

USA003089

32.0/17.0

Space Flight Operations Contract
HAL/S COMPILER SYSTEM
SPECIFICATION
PASS 32.0/BFS 17.0
November 2005
Contract NAS9-20000

DRD - 1.4.3.8-a

USA003089
32.0/17.0

HAL/S COMPILER SYSTEM SPECIFICATION

Contract NAS9-20000
DRD - 1.4.3.8-a

Approved by

Original Approval Obtained
Barbara Whitfield, Manager
HAL/S Compiler and Application Tools

Original Approval Obtained
Monica Leone, Director
Application Tools Build and Data Reconfiguration

 HAL/S Compiler System Specification USA003089
32.0/17.0

November 2005

The HAL/S-FC Compiler System Specification has been revised and issued on the
following dates1:

1. A table containing the Revision History of this document prior to the USA contract can be found in
 Appendix B.

Issue Revision Date Change Authority Sections Changed
29.0/14.0 03/10/1999 CR12935A 3.1.1.3

App. B
-p. 3-5, 3-6
-p. B-5, B-8

CR12940 2.6.1
2.6.2
2.6.6
3.3

-p. 2-6
-p. 2-6, p.2-7,
-p. 2-9
-p. 3-60, 3-61

CR13043 5.2.3
5.2.7
5.3.3
5.3.4

-p. 5-2
-p. 5-11
-p. 5-168, 5-175
-p. 5-240

DR109091 2.6.2 -p. 2-7
DR109089 3.1.1.3 -p. 3-5
Cleanup -p. 2-4

-p. 3-4
- pp. 5-9, 5-10, 5-12, 5-34, 5-35,
5-37, 5-42 thru 5-45, 5-47, 5-50,
5-55, 5-61, 5-63, 5-64, 5-67, 5-
68, 5-70, 5-72, 5-74, 5-75, 5-80,
5-82, 5-85, 5-93, 5-94, 5-96, 5-
99, 5-101, 5-103, 5-106, 5-111, 5-
113, 5-114, 5-116, 5-118 thru 5-
125, 5-128 thru 5-131, 5-134 thru
5-136, 5-139 thru 5-143, 5-145,
5-147 thru 5-149, 5-151 thru 5-
163, 5-166, 5-167, 5-169 thru 5-
188, 5-190, 5-192, 5-194 thru 5-
221, 5-226, 5-227, 5-230, 5-234
thru 5-236, 5-240, 5-242, 5-246,
5-247, 5-250, 5-257, 5-264, 5-
267, 5-271, 5-272, 5-274, 5-278,
5-285, 5-287, 5-289, 5-293, 5-
295, 5-296, 5-299, 5-300, 5-307,
5-315, 5-317, 5-319, 5-322, 5-
323, 5-325 thru 5-342
-p. 6-4
-p. 7-5
-p. B-5

Revision Log

HAL/S Compiler System Specification USA003089
32.0/17.0
30.0/15.0 06/12/00 CR12214 4.2
App. A

-p. 4-2
-p. A-3

CR12620 App. B -p. B-4
CR13211 App. A -p. A-3
CR13217 1.3

3.1.15.3
7.5
App. B

-p. 1-2
-p. 3-60, 3-61
-p. 7-6
-pp. B-5, B-8

CR13222 5.2.4.3
5.3.1
5.3.2

5.3.3

5.3.4
5.3.6
5.3.7

-pp. 5-3 thru 5-8
-pp. 5-39
-pp. 5-59, 5-79, 5-82, 5-83,
5-116, 5-118
-pp. 5-133 thru 135, 5-141
thru 5-144, 5-146, 5-
149, 5-161, 5-213
-pp. 5-241
-pp. 5-294
-pp. 5-330, 5-331

DR111314 7.2.3 -p 7-2
Cleanup Preface

31.0/16.0 09/07/01 CR13454 2.6.3
3.1.1.1
3.1.1.3
3.1.1.5
3.1.10.4
3.1.12.5
3.1.14.1
3.1.14.2
3.1.15.2
3.1.17
6.3
6.3

-p 2-7
-p 3-2
-p 3-5
-p 3-9
-p 3-47
-p 3-56
-p 3-62
-p 3-63
-p 3-64
-p 3-70
-p 6-28
-p 6-34

CR13462 sec 4.0 -p 4-1 to 4-10
CR13372 3.1.1.2 -p 3-3, 3-4
DR111359 3.1.15.4 -p 3-69
DR111364 3.1.5.3

3.1.7.4
-p 3-31
-p 3-39

Cleanup Preface
32.0/17.0 11/2005 CR13538 3.1.1.3

3.1.14.1
3.1.14.2
3.1.15.2
3.1.15.4

-pp. 3-5 thru 3-7
-pp. 3-62, 3-63
-pp. 3-63, 3-64
-p 3-66
-p 3-70, 3-71
November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CR13570 3.1.15.5
3.3.4
3.3.6
8.3.2
8.4

-pp. 3-71, 3-72
-p 3-75
-p 3-75
-p 8-3
-p 8-4

CR13652 3.1.1.3
3.1.14.1
3.1.14.2
3.1.15.3
3.1.17
4.2.3.3
8.3.1
8.4

-pp. 3-6, 3-7
-p 3-62
-p. 3-64, 3-65
-p 3-69
-p 3-72
-p. 4-6
-p 8-3
-p 8-4

CR13811 3.1.1.3 -p 3-5
CR13833A 2.10 -p 2-11
CR14216A

1.3
4.2.1.2
7.1.2

Preface
-p 1-2
-p 4-2
-p 7-2
November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

November 2005

The current status of all pages in this document is as shown below:

Page No. Change No.
All 32.0/17.0

List of Effective Pages

HAL/S Compiler System Specification USA003089
32.0/17.0

Preface
The HAL/S FC Compiler System Specification was developed by Intermetrics, Inc. and
is currently maintained by the HAL/S project of United Space Alliance. The manual
identifies the informational interfaces with the HAL/S-FC compiler and between the
compiler and the external environment.
Over the years, numerous changes have been made to the HAL/S-FC compiler design
and this document has been modified to reflect these changes. However only a small
number of these changes have been incorporated into the HAL/S-360 compiler and now
this document is only an approximation of that compiler’s design. Earlier versions of the
predecessor of this document (IR-182) contain a more accurate representation of the
design of the HAL/S-360 compiler’s components. The earliest of these versions should
be referenced when attempting to understand the design of the HAL/S-360 compiler,
and this document should be referenced when attempting to understand the design of
the HAL/S-FC compiler.
The primary responsibility is with USA, Department, 01635A7.

Questions concerning the technical content of this document should be directed to
Danny Strauss (281-282-2647), MC USH-635L.
November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
This page intentionally left blank.
November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

Table of Contents
1.0 Introduction ... 1-1
1.1 Scope of Document ... 1-1
1.2 Outline of the Document .. 1-1
1.3 Status of Document ... 1-2

2.0 Phase 1 - Syntax Analysis .. 2-1
2.1 Primary Source Input ... 2-1
2.2 Secondary Source Input - The Include System ... 2-2
2.3 Access Rights Implementation .. 2-2
2.4 Compiler Directive Parsing .. 2-4
2.5 Template Checking and Generation .. 2-4
2.6 Listing Generation ... 2-5

2.6.1 Options ... 2-5
2.6.2 Primary Formatted Listing .. 2-6
2.6.3 Error Messages .. 2-7
2.6.4 Block Summaries ... 2-8
2.6.5 Compilation Layout Summary .. 2-9
2.6.6 Symbol & Cross Reference Table Listing .. 2-9
2.6.7 Built-in Function Cross Reference ... 2-9
2.6.8 Replace Macro Text ... 2-9
2.6.9 Unformatted Source Listing .. 2-9

2.7 Symbol Table Generation .. 2-10
2.8 Statement Table Generation ... 2-10
2.9 Literal Table Creation .. 2-10
2.10 HALMAT Creation ... 2-11
2.11 The Optimizer .. 2-11

3.0 PHASE 2 - Code Generation .. 3-1
3.1 Code Generation ... 3-1

3.1.1 Bases and Conventions ... 3-1
3.1.1.1 Register Usage ... 3-2
3.1.1.2 Storage Allocation ... 3-2
3.1.1.3 Addressing Concepts .. 3-4
3.1.1.4 Condition Codes ... 3-8
3.1.1.5 ZCONs and the Calling Mechanisms .. 3-8
3.1.1.6 The Runtime Stack ... 3-9
3.1.1.7 Local Block Data Areas .. 3-11
3.1.1.8 Parameter Passing Conventions for User-Written Routines 3-12

3.1.2 Integer and Scalar Operations ... 3-15
3.1.2.1 Arithmetic Operators ... 3-15
3.1.2.2 Comparison Operators ... 3-17
3.1.2.3 Conversions .. 3-18
3.1.2.4 Assignments ... 3-19

3.1.3 Bit String Operations .. 3-20
i November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

Table of Contents
3.1.3.1 Bit String Operators .. 3-20
3.1.3.2 Bit String Comparisons ... 3-21
3.1.3.3 Component Subscripting .. 3-21
3.1.3.4 Bit Conversions ... 3-22
3.1.3.5 Bit Assignments .. 3-22
3.1.3.6 Partitioned Bit Assignments .. 3-23
3.1.3.7 Bit Tests .. 3-24

3.1.4 Character String Operations .. 3-24
3.1.4.1 Character String Operators ... 3-24
3.1.4.2 Character String Comparisons ... 3-24
3.1.4.3 Component Subscripting .. 3-25
3.1.4.4 Character String Conversions ... 3-25
3.1.4.5 Character String Assignments .. 3-26

3.1.5 Vector Matrix Operations ... 3-26
3.1.5.1 Vector-Matrix Operators ... 3-26
3.1.5.2 Conditional Operators ... 3-30
3.1.5.3 Component Subscripting .. 3-31
3.1.5.4 Conversions .. 3-32
3.1.5.5 Assignments ... 3-33

3.1.6 Structure Operations .. 3-36
3.1.6.1 Structure Comparisons ... 3-36
3.1.6.2 Structure Assignment ... 3-37

3.1.7 Indexing and Arrayed Statements .. 3-37
3.1.7.1 Linear Array Indexing .. 3-37
3.1.7.2 Non-Linear Array Indexing .. 3-37
3.1.7.3 Array Indexing ... 3-38
3.1.7.4 Arrayness and Loop Generation ... 3-38

3.1.8 PROCEDURE/FUNCTION Calls .. 3-40
3.1.9 Block Definition .. 3-42

3.1.9.1 PROGRAM and TASK Definition .. 3-42
3.1.9.2 PROCEDURE and FUNCTION Definition 3-42

3.1.10 Flow of Control Statements .. 3-43
3.1.10.1 IF … THEN … ELSE .. 3-43
3.1.10.2 DO FOR…Loops .. 3-43
3.1.10.3 DO WHILE/UNTIL ... 3-46
3.1.10.4 DO CASE .. 3-47
3.1.10.5 GO TO, REPEAT, EXIT .. 3-48
3.1.10.6 RETURN ... 3-49
3.1.10.7 ON ERROR/OFF ERROR/SEND ERROR 3-49

3.1.11 Built-In Functions ... 3-50
3.1.11.1 Inline Built-in Functions ... 3-50
3.1.11.2 Out of Line Functions .. 3-52
ii November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

Table of Contents
3.1.11.3 Shaping Functions .. 3-53
3.1.12 Real Time Statements .. 3-54

3.1.12.1 WAIT Statement ... 3-54
3.1.12.2 CANCEL, TERMINATE Statements ... 3-54
3.1.12.3 SIGNAL, SET, RESET Statements .. 3-55
3.1.12.4 UPDATE PRIORITY Statement .. 3-55
3.1.12.5 SCHEDULE Statement ... 3-55

3.1.13 I/O Statements ... 3-56
3.1.13.1 Initiation .. 3-56
3.1.13.2 Input .. 3-56
3.1.13.3 Output ... 3-59

3.1.14 NAME Operations .. 3-62
3.1.14.1 NAME Comparisons ... 3-62
3.1.14.2 NAME Assignment .. 3-63

3.1.15 %MACROS .. 3-66
3.1.15.1 %SVC ... 3-66
3.1.15.2 %NAMECOPY .. 3-66
3.1.15.3 %COPY .. 3-66
3.1.15.4 %NAMEADD ... 3-70
3.1.15.5 %NAMEBIAS .. 3-71

3.1.16 NONHAL References ... 3-72
3.1.17 Block Move Algorithm .. 3-72

3.2 Object Code Naming Conventions .. 3-74
3.3 Printed Data from Phase 2 .. 3-74

3.3.1 Formatted Assembly Listing ... 3-74
3.3.2 Symbol Information .. 3-75
3.3.3 RLD Information ... 3-75
3.3.4 Variable Offset Table ... 3-75
3.3.5 Memory Map Table .. 3-75
3.3.6 Structure Template Layout Table ... 3-75

3.4 Symbol Table Augmentation ... 3-75
3.5 Statement Table Augmentation ... 3-76

4.0 Incremental #D (DATA_REMOTE Directive) REQUIREMENTS AND CODE DESIGN
4-1
4.1 Introduction .. 4-1
4.2 Requirements and Code Design ... 4-1

4.2.1 Provide for Selective Migration of #D Data ... 4-1
 4.2.1.1 Interpretation .. 4-1
 4.2.1.2 Detailed Implied/Derived Requirements .. 4-2
 4.2.1.3 Compiler Implementation Design ... 4-3

4.2.2 Provide for Management of Extended Addressing Feature 4-4
 4.2.2.1 Interpretation .. 4-4
iii November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

Table of Contents
 4.2.2.2 Detailed Implied/Derived Requirements .. 4-4
 4.2.2.3 Compiler Implementation Design ... 4-5

4.2.3 Enforce Compiler Restrictions on #D Data .. 4-5
 4.2.3.1 Interpretation .. 4-5
 4.2.3.2 Detailed Implied/Derived Requirements .. 4-6
 4.2.3.3 Current Error Message Usage ... 4-6
 4.2.3.4 FCOS Restrictions on #D Data .. 4-7
 4.2.3.5 Compiler Implementation Design ... 4-8

4.2.4 Manipulate #D Data Using Extended Addressing Techniques 4-9
 4.2.4.1 Interpretation .. 4-9
 4.2.4.2 Detailed Implied/Derived Requirements .. 4-9
 4.2.4.3 Compiler Implementation Design ... 4-10

5.0 PHASE 3 - SIMULATION DATA FILE GENERATION .. 5-1
5.1 SDF Generation ... 5-1

5.1.1 Overall SDF Design ... 5-1
5.2 Phase 3 Printed Data .. 5-2

6.0 RUNTIME LIBRARY ... 6-1
6.1 Introduction .. 6-1
6.2 Basics and Conventions .. 6-1

6.2.1 Origin and Format .. 6-1
6.2.2 Purpose .. 6-2
6.2.3 Intrinsics and Procedure Routines ... 6-2
6.2.4 Register Conventions in Runtime Library Routines 6-2

6.2.4.1 General Purpose Registers R0-R7. .. 6-2
6.2.4.2 Floating Point Registers F0-F7. .. 6-2
6.2.4.3 Interface Conventions. .. 6-2

6.2.5 Referencing Conventions ... 6-8
6.2.5.1 CSECT Names. .. 6-8
6.2.5.2 ZCONs. ... 6-8

6.2.6 Coding Structure ... 6-9
6.2.7 The Macro Library .. 6-9
6.2.8 Precision Requirements ... 6-16
6.2.9 Usage Restrictions ... 6-16

6.3 Library Routine Descriptions ... 6-24
6.3.1 Arithmetic Routine Descriptions .. 6-36
6.3.2 Algebraic Routine Descriptions .. 6-54
6.3.3 Vector/Matrix Routine Descriptions .. 6-122
6.3.4 Character Routine Descriptions ... 6-232
6.3.5 Array Function Routine Descriptions .. 6-257
6.3.6 Miscellaneous Routine Descriptions .. 6-273
6.3.7 REMOTE Routine Descriptions .. 6-322

7.0 System Interfaces .. 7-1
iv November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

Table of Contents
7.1 Internal System Interfaces ... 7-1
7.1.1 Macro Instructions .. 7-1
7.1.2 Dynamic Invocation of the Compiler .. 7-2
7.1.3 OS/360 Access Methods .. 7-2

7.2 User or External System Interfaces ... 7-2
7.2.1 User-defined Options ... 7-2
7.2.2 Job Control Language Specification .. 7-3

8.0 PASS/BFS Differences ... 8-1
8.1 Introduction and Background ... 8-1
8.2 Interface Differences (Required) ... 8-1

8.2.1 Operating Systems (BOS vs. FCOS) ... 8-1
8.2.2 Linkage Editors (PILOT vs. AP101) ... 8-2
8.2.3 Compiler Features .. 8-2

8.3 Compiler Feature Differences (Not Required) ... 8-3
8.3.1 Changes Due To CRs/DRs .. 8-3
8.3.2 Functions Not Implemented In BFS Compiler .. 8-3

8.4 BFS/Pass Differences By Compiler Subsystem .. 8-4
8.5 Summary of PASS/BFS Differences ... 8-5

 Appendix A Error Classifications.. A-1
 Appendix B Revision History.. B-1
v November 2005

USA003089 HAL/S Compiler System Specification
32.0/17.0
This page intentionally left blank.
November 2005 vi

HAL/S Compiler System Specification USA003089
32.0/17.0

List of Tables

Table 6-1 Index of Library Entry Name.. 6-356
Table 8-1 SVC Options ... 8-7
vii November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

List of Tables
This page intentionally left blank.
viii November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0

List of Figures
Figure 3-1 Algorithm for Calculating the 0th Element Offset....................................... 3-3
Figure 3-2 Stack Layout... 3-10
Figure 3-3 .. 3-14
Figure 4-1 Provide for Selective Migration of #D Data... 4-3
Figure 4-2 Provide for Management of Extended Addressing Feature........................ 4-5
Figure 4-3 Enforce Compiler Restrictions on #D Data.. 4-8
Figure 4-4 Manipulate #D Data Using Extended Addressing Techniques................ 4-10
Figure 6-1 Basic LRD Form .. 6-27
Figure 6-2 Extension LRD Form ... 6-28
Figure 8-1 .. 8-4
Figure 8-2 .. 8-5
Figure 8-3 .. 8-6
ix November 2005

USA003089 HAL/S Compiler System Specification
32.0/17.0
This page intentionally left blank.
November 2005 x

HAL/S Compiler System Specification USA003089
 32.0/17.0
1.0 Introduction

1.1 Scope of Document
This document specifies the informational interfaces within the HAL/S-FC compiler, and
between the compiler and the external environment. An overall description of the
compiler, and the hardware and software compatibility requirements between compiler
and environment are detailed in the HAL/S-FC Compiler System Functional
Specification.2 Familiarization with the Functional Specification is presumed throughout
this document.

This Compiler System Specification is for the HAL/S-FC compiler and its associated run
time facilities which implement the full HAL/S language.3 The HAL/S-FC compiler is
designed to operate "stand-alone" on any compatible IBM 360/370 computer and within
the Software Development Facility (SDF) at NASA/JSC, Houston, Texas.

1.2 Outline of the Document
The HAL/S-FC compiler system consists of:

The organization of this document is based upon the organization of the compiler
system. Each part of the system is considered as a separate entity with its own specific
function and interfaces to other parts. Hence, there are four sections which cover the
parts of the system as follows:

In addition to this part-by-part documentation, the compiler system, taken as a whole,
exhibits properties and interfaces which are not specific to any one of the pieces.
General information about such topics as the compiler's operating environment and
user-written interfaces to emitted object code are contained in Section 6. Several
Appendices are included which deal with tabular data used in the compiler system.

2. HAL/S-FC Compiler System Functional Specification, 24 July 1974, IR-59

3. HAL/S Language Specification, USA003088

1. a seven phase language processor (compiler) which produces object
modules compatible with AP-101 Space Shuttle Support Software and a
set of simulation tables to aid in run time verification.

2. a comprehensive run-time library which provides an extensive set of
mathematical, conversion, and language support routines.

Section 2 - describes Phase 1 and the syntax analysis phase of the compiler.
Section 3 - describes Phase 2 and the code generation phase and specifies in

detail the code patterns for specific HAL/S constructs.
Section 4 - describes Phase 3 and the operation of the Simulation Data File

generator.
Section 5 - describes the Runtime Library and the concepts used in the library

and also gives specific information about each library routine
including size, speed, and algorithm.
1-1 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
1.3 Status of Document
This document, plus the HAL/S-FC Compiler System Functional Specification for the
AP-101 comprise the complete HAL/S-FC Compiler System Specification.
The HAL/S-FC compiler inherits some of its operational features from the HAL/S-360
compiler system for which a similar Specification exists. In addition, many features of
the HAL/S-FC system are under control of Interface Control Documents which are
subject to update. When appropriate within this document, references are made to
these companion documents as sources of supplementary material and in some cases
as primary sources of detailed information.
The following list of documents represents the set of additional documents which reflect
design and control of the HAL/S-FC compiler system:

• HAL/S-FC Compiler System Functional Specification for the AP-101, IR–59.
• Interface Control Document: HAL/FCOS, (a.k.a. HAL/FCOS ICD), USA001460.
• Interface Control Document: HAL/S-FC/SDL, (a.k.a. HAL/SDL ICD), USA001556.
• HAL/S-360 Compiler System Specification, USA001528.
• HAL/S Language Specification, USA003088.
• SPF Optical Disk Flight Software Products Indexing Requirements Interface Control

Document, JSC-26622 Section 2.1.9.
1-2 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
2.0 Phase 1 - Syntax Analysis
The Syntax Analysis Phase performs syntactic and semantic analysis of the user's
HAL/S source programs. It performs all functions necessary to allow an independent
Phase 2 program to generate code for the target computer. The basic design of the
HAL/S system includes use of a single Phase 1 for a variety of target machine Phase
2s. Thus, the Phase 1 used by the HAL/S-FC compiler is the same one used in the
HAL/S-360 compiler. In this section on Phase 1, data which is supplied in detail in the
HAL/S-360 Compiler System Specification is not repeated. Instead, reference is made
to the proper section of that document.

This section deals with the following Phase 1 functions:
• Primary Source Input
• Secondary Source Input
• ACCESS System Implementation
• Compiler Directives
• Template Checking and Generation
• Printed Data
• Symbol Table Creation
• Statement Table Generation
• Literal Table Generation
• HALMAT Creation
• The Optimizer

2.1 Primary Source Input
Phase 1 accepts primary source input in the form of fixed length logical records. This
input must be defined by the SYSIN DD statement in the JCL invoking the compiler.
The first byte of each record is used to define the type of the record as follows:

(Other letters can be used if modified via the "CARDTYPE" compiler option to a legal
type.)
For stand-alone operation the source records are 80 bytes in length and may contain
data in columns 2-80. Optionally, the user may designate, via the "SRN" compiler
option, that the source scanning is to stop at position 72 and also that positions 73-78
are to be printed on the listing as "Statement Reference Numbers".

When operating in the SDL environment, indicated by use of the "SDL" compiler option,
the source records must still be all the same length but that length may be from 80 to

M - main line

E - exponent line

S - subscript line

D - compiler directive

C - comment
2-1 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
132 characters. When in the SDL mode, the compiler accepts source data from record
positions 2 through 72. In addition, when the records are of sufficient length, the
following fields are recognized and all except the change authorization field are printed
on the primary source listing:

• Record Sequence Number - positions 73 through 78;
• Record Revision Indicator - positions 79 and 80;
• Change Authorization Field - positions 81-88
• Portions of records beyond position 88 are ignored.

The compiler's primary input may optionally be in a compressed source format as
defined in the HAL/SDL ICD. No special notification of use of compressed source is
needed. Phase 1 determines the type of input by examining the first record. Catenated
datasets defined as primary compiler input must all be either in compressed or
noncompressed format for one invocation of the compiler.

2.2 Secondary Source Input - The Include System
The user may direct the compiler to an alternate input source by use of an INCLUDE
compiler directive in the primary input. The exact form of the INCLUDE directive may
be found in Section 5.2 of the HAL/S-FC User's Manual.
The INCLUDE directive defines a member name in a partitioned dataset. Phase 1 uses
a FIND macro to locate the member on the INCLUDE DD card. If the FIND is
unsuccessful, an identical FIND is issued for the OUTPUT6 DD card. A member, when
located, is read to its end by the compiler. The records are processed identically to
primary (SYSIN) input with the exception that further INCLUDE directives within
INCLUDE'd source are not allowed. The same source margins are applied to the
INCLUDE'd source as are applied to the primary input. In addition, the compiler prints a
line in the primary source listing indicating the catenation sequence number of the DD
card on which the member was found and the RVL field from the PDS directory entry
for the member. The RVL field is the first 2 bytes of user data after any TTRNs.

The individual members which are INCLUDE'd may be in either compressed or
uncompressed format, independent of whether the primary input was compressed.
The form of each INCLUDE'd member is determined by the compiler from the first
record read.

Partitioned datasets may be catenated together in the JCL to form the INCLUDE DD
sequence, but such datasets must have identical DCB attributes.

2.3 Access Rights Implementation
The HAL/S language allows managerial restrictions to be placed upon the usage of
user-defined variables and external routines. The existence of such a restriction is
indicated by the use of the ACCESS attribute as described in the HAL/S Language
Specification. The manner in which the restrictions are enforced in the HAL/S-FC
compiler system is described below.
2-2 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
Any variable in a COMPOOL template or any external routine to which the ACCESS
attribute has been applied is considered to be restricted for the compilation unit which is
being compiled. The restriction is slightly different for variables than for blocks:

These restrictions may be selectively overridden for individual variable and block
names. The selection of which ACCESS controlled names are to be made available to
the unit being compiled is performed by processing an external dataset. The external
dataset is known as the Program Access File (PAF). The PAF must have partitioned
organization and is specified by the following JCL:
 //HAL.ACCESS DD DSN=<PAF name>, <other parameters>

where the <PAF name> is the dataset name of the PAF without any member
specification.
Each member of the PAF contains the information about ACCESS controlled names
which are to be made available to one unit of compilation. The member name is
defined by a Program Identification Name (PIN). The PIN is specified to the HAL/S-FC
compiler by using the PROGRAM compiler directive in the primary input stream:
 col 1
 D PROGRAM ID = <id>

The <id> field of the directive is a 1 to 8 character identifying name which is used to
select the member of the PAF to be processed for the current compilation's ACCESS
information. The appearance of the PROGRAM directive in the compiler's input stream
causes immediate processing of the PAF member specified.

The format of an individual PAF member is described below.

a. Variables with the ACCESS attribute may not have their values
changed.

b. Block names may not be used at all.

a. Column 1 of each record is ignored except when column 1 contains the
character "C", in which case the entire record is ignored.

b. The portion of each record which is processed is the same portion which is
processed in the primary compiler input (SYSIN).

c. COMPOOL elements which are to be made available to the compilation are
specified as:

<COMPOOL-name>($ALL)

<COMPOOL-name>(<var-name>, <var-name>,…<var-name> or

The first format specifies access to individual variables within the named
COMPOOL. The second format specifies access to all variables within the
named COMPOOL.

d. Access to external block names is specified as:
$BLOCK(<ext-name>, <ext-name>,…<ext-name>)

e. Blanks are allowed anywhere in the record except that names may not be
broken by a blank.
2-3 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
Some validity checking is performed by the compiler while processing the PAF member.
Warnings are issued for the following conditions:

If, at the time the PROGRAM directive is encountered, there have been no ACCESS-
controlled variables declared, the PAF is not opened. If a user does not require access
to any, the PROGRAM directive and associated PAF members may be omitted.

2.4 Compiler Directive Parsing
When an input record is found which contains a "D" in column one, Phase 1 scans the
remainder of the card for a valid compiler directive. A list of legal compiler directives
and their function is listed in Section 5.2 of the HAL/S-FC User's Manual.
Directive processing is done independently of HAL/S source language parsing, i.e.
words used on Directive cards are not necessary HAL/S language keywords. Similarly,
HAL/S language keywords are not recognized as such on Directive cards.
2.5 Template Checking and Generation
Phase 1 assumes the task of source template verification and generation. Every
compilation unit in the HAL/S-FC system has a source template. When the block
header for a unit of compiler is encountered, Phase 1 begins to construct the source
template for that unit as follows.
The member name for the template being created is determined. This is done by taking
the "characteristic name" for the unit and preceding it by the characters '@@'. The
characteristic name for any unit is created by taking the block name, removing any
underscore characters, and then padding or truncating the result to 6 characters. An
attempt is made to locate a member of this name on either the INCLUDE or OUTPUT6
DD cards. If such a member is found, the contents of the member are compared with
an internal, temporary template created as the compilation proceeds. If the existing
template and the internal one agree, a template update is not required, and the existing
template remains intact. If the templates do not agree, the internal template is written to
the OUTPUT6 DD card and STOW'ed with the current member name. If the initial
search for an existing template fails, the generated template is automatically written
and STOW'ed on the OUTPUT6 DD card. The PDS directory entry for a template
member is created with two bytes of user data. The two bytes are initialized to X'F0F0'.

f. Either of the constructions (c) or (d), above, may span more than one record.
g. The name of the particular COMPOOL in the form (c) above may appear more

than once; i.e. the variables in a particular COMPOOL do not have to be
specified at one time. Similarly, the form $BLOCK may appear more than
once.

1. A syntax error on a PAF record- the bad record is printed.
2. Names mentioned in the PAF are not defined.
3. Elements of $BLOCK in the PAF are not defined.
4. Requests for names which are not ACCESS protected.
5. Variables found, but not within the COMPOOL specified.
6. Names used in the context of a COMPOOL-name which are not COMPOOLs.
2-4 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
Phase 1 also sets appropriate bits in a field which is passed back to the caller of the
compiler as the high order byte of register 15. The definitions of these bit settings is
defined in the HAL/SDL ICD.

Generation of the internal template is performed during syntax analysis on a token by
token basis. As statements are encountered which are required in the template, the
tokens from the statements are added to an internal buffer. When a new token will no
longer fit in the buffer, the buffer is written and cleared for continuation. Thus, the
templates take the form of strings of HAL/S tokens separated by one block. The
template statements are continued from one line to the next without regard for
statement boundaries, thus producing the template in the most compact form possible.
For the comparison of existing templates with new, generated templates, the generated
records are compared character for character with the existing records. Any mismatch
is considered to indicate a change in the template.
Templates are never generated using the compressed source format mentioned in
Section 2.1. The generated templates conform to the source margins in effect for the
compilation (e.g. for an SDL mode compilation, templates are created with source in
position 2 through 72 of the records. When template records are written to the
OUTPUT6 DD card, the records are padded with blanks or truncated as necessary to
conform to the LRECL specification for that DD card.
When a template has been found to have changed, the compiler updates a "Version
number" associated with the template. For an existing template, the version number is
found on a VERSION compiler directive card at the end of the existing template
member. If a new template is needed, the version number is incremented by one and
placed on a new VERSION directive card at the end of the generated template. The
version number is limited to the range 1 to 255. Upon reaching 255, the next
incrementation causes the number to begin again at 1. When no existing template can
be located, the version is set to 1.

When templates produced by the compiler are referenced in subsequent compilations
by use of an INCLUDE for the template, the version numbers from the referenced
templates are emitted into the produced object code on special SYM records which
indicate the versions of all external references. In addition, the emitted object code for
any compilation unit contains a SYM record indicating the version number of the
template created for that compilation unit. This information permits the checking, if
desired, of proper integration of separately compiled units by providing information
necessary for cross-checking of inter-module references.

2.6 Listing Generation
2.6.1 Options
All Type 1 and Type 2 options listed in the HAL/S-FC User’s manual except debug
options and HAL/S-360 unique options are printed in alphabetical order. For Type 1
options, just the option is printed if the option is on. If the option is off, the option is
prepended with a “NO”.
2-5 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
2.6.2 Primary Formatted Listing
The central printed output of the compiler is the primary source listing. This listing is
designed to document the actions taken by the compiler during its generation of an
executable form of the user's source program in an indented, annotated format.
Additional information, such as block summaries and symbol table listings, are also part
of the primary source listing.
The formatting of the primary source listing leads to the documentation of the users
program in two ways: 1) variable annotation, and 2) logical indenting.

When operating in the SDL, additional information is provided on the primary source
listing. The Record Sequence Number and Record Revision Indicator fields (see
Section 2.1) are printed on the primary source listing next to the statements to which
they apply. The revision level is printed to the right of the statement immediately
following the vertical bar. Another vertical bar separates the revision level from the
current scope. Additional details of the specific operations performed during SDL
operation may be found in the HAL/SDL ICD.

All lines are single-spaced except for the following: there is a blank line before a group
of one or more E-lines, C-lines or D-lines and after a group of one or more S-lines.

For D INCLUDES, the first statement number associated with the include is printed.

If there is an IF-THEN or IF-THEN-ELSE statement followed by a simple DO, the DO
appears on the same line as the IF-THEN or ELSE except when the combination of the
statements is too long for a single line. The combined IF-THEN and DO statements
(including the semicolon of the DO) will be broken into multiple lines following regular
compiler rules. The statement number for the IF-THEN will be printed as the statement
number for each line. If the THEN and the DO or the ELSE and the DO are separated
by a C-line or a D-line, the DO will be placed on its own line with its own statement
number.

Normally, the current scope is printed to the right of each line in the compilation listing.
The value in the scope field will be truncated if it exceeds the maximum line length.
The following list indicates instances where the current scope will be replaced by a
different value:
a. The scope field for END statements contains the statement number of the

corresponding DO statement.
b. The scope field for the first statement line (that is not a label) of a case in a DO CASE

group contains the case number.

1. Variable annotation - Each user-defined data symbol, when printed on the
primary source listing, receives "marks" appropriate to the type and
organization of the symbol. This annotation is that which is defined by the
HAL/S Language Specification.

2. Logical indenting - Each statement printed on the primary source listing is
formatted and indented to show internal statement structure, and to show
the statements' hierarchical and nesting relationships to other statements in
the compilation. The indention increment is 2 spaces.
2-6 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
c. The scope field for an IF-THEN followed by a simple DO is replaced by “DO=ST#”,
where ST# is the statement number of the DO. Usually, the scope is replaced with
the statement number of the DO for each line of a multi-line statement. However,
because of certain compiler limitations or other uses of the scope field, the “DO=ST#”
may not appear on all of the lines. Following are the known cases:

1. If the length of the statement exceeds a certain compiler-limited size, the
statement number of the DO will not be printed for the first line(s) of the
statement.

2. If a C-line or D-line is placed inside the IF-THEN statement, the “DO=ST#” will
only be placed in the current scope for the lines following the last C-line or D-
line.

3. If the multi-line IF-THEN-DO is the first statement of a case in a DO CASE
group, the scope field of the first line will contain the case number.

Only one of a-c from above will be placed in the scope field for a given line, with the
order of precedence as listed above.

Depending on the contents of the macro, the formatting of statements containing
replace macros may vary from the requirements listed above.
2.6.3 Error Messages
When compilation errors are detected by Phase 1, an error message is printed in the
primary listing at the point of detection. All error messages have an identifying code
associating with them.

The code is assigned to messages according to a general system which groups errors
according to a class and a subclass. Multiple errors within a class/subclass
combination are assigned unique numbers within the group. Thus, every possible error
in the HAL/S-FC compiler system has a unique identifying code.
The text of all error messages is maintained on a direct access dataset. The compiler
retrieves error message text as needed from this dataset. During compilation, the
ERROR DD card defines the error message dataset. This file has partitioned
organization and contains one member for each error message. The member names
are identical to the identifying code assigned to the errors.

The record format of the error library is FB and the logical record length is 80 bytes.
The first record of each member defines the severity of that error. The severity is a
single EBCDIC number in position one of the first record. The severities and their
effects are:

Severity 0 messages will be warning messages (Severity 1) that have been
downgraded. Processing will continue, and object code will be
generated.

Severity 1 messages will be minor errors in which compilation will be allowed
to continue. Since these errors could produce bad object code,
compilation will abort and no object code will be generated.
2-7 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
Within the text of an error message, locations into which specific descriptive information
may be placed are denoted by the appearance of two question marks (??). For errors
which have this feature, the compiler supplies additional description text (such as the
name of an identifier) to make the printed error message as specific and informative as
possible.

2.6.4 Block Summaries
The HAL/S-FC compiler provides additional information on the primary listing at the
close of HAL/S code blocks. The blocks for which summaries are given are
PROGRAM, TASK, FUNCTION, and UPDATE.
Information contained in block summaries consists of lists of labels or variable names
used in various contexts within the block. The title "BLOCK SUMMARY" begins the list.
For all potentially summarized contexts within the block, a descriptive heading is printed
followed by the list of names involved. A "*" next to any name in the block summary
indicates that the name appears in a context which changes its value. The headings
are listed below.

PROGRAMS AND TASKS SCHEDULED
PROGRAMS AND TASKS TERMINATED
PROGRAMS AND TASKS CANCELED
EVENTS SIGNALED, SET, OR RESET
EVENT VARIABLES USED
PROGRAM OR TASK EVENTS USED
PRIORITIES UPDATED
EXTERNAL PROCEDURES CALLED
EXTERNAL FUNCTIONS INVOKED
OUTER PROCEDURES CALLED
OUTER FUNCTIONS INVOKED
ERRORS SENT
COMPOOL VARIABLES USED
COMPOOL STRUCTURE TEMPLATES USED
COMPOOL REPLACE DEFINITIONS USED
OUTER VARIABLES USED
OUTER REPLACE DEFINITIONS USED
OUTER STRUCTURE TEMPLATES USED

Severity 2 messages will be major errors. These errors usually involve
unimplemented features. Compilation will abort as results will be
unpredictable. No object code will be generated.

 Severity 3 messages will be severe errors that require user action.
Compilation will abort immediately and no object code will be
generated.

Severity 4 messages will be internal compiler errors. Compilation will abort
immediately and no object code will be generated. Compiler
support personnel should be notified, and a compiler DR usually
results.
2-8 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
2.6.5 Compilation Layout Summary
Immediately preceding the Symbol Table printout at the CLOSE of the HAL/S program,
there is a compilation layout map, indicating the way in which PROGRAMS, TASKS,
PROCEDURES, FUNCTIONS, and UPDATE blocks were defined. The indent level in
this printout indicates the nesting level definition of the block shown. This serves to
give a quick overview of the compilation structure.

2.6.6 Symbol & Cross Reference Table Listing
The symbol and cross reference table printed at the end of a HAL/S compilation listing
provides a detailed accounting of all programmer-defined symbols. The table listing is
organized into two parts: a structure template listing and an alphabetized total listing.
These parts are labeled appropriately and are separated by a page break.

Any structure templates defined in the compilation appear first in the symbol and cross
reference table. The template names appear in alphabetical order. All structures
declared using each template are listed alphabetically after “USED BY” under the
template in the attributes and cross reference area. The body of each template (i.e. the
levels defined under the template name) is also listed under the template name in the
order of definition. This ordering provides a quick reference to the organization of the
structure template.
Following any listing of the templates, an alphabetized listing of all programmer-defined
symbols is printed. Symbols previously listed as element of a structure template are
included in this list. However, the list is completely alphabetized and template
organization is not shown. When a particular symbol is independently defined in more
than one name scope, the symbol is multiply listed in order of definition.

2.6.7 Built-in Function Cross Reference
Phase 1 also produces a listing of any HAL/S built-in functions used in a compilation.
The printout shows the statement numbers at which the references to the built-in
functions occurred.

2.6.8 Replace Macro Text
If any HAL/S REPLACE statements were used in the compilation, the text of the macro
is printed in the symbol table listing in the attributes and cross reference area.

2.6.9 Unformatted Source Listing
Under control of the "LISTING2" compiler option, Phase 1 will optionally produce, on
the file defined by the LISTING2 DD card, a listing of the input (both SYSIN and
INCLUDE) source records as read by the compiler. No special annotation, formatting,
or indenting is performed. In the case of input in the SDL compressed format, the
LISTING2 option produces the records in their uncompressed format.
2-9 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
2.7 Symbol Table Generation
Phase 1 is responsible for initial creation of the compiler's internal symbol table. The
symbol table consists of a group of arrays which describe all of the properties of
declared variables and labels. The capacity of the symbol table is under user control by
means of the SYTSIZE compiler option. This table, as created by Phase 1, is located in
an area common to all compiler phases. Thus, Phase 2 inherits the initialized table
from Phase 1.

Design of the HAL/S-FC compiler includes, as a basic concept, the use of a Phase 1
and Phase 1/Phase 2 interface identical to that of the HAL/S-360 compiler. Thus, the
description of the internal symbol table to be found in the HAL/S-360 Compiler System
Specification, Appendix B.2 is sufficient to define the HAL/S-FC table.

2.8 Statement Table Generation
The statement table passes information about executable statements from Phase 1 of
the compiler to Phase 3. This information allows Phase 3 to include statement type and
target variable information in the Simulation Data Files.
Due to the use of a common Phase 1 in the HAL/S-360 and HAL/S-FC compiler
systems, the Statement Table description in the HAL/S-360 Compiler System
Specification document is sufficient to describe the HAL/S-FC table (See Appendix B.3
of that document).

The basic table description includes reference to an "extension" field in which
statement memory addresses and/or SRN data is stored. Use of this field is activated
by use of certain compiler options:

SRN data is included in the Statement Table if either of the SRN or SDL compiler
options are used.
Beginning and ending addresses for individual HAL/S statements are included in the
Statement Table when the ADDRS compiler option is used.

The Statement Table is produced on the file specified by the FILE6 DD card. No
Statement Table data is communicated via in-memory tables.

2.9 Literal Table Creation
The format of the HAL/S-FC literal table is identical to that used by the HAL/S-360
compiler as described in Appendix B.1 of the HAL/S-360 Compiler System
Specification.

The size of the area in which character literal data is stored is under user control via the
LITSTRINGS compiler option. This character literal area is communicated to
subsequent phases of the compiler through common memory locations.

The portion of the literal table which contains arithmetic literal, bit literal, and pointers to
character literal is passed to later phases via the dataset defined by the FILE2 DD card.
2-10 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
2.10 HALMAT Creation
HALMAT is the intermediate code medium by which the structure of the compiled
HAL/S-FC is passed to Phase 2 for code generation. The HAL/S-FC compiler uses a
similar Phase 1 as the HAL/S-360 compiler. A description of HALMAT as used by the
HAL/S-360 compiler can be found in Appendix A of the HAL/S-360 Compiler System
Specification and a description of the HAL/S-FC HALMAT can be found in Appendix A
of the HAL/S-FC Compiler System Program Description Document.

HALMAT is passed to Phase 2 through use of auxiliary storage as defined by the FILE1
DD card.

2.11 The Optimizer
The HALMAT produced by Phase 1 is a direct representation of the HAL/S program
being compiled. A separate phase of the compiler exists between Phases 1 and 2
which examines and manipulates the HALMAT in order to produce an optimized
HALMAT representation. This phase, known as Phase 1.5, is conceptually a part of
Phase 1. Its operation is transparent to the user as it produces no standard printouts.
The Optimizer performs the following functions:

These operations are carried out by modifying the HALMAT, literal table, and symbol
table.
While the Optimizer is a separate phase, it is conceptually a part of Phase 1 and is
described in the HAL/S-360 Compiler System Specification.

- Common subexpression elimination, including subscript computations

- Additional literal folding

- Pulling loop invariant subexpressions out of loops

- Replacement of unneeded divisions by multiplications

- Suppression of unnecessary matrix transpose operations

- Indicate linear operations on Vectors and Matrices to allow for in-line code.

- Indication of procedures which cannot be leaf procedures (as an aid to
Phase 2)

- Indicate the next use of variables and subexpressions, to assist register
allocation in the code generator
2-11 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
This page intentionally left blank.
2-12 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.0 PHASE 2 - Code Generation
The code generation phase of the HAL/S-FC compiler has the primary function of
producing machine language instructions for the AP-101. Phase 2 also performs other
tasks which are also the subject of this chapter.
This section deals with the following Phase 2 functions:

• Code Generation
• Naming Conventions
• Printed Data
• Symbol Table Augmentation
• Statement Table Augmentation

3.1 Code Generation

3.1.1 Bases and Conventions
Phase 2 produces AP-101 machine language instructions which perform the operations
indicated by each line of HALMAT received from the syntax and semantic analysis
phase. This section describes in detail the ground rules which the code generation
phase follows in producing object code. The following terms will be used throughout
the ensuing text:

R - A general accumulator (integer or scalar);
X - An indexing register (for subscripting);
B - A base register containing a base address used to compute the

effective address of a variable, constant, temporary, or program
label.

OFFSET - The constant term which, when subtracted from the actual data
address of a variable, yields the address of the 0'th item of the
aggregate data collection (note that all HAL subscripts start
counting from 1). This is 0 when the variable is a single item.

VAR - The address of a declared non-parameter HAL/S variable. For
addressing purposes, it is actually the base address of the actual
data minus the OFFSET. Single valued integer, scalar, or bit input
parameters also will use this form.

PAR - The address of a formal parameter passed "by reference". This
includes any assigned parameters, plus any input parameters
which are not simple integer or scalar variables. Note that PAR
actually contains an address.

DELTA - The constant indexing term in a subscript calculation. This term
may also reflect the displacement of a structure terminal within a
structure template.

OP - Any AP-101 machine instruction.

 Note - When VAR or PAR appears in machine instruction constructions, it
represents the displacement difference between the data address and the
base address contained in the base register B.
3-1 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.1.1 Register Usage
The following register assignments are used by the code generator:

3.1.1.2 Storage Allocation
The HAL/S-FC compiler arranges data in memory such that the least number of base
registers need be dedicated in addressing.

Data is grouped into three major categories: single value (constant offset=0), aggregate
(character, vector-matrix, structure without copies), and array (including structure with
copies). Within each group, data is ordered such that data requiring the same
boundary alignment is adjacent, minimizing the storage lost due to hardware alignment
requirements. Within the array group, ordering is further carried on such that
multidimensional arrays (with larger offsets) come after single dimensional arrays.
These above orderings are carried on independently for: 1) program data, and 2) each
COMPOOL block contained in the compilation unit. Note that program data includes all
variables within the compilation unit including those defined in procedures, functions, or
any other block.
Structure templates, unless declared as RIGID, are internally ordered such that the
minimum boundry alignment within any node level is required. Template matching
requirements guarantee that templates exhibiting identical properties will be identically
reordered.

F0-F5 Used for floating point accumulators and parameters.
F6-F7 Used for floating point accumulators only.
R0 Stack register. This register points to the caller's register save area

in the run time stack. In addition, all formal parameters, temporaries,
and AUTOMATIC variables in REENTRANT procedures are based
on this register.

R1 Global data addressing register. This register is used to address all
of the declared variables and literals within a compilation unit.

R2 Work addressing register. This register is used to pass address
parameters, dereference NAME variables, and set up any other
dynamic addressing.

R3 Local addressing register. This register is used in SRS instructions
only to address a certain subset of the local data in a block.
When the DATA REMOTE directive is in effect (see Section 4.0),
register 2 can only be loaded with non-local data addresses
(COMPOOL, etc.) and register 3 can only be loaded with local data
addresses.

R4 Linkage register. This register records the return address for all
subroutine linkages. It may also be used for an integer accumulator.

R5- R7 Used for integer accumulators, index registers, and parameter
passage where applicable.
3-2 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
After all groupings are complete, storage assignments are made, with the required
base-displacement combinations being generated to properly access the data. The
storage addresses assigned refer to the actual data beginning, but for arrayed data
types, the base-displacement address includes a negative offset value (COMPOOL
variables that are not referenced do not have base-displacement addressing
generated). This negative offset value is commonly referred to as an imaginary 0th
element.

Figure 3-1 Algorithm for Calculating the 0th Element Offset

OFFSET = 0

STRUCTURE

SP
MATRIX/
VECTOR

COPIES

DP
MATRIX/
VECTOR

OFFSET = 2

OFFSET = 4

ARRAYED

 OFFSET = ALIGNED
 WIDTH OF A SINGLE
 COPY

 ARRAY_FACT = 1 (1D)
 = N2 +1 (2D)

 = N3 (N2 +1) +1 (3D)

COEF = 4

 COEF = 2 ROWS COLS

 COEF = 4 ROWS COLS

COEF = (3+MAX_CHAR) /2

COEF = 1

COEF = 2

 OFFSET = OFFSET + COEF ARRAY_FACT EXIT

N Y

Y N
YN

Y

N

NY

 SP INTEGER, BOOLEAN, EVENT, BIT(1)-BIT(16)
 DP INTEGER, SP SCALAR, BIT(17)- BIT(32)

 DP SCALAR

 SP VECTOR/MATRIX

 DP VECTOR/MATRIX

 CHARACTER
3-3 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Example:
 DECLARE A SCALAR,
 B INTEGER,
 C CHARACTER(7),
 D ARRAY(5) DOUBLE;
 DECLARE E ARRAY(5),
 F ARRAY(3,3) VECTOR,
 G MATRIX;
 DECLARE H DOUBLE,
 I ARRAY(5,5) INTEGER;

Note that all formal parameters and all AUTOMATIC variables in a RENTRANT
PROCEDURE or FUNCTION are based off the stack register (0).

3.1.1.3 Addressing Concepts
This section describes the general addressing rules for data. To the extent possible,
data can be directly addressed via some combination of base register and bit
displacement (eleven bits for indexed addressing). This is not possible whenever the
data item is a formal parameter other than a simple integer or scalar, or any formal
parameter scoped in from an outer to an inner procedure. The skeletal forms given in
Section 3.2 assume the most commonly used addressing forms. The rules described
here should be superimposed upon these skeletal forms to interpret all possible
combinations of operations between operands.

Simple Addressing Forms

Simple Variable
OP R,VAR(B)

Simple Aggregate Component (array or vector-matrix)
OP R,VAR+DELTA(X,B)

Simple Integer-Scalar formal parameter
OP R,VAR(0)

Simple Aggregate formal parameter

Alignment Name Location Base Displacement (In Decimal) 0thelement
Halfword B 00002 1 0002 0
Fullword A 00004 1 0004 0
Doubleword H 00008 1 0008 0
Halfword C 0000C 1 000C 0
Halfword I 00011 1 000B -6
Fullword E 0002A 1 0028 -2
Doubleword D 00034 1 0030 -4
Fullword G 00048 1 0046 -2
Fullword F 0005A 1 0040 -26
3-4 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
L B,PAR(0)
OP R,DELTA(X,B)

NAME Variable in dereference context
LH B,VAR(B)
OP R,DELTA(X,B)

NAME Variable in dereference context (ASSIGN formal parameter)
L B,VAR(B)
LH B,0(B)
OP R,DELTA(X,B)

When the DATA REMOTE directive is in effect (see Section 4.0), if register 1 or 3 is
loaded with a new base address and used in operation OP as base B, then it will be
restored immediately after OP to its original local data pointer value with:

LH B,stack location(0)

However, if the next instruction is a conditional branch, then it will be restored with:
LH B,stack location(0)
SLL B,16

REMOTE Variable
OP@# R,ZCON(X,1)

ZCON DC Z(0,VAR,0)

NAME REMOTE variable in dereference context is basically the same as a REMOTE
variable, except the NAME variable is used in place of the ZCON

OP@# R,VAR(X,1)

NAME REMOTE variable in dereference context that lives REMOTE
L@# R,ZCON(X,1)
ST R,stack location(0)
OP@# R,stack location(X,0)

REMOTE formal pass-by-reference (address) parameter
OP@# R,stack location(X,0)

Address Passage Addressing Forms
For parameter passing to procedures, functions, and library routines, it is often
necessary to pass address pointers instead of data. The following sequences could be
used anywhere the instruction LA appears in the generated code sequence.

Unsubscripted variable:
LA R,VAR(B)

Subscripted variable:
SLL X,<index alignment>
LA R,VAR(X,B)
3-5 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Unsubscripted REMOTE variable:
L R,ZCON(1)4

Subscripted REMOTE variable:
SLL X,<index alignment> or SLL R,<index alignment>
L R,ZCON(1)4
AR R,X

Non-aggregate variable to REMOTE library or to REMOTE parameter in HAL/S
procedure or function:

LA R,VAR(B)
OHI R,x'8000' (PASS only)
IAL R,x'0800'

Subscripted variable to REMOTE library or to REMOTE parameter in HAL/S procedure
or function:

SLL X,<index alignment>
LA R,VAR(X,B)
OHI R,x'8000' (PASS only)
IAL R,x'0000'

Unsubscripted aggregate variable to REMOTE library or to REMOTE parameter in
HAL/S procedure or function:

LA R,VAR(B)
OHI R,x'8000' (PASS only)
IAL R,x'0000'

Non-aggregate variable to REMOTE library or to REMOTE parameter in HAL/S
procedure or function through a NAME dereference:

LH R,Name Var
IAL R,x'0800'
SRA R,1
SRR R,31
OHI R,x'8000' (PASS only)

Subscripted variables to REMOTE library or to REMOTE parameter in HAL/S
procedure or function through a NAME dereference:

LH B,Name Var
LA R,<INDEX>(B)
SRA R,1
SRR R,31
OHI R,x'8000'(PASS only)

Unsubscripted aggregate variable to REMOTE library or to REMOTE parameter in
HAL/S procedure or function through a NAME dereference:

LH R,Name Var
SRA R,1
SRR R,31
OHI R,x'8000' (PASS only)

4. ZCON DC Z(0,VAR,0).
3-6 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Subscripted variable to REMOTE library.
(stack variable only)

SLL X,<index alignment>
LA R,VAR(X,B)
IAL R,x'0400'

Note that the compiler emits an RLD card that informs the linkage editor to insert the
proper CSECT value into the last four bits inserted by the IAL instruction for non-NAME
non-stack variables, to conform to the ZCON format.

For stack variable (B=0), this cannot be done because the stack CSECT is undefined at
compile time. The '0400' sets the ZCON's C bit which will allow correct address
expansion for either CSECT 0 or 1, which is where the stack is located.
3-7 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Indexing:
The computation for all indexing is done as follows. All constant index terms are
factored out from the variable terms. The variable terms are computed according to the
natural sequence of unwinding aggregate data. The constant terms are similarly
computed to form a DELTA. The variable subscript in register X is shifted according to
the halfword width of the data being indexed, except for those instructions which
perform automatic index alignment. The DELTA is similarly shifted at compile time. If
0<DELTA<2048, it is used in the variable displacement. Otherwise, it is added to X if X
is non-zero, or loaded into a newly created X if X is zero (i.e. the subscript contains no
variable terms).

3.1.1.4 Condition Codes
The following table lists the allowable relational operations and the resultant condition
code - referred to as COND throughout the remainder of this section. Note that the AP-
101 conditional branch instructions branch on the "not true" condition.

3.1.1.5 ZCONs and the Calling Mechanisms
Throughout the descriptions of generated code of Section 3.1, branches to other
CSECTs (comsub or library) are generally indicated as:

ACALL <routine name>
The actual implementation of this linkage is to go not directly to the named routine, but
instead to branch indirectly through a long address constant (ZCON) located in sector
0 of the machine.
When the target of the branch is a compiler-generated CSECT (a COMSUB), the
ZCON referenced will be one created during compilation of the COMSUB. The long
indirect address will be in a CSECT named #Znnnnnn (see Section 3.2) which will in
turn refer to the real code CSECT.

When the target of the branch is a library routine, the ZCON referenced will be one
provided with the library. Its name will be #Qnnnnnn and it will in turn refer to the proper
library code CSECT. Certain library routines, for reasons of execution speed, are
referenced directly by compiler-emitted code without going through a ZCON. These
routines are designated in the BANK0 column of the library documentation. This direct
addressing requires that these routines reside either in sector zero or in the same
sector as the compiler code which references them.

<OP> COND
= 3
¬= 4
< 5
 > 6

¬< or >= 2
¬> or <= 1
3-8 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
The use of ACALL in the descriptions implies an external call. In actuality, the
instruction generated may be either:

depending on whether the library routine has been designated as PROCEDURE or
INTRINSIC type.
Some of the parameter setups show the use of P1, P2, and P3 for parameter registers.
The following table shows the actual register values for P1, P2, and P3 depending upon
the nature of the library routine (see library documentation for specific details).

When the DATA REMOTE directive is in effect (see Section 4.0), the ACALL will be
preceded by the instruction LDM $ZDSECLR to clear the DSE registers, and will be
followed by the instruction LDM $ZDSESET to set the DSE registers upon return.

3.1.1.6 The Runtime Stack
The HAL/S-FC compiler system employs a runtime stack mechanism as an integral
part of its operation. The stack mechanism is used to provide subroutine linkage areas,
temporary work areas, error environments, and to provide reentrancy of code blocks
when needed. The actual memory used as a stack space for a given HAL/S process is
provided by the flight computer operating system (FCOS). The determination of the
size required for a particular stack is made by the flight computer support software
linkage editor. The linkage editor determines stack size (and upon special request will
create a stack CSECT) from information provided on SYM cards in the modules being
link edited. The HAL/S-FC compiler emits the SYM cards as part of its object modules.
The runtime library uses a system of macros to generate the properly named DSECTs
and SYM entries for stack size computation.
The details of formats and requirements relating to stack generation can be found in the
HAL/SDL ICD. That document also contains the detailed description of the "stack
frame", that portion of a total stack which is used by an individual subroutine when that
subroutine has been invoked. The description of the basic stack frame is reproduced
here for reference.

The active stack frame is pointed to by the pointer in register R0. The back link to the
previous stack frame is established when a new level is entered. A pointer, NEW R3, is
established for any block with a local data area. If a local data area is not present, e.g.
in the case of a HAL/S-FC library routine, NEW R3 is set to zero. See Section 3.1.1.7
for a definition of the local data area.

SCAL 0,<routine name>
or

BAL 4,<routine name>

P1 P2 P3
Intrinsics 1 2 3
Procedure-

P1 used 2 4 7
P1 not used X 2 4
3-9 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Figure 3-2 Stack Layout

lower address

“pushed”

stack frames

PSW (left half)

old stack ptr

new R1

new R3*
(local_data

ptr)

Fixed _Arg #1

Fixed _Arg #3

Floating Arg #1,etc

ERROR Vector

User Data

Temporaries

available for
called routines

* For HAL/S blocks only

optional area
defined by each
routine

REGISTER SAVE
AREA

R0

R1

R2

R3

R4

R5

R6

R7

0

2

4

6

8

10

12

14

16

18

minimum size:
18 halfwords

address size

Stack ptr
R0:

two halfwords wide

higher address

Fixed _Arg #2

~~

~~
~~

~~
3-10 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.1.7 Local Block Data Areas
During execution of a HAL/S-FC program, certain machine registers have dedicated
uses as described in Section 3.1.1.1. In particular, register R3 is a local addressing
register which points to the local Block Data Area for the block in execution. These R3
values are saved on the runtime stack as indicated in Section 3.1.1.6. The format of a
local Block Data Area is the subject of this section. The HAL/SDL ICD contains the
controlling definitions of these areas.

Block Data Areas are created by the compiler and are part of the #Dnnnnnn CSECT
generated for a compilation unit. A Block Data Area may exist for any Program,
Procedure, Function, Update Block, or Task. The compiler-emitted code for block entry
(as defined in Section 3.1.1.6) loads R3 with the address of the Block Data Area for the
block being entered. The format of such an area is shown in the following diagram.
Fields
BL 1 Block ID 2

2 XU ONERRS ERRDISP 2
3 TYPE UNUSED RESERVE SVC# 2 ⎫
4 UNUSED RELEASE SVC# 2 ⎬ only required if XU=1
5 LOCK ID 2 ⎭

Field Definition
1. Block ID A 16 bit field uniquely identifying the HAL block. The first 9 bits

are a "compilation number" supplied by the user via the
COMPUNIT compiler option. The last 7 bits are a block count
generated internally for each new block within a compilation unit.

2. XU EXCLUSIVE/UPDATE flag (1 bit). Set to one if block is either an
UPDATE block or has the EXCLUSIVE attribute.

ONERRS (6 bits). The number of discrete errors for which an ON ERROR
statement exists in the block.

ERRDISP (9 bits). The displacement in half words from the stack frame
pointer register (R0) to the error vector.

3. TYPE (1 bit). Set to zero for EXCLUSIVE procedure or function. If an
UPDATE block, set to one if shared data variables are read only.
Set to zero if shared data variables are to be written.

Reserve
SVC#

(8 bits). SVC number for the reserve SVC:

15 for a code block
16 for a data area.

4. Release SVC# (8 bits). SVC number for release SVC:
17 for a code block
18 for a data area.
3-11 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.1.8 Parameter Passing Conventions for User-Written Routines
To the extent possible, HAL/S parameters are passed via registers. Scalar parameters
are passed in floating point registers. All others are passed in general registers. The
following rules describe how the registers are designated, and what they contain for
each type of parameter.

General purpose registers 5-7 and floating point registers 0, 2, 4 are available for
parameter passing. If the supply of registers is exhausted before the parameter list, the
balance of the parameters are passed in memory locations. All parameters are located
via the stack register (0).

Allocation of general and floating registers is carried on in parallel. If no scalar
parameters exist, no floating point registers will contain parameters.

General purpose registers 5 through 7 are automatically contained in the stack
beginning at displacement 1210. Floating point registers are not automatically saved,
and it is the responsibility of the called program to do so. Storage locations are
reserved in the stack for this purpose as described below. Parameters which cannot be
passed in registers are automatically stored in the called procedure's stack by the
caller. The allocation of these stack locations is identical to the allocation for floating
point values. Note that, unlike ordinary HAL/S variable allocation, parameter allocation
is not subject to reordering to minimize alignment conflicts.

The first available stack location is at 1810 off the stack register. All parameters are
assigned storage in order starting at this point (the exception being parameters
contained in general registers 5 through 7, which are allocated space in the register
save area as described above). Any necessary alignment is performed as needed.

Arguments are either input type or ASSIGN type (Input types are those whose values
will not be changed by the called routine). The actual information which is passed for a
particular argument is dependent upon the following factors:

• whether the argument is input or ASSIGN;
• whether the HAL/S data type of the argument is an aggregate (i.e. more than one

element, as in a matrix);
• whether the argument has any arrayness or structure copies to be passed; and
• whether any arrayness or structure copies are defined via an ARRAY(*) or

-STRUCTURE(*) specification.

5. Lock ID (15 bits). An indicator of which code block or data areas are
being used. For a code block this is the address of the
EXCLUSIVE DATA CSECT of the procedure/function. For a data
area this is a bit pattern indicating which data areas (by lock
groups) are involved. If the "master lock" was specified, the bit
pattern will be all ones.
3-12 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
The following table and list show the information which is passed for an argument with
particular attributes.

For all cases where auxiliary values are allocated for a single parameter (i.e.
CHARACTER(*) ARRAY or ARRAY(*)), the parameters (up to 3) must be contiguous.
Thus, if more pointers are required than registers are available, then the whole
parameter sequence will be pushed into the stack.

Example:
 P: PROCEDURE(X,Y,I,J,K,Z,C,L);
 DECLARE SCALAR,X,Y,Z DOUBLE;
 DECLARE INTEGER,I,J ARRAY(*),K,L;
 DECLARE CHARACTER(*) ARRAY(*),C;

 Data Type
Argument Type

Integer Scalar Bit Character(*) Vector Matrix Structure

Input (no arrayness or copies) 1 2 3 4 5 6 7
ASSIGN (no arrayness or
copies)

8 8 8 4 5 6 7

Input or Assign (with arrayness
or copies)

9†

† If the parameter is declared as ARRAY(*) or -STRUCTURE(*), an additional parameter word is passed containing
the value of the unspecified dimension.

9† 9† 10† 9† 9† 11†

Key Information Passed
1 A halfword or fullword of data.
2 A single or double precision floating point value.
3 Up to 32 bits of data (halfword or fullword depending upon declared size).
4 Address of the max-size byte of the character string.
5 Address of the 0th item in the VECTOR (i.e. 1 item width ahead of the actual

vector).
6 Address of the 0th item as if the MATRIX were a VECTOR of length m x n.
7 Address of the first location in the structure as defined by its template. (Note

that item position within a template is subject to compiler reordering unless
RIGID is used).

8 Address of the data item.
9 Address of the 0th item of the array.

10 Two items are passed. The first is the address of the 0th array item. The
second is the number of halfwords of memory occupied by one character
string element (including the halfword containing the max and current size
bytes).

11 The address of the first data in the 0th copy.
3-13 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Upon entry to this procedure, the stack and registers are as follows:

Figure 3-3

1 word

R0+1210

+14

+16

+18

+24

+26

+28

+20

+22

+30

+32

+34

unused

unused

unused

unused

unused

unused

unused

also in R5

also in R6

also in R7

also in F0

also in F2

also in F4, F5

L

I

address of 0th array
element of J

size of array J

unusedK

address of 0
th
 array

element of C

size of array C

HW occupied by
one element of C

1st word of Z

2nd word of Z

X

Y

3-14 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.2 Integer and Scalar Operations
Nomenclature
The register R is any of the available set of accumulators. The terms I, I2, S, and S2
refer to the single and double precision versions of Integer and Scalar values
respectively. It is assumed that any implicit precision or type conversions have been
accomplished prior to generating the code sequences shown below.

3.1.2.1 Arithmetic Operators
Integer and scalar arithmetic operators generally employ two operands, denoted as X
and Y. X is assumed to be loaded into register Rx unless otherwise noted. If Y is also
in a register, it is represented by the form Ry.

Note that the shift operations used in the integer multiplications are required to
correctly normalize the result in the proper registers
Certain constant multipliers are optimized to avoid using actual multiply instructions.
They are described below.

Operation Type Code Alternate Code
X + Y: I AH Rx,Y AHI Rx,Y

†

† Used if Y is a literal.

I2 A Rx,Y AR Rx,Ry
 S AE Rx,Y AER Rx,Ry
 S2 AED Rx,Y AEDR Rx,Ry
X- Y: Similar to X + Y except that the subtract operator is

used (For example, SH in place of AH in the above list).
(Multiply)
X Y: I MH Rx,Y MIH Rx,Y

†

SLL Rx,15
I2 M Rx,Y MR Rx,Ry

SRDA Rx,1
S ME Rx,Y MER Rx,Ry
S2 MED Rx,Y MEDR Rx,Ry

Operation Type Code Alternate Code
I 2n SLL RI,n,n>1

AR RI,RI,n=1
I2 2

n SLL RI,n,n>1
AR RI,RI,n=1

X 1 no code for any type
S 2 AER Rs,Rs
S2 2 AEDR Rs,Rs

X/Y S SER Rx+1,Rx+1 SER Rx+1,Rx+1
DE Rx,Y DER Rx,Ry

S2 DED Rx,Y DEDR Rx,Ry
3-15 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
X**Y: The exponentiation is performed by subroutine. The patterns shown for I and S
are identical to those which will be generated for I2 and S2, except for the obvious
differences:

The DED and DEDR instructions are broken on the AP-101S machine. Thus, the
compiler emits the following code sequences in place of these instructions:
Operation Type Code Alternate Code
X/Y S2 LER Ra+1,Rx+1 LER Ra+1,Rx+1

LER Ra,Rx LER Ra,Rx
DE RX,Y DER RX,Ry
LER Rb+1,Rx+1 LER Rb+1,Rx+1
LER Rb,Rx LER Rb,Rx
MED Rb,Y MEDR Rb,Ry
SEDR Rb,Ra SEDR Rb,Ra
DE Rb,Y DER Rb,Ry
SEDR RX,Rb SEDR RX,Rb

where the result resides in the Rx,Rx+1 register pair.
In the special case where a double precision result is divided by itself, a double
precision "1" is loaded directly into the result register rather than executing the
DED/DEDR workaround sequence. The code sequence for this case is:
Operation Type Code
X/X S2 LFLI Rx,1

LFLI Rx+1,0

where the result resides in the Rx,Rx+1 register pair.

I**I LH 5,X ⎫
CVFL 0,5* ⎪
LH 6,Y ⎪

S**I LH 6,Y (see note) ⎬ Argument Setup
LE 0,X ⎪

S**S LE 2,Y ⎪
LE 0,X ⎭
ACALL αPWRβ } Actual Call
3-16 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
where α and β represent the types of operands X and Y respectively:

Return is in F0 for α of E or D; in R5 for α of H or I.

* if Y operand is a positive integer literal, the CVFL conversion is eliminated and the
PWR routine invoked is αPWRH or αPWRI.

Note: Scalar expressions raised to integer literal powers from 1 to 16 are performed in
line via repeated multiplication, using the binary powers algorithm. The following
examples should serve to illustrate the method.

For type S2, the instruction MEDR is used in place of MER. Two LERs must be used in
place of one.

3.1.2.2 Comparison Operators
The full complement of relational operators is allowed for Integer or Scalar operations
between single quantities. Only equal or not equal operators are allowed for arrayed
comparisons. No logical variables are created by comparisons. Instead, branching to
one of two points is used for true/false relations.

Type of X α Type of Y β
Single precision integer ⎫ single precision integer H
double precision integer ⎬ E double precision integer I
single precision scalar ⎭ single precision scalar E
double precision scalar D double precision scalar D
single precision integer H*
double precision integer I*

Operation Type Code Alternate Code
X**1: No code generated.
X**2: S MER Rx,Rx
X**3: S LER RT,Rx

MER Rx,Rx
MER RT,Rx
(result in RT)

X**6: S MER Rx,Rx
LER RT,Rx
MER Rx,Rx
MER RT,Tx
(result in RT)

Operation Type Code
+X No code generated
-X I,I2 LACR Rx,Rx

S LECR Rx,Rx
S2 LED Rx,X

LECR Rx,Rx
3-17 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Note: For comparisons to the literal 0, the condition code is used directly. If the
condition code is not valid, the instruction LR or LER is used to set it.

3.1.2.3 Conversions
Where necessary, conversions are performed in intrinsic or library functions. Some
conversions do not require any generation of code.
Integer Conversions

Operation Type Code Alternate Code
X <OP> Y: I CH Rx,Y

BC COND,not-true-label
I2 C Rx,Y CR Rx,Ry

BC COND,not-true-label
S CE Rx,Ry CER Rx,Ry

BC COND,not-true-label
S2 SED Rx,Y SEDR Rx,Ry

BC COND,not-true-label

Operation Code
I TO S LH Rx,X

CVFL Fx,Rx

I TO S2 LH Rx,X
CVFL Fx,Rx
SER Fx+1,Fx+1

I2 TO S L 5,X
ACALL ITOE

I2 TO S2 L 5,X
ACALL ITOD

I,I2 TO BIT No code necessary

I TO CHAR LH 5,X
LA 2,temp-string-area†

† temp-string-area contains converted string.

ACALL HTOC

I2 TO CHAR L 5,X
LA 2,temp-string-area†

ACALL ITOC

I TO I2 SRA Rx,16

I2 TO I SLL Rx,16
3-18 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Scalar Conversions

3.1.2.4 Assignments
For all assignments, type conversion may take place across the assignment operator.
For multiple assignments, the left hand side operands are grouped by data type to
minimize the number of conversions performed. The order in which the groups are
processed is determined by the following table:

Right Hand Operand Type

Type Ordering I I2 S S2

Character is always performed before any right hand side conversion is performed.

Operation Code Alternate Code
S TO I,I2 LE 0,X LER 0,Rx

ACALL αTOβ

S2 TO I,I2 LED 0,X LEDR 0,Rx

ACALL αTOβ

TYPE OF SCALAR α TYPE OF INTEGER β
Single Precision E Single Precision H
Double Precision D Double Precision I

S,S2 TO BIT Same as for scalar to integer

S TO CHAR LE 0,X
LA 2,temp-string-area†

† temp-string-area contains converted string.

ACALL ETOC

S2 TO CHAR LED 0,X
LA 2,temp-string-area†

ACALL DTOC

S TO S2 LE Rx,X
SER Rx+1,Rx+1

Left Hand

First I I2 S S2
I2 Char Char Char
Char S2 S2 S
S2 S I2 I2
S I I I

Last Vector-Matrix
3-19 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
The following sequences assume that Rx has already had the required integer or scalar
conversions performed as described in Section 3.1.2.3.

Rx is also marked as now containing the value Y. Subsequent usages of Y may use this
register in lieu of the copy of Y in memory until such time as the contents of this register
are destroyed or a label is generated.

3.1.3 Bit String Operations

3.1.3.1 Bit String Operators
Bit string operators include the following: AND (&), OR (|), and CAT (||). They generally
employ two operands, denoted here as X and Y (of lengths Nx and Ny respectively). X
is assumed to be loaded into register Rx unless otherwise noted. If Y is also in a
register, it is represented as Ry. Note that the & and | operations will pad the bit length
of the shorter bit string to the length of the longer bit string.

Operation Type of Y Code
Y = X; I†

† If X is an integer literal of value 0 or-1, then the following code will be generated:

STH Rx,Y
I2 ST Rx,Y
S STE Rx,Y
S2 STED Rx,Y

Y = 0; I ZH Y
Y = -1; I SHW Y

Operation Bit Length Code Alternate Code
X&Y Nx,Ny≤16 NR Rx,Ry NHI Rx,'Y'

†

† Used only when Y is a bit literal.

Nx,Ny>16 N Rx,Y NR Rx,Ry

X|Y Nx,Ny≤16 OR Rx,Ry OHI Rx,'Y'
†

Nx,Ny>16 O Rx,Y OR Rx,Ry

X||Y Ny≤16 SLL Rx,Ny
OR Rx,Ry

Ny>16 SLL Rx,Ny
O Rx,Y OR Rx,Ry
3-20 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.3.2 Bit String Comparisons
The only possible relational operators for bit strings, as with bit operators, are = or Ø =
(see Section 3.1.1.4). The bit strings are padded to be of equal lengths. No logical
variables are created by comparisons. Instead, branching to the "not-true-label" occurs
with the "not true" condition.

3.1.3.3 Component Subscripting
Component subscripting for bit strings consists of shifting and &'ing out unwanted
components of the subscripted bit string. The resultant bit string length, Nr, determines
a binary mask, whose decimal value is 2Nr-1, and bit number "I" of the original bit string
is the last component of the resultant bit string.

Operation Bit Length Code Alternate Code
X<OP>Y Nx,Ny<16 CH Rx,Y CHI Rx,'Y'

†

† Used only when Y is a bit literal.

BC COND,not-true-label
Nx,Ny>16 C Rx,Y CR Rx,Ry

BC COND,not-true-label

Operation Bit Length Code
Xsubscript Nx SRL Rx,Nx-I

N Rx,mask
†

† The mask value is equal to (2Nr-1)

Xvariable
subscript

Nx LAC
R

RI,RI

AHI RI,Nx
SRL Rx,0(RI)
N Rx,mask

†

Examples of Subscript Forms
Subscript I Nr
3 TO 10
6 AT 11

9
8 AT J

K

10
16
9

J + 7
K

8
6
1
8
1

3-21 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.3.4 Bit Conversions
When necessary, conversions are performed in intrinsic or library functions. Some
conversions do not require any generation of code.

3.1.3.5 Bit Assignments
The following sequences assume that Rx has already had the required conversions
performed as described in Sections 3.1.3.3 or 3.1.3.4.

Operation Bit Length Code Alternate Code
BIT TO I No code necessary
BIT TO I2 LH

SRA

Rx,X

Rx,16

⎫
⎬
⎭

SRA Rx,16

BIT TO S,S2 Nx<16 LH 5,X LR 5,Rx
CVFL 0,5

Nx>16 L 5,X LR 5,Rx
ACALL ITOE

BIT TO CHAR Nx<16 LH 5,X

Nx>16

SRL

L

5,16

5,X

⎫
⎬
⎭

set up of bit-type
argument

LA
LHI
ACALL

2,temp-string-area†

6,Nx
BTOC

† temp-string-area contains converted string.

⎫
⎬
⎭

actual
calling
sequence

BIT TO CHAR@<radix> Same as BIT TO CHAR except call to BTOC is
replaced as follows:
<radix> routine
BIN BTOC
OCT OTOC
DEC KTOC
HEX XTOC

BIT TO BIT ⎡ Nx>Ny ⎤
 ⎣ Ny<16 ⎦

NHI Rx,2
Ny-1

Ny>16 N Rx,mask
††

†† The value of the mask is 2Ny-1.

Operation Length of Bit String Y Code
Y = X Ny<16 STH Rx,Y

†

† Note: If Nx > Ny and NY is not exactly 16 or 32, then the following instruction must be added: NRx, F'2Nr-1'.

Ny>16 ST Rx,Y
†

3-22 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
If the right hand side of the assignment (X) is a BIT literal as described below, and
Ny< 16, then the following code is generated:

3.1.3.6 Partitioned Bit Assignments
The following sequences assume that Rx has already had the required conversions
performed as described in Section 3.1.3.3 or 3.1.3.4. Definitions of I, Ny, and Nr are as
described in Section 3.1.3.3.

If the right hand side of the assignment (X) is a BIT literal containing either BIN'0' or
BIN(Ny) '1' then if Ny< 16 and Y is addressable in SRS format, then the following code
is generated:

If Ny>16 then the following code is generated:

Y = BIN'0'; Ny<16 ZH Y
Y = BIN(16)'1'; Ny=16 SHW Y

Operation Length of Bit String Y Code
Ysubscript=X; Ny<16 LH Rx,X

LH Ry,Y
SLL Rx,Ny-I
XR Rx,Ry
NHI Rx,mask

†

† Mask: The mask used in a bit store is computed as follows: (2Nr-1)(2Nx-I). In other words, the mask is a
sequence of Nr bits shifted left Nx-I bits.

XR Rx,Ry
STH Rx,Y

Ysubscript=X; 17<Ny<32 L Ry,Y
L Rx,X
SLL Ry,Ny-I
XR Ry,Rx
N Ry,mask

††

†† The value of the mask is 2y-1.

XR Ry,Rx
ST Ry,Y

Y11 TO 13=BIN'0'; Ny=16 ZB Y,B'111000'
Y10 TO 12=BIN'111'; Ny=16 SB Y,B'1110000'

Y13 TO 20=BIN'0'; Ny=32 L Rx,=X'FFF00FFF'
NST Rx,Y

Y17 TO 20=BIN'111'; Ny=32 L Rx,=X'00007000'
OST Rx,Y
3-23 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.3.7 Bit Tests

3.1.4 Character String Operations

3.1.4.1 Character String Operators
The only character string operator is the CAT (||) operator employing two character
string operands denoted here as X and Y (of lengths Nx and Ny respectively). Unless
otherwise noted, X is assumed to be loaded into register Rx. If Y is also in a register, it
is represented as RY.

3.1.4.2 Character String Comparisons
The full set of relational operators are allowed for character strings (see Section 3.1.1.4
for condition codes). Characters with different lengths are always unequal. No logical
variables are created by comparisons. Instead, branching to the "not-true-label" occurs
with the "not true" condition.

IF X Nx=1 TH X
BZ <not true label>

IF X10 Nx=16 TB X,B'1000000'
BZ <not true label>

 or
LH Rx,X
SRL R,6
NHI R,B'1'
BZ <not true label>

IF ¬ X Same as IF X except BZ changed to BNZ instruction.

Operation Code
X || Y LA P3,Y

LA P2,X
LA P1,temp-string-area
ACALL CATV

Operation Code
X <OP> Y LA P3,Y
<OP> α LA P2,X
=,
¬=

ACALL
BC

CPRα
COND,not-true-label

<,>,
<=, C
>=
3-24 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.4.3 Component Subscripting
Component subscripting for character strings consists of setting the initial, Ni, and final,
Nf, index values of the subscripted components into registers 5 and 6 respectively, and
then branching to the CASP intrinsic.

3.1.4.4 Character String Conversions
Where necessary, conversions are performed in intrinsic or library functions.

Operation Code Alternate Code
Y=Xsubscript; LA P1,Y

LH 5,Ni
LH
ACALL

6,Nf
CASP

LR 6,5} if only one component

Operation Code
CHAR TO I LA 2,char

ACALL CTOH

CHAR TO I2 LA 2,char
ACALL CTOI

CHAR TO S LA 2,char
ACALL CTOE

CHAR TO S2 LA 2,char
ACALL CTOD

CHAR TO BIT LA 2,char
ACALL CTOB

CHAR TO BIT@<radix> Same as CHAR TO BIT except call to BTOC is
replaced as follows:
<radix> routine
BIN CTOB
OCT CTOO
DEC CTOK
HEX CTOX
3-25 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.4.5 Character String Assignments
Either the receiver variable or the assigned variable in a character string assignment
may be subscripted. The possible forms are shown below. When subscripting is used,
a partitioning of a character string results. The initial element of this partitioned
character string is signified by its index: Ni. Similarly the final element has the index Nf.
Some examples of HAL/S subscript forms and the resulting Ni and Nf values are:

3.1.5 Vector Matrix Operations

3.1.5.1 Vector-Matrix Operators
Vector Matrix operators usually operate on two arguments according to the conventions
stated in Section 5.2. Since 3-vectors, and 3x3-matrices have special library routines,
their code is listed in the column labeled "3-code", while the code for any other vectors
or matrices is listed in the "n-code" column.

Subscript Form Ni Nf
1 TO 3 1 3
5 AT 2 2 6

Operation Code
Y=X LA P2,X

LA P1,Y
ACALL CAS†

† For REMOTE data, CASR is called instead of CAS, CASRP for CASP, etc.

Ysubscript=X LA P2,X
LA P1,Y
LHI 5,Niy
LHI 6,Nfy
ACALL CPAS†

Y=Xsubscript LA P2,X
LA P1,Y
LHI 5,Nix
LHI 6,Nfx
ACALL CASP†

Ysubscript=Xsubscript LA P2,X
LA P1,Y
LHI 5,Nix
LHI 6,Nfx
L 7,H'Niy,,Nfy'
ACALL CPASP15
3-26 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type n-code 3-code
V1+V2 single L R,=H'1,n-1' L R,=H'1,2'

loop: LE FR,V2(R) loop: LE FR,V2(R)
AE FR,V1(F) AE FR,V1(R)
STE FR,temp-area(R) STE FR,temp-area(R)
BIX R,loop BIX R,loop

V1+V2 double L R,=H'1,n-1' L R,=H'1,2'
loop: LED FR,V2(R) loop: LED FR,V2(R)

AED FR,V1(R) AED FR,V1(R)
STED FR,temp-area(R) STED FR,temp-area(R)
BIX R,loop BIX R,loop

V1-V2 Same as V1+V2 except that an SE instruction is used instead of an AE
instruction for single precision. For double precision, an SED is used instead of
an AED.

-V1 single L R,=H'1,n-1' L R,=H'1,2'
loop: LE FR,V1(R) loop: LE FR,V1(R)

LECR FR,FR LECR FR,FR
STED FR,temp-area(R) STED FR,temp-area(R)
BIX R,loop BIX R,loop

-V1 double Same as -V1 single, except that an LED is used in place of the LE
instruction.

V1 V2 single LA P3,V2 LA P3,V2
V1: length n LA P2,V1 LA P2,V1
V2: length m LA P1,temp-area LA P1,temp-area
result is nxm LHI 5,n ACALL VO6S3
matrix LHI 6,m†

ACALL VO6SN

V1 V2 double Same as for single precision, except that the routines branched to are
VO6DN and VO6D3 for n-vectors and 3-vectors respectively.

V1*V2 single (illegal operation) LA P3,V2
LA P2,V1
LA P1,temp-area
ACALL VX6S3

V1*V2 double Same as for single precision, except that VX6D3 is branched to, rather
than VX6S3.

V1•V2 single LA P3,V2 LA P3,V2
LA P2,V1 LA P2,V1
LHI 5,n ACALL VV6S3††

ACALL VV6SN††

† If both V1 and V2 are the same size, then this instruction will be: LR 6,5.
†† The scalar result of the dot product is left in register F0.
3-27 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type n-code 3-code
V1•V2 double Same as for single precision, except that the routines branched to are

VV6DN and VV6D3 for n-vectors and 3-vectors respectively.

M1+2⎫
OR ⎬
M1-2⎭

Same code as that for adding or subtracting two vectors of length equal to the
product of the row size and the column size of M1 and M2.

V1 M2 single LA P3,M2 LA P3,M2
V1:length n LA P2,V1 LA P2,V1
M2:nxm LA P1,temp-area LA P1,temp-area

LHI 5,n ACALL VM6S3
LHI 6,m†

ACALL VM6SN

V1 M2 double Same as for single precision, except that the routines branched to are
VM6DN and VM6D3 for the general case and the size 3 cases
respectively.

M1 V1 single LA P3,V1 LA P3,V1
M1:nxm LA P2,M1 LA P2,M1
V1:m LA P1,temp-area LA P1,temp-area

LHI 5,n ACALL MV6S3
LHI 6,n
ACALL MV6SN

M1 V1 double Same as for single precision, except that routines branched
to are MV6DN (n code) and MV6D3 (3 code).

V1 I††, single L R,=H'1,n-1' L R,=H'1,2'

V1 I2††,

V1 S loop: LE FR,V1(R) loop: LE FR,V1(R)

ME FR,S ME FR,S

STE FR,temp-area(R) STE FR,temp-area(R)

BIX R,loop BIX R,loop

V1 S2 double L R,=H'1,n-1' L R,=H'1,2'

loop: LED FR,V1(R) loop: LED FR,V1(R)

MED FR,S2 MED FR,S2

STED FR,temp-area(R) STED FR,temp-area(R)

BIX R,loop BIX R,loop

† If M2 is of size nxn, then this instruction is: LR 6,5.
†† Note that in the case of single and double precision integers, they are first converted to scalar form whose value is

in F0.
3-28 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type n-code 3-code
V1/I…
V1/S…

Same as for V1 I, etc., except that a DE instruction is used instead of ME.
(DED† is used instead of MED for double precision.)

I V1,I2 V1, Exactly the same as for V1 I, etc.
S V1,S2 V1

M1 I,M1 I2,
M1 S,M1 S2

Same as for V1 I, etc., except that the length value (n) is the product of
the row size and the column size of M1.

M1/I,M1/I2
M1/S,M1/S2

Same as for V1/I, etc., except that the length value (n) is the product of
the row size and the column size of M1.

I M1,I2 M1
S M1,S2 M1

Exactly the same as for V1 I, etc., except that the length specified in
R5 is equal to the product of the row size and the column size of M1.

M1**i single LHI 6,i Same as for "n-code" where n=3.
(where i is either
a literal or a
constant integer)

LA
LA
LA

P3,temp-storage-area
P2,M1
P1,temp-storage-area

LHI 5,n
ACALL MM17SN

M1**I double Same as for single precision, except branches to the
MM17DN.

M1**0 single LA P2,M1
LA P1,temp-storage-area
LHI 5,n
ACALL MM15SN

M1**0 double Same as for single precision, except branches to MM15DN.
M1**T single LA P2,M1 LA P2,M1
M1: m x n LA P1,temp-

storage-
area

LA
ACALL

P1,temp-storage-
area MM11S3

LA 5,n
LA 6,m
ACALL MM11SN

M1**T double Same as for single precision, except that the routine
branched to is either MM11DN or MM11D3 for n x n matrices
and 3 x 3 matrices respectively.

† See Section 3.1.2.1 for important information regarding the DED instruction.
3-29 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.5.2 Conditional Operators
The only comparison operators allowed for comparing vector and matrices are = or ¬ =.
Since these comparisons are done on an element-by-element basis, the same routines
that are used for size-n vectors are also used for size n x m matrices which are
considered to be vectors of length n x m. No logical variables are created by
comparisons. Instead, branching to the "not-true-label" occurs with the "not true"
condition.

Operation Type n-code 3-code
M1 M2 single LA P3,M2 LA P3,M2

M1: k x m LA P2,M1 LA P2,M1

M2: m x n LA P1,temp-area LA P1,temp-area

LHI 5,k ACALL MM6S3

LHI 6,m†

LHI 7,n†

ACALL MM6SN

M1 M2 double Same as for single precision, except that the routines branched
to are MM6DN and MM6D3 for the general case and the 3 x 3
case respectively.

† Either of the instructions may be of the form: LR 6,5 if n=k, etc.

Operation Type n-code 3-code

V1 <OP> V2 single LA P3,V2 LA P3,V2
LA P2,V1 LA P2,V1
LHI 5,n ACALL VV8S3
ACALL VV8SN BC COND,not-true-label
BC COND,not-true-label

V1<OP>V2 double Same as for single precision, except that the routines branched to are
VV8DN and VV8D3 for n-vectors and 3-vectors respectively.

M1<OP>M2 single LA P3,M2 LA P3,M2
M1,M2:mxn LA P2,M1 LA P2,M1

LHI 5,mxn LHI 5,9
ACALL VV8SN ACALL VV8SN
BC COND,not-true-label BC COND,not-true-label

M1<OP>M2 double Same as for single precision, except that the routine branched to is
VV8DN.
3-30 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.5.3 Component Subscripting
Possible components of matrices include submatrices, vectors, column vectors, and
single components. Possible components of vectors include subvectors and single
components. The resultant type of component is determined by the subscripts used.
Note that double precision operations are not shown - their code is identical except that:
a) the called routines will be VV1DN rather than VV1SN, etc.; b) the index multiplier is 4
instead of 2. Register 7, when used, contains skip values between elements in
partitioned matrices (see Section 3.1.1.3).
Operation†

† i indicates integer literal, I indicates integer variable.

n-code 3-code
Y=Vxi LE Rx,Vx+2i N.A.

STE Rx,Y

Y=Vxi LH RI,I
LE Rx,Vx(RI) N.A.
STE Rx,Y

Vyi=X; LH RI,I
LE Rx,X N.A.
STE Rx,VY(RI)

Vyn AT I
=Vxn AT I; LH RI,I LH RI,I

AR RI,RI AR RI,RI
LA P2,Vx(RI) LA P2,Vx(RI)
LA P1,Vy(RI) LA P1,Vy(RI)
LHI 5,n ACALL VV1S3
ACALL VV1SN

My=Mxm AT I,n AT J

assumes My is an m by n MATRIX
LH RI,I <same>
MHI RI,<column size of Mx>
SLL RI,15
AH RI,J
AR RI,RI
LA P2,Mx(RI)
L 7,F'delta,0'
LA P1,My
LHI 5,m
LHI 6,n
ACALL MM1SNP
3-31 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.5.4 Conversions
MATRIX/VECTOR conversions are done by considering matrices as vectors, and
assigning the required components to the receiver variable. More than 1 argument
requires multiple calls to the vector assign routine (as shown in the second sequence
below). Use of double precision operands will cause branches to VV1DN. Otherwise,
the code is unchanged.

Operation† n-code 3-code
Mx*,I=Vx; LH RI,I LH RI,I

AR RI,RI AR RI,RI
LA P2,Vx LA P2,Vx
LHI 6,0 LHI 6,0
LHI 7,delta LHI 7,delta
LA P1,Mx(RI) LA P1,Mx(RI)

LHI 5,n ACALL VV1S3P
ACALL VV1SNP

† i indicates integer literal, I indicates integer variable.

Operation n-code
VECTOR(Mx) LA P2,Mx
Produces vector of size equal to product
of dimension of matrix: n x m.

LA
LHI

P1,temp-area
5,nxm

ACALL VV1SN

MATRIX(Vx,Vy,Vz)
†

† This is An example using several vectors to illustrate the multiple calling of the VV1SN (or VV1S3) routine. It
also applies to the VECTOR shaping functions.

LA P2,Vx
LA P1,temp-area
LHI 5,nx
ACALL VV1SN
LA P2,Vy
LA P1,temp-area+DELTA1
LHI 5,ny
ACALL VV1SN
LA P2,Vz
LA P1,temp-area+DELTA2
LHI 5,nz
ACALL VV1SN
3-32 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.5.5 Assignments
Vectors and matrices may be assigned to other vectors and matrices of the same
dimensions. In addition, they may have all elements set to zero by a statement of the
form:
*
M=0; or V=0;

For the following operations the compiler will attempt to generate in-line code
sequences, including as many operations within a single loop as possible:

 VECTOR/MATRIX ADD

 VECTOR/MATRIX SUBTRACT

 VECTOR/MATRIX NEGATE

 VECTOR/MATRIX-SCALAR PRODUCT

 VECTOR/MATRIX-SCALAR DIVIDE

 VECTOR/MATRIX ASSIGNMENT

In many cases, the stores into temp-areas, as shown in the prototype instruction
sequences, will not be necessary, unless the resultant VECTOR or MATRIX needs to
be passed from one loop to another, or to a library routine. For example:

Operation Type n-code 3-code
Vx=Vy single L R,=H'1,n-1' L R,=H'1,2'

loop: LE FR,Vy(R) loop: LE FR,Vy(R)
STE FR,Vx(R) STE FR,Vx(R)
BIX R,loop BIX R,loop

Vx=0 single L R,=H'1,n-1' L R,=H'1,2'
loop: SER FR,FR SER FR,FR

STE FR,Vx(R) STE FR,Vx(R)
BIX R,loop BIX R,loop

Mx=My Same as for Vx=Vy, except that the loop count, n-1, is replaced by
(m n)-1.

Mx=0 Same as for Vx=0, except that the loop count, n-1, is replaced by
(m n)-1.

Vx=Vy
Mx=My

double Same as single, but use LED, STED sequence instead of LE, STE
instructions.

Vx=0
Mx=0

double Same as single, but use SEDR, STED sequence instead of SER,
STE instructions.
3-33 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
In those cases where in-line code is not generated, the temporary area used to store
the result of the last HALMAT operation before an assignment can be eliminated if the
vector-matrix statement is of a suitable "form" for optimization and one of four
conditions holds. The statement may not have multiple receivers; the single receiver
must be a consecutive partition or be nonpartitioned. The precision of the right-hand-
side of the statement must match the precision of the receiver. The receiver cannot be
a remote variable, and neither the receiver nor the operand(s) of the final HALMAT
operation can be name variables, or the terminal of a subscripted structure. Also,
variable subscripts on any variables do not allow optimization processing to continue.
Statements that meet these basic requirements can then be checked for the occurrence
of a necessary and sufficient condition for optimization. The result of the final operation
before the assignment will be stored directly in the receiver if at least one of the
following conditions is true:

HAL/S Code
DECLARE
VECTOR,V,W,X,Y,Z;
V=V+(W+X)*Y-Z; L R,=H'1,2'

L1 LE FR,W(R)
AE FR,X(R)
STE FR,temp1(R)
BIX R,L1
LA P3,4
LA P2,temp1
LA P1,temp2
ACALL VX6S3
L R,=H'1,2'

L2 LE FR,V(R)
AE FR,temp2(R)
SE FR,Z(R)
STE FR,V(R)
BIX R,L2

1. The receiver is nonpartitioned and the last operation before the assignment
HALMAT is a "Class 3" operation. Class 3 operations include matrix-scalar and
vector-scalar multiplication and division, vector-matrix addition and subtraction,
vector and matrix negation and the built-in function, UNIT.
The last operation is a "Class 1" operation. The class contains only "matrix
raised to 0th power." The result, the identity matrix, can be stored directly in
any consecutive receiver.
3-34 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
EXAMPLE1: PROGRAM;
 DECLARE MATRIX(3,3),S,T;
 PROC: PROCEDURE(A) ASSIGN(B);
 DECLARE MATRIX(3,3),A,B,C;
 SUBPROC: PROCEDURE(X) ASSIGN(Y);
 DECLARE MATRIX(3,3),X,Y,P,Q;
 Y2 TO 3,* = X2 TO 3, * + C2 TO 3,*;
 B2 TO 3,* = P2 TO 3, * + Q2 TO 3,*;
 CLOSE SUBPROC;
 CALL SUBPROC(A) ASSIGN(C);
 CLOSE PROC;
 CALL PROC(S) ASSIGN(T);
CLOSE EXAMPLE1;

where
 X&Y are parameters, C is not
 NEST_LEVEL(Y)=2,
 NEST_LEVEL(C)=1.
 Y can be C - cannot assign directly.
 P&Q not parameters - ok to assign directly
 NEST_LEVEL(P)=2,
 NEST_LEVEL(A)=1.

A1 TO 2,* =A3 TO 4,* + … and
A3 TO 4,* =A1 TO 2,* + … and both disjoint pairs.

2. The operand(s) are in temporary work areas. Nonconsecutive partitions are
moved to work areas when the operands are processed. The result of a
previous operation is also in a work area. Operands in work areas are disjoint
from the receiver. This is important for "class 2" operations that use the
elements of the vector or matrix, vector-vector, and matrix-matrix arithmetic, and
matrix transpose and exponentiation (also, the built-in functions, TRANSPOSE
and INVERSE). This condition can also hold for class 1 and class 3 operations.
If the operation has two operands, both must be in work areas for this condition
to be true.

3. The operand(s) are nonidentical to the receiver. A receiver-operand pair is
nonidentical if the operand is in a work area, or if neither variable is a formal
parameter and the variables have different symbol table references, or if only
one of the variables in a formal parameter and the NEST level of the
nonparameterized variable is greater than or equal to the NEST level of the
parameterized variable (again, symbol table reference cannot be the same).

4. The operand(s) are disjoint with the receiver. A receiver-operand pair can be
disjoint in two ways. If the pair is nonidentical it is, by default, disjoint. If both the
receiver and the operand are consecutively partitioned, they are disjoint if the
partitions do not overlap in any way. If the receiver and the operand have the
same symbol table reference (are identical) then the two partitions can be
disjoint in either "direction".
For example, let A be a 4-by-4 matrix. Then,
3-35 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
If the receiver and operand are possibly identical, then the pair can only be disjoint if all
of the operand partition comes after the receiver partition.
EXAMPLE2: PROGRAM;
 DECLARE MATRIX(6,3),A,D,E;
 PROC: PROCEDURE(B,C);
 DECLARE MATRIX(4,3),B,C;
 A1 TO 2,* = B3 TO 4,* + C3 TO 4,*; Pairs A-B & A-C disjoint
 A3 TO 4,* = B1 TO 2,* + C3 TO 4,*; Pair A-B not necessarily disjoint

CLOSE PROC;
CALL PROC(A3 TO 6,*,D3 TO 6,*); (B1 TO 2,* is really A3 TO 4,*)
A3 TO 4,* = D3 TO 4,* + E1 TO 2,*; A,D,E are, by default, disjoint
 because they are nonidentical
 CLOSE EXAMPLE2;

If the operation has two operands, both receiver-operand pairs must be disjoint for this
condition to be true. The nonidentical and disjoint checks are made at the same time,
so this condition also holds if one pair is disjoint by disjoint partitioning and one pair is
disjoint by being nonidentical.

3.1.6 Structure Operations
3.1.6.1 Structure Comparisons
Structure comparisons may only be = or ¬=. The comparisons are done by comparing
corresponding terminal elements of the two structure operands in order of their natural
sequence. Each terminal element is referenced by adding the displacement of the
element to the address of the structure (see Section 3.1.1.3). No logical variables are
created. Instead, branching to the "not-true-label" occurs with the "not-true" condition.
Operation Code
X<OP>Y LA 2,X

LA 3,Y

for each terminal

⎧LA 2,terminal#1(X)
⎪LA 3,terminal#1(Y)
⎨LHI 5,width
⎪BAL 4,CSTRUC
⎩BC COND,not-true-label
.

.

.

<same for all terminals>
.

.

.

BC 7,true-label
3-36 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.6.2 Structure Assignment
The assignment of both major and minor structures is done via the BLOCK MOVE
algorithm. (Generally, this is an MVH code sequence.)

3.1.7 Indexing and Arrayed Statements

3.1.7.1 Linear Array Indexing
Linear array indexing is the use of subscripts, on an arrayed data type, to produce a
one-dimensional resultant array. In the generated code, only one register - Ra - is
needed to keep track of the index value. An initial entry to the array loop (see Section
3.1.7.4), Ra is initialized to a value of 1. On each pass through the loop, Ra is used to
define a DELTA value to index the arrayed data (see Section 3.1.3.3). Following this, at
the end of the loop Ra is incremented by 1, and is tested to determine if all of the data
has been utilized, as described in Section 3.1.7.4. Ra is any available indexing register.
Its contents may not be altered during the course of an arrayed statement. If the index
in Ra must be shifted to access the word or doubleword data, it must be moved to
another register to perform this shift.

3.1.7.2 Non-Linear Array Indexing
Non-linear array indexing has more than one index which can change values to
produce a multi-dimensional resultant array. The actual code generated, though, can
only utilize one register - Ra - for indexing. Thus, temporary storage is needed to store
all but the inner-most index. As with linear indexing, all index values (both in Ra and

Operation Code
Y=X L Ry,Const1
(neither X nor Y REMOTE) L Rx,Const2

MVH Ry,Rx
 .
 .
 .

DC Y(Y)
const1 DC H'n'†

† n is width of x in halfwords.

 .
 .

const2 DC Z(x)
Y=X LA P2,X
(X or Y REMOTE) LA P1,Y

LHI 5,width
ACAL
L

MSTR
3-37 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
temporary storage) are initialized to 1. The DELTA value defining the index of each
arrayed data item is then computed on the basis of the value of Ra and the index values
stored in memory (see Section 3.1.3.3). Following this, each index value is tested
against the size of the corresponding dimension (of the resultant array) to determine if
all of the data has been utilized and/or which indices are incremented for the next
iteration. An example of this is given in Section 3.1.7.4.

3.1.7.3 Array Indexing
Arrays may be used in their entirety in HAL/S without explicit subscripting (for example
assignment of two equally dimensioned arrays). However, the code generated is very
similar to that for non-linear indexing, except that the indices are tested against the
size of the corresponding declared dimensions of the arrays, rather than against the
size of the corresponding dimensions of the subscripted array. An example of this is
shown in the next section.

3.1.7.4 Arrayness and Loop Generation
This section has an example of each possible form of array loops, and how indexing is
achieved within them. In general, an array loop consists of the following sections:

It should be noted that non-linear and array indexing produce multiple loops and
indices. Since only a single register is available for indexing, temporary storage of
index values for outer loops is employed.

Notes on above example:

a. initialization of index values;
b. computation of address of array element from index value (see Section 3.1.3.3);
c. actual operation to be performed on the array element(s) (i.e. assignment,

comparison, etc.);
d. incrementing and testing index values.

Operation Type Code
Linear Indexing: L 7,=H'1,2' }(1)

[X]=[Y]3 AT 2 [X]: ARRAY(3) SCALAR loop: LED 2,Y+4(7) ⎫
⎬(2)

[Y]: ARRAY(5) SCALAR STE 2,X(7) ⎭

DOUBLE

BIX 7,loop }(3)

1. initialize
2. assignment
3. increment and test index
3-38 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Note: 96 is the size of N, (i.e. N is 2x3x2x4x2 = 96 halfwords long).

Operation Type Code
Non-Linear Indexing:
[I]=[V]1,2 TO 3,*:2

[I]: ARRAY(2,4) INTEGER
[V]: ARRAY(2,3,4)VECTOR

 outer-loop:
L
ST

7,=H'1,1'
7,temp1

⎫
⎬ (1)
⎭

L 7,=H'1,3' }(2)
 inner-loop: LH

SLL
AR
MHI
SLL

6,templ
6,2
6,7
6,H'3'
6,15

⎫
⎪
⎬(3)
⎪
⎭

LH
SLL
AR

5,templ
5,2
5,7

⎫
⎬(4)
⎭

LE
STH
ACALL
LH
STH

0,V+100(6)
5,temp2
ETOH
6,temp2
5,I(6)

⎫
⎪
⎬(5)
⎪
⎭

BIX 7,inner-loop }(6)
L
BIX

7,templ
7,outer-loop

⎫
⎬(7)
⎭

Notes on above example:
1. initialization and storage of first index value
2. initialization of second index value
3. indexing of [V]
4. indexing of [I]
5. assignment of scalar value to an integer value
6. incrementing and testing second index value
7. incrementing and testing first index value

Operation Type Code
 * *
[M]=[N]

 *
[M],[N]: L RM,const1
ARRAY(2,3) L RN,const2
MATRIX(2,4) MVH RM,RN

 .
 .
 .

const1 DC Y(M)
DC H`96'

const2 DC Z(N)
3-39 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.8 PROCEDURE/FUNCTION Calls
The PROCEDURE/FUNCTION calling process consists of two parts:

Argument set up uses registers 5-7 as needed for passing integers or bit strings, and/or
pointers to vectors, matrices, character strings, arrays or structures. Floating point
registers 0, 2, and 4 are similarly used to pass scalar arguments. Once all of these
registers are utilized, all remaining arguments are placed in a run time stack for the
procedure or function.
The actual code generated sets up the arguments in the order that they appear in the
HAL/S PROCEDURE or FUNCTION block definition statement. For example, if the
function is:
 F: FUNCTION(integer_1,scalar_1, scalar_2,vector_1,integer_2);

then the registers are loaded in the order:
 register 7 using LH or L
 register 6 using LA to load the pointer to vector 1
 register F2 using LE or LED
 register F0 using LE or LED depending on the precision of scalar 1
 register 5 using LH or L depending on the precision of integer 1

Once all arguments are set up, the actual branch is a BAL or SCAL instruction to the
CSECT defined for the procedure or function.

A leaf PROCEDURE/FUNCTION is one which has no stack requirements (i.e. no
parameters, no stack temporaries, no local addressable data, no ON ERROR
statements, and no intrinsic library calls). Such procedures may be called via BAL R4,
<routine name>. These routines are exited using BCR 7,R4.

a. argument set up; and
b. the actual branch to the subroutine.

Operation Args Code Alternate Code
Argument <3 non-scalar LH 7,arg3 L 7,arg3 or
Setup L

A
7,arg3

and <3 scalar LH 6,arg2 L 6,arg2 or
L
A
6,arg2

LH 5,arg1 L 5,arg1 or
L
A
5,arg1

LE 4,scalar-arg3 L
E
D

4,scalar-arg3

LE 2,scalar-arg2 L
E
D

2,scalar-arg2

LE 0,scalar-arg1 L
E
D

0,scalar-arg1
3-40 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Notes on above example:

Actual Call ACALL csect-name

Operation Args Code Alternate Code
Argument >3 non-scalar LH R,argn ⎫
Setup and/or >3 scalar STH R,stack ⎪

. ⎪

. ⎬ 1) non-scalar

. ⎪ stores stack
LH R,arg4 ⎪
STH R,stack ⎭
LE FR,scalar-argn ⎫
STE FR,stack ⎪
. ⎬ 2) scalar
. ⎪ stores
. ⎪ into stack
LE FR,scalar-arg4 ⎪
STE FR,stack ⎭
LH 5,arg1 ⎫
. ⎪
. ⎬ 3)
. ⎪
LE 2,scalar-arg2 ⎪

Actual Call ACALL csect-name ⎭

1.,
2.

Any additional arguments are generally loaded into any unused register
and stored. The actual load op codes may be: L, LH, LA, LE, or LED,
depending on the type of argument. Similarly, the stores op codes may be
ST, STH, STE, or STED. If the argument already exists in a register, then
the code generated will be only a store from that register into the stack.

3. Loading of the first 3 non-scalar, and the first 3 scalar arguments. This is
identical to the code shown in the first example above.
3-41 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.9 Block Definition

3.1.9.1 PROGRAM and TASK Definition

3.1.9.2 PROCEDURE and FUNCTION Definition
Both PROCEDURE and FUNCTION definitions are similar to PROGRAM and TASK
definitions. However, floating point store instructions are needed to save any scalar
argument passed via registers.

Operation Code
PROGRAM or
TASK
definition

block-name: LA 0,stack-start†

† Omitted if SDL option is turned on.

LA 1,program-data-csect
NHI 1,x'7FFF'††

†† Only occurs if the DATA_REMOTE directive is in effect (See Section 4.0).

STH 1,5(0)
IAL 0,stack-size
LA 3,local-data-area(1)
LDM $ZDSESET††

STH 3,9(0)

Operation Code†

† If PROCEDURE or FUNCTION is leaf (has no calls and no stack requirements) then no code is generated for the
block entry.

[Alternate Code]
PROCEDURE or
FUNCTION
definition

[COMSUB only: LA 1,Program-data-
csect]

 block-name:NHI 1,x'7FFF'††

†† Only occurs if the DATA_REMOTE directive is in effect (See Section 4.0).

STH 1,5(0)
IAL 0,stack-size
LA 3,Local-data-area(1)

[COMSUB only: LDM $ZDSESET††]
STH 3,9(0)

[EXCLUSIVE only:
 SVC Local-dataarea+2(1)]

STE 0,stack [STED 0,stack]
STE 2,stack [STED 2,stack]
STE 4,stack [STED 4,stack]
3-42 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.10 Flow of Control Statements

3.1.10.1 IF … THEN … ELSE
The code shown below is for the most general form of the IF…THEN…ELSE
statement. It is assumed that the condition code from the conditional expression has
been generated (see previous subsections on conditional operations).

3.1.10.2 DO FOR…Loops
The DO FOR loop has two forms: the iterative, and the discrete. They may also cause
termination of the loop by use of the clause UNTIL < >, or WHILE < >. The use of these
clauses is shown for the case of the iterative DO FOR forms where the additional code
needed has been labeled "UNTIL code" and "WHILE code". This same additional code
is generated for the discrete DO FOR and is placed immediately before the executable
code within the DO group (the same process as is illustrated with the iterative DO
FOR). Note that the code only shows the use of a single precision integer index;
double precision integers, and single or double precision scalars follow the same
algorithm with the exception that the corresponding full word, or floating point
instructions are used when dealing with the index variable.

Operation Code
IF<cond exp>THEN<…>ELSE <…> BC cond, else-label

⎧executable code for THEN clause
⎨
⎪
⎩

⎫
⎬
⎪
⎭

BC 7,next-statement

 else-label:
⎧executable code for ELSE clause
⎨ .
⎪ .
⎩ .

⎫
⎬
⎪
⎭

 next-statement:
 .
 .
 .

IF<cond exp>THEN<…> BC cond, next-statement
⎧executable code for THEN clause
⎨ .
⎪ .
⎩ .

⎫
⎬
⎪
⎭

next-statement:
 .
 .
 .
3-43 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Code
DO FOR I = a TO b BY c;† LHI 7,a

loop-begin: BC 7,test-label
 .
 . executable code within DO group
 .

repeat††: LH 7,I†††

AHI 7,c
test-label: STH 7,I

CHI 7,b
BC 6,loop-begin

exit-label: .
 . code for statement
 . following DO group

DO FOR I = a TO b BY c ZH temp-area UNTIL code
 UNTIL <cond exp>;
 . LHI 7,a
 .
 . BC 7,test-label
END; loop-begin: TS temp-area

BC
 .
 .
 .
BC

4,first-statement††††
cond for exp

cond,exit-label

⎫
⎪
⎬UNTIL code
⎪

⎭
first-statement: .

 .
 .

executable code within DO group

repeat††: LH 7,I
AHI 7,c

test-label: STH 7,I
CHI 7,b
BC 6,loop-begin

exit-label: . code for statement
 . following DO group
 .

† Assumes a, b, and c are literal values.
†† This is referenced by the REPEAT STATEMENT (see Section 3.1.10.5).
††† This instruction may be omitted if the REPEAT label is not actually used, and the loop index I is already in the

designated register.
†††† This is done to avoid testing the <cond exp> until after executing through the loop at least once.
3-44 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Code
DO FOR I = a TO b BY c
 WHILE <cond exp>
 . LHI 7,a
 . BC 7,test-label
 .
END;

loop-begin: .
 .
 .
BC

code for cond exp

cond, exit-label

⎫
⎬WHILE code
⎭

 .
 . executable code within DO group
 .
LH 7,I
AHI 7,c

test-label: STH 7,I
CHI 7,b
BC 6,loop-begin

exit-label: . code for statement
 . following DO group
 .

DO FOR I = a1,a2,…,an label-1: LHI 7,a1
 .
 . BAL 4,test-label
 .
END; label-2: LHI 7,a2

BAL 4,test-label
 .
 .
 .

label-n: LHI 7,an

LA 4,exit-label

test-label: ST 4,temp-area

STH 7,I

 .

 . executable code within DO group

 .

repeat†: L 4,temp-area

BCR 7,4

exit-label: . code for statement

 . following DO group

 .

DO FOR I = I1 TO I2 BY I3 LH 5,I2

 .

 . STH 5,temp-test

 .

END; LH 6,I3

† This is referenced by the REPEAT statement (see Section 3.1.10.5).
3-45 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.10.3 DO WHILE/UNTIL
Both of these forms of DO groups are essentially the same except that the DO UNTIL
does not test its conditional expression until it has finished executing the code once. In
both cases, the condition is tested as detailed in preceding subsections.

Operation Code
LH 7,I1

(I1,I2,I3: variables) STH 6,temp-incr

BC 7,test-label

loop-begin: .

 . executable code within DO group

 .

repeat†: LH 7,I

AH 7,temp-incr

test-label: STH 7,I

LH 5,temp-incr

LA 5,loop-begin

BC 5,positive-test††

CH 7,temp-test

BCR 5,5

BC 7,exit-label

positive-test: CH 7,temp-test

BCR 6,5

exit-label: . code for statement

 . following DO group

 .

† This is referenced by the REPEAT statement (see Section 3.1.10.5).
†† This branch is determined by the condition code set by the previous LH 5, temp-incr instruction.

Operation Code
DO WHILE <cond exp>
 repeat: .

. code for conditional expression

.
 BC cond,exit-label

.

. code for statements within DO group

.
 BC 7,repeat

 exit-label: .
. code for statement following DO group
.
3-46 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.10.4 DO CASE
The DO CASE statement is used to select one of a collection of statements for
processing.

Operation Code
DO UNTIL <cond exp> BC 7,first-statement
 repeat: .

. code for conditional expression

.
 BC cond,exit-label

 first-statement: .
. code for statements within DO group
.

 BC 7,repeat
 exit-label: .

. code for statement following DO group

.

Operation Code
DO CASE I; LH Rc,I

 <statement 1> BC 6,else-case-label†

† Bounds checks on case number. Omitted if ELSE not specified.

 <statement 2> LA 2,case-vector

 . CH Rc,0(2)
†

 . BC 1,else-case-label†

 . LH 2,0(Rc,2)

 <statement n> BCR 7,2

END;

⎡code above is replaced by the following if the
⎢DATA REMOTE directive is in effect (see Section 4.0)
⎢LH Rc,I
⎢BC 6,else-case label†
⎢LA 3,case-vector
⎢CH Rc,0(3)

†

⎢IHL 3,9(0)†
⎢SLL 3,16†
⎢BC 1,else-case-label†
⎢LA 1,case-vector
⎢LH 2,0(Rc,1)
⎢LH 1,5(0)
⎣BCR 7,2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3-47 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.10.5 GO TO, REPEAT, EXIT
All of these statements take the form of unconditional branches. It should be noted that
REPEAT and EXIT statements may only be used inside DO groups. See Sections
3.1.10.2 and 3.1.10.3 for the locations of the "repeat" and "exit-label" within a DO
group.

Operation Code
else-case-label:

<else statement code>

BC 7,exit-case-label

<statement 1>

BC 7,exit-case-label

<statement 2>

BC 7,exit-case-label

 .

 .

 .

<statement n>

exit-case-label:

Data
 case-vector DC H'n'

DC Y(statement 1)
DC Y(statement 2)
 .

 .

 .

DC Y(statement n)

Operation Code
GO TO label BC 7,label

REPEAT
REPEAT label

BC 7,repeat "repeat" is the location of the code which
determines whether DO group iteration is finished
or not.

EXIT
EXIT label

BC 7,exit-label "exit-label" is the location of the code immediately
following the end of the DO group.
3-48 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.10.6 RETURN
The RETURN statement will branch back from the code for a function to the code
immediately following the function's invocation.

3.1.10.7 ON ERROR/OFF ERROR/SEND ERROR

Operation Code
Procedures & Functions
RETURN EXCLUSIVE only: SVC Local-data-area+3(1)

normal: LDM $ZDSECLR†

† Only occurs if the DATA_REMOTE directive is in effect (see Section 4.0) and the procedure/function is a COMSUB.

SRET 7,0
leaf: BCR 7,4

Programs & Tasks

Operation Code
ON ERRORn:m<stmt> LA 4,<stmt>

STH 4,error table entry 1

LHI 4,<action>†

† <action> contains action code, error code, and the error group as defined in HAL/FCOS ICD.

STH 4,error table entry 0

BC 7,next-statement

<stmt>: <code for stmt>

next-statement: .

 . code for next statement
 .

SIGNAL

ON ERRORn:mSYSTEM[AND SET <event>]

RESET

LA
STH

LHI
STH

4,<event>†
4,error table entry 1

4,<action>
4,error table entry 0

⎫only if event
⎬action phase
⎭present

SIGNAL

ON ERRORn:mIGNORE[AND SET <event>]

RESET

LA
STH

LHI
STH

4,<event>
4,error table entry 1

4,<action>†

4,error table entry 0

⎫only if event
⎬action phase
⎭present

SEND ERRORn:m SVC =X'0014nnmm'

OFF ERRORn:m ZH 4,error table entry 0
3-49 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.11 Built-In Functions
3.1.11.1 Inline Built-in Functions
The following built-in functions emit the inline code shown in the following sequences.
In all cases, it is assumed that Rx contains the argument except when a specific load
instruction is shown. The results will always be in register Ry.
Operation Type Code
ABS(arg) scalar, single LE Ry,arg

LECR Ry,Ry
BC 2,*-1

scalar, double LED Ry,arg
LECR Ry,Ry
BC 2,*-1

integer, single LH Ry,arg
LACR Ry,Ry
BC 2,*-1

integer, double L Ry,arg
LACR Ry,Ry
BC 2,*-1

LENGTH (char) character string LH Ry,char
NHI Ry,255

SIGN (arg) scalar, single LE Rx,arg
LFLI Ry,1
LER Rx,Rx
BC 5,continue
LECR Ry,Ry

 .
continue: .

 .
scalar, double LED Rx,arg

LED Ry,D'4110000000000
000'

LEDR Rx,Rx
BC 5,continue
LECR Ry,Ry

 .
continue: .

 .
integer, single LH Rx,arg

LFXI Ry,1
LR Rx,Rx
BC 5,continue
3-50 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type Code
LACR Ry,Ry

 .
continue: .

 .
integer, double L Rx,arg

L Ry,=F'1'
LR Rx,Rx
BC 5,continue
LACR Ry,Ry

 .
continue: .

 .
SIGNUM(arg) scalar, single LE Rx,arg

LFLI Ry,1
LER Rx,Rx
BC 1,continue
BC 4,equal
LECR Ry,Ry
BC 7,continue

equal: SER Ry,Ry
 .

continue: .
 .

integer, single LH Rx,arg
LFXI Ry,1
LR Rx,Rx
BC 1,continue
BC 4,equal
LACR Ry,Ry
BC 7,continue

equal: SR Ry,Ry
 .

continue: .
 .

integer, double L Rx,arg
L Ry,=F'1'
LR Rx,Rx
BC 1,continue
BC 4,equal
LACR Ry,Ry
BC 7,continue
3-51 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.11.2 Out of Line Functions
Out of line functions require branches to the runtime library.

The registers needed for parameter passing, and the name of the library routine
branched to, are specified in the tables of Section 5. Examples are given for
representative argument types.

Operation Type Code
equal: SR Ry,Ry

 .
continue: .

 .
SUBBITm TO n(arg) integer, single SRL Ry,16-n

or bits of length
<16 NHI Ry,mask†

-or-
SUBBITn-m+1 AT m(arg)

integer double, SRL Ry,32-n
or bits of length
>16, or scalar N Ry,F'mask'†

single
SHL(x,n) integer SLL Rx,n
SHR(x,n) integer SRA Rx,n
XOR(X,Y) Bit,n<16 LH Ry,Y

XR Rx,Ry
Bit,n>16 X Rx,Y

or XR Rx,Ry
MIDVAL(X,Y,Z) scalar LE F0,X

LE F1,Y
MVS F0,Z

† The mask value is: 2(n-m+1)-1.

Operation Type of X Code
COS(X) scalar,single LE 0,X

ACALL COS

SQRT(X) scalar,double LED 0,X

ACALL DSQRT

ABVAL(X) vector(3),double LA 2,X

ACALL VV9D3

TRANSPOSE(X) matrix(m,n),double LA P2,X

LA P1,temp-area
3-52 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.11.3 Shaping Functions
Shaping functions are explicit invocations of type conversion. The generated code for
shaping functions has been described in previous subsections where conversions have
been described (see Sections 3.1.2.3, 3.1.3.4, 3.1.4.4, and 3.1.5.4).

In addition, when conversion functions are used in a true "shaping" sense, (e.g.
MATRIX(<integer array>)), a subroutine is used to move contiguous elements, with
possible conversion, to a result location of the desired shape.Example:

MATRIX(A) where A is a 9 element integer array
LA P2,A1
LA P1,<result loc>
LHI 6,X'0002'flags5 size
LHI 5,9
ACALL QSHAPQ

Operation Type of X Code
LA 5,n

LA 6,m

ACALL MM11DN

matrix(3,3),single LA P2,X

LA P1,temp-area

ACALL MM11S3

UNIT(X) vector(3),single LA P2,X

LA P1,temp-area

ACALL VV10S3

RANDOMG ACALL RANDG

TRIM(X) character LA P2,X

LA P1,temp-area

ACALL CTRIMV

MAX(X) array(n) LA 2,X

LHI 5,n

ACALL EMAX

5. Flags: 1st 8 bits indicate input data type.
 2nd 8 bits indicate output data type.
Values: 0 = H

 1 = I

 2 = E

 3 = D
3-53 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.12 Real Time Statements
All REAL TIME statements are implemented by means of a supervisor call (SVC)
instruction which has as its address a pointer to a parameter list. The first halfword of
this parameter list contains a number which identifies the type of real time call. The
remainder of the parameter list varies with the service being requested.

The specific forms of the SVC parameter lists are those described in the HAL/FCOS
ICD.

For real time statements in non-REENTRANT blocks, the SVC parameter lists are in
the block's data area. Any invariant portions of the parameter lists are implemented by
initialized data. Parts of the parameter lists which are runtime-dependent are created
by execution of in-line code preceding the SVC instruction.

For real time statements in REENTRANT blocks, the SVC parameter lists are
dynamically created in the stack by executable code preceding the SVC instruction.

3.1.12.1 WAIT Statement
The WAIT statement may use registers 0, 1 to contain a double precision time value
specified in seconds. If the UNTIL option is specified, the time value is expressed as
mission elapsed time. Any other times are "Delta Time" from the current mission
elapsed time. If a time value is not specified in the WAIT statement, then the registers
will not be affected.

3.1.12.2 CANCEL, TERMINATE Statements

Operation Type Code
WAIT n n: literal LED 0,D'floating point form

of n'
SVC parameter-list

WAIT X X: scalar double LED 0,X

SVC parameter-list

WAIT FOR DEPENDENT SVC parameter-list

WAIT FOR X X: event value SVC parameter-list

WAIT UNTIL X X: scalar double LED 0,X

SVC parameter-list

Operation Code
CANCEL
CANCEL <task id>
TERMINATE
TERMINATE <task id>

⎫
⎪
⎬
⎭

SVC parameter-list
3-54 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.12.3 SIGNAL, SET, RESET Statements

3.1.12.4 UPDATE PRIORITY Statement

3.1.12.5 SCHEDULE Statement
In the following code generation sequences, a schematic representation of possible
SCHEDULE statement forms has been used. The symbol [] means that one of the
contained elements may appear in the statement form without affecting the generated
code. The symbol { } means that one of the contained elements must be included in the
statement form - but which one does not affect the code generated.

In general, the code differs only when time values are specified in the SCHEDULE
statement. This requires that the time values be specified in double precision format in
certain registers as shown below.

Operation Type Code
SIGNAL<event var> latched or unlatched ⎫
SET<event var> latched ⎬ SVC parameter-list
RESET<event var> latched ⎭

Operation Type Code
UPDATE PRIORITY TO i ⎫
UPDATE PRIORITY<taskid> TO i ⎬ i: integer SVC parameter-list

⎭

Operation Code
SCHEDULE<label>[ON<event exp>]PRIORITY(I)[DEPENDENT] SVC parameter-list

SCHEDULE <label> PRIORITY(I)[DEPENDENT]

LED 0,D'X'

SVC parameter-list

SCHEDULE<label>[ON<eventexp>]PRIORITY(I)[DEPENDENT],REPEAT

LED 2,D'X'

SVC parameter-list

SCHEDULE<label>[ON<eventexp>]PRIORITY(I)[DEPENDENT]UNTIL X LED 4,D'X'

SVC parameter-list

SCHEDULE<label> PRIORITY(I)[DEPENDENT],REPEAT

LED 0,D'X'

LED 2,D'Y'

SVC parameter-list

SCHEDULE<label> PRIORITY(I)[DEPENDENT] UNTIL Y

LED 0,D'X'

LED 4,D'Y'

SVC parameter-list

SCHEDULE<label>[ON<eventexp>]PRIORITY(I)[DEPENDENT],REPEAT UNTIL Y LED 2,D'X'

LED 4,D'Y'

⎡WHILE<event exp> ⎤
⎣UNTIL<event exp> ⎦

⎧ ⎫
⎨ AT X ⎬
⎩ IN X ⎭

⎡WHILE<event exp> ⎤
⎣UNTIL<event exp> ⎦

⎧ ⎫
⎨AFTER X ⎬
⎩EVERY X ⎭

⎧ ⎫
⎨ AT X ⎬
⎩ IN X ⎭

⎧ ⎫
⎨AFTER y ⎬
⎩EVERY y ⎭

⎡WHILE<event exp> ⎤
⎣UNTIL<event exp> ⎦

⎧ ⎫
⎨ AT X ⎬
⎩ IN X ⎭

⎧ ⎫
⎨AFTER X⎬
⎩EVERY X⎭
3-55 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.13 I/O Statements
The READ statement will compile successfully, but will generate incorrect results for
BFS and produce an error in the linkage editor for PASS. The error is not generated for
BFS because it uses a different linkage editor. The user will see the following message
in the map file for PASS:
 IEW0264 - TABLE OVERFLOW - INPUT LOAD MODULE CONTAINS TOO MANY
EXTERNAL SYMBOLS IN ESD

This is accepted as a known error due to the fact that neither the BFS nor PASS flight
software use either the READ or READALL statements. (DR 102959, 10/22/90)
3.1.13.1 Initiation
Initiation of either READ, READALL, or WRITE statements consists of a branch to the
IOINIT library routine. Register 1 contains the I/O channel number and register 0
indicates the type of I/O to be initiated.

3.1.13.2 Input
In all cases, the code sequences below follow the I/O initiation process described in the
previous subsection. It is assumed that any conversions have been done previous to
the code sequences shown; the resultant type determines which type of code sequence
is generated. Note that vector and matrix partitioning require that the first element of
the partition be known; additionally, matrices require a DELTA value to be known to skip
over those elements (in the "natural sequence") which are not part of the resulting
partitioned Matrix (see Section 3.1.2.3).

Operation Code
SVC parameter-list

SCHEDULE<label> PRIORITY(I)[DEPENDENT], REPEAT UNTIL Z

LED 0,D'X'

LED 2,D'Y’

LED 4,D'Z'

SVC parameter-list

Operation Type Code
READ(n)… LHI 6,n

LHI 5,0
ACALL IOINIT

READALL(n)… LHI 6,n
LHI 5,1
ACALL IOINIT

WRITE(n)… LHI 6,n
LHI 5,3
ACALL IOINIT

⎧ ⎫
⎨ AT X ⎬
⎩ IN X ⎭

⎧ ⎫
⎨ AFTER y⎬
⎩ EVERY y⎭
3-56 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type Code
READ()…,I,… integer, single .

. initiation

.

LA 2,I
ACALL HIN
.
. initiation

integer, double .
LA 2,I
ACALL IIN
.
. initiation

READ(),…,S,111 scalar, single .
LA 2,S
ACALL EIN
.
. initiation

scalar, double .
LA 2,S
ACALL DIN

READ()…,V,… vector(n);single .
. initiation

.
LA 2,V
XR 7,7
LHI 5,1
LHI 6,n
ACALL MMRSNP

READ()…,V,… partitioned vector .
of length n whose . initiation
first element is .
located at 'V+ LA 2,V+displacement
displacement' XR 7,7

LHI 5,1
LHI 6,n
ACALL MMRSNP

vector(n); double same except branches to
(partitioned or MMRDNP
not partitioned)
3-57 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type Code
READ()…,M,… matrix(m,n); single .

. initiation

.
LA 2,M
XR 7,7
LHI 5,m
LHI 6,n
ACALL MMRSNP

READ()…,M,… partitioned matrix .
whose resultant . initiation
size is mxn, first .
element is M +
displacement.

LA
LHI

2,M+displacement
7,DELTA

LHI 5,m
LHI 6,n
ACALL MMRSNP

matrix(m,n); double Same except branches to
MMRSNP

(partitioned or not
partitioned)

READ()…,C,… character string .
or READALL()…,C,… . initiation

.
LA 2,C
ACALL CIN

READ()…, partitioned .

Cm TO n,… character string . initiation
or READALL()…, .
Cm TO n,… LA 2,C

LHI 5,m
LHI 6,n
ACALL CINP

READ()…,Cn,… single partitioned .
or READALL()…, character string . initiation
Cn,… .

LA 2,C
LHI 5,n
LR 6,5
ACALL CINP
3-58 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.13.3 Output
In all cases, the code sequences below follow the I/O initiation processes described in
Section 3.1.13.1. It is assumed that any conversions have been done previous to the
code sequences shown; the resultant type determines which type of code sequence is
generated. Note that vector and matrix partitioning require that the first element of the
partition be known; additionally, matrices require a "delta" value be known to skip over
those elements (in the "natural sequence") which are not part of the resulting
partitioned matrix.

Operation Type Code
READ()…,B,… bit string(of .

length n) . initiation
.
LHI 6,n
ACALL BIN†

BC 4,around
ST 6,B

 around: .
.
.

Arrayed Input The actual code generated depends on the type of array. Thus,
the code will consist of an array loop (see Section 3.1.7.4) which
contains the proper code for inputting of each array element using
the code shown above (corresponding to the array element type).

† BIN returns the bit string input in register R6.

Operation Type Code
WRITE()…,I,… integer, single .

. initiation

.

LH 5,I
ACALL HOUT

integer, double .

. initiation

.
L 5,I
ACALL IOUT

WRITE()…,S,… scalar, single .
. initiation
.

LE 0,S
ACALL EOUT
3-59 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type Code
scalar, double LED 0,S

ACALL DOUT
WRITE()…,V,… vector(n); single .

. initiation

.
LA 2,V
XR 7,7
LHI 5,1
LHI 6,n
ACALL MMWSNP

WRITE()…,V,… partitioned vector
of length n whose
first element is
located at
'V+displacement'

.

.

.
initiation

LA 2,V+displacement
XR 7,7
LHI 5,1
LHI 6,n
ACALL MMWSNP

vector(n); double
(partitioned or
 non-partitioned)

same except branches to
MMWDNP

WRITE()…,M,… matrix(m,n); single .
. initiation
.

LA 2,M
XR 7,7
LHI 5,m
LHI 6,n
ACALL MMWSNP

WRITE()…,M,… partitioned matrix
of resultant size .
mxn whose first . initiation
element is M + .

LHI 7,delta
LHI 5,m
LHI 6,n
ACALL MMWSNP
3-60 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Type Code
matrix(m,n);double same except branches
(partitioned or not
partitioned)

to MMWDNP

WRITE()…,C,… character string .
. initiation
.

LA 2,C
ACALL COUT

WRITE()…,Cm TO n partitioned .
 character string . initiation

.
LA 2,C
LHI 5,m
LR 6,n
ACALL COUTP

WRITE()…,Cn,… single partitioned .
character string . initiation

.
LA 2,C
LHI 5,m
LR 6,5
ACALL COUTP

WRITE()…,B,… bit string (of .
length n) . initiation

.
L 5,B
LHI 6,n
ACALL BOUT

Arrayed Output The actual code generated depends on the type of array. Thus,
the code will consist of an array loop (see Section 3.1.7.4) to
cause iterative outputting of each array element using the code
shown above (corresponding to the array element type).
3-61 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.14 NAME Operations
3.1.14.1 NAME Comparisons
NAME comparisons may only be = or ¬ =.
Operation Code
NAME(X) <OP> NAME(Y) X and Y are NAME variables

[LH Rx,X]
[LH Ry,Y]
-or-

 X and Y are NAME REMOTE variables
[L Rx,X]
[L Ry,Y]

 the ZCON index inhibit bits are
 ignored for the comparison

[LHI Ri,x‘FFFF0000’]
[IAL Ri,x‘F7FF’]
[NR Rx,Ri]
[NR Ry,Ri]
-or-

 X is a declared variable, Y is a NAME
 variable

[LA Rx,X]
[LH Ry,Y]
-or-

 X is a declared REMOTE variable,
 Y is a NAME REMOTE variable

[L Rx,ZCON(X)]
[L Ry,Y]

 the ZCON index inhibit bits are
 ignored for the comparison

[LHI Ri,x‘FFFF0000’]
[IAL Ri,x‘F7FF’]
[NR Rx,Ri]
[NR Ry,Ri]
-or-

 X is a declared local variable, Y is
 a NAME REMOTE

[LA Rx,X]
[OHI Rx,x'8000'](PASS only)
[IAL Rx,x'0800' or x'0000']

[L Ry,Y]
3-62 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.14.2 NAME Assignment
The variable Y in the following examples may only be a NAME variable. The variable X
may be either an actual or NAME variable having declared properties identical to Y
(refer to Language Specification).

Operation Code
 the ZCON index inhibit bits are
 ignored for the comparison

[LHI Ri,x‘FFFF0000’]
[IAL Ri,x‘F7FF’]
[NR Rx,Ri]
[NR Ry,Ri]
-or-

 X is a NAME variable, Y is a NAME REMOTE
[L Ry,Y]
[LH Rx,X]
[IAL Rx,x‘0800’]

(non-aggregate variables only)
[SRA Rx,1]
[SRR Rx,31]
[OHI Rx,X‘8000’](PASS only)

 the ZCON index inhibit bits are ignored
 for the comparison

[LHI Ri,x‘FFFF0000’]
[IAL Ri,x‘F7FF’]
[NR Rx,Ri]
[NR Ry,Ri]

The following apply to all of the above examples:
CR Rx,Ry
BC COND, not-true-label
BC 7, true-label

Note that the compiler emits an RLD card that informs the linkage
editor to insert the proper CSECT value into the last four bits
inserted by the IAL instruction for non-NAME non-stack variables,
to conform to the ZCON format.

Operation Code
NAME(Y)=NAME(X) X and Y are NAME variables

 [LH Rx,X]
 [STH Rx,Y]
 -or-
 X and Y are NAME REMOTE variables
 [L Rx,X]
 [ST Rx,Y]
 -or-
3-63 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Operation Code
X is a declared local variable, Y is not
REMOTE

 [LA Rx,X]
 [STH Rx,Y]

-or-
X is a declared REMOTE variable, Y is a
NAME REMOTE

 [L Rx,ZCON(X)]
 [ST Rx,Y]
 -or-
X is a declared local variable, Y is a
NAME REMOTE

 [LA Rx,X]
 [OHI Rx,x‘8000’](PASS only)
 [IAL Rx,x‘0800’ or x‘0000’]
 [ST Rx,Y]
 -or-
X is a NAME variable, Y is a NAME REMOTE

 [LH Rx,X]

 [IAL Rx,x‘0800’]
 (non-aggregate variables only)
 [SRA Rx,1]

 [SRR Rx,31]

 [OHI Rx,x‘8000’](PASS only)

 [ST Rx,Y]

Note that the compiler emits an RLD card that informs the
linkage editor to insert the proper CSECT value into the last
four bits inserted by the IAL instruction for non-NAME non-stack
variables, to conform to the ZCON format.

 -or-

3-64 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0

Operation Code

X and Y are declared local variables, but
X was previously converted to a ZCON to
accomodate a NAME REMOTE left-hand side
variable in a multiple assignment

 [LA Rx,X]
 .
 .

 [YCON to ZCON conversion]
 .
 .

 [LR Ry,Rx] ZCON
 [SLL Ry,31] to YCON

 [OHI Ry,x’7FFF’] con-
 [NR Rx,Ry] version
 [ST Rx,Y]

 }
3-65 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.15 %MACROS
The following %MACROS are recognized by the HAL/S-FC compiler and produce the
indicated code.

3.1.15.1 %SVC
The %SVC statement generates a true SVC instruction in which the address portion
points to the operand specified.

3.1.15.2 %NAMECOPY
This operation works in the same manner as NAME assignments except that the
operands must be structures, but not necessarily having identical properties. See
Section 3.1.14.2 for more examples.

3.1.15.3 %COPY
The %COPY statement is used to move data from one location to another without
regard to data types. This operation uses the block move algorithm. See section
3.1.17 for examples of the variances of that algorithm. The general form is:
%COPY(dest, source, count);

where:
source is the variable name from which data will be moved;

dest is the variable name into which data will be moved; and
count is optional and if present indicates the number of halfwords to be moved
from source to dest. If count is omitted, the size of the source operand is used to
determine a count.

NAME variables are dereferenced in all cases. Use of a NAME variable as dest or
source operand will refer to the data pointed to by the NAME variable. The count may
also be a NAME variable in which case the count is taken from the storage location
pointed to by the NAME variable.

Error checking for %COPY statements is performed when the third argument is a literal
or omitted. The following errors may be emitted:

Operation Code
%SVC (α) SVC α

Operation Code
%NAMECOPY(Y,X); LA Rx,X
where X is actual variable STH Rx,Y

FN105: When the source or destination dereferences a Name variable.
3-66 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
The move halfword instruction (MVH) is used to implement the %COPY statement
when feasible. If possible, the compiler will optimize the %COPY sequence by
performing LED, STED, L, ST or LH, STH sequences instead of using the MVH
instruction. This optimization occurs when the compiler is able to determine that no
more than eight halfwords need to be moved and that the data alignments match for
both source and receiving data areas. When the destination operand of a %COPY
statement is REMOTE, a call to MSTR is used to implement the move. Since MSTR
expects ZCON inputs, the compiler will perform a YCON to ZCON conversion if the
source operand is LOCAL data. The following examples show some of the possible
sequences.
A %COPY Warning:

Since the %COPY macro moves data without regard to data type, it can be used to
move one character string over another character string even if the character string
sizes do not match. A HAL/S CHARACTER string is defined as one halfword
descriptor, aligned on a halfword boundary, followed by the data (two characters
packed into each halfword of memory). The string descriptor is organized into two one-
byte values: the upper byte contains the maximum number of characters the string can
hold and the lower byte contains the actual number of characters in the string.

When the %COPY source is a smaller string than the destination, the destination
string's descriptor gets overwritten causing the string to internally become smaller and
causing unexpected results in all subsequent uses of the destination. Conversely,
when the source is bigger than the destination and the 3rd argument is a literal count or
is omitted, the compiler correctly emits a FN106 error ("ELEMENT OR CSECT
BOUNDARY EXCEEDED FOR DESTINATION OF %COPY") if the character strings
are declared locally and are non-REMOTE.
Examples:

FN106: When the element boundary is exceeded for non-remote locally declared
variables. For example, if the source or destination is a scalar (size of
scalar is two halfwords), and the number of halfwords to copy is 4, then
the boundary of the variable has been exceeded and an FN106 is
emitted. If the source or destination is an array, or element of an array,
an FN106 error message is emitted when the location of the array
element plus the number of halfwords to copy exceeds the ending
position of the array.

FN107: When runtime addressing is generated for a non-remote locally declared
variable involved in a %COPY statement. Runtime addressing means
the compiler cannot determine the address of a variable during
compilation.

FN108: When the source or destination dereferences a pass-by-reference formal
parameter.

1. Strings A and B are declared as CHARACTER(20). When the following
%COPY statement:

%COPY(A,B);
3-67 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
is executed, 11 halfwords (10 halfwords (20 bytes of character data / 2) + 1
halfword of descriptor) are copied in to the memory location containing A.
This %COPY statement does not pose any problems because the length of
the source and destination strings are the same.

2. String X is declared as CHARACTER(20) and string Z is declared as
CHARACTER(15). When the following:

%COPY(X,Z);
is executed, 9 halfwords (8 halfwords ((15 bytes of character data + 1 byte
of pad) / 2) + 1 halfword of descriptor) are copied into the memory location
containing CHARACTER X. The new maximum character size of string X
would be 15. This occurs because the %COPY macro moves the 9
halfwords representing string Z over the first 9 halfwords of string A, and in
the process, overwriting X's string descriptor. After this statement, and for
the duration of the program's execution, the internal character size of X is
15, not 20, as originally declared! Furthermore, this situation could lead to
some unexpected execution results. For example: after the above %COPY
statement character B is assigned into character X ("X = B;") by calling the
CASR run-time library, the character assignment would not take place.
This happens because CASR's checks would detect the size of character X
is internally smaller than string B.

3. Using the values in example 2 above, if the user codes the following
%COPY statement:

%COPY(Z,X);
the compiler would correctly emit a FN106 error when the 3rd argument is
omitted because the destination operand is smaller than the source
operand.

Note: The compiler can allow an assignment to exceed the bounds of the
receiving data. There are two methods of doing this that could cause
problems, and thus should be avoided:

a. A %COPY statement with a variable halfword count field larger than the
size of the destination when the destination is local data (this may also go
beyond the bounds of a CSECT). The compiler performs bound checking
when a literal count is provided but cannot perform these checks when a
variable count is used. Local data can be rearranged whenever a
compilation unit is modified.

b. Overindexing an arrayed variable (subscript is greater than the receiving
data's declared arrayness).
3-68 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
The compiler assumes that arrayed assignments and %COPY are not used in this
manner and does not update registers that may have been modified as a result of a
violation of these rules.
Operation Code
%COPY(X,Y) L Rx,YCON(X, size of Y)

L Ry,ZCON(Y)

MVH Rx,Ry

%COPY(X,Y,n) L Rx,YCON(X,n)

L Ry,ZCON(Y)

MVH Rx,Ry

%COPY(X,Y,5) L Ry,Y

ST Ry,X

L Ry,Y+2

ST Ry,X+2

LH Ry,Y+4

STH Ry,X+4

%COPY(X,Y); L R4,ZCON(Y)

 where X and Y are LFXI R5,size of Y

 REMOTE L R2,ZCON(X)

SCAL@# MSTR

%COPY(X,Y); LA R4,Y

 where X is REMOTE OHI R4,'8000' (PASS only)

 and Y is local IAL R4,'0000'

LFXI R5,size of Y

L R2,ZCON(X)

SCAL@# MSTR
3-69 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.15.4 %NAMEADD
The %NAMEADD statement adds an integer to a given NAME variable and assigns the
result into a separate NAME variable. It consists of three operands as seen below:

%NAMEADD(X, Y, Z)

where:

The source (Y) cannot be REMOTE if the destination (X) is non-REMOTE.
The result of the %NAMEADD statement which is placed into the NAME variable, X, is
equal to the NAME value of Y plus the integer Z.

In either of the last two examples above, code may be inserted immediately before the
ST instruction to clear the ZCON index inhibit bit according to the type of X.

X is any NAME variable.
Y can be either any NAME variable or any HAL variable which is legal in the

context NAME(V).
Z is either an integer literal or variable which specifies the amount to be

added (which may be negative) from the second operand. (Note: literals
must not be signed.)

Operation Code
%NAMEADD(X,Y,5); LA Rx,Y+5
 where Y is a non-NAME variable STH Rx,X
 and X is non-REMOTE
%NAMEADD(X,Y,Z); LA Rx,Y
 where Y is a non-NAME variable AH Rx,Z
 and X is non-REMOTE STH Rx,X

%NAMEADD(X,Y,8); LH Rx,Y
 where Y is a NAME variable LA Rx,8(Rx)
 and X is non-REMOTE STH Rx,X

%NAMEADD(X,Y,8); L Rx,ZCON(Y)
 where Y is a non-NAME REMOTE AHI Rx,8
 variable and X is NAME REMOTE ST Rx,X

%NAMEADD(X,Y,8); L Rx,Y
 where Y is NAME REMOTE AHI Rx,8
 and X is NAME REMOTE ST Rx,X

Operation Code
%NAMEADD(X,Y,8); LA Rx,Y+8
 where Y is a non-NAME
 variable

OHI Rx,x‘8000’ (PASS only)
3-70 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
 If X is of aggregate type (i.e. ARRAY(3) SCALAR) and Y is of REMOTE singular type
(i.e. SCALAR) then the following code is inserted to clear the index inhibit bit:

LFXI Ri,-1
IAL Ri,x"F7FF"
NR Rx,Ri

3.1.15.5 %NAMEBIAS
By convention, the compiler uses an address for aggregate data that is offset a certain
number of halfwords (depending on data type) before the actual beginning of the data
(see Section 3.1.1.2). The %NAMEBIAS statement performs this zeroth element
calculation by determining the positive value needed to point to the first element of the
data. It consists of two operands as seen below:

%NAMEBIAS(X,Y)
where,

X is a destination variable of integer type
Y is a source variable of any data type (unsubscripted)
The result of the %NAMEBIAS statement is placed into the variable X. Please note that
the offset of a NAME variable is the offset of the variable to which it points.

 and X is NAME REMOTE IAL Rx,x‘0800’ or x‘0000’
(linker fills in sector num-
ber)

ST Rx,X

%NAMEADD(X,Y,8); LH Rx,Y
 where Y is a NAME
variable

LA Rx,8(Rx)

 and X is NAME REMOTE STH Rx,x‘0800’
(non-aggregate variables
only)

SRA Rx,1
SRR Rx,31
OHI Rx,x‘8000’ (PASS only)
ST Rx,X

Operation Code
%NAMEBIAS(X,Y) LFXI/LHI/L Ry,zeroth element offset of Y
where X is a non-NAME variable STH/ST Ry,X
3-71 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.1.16 NONHAL References
Definition and use of the NONHAL construct in the HAL/S-FC compiler system results
in an unimplemented feature message from the code generator.

3.1.17 Block Move Algorithm
For assignments involving arrays, structures, or vectors and matrices, the block move
algorithm will be applied when:
1. both source and destination data specifications occupy contiguous storage;
2. the data types for source and destination match in type and precision; and
3. neither source nor destination variables are NAME variables.

The default block move sequence is as follows:

%NAMEBIAS(X,Y) LFXI/LHI/L Ry,zeroth element offset of Y
where X is a NAME variable LH Rx,X

STH/ST Ry,disp(Rx)

%NAMEBIAS(X,Y) LFXI/LHI/L Ry,zeroth element offset of Y
where X is REMOTE STH@#/ST@# Ry,X

%NAMEBIAS(X,Y) ZH/ZH@# Rx
where Y has zero offset

 X=Y; L Rx,=Y(X,size of Y)

L Ry,=Z(Y)

MVH Rx,Ry

When X is declared REMOTE:

LA P2,Y

OHI P2,x'8000' (PASS only)

IAL P2,x'0800' or x'0000'

LFXI 5,size of Y

L P1,ZCON(X)

ACALL MSTR

When both X and Y are declared REMOTE:

L P2,ZCON(Y)

LFXI size of Y

L P1,ZCON(X)

ACALL MSTR
3-72 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
In certain block move applications where the following is true:

then the MVH sequence is replaced by the appropriate number of LED/STED (4
halfwords apiece), L/ST (2 halfwords apiece), and LH/STH instruction pairs to
accomplish the movement.

The following examples illustrate:
 DECLARE ARRAY (3),
 A,B,C INTEGER,
 D INTEGER;
 DECLARE ARRAY (3) INTEGER,
 E,F;/*E,F on odd boundary*/
 A=B;
 LED 0,B
 STED 0,A
 LE 0,B+4
 STE 0,A+4
 C=D;
 L 4,D
 ST 4,C
 LH 4,D+2
 STH 4,C+2
 E=F;
 LH 5,F
 STH 5,E
 L 5,F+1
 ST 5,E+1
 B=E;

uses MVH since >2 halfwords and alignments not matching.

When the DATA REMOTE directive is in effect (see Section 4.0)
and the destination variable X is local data:

L 3,=Y(X, size of Y)

ZRB 3,x'8000'

L Ry,=Z(Y)

MVH 3,Ry

LH 3,9(0)

a. variable indexing is not specified;
b. no NAME or ASSIGN parameters are specified;
c. source and data word alignments match and 8 or fewer halfwords are

being moved, or two or fewer halfwords are being moved;
3-73 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
3.2 Object Code Naming Conventions
Each successful HAL/S compilation produces several named control sections
(CSECTs). The CSECT names are derived according to the following rules:

ccNNNNNN

 PROGRAM : $0
 TASKs : $c c=(1-9,A-Z)
 COMSUBs : #C
 Internal procs : an a=(A-Z),n=(0-9)
 DECLAREd data : #D
 COMPOOL : #P
 Process Directory Entries : #E
 Z-con to comsub : #Z
 REMOTE data : #R
 Exclusive data : #X

In addition to CSECTs produced by the compiler, the HAL/S-FC system defines other
CSECTs, some of which are referenced by compiler-emitted code. These CSECT
types and their naming conventions are:

Z-con to library routine: #Q
Data for library routines: #L

3.3 Printed Data from Phase 2

3.3.1 Formatted Assembly Listing
Under control of the LIST compiler option, Phase 2 will produce a formatted, mnemonic
listing of the object code produced for the compilation unit. This includes showing the
statement number in which a label is located when a branch to a label is done. Also,
the registers are identified with one of the following letters in front of the register
number: “R” for general or “F” for floating point. The nominal execution time for each
instruction (as defined in the “Space Shuttle Model AP101-S Principles of Operation”,
Chapter 17) is provided. When a literal value is referenced, the register contents and
decimal value for floating point instructions or the HEX and decimal values for non-
floating point instructions are shown. For RS instructions with a base register of 3, the
displacement is used instead of the base register. In this case, nothing is printed
instead of “R3”. For BC instructions, alternate mnemonics are printed in the symbolic

a. HAL/S compilation unit names are transferred to the emitted object code by using
only the first six characters of the HAL/S name. The name will be padded or
truncated to six characters where necessary.

b. Any occurrence of the underscore character () in the first six characters of a
PROGRAM, PROCEDURE, FUNCTION, TASK, or COMPOOL is eliminated. The
resulting characters are joined together to produce the characteristic name of the
compilation unit (e.g. A B C becomes ABC). Additional characters are placed on
the front of the resultant name to form the final name for each of the individual
situations in which the name is used. All CSECT names therefore take the form:

where the value of cc for individual cases is:
3-74 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
operand field to clarity the intent of the branch. In addition to the assembler-type
mnemonic instruction listing, a full hexadecimal listing of the emitted code is also
produced.

This object code listing is normally appended to the Phase 1 primary source listing as
defined by the SYSPRINT DD card. However, use of the SDL compiler in addition to
the LIST option causes the object code listing to be produced through the OUTPUT7
DD card. The listing thus produced is compatible with the ABSLIST function of the AP-
101 Link Editor. The HAL/SDL ICD contains the detailed description of the ABSLIST
format.

3.3.2 Symbol Information
Included in the listing is a table containing the symbol, type, ID, address, length (in both
HEX and decimal) and block name.

3.3.3 RLD Information
The RLD information is printed in a table containing the position pointer, relocation
pointer, flags, address and CSECT name for both position and relocation pointers. This
section includes a title and a legend explaining each of the columns.

3.3.4 Variable Offset Table
The Variable Offset Table contains the location, base register, displacement, bias
(zeroth element offset), name and length for each variable. This section includes a title
and a legend explaining each of the columns.

3.3.5 Memory Map Table
A Memory Map table for local data is printed for the current compilation unit. It contains
the variable name, length, offset, base register, displacement and scope. It also
contains local block data information and alignment gap information.

3.3.6 Structure Template Layout Table
The Structure Template Layout Table contains the displacement from the root node, the
length, the bias (zeroth element offset) and the name of each terminal and node in the
template. Alignment gap information is also provided.

3.4 Symbol Table Augmentation
Phase 2 inherits an initialized symbol table from Phase 1. In the course of generating
code, Phase 2 makes additions to the symbol table which are inherited, in turn, by
Phase 3. These additions are generally in the area of data addressing.
3-75 November 2005

 HAL/S Compiler System Specification USA003089
 32.0/17.0
Information is added in two of the symbol tables parallel arrays:

3.5 Statement Table Augmentation
Phase 3 inherits, in a secondary storage device, the statement table produced by
Phase 1. If the ADDRS compiler option is in effect, Phase 1 leaves room in the
statement table for beginning and ending addresses of individual HAL/S statements.
This information is filled in by Phase 2 after the generation of the executable code has
been performed. The completed statement table is then left for use by Phase 3.

• The SYT_ADDR array is filled with data offset information indicating the
relative location of data items within CSECTs

• The EXTENT array is filled with information about the size of the storage
allocated to individual data items.
3-76 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
4.0 Incremental #D (DATA_REMOTE Directive) REQUIREMENTS
AND CODE DESIGN

4.1 Introduction
Incremental #D was a major enhancement to the compiler implemented in Phase 1
(Syntax Analysis), Phase 2 (Code Generation), and Phase 3 (SDF Generation), with
the majority of the implementation in Phase 2. The following is taken from detailed
requirements for Incremental #D as originally written.
The purpose of this chapter is to identify the detailed requirements, and to review the
compiler source code design that satisfies these requirements, for the implementation
of Support Software Change Request (SSCR) 11096 titled “Implement the Incremental
#D Option”. The HAL/S FC compiler that is modified to implement the features of the
Incremental #D option will be Release 24.0, and will also be known as the #D compiler.

4.2 Requirements and Code Design
The four primary requirements for the Incremental #D option are given in this section.
Following each primary requirement is an interpretation of what that requirement means
from the compiler’s perspective, the implied or derived detailed requirements which the
design must satisfy, and a high-level picture of the compiler source code design.

When applicable, the code sections in the design pictures have been labeled with the
number of the requirement that is satisfied (without the chapter number; i.e.,
requirement 4.2.1.2.1 is shown as 1.2.1). Note that after requirement 4.2.1.2.1 is met
(see section 4.2.1.3), all remaining code segments shown throughout the document are
only executed if the #D Directive was used. The if-then constructs that each of these
code segments are imbedded in are not shown in order to avoid clutter and repetition.

No formal requirement exists for the compiler with regard to constraints on execution
performance or Flight Software object code growth impacts incurred upon implementing
and using the Incremental #D option.

4.2.1 Provide for Selective Migration of #D Data
• Provide for selective migration of program data CSECTs into upper memory via

use of Extended Addressing hardware feature.

 4.2.1.1 Interpretation
The HAL/S FC compiler will have some type of mechanism which will allow the HAL/S
programmer to specify that all program local data declared within a single compilation
unit (#D CSECT), will be referenced using Data Sector Extension (DSE) Addressing
techniques. This type of addressing will allow the #D CSECT to be located in any
memory sector.
4-1 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 4.2.1.2 Detailed Implied/Derived Requirements

4.2.1.2.1 The HAL/S FC Compiler shall {1} support a #D directive, “DATA
REMOTE”, which will allow the #D CSECT to be placed into any
memory sector (where previously it was restricted to sector 0 or 1). A
single upper memory sector shall {2} be reserved for #D data and will
be referred to as the DSE Sector. The data in this CSECT will be
referred to as Remote #D data.

4.2.1.2.2 The #D Directive shall {1} have the same placement restrictions as the
“D INCLUDE TEMPLATE” directive, and the coding of more than one
#D Directive shall {2} produce the same result as coding one.

4.2.1.2.3 The #D Directive shall be illegal for COMPOOL compilation units.
4.2.1.2.4 When the #D directive is used, the REMOTE attribute shall be ignored

for all locally declared data except NAME variables. Such data will be
processed as Remote #D data.

4.2.1.2.5 The compiler shall set a flag (known as the DATA_REMOTE flag) in the
Simulation Data File (SDF) to indicate when the #D directive is used, for
the benefit of post processing tools.

4.2.1.2.6 When the #D directive is used, the REMOTE attribute of the module
shall {1} be set in order to provide for auto placement of that module’s
#D CSECT in a REMOTE bank by the PRELINK tool. After code
generation, the REMOTE attribute of the module shall {2} be cleared so
that the SDF flags for the module are not changed.

4.2.1.2.7 The requirements, restrictions, and impacts of Incremental #D
described in this chapter shall {1} be in effect only when the #D directive
is used. When the #D directive is not used, the #D compiler shall {2}
produce object code which is identical to that produced by its
predecessor compiler (except for changes due to any implemented DR
fixes).
4-2 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 4.2.1.3 Compiler Implementation Design

Figure 4-1 Provide for Selective Migration of #D Data

COMMON DATA NEW DATA_REMOTE Boolean 1.0
symbol table REMOTE attribute flags

PASS1 PASS2 PASS3
DWNTABLE
CERRDECL
 add new error class CLASS_XR (1.0)

STREAM.PROCESS_COMMENT
if DATA_REMOTE directive used then
 if COMPOOL then error XR2 (1.2.3)
 if wrong placement then error XR1 (1.2.2)
 set DATA_REMOTE Boolean (1.2.1)

IMPORTANT: All subsequent code segments are only executed if DATA_REMOTE is set. The check for this Boolean
being set has been left out to avoid repetition (1.2.7)

SYNTHESIZE NEW CSECT_TYPE ##DRIVER
in processing declared data:
if REMOTE attribute then error XR3

(1.2.4)

a support routine to indicate if a data
item is #D data:
 return ‘#D’ for locally declared data
 return ‘#R’ for locally declared data
 with REMOTE attribute set

use old PATCH_FLAG as
the new
DATA_REMOTE_FLAG for
SDFs (1.2.5)

INITIALISE
 set DATA_REMOTE_FLAG
(1.2.5)

INITIALISE.PROCENTRY
IF NOT EXTERNAL
 then set module’s REMOTE attribute
(1.2.6)

INITIALISE.SET_NEXT_AND_LOKS
if CSECT_TYPE=#R then
 clear REMOTE attribute
(1.2.4)
(4.2.1)

EMIT_ESD_CARDS
if module’s REMOTE attribute
 then set bit in ESD card for PRELINK
 and clear module’s REMOTE attribute
(1.2.6)
4-3 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
4.2.2 Provide for Management of Extended Addressing Feature
• Provide for management of the Extended Addressing feature at the appropriate

points in the code:

 4.2.2.1 Interpretation
DSE management is defined as the techniques used to either clear or load the Data
Sector Extension (DSE) of a register which is used to address the DSE sector.
DSE management shall be used only in modules compiled with the #D directive.

DSE management shall occur upon entry to a module, around all calls to external
procedures and calls to Runtime Library (RTL) routines, and immediately before exit
from a module.

 4.2.2.2 Detailed Implied/Derived Requirements

a. Prolog
b. Common Subroutine CALL locations.
c. Runtime Library CALL locations.
d. Epilog

4.2.2.2.1 Two fullword constants, $ZDSESET and $ZDSECLR, shall be supplied
by FCOS to provide the compiler a means of setting and clearing DSE
registers with the proper values.

4.2.2.2.2 For compilation units using the #D directive, the compiler shall
generate object code in the prolog of each PROGRAM/COMSUB,
which will initialize the DSEs of registers R1 and R3 with the Remote
#D CSECT.

4.2.2.2.3 When the #D directive is used, the DSEs associated with the Remote
#D registers shall be set to zero immediately prior to any external
procedure and prior to any RTL call which utilizes R1 or R3 as a base
register.

4.2.2.2.4 Immediately upon return from an external procedure or any RTL call
which utilizes R1 or R3 as a base register, the DSEs associated with
the Remote #D registers shall be restored to their previous values.

4.2.2.2.5 Before the exit from a COMSUB compilation unit using the #D
directive, the DSEs associated with the Remote #D registers shall be
set to zero. This is not done for PROGRAMs, as the SVC instruction
that ends a PROGRAM needs the DSEs set to work properly.
4-4 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
4-5 November 2005

 4.2.2.3 Compiler Implementation Design

Figure 4-2 Provide for Management of Extended Addressing Feature

4.2.3 Enforce Compiler Restrictions on #D Data
• Have all program data items take on the attribute “lives REMOTE”; enforce normal

compiler restrictions on those data items:

 4.2.3.1 Interpretation
For the purposes of syntactical and semantic analysis only, all data which is declared
locally, and is within a single compilation unit compiled with the #D directive, shall be
processed as if it had been declared with the REMOTE attribute. Again, this data will
be referred to as Remote #D data.
All restrictions and limitations which currently exist for REMOTE data references will
also exist for Remote #D data references. Refer to Section 8.10 of the HAL/S-FC
User's Manual for more information.
Specifically, these restrictions are: a) no assignments of Remote #D addresses into
(16-bit) NAME variables; b) not allowing the declaration of Remote #D EVENT
variables.

COMMON DATA NEW DATA_REMOTE Boolean 1.0
PASS1 PASS2 PASS3

##DRIVER
add new LDM instruction (2.0)

INITIALISE.SETUP_DATA
set up external recognition of data contents $ZDSESET
and $ZDSECLR (2.2.1)

GENERATE.EMIT_CALL
clear DSEs with LDM before call (2.2.3)
set DSEs with LDM after call (2.2.4)

GENERATE.BLOCK_OPEN
set DSEs with LDM in prolog (2.2.2)

GENERATE.EMIT_RETURN
clear DSEs with LDM in epilog of COMSUBS (2.2.5)

a. No assignments of Remote #D address into (16 bit) NAME variable.
b. No declaration of Remote #D data as EVENT type.

HAL/S Compiler System Specification USA003089
32.0/17.0
 4.2.3.2 Detailed Implied/Derived Requirements

 4.2.3.3 Current Error Message Usage
The following existing errors will be used to indicate when the use of Remote #D data
has violated a compiler restriction:

4.2.3.2.1 The compiler shall internally “turn on” the REMOTE attribute for all local
variables which are declared within a compilation unit containing the #D
directive.

4.2.3.2.2 Once the REMOTE attribute is “turned on” for Remote #D data, the
compiler shall process the HAL source code using existing error analysis
techniques and error messages.

4.2.3.2.3 Because the REMOTE attribute must be “turned off” during code
generation (see section 4.2.4.2), supplemental error checking shall be
used for parameter checking.

4.2.3.2.4 It shall be legal to assign Remote #D addresses into (32-bit) NAME
REMOTE variables. This requires a conversion of a YCON (16-bit offset)
plus associated DSE into ZCON format.

4.2.3.2.5 In order for Remote #D data to be passed by reference to REMOTE
Runtime Library routines the way current REMOTE data is handled, the
YCON to ZCON conversion of 4.2.3.2.4 shall be used.

4.2.3.2.6 The HAL/S WRITE statement shall be the means by which Remote #D
data can be output during testing.

DI107 - SEVERITY 1
ATTEMPT TO INITIALIZE A NON-REMOTE NAME WITH A REMOTE
VARIABLE

XQ102 - SEVERITY 2
ATTEMPT TO ASSIGN NAME OF REMOTE DATA ITEM TO A 16 BIT
NAME VARIABLE

FT111 - SEVERITY 2
MISMATCHED ARGUMENTS IN %NAMECOPY STATEMENT. REMOTE
SOURCE NOT ALLOWED WITH NON-REMOTE DESTINATION IN
%NAMECOPY STATEMENT

FT110 - SEVERITY 2
MISMATCHED ARGUMENTS IN %NAMEADD STATEMENT. REMOTE
SOURCE NOT ALLOWED WITH NON-REMOTE DESTINATION IN
%NAMEADD STATEMENT

FT112 SEVERITY 2
PARAMETER #?? MAY NOT BE NAME(NAMEVAR) IF NAMEVAR LIVES
REMOTE

DA9 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR EVENT DATA TYPE
4-6 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 4.2.3.4 FCOS Restrictions on #D Data
Due to FCOS restrictions, certain real time operations cannot occur with
DATA_REMOTE in effect (i.e. outside of sector 0/1). An XR4 error message (severity
2) will be generated for any of the following conditions when DATA_REMOTE is in
effect:

- EQUATE EXTERNAL to a #D symbol;
- SCHEDULE statement with an ON, WHILE or UNTIL event option in a non-

reentrant module;
- WAIT FOR statement in a non-reentrant module.
4-7 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 4.2.3.5 Compiler Implementation Design

Figure 4-3 Enforce Compiler Restrictions on #D Data

COMMON DATA NEW DATA_REMOTE Boolean

symbol table REMOTE attribute flags
PASS1 PASS2 PASS3

SYNTHESIZE
in processing declared data: new GENERATE.PARM_STAT
 set REMOTE attribute (3.2.1) if CSECT_TYPE of parameter is #D (3.2.2)

 then error FT108 (3.2.3)

GENERATE.VMCALL
CHAR_CALL, CTON,
COMPARE_STRUCTURE
GEN_CLASS0.USE_MSTRUC
GEN_CLASS0
setup to call REMOTE RTL routine if
 CSECT_TYPE of parameter is #D (3.2.5)

GENERATE.BIT_STORE
CHAR_CALL, CTON,
GEN_CLASS0
GEN_CLASS1

(3.2.3)

GENERATE.STRUCTFIX,
GET_OPERAND
if CSECT_TYPE of data is #D
 then set Boolean LIVES_REMOTE to trigger
 NAME error-checking

(3.2.2)

GENERATE.CLASS0.SET_IO_LIST
if CSECT_TYPE of aggregate is #D

then copy to stack before calling, then
copy to stack before calling output RTL
routine

(3.2.6)

GENERATE.FORCE_ADDRESS
if data assigned to NAME_REMOTE does
not have REMOTE attribute
 then convert to YCON+DSE to ZCON

(3.2.4)
4-8 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
4.2.4 Manipulate #D Data Using Extended Addressing Techniques
Manipulation of program data addresses should make use of Extended Addressing
techniques where appropriate.

 4.2.4.1 Interpretation
The HAL/S FC compiler normally uses ZCON (32-bit indirect address constant)
addressing to manipulate (load and store) REMOTE data. Remote #D data will be
manipulated using YCON (16-bit base register) addressing techniques.

The DSEs of the registers used to address the Remote #D data shall contain the DSE
sector number. This allows standard YCON addressing to be used to point to REMOTE
data. Although all eight general registers have associated DSE registers, it is only valid
for the compiler to use the DSEs associated with registers R0, R1, R2, and R3, as
FCOS only preserves these four during context switches.
There may be some circumstances where DSE addressing can not be appropriately
used, and ZCON addressing must be used instead; for instance, in assignments of
Remote #D addresses to NAME REMOTE variables (see section 4.2.3.2).

 4.2.4.2 Detailed Implied/Derived Requirements

4.2.4.2.1 Once the Remote #D registers and their DSEs have been initialized, the
Remote #D data shall be referenced and manipulated in the same
manner as local #D data is manipulated today. This requires the
REMOTE attribute of Remote #D data to be “turned off”, which in turn
ensures that the SDF flags for local #D data are not changed.

4.2.4.2.2 When the #D directive is used, general purpose registers R1 and R3
shall be reserved for addressing Remote #D data, and only Remote #D
data. These registers will be referred to as the Remote #D registers.

4.2.4.2.3 When the #D directive is used, the #D compiler shall enforce restrictions
such that when base addressing is used, only general register R2 (and
no others) is used to reference COMPOOL data. Otherwise, immediate
addressing (no-base) is used for referencing COMPOOL data.

4.2.4.2.4 When the #D directive is used, special handling of the Remote #D
registers and their DSEs shall be required for the MVH instruction to
function properly.
4-9 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 4.2.4.3 Compiler Implementation Design

Figure 4-4 Manipulate #D Data Using Extended Addressing Techniques

COMMON DATA NEW DATA_REMOTE Boolean

symbol table REMOTE attribute flags
PASS1 PASS2 PASS3

INITIALISE.SET_NEST_AND_LOCKS
if CSECT_TYPE = #R then
 clear REMOTE attribute

(1.2.4)
(4.2.1)

new GENERATE.CHECK_RESTORE in R1/R3 for base
addressing, or the next instruction is a branch
then restore R1/R3 (4.2.2)

GENERATE.EMITRR.EMITRX,
EMITSI, EMITP, EMITSP
if R1/R3 has been changed from the original#D pointer
value
 then call CHECK_RESTORE

(4.2.2)

new GENERATE.REG_STAT
perform register restriction:
four basic cases:
 1) loading MVH source operand:
 no change in register allocation
 2) loading address for RTL call:
 no change in register allocation
 3) target register is R1 or R3:
 if loading NAME or formal parameter
 then use R2 instead if loading non #D data
 then use R2 instead

 4) target register is R2:
 if loading #D data (4.2.2)
 then use R3 instead (4.2.3)

GENERATE.GET_R,
RELOAD_ADDRESSING,
GUARANTEE_ADDRESSABLE,
FORCE_ADDRESS, CHECK_SI,
ADDRESS_STRUCTURE,
REF_STRUCTURE,
FORCE_ADDRESS_LIT
call REG_STAT after current allocation methods select a
target register

(4.2.2)
(4.2.3)

GENERATE.USE_MVH,
if CSECT_TYPE of destination is #D
then call GET_R to use R3 after a load of R3, clear its
msb

(4.2.4)
4-10 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
5.0 PHASE 3 - SIMULATION DATA FILE GENERATION
Phase 3 of the HAL/S-FC compiler has the primary function of providing Simulation
Data Files (SDFs) for each unit of compilation. Phase 3 also produces user-oriented
printouts upon special request. This section deals with the following Phase 3 functions:

• SDF generation
• Printed data

5.1 SDF Generation
Phase 3 synthesizes the SDF for a compilation unit from data received from previous
Phases of the compiler. This data is primarily in two areas: a) The symbol table,
created by Phase 1 and augmented by Phase 2, and b) The statement table similarly
created by Phase 1 and 2.

The detailed format of an SDF is controlled by the HAL/SDL ICD. The reader is
referred there for details of SDF design beyond the overview presented in the next
section.

5.1.1 Overall SDF Design
A Simulation Data File (SDF) is an organized and directoried collection of block,
symbol, and statement data which is created by the HAL/S compiler from a single unit
of compilation and stored in a permanent form for later use by simulation processors.

There are basically three types of information contained in an SDF. These are:

An SDF is produced for all compilation units unless suppressed by the user (the
TABLES/NOTABLES option). In the case of COMPOOL compilations, the SDF
becomes somewhat simplified, having no executable statements and, consequently, no
cross-reference data for its symbols.

1. Symbol Data - contains the attributes of HAL/S symbols (labels and
variables) such as name, class and type, relative core address, number of
bytes in core occupied, etc. Also contains arrayness and dimensionality for
arrayed variables, template linkages for elements of structures, and cross-
reference information listing all statements within the compilation unit that
may assign values to the symbol.

2. Statement Data - contains the attributes of HAL/S statements such as type,
Statement Reference Numbers (SRNs) if specified by the user, indices for
all labels attached to each statement, and indices for all variables which may
be assigned values by that statement. Also may optionally contain the
relative core addresses of the first and last executable instructions emitted
for that statement.

3. Block and Directory Data - contains information about each HAL/S block and
the symbols and statements contained within that block, plus information
concerning the layout and organization of the SDF which minimizes the time
needed to access desired data entries.
5-1 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
SDFs are created as members of Partitioned Data Sets (PDSs) and are assigned
names o

f the form ##CCCCCC, where CCCCCC is the first six characters of the compilation
unit name with any and all underscore characters removed. (Example: the SDFs for
the compilation units SAMPLER and TEST SAMPLE would be assigned the names
##SAMPLE and ##TESTSA, respectively). The members are written in fixed record
format with a block size and logical record length of 1680.
The structure of the SDF will support three efficient types of access:

In access methods 1 and 2, the SDF directory plays a key role. When the symbol name
and its block are given, the directory will identify which particular physical record of the
SDF contains the corresponding fixed-length Symbol Node. Once this record has been
read into core, a simple and fast binary search will locate the symbol node which in turn
"points" directly to the attributes of the symbol which are contained within a variable-
length Symbol Data Cell. A virtually identical procedure can be used to locate
statement data when the SRN is given. In this case, the fixed-length nodes involved in
the binary search are called Statement Nodes, and their corresponding variable-length
data cells are called Statement Data Cells.

In contrast to access methods 1 and 2, which require directory help followed by binary
searches, method 3 is direct. This is because there is a one-to-one correspondence
between the ISN (compiler-generated Internal Statement Number) and the order of the
Statement Nodes. The HAL/SDL ICD contains detailed descriptions of the SDF
organization.

5.2 Phase 3 Printed Data
For each invocation of Phase 3, a set of tabular data is printed. The information
presented deals with parameters relating to the SDF produced, such as number of SDF
pages, numbers of block, symbol, and statement nodes, etc.

In addition to the information which is always printed, two optional printouts are
available. Under control of the TABLST compiler option, the user may request that
symbolic, structured dump of the SDF be provided. In addition, under control of the
TABDMP compiler option, the user may request that the contents of the SDF be
displayed in a hexadecimal format, page by page.
Immediately following the Phase 3 output, but before any optional output from TABDMP
or TABLST, an advisory section is printed starting on a new page. This section contains
information for the programmer about improvements that could be made to the source

1. Given the name of a symbol, and the name of the block in which it was
declared, obtain the attributes of the symbol.

2. Given a Statement Reference Number (SRN), obtain the attributes of the
statement.

3. Given an Internal Statement Number (ISN), obtain the attributes of the
statement.
5-2 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
code of the program.
5-3 November 2005

USA003089 HAL/S Compiler System Specification
32.0/17.0
This page intentionally left blank.
November 2005 5-4

HAL/S Compiler System Specification USA003089
32.0/17.0
6.0 RUNTIME LIBRARY
6.1 Introduction
This section describes the HAL/S-FC runtime library as used to support the HAL/S-FC
compiler. The Primary Avionics Software System (PASS) and Backup Flight Software
(BFS) versions of the HAL/S-FC compiler use the same source code to build their
respective runtime libraries. The material is organized to present both general design
concepts and detailed interface and algorithm information. Following an introductory
discussion of general conventions used throughout the library, descriptions of the
individual routines are grouped according to the basic type of the routine. Each group
is introduced by a quick-reference chart containing basic interface data.
6.2 Basics and Conventions
6.2.1 Origin and Format
The HAL/S-FC compilers are supplied with runtime libraries. The library for PASS is a
partitioned dataset (PDS) containing members in AP-101 load module format. The
library for BFS is a PDS that contains object modules in the Eclipse format.

The runtime library objects are built by assembling the identically named members of a
source library that consists of statements written in AP-101 Basic Assembly Language
(BAL). Each source library member is assembled with the value of the &SYSPARM
system variable set to 'PASS' and 'BFS' respectively. The &SYSPARM variable is used
in the macro library routines to isolate code sequences that are unique to either PASS
or BFS. A macro library is used to standardize frequently used sequences of source
code.
The runtime libraries are built from these runtime library objects using methods that
differ substantially between PASS and BFS. For PASS, some source library members
have more than one entry point, in which case library ALIAS names are generated for
each entry using the FIXOBJ tool. The AP-101 link editor is then invoked to generate
the library in load module format. For BFS, the object modules are converted from AP-
101 to Eclipse format using the SATSOBJ tool. The input commands to SATSOBJ
specify that members beginning with '#L' are to be tagged as DATA type and all other
library members as CODE type. The type assigned to a library member is used by the
PILOT (Program Integration and Loading Tool) program to determine where the
member should be placed in memory. The BFS runtime library is also marked with
Version 0 to ensure compatibility with other objects generated by flight software.

Also included with the HAL/S-FC compilers are the ZCON libraries associated with
PASS and BFS. The PASS ZCON library is created by assembling its associated
source code using the same procedures that are used for the PASS runtime library.
The BFS ZCON library is created using a special tool, BLDQCON, that simply requires
a member list from the runtime library PDS as its input. The BFS ZCON library is also
marked with Version 0 to ensure compatibility with other objects generated.
6-1 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.2.2 Purpose
The runtime library is used to supply routines, data and interfaces which are needed to
execute a HAL/S program or group of programs which are not produced by the
compiler's code generator. Most of the library consists of subroutines which are called
from compiler generated code in a HAL/S statement.

6.2.3 Intrinsics and Procedure Routines
The library routines are divided into two groups: intrinsics and procedures. The main
distinction is that procedure routines save the passed contents of all fixed point
registers, while intrinsics do not. For this reason, a procedure can call another routine
(e.g., vector (VV10S3) magnitude calls SQRT), but an intrinsic cannot. Intrinsics do not
have a new stack level and therefore do not have any stack work areas. Because
intrinsics do not save all passed contents of fixed point registers, they cannot restore
them and must not destroy any register contents that must be returned to the calling
program. Expansions of the macros within intrinsic routines are different from the
expansions within procedure routines.
6.2.4 Register Conventions in Runtime Library Routines
6.2.4.1 General Purpose Registers R0-R7.

6.2.4.2 Floating Point Registers F0-F7.
Internal compiler tables indicate which floating point registers are used by each RTL
routine. Any register which is used in an RTL routine will be reloaded after returning
from that routine before further use. The only exception to this rule is registers which
are not flagged in the compiler's internal tables, but are instead saved and restored by
the RTL routine upon entry and exit from the routine.

6.2.4.3 Interface Conventions.
In addition to the parameter passing conventions summarized in general form in the
previous two sections and given in detail in the individual library routine descriptions,
the compiler has information defining the linkage conventions and register usage for
each routine.

R1-R3, R5-R7 : free use;
R4 : return address during calling and exiting intrinsics,

otherwise free use;
R0 : stack base;

Parameters : Intrinsics: any or all of R1, R2, R3, R5, R6, R7 can be
used for parameter passing.
Procedures: any or all of R2, R4, R5, R6, R7 can be
used for parameter passing.
6-2 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
This section contains that information in a list formatted in four columns as follows:

Any modifications to compiler or library should be made carefully so as to maintain this
interface properly.

NAME The primary or secondary entry point name.
CALL TYPE Either PROCEDURE or INTRINSIC to distinguish between

routines which must be called via the SCAL instruction and
those that must be called using BAL.

BANK0 YES indicates that the routine will always reside in Sector 0 of
the GPC and may therefore always be called directly (no ZCON
needed). NO indicates that the routine may reside in a sector
other than 0 and must therefore be called via a long indirect
address constant (ZCON).

Registers assumed
to be modified

A list of registers which the compiler assumes to be modified
across a call to the routine. Any registers not listed may be
assumed to remain unmodified and therefore to maintain their
previous contents. Underlined registers are not actually
modified by the RTL routine, but the compiler still assumes that
they are.

ROUTINE CALL TYPE BANK0 REGISTERS ASSUMED TO BE MODIFIED

1 ACOS PROCEDURE NO F0, F1, F2, F3, F4, F5

2 ACOSH PROCEDURE NO F0, F1, F2, F3, F4, F5

3 ASIN PROCEDURE NO F0, F1, F2, F3, F4, F5

4 ASINH PROCEDURE NO F0, F1, F2, F3, F4, F5

5 ATAN PROCEDURE NO F0, F1, F2, F3, F4, F5

6 ATANH PROCEDURE NO F0, F1, F2, F3, F4, F5

7 BIN PROCEDURE NO F0, F1

8 BOUT PROCEDURE NO F0, F1

9 BTOC INTRINSIC NO R1, R2, R3, R4, R5, R6, R7

10 CAS INTRINSIC NO R1, R2, R3, R4, R5

11 CASP INTRINSIC NO R1, R2, R3, R4, R5, R6

12 CASPV INTRINSIC NO R1, R2, R3, R4, R5, R6

13 CASR PROCEDURE NO NONE

14 CASRP PROCEDURE NO NONE

15 CASRPV PROCEDURE NO NONE

16 CASRV PROCEDURE NO NONE

17 CASV INTRINSIC NO R1, R2, R3, R4, R5,

18 CAT INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1

19 CATV INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1

20 CEIL INTRINSIC YES R4, R5, F0, F1

21 CIN PROCEDURE NO NONE

22 CINDEX PROCEDURE NO R5, F0, F1, F2, F3, F4, F5

23 CINP PROCEDURE NO F0, F1

24 CLJSTV PROCEDURE NO F0, F1

25 COLUMN PROCEDURE NO F0, F1

26 COS INTRINSIC NO R2, R3, R4, , F0, F1, F2, F3, F4, F5

27 COSH PROCEDURE NO F0, F1, F2, F3, F4, F5

28 COUT PROCEDURE NO NONE

29 COUTP PROCEDURE NO NONE

30 CPAS PROCEDURE NO F0, F1

31 CPASP PROCEDURE NO F0, F1

32 CPASR PROCEDURE NO F0, F1

33 CPASRP PROCEDURE NO F0, F1
6-3 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUTINE CALL TYPE BANK0 REGISTERS ASSUMED TO BE MODIFIED

34 CPR INTRINSIC NO R2, R3, R4, R5, R6

35 CPRA PROCEDURE NO NONE

36 CPRC INTRINSIC NO R2, R3, R4, R5, R6

37 CPSLD PROCEDURE NO R5, F0, F1

38 CPSLDP PROCEDURE NO R5, F0, F1

39 CPSST PROCEDURE NO R5, F0, F1

40 CPSSTP PROCEDURE NO R5, F0, F1

41 CRJSTV PROCEDURE NO F0, F1

42 CSHAPQ PROCEDURE NO F0, F1, F2, F3, F4, F5

43 CSLD PROCEDURE NO R5, F0, F1

44 CSLDP PROCEDURE NO R5, F0, F1

45 CSST PROCEDURE NO R5, F0, F1

46 CSSTP PROCEDURE NO R5, F0, F1

47 CSTR PROCEDURE NO NONE

48 CSTRUC INTRINSIC NO R2, R3, R4, R5, R6

49 CTOB PROCEDURE NO R5, F0, F1

50 CTOD PROCEDURE NO F0, F1, F2, F3, F4, F5

51 CTOE PROCEDURE NO F0, F1, F2, F3, F4, F5

52 CTOH PROCEDURE NO R5, F0, F1

53 CTOI PROCEDURE NO R5, F0, F1

54 CTOK PROCEDURE NO R5, F0, F1

55 CTOO PROCEDURE NO R5, F0, F1

56 CTOX PROCEDURE NO R5, F0, F1

57 CTRIMV PROCEDURE NO F0, F1

58 DACOS PROCEDURE NO F0, F1, F2, F3, F4, F5, F6, F7

59 DACOSH PROCEDURE NO F0, F1, F2, F3, F4, F5

60 DASIN PROCEDURE NO F0, F1, F2, F3, F4, F5

61 DASINH PROCEDURE NO F0, F1, F2, F3, F4, F5

62 DATAN PROCEDURE NO F0, F1, F2, F3, F4, F5

63 DATANH PROCEDURE NO F0, F1, F2, F3, F4, F5

64 DATAN2 PROCEDURE NO F0, F1, F2, F3, F4, F5

65 DCEIL INTRINSIC YES R4, R5, F0, F1

66 DCOS PROCEDURE NO F0, F1, F2, F3, F4, F5, F6

67 DCOSH PROCEDURE NO F0, F1, F2, F3, F4, F5

68 DEXP PROCEDURE NO F0, F1, F2, F3

69 DFLOOR INTRINSIC YES R4, R5, F0, F1

70 DIN PROCEDURE NO F0, F1

71 DLOG PROCEDURE NO F0, F1, F2, F3, F4, F5

72 DMAX INTRINSIC NO R2, R4, R5, F0, F1

73 DMDVAL PROCEDURE NO F0, F1, F2, F3, F4, F5

74 DMIN INTRINSIC NO R2, R4, R5, F0, F1

75 DMOD INTRINSIC NO R4, F0, F1, F2, F3, F4, F5, F6, F7

76 DOUT PROCEDURE NO F0, F1

77 DPROD INTRINSIC NO R2, R4, R5, F0, F1

78 DPWRD PROCEDURE NO F0, F1, F2, F3, F4, F5

79 DPWRH PROCEDURE NO F0, F1, F2, F3

80 DPWRI PROCEDURE NO F0, F1, F2, F3

81 DROUND INTRINSIC YES R4, R5, F0, F1

82 DSIN PROCEDURE NO F0, F1, F2, F3, F4, F5, F5

83 DSINH PROCEDURE NO F0, F1, F2, F3, F4, F5

84 DSLD PROCEDURE NO R5

85 DSNCS PROCEDURE NO F0, F1, F2, F3, F4, F5, F6

86 DSQRT PROCEDURE NO F0, F1, F2, F3, F4, F5

87 DSST PROCEDURE NO NONE

88 DSUM INTRINSIC NO R2, R4, R5, F0, F1

89 DTAN PROCEDURE NO F0, F1, F2, F3, F4, F5
6-4 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUTINE CALL TYPE BANK0 REGISTERS ASSUMED TO BE MODIFIED

90 DTANH PROCEDURE NO F0, F1, F2, F3, F4, F5

91 DTOC PROCEDURE NO F0, F1, F2, F3, F4, F5

92 DTOH INTRINSIC YES R4, R5, F0, F1

93 DTOI INTRINSIC YES R4, R5, F0, F1

94 DTRUNC INTRINSIC YES R4, R5, F0, F1

95 EATAN2 PROCEDURE NO F0, F1, F2, F3, F4, F5

96 EIN PROCEDURE NO F0, F1

97 EMAX INTRINSIC NO R2, R4, R5, F0, F1

98 EMIN INTRINSIC NO R2, R4, R5, F0, F1

99 EMOD INTRINSIC NO R4, F0, F1, F2, F3, F4, F5

100 EOUT PROCEDURE NO F0,F1

101 EPROD INTRINSIC NO R2, R4, R5, F0, F1

102 EPWR3 PROCEDURE NO F0, F1, F2, F3, F4, F5

103 EPWRH PROCEDURE NO F0, F1, F2, F3

104 EPWRI PROCEDURE NO F0, F1, F2, F3

105 ESUM INTRINSIC NO R2, R4, R5, F0, F1

106 ETOC PROCEDURE NO F0, F1, F2, F3, F4, F5

107 ETOH INTRINSIC YES R4, R5, F0, F1

108 ETOI INTRINSIC YES R4, R5, F0, F1

109 EXP PROCEDURE NO F0, F1, F2, F3

110 FLOOR INLINE YES N/A (RTL not used)

111 GTBYTE INTRINSIC NO R2, R4, R5, F0, F1

112 HIN PROCEDURE NO F0, F1

113 HMAX INTRINSIC NO R2, R4, R5, R6

114 HMIN INTRINSIC NO R2, R4, R5, R6

115 HMOD INTRINSIC NO R2, R4, R5, R6, R7

116 HOUT PROCEDURE NO F0, F1

117 HPROD INTRINSIC NO R2, R4, R5, R6

118 HPWRH PROCEDURE NO R5

119 HREM INTRINSIC NO R2, R4, R5, R6, R7

120 HSUM INTRINSIC NO R2, R4, R5, R6

121 HTOC PROCEDURE NO NONE

122 IIN PROCEDURE NO F0, F1

123 IMAX INTRINSIC NO R2, R4, R5, R6

124 IMIN INTRINSIC NO R2, R4, R5, R6

125 IMOD INTRINSIC NO R2, R4, R5, R6, R7

126 IOINIT PROCEDURE NO F0, F1

127 IOUT PROCEDURE NO F0, F1

128 IPROD INTRINSIC NO R2, R4, R5, R6, R7

129 IPWRH PROCEDURE NO R5

130 IPWRI PROCEDURE NO R5

131 IREM INTRINSIC NO R2, R4, R5, R6, R7

132 ISUM INTRINSIC NO R2, R4, R5, R6

133 ITOC PROCEDURE NO NONE

134 ITOD INTRINSIC YES R4, R5, F0, F1

135 ITOE INTRINSIC YES R4, R5, F0, F1

136 KTOC INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1

137 LINE PROCEDURE NO F0, F1

138 LOG PROCEDURE NO F0, F1, F2, F3, F4, F5

139 MMRDNP PROCEDURE NO NONE

140 MMRSNP PROCEDURE NO NONE

141 MMWDNP PROCEDURE NO F0, F1

142 MMWSNP PROCEDURE NO F0, F1

143 MM0DNP INTRINSIC NO R1, R3, R4, R5, R6, R7, F0, F1

144 MM0SNP INTRINSIC NO R1, R3, R4, R5, R6, R7, F0, F1

145 MM1DNP INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3
6-5 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUTINE CALL TYPE BANK0 REGISTERS ASSUMED TO BE MODIFIED

146 MM1SNP INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1

147 MM1TNP INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3

148 MM1WNP INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3

149 MM11DN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3

150 MM11D3 INTRINSIC NO R1, R2, R4, R5, R7, F0, F1, F2, F3, F4, F5

151 MM11SN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1

152 MM11S3 INTRINSIC NO R1, R2, R4, R5, F0, F1, F2, F3

153 MM12DN PROCEDURE NO F0, F1, F2, F3, F4, F5

154 MM12D3 PROCEDURE NO F0, F1, F2, F3, F4, F5

155 MM12SN PROCEDURE NO F0, F1, F2, F3, F4, F5

156 MM12S3 PROCEDURE NO F0, F1, F2, F3, F4, F5

157 MM13DN INTRINSIC NO R2, R4, R5, R6, F0, F1

158 MM13D3 INTRINSIC NO R2, R4, F0, F1

159 MM13SN INTRINSIC NO R2, R4, R5, R6, F0, F1

160 MM13S3 INTRINSIC NO R2, R4, F0, F1

161 MM14DN PROCEDURE NO F0, F1, F2, F3, F4, F5

162 MM14D3 PROCEDURE NO F0, F1, F2, F3, F4, F5

163 MM14SN PROCEDURE NO F0, F1, F2, F3, F4, F5

164 MM14S3 PROCEDURE NO F0, F1, F2, F3, F4, F5

165 MM15DN INTRINSIC NO R1, R4, R5, R6, R7, F0, F1, F2, F3

166 MM15SN INTRINSIC NO R1, R4, R5, R6, R7, F0, F1, F2, F3

167 MM17DN PROCEDURE NO F0, F1, F2, F3, F4, F5

168 MM17D3 PROCEDURE NO F0, F1, F2, F3, F4, F5

169 MM17SN PROCEDURE NO F0, F1, F2, F3, F4, F5

170 MM17S3 PROCEDURE NO F0, F1, F2, F3, F4, F5

171 MM6DN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

172 MM6D3 INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

173 MM6SN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

174 MM6S3 INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

175 MR0DNP PROCEDURE NO F0, F1

176 MR0SNP PROCEDURE NO F0, F1

177 MR1DNP PROCEDURE NO F0, F1

178 MR1SNP PROCEDURE NO F0, F1

179 MR1TNP PROCEDURE NO F0, F1

180 MR1WNP PROCEDURE NO F0, F1

181 MSTR PROCEDURE NO NONE

182 NOT USED

183 MV6DN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

184 MV6D3 INTRINSIC NO R1, R2, R3, R4, R6, F0, F1, F2, F3

185 MV6SN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

186 MV6S3 INTRINSIC NO R1, R2, R3, R4, F0, F1, F2, F3

187 OTOC INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1

188 OUTER1 PROCEDURE NO F0, F1

189 PAGE PROCEDURE NO F0, F1

190 QSHAPQ PROCEDURE NO F0, F1

191 RANDG PROCEDURE NO F0, F1, F2, F3

192 RANDOM PROCEDURE NO F0, F1, F2, F3

193 ROUND INTRINSIC YES R4, R5, F0, F1

194 SIN INTRINSIC NO R2, R3, R4, F0, F1, F2, F3, F4, F5

195 SINH PROCEDURE NO F0, F1, F2, F3, F4, F5

196 SKIP PROCEDURE NO F0, F1

197 SNCS INTRINSIC NO R2, R3, R4, F0, F1, F2, F3, F4, F5

198 SQRT INTRINSIC NO R1, R4, R5, R6, R7, F0, F1, F2, F3

199 STBYTE INTRINSIC NO R1, R4, R5, F0, F1

200 TAB PROCEDURE NO F0, F1

201 TAN PROCEDURE NO F0, F1, F2, F3, F4, F5
6-6 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUTINE CALL TYPE BANK0 REGISTERS ASSUMED TO BE MODIFIED

202 TANH PROCEDURE NO F0, F1, F2, F3, F4, F5

203 TRUNC INTRINSIC YES R4, R5, F0, F1

204 VM6DN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

205 VM6D3 INTRINSIC NO R1, R2, R3, R4, R5, F0, F1, F2, F3, F4, F5

206 VM6SN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5

207 VM6S3 INTRINSIC NO R1, R2, R3, R4, R5, F0, F1, F2, F3

208 VO6DN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F4, F5

209 VO6D3 INTRINSIC NO R1, R2, R3, R4, R5, R6, F0, F1

210 VO6SN INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1, F4, F5

211 VO6S3 INTRINSIC NO R1, R2, R3, R4, R5, R6, F0, F1

212 VR0DN PROCEDURE NO F0, F1

213 VR0DNP PROCEDURE NO F0, F1

214 VR0SN PROCEDURE NO F0, F1

215 VR0SNP PROCEDURE NO F0, F1

216 VR1DN PROCEDURE NO F0, F1

217 VR1DNP PROCEDURE NO F0, F1

218 VR1SN PROCEDURE NO F0, F1

219 VR1SNP PROCEDURE NO F0, F1

220 VR1TN PROCEDURE NO F0, F1

221 VR1TNP PROCEDURE NO F0, F1

222 VR1WN PROCEDURE NO F0, F1

223 VR1WNP PROCEDURE NO F0, F1

224 VV0DN INTRINSIC NO R1, R4, R5, F0, F1

225 VV0DNP INTRINSIC NO R1, R4, R5, R7, F0, F1

226 VV0SN INTRINSIC NO R1, R4, R5, F0

227 VV0SNP INTRINSIC NO R1, R4, R5, R7, F0, F1

228 VV1DN INTRINSIC NO R1, R2, R4, R5, F0, F1

229 VV1DNP INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

230 VV1D3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3, F4, F5

231 VV1D3P INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

232 VV1SN INTRINSIC NO R1, R2, R4, R5, F0, F1

233 VV1SNP INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

234 VV1S3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3, F4, F5

235 VV1S3P INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

236 VV1TN INTRINSIC NO R1, R2, R4, R5, F0, F1

237 VV1TNP INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

238 VV1T3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3, F4, F5

239 VV1T3P INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

240 VV1WN INTRINSIC NO R1, R2, R4, R5, F0, F1

241 VV1WNP INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

242 VV1W3 INTRINSIC NO R1, R2, R4, F0, F1

243 VV1W3P INTRINSIC NO R1, R2, R4, R5, R6, R7, F0, F1

244 VV10DN PROCEDURE NO F0, F1, F2, F3, F4, F5

245 VV10D3 PROCEDURE NO F0, F1, F2, F3, F4, F5

246 VV10SN PROCEDURE NO F0, F1, F2, F3, F4, F5

247 VV10S3 PROCEDURE NO F0, F1, F2, F3, F4, F5

248 VV2DN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

249 VV2D3 INTRINSIC NO R1, R2, R3, R4, F0, F1, F2, F3, F4, F5

250 VV2SN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

251 VV2S3 INTRINSIC NO R1, R2, R3, R4, F0, F1, F2, F3, F4, F5

252 VV3DN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

253 VV3D3 INTRINSIC NO R1, R2, R3, R4, F0, F1

254 VV3SN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

255 VV3S3 INTRINSIC NO R1, R2, R3, R4, F0, F1, F2, F3, F4, F5

256 VV4DN INTRINSIC NO R1, R2, R4, R5, F0, F1, F2, F3

257 VV4D3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3
6-7 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.2.5 Referencing Conventions
6.2.5.1 CSECT Names.
In order to comply with the CSECT naming standards described in the HAL/SDL ICD,
all library code CSECTs begin with two alphabetic characters (A-Z)1. All library primary
names and aliases are unique to 6 characters.
Whenever a data CSECT is needed for a particular library module, it is given the
CSECT name #Lnnnnnn, where nnnnnn is the first 6 characters of the primary entry
name.
6.2.5.2 ZCONs.
For each primary entry point and alternate entry point in the runtime library, a member
exists in a separate ZCON library. The members in the ZCON library contain address
constants which refer to the actual entry points. Thus, for the library routine named SIN
which has an entry point named COS, there are two members in the ZCON library
named #QSIN and #QCOS. These #Q modules contain references to the respective
entry points. The individual ZCONs in the ZCON library are created by assembly code
like the following:

ROUTINE CALL TYPE BANK0 REGISTERS ASSUMED TO BE MODIFIED

258 VV4SN INTRINSIC NO R1, R2, R4, R5, F0, F1, F2, F3

259 VV4S3 INTRINSIC NO R1, R2, R4, F0, F1 F2, F3

260 VV5DN INTRINSIC NO R1, R2, R4, R5, F0, F1, F2, F3, F4, F5, F6,F7

261 VV5D3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3, F4, F5, F6,F7

262 VV5SN INTRINSIC NO R1, R2, R4, R5, F0, F1, F2, F3

263 VV5S3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3

264 VV6DN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1, F2, F3

265 VV6D3 INTRINSIC NO R2, R3, R4, F0, F1, F2, F3

266 VV6SN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1, F2, F3

267 VV6S3 INTRINSIC NO R2, R3, R4, F0, F1, F2, F3

268 VV7DN INTRINSIC NO R1, R2, R4, R5, F0, F1

269 VV7D3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3, F4, F5

270 VV7SN INTRINSIC NO R1, R2, R4, R5, F0, F1

271 VV7S3 INTRINSIC NO R1, R2, R4, F0, F1, F2, F3, F4, F5

272 VV8DN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

273 VV8D3 INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

274 VV8SN INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

275 VV8S3 INTRINSIC NO R1, R2, R3, R4, R5, F0, F1

276 VV9DN PROCEDURE NO F0, F1, F2, F3, F4, F5

277 VV9D3 PROCEDURE NO F0, F1, F2, F3, F4, F5

278 VV9SN PROCEDURE NO F0, F1, F2, F3, F4, F5

279 VV9S3 PROCEDURE NO F0, F1, F2, F3

280 VX6D3 INTRINSIC NO R1, R2, R3, R4, F0, F1, F2, F3, F4, F4

281 VX6S3 INTRINSIC NO R1, R2, R3, R4, F0, F1, F2, F3

282 XTOC INTRINSIC NO R1, R2, R3, R4, R5, R6, R7, F0, F1

1. Sector 0 routines are an exception: their CSECT names begin with #0. This is to conform to link editor conventions
for routines which must reside in sector 0. Sector 0 routines are identified in the list in Section 6.2.4.3 and in the
boxed area of the individual library routine description.
6-8 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 #QSIN CSECT
 DC Z(SIN,,X'E')
 EXTRN SIN
 END

Some library routines make reference to other library routines via the ACALL macro
(see Section 6.2.7). The ACALL macro references a library routine via a ZCON as is
done when compiler-emitted code references a library routine.

6.2.6 Coding Structure
The following outline represents the standard coding structure of all library members.

6.2.7 The Macro Library
To standardize interface conventions, automate production of commonly used code
sequences, and impose a structure to the runtime library, a series of macros are used.
This section describes the function, use, and expansion of these macros. Lower case
letters are used to indicate variable fields. Square brackets [] indicate optional fields,
braces { } indicate a choice of required fields.
AMAIN

Function:
Defines "name" as the primary entry point of a routine.
INTSIC=YES:
Defines the routine (and any entry points) as an intrinsic. If the INTSIC operand is
omitted, the routine is defined as a procedure.

1 TITLE
2 WORKAREA macro definition used only if additional stack storage was needed
3 AMAIN
4 * Comment card describing the function of the primary entry point
5 INPUT
6 OUTPUT
7 Body of executable code including use of WORK, AERROR, AEXIT macros where

needed and alternate entry points defined using the AENTRY macro, function
comment card, and INPUT and OUTPUT macros in the same manner as the
primary entry point.

8 DC constant area addressed via PC relative mode
9 ADATA, followed by a DC constant area addressed via base and displacement

mode. Used only if constants need to be indexed.
10 ACLOSE

 name AMAIN INTSIC = YES
 INTERNAL

ACALL = YES
SECTOR = 0
6-9 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
INTSIC=INTERNAL:
Defines an intrinsic which is called only by other routines in the library. At present, this
is only GTBYTE and STBYTE.
ACALL=YES:
(Valid only for procedure routines) Allows use of the ACALL macro within the routine
(See ACALL description).
SECTOR=0:
Defines the routine (intrinsic or procedure) as a Sector 0 routine.
Expansion:
The macro first defines the primary entry "name" (the AMAIN label) as the CSECT
name, unless SECTOR=0 was specified. In the latter case, the CSECT name is
generated by prefixing "name" with #0, and the primary entry "name" is defined using
the DS and ENTRY statements. The options selected via the AMAIN operands are
saved in global SETB variables for testing by the other macros. If either INTSIC option
was selected, the macro ends. Otherwise, a procedure is being defined, so the STACK
DSECT is generated.
The STACK DSECT consists of a standard 18 halfword area, including symbols for the
saved copies of the fixed point register parameters (ARG2, ARG4, ARG5, ARG6,
ARG7), followed by the WORKAREA macro. The WORKAREA macro is the means by
which additional storage beyond the standard stack of 18 halfwords may be defined. If
such storage is needed a local WORKAREA macro must have been defined earlier in
the source which contains the appropriate DS assembler statements. These
statements are thus incorporated as the remainder of the STACK DSECT. If additional
storage is not needed, the local WORKAREA macro is not defined. As a result, the
system WORKAREA macro is invoked, which does not define any storage, leaving the
STACK DSECT at its standard length. The system WORKAREA macro also sets a
global SETB variable, which is tested later by the AMAIN macro to determine if the
stack is standard or augmented. The STACK DSECT is then terminated by resuming
the original CSECT. The STACK DSECT is defined in this sequence so that the
assembler will output the SYM records in the order expected by the link editor's stack
size algorithm. A USING statement is generated to give addressability to the stack
area. Finally, the executable code of the entry prologue is generated. For PASS, this
consists of an NIST instruction to zero the 10th halfword of the new stack frame,
establishing a null ON ERROR environment. The Backup Operating System (BOS)
does not require NIST, therefore, BFS does not use NIST. In addition, if both
ACALL=YES is specified and a local WORKAREA provided, the default stack size of 18
set up by the SCAL microcode will be insufficient, so an IAL to set up the new stack size
is generated.
6-10 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
AENTRY
name AENTRY

Function:
Defines "name" as a secondary entry point.
Expansion:
"name" is externally defined using the DS and ENTRY statements. If the routine was
defined as an intrinsic, the macro ends. Otherwise, the executable code of the entry
prologue is generated in the same manner as the AMAIN macro.
AEXIT

Function:
Cause return of control from a procedure or intrinsic routine.
CC:
Used to pass a condition code back to the caller. It can be used only if OUTPUT CC
was specified (See OUTPUT macro).
Valid for Intrinsics Only:
CC=KEEP:
Passes back the condition code as is.
CC=(rx):
Passes back the condition code generated by a LR rx, rx.
Valid for Procedures Only:
CC=EQ:
Passes back an equal (B’00’) condition code.
CC=NE:
Passes back a not equal (B‘11’) condition code.
Note: The CC= operand is used in the following 8 routines:
 CPR, CPRA, CSTR, CSTRUCT, VV8DN, VV8D3, VV8SN, and VV8S3.

COND=code:
Used to do a conditional return, i.e. based on the current condition code. Valid for
procedures only. "Code" is either a number used as the mask on a BC opcode, or a
letter or letter pair representing the mask in the extended BC mnemonic op codes (E, Z,
NE, NZ, H, O, L, M, HE, LE, NL, NM, NH, NO). This operand may be used to improve
the efficiency of some routines. If used, be sure valid executable code follows it, so the
fall through case is valid.

 KEEP
name AEXIT CC = (rx)
 EQ
 NE
 COND = code
6-11 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Expansion:
The code generated by the AEXIT macro depends primarily on whether the routine is
an intrinsic or procedure, and secondarily on what operands were supplied, and, in the
case of intrinsics, what fixed point registers were used. The expansions for intrinsics
and procedures are described separately.
Intrinsics:
If register(s) R1 and/or R3 have been defined (see INPUT, OUTPUT, and WORK
macros), it is assumed they have been modified and must be restored from the stack,
since they are the addressing registers for compiled code. This is done via the
appropriate LH instruction(s), or IHL and SLL instructions if CC=KEEP was specified,
since LH would destroy the existing condition code. If CC=(rx) was specified, a LR rx,rx
is generated to set the condition code. Finally, a BCRE or BCR is generated to cause a
return to the caller. A BCR is generated if SECTOR=0 or INTSIC=INTERNAL was
specified on the AMAIN macro.
Procedures:
If CC=EQ or CC=NE was specified, the condition code bits in the return PSW in the
stack are zeroed or set via the ZB or SB instruction. Then, an SRET instruction is
generated with a mask of 7 if the COND operand was omitted or the appropriate mask
if it was supplied.
I2DEDR
name I2DEDR dpscalar1, dpscalar2, dpscalar3, dpscalar4
Function:
I2DEDR was substituted for DEDR in DMOD in order to avoid incorrect results caused
by some inputs. See CR11164 and DR106660.
IBMCEDR
name IBMCEDR dpscalar1, dpscalar2
Function:
IBMCEDR was substituted for CEDR in DMDVAL and DMOD in order to avoid incorrect
results caused by an incorrectly set condition code. See CR11163 and DR106644.
INPUT
 ⎧register spec type comments⎫
 INPUT ⎨NONE ⎬
 ⎩ ⎭

Function:
Defines input interface of primary or alternate entry point and symbolic names for the
register(s).
Register Spec:
One of R1, R2, R3, R4, R5, R6, R7, F0, F1, F2, F3, F4, F5, F6, or F7. If there is no
input (RANDOM, RANDG only), code NONE. If there is more than one, use
continuation lines for each subsequent one (see examples).
6-12 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Type Comments:
 type precision units
 SCALAR SINGLE/DOUBLE RADIANS
 MATRIX(3,3)
 MATRIX(N,N)
 VECTOR(3)
 VECTOR(N)
 INTEGER(N)
 CHARACTER

Examples:
 col. 16 col. 72
 ↓ ↓
 (1) INPUT F0 SCALAR SINGLE RADIANS X
 (2) INPUT R2, VECTOR(N) DOUBLE X
 R3, VECTOR(N) DOUBLE X
 R5 INTEGER(N) SINGLE

Expansion:
For each register spec supplied, the macro checks for a valid register symbolic, or for
the special case of NONE. If the symbolic register name has not been previously
defined, an EQU statement is generated to define it. The macro also tests for the illegal
use of R1 or R3 for a procedure parameter and R4 for an intrinsic. A global arrayed
SETB variable is set, which in conjunction with the AMAIN, AENTRY, and ACLOSE
macros, will guarantee that an INPUT macro has been supplied for each entry point
(see ACLOSE macro).
OUTPUT

 ⎧register spec type comments⎫
OUTPUT ⎨NONE ⎬
 ⎩CC ⎭

Function:
Defines output interface of primary or alternate entry point.
Operand form is identical to that of INPUT macro, with the addition of CC as a
possibility. This indicates that the condition code is the output of the routine. If CC is
specified, the CC= option of the AEXIT macro must be used.
Expansion:
Same as for INPUT macro, except for special processing for the CC operand. If CC is
supplied, a global SETB variable is set which is tested by the AEXIT macro for
consistency with its CC operand.

Note: R1 and R3 are illegal inputs for procedure routines and R4 is illegal for
intrinsic routines.
6-13 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
WORK
WORK {register spec}
Function:
Defines work registers.
Expansion:
Similar to INPUT and OUTPUT, except that this macro is required only if additional
register symbols need to be defined.
ABAL
ABAL name
Function:
Calls the intrinsic routine "name", valid only in a procedure routine.
Expansion:
When the runtime library routine that uses ABAL is compiled and the routine "name" is
in sector 0 then ABAL generates a BAL 4, name. If the routine "name" is not in sector
0, then ABAL generates object code to call the intrinsic routine "name" indirectly. An
EXTRN statement is also generated if "name" has not been previously defined.
ACALL
ACALL name
Function:
Calls the procedure routine "name", valid only in a procedure routine defined with
ACALL=YES option.
Expansion:
ACALL generates object code to call the procedure routine "name" indirectly. An
EXTRN statement is also generated if "name" has not been previously defined.
AERROR
AERROR number cause comment
Function:
Generates a send error SVC instruction to signal a run time error to the FCOS.
Number:
The error number.
Cause Comment:
Brief description of the cause of the error.
6-14 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Expansion:
This macro accumulates, in GBLA variables, all errors sent within one assembly. It also
checks to see that the error number indicates as an argument to AERROR is less than
a maximum value. The actual code emitted is an SVC in which the operand is the label
of an SVC parameter list to be emitted by the ADATA or ACLOSE macro via the
ERRPARMS macro. If any error is sent more than once in an assembly, AERROR
insures that only one SVC parameter list for that error is used.
ADATA
Function:
Defines the start of a separate data CSECT for indexable constant data.
Expansion:
A CSECT is created with the name #Lnnnnnn where nnnnnn is the first 6 characters of
the primary CSECT name defined by the AMAIN macro. The ADATA macro ends
leaving the data CSECT in effect so that any user-defined data following the macro call
will be part of the data CSECT. The ERRPARMS macro is invoked so that any possible
AERROR SVC parameter lists will appear before the indexed data. This is necessary
so that the assembler will use the direct addressing mode instead of base and
displacement.
ACLOSE
ACLOSE
Function:
Terminates the assembly.
Expansion:
The macro first invokes the ERRPARMS macro to create the AERROR SVC parameter
lists. (See ERRPARMS macro). It then checks via arrayed global SETB variables if
INPUT and OUTPUT macros were supplied for each entry point. Finally, it generates
an END assembler statement, terminating the assembly.
ERRPARMS
ERRPARMS
Function:
Generates SVC parameter lists for the AERROR macro.
Expansion:
This macro is invoked by the ADATA and ACLOSE macro. It first tests a global SETB
variable to see if it has already been invoked, in which case the macro does nothing.
Otherwise, it generates a CSECT statement to define the data CSECT (FCOS
parameter lists must reside in the data sector). The CSECT name is #Lname, where
"name" is the primary entry name. The parameter lists are generated by looping
through arrayed global SETA variables in which the AERROR macro saved the unique
error numbers. ERRPARMS is invoked by the ADATA macro because the parameter
lists must be before any indexed data following the optional ADATA macro. It is invoked
by the ACLOSE macro in case the ADATA macro is not used.
6-15 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
WORKAREA
WORKAREA
Function:
An automatically invoked, user-created macro used to define extensions of the stack
area for temporary reentrant storage. The WORKAREA macro is invoked by the
AMAIN macro in procedure routines. A system supplied default is invoked in the
absence of a user-created macro.
Expansion:
The system WORKAREA macro merely sets a global SETB variable which is tested by
the AMAIN macro to determine whether the system or user macro is being expanded.

6.2.8 Precision Requirements
Single precision runtime library routines are required to return results that are accurate
to 6 significant decimal digits. Double precision routines are required to return results
that are accurate to 8 significant decimal digits.
Exceptions to this requirement are documented in the "Comments" section of the
appropriate runtime library routine descriptions (Chapter 6.3).

6.2.9 Usage Restrictions
Several runtime library routines are not currently used by PASS or BFS FSW.
Therefore, SSCR 11053 (Restrict Runtime Library Use) was written to require the
compiler to prohibit access by the user to these routines. A mechanism for prohibiting
access shall be implemented so that a new compiler release is not required should the
set of supported routines change.

An asterisk (*) in the VERIFIED column indicates a routine that has been verified but its
usage is still restricted by the compiler with an XS3 warning message. The routine will
be unrestricted in a future compiler release.

Some of the routines are secondary entry points within another routine. These are
identifiable in the table below by giving the primary entry point's name in the "Alias Of"
column.

Since June 1989, the RTL routines identified as Unverified have not been audited for
flight issues. Therefore, if these routines are ever used by the FSW, they should be
audited to prevent possible FSW execution errors.

NOTE: Listings of the members of the MACRO library have been deleted from
this document.
6-16 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
ACOS YES
ACOSH NO
ASIN ACOS YES
ASINH NO
ATAN EATAN2 YES
ATANH NO
BIN HIN NO
BOUT IOINIT NO
BTOC NO
CAS CASV YES
CASP CASPV NO
CASPV YES
CASR CASRV YES
CASRP CASRPV NO
CASRPV NO
CASRV NO
CASV YES
CAT CATV NO
CATV YES
CEIL ROUND YES
CIN NO
CINDEX NO
CINP NO
CLJSTV NO
COLUMN IOINIT NO
COS SNCS YES
COSH SINH NO
COUT COUTP NO
COUTP NO
CPAS YES
CPASP YES
CPASR NO
CPASRP NO
CPR YES
CPRA NO
CPRC CPR NO
CPSLD CSLD NO
CPSLDP CSLD NO
CPSST CSLD NO
6-17 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
CPSSTP CSLD NO
CRJSTV NO
CSHAPQ NO
CSLD NO
CSLDP CSLD NO
CSST CSLD NO
CSSTP CSLD NO
CSTR NO
CSTRUC YES
CTOB NO
CTOD CTOE NO
CTOE NO
CTOH CTOI NO
CTOI NO
CTOK CTOI NO
CTOO CTOX NO
CTOX NO
CTRIMV NO
DACOS YES
DACOSH NO
DASIN DACOS YES
DASINH NO
DATAN DATAN2 YES
DATAN2 YES
DATANH NO
DCEIL ROUND YES
DCOS DSNCS YES
DCOSH DSINH NO
DEXP YES
DFLOOR ROUND YES
DIN HIN NO
DLOG YES
DMAX NO
DMDVAL YES
DMIN NO
DMOD YES
DOUT IOINIT NO
DPROD NO
DPWRD YES
6-18 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
DPWRH DPWRI YES
DPWRI NO
DROUND ROUND YES
DSIN DSNCS YES
DSINH NO
DSLD NO
DSNCS YES
DSQRT YES
DSST NO
DSUM NO
DTAN YES
DTANH NO
DTOC ETOC NO
DTOH ETOH YES
DTOI ROUND YES
DTRUNC ROUND YES
EATAN2 YES
EIN HIN NO
EMAX YES
EMIN YES
EMOD YES
EOUT IOINIT NO
EPROD NO
EPWRE YES
EPWRH EPWRI YES
EPWRI NO
ESUM NO
ETOC NO
ETOH YES
ETOI ROUND YES
EXP YES
FLOOR ROUND NO
GTBYTE YES
HIN NO
HMAX YES
HMIN YES
HMOD IMOD YES
HOUT IOINIT NO
HPROD NO
6-19 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
HPWRH IPWRI NO
HREM IREM YES
HSUM YES
HTOC ITOC YES
IIN HIN NO
IMAX NO
IMIN NO
IMOD YES
INTRAP IOINIT NO
IOINIT NO
IOUT IOINIT NO
IPROD NO
IPWRH IPWRI NO
IPWRI NO
IREM YES
ISUM NO
ITOC NO
ITOD YES
ITOE YES
KTOC NO
LINE IOINIT NO
LOG YES
MM0DNP YES
MM0SNP NO
MM11D3 YES
MM11DN YES
MM11S3 YES
MM11SN NO
MM12D3 YES
MM12DN NO
MM12S3 NO
MM12SN NO
MM13D3 NO
MM13DN NO
MM13S3 YES
MM13SN NO
MM14D3 YES
MM14DN NO
MM14S3 NO
6-20 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
MM14SN NO
MM15DN YES
MM15SN NO
MM17D3 NO
MM17DN MM17D3 NO
MM17S3 NO
MM17SN MM17S3 NO
MM1DNP YES
MM1SNP NO
MM1TNP NO
MM1WNP NO
MM6D3 YES
MM6DN YES
MM6S3 YES
MM6SN NO
MMRDNP NO
MMRSNP NO
MMWDNP NO
MMWSNP NO
MR0DNP NO
MR0SNP NO
MR1DNP NO
MR1SNP NO
MR1TNP NO
MR1WNP NO
MSTR YES
MV6D3 YES
MV6DN YES
MV6S3 YES
MV6SN NO
OTOC XTOC NO
OUTER1 IOINIT NO
PAGE IOINIT NO
QSHAPQ NO
RANDG RANDOM NO
RANDOM NO
ROUND YES
SIN SNCS YES
SINH NO
6-21 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
SKIP IOINIT NO
SNCS YES
SQRT YES
STBYTE YES
TAB IOINIT NO
TAN YES
TANH NO
TRUNC ROUND YES
VM6D3 YES
VM6DN YES
VM6S3 YES
VM6SN NO
VO6D3 YES
VO6DN YES
VO6S3 YES
VO6SN NO
VR0DN NO
VR0DNP NO
VR0SN NO
VR0SNP NO
VR1DN NO
VR1DNP NO
VR1SN YES
VR1SNP NO
VR1TN NO
VR1TNP NO
VR1WN NO
VR1WNP NO
VV0DN YES
VV0DNP YES
VV0SN YES
VV0SNP NO
VV10D3 YES
VV10DN VV10D3 NO
VV10S3 YES
VV10SN VV10S3 NO
VV1D3 YES
VV1D3P YES
VV1DN YES
6-22 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
VV1DNP VV1D3P YES
VV1S3 YES
VV1S3P YES
VV1SN YES
VV1SNP VV1S3P NO
VV1T3 YES
VV1T3P YES
VV1TN YES
VV1TNP VV1T3P NO
VV1W3 YES
VV1W3P NO
VV1WN YES
VV1WNP VV1W3P NO
VV2D3 YES
VV2DN NO
VV2S3 YES
VV2SN NO
VV3D3 YES
VV3DN YES
VV3S3 YES
VV3SN NO
VV4D3 YES
VV4DN YES
VV4S3 YES
VV4SN NO
VV5D3 YES
VV5DN NO
VV5S3 YES
VV5SN NO
VV6D3 YES
VV6DN YES
VV6S3 YES
VV6SN YES
VV7D3 YES
VV7DN NO
VV7S3 YES
VV7SN NO
VV8D3 NO
VV8DN VV8D3 NO
6-23 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3 Library Routine Descriptions
This section contains descriptive material for all routines in the HAL/S-FC runtime
library. The routines have been grouped into seven categories. The routines within
each category are described in one sub section as follows:

This documentation is based upon the "load module" as a basic unit. A load module is
the entity created by a single invocation of the AP-101 linkage editor. It has a primary
member name and may have up to 16 alias names. The primary and alias names
indicate entry points to the module.

For each load module in the runtime library, an LRD form will be found in the
succeeding sections. The basic LRD form is shown in Figure 6-1. The circled numbers
in the figure are explained below.

MEMBER NAME ALIAS OF VERIFIED
VV8S3 YES
VV8SN VV8S3 NO
VV9D3 VV10D3 YES
VV9DN VV10D3 NO
VV9S3 YES
VV9SN VV10S3 YES
VX6D3 YES
VX6S3 YES
XTOC NO

6.3.1 Arithmetic
6.3.2 Algebraic
6.3.3 Vector/Matrix
6.3.4 Character
6.3.5 Array Functions
6.3.6 Miscellaneous
6.3.7 Remote Operations

 - The boxed area of the form (- below) contains information relating to
qualities and attributes of the load module apart from any of its entry points.

 - In the upper right portion of every routine or entry point description, the
name of the primary entry point will be seen. This serves as a quick
reference aid in locating the documentation for a load module.

 - Source Member Name - The name of the member in the assembler
language source PDS of the library. This name is always the same as the
primary entry point name.

0 1 7

1

2

6-24 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 - Size of Code Area - Each library module contains one code CSECT,
regardless of the number of entry points. This number is the count of
halfwords of code that would be used if the module were loaded. A module
will be loaded if any one of its entry points is referenced.

 - Stack requirement - If a module is not an intrinsic (see ±), it will have a
requirement for runtime stack space. The minimum required will be one
standard stack frame (18 Hw). The number listed on the form indicates the
module's total stack requirement. If the module is an intrinsic, zero will be
indicated. Individual entry points in one module cannot have different stack
requirements. Therefore, the stack requirement is an attribute of the
module.

 - Data CSECT size - If the module contains a #L CSECT, its size is indicated.
Otherwise, a zero is indicated. This number shows the number of halfwords
of data area that will be used if the module is loaded.

 - Intrinsic/Procedure - The appropriate box is marked. Entry points in a
module are either all intrinsic or all procedure, hence this is a quality of the
module. Sector 0 routines are noted here.

 - Other modules referenced - A list of other load modules referenced in
EXTRN statements by this load module. If this module is loaded, the
indicated modules will also be loaded.

 - Entry point descriptions - Following the aggregate attributes of the module in
0-7 above, the descriptions of specific entry points follow.

 - Primary Entry Name - The name of the code CSECT in the module and the
primary entry for the module in the library load module PDS.

 - Function - A brief prose description of what this entry point does.

 - Invoked By - Entry points may be referenced directly from compiler-emitted
code, from other library modules, or both. The appropriate boxes are
marked. If the upper box is marked, an example of a HAL/S construct which
results in reference to the entry point is shown. If the lower box is marked,
the names of other modules which refer to this entry point are listed. If any
of the other modules listed here are loaded, this module will also be brought
in.

 - Execution Time - The time, in microseconds, needed to perform this entry
point's function. These times are obtained from examinations of trace
listings of simulations of the execution of the particular library routine or
entry point on Version 11.3 of the GPC simulator in detailed timing mode.
Times include times for referenced routines unless specifically stated.

3

4

5

6

7

8

9

10

11

12
6-25 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
In addition to the basic LRD form of Figure 6-1, which documents module attributes and
the primary entry point, an extension LRD form is used to document additional alias
entry points within a module. The extension LRD is shown in Figure 6-2. The circled
numbers are explained below:

 - Input Arguments - The data that the entry point receives as input is listed.
"Type" indicates the nature of the data (integer, scalar, etc.). "Precision",
where applicable, is generally SP for single precision and DP for double
precision. "How Passed" indicates the method of communication of the
data. In the case of DP scalar arguments, this field may indicate the first
floating point register of an even/odd pair. "Units", when applicable,
specifies the units presumed for an argument.

 - Output Results - The data that is considered the "answer" from the entry
point. The fields are used in the same way as in .

 - Errors Detected - If invocation of this entry point can result in a Send Error
SVC being executed, the error #, cause, and standard fixup for all such
errors are indicated.

 - Comments - Any special behavior of this entry point or notes to users are
entered here.

 - Algorithm - The steps taken by the entry point to produce its results are
shown. When appropriate, references are made to other entry point
descriptions for further documentation.

 - The primary entry name of the module is displayed. This is the same name
as is displayed in the basic LRD form to which this extension form is
appended.

 - Secondary Entry Name - The name of the secondary entry point being
documented.

 - The remainder of the extension form is identical to the primary entry point
description entries through , and describe the function and interface to
this entry.

13

14
13

15

16

17

18

1

19

20

10 17
6-26 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 ENTRY POINT DESCRIPTIONS
 Primary Entry Name:

 Function:

 Invoked By:

 Execution time (microseconds):

 Input Arguments:

 Output Results:

 Errors Detected:

 Comments:
 Algorithm:

Figure 6-1 Basic LRD Form

HAL/S-FC LIBRARY ROUTINE DESCRIPTION
Source Member Name: _______ Size of Code Area: Hw
Stack Requirement: Hw Data CSECT Size: Hw

Intrinsic Procedure
Other Library Modules Referenced:

Compiler emitted code for HAL/S construct of the form:

Other Library Modules:

Type Precision How Passed Units

Type Precision How Passed Units

Error # Cause Fixup

0

1

2 3

4 5

6

7

8

9

10

11

12

13

14

15

16

17
6-27 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 Secondary Entry Name

 Function:

Invoked By:

Input Arguments:

Output Results:

Errors Detected:

Comments:

Algorithm:

Figure 6-2 Extension LRD Form

Compiler emitted code for HAL/S construct of the form:

Other Library Modules

Type Precision How Passed Units

Type Precision How Passed Units

Error # Cause Fixup

18

19

20
6-28 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
The following table shows the routines which are assigned to each group. The table
contains a list of primary and secondary entry points with each secondary indented
under its primary entry. With each primary entry point, basic descriptive information is
shown along with the sizes of the CSECTs in the module and the module's stack
requirement. A final entry shows the timing information for the entry point. Secondary
entry points have only the descriptive information and the timing for the entry. In cases
where the timing information is too involved to be listed in the space available, the
notice "See LRD" indicates that the detailed write-up of the module (on an LRD form in
the proper subsection) should be referenced. In all cases, information in the table is
taken from the LRDs and further details on the routines' performance can be found in
those detailed descriptions.

ARITHMETIC ROUTINES (Section 6.3.1)
ENTRY FUNCTION PREC. CODE DATA STACK TIME Page
DMDVAL MIDVAL(D,D,D) D 20 0 18 41.4 6-36
DMOD MOD(D,D) D 152 4 0 74.6 6-38
EMOD MOD(S,S) S 52 4 0 46.6 6-40
IMOD MOD(I,I) I 20 2 0 29.4 6-41
 HMOD MOD(H,H) H 29.4 6-42
IREM REMAINDER(I,I) I 14 2 0 27.0 6-43
 HREM REMAINDER(H,H) H 27.0 6-44
ROUND ROUND(S) I 84 2 0 39.0 6-45
 CEIL CEILING(S) I See LRD 6-46
 DCEIL CEILING(D) I See LRD 6-47
 DFLOOR FLOOR(D) I See LRD 6-48
 DROUND ROUND(D) I 33.8 6-49
 DTOI D →I I 33.8 6-50
 DTRUNC TRUNCATE(D) I 28.6 6-51
 ETOI S →I I 39.0 6-52
 FLOOR FLOOR(S) I See LRD 6-52
 TRUNC TRUNCATE(S) I 31.4 6-53
6-29 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ALGEBRAIC ROUTINES (Section 6.3.2)
ENTRY FUNCTION PREC. CODE DATA STACK TIME Page
ACOS ARCCOS(S) S 102 2 24 See LRD 6-54
 ASIN ARCSIN(S) S See LRD 6-55
ACOSH ARCCOSH(S) S 36 2 20 See LRD 6-57
ASINH ARCSINH(S) S 64 0 20 See LRD 6-58
ATANH ARCTANH(S) S 58 2 18 See LRD 6-59
DACOS ARCCOS(D) D 230 2 26 See LRD 6-60
 DASIN ARCSIN(D) D See LRD 6-61
DACOSH ARCCOSH(D) D 50 2 22 See LRD 6-63
DASINH ARCSINH(D) D 94 0 22 See LRD 6-64
DATANH ARCTANH(D) D 132 2 26 See LRD 6-65
DATAN2 ARCTAN2(D,D) D 194 26 18 248.4 6-66
 DATAN ARCTAN(D) D 237.3 6-68
DEXP EXP(D) D 154 66 18 290.5 6-69
DLOG LOG(D) D 184 2 30 282.2 6-71
DPWRD D**D D 40 4 22 See LRD 6-73
DPWRI D**I D 40 2 18 See LRD 6-74
 DPWRH D**H D See LRD 6-76
DSINH SINH(D) D 130 2 22 See LRD 6-77
 DCOSH COSH(D) D 422.6 6-79
DSNCS S**I D 54 2 26 See LRD 6-80
 DCOS COS(D) D 261.8-264.2 6-83
 DSIN SIN(D) D 102 62 20 267.0 6-84
DSQRT SQRT(D) D 70 2 26 345.2 6-85
DTAN TAN(D) D 196 4 38 302.2 6-88
DTANH TANH(D) D 94 0 22 See LRD 6-91
EATAN2 ARCTAN2(S,S) S 132 10 18 120.0 6-93
 ATAN ARCTAN(S) S 116.5 6-96
EPWRE S**S S 32 4 22 See LRD 6-97
EPWRI S**I S 38 2 18 See LRD 6-98
 EPWRH S**H S See LRD 6-100
EXP EXP(S) S 108 2 18 141.8 6-101
IPWRI I**I I 46 2 18 See LRD 6-103
 HPWRH H**H H See LRD 6-106
 IPWRH I**H I See LRD 6-105
LOG LOG(S) S 90 2 18 140.5 6-107
SINH SINH(S) S 80 2 18 See LRD 6-109
 COSH COSH(S) S 228.9 6-111
SNCS SIN(S),COS(S) S 122 28 0 See LRD 6-112
 COS COS(S) S 122.1-123.1 6-115
 SIN SIN(S) S 70 30 0 123.6-124.5 6-116
SQRT SQRT(S) S 48 14 0 88.3 6-117
TAN TAN(S) S 112 4 20 164.0 6-119
TANH TANH(S) S 56 0 18 See LRD 6-121
6-30 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VECTOR/MATRIX ROUTINES (Section 6.3.3)
ENTRY FUNCTION SIZE PREC CODE DATA STACK TIME PAGE
MM0DNP Scalar to Partitioned Matrix Move n,m D 12 0 0 6.8+n(4.0+8.0m) 6-122
MM0SNP " n,m S 10 0 0 6.4+n(4.4+6.4m) 6-124
MM1DNP Partitioned Matrix Move n,m D 18 0 0 10.8+n(5.4+12.2m) 6-125
MM1SNP " n,m S 16 0 0 10.8+n(5.4+9.4m) 6-127
MM1TNP " n,m D-S 16 0 0 10.4+n(5.8+10.6) 6-129
MM1WNP " n,m S-D 18 0 0 13.6+n(5.0+11.0m) 6-131
MM6DN Matrix Multiply (m,n),(n,λ) D 42 0 0 22.2+m(10.8+λ(21.2+27.n)) 6-133
MM6D3 " (3,3),(3,3) D 32 0 0 671.6 6-134
MM6SN " (m,n),(n,λ) S 40 0 0 22.2+m(10.8+λ(20.2+18.0n)) 6-135
MM6S3 " (3,3),(3,3) S 24 0 0 409.6 6-136
MM11DN Matrix Transpose n,m D 16 0 0 8.0+m(5.8+12.2n) 6-137
MM11D3 " 3,3 D 22 0 0 93.6 6-138
MM11SN " m,n S 16 0 0 8.4+m(5.8+9.4n) 6-139
MM11S3 " 3,3 S 18 0 0 71.8 6-140
MM12DN Matrix Determinant n,n D 150 0 22 See LRD 6-141
MM12D3 " 3,3 D 44 0 18 229.6 6-143
MM12SN " n,n S 138 0 20 See LRD 6-144
MM12S3 " 3,3 S 26 0 18 116.0 6-146
MM13DN Matrix Trace n,n D 10 0 0 12.0+10.2n 6-147
MM13D3 " 3,3 D 8 0 0 19.8 6-148
MM13SN " n,n S 8 0 0 8.8+6.2n 6-149
MM13S3 " 3,3 S 4 0 0 9.8 6-150
MM14DN Matrix Inverse n,n D 258 2 20 63.0+129.5n+43.0n2+65.4n3 6-151
MM14D3 " 3,3 D 128 2 18 795.4 6-152
MM14SN " n,n S 242 2 20 52.0+39.2n+10.5n2+54.6n3 6-153
MM14S3 " 3,3 S 80 2 18 458.8 6-155
MM15DN Identity Matrix n,n D 18 0 0 15.6+5.0n+11.2n2 6-156
MM15SN " n,n S 14 0 0 10.0+5.2n+9.6n2 6-157
MM17D3 Matrix to a Power 3,3 D 86 0 20 See LRD 6-158
MM17DN " n,n D See LRD 6-159
MM17S3 " 3,3 S 78 0 20 See LRD 6-160
MM17SN " n,n S See LRD 6-161
MV6DN Matrix times Vector (m,n),n D 24 0 0 12.0+m(19.3+26.0n) 6-162
MV6D3 " (3,3),3 D 22 0 0 304.4 6-163
MV6SN " (m,n),n S 18 0 0 11.2+m(11.0+18.4n) 6-164
MV6S3 " (3,3),3 S 20 0 0 137.6 6-165
VM6DN Vector times Matrix n,(n,m) D 26 0 0 23.2+m(23.2+27.6n) 6-166
VM6D3 " 3,(3,3) D 24 0 0 227.8 6-167
VM6SN " n,(n,m) S 22 0 0 12.4+m(19.2+18.2n) 6-168
VM6S3 " 3,(3,3) S 16 0 0 141.2 6-169
VO6DN Vector Outer Product n,m D 20 0 0 12.8+n(5.8+24.4m) 6-170
VO6D3 " 3,3 D 22 0 0 251.0 6-171
VO6SN " n,m S 20 0 0 14.2+n(5.8+14.4m) 6-172
VO6S3 " 3,3 S 20 0 0 160.6 6-173
VV0DN Scalar to Vector Move n D 6 0 0 7.0+5.1n 6-174
VV0DNP Scalar to Column Vector Move n D 6 0 0 7.0+7.2n 6-175
VV0SN Scalar to Vector Move n S 6 0 0 7.0+5.6n 6-176
VV0SNP Scalar to Column Vector Move n S 6 0 0 7.0+6.0n 6-177
VV1DN Vector Move n D 8 0 0 4.2+10.2n 6-178
VV1D3 " 3 D 14 0 0 25.2 6-179
VV1D3P Column Vector Move 3 D 18 0 0 See LRD 6-180
VV1DNP " n D See LRD 6-181
6-31 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VECTOR/MATRIX ROUTINES (Section 6.3.3)
ENTRY FUNCTION SIZE PREC CODE DATA STACK TIME PAGE
VV1SN Vector Move n S 8 0 0 4.2+7.8n 6-182
VV1S3 " 3 S 8 0 0 16.8 6-183
VV1S3P Column Vector Move 3 S 14 0 0 See LRD 6-184
VV1SNP " n S See LRD 6-185
VV1TN Vector Move n D-S 8 0 0 4.2+9.0n 6-186
VV1T3 Vector Move 3 D-S 12 0 0 21.2 6-187
VV1T3P Column Vector Move 3 D-S 14 0 0 See LRD 6-188
VV1TNP " n D-S See LRD 6-189
VV1WN Vector Move n S-D 10 0 0 8.4+9.0n 6-190
VV1W3 " 3 S-D 12 0 0 23.8 6-191
VV1W3P Column Vector Move 3 S-D 18 0 0 See LRD 6-192
VV1WNP " n S-D See LRD 6-193
VV2DN Vector Add/Matrix Add n D 14 0 0 8.8+20.6n 6-194
VV2D3 Vector Add 3 D 22 22 0 51.4 6-195
VV2SN Vector Add/Matrix Add n S 10 0 0 8.2+13.6n 6-196
VV2S3 Vector Add 3 S 12 0 0 29.6 6-197
VV3DN Vector Subtract/Matrix Subtract n D 16 0 0 6.0+22.7n 6-198
VV3D3 Vector Subtract 3 D 24 0 0 55.4 6-199
VV3SN Vector Subtract/Matrix Subtract n S 10 0 0 8.4+13.6n 6-200
VV3S3 Vector Subtract 3 S 12 0 0 29.6 6-201
VV4DN Vector or Matrix Times Scalar n D 8 0 0 7.0+23.4n 6-202
VV4D3 Vector Times Scalar 3 D 18 0 0 68.4 6-203
VV4SN Vector or Matrix Times Scalar n S 8 0 0 7.0+14.0n 6-204
VV4S3 Vector Times Scalar 3 S 12 0 0 38.4 6-205
VV5DN Vector or Matrix Divided by Scalar n D 16 2 0 37.0+24.2n 6-206
VV5D3 Vector Divided by Scalar 3 D 26 2 0 98.4 6-207
VV5SN Vector or Matrix Divided by Scalar n S 14 2 0 7.2+18.0n 6-208
VV5S3 Vector Divided by Scalar 3 S 18 2 0 50.6 6-209
VV6DN Vector Dot Product n D 12 0 0 16.4+25.4n 6-210
VV6D3 " 3 D 16 0 0 71.8 6-211
VV6SN " n S 12 0 0 15.2+16.8n 6-212
VV6S3 " 3 S 10 0 0 41.8 6-213
VV7DN Vector or Matrix Negate n D 8 0 0 7.0+11.4n 6-214
VV7D3 Vector Negate 3 D 18 0 0 32.4 6-215
VV7SN Vector or Matrix Negate n S 8 0 0 7.0+9.0n 6-216
VV7S3 Vector Negate 3 S 12 0 0 23.4 6-217
VV8D3 Vector Compare 3 D See LRD 6-218
VV8DN Vector or Matrix Compare n D See LRD 6-219
VV8S3 Vector Compare 3 S 12 0 0 See LRD 6-220
VV8SN Vector or Matrix Compare n S See LRD 6-221
VV9S3 Vector Magnitude 3 D 168.3 6-222
VV10D3 Unit Vector 3 D 56 2 20 402.7 6-223
VV9DN Vector Magnitude n D 226.6+24.4n 6-225
VV9D3 " 3 D 300.2 6-224
VV10DN Unit Vector n D 259.7+47.8n 6-226
VV10S3 Unit Vector 3 S 50 2 24 236.4 6-227
VV9SN Vector Magnitude n S 118.9+14.0n 6-228
VV10SN Unit Vector n S 130.6+32.8n 6-229
VX6D3 Vector Cross Product 3 D 36 0 0 137.6 6-230
VX6S3 " 3 S 22 0 0 78.0 6-231
6-32 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CHARACTER ROUTINES (Section 6.3.4)
ENTRY FUNCTION CODE DATA STACK TIME PAG

E
CASPV Partitioned Assign to VAC 64 2 0 See LRD 6-232
CASP Partitioned Assign See LRD 6-234
CASV Assign to VAC 28 0 0 29.2(n=0) 6-235

See LRD
CAS Assign 32.0(n=0) 6-237

See LRD
CATV Catenate into VAC 76 0 0 See LRD 6-238
CAT Catenate into Data See LRD 6-240
CINDEX INDEX Function 52 0 18 See LRD 6-241
CLJSTV LJUST 40 2 18 See LRD 6-243
CPAS Assign to Partition 80 2 20 See LRD 6-245
CPASP Partition Assign to Partition 16 0 146 See LRD 6-247
CPR Compare (= or ¬=) 46 0 0 See LRD 6-248
CPRC Compare (all relations except = and ¬=) 6-250
CPRA Arrayed Compare 20 0 22 See LRD 6-251
CRJSTV RJUST 46 2 18 See LRD 6-253
CTRIMV TRIM 94 0 18 See LRD 6-255

ARRAY ROUTINES (Section 6.3.5)
ENTRY FUNCTION PREC CODE DATA STACK TIME PAGE
DMAX MAX(DA) D 10 0 0 See LRD 6-257
DMIN MIN(DA) D 10 0 0 See LRD 6-258
DPROD PROD(DA) D 14 0 0 See LRD 6-259
DSUM SUM(DA) D 6 0 0 7.2+11.6n 6-260
EMAX MAX(SA) S 8 0 0 See LRD 6-261
EMIN MIN(SA) S 8 0 0 See LRD 6-262
EPROD PROD(SA) S 10 0 0 See LRD 6-263
ESUM SUM(SA) S 6 0 0 5.2+6.6n6-264 6-264
HMAX MAX(HA) H 8 0 0 See LRD 6-265
HMIN MIN(HA) H 8 0 0 See LRD 6-266
HPROD PROD(HA) H 12 0 0 See LRD 6-267
HSUM SUM(HA) H 6 0 0 4.4+5.4n 6-268
IMAX MAX(IA) I 8 0 0 See LRD 6-269
IMIN MIN(IA) I 8 0 0 See LRD 6-270
IPROD PROD(IA) I 22 0 0 See LRD 6-271
ISUM SUM(IA) I 6 0 0 4.4+5.4n 6-272
6-33 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MISCELLANEOUS ROUTINES (Section 6.3.6)
ENTRY FUNCTION CODE DATA STACK TIME PAGE
BTOC Bit to Character Conversion 28 0 0 161.0(16 bits) 6-273
CSHAPQ Shaping Function 40 4 18 See LRD 6-274
CSLD SUBBIT Load of Character 246 4 22 See LRD 6-276

CPSLD Partitioned SUBBIT Load of Character 71.8 6-277
CPSST Partitioned SUBBIT Store to Character 114.4 6-279
CPSLDP Partitioned SUBBIT Load of Partitioned Character See LRD 6-278
CPSSTP Partitioned SUBBIT Store to Partitioned Character See LRD 6-281
CSLDP SUBBIT Load of Partitioned Character See LRD 6-282
CSST SUBBIT Store to Character See LRD 6-283
CSSTP SUBBIT Store to Partitioned Character See LRD 6-284

CSTRUC Structure Compare 12 0 0 5.4+10.4n 6-285
CTOB Character to Bit Conversion 32 2 18 See LRD 6-286
CTOE Character to SP Scalar Conversion 287 2 30 See LRD 6-288

CTOD Character to DP Scalar Conversion See LRD 6-291
CTOI Character to DP Integer Conversion 104 2 20 See LRD 6-292

CTOH Character to SP Integer Conversion See LRD 6-294
CTOK Character to Bit Conversion, DEC Radix See LRD 6-295

CTOX Character to Bit Conversion, HEX Radix 58 4 18 See LRD 6-296
CTOO Character to Bit Conversion, OCT Radix See LRD 6-298

DSLD SUBBIT Load of DP Scalar 22 2 18 36.5 6-299
DSST SUBBIT Store into DP Scalar 54 2 18 64.6 6-300
ETOC SP Scalar to Character Conversion 278 64 20 336.9 6-301

DTOC DP Scalar to Character Conversion 602.5 6-303
ETOH SP Scalar to SP Integer Conversion 14 0 0 15.4 6-304

DTOH DP Scalar to SP Integer Conversion 17.4 6-306
GTBYTE Character Fetch 14 0 0 See LRD 6-307
ITOC DP Integer to Character Conversion 104 0 28 254.6 6-308

HTOC SP Integer to Character Conversion 189.6 6-309
ITOD DP Integer to DP Scalar Conversion 20 0 0 15.6 6-310
ITOE DP Integer to SP Scalar Conversion 6 0 0 12.0 6-311
KTOC Bit to Character Conversion, DEC Radix 70 0 0 262.5(16 bits) 6-312
MSTRUC Structure Move 8 0 0 4.2+9.4n -
QSHAPQ Shaping Functions 74 0 18 42.6+31.8n 6-314
RANDOM Random Number Generator, Uniform Dist. 46 2 18 54.4 6-316

RANDG Random Number Generator, Gaussian Dist. 575.8 6-317
STBYTE Character Store 22 0 0 See LRD 6-318
XTOC Bit to Character Conversion, HEX Radix 68 0 0 See LRD 6-319

OTOC Bit to Character Conversion, OCT Radix See LRD 6-321
6-34 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
REMOTE ROUTINES (Section 6.3.7)

A. CHARACTER ROUTINES

B. STRUCTURE ROUTINES

C. VECTOR AND MATRIX ROUTINES

ENTRY FUNCTION CODE DATA STACK TIME PAGE

CASRPV Partitioned Assign to VAC 86 2 22 See LRD 6-323
CASRP Partition Assign See LRD 6-325
CASRV Assign to VAC 36 0 18 See LRD 6-326
CASR Assign See LRD 6-327
CPASR Assign to Partition 132 2 24 See LRD 6-328
CPASRP Partition Assign to Partition 16 0 146 See LRD 6-330

CSTR Structure Compare 18 0 18 See LRD 6-332
MSTR Structure Move 10 0 18 See LRD 6-343

MR0DNP Scalar to Partitioned Matrix Move n,m D 16 0 20 22.8+n(5.6+9.8m) 6-333
MR0SNP " n,m S 16 0 20 22.8+n(5.6+8.6m) 6-334
MR1DNP Partitioned Matrix Move n,m D 22 0 20 28.4+n(8.2+15.0m) 6-336
MR1SNP " n,m S 22 0 22 28.4+n(8.2+12.6m) 6-338
MR1TNP " n,m D-S 24 0 22 31.2+n(7.6+13.8m) 6-340
MR1WNP " n,m S-D 24 0 22 32.8+n(8.2+15.8m) 6-342
VR0DN Scalar to Vector Move n D 6 0 18 16.4+9.2n 6-344
VR0DNP Scalar to Column Vector Move n D 10 0 18 21.2+10.0n 6-345
VR0SN Scalar to Vector Move n S 6 0 18 16.4+8.0n 6-346
VR0SNP Scalar to Column Vector Move n S 10 0 18 21.2+8.8n 6-347
VR1DN Vector Move n D 8 0 18 16.4+15.0n 6-348
VR1DNP Column Vector Move n D 20 0 18 See LRD 6-349
VR1SN Vector Move n S 8 0 18 16.4+12.6n 6-350
VR1SNP Column Vector Move n S 20 0 18 See LRD 6-351
VR1TN Vector Move n D-S 8 0 18 16.4+13.8n 6-352
VR1TNP Column Vector Move n D-S 20 0 18 See LRD 6-353
VR1WN Vector Move n S-D 10 0 18 20.6+13.8n 6-354
VR1WNP Column Vector Move n S-D 22 0 18 See LRD 6-355
6-35 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3.1 Arithmetic Routine Descriptions
This subsection presents the detailed descriptions of a class of routines generally
denoted as "Arithmetic". Appendix C of the HAL/S Language Specification contains a
list of HAL/S functions which are implemented by the routines described here.

ENTRY POINT DESCRIPTIONS
Primary Entry Name: DMDVAL

Function: Finds mid value of three double precision scalar arguments.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:

Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

DMDVAL
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DMDVAL Size of Code Area 84 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MIDVAL(A,B,C), where A, B, C are double precision
scalars.

Other Library Modules:

Type Precision How Passed Units
Scalar(A) DP F0 -
Scalar(B) DP F2 -
Scalar(C) DP F4 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-36 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
 IF A<=B THEN DO;
 IF A =B THEN RETURN A;
 IF B <=C THEN RETURN B;
 ELSE IF A <=C THEN RETURN C;
 ELSE RETURN A;
 END;
 ELSE DO;
 IF C <=B THEN RETURN B;
 ELSE IF C < A THEN RETURN C;
 ELSE RETURN A;
 END;
6-37 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DMOD
Function: Calclates HAL/S MOD function in double precision.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
The precision of the result of the MOD(A,B) function is limited by the precision of
the inputs A and B. Specifically, the EMOD output will be precise to six significant
digits of the input of greatest magnitude. Similarly, the DMOD output will be
precise to eight significant digits of the input of greatest magnitude. A fixup value of
zero is returned by MOD(A,B) if:

DMOD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DMOD Size of Code Area 152 Hw
Stack Requirement: 0 Hw Data CSECT Size: 4 Hw

x Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MOD(A,B), where at least one of A or B is a double

precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar(A) DP F0/F1 -
Scalar(B) DP F2/F3 -

Type Precision How Passed Units
Scalar DP F0/F1 -

Error # Cause Fixup
19 MOD domain error when B=0, A < 0 Return 0
33 |A/B| approx. > 1614 Return 0

1. It is a positive operand case and the result computed for MOD(A,B) is greater than
|B|, or

2. It is a negative operand case and the result computed for MOD(A,B) is less than
zero.
6-38 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Warning:
The DMOD routine uses the formula MOD(A,B)=A-|B|*FLOOR(A/|B|).
The operation A-|B| * FLOOR(A/|B|) may cause an underflow when
H'8D10000000000000'<A<H0D'10000000000000'
(-2.4308653429145086E-63<A<2.4308653429145086E-63).
An exponent overflow can also be generated during the divide operation
(I2DEDR macro for DMOD, DER for EMOD) when A and B differ in order of
magnitude as described in the AP101 POO for the operation A/|B|. For overflow, A
would be greater than B by approximately half of the floating point exponential
range.
Registers Unsafe Across Call: R4,F0,F1,F2,F3,F4,F5,F6,F7.

Algorithm:
First check for mod domain error (B=0 and A < 0) and signal an error 19 and return
a fixup value of zero. If B< >0, then take |B|. For positive A values, MOD(A,B) is
computed as A-(|B|*FLOOR(A/|B|)). For positive A values, a pre-divide check is
performed, and if A < |B| then return A as the answer. For negative A values,
MOD(A,B) is computed as A+(|B|*FLOOR(|A|/|B|)). For negative A values, a pre-
divide check is performed, and if |A|<|B| then return A+|B| as the answer. For both
positive and negative A's, the FLOOR function is accomplished by adding and then
subtracting a value BIGNUM (X'4E80000000000000' for DMOD and
X'4680000000000000' for EMOD), which causes all the fractional part of the
quotient to be lost, leaving only the integer portion. The positive and negative A
parts of the algorithm then converge for pre-exit validation of the result. If the
answer is negative, then add in one more |B|. If the answer is still negative, then
log a GPC error and return a fixup value of zero. If the answer is positive or zero,
check that it is less than |B|. If not, subtract one |B| from the answer and check it
again. If the answer is still greater than or equal to |B| then log a GPC error and
return a fixup value of zero.
6-39 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: EMOD
Function: Calculates HAL/S MOD function in single precision.
Invoked By:

Execution Time (microseconds):
Input Arguments:

Output Results:

Errors Detected:

Comments:
See DMOD.
Registers Unsafe Across Call: R4,F0,F2,F4,F5.

Algorithm:
See DMOD.

EMOD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EMOD Size of Code Area 52 Hw
Stack Requirement: 0 Hw Data CSECT Size: 4 Hw

x Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MOD(A,B), where A and B are single precision

scalars.

Other Library Modules:

Type Precision How Passed Units
Scalar(A) SP F0 -
Scalar(B) SP F2 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
19 MOD domain error when B=0,A<0 Return 0
33 |A/B| approx.>166 Return 0
6-40 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: IMOD
Function: Calculates HAL/S MOD(A,B) in double precision.
Invoked By:

Execution Time (microseconds): 29.4
Input Arguments:

Output Results:

Errors Detected:

Comments:
MOD(A,B) is defined to be the smallest non-negative value that can be reached by
starting from A and adding or subtracting |B| as often as is necessary.
Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:
If B = 0

If A≥0 Return A
If A<0 Error #19 generated

If B ≠ 0
MOD(A,B) = A - [(|B|(A/|B|)]
If this result < 0, then add |B| to this to make it positive.

For all values of A and B, the result is always non-negative.
For A≥0, MOD = REMAINDER(A,B). These equations are used because AP-101
division (scalar or integer) does not yield a remainder.

IMOD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: IMOD Size of Code Area 152 Hw
Stack Requirement: 0 Hw Data CSECT Size: 4 Hw

x Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MOD(A,B), where A and B are both integers and at least

A or B is a fullword integer value.

Other Library Modules:

Type Precision How Passed Units
Integer(A) DP R5 -
Integer(B) DP R6 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
19 MOD not defined for A<0 and B=0 Return A
6-41 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
IMOD
Secondary Entry Name: HMOD
Function: Performs HAL/S MOD(A,B) where both A and B are single precision integers.
Invoked By:

Execution Time (microseconds): 29.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
MOD(A,B) is defined to be the smallest non-negative value that can be reached by
starting from A and adding or subtracting |B| as often as is necessary.
Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:
Same as IMOD

X Compiler emitted code for HAL/S construct of the form:
MOD(A,B), where A and B are both integers and at least

A or B is a fullword integer value.

Other Library Modules:

Type Precision How Passed Units
Integer(A) SP R5 -
Integer(B) SP R6 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
Same as IMOD
6-42 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: IREM
Function: Calculates integer remainder of (A,B).
Invoked By:

Execution Time (microseconds): 27.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:
If B=0, then error. For B ≠ 0, the remainder is found using REMAINDER(A,B) =
[A - B*(A/B)]. The result can be negative.

IREM
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: IREM Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

x Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MOD(A,B), where A and B are both single precision

integers.

Other Library Modules:

Type Precision How Passed Units
Integer(A) DP⎫ R5 -

 ⎬ one can be SP
Integer(B) DP⎭ R6 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
16 Zero denominator (B) Return A
6-43 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
IREM
Secondary Entry Name: HREM
Function: Calculates integer remainder of A/B.
Invoked By:

Execution Time (microseconds): 27.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:
Same as IREM.

X Compiler emitted code for HAL/S construct of the form:
REMAINDER(A,B), where A and B are both single

precision integers.

Other Library Modules:

Type Precision How Passed Units
Integer(A) SP R5 -
Integer(B) SP R6 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
16 Zero denominator (B) Return A
6-44 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: ROUND
Function: Converts single precision scalar to fullword integer.
Invoked By:

QSHAPQ
Execution Time (microseconds): 39.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
See DROUND.
Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
Second register of a floating point register pair is cleared then routine merges into
the double precision float-to- fix routine, DROUND.

ROUND
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ROUND Size of Code Area 80 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

x Intrinsic - Sector - 0 Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
ROUND(X), where X is a single precision scalar.

X Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax = X'7FFFFFFF' or
Negmax = X'80000000'
6-45 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: CEIL
Function: Performs HAL/S CEILING function: Returns smallest integer > the argument.
Invoked By:

Execution Time (microseconds): 31.4 if X > 0
40.8 if X < 0

Input Arguments:

Output Results:

Errors Detected:

Comments:
See DCEIL.
Registers Unsafe Across Call: R4,R5,F0,F1.
An invalid result of 0 is returned for arguments between 0 < N < 1.0 X 16 E-14.

Algorithm:
Second register of floating point register pair is cleared, then routine merges with
DCEIL.

X Compiler emitted code for HAL/S construct of the form:
CEILING(X), where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax = X'7FFFFFFF' or
Negmax = X'80000000'
6-46 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: DCEIL
Function: Performs HAL/S CEILING function: Finds the smallest integer ≥ the
argument.
Invoked By:

Execution Time (microseconds): 26.6 if X ≥ 0
36.0 if X < 0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Negative args become less negative after CEILING, positive args more positive.

Registers Unsafe Across Call: R4,R5,F0,F1.
An invalid result of 0 is returned for arguments between 0 < N < 1.0 X 16 E-14.

Algorithm:
Same as DROUND, except positive arguments are rounded up by almost 1.
Negative arguments are not rounded.

X Compiler emitted code for HAL/S construct of the form:
CEILING(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0, F1 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax = X'7FFFFFFF' or
Negmax = X'80000000'

-3 α -2 -1 0 1 β 2 3
| | | | | | | | |

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
| |

CEILING(α) CEILING(β)
6-47 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: DFLOOR
Function: Performs HAL/S FLOOR function: Finds the largest integer < the argument.
Invoked By:

Execution Time (microseconds): 27.0 if X ≥ 0
 36.4 if X < 0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Negative arguments become more negative, positive arguments less positive.

Registers Unsafe Across Call: R4,R5,F0,F1.
An invalid result of 0 is returned from the DFLOOR function for arguments between
-1.0 X 16 E-14 < N < 0.

Algorithm:
Same as DROUND, except argument is rounded down by almost 1
(X'40FFFFFFFFFFFFFF') if negative. Positive arguments are not rounded.

X Compiler emitted code for HAL/S construct of the form:
FLOOR(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0, F1 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax = X'7FFFFFFF' or
Negmax = X'80000000'

-3 α -2 -1 0 1 2 β 3
| | | | | | | | |

←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
| |

FLOOR(α) FLOOR(β)
6-48 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: DROUND
Function: Converts double precision scalar to fullword integer.
Invoked By:

Execution Time (microseconds): 33.8
Input Arguments:

Output Results:

Errors Detected:

Comments:
Negative arguments are converted to the next more negative integer value; positive
args to the next greater positive integer value, unless the original argument is an
integer (argument rounded up or down by not quite 1 before truncating decimal
places). Values such as xx.5 are rounded down to xx.0 and values such as -xx.5
are rounded up to -xx.0.
Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
The argument is checked for negative/not negative. If the argument is negative,
the value is rounded down by subtracting just under 1/2. The resulting value is then
checked against MAXNEG(X'C880000000FFFFFF'). If within the legal range, the
integer part of the scalar is shifted to the second register of the floating point
register pair. This remaining integer value is then put in a fixed point register and
complemented to leave it in the correct two's complement fixed point form. If the
argument is not negative, the value is rounded up by adding almost 1/2, and the
resulting value is compared to MAXPOS(X'487FFFFFFFFFFFFF'). Then, as with
negative values, it is shifted to leave the integer part in floating point format and
loaded into a fixed point register.

X Compiler emitted code for HAL/S construct of the form:
ROUND(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0, F1 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax = X'7FFFFFFF' or
Negmax = X'80000000'
6-49 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: DTOI
Function: Converts double precision scalar to fullword integer.

Invoked By:

Execution Time (microseconds): 33.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
DTOI is identical entry point to DROUND.
Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
Algorithm: Same as DROUND.

X Compiler emitted code for HAL/S construct of the form:
I = D; where I is a double precision integer, and D is a

double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax = X'7FFFFFFF' or
Negmax = X'80000000'
6-50 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: DTRUNC

Invoked By:

Execution Time (microseconds): 28.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
After truncation, negative and positive arguments are closer to 0; no rounding done
before truncation.

Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
Same as DROUND, except argument is not rounded up or down.

Function: Performs HAL/S TRUNCATE function: Finds the signed value
that is the largest integer < absolute value of the argument.

X Compiler emitted code for HAL/S construct of the form:
TRUNCATE(X), where X is a double precision
scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0, F1 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax: X'7FFFFFFF'
or
Negmax: X'80000000'

-3 α -2 -1 0 1 2 β 3
| | | | | | | | |
←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

| |
 TRUNCATE(α) TRUNCATE(β)
6-51 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: ETOI
Function: Converts single precision scalar to fullword integer.
Invoked By:

Execution Time (microseconds): 39.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
ETOI is identical entry point to ROUND; also see DTOI.
Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
Same as ROUND.

Secondary Entry Name: FLOOR
Function: Performs HAL/S FLOOR function: Returns largest integer < the argument.

The compiler uses the convert to fixed point instruction which is valid only in the
range:
.7FFFFF X 16E04 (16) > N > -.800000 X 16E04 (16)
~ 32767.99 (10) > N > -32768(10)
A convert overflow will occur for FLOOR arguments outside this range.
An invalid result is returned from the FLOOR function for arguments between -16
and 0 which have a fractional portion whose absolute value is smaller than 1/16**4
(I.E. - (X + 1/16**4) < N <-X where X is an integer between 0 and 15 inclusive).

X Compiler emitted code for HAL/S construct of the form:
I=S where I is a double precision integer, S is a

single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax =X'7FFFFFFF' or
Negmax = X'80000000'

Note: The compiler now uses inline code for the FLOOR function instead of calling
this routine.
6-52 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ROUND
Secondary Entry Name: TRUNC

Invoked By:

Execution Time (microseconds): 31.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
See DTRUNC
Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
Second register of floating point register pair is cleared, then routine merges with
DTRUNC.

Function: Performs HAL/S TRUNCATE function: Returns signed value that is
the largest integer < absolute value of the argument.

X Compiler emitted code for HAL/S construct of the form:
TRUNCATE(X), where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
15 Scalar too large for integer

conversion
Return either:
Posmax =X'7FFFFFFF' or
Negmax =X'80000000'
6-53 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3.2 Algebraic Routine Descriptions
This subsection presents the detailed descriptions of "Algebraic" routines as defined in
Appendix C of the HAL/S Language Specification.

ENTRY POINT DESCRIPTIONS
Primary Entry Name: ACOS
Function: Computes arc-cosine(x) of scalar argument.
Invoked By:

Execution Time (microseconds): 0.5 < |X| < 1: 225.5
2.441406252 x 10-4 < |X| < 0.5: 132.7
|X| < 2.441406252 x 10-4: 71.5

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4.

Algorithm:
ACOS(X) is computed as π/2 - ARCSIN(X).

ACOS
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ACOS Size of Code Area 116 Hw
Stack Requirement: 24 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: SQRT

X Compiler emitted code for HAL/S construct of the form:
ARCCOS(X), where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 Radians

Error # Cause Fixup
10 Argument outside range-1 < x < 1 Return π for x<-1

Return 0 for x>1
6-54 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ACOS
Secondary Entry Name: ASIN
Function: Computes arc-sine of scalar argument.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
For a very small number of input arguments, the ASIN routine will return results that
are accurate to 5 significant decimal digits (instead of the 6 significant decimal
digits that are generally required for single precision routines). For most of the
range of the ASIN routine, results are returned that are accurate to 6 significant
decimal digits.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
The value of X is restricted to 0 ≤ X ≤ 1 by using the identity arcsin(-X) = -arcsin(X),
and further to 0 ≤ |X| ≤ 0.5

by the identity arcsin (X)= - 2*arcsin

For 0 ≤ |X| ≤ 0.5, Z = |X|, and for 0.5 < |X| < 1.0, Z =

X Compiler emitted code for HAL/S construct of the form:
ARCSIN(X), where X is a single precision
scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 Radians

Error # Cause Fixup
10 Argument outside range -1 ≤ x ≤ 1 Return-π/2 if x<-1

Return π/2 if x>1

π
2---

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
 x-1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
|x|-1
6-55 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Arcsin(Z) is then computed as a truncated continued fraction in Z2, multiplied by W
(where W = Z for 0.5 < |X| < 1.0 and W = 2Z for 0 ≤ |X| ≤ 0.5). The form of the
approximation is:

arcsin (X) ≈ W +

where the values of the constants are:

For arguments |X|<2.4414063 * 10-4(16-3), arcsin(X) is computed as arcsin(X) = X.

c1 = X'C13B446A' = -3.7042025
c2 = X'C11DB034' = -1.8555182
d1 = X'C08143C7' = -0.5049404
d2 = X'C11406BF' = -1.2516474

2
2

22
1

2
1

Z+c
d+Z+c

*d*W Z
6-56 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: ACOSH
Function: Computes hyperbolic arc-cosine in single precision.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Using the external SQRT and LOG functions:

arccosh(x)=1n

ACOSH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ACOSH Size of Code Area 36 Hw
Stack Requirement: 20 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: LOG,SQRT

X Compiler emitted code for HAL/S construct of the form:
ARCCOSH(x), where x is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
59 ARG < 1 Return 0

()1+x+X 2
6-57 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: ASINH
Function: Computes hyperbolic arc-sine in single precision.
Invoked By:

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Using the external SQRT and LOG routines,
For |X|<8.8726589E-4, arcsinh(X) = X

For 8.8726589E-4<X|<2.1632850E-1, arcsinh(X)=X-

For 2.1632850E-1<|X|<1.6777216E+7, arcsinh(X)=1n

For |X|≥1.6777216E+7, arcsinh(X) = 1n(X) + 1n(2)

ASINH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ASINH Size of Code Area 64 Hw
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: LOG,SQRT

X Compiler emitted code for HAL/S construct of the form:
ARCSINH(X), where X is a single precision scalar.

Other Library Modules:
Execution Time
(microseconds):

|X|<8.876589E-4: 31.5

 8.8726589E-4<|X|<2.1632850E-1: 85.4
 2.1632850E-1<|X|<1.6777216E+7: 314.1
 |X|>1.6777216E+7: 141.2

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None

53 X
40
3X

6
1 +

()1+x+X 2
6-58 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: ATANH
Function: Computes hyperbolic arc-tangent in single precision.
Invoked By:

Execution Time (microseconds): |X|<4.113892E-5: 33.9
4.113892E-5<|X|<1.875E-1: 85.7

1.875E-1<|X|: 228.2
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Using the external LOG function,
For |X|<4.1138977E-5, arctanh(X) = X

For 4.1138977E-5<|X|<1.875E-1, arctanh(X) = X + X3 + X5

For 1.875E-1<|X|<1, arctanh(X) =

ATANH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ATANH Size of Code Area 58 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: LOG

X Compiler emitted code for HAL/S construct of the form:
ATANH(X), where X is a single precision scalar

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
60 Argument outside range:-1<X<1 Return 0

1
3---

1
5---

⎟
⎠
⎞

⎜
⎝
⎛

X-1
X+1n1

2
1

6-59 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DACOS
Function: Computes ARCCOS(X) in double precision.
Invoked By:

Execution Time (microseconds): |X|<3.7252903E-9 (16-7): 89.1
3.7252903E-9<|X|≤0.5: 263.1
0.5<|X|<1: 460.5
|X|= 1: 79.7

Input Arguments:

Output Results:

Errors Detected:

Comments:
The fixup value will be returned, but an error will not be issued until the argument is
|X|>1 + epsilon.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Computed as π/2 - ARCSIN(X)

DACOS
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DACOS Size of Code Area 230 Hw
Stack Requirement: 26 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: DSQRT

X Compiler emitted code for HAL/S construct of the form:
ARCCOS(X), where X is a double precision
scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 Radians

Error # Cause Fixup
10 Argument outside range(-1 - epsilon)< X< (1+epsilon)

where epsilon=hex'3AFFFFFFF0000000'
(approximately 5.9604644E-08)

Return π if x<-
1
Return 0 if x>1
6-60 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
DACOS
Secondary Entry Name: DASIN
Function: Computes ARCSIN(X) in double precision.
Invoked By:

Execution Time (microseconds):
Input Arguments:

Output Results:

Errors Detected:

Comments:
The fixup value will be returned, but an error will not be issued until the argument is
|X| > 1 + epsilon.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
The value of X is restricted to 0<X<1 by using the identity arcsin(-X) = -arcsin(X),
and further to 0<X<1/2

by the identity arcsin (X)= -2*arcsin

For 0≤|X|≤0.5, Z = |X|, and for 0.5<|X|<1.0, Z=

Arcsin(Z) is then computed as a truncated continued fraction in Z2, multiplied by W.

X Compiler emitted code for HAL/S construct of the form:
ARCSIN(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 Radians

Error # Cause Fixup
10 Argument outside range(-1 - epsilon)≤X≤ (1 +

epsilon) where epsilon=hex'3AFFFFFFF0000000'
(approximately 5.96046445E-08)

Return-π/2 if x<-1
Return π/2 if x >1

π
2---

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
 x-1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
|x|-1
6-61 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
The form of the approximation is:

(where W=Z for 0.5<|X|<1.0, and W=2Z for 0≤|X|≤0.5)
where the values of the constants are:

For arguments |X|<3.7252903 E-9(16-7), arcsin(X) is computed as arcsin(X)=X.

C1 = X'3F180CD96B42A610' = .00587162904063511
d1 = X'C07FE6DD798CBF27' =-.49961647241138661
C2 = X'C1470EC5E7C7075C' =-4.44110670602864049
d2 = X'C1489A752C6A6B54' =-4.53770940160639666
C3 = X'C13A5496A02A788D' =-3.64565146031194167
d3 = X'C06B411D9ED01722' =-.41896233680025977
C4 = X'C11BFB2E6EB617AA' =-1.74882357832528117
d4 = X'BF99119272C87E78' =-.03737027365107758
C5 = X'C11323D9C96F1661' =-1.19625261960154476

d1

Z2 + C2 + d2

Z2 + C3 + d3

C1 +

Z2 + C4 + d4
Z2 + C5

arcsin(Z)=W + W*Z 2
6-62 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DACOSH
Function: Computes hyperbolic arc-cosine in double precision.
Invoked By:

Execution Time (microseconds): 1≤X<6.7108864E+7: 403.4
6.7108864E+7<X: 332.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Using the external DSQRT and DLOG functions,

For 1≤x<6.7108864 x 107, arccosh(x)=1n (x +)

For x≥6.7108864 x 107, arccosh(x) = 1n(x) + 1n(2)

DACOSH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DACOSH Size of Code Area 50 Hw
Stack Requirement: 22 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: DLOG, DSQRT

X Compiler emitted code for HAL/S construct of the form:
ARCCOSH(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
59 Argument<1- EPSILON Return 0
Note: The fixup value will be returned but an error will not be issued until

x<0.9999999403953555 where EPSILON=hex'3AFFFFFFF0000000'
(approximately 5.96046445E-08).

1-x2
6-63 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DASINH
Function: Computes hyperbolic arc-sine in double precision.
Invoked By:

Execution Time (microseconds): |X|≤1.353860E-8: 33.6
1.353860E-8<|X|≤6.25E-2: 185.4
6.25E-02<|X|<6.7108864E+7: 570.8
6.7108864E+7≤|X|: 348.2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Using the external DSQRT and DLOG functions,
For |X|<1.353860E-8, arcsinh(X) = X
For 1.353860E-8<|X|<6.25E-2, arcsinh(X) =

X-

For 6.25E-2<|X|<6.7108864E+7, arcsinh(X) =1n(X+)

For 6.7108864E+7<|X|, arcsinh(X) = 1n(X) + 1n(2)

DASINH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DASINH Size of Code Area 96 Hw
Stack Requirement: 22 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: DLOG, DSQRT

X Compiler emitted code for HAL/S construct of the form:
ARCSINH(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None

119753 X
42240
945X

3456
105X

336
15X

40
3X

6
1 −+−+

1-x2
6-64 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DATANH
Function: Computes hyperbolic arc-tangent in double precision.
Invoked By:

Execution Time (microseconds): |X|<1.07455946E-8: 42.6
 1.07455946E-8<|X|<6.25E-2: 186.6
 6.25E-2<|X|: 399.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Save sign of argument X
X=|X| (force positive, arctanh(-X)= -arctanh(X))
If X>1: Return 0, indicate error
If X<1.07455946E-08: Return X

If 1.07455946E-08<X<6.250E-02: arctanh(X) = X +

If 6.250E - 02<X: arctanh (X)= 1/2 1n ((1+X)/(1-X))
(uses the external DLOG library function)
Note: For non-zero results, set the sign of the result to the original sign of X.

DATANH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DATANH Size of Code Area 132 Hw
Stack Requirement: 26 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: DLOG

X Compiler emitted code for HAL/S construct of the form:
ARCTANH(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
60 Argument outside range: (-1 - EPSILON)<X<(1 +

EPSILON) where EPSILON = hex'3AFFFFFFF0000000'
(approximately 5.96046445E-08)

Return 0

9
X

7
X

5
X

3
X 9753

+++
6-65 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DATAN2
Function: Computes arctan by fraction approximation in the range (-π,π) in double
precision.

Invoked By:

Execution Time (microseconds): 248.4

Input Arguments:

Output Results:

Errors Detected:

Comments:Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Same algorithm as EATAN2, but values of constants and the fractional
approximation formula is different for the double precision, as follows.

Again, Z= . Special cases:

DATANH2
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DATANH 2 Size of Code Area 342 Hw
Stack Requirement: 26 Hw Data CSECT Size: 26 Hw

Intrinsic x Procedure
Other Library Modules Referenced:

X Compiler emitted code for HAL/S construct of the form:
ARCTAN2(X,Y), where X and Y are double precision scalars

corresponding to sine and cosine
respectively of the intended arc tangent
argument.

Other Library Modules:

Type Precision How Passed Units
Scalar (sin) DP F0 -

Scalar (cos) DP F2 -

Type Precision How Passed Units
Scalar DP F0 Radians

Error # Cause Fixup
62 arg 1 = arg 2 = 0 Return 0

(1) If cos x<0 and Z<16-14, return + π
(2) sin x=cos x=0, signal error and return 0.
(3) sin x≠0, cos x=0, return + π/2.

xcos
xsin
6-66 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
The fractional approximation after reduction of Z to ≤ tan 15° is:

Tan-1(Z) = Z + Z * Z2 * F, where
F = C1 + C2/(Z2 + C3 + C4/(Z2 + C5 + (C6/(Z2 + C7)))).

As in EATAN2, the intermediate result is adjusted to the proper section in the first
quadrant, as follows:

The resulting angle is adjusted to the proper quadrant as in EATAN2 (according to
sign of sin x and cos x).

(4) sin x≠0, cos x≠0, but Z>1614, return + π/2.
(5) If (Z or 1/Z)<16-7, return Z.
(6) If exponent of sin(x)- exponent of cos(x)>15,

return + π/2.
(7) If exponent of sin(x)- exponent of cos(x) <-51,

return arctan(0).

C1 = X'BF1E31FF1784B965' (-0.7371899082768562E-2)
C2 = X'C0ACDB34C0D1B35D' (-0.6752198191404210)
C3 = X'412B7CE45AF5C165' (0.2717991214096480E+1)
C4 = X'C11A8F923B178C78' (-0.1660051565960002E+1)
C5 = X'412AB4FD5D433FF6' (0.2669186939532663E+1)
C6 = X'C02298BB68CFD869' (-0.1351430064094942)
C7 = X'41154CEE8B70CA99' (0.1331282181443987E+1)

(original) Z ≤ tan 15° +0
tan 15°<Z ≤ 1 → +π/6
1/Z ≤ tan 15° → (-π/2 + 1) then-1 (to preserve significant bits)
tan 15°< 1/Z ≤1 → (-π/3 + 1) then-1 (to preserve significant bits)
6-67 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
DATAN2
Secondary Entry Name: DATAN

Invoked By:

Execution Time (microseconds): 237.3

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Same as ARCTAN, but see DATAN2 for changes in values of DP constants and
TAN-1 formula.

Function: Computes arc tangent by fractional approximation in the range
(-π/2, +π/2) in double precision.

X Compiler emitted code for HAL/S construct of the form:
ARCTAN(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 Radians

Error # Cause Fixup
None
6-68 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DEXP
Function: Computes eX in double precision.
Invoked By:

DPWRD, DSINH, DTANH
Execution Time (microseconds): 290.5

Input Arguments:

Output Results:

Errors Detected:

Comments:
Gives exponent underflow if argument less than -180.21825 -- no RTL error
number; GPC error group 3 code 9. The error will not be detected if the program
status word masks out the underflow errors.
Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:
First, decompose X as P'log2 + R', where P' is the integer part and first
hexadecimal place of the result of dividing the high-order part of X by LOG2H,
which is a single precision approximation to log2, rounded up. This is done in 80-
bit precision in order to yield a true 56-bit value for R', by expressing log2 = LOG2H
+ LOG2L, where LOG2L is a double precision scalar. R' has the same sign as X,

and |R'| might be slightly > .

DEXP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DEXP Size of Code Area 158 Hw
Stack Requirement: 18 Hw Data CSECT Size: 66 Hw

Intrinsic x Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
EXP(X), where X is a double precision scalar.

X Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
6 X>174.673085 Return maximum positive floating point number

2log
16-----------
6-69 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Now, if R'>0, subtract from it until it becomes < 0, each time adding to P'.

If R' <- , add to it until it becomes >- , each time subtracting from

P'.

At the end of this, we have

X = P * log2 + R, P an integral multiple of , and - <R<0.

Represent P as 4A - B - C/16 , where A, B, and C are integers, 0 < B<3, 0<C<15.
Then:

ex = 16A*2-B*2-C/16*eR

To calculate this, we compute eR with a polynomial approximation of the form:

er = 1 + c1r + c2r2 + c3r3 + c4r4 + c5r5 + c6r6
where the values of the constants are:

Then, 2-C/16 is computed by table lookup, 2-B by shifting, and 16A by adding A to
the exponent of the answer.

c1 = X'40FFFFFFFFFFFCFC' = .9999999999999892
c2 = X'407FFFFFFFFAB64A' = .4999999999951906
c3 = X'402AAAAAA794AA99' = .1666666659481656
c4 = X'3FAAAA9D6AC1D734' = .0416666173078875
c5 = X'3F2220559A15E158' = .00833161772003906
c6 = X'3E591893' = .001359497

2log
16-----------

1
16------

2log
16----------- 2log

16----------- 2log
16-----------

1
16------

1
16------ 2log

16-----------
6-70 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DLOG
Function: Computes 1n(X) in double precision.
Invoked By:

DPWRD, DASINH, DATANH, DACOSH
Execution Time (microseconds): 282.2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
We write X = 16P * 2-Q * M, where ½<M<1, P, Q are integers, 0<Q<3. P, Q, and M
are found by fixed-point calculations. Define A=1, B=0, if M> /2, and A=1/2, B=1
otherwise. Let Z=(M-A)/(M+A).

DLOG
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DLOG Size of Code Area 184 Hw
Stack Requirement: 30 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
LOG(X), where X is a double precision scalar.

X Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
7 Argument outside range X > 0 If X<0 return 1n(|X|); if X=0, return

maximum negative floating point
number

2

6-71 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Then 1n(X) = (4P-Q-B)1n(2)+1n((1+Z)/(1-Z)) is computed by an approximation of
the form:

W+C1 W3

where W=2Z, and the values of the constants are:

c1 = X'3DDABB6C9F18C6DD' = 0.2085992109128247E-3
c2 = X'422FC604E13C20FE' = 0.4777351196020117E+2
c3 = X'C38E5A1C55CEB1C4' = -0.2277631917769813E+4
c4 = X'C16F2A64DDFCC1FD' = -6.947850100648906
c5 = X'C12A017578F548D1' = -2.625356171124214
c6 = X'C158FA4E0E40C0A5' = -5.561109595943017

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

6
2

5
4

2

3
2

2

C+W
C+C+W

C+C+W
6-72 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DPWRD
Function: Performs exponentiation of double precision scalar to double precision

power.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Other than Errors 4 and 24, no additional range or overflow checking is performed.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

If exponent = 0.5, compute X0.5 as (by using the external DSQRT function),
otherwise XY = eY Log X, using the external DEXP and DLOG functions. The call to
DEXP could result in error #6 if Y Log X is sufficiently large.

DPWRD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DPWRD Size of Code Area 40 Hw
Stack Requirement: 22 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: DEXP,DLOG,DSQRT

X Compiler emitted code for HAL/S construct of the form:
X**Y, where X and Y are scalars and at least X or Y

is double precision.

Other Library Modules:

Type Precision How Passed Units
Scalar(X) DP F0 -
Scalar(Y) DP F2 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
4 X=0; Y<0 Return 0
24 X<0 Return |X|

X

6-73 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DPWRI
Function: Exponentiation of a double precision scalar to a fullword integer power.
Invoked By:

Execution Time (microseconds):
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3.
Other than detection of Error 4, no additional range or exponent overflow checking
is done. According to the Space Shuttle Model AP101-S Principles of Operation,
an exponent overflow occurs when the result exponent exceeds 16**63 and an
exponent underflow occurs when the result exponent is less than 16**-64. For
base ** |exp|, if |base|>1 then an exponent overflow is possible. If exp<0 and
0<|base|<1 then an exponent underflow is possible. If the exponent underflow
mask bit is zero (inhibiting the interrupt) then the result is a true zero. This will
cause a divide by zero GPC error when the reciprocal of the result is taken. If the
exponent underflow mask bit is one (enabling the interrupt) then the operands are
unchanged. This could cause an exponent overflow when the reciprocal of the
result is taken.

DPWRI
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DPWRI Size of Code Area 54 Hw
Stack Requirement: 26 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
X**I where X and Y are scalars and at least X or Y

is double precision.

Other Library Modules:

Type Precision How Passed Units
Scalar(base) DP F0 -
Integer(exponent) DP R6 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
4 Zero raised to power≤0 Return 0
6-74 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
If I is the fullword exponent, D the base, write

I= ei2
i, where ei = 0 or 1.

Then:

DI = DΣiei2
i
= Dei2

i
= Πei=1D2i

, if any ei =1, and =1 otherwise.

To compute Πei=1D2i, it is only necessary to compute successively D2i
= D, D2, D4,

D8,…, and multiply the result by D2i whenever the i-th bit of the exponent is 1. This
is determined by shifting bits one by one out of the exponent, and testing each one
for a value of one. The loop terminates when the remaining part of the exponent is
zero. Operations are done on absolute value of exponent. If exponent was
negative, the reciprocal of the result is taken as the final result.

∑ =
32

0i

∏i=0
32
6-75 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
DPWRI
Secondary Entry Name: DPWRH
Function: Exponentiation of a double precision scalar to a halfword integer power.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Other than detection of Error 4, no additional range or exponent overflow checking
is done. According to the Space Shuttle Model AP101-S Principles of Operation,
an exponent overflow occurs when the result exponent exceeds 16**63 and an
exponent underflow occurs when the result exponent is less than 16**-64. For
base ** |exp|, if |base|>1 then an exponent overflow is possible. If exp<0 and
0<|base|<1 then an exponent underflow is possible. If the exponent underflow
mask bit is zero (inhibiting the interrupt) then the result is a true zero. This will
cause a divide by zero GPC error when the reciprocal of the result is taken. If the
exponent underflow mask bit is one (enabling the interrupt) then the operands are
unchanged. This could cause an exponent overflow when the reciprocal of the
result is taken.
Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:
The halfword exponent is shifted right to convert it to a fullword, then the DPWRI
algorithm is used.

X Compiler emitted code for HAL/S construct of the form:
X**I where X is a double precision scalar; I is a

single precision integer.

Other Library Modules:

Type Precision How Passed Units
Scalar(X) DP F0 -
Integer(I) SP R6 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
4 Zero raised to power ≤ 0 Return 0
6-76 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DSINH
Function: Computes hyperbolic sine in double precision.
Invoked By:

Execution Time (microseconds): 8.81374E-1<|X|<1.75366E+2: 434.1
 2.063017E-10<|X|<8.81374E-01: 196.7
 |X|<2.063017E-10: 45.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
If |X|<1.626459E-10, then sinh(X) = X.
If 1.626459E-10<|X|<.881375, then sinh(X) is computed via a polynomial
approximation.
The form of the polynomial approximation is:

sinh(X) = X + C1X3 + C2X5 + C3X7 + C4X9 + C5X11 + C6X13

DSINH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DSINHI Size of Code Area 130 Hw
Stack Requirement: 22 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: DEXP

X Compiler emitted code for HAL/S construct of the form:
SINH(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
9 Argument outside range: |X|≤175.366 Return maximum positive

floating point number
6-77 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
where the values of the constants are:

Otherwise, sinh(|X|) or cosh(|X|) is calculated using EXP. The number V, equal to
0.4995050, is introduced to control rounding errors and the formula is as follows:

sinh(X) =

cosh(X) =

The identities sinh(-X) = -sinh(X) and cosh(-X) = cosh(X) are used to recover
sinh(X) and cosh(X) from sinh(|X|) and cosh(|X|).

C1 = X'402AAAAAAAAAAA4D' = 0.1666666666666653
C2 = X'3F2222222222BACE' = 0.8333333333367232E-2
C3 = X'3DD00D00CB06A6F5' = 1.984126981270711E-4
C4 = X'3C2E3BC881345D91' = 2.755733025610683E-6
C5 = X'3A6B96B8975A1636' = 2.504995887597646E-8
C6 = X'38B2D4C184418A97' = 1.626459177981471E-10

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− +

+
logv)(X

2
logv)(X

e
ve

2v
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− +

+
logv)(X

2
logv)(X

e
ve

2v
1

6-78 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
DSINH
Secondary Entry Name: DCOSH
Function: Computes hyperbolic cosine in double precision.
Invoked By:

Execution Time (microseconds): |X|<1.75366E+2: 422.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
See DSINH Algorithm.

X Compiler emitted code for HAL/S construct of the form:
COSH(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
9 Argument outside range |X|<175.366 Return maximum positive

floating point number
6-79 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DSNCS
Function: Computes sine(X) and cosine(X) in double precision.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
The actual values of 32/π (X'41A2F9836E4E4414') and π/32
(X'401921FB54442D17') are not used. Instead, an approximate value is used for
32/π(X'41A2F9836E4E45C9') because the lower halfword of this value (45C9) is
used as the maximum limit of the DCOS, DSIN, and DSNCS routines. Similarly, an
approximate value is used for π/32 (X'401921FB544420B9') because the lower
halfword of this value (20B9) is used as the underflow limit of the DCOS, DSIN, and
DSNCS routines.
The precision of the DSNCS outputs is limited to 8 significant digits relative to 1.0
(or +/-1E-8)
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

DSNCS
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DSNCS Size of Code Area 140 Hw
Stack Requirement: 28 Hw Data CSECT Size: 64 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
SIN(X)and COS(X), where X is a double precision scalar

that is recognized as the same for
both invocations.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 Radians

Type Precision How Passed Units
Scalar DP F0 -
Scalar(COS Result) DP F2 -

Error # Cause Fixup

8 Argument outside range: |X|<823296.0625
(approximately π * 218)

Return
2

2-------
6-80 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Register 5 is first set to indicate the sign of the argument (x) and which entry point
was used. For |x| < X'25100000' (floating point), x gets set to zero to prevent
underflow. The argument is then multiplied by 32/π; the integer portion of this result
is converted to fixed point and the fractional portion (remainder) is retained in
floating point (Δ). The fixed point number is an integer multiple of the number of
π/32 sections that comprise the number, divided into the following logical sections:

If the octant is odd, the argument has to be complemented. This is done by
complementing each of the index bits and taking Δ = 1 -Δ. The table of index
values are good for only odd π/32 intervals, so for the even index values Δ = Δ - 1.
However, this is not done for an index value of zero. An index value of zero
indicates that the argument is in the range of nπ/2 - π/32 < x < nπ/2 + π/32, n=0, ± 1,
± 2,..., in which case Δ is left unchanged and the index value made negative for
later use. At this time the octant is isolated and saved for later use and the number
of 2πs is no longer needed and dropped.
STEP A): The floating point remainder (Δ) represents the normalized increment of
the argument relative to one of the table arguments. At this point, the sine and
cosine of this increment can be evaluated with the following polynomials:

sin =

cos =1.0+2Δ2(ACΔ2+BC)

Where:
AS = X'3B14634A'
BS = X'BDA55DE5'
AC = X'3C2075A1'
BC = X'BE9DE937'

STEP B): If the sign of the index value (previously computed) is not negative then
the following trigonometric identities are used to compute the sine and/or cosine:

sin x=sin(TSi+)= (sin TSi)(cos) + (cos TSi)(sin)

cos x = cos(TCi+)= (cos TCi)(cos) + (sin TCi)(sin)

- the number of 2πs in the original number,
- the octant in which the argument lies (within the range 0 to 2π),
- the number of the π/32 interval in which the argument lies within a range of

0 to π/4 (used as an index value into a table of sine and cosine values).

32
πΔ ⎟

⎠
⎞

⎜
⎝
⎛ Β+ΔΑΔ+πΔ S)S(
32

22

32
πΔ

32
πΔ

32
πΔ

32
πΔ

32
πΔ

32
πΔ

32
πΔ
6-81 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
The appropriate equation and values for TSi and TCi are determined by the octant
value.

and TS and TC are given by the table:

If the index value is negative the sine or cosine computed from STEP A is used
without the table or the above equations. Finally, the sign of the result is
complemented if the octant number is greater than 3. If the entry point was DSNCS
then the octant is incremented by 2 (MOD 8) and the logic STEP B is executed
again.
Output is passed back in the register pair F0/F1 if DSIN or DCOS was called. If the
entry point was DSNCS then the output is in F0/F1 for Sin and F2/F3 for Cos.

Octant Equation I
0 Sin 0
1 Cos 0
2 Cos 1
3 Sin 1
4 Sin 1
5 Cos 2
6 Cos 2
7 Sin 3

TS0 = D'.09801714032875'
TS1 = D'.290284677254'
TS2 = D'.4713967368259'
TS3 = D'.6343932841633'
TC0 = D'.9951847266737'
TC1 = D'.9569403357347'
TC2 = D'.8819212643506'
TC3 = D'.7730104533640'
6-82 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
DSNCS
Secondary Entry Name: DCOS
Function: Computes cosine(x) in double precision.
Invoked By:

Execution Time (microseconds): -π<X<π: 261.8
 X>π or X<-π: 264.2

Input Arguments:

Output Results:

Errors Detected:

Comments:
For most of the range of input arguments to the DCOS routine, results are returned
that are accurate to 5 significant decimal digits (instead of the 8 significant decimal
digits that are generally required for double precision routines).
The value used in the routine for π(218) is hex'45C90000'=823296. Because a
halfword instruction is used in the limit test, the first error occurs when
|X|=823296.0625.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
See DSNCS Algorithm.

X Compiler emitted code for HAL/S construct of the form:
COS(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 Radians

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup

8 Argument outside range |X|<823296.0625
(approximately π*218)

Return
2

2-------
6-83 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
DSNCS
Secondary Entry Name: DSIN
Function: Computes sine(x) in double precision.
Invoked By:

Execution Time (microseconds): 267
Input Arguments:

Output Results:

Errors Detected:

Comments:
For most of the range of input arguments to the DSIN routine, results are returned
that are accurate to 5 significant decimal digits (instead of the 8 significant decimal
digits that are generally required for double precision routines). The value used in
the routine for π*(218) is hex'45C90000' = 823296. Because a halfword instruction
is used in the limit test, the first error occurs when |X| = 823296.0625.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
See DSNCS Algorithm.

X Compiler emitted code for HAL/S construct of the form:
 SIN(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 Radians

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup

8 Argument outside range |X|<823296.0625
(approximately π*218)

Return
2

2-------
6-84 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DSQRT
Function: Computes square root in double precision.
Invoked By:

DACOS, DASINH, DPWRD, VV10D3, DACOSH
Execution Time (microseconds): 345.2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Prior to Release 11.0 of the HAL/S-FC compiler, this routine computed square
roots in full (8/56) precision. PCR 4791 was incorporated in Release 11.0 and
reduced precision to 8/31. For further information refer to PCR 4791.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Since the input value X0 is in floating point format, it can be viewed as an exponent
value 162P+ Q and a mantissa value M. The input value X can therefore be
represented as:

X0 = 162P+ Q ⋅ M0

DSQRT
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DSQRT Size of Code Area 184 Hw
Stack Requirement: 18 Hw Data CSECT Size: 8 Hw

Intrinsic x Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 SQRT(X), where X is a double precision scalar.

X Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
5 X<0 Return sqrt (|X|)
6-85 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
where Q = 0 if the characteristic is even and Q = 1 if the characteristic is odd (i.e. Q
represents the LSB of the characteristic). If Q is subtracted from the characteristic
then the remaining portion of the characteristic can be represented as a multiple of
2 (i.e. 2P). The input value is assumed to be normalized so the value of M can be
defined as

 <M0<1

A first approximation of 0 is made by processing each part of the input argument

(characteristic & mantissa) separately. The characteristic of 0 is computed by
adding 1 to the characteristic of X0 and dividing by 2. Therefore:

Cx1 =

where Cx1 is the characteristic of the first approximation and Cx0 is the
characteristic of the input value.
The square root of the mantissa, M1, is computed using a quadratic equation of the
form:

M1 = AM0
2 + BM0 + C

where A, B, and C are precomputed halfword constants and M0 is the mantissa of
the input value X in halfword fixed point format. Two values are possible for each of
the constants A, B, and C. The assumed values of these constants are dependent
on the value of the fixed point mantissa:

The characteristic CX1 and mantissa M1 are then recombined by shifting and
'ORing' producing a floating point format first approximation X1. This value is then
used in the first of two Newton-Raphson iterations. The form of the first is:

X2 =

The value X2 is then used in a second iteration of Newton-Raphson of the form:

X3 = X2 +

The final result X3 is returned, in double precision floating point format, to the
calling routine via F0.

M0 <0.25 M0≥0.25
A HEX'AF76' HEX'F5EF'
B HEX'433E' HEX'219F'
C HEX'0427' HEX'084D'

1
16------

X

X

()
2

1C 0x +

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ 1

1

0 X
X
X

2
1

2

2
2

0

X2

XX −
6-86 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Warning:
The DSQRT will return correct results if the argument is less than 7.2368577E+75.
For arguments > 7.2368577E+75, floating point exponent overflow occurs and
incorrect results are returned.
6-87 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DTAN
Function: Computes tangent in double precision.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Error gets very large near a singularity, before error #12 is sent.
The value used in the routine for π*250 is hex'4DC90FDA' ≈
3.53711870600810E+15.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

Multiply X by , and give the characteristic of this to X'0000000000000008' for
use as a comparand to determine nearness to a singularity.

DTAN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DTAN Size of Code Area 196 Hw
Stack Requirement: 38 Hw Data CSECT Size: 4 Hw

Intrinsic x Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
TAN(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 Radians

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
11 Argument outside range:

|X|<π*250
Return 1

12 Argument too near a singularity of
the tangent function

Return maximum positive
floating point number

4
π---
6-88 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
The integer part of |X* | is the octant.

If the octant is even, let w = fraction part of |X|* .

If the octant is odd, let w = -(1 - fraction) part of |X|* .

Next, compute two polynomials P(w) and Q(w).
If w > 2-46, then the forms of the polynomials are:

P(w) = w(a0 + a1w2 + a2w4 + w6)

Q(w) = b0 + b1w2 + b2w4 + b3w6

If w < 2-46, then with u = w if |X|* <1, and u = -w otherwise.
P(w) = w(a0 + u)
Q(w) = b0 + b3u

where the values of the constants are:

If w ≤ the comparand derived earlier and the octant = 1 or 2 (mod 4), then error 12
is sent. Otherwise, Q(w)/P(w) is returned with its sign adjusted. In octants = 0 or 3
(mod 4), P(w)/Q(w) is returned, with the sign adjusted according to tan(-x) = -tan(x).
The justification for this computation is that

=tan and =cot

and simple trigonometric identities give, for R=fraction part of X* :

a0 = X'C58AFDD0A41992D4' =-569309.04006345
a1 = X'44AFFA6393159226' = 45050.3889630777
a2 = X'C325FD4A87357CAF' =-607.8306953515
b0 = X'C5B0F82C871A3B68' =-724866.7829840012
b1 = X'4532644B1E45A133' = 206404.6948906228
b2 = X'C41926DBBB1F469B' =-6438.8583240077
b3 = X'422376F171F72282' = 35.4646216610

4
π---

4
π---

4
π---

4
π---

Q(w)
P(w)

⎟
⎠
⎞

⎜
⎝
⎛ π

4
*W

P(w)
Q(w)

⎟
⎠
⎞

⎜
⎝
⎛ π

4
*W

4
π---
6-89 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
which is the result of the computation as performed.
Notes:

DTAN does not always meet the 8 significant decimal digit precision requirement
for double precision RTL routines because of a limitation in the algorithm. The
algorithm multiplies the input value (X) by 4/π to determine the octant. The integer
part of the product |X*4/π| is the octant. Depending on whether the octant is even
or odd, the fraction part or the sign inverse of one minus the fraction part of |X*4/π|
is input into a set of polynomial equations to determine the tangent value. The
precision limitation is caused by using this fractional number.
Double precision floating point numbers on the AP-101 system are represented by
64 bits where the first bit is the sign, the next 7 bits give a hexadecimal exponent
biased by 64, and the final 56 bits are a fractional mantissa.

(-1)sign * 16(exponent -bias) * fraction
The fraction is composed as follows:

f = bit9*2-1 + bit10*2-2 + bit11*2-3 + ... + bit64*2-56

This means that if the number being represented is completely fractional (zero on
the left of the radix point) it can be as accurate as 1x2-56 or approximately
1.39x10-17. As the input value gets larger, more of the bits in the mantissa are
used to represent the integer portion of the number to the left of the radix point
which is used to determine the octant. This leaves fewer bits to represent the
fractional part of the number which determines the tangent value.
For exponents equivalent to 250 this means that the bits used for the fraction can
only be as accurate as

250 * 2-56 = 2-6 or 1.5625*10-2
In order to retain eight digits of accuracy in the fractional portion of the mantissa, and
therefore the tangent value, the exponent of the input must be no larger than the
equivalent of 229.

Octant (mod 4) Formula for tan

0 tan(|x|) = tan

1 tan(|x|) = cot

2 tan(|x|) = -cot

3 tan(|x|) = -tan

⎟
⎠
⎞

⎜
⎝
⎛ π

4
*R

⎟
⎠
⎞

⎜
⎝
⎛ π−

4
*R)(1

⎟
⎠
⎞

⎜
⎝
⎛ π

4
*R

⎟
⎠
⎞

⎜
⎝
⎛ π−

4
*R)(1
6-90 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: DTANH
Function: Computes hyperbolic tangent in double precision.
Invoked By:

Execution Time (microseconds): X|≤3.72529E-9: 47.8
3.72529E-9<|X| < 5.4931E-1: 177.9
5.4931E-1<|X| < 2.0101E+1: 420.6
2.0101E+1<|X|: 54.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
If |X|>20.101, return +1 or -1, according to the sign of X.
If 0.54931<|X|<20.101, then (using DEXP),

tanh(|X|)=1-

Restore sign with tanh(-X) = -tanh(X). For |X|<16-7, tanh(X) = X.

DTANH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DTANH Size of Code Area 154 Hw
Stack Requirement: 30 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: DEXP

X Compiler emitted code for HAL/S construct of the form:
TANH(X), where X is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None

X||2e+1
2

6-91 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
For other values of X, 16-7<|X|<0.54931, use a continued fraction approximation:

where the values of the constants are:
C0 = X'C0F6E12F40F5590A' =-.9643735440816707
C1 = X'419DA5D6FD3DBC84' = 9.8529882328255392
C2 = X'C31C504FEF537AF6' =-453.01951534852503
C3 = X'424D2FA31CAD8D00' = 77.186082641955181
C4 = X'C3136E2A5891D8E9' =-310.8853383729134
C5 = X'4219B3ACA4C6E790' = 25.701853083191565

C0

X2 + C1 + C2

X2 + C3 +
C4

X2 + C5

tanh(X) = X + X3
6-92 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: EATAN2

Invoked By:

Execution Time (microseconds): 120.0
Input Arguments:

Output Results:

Errors Detected:

Comments:
For a very small number of input arguments, the EATAN2 routine will return results
that are accurate to 5 significant decimal digits (instead of the 6 significant decimal
digits that are generally required for single precision routines). For most of the
range of the EATAN2 routine, results are returned that are accurate to 6 significant
decimal digits.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
The pointer to the data area that contains quadrant section constants is set and the
sign of sin(x) is saved. The value Z = |sin(x)|/|cos(x)| is checked for several special
cases.

EATAN2
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EATAN2 Size of Code Area 148 Hw
Stack Requirement: 18 Hw Data CSECT Size: 10 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

Function: Computes arctangent by fractional approximation in the range
(-π,π) in single precision.

X Compiler emitted code for HAL/S construct of the form:
ARCTAN2(X,Y), where X and Y are single precision scalars

corresponding to sine and cosine
respectively of the intended arctangent
argument.

Other Library Modules:

Type Precision How Passed Units
Scalar(sin) SP F0 -
Scalar(cos) SP F2 -

Type Precision How Passed Units
Scalar SP F0 Radians

Error # Cause Fixup
62 arg 1 = arg 2 = 0 Return 0
6-93 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Now, all of the special cases have been checked for. If the routine gets this far, it is
time to reduce Z = tan x so that Z < tan π/12(tan 15°)
There are four cases to examine for Z in the 1st quadrant.
A) Z>1. Use 1/Z.

tan 15°<1/Z<1
1/Z<tan 15°

B) Z <1
tan 15°<Z<1
Z<tan 15°
For Z or 1/Z>tan 15°, the reduction
tan-1(Z) = π/6 + tan(Y), where Y = (Z -1)/(Z+) is used.

To protect significant bits, Y is computed as

Y = (Z (- 1) - 1 + Z)/(Z +)
Once Z or 1/Z<tan 15°, the formula for arctan Z can be applied.

= D + CZ2 + (B/(Z2 + A)),

where the constants have the following values (hex values are used in the routine):

To adjust the angle to the proper section, the appropriate section constant is added
to or subtracted from the intermediate result, as follows:

(1) If cos(x)<0 and Z<16-6, then return π * SIGNUM(sin(x)).
(2) If sin(x) = cos(x) = 0, then signal error and return 0.
(3) If sin(x) ≠ 0, cos(x) = 0, then return ±π/2 * SIGNUM(sin(x)).
(4) If sin(x) ≠ 0, cos(x) ≠ 0, but Z>166, again return ±π/2 =

(π/2*SIGNUM(sin(x))).
(5) If (Z or 1/Z)<16-3, return Z.
(6) If exponent of sin(x) - exponent of cos(x)>7, return ±π/2.

A = X'41168A5E' = 1.4087812
B = X'408F239C' = 0.55913711
C = X'BFD35F49' = -0.051604543
D = X'409A6524' = 0.60310579

Z<tan 15° → + 0 (E'0')
tan 15°<Z<1 → + π/6 (X'40860A92')
1/Z<tan 15° → - π/2 (X'C11921FB')
tan 15°<1/Z<1 → - π/3 (X'C110C152)

3 3

3 3

Z
)Z(tan 1−
6-94 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
We now have the correct angle for the first quadrant. All that remains is to fix the
quadrant. If the cos(x)<0, then tan-1(X) = π - tan-1(Z). That fixes the angle to agree
with the sign of cos(x). Now make the sign of the answer agree with the sign of
sin(x) ,i.e. - tan-1(Z) for -sin(x) and +tan-1(Z) for +sin(x). The result, in radians, is in
the correct quadrant in the range (-π, +π).
6-95 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
EATAN2
Secondary Entry Name: ATAN

Invoked By:

Execution Time (microseconds): 116.5

Input Arguments:

Output Results:

Errors Detected:

Comments:
For a very small number of input arguments, the ATAN routine will return results
that are accurate to 5 significant decimal digits (instead of the 6 significant decimal
digits that are generally required for single precision routines). For most of the
range of the ATAN routine, results are returned that are accurate to 6 significant
decimal digits.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Very similar to EATAN2, but the only special case that can be checked is Z =
|tan(x)|<(16)-3. If Z is this small, then return Z to avoid an underflow exception later
on. The algorithm for reduction and computation of tan-1(Z) is the same as
EATAN2 again until quadrant fixing time. Since ARCTAN has only one arg, the
result can only be adjusted in the range (-π/2, +π/2). The tan-1(Z) is computed for
the first quadrant.
If the argument, tan(x), is negative, the result is made negative.

Function: Computes arctangent by fractional approximation in the range
(-π/2, + π/2) in single precision.

X Compiler emitted code for HAL/S construct of the form:
ARCTAN(X), where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 Radians

Error # Cause Fixup
None
6-96 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: EPWRE
Function: Exponentiation of a single precision scalar to a single precision scalar power.
Invoked By:

Execution Time (microseconds): If Y = .5: 124.7
 If Y≠ .5: 337.1

Input Arguments:

Output Results:

Errors Detected:

Comments:
For most of the range, the EPWRE routine will return results that are accurate to 4
significant decimal digits (instead of the 6 significant decimal digits that are
generally required for single precision routines).
Except for the detection of errors 4 and 24, no range or overflow checking is
performed.
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:

If exponent = 0.5 compute X0.5 as (by using the external SQRT function).
Otherwise, XY = eY ln X, using the external EXP and LOG functions.

EPWRE
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EPWRE Size of Code Area 32 Hw
Stack Requirement: 22 Hw Data CSECT Size: 4 Hw

Intrinsic x Procedure
Other Library Modules Referenced: EXP,LOG,SQRT

X Compiler emitted code for HAL/S construct of the form:
X**Y, where X and Y are single precision scalars.

Other Library Modules:

Type Precision How Passed Units
Scalar (base) SP F0 -
Scalar (exponent) SP F2 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
4 Zero raised to power ≤0 Return 0
24 Base<0 Use |base|

X

6-97 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: EPWRI
Function: Exponentiation of a single precision scalar to a double precision integer

power.
Invoked By:

Execution Time (microseconds):
38.2 + (n-1) * 16.2 + 6.0m + 14.2 (if exponent negative), where
n = number of significant digits in binary representation of |exponent|.
m = number of significant 1's in binary representation of |exponent|.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Other than detection of Error 4, no additional range or exponent overflow checking
is done. According to the Space Shuttle Model AP101-S Principles of Operation,
an exponent overflow occurs when the result exponent exceeds 16**63 and an
exponent underflow occurs when the result exponent is less than 16**-64. For
base ** |exp|, if |base|>1 then an exponent overflow is possible. If exp<0 and
0<|base|<1 then an exponent underflow is possible. If the exponent underflow
mask bit is zero (inhibiting the interrupt) then the result is a true zero. This will
cause a divide by zero GPC error when the reciprocal of the result is taken. If the
exponent underflow mask bit is one (enabling the interrupt) then the operands are

EPWRI
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EPWRI Size of Code Area 38 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
X**I, where X is a single precision scalar, and I is a

double precision integer.

Other Library Modules:

Type Precision How Passed Units
Scalar (base) SP F0 -
Integer (exponent) DP R6 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
4 Zero raised to power < 0 Return 0
6-98 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
unchanged. This could cause an exponent overflow when the reciprocal of the
result is taken.
Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:
Let I = |exponent|, E = base. Write

I= ei
2i

, where ei = 0 or 1 for all i.

Then

EI =E = π;E = πei=1
E 2i if some ei = 1, and = 1 otherwise.

The product πei=1
E 2i

 is computed in a loop. Each time around the loop, E2k is

multiplied by itself to give . The k+1-st bit is shifted out of the exponent. If it
is 1 ,is multiplied into the result. If not, the result is left alone. When the
remaining exponent is zero, the loop is finished and the result is EI. If the exponent
was positive, return EI. Otherwise, return the reciprocal of EI.

∑ =
32

0i

Σiei2
i ei2

i

1k2E +

1k2E +
6-99 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
EPWRI
Secondary Entry Name: EPWRH
Function: Exponentiation of a single precision scalar to a single precision integer power.
Invoked By:

Execution Time (microseconds): same as EPWRI, except constant is 38.8.

Input Arguments:

Output Results:

Errors Detected:

Comments:
For most of the range of the EPRWH routine, results are returned that are accurate
to 4 significant decimal digits (instead of the 6 significant decimal digits that are
generally required for single precision routines).
Other than detection of Error 4, no additional range or exponent overflow checking
is done. According to the Space Shuttle Model AP101-S Principles of Operation,
an exponent overflow occurs when the result exponent exceeds 16**63 and an
exponent underflow occurs when the result exponent is less than 16**-64. For
base ** |exp|, if |base|>1 then an exponent overflow is possible. If exp<0 and
0<|base|<1 then an exponent underflow is possible. If the exponent underflow
mask bit is zero (inhibiting the interrupt) then the result is a true zero. This will
cause a divide by zero GPC error when the reciprocal of the result is taken. If the
exponent underflow mask bit is one (enabling the interrupt) then the operands are
unchanged. This could cause an exponent overflow when the reciprocal of the
result is taken.
Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:
Halfword exponent is shifted right to convert to a fullword. Then, EPWRI routine is
used.

X Compiler emitted code for HAL/S construct of the form:
X**I, where X is a single precision scalar, and I is a

single precision integer.

Other Library Modules:

Type Precision How Passed Units
Scalar (base) SP F0 -
Integer (exponent) SP R6 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
4 Zero raised to power < 0 Return 0
6-100 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: EXP
Function: Computes eX in single precision.
Invoked By:

TANH, EPWRE, SINH
Execution Time (microseconds): 141.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Gives exponent underflow if argument is less than -180.21826 --No RTL error
number; GPC error group 3 code 9. The error will not be detected if the program
status word masks out the underflow errors.
Registers Unsafe Across Call: F0,F1,F2.

Algorithm:
Let X (log2e) = 4R-S-T, where R and S are integers, 0<S<3, and 0<T<1.

Then exp(X) = 16R * 2-S * 2-T

EXP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EXP Size of Code Area 108 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
EXP(X), where X is a single precision scalar

X Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
6 X>174.67308 Return maximum positive floating point number

Warning: For values in the range -180.21826<X<-180.21806 the EXP routine
returns values accurate to only 5 significant digits, instead of the expected
6.
6-101 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
2-T is computed by a fractional approximation of the form:

2-T=1+

The computation is carried out in fixed-point, and the values and scaling of the
constants are:

The multiplication by 2-S is carried out by shifting right S places, and the
multiplication of 16R is done by adding R to the floating exponent.

A = X'576AE119' = 87.417497 at bit 7
B = X'269F8E6B' = 617.97227 at bit 11
C = X'B9059003' = -0.03465736 at bit (-4)
D = X'B05CFCE3' = -9.95459578 at bit 4

2
2

T+A
B+D+T-CT

2T
6-102 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: IPWRI
Function: Computes double precision integer to positive double precision integer

power.
Invoked By:

Execution Time (microseconds): k+16.4(n-1)+7.0m+0.4(n-2) if n>2, where k=44.6,
n = # of significant digits in binary representation of arg2,
m = # of significant ones in binary representation of
arg2.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Except for Error 4, no range or overflow checking is performed.
Registers Unsafe Across Call: R5

IPWRI
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:IPWRI Size of Code Area 46 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
arg 1 ** arg 2, where arg 1 is a double precision integer

variable, and arg 2 is a positive double
precision integer literal. A literal
which has a magnitude greater than 32,767
is considered to be a double precision

Other Library Modules:

Type Precision How Passed Units
Integer (base) DP R5 -
Integer (exponent) DP R6 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
4 Zero raised to power < 0 Return 0
6-103 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Shift all halfwords to convert to fullwords. Let B = base, I = exponent.

Write I= ei2i where ei = 1 for each i. Then:

 BI =ΠiBe
i
2i = Πei=1B2

i if some ei = 1, and = 1 otherwise.

The product Πei=1B2i
 is computed in a loop. Each time around the loop, B2k is

multiplied by itself to give B2k +1. The k+1-st bit is shifted out of the exponent and
tested. If it is 1, the partial result is multiplied by B2k +1. If not, the partial result is
left as is. When the remaining exponent is 0, the result is EI and the exit is taken
from the loop. The answer is stored in ARG5 to be available after registers are
restored.

∑ =
32

0i
6-104 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
IPWRI
Secondary Entry Name: IPWRH
Function: Computes double precision integer to positive single precision integer power.
Invoked By:

Execution Time (microseconds): Same as for IPWRI, except k = 46.6.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Except for the detection of error 4 no range or overflow checking is performed.
Registers Unsafe Across Call: R5

Algorithm:
See IPWRI.

X Compiler emitted code for HAL/S construct of the form:
arg 1 ** arg 2, where arg 1 is a double precision integer

variable, and arg 2 is a positive single
precision integer literal. A literal
which has a magnitude between 0 and
32,767 is considered to be a single
precision

Other Library Modules:

Type Precision How Passed Units
Integer (base) DP R5 -
Integer (exponent) SP R6 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
4 Zero raised to power < 0 Return 0
6-105 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
IPWRI
Secondary Entry Name: HPWRH
Function: Computes single precision integer to positive single precision integer power.
Invoked By:

Execution Time (microseconds): Same as for IPWRI, except k = 49.4.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5

Algorithm:
See IPWRI.

X Compiler emitted code for HAL/S construct of the form:
arg 1 ** arg 2, where arg 1 is a double precision integer

variable, and arg 2 is a positive single
precision integer literal. A literal
which has a magnitude between 0 and 32,767
is considered to be a single precision.

Other Library Modules:

Type Precision How Passed Units
Integer (base) SP R5 -
Integer (exponent) SP R6 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
4 Zero raised to power < 0 Return 0
6-106 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: LOG
Function: Computes the natural log(X) in single precision.
Invoked By:

ASINH, ATANH, EPWRE, ACOSH
Execution Time (microseconds): 140.5
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,Fl,F2,F3,F4,F5.

Algorithm:
Write X = 16P * 2-Q * M, where P and Q are integers, 0<Q<3, and 1/2<M<1. P, Q,

and M are found by fixed-point calculations. Let A = 1, B = 0, if M > , and
A = 1/2, B = 1 otherwise.

Let Z=(M-A)/(M+A). Then log(X) = (4P-Q-B)log 2+ log((1+Z)/(1-Z)).

LOG
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: LOG Size of Code Area 80 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
LOG(X), where X is a single precision scalar.

X Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
7 Argument outside range X>0 For X<0, return LOG(|X|)

For X = 0, return maximum negative
floating point number

2
2-------
6-107 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Log((1+Z)/(1-Z)) is computed by an approximation of the form:

 W+W

where W = 2Z, and the values of the constants are:
R = X'408D8BC7' = 0.55291413
S = X'416A298C' = 6.6351437

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

2

WS
RW
6-108 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: SINH
Function: Computes hyperbolic sine in single precision.
Invoked By:

Execution Time (microseconds): 1≤|X|≤1.75366E+2: 235.6
 2.0394E-4 ≤|X|<1: 80.7
 |X|<2.0394E-4: 40.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,Fl,F2,F3,F4,F5.

Algorithm:
If X<2.04E-4, then sinh(X) = X. If 2.04E-4≤|X|<1, then sinh(X) is computed via a
polynomial approximation.
The form of the polynomial is:

sinh(X) = X + C1X3 + C2X5 + C3X7

where the values of the constants are:

SINH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: SINH Size of Code Area 82 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: EXP

X Compiler emitted code for HAL/S construct of the form:
SINH(X) where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
9 Argument outside range: X|≤175.366 Return maximum positive

floating point number

C1 = X'402AAAB8' = 0.16666734
C2 = X'3F221E8C' = 0.008329912
C3 = X'3DD5D8B3' = .2039399E-3
6-109 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Otherwise, sinh(|X|) or cosh(|X|) is calculated using EXP. The number V, equal to
0.4995050, is introduced to control rounding errors and the formula is as follows:

sinh(X) =

cosh(X) =

the identities sinh(-X) = -sinh(X) and cosh(-X) = cosh(X) are used to recover sinh(X)
and cosh(X) from sinh(|X|) and cosh(|X|).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− +

+
logv)(X

2
logv)(X

e
ve

2v
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− +

+
logv)(X

2
logv)(X

e
ve

2v
1

6-110 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
SINH
Secondary Entry Name: COSH
Function: Computes hyperbolic cosine in single precision.
Invoked By:

Execution Time (microseconds): 228.9
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,Fl,F2,F3,F4,F5.

Algorithm:
See SINH Algorithm.

X Compiler emitted code for HAL/S construct of the form:
COSH(X) where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
9 Argument outside range: |X|≤175.366 Return maximum positive

floating point number
6-111 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: SNCS
Function: Computes sine(X) and cosine(X) in single precision.
Invoked By:

Execution Time (microseconds): (TBD)

Input Arguments:

Output Results:

Errors Detected:

Comments:
For a very small number of input arguments, the SNCS routine will return results
that are accurate to 5 significant decimal digits (instead of the 6 significant digits
that are generally required for single precision routines). For most of the range of
the SNCS routine, results are returned that are accurate to the 6 significant decimal
digits.
Called as a library by compiler: uses only fixed-point registers R1 and R3 which are
restored at exit from an intrinsic.
The value used in the routine for π*218 is hex'45C93E10'≈824289.
Registers Unsafe Across Call: R2,R3,F0,Fl,F2,F3,F4.

SNCS
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: SNCS Size of Code Area 122 Hw
Stack Requirement: 0 Hw Data CSECT Size: 28 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
SIN(X) and COS(X) where X is a single precision scalar

that is recognized as the same for
both invocations.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 Radians

Type Precision How Passed Units
Scalar SP F0 -
Scalar (COS result) SP F2 -

Error # Cause Fixup

8 Argument outside range:
|X|<π*218

Return
2

2-------
6-112 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:

Let |X|* =Q + R, Q an integer, 0<R<1. Add 4 to Q if the sine is desired and X<0,
and add 2 to Q if the cosine is desired. Since sin (-x) = sin (x+π), and cos

(x) = sin This reduces the problem of computing sin(x) for x>0.

Since Q has been adjusted, it is only necessary to compute sin

If Q0 = Q mod 8, then this is equal to sin .

The eight cases of this yield, through simple trigonometric identities:

Let R0 = R in octants 0, 2, 4, 6 and R0 = 1-R in octants 1, 3, 5, 7.

We compute sin (R0*) in octants 0, 3, 4, 7 and cos (R0*) in octants 1, 2, 5, 6,

and negate the result in octants 4, 5, 6, 7.

Q0 = 0: sin (R*)

1: cos

2: cos (R*)

3: sin

4: -sin (R*)

5: -cos

6: -cos (R*)

7: -sin

4
π---

⎟
⎠
⎞

⎜
⎝
⎛ +π x

2

⎟
⎠
⎞

⎜
⎝
⎛ +π R)(Q*

4

⎟
⎠
⎞

⎜
⎝
⎛ +π)R(Q*

4 0

π
4---

⎟
⎠
⎞

⎜
⎝
⎛ π−

4
*R)(1

π
4---

⎟
⎠
⎞

⎜
⎝
⎛ π−

4
*R)(1

π
4---

⎟
⎠
⎞

⎜
⎝
⎛ π−

4
*R)(1

π
4---

⎟
⎠
⎞

⎜
⎝
⎛ π−

4
*R)(1

π
4---

π
4---
6-113 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Sin (R0*) and cos(R0*) are computed by polynomial approximations.

The form of the approximation for sine is:

sin (R0*) = R0(a0+a1R0
2 +a2R0

4+a3R0
6)

where the values of the constants are:

The form of the approximation for cosine is:

cos (R0*) = 1+a1R0
2 +a2R0

4+a3R0
6

where the values of the constants are:

a0 = X'40C90FDB' = .78539819
a1 = X'C014ABBC' =-.080745459
a2 = X'3EA32F62' = .0024900069
a3 = X'BD25B368' =-.000035943

a1 = X'C04EF4EE' =-.30842483
a2 = X'3F40ED0F' = .0158510767
a3 = X'BE14F17D' =-.000319570

π
4---

π
4---

π
4---

π
4---
6-114 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
SNCS
Secondary Entry Name: COS
Function: Computes cosine(X) in single precision.
Invoked By:

Execution Time (microseconds): -π< X < π: 124.5
X > π or X < -π: 123.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
For a very small number of input arguments, the COS routine will return results that
are accurate to 5 significant decimal digits (instead of the 6 significant decimal
digits that are generally required for single precision routines). For most of the
range of the COS routine, results are returned that are accurate to 6 significant
decimal digits.
The value used in the routine for π ∗ 218 is hex'45C93E10'≈824289.
Registers Unsafe Across Call: R2,R3, F0,Fl, F2,F3,F4.

Algorithm:
See SNCS Algorithm.

X Compiler emitted code for HAL/S construct of the form:
COS(X), where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 Radians

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup

8 Argument outside range |X|<π*218 Return
2

2-------
6-115 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
SNCS
Secondary Entry Name: SIN
Function: Computes sine(X) in single precision.
Invoked By:

Input Arguments:

Output Results:

Errors Detected:

Comments:
For a very small number of input arguments, the SIN routine will return results that
are accurate to 5 significant digits (instead of the 6 significant decimal digits that
are generally required for single precision routines). For most of the range of the
SIN routine, results are returned that are accurate to 6 significant decimal digits.
See SNCS comments.
The value used in the routine for π*218 is hex'45C93E10'≈824289.
Registers Unsafe Across Call: R2,R3, F0,Fl, F2,F3,F4.

Algorithm:
See SNCS Algorithm.

X Compiler emitted code for HAL/S construct of the form:
SIN(X), where X is a single precision scalar.

Other Library Modules:

Execution Time (microseconds): -π < X < π: 124.5
X > π or X < -π: 123.6

Type Precision How Passed Units
Scalar SP F0 Radians

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup

8 Argument outside range |X|<π*218 Return
2

2-------
6-116 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: SQRT
Function: Computes square root in single precision.
Invoked By:

ACOS, ASINH, EPWRE, VV10S3, ACOSH
Execution Time (microseconds): 88.3

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: Rl,R4,R5,R6,R7,F0,Fl,F2,F3.

Algorithm:

Write X = 162P-Q * M, where ≤M<1. Then, =16P * 4-Q * . This fact is

used to obtain a good first approximation to by approximating by a
hyperbolic approximation. The form of the approximation is, for Q=0

=a- [is to avoid fixed-point overflow for large M]

where the calculations are done in fixed-point.

SQRT
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: SQRT Size of Code Area 48 Hw
Stack Requirement: 0 Hw Data CSECT Size: 14 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
SQRT(X), where X is a single precision scalar.

X Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
5 Argument outside range: X>0 Return SQRT (|X|)

1
16------ X M

X M

M

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

2
M

2
C

b
2
M

2
C +
6-117 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
The values of the constants are:

For Q = 1, and are used instead of a and b.

The first approximation is improved with two passes of the Newton-Raphson
iteration. The form of the first is:

Y1 =

The form of the second, to minimize truncation errors, is:

Y2 = +

Y2 is returned as the answer.

a = X'0lAE7D00' = 1.6815948 at bit 7
b = X'FF5B02Fl' = -1.2889728 at bit 7

= X'35CFC610' = 0.42040325 at bit 0

= X'006B9F40' = 0.4203987 at bit 7

= X'FFD6C0BD' = -0.3222432 at bit 7

C
2----

a
4---

b
4---

a
4---

b
4---

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

0
0

Y
Y
X

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

1
1 Y

XYY
2
1

0
1Y

X

6-118 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: TAN
Function: Computes tangent in single precision.
Invoked By:

Execution Time (microseconds): 164.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
For a very small number of input arguments, the TAN routine will return results that
are accurate to 5 significant decimal digits (instead of the 6 significant decimal
digits that are generally required for single precision routines). For most of the
range of the TAN routine, results are returned that are accurate to 6 significant
decimal digits.
The value used in the routine for π*218 is hex'45C93E10'≈824289.
Registers Unsafe Across Call: F0,Fl,F2,F3,F4,F5.

Algorithm:

Let |X| * = Q+R. Q an integer, 0≤R<1. Give the characteristic of |X|* to
X'00000008' for later use as a comparand, to determine nearness of X to a

TAN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: TAN Size of Code Area 116 Hw
Stack Requirement: 20 Hw Data CSECT Size: 4 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
TAN(X), where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 Radians

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
11 Argument outside range: |X|<π*218 Return 1

12 Argument too close to singularity of
tangent function

Return maximum
positive floating point
number

4
π---

4
π---
6-119 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
singularity.
We have the following table:

For Q mod 4 even, let w = R, and for Q mod 4 odd, let w = 1-R. If |W|<16-3, then

Q(W)=b0. Compute two polynomials in w, as polynomials in u = :

P(w) = w (a0 + u)

Q(w) = b0 + b1u + b2u2

then tan(w) = , cot(w) = and the above table describes how tan(x) is

computed. Finally, tan(x) is computed using the identity tan(-x)=-tan(x).
The values of the constants are:

NOTE: When |x| is close to zero (|x|<10-10), zero is returned, and not the value x.

Q mod 4 tan(X)

0 tan(|X|) = tan (R*)

1 tan(|X|) = cot ((1-R) *)

2 tan(|X|) = -cot (R*)

3 tan(|X|) = -tan ((1-R) *)

a0 = X'C1875FDC' =-8.4609032
b0 = X'ClAC5D33' =-10.7727537
b1 = X'415B40FD' = 5.7033663
b2 = X'C028C93' =-.15932077

π
4---

π
4---

π
4---

π
4---

2
w2

Q(w)
P(w)

P(w)
Q(w)
6-120 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: TANH
Function: Computes hyperbolic tangent in single precision.
Invoked By:

Execution Time (microseconds): |X|≤2.4414E-4: 38.2
 2.4414E-4<|X|≤7.0E-1: 78.7
 7.0E-1<|X|<9.011: 224.4
 9.011≤|X|: 42.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,Fl,F2,F3,F4,F5.

Algorithm:
If |X|>9.011, return +1 or -1, according to the sign of X.
If 0.7<|X|<9.011, then (using EXP), tanh(|X|)=1-2/(1+e2|X|).
Restore sign with tanh(-X) = -tanh(X). For |X|<16-3, tanh(X) = X. For other values
of X, 16-3<|X|<0.7, use a rational approximation where the values of the constants
are:

TANH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: TANH Size of Code Area 58 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: EXP

X Compiler emitted code for HAL/S construct of the form:
TANH(X), where X is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None

a = X'EF7EA70' =-.003782895
b = X'C0D08756' =-.81456511
c = X'41278C49' = 2.4717498
6-121 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3.3 Vector/Matrix Routine Descriptions
This subsection presents a class of routines which deal with HAL/S vector/matrix
operations. Some of the routines implement HAL/S language built-in functions while
others implement HAL/S operators.

ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM0DNP

Invoked By:

Execution Time (microseconds): 6.8 + n(4.0 + 8.0m)
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R3, R4,R5,R6,F0,F1.

MM0DNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM0DNP Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a double precision scalar to all positions in an n x m partition
of a double precision matrix.

X Compiler emitted code for HAL/S construct of the form:
MA TO B,C TO D=S; where M is a double precision matrix, and

either or both of the 'TO' subscripts may
be replaced by the 'AT' subscript under
rules given by matrix types.

Other Library Modules:

Type Precision How Passed Units
Scalar(s) DP F0 -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Matrix(n,m) DP R1→0th element -

Error # Cause Fixup
None
6-122 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Uses two nested loops:
Outer loop selects row;
Inner loop selects column and moves scalar to current row/column position.
Upon exiting inner loop, 'outdel' is added to pointer to output matrix location.
6-123 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM0SNP
Function: Fill an n x m partition of a single precision matrix with a single precision

scalar.
Invoked By:

Execution Time (microseconds): 6.4 + n(4.4 + 6.4m)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R3, R4,R5,R6,R7,F0,F1.

Algorithm:
Uses two nested loops, one on n; one on m;
Inner loop selects row and column of result matrix and moves input scalar into
location. At exit of inner loop, pointer to matrix element is incremented by outdel,
new row is selected, and inner loop is executed again.

MM0SNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM0SNP Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 MA TO B,C TO D =S; where M is a double precision matrix, and

either or both of the 'TO' subscripts may
be replaced by the 'AT' subscript under
rules given by matrix types.

Other Library Modules:

Type Precision How Passed Units
Scalar(s) SP F0 -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Matrix(n,m) SP R1→0th element -

Error # Cause Fixup
None
6-124 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM1DNP
Function: Moves a partition of a double precision matrix.
Invoked By:

Execution Time (microseconds): 10.8 +n(5.4 + 12.2m) for n x m matrix moved.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7,F0,F1,F2.

MM1DNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM1DNP Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 M2=M1A TO B,C TO D

M2A TO B,C TO D=M1;

where M1 and M2 are double precision
matrices, and either or both of the
'TO' subscripts may be replaced by the
'AT' subscript under rules given by
matrix types.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) DP R2→ 0th element -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(indel, outdel) DP R7(indel in highest Hw,

outdel in Low Hw)
-

Type Precision How Passed Units
Matrix(n,m) DP R1→ 0th element -

Error # Cause Fixup
None
6-125 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Loops on # rows;
 Loops on # columns;
 Load and store current element pointed to by input/output pointers;
 Increment pointers to next row element;
 End column loop;
 Increment input pointer by indel;
 Increment output pointer by outdel;
End row loop;
6-126 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM1SNP
Function: Moves a partition of a single precision matrix.
Invoked By:

Execution Time (microseconds): 10.8 +n(5.4 + 9.4m) for n x m matrix.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7,F0,F1.

MM1SNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM1SNP Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 M2=M1A TO B,G TO D

M2A TO B,C TO D=M1;

where M1 and M2 are single precision
matrices, and either or both of the 'TO'
subscripts may be replaced by the 'AT'
subscript under rules given for matrix
types.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) SP R2→0th element -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(indel, outdel) DP R7 (high Hw=indel, Low Hw=outdel) -

Type Precision How Passed Units
Matrix(n,m) SP R1→0th element -

Error # Cause Fixup
None
6-127 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
 Loop on # rows;
 Loop on # columns;
 Load and store current element pointed to by input/output pointer;
 Increment pointers to next row;
 End column loop;
 Increment input pointer by indel;
 Increment output pointer by outdel;
 End row loop;
6-128 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM1TNP

Invoked By:

Execution Time (microseconds): 10.4 + n(5.8 + 10.6m) for n x m move.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2.

MM1TNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM1TNP Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a partition of a double precision matrix and stores it as a single
precision matrix.

X Compiler emitted code for HAL/S construct of the form:
M2=M1A TO B,C TO D

M2A TO B,C TO D=M1;

where M2 is a single precision matrix,
and M1 is a double precision matrix.
Both or either of the 'TO' subscripts
may be replaced by the 'AT' subscript
under rules given for matrix types.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) DP R2→0th element -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(indel,outdel) SP R7 -

Type Precision How Passed Units
Matrix(n,m) SP R1→0th element -

Error # Cause Fixup
None
6-129 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
 Loops on # rows;
 Loops on # columns;
 Load long input element pointed to by input pointer;
 Store short into output element pointed to by output pointer;
 Increment pointer to next element;
 End column loops;
 Increment input pointer by indel;
 Increment output pointer by outdel;
 End row loop;
6-130 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM1WNP

Invoked By:

Execution Time (microseconds): 13.6 + n(5.0 + 11.0m) for n x m move.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7,F0,F1,F2.

MM1WNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM1WNP Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a partition of a single precision matrix and stores it as a double
precision matrix.

X Compiler emitted code for HAL/S construct of the form:
 M2=M1A TO B,C TO D

M2A TO B,C TO D=M1;

where M1 is a single precision matrix.
M2 is a double precision matrix. Both
or either of the 'TO' subscripts may be
replaced by the 'AT' subscripts under
rules given for matrix types.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) SP R2→0th element -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(indel,outdel) SP R7 -

Type Precision How Passed Units
Matrix(n,m) DP R1→0th element -

Error # Cause Fixup
None
6-131 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
 Clears lower half of floating point register pair.
 Loops on # rows;
 Loops on # columns;
 Load short input element pointed to by input pointer;
 Store long (with zeroed second word) into output element pointer;
 Increment pointers to next row element;
 End column loop;
 Increment input pointer by indel;
 Increment output pointer by outdel;
 End row loop;
6-132 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM6DN
Function: Multiplies two double precision matrices.
Invoked By:

Execution Time (microseconds): 22.2 + m(10.8 + l (21.2 + 27.2n))
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7,F0,F1,F2,F3 F4,F5.

Algorithm:
Uses 3 loops:

Innermost (on n) multiplies a row of M1 by a column of M2;
The second loop (on l) resets the column pointer;
The outer loop (on m) resets the row pointer.

MM6DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM6DN Size of Code Area 42 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 M1 M2,where M1 is a m x n double precision matrix⎤

 M2 is a n x l double precision matrix⎦ m,n l ≠ 3;
Other Library Modules:

Type Precision How Passed Units
Matrix(m,n) DP R2→0th element -
Matrix(n,l) DP R3→0th element -
Integer(m) SP R5 -
Integer(n) SP R6 -
Integer(l) SP R7 -

Type Precision How Passed Units
Matrix(m,l) DP R1→0th element -

Error # Cause Fixup
None
6-133 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM6D3
Function: Multiplies two 3 x 3 double precision matrices.
Invoked By:

Execution Time (microseconds): 671.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7, F0,F1,F2,F3,F4,F5.

Algorithm:
Explicitly multiplies row by column, element by element. Uses BCTB to advance to
each new column, and BCTB to advance to each new row.

MM6D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM6D3 Size of Code Area 32 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 M1 M2, where M1 and M2 are double precision 3 x 3

matrices.

Other Library Modules:

Type Precision How Passed Units
Matrix(M1) DP R2→0th element -
Matrix(M2) DP R3→0th element -

Type Precision How Passed Units
Matrix(3,3) DP R1→0th element -

Error # Cause Fixup
None
6-134 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM6SN
Function: Multiplies two single precision matrices.
Invoked By

Execution Time (microseconds): 22.2 + m(10.8 + l (20.2 + 18.0n))
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2,F3,F4,F5.

Algorithm:
Same as MM6DN.

MM6SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM6SN Size of Code Area 40 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 M1 M2,where M1 is a m x n double precision matrix⎤

 M2 is a n x l double precision matrix⎦ m,n l ≠ 3;
Other Library Modules:

Type Precision How Passed Units
Matrix(m,n) SP R2→0th element -
Matrix(n,l) SP R3→0th element -
Integer(m) SP R5 -
Integer(n) SP R6 -
Integer(l) SP R7 -

Type Precision How Passed Units
Matrix(m,l) SP R1→0th element -

Error # Cause Fixup
None
6-135 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM6S3
Function: Multiplies two 3 x 3 single precision matrices.
Invoked By:

Execution Time (microseconds): 409.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7,F0,F1,F2,F3,F4,F5.

Algorithm:
Same as MM6D3, except the matrices are single precision.

MM6S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM6S3 Size of Code Area 24 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
M1 M2, where M1 and M2 are 3 x 3 single precision
matrices.

Other Library Modules:

Type Precision How Passed Units
Matrix(M1) SP R2→0th element -
Matrix(M2) SP R3→0th element -

Type Precision How Passed Units
Matrix(3,3) SP R1→0th element -

Error # Cause Fixup
None
6-136 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM11DN
Function: Transposes an n x m double precision matrix.
Invoked By:

Execution Time (microseconds): 8.0 + m(5.8 + 12.2n)
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7,F0,F1,F2.

Algorithm:
Uses two nested loops:

Outer loop selects column of input matrix;
Inner loop moves elements of selected column to corresponding row of result
matrix.

MM11DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM11DN Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 TRANSPOSE(M)or MT where M is an n x m double precision

matrix and m and/or n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) DP R2→0th element -
Integer SP R5 -
Integer SP R6 -

Type Precision How Passed Units
Matrix(m,n) DP R1→0th element -

Error # Cause Fixup
None
6-137 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM11D3
Function: Performs transpose of 3 x 3 double precision matrix.
Invoked By:

Execution Time (microseconds): 93.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1,F2,F3,F4,F5.

Algorithm:
Uses loop to load elements of one column into registers, then store into row
elements of resultant for each pass through the loop.

MM11D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM11D3 Size of Code Area 22 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 TRANSPOSE(M)or MT where M is a 3 x 3 double precision

matrix.

Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) DP R2→0th element -

Type Precision How Passed Units
Matrix(3,3) DP R1→0th element -

Error # Cause Fixup
None
6-138 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM11SN
Function: Transpose an n x m single precision matrix.
Invoked By:

Execution Time (microseconds): 8.4 + m(5.8 + 9.4n)
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3, R4,R5,R6,R7,F0,F1.

Algorithm:
Uses two nested loops:

Outer loop selects which column of input matrix to use;
Inner loop loads and stores column elements as row elements of result.

MM11SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM11SN Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 TRANSPOSE(M)or MT where M is an n x m single precision

matrix and m and/or n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) SP R2→0th element -
Integer(#rows=n) SP R5 -
Integer(#columns=m) SP R6 -

Type Precision How Passed Units
Matrix(m,n) SP R1→0th element -

Error # Cause Fixup
None
6-139 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM11S3
Function: Performs transpose of 3 x 3 single precision matrix.
Invoked By:

Execution Time (microseconds): 71.8
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1,F2.

Algorithm:
Uses loop to load F0, F1, F2 with columns of input matrix and store them as rows of
output matrix for columns 1 → 3, rows 1 → 3.

MM11S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM11S3 Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 TRANSPOSE(M)or MT where M is a 3 x 3 single precision

matrix.

 Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) SP R2→0th element -

Type Precision How Passed Units
Matrix(3,3) SP R1→0th element -

Error # Cause Fixup
None
6-140 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM12DN
Function: Find the determinant of an n x n double precision matrix.
Invoked By:

Execution Time (microseconds): for n=2: 63.2
 for n>4:

minimum time = 59.4 + 10.2n2 +

maximum time = 59.4 + 10.2n2 +

See MM12SN LRD for a description of maximum time vs. minimum time.

Input Arguments:

Output Results:

Errors Detected:

MM12DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM12DN Size of Code Area 164 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
DET(M), where M is an n x n, double precision matrix,

and n ≠ 3.
 Other Library Modules:

Type Precision How Passed Units
Matrix(n,n) DP R2→0th element -
Matrix(n,n) workarea DP R4 -
Integer(n) SP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None

54.8k2 81.2k 115.6+ +()
k 1=

n 1–

∑

60.2k2 134.8k 169.0 3.6n+ + +()
k 1=

n 1–

∑

6-141 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Same as MM12SN.
6-142 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM12D3
Function: Find the determinant of a 3 x 3 double precision matrix.
Invoked By:

MM14D3
Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.
For singular matrices, an expected value of 0 may not be returned due to lost
precision.
Also, exponent overflow range checking is not performed.

Algorithm:
Uses direct code, no loops to calculate determinant. See algorithm for MM12S3.

MM12D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM12D3 Size of Code Area 44 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
DET(M), where M is a double precision 3 x 3 matrix.

X Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) DP R2→0th element -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-143 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM12SN
Function: Find the determinant of an n x n single precision matrix.
Invoked By:

Execution Time (microseconds): for n=2: 44.4
for n≥4:

 minimum time = 47.8 + 7.8n2 +

 maximum time = 47.8 + 7.8n2 +

The minimum time occurs in the event that all matrix elements are positive and where
no row or column switching is required at any point of the computation.
The maximum time occurs in the event that all matrix elements require
complementing to obtain their absolute value, BIG changes on every comparison,
and row and column switching are required at every point in the computation.
Input Arguments:

Output Results:

MM12SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM12SN Size of Code Area 138 Hw
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
DET(M), where M is a n x n single precision matrix, and

n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Matrix(n,n) SP R2→0th element -
Matrix(n,n) workarea SP R4 -
Integer(n) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

37.6k2 64.6k 85.8+ +()
k 11=

n 1–

∑

41.6k2 105.8k 3.6n+ +()
k 11=

n 1–

∑

6-144 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
 DET = 1.0 ⎫
 FOR K = 1 TO N1 DO ⎥
 BIG = 0 ⎥
 I1 = J1 = K ⎥
 FOR I = K TO N DO ⎥
 FOR J = K TO N DO ⎬ find maximal element
 IF ABS(A(I,J))>BIG THEN DO ⎥
 BIG = ABS(A(I,J)); ⎥
 I1 = I; ⎥
 J1 = J; ⎥
 END ⎥
 END ⎥
 END ⎥
 IF I1 ≠ K THEN DO ⎭
 DET = -DET
 FOR J = K TO N SWITCH(A(I1,J),A(K,J)) switch rows
 END
 IF J1 ≠ K THEN DO
 DET = -DET
 FOR I = K TO N SWITCH(A(I,J1),A(J,K)); switch columns
 END
 DET = DET*A(K,K) product of diagonal element
 FOR I = K + 1 TO N DO
 TEMP1 = -A(1,K)/A(K,K) reduce
 FOR J = K + 1 TO N DO
 A(I,J) = A(I,J) + A(K,J) * TEMP1
 END
 END
 END
 DET = DET*A(N,N) last diagonal element
 If dim = 2, then special case:
 DET = A(1,1)*A(2,2)-A(1,2)*A(2,1)

Error # Cause Fixup
None
6-145 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM12S3
Function: Find the determinant of a single precision 3 x 3 matrix.
Invoked By:

MM14S3
Execution Time (microseconds): 116.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Uses direct inline code to calculate

 det = M11 M22 M33 + M12 M23 M31 + M13 M21 M32
 - M31 M22 M13 - M32 M23 M11 - M33 M21 M12

MM12S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM12S3 Size of Code Area 26 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic x Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
DET(M), where M is a single precision 3 x 3 matrix.

X Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) SP R2→0th element -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-146 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM13DN
Function: Calculates TRACE of an n x n double precision matrix.
Invoked By:

Execution Time (microseconds): 12.0 + 10.2n
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6,F0,F1.

Algorithm:
Creates a skip value of n+1; Uses loop counting down n-1 to zero, each pass
summing a diagonal element of the matrix by using the skip value to increment
from the previous diagonal element.

MM13DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM13DN Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
TRACE(M), where M is an n x n double precision matrix,

and n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Matrix(n,n) DP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-147 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM13D3
Function: Calculates TRACE of a 3 x 3 double precision matrix.
Invoked By:

Execution Time (microseconds): 19.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,F0,F1.

Algorithm:
Direct code, no loops to calculate M11 + M22 + M33.

MM13D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM13D3 Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
TRACE(M), where M is a 3 x 3 double precision matrix.

Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) DP R2→0th element -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-148 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM13SN
Function: Calculates TRACE of an n x n single precision matrix.
Invoked By:

Execution Time (microseconds): 8.8 + 6.2n
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6,F0.

Algorithm:
Creates a skip value of n+1; uses loop counting down n-1 to zero, each pass
summing a diagonal element of the matrix by using the skip value to increment
from the previous diagonal element.

MM13SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM13SN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
TRACE(M), where M is a single precision n x n matrix,

n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Matrix(n,n) SP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-149 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM13S3
Function: Calculates TRACE of a 3 x 3 single precision matrix.
Invoked By:

Execution Time (microseconds): 9.8
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,F0.

Algorithm:
 Straight code to calculate M11 + M22 + M33.

MM13S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM13S3 Size of Code Area 4 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

x Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
TRACE(M), where M is a 3 x 3 single precision

matrix.

Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) SP R2→0th element -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-150 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM14DN
Function: Inverts an n x n double precision matrix.
Invoked By:

Execution Time (microseconds): for n=2: 173.8,
 for n≥4: 63.0 + 129.5n + 43.0n2 + 65.4n3

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Same as MM14SN, except that pivot element divide operation is done by
multiplying by reciprocal to save time over use of long divide instruction.

MM14DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM14DN Size of Code Area 288 Hw
Stack Requirement: 28 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: MM15DN

X Compiler emitted code for HAL/S construct of the form:
 M-1 or INVERSE(M), where M is an n x n double precision

matrix, n ≠ 3.
 Other Library Modules:

Type Precision How Passed Units
Matrix(n,n) DP R4→0th

element
-

Integer(n) SP R5 -
Matrix(n,n) workarea DP R7 -

Type Precision How Passed Units
Matrix DP R2→0th element -

Error # Cause Fixup
27 Singular matrix Return identity matrix
6-151 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM14D3
Function: Inverts a 3 x 3 double precision matrix.
Invoked By:

Execution Time (microseconds): 795.4
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.
For singular matrices, the identity matrix and error message may not be returned
due to lost precision in calculating the determinant (refer to MM12D3). A small
determinant value could result in exponent overflow during the '1/determinant'
calculation. Exponent overflow range checking is not performed.

Algorithm:
Explicit code, no loops; algorithm same as MM14S3 except that external routines
used are MM12D3 and MM15DN.

MM14D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM14D3 Size of Code Area 144 Hw
Stack Requirement: 26 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: MM12D3,MM15DN

X Compiler emitted code for HAL/S construct of the form:
 M-1 or INVERSE(M), where M is a 3 x 3 double precision

matrix.

Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) DP R4→0th element -

Type Precision How Passed Units
Matrix(3,3) DP R2→0th element -

Error # Cause Fixup
27 Attempted inverse of singular matrix Return identity matrix
6-152 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM14SN

Function: Inverts a single precision n x n matrix.

Invoked By:

Execution Time (microseconds): for n=2: 107.6,
for n>4: 52.0 + 39.2n + 10.5n2 + 54.6n3

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
For K = 1, N

find maximal element in row K to n, columns K to n
save it as 'BIG' pivot element
save its row # as ISW(K)
save its column # as JSW(K)
switch Kth and ISW(K)th row
switch Kth and JSW(K)th column

MM14SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM14SN Size of Code Area 246 Hw
Stack Requirement: 20 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: MM15SN

X Compiler emitted code for HAL/S construct of the form:
 M-1 or INVERSE(M), where M is a single precision n x n

matrix, n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Matrix(n,n) SP R4→0th element -
Integer(n) SP R5 -
Matrix(n,n) workarea SP R7 -

Type Precision How Passed Units
Matrix(n,n) SP R2→0th element -

Error # Cause Fixup
27 Matrix is singular Return identity matrix
6-153 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
divide Kth column except for Kth element by - BIG
reduce matrix
divide Kth row except for Kth element by BIG
replace pivot by reciprocal

DO K = N-1,1
 interchange JSW(K)th and Kth rows
 interchange ISW(K)th and Kth columns.
6-154 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM14S3
Function: Inverts a 3 x 3 single precision matrix.
Invoked By:

Execution Time (microseconds): 458.8
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Explicit code, no loops to calculate:

 inverse M = , where adjMi,j = detMi≠3,j≠3 and |M|=detM

uses external determinant routine (MM12S3) and in event of determinant of zero,
calls identity matrix routine (MM15SN).

MM14S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM14S3 Size of Code Area 80 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic x Procedure
Other Library Modules Referenced: MM12S3,MM15SN

X Compiler emitted code for HAL/S construct of the form:
M-1 or INVERSE(M), where M is a 3 x 3 single precision

matrix.

Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) SP R4→0th element -

Type Precision How Passed Units
Matrix(3,3) SP R2→0th element -

Error # Cause Fixup
27 Attempted inverse of singular matrix Return an identity

matrix

adj M()
M------------------
6-155 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM15DN

Function: Creates an n x n double precision identity matrix.
Invoked By:

MM14DN, MM14D3
Execution Time (microseconds): 15.6 + 5.0n + 11.2n2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R4,R5,R6,R7,F0,F1,F2,F3.

Algorithm:
Uses two nested loops, each counting 1 to n.
Inner loop compares both loop indices; if equal, stores 1.0 at current row/column
position; otherwise stores 0.0.

MM15DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:MM15DN Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
M0, where M is an n x n double precision matrix.

X Other Library Modules:

Type Precision How Passed Units
Integer(n) SP R5 -

Type Precision How Passed Units
Matrix(n,n) DP R1→0th

element
-

Error # Cause Fixup
None
6-156 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM15SN

Function: Creates an n x n identity matrix.
Invoked By:

MM14SN, MM14S3
Execution Time (microseconds): 10.0 + 5.2n + 9.6n2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R4,R5,R6,R7,F0,F2.

Algorithm:
Uses two nested loops, each counting 1 to n.
Inner loop checks both loop indices; if equal, stores 1.0 at current row/column
position; otherwise stores 0.0.

MM15SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM15SN Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
M0, where M is a single precision n x n matrix.

X Other Library Modules:

Type Precision How Passed Units
Integer(n) SP R5 -

Type Precision How Passed Units
Matrix(n,n) SP R1→0th element -

Error # Cause Fixup
None
6-157 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM17D3
Function: Raises a 3 x 3 double precision matrix to a power.
Invoked By:

Execution Time (microseconds):
Exponent=2: 991.6
Exponent>2: 1071.2 * (# of significant zeros in exponent)

+2137.2 * (# of ones in exponent)
-2105.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Loads R5 with literal 3 and drops in MM17DN code.

MM17D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM17D3 Size of Code Area 80 Hw
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
MI, where M is a 3 x 3 double precision matrix and I is

an integer literal >1.

Other Library Modules:

Type Precision How Passed Units
Matrix(3x3) DP R4→0th element -
Integer(power) SP R6 -
Matrix(3,3) workarea DP R7 -

Type Precision How Passed Units
Matrix(3,3) DP R2→0th element -

Error # Cause Fixup
None
6-158 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MM17D3
Secondary Entry Name: MM17DN
Function: Raises an n x n double precision matrix to a power.
Invoked By:

Execution Time (microseconds):
27.8n3 + 19.4n2 + 6.2n + 43.4 if power = 2.
124.2 + TMULT(KA) + TMOVE(KA-1) + 8.6KB + 3.4 KC if power>2.
where:

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Same as MM17SN.

X Compiler emitted code for HAL/S construct of the form:
MI, where M is an n x n double precision matrix and I

is an integer literal >1.

Other Library Modules:

TMULT =

9.6 + 6.2n + 19.4n2 + 27.8n3

KA = (((# significant 1s in exponent)-1)*2) + (# of significant 0s in exponent)
TMOVE = 10.2 + 11.0n2

KB = total number of significant 1s and 0s in exponent
KC = # of significant 1s in exponent.

Type Precision How Passed Units
Matrix(n,n) DP R4→0th element -
Integer(n) SP R5 -
Integer(power) SP R6 -
Matrix(n,n) workarea DP R7 -

Type Precision How Passed Units
Matrix(n,n) DP R2→0th element -

Error # Cause Fixup
None
6-159 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MM17S3
Function: Raises a 3 x 3 single precision matrix to a power.
Invoked By:

Execution Time (microseconds):
Exponent=2: 623.6
Exponent>2: 681.6 * (# significant zeros in exponent)

+1358.0 * (# ones in exponent)
-1305.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F2,F3,F4,F5.

Algorithm:
Loads R5 with literal 3 and drops into MM17SN code.

MM17S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MM17S3 Size of Code Area 78 Hw
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
MI, where M is a 3 x 3 single precision matrix and I is

an integer literal >1.

Other Library Modules:

Type Precision How Passed Units
Matrix(3x3) SP R4→0th element -
Integer(power) SP R6 -
Matrix(3,3) workarea SP R7 -

Type Precision How Passed Units
Matrix(3,3) SP R2→0th element -

Error # Cause Fixup
None
6-160 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MM17S3
Secondary Entry Name: MM17SN
Function: Raises an n x n single precision matrix to a power.
Invoked By:

Execution Time (microseconds):
if power=2: then 15.6n3 + 15.2n2 + 5.8n + 43.8
if power>2: same as in MM17DN except

TMULT = 10.0 + 5.8n + 15.2n2 + 15.6n3

TMOVE = 10.2 + 8.6n2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F2,F3,F4,F5.

Algorithm:
Let A = original matrix, R = result matrix, T = temporary matrix.
1. R = A A
2. locate first one bit in exponent, remove it, remember bit position
3. go to step 6
4. T = R
5. R = T T
6. Remove exponent bit at current position, increment position. If bit was 0 go to

step 9.
7. T = R
8. R = T A
9. If any bits left in exponent, go to step 4, otherwise R is complete.

X Compiler emitted code for HAL/S construct of the form:
MI, where M is a n x n single precision matrix and I is

an integer literal >1.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,n) SP R4→0th element -
Integer(n) SP R5 -
Integer(power) SP R6 -
Matrix(n,n)workareas SP R7 -

Type Precision How Passed Units
Matrix(n,n) SP R2→0th element -

Error # Cause Fixup
None
6-161 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MV6DN
Function: Multiplies a double precision m x n matrix by a length n double precision

vector.
Invoked By:

Execution Time (microseconds):
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2,F3,F4,F5.

Algorithm:
Uses 2 nested loops, outer loop selecting rows of matrix, inner loop summing
products of vector elements with current row elements.

MV6DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MV6DN Size of Code Area 24 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
M V, where M is a double precision m x n matrix, V is

a length n double precision vector, and m and/or
n ≠ 3.

Other Library Modules:

Type Precision How Passed Units
Matrix(m,n) DP R2→0th element -
Vector(n) DP R3→0th element -
Integer(m) SP R5 -
Integer(n) SP R6 -

Type Precision How Passed Units
Vector(m) DP R1→0th element -

Error # Cause Fixup
None
6-162 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MV6D3
Function: Multiplies a double precision 3 x 3 matrix by a length 3 double precision

vector.
Invoked By:

Execution Time (microseconds): 304.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2,F3.

Algorithm:
Uses 2 nested loops, outer loop selecting rows of matrix, inner loop summing
products of vector elements with current row elements.

MV6D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MV6D3 Size of Code Area 24 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
M V, where M is a double precision 3 x 3 matrix and V is

a double precision length 3 vector.

Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) DP R2→0th element -
Vector(3) DP R3→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-163 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MV6SN
Function: Multiplies a single precision m x n matrix by a length n single precision vector.
Invoked By:

Execution Time (microseconds): 11.2 + m(11.0 + 18.4n)
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2,F3,F4,F5.

Algorithm:
Uses 2 nested loops, outer loop selecting rows of matrix, inner loop summing
products of vector elements with current row elements.

MV6SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MV6SN Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
M V, where M is an m x n single precision matrix. V is

a length n single precision vector, m and/or n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Matrix(m,n) SP R2→ 0th element -
Vector(n) SP R3→ 0th element -
Integer(m) SP R5 -
Integer(n) SP R6 -

Type Precision How Passed Units
Vector(m) SP R1→ 0th element -

Error # Cause Fixup
None
6-164 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: MV6S3
Function: Multiplies a 3 x 3 single precision matrix by a length 3 single precision vector.
Invoked By:

Execution Time (microseconds): 137.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,F0,F1,F2,F3.

Algorithm:
The product of each vector element and the current row element is summed and
stored in the proper element output vector.

MV6S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MV6S3 Size of Code Area 30 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
M V, where M is a single precision 3 x 3 matrix, and V

is a single precision length 3 vector.

Other Library Modules:

Type Precision How Passed Units
Matrix(3,3) SP R2→0th element -
Vector(3) SP R3→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-165 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: VM6DN
Function: Multiplies length n double precision vector and n x m double precision matrix.
Invoked By:

Execution Time (microseconds): 23.2 + m(23.2 + 27.6n)
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2,F3,F4,F5.

Algorithm:
Uses two nested loops:

Outer loop selects matrix column.
Inner loop sums products of vector elements with matrix column elements.

VM6DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VM6DN Size of Code Area 26 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V M, where V is a double precision length n vector, n ≠

3, and M is a double precision n x m matrix, n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Matrix(n,m) DP R3→0th element -
Integer(m) SP R6 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(m) DP R1→0th element -

Error # Cause Fixup
None
6-166 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: VM6D3
Function: Multiplies a length 3 double precision vector by a 3 x 3 double precision

matrix.
Invoked By:

Execution Time (microseconds): 227.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1,F2,F3,F4,F5.

Algorithm:
Saves pointer to input vector (R2) so that R2 can be used to address both input
vector and matrix by appropriate loading.
Loops 3 times:

Loads elements of vector into F0,F2,F4;
Switches R2 to point to matrix;
Sums products of column elements with vector elements;
Restores R2 to point at vector;
Makes next pass.

VM6D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VM6D3 Size of Code Area 24 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V M, where V is a double precision length 3 vector, and M

is a double precision 3 x 3 matrix.

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→0th element -
Matrix(3,3) DP R3→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-167 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: VM6SN
Function: Multiply a length n single precision vector by a n x m single precision matrix.
Invoked By:

Execution Time (microseconds): 12.4 + m(19.2 + 18.2n)
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F2,F3,F4,F5.

Algorithm:
Uses two nested loops; outer loop selecting matrix column, inner loop performs
summation of products of vector elements and matrix column elements.

VM6SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VM6SN Size of Code Area 22 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V M, where V is a single precision n-vector, n ≠ 3.

M is an n x m matrix, n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Matrix(n,m) SP R3→0th element -
Integer(m) SP R6 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(m) SP R1→0th element -

Error # Cause Fixup
None
6-168 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: VM6S3
Function: Multiplies a length 3 single precision vector by a 3 x 3 single precision matrix.
Invoked By:

Execution Time (microseconds): 141.2
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1,F2,F3.

Algorithm:
Uses one loop, looping three times, each pass addressing new column of matrix for
explicit multiplication and summing, by elements of vector and storing into result.
R1 is setup to contain both input matrix and output vector pointer in its two halves.
Then circular shifts are used to place appropriate pointer into high Hw for use as
base.

VM6S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VM6S3 Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V M, where V is a single precision length 3 vector. M is

a single precision 3 x 3 matrix.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Matrix(3,3) SP R3→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-169 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VO6DN
Function: Performs vector outer product of two double precision vectors.
Invoked By:

Execution Time (microseconds): 12.8 + n(5.8 + 24.4m)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F4.

Algorithm:
Uses two loops based on the dimensions of the vectors:

Inner loop (indexing on 'n') multiplies element of V1 by each element of V2
creating a row of result matrix.
Outer loop (indexing on 'm') moves to next element of V1 and moves pointer to
next row of result matrix.

VO6DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VMO6DN Size of Code Area 20 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1 V2, where V1 and V2 are double precision vectors of

length n and m respectively, where n and/or m ≠ 3.
Other Library Modules

Type Precision How Passed Units
Vector(n) DP R2⏐0th element -
Vector(m) DP R3→ 0th element -
Integer(n) SP R5 -
Integer(m) SP R6 -

Type Precision How Passed Units
Matrix(n,m) DP R1 → 0th element -

Error # Cause Fixup
None
6-170 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VO6D3
Function: Computes vector outer product of length 3 double precision vectors.
Invoked By:

Execution Time (microseconds): 251.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,F0,F1.

Algorithm:
Same algorithm as VO6DN except that loop extents are set to literally 3.

 DO FOR I = 3 TO 1 BY -1;
 DO FOR J = 3 TO 1 BY -1;
 M$(I,J) = V1$(I) V2$(J);
 END;
 END;

VO6D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VMO6D3 Size of Code Area 22 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1 V2, where V1 and V2 are double precision length 3

vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→0th element -
Vector(3) DP R3→0th element -

Type Precision How Passed Units
Matrix(3,3) DP R1→0th element -

Error # Cause Fixup
None
6-171 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VO6SN
Function: Calculates vector outer product of 2 single precision vectors.
Invoked By:

Execution Time (microseconds): 14.2 + n(5.8 + 14.4m)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1,F4,F5.

Algorithm:
Same as VO6DN

VO6SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VMO6SN Size of Code Area 20 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1 V2, where V1 and V2 are single precision vectors of

length n and m respectively, where n and/or m ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Vector(m) SP R3→0th element -
Integer(n) SP R5 -
Integer(m) SP R6 -

Type Precision How Passed Units
Matrix(n,m) SP R1→0th element -

Error # Cause Fixup
None
6-172 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VO6S3
Function: Calculates vector outer product of 2 single precision length 3 vectors.
Invoked By:

Execution Time (microseconds): 160.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,F0,F1.

Algorithm:
Same algorithm as VO6DN except that loop extents are set to literally 3.

VO6S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VMO6SN Size of Code Area 20 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 V1 V2, where V1 and V2 are single precision length 3

vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Vector(3) SP R3→0th element -

Type Precision How Passed Units
Matrix(3,3) SP R1→0th element -

Error # Cause Fixup
None
6-173 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV0DN

Invoked By:

VV10D3
Execution Time (microseconds): 7.0 + 5.1n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R4,R5,F0,F1.

Algorithm:
Uses loop counting down length (n). Stores zero into one element of vector on
each pass through loop.

VV0DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV0DN Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Initializes all elements of a double precision vector of length n, to the
null vector (0).

X Compiler emitted code for HAL/S construct of the form:
V=0, where V is a double precision vector.

X Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Integer(n) SP F5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-174 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV0DNP
Function: Fills a column of a double precision matrix with zeros.
Invoked By:

Execution Time (microseconds): 7.0 + 7.2n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R4,R5,R7,F0,F1.

Algorithm:
Loops 'length' times;
Each pass through loop stores zero into vector element pointed to by R1 and then
increments R1 by outdel.

VV0DNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV0DNP Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
M*,n= 0, where M is a double precision matrix.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Integer(outdel) SP R7 -
Integer(length) SP R5 -

Type Precision How Passed Units
Vector(length) DP R1→ 0th element -

Error # Cause Fixup
None
6-175 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV0SN
Function: Generates a vector of length n, all of whose elements are zero, i.e. null

vector.
Invoked By:

VV10S3
Execution Time (microseconds): 7.0 + 5.6n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R4,R5,F0.

Algorithm:
Uses loop counting down length of vector (n); Stores zero into one element of
vector on each pass through loop.

VV0SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV0SN Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V = 0, where V is a single precision vector.

X Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→ 0th element -

Error # Cause Fixup
None
6-176 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV0SNP

Invoked By:

Execution Time (microseconds): 7.0 + 6.0n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R4,R5,R7,F0,F1.

Algorithm:
Loops 'length' times;
Each pass through loop stores input scalar into vector element pointed to by R1
and then increments R1 by outdel.

VV0SNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV0SNP Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a single precision scalar to all elements of a column of a single
precision matrix.

X Compiler emitted code for HAL/S construct of the form:
 M*,n= S; where M is a single precision matrix and S is a

single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Integer(outdel) SP R7 -
Integer(length) SP R5 -

Type Precision How Passed Units
Vector(length) SP R1→ 0th element -

Error # Cause Fixup
None
6-177 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1DN

Invoked By:

Execution Time (microseconds): 4.2 + 10.2n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.

Algorithm:
Loop n times; using indexing, BCTB on length; load and store each element, last
element first.

VV1DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1DN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length n double precision vector. Also used to move
matrices.

X Compiler emitted code for HAL/S construct of the form:
X = Y, where X is a length n double precision vector, Y

is a length n double precision vector, n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R2→ 0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→ 0th element -

Error # Cause Fixup
None
6-178 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1D3
Function: Moves a length 3 partition of a double precision vector.
Invoked By:

Execution Time (microseconds): 25.2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5.

Algorithm:
Load, then store each element.

VV1D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1D3 Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 XA TO B = YC TO D, where XA TO B and YC TO D are length 3

partitions of double precision vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→ 0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(3) DP R1→ 0th element -

Error # Cause Fixup
None
6-179 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1D3P

Invoked By:

Execution Time (microseconds):
46.0 if neither input nor output is contiguous.
48.4 if either input or output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Performs single setup of size and then uses VV1DNP.
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
Initialize R5 with literal 3; Fall into VV1DNP routine; R6, R7 specify distance in Hw
between input and output vector elements, respectively.

VV1D3P
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1D3P Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length 3 double precision vector or row or column of a matrix
to a vector or row or column of a matrix.

X Compiler emitted code for HAL/S construct of the form:
 V=MA TO B, C, where M is a double precision matrix, A TO B

is a length 3 partition, and V is a 3-vector.

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→ 0th element -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector(3) DP R1→ 0th element -

Error # Cause Fixup
None
6-180 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV1D3P
Secondary Entry Name: VV1DNP

Execution Time (microseconds):
11.4n + 10.2 if neither input nor output is contiguous.
11.4n + 12.6 if either input or output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
Tests outdel, if 0, sets it to 4 (halfwords); Tests indel, if 0, sets it to 4 (halfwords);
Loops 'length' times, adding indel to input pointer and outdel to output pointer each
time. Each loop moves current input element to current output element.

Function: Moves a length n double precision vector or row or column of a
matrix to a row or column vector.

X Compiler emitted code for HAL/S construct of the form:
 V=MA TO B, C, where M is a double precision matrix, A TO B

is a length n partition, and V is an n-vector,
n ≠ 3.

Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-181 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1SN

Invoked By:

Execution Time (microseconds): 4.2 + 7.8n
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.

Algorithm:
Loop n times using indexing and BCTB on length. Load, then store each element,
last element first.

VV1SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1SN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length n partition of a single precision vector. Also used to
move matrices.

X Compiler emitted code for HAL/S construct of the form:
 V1A TO B=V2C TO D, where V1A TO B and V2C TO D are length n

partitions of single precision
vectors, n ≠ 3.

Other Library Modules

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th element -

Error # Cause Fixup
None
6-182 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1S3
Function: Moves a length 3 partition of a single precision vector.
Invoked By:

Execution Time (microseconds): 16.8
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5.

Algorithm:
Simple Load-Store sequence for each element.

VV1S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1S3 Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
 V1A TO B=V2A TO B, where V1A TO B and V2A TO B are length 3

partitions of single precision vectors.

Other Library Modules

Type Precision How Passed Units
Vector(3) SP R2→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-183 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1S3P

Invoked By:

Execution Time (microseconds):
38.4 if neither input nor output is contiguous.
40.8 if either input or output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Performs simple setup of size for use by VV1SNP code.
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
Initialize R5 with literal 3; Fall into VV1SNP routine; R6, R7 specify distance in Hw
between input and output vector elements respectively.

VV1S3P
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1S3P Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a single precision 3-vector (or row or column of a matrix) to a
3-vector (or row or column of a matrix), when elements are not
contiguous.

X Compiler emitted code for HAL/S construct of the form:
V=MA TO B,C, where M is a single precision matrix, A TO

B is a length 3 partition, and V is a 3-
vector.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Integer(indel) SP R6 Hw
Integer(outdel) SP R7 Hw

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-184 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV1S3P
Secondary Entry Name: VV1SNP

Invoked By:

Execution Time (microseconds):
8.6n + 10.2 if neither input nor output is contiguous.
8.6n + 12.6 if either input or output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
Tests outdel, if 0, sets it to 2 (halfwords).
Tests indel, if 0, sets it to 2 (halfwords).
Loops 'length' times, adding indel to input pointer and outdel to output pointer each
time. Each loop moves current input element to current output element.

Function: Moves a length n single precision vector or row or column of a
matrix to a row or column vector.

X Compiler emitted code for HAL/S construct of the form:
V=MA TO B,C,

MA TO B,C=V,or

MA TO B,C=NA TO B,C

where M and N are single precision
matrices, A TO B is a length n
partition, and V is an n-vector, n ≠ 3.

Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Integer(indel) SP R6 Hw
Integer(outdel) SP R7 Hw
Integer(length) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th element -

Error # Cause Fixup
None
6-185 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1TN

Invoked By:

Execution Time (microseconds): 4.2 + 9.0n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.

Algorithm:
Using indexing and BCTB on length, loops, loading long and storing short, last
element first.

VV1TN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1TN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length n partition of a double precision vector and converts it
to single precision. Also used to move matrices.

X Compiler emitted code for HAL/S construct of the form:
V1A TO B=V2C TO D, where V2C is a length n partition of a

double precision vector and V1A TO B is a
length n partition of a single precision
vector, n ≠ 3.

Other Library Modules

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th element -

Error # Cause Fixup
None
6-186 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1T3

Invoked By:

Execution Time (microseconds): 21.2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5.

Algorithm:
Simple Load/Store for each element.

VV1T3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1T3 Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length 3 partition of a double precision vector and converts
it to single precision.

X Compiler emitted code for HAL/S construct of the form:
V1A TO B=V2C TO D, where V1A TO B is a length 3 partition of

a single precision vector and V2C TO D is
a length 3 partition of a double
precision vector.

Other Library Modules

Type Precision How Passed Units
Vector(3) DP R2→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-187 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1T3P

Invoked By:

Execution Time (microseconds):
38.4 if neither input nor output is contiguous.
40.8 if either input or output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
Loads R5 with literal 3,
Falls into VV1TNP routine.

VV1T3P
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1T3P Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length 3 partition of a double precision vector or row or
column of a matrix to a single precision vector or row or column of a
matrix, when elements are not contiguous.

X Compiler emitted code for HAL/S construct of the form:
 V=MA TO B,C, where V is a single precision 3-vector and M

is a length 3 partition of a double precision
matrix A TO B,C

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→0th element -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-188 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV1T3P
Secondary Entry Name: VV1TNP

Invoked By:

Execution Time (microseconds):
8.6n + 10.2 if neither input nor output is contiguous
8.6n + 12.6 if either input or output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
If outdel=0, set to 2 (halfwords);
If indel=0, set to 4 (halfwords);
Loops 'length' times, adding indel to input pointer and outdel to output pointer each
time. Each loop moves current input element to current output element.

Function: Moves a length n partition of a double precision vector or row or
column of a matrix to a single precision length n row or column vector,
when elements are not contiguous.

X Compiler emitted code for HAL/S construct of the form:
V=MA TO B,C, where V is a length n single precision vector

and MA TO B,C is a length n partition of a
double precision matrix, n ≠ 3.

Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Integer(outdel) SP R7 -
Integer(indel) SP R6 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th element -

Error # Cause Fixup
None
6-189 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1WN

Invoked By:

Execution Time (microseconds): 8.4 + 9.0n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.

Algorithm:
Clear F0,F1. Loop using indexing on BCTB, last element first.
Load short element into F0, Store long F0/F1 element.

VV1WN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1WN Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length n partition of a single precision vector and converts
it to a length n partition of a double precision vector.

X Compiler emitted code for HAL/S construct of the form:
V1A TO B=V2C TO D, where V2C is a length n partition of a

single precision vector, and V1A TO B is a
length n partition of a double precision
vector, n ≠ 3.

Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-190 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1W3

Invoked By:

Execution Time (microseconds): 23.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1.

Algorithm:
Clear F1;
Then explicit code to load (SP) each element of input vector and store (DP) into
each element of result vector.

VV1W3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1W3 Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length 3 partition of a single precision vector and converts it
to a length 3 partition of a double precision vector.

X Compiler emitted code for HAL/S construct of the form:
 V1A TO B=V2C TO D, where V2C TO D is a length 3 partition of

a single precision vector, and V1A TO B is
a length 3 partition of a double
precision vector.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-191 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV1W3P

Invoked By:

Execution Time (microseconds):
44.8 if neither input nor output is contiguous.
47.2 if either input or output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Sets up length for use by VV1WNP.
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
Loads R5 with literal 3, falls into VV1SNP.

VV1W3P
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV1W3P Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Moves a length 3 partition of a single precision vector or row or
column of a matrix, to a double precision vector or row or column of a
matrix, when elements are not contiguous.

X Compiler emitted code for HAL/S construct of the form:
 V=MA TO B,C, where V is a double precision 3-vector and MA

TO B,C is a length 3 partition of a single
precision matrix.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-192 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV1W3P
Secondary Entry Name: VV1WNP

Invoked By:

Execution Time (microseconds):
10.2n + 15.0 if either input or output is contiguous.
10.2n + 12.6 if neither input nor output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,R6,R7,F0,F1.

Algorithm:
Clears F1. If outdel=0, set to 4 (halfwords); if indel=0, set to 2 (halfwords); Loop
'length' times, adding indel to input pointer and outdel to output pointer each time.
Each loop moves current input element to current output element.

Function: Moves a length n partition of a single precision row or column of a
matrix to a double precision vector or row or column of a matrix,
when elements are not contiguous.

X Compiler emitted code for HAL/S construct of the form:
 V=MA TO B,C, where V is a length n double precision

vector and MA TO B,C is a length n partition
of a single precision matrix, n ≠ 3.

Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Integer(outdel) SP R7 Hw
Integer(indel) SP R6 Hw
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-193 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV2DN
Function: Add two double precision vectors of length n. Also used to add two matrices.
Invoked By:

Execution Time (microseconds): 8.8 + 20.6n
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Uses indexing in load, add, store sequence controlled by BCTB on length.
Loading of an element is done with two LE instructions instead of one LED due to
addressing inadequacies of R3 which is the input pointer.

VV2DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV2DN Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1+V2, where V1 and V2 are double precision vectors of

length ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Vector(n) DP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-194 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV2D3
Function: Add two double precision 3-vectors.
Invoked By:

Execution Time (microseconds): 51.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,F0,F1,F2,F3,F4,F5.

Algorithm:

Adds double from V1 to F0, F2, F4;
Stores double into elements of result.

VV2D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV2D3 Size of Code Area 22 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1+V2, where V1 and V2 are double precision 3-vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→0th element -
Vector(3) DP R3→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None

Loads F0,F2,F4 with first half of each element of
V2. Loads F1,F3,F5 with second half of each
element of V2.

⎫
⎬
⎭

Due to addressing
peculiarities of R3.
6-195 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV2SN
Function: Add two single precision vectors of length n. Also used to add two matrices.
Invoked By:

Execution Time (microseconds): 8.4 + 13.6n
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Uses indexing in load, add, store sequence controlled by BCTB on length.

VV2SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV2SN Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1+V2, where V1 and V2 are single precision vectors of

length ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Vector(n) SP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th element -

Error # Cause Fixup
None
6-196 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV2S3
Function: Adds two single precision 3-vectors.
Invoked By:

Execution Time (microseconds): 29.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,F0,F2,F4.

Algorithm:
Loads elements of V1 into F0,F2,F4.
Adds element of V2 respectively.
Stores F0,F2,F4 into elements of result.

VV2S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV2S3 Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1+V2, where V1 and V2 are single precision 3-vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Vector(3) SP R3→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-197 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV3DN

Invoked By:

Execution Time (microseconds): 6.0 + 22.7n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Exchange contents of R2/R3 for addressing considerations. Uses indexed load,
subtract, store sequence controlled by BCTB on length. Load of minuend elements
is done with two LE instructions due to use of R3 as index.

VV3DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV3DN Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Subtracts one double precision length n-vector from another. Also
used to subtract matrices.

X Compiler emitted code for HAL/S construct of the form:
V1-V2, where V1 and V2 are double precision vectors of

length ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) V1 DP R2→0th element -
Vector(n)V2 DP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-198 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV3D3
Function: Subtracts two double precision vectors of length 3.
Invoked By:

Execution Time (microseconds): 55.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,F0,F1.

Algorithm:
Exchange contents of R2 and R3 for addressing considerations.
Load minuend elements into F0/F1, F2/F3, F4/F5 using two LE instructions each
because of R3 addressing rules.
Subtract subtrahend elements.
Store results using STED into result location.

VV3D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV3D3 Size of Code Area 24 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1-V2, where V1 and V2 are double precision 3-vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3)V1 DP R2→0th element -
Vector(3)V2 DP R3→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-199 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV3SN

Invoked By:

Execution Time (microseconds): 8.4 + 13.6n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Uses indexed load, subtract, store sequence controlled by a BCTB loop on 'length'.

VV3SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV3SN Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Subtracts one length n single precision vector from another. Also
used to subtract matrices.

X Compiler emitted code for HAL/S construct of the form:
V1-V2, where V1 and V2 are single precision vectors of

length ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n)V1 SP R2→0th element -
Vector(n)V2 SP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th

element
-

Error # Cause Fixup
None
6-200 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV3S3
Function: Subtracts two single precision vectors of length 3.
Invoked By:

Execution Time (microseconds): 29.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,F0,F2,F4.

Algorithm:
Load minuend elements into F0,F2,F4.
Subtract subtrahend elements from F0,F2,F4 respectively.
Store F0,F2,F4 into result elements.

VV3S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV3S3 Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1 - V2, where V1 and V2 are single precision

3-vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3)V1 SP R2→0th element -
Vector(3)V2 SP R3→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-201 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV4DN

Invoked By:

Execution Time (microseconds): 7.0 + 23.4n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1,F2,F3.

Algorithm:
Uses BCTB loop to count down 'length', performing load, multiply, store for each
element.

VV4DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV4DN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Multiplies each element of a double precision length n vector by a
double precision scalar. Also used to multiply matrix by scalar.

X Compiler emitted code for HAL/S construct of the form:
V S, where V is a double precision vector of length ≠ 3

and S is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Scalar DP F0 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-202 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV4D3

Invoked By:

Execution Time (microseconds): 68.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3.

Algorithm:
Simple load, multiply, store sequence for each element.

VV4D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV4DN Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Multiplies each element of a double precision vector of length 3 by a
double precision scalar.

X Compiler emitted code for HAL/S construct of the form:
V S, where V is length 3 double precision vector and S

is a double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Vector(3) DP R2→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-203 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV4SN

Invoked By:

Execution Time (microseconds): 7.0 + 14.0n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1,F2,F3.

Algorithm:
Uses BCTB loop to count down 'length', performing load, multiply, store for each
element.

VV4SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV4SN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Multiplies a length n single precision vector by a single precision
scalar. Also used to multiply matrix by scalar.

X Compiler emitted code for HAL/S construct of the form:
V S, where V is a single precision vector of length ≠

3 and S is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Vector(n) SP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th element -

Error # Cause Fixup
None
6-204 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV4S3
Function: Multiplies each element of a single precision 3-vector by a single precision

scalar.
Invoked By:

Execution Time (microseconds): 38.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F2,F3.

Algorithm:
Simple load, multiply, store for each element.

VV4S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV4S3 Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V S, where V is a single precision 3-vector, and S is a

single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Vector(3) SP R2→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-205 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV5DN

Invoked By:

Execution Time (microseconds): 37.0 + 24.2n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1,F2,F3.

Algorithm:
Test F0; if zero, preset quotient to 1; otherwise, compute 1/S and then use BCTB
loop to count down 'length' performing load, multiply (by 1/S), store sequence for
each element.

VV5DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV5DN Size of Code Area 24 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Divides a double precision vector of length n by a double precision
scalar. Also used to divide matrix by scalar.

X Compiler emitted code for HAL/S construct of the form:
V/S, where V is a double precision vector of length ≠ 3

and S is a double precision scalar

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Vector(n) DP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
25 Scalar argument is zero Store original vector as result
6-206 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV5D3

Invoked By:

Execution Time (microseconds): 98.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5,F6,F7.

Algorithm:
Test F0; if zero, send error and set quotient to 1;
Otherwise, quotient 1/arg is calculated and then used in a simple load, multiply, and
store sequence for each element.

VV5D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV5D3 Size of Code Area 34 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Divide each element of a double precision length 3 vector by a
double precision scalar.

X Compiler emitted code for HAL/S construct of the form:
V/S, where V is a double precision 3-vector and S is a

double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Vector(3) DP R2→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
25 Scalar argument is zero Store original vector as result
6-207 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV5SN

Invoked By:

Execution Time (microseconds): 7.2 + 18.0n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1,F2,F3.

Algorithm:
Test F0, if zero, set F0 to 1; Uses BCTB loop to count down 'length' performing
load, divide, store sequences for each element.

VV5SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV5SN Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Divides single precision vector of length n by a single precision
scalar. Also used to divide matrix by scalar.

X Compiler emitted code for HAL/S construct of the form:
V/S, where V is a single precision vector of length ≠ 3

and S is a single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Vector(n) SP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th element -

Error # Cause Fixup
25 Scalar argument is zero Store original vector as result
6-208 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV5S3

Invoked By:

Execution Time (microseconds): 50.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3.

Algorithm:
Test F0; if zero, set F0 to floating point 1; then do a simple load, divide, and store
sequence for each element.

VV5S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV5S3 Size of Code Area 18 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

Function: Divide each element of a single precision vector of length 3 by a
single precision scalar.

X Compiler emitted code for HAL/S construct of the form:
 V/S, where V is a single precision 3-vector and S is a

single precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Vector(3) SP R2→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
25 Scalar argument is zero Store original vector as result
6-209 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV6DN
Function: Forms dot product of two double precision length n vectors.
Invoked By:

Execution Time (microseconds): 16.4 + 25.4n
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1,F2,F3.

Algorithm:
Loads R3 into R1 for addressability advantages.
Performs:

 n

Σ V1i V2i by loops counting down n;
i = 1

Each pass loads V1i, multiplies by V2i, and adds to accumulated sum in F0.

VV6DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV6DN Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1.V2 where V1 and V2 are double precision vectors of

length n, n ≠ 3.
 Other Library Modules

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Vector(n) DP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-210 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV6D3
Function: Forms dot product of two double precision 3-vectors.
Invoked By:

Execution Time (microseconds): 71.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R3,R4,F0,F1,F2,F3.

Algorithm:
Moves R3 to R1 for addressability advantages.
Performs:

 n

Σ V1i V2i via straight line code, no loops, accumulating result in F0.
i =1

VV6D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV6D3 Size of Code Area 16 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1.V2 where V1 and V2 are double precision 3-vectors.

Other Library Modules

Type Precision How Passed Units
Vector(3) DP R2→0th element -
Vector(3) DP R3→0th element -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-211 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV6SN
Function: Forms dot product of two length n single precision vectors.
Invoked By:

Execution Time (microseconds): 15.2 + 16.8n
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,F5,F0,F1,F2,F3.

Algorithm:
Moves R3 to R1 for addressability advantages.
Performs:

 n

Σ V1i V2i
i =1

by a loop counting down n; Each pass loads V1i, multiplies by V2i, and adds to accu-
mulated sum in F0.

VV6SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV6SN Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1.V2 where V1 and V2 are single precision n-vectors,

n ≠ 3.
Other Library Modules

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Vector(n) SP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-212 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV6S3
Function: Forms dot product of two single precision 3-vectors.
Invoked By:

Execution Time (microseconds): 41.8
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R3,R4,F0,F1,F2,F3.

Algorithm:
Calculates V11V21 + V12V22 + V13V23 via direct code, no loops, accumulating
result in F0.

VV6S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV6S3 Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: NONE

X Compiler emitted code for HAL/S construct of the form:
V1.V2 where V1 and V2 are single precision

3-vectors.

Other Library Modules

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Vector(3) SP R3→0th element -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-213 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV7DN
Function: Vector negate, double precision, length n. Also used to negate matrices.
Invoked By:

Execution Time (microseconds): 7.0 + 11.4n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.

Algorithm:
Uses loop to count down 'n', each pass performing load, negate, store sequence on
current vector element.

VV7DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV7DN Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
-V, where V is a double precision vector of length n,

n ≠ 3.
Other Library Modules

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→0th element -

Error # Cause Fixup
None
6-214 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV7D3
Function: Vector negate, double precision for vectors of length 3.
Invoked By:

Execution Time (microseconds): 32.4
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5.

Algorithm:
Simple, direct code sequence, no loops. Performs 3 loads, 3 negations, 3 stores.

VV7D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV7D3 Size of Code Area 20 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw
X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 -V, where V is a double precision 3-vector.

Other Library Modules

Type Precision How Passed Units
Vector(3) DP R2→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-215 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV7SN
Function: Vector negate, single precision length n. Also used to negate matrices.
Invoked By:

Execution Time (microseconds): 7.0 + 9.0n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,R5,F0,F1.

Algorithm:
Uses loop to count down 'n', each pass performing load, negate, store sequence on
current vector element.

VV7SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV7SN Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 -V, where V is a single precision vector of length n,

n ≠ 3.
Other Library Modules

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R1→0th

element
-

Error # Cause Fixup
None
6-216 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV7S3
Function: Vector negate, single precision for vectors of length 3.
Invoked By:

Execution Time (microseconds): 23.4
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R4,F0,F1,F2,F3,F4,F5.

Algorithm:
Direct, inline code, no loops. Does 3 loads, 3 negations, 3 stores.

VV7S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV7S3 Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 -V, where V is a single precision 3-vector.

Other Library Modules

Type Precision How Passed Units
Vector(3) SP R2→ 0th

element
-

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-217 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV8D3
Function: Compares two double precision 3-vectors.
Invoked By:

Execution Time (microseconds):
59.0 if X=Y;
16.2n + 24.6 if X≠Y
where n = 3 -(index of last non-matching pair of elements).

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Loads a literal 3 into R5, then drops into VV8DN code.

VV8D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV8D3 Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 IF X = Y…, where X and Y are single precision

3-vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→0th element -
Vector(3) DP R3→0th element -

Type Precision How Passed Units
Equal/not equal - Condition code -

Error # Cause Fixup
None
6-218 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV8D3
Secondary Entry Name: VV8DN

Invoked By:

Execution Time (microseconds):
16.2n + 18.0 if X=Y;
16.2m + 22.2 if X≠Y,
where m = n-(index of last non-matching pair of elements)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Loads R3 into R1 for better addressability. Loops, counting down 'size', each pass
compares values of one element of each vector. When first non-compare occurs,
branch to return point is taken, exiting loop.
Condition code is set based upon whether count down loop reaches 0. Condition
code of 00 indicates equality, 01 indicates inequality.

Function: Compares two double precision vectors of length n. Also used to
compare matrices.

X Compiler emitted code for HAL/S construct of the form:
 IF X = Y..., where X and Y are double precision vectors of

length n, n ≠ 3.

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Vector(n) DP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Equal/not equal - Condition code -

Error # Cause Fixup
None
6-219 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV8S3
Function: Compares two single precision vectors of length 3.
Invoked By:

Execution Time (microseconds):
42.8 if X=Y;
10.8n + 8.4 if X≠Y,
where n = 4 - (index of last non-matching pair of elements).

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Loads a literal 3 into R5, then continues with the VV8SN algorithm.

VV8S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV8S3 Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 IF X = Y…, where X and Y are single precision

3-vectors.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Vector(3) SP R3→0th element -

Type Precision How Passed Units
Equal/not equal - Condition code -

Error # Cause Fixup
None
6-220 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV8S3
Secondary Entry Name: VV8SN
Function: Compares two single precision vectors of length n. Also used to compare
matrices.
Invoked By:

Execution Time (microseconds):
10.8n + 8.0 if X=Y;
10.8m + 6.0 if X≠Y,
where m = n - (index of last non-matching pair of elements) + 1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,F0,F1.

Algorithm:
Loads R3 into R1 for better addressability. Loops, counting down 'size', each pass
compares values of one element of each vector. When first non-compare occurs,
branch to return point is taken, exiting loop. Condition code is set based upon
whether count down loop reaches 0. Condition code of 00 indicates equality, 01
indicates inequality.

X Compiler emitted code for HAL/S construct of the form:
 IF X = Y…, where X and Y are single precision vectors of

length n, n ≠ 3.
Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Vector(n) SP R3→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Equal/not equal - Condition code -

Error # Cause Fixup
None
6-221 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV9S3
Function: Calculates magnitude of length 3 single precision vector.
Invoked By:

Execution Time (microseconds): 168.3
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3.
This routine will generate incorrect results if the input vector element is greater than
SQRT(7.2370055773322600e + 75).

Algorithm:
Loads and multiplies each element of the input vector and adds to an accumulated
value in F0.

VV9S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV9S3 Size of Code Area 14 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: SQRT

X Compiler emitted code for HAL/S construct of the form:
ABVAL(V), where V is a single precision 3-vector.

Other Library Modules

Type Precision How Passed Units
Vector(3) SP R2→0th element -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-222 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV10D3
Function: Creates unit vector of length 3 for input 3-vector in double precision.
Invoked By:

Execution Time (microseconds): 402.7
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.
This routine will generate incorrect results if the input vector element is greater then
SQRT(7.2370055773322600e + 75).

Algorithm:
Loads R5 with literal 3, then continues with the VV10DN algorithm.

VV10D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV10D3 Size of Code Area 70 Hw
Stack Requirement: 28 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: DSQRT,VV0DN

X Compiler emitted code for HAL/S construct of the form:
 UNIT(V), where V is a double precision 3-vector.

Other Library Modules

Type Precision How Passed Units
Vector(3) DP R4→0th

element
-

Type Precision How Passed Units
Vector(3) DP R2→0th

element
-

Error # Cause Fixup
28 Input vector has all elements=0 Return input vector
6-223 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV10D3
Secondary Entry Name: VV9D3
Function: Calculates magnitude of length 3 double precision vector.
Invoked By:

Execution Time (microseconds): 300.2

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.
This routine will generate incorrect results if the input vector element is greater than
SQRT(7.2370055773322600e + 75).

Algorithm:
Loads R5 with literal 3, then continues with the VV9DN algorithm.

X Compiler emitted code for HAL/S construct of the form:
ABVAL(V), where V is a double precision 3-vector.

Other Library Modules

Type Precision How Passed Units
Vector(3) DP R2→0th element -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-224 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV10D3
Secondary Entry Name: VV9DN
Function: Calculates magnitude of length n double precision vector.
Invoked By:

Execution Time (microseconds): 226.6 + 24.4n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.
This routine will generate incorrect results if the input vector element is greater than
SQRT(7.2370055773322600e + 75).

Algorithm:
Uses loop counting down size (n), each pass squaring an element of input vector
and adding to accumulated value in F0; after loop, calls DSQRT to obtain final
result in F0.

X Compiler emitted code for HAL/S construct of the form:
 ABVAL(V), where V is a double precision vector of length n,

n ≠ 3.

Type Precision How Passed Units
Vector(n) DP R2→0th element -
Integer(n) SP R5

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-225 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV10D3
Secondary Entry Name: VV10DN
Function: Creates unit vector of length n for input vector of length n in double precision.
Invoked By:

Execution Time (microseconds): 259.7 + 47.8n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.
This routine will generate incorrect results if the input vector element is greater than
SQRT(7.2370055773322600e + 75).

Algorithm:
Uses loop to sum squares of elements of input vector. Calls DSQRT to get square
root of sum. Uses loop to divide each element of input vector by square root value
and store into result vector.

X Compiler emitted code for HAL/S construct of the form:
 UNIT(V), where V is a double precision vector of length n,

n ≠ 3.
Other Library Modules

Type Precision How Passed Units
Vector(n) DP R4→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R2→0th element -

Error # Cause Fixup
28 Every element of input vector is 0 Return input vector
6-226 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VV10S3
Function: Creates unit vector of length 3 for input 3-vector in single precision.
Invoked By:

Execution Time (microseconds): 236.4
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3.
This routine will generate incorrect results if the input vector element is greater than
SQRT(7.2370055773322600e + 75).

Algorithm:
Loads R5 with literal 3, then continues with VV10SN algorithm.

VV10S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VV10S3 Size of Code Area 46 Hw
Stack Requirement: 24 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: SQRT,VV0SN

X Compiler emitted code for HAL/S construct of the form:
 UNIT(V), where V is a single precision 3-vector.

Other Library Modules

Type Precision How Passed Units
Vector(3) SP R4→0th element -

Type Precision How Passed Units
Vector(3) SP R2→0th element -

Error # Cause Fixup
28 Input vector has all elements=0 Return input vector
6-227 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV10S3
Secondary Entry Name: VV9SN
Function: Calculates magnitude of single precision vector of length n.
Invoked By:

Execution Time (microseconds): 118.9 + 14.0n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3.
This routine will generate incorrect results if the input vector element is greater than
SQRT(7.2370055773322600e + 75).

Algorithm:
Uses loop counting down size (n), each pass squaring an element of input vector
and adding to accumulated value in F0. After loop, calls SQRT to obtain final result
in F0.

X Compiler emitted code for HAL/S construct of the form:
 ABVAL(V), where V is a single precision vector of length

n, n ≠ 3.
Other Library Modules

Type Precision How Passed Units
Vector(n) SP R2→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-228 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
VV10S3
Secondary Entry Name: VV10SN
Function: Creates unit vector of length n for input vector of length n in single precision.
Invoked By:

Execution Time (microseconds): 130.6 + 32.8n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3.
This routine will generate incorrect results if the input vector element is greater than
SQRT(7.2370055773322600e + 75).

Algorithm:
Uses loop to sum squares of elements of input vector. Calls SQRT to get square
root of sum. Uses loop to divide each element of input vector by square root return
value and store into result vector.

X Compiler emitted code for HAL/S construct of the form:
 UNIT(V), where V is a single precision vector of length n,

n ≠ 3.

Type Precision How Passed Units
Vector(n) SP R4→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R2→0th element -

Error # Cause Fixup
28 Sum of squares of all elements=0 Return zero vector
6-229 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VX6D3
Function: Forms cross product of 2 double precision 3-vectors.
Invoked By:

Execution Time (microseconds) 137.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,F0,F1,F2,F3,F4,F5.

Algorithm:
Direct code, no loops, to calculate cross product:
(X2Y3 - X3Y2, X3Y1 - X1Y3, X1Y2 - X2Y1)

VX6D3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VX6D3 Size of Code Area 36 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 X*Y, where X and Y are double precision vectors of

length 3.

Other Library Modules:

Type Precision How Passed Units
Vector(3) DP R2→0th element -
Vector(3) DP R3→0th element -

Type Precision How Passed Units
Vector(3) DP R1→0th element -

Error # Cause Fixup
None
6-230 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VX6S3
Function: Performs vector cross product of two single precision length 3 vectors.
Invoked By:

Execution Time (microseconds): 78.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,F0,F1,F2,F3.

Algorithm:
Direct code, no loops, to calculate.

(X2Y3 - X3Y2, X3Y1 - X1Y3, X1Y2 - X2Y1)

VX6S3
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VX6S3 Size of Code Area 22 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 X*Y, where X and Y are single precision vectors of

length 3.

Other Library Modules:

Type Precision How Passed Units
Vector(3) SP R2→0th element -
Vector(3) SP R3→0th element -

Type Precision How Passed Units
Vector(3) SP R1→0th element -

Error # Cause Fixup
None
6-231 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3.4 Character Routine Descriptions
This subsection presents those routines which manipulate character data. Routines
which convert to and from character data are not included here. Such routines are
found under Section 6.3.6. (Miscellaneous Routine Descriptions).

ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CASPV

Invoked By:

CPASP
Execution Time (microseconds):

if p = 0: 43.8
if p > 0:

Input Arguments:

Output Results:

CASPV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CASPV Size of Code Area 64 Hw
Stack Requirement: 0 Hw Data CSECT Size: 2 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

Function: Assigns a partition of a character string to a temporary string in a
virtual accumulator.

X Compiler emitted code for HAL/S construct of the form:
…C$(I TO J)…, where C is a Character string.

X Other Library Modules:

52.0 + 3.8 (if I is even)
+ 9.4k (if k is odd)
+ 13.1k (if I is even)

where p = minimum (J-I+1, 255)
k = ceiling (P/2)

Type Precision How Passed Units
Character - R2→descriptor -
Integer(I) SP R5 -
Integer(J) SP R6 -

Type Precision How Passed Units
Character

(temporary)
- R1→descriptor -
6-232 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6.

Algorithm:
Several checks for possible errors are made before the transfer of characters is
actually done. The index to the first character (I) is checked to be not less than 1. If
it is, then set to 1. The index to the last character (J) is checked to be less than the
length of the source string. If it is greater, then the index is set equal to the current
length. Next, if J < I, the fixup is the NULL string. If the input actually is the NULL
string, then no error is signaled. Finally, if the partition length exceeds the max
length of the destination string, then the partition is truncated. All that remains to be
done is the halfword-by-halfword transfer. The character count is incremented by
one before dividing by two so that the halfword count is rounded to the next highest
halfword if the character count was odd.
If I (the first character index) is odd then the transfer is straightforward. If even,
then there are alignment problems to work around. The odd byte of the first
halfword to move must not be moved, so halfwords crossing the "natural" halfword
boundary are moved instead.

Error # Cause Fixup
17 Indices out-of-bounds for input string Set out-of-bounds index

to first or last character of
string

m l 1 2 3 4 5 6 7 8
.

↑ ↑
R2 R5
6-233 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CASPV
Secondary Entry Name: CASP
Function: Assigns a partition of a character string to a receiver string.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6.

Algorithm:
Same as CASPV, except destination is a variable instead of a temporary.

X Compiler emitted code for HAL/S construct of the form:
C1 = C2I TO J, where C1 and C2 are character variables, and

I and J are integers.

 Other Library Modules:

if p = 0: 41.0
if p > 0:

49.2 + .8 (if p = maxlength(C1))
+ 3.8 (if I is even)
+ 9.4k (if I is odd)
+ 13.1k (if I is even)

where p = minimum (J-I+1, maxlength(C1))
k = ceiling (P/2).

Type Precision How Passed Units
Character(C2) - R2→descriptor -
Integer(I) SP R5 -
Integer(J) SP R6 -

Type Precision How Passed Units
Character(C1) - R1→descriptor -

Error # Cause Fixup
17 Index out-of-bounds for input string Set out-of-bounds index

to first or last character of
string
6-234 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CASV
Function: Character assign for output; assigns string from data to I/O buffer area.
Invoked By:

COUTP, CINP
Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5.

CASV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CASV Size of Code Area 28 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

Compiler emitted code for HAL/S construct of the form:

X Other Library Modules:

if C2 is null string: 29.2
if C2 ≠ null string: 40.2 + 9.4 (ceiling (P/2-1)) + .8

(if length(C2)>maxlength(C1)),
where p=minimum (length(C2), maxlength(C1)).

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Character - R1→descriptor -

Error # Cause Fixup
None
6-235 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
First, the max length of the destination string is set to 255. Then, the length
descriptor halfword of both the source string and the destination string are
examined. The min of the max length of the destination and the current length of
the source is taken as the new currlength of the destination. Next, the number of
halfwords to move is found by incrementing the character count by one (in case the
character count is odd) and dividing by two. If the source is a null string, the routine
exits. If the character count is odd, the last byte in the string is moved anyway
since it is always ignored. The assignment is made by moving the string halfword-
by-halfword to the location specified by the destination pointer.
6-236 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CASV
Secondary Entry Name: CAS
Function: Character assignment, non-partitioned.
Invoked By:

CIN
Execution Time (microseconds):

if input is null string: 32.0
if input ≠ null string: 43 + 9.4 * (ceiling(P/2-1)),
where p = length of input character string.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5.

Algorithm:
Same as CASV, except MAXLEN of destination is not set to 255, but left with
original MAXLEN value.

X Compiler emitted code for HAL/S construct of the form:
C1 = C2, where C1 and C2 are character strings.

X Other Library Modules:

Type Precision How Passed Units
Character(C2) - R2→descriptor -

Type Precision How Passed Units
Character(C1) - R1→descriptor -

Error # Cause Fixup
None
6-237 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CATV
Function: Catenates two character strings and stores into a temporary.
Invoked By:

Execution Time (microseconds):
Times depend on whether first source string = destination string and whether the
first source string has an odd character count creating an alignment problem.
if X is null string and Y is null: 52.2
if X and Y are not both null: XTIME + YTIME

Input Arguments:

Output Results:

Errors Detected:

CATV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CATV Size of Code Area 76 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
X||Y

Other Library Modules:

XTIME: if X is null string: 24.0
if X ≠ null string: 29.8 + 9.4 * (ceiling (P/2))
where p = length(X).

YTIME: if Y is null string: 27.8
if Y is ≠ null string:
52.1 + 14.1 * (ceiling(Q/2-1)) ⎤ if p is odd

+ 6.0 (if P+Q is odd) ⎦
32.3 + 9.4 * (ceiling (Q/2)) if p is even
where Q= minimum (length(Y), 255-P).

Type Precision How Passed Units
Character(X) - R2→descriptor -
Character(Y) - R3→descriptor -

Type Precision How Passed Units
Character(temporary) - R1→descriptor -

Error # Cause Fixup
None
6-238 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1.

Algorithm:
The lengths of the source strings are checked against the destination string for
legal values. The second source string may be truncated if its length + that of the
first source string exceed the length of the destination. If the first source string and
the destination string are the same string (found by comparing addresses), then
only the second source string is moved. After checking these things, the routine
needs only to actually move the strings. The first is a straight halfword-by-halfword
move. If its length is odd, then there is the alignment problem to contend with. The
second string is moved starting where the first one left off.
See description of CASPV for what is done when the first source string has an odd
character count.
6-239 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CAT
Secondary Entry Name: CAT
Function: Catenates two character strings and stores into a third string.
Invoked By:

Execution Time (microseconds): N/A

Input Arguments:

Output Results:

Errors Detected:

Comments:
N/A

Algorithm:
N/A

X Compiler emitted code for HAL/S construct of the form:
 Not used yet.
Other Library Modules:

Type Precision How Passed Units
N/A - R2→descriptor -
N/A - R3→descriptor -

Type Precision How Passed Units
N/A - R1→descriptor -

Error # Cause Fixup
None
6-240 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CINDEX

Invoked By:

Execution Time (microseconds):
if A is null: 32.8
if B is null: 38.0
if length(B) > length(A): 44.8
if result = 0:

 C1$(length(C2) at I) ≠ C2

15.6 if X is odd
if result ≠ 0:

CINDEX
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CINDEX Size of Code Area 52 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE

Function: Performs HAL/S INDEX function: finds occurrence of one character
string within another.

X Compiler emitted code for HAL/S construct of the form:
INDEX(A,B), where A and B are character strings; B is

searched for within A.

Other Library Modules:

JA KAI

time = 38.0 + [Σ Σ(15.4 + KBJ + KBJ+I-1) + 16.4 + KBI]
I=1 J=1

where JA = 2 * (length(C1) - length(C2))+1
KAI= # of compares required to determine that

KBX= 14.4 if X is even

result KAI

time = 29.6 + [Σ Σ(15.4 + KBJ + KBJ+I-1) + 16.4 + KBI]
 I=1 J=1
6-241 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
where KAI= # of comparisons required to determine that
C1$(length(C2) at I) ≠ C2 if I ≠ result.

 length(C2) if I = result.
KBX is as above

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5,F0,F1,F2,F3,F4,F5.

Algorithm:
1) If either string is null, return zero.
2) Set pointer to first character of A.
3) If size of B exceeds size of A, beyond A pointer, return zero.
4) Loop on size of B, comparing elements of A and B beginning at current A

pointer; on non-equality go to step 6.
5) Comparison loop in 4 succeeded, return current A pointer.
6) Increment A pointer by one byte, go to step 3.

Type Precision How Passed Units
Character(A) - R2→descriptor -
Character(B) - R4→descriptor -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
None
6-242 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CLJSTV
Function: Left justifies a character string to a specified length by

1) padding on the right with blanks if too short;
2) truncating on the right if too long.

Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

CLJSTV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CLJSTV Size of Code Area 40 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE,STBYTE

X Compiler emitted code for HAL/S construct of the form:
LJUST(A,B), where A is a character string and B is an

integer.

Other Library Modules:

34.0 + 2.8 (if B<255)
+ 2.0 (if n>0)
+ 40.8n
+ 1.6 (if n is odd)
+ 0.4 (if m<0)
+ 1.0 (if m is odd and n is even)
- 1.0 (if m is odd and n is odd)
+ 23.8m

where n = length(A)
m = maximum(B-n,0)

Type Precision How Passed Units
Character(A) - R4→descriptor -
Integer(B) SP R5 -

Type Precision How Passed Units
Character(temporary) - R2→descriptor -

Error # Cause Fixup
18 Input string length greater than requested

size or B<0
Truncate input string
to specified size
6-243 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Compares requested length to 255 and retains smaller as L; compares L with input
string length:
• if greater, truncates on right to length L and moves to output;
• if same, moves input string unchanged to output;
• if less, pads on right with blanks and moves to output.
6-244 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CPAS
Function: Assigns a character string to a partition of another string.
Invoked By:

CPASP, CINP
Execution Time (microseconds):

 LHP

 34.2 + KA + Σ (5.6 + KCLOUT+K) + KD
 k=1

 NCHAR

 + Σ (7.6 + KCI+K-1 + KFk) + KE
 k=1

 RHP

 + Σ (5.6 + KCI+LIN+K-1) + KG
 k=1

where

CPAS
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CPAS Size of Code Area 80 Hw
Stack Requirement: 20 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE,STBYTE

X Compiler emitted code for HAL/S construct of the form:
C2I TO J = C1, where C1 and C2 are character strings

X Other Library Modules:

LOUT = length(C2) before assignment
LIN = length(C1)
KA = 25.4 if J<LOUT

34.0 if J>LOUT

LPART = J-I+1 (length of partition)
KB = 9.2 if LPART>0 and LPART<LIN

13.8 if LPART>0 and LPART>LIN
0 otherwise

LHP = I-LOUT-1
KCX = 19.2 if X is odd

17.2 if X is even
6-245 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
First, the length of the partition is compared to the length of the source. If the
source is longer, truncate it. If the destination partition is longer, then pad with
blanks. The character count is determined and the string is moved byte-by-byte
with the GTBYTE and STBYTE routines.

KD = 4.0 if LHP<0
0 otherwise

NCHAR = MINIMUM(LPART,LIN)
KE = .8 if NCHAR = 0 Note that in summations if start index > end

index
0 if otherwise then summation goes to 0.

 KFX = 15.6 if X is odd
14.4 if X is even

RHP = LPART-LIN
KG = .4 if RHP<0

0 otherwise

Type Precision How Passed Units
Character string(source)(C1) - R4→descriptor -
Integer(I) - R5 -
Integer(J) - R6 -

Type Precision How Passed Units
Character(destination)(C2) - R2→descriptor -

Error # Cause Fixup
 17 Index out-of-bounds for destination string or J<I-1 Set out-of-bounds to

first or last character
of destination
6-246 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CPASP
Function: Assigns a partition of a character string into a partition of another character
string.
Invoked By:

Execution Time (microseconds): 42.8 + time for CASPV and CPAS.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
The input partition is put into a VAC by the CASPV routine. The index arguments
of the destination string and pointers are set up for the CPAS routine, that then
moves the contents of the VAC into the destination string.

CPASP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:
CPASP

Size of Code Area 18 Hw

Stack Requirement: 146
Hw

Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: CASPV,CPAS

X Compiler emitted code for HAL/S construct of the form:
C2K TO L= C1I TO J; C1 and C2 are character strings and

I,J,K,L are integers.

Other Library Modules:

Type Precision How Passed Units
Character(source)(C1) - R4→descriptor -
Integer(I) SP R5 -
Integer(J) SP R6 -
Integer(K||L) (SP||SP) R7 -

Type Precision How Passed Units
Character(destination)(C2) - R2→descriptor -

Error # Cause Fixup
17 Subscript of character string out of

bounds
Set out-of-bounds value to
first or last character of
associated string
6-247 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CPR
Function: Compares two character strings for '=' or '≠' and sets condition code.
Invoked By:

CPRA
Execution Time (microseconds):

If C1 and C2 do not halfword compare and K>2:
setup + 11.6J + 12.9

If K is even or K = 0 and C1 and C2 halfword compare 1 up till the Kth character:
setup + 11.6n + 20.1

If K is odd and C1 = C2 up till the Kth character:
setup + 11.6n + 29.9

If K is odd and only the last characters compared differ
setup + 11.6n + 20.3

where:

Input Arguments:

Output Results:

CPR
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CPR Size of Code Area 46 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
 Other Library Modules Referenced: None.

X Compiler emitted code for HAL/S construct of the form:
IF C1 = C2…, where C1 and C2 are character strings.

X Other Library Modules:

K = minimum(length(C1), length(C2))
setup = 23 + 0.4 (if length(C2)<length(C1))

J = number of matching halfword compares
n = floor (K/2)

Type Precision How Passed Units
Character(C1) - R2→descriptor -
Character(C2) - R3→descriptor -

Type Precision How Passed Units
Equal/not equal - Condition code -
6-248 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Errors Detected:

Comments:
In order to not change the condition code after the comparisons and before exiting,
instructions that change the c.c. are replaced by those that do not change it. For
example, LH is replaced by IHL and SLL.
Registers Unsafe Across Call: R2,R3,R4,R5,R6.

Algorithm:
See CPRC entry.

Error # Cause Fixup
None
6-249 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CPRC
Secondary Entry Name: CPRC
Function: Compares two character strings for collating sequence and sets condition
code.
Invoked By:

Execution Time (microseconds): Same as CPR

Input Arguments:

Output Results:

Errors Detected:

Comments:
See CPR
Registers Unsafe Across Call: R2,R3,R4,R5,R6.

Algorithm:
Find the smaller of the lengths of the two strings to be compared. Compare this
many characters halfword-by-halfword, and compare the upper bytes of the last
halfwords separately if the character count is odd. If any of these comparisons are
unequal, then return the resultant condition code. If all are equal, then compare the
lengths of the two strings, and return the resultant code.

X Compiler emitted code for HAL/S construct of the form:
IF C1 < C2..., or any other relational operator, except

'=', or '≠', where C1 and C2 are character
strings.

 Other Library Modules:

Type Precision How Passed Units
Character(C1) - R2→descriptor -
Character(C2) - R3→descriptor -

Type Precision How Passed Units
Relation - Condition code -

Error # Cause Fixup
None
6-250 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CPRA

Invoked By:

Execution Time (microseconds):
 NCMP

 23.2 + Σ (18.2 + CPRTIMEk) - 14.2 (if arrays are not equal)
 k=1

where

Input Arguments:

Output Results:

Errors Detected:

CPRA
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CPRA Size of Code Area 22 Hw
Stack Requirement: 22 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: CPR

Function: Compares arrays of character strings when the arrays are located in
structures for '=' or '≠' and sets the condition code.

X Compiler emitted code for HAL/S construct of the form:
IF S1 = S2, where S1 and S2 are structures, one of whose

nodes is a length n array of character
strings.

Other Library Modules:

NCMP = number of elements in arrays if arrays are equal, index of first
nonmatching character strings in arrays if arrays not equal.

CPRTIMEX = time in CPR for S1.C$(X:) and S2.C$(X:) where C is the node
for the array of character strings.

Type Precision How Passed Units
Character array - R2→0th element -
Character array - R3→0th element -
Integer(#Hw in ea. string) SP R6 -
Integer(# of array cells) SP R7 -

Type Precision How Passed Units
Equal/not equal - Condition code -

Error # Cause Fixup
None
6-251 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Comments:
Registers Unsafe Across Call: None

Algorithm:
Pointers to character strings within the array are set, then CPR routine called. If all
pairs of strings within the array are equal, result of CPRA is "equal", otherwise the
result is "not equal".
6-252 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CRJSTV
Function: Right-adjusts a character string to a specified length by:

1) padding on left with blanks if too short;
2) truncating on left if too long.

Invoked By:

Execution Time (microseconds):

where:

CRJSTV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CRJSTV Size of Code Area 46 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE,STBYTE

X Compiler emitted code for HAL/S construct of the form:
RJUST(A,B), where A is a character string, and B is an

integer.

Other Library Modules:

34.8 + KA +
NBLANK

 Σ (6.8 + KBk) + KC
 k=1

+
NCHAR
 Σ (5.6 + KDk

 + KBNBLANK+K) + KE
 k=1

KA = 0 if B>255
2.8 if B<255

NBLANK = B-length(A) if B>length(A)
0 otherwise

KBX = 19.2 if X is odd
17.2 if X is even

KC = 1.2 if NBLANK>0
0 otherwise

NCHAR = length(A)
KDX = 15.6 if X is odd

14.4 if X is even
KE = .4 if NCHAR=0

0 otherwise
6-253 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Compares requested length to 255 and retains smaller as L; Compares current
length with L:

if greater, truncates on left and moves to input;
if same, moves string to output;
if less, pads on left and moves input string to output.

Type Precision How Passed Units
Character(A) - R4→descriptor -
Integer(B) SP R5 -

Type Precision How Passed Units
Character(temporary) - R2→descriptor -

Error # Cause Fixup
18 Input string length greater than input size or B<0 Truncate input string

on left to proper size
6-254 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CTRIMV

Invoked By:

Execution Time (microseconds):
If length(C) = 0: 30.4
If length(C) = 1 and C is a blank: 64.0
If length(C) = 1 and C is not a blank: 102.8
If length(C) > 1 and all blank

If length(C) > 1 and not all blank
60.4 + KA + 13.2 * KB + KC + KD(11.6 * KE + 13.6 + KF)
 NCHAR

+ Σ (39.2 + KGKH+k-1+ KIk)
 k=1

where:

CTRIMV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CTRIMV Size of Code Area 94 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE,STBYTE

Function: Implements HAL/S TRIM function - strips leading and trailing blanks
from a character string.

X Compiler emitted code for HAL/S construct of the form:
 TRIM(C), where C is a character string.

Other Library Modules:

44.6 + KA + 13.2KB
where:

KA = 0 if length(C) is even
19.4 if length(C) is odd

KB = floor (length(C)/2)

KA = 0 if length(C) is even
19.4 if length(C) is odd and C$(#) is blank
18.4 if length(C) is odd and C$(#)≠blank and C$(#)≠null
22.4 if length(C) is odd and C$(#)≠blank and C$(#)=null

KB = # halfwords = blank||blank at the beginning of C
KC = 0 if index of first non blank character is odd and this character = null

4.8 if index of first non blank character is odd and this character =
null
9.0 if index of first non blank character is even.
6-255 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Because there are no character or byte compare instructions on the AP-101, the
routine first tests length of string. If odd, it sets R7 to 1. "Length" is shifted right 1,
resulting in length in # of halfwords (-1 if odd). Compares first halfword with bb,
continues comparing consecutive halfwords of string with bb, until a halfword that is
not equal to bb is found. Then tests this halfword to see if first byte is b. Adds
length of string in halfwords to pointer to string, resulting in a pointer to end of
string. Compares last halfword of string with bb. If equal, then moves pointer back
a halfword and again compares. When a halfword not equal to bb is found, the
halfword is tested to see if it is C b or CC (where C stands for any character).
Length of string is appropriately adjusted and routine branches to a character move
loop.

KD = 0 if length(C) is odd and (C$(#)≠blank, 1 otherwise.
KE = # halfwords = blank||blank at the end of C
KF = 0 if index of last untrimmed character is even and this character ≠

null
3.6 if index of last untrimmed character is even and this character =
null
4.4 if index of last untrimmed character is odd.

NCHAR = length of result.
KGX = 0 if X is even

2.0 if X is odd
KH = index of first non blank character
KIX = 0 if X is odd

1.2 if X is even

Type Precision How Passed Units
Character(C) - R4→descriptor -

Type Precision How Passed Units
Character(temporary) - R2→descriptor -

Error # Cause Fixup
None
6-256 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3.5 Array Function Routine Descriptions
This subsection presents those routines which are classed as "ARRAY FUNCTIONS"
by the HAL/S Language Specification. These are routines which operate upon arrayed
arguments and produce a single element result.

ENTRY POINT DESCRIPTIONS:
Primary Entry Name: DMAX
Function: Finds maximum value in a double precision scalar array.
Invoked By:

Execution Time (microseconds):
17.6L + 14.6m + 11.4, where L = # of times CURRMAX changes;
M = # of times CURRMAX does not change, L+M = (# of elements in array) 1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0,F1.

Algorithm:
A loop is set up to compare each element of the array to the current max. Initially,
the first element is CURRMAX. Each subsequent element of greater value
replaces the former CURRMAX. The counter is decremented after each
comparison. The value of CURRMAX when the counter is zero is the max of the
array and is passed back to the calling program.

DMAX
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DMAX Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MAX(<DP array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-257 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: DMIN
Function: Finds minimum value in a double precision scalar array.
Invoked By:

Execution Time (microseconds):
17.6L + 14.6m + 11.4, where L = # of times CURRMIN changes;
M = # of times CURRMIN does not change, L+M = (# of elements in array)-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0,F1.

Algorithm:
Similar to MAX functions, except register contains the current minimum and is
changed when an element in the array has a smaller value than CURRMIN.

DMIN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DMIN Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MIN(<DP scalar array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-258 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: DPROD
Function: Calculates the product of the elements of a double precision scalar array.
Invoked By:

Execution Time (microseconds):
20.6n + 6.2 if product is not zero, where n = # of elements in the array. 20.6m + 2.6
if product is zero, where m is the index into the linear representation of the array of
the first zero element.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0,F1.

Algorithm:
Similar to the algorithm for the SUM functions. An accumulator is initialized to one.
The value in the accumulator is multiplied by each element of the array; the result
of each multiplication is saved in the accumulator. After each multiplication, the
result is checked for a zero product. If the product is ever zero, the routine exits
and returns to zero.

DPROD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DPROD Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
PROD(<DP scalar array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-259 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: DSUM
Function: Calculates the sum of the elements of a double precision scalar array.
Invoked By:

Execution Time (microseconds):
7.2+11.6n, where n=# of elements in the array.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0,F1.

Algorithm:
An accumulator (F0, F1) is initialized to zero. Each element of the array is added to
the accumulator in a loop based upon the array size.

DSUM
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DSUM Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
SUM(<DP scalar array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-260 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: EMAX
Function: Finds maximum value in a single precision scalar array.
Invoked By:

Execution Time (microseconds):
9.8 + 10.8m + 12.2L, where m = # of times CURRMAX does not change; L = # of
times CURRMAX changes; and M+L = (# of elements in array)-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0.

Algorithm:
Same as DMAX except that operations are all single precision.

EMAX
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EMAX Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw
X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MAX(<SP scalar array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array SP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-261 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: EMIN
Function: Finds minimum value in a single precision scalar array.
Invoked By:

Execution Time (microseconds):
9.8 + 10.8m + 12.2L, where m = # of times CURRMIN does not change;
L = # of times CURRMIN changes; and M+L = (# of elements in array)-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0.

Algorithm:
Same as DMIN, except operations are in single precision floating point.

EMIN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EMIN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MIN(<SP scalar array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array SP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-262 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: EPROD
Function: Calculates product of elements of a single precision scalar array.
Invoked By:

Execution Time (microseconds):
13.2n + 4.6 if product is not zero, where n = # of elements in the array. 13.2m + 1.4
if product is zero, where m = index into the linear representation of the array of the
first zero element.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0,F1.

Algorithm:
Same as DPROD.

EPROD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: EPROD Size of Code Area 10 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
PROD(<SP scalar array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array SP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-263 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ESUM
Function: Calculates sum of elements of a single precision scalar array.
Invoked By:

Execution Time (microseconds):
5.2 + 6.6n, where n = # of elements in the array.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0,F1.

Algorithm:
Same as DSUM.

ESUM
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ESUM Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
SUM(<SP scalar array>)

Other Library Modules:

Type Precision How Passed Units
Scalar array SP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-264 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: HMAX
Function: Finds maximum value in a single precision integer array.
Invoked By:

Execution Time (microseconds):
11.0 + 7.8m + 9.2k, where m = # of times CURRMAX does not change; k = # of
times CURRMAX changes; and m+k = (# of elements in array)-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:
Same as DMAX, except that all operations deal with halfword integers.

HMAX
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: HMAX Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MAX(<SP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array SP R2→0th

element
-

Integer(size) SP R5 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
None
6-265 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: HMIN
Function: Finds minimum value in a single precision integer array.
Invoked By:

Execution Time (microseconds):
11.0 + 7.8m + 9.2k, where m = # of times CURRMIN does not change; k = # of
times CURRMIN changes; and m+k = (# of elements in array)-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:
Same as DMIN, except that operations are for halfword integers.

HMIN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: HMIN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MIN(<SP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array SP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
None
6-266 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: HPROD
Function: Calculates product of elements of a single precision integer array.
Invoked By:

Execution Time (microseconds):
12.4n + 5.8 if product is not zero, where n = # of elements in array. 12.4m + 2.2 if
product is zero, where m = index into the linear representation of the array of the
first zero element.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:
Same as DPROD.

HPROD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: HPROD Size of Code Area 11 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
PROD(<SP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array SP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
None
6-267 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: HSUM
Function: Calculates sum of elements of a single precision integer array.
Invoked By:

Execution Time (microseconds):
4.4 + 5.4n, where n = # of elements in the array.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Warning:
The HSUM routine will return incorrect results if the sum of the elements in the
single precision integer array is greater than 32767 or less than -32768. Fixed-
point overflow occurs for this range, but will not be detected if the program status
word is set to mask out the overflow.
Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:
Same as DSUM.

HSUM
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: HSUM Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
SUM(<SP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array SP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
None
6-268 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: IMAX
Function: Finds maximum value in a double precision integer array.
Invoked By:

Execution Time (microseconds):
11.1 + 7.8m + 4.3k, where m = # of times CURRMAX does not change, k = # of
times CURRMAX changes, and m+k = # of elements in array-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:
Same as DMAX, except that all operations are on fullword integers.

IMAX
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: IMAX Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MAX(<DP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
None
6-269 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: IMIN
Function: Finds minimum value in a double precision integer array.
Invoked By:

Execution Time (microseconds):
11.1 + 7.8m + 9.3k, where m = # of times CURRMIN does not change, k = # of
times CURRMIN changes, and m+k = # of elements in array-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:
Same as DMIN, except that all operations are done for fullword integers.

IMIN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: IMIN Size of Code Area 8 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw
X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
MIN(<DP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
None
6-270 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: IPROD
Function: Calculates product of elements in a double precision integer array.
Invoked By:

Execution Time (microseconds):
17.0L + 21.6m + 5.8 if product is not zero, where L = # of positive intermediate
products; m = # of negative intermediate products; L+m = # of elements in array.
17.0L + 21.6m + 19.6 if product is not zero, where L and m are as above, L+m =
(index into linear representation of the array of the first zero element)-1.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6,R7.

Algorithm:
Same basic algorithm as DPROD, however, special detection of an overflow
condition is performed: For fullword integer multiplication, the overflow indicator is
only set when -1 is multiplied by -1. The result after each multiplication is checked
for an overflow by testing the first 32 bits of the 64 bit result for all zeros or ones. If
the result does overflow 32 bits, then a fixed point overflow is forced by adding a
very large number to the first register of the pair (the register with the overflowing
bits).

IPROD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: IPROD Size of Code Area 22 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
PROD(<DP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
None
6-271 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ISUM
Function: Calculates sum of elements in a double precision integer array.
Invoked By:

Execution Time (microseconds):
4.4 + 5.4n, where n = # of elements in array.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,R6.

Algorithm:
Same as DSUM.

ISUM
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ISUM Size of Code Area 6 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
SUM(<DP integer array>)

Other Library Modules:

Type Precision How Passed Units
Integer array DP R2→0th element -
Integer(size) SP R5 -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
None
6-272 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3.6 Miscellaneous Routine Descriptions
This subsection presents those routines which do not fall easily into the previous five
sections. These encompass conversion routines as well as "service" routines used by
other library members.

ENTRY POINT DESCRIPTIONS:
Primary Entry Name: BTOC
Function: Conversion from bit data to character data.
Invoked By:

Execution Time (microseconds): 161.0 (for 16-bit string)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7.

Algorithm:
First, unwanted bits are shifted out of the string, using the length argument. Then,
bits are shifted one by one out of the top of R5 into the bottom of R4, where they
are shifted to bit positions 15 and 31 and converted to character format. The output
string is stored halfword by halfword, with the length taken directly from the input
length.

BTOC
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: BTOC Size of Code Area 28 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
CHARACTER@BIN(<bit string>).

Other Library Modules:

Type Precision How Passed Units
Bit - R5 -
Integer(length) SP R6 -

Type Precision How Passed Units
Character - R2→descriptor -

Error # Cause Fixup
None
6-273 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CSHAPQ

Invoked By:

Execution Time (microseconds):

For halfword INTEGER conversion:
 n
25.2 + Σ (19.6 + CTOHK)
 k=1

where CTOHK = time in CTOH for the Kth conversion.

For fullword INTEGER conversion:
 n

24.8 + Σ (20.2 + CTOIK)
 k=1

where CTOIK = time in CTOI for the Kth conversion.

For fullword SCALAR conversion:
 n

25.2 + Σ (19.6 + CTOEK)
 k=1

where CTOEK = time in CTOE for the Kth conversion.

CSHAPQ
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CSHAPQ Size of Code Area 40 Hw
Stack Requirement: 18 Hw Data CSECT Size: 4 Hw

Intrinsic X Procedure
Other Library Modules Referenced: CTOH,CTOI,CTOE,CTOD

Function: Shapes arrayed character data to arrayed numeric data of an
explicit type and precision.

X Compiler emitted code for HAL/S construct of the form:
INTEGERN(CA), INTEGER@DOUBLE,N(CA), SCALARN(CA),

SCALAR@DOUBLE,N(CA), where CA is a character array of
length n of CHARACTER(m).

Other Library Modules:
6-274 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
For double-word SCALAR conversion:
 n

22.8 + Σ (22.8 + CTODK)
 k=1

where CTODK = time in CTOD for the Kth conversion.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
The address of one of 4 internal loops is loaded from a table using the type code as
an index and control is passed to that loop. The four internal loops are similar in
action: a call is made to the appropriate character conversion routine (CTOH,
CTOI, CTOE, CTOD) followed by the appropriate store (STH, ST, STE, STED) into
the result array, followed by instructions to bump both the character and result
array pointers, looping on n.

Type Precision How Passed Units
Character array(n) - R4→1st element -
Integer(n) SP R5 -
Integer(type *) SP R6 -
Integer(m) SP R7 -

Type Precision How Passed Units
Array(n) Type R2 -

Error # Cause Fixup
None

type*: 0→H conversion
1→I conversion
2→E conversion
3→D conversion
6-275 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CSLD
Function: Loads bit pattern of a character string.
Invoked By:

Execution Time (microseconds):
if length(C) = 0: 28.8
if length(C) > 0: 56.3 + 0.8 (if length(C) > 4)

Input Arguments:

Output Results:

Errors Detected:

Comments:
If input string is null, the 0 bit string is returned; no error.
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
The first character is set to 1 by clearing R5. The character width is set to the
current length of the string. For the rest, see the description under entry CSLDP,
after the character partition checking, at the point marked [A].

CSLD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CSLD Size of Code Area 246 Hw
Stack Requirement: 22 Hw Data CSECT Size: 4 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
B=SUBBIT(C) where B is a bit string and C is a character

string.

Other Library Modules:

Type Precision How Passed Units
Char string - R2→descriptor -

Type Precision How Passed Units
Bit string Length 32 R5 -

Error # Cause Fixup
None
6-276 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CSLD
Secondary Entry Name: CPSLD
Function: Loads specified bits of a character string.
Invoked By:

Execution Time (microseconds): 71.8
Input Arguments:

Output Results:

