e: <u>VV7SN</u>				
Function: Vector ne	gate, single pr	ecision length n. A	lso used to neg	gate matrices.	
Invoked By:					
X Compiler emitte	ed code for HA	AL/S construct of th	e form:		
-V, where	V is a sin	gle precision	vector of 1	ength n,	
$n \neq 3$.					
	loquies				
Execution Time (mid	croseconds): 7	7.0 + 9.0n			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(n)	SP	R2→0 th element	-		
Integer(n)	SP	R5	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(n)	SP	R1→0 th	-		
		element			
Errors Detected:	-				
Error #	<u>Cause</u>	Fixup			
INONE					
Comments:					
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.					

Algorithm:

Uses loop to count down 'n', each pass performing load, negate, store sequence on current vector element.

				<u>VV7S3</u>
HAL	/S-FC LIBRARY F	ROUTINE DESCRIPT	ION	
Source Member	Name: <u>VV7S3</u>	Size of Code Area	14	Hw
Stack Requirem	ent: <u>0</u> Hw	Data CSECT Size	:	_ Hw
X Intrinsic		Procedure		
Other Library Mo	odules Reference	d: <u>None</u>		
ENTRY POINT DE	<u>SCRIPTIONS:</u>			
Primary Entry Nam	e: <u>VV7S3</u>			
Function: Vector ne	egate, single prec	ision for vectors of le	ngth 3.	
Invoked By:				
X Compiler emit	ted code for HAL/	/S construct of the for	m:	
-V, where	V is a singl	e precision 3-ve	ector.	
Other Library	Modules			
Execution Time (m	icroseconds): 23.	4		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	SP	$R2 \rightarrow 0^{th}$	-	
		element		
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	SP	R1→0 th element	-	
Errors Detected:				
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				

Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5.

Algorithm:

Direct, inline code, no loops. Does 3 loads, 3 negations, 3 stores.

VV8D3 HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: VV8D3 Size of Code Area <u>12</u> Hw Stack Requirement: <u>0</u> Hw Data CSECT Size: 0 Hw Procedure X Intrinsic Other Library Modules Referenced: None ENTRY POINT DESCRIPTIONS: Primary Entry Name: VV8D3 Function: Compares two double precision 3-vectors. Invoked By: X Compiler emitted code for HAL/S construct of the form: IF X = Y..., where X and Y are single precision 3-vectors. Other Library Modules: Execution Time (microseconds): 59.0 if X=Y; 16.2n + 24.6 if X≠Y where n = 3 -(index of last non-matching pair of elements). Input Arguments: Type Precision How Passed Units Vector(3) DP $R2 \rightarrow 0^{th}$ element Vector(3) DP R3 \rightarrow 0th element Output Results: Precision How Passed Type Units Condition code Equal/not equal Errors Detected: Error # Cause <u>Fixup</u> None Comments: Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1. Algorithm: Loads a literal 3 into R5, then drops into VV8DN code.

<u>VV8D3</u>

Secondary Entry Name: VV8DN

Function: Compares two double precision vectors of length n. Also used to compare matrices.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

IF X = Y..., where X and Y are double precision vectors of length n, $n \neq 3$.

Execution Time (microseconds):

16.2n + 18.0 if X=Y; 16.2m + 22.2 if X≠Y,

where m = n-(index of last non-matching pair of elements)

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R2→0 th element	-
Vector(n)	DP	R3→0 th element	-
Integer(n)	SP	R5	-
Output Results: <u>Type</u> Equal/not equal	Precision -	How Passed Condition code	<u>Units</u> -
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:

Loads R3 into R1 for better addressability. Loops, counting down 'size', each pass compares values of one element of each vector. When first non-compare occurs, branch to return point is taken, exiting loop.

Condition code is set based upon whether count down loop reaches 0. Condition code of 00 indicates equality, 01 indicates inequality.

				<u>VV8S3</u>
HAL/S-FC LIBRARY ROUTINE DESCRIPTION				
Source Membe	r Name: <u>VV8S</u>	<u>3</u> Size of Code A	rea	<u>12</u> Hw
Stack Requirem	nent: <u>0</u> F	Iw Data CSECT	Size: 0	Hw
XIntrinsic		Proce	dure	
Other Library M	lodules Refere	nced: <u>None</u>		
ENTRY POINT DE	<u>ESCRIPTIONS</u>	<u>:</u>		
Primary Entry Nan	ne: <u>VV8S3</u>			
Function: Compare	es two single p	recision vectors of le	ength 3.	
Invoked By:				
X Compiler emi	tted code for H	AL/S construct of the	e form:	
IF X = Y	Y, where	X and Y are	single p	precision
	3-vecto	ors.		
	Modules:			
Execution Time (m	nicroseconds):			
42.8 if X=	Y;			
10.8n + 8	.4 if X≠Y,			`
where n =	= 4 - (index of la	ast non-matching pai	r of elements	5).
Input Arguments:	_			
<u>lype</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	5P	$R2 \rightarrow 0^{\prime\prime\prime}$ element	-	
Vector(3)	SP	R3→0 th element	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Equal/not equal	-	Condition code	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				
Registers Uns	afe Across Cal	I: R1,R2,R3,R4,R5,F	F0,F1.	
Algorithm:				

Loads a literal 3 into R5, then continues with the VV8SN algorithm.

<u>VV8S3</u>

Secondary Entry Name: <u>VV8SN</u>

Function: Compares two single precision vectors of length n. Also used to compare matrices.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

IF X = Y..., where X and Y are single precision vectors of length n, $n \neq 3$.

Other Library Modules:

Execution Time (microseconds):

10.8n + 8.0 if X=Y;

10.8m + 6.0 if X≠Y,

where m = n - (index of last non-matching pair of elements) + 1.

Input Arguments:

<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Vector(n)	SP	R3→0 th element	-
Integer(n)	SP	R5	-
Output Results: <u>Type</u> Equal/not equal	Precision -	<u>How Passed</u> Condition code	<u>Units</u> -
Errors Detected: Error <u>#</u> None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:

Loads R3 into R1 for better addressability. Loops, counting down 'size', each pass compares values of one element of each vector. When first non-compare occurs, branch to return point is taken, exiting loop. Condition code is set based upon whether count down loop reaches 0. Condition code of 00 indicates equality, 01 indicates inequality.

			<u>VV9S3</u>		
HAL	HAL/S-FC LIBRARY ROUTINE DESCRIPTION				
Source Member Name: <u>VV9S3</u> Size of Code Area <u>14</u> Hw					
Stack Requireme	ent: <u>18</u> Hv	v Data CSECT S	ize: <u>0</u> Hw		
Intrinsic		X Proce	dure		
Other Library Mo	odules Reference	ced: <u>SQRT</u>			
ENTRY POINT DE	<u>SCRIPTIONS:</u>				
Primary Entry Nam	e: <u>VV9S3</u>				
Function: Calculate	s magnitude of	length 3 single precis	sion vector.		
Invoked By:					
X Compiler emitt	ed code for HA	L/S construct of the fe	orm:		
ABVAL(V), v	where V is a	a single precisi	on 3-vector.		
Other Library N	Nodules				
Execution Time (mi	croseconds): 10	68.3			
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Vector(3)	SP	R2→0 th element	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Scalar	SP	F0	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>			
None					

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3.

This routine will generate incorrect results if the input vector element is greater than SQRT(7.2370055773322600e + 75).

Algorithm:

Loads and multiplies each element of the input vector and adds to an accumulated value in F0.

			<u>VV10D3</u>
HA	AL/S-FC LIBRA	RY ROUTINE DES	
Source Membe	er Name: <u>VV10</u>	D3 Size of Code	Area <u>70</u> Hw
Stack Require	ment: <u>28</u> I	Hw Data CSE	CT Size: <u>2</u> Hw
		P	rocedure
Other Library	Modules Refere	nced: <u>DSQRT,VV0I</u>	<u>DN</u>
ENTRY POINT D	ESCRIPTIONS	<u>):</u>	
Primary Entry Na	me: <u>VV10D3</u>		
Function: Creates	s unit vector of l	ength 3 for input 3-	vector in double precision.
Invoked By:			
X Compiler er	nitted code for	HAL/S construct of	the form:
UNIT(V),	where V is	a double preci	sion 3-vector.
Other Libra	ry Modules		
Execution Time (microseconds):	402.7	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	DP	R4→0 th	-
		element	
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	DP	R2→0 th	-
		element	
Errors Detected:			
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
28	Input vector h	nas all elements=0	Return input vector
Comments:			
Registers Un	safe Across Ca	II: F0,F1,F2,F3,F4,F	-5.
This routine v	vill generate inc	correct results if the	input vector element is greater the
SQRT(7.237)	0055773322600	De + 75).	

Algorithm:

Loads R5 with literal 3, then continues with the VV10DN algorithm.

<u>VV10D3</u>

Secondary Entry Name: VV9D3

Function: Calculates magnitude of length 3 double precision vector.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

 $\ensuremath{\mathsf{ABVAL}}\left(V\right)$, where V is a double precision 3-vector.

Other Library Modules

Execution Time (microseconds): 300.2

Input Arguments: <u>Type</u> Vector(3)	<u>Precision</u> DP	<u>How Passed</u> R2→0 th element	<u>Units</u> -
Output Results: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

This routine will generate incorrect results if the input vector element is greater than SQRT(7.2370055773322600e + 75).

Algorithm:

Loads R5 with literal 3, then continues with the VV9DN algorithm.

<u>VV10D3</u>

Secondary Entry Name: VV9DN

Function: Calculates magnitude of length n double precision vector.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

ABVAL(V), where V is a double precision vector of length n, $n \neq 3$.

Execution Time (microseconds): 226.6 + 24.4n

Input	Arguments:
in ip or i	/ againonto.

<u>Type</u> Vector(n) Integer(n)	<u>Precision</u> DP SP	<u>How Passed</u> R2→0 th element R5	<u>Units</u> -
Output Results: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

This routine will generate incorrect results if the input vector element is greater than SQRT(7.2370055773322600e + 75).

Algorithm:

Uses loop counting down size (n), each pass squaring an element of input vector and adding to accumulated value in F0; after loop, calls DSQRT to obtain final result in F0.

<u>VV10D3</u>

Secondary Entry Name: VV10DN

Function: Creates unit vector of length n for input vector of length n in double precision. Invoked By:

X Compiler emitted code for HAL/S construct of the form:

UNIT(V), where V is a double precision vector of length n, n \neq 3.

Other Library Modules

Execution Time (microseconds): 259.7 + 47.8n

Input Arguments:

Type	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R4→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
Type	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R2→0 th element	-

Errors Detected:

<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>
28	Every element of input vector is 0	Return input vector

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

This routine will generate incorrect results if the input vector element is greater than SQRT(7.2370055773322600e + 75).

Algorithm:

Uses loop to sum squares of elements of input vector. Calls DSQRT to get square root of sum. Uses loop to divide each element of input vector by square root value and store into result vector.

			VV10S3
н	IAL/S-FC LIBRARY	ROUTINE DESCRI	PTION
Source Mem	ber Name: <u>VV10S3</u>	Size of Code A	rea <u>46</u> Hw
Stack Requir	ement: <u>24</u> Hw	Data CSECT	Size: <u>2</u> Hw
Intrinsi	С	X Proce	dure
Other Library	Modules Reference	ed: <u>SQRT,VV0SN</u>	
ENTRY POINT	DESCRIPTIONS:		
Primary Entry N	lame: <u>VV10S3</u>		
Function: Creat	es unit vector of leng	gth 3 for input 3-vec	tor in single precision.
Invoked By:			
X Compiler e	mitted code for HAL	/S construct of the f	orm:
UNIT(V),	where V is a s	ingle precision	n 3-vector.
Other Libra	ary Modules		
Execution Time	(microseconds): 236	6.4	
Input Arguments	S:		
Type	Precision	How Passed	<u>Units</u>
Vector(3)	SP	R4→0 th element	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	SP	R2→0 th element	-
Errors Detected	:		
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
28	Input vector has all	elements=0	Return input vector
Comments:			
Registers U	Insafe Across Call: F	⁵ 0,F1,F2,F3.	
This routine	will generate incorre	ect results if the inpu	It vector element is greater than

SQRT(7.2370055773322600e + 75).

Algorithm:

Loads R5 with literal 3, then continues with VV10SN algorithm.

<u>VV10S3</u>

Secondary Entry Name: VV9SN

Function: Calculates magnitude of single precision vector of length n.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

ABVAL(V), where V is a single precision vector of length n, n \neq 3.

Other Library Modules

Execution Time (microseconds): 118.9 + 14.0n

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	

None

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3.

This routine will generate incorrect results if the input vector element is greater than SQRT(7.2370055773322600e + 75).

Algorithm:

Uses loop counting down size (n), each pass squaring an element of input vector and adding to accumulated value in F0. After loop, calls SQRT to obtain final result in F0.

<u>VV10S3</u>

Secondary Entry Name: VV10SN

Function: Creates unit vector of length n for input vector of length n in single precision. Invoked By:

X Compiler emitted code for HAL/S construct of the form:

UNIT(V), where V is a single precision vector of length n, $n \neq 3$.

Execution Time (microseconds): 130.6 + 32.8n

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R4→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
Type	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R2→0 th element	-
Errors Detected:	0		— .
<u>Error #</u>	Cause		<u>FIXUP</u>

28 Sum of squares of all elements=0 Return zero vector

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3.

This routine will generate incorrect results if the input vector element is greater than SQRT(7.2370055773322600e + 75).

Algorithm:

Uses loop to sum squares of elements of input vector. Calls SQRT to get square root of sum. Uses loop to divide each element of input vector by square root return value and store into result vector.

			<u>VX6D3</u>
HAI	_/S-FC LIBRARY R	OUTINE DESCRIPT	ΓΙΟΝ
Source Membe	r Name: <u>VX6D3</u>	Size of Code Area	<u> 36 </u> Hw
Stack Requiren	nent: <u>0</u> Hw	Data CSECT Siz	ze: <u>0</u> Hw
X Intrinsic		Procedu	re
Other Library M	Iodules Referenced	d: <u>None</u>	
ENTRY POINT DI	ESCRIPTIONS:		
Primary Entry Nar	ne: <u>VX6D3</u>		
Function: Forms of	ross product of 2 d	ouble precision 3-ve	ctors.
Invoked By:			
X Compiler emi	tted code for HAL/S	S construct of the for	m:
X*Y, wher	e X and Y are	e double precis	ion vectors of
leng	th 3.		
Other Library	Modules:		
Execution Time (n	nicroseconds) 137.	6	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(3)	DP	R2→0 th element	-
Vector(3)	DP	R3→0 th element	-
Output Results:			
Type	Precision	How Passed	Units
Vector(3)	DP	$R1 \rightarrow 0^{th}$ element	-
Error #		Fixup	
<u>Litor #</u> None	Cause		
Comments:	ofo Across Cally D		0 20 21 25
	ale ACIUSS Call. R	I,NZ,NJ,N4,FU,FI,F	と, 「 3, 「 4 ,「 3 .

Algorithm:

Direct code, no loops, to calculate cross product: $(X_2Y_3 - X_3Y_2, X_3Y_1 - X_1Y_3, X_1Y_2 - X_2Y_1)$

				VX6S3
HAL/	S-FC LIBRA	RY ROUTINE DESC	RIPTION	<u>- 176000</u>
Source Member N	lame: VX6S3	Size of Code A	rea 22	Hw
Stack Requiremer	nt: <u>0</u> Hw	Data CSEC	Г Size: 0	Hw
X Intrinsic		Proc	edure	
Other Library Mod	lules Referen	ced: <u>None</u>		
ENTRY POINT DES	CRIPTIONS:			
Primary Entry Name:	: <u>VX6S3</u>			
Function: Performs v	ector cross p	roduct of two single	precision lengt	h 3 vectors.
Invoked By:				
X Compiler emitte	d code for HA	L/S construct of the	form:	
X*Y, where	X and Y a	are single pred	cision vect	ors of
length	3.			
Other Library M	odules:			
Execution Time (mici	roseconds): 7	78.0		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	SP	R2→0 th element	-	
Vector(3)	SP	R3→0 th element	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Vector(3)	SP	R1→0 th element	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None				
Comments:				
Registers Unsafe	e Across Call	: R1,R2,R3,R4,F0,F	1,F2,F3.	
Algorithm:				

Direct code, no loops, to calculate.

 $(X_2Y_3 - X_3Y_2, X_3Y_1 - X_1Y_3, X_1Y_2 - X_2Y_1)$

6.3.4 Character Routine Descriptions

This subsection presents those routines which manipulate character data. Routines which convert to and from character data are <u>not</u> included here. Such routines are found under Section 6.3.6. (Miscellaneous Routine Descriptions).

				<u>CASPV</u>		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION						
Source Memb	Source Member Name: <u>CASPV</u> Size of Code Area <u>64</u> Hw					
Stack Require	ment: <u>0</u>	Hw	Data CSECT S	Size: <u>2</u> Hw		
X Intrinsic	X Intrinsic Procedure					
Other Library	Modules Ref	ferenced	I: <u>None</u>			
ENTRY POINT D	DESCRIPTIC	DNS:				
Primary Entry Na	me: CASPV	/				
Function: Assig	ins a partitic	on of a d	character string to	a temporary string in a		
virtua	accumulate	or.				
Invoked By:						
X Compiler en	nitted code fo	or HAL/S	S construct of the f	orm:		
C\$(I TO	J), wher	e C is	a Character	string.		
X Other Librar	y Modules:					
CPASP						
Execution Time (microsecono	ds):				
if p = 0: 4	43.8					
if p > 0:						
52.0	+ 3.8	(if I is e	ven)			
	+ 9.4k	(if k is o	odd)			
	+ 13.1k	(if I is e	ven)			
where	p = minimun	n (J-I+1,	255)			
	k = ceiling (F	P/2)				
Input Arguments:	:					
<u>Type</u>	Precision		How Passed	<u>Units</u>		
Character	-		R2→descriptor	-		
Integer(I)	SP		R5	-		
Integer(J)	SP		Ro	-		
Output Results:						
<u>Type</u> Observation	Precision	<u>l</u>	How Passed	<u>Units</u>		
Unaracter (temporary)	-		R1→aescriptor	-		

Errors Detected:

Error #

17

Fixup Indices out-of-bounds for input string

Set out-of-bounds index to first or last character of string

Comments:

Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6.

<u>Cause</u>

Algorithm:

Several checks for possible errors are made before the transfer of characters is actually done. The index to the first character (I) is checked to be not less than 1. If it is, then set to 1. The index to the last character (J) is checked to be less than the length of the source string. If it is greater, then the index is set equal to the current length. Next, if J < I, the fixup is the NULL string. If the input actually is the NULL string, then no error is signaled. Finally, if the partition length exceeds the max length of the destination string, then the partition is truncated. All that remains to be done is the halfword-by-halfword transfer. The character count is incremented by one before dividing by two so that the halfword count is rounded to the next highest halfword if the character count was odd.

If I (the first character index) is odd then the transfer is straightforward. If even, then there are alignment problems to work around. The odd byte of the first halfword to move must not be moved, so halfwords crossing the "natural" halfword boundary are moved instead.

<u>CASPV</u>

Secondary Entry Name: CASP Function: Assigns a partition of a character string to a receiver string. Invoked By: X Compiler emitted code for HAL/S construct of the form: $C1 = C2_{I TO J}$, where C1 and C2 are character variables, and I and J are integers. Other Library Modules: Execution Time (microseconds): if p = 0: 41.0 if p > 0: 49.2 (if p = maxlength(C1)) + .8 (if I is even) + 3.8 + 9.4k (if I is odd) + 13.1k (if I is even) where p = minimum (J-I+1, maxlength(C1))k = ceiling (P/2).Input Arguments: How Passed Type Precision Units R2→descriptor Character(C2) --Integer(I) SP R5 Integer(J) SP R6 _ Output Results: <u>Type</u> Precision How Passed Units Character(C1) R1→descriptor Errors Detected: Error # Cause Fixup 17 Index out-of-bounds for input string Set out-of-bounds index to first or last character of string Comments:

Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6.

Algorithm:

Same as CASPV, except destination is a variable instead of a temporary.

			CASV	ĺ		
НА	/S-FC LIBRA	RY ROUTINE DESC	RIPTION			
Source Member Name: CASV Size of Code Area 28 Hw						
Stack Requirem	nent: 0 Hv	v Data CSECT	Size: 0 Hw			
X Intrinsic		Proced	dure			
Other Library M	odules Refere	nced: <u>None</u>				
ENTRY POINT DE	SCRIPTIONS	<u> </u>				
Primary Entry Nan	ne: CASV					
Function: Characte	er assign for o	utput; assigns string	from data to I/O buffer	area.		
Invoked By:						
Compiler emi	tted code for H	IAL/S construct of the	e form:			
X Other Librarv	Modules:					
Execution Time (m	vicroseconds):					
if C2 is	null string:	2 0				
if C2 ≠	null string: 4).2 + 9.4 (ceiling (P/2	2-1)) + .8			
	(if	length(C2)>maxleng	yth(C1)),			
	w	here p=minimum (ler	ngth(C2), maxlength(C1	I)).		
Input Arguments:						
<u>Type</u> Objects to a	Precision	How Passed	<u>Units</u>			
	-	R2→descriptor	-			
Output Results:	Precision	How Passed	Linite			
<u>Type</u> Character	<u>- 110031011</u>	<u>R1</u> →descriptor	<u>-</u>			
Errors Dotoctod						
Error #	Cause	Fixup				
None	<u></u>	<u></u>				
Comments:						
Registers Uns	afe Across Ca	ll: R1,R2,R3,R4,R5.				

Algorithm:

First, the max length of the destination string is set to 255. Then, the length descriptor halfword of both the source string and the destination string are examined. The min of the max length of the destination and the current length of the source is taken as the new currlength of the destination. Next, the number of halfwords to move is found by incrementing the character count by one (in case the character count is odd) and dividing by two. If the source is a null string, the routine exits. If the character count is odd, the last byte in the string is moved anyway since it is always ignored. The assignment is made by moving the string halfword-by-halfword to the location specified by the destination pointer.

<u>CASV</u>

Secondary Entry Name: CAS Function: Character assignment, non-partitioned. Invoked By: X Compiler emitted code for HAL/S construct of the form: C1 = C2, where C1 and C2 are character strings. X Other Library Modules: CIN Execution Time (microseconds): if input is null string: 32.0 if input \neq null string: 43 + 9.4 * (ceiling(P/2-1)), where p =length of input character string. Input Arguments: Type Precision How Passed <u>Units</u> R2→descriptor Character(C2) -Output Results: How Passed Type Precision Units Character(C1) R1→descriptor -Errors Detected: Error # <u>Cause</u> <u>Fixup</u>

None

Comments:

Registers Unsafe Across Call: R1,R2,R3,R4,R5.

Algorithm:

Same as CASV, except MAXLEN of destination is not set to 255, but left with original MAXLEN value.

				CATV
HAL/S-FC LIE		of Code Area		
Stack Requirement: 0	<u>AIV</u> 312 Hw D	e of Coue Alea _	<u>70</u> П	
X Intrinsic	D			
Other Library Modules Re	foroncod: N			
ENTRY FOINT DESCRIPTION	<u>JNS.</u>			
Function: Cotonotoo two obo	rootor otrino	a and stores into	o tompor	
Function. Catenates two cha	liacter string	s and slores into	atempora	ary.
Invoked By:	for UAL /S or	potruct of the form	<u>.</u>	
			11.	
X Y				
Execution Time (microsecon	ds):			
limes depend on wheth	er first sourc	e string = destina	tion string	j and whether the
if X is pull string and X is		ter count creating	an aligni	nent problem.
if X and X are not both n	HUII. 52.2 HUIVYTIME J			
XTIME: if X is pull string	un. ⊼ i nvi⊏ ¬ · 24 ∩			
if $X \neq$ null string	298+94	* (ceiling (P/2))		
where $p = lengt$	L010 1 011	(001119(172))		
YTIME: if Y is null string	: 27.8			
if Y is ≠ null strin	ig:			
52.1 + 14.1 *	(ceiling(Q/2	l-1))		
+ 6.0 (if	P+Q is odd			
32.3 + 9.4 * (ceiling (Q/2)) if p is ever)	
where Q= minim	ium (length(Y), 255-P).		
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Character(X)	-	R2→descriptor	-	
Character(Y)	-	R3→descriptor	-	
Output Results:	_			
<u>Iype</u> Character(temperatur)	Precision	How Passed	<u>Units</u>	
Character(temporary)	-	κ i→uescriptor	-	
Errors Detected:	Course			
<u>E110[#</u>	Cause	<u>Fixup</u>		
NULLE				
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1.

Algorithm:

The lengths of the source strings are checked against the destination string for legal values. The second source string may be truncated if its length + that of the first source string exceed the length of the destination. If the first source string and the destination string are the same string (found by comparing addresses), then only the second source string is moved. After checking these things, the routine needs only to actually move the strings. The first is a straight halfword-by-halfword move. If its length is odd, then there is the alignment problem to contend with. The second string is moved starting where the first one left off.

See description of CASPV for what is done when the first source string has an odd character count.

<u>CAT</u>

Secondary Entry Name: <u>CAT</u> Function: Catenates two character strings and stores into a third string.							
Invoked By: X Compiler emitted code for HAL/S construct of the form: Not used yet. Other Library Modules:							
Input Arguments: <u>Type</u> <u>Precision</u> <u>How Passed</u> <u>Units</u> N/A - R2 \rightarrow descriptor - N/A - R3 \rightarrow descriptor -							
Output Results: <u>Type</u> N/A	Precision -	<u>How Passed</u> R1→descriptor	<u>Units</u> -				
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>					
Comments: N/A Algorithm: N/A	None Comments: N/A Algorithm: N/A						

<u>CINDEX</u> HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: CINDEX Size of Code Area 52 Hw Stack Requirement: <u>18</u> Hw Data CSECT Size: 0 Hw X Procedure Intrinsic Other Library Modules Referenced: GTBYTE ENTRY POINT DESCRIPTIONS: Primary Entry Name: CINDEX Function: Performs HAL/S INDEX function: finds occurrence of one character string within another. Invoked By: X Compiler emitted code for HAL/S construct of the form: INDEX(A,B), where A and B are character strings; B is searched for within A. Other Library Modules: Execution Time (microseconds): if A is null: 32.8 if B is null: 38.0 if length(B) > length(A): 44.8 if result = 0: JA KA time = $38.0 + \left[\sum \sum (15.4 + KB_{,l} + KB_{,l+l-1}) + 16.4 + KB_{l} \right]$ I=1 .J=1 where JA = 2 * (length(C1) - length(C2))+1KA_I= # of compares required to determine that C1\$(length(C2) at I) \neq C2 KB_x= 14.4 if X is even 15.6 if X is odd if result \neq 0: result KA_I time = 29.6 + $[\Sigma \Sigma (15.4 + KB_J + KB_{J+l-1}) + 16.4 + KB_l]$ l=1 J=1

where KA	= # of	comp	oarisons	require	ed to	determine	that

C1\$(length(C2) at I) \neq C2 if I \neq result. length(C2) if I = result.

 KB_X is as above

Input Arguments:			
Type	Precision	How Passed	<u>Units</u>
Character(A)	-	R2→descriptor	-
Character(B)	-	R4→descriptor	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Integer	SP	R5	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			

Comments:

Registers Unsafe Across Call: R5,F0,F1,F2,F3,F4,F5.

Algorithm:

- 1) If either string is null, return zero.
- 2) Set pointer to first character of A.
- 3) If size of B exceeds size of A, beyond A pointer, return zero.
- 4) Loop on size of B, comparing elements of A and B beginning at current A pointer; on non-equality go to step 6.
- 5) Comparison loop in 4 succeeded, return current A pointer.
- 6) Increment A pointer by one byte, go to step 3.

				CL	JSTV
	HAL/S-FC	LIBRARY R	OUTINE DESCRIPTIO	 DN	
Source M	ember Name	: <u>CLJSTV</u>	Size of Code Area	<u>40</u> F	łw
Stack Rec	quirement:	<u>18</u> Hw	Data CSECT Size:	2	Hw
Intri	nsic		X Procedure		
Other Libr	ary Modules	Referenced:	<u>GTBYTE,STBYTE</u>		
ENTRY POIN	IT DESCRIP	TIONS:			
Primary Entry	Name: <u>CLJ</u>	<u>STV</u>			
Function: Left	justifies a ch	naracter string	g to a specified length	by	
1) pa	adding on the	e right with bla	anks if too short;		
2) tru	uncating on t	he right if too	long.		
Invoked By:					
X Compiler	r emitted cod	e for HAL/S c	construct of the form:		
LJUST (<i>I</i>	A,B), wher	e A is a o	character string	and B i	s an
	inte	eger.			
Other Lib	orary Module	S:			
Execution Tim	ne (microsec	onds):			
34.0	+ 2.8	(if B<255)			
	+ 2.0	(if n>0)			
	+ 40.8n				
	+ 1.6	(If n is odd)			
	+ 0.4	$(II III \leq 0)$	and n is even)		
	- 10	(if m is odd a	and n is odd)		
	+ 23.8m				
where n	= length(A	A)			
m	= maximu	m(B-n,0)			
Input Argume	nts:				
<u>Type</u>		Precision	How Passed	<u>Units</u>	
Character(A)	-	R4→descriptor	-	
Integer(B)		SP	R5	-	
Output Result	ts:				
<u>Type</u>		Precision	How Passed	<u>Units</u>	
Character(te	mporary)	-	R2→descriptor	-	
Errors Detect	ed:				
Error #	<u>Cause</u>			<u>Fixup</u>	• • • •
18	Input string	g length gre	ater than requested	I runcate	Input strin
	2176 OL D<0)		io specili	eu size

November 2005

Registers Unsafe Across Call: F0,F1.

Algorithm:

Compares requested length to 255 and retains smaller as L; compares L with input string length:

- if greater, truncates on right to length L and moves to output;
- if same, moves input string unchanged to output;
- if less, pads on right with blanks and moves to output.

CPAS HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: <u>CPAS</u> Size of Code Area <u>80</u> Hw Stack Requirement: <u>20</u> Hw Data CSECT Size: 2 Hw X Procedure Intrinsic Other Library Modules Referenced: <u>GTBYTE,STBYTE</u> ENTRY POINT DESCRIPTIONS: Primary Entry Name: CPAS Function: Assigns a character string to a partition of another string. Invoked By: X Compiler emitted code for HAL/S construct of the form: $C2_{I TO J} = C1$, where C1 and C2 are character strings X Other Library Modules: CPASP, CINP Execution Time (microseconds): I HP 34.2 + KA + Σ (5.6 + K_{CLOUT+K}) + KD k=1 NCHAR + Σ (7.6 + KC_{I+K-1} + KF_k) + KE k=1 RHP + Σ (5.6 + KC_{I+LIN+K-1}) + KG where LOUT = length(C2) before assignment LIN = length(C1)KA = 25.4 if J<LOUT 34.0 if J>LOUT LPART = J-I+1 (length of partition) KB = 9.2 if LPART>0 and LPART<LIN 13.8 if LPART>0 and LPART>LIN 0 otherwise LHP = I-LOUT-1 $KC_X = 19.2$ if X is odd 17.2 if X is even

KD	=	4.0 if LHP <u><</u> 0 0 otherwise				
NCHAR KE	=	MINIMUM(LPART,L .8 if NCHAR = 0	IN) Note tha index	at in summations	s if start_index > end
		0 if otherwise		then sun	nmation goes to 0).
KF _X	=	15.6 if X is odd 14.4 if X is even				
RHP KG	=	LPART-LIN .4 if RHP <u><</u> 0 0 otherwise				
Input Argun <u>Type</u> Character Integer(I) Integer(J)	nent strii	ts: ng(source)(C1)	<u>P</u> - - -	recision	<u>How Passed</u> R4→descriptor R5 R6	<u>Units</u> - -
Output Res <u>Type</u> Character	ults: (des	stination)(C2)	<u>P</u> -	<u>recision</u>	<u>How Passed</u> R2→descriptor	<u>Units</u> -
Errors Dete <u>Error #</u> 17	cteo <u>Ca</u> In	d: <u>ause</u> dex out-of-bounds fo	or c	destinatio	n string or J <i-1< td=""><td><u>Fixup</u> Set out-of-bounds to first or last character of destination</td></i-1<>	<u>Fixup</u> Set out-of-bounds to first or last character of destination

Registers Unsafe Across Call: F0,F1.

Algorithm:

First, the length of the partition is compared to the length of the source. If the source is longer, truncate it. If the destination partition is longer, then pad with blanks. The character count is determined and the string is moved byte-by-byte with the GTBYTE and STBYTE routines.

	<u>CPASP</u>									
	HAL/S-FC LIBRARY ROUTINE DESCRIPTION									
	Source Member Name: Size of Code Area <u>18</u> Hw <u>CPASP</u>									
	Stack Requirement: <u>146</u> Data CSECT Size: <u>0</u> Hw									
	Intrinsic X Procedure									
	Other Library Modules Referenced: CASPV, CPAS									
E	ENTRY POINT DESCRIPTIONS:									

Primary Entry Name: CPASP

Function: Assigns a partition of a character string into a partition of another character string.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

 $C2_{K TO L} = C1_{I TO J}$; C1 and C2 are character strings and I,J,K,L are integers.

Other Library Modules:

Execution Time (microseconds): 42.8 + time for CASPV and CPAS.

Input Arguments:

<u>Type</u>		Precision	How Passed	<u>Units</u>	
Character(so	ource)(C1)	-	R4→descriptor	-	
Integer(I)		SP	R5	-	
Integer(J)		SP	R6	-	
Integer(K L)		(SP SP)	R7	-	
Output Result	s:				
<u>Type</u>		Precision	How Passed	<u>Units</u>	
Character(de	estination)(C2)	-	R2→descriptor	-	
Errors Detecte	ed:				
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>		
17	Subscript of c	haracter strin	g out of Set o	out-of-bounds	va

Subscript of character string out of Set out-of-bounds value to bounds first or last character of associated string

Comments:

Registers Unsafe Across Call: F0,F1.

Algorithm:

The input partition is put into a VAC by the CASPV routine. The index arguments of the destination string and pointers are set up for the CPAS routine, that then moves the contents of the VAC into the destination string.

<u>CPR</u> HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: CPR Size of Code Area <u>46</u> Hw Stack Requirement: <u>0</u> Hw Data CSECT Size: 0 Hw X Intrinsic Procedure Other Library Modules Referenced: None. ENTRY POINT DESCRIPTIONS: Primary Entry Name: <u>CPR</u> Function: Compares two character strings for '=' or ' \neq ' and sets condition code. Invoked By: X Compiler emitted code for HAL/S construct of the form: IF C1 = C2..., where C1 and C2 are character strings. Other Library Modules: Х **CPRA** Execution Time (microseconds): If C1 and C2 do not halfword compare and K>2: setup + 11.6J + 12.9 If K is even or K = 0 and C1 and C2 halfword compare 1 up till the Kth character: setup + 11.6n + 20.1 If K is odd and C1 = C2 up till the K^{th} character: setup + 11.6n + 29.9 If K is odd and only the last characters compared differ setup + 11.6n + 20.3 where: K = minimum(length(C1), length(C2))setup = 23 + 0.4 (if length(C2)<length(C1)) J = number of matching halfword compares n = floor(K/2)Input Arguments: How Passed Type Precision Units Character(C1) R2→descriptor -Character(C2) R3→descriptor _ Output Results: Type Precision How Passed <u>Units</u>

6-248

Condition code

Equal/not equal

Errors Detected:

<u>Error #</u> None

<u>Cause</u>

<u>Fixup</u>

Comments:

In order to not change the condition code after the comparisons and before exiting, instructions that change the c.c. are replaced by those that do not change it. For example, LH is replaced by IHL and SLL.

Registers Unsafe Across Call: R2,R3,R4,R5,R6.

Algorithm:

See CPRC entry.

<u>CPRC</u>

Secondary Entry Name: CPRC

Function: Compares two character strings for collating sequence and sets condition code.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

IF C1 < C2..., or any other relational operator, except
 '=', or '≠', where C1 and C2 are character
 strings.</pre>

Other Library Modules:

Execution Time (microseconds): Same as CPR

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Character(C1)	-	R2→descriptor	-
Character(C2)	-	R3→descriptor	-
Output Results: <u>Type</u> Relation	Precision -	How Passed Condition code	<u>Units</u> -
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	

Comments:

See CPR

Registers Unsafe Across Call: R2,R3,R4,R5,R6.

Algorithm:

Find the smaller of the lengths of the two strings to be compared. Compare this many characters halfword-by-halfword, and compare the upper bytes of the last halfwords separately if the character count is odd. If any of these comparisons are unequal, then return the resultant condition code. If all are equal, then compare the lengths of the two strings, and return the resultant code.

st
de

Registers Unsafe Across Call: None

Algorithm:

Pointers to character strings within the array are set, then CPR routine called. If all pairs of strings within the array are equal, result of CPRA is "equal", otherwise the result is "not equal".

Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Character(A)	-	R4→descriptor	-
Integer(B)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Character(temporary)	-	R2→descriptor	-
Errors Detected:			

Error # Cause

18 Input string length greater than input size or B<0 Truncate input string

<u>Fixup</u> Truncate input string on left to proper size

Comments:

Registers Unsafe Across Call: F0,F1.

Algorithm:

Compares requested length to 255 and retains smaller as L; Compares current length with L:

if greater, truncates on left and moves to input;

if same, moves string to output;

if less, pads on left and moves input string to output.

	<u>CTRIMV</u>
	HAL/S-FC LIBRARY ROUTINE DESCRIPTION
	Source Member Name: <u>CTRIMV</u> Size of Code Area <u>94</u> Hw
	Stack Requirement: <u>18</u> Hw Data CSECT Size: <u>0</u> Hw
	Intrinsic X Procedure
	Other Library Modules Referenced: <u>GTBYTE,STBYTE</u>
E	INTRY POINT DESCRIPTIONS:
F	Primary Entry Name: <u>CTRIMV</u> Function: Implements HAL/S TRIM function - strips leading and trailing blanks from a character string.
h	nvoked By:
	X Compiler emitted code for HAL/S construct of the form:
	TRIM(C), where C is a character string.
	Other Library Modules:
E	Execution Time (microseconds):
	If $length(C) = 0: 30.4$
	If length(C) = 1 and C is a blank: 64.0
	If length(C) = 1 and C is not a blank: 102.8
	If length(C) > 1 and all blank $($
	44.6 + KA + 13.2KB
	where:
	KA = 0 if length(C) is even
	KB = floor (length(C)/2)
	If length(C) > 1 and not all blank
	$60.4 \times KA \times 12.2 \times KP \times KC \times KD(11.6 \times KE \times 12.6 \times KE)$
	00.4 + RR + 13.2 RB + RC + RD(11.0 RE + 13.0 + RF)
	$+ \sum_{k=1}^{N} (30.2 \pm KG_{km} + KL)$
	+ $\Delta (39.2 + 100_{\text{KH}+\text{k}-1} + 10_{\text{k}})$
w	vhere:
v	KA = 0 if length(C) is even
	19.4 if length(C) is odd and C\$(#) is blank
	18.4 if length(C) is odd and C\$(#)≠blank and C\$(#)≠null
	22.4 if length(C) is odd and C\$(#)≠blank and C\$(#)=null
	KB = # halfwords = blank blank at the beginning of C
	KC = 0 if index of first non blank character is odd and this character = null 4.8 if index of first non blank character is odd and this character = null
	9.0 if index of first non blank character is even.
	6 255 November 200

	KD KE	= =	0 if length(C) is odd and (C\$(#)≠blank, 1 otherwise. # halfwords = blank blank at the end of C						
	KF	=	0 if index of last null) if index of last untrimmed character is even and this character \neq null					
			3.6 if index of last null	3.6 if index of last untrimmed character is even and this character = null					
			4.4 if index of last	t untrimmed charact	er is odd.				
	NCHAR	=	length of result.	length of result.					
	KG _X	=	0 if X is even						
			2.0 if X is odd						
	KH	=	index of first non	blank character					
	KI _X	=	0 if X is odd						
			1.2 if X is even						
Input Araum	ents:								
Type			Precision	How Passed	Units				
Character(C)		-	R4→descriptor	-				
	, ulto:								
	JII 5.		Procision	How Passod	Unite				
<u>Type</u> Charactor(tomporar		<u>FIECISION</u>	<u>P2 descriptor</u>	Onits				
Character	temporar	y)	-	R2→uescriptor	-				
Errors Detection Error # None	cted:		<u>Cause</u>	<u>Fixup</u>					

Registers Unsafe Across Call: F0,F1.

Algorithm:

Because there are no character or byte compare instructions on the AP-101, the routine first tests length of string. If odd, it sets R7 to 1. "Length" is shifted right 1, resulting in length in # of halfwords (-1 if odd). Compares first halfword with bb, continues comparing consecutive halfwords of string with bb, until a halfword that is not equal to bb is found. Then tests this halfword to see if first byte is b. Adds length of string in halfwords to pointer to string, resulting in a pointer to end of string. Compares last halfword of string with bb. If equal, then moves pointer back a halfword and again compares. When a halfword not equal to bb is found, the halfword is tested to see if it is C b or CC (where C stands for any character). Length of string is appropriately adjusted and routine branches to a character move loop.

6.3.5 Array Function Routine Descriptions

This subsection presents those routines which are classed as "ARRAY FUNCTIONS" by the *HAL/S Language Specification*. These are routines which operate upon arrayed arguments and produce a single element result.

					DMAX
	HAL	/S-FC LIBRA	RY ROUTINE DES	SCRIPTION	
	Source Member	Name: <u>DMA</u>	X Size of Code	e Area <u>10</u>	Hw
	Stack Requireme	ent: <u>0</u> H	Hw Da <u>ta C</u> SEC	CT Size: 0	_ Hw
	X Intrinsic		Proc	cedure	
	Other Library Mo	dules Refere	enced: <u>None</u>		
E	NTRY POINT DE	SCRIPTIONS	<u>S:</u>		
F	Primary Entry Nam Function: Finds ma	e: <u>DMAX</u> ximum value	in a double precisi	ion scalar array.	
h	nvoked By:				
	X Compiler emitt	ed code for h	HAL/S construct of	the form:	
	MAX(<dp arr<="" td=""><td>ay>)</td><td></td><td></td><td></td></dp>	ay>)			
	Other Library N	Nodules:			
E	Execution Time (mi 17.6L + 14.6m M = # of times	croseconds): + 11.4, wher CURRMAX c	: e L = # of times CL loes not change, L	JRRMAX change +M = (# of eleme	es; ents in array) 1.
h	nput Arguments:				
	<u>Type</u>	Precision	How Passed	<u>Units</u>	
	Scalar array	DP	R2→0 th element	-	
	Integer(size)	SP	R5	-	
C	Output Results:				
	Type	Precision	How Passed	<u>Units</u>	
	Scalar	DP	F0	-	
E	Frors Detected:	-			
	<u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>		
C	Comments: Registers Unsa	ife Across Ca	all: R2,R4,R5,F0,F ²	1.	
A	Algorithm: A loop is set up the first eleme replaces the comparison. T array and is pas	to compare nt is CURF former CUR he value of (ssed back to	each element of th RMAX. Each sub RMAX. The co CURRMAX when t the calling program	ne array to the c osequent eleme ounter is decre the counter is ze n.	urrent max. Initially, nt of greater value mented after each aro is the max of the

			<u>DMIN</u>
HA	L/S-FC LIBRAF	RY ROUTINE DESCR	IPTION
Source Membe	er Name: <u>DMIN</u>	Size of Code A	rea <u>10</u> Hw
Stack Require	nent: <u>0</u> ł	Hw Data CSECT	Size: <u>0</u> Hw
X Intrinsic			dure
Other Library	Adules Refere	nced: <u>None</u>	
ENTRY POINT D	ESCRIPTIONS	<u>):</u>	
Primary Entry Na	me: <u>DMIN</u>		
Function: Finds n	iinimum value i	n a double precision s	scalar array.
Invoked By:	aittad anda fari		- f
	calar array	⁷ >)	
	y wodules:		
Execution Time (I	nicroseconds):		
17.6L + 14.6r	n + 11.4, where	e L = # of times CURR	MIN changes; - (# of elements in ar
		es not change, L+M =	
Type	Precision	How Passed	Linits
<u>Scalar</u> arrav	DP	$R2 \rightarrow 0^{th}$ element	<u>-</u>
Integer(size)	SP	R2→0 element	-
	Precision	How Passed	Units
Scalar	DP	F0	-
Frrors Detected			
Error #	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Un	safe Across Ca	ll: R2,R4,R5,F0,F1.	
Algorithm:			
Similar to M	AX functions	except register contai	ins the current minir

Similar to MAX functions, except register contains the current minimum and is changed when an element in the array has a smaller value than CURRMIN.

НАІ	/S-FC LIBRA	ARY ROUTINE DES				
Source Member	Name: DPR	OD Size of Cod	e Area 14 Hw			
Stack Requirem	ent: 0	Hw Data CSE	CT Size: 0 Hw			
X Intrinsic		 Pro	cedure			
Other Library Mo	odules Refer	enced: <u>None</u>				
ENTRY POINT DESCRIPTIONS:						
Primary Entry Nam	e: <u>DPROD</u>					
Function: Calculate	es the produc	t of the elements of	a double precision scalar a	rray.		
Invoked By:						
X Compiler emit	ted code for	HAL/S construct of t	the form:			
PROD(<dp so<="" td=""><td>calar arra</td><td>ay>)</td><td></td><td></td></dp>	calar arra	ay>)				
Other Library I	Modules:					
Execution Time (mi	icroseconds)	:				
20.6n + 6.2 if p	roduct is not	zero, where n = # o	f elements in the array. 20.6	3m + 2.6		
if product is zer	ro, where m	is the index into the	linear representation of the	array of		
the first zero er	ement.					
Input Arguments:	Dracicion	How Passad	Unito			
<u>Type</u> Scalar array	<u>PTECISION</u> DP	<u>NOW Passeu</u>	<u>-</u>			
Integer(size)	SP	$R_2 \rightarrow 0^{m}$ element R5	_			
	01	110				
	Precision	How Passed	Units			
Scalar	DP	F0	-			
Errors Detected						
Error #	Cause	Fixup				
None						
Comments:						
Registers Unsa	afe Across Ca	all: R2,R4,R5,F0,F1				
Algorithm:	Algorithm:					
Similar to the a	Igorithm for t	the SUM functions.	An accumulator is initialized	d to one.		
The value in th	e accumulat	or is multiplied by e	ach element of the array; th	ne result		
of each multipl	lication is sa	ved in the accumul	ator. After each multiplicat	tion, the		
and returns to a	zero.					
	· -					

			DSUM
HAL	/S-FC LIBRAR	Y ROUTINE DESCR	IPTION
Source Member	Name: <u>DSUM</u>	Size of Code Are	ea <u>6</u> Hw
Stack Requirem	ent: <u>0</u> Hw	Data CSECT S	Size: <u>0</u> Hw
X Intrinsic		Proced	ure
Other Library M	odules Referen	ced: <u>None</u>	
ENTRY POINT DE	SCRIPTIONS:		
Primary Entry Nam	ne: DSUM		
Function: Calculate	es the sum of th	e elements of a doub	ble precision scalar array.
Invoked Bv:			
X Compiler emit	ted code for HA	L/S construct of the t	form:
SUM(<dp sca<="" td=""><td>alar array>)</td><td></td><td></td></dp>	alar array>)		
Other Library	Modules:		
Execution Time (m	icrosoconds);		
	ro n=# of olom	onto in the array	
7.2+11.011, WH		ents in the array.	
Input Arguments:	Drasisian	How Decod	Llaita
<u>Type</u> Scalar array		<u>HOW Passeu</u>	Units
		R2 \rightarrow 0" element	-
Integer(size)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			

Registers Unsafe Across Call: R2,R4,R5,F0,F1.

Algorithm:

An accumulator (F0, F1) is initialized to zero. Each element of the array is added to the accumulator in a loop based upon the array size.

	L/S-FC LIDRART R	Size of Code Area						
Stock Poquirom	Name. $\underline{\Box WAA}$	Data CSECT Si-	<u> </u>					
	X Intrinsic Others Likerers Medules Deferenced Nerge							
	SCRIPTIONS.							
Primary Entry Nam	e: <u>EMAX</u> viewe velve in e ei							
	ximum value in a si	ingle precision scale	ar array.					
Invoked By:								
	ed code for HAL/S	construct of the for	m:					
MAX(<sp sca<="" td=""><td>llar array>)</td><td></td><td></td><td></td></sp>	llar array>)							
	viodules:							
Execution Time (mi	croseconds):							
9.8 + 10.8m +	12.2L, where $m = #$	# of times CURRM	AX does no	t change; L = # of				
times CURRMA	X changes; and M	+L = (# of elements)	s in array)-1	•				
Input Arguments:								
<u>lype</u>	Precision	How Passed	<u>Units</u>					
Scalar array	SP	R2→0 ^{tn} element	-					
Integer(size)	SP	R5	-					
Output Results:								
<u>Type</u>	Precision	How Passed	<u>Units</u>					
Scalar	SP	F0	-					
Errors Detected:								
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>						
None								
Comments:								
Registers Unsa	fe Across Call: R2,	R4,R5,F0.						
Algorithm:								

Same as DMAX except that operations are all single precision.

			<u>EMIN</u>			
HAL	S-FC LIBRARY RO	OUTINE DESCRIPT				
Source Member	Source Member Name: EMIN Size of Code Area 8 Hw					
Stack Requireme	ent: <u>0</u> Hw	Data CSECT Size	: <u> 0 </u> Hw			
X Intrinsic		Procedure)			
Other Library Mo	odules Referenced:	<u>None</u>				
ENTRY POINT DE	<u>SCRIPTIONS:</u>					
Primary Entry Nam	e: <u>EMIN</u>					
Function: Finds mir	nimum value in a si	ngle precision scala	ır array.			
Invoked By:						
X Compiler emitt	ed code for HAL/S	construct of the for	m:			
MIN(<sp sca<="" td=""><td>alar array>)</td><td></td><td></td><td></td></sp>	alar array>)					
Other Library	Nodules:					
Execution Time (mi	croseconds):					
9.8 + 10.8m	+ 12.2L, where n	n = # of times C	URRMIN does not ch	ange;		
L = # of times C	CURRMIN changes	; and M+L = (# of e	lements in array)-1.			
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Scalar array	52	R2 \rightarrow 0 th element	-			
Integer(size)	SP	R5	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Scalar	SP	F0	-			
Errors Detected:	_					
Error #	<u>Cause</u>	Fixup				
None						
Comments:						
Registers Unsa	fe Across Call: R2,	R4,R5,F0.				
Algorithm:						

Same as DMIN, except operations are in single precision floating point.

HAL Source Member Stack Requirem	/S-FC LIBRARY R Name: <u>EPROD</u> ent: <u>0</u> Hw	OUTINE DESCRIP Size of Code Are Data CSECT Si	<u>EPROD</u> TION a <u>10</u> Hw ze: <u>0</u> Hw re
Other Library Mo	odules Referenced		
ENTRY POINT DE	SCRIPTIONS:		
Primary Entry Nam Function: Calculate	e: <u>EPROD</u> es product of eleme	nts of a single prec	ision scalar array.
Invoked By: X Compiler emit PROD (<sp so<br="">Other Library I</sp>	ted code for HAL/S calar_array>) Modules:	construct of the for	m:
Execution Time (m 13.2n + 4.6 if p if product is ze first zero eleme	icroseconds): roduct is not zero, v ro, where m = inde ent.	where n = # of elem x into the linear rep	ents in the array. 13.2m + 1.4 resentation of the array of the
Input Arguments: <u>Type</u> Scalar array Integer(size)	<u>Precision</u> SP SP	<u>How Passed</u> R2→0 th element R5	<u>Units</u> - -
Output Results: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsa	afe Across Call: R2	,R4,R5,F0,F1.	
Algorithm: Same as DPRO	OD.		

			<u>ESUM</u>
HAI	_/S-FC LIBRARY F	OUTINE DESCRIP	TION
Source Member	Name: <u>ESUM</u>	Size of Code Area	<u> 6 </u> Hw
Stack Requirem	ent: <u>0</u> Hw	Data CSECT Siz	e: <u>0</u> Hw
XIntrinsic		Procedur	e
Other Library M	odules Referenced	: <u>None</u>	
ENTRY POINT DE	<u>SCRIPTIONS:</u>		
Primary Entry Nam	ne: <u>ESUM</u>		
Function: Calculate	es sum of elements	of a single precisio	n scalar array.
Invoked By:			
	ted code for HAL/S	construct of the for	m:
SUM(<sp sca<="" td=""><td>alar array>)</td><td></td><td></td></sp>	alar array>)		
Other Library	Modules:		
Execution Time (m	icroseconds):		
5.2 + 6.6n, whe	ere n = # of elemer	its in the array.	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar array	SP	R2→0 th element	-
Integer(size)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	SP	F0	-
Errors Detected:	_		
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Unsa	afe Across Call: R2	,R4,R5,F0,F1.	
Algorithm:			

Same as DSUM.

			HMAX			
HAL/S	S-FC LIBRARY RO	UTINE DESCRIPTI	ION			
Source Member N	lame: <u>HMAX</u> S	Size of Code Area	<u>8</u> Hw			
Stack Requiremer	nt: <u>0</u> Hw	Data CSECT Size:	<u> 0 </u>			
X Intrinsic		Procedure				
Other Library Moc	ules Referenced:	<u>None</u>				
ENTRY POINT DES	<u>CRIPTIONS:</u>					
Primary Entry Name	: <u>HMAX</u>					
Function: Finds max	imum value in a sir	ngle precision integ	er array.			
Invoked By:						
X Compiler emitte	d code for HAL/S	construct of the form	n:			
MAX(<sp inte<="" td=""><td>eger array>)</td><td></td><td></td></sp>	eger array>)					
Other Library M	odules:					
Execution Time (mic	roseconds):					
11.0 + 7.8m + 9 times CURRMA	0.2k, where m = # X changes; and m-	of times CURRMA ⊦k = (# of elements	X does not change; k = # of in array)-1.			
Input Arguments:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Integer array	SP	R2→0 th	-			
	_	element				
Integer(size)	SP	R5	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Integer	SP	R5	-			
Errors Detected:						
Error #	<u>Cause</u>	<u>Fixup</u>				
None						
Comments:						
Registers Unsafe Across Call: R2,R4,R5,R6.						
Algorithm:						
Same as DMAX, except that all operations deal with halfword integers.						

			HMIN]		
HAL	/S-FC LIBRARY RO	OUTINE DESCRIPT	ΓΙΟΝ			
Source Member	Name: <u>HMIN</u>	Size of Code Area	<u>8</u> Hw			
Stack Requireme	ent: <u>0</u> Hw	Data CSECT Size	: <u>0</u> Hw			
X Intrinsic		Procedure				
Other Library Mo	odules Referenced:	None]		
ENTRY POINT DE	<u>SCRIPTIONS:</u>					
Primary Entry Nam	e: <u>HMIN</u>					
Function: Finds mir	limum value in a sii	ngle precision integ	er array.			
Invoked By:	ad aada far UAL /S	appartuat of the for	~.			
		construct of the for				
	Adules:					
Execution Time (mi	croseconds):	L of times CUDDM	N daga natahana	nouls # of		
times CURRMI	9.2k, where $m = \pi$ N changes: and m ₁	<pre>if times CURRINI i+k = (# of elements</pre>	in array)-1.	$je; \kappa = \# \text{ of}$		
			in anayy n			
Type	Precision	How Passed	Units			
Integer array	SP	R2→0 th element	-			
Integer(size)	SP	R5	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Integer	SP	R5	-			
Errors Detected:						
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>				
None						
Comments:						
Registers Unsa	fe Across Call: R2,	R4,R5,R6.				
Algorithm:						
Same as DMIN	, except that opera	tions are for halfwo	rd integers.			

HAL	/S-FC LIBRARY R	OUTINE DESCRIP	HPROD FION
Source Member Stack Requirem X Intrinsic Other Library M	[·] Name: <u>HPROD</u> ent: <u>0</u> Hw odules Referenced	Size of Code Are Data CSECT Si Procedu : <u>None</u>	ea <u>11</u> Hw ize: <u>0</u> Hw re
ENTRY POINT DE	SCRIPTIONS:		
Primary Entry Nam Function: Calculate	ne: <u>HPROD</u> es product of eleme	ents of a single prec	ision integer array.
Invoked By: X Compiler emit PROD(<sp in<br="">Other Library</sp>	ted code for HAL/S nteger array>) Modules:	construct of the for	rm:
Execution Time (m 12.4n + 5.8 if p product is zero first zero elemo	icroseconds): product is not zero, p, where m = index ent.	where n = # of eler into the linear repr	ments in array. 12.4m + 2.2 if resentation of the array of the
Input Arguments: <u>Type</u> Integer array	Precision SP	<u>How Passed</u> R2→0 th element	<u>Units</u> -
integer(size)	36	КЭ	-
Output Results: <u>Type</u> Integer	<u>Precision</u> SP	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsa	afe Across Call: R2	,R4,R5,R6.	
Algorithm: Same as DPR	OD.		

				<u>HSUM</u>
	HAL/	S-FC LIBRARY RO	DUTINE DESCRIPT	ION
	Source Member	Name: <u>HSUM</u>	Size of Code Area	<u> 6 Hw</u>
	Stack Requireme	ent: <u>0</u> Hw	Data CSECT Size	e: <u>0</u> Hw
	X Intrinsic		Procedure	Э
	Other Library Mo	odules Referenced:	<u>None</u>	
E	NTRY POINT DE	<u>SCRIPTIONS:</u>		
P	rimary Entry Nam	e: <u>HSUM</u>		
F	unction: Calculate	s sum of elements	of a single precisio	n integer array.
Ir	nvoked By:			
	X Compiler emitt	ed code for HAL/S	construct of the for	m:
	SUM(<sp int<="" td=""><td>eger array>)</td><td></td><td></td></sp>	eger array>)		
	Other Library N	Modules:		
E	xecution Time (mi	croseconds):		
	4.4 + 5.4n, whe	ere n = # of elemen	ts in the array.	
Ir	nput Arguments:			
	<u>Type</u>	Precision	How Passed	<u>Units</u>
	Integer array	SP	R2→0 th element	-
	Integer(size)	SP	R5	-
C	Output Results:			
	<u>Type</u>	Precision	How Passed	<u>Units</u>
	Integer	SP	R5	-
E	rrors Detected:			
	<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
	None			

Warning:

The HSUM routine will return incorrect results if the sum of the elements in the single precision integer array is greater than 32767 or less than -32768. Fixed-point overflow occurs for this range, but will not be detected if the program status word is set to mask out the overflow.

Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:

Same as DSUM.

			<u>IMAX</u>	
HAL/S-FC LIBRARY ROUTINE DESCRIPTION				
Source Member	Name: <u>IMAX</u>	Size of Code A	Area <u>8</u> Hw	
Stack Requirem	ent: <u>0</u>	Hw Data CSEC	T Size: <u>0</u> Hw	
XIntrinsic		Proce	edure	
Other Library Mo	odules Refere	enced: <u>None</u>		
ENTRY POINT DE	SCRIPTIONS	<u>S:</u>		
Primary Entry Nam	e: <u>IMAX</u>			
Function: Finds ma	iximum value	in a double precision	integer array.	
Invoked By:				
X Compiler emit	ted code for F	HAL/S construct of the	e form:	
MAX(<dp int<="" td=""><td>leger arra</td><td>y>)</td><td></td><td></td></dp>	leger arra	y>)		
Other Library	Modules:			
Execution Time (m	icroseconds).			
111 + 78m +	4.3k where	m = # of times CUR	RMAX does not change k =	# of
times CURRM	AX changes,	and $m+k = #$ of eleme	ents in array-1.	
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer array	DP	R2→0 th element	-	
Integer(size)	SP	R5	-	
Output Results				
Type	Precision	How Passed	Units	
Integer	DP	R5	-	
Errors Detected				
Error #	Cause	Fixup		
None				
Comments:				
Registers Unsa	afe Across Ca	all: R2,R4,R5,R6.		
Algorithm:		, , -, -		
Same as DMA	X excent that	t all operations are or) fullword integers	

				IMIN
HAL	/S-FC LIBRARY R	OUTINE DESCRIP	TION	
Source Member	Name: <u>IMIN</u>	Size of Code Area	8	Hw
Stack Requirem	ent: <u>0</u> Hw	Data CSECT Siz	e: <u>0</u>	_ Hw
X Intrinsic		Procedu	ire	
Other Library M	odules Referenced	: <u>None</u>		
ENTRY POINT DES	<u>SCRIPTIONS:</u>			
Primary Entry Name	e: <u>IMIN</u>			
Function: Finds min	imum value in a do	buble precision integ	ger array.	
Invoked By:				
X Compiler emitt	ed code for HAL/S	construct of the for	m:	
MIN(<dp int<="" td=""><td>eger array>)</td><td></td><td></td><td></td></dp>	eger array>)			
Other Library N	/lodules:			
Execution Time (mi	croseconds):			
11.1 + 7.8m +	9.3k, where m = #	t of times CURRM	N does no	t change, k = # of
times CURRMI	N changes, and m+	-k = # of elements i	n array-1.	
Input Arguments:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer array	DP	R2 \rightarrow 0 th element	-	
Integer(size)	SP	R5	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer	DP	KO	-	
Errors Detected:	Course	F i		
<u>Effor #</u> None	<u>Cause</u>	Fixup		
Comments:	fa Aaraaa Cally D2			
	ie Across Call: RZ,	K4,K0,K0.		
Algorithm:				
Same as DMIN	, except that all ope	erations are done fo	or fullword i	ntegers.

			IPROD
HAL/	S-FC LIBRARY RC	UTINE DESCRIPT	ION
Source Member	Name: <u>IPROD</u>	Size of Code Area	<u> 22 </u> Hw
Stack Requireme	ent: <u>0</u> Hw	Data CSECT Siz	ze: <u>0</u> Hw
X Intrinsic		Procedur	e
Other Library Mo	odules Referenced:	<u>None</u>	
ENTRY POINT DE	<u>SCRIPTIONS:</u>		
Primary Entry Name	e: <u>IPROD</u>		
Function: Calculate	s product of eleme	nts in a double pred	cision integer array.
Invoked By:			
X Compiler emitt	ed code for HAL/S	construct of the for	m:
PROD(<dp in<="" td=""><td>teger array>)</td><td></td><td></td></dp>	teger array>)		
Other Library N	Nodules:		
Execution Time (mi	croseconds):		
17.0L + 21.6m products; m = ; 17.0L + 21.6m (index into linea	+ 5.8 if product is # of negative interr + 19.6 if product is ar representation of	not zero, where L nediate products; L not zero, where L the array of the firs	 = # of positive intermediate +m = # of elements in array. and m are as above, L+m = st zero element)-1.
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Integer array	DP	R2→0 th element	-
Integer(size)	SP	R5	-
Output Results: <u>Type</u> Integer	<u>Precision</u> DP	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsa	fe Across Call: R2,	R4,R5,R6,R7.	
Algorithm: Same basic al	lgorithm as DPRC	D, however, spec	ial detection of an overflow

Same basic algorithm as DPROD, however, special detection of an overflow condition is performed: For fullword integer multiplication, the overflow indicator is only set when -1 is multiplied by -1. The result after each multiplication is checked for an overflow by testing the first 32 bits of the 64 bit result for all zeros or ones. If the result does overflow 32 bits, then a fixed point overflow is forced by adding a very large number to the first register of the pair (the register with the overflowing bits).

	<u>ISUM</u>		
HAL/S-FC LIBRARY ROUTINE DESCRIPTION			
Source Member Name: <u>ISUM</u> Size of Code Area <u>6</u> Hw			
Stack Requirement: <u>0</u> Hw Data CSE	CT Size: <u>0</u> Hw		
X Intrinsic	ocedure		
Other Library Modules Referenced: None			
ENTRY POINT DESCRIPTIONS:			
Primary Entry Name: <u>ISUM</u>			
Function: Calculates sum of elements in a double	precision integer array.		
Invoked By:			
X Compiler emitted code for HAL/S construct of	the form:		
SUM(<dp array="" integer="">)</dp>			
Other Library Modules:			
Execution Time (microseconds):			
4.4 + 5.4n, where $n = #$ of elements in array.			
Input Arguments:			
Type Precision How Passed	<u>Units</u>		
Integer array DP $R2\rightarrow 0^{th}$ element	-		
Integer(size) SP R5	-		
Output Results:			
<u>Type</u> <u>Precision</u> <u>How Passed</u>	<u>Units</u>		
Integer DP R5	-		
Errors Detected:			
Error # Cause Fixup			
None			
Comments:			
Registers Unsafe Across Call: R2,R4,R5,R6.			
Algorithm:			

Same as DSUM.

6.3.6 Miscellaneous Routine Descriptions

This subsection presents those routines which do not fall easily into the previous five sections. These encompass conversion routines as well as "service" routines used by other library members.

				<u>BTOC</u>	
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Member N	Source Member Name: <u>BTOC</u> Size of Code Area <u>28</u> Hw				
Stack Requireme	nt: <u>0</u> Hw	Data CSEC	T Size: <u>(</u>	0 Hw	
X Intrinsic		Proce	edure		
Other Library Mod	dules Reference	ced: <u>None</u>			
ENTRY POINT DES	CRIPTIONS:				
Primary Entry Name	BTOC				
Function: Conversio	n from bit data	to character data.			
Invoked Bv:					
X Compiler emitt	ed code for H	AL/S construct of th	e form:		
CHARACTER	™(<bit str<="" td=""><td>ing>).</td><td></td><td></td></bit>	ing>).			
Other Library	Modules:	5			
Execution Time (mic	roseconds): 1	61.0 (for 16-bit strin	g)		
Input Arguments:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Bit	-	R5	-		
Integer(length)	SP	R6	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Character	-	R2→descriptor	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					

Comments:

Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7.

Algorithm:

First, unwanted bits are shifted out of the string, using the length argument. Then, bits are shifted one by one out of the top of R5 into the bottom of R4, where they are shifted to bit positions 15 and 31 and converted to character format. The output string is stored halfword by halfword, with the length taken directly from the input length.

CSHAPQ
HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: <u>CSHAPQ</u> Size of Code Area <u>40</u> Hw
Stack Requirement: <u>18</u> Hw Data CSECT Size: <u>4</u> Hw
Intrinsic X Procedure
Other Library Modules Referenced: <u>CTOH,CTOI,CTOE,CTOD</u>
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: <u>CSHAPQ</u> Function: Shapes arrayed character data to arrayed numeric data of an explicit type and precision.
Invoked By:
X Compiler emitted code for HAL/S construct of the form:
$INTEGER_N(CA)$, $INTEGER_{@DOUBLE,N}(CA)$, $SCALAR_N(CA)$,
SCALAR _{@DOUBLE,N} (CA), where CA is a character array of length n of CHARACTER(m).
Other Library Modules:
Execution Time (microseconds):
For halfword INTEGER conversion:
n
25.2 + Σ (19.6 + CTOH _K)
where $CIOH_{K}$ = time in CIOH for the K ⁴⁴ conversion.
For fullword INTEGER conversion:
$24.8 + 2 (20.2 + CTOI_{K})$
k=1 where CTOL, - time in CTOL for the K^{th} conversion
$F_{\text{rest}} = 0.001 \text{ M}_{\text{K}} = 0.001 \text{ m}_{\text{rest}} = 0.001 \text{ m}_{re$
For fullword SCALAR conversion:
$25.2 \times \sum_{i=1}^{n} (10.6 \times CTOE)$
$23.2 + 2 (19.0 + CTOE_{\rm K})$
where $CTOE_{\kappa}$ = time in CTOE for the K th conversion.
For double-word SCALAR conversion: n $22.8 + \Sigma (22.8 + CTOD_{K})$ k=1 where $CTOD_{K}$ = time in CTOD for the Kth conversion. Input Arguments: Type Precision How Passed Units R4→1st element Character array(n) --Integer(n) SP R5 Integer(type *) SP R6 Integer(m) SP R7 Output Results: How Passed Type Precision Units Array(n) Type R2 Errors Detected: Error # Cause Fixup None

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

type*: $0 \rightarrow H$ conversion $1 \rightarrow I$ conversion $2 \rightarrow E$ conversion $3 \rightarrow D$ conversion

Algorithm:

The address of one of 4 internal loops is loaded from a table using the type code as an index and control is passed to that loop. The four internal loops are similar in action: a call is made to the appropriate character conversion routine (CTOH, CTOI, CTOE, CTOD) followed by the appropriate store (STH, ST, STE, STED) into the result array, followed by instructions to bump both the character and result array pointers, looping on n.

			<u>CSLD</u>		
HAL/:	S-FC LIBRARY RC	UTINE DESCRIPT	ION		
Source Member Name: <u>CSLD</u> Size of Code Area <u>246</u> Hw					
Stack Requireme	ent: <u>22</u> Hw	Data CSECT Siz	e: <u>4</u> Hw		
Intrinsic		X Procedure	9		
Other Library Mo	dules Referenced:	None			
ENTRY POINT DES	<u>SCRIPTIONS:</u>				
Primary Entry Name	e: <u>CSLD</u>				
Function: Loads bit	pattern of a charac	ter string.			
Invoked By:					
X Compiler emit	ted code for HAL/S	construct of the fo	rm:		
B=SUBBIT(C) where B is a	bit string an	d C is a character		
	String.				
	wouldes.				
Execution Time (mi	croseconds):				
if length(C) = 0: if length(C) > 0:	: 28.8 : 56.3 + 0.8 (if lengt	h(C) > 4)			
Input Arguments:					
<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>		
Char string	-	R2→descriptor	-		
Output Results:					
<u>Type</u> Dit strings	Precision	How Passed	<u>Units</u>		
Bit string	Length 32	R5	-		
Errors Detected:	0	- .			
<u>⊢rror #</u> Nopo	Cause	<u>Fixup</u>			
NULLE					

Comments:

If input string is null, the 0 bit string is returned; no error. Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

The first character is set to 1 by clearing R5. The character width is set to the current length of the string. For the rest, see the description under entry CSLDP, after the character partition checking, at the point marked [A].

Secondary Entry Name: CPSLD

Function: Loads specified bits of a character string.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

```
BIT_STRING = SUBBIT<sub>FIRST TO LAST</sub>(CHAR_STRING);
```

where the 'TO' subscript may be replaced by the

'AT' subscript under rules given by matrix types

Other Library Modules:

Execution Time (microseconds): 71.8

Input Arguments:

<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>
Char string	-	R2→descriptor	-
Integer(first bit)	SP	R5	-
Integer(last bit)	SP	R6	-
Output Results: <u>Type</u> Bit string	<u>Precision</u> Length(32)	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected:		Figure	

<u>Error #</u>	<u>Cause</u>	Fix	<u>up</u>
30	Subbit partition out of range	1)	If first bit<1, set to 1

) If first bit<1, set to 1 (keep constant partition width by adjusting last bit)

2) If first or last bit>last bit of character string, set equal to last bit of char string

Comments:

If input string is null, ERROR 30 is sent and the 0 bit string is returned. Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

The subbit partition is tested for validity before anything else is done. All ERROR 30s are sent during these tests. 4 halfwords containing the required partition are loaded into a register pair. Unwanted bits are shifted off the top (left shift count = first bit-1), and the bottom (right shift count = 64-width), leaving the required string in R5.

Secondary Entry Name: CPSLDP

Function: Loads selected bits of a partitioned character string.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

BIT_STRING = SUBBIT_{A TO B} (CHAR_STRING_{C TO D});

where either or both of the 'TO' subscripts may be replaced by 'AT' subscripts under rules given by matrix types

Other Library Modules:

Execution Time (microseconds): 98.6 + 9.2 (if C is even)

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Char string	-	R2→descriptor	-
Integer(C)	SP	R5	-
Integer(D)	SP	R6	-
Integer(A B)	(SP SP)	R7	-
Output Results: <u>Type</u> Bit string	<u>Precision</u> Length(32)	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: Error # 17	<u>Cause</u> Character subscri	pt out of legal range	<u>Fixup</u> (See CSLDP

Subbit partition out of legal range

Comments:

30

Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

The character partition is checked for validity, and the 0 bit string is returned if last character < first character. Then the subbit partition is checked, resetting the bit pointer to point 8 bits farther on if the character partition begins in the second character of a halfword. 4 halfwords containing the required partition are loaded into register pair R4-R5. Unwanted bits are shifted off the top (shift count = relative 1st bit-1) and the bottom (shift count = 64-bit width), leaving the desired string in R5.

(See CPSLD)

Secondary Entry Name: CPSST

Function: To store a bit string into specified bits of a character string.

Invoked By:

Compiler emitted code for HAL/S construct of the form:

SUBBIT_{A TO B}(CHAR_STRING) = BIT_STRING;

where the 'TO' subscript may be replaced with the 'AT' subscript under rules given by matrix types

Other Library Modules:

Execution Time (microseconds): 114.4

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Bit string	-	R4	-
Integer(first bit)	SP	R5	-
Integer(last bit)	SP	R6	-
Output Results: <u>Type</u> Char string	Precision -	<u>How Passed</u> R2→descriptor	<u>Units</u> -
Errors Detected: Error # 30	<u>Cause</u> Subbit partitio	n out of legal range	<u>Fixup</u> (See CPSLD)

Comments:

CPSST cannot change the current length of the input character string. In particular, a null character string input will result in a null string output. Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

Set character partition width to the current length of the character string. If it is 0, exit immediately after sending ERROR 30.

[B] Test subbit partition for validity, and send ERROR 30 if anything is bad. Find the first halfword containing the specified partition. The first bit relative to that halfword, and the bit partition width thus:

bit width = last bit-first bit + 1 first halfword = 1 + (first bit - 1)/16

relative first bit = first bit - 16(first halfword - 1)

Load 4 halfwords, beginning with the first halfword of the partition, into register pair R4-R5.

Prepare a mask with 0s in the specified bit positions and 1s elsewhere as the 1s complement of:

(2^{bit width}-1)(2^{64-relative last bit})

where relative last bit = relative first bit + bit width - 1.

Use this mask to mask out the old bits in R4-R5. Shift the input bit string left by (64-relative last bit) positions to align it with the specified bit positions. Then OR it into the contents of R4-R5. Store this back into the character string, and exit.

Secondary Entry Name: CPSSTP

Function: To store a bit string into specified bits of a partitioned character string.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

SUBBIT_{A TO B}(CHAR_STRING_{C TO D}) = BIT_STRING; where either or both of the 'TO' subscripts may be replaced by 'AT' subscripts under rules given by matrix types

Other Library Modules:

Execution Time (microseconds): 145.0 + 9.2(if C is even)

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer(C)	SP	R5	-	
Integer(D)	SP	R6	-	
Integer(A B)	(SP SP)	R7	-	
Bit string	-	R4	-	
Output Results:				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Character string	-	R2→descriptor	-	
Errors Detected				

Errors Detected:Errors Detected:Error #Cause17Character subscript out of legal range30Subbit partition out of legal range

Comments:

CPSSTP <u>cannot</u> change the current length of the input character string. Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

Check character partition for validity, give any error 17s necessary, and exit if last char < first char or currlen = 0. Reset character pointer to 1 halfword before the first halfword of the specified partition, bumping first and last bits by 8 if the first character is even (so lies in low-order 8 bits of the halfword) <u>after</u> checking validity of first bit, and sending error 30 if it is < 1. Then continue as [B] of CPSST.

Secondary	Entry Name:	<u>CSLDP</u>		<u></u>
Function: Lo	oads bit patte	ern of a partitic	oned character string	J.
Invoked By:	:			
X Compil	ler emitted co	ode for HAL/S	construct of the form	n:
BIT S	TRING = SU	JBBIT _{a to b} (CHAR STRINGWIDTH	AT FIRST);
_	whe 'TO typ	re the 'AT' ' subscrip es	subscript may ot under rules	be replaced by the given by matrix
Other I	_ibrary Modu	les:		
Execution	Time (micros	seconds): 69	9.7 + 0.8 (if WIDT + 4.0 (if FIRST	H > 4) Γ is even)
Input Argun	nents:		,	,
<u>Type</u>		Precision	How Passed	<u>Units</u>
Character	string	-	R2→descriptor	-
Integer(fire	st char)	SP	R5	-
Integer(las	st char)	SP	R6	-
Output Res <u>Type</u> Bit string	ults:	<u>Precision</u> Length(32)	<u>How Passed</u> R5	<u>Units</u> -
Errors Dete	cted:			
Error #	Cause		Fixup	
17	Character s	ubscript out	1. If < 1, set to 1	
	of legal rang	ge	2. If > length of stri	ng, set to length(string)

3. If last char < first char, return 0 string

Comments:

0 bit string returned if last character specified < first character specified (with ERROR 17).

Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

The character partition is checked for validity before anything else is done. All error 17s are sent during this phase. [A] The partition width is checked, and if it is ≤ 0 , the zero string is returned in R5. If greater than 4, it is set to 4. The address of the halfword containing the first character of the partition is found by adding 1/2(1+first character) to the address of the first halfword of the string. This halfword and the next two halfwords are loaded into the low half of R4, and the high and low halves of R5, respectively. Unwanted bits are masked off the left and shifted off the right (shift count = 48-8* width), and the desired bit string is left in R5.

Secondary Entry Name: CSST Function: Stores a bit string into a character string. Invoked By: X Compiler emitted code for HAL/S construct of the form: SUBBIT(C) = B, where B is a BIT string and C is a character string. Other Library Modules: Execution Time (microseconds): if length(C) = 0: 26.6if length(C) > 0: 135.8 + 1.0 (if length(C) > 4) Input Arguments: Type How Passed <u>Units</u> Precision Bit string R4 Output Results: Type How Passed Precision Units R2→descriptor Char string Errors Detected: Error # <u>Cause</u> Fixup

None

Comments:

If the length of the input character string is 0, no error is given, and nothing is changed. CSST cannot change the length of the input string. Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

The first character is set to 1 by clearing R5, the character width is set to the current length of the string. Processing continues as at [A] in the description of the algorithm at entry CSSTP.

Secondary Entry Name: CSSTP

Function: To store a bit string into a partitioned character string.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

SUBBIT_{C TO D}(CHAR_STRING_{A TO B}) = BIT_STRING; where either or both of the 'TO' subscripts may be replaced by 'AT' subscripts under rules given by matrix types

Other Library Modules:

Execution Time (microseconds):

148 + KA + KB, where KA = 1.0 if B-A>4, 0 otherwise KB = 9.2 if A is even, 0 otherwise

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Bit string	-	R4	-
Integer(first char)	SP	R5	-
Integer(last char)	SP	R6	-
Output Results:			
Type	Precision	How Passed	<u>Units</u>
Char string	-	R2→descriptor	-

Errors Detected:

<u>Error #</u>	Cause	<u>Fixup</u>
17	Character subscript out of	(See CSLDP), except if last char < first
	legal range	char, then leave input string unchanged

Comments:

Registers Unsafe Across Call: R5,F0,F1.

CSSTP cannot change the current length of the character string: gives error if subscript is out of current legal range.

Algorithm:

The character partition is checked for validity, and ERROR 17 is sent if anything is bad.

[A] The character partition width is checked. If it is ≤ 0 , then the input character string is returned unchanged. If > 4, then it is set to 4. The first bit and last bit are determined as:

First bit = 1 + 8*(first character-1)

Last bit = First bit + 8*character width - 1

The first bit, last bit, and character width of the string are then sent to [B] under entry CPSST.

			<u>CSTRUC</u>
HAL/S-	FC LIBRARY RC	OUTINE DESCRIPT	ION
Source Member Na	ame: <u>CSTRUC</u>	Size of Code Area	a <u>12</u> Hw
Stack Requirement	: <u>0</u> Hw	Data CSECT S	ize: <u>0</u> Hw
XIntrinsic		Procedu	re
Other Library Modu	les Referenced:	None	
ENTRY POINT DESC	RIPTIONS:		
Primary Entry Name:	<u>CSTRUC</u>		
Function: Compares t	wo structures and	d returns result (= o	or \neq) in condition code.
Invoked By:			
X Compiler emitte	d code for HAL/S	construct of the for	rm:
	HEN, where	e S1 and S2 are	e structures.
Other Library M	odules:		
Execution Time (micro	oseconds):		
5.4 + 10.4n, n = #	halfwords compa	ared.	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Structure	-	R2→1 st Hw	-
Structure	-	R3→1 st Hw	-
Integer(count)	SP	R5	Hw
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Equal/not equal	-	Condition code	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			

Comments:

In order that the correct code is in the condition code on exit, it is reset immediately before branching back to the calling program (BCRE does not set the condition code). An exclusive OR of a register with itself sets condition code to '00'(=). An OR of a nonzero register (R4 is used because, as the return address register, it is always assumed to be nonzero) resets condition code to '11'(\neq).

Registers Unsafe Across Call: R2,R3,R4,R5,R6.

Algorithm:

The two structures are compared halfword by halfword until a pair does not match, or all of the halfwords are compared and found to be equal. The condition code is set by the compare instruction.

						<u>CTOB</u>
H.	AL/S-FC L	IBR/	ARY ROUTIN	NE DESCRIPTION		
Source Memb	per Name:	<u>СТС</u>	<u>)B</u> Size	e of Code Area 🔡	32	Hw
Stack Require	ement:	18	_Hw Da	ta CSECT Size: _	2	Hw
Intrinsio	C			X Procedure		
Other Library	Modules F	Refe	renced: <u>GTB</u>	<u>YTE</u>		
ENTRY POINT	DESCRIP		<u>IS:</u>			
Primary Entry N	ame: <u>CTO</u>	<u>B</u>				
Function: Conve	ersion from	cha	racter string	data to bit string.		
Invoked By:						
X Compiler e	emitted coo	de fo	r HAL/S con	struct of the form:		
BIT _{@BIN} (C	C), wher	e C	is a chai	racter string.		
Other Libra	ary Module	es:				
Execution Time	(microseco	onds):			
1	NCHAR		,			
25.8 +	Σ (27.8 -	⊦ KA	_k + KB + KC)		
	k=1					
where:	NCHAR	=	length(C)			
	KA _X	=	1.2 if X is o	dd		
			0 if X is eve	en		
	KB	=	6.0 if C\$(K)	='1'		
			0 otherwise) .		
	KC	=	4.4 if C\$(K)	=blank		
			0 otherwise).		
Input Arguments	S:					1.14
<u>lype</u> Oberneter	Precisi	<u>on</u>		How Passed	<u>l</u>	<u>Jnits</u>
Character	-			R2→descriptor	-	
Output Results:						
<u>lype</u>	Precisi	on		How Passed	<u>l</u>	<u>Jnits</u>
Bit	Length	=31	implicitly	R5	-	
Errors Detected						
<u>Error #</u>	<u>Cause</u>				<u>F</u>	<u>-ixup</u>
29	Input s	tring	not in standa	ard format	F	Return zero bit string
Comments:						
It the input o	tring inclui	1 DC I	moro than 37	dialte than high-a	rdor	hite will be leet. Ni

If the input string includes more than 32 digits, then high-order bits will be lost. Null string input causes an error.

Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

Characters are examined one by one. Blanks are ignored. When a '1' is encountered, a '1' bit is shifted into the low-order bit of the result register. When a '0' is encountered, a '0' bit is shifted into the low-order bit of the result register.

CTOE
HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: <u>CTOE</u> Size of Code Area <u>319</u> Hw
Stack Requirement: <u>38</u> Hw Data CSECT Size: <u>2</u> Hw
Other Library Modules Referenced: <u>GIBYIE</u>
ENTRY POINT DESCRIPTIONS
Primary Entry Name: CTOE
Function: Performs internal character to single precision scalar conversion.
Invoked By:
X Compiler emitted code for HAL/S construct of the form:
SCALAR(<character string="">) or</character>
SCALAR@SINGLE(<character string="">)</character>
CSHAPQ
Execution Time (microseconds):
88.4 + 11.0 * (floor * (# leading blanks/2))
+ 12.0 (if # leading blanks odd)
+ 10.2 * (# trailing blanks)
+ 2.0 (if + sign)
+ 7.0 (if - sign)
+ 59.6 * (# significant digits where $S_k < X'4E19999A'$)
+ 17.6 * (# significant digits)
+ 47.2 (if at least 1 significant digit)
+ 62.4 * (# significant digits where $S_k > X'4E19999A'$)
+ 20.6 (if decimal point)
 + 9.6 (if no exponents of any kind)
+ 40.2 (if any exponents)
+ 9.6 * (# E type exponents)
+ 15.2 * (# H type exponents)
+ 18.2 * (# B type exponents)
+ 9.8 * (# exponents)
+ 37.8 * (# additional exponents)
+ $0.2 * (\# exponents with + sign)$
+ 7.8 ° (# exponents with -' sign)
+ 24.6 (total number of exponent digits)
+ 22.8 (If any B or H exponents)
6-288 No

+	7.6 * (total B exponent mod 4)	
+	14.0 (if p=0)	
+	∫ (17.8 + 27.8 div(p ,23)) (if p positive)	7
+	(18.8 + 28.8 div(p,23)) (if p positive)	
+	23.2 * ((# significant zeroes in the binary	
	representation of p mod 23) - 1	
	(if p mod 23 is even)	
+	36.2 * ((# significant ones in the binary	}ifp≠0
	representation of p mod 23) - 1	
	(if p mod 23 is odd)	
+	14.2 (if p mod 23≠0)	
+	28.0	
+	└ 1.6 (if p < 0)	
+	14.4 * ((# of even indexed characters after leading blanks) + 1)	
+	15.6 * ((# of odd indexed characters after leading blanks) + 1)	

where p = total of E type exponents - (# significant digits after decimal point).

Input Arguments <u>Type</u> Character	Precision -	<u>How Passed</u> R2→descriptor	<u>Units</u> -
Output Results: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -
Errors Detected: Error # 20	<u>Cause</u> Input string not in	standard format	<u>Fixup</u> Return 0

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

First, leading and trailing blanks are stripped from the input string, and an error is signaled if the string has length = 0 or consists entirely of blanks. Next, a scalar is constructed from the digits of the input string to the left of the exponent. The construction proceeds as follows:

First, we set $S_0 = 0$. Now, at the kth step, $k \ge 1$, we let $S_k=10^*S_{k-1}+d_k$, where d_k is the kth digit in the string. All calculations are double scalar. When S_k becomes \ge X'4E19999A', all further digits are insignificant and are scanned for validity but otherwise ignored.

This yields a scalar which may be incorrect by a power-of-10 multiple, but otherwise represents the decimal number of the left of the exponent. As for the power of 10, if a decimal point is encountered while scanning the input string, a count is kept of how many digits there are to the right of the decimal point in the input string. The negative of this count is stored in temporary location COUNTE for later use.

Next, the type of exponent (if any) is determined, and the value is calculated with a simple fixed-point calculation ($ab_{10} = 10a + b$) and added to COUNTH, COUNTB, or COUNTE accordingly as the type of exponent is hexadecimal, binary, or decimal. Continue this process as long as there are remaining exponents.

If the end of the string is reached with no invalid characters found, then the scalar is modified according to the exponents already computed. First, the power-of-2 exponents are combined as 4H + B, since

 $16^{H} \cdot 2^{B} = 2^{4H} + B$.

The high part of this (power of 16) is added to the exponent of the scalar, while the low 2 bits control a loop in which the scalar is doubled 0-3 times.

Next, the decimal exponent, which has been combined with the correction for the decimal point in the input, is used as a power of 10 in the standard way of taking integral powers. The scalar intermediate is multiplied or divided by this result according to the sign of the exponent, completing the conversion.

<u>CTOE</u>

Secondary Entry Name: CTOD

Function: Performs internal character to double precision scalar conversion. Invoked By:

X Compiler emitted code for HAL/S construct of the form:

 $SCALAR_{@DOUBLE}$ (<character string>)

X Other Library Modules CSHAPQ

Execution Time (microseconds): Time is computed by CTOE formula - 1.8.

Input Arguments	8:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Character	-	R2→descriptor	-
Output Results:			
<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>
Scalar	DP	F0,F1	-
Errors Detected	:		
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>
20	Input string	not in standard format	Return 0

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

Same routine as CTOE; all conversions result in a double precision value of which the portion in F1 is discarded when single precision is desired by the caller of this routine.

			<u>CTOI</u>		
H	HAL/S-FC LIBRARY ROUTINE DESCRIPTION				
Source Memb	Source Member Name: <u>CTOI</u> Size of Code Area <u>104</u> Hw				
Stack Require	ment: <u>20</u> F	lw Data CSEC	CT Size: <u>2</u> Hw		
Intrinsic	;	XProd	cedure		
Other Library	Modules Referer	nced: <u>GTBYTE</u>			
ENTRY POINT I	DESCRIPTIONS:	<u>.</u>			
Primary Entry Na	ame: <u>CTOI</u>				
Function: Conve	rts a character st	tring to a double pre	ecision integer.		
Invoked By:					
X Compiler e	mitted code for H	HAL/S construct of t	he form:		
INTEGER@	DOUBLE(<char< td=""><td>acter string>)</td><td>or</td></char<>	acter string>)	or		
BIT@DEC(<character s<="" td=""><td>tring>).</td><td></td></character>	tring>).			
X Other Libra	ary Modules:				
CSHAPQ					
Execution Time	(microseconds):				
k + 1	1.0 * (floor *(# le	ading blanks/2))			
+ 1	8.6 (if # leading	blanks odd)			
+ 9	∂.4 (if '-' sign)				
+ 1	0.6 (if first chara	cter is a number)			
+ 1	5.6 * (# even inc	lex characters after	leading blanks)		
+ 1	4.4 * (# odd inde	ex characters after l	eading blanks)		
+ 1	3.0 (if # trailing b	blanks > 0)			
+ 8	3.4° (# trailing bla	anks)			
+ 2	28.2 ^ ((# non bla	nk characters) - 1)			
where k = 72.6					
Input Arguments	-				
<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>		
Character	-	R2→descriptor	-		
Output Results:					
<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>		
Integer	DP	R5	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>		<u>Fixup</u>		
22	Input string not	in standard format	Return 0		
Comments:					
Registers Ur	nsafe Across Cal	l: R5,F0,F1.			

Algorithm:

First, leading blanks are stripped from the input string. If a minus sign is encountered, a flag is set. The basic conversion proceeds as follows: Initialize i_0 to 0. At step k, k≥1, let $i_k = 10.1_{k-1} + d_k$, where d_k is the kth digit in the input string. At the end, this fixed-point calculation gives a fullword integer. This sign is tacked on, and the result is shifted left 16 bits if a halfword answer is required.

<u>CTOI</u>

Secondary Entry Name: CTOH							
Function: Converts	a character strin	g to a single precisio	n integer.				
Invoked By: X Compiler emitted code for HAL/S construct of the form: INTEGER _{@SINGLE} (<character string="">) X Other Library Modules: CSHAPQ</character>							
Execution Time (mi	croseconds): Sai	me as for CTOI, exce	ept k = 74.4.				
Input Arguments: <u>Type</u> Character	Input Arguments: <u>Type</u> <u>Precision</u> <u>How Passed</u> <u>Units</u> Character - R2→descriptor -						
Output Results:TypePrecisionHow PassedUnitsIntegerSPR5-							
Errors Detected: <u>Error #</u> <u>Cause</u> <u>Fixup</u> 22 Input string not in standard format Return 0							
Comments: Registers Unsafe Across Call: R5,F0,F1.							

Algorithm:

See CTOI.

<u>CTOI</u>

Secondary Entry Name: CTOK

Function: Converts a character string to a 32-bit string for use with the @DEC of the BIT conversion function.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

BIT_{@DEC}(<character string>).

Other Library Modules:

Execution Time (microseconds):

- 85.8 + 11.0 * (floor * (# leading blanks/2))
 - + 18.6 (if # leading blanks odd)
 - + 15.6 * (# even index characters after leading blanks)
 - + 14.4 * (# odd index characters after leading blanks)
 - + 13.0 (if # trailing blanks > 0)
 - + 8.4 * (# trailing blanks)
 - + 28.2 * (# non blank characters 1)

Input Arguments:

<u>Type</u> Character	Precision -	<u>How Passed</u> R2→descriptor	<u>Units</u> -
Output Results: <u>Type</u> Bit string	<u>Precision</u> 32-bit	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: Error # 22	<u>Cause</u> Input string not in	standard format	<u>Fixup</u> Return 0

Comments:

Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

See CTOI.

			<u>CTO</u>	×
H/	AL/S-FC LIBRARY F		211ON	
Source Memo	er Name: <u>CTOX</u>	Size of Code Area	<u>60</u> HW	
			2e: <u>4</u> ⊓w	
	Madulaa Dafaranaa		;	
		O. <u>GIBYIE</u>		
ENTRY POINT L	<u>DESCRIPTIONS:</u>			
Primary Entry Na	ame: <u>CTOX</u>			
Function: Conve	rsion from character	r string to bit string, I	hexadecimal rad	ix.
Invoked By: X Compiler e	mitted code for HAL	_/S construct of the f	orm:	
BIT _{ourny} (C). where C is a	a character str	ing.	
	ry Modules:			
Execution Time (microseconds):			
32.0+ <u></u> (33.6 + KA _k + Kb _k)			
where:				
NCHAR =	length(C)'			
KA _X =	0 if C\$(X) is alpha	abetic		
	6.8 if C\$(X) is nur	meric		
KB _X =	1.2 if X is odd			
	0 if X is even			
Input Arguments	:			
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Character	-	R2→descriptor	-	
Output Results:				
Type	Precision	How Passed	<u>Units</u>	
Bit	32 bits	R5	-	
Errors Detected:				
Error #	<u>Cause</u>			<u>Fixup</u>
32	String not in standa	ard hexadecimal cor	nversion format	Return 0
-				

Comments:

Imbedded blanks, or leading or trailing blanks, are all considered invalid characters. An input string too long to be accommodated in 32 bits will cause high order bits to be lost.

Registers Unsafe Across Call: R5,F0,F1.

Algorithm:

Characters are fetched one by one. In the CTOX entry, characters 'A' - 'F' are converted to their bit equivalents, characters '0' - '9' are passed on to the common section, and an error is signaled if the input character lies between X'39' and X'41' (DEU characters '9' and 'A' respectively). In the CTOO entry, an error is sent if the character is greater than X'37' (DEU character '7'). Other characters are passed to the common section for translation.

In the common section, decimal digits 0-9 (0-7 for octal) are translated to their bit equivalents, and an error is sent if the character precedes '0' in the collating sequence. These bit equivalents, and the ones passed from the CTOX section, are shifted into the low-order 4 bits (3 for octal) of the result register.

<u>CTOX</u>

Secondary Entry	Name: <u>CTOO</u>	string to bit string octal	radix
Invoked By:	mitted code for HAL	/S construct of the form:	
BIT _{@OCT} (C), where C is a ry Modules:	a character string.	
Execution Time (33.4 + $\sum_{k=1}^{NCH}$	microseconds): ^{AR} (34.2 + KA _k),		
where: NCHAR = KA _X =	length(C), 1.2 if X is odd 0 otherwise.		
Input Arguments: <u>Type</u> Character	: <u>Precision</u> -	<u>How Passed</u> R2→descriptor	<u>Units</u> -
Output Results: <u>Type</u> Bit	<u>Precision</u> 32-bits	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: Error # 31	<u>Cause</u> String not in standa	rd octal conversion form	<u>Fixup</u> at Return 0
Comments: Registers Un	safe Across Call: R	5,F0,F1.	

Algorithm:

See CTOX.

			DSLD
HAL/3	S-FC LIBRARY	ROUTINE DESC	CRIPTION
Source Member N	Name: <u>DSLD</u>	Size of Code Ar	ea <u>22</u> Hw
Stack Requireme	nt: <u>18</u> Hw	Data CSECT	Size: <u>2</u> Hw
Intrinsic		X Proced	ure
Other Library Mod	dules Reference	ed: <u>None</u>	
ENTRY POINT DES	CRIPTIONS:		
Primary Entry Name	: DSLD		
Function: Loads spe	cified bits of a d	ouble precision	scalar.
Invoked By:			
X Compiler emitt	ed code for HAI	_/S construct of t	he form:
SUBBIT (SCAI	AR VAR	,) ;	
SUBBITFIRST	TO LAST (SC.	ALAR_VAR _{@DOUB1}	LE).
Other Library	Nodules:		
Execution Time (mic	roseconds): 36.	5	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	R2→Scalar	-
Integer(first bit)	SP	R5	-
Integer(last bit)	SP	R6	-
Output Results:			
Type	Precision	How Passed	<u>Units</u>
Bit string	Length 32	R5	-
Errors Detected:			
Error #	<u>Cause</u>		<u>Fixup</u>
30	Subbit partit	ion out of range	 If first bit<1, set to 1
			2) If last bit>64, set to 64
Comments:			

Registers Unsafe Across Call: R5

Algorithm:

Get the double word operand in register pair R2-R3. If first bit - 1 < 0, then give ERROR 30 and set to 0. Use first bit 1 as left shift count to eliminate unwanted high order bits. Compute 64 - last bit + first bit - 1, and give ERROR 30 and set to 0 if it is < 0. Use this as right shift count to justify bit string in R3. Return contents of R3.

					DSST
HAL/S-FC LIBRARY ROUTINE DESCRIPTION					
Source Membe	er Name: <u>DS</u>	ST Size of	Code	e Area <u>54</u>	Hw
Stack Requirer	nent: <u>18</u> H	w Data	a CSE	ECT Size: 2	Hw
Intrinsic		X	Pro	ocedure	
Other Library M	/lodules Refe	renced: Non	e		
ENTRY POINT D	ESCRIPTION	<u> NS:</u>			
Primary Entry Na	me: DSST				
Function: Stores a	a bit string int	o selected bi	ts of	a double precisior	n scalar.
Invoked By:	-				
X Compiler er	nitted code fo	or HAL/S con	struc	t of the form:	
SUBBIT _{a a}	T B (DOUBLE	SCALAR) =	BI	STRING	
Other Libra	y Modules:	_		—	
Execution Time (r	nicroseconds	s): 64.6			
Input Arguments:					
<u>Type</u>	Precision	How Passe	<u>d</u>	<u>Units</u>	
Integer(A)	SP	R5		-	
Integer(B)	SP	R6		-	
Bit string	-	R7		-	
Output Results:					
<u>Type</u>	Precision	How Passe	<u>d</u>	<u>Units</u>	
Scalar	DP	R2→Scalar		-	
Errors Detected:					
<u>Error #</u>	<u>Cause</u>		<u>Fixu</u>	p	
30	Subbit parti	tion illegal	1)	If first bit < 1, set	to 1
			2)	If last bit > 64, se	t to 64
Comments:					

Registers Unsafe Across Call: None

Algorithm:

Check first bit. If < 1, send error 30 and set to 1. Save the last bit, and get the partition width as last bit - first bit + 1. Create a mask of width = partition width as 2^{width} - 1. If last bit \leq 64, shift left by 64 - last bit. If last bit > 64, send error 30 and set last bit to 64 by shifting right by last bit - 64. Then invert the (doubleword) mask. Mask out the selected bits of the operand in storage. Then, shift the input bit string to the right position (left 64 - last bit, or right last bit - 64), and <u>OR</u> to the operand in storage, completing the operation.

				<u>ETOC</u>		
HAL	/S-FC LIBRARY F	ROUTINE DESCRIF	PTION			
Source Member	Name: <u>ETOC</u>	Size of Code Area	320	Hw		
Stack Requirem	ent: <u>32</u> Hw	Data CSECT Size	e: <u>64</u>	_ Hw		
Other Library Mo	odules Referenced	d: <u>None</u>				
ENTRY POINT DE	<u>SCRIPTIONS:</u>					
Primary Entry Nam Function: Convert format f	e: <u>ETOC</u> is a single precisic or a scalar.	on scalar to standard	d internal o	character-string		
Invoked By: X Compiler emi CHARACTER (Other Library	Invoked By: X Compiler emitted code for HAL/S construct of the form: CHARACTER (SCALAR_VAR) Other Library Modules:					
Execution Time (m	icroseconds): 336	.9				
Input Arguments: <u>Type</u> Scalar	<u>Precision</u> SP	<u>How Passed</u> F0	<u>Units</u> -			
Output Results: <u>Type</u> Character string	<u>Precision</u> Length=14	<u>How Passed</u> R2→descriptor	<u>Units</u> -			
Errors Detected: <u>Error #</u> None	<u>Cause</u>	Fixup				
Comments:						

Maxlength of output string is ignored. Registers Unsafe Across Call: F0,F1,F2.

Algorithm:

Clear F1 to convert to double precision. Determine the sign and get the absolute value of the input. If input = 0, output string is 'b0.0' padded with blanks to length 14 (length 23 for DTOC).

The next operation reduces the exponent of the scalar to X'41' keeping track of the change in exponent that this requires. Since $\log_{10}x = (\log_{10}16)(\log_{16}x)$, this is done by getting (exponent - 65)* $\log_{10}16$ and using this as an exponent of 10, dividing the scalar by the result. It is possible for this to be off by 1, so another pass is made before continuing. At this point, the number is between 1 and 16. If it is greater than or equal to 10, multiply by 1/10 and record the exponent as one greater.

This causes the first decimal digit of the number to be the first hexadecimal digit of

6-301

the scalar, in bits 8-11 of F0. This is stored, together with a blank if the value is ≥ 0 , or a '-' if the value < 0. The remaining mantissa is in fractional form in F0-F1. This hexadecimal fraction is converted to decimal digit-by-digit by successive multiplication by 10. One digit is generated and stored with the decimal point, then 6 digits are stored in the next three halfwords.

The sign of the exponent (as calculated above) is tested, and either 'E+' or 'E-' is stored in the next halfword. Two decimal digits of exponent are stored in the last halfword.

<u>ETOC</u>

Secondary Entry Name: DTOC

Function: Converts a double precision scalar to standard internal character-string format for scalar.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

CHARACTER (DOUBLE_SCALAR)

Other Library Modules:

Execution Time (microseconds): 602.5

Input Arguments:

<u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0-F1	<u>Units</u> -
Output Results: <u>Type</u> Character string	<u>Precision</u> Length=23	<u>How Passed</u> R2→descriptor	<u>Units</u> -
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: F0,F1,F2.

Algorithm:

Similar to ETOC, except of course that F1 is not zeroed. Also, rather than 6 digits being stored in the loop, 14 are computed and stored. The exponent section also looks different, as one more digit is stored with the exponent, changing its alignment, thus storing successively '<digit>E', ' \pm <digit>', '<digit><garbage>' in the last 3 halfwords.

HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: ETOH Size of Code Area _14_ Hw Stack Requirement: _0 Hw Data CSECT Size: _0 Hw X Intrinsic - Sector 0 Procedure Other Library Modules Referenced: None Procedure Hw ENTRY POINT DESCRIPTIONS: Primary Entry Name: ETOH Function: Converts single precision scalar value to single precision integer. Invoked By: X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: Type Precision How Passed Units Scalar SP F0 - Output Results: Type Precision How Passed Units Integer SP R5 - - Errors Detected: Error# Cause Fixup					<u>ETOH</u>	
Source Member Name: ETOH Size of Code Area 14 Hw Stack Requirement: 0 Hw Data CSECT Size: 0 Hw X Intrinsic - Sector 0 Procedure 0 Hw Execution Converts single precision scalar value to single precision integer. Integer, and S is a single precision scalar. X Other Library Modules: Q Q QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: Type Precision How Passed Units Scalar SP F0 - Output Results: Type Precision How Passed Units Integer SP R5 -	HAL/	S-FC LIBRAR	Y ROUTINE DESCRI	PTION		
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw X Intrinsic - Sector 0 Procedure Procedure Other Library Modules Referenced: None ENTRY POINT DESCRIPTIONS: Primary Entry Name: ETOH Function: Converts single precision scalar value to single precision integer. Invoked By: X X Compiler emitted code for HAL/S construct of the form: Import a single precision scalar. X Other Library Modules: QSHAPQ QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: Type Precision Type Precision How Passed Units Scalar SP F0 - Output Results: Type Precision How Passed Units Integer SP R5 - - Errors Detected: Error # Cause Fixup - None Fixup None Fixup -	Source Member	Name: <u>ETOH</u>	Size of Code Are	a <u>14</u> Hv	w	
X Intrinsic - Sector 0 Procedure Other Library Modules Referenced: None ENTRY POINT DESCRIPTIONS: Primary Entry Name: ETOH Function: Converts single precision scalar value to single precision integer. Invoked By: X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X QSHAPQ Computer emitted codes: Value Execution Time (microseconds): 15.4 Input Arguments: Type Type Precision How Passed Units Scalar SP F0 - Output Results: Type Precision How Passed Units Integer SP R5 - - Errors Detected: Error # Cause Fixup None Fixup Fixup -	Stack Requireme	ent: <u>0</u> Hw	Data CSECT S	ize: <u>0</u>	Hw	
Other Library Modules Referenced: None ENTRY POINT DESCRIPTIONS: Primary Entry Name: ETOH Function: Converts single precision scalar value to single precision integer. Invoked By: X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: Type Precision How Passed Units Scalar SP F0 - Output Results: - Type Precision How Passed Units Integer SP R5 - Errors Detected: Error # Cause Fixup None Fixup	X Intrinsic - S	Sector 0	Procedure	e		
ENTRY POINT DESCRIPTIONS: Primary Entry Name: ETOH Function: Converts single precision scalar value to single precision integer. Invoked By: X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: Type Precision How Passed Units Scalar SP F0 - Output Results: Type Precision How Passed Units Integer SP R5 - Errors Detected: Errors Detected: Errors Market Cause Fixup None	Other Library Mo	dules Referen	ced: <u>None</u>			
Primary Entry Name: <u>ETOH</u> Function: Converts single precision scalar value to single precision integer. Invoked By: X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: <u>Type Precision How Passed Units</u> Scalar SP F0 - Output Results: <u>Type Precision How Passed Units</u> Integer SP R5 - Errors Detected: <u>Error # Cause Fixup</u>	ENTRY POINT DES	SCRIPTIONS:				
Function: Converts single precision scalar value to single precision integer. Invoked By: X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: Type Precision How Passed Units Scalar SP F0 - Output Results: Type Precision How Passed Units Integer SP R5 - Errors Detected: <u>Error # Cause Fixup</u> None	Primary Entry Name	e: <u>ETOH</u>				
Invoked By: X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: <u>Type Precision How Passed Units</u> Scalar SP F0 - Output Results: <u>Type Precision How Passed Units</u> Integer SP R5 - Errors Detected: <u>Error # Cause Fixup</u> None	Function: Converts	single precisio	n scalar value to sing	le precision	integer.	
X Compiler emitted code for HAL/S construct of the form: I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: <u>Type</u> Precision How Passed Volumet Scalar SP F0 - Output Results: Type Precision How Passed Units Integer SP R5 - Errors Detected: Error # Cause Fixup None Fixup	Invoked By:					
I = S; where I is a single precision integer, and S is a single precision scalar. X Other Library Modules: QSHAPQ Execution Time (microseconds): 15.4 Input Arguments: <u>Type</u> <u>Precision</u> Scalar SP F0 Output Results: <u>Type</u> <u>Precision</u> How Passed <u>Units</u> Integer SP F5 - Errors Detected: <u>Error #</u> <u>Cause</u> <u>Fixup</u>	X Compiler emitt	ed code for HA	L/S construct of the f	orm:		
XOther Library Modules:QSHAPQExecution Time (microseconds): 15.4Input Arguments:TypePrecisionHow PassedUnitsScalarSPF0-Output Results:-TypePrecisionIntegerSPR5-Errors Detected:Error #CauseNoneFixup	I = S; when	re I is a s	single precision	integer,	and S is	a
Current Library Modules.QSHAPQExecution Time (microseconds): 15.4Input Arguments:TypePrecisionScalarSPSocalarSPOutput Results:TypePrecisionIntegerSPSPR5Errors Detected:Error #CauseNoneFixup	SING	Adulos:	OII SCALAL.			
QSHAPQExecution Time (microseconds): 15.4Input Arguments:TypePrecisionScalarSPSocalarSPF0-Output Results:TypePrecisionIntegerSPSPR5Errors Detected:Error #CauseNoneFixup		nouules.				
Execution Time (microseconds): 15.4Input Arguments: <u>Type</u> <u>Precision</u> <u>How Passed</u> <u>Units</u> ScalarSPF0-Output Results:	QSHAPQ					
Input Arguments:PrecisionHow PassedUnitsTypeSPF0-Output Results:PrecisionHow PassedUnitsTypePrecisionHow PassedUnitsIntegerSPF5-Errors Detected:Error #CauseFixupNoneCauseFixup	Execution Time (mi	croseconds): 1	5.4			
Type ScalarPrecision SPHow Passed F0Units -Output Results: Type IntegerPrecision SPHow Passed R5Units -Errors Detected: Error # NoneCause FixupFixup	Input Arguments:					
ScalarSPF0-Output Results:	<u>lype</u> Seeler	Precision	How Passed	<u>Units</u>		
Output Results: <u>Type</u> PrecisionHow PassedUnitsIntegerSPR5-Errors Detected:	Scalar	58	FU	-		
TypePrecisionHow PassedUnitsIntegerSPR5-Errors Detected:Error #CauseFixupNoneKauseKauseKause	Output Results:	Drasisian	Llaw Deceed			
Errors Detected: <u>Error # Cause Fixup</u> None	<u>Type</u> Integer	SP	<u>How Passed</u> R5	<u>Units</u> -		
Errors Detected: <u>Error #</u> <u>Cause</u> <u>Fixup</u> None		01		-		
None	Errors Detected: Error #	<u>Cause</u>	<u>Fixup</u>			
	None					

Comments:

Convert overflow (Error number 3:10) will occur if S is outside of the range, -32768 \leq S \leq 32768, (hex'C4800000' \leq S \leq hex'447FFFF')

Warnings:

 The ETOH routine returns incorrect results when the input argument is between 32767.5 and 32768. Fixed-point overflow occurs for this range, but will not be detected if the program status word is set to mask out the overflow.

- Due to the use of CVFX instruction, the precision is lost during the conversion for the following input arguments (S) and inputs will be rounded incorrectly. I denotes the integer portion of S.
 - a. $1 \le ABS(I)$, and the fractional portion is slightly greater than 0.5. For example: S = hex '41x8000y'; where $1 \le x \le F$, $1 \le y \le F$.
 - b. I = 0, and the fractional portion is slightly greater than 0.5. For example: S = hex '408000yy'; where $01 \le yy \le FF$.

Registers Unsafe Across Call: R5,F0.

Algorithm:

The six most significant hex digits of the scalar argument are converted to a fullword integer value. The 4 most significant hex digits of the integer value are left in the top halfword of the fixed point register after rounding the fraction. When the fractional portion of the result is less than or equal to 0.5 the result is rounded down, otherwise the result is rounded up.

<u>ETOH</u>

Secondary Entry Name: DTOH

Function: Converts a double precision scalar value to a single precision integer.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

I = D; where I is a single precision integer, and D is a double precision scalar.

Other Library Modules:

Execution Time (microseconds): 17.4

Input Arguments:

<u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0	<u>Units</u> -
Output Results: <u>Type</u> Integer	<u>Precision</u> SP	<u>How Passed</u> R5	<u>Units</u> -
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Warnings:

- The DTOH routine returns incorrect results when the input argument (S) is in the range of 32767.50390625 ≤ S < 32768 (hex '447FFF8100000000' ≤ S < hex'447FFFFFFFFFFFFF). Fix point overflow occurs for this range, but no error will be generated if the fixed point overflow interrupt is masked in the program status word.
- Due to the use of the CVFX instruction, the precision is lost during the conversion for the following input arguments (S) and inputs will be rounded incorrectly. I denotes the integer portion of S.
 - a. $1 \le ABS(I)$, and the fractional portion is slightly greater than 0.5. For example: S = hex '41x8000yzzzzzzzz'; where $1 \le x \le F$, $1 \le y \le F$, and z is any number.
 - b. I = 0, and the fractional portion is slightly greater than 0.5. For example: S = hex '408000yyzzzzzzzz'; where $01 \le yy \le FF$ and z is any number.

Registers Unsafe Across Call: R5,F0.

Algorithm:

See ETOH.

		GTBYTE	
HAL/S-FC LIBR	ARY ROUT		
Source Member Name: GTE	BYTE Size	of Code Area 14 Hw	
Stack Requirement: 0 F	Hw Da	ata CSECT Size: 0 Hw	
Other Library Modules Refe	renced: <u>No</u>	<u>16</u>	
ENTRY POINT DESCRIPTION	<u>IS:</u>		
Primary Entry Name: <u>GTBYTE</u> Function: Fetches one chara manipulation by oth	acter from a ner library ro	a character string. Used for characte	÷r
Invoked By:	HAL/S con	struct of the form:	
X Other Library Modules:			
CPAS, CTOE, CLJSTV, CINDE	X, CRJST	/, CTOB, CTOI, CTOX, CRTIMV	
Execution Time (microseconds): 14.4 to ol	otain lower byte	
1	5.6 to obtai	n upper byte	
Input Arguments: <u>Type</u> Pointer Flag (Which byte to fetch)	<u>Precision</u> - -	<u>How Passed</u> R2 \rightarrow 1 Hw in front of Hw to fetch from Lower half of R2: 00-upper byte, X'8000'-lower byte	<u>Units</u> - -
Output Results: <u>Type</u> Single character	Precision -	<u>How Passed</u> R5- upper halfword	<u>Units</u> -
Errors Detected: Error # Cause None	<u>Fixup</u>		
Comments: Registers Unsafe Across C	Call: R2,R4,	R5,F0.	

Algorithm:

The halfword off of the pointer is loaded into a register for manipulation. If the flag indicates the upper byte is requested, the register is shifted right 8 bits and the lower half of the register is cleared to leave only the desired byte in the upper halfword of the register. If the flag indicates the lower byte is requested, then the first byte of the register is cleared. The flag is reset to indicate the upper byte if the lower byte was requested and vice versa, and the pointer is updated if the fetched byte was even. This is done now since GTBYTE is usually called a number of times from a loop.

				<u>ITOC</u>	
HAL	/S-FC LIBRARY	ROUTINE DESCRI	PTION		
Source Membe	r Name: <u>ITOC</u>	Size of Code Area	104	Hw	
Stack Requirem	nent: <u>28</u> Hw	Data CSECT Siz	:e: <u>0</u> e	_ Hw	
Other Library M	odules Reference	ed: <u>None</u>			
ENTRY POINT DE	<u>ESCRIPTIONS:</u>				
Primary Entry Nan Function: Conver format	ne: <u>ITOC</u> rts a fullword int for integers.	eger into standard	internal	character	string
Invoked By: X Compiler emi CHARACTER (Other Library	tted code for HAL FULLWORD_INTE Modules:	/S construct of the f	orm:		
Execution Time (m	nicroseconds): 25	4.6			
Input Arguments: <u>Type</u> Integer	<u>Precision</u> DP	<u>How Passed</u> R5	<u>Units</u> -		
Output Results: <u>Type</u> Character string	Precision -	<u>How Passed</u> R2→descriptor	<u>Units</u> -		
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>			
Comments:					

No leading zeros or leading or trailing blanks. Maxlength of output area ignored. Registers Unsafe Across Call: None

Algorithm:

Digits are generated one by one. Thus: Let I = input integer. Then:

 $d_k = I_k - 10(I_k/10)$ integer multiply and divide.

 $I_{k+1} = (I_k - d_k)/10.$

The process terminates when $I_k = 0$. As pairs of digits are generated, they are stored, right to left, in a temporary output area. The temporary result is then given a sign if necessary and moved to the output area. If an odd number of characters were generated, the move is with 8 bits offset for left alignment.

<u>ITOC</u>

Secondary Entry Name: <u>HTOC</u> Function: Converts a halfword integer into standard internal character-string format for integers.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

CHARACTER (HALFWORD_INTEGER)

Other Library Modules:

Execution Time (microseconds): 189.6

Input Arguments:

<u>Type</u> Integer	<u>Precision</u> SP	<u>How Passed</u> R5	<u>Units</u> -
Output Results: <u>Type</u> Character string	Precision -	<u>How Passed</u> R2→descriptor	<u>Units</u> -
Errors Detected: Error #	<u>Cause</u>	Fixup	

None

Comments:

No leading zeroes or leading or trailing blanks. Maxlength of output area ignored. Registers Unsafe Across Call: None.

Algorithm:

Shift right algebraic 16 to convert single integer to double. Then proceed as in ITOC.

			ITOD]
HA	L/S-FC LIBR	ARY ROUTINE	DESCRIPTION	
Source Membe	er Name: <u>ITO</u>	<u>D</u> Size of 0 Area	Code <u>24</u> Hw	
Stack Requiren X Intrinsic -	nent: <u>0</u> Sector 0	Hw Data	a CSECT Size: <u>0</u> Hw Procedure	
Other Library M	Iodules Refe	renced: <u>None</u>		
ENTRY POINT D	ESCRIPTION	<u>IS:</u>		
Primary Entry Nar	me: <u>ITOD</u>			
Function: Convert	s a double pr	ecision integer t	o a double precision scalar.	
Invoked By:				
X Compiler em	itted code for	HAL/S construct	t of the form:	
D = I; whe	ere D is a	double prec	ision scalar, and I i	_s a
dou	uble preci	sion integer		
X Other Library	Modules:			
QSHAPQ				
Execution Time (r	nicroseconds): 15.6		
Input Arguments				
<u>Type</u>	Precision	How Passed	<u>Units</u>	
Integer	DP	R5	-	
Output Results:				
Type	Precision	How Passed	Units	
Scalar	DP	F0	-	
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>		
Comments:				

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

If the input argument is non-negative, then the register (F0) is loaded with HEX'4E800000'. F1 is then loaded with the value of the input argument. Next, the value HEX'4E800000 00000000' is subtracted from the (F0, F1) register pair and the result is returned to the calling program.

For negative values, the algorithm is the same, except the input argument is complemented before any other operations are performed. Also, the value used when manipulating the (F0, F1) register pair is HEX'CE800000 00000000' instead of HEX'4E800000 00000000'.
HAL/SEC LIBRARY ROLITINE DESCRIPTION
Source Member Name: ITOE Size of Code <u>6</u> Hw Area
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw X Intrinsic - Sector 0 Procedure
Other Library Modules Referenced: None
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ITOE
Function: Converts a double precision integer to a single precision scalar.
Invoked By:
X Compiler emitted code for HAL/S construct of the form:
S = I; where S is a single precision scalar, and I is
a double precision integer
X Other Library Modules:
QSHAPQ
Execution Time (microseconds): 12.0
Input Arguments:
<u>Type</u> <u>Precision</u> <u>How Passed</u> <u>Units</u>
Integer DP R5 -
Output Results:
Type Precision How Passed Units
Scalar SP F0 -
Errors Detected: <u>Error # Cause Fixup</u> None
Comments:

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:

The integer argument is converted to floating point by the CVFL instruction and the binary point is adjusted by multiplication by a scale factor.

			KTOC
HAL/S-FC LIBRAF		DESCRIPTION	
Source Member Name: KTOC	Size of	f Code Area <u>70</u>	<u>)</u> Hw
Stack Requirement: 0 H	lw Da <u>ta</u>	CSECT Size:	<u>0</u> Hw
X Intrinsic		Procedure	
Other Library Modules Referen	nced: <u>None</u>		
ENTRY POINT DESCRIPTIONS:	<u>.</u>		
Primary Entry Name: KTOC			
Function: Performs bit-string to cr	haracter conv	Persion with decim	al radix.
Invoked By:	IAI /S constr	uct of the form:	
CHARACTER.	TNG)		
Other Library Modules:	11(0)		
Execution Time (microseconds):	262 5 (for 16	bits)	
Input Arguments:	202.0 (101 10	510)	
<u>Type</u>	Precision	How Passed	<u>Units</u>
Bit string	-	R5	-
Integer(length of bit string)	SP	R6	-
Output Results:			
<u>Ivpe</u> Character string	Precision	How Passed	<u>Units</u>
	-	Rz→uescriptor	-
Errors Detected: Error # Cause	Fixup		
None			
Comments:			
Maxlength of output area ignored.	ored. No lea	iding or trailing bla	nks. "Sign bit" of input
Registers Unsafe Across Cal	l: R1,R2,R3,I	R4,R5,R6,R7,F0,F	1.
Algorithm:			
The length of the character st	tring is comp	uted as:	
1 + (log ₁₀ 2)(bit length)	truncated to	an integer	

A halfword count is computed from this as:

halfword count = (1 + character count)/2

Decimal digits are generated one at a time, from right to left, thus: Let I_0 =input string as unsigned integer,

 $d_k = I_k - 10(I_k/10)$ integer multiply and divide

 $I_{k+1} = (I_k - d_k)/10$

The process terminates when the halfword count is reached, with two digits stored per halfword. At the end, if an odd number of characters have been stored, the string must be shifted one character to the left for proper alignment.

	<u>QSHAPQ</u>
HAL/S-FC LIBRARY ROUTINE DESCRIPTION	
Source Member Name: <u>QSHAPQ</u> Size of Code Area <u>74</u>	Hw
Stack Requirement: <u>18</u> Hw Data CSECT Size: <u>0</u>	Hw
Intrinsic X Procedure	
Other Library Modules Referenced: ETOH(DTOH), ROUND(I	<u>DTOI), ITOE,</u>
ITOD	

ENTRY POINT DESCRIPTIONS:

Primary Entry Name: <u>QSHAPQ</u>

Function: Shapes data of a given type and precision to data of an explicit type and precision.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

Used by the INTEGER, SCALAR, MATRIX, and VECTOR shaping functions.

Other Library Modules:

Execution Time (microseconds): 42.6 + 31.8n, n = # times transferred.

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Integer/scalar	SP/DP	R2→first Hw	-
Integer(flag)	DP	R6: upper half for input data, lower half for output	-
Integer(count)	SP	R5: number of times to transfer	-
Output Results: <u>Type</u> Integer/scalar	<u>Precision</u> SP/DP	<u>How Passed</u> R1→first Hw	<u>Units</u> -

Errors Detected:

<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>
15	Scalar too large for	Set to maximum representable value
	integer conversion	

Comments:

QSHAPQ is called only if more than one item of the same data type must be shaped. If only one item must undergo conversion, the conversion functions (DTOI, ETOI, ITOD, HTOE, etc.) are used.

Registers Unsafe Across Call: F0,F1.

The flags for the input and output data are examined. The appropriate 'LOAD' routine is executed to load one item to be shaped. The appropriate 'STORE', or in some cases, 'CONVERT AND STORE' routine stores the shaped data item in the area pointed to by the destination pointer. The source pointer is updated after each load; the destination pointer is updated after each store. Data is shaped and transferred item-by-item.

The values of the flags (R6 upper and lower) are:

- 0 = HW integer
- 1 = FW integer
- 2 = FW scalar
- 3 = DW scalar

			RANDOM	
HAL/S-FC LIBRARY ROUTINE DESCRIPTION				
Source Membe	er Name: <u>RANDC</u>	<u>DM</u> Size of Co	ode Area <u>46</u> Hw	
Stack Requirer	ment: <u>18</u> Hv	w Data CS	ECT Size: <u>2</u> Hw	
Intrinsic		XF	Procedure	
Other Library M	Aodules Reference	ced: <u>None</u>		
ENTRY POINT D	ESCRIPTIONS:			
Primary Entry Na	me: RANDOM			
Function: Genera	tes random num	ber with uniform d	istribution in range (0.0, 1	.0).
Invoked Bv:				,
X Compiler em	itted code for HA	L/S construct of the	he form:	
RANDOI	М			
Other Library	/ Modules:			
Execution Time (r	nicroseconds): 5	4.4		
Input Arguments.	,			
Type	Precision	How Passed	Units	
None				
Output Results:				
Type	Precision	How Passed	Units	
Scalar	DP	F0/F1	-	
Errors Detected:				
Error #	<u>Cause</u>	<u>Fixup</u>		
None				

Comments:

The original SEED(F'1435') is declared as a data constant. To allow storage into this "constant" for updating SEED, the storage protection is turned off for SEED. Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:

Multiply F'65539' by SEED. SEED originally=F'1435', but is updated on each pass through RANDOM. Use the least significant 32 bits of this product (SEED x 65539) to form the new SEED. If the result is ≥ 0 , then RESULT = new SEED. If RESULT < 0, then new SEED = RESULT - NEGMAX, where NEGMAX = X'8000000'. The positive new SEED is saved for future use, and is also converted to a floating point number for present computation of a random number. Multiply the floating point value by 2⁻³¹ to produce a random number in the range (0.0, 1.0).

RANDOM

Secondary Entry Name: <u>RANDG</u> Function: Generates random number from Gaussian distribution, mean zero, variance one. Invoked By:

X Compiler emitted code for HAL/S construct of the form:

...RANDOMG...

Other Library Modules:

Execution Time (microseconds): 575.8

Input Arguments: <u>Type</u> None	Precision	How Passed	<u>Units</u>
Output Results: <u>Type</u> Scalar	<u>Precision</u> DP	<u>How Passed</u> F0/F1	<u>Units</u> -
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	
Comments:			

Same as RANDOM.

Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:

RANDG uses the formula Y = $\sum_{i=1}^{12} X_i - 6.0$, where X_i is a random number generated by RANDOM.

			-
		<u>STBYTE</u>	
HAL/S-F	C LIBRARY	ROUTINE DESCRIPTION	
Source Member Na	me: <u>STBYTE</u>	Size of Code Area <u>22</u> Hw	
Stack Requirement:	<u> 0 </u> Hw	Da <u>ta CSECT Size: 0</u> Hw	
X Intrinsic		Procedure	
Other Library Modul	es Referenc	ed: <u>None</u>	
ENTRY POINT DESCR	RIPTIONS:		-
Primary Entry Name: S	TBYTE		
Function: Stores one	character i	into a character string; Used for char	acter
manipulatio	n by other lil	brary routines.	
Invoked By:			
Compiler emitted	code for HAL	_/S construct of the form:	
X Other Library Mod	lules:		
CLJSTV, CPAS, CRJS	TV, CTRIMV	,	
Execution Time (micros	seconds): 19	0.2 to store in upper byte.	
	17	7.2 to store in lower byte.	
Input Arguments:			
Type	Precision	How Passed	<u>Units</u>
Single character	-	R5	-
Flag (which byte to	-	Lower Hw of R1:	-
store into)		00-upper byte, X 8000 to lower byte	
Output Results:			
<u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>
Pointer	-	$R1 \rightarrow Hw$ to store into	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			

Registers Unsafe Across Call: R1,R4,R5,F0.

Algorithm:

The flag is tested for an even or odd byte to store into. If odd (upper), the flag is set to indicate even (lower) for the probable loop that STBYTE is in. Then, the byte is inserted into the upper byte of the appropriate halfword. If the flag indicates an even byte to store into, then the byte is inserted into the lower byte of the appropriate halfword. The flag is set to 0 to indicate that the next time around the loop, the byte will be odd. The pointer is updated to the next halfword.

			<u>XTOC</u>	
HAL/S-FC LIBR	ARY ROUTINE	DESCRIPTION		
Source Member Name: XTC	<u>C</u> Size of	Code Area <u>68</u>	_ Hw	
Stack Requirement: 0	Hw Data	CSECT Size:	<u>)</u> Hw	
X Intrinsic		Procedure		
Other Library Modules Refer	renced: <u>None</u>	_		
ENTRY POINT DESCRIPTION	<u>IS:</u>			
Primary Entry Name: XTOC				
Function: Converts bit string to	a string of hexa	adecimal character	Ś.	
Invoked By:				
X Compiler emitted code for	HAL/S constru	ct of the form:		
CHARACTER _{@HEX} (BIT S	TRING)			
Other Library Modules:				
Execution Time (microseconds):			
35.9 + 32.2 * (# o where 8 * ((# of d	, f digits 0-9) + 3 igits)+(# of lette	3.9 ∗ (# of letters A ers))= # bits.	-F),	
Input Arguments:				
Type	Precision	How Passed	<u>Units</u>	
Bit string	-	R5	-	
Integer(length of Bit string)	SP	R6	-	
Output Results:				
Type	Precision	How Passed	<u>Units</u>	
Character string	-	R2→descriptor	-	
Errors Detected:				
<u>Error #</u>	<u>Cause</u> <u>F</u>	ixup		
None				
Comments:				
Output string length depen area is ignored.	ids on input str	ing length. The m	axlength of the our	tput
Registers Unsafe Across C	all: R1,R2,R3,F	R4,R5,R6,R7,F0.		
Algorithm:				
A character count is deter string is positioned in regis	mined as the i ter pair R4-R5	nteger part of (bit with the first hexad	length +3)/4. The lecimal digit in bits	∍bit 12-
15 of R4 thus:			C C	
		•		

- Clear R4; string right-justified in R5 on input.
 Compute greatest multiple of 4 in 52 bit length.
 Use result of 2) as a shift count to shift R4-R5 left double.

Compute a halfword count for use as a loop counter:

halfword count = (1 + character count)/2

The character count is stored in the descriptor halfword as the current length of the output string. Digits are generated by shifting left 4 and stored two at a time in the output string, after converting DEU format by adding X'30' to each digit. Exit when proper number of halfwords have been stored.

<u>XTOC</u>

Secondary	Entry	Name:	<u>OTOC</u>
-----------	-------	-------	-------------

Function: Converts a bit string into a string of octal characters.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

CHARACTER_{@OCT} (BIT_STRING)

Other Library Modules:

Execution Time (microseconds): 46.2 + 32.3 (# of digits),

where 6 (# of digits) = # bits + 2.

Input Arguments:				
<u>Type</u>		Precision	How Passed	<u>Units</u>
Bit string		-	R5	-
Integer(length of b	it string)	SP	R6	-
Output Results:				
<u>Type</u>		Precision	How Passed	<u>Units</u>
Character string		-	R2→descriptor	-
Errors Detected:				
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>		
None				

Comments:

Output string length depends on input string length. The maxlength of the output area is ignored.

Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0.

Algorithm:

First, a character count is determined as the integer part of (bit length + 2)/3. The bit string is positioned in register pair R4-R5 with the first octal digit in bits 13-15 of R4 as follows:

- 1) Begin with R4 clear and the string right-aligned in R5.
- 2) Compute the shift count as 51-3(character count) and
- 3) shift R4-R5 left double by this amount.

Complete a halfword count for use as a loop counter as:

halfword count = (1 + character count)/2

The character count is stored in the descriptor halfword of the output string. Then, digits are generated in a loop, two at a time, by shifting R4-R5 left double 3 bits and adding X'30' to give the appropriate DEU character. As pairs of digits are assembled, they are stored into the output string, and exit is taken when the proper number of halfwords have been stored.

6.3.7 **REMOTE** Routine Descriptions

This subsection describes those routines which perform operations on REMOTE data. REMOTE data is data which may reside in a sector of AP-101 core which is neither sector 0 nor the current data sector indicated in the Program Status Word at the time the routine is called. In order to ensure addressability of such data, these routines are passed, instead of pointers directly to their arguments, pointers to complete address constants, or "ZCONs", containing both the address of the argument and the number of the sector in which it resides. These complete address constants, together with a special AP-101 addressing mode, allow access to any area of AP-101 core without changing bits in the Program Status Word.

REMOTE routines are invoked (rather than the normal versions of the same routines) when at least one of the arguments of the routine has the REMOTE attribute. Aggregate data types (VECTOR, MATRIX, STRUCTURE and CHARACTER types) and arrays of these data types currently have REMOTE routines. For arrays of single/double precision scalars or integers, no REMOTE routines exist and a severity 2 FT108 error message is emitted when an attempt is made to pass the REMOTE argument to a function.

					<u>CASRPV</u>
	HAL/S-FC	LIBRARY R	OUTINE	DESCRIPTION	
Source M Stack Re In Other Lit	Member Name <u>(</u> equirement: <u>22</u> trinsic prary Modules F	<u>CASRPV</u> _Hw Referenced:	Size of Da Da <u>None</u>	Code Area ata CSECT Size: X Procedure	<u>86</u> Hw _2_ Hw
ENTRY POIN	NT DESCRIPTI	ONS:			
Primary Entry Function: A cl	y Name: <u>CASR</u> ssigns a partiti haracter string i	<u>PV</u> on of a RE n a virtual ac	MOTE c	haracter string int	to a temporary
Invoked By:	er emitted code	for HAL/S c	onstruct	of the form:	
C2 _{I T}	_{OJ} where result	C2 is a is a tem	a REMO porary	TE character string.	variable and
Other L	ibrary Modules.	:			
Execution Tir	ne (microsecor	ids):			
lf P = 0 a	ind length(C2) =	= 0: 76.8			
lf P > 0 a	nd I is odd: 89.	0 + 15.8 ∗ ce	eiling(n/2)	
lf P > 0 a	nd I is even: 94	l.2 + 21.2 ∗ c	;eiling(n/	2)	
where P	= J - I + 1				
n = minin	num (p,255) Inp	out Argumen	ts:		
<u>Type</u>		Precision	How Pa	assed	<u>Units</u>
Integer(I)		SP	R5		-
Integer(J)		SP	R6		-
Character(C	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	R4→Z(JOIN→descriptor	-
Output Resul <u>Type</u> Character(tet	lts: emporary)	Precision -	<u>How Pa</u> R2→Z0	assed CON→descriptor	<u>Units</u> -
Errors Detect <u>Error #</u> 17	ted: <u>Cause</u> Specified pa current string Last characte than first ch and output str	artition ou range er indicator aracter indi ing is not nu	Itside less cator	<u>Fixup</u> Set bad partition limits of the curre Return null string	pointer(s) to the ent string
Comments:					

Registers Unsafe Across Call: None

Set maxlength of result to 255. Test position of first character of partition. If < 1 then send error and set to 1.

Compare position of last character of partition. If it is > maxlength, reset to maxlength, and send error. Compare first and last positions. If last < first, then if input string is null do not send error. If input string is not null, send error and set result to null string. Make sure partition length does not exceed the maxlength of the destination string. If it does, truncate it. Increment character count before dividing by 2 to round resulting halfword count to next highest halfword. If position of first character of partition is odd, then transfer halfword by halfword. Otherwise, it is necessary to line characters up into right halves of halfwords by shifting.

CASRPV

Units

Units

Fixup

_

```
Secondary Entry Name: CASRP
Function: REMOTE character assignment to declared data, partitioned input.
Invoked By:
X Compiler emitted code for HAL/S construct of the form:
    C1 = C2_{I TO J}; where C1 and/or C2 are REMOTE character
                      data.
    Other Library Modules:
Execution Time (microseconds):
    lf P =
              0 \text{ and } \text{length}(\text{C2}) = 0:69.4
    lf P >
              0 and I is odd: setup + 15.8 \cdot (\text{ceiling}(n/2))
    lf P >
              0 and I is even: setup + 5.2 + 21.2 \cdot (\text{ceiling}(n/2))
    where P = J - I + 1
    setup = 81.6 if P\gemax length(C1)
              82.4 if P>max length(C1)
    n = minimum (P, max length(C1))
Input Arguments:
 Type
                     Precision
                                  How Passed
 Integer(I)
                     SP
                                  R5
                     SP
 Integer(J)
                                  R6
 Character(C2)
                     -
                                  R4→ZCON→descriptor
Output Results:
                                  How Passed
 Type
                     Precision
 Character(C1)
                                  R2→ZCON→descriptor
Errors Detected:
 Error #
                     Cause
 17
                     Same causes and fix-ups as CASRPV
Comments:
    Registers Unsafe Across Call: None
Algorithm:
```

Same as CASRPV except maxlength of resultant string is used as passed and not set to 255.

			CASKV
Source Member Name:		Size of Code Area 36	Нж
Stack Requirement: 18	Hw	Data CSECT Size 0	Hw/
	_ 1 1 1 1 1	X Procedure	
Other Library Modules F	Referenced [.]		
	<u>10110.</u>		
Function: Assigns a REM	<u>.v</u> OTE charac	cter string into a temporary o	character string
in a virtual accur	mulator.	5	5
Invoked Bv:			
X Compiler emitted code	for HAL/S	construct of the form:	
C1 = C2 where $C1$	and/or C	2 is a REMOTE charact	er string, C1
is a temp	porary.		
Other Library Modules	:		
Execution Time (microseco	nds):		
lf n = 0: 59.6			
lf n > 0: 60.8 + 12.6 ∗ (c	eiling(n/2))		
where n = length(C2)			
Input Arguments:			
Type	Precision	How Passed	<u>Units</u>
Character(C2)	-	R4→ZCON→descriptor	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Character(temporary)	-	R2→ZCON→descriptor	-
Errors Detected:			
Error #	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			
Registers Unsafe Acros	s Call: Non	е	

Sets maxlength of result to 255. If the current length of the input string > maxlength of result, set current length of result to maxlength. Otherwise, set current length of result to current length of input. Find # of halfwords to move by shifting right 1 # of characters. Move halfword by halfword. If there is an odd # of characters, last byte moved is garbage.

<u>CASRV</u>

Secondary Entry Name: CASR

Function: Assigns a REMOTE character string to a character variable.

Invoked By:

X Compiler emitted code for HAL/S construct of the form:

C1 = <code>C2</code>, where <code>C1</code> and/or <code>C2</code> is a <code>REMOTE</code> character string.

Other Library Modules:

Execution Time (microseconds):

lf n = 0: 52.6

If n > 0: 51.8+12.6*(ceiling(n/2))+.8 (if length(C2) > maxlength(C1)), where n = minimum(length(C2), maxlength(C1)).

Input Arguments:

<u>Type</u> Character string	Precision -	<u>How Passed</u> R4→ZCON→descriptor	<u>Units</u> -
Output Results: <u>Type</u> Character string	Precision -	<u>How Passed</u> R2→ZCON→descriptor	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: None

Algorithm:

Same as CASRV, but do not set maxlength of result to 255.

<u>CPASR</u> HAL/S-FC LIBRARY ROUTINE DESCRIPTION Size of Code Area 132 Hw Source Member Name: <u>CPASR</u> Stack Requirement: 24 Hw Data CSECT Size: 2 Hw X Procedure Intrinsic Other Library Modules Referenced: None ENTRY POINT DESCRIPTIONS: Primary Entry Name: CPASR Function: Remote character assignment to a partitioned receiver. Invoked By: X Compiler emitted code for HAL/S construct of the form: $C1_{I TO J} = C2$, where C1 or C2 is a REMOTE character string. X Other Library Modules: **CPASRP** Execution Time (microseconds): LHP 77.9 + KA + KB + Σ (6.0 + K_{CLOUT+K}) + KD k=1 NCHAR + Σ (8.4 + K_{Ek} + KC_{I+K-1}) + KF k=1 RHP + Σ (6.0 + KC_{I+LIN+K-1}) + KG k=1 where: LOUT = length(C1) before assignment LIN = length(C2)KA = 0 if $J \leq LOUT$ 13.0 if J > LOUT LPART = J - I + 1KB = 15.8 if LPART > 0 and LIN < LPART 12.0 if LPART > 0 and LIN > LPART 0 if LPART = 0LHP = I-LOUT-1 if I > LOUT + 1 0 otherwise $KC_X = 19.8$ if X is odd 20.2 if X is even

KD =	3.2 if LHP = 0 and I is odd
	4.2 if LHP = 0 and I is even
	1.0 if LHP > 0 and LOUT is odd
	0 if LHP > 0 and LOUT is even
NCHAR =	minimum(LPART,LIN)
KE _X =	13.8 if X is odd
	14.4 if X is even
KF =	-0.8 if NCHAR > 0
	0 if NCHAR = 0
RHP =	LPART-LIN if LPART > LIN
	0 otherwise
KG =	0 if RHP > 0
	0.4 if RHP = 0

Note: If any of LHP, NCHAR, RHP is zero, then that respective summation is also zero.

Input Argui	ments:			
<u>Type</u>		Precision	How Passed	<u>Units</u>
Integer(I)		SP	R5	-
Integer(J)	1	SP	R6	-
Characte	r(C2)	-	$R4 {\rightarrow} ZCON {\rightarrow} descriptor$	-
Output Res	sults:			
<u>Type</u>		Precision	How Passed	<u>Units</u>
Characte	r(C1)	-	$R2 {\rightarrow} ZCON {\rightarrow} descriptor$	-
Errors Dete	ected:			
Error #	<u>Cause</u>			<u>Fixup</u>
17	Index of f	first character	< 1	Set to 1
	Index of I	ast character	> max length of receiver	Set to max length
	Index of I	ast character	< index of first character	Return receiver unchanged

Comments:

Registers Unsafe Across Call: F0,F1.

Algorithm:

If R5 < 1 then send error and set to 1.

If R6 > max length then send error and set to max length.

If R6 > current length of receiver, then update current length of receiver.

If R6 < R5 then send error and exit immediately. Otherwise, move partition character by character.

<u>CPASRP</u> HAL/S-FC LIBRARY ROUTINE DESCRIPTION Source Member Name: <u>CPASRP</u> Size of Code Area <u>16</u> Hw Stack Requirement: <u>146</u> Hw Data CSECT Size: 0 Hw X Procedure Intrinsic Other Library Modules Referenced: <u>CPASR, CASRPV</u> ENTRY POINT DESCRIPTIONS: Primary Entry Name: CPASRP Function: Remote character string assignment of partitioned input to partitioned output. Invoked By: X Compiler emitted code for HAL/S construct of the form: $C1_{i \text{ TO } i} = C2_{k \text{ to } 1}$ where C1 and C2 are character strings. Other Library Modules: Execution Time (microseconds): LHP 132.3 + KA + KB + KC + Σ (6.0 + KD_{OUTLEN+K}) + KE k=1 NCHAR + Σ (8.4 + KF_k + KD_{I+K-1}) + KG k=1 RHP + Σ (6.0 + KD_{I+INLEN+K-1}) + KH where: INPART = L - K + 1 if $L \ge K$ 0 otherwise INLEN = minimum(INPART, 255)KA = 76.8 if INPART = 0 and length(C2) = 0 89.0 + 15.8(ceiling(INLEN(2)) if inpart > 0 and K is odd 94.2 + 21.2(ceiling(INLEN(2)) if inpart > 0 and K is even OUTLEN = length(C1) before assignment KB = 0if J < OUTLEN 13.0 if J > OUTLEN OUTPART = J - I + 1 if J > I, 0 otherwise KC = 15.8 if OUTPART > 0 and INLEN = OUTPART 12.0 if OUTPART > 0 and INLEN¹ OUTPART 0 if OUTPART = 0LHP = I - OUTLEN - 1 if I > OUTLEN + 1, 0 otherwise $KD_X = 9.8$ if X is odd 20.2 if X is even

KE = 3.2 if LHP = 0 and I is odd 4.2 if LHP = 0 and I is even 1.0 if LHP > 0 and OUTLEN is odd if LHP > 0 and OUTLEN is even 0 NCHAR = minimum(OUTPART,INLEN) $KF_X = 13.8$ if X is odd 14.4 if X is even KG = -0.8 if NCHAR > 0 if NCHAR = 00 RHP = OUTPART - INLEN if OUTPART > INLEN, 0 otherwise if RHP > 0KH = 00.4 if RHP = 0

Note: If any of LHP, NCHAR, RHP is zero, then the respective summation is also zero.

Input Arguments:

<u>Type</u>	Precision	How Passed	<u>Units</u>
Character (C	2) -	R4→ZCON→descriptor	-
Integer(k)	SP	R5	-
Integer(I)	SP	R6	-
Integer(i j)	(SP SP)	R7	-
Output Results	3:		
Type	Precision	How Passed	<u>Units</u>
Character(C1) -	R2 \rightarrow ZCON \rightarrow descriptor	-
Errors Detecte	d:		
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
17	Subscript of character	Set out-of-bounds valu	e to first or last
	string out of bounds	character of associated s	string

Comments:

Registers Unsafe Across Call: F0,F1.

Algorithm:

Saves pointer to result in work area, loads address of vac in R1, and branches to CASRPV. Returns, loads result address in R1, loads arg 3 and arg 7 in R5 and R6 respectively and branches to CPASR, and returns.

			CSTP		
HAL/S-EC LIB			<u>00111</u>		
Source Member Name: CSTR Size of Code Area 18 Hw					
Stack Requirement: 18	<u>e n c</u> 3 Hw	Data CSECT Size: () Hw		
	<u></u> 1	X Procedure			
Other Library Modules Re	ferenced: N	one			
ENTRY POINT DESCRIPTIO	DNS:				
Primary Entry Name: CSTR					
Function: Comparison of REI	MOTE struc	tures.			
Invoked Bv:					
X Compiler emitted code f	or HAL/S co	onstruct of the form:			
IF S1 = S2 When	re S1, S2	, or both is a RE	MOTE structure		
occu	pying n l	halfwords.			
Other Library Modules:					
Execution Time (microsecone	ds):				
22.8 + 14.8n if structur	res compare	e, where n = # of halfwor	ds in structure.		
19.6 + 14.8n if structu	ires do not	compare, where n =	index of first non-		
matching	naitwords i	n structures.			
Input Arguments:	D		11.20		
<u>Iype</u> Structure	Precision	How Passed	<u>Units</u>		
(left comparand) S1	_	R2→7CON→first Hw	_		
Structure					
(right comparand) S2	-	R4→ZCON→first Hw	-		
Integer(n)	SP	R5	-		
Output Results:					
<u>Type</u>	Precision	How Passed	<u>Units</u>		
Equal/not equal	-	Condition Code	-		
Errors Detected:					
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>			
None					
Comments:					
Registers Unsafe Across	Call: None				

Compares structures, halfword by halfword, until two are found that are different or the end of the structure is reached. If inequality is found then set CC to 1 and return. If equal, then set CC to 0 and return.

November 2005

			MR0DNP
HAL/S-	FC LIBRARY	ROUTINE DESCRIPTION	
Source Member Na	ame: <u>MR0DNI</u>	P Size of Code Area 10	<u>6</u> Hw
Stack Requirement	:: <u>20_</u> Hw	Data CSECT Size:	<u>0</u> Hw
Intrinsic		X Procedure	
Other Library Modu	ules Referenc	ed: <u>None</u>	
ENTRY POINT DESCI	RIPTIONS:		
Primary Entry Name: <u>N</u> Function: Moves a so precision m	<u>/IR0DNP</u> calar value to natrix.	all positions of a partition of	a REMOTE double
Invoked By:			
X Compiler emitted	I code for HA	L/S construct of the form:	
M _{A то в,с то d} =	X; where matrix may be under indices values	M is a double pr , and either or both e replaced by the rules given for matr s A,B,C, and D mu . X is a scalar.	Tecision REMOTE 'TO' subscripts 'AT' subscripts 'ix types. The st be literal
Other Library Mo	dules:		
Execution Time (micro	seconds): 22	.8 + n (5.6 + 9.8m)	
Input Arguments:	-		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Scalar	DP	F0	-
Integer(n)	SP	R5	-
Integer(m)	SP	R6	-
Integer(outdel)	SP	R7	-
Output Results: <u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(n,m)	DP	R2→ZCON→0 th element	-
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsafe	Across Call: F	-0,F1.	
Algorithm:			

Same as MR0SNP except use 4 * (# columns) as row length in halfwords, and use double precision store.

			<u>MR0SNP</u>		
HAL/S	-FC LIBRAR	Y ROUTINE DESCRIPTION			
Source Member Na	ame: <u>MR0SN</u>	<u>NP</u> Size of Code Area <u>1</u>	<u>6</u> Hw		
Stack Requirement	t: <u>20</u> Hv	v Data CSECT Size:	<u>0</u> Hw		
Intrinsic		X Procedure			
Other Library Modu	ules Referen	ced: <u>None</u>			
ENTRY POINT DESC	CRIPTIONS:				
Primary Entry Name:	<u>MR0SNP</u>				
Function: Moves a s	calar value t	to all positions of a partition o	of a REMOTE single		
precision i	matrix.				
Invoked By:					
X Compiler emitted	d code for HA	AL/S construct of the form:			
M _{A TO B,C TO D} =	X; where M	1 is a REMOTE single p	precision matrix		
	and eit	ther or both 'TO' sul	oscripts may be		
	replaced by the 'AT' under rules given for				
	must be	e literal values. X i	s a scalar.		
Other Library Mo	dules:				
Evolution Time (miar	aaaaanda). C	22.9 + n (E.G. + 9.6m) for an n	v m portition		
		2.8 + 11 (5.8 + 8.811) 101 all 11	x m partition.		
	Precision	How Passed	Linite		
<u>Type</u> Scalar	<u>SP</u>	FO	<u>-</u>		
Integer(n)	SP	R5	-		
Integer(m)	SP	R6	-		
Integer(outdel)	SP	R7	-		
Output Results:					
Type	Precision	How Passed	<u>Units</u>		
Matrix(n,m)	SP	R2→ZCON→0 th element	-		

Matrix(n,m) SP Errors Detected: Error # <u>Cause</u>

<u>Fixup</u>

None Comments:

Registers Unsafe Across Call: F0.

Find row length in halfwords by SLL # columns, 1 add row length to outdel

- Indexing on # rows, using BCTB Loop:
 - Indexing on # columns, using BCTB Loop: Store scalar in pointed to output element End.

Add outdel (with row size) to output pointer

End.

		<u>N</u>	<u>IR1DNP</u>
HAL/S-FC L	IBRARY R	OUTINE DESCRIPTION	
Source Member Name: Stack Requirement:	<u>MR1DNP</u> _22_Hw Referenced	Size of Code Area <u>22</u> Data CSECT Size: <u>0</u> X Procedure : None	Hw Hw
ENTRY POINT DESCRIP	TIONS:		
Primary Entry Name: <u>MR1</u> Function: Moves a partiti precision mate attribute.	<u>DNP</u> ion of a dou rix. At lea	ble precision matrix to a pa st one of the matrices ha	rtition of a double as the REMOTE
Invoked By:			
X Compiler emitted cod	e for HAL/S	construct of the form:	
M1=M2 _{A TO B,C TO D}	; where matrice is REI ; subscri subscri	M1 and M2 are dou es, and at least one MOTE and either c ipts may be repla ipts under rules giv	ble precision of M1 and M2 or both 'TO' nced by 'AT' yen for matrix
Other Librery Medule	literal	l values.	and D must be
	5.		
Execution Time (microsec	onds): 28.4	+ n (8.2 + 15m) for an n x r	n partition.
Input Arguments: <u>Type</u> Matrix(n,m)	<u>Precisior</u> DP	n <u>How Passed</u> R4→ZCON→0 th element	<u>Units</u> -
Integer(rows) Integer(columns) Integer(indel, outdel)	SP SP SP	R5 R6 R7	- -
Output Results: <u>Type</u> Matrix(n,m)	<u>Precision</u> DP	<u>How Passed</u> R2→ZCON→0 th element	<u>Units</u> -
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	

Comments:

Registers Unsafe Across Call: F0,F1.

Same as MR1SNP, except use double precision loads and stores and use $4_{\star}(\text{\# columns})$ as row length.

		MR	1SNP
HAL/S-FC L	IBRARY RO	OUTINE DESCRIPTION	
Source Member Name:	<u>//R1SNP</u>	Size of Code Area 22	Hw
Stack Requirement: 2	<u>22</u> Hw	Data CSECT Size: 0	_Hw
Intrinsic		XProcedure	
Other Library Modules R	Referenced:	None	
ENTRY POINT DESCRIPT	<u>IONS:</u>		
Primary Entry Name: <u>MR15</u> Function: Moves a partition precision matriattribute.	<u>SNP</u> on of a sing ix. Either	le precision matrix to a partitior or both matrices have the	n of a single REMOTE
Invoked By:			
X Compiler emitted code	e for HAL/S	construct of the form:	
M1=M2 _{A TO B,C TO D} ;	where M	1 and M2 are single	e precision
M1M2 .	matrices	, and at least one of M	11 and M2 is
M_{A} to b,c to $D^{=M_{2}}$;	mav be i	replaced by 'AT' subsc	ripts under
	rules gi	ven for matrix types.	The indices
	A,B,C, a	nd D must be literal va	alues.
Other Library Modules	:		
Execution Time (microseco	onds): 28.4 -	+ n (8.2 + 12.6m) for an n x m p	partition.
Input Arguments:			
<u>Type</u>	Precision	<u>How Passed</u>	<u>Units</u>
Matrix(n,m)	SP	R4→ZCON→0 th element	-
Integer(n)	SP	R5	-
Integer(m)	SP	R6	-
Integer(indel, outdel)	(SP SP)	R7	-
Output Results:			
Type	Precision	How Passed	<u>Units</u>
Matrix(n,m)	SP	R2→ZCON→0 th element	-
Errors Detected:			
Error #	<u>Cause</u>	Fixup	
None			
Comments:			

Registers Unsafe Across Call: F0.

Separate indel and outdel into separate registers. Find row size, in halfwords, of result matrix by shifting left 1,

columns

Add rowsize to indel

Add rowsize to outdel

Loop: Indexing on # of rows of output, and using BCTB

Loop: Indexing on # of columns of input, using BCTB

load (single precision) pointed to input element

store (single precision) pointed to output element

End.

Add indel (with row size added) to input pointer Add outdel (with row size added) to output pointer

End.

			<u>11NP</u>
HAL/3-FC L		Size of Code Area 24	
Stock Requirement: 2	/ <u>IRTINE</u> 3 22 Hw	Data CSECT Size: 0	
		X Procedure	
Other Library Modules R	eferenced. N		
ENTRY POINT DESCRIPT	IONS [.]		
Primary Entry Name: MR11	NP		
Function: Moves a partition	on of a doub	le precision matrix to a parti	tion of a
single precision	n matrix. At	least one of the matrices	has the
REMOTE attrib	ute.		
Invoked By:			
X Compiler emitted code	for HAL/S co	onstruct of the form:	
M1=M2 _{A TO B,C TO D} ;	where Mi	l is a single pr	ecision
	matrix, i matrix a	M2 is a double pr nd at least one of M1	and M2
M1, mo p a mo p=M2:	is REMOT	E and either or bot	h 'TO'
A 10 B,C 10 D,	subscript	s may be replaced b	y 'AT'
	subscript	s under rules give	en for
	D must be	pes. The indices A,B literal values	,C, and
Other Library Modules	:		
Execution Time (microseco	nds): 31.2 +	n (7.6 + 13.8m) for an n x m	partition.
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(n,m)	DP	R4→ZCON→0 th element	-
Integer(rows)	SP	R5	-
Integer(columns)	SP	R6	-
Integer(indel, outdel)	(SP SP)	R7	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Matrix(n,m)	5P	R2→ZCON→0 th element	-
Errors Detected:			
Error #	<u>Cause</u>	<u>Fixup</u>	
None			

Comments:

Registers Unsafe Across Call: F0,F1.

Same as MR1SNP, except use double precision load for index alignment, and use $4 \cdot (\# \text{ columns})$ as the length in halfwords of double precision partition.

			<u>MR1WNP</u>
HAL/S-	FC LIBRARY	ROUTINE DESCRIPTION	
Source Member Nan	ne: <u>MR1WNP</u>	Size of Code Area	<u>24 </u> Hw
Stack Requirement:	<u>22</u> Hw	Data CSECT Size:	<u> 0 </u>
Intrinsic		X Procedure	
Other Library Module	es Referenceo	l: <u>None</u>	
<u>ENTRY POINT DESCRI</u>	<u>PTIONS:</u>		
Primary Entry Name: <u>MF</u> Function: Moves a pa precision ma	<u>R1WNP</u> rtition of a sir atrix. Either or	ngle precision matrix to a pa both matrices have REMOT	rtition of a doub E attribute.
Invoked By:	ode for HAL/S	construct of the form:	
	, where Mi	l is a double precis:	ion matrix.
A 10 B,C 10	M2 is a	single precision mat	rix, and at
M1	, least of	ne of M1 and M2 is	REMOTE and
····A TO B, C TO D-···	'either	or both 'TO' subscri	pts may be
	replaced	l by 'AT' subscripts	under rules
	given i	or matrix types. I	ne indices
Other Library Modu	A, D, C, C	ind D must be interat	varues.
Execution Time (microse	econds): 32.8	+ n (8.2 + 13.8m) for an n x n	n partition.
Input Arguments:			
<u>lype</u>	Precision	How Passed	<u>Units</u>
Matrix	SP	R4→ZCON→0 th element	-
Integer(rows)	SP	R5	-
Integer(columns)	SP	R6	-
Integer(indel, outdel)	(SP,SP)	R7	-
Output Results:			
<u>Type</u>	Precision	<u>How Passed</u>	<u>Units</u>
Matrix	DP	R2→ZCON→0 th element	-
Errors Detected: <u>Error #</u> None	<u>Cause</u>	<u>Fixup</u>	
Comments: Registers Unsafe Ac	ross Call: F0,	F1.	

Same as MR1SNP, except use double precision stores after zeroing the low half of the floating point register.

			MSTR
HAI	_/S-FC LIBRAF	RY ROUTINE DESCRIPT	ION
Source Membe	r Name: MSTR	<u>R</u> Size of Code Area	<u>42</u> Hw
Stack Requiren	nent: <u>18</u> H	Hw Data CSECT Siz	:e: <u>0</u> Hw
		X Procedure)
Other Library M	lodules Refere	nced: <u>None</u>	
ENTRY POINT DE	<u>ESCRIPTIONS</u>	<u>:</u>	
Primary Entry Nar	ne: <u>MSTR</u>		
Function: Moves a	a structure to or	r from a REMOTE locatio	n.
Invoked By:			
X Compiler emi	tted code for H	IAL/S construct of the for	m:
S1=S2 w	here S1 c	or both S1 and	S2 are REMOTI
S	tructures c	occupying n halfwor	ds.
Other Library	Modules:		
Execution Time (n	nicroseconds):	16.8 + 15n	
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Structure(S2)	-	R4→ZCON→first Hw	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Structure(S1)	-	R2→ZCON→first Hw	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	Fixup	
None			
Comments:			
Registers Uns	afe Across Ca	II: None.	
Algorithm			
, agonann.			

Moves structure halfword by halfword.

			VR0DN			
HAL/S-FC LIBRARY ROUTINE DESCRIPTION						
Source Member Name: <u>VR0DN</u> Size of Code Area <u>6</u> Hw						
Stack Requirer	ment: <u>18</u>	_Hw Data CSECT Size	e: <u>0</u> Hw			
Intrinsic	Intrinsic X Procedure					
Other Library Modules Referenced: None						
ENTRY POINT D	ESCRIPTIO	NS:				
Primary Entry Name: <u>VR0DN</u> Function: Moves a scalar to all elements of a double precision vector with the REMOTE attribute.						
Invoked By: X Compiler emitted code for HAL/S construct of the form:						
Other Library Modules:						
Execution Time (r	nicroseconc	ls): 16.4 + 9.2n, where n = s	size of vector.			
Input Arguments:						
<u>Type</u> Seclar	Precision	How Passed	<u>Units</u>			
Integer(n)	SP	R5	-			
Output Results:	-	-				
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Vector(n)	DP	R4→ZCON→0 th element	-			
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>				
Comments: Registers Unsafe Across Call: F0,F1.						
Algorithm: Same as VR0SN, except use double precision store.						

November 2005

			VR0DNP			
HAL/S-FC LIBRARY ROUTINE DESCRIPTION						
Source Member N	lame: <u>VR0DN</u>	<u>IP</u> Size of Code Area	<u>10</u> Hw			
Stack Requirement: <u>18</u> Hw		Data CSECT Size:	<u>0</u> Hw			
Intrinsic X Procedure						
Other Library Modules Referenced: None						
ENTRY POINT DES	<u>CRIPTIONS:</u>					
Primary Entry Name	: <u>VR0DNP</u>					
Function: Moves a se	calar to all ele	ements of a column of a doub	le precision matrix.			
Invoked By:						
X Compiler emitte	ed code for H	AL/S construct of the form:				
$M_{*,I}=0;$ where	re Misa (double precision REMO	FE matrix.			
Other Library Modules:						
Execution Time (mic	roseconds): 2	21.2 + 10.0n, n = length of ve	ctor result.			
Input Arguments:						
<u>Type</u> Seeler	Precision	How Passed	<u>Units</u>			
Scalar Integer(n)	UP SD	FU R5	-			
Integer(n)	SP	R7	-			
Output Results:	•					
Type	Precision	How Passed	Units			
Vector(n)	DP	$R2 \rightarrow 7CON \rightarrow 0^{\text{th}}$ element	-			
Emere Detected						
Error #	Cause	Fixun				
None	00000	<u></u>				
Comments.						
Registers Unsafe	e Across Call:	: F0. F1.				
Algorithm:		····,···				

Same as VR0SNP, except use double precision stores.

			VR0SN			
HAL/S-FC LIBRARY ROUTINE DESCRIPTION						
Source Mem	Source Member Name: <u>VR0SN</u> Size of Code Area <u>6</u> Hw					
Stack Requir	Stack Requirement: <u>18</u> Hw Data CSECT Size <u>0</u> Hw					
Intrinsio	Intrinsic X Procedure					
Other Library Modules Referenced: None						
ENTRY POINT [DESCRIPTIO	<u>NS:</u>				
Primary Entry Name: <u>VR0SN</u> Function: Moves a scalar to all elements of a single precision vector with the REMOTE attribute.						
Invoked By: X Compiler emitted code for HAL/S construct of the form: V=0; where V is a REMOTE single precision vector.						
Other Librar	y Modules:					
Execution Time (microseconds): $16.4 + 8n$, $n = size$ of vector.						
Input Arguments	:					
<u>Type</u>	Precision	How Passed	<u>Units</u>			
Scalar	SP	F0	-			
Integer(n)	SP	R5	-			
Output Results:						
<u>Type</u>	Precision	How Passed	<u>Units</u>			
vector(n)	52	$R2 \rightarrow ZCON \rightarrow 0^{tn}$ element	-			
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>				
Comments: Registers Ur	safe Across	Call: F0.				
Algorithm: Store elements in reverse order using the input length both as an index a						

Store elements in reverse order using the input length both as an index and to control the loop.
			<u>VR0SNP</u>
H	AL/S-FC LIBRA	RY ROUTINE DESCR	PTION
Source Memb	er Name: <u>VR0S</u>	<u>NP</u> Size of Code Area	a <u>10</u> Hw
Stack Require	ment: <u>18</u> H	w Data CSECT S	Size: <u>0</u> Hw
Intrinsic		X Proce	dure
Other Library I	Modules Refere	nced: <u>None</u>	
ENTRY POINT DI	ESCRIPTIONS:		
Primary Entry Nar	ne: VR0SNP		
Function: Moves a	a scalar to all ele	ements of a column of a	a single precision matrix
Invoked By:			
X Compiler emi	tted code for HA	AL/S construct of the fo	rm:
$M_{+} = 0$: whe	ere M is a s	ingle precision R	EMOTE matrix.
Other Library	Modules:		
	iorococodo): ()1.2 + 9.9 n - longth i	of vootor rooult
Execution Time (ii	nicroseconus). 2	21.2 + 0.01, 11 = 1000000000000000000000000000000	of vector result.
Input Arguments:			11.26
<u>Type</u> Seeler	Precision	How Passed	<u>Units</u>
Scalal Integer(n)	SP SD	FU P6	-
Integer(n)	SF	R7	-
	01		
Output Results:	Dragician	How Decod	Linita
<u>Type</u> Vector(p)	Precision SD	HOW Passed	<u>Units</u>
vector(II)	35	$R2 \rightarrow ZCON \rightarrow 0^{""}$	-
		element	
Errors Detected:	•		
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			

Registers Unsafe Across Call: F0.

Algorithm:

Store elements one at a time, adding outdel to the pointer after each store.

			VR1DN
HA	AL/S-FC LIBF	ARY ROUTINE DESCRIPT	ION
Source Memb	er Name: <u>VR</u>	<u>ALDN</u> Size of Code Area	<u>8</u> Hw
Stack Require	ment: <u>18</u>	Hw Data CSECT Siz	e: <u>0</u> Hw
Intrinsic		X Procedure	
Other Library	Modules Ref	erenced: <u>None</u>	
ENTRY POINT D	DESCRIPTIO	<u>NS:</u>	
Primary Entry Na Function: Move least	ame: <u>VR1DN</u> s a double pr one of the ve	ecision vector to a double pr ctors has the REMOTE attril	recision vector, where at bute.
Invoked By: XCompiler en	nitted code fo	or HAL/S construct of the forr	n:
V2=V1; wh an	ere V1 or d V1, V2 a	V2 has been declare are both double preci	d a REMOTE vector, sion.
Other Librar	y Modules:		
Execution Time (microsecond	s): 16.4 + 15n, n = length of	vector.
Input Arguments	:		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector	DP	R4→ZCON→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u> Vector(n)	Precision	How Passed	<u>Units</u>
vector(n)	DP	$R1 \rightarrow ZCON \rightarrow 0^{\prime\prime\prime}$ element	-
Errors Detected: Error # None	<u>Cause</u>	Fixup	
Comments: Registers Ur	safe Across	Call: F0,F1.	
Algorithm: Same as VR	1SN, except	use double precision loads a	and stores.

			VR1DNP
HAL	./S-FC LIBRAF	RY ROUTINE DESCRIPTIO	N
Source Member	Name: VR1DN	NP Size of Code Area	<u>20</u> Hw
Stack Requireme	ent: <u>18</u> Hv	W Data CSECT Size	e: <u>0</u> Hw
Intrinsic		X Procedure	
Other Library Mo	odules Referen	iced: <u>None</u>	
ENTRY POINT DE	<u>SCRIPTIONS:</u>		
Primary Entry Nam Function: Moves element has the	e: <u>VR1DNP</u> a double preci ts of source or REMOTE attri	sion vector to a double pro receiver are not contiguou bute.	ecision vector when us, and at least one
Invoked By:			
		AL/S construct of the form:	
V=M _{*,J} ; whe	re v nas tor Miga	been declared a d double precision ma	trix and V or M
M _{* ⊤} =V; is	REMOTE.	a double precision ma	clix, and V or M
Other Library I	Modules:		
Execution Time (mi	croseconds) :	17.0n + 29.6 if neither input	nor output is contiguous.
		17.0n + 30.4 if either input c	or output is contiguous,
	w	here n = length of vector.	
Input Arguments:		J. J	
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R4 \rightarrow ZCON \rightarrow 0 th element	-
Integer(n)	SP	R5	-
Integer(indel)	SP	R6	-
Integer(outdel)	SP	R7	-
Output Results: <u>Type</u>	<u>Precision</u>	How Passed	<u>Units</u>

Errors Detected:

Cause Fixup

Comments:

Error #

None

Vector(n)

Registers Unsafe Across Call: F0,F1.

DP

Algorithm:

Same as VR1SNP, except if indel or outdel = 0, sets to 4, and does double precision loads and stores.

R2 \rightarrow ZCON \rightarrow 0th element

-

			VR1SN
HA	L/S-FC LIBR	ARY ROUTINE DESCRIPT	TION
Source Memb	er Name: <u>VR</u>	1SN Size of Code Area	<u>8</u> Hw
Stack Require	ment: <u>18</u> Hv	v Data CSECT Size:	<u> </u>
Intrinsic		X Procedure	
Other Library	Modules Refe	erenced: <u>None</u>	
ENTRY POINT D	DESCRIPTIO	<u>NS:</u>	
Primary Entry Na Function: Move least	ame: <u>VR1SN</u> s a single pre one of the veo	ecision vector to a single protors has the REMOTE attri	ecision vector where at bute.
Invoked By: X Compiler en	nitted code fo	r HAL/S construct of the for	m:
V1=V2; w]	here V1 ar	nd/or V2 are REMOTE	and both V1 and V2
	re single	precision.	
Other Librar	y Modules:		
Execution Time (microsecond	s): 16.4 + 12.6n, n = length	of vector.
Input Arguments	:		
<u>lype</u>	Precision	How Passed	<u>Units</u>
	3P	$R4 \rightarrow ZCON \rightarrow 0^{""}$ element	-
Integer(n)	58	KO	-
Output Results:	Dragician	How Doood	Linita
<u>Type</u> Vector(n)	SP	<u>now Passeu</u>	<u>-</u>
Veolor(II)		$R_2 \rightarrow 2CON \rightarrow 0^{**}$ element	
Errors Detected: Error # None	<u>Cause</u>	Fixup	
Comments:			
Registers Ur	safe Across (Call: F0.	
Algorithm:			
Loops n time	s, using lengt	h both as index and to cont	rol the loop. Load, then store,
each elemen	it in turn.		

		N N	
			<u>KISNE</u>
Source Member N	ame: VR1SNP	Size of Code Area 20	Нум
Stack Requirement	1110. <u>VICTOINI</u>	Data CSECT Size: 0	
	<u>10</u> 11W	X Procedure	
Other Library Modu	iles Reference		
Drimony Entry Nome			
Function: Moves a elements o the REMO	single precisio of source or rec TE attribute.	on vector to a single precisio ceiver are not contiguous and a	n vector when at least one has
Invoked By:			
X Compiler emitted	l code for HAL/	/S construct of the form:	
$V = M_{\star,J};$ when sing $M_{\star,J} = V;$ REMO	e V is a gle precisi DTE attribut	single precision vection matrix, and V or te.	tor, M is a M has the
Other Library Mo	dules:		
Execution Time (micro	oseconds):		
14.6n + 30.4 if eit	her input or ou	tput is contiguous.	
14.6n + 29.6 if ne	ither input nor	output is contiguous, where n=	length of vector.
Input Arguments:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R4→ZCON→0 th element	-
Integer(n)	SP	R5	-
Integer(indel)	SP	R6	-
Integer(outdel)	SP	R7	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector	SP	R2→ZCON→0 th element	-
Errors Detected: <u>Error #</u> None	<u>Cause</u>	Fixup	
Comments: Registers Unsafe	Across Call: F	0,F1.	
Algorithm:			
If outdel = 0, sets	it to 2.		
If indel = 0, sets it	to 2.		
Loops 'length' tim and outdel to outp	ies, moving or out pointer afte	ne element each loop. Adds i r each move.	ndel to input pointer

			<u>VR1TN</u>
	HAL/S-FC LIBR	ARY ROUTINE DESCRIPTION	NC
Source Mem	ber Name: <u>VR1</u>	TN Size of Code Area	<u>8</u> Hw
Stack Requir	ement: <u>18</u> H	w Data CSECT Size	: <u>0</u> Hw
Intrinsic		X Procedure	
Other Library	Modules Refe	renced: <u>None</u>	
ENTRY POINT D	DESCRIPTION	<u>S:</u>	
Primary Entry Na Function: Move least	ame: <u>VR1TN</u> s a double prec one of the vecto	tision vector to a single precis ors has the REMOTE attribute	ion vector, where at e.
Invoked By:			
X Compiler en	nitted code for I	HAL/S construct of the form:	
V1=V2; wi di ai	here V1 is ouble preci nd V2 is REN	a single precision v sion vector, and at MOTE.	vector, V2 is a least one of V1
Other Librar	y Modules:		
Execution Time ((microseconds)	: 16.4n + 13.8n, n = length of	vector.
Input Arguments	•		
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R4→ZCON→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector	SP	R2→ZCON→0 th element	-
Errors Detected: Error # None	<u>Cause</u>	<u>Fixup</u>	
Comments:			
Registers Ur	nsafe Across Ca	all: F0,F1.	
Algorithm:			
Same as VR	1SN, except us	se double precision loads.	
	•	·	

			VR1TNP
HAL/S-	FC LIBRAR	Y ROUTINE DESCRIPTION	
Source Member Na	ame: VR1TN	IP Size of Code Area	20 Hw
Stack Requirement	: 18 H	w Data CSECT Size:	0 Hw
Intrinsic		X Procedure	
Other Library Modu	lles Referer	nced: <u>None</u>	
ENTRY POINT DESC	RIPTIONS:		
Primary Entry Name:	VR1TNP		
Function: Moves a d	double prec	ision vector to a single pred	cision vector, when
elements of	of source or	receiver are not contiguous,	and at least one of
them has	the REMOT	E attribute.	
Invoked By:			
X Compiler emitted	code for H/	AL/S construct of the form:	
V=M _{*,J} ; where	V is a	n single precision v	rector, M is a
doubl	e precisi	on matrix, and V or M	M is REMOTE.
Other Library Mo	dules:		
Execution Time (micro	oseconds):1	5.8n + 30.4 if either input or	output is contiguous.
	1	5.8n + 29.6 if neither input n	or output is contiguous,
	W	here n=length of vector.	
Input Arguments:	_		11.5
<u>lype</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R4→ZCON→0 th element	-
Integer(n)	SP	R5	-
Integer(indel)	SP	R6	-
Integer(outdel)	58	R/	-
Output Results:			
<u>lype</u>	Precision	How Passed	<u>Units</u>
Vector	SP	R2→ZCON→0 th element	-
Errors Detected:			
<u>Error #</u>	<u>Cause</u>	<u>Fixup</u>	
None			
Comments:			

Registers Unsafe Across Call: F0,F1.

Algorithm:

Same as VR1SNP, except if indel = 0, sets it to 4, and does double precision loads.

			<u>VR1WN</u>
F	IAL/S-FC LIBRA	ARY ROUTINE DESCRIPTION	J
Source Mem	ber Name: <u>VR1</u>	WN Size of Code Area	<u>10</u> Hw
Stack Requir	ement: <u>18</u> I	Hw Data CSECT Size:	<u> 0 </u> Hw
Intrinsi	С	XProcedure	
Other Library	Modules Refer	renced: <u>None</u>	
ENTRY POINT	DESCRIPTION	<u>IS:</u>	
Primary Entry N Function: Mov lease	lame: <u>VR1WN</u> es a single prec t one of the vec	cision vector to a double precision the REMOTE attribute	sion vector, where at e.
Invoked By: XCompiler e	mitted code for	HAL/S construct of the form:	
V1=V2; w V	here V1 or N 2 single pre	<i>V</i> 2 are remote, V1 doubl ecision.	e precision, and
Other Libra	ary Modules:		
Execution Time	(microseconds)): 20.6 + 13.8n, n = length of v	vector.
Input Arguments	s:		
<u>. Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	SP	R4→ZCON→0 th element	-
Integer(n)	SP	R5	-
Output Results:			
<u>Type</u>	Precision	How Passed	<u>Units</u>
Vector(n)	DP	R2→ZCON→0 th element	-
Errors Detected Error # None	: <u>Cause</u>	<u>Fixup</u>	
Comments: Registers U	Insafe Across C	all: F0,F1.	
Algorithm: Same as VF	R1SN, except u	se double precision store with	low half of floating register

				<u>/R1WNP</u>
	HAL/S-	FC LIBRARY R	OUTINE DESCRIPTION	
	Source Member Na	ame: <u>VR1WNP</u>	Size of Code Area	<u>22</u> Hw
	Stack Requirement	:: <u>18</u> Hw	Da <u>ta C</u> SECT Size:	<u>0</u> Hw
	Intrinsic		X Procedure	
	Other Library Modu	les Reference	d: <u>None</u>	
E	NTRY POINT DESC	RIPTIONS:		
P	rimary Entry Name:	<u>VR1WNP</u>		
F	unction: Moves a s	single precisior	n vector to a double precis	sion vector, when
	elements of	of source or rec	ceiver are not contiguous, a	nd at least one of
	them has t	ne REMOTE a	undule.	
lr	nvoked By:			
	X Compiler emitted	code for HAL/	S construct of the form:	
	V=M _{*,J} ; where	V is a dou	ble precision vector	, M is a single
ſ		sion matrix	, and V or M is REMO	TE.
l		dules:		
E	execution Time (micro	oseconds): 15.8	3n + 31.2 if either input or ou	utput is contiguous.
		15.8	n + 32.0 if neither input nor	output is contiguous.
Ir	nput Arguments:			
	<u>Type</u>	Precision	How Passed	<u>Units</u>
	Vector(n)	SP	R4 \rightarrow ZCON \rightarrow 0 th element	-
	Integer(n)	SP	R5	-
	Integer(indel)	SP	R6	-
	Integer(outdel)	SP	R7	-
С	Output Results:			
	<u>Type</u>	Precision	How Passed	<u>Units</u>
	Vector(n)	DP	R2 \rightarrow ZCON \rightarrow 0 th element	-
E	rrors Detected:			

None

Error #

Comments:

Registers Unsafe Across Call: F0,F1.

<u>Cause</u>

Algorithm:

Same as VR1SNP, except if outdel=0, sets it to 4, and uses double precision stores, after clearing the low half of the floating point register.

<u>Fixup</u>

Table 6-1	Index	of	Library	Entry	/ Name
-----------	-------	----	---------	-------	--------

Α	СТОІ ,6-292	6-100, EPWRH
ACOS ,6-54	СТОК ,6-295	EPWRI ,6-98
ACOSH ,6-57	СТОО ,6-298	ESUM ,6-264
ASIN ,6-55	CTOX .6-296	ETOC .6-301
ASINH ,6-58	CTRIMV .6-255	ETOH .6-304
ATAN .6-96		ETOL 6-52
ATANH .6-59	D	EXP 6-101
	DACOS ,6-60	
В	DACOSH .6-63	G
BTOC ,6-273	DASIN .6-61	GTBYTE .6-307
	DASINH .6-64	,
C	DATAN .6-68	Н
CAS ,6-237	DATAN2 6-66	6-265, HMAX
CASP ,6-234	DATANH 6-65	6-266, HMIN
CASPV ,6-232	DCEII 6-47	6-42, HMOD
CASR ,6-327	DCOS 6-83	6-267, HPROD
CASRP ,6-325	DCOSH 6-79	HPWRH ,6-106
CASRPV ,6-323	DEXP 6-69	HREM .6-44
CASRV ,6-326		HSUM .6-268
CASV ,6-235	D = C = C = 71	HTOC .6-309
CAT ,6-240	DLOG, 0-71	,
CATV ,6-238		I
CEIL ,6-46	DMIN 6-258	1MAX ,6-269
CINDEX .6-241		IMIN ,6-270
CLJSTV 6-243		IMOD ,6-41
COS .6-115		6-271, IPROD
COSH .6-111		6-105, IPWRH
CPAS .6-245		6-103, IPWRI
CPASP .6-247	DPWRI,0-74	IREM ,6-43
CPASR 6-328	DROUND ,0-49	6-272, ISUM
CPASRP 6-330		1TOC ,6-308
CPR 6-248		110D ,6-310
CPRA 6-251	DSLD ,6-299	ITOE ,6-311
CPRC 6-250	DSNCS ,6-80	
CPSID 6-277	DSQRT ,6-85	К
CPSI DP 6-278	DSS1,6-300	6-312, KTOC
CPSST 6-279	DSUM ,6-260	
CPSSTP 6-281	DTAN ,6-88	L
$CP ST 6_253$	DTANH ,6-91	LOG ,6-107
CCUADO = 6.274	DTOC ,6-303	••
	DTOH ,6-306	
	DTOI ,6-50	MMUDNP ,6-122
CSLDP, $0-202$	DTRUNC ,6-51	MMUSNP ,6-124
CSS1, 0-203	_	MM11D3 ,6-138
CSSIP, 0-204		MM11DN ,6-137
	EATAN2 ,6-93	MM11S3 ,6-140
USIKUU ,0-200	EMAX ,6-261	MM11SN ,6-139
CIUB ,0-200	EMIN ,6-262	MM12D3 ,6-143
CTOD ,6-291	EMOD ,6-40	MM12DN ,6-141
CTOE ,6-288	EPROD ,6-263	6-146, MM12S3
СТОН ,6-294	EPWRE ,6-97	6-144, MM12SN

MM13D3 .6-148	SINH .6-109	VV1T3 .6-187
MM13DN 6-147	SNCS 6-112	VV/1T3P 6-188
		VVITO ,0 100
101101353,0-150	SQRT,0-TT	001-0, NIIIVV
MM13SN ,6-149	STBYTE ,6-318	0-189, VV1TNP
MM14D3 .6-152		VV1W3 .6-191
MM14DN 6-151	т	V/V/1W/3P 6-192
	TAN 6-119	
1011011453 ,0-155	$T_{ANII} = 6_{-}121$	VVIVIN ,0-190
MM14SN ,6-153		VV1WNP ,6-193
MM15DN ,6-156	TRUNC ,6-53	6-195, VV2D3
MM15SN .6-157		VV2DN .6-194
MM17D3 6-158	V	V/V/283 6-107
101001703,0-150	VM6D3 ,6-167	VV200,0-107
MM17DN ,0-159	VM6DN 6-166	VV25N ,0-190
MM17S3 ,6-160	VM6S3 6-160	0-199, VV3D3
MM17SN ,6-161		VV3DN ,6-198
MM1DNP 6-125	VIVI6SIN ,0-108	VV3S3 6-201
MM19ND 6-127	VO6D3 ,6-171	V/V3SN 6-200
	VO6DN ,6-170	VVJJN ,0-200
MM11NP ,6-129	V06S3 6-173	VV4D3 ,6-203
MM1WNP ,6-131	VO6SN 6-172	0-202, VV4DN
MM6D3 ,6-134		6-205, VV4S3
MM6DN6-133	VRUDN ,0-344	VV4SN .6-204
MM6S3 6-136	VR0DNP ,6-345	V/V5D3 6-207
	VR0SN ,6-346	VV5D5 ,0 201
	VR0SNP .6-347	VV5DN ,0-200
MR0DNP ,6-333	VR1DN 6-348	VV5S3 ,6-209
MR0SNP ,6-334		0-208, VV5SN
MR1DNP ,6-336	VRIDNE ,0-349	VV6D3 ,6-211
MR1SNP 6-338	VRISN ,0-350	VV6DN 6-210
MR1TNP 6-340	VR1SNP ,6-351	1/1/653 6-213
	VR1TN ,6-352	VV000 ,0 210
	VR1TNP .6-353	VV05IN ,0-212
MSTR ,6-343	VR1WN 6-354	VV7D3 ,6-215
MV6D3 ,6-163		0-214, VV7DN
MV6DN .6-162		VV7S3 .6-217
MV6S3 6-165	VVUDN ,6-174	VV7SN 6-216
MV/6SN 6-164	VV0DNP ,6-175	
101V0311,0-104	VV0SN ,6-176	VV0D3,0-210
0	VV0SNP .6-177	VV8DN ,6-219
	VV/10D3 6-223	0-220, VV8S3
0100,6-321	1000,0-220	VV8SN ,6-221
-	VV10DN ,0-220	VV9D3 .6-224
Q	VV10S3 ,6-227	V/V9DN 6-225
QSHAPQ ,6-314	VV10SN ,6-229	
	VV1D3 .6-179	VV953,0-222
R	VV/1D3P 6-180	VV9SN ,6-228
RANDG 6-317		6-230, VX6D3
PANDOM 6-316		VX6S3 .6-231
	VV1DNP ,6-181	,
KUUNU ,0-40	VV1S3 ,6-183	Х
•	VV1S3P ,6-184	XTOC 6-310
3	VV1SN .6-182	A100,0-010
SIN ,6-116	V/V1SNP 6-185	

7.0 System Interfaces

This section deals with characteristics and behavior of the HAL/S-FC compiler as related to the environment in which the compiler operates. Specifically, these items are in relation to the host computer in which the compiler is executed.

7.1 Internal System Interfaces

The HAL/S-FC compiler is designed to operate under OS/360 MVT or an equivalent operating system (such as OS/VS2 on IBM 370 equipment). The compiler was developed under Release 21.6 of OS and uses many of the features of that system.

7.1.1 Macro Instructions

All operating system communication is performed via standard assembler language macro instructions as provided with OS MVT. The following list contains the names of all macros executed directly by the HAL/S-FC compiler.

ABEND	BLDL	CHECK	CLOSE	DCB
DCBD	DELETE	FIND	FREEMAIN	FREEPOOL
GET	GETBUF	GETMAIN	LOAD	NOTE
OPEN	POINT	PUT	READ	RETURN
SAVE	SPIE	STIMER	STOW	TIME
TTIMER	WRITE			

The forms of some of these macros require further explanation:

FREEMAIN	-	All FREEMAIN macros use the SP parameter to indicate
		subpool 22. Both freeing of single elements of storage and
		freeing of an entire subpool are performed.

- GETMAIN All requests for main storage are made with the SP operand specifying subpool 22. GETMAINs are done for both single elements of storage of specific size and once, during compiler initialization, for a variable region using the VC form of GETMAIN. This initialization GETMAIN obtains the largest contiguous element of memory available in the job step region. This memory (assigned to subpool 22) is used to hold executable compiler code and as a data area for the compiler.
- STIMER The STIMER macro with the TASK option is used to start an accounting of CPU time used by the compiler.
- TTIMER The TTIMER macro is used to test the TASK interval timer as started by the STIMER macro to determine elapsed CPU time at various points in a compilation.

7.1.2 Dynamic Invocation of the Compiler

The HAL/S-FC compiler may be dynamically invoked by another processing program. The details of this interface are controlled by the *HAL/SDL ICD*.

The dynamic invocation capability allows:

- specification of a parameter string to be acted upon by the compiler,
- specification of an alternate DDNAME list for those DD cards referenced by the compiler, and
- specification of communication areas in which the compiler will supply information to the invoking program.

The compiler takes the following actions to restore its environment upon return to the program which performed the invocation.

- All DCBs opened by the compiler are closed and any automatically acquired buffers are FREEPOOLed.
- All GETMAINed storage is FREEMAINed.
- The SPIE exit (if any) is restored to its status upon entering the compiler.

7.1.3 OS/360 Access Methods

In performing input/output processing the HAL/S-FC compiler uses the OS Data Management Access Methods:

BSAM QSAM BPAM

No other access methods are used, and all datasets manipulated by the compiler are standard OS/360 datasets.

7.2 User or External System Interfaces

The majority of ways in which users of the HAL/S-FC compiler interact with the compiler are described in Sections 2 through 5 of this document. However, the primary vehicle for user communication with this system is Job Control Language which is a part of the compiler's interface to the system in which it operates. This subsection describes the two areas of external or user interfaces to the system:

- 1) user-defined options acted upon by the compiler, and
- 2) the JCL with which the user defines the compiler's data and hence the environment in which the compiler is to operate.

7.2.1 User-defined Options

The HAL/S-FC compiler has a number of optional features which may be exercised by the user. These options are indicated via key word parameters passed to the compiler in the standard OS/360 method. The options are either passed to the compiler during dynamic invocation as described in the *HAL/SDL ICD*, or are passed via the PARM field on the EXEC card in the JCL invoking the compiler. A list of these options and their effects may be found in Section 5 of the *HAL/S-FC User's Manual*.

7.2.2 Job Control Language Specification

JCL is the means by which any user of the compiler defines the set of data upon which the compiler is to operate. This JCL is therefore the first interface of the user and the compiler. Once this set of data is specified, all other interfaces with the user are through this data in the manner described in preceding chapters. The remainder of this subsection consists of two parts:

- 1) a listing of some typical JCL for compiler invocation; and
- 2) a chart describing the uses, presumed attributes, and access methods for all DD cards.

//HALFC	PROC OPTION=, LEVEL=HALS101	00010000
//HAL	EXEC PGM=MONITOR, REGION=350K, TIME=1,	00020000
//	PARM= 'NOZCON, & OPTION '	00030000
//STEPLIB	DD DISP=SHR, DSN=&LEVELMONITOR	00040000
//PROGRAM	DD DISP=SHR,DSN=&LEVELCOMPILER	00050000
//SYSPRINT	DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,	00060000
//	BLKSIZE=3458)	00070000
//LISTING2	DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,	00080000
//	BLKSIZE=3458)	00090000
//OUTPUT3	DD UNIT=SYSDA, DISP=(MOD, PASS), SPACE=(CYL, (1,1)),	00100000
//	<pre>DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),</pre>	00110000
//	DSN=&&HALOBJ	00120000
//OUTPUT4	DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,	00130000
//	BLKSIZE=400)	00140000
//OUTPUT5	DD DISP=(MOD, PASS), DSN=&&HALSDF,	00150000
//	<pre>SPACE=(TRK, (2,2,1)), UNIT=SYSDA,</pre>	00160000
//	<pre>DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680)</pre>	00170000
//OUTPUT6	DD DISP=(MOD, PASS), DSN=&&TEMPLIB,	00180000
//	<pre>SPACE=(TRK, (2,2,1)), UNIT=SYSDA,</pre>	00190000
//	<pre>DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680)</pre>	00200000
//OUTPUT7	DD DUMMY,DCB=(RECFM=FM,LRECL=121,BLKSIZE=121)	00210000
//ERROR	DD DISP=SHR,DSN=&LEVELERRORLIB	00220000
//FILE1	DD UNIT=SYSDA, SPACE=(CYL,3)	00230000
//FILE2	DD UNIT=SYSDA, SPACE=(CYL,3)	00240000
//FILE3	DD UNIT=SYSDA, SPACE=(CYL,3)	00250000
//FILE4	DD UNIT=SYSDA, SPACE=(CYL, 3)	00260000
//FILE5	DD UNIT=SYSDA, SPACE=(CYL,3)	00270000
//FILE6	DD UNIT=SYSDA, SPACE=(CYL, 3)	00280000

Typical JCL for Compiler Invocation

	Compiler DDAAmee, 0303, and requirements							
DDNAME	FUNCTION	DEVICE REQUIREMENTS	LRECL	RECFM	BLKSIZE	BUFNO ³	DSORG	ACCESS METHOD, MACRF
PROGRAM	Executable compiler phases	direct access magnetic tape	7200	F	7200	0	PS	BSAM, R
SYSPRINT	Primary listing	printer intermediate storage	133	FBA	3458 ¹	1	PS	QSAM, PL
LISTING2	Secondary unformatted listing	printer intermediate storage	133	FBA	3458 ¹	1	PS	QSAM, PL
OUTPUT3	Object module output	direct access magnetic tape	80	FB	400 ¹	1	PS	QSAM, PL
OUTPUT4	Duplicate object module output	direct access magnetic tape	80	FB	400 ¹	1	PS	QSAM, PL
OUTPUT5	Simulation data file output	direct access	1680 ⁴	F^4	1680 ⁴	0	PO	BPAM, W
OUTPUT6	Template search and creation	direct access	80 ²	FB	1680 ²	1	PO	BPAM, WR
OUTPUT7	Pseudo-assembly listing for linkedit ABSLIST function	direct access magnetic tape	133	FBM	3458 ¹	1	PS	BSAM, PL
ERROR	Compiler error message retrieval	direct access	80	FB	400	1	PO	BPAM, R
FILE1	Phase 1, Optimizer HALMAT work file Auxiliary HALMAT file	direct access	7200	F	7200	0	PS	BSAM, RWP
FILE2	Literal communication area	direct access	1560	F	1560	0	PS	BSAM, RWP
FILE3	Phase 1 Init/Const work area Phase 2 code gen. work area	direct access	1600	F	1600	0	PS	BSAM, RWP
FILE4	Phase 2 HALMAT work file	direct access	7200	F	7200	0	PS	BSAM, RWP
FILE5	Phase 3 paging area	direct access	1680	F	1680	0	PS	BSAM, RWP
FILE6	Statement data communication area	direct access	512	F	512	0	PS	BSAM, RWP
SYSIN	Primary source input	intermediate storage	80≤ LRECL≤ 132	FB	legal multiple of LRECL ¹	1	PS	QSAM, GL
INCLUDE	Secondary source input	direct access	80≤ LRECL≤ 132	FB	legal multiple of LRECL ¹	1	PO	BPAM, R
ACCESS	ACCESS Rights control	direct access	80 ²	FB	1680 ²	1	PO	BPAM, R

Compiler DDNAMES, Uses, and Requirements

NOTES:

- 1 BLKSIZE value may be altered by user to any installation-legal value.
- 2 Compiler will use LRECL and BLKSIZE supplied by user.
- 3 BUFNO may be specified by user for any PS type datasets.
- 4 Defaults are shown; Records are always written as 1680 blocks but usersupplied attributes will be retained.

8.0 PASS/BFS Differences

8.1 Introduction and Background

This section outlines the differences between the Primary Avionics Software System (PASS) and the Backup Flight Software (BFS) versions of the HAL/S-FC merged compiler as of release BFS 7v0. The merging of PASS and BFS compiler source code was authorized via CR11114. BFS 7v0 was a merge of the separate PASS and BFS compiler source code designed to reduce the sustained engineering costs of maintaining two separate compilers. The PASS compiler version 23v2 was used as a baseline for adding BFS version 6v0 unique code and certain PASS and BFS unique discrepancy reports (DRs) and change requests (CRs). Although much of the source became common between the two compilers, there exist differences that can be attributed to required PASS/BFS interfaces and certain desired but not required compiler features. For more information, refer to the *Backup Operating System Interface Control Document (BOS ICD, OV102)*. BFS 7v0 is functionally equivalent to PASS 23v2 except for the differences described in the following sections.

8.2 Interface Differences (Required)

8.2.1 Operating Systems (BOS vs. FCOS)

The BFS compiler system interfaces with the Backup Operating System (BOS) while the PASS compiler interfaces with the Flight Computer Operating System (FCOS).

The SVCI statement is implemented for BFS and must be the last statement before the CLOSE statement in a HAL/S program. SVCI is not implemented for PASS since an automatic SVC is generated.

The BFS compiler system contains Initial Entry processing using a carry bit parameter passed in by the BOS. HAL/S programs use this to determine if a task was

- 1) inactive prior to current entry
- 2) active, but normal sequence of execution was interrupted
- 3) OFF active, normal sequence of execution

All code areas, as well as constants and literals in data areas, are protected for BFS. PASS groups all data areas in Control Sections (CSECTs) and cannot selectively protect a portion of a CSECT. Therefore, data areas are unprotected for PASS.

Real-time statements SCHEDULE, TERMINATE, CANCEL, WAIT, UPDATE PRIORITY, SIGNAL, SET, RESET, SEND ERROR, RUNTIME, CLOCKTIME, DATE, PRIO, ERRGRP, and ERRNUM are disallowed in BFS due to the BOS's synchronous nature. FCOS is asynchronous, therefore the aforementioned functions are allowed in PASS. BFS program and task names are formed with a "\$" appended to the front of a seven character (maximum) non-underscored HAL/S program or task name. PASS program and task names are formed with two possible characters (\$0-\$9) appended to the front of a six character name.

UPDATE blocks and EXCLUSIVE procedures or functions are allowed in PASS,

however they are disallowed in BFS.

Block definitions are generated differently for BFS and PASS. When a BFS program and task is invoked, the stack address is already in Register 0 (R0). Additionally, an SVC 15(3) instruction is always generated for alternate entry processing for BFS. For PASS, the stack address has to be loaded into R0 at the beginning of a program or task and no SVC 15(3) instruction is generated (no-SDL only).

8.2.2 Linkage Editors (PILOT vs. AP101)

At the start of the HAL/S compiler development, BFS used a different hardware platform than PASS. The BFS system used the ECLIPSE, while PASS used the IBM 360 mainframe. Therefore, the BFS object code format was different and the PILOT linker was created. The ECLIPSE system was found to be too slow, so BFS switched to the IBM platform. However, BFS still uses PILOT as a linker versus the AP101 linker. Thus, the BFS system generates PILOT-formatted object code, while the PASS system generates IBM 360-formatted object code.

8.2.3 Compiler Features

Major Function ID (MFID) is a Type 2 option passed to the PASS compiler that PASS flight software (FSW) uses for grouping modules together for job related purposes. The MFIDs are stored in the #E CSECT (Process Directory Entry) bits 11-15 in the 6th half word. The PASS compiler will generate a Process Directory Entry for all programs and tasks within a compilation unit. FCOS must have a Process Directory Entry (#E). The BFS compiler does not generate a #E CSECT (and likewise a MFID) since this CSECT is used for scheduling, canceling, or terminating events which are unimplemented features in the BFS compiler.

Specifying the NOSCAL option in BFS specifically inhibits the use of the SCAL and SRET instructions for subroutine linkage, even if the MICROCODE option was also chosen. MICROCODE and NOSCAL together thus cause BAL linkage to be used instead of the SCAL/SRET instructions. If NOMICROCODE was specified, neither SCAL nor NOSCAL has any effect.

The DATA_REMOTE directive is restricted in BFS (CR11142, BFS 8.0) due to BOS incompatibility, even though the source code to use it exists in the compiler. If used by BFS, a "B102-UNIMPLEMENTED FEATURE OF HAL/S CALLED FOR", severity 2 error message is emitted.

BFS does not support the NAME TASK and NAME PROGRAM constructs.

8.3 Compiler Feature Differences (Not Required)

8.3.1 Changes Due To CRs/DRs

CR8301 was implemented in PASS release 20v1. This CR changed the Branch instruction BCR to BCRE, and is PASS unique since its implementation would cause object code changes in Backup Flight Software.

CR8348 was implemented in PASS release 20v1. This CR changes Address Constants (ADCONs) offsets, condenses branch instructions and is PASS unique since its implementation would cause object code changes generated by Backup Flight Software.

DR101925, implemented in BFS release 7v0, changed the object file from OUTPUT8 to OUTPUT3. This DR also changed the data set organization of OUTPUT3 in the Monitor member, MONITOR, from sequential to partitioned for BFS since BFS compiler source contains a Monitor call that requires OUTPUT3 to be partitioned. This differs from PASS which uses sequential organization to support the PASS FSW tool Program Maintenance Facility (PMF).

CR11114 changed the Monitor member COMPOPT to set apart the option bits used by each compiler.

CR11114 added the ERRORLIB members PR1-PR5 and DR106214 added ERRORLIB member PR6. These error messages can only be emitted by the BFS compiler since the invocation of these members are contained in BFS unique code.

BIX loop combining related to optimization was made PASS specific since its implementation would cause object code differences generated by Backup Flight Software. Note, BIX loop combining could not be attributed to a particular CR or DR but was implemented before PASS 19v0.

CR13538 changed the object code for YCON to ZCON conversions so that the OHI instruction would not be emitted for BFS. This was necessary since the BFS Pilot does not set the Most Significant Bit (MSB) for ZCON data in Sector 0. The OHI was removed to prevent incorrect NAME compares with data converted using the YCON to ZCON routine in the compiler.

8.3.2 Functions Not Implemented In BFS Compiler

The macros %NAMEADD and %NAMEBIAS are not implemented in the BFS compiler and will generate an "XM1 - %NAMEADD (%NAMEBIAS) IS A NON-EXISTENT %MACRO" error message if the user tries to invoke them.

l

I

|

8.4 BFS/Pass Differences By Compiler Subsystem

MONITOR	PASS1	PASS2	PASS3	ОРТ
OLDTPL (BFS)/ MFID (PASS)-options	OLDTPL/MFID	Intial entry	CSECT Names	BIX Loop Combining
SCAL (BFS-options	%SVCI	Constant and Literal protection		
OUTPUT3 -Sequential (PASS) -PDS (BFS)	%NAMEADD	Real-time statement		
	%NAMEBIAS	%SVCI		
		Object code format		
		Process Directory Entry		
		UPDATE Blocks		
		EXCLUSIVE procedures		
		Alternate entry		
		processing		
		Program and task names		
		BCR/BCRE instruction		
		(CR8348)		
		ADCON offsets		
		(CR8348)		
		Branch Condensing		
		(CR8348)		
		OHI in YCON to ZCON		
		conversions (CR 13538)		

Figure 8-1

8.5 Summary of PASS/BFS Differences

BFS	PASS
• BOS	• FCOS
Pilot linker	AP101 linker
 Pilot - formatted object code 	 360 - formatted object code
SVCI implemented. Must be last	SVCI not implemented. Automatic
statement before CLOSE	SVC generated. (see Table 7-1 for a list of SVC Options)
 Initial Entry processing - carry bit 	 No Initial Entry support
 Constants and literals in data areas are protected and unprotected on a half word basis 	 All data areas are unprotected and code areas protected on a CSECT basis
• SCHEDULE, TERMINATE, CANCEL, WAIT, UPDATE PRIORITY, SIGNAL, SET, RESET, SEND ERROR, RUNTIME, CLOCKTIME, DATE, PRIO, ERRGRP, ERRNUM are disallowed	 The mentioned functions are allowed
No Process directory entry	 Process directory entry (#E - stacks and flags)
 Program and task names formed with '\$' appended to front of a 7 character name 	 Program and task names formed with 2 character(\$0 - \$9) appended to front of a 6 character name

Figure 8-2

Summary of PASS/BFS Differences	(continued)
---------------------------------	-------------

BFS	PASS		
 UPDATE blocks and EXCLUSIVE procedures or functions are disallowed 	Allowed		
 Block definition of Program and Task When program or task is invoked, stack address is already in R0 	 Block Definition of Program and Task The stack address has to be loaded into R0 at the beginning of program or task 		
 An SVC 15(3) instruction is always generated for alternate entry processing 	 No SVC 15(3) instruction is generated 		
 SCAL inhibits use of SCAL and SRET instructions 	•		
 MICROCODE and NOSCAL results in BAL linkage use 	•		
 If NOMICROCODE specified neither SCAL nor NSCAL has any effect 	•		
•	 Allows specification of the Major Function IDs 		
Figure 8-3			

Table 8-1 SVC Options

FFFF 0000 000F 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 001A 001P	TASK QUIT- TERMINATE CURRENT TASK TASK NEXT- GO TO NEXT TASK ERROR RESTART MSEC CARD 07- NONCRITICAL I/O REQUEST MSEC CARD 11- NONCRITICAL I/O REQUEST MSEC RESET MSEC CRITICAL I/O HAL/S RTL ERROR ASYNCHRONOUS I/O REQUEST TASK ATTACH REQUEST* TASK DETACH REQUEST* TASK STOP REQUEST* MAKE A GPC ERROR LOG ENTRY EIU1 MSTR RESET EIU11 STAT OVERPIDE
001A	EIU1 MSTR RESET
001B	
001C	FIU2 STAT OVERRIDE
001E	EIU3 MSTR RESET
001F	EIU3 STAT OVRD
*	The SVC code is the first halfword of a list of actions to be performed. The actual parameter passed by the SVC instruction is the address of the list that contains the SVC code and address and mask pairs.

This page intentionally left blank.

Appendix A Error Classifications

Note: "b" denotes a blank.

CLASS	A:	ASSIGNMENT STATEMENTS
A		ARRAY ASSIGNMENT399
V		COMPLEX VARIABLE ASSIGNMENT
b		MISCELLANEOUS ASSIGNMENT
CLASS	В:	COMPILER TERMINATION
В		HALMAT BLOCK SIZE
I		INTERNAL ERRORS
Ν		NAME SCOPE NESTING
S		STACK SIZE LIMITATIONS
Т		TABLE SIZE LIMITATIONS
Х		COMPILER ERRORS
b		MISCELLANEOUS
CLASS	Ċ٠	COMPARISONS
h	с.	GENERAL, COMPARISONS
D		GENERAL COMPACISONS
CLASS	D:	DECLARATION ERRORS
A		ATTRIBUTE LIST
С		STORAGE CLASS ATTRIBUTE
D		DIMENSION
I		INITIALIZATION
L		LOCKING ATTRIBUTE
N		NAME
Q		STRUCTURE TEMPLATE TREE ORGANIZATION
S		FACTORED/UNFACTORED SPECIFICATION
Т		TYPE SPECIFICATION
U		UNDECLARED DATA
b		MISCELLANEOUS
CLASS	E٠	EXPRESSIONS
A		ARRAYNESS
B		BIT STRING EXPRESSIONS
С		CROSS PRODUCT
D		DOT PRODUCT
L		LIST EXPRESSIONS
М		MATRIX EXPRESSIONS
Ν		NAME
0		OUTER PRODUCT
V		VECTOR EXPRESSIONS
b		MISCELLANEOUS EXPRESSIONS

CLASS D N S T D	F:	FORMAL PARAMETERS & ARGUMENTS DIMENSION AGREEMENT NUMBER OF ARGUMENTS SUBBIT ARGUMENTS TYPE AGREEMENT MISCELLANEOUS
CLASS B C E L V	G:	STATEMENT GROUPINGS (DO GROUPS) BIT TYPE CONTROL EXPRESSION CONTROL EXPRESSION EXIT/REPEAT STATEMENTS END LABEL CONTROL VARIABLE
CLASS L R S	I:	IDENTIFIERS LENGTH REPLACED IDENTIFIERS QUALIFIED STRUCTURE NAMES
CLASS B C F S	L:	LITERALS BIT STRING CONVERSION TO INTERNAL FORMS FORMAT OF ARITHMETIC LITERALS CHARACTER STRING
CLASS C E O S b	М:	MULTILINE FORMAT OVERPUNCH CONTEXT E-LINE OVERPUNCH USE S-LINE COMMENTS
CLASS A C F L M P R S T U	Ρ:	PROGRAM CONTROL & INTERNAL CONSISTENCE ACCESS CONTROL COMPOOL BLOCKS EXTERNAL TEMPLATES FUNCTION RETURN EXPRESSIONS LABELS MULTIPLE DEFINITIONS BLOCK DEFINITION ON ERROR/SVCI MACRO (ONLY EMITTED BY BFS COMPILER) PROCEDURE/FUNCTION TEMPLATES TASK DEFINITIONS CALLS FROM UPDATE BLOCKS
Ð		MISCELLANEOUS

CLASS A D S X	Q:	SHAPING FUNCTIONS ARRAYNESS DIMENSION INFORMATION SUBSCRIPTS ARGUMENT TYPE
CLASS E T U	R:	REAL TIME STATEMENTS ON/SEND ERROR STATEMENTS TIMING EXPRESSIONS UPDATE BLOCKS
CLASS C P Q R S T V	S:	SUBSCRIPT USAGE SUBSCRIPT COUNT PUNCTUATION PRECISION QUALIFIER RANGE OF SUBSCRIPT VALUES USAGE OF ASTERISKS SUBSCRIPT TYPE VALIDITY OF USAGE
CLASS C D b	Τ:	I/O STATEMENTS CONTROL DEVICE NUMBER MISCELLANEOUS
CLASS I P T	U:	UPDATE BLOCKS IDENTIFIER USAGE PROGRAM BLOCKS I/O
CLASS A C E F	V:	COMPILE-TIME EVALUATIONS ARITHMETIC OPERATIONS CATENATION OPERATIONS UNCOMPUTABLE EXPRESSIONS FUNCTION EVALUATION
CLASS A D I M Q R S U	Χ:	IMPLEMENTATION DEPENDENT FEATURES PROGRAM ID DIRECTIVE DEVICE DIRECTIVE INCLUDE DIRECTIVE %MACRO INDIRECTION DATA_REMOTE DIRECTIVE LANGUAGE (E.G. \$\$\$SUBSET) UNKNOWN OR INVALID DIRECTIVE

V	VERSION DIRECTIVE
CLASS Y:	ADVISORY MESSAGES
A	ASSIGNMENTS
С	COMPARISONS
Е	EXPRESSIONS
F	FORMAL PARAMETERS AND ARGUMENTS
CLASS Z:	PRODUCE 'TRAP' MESSAGES FROM THE COMPILER
В	BIT INSTRUCTION
С	%COPY
0	
	OPTIMIZER
P	REGISTER PRESSURE

Appendix	В	Revision	History
----------	---	----------	---------

Revision	Release	Date	CR/DR		Sections Changed
			Number		
03	7.0	03/16/75			
04	-	Unknown			
05	11.0	03/01/76			
06	13.0	01/15/77			
07	21.7	08/12/88			
08	23.1	02/04/91		Total Repri	nt
09	24.0	03/30/92			
10	BFS7.0	11/12/92			
11	BFS8.0	03/15/93			
12	24.1, 25.0	09/03/93			
13	24.2	10/22/93			
14	25.1/9.1	01/11/94			
15	21.B	02/15/94			
16	26.0/10.0	09/02/94			
17	27.0/11.0	12/01/95		Total Repri	nt
18	27.1/11.1	07/01/96		pp. vii, 3-19	9, 3-19A, 3-22, 3-23, 3-36, 3-77,
				3-78, 5-1,	5-1A, 5-3, 5-9, 5-10, 5-17, 5-18
				thru 5-33 (deleted, 5-43 thru 5-55, 5-57
				thru 5-60,	5-73, 5-114, 5-116 thru 5-125,
				5-141, 5-1	52 thru 5-159, 5-345 thru 5-355,
				5-430 thru	5-440, 5-543, 5-544, 7-3, C-1
19	28.0/12.0	08/19/1997		Total Repri	nt to Bring to HAL
				Document	ation Standards and HTML
				Compatibi	lity
			CR11148	5.2.7	- pp. 5-14
			CR12709	2.6.1	- pp. 2-6, 2-7, 2-8
				3.1.1.3	- p. 3-5
				3.1.1.5	- p. 3-8
				3.1.7.4	- p. 3-35
				3.1.9.2	- p. 3-37
				3.1.13.	- pp. 3-49, 3-51
				3.1.13.	- pp. 3-51, 3-52
				3.1.14.	- p. 3-53
				3.1.15.	- p. 3-58
				5.2.5.2	- p. 5-9
				5.3.1	- pp. 5-36, 5-37, 5-48
				5.3.2	- p. 5-90
				5.3.7	- p. 5-364
				7.2.1	- p. 7-2
				7.2.3	- p. 7-2
				App. A	- p. A-5

	CR12713	2.1	- p. 2-2
		2.6.1	- pp. 2-6, 2-7, 2-8
	CR12432A	3.1.15.3	- p 3-55
		2.3	- p. 2-4
			- p. 5-10, 5-11, 5-13, 5-23, 5-
			24, 5-25, 5-26, 5-34, 5-36, 5-
			38, 5-44, 5-45, 5-45, 5-46, 5-
			47, 5-49, 5-50, 5-53, 5-55, 5-
			58, 5-91, 5-211

This is the Last Page of the Document.

TITLE: HAL/S-FC Compiler System Specification

NASA-JSC

*BV	N. Moses
MS4	D. Stamper
EV111	EV Library (D. Wall)

USA-Houston

*USH-121G	SFOC Technical Library
USH-634G	Abel Puente
USH-64A6X	L.W. Wingo
USH-633L	Anita Senviel
USH-633L	Benjamin L. Peterson
USH-633L	Cory L. Driskill
USH-633L	Judy M. Hardin
USH-633L	Mark E. Lading
USH-633L	Quinn L. Larson
USH-633L	James T. Tidwell
USH-633L	Vicente Aguilar
USH-633L	Betty A. Pages
USH-633L	Jeremy C. Battan
USH-633L	George H. Ashworth
USH-634L	Mark Caronna
USH-634L	Burk J. Royer
*USH-635L	Joy C. King
USH-635L	Ling J. Kuo
USH-635L	Trang K. Nguyen
USH-635L	Billy L. Pate
USH-635L	Karen H. Pham
*USH-635L	Dan A. Strauss
USH-635L	Pete Koester
USH-632L	Renne Siewers
*USH-635L	Barbara Whitfield (2)

Boeing

HS1-40 B. Frere blake.a.frere@boeing.com

* Denotes hard copy

Submit NASA distribution changes, including initiator's name and phone number, to JSC Data Management/BV or call 281-244-8506. Submit USA distribution changes to USA Data Management/USH-121E or via e-mail to *usadm@usa-spaceops.com*. Most documents are available electronically via USA Intranet Web (*usa1.unitedspacealliance.com*), Space Flight Operations Contract (SFOC), SFOC Data and Deliverables.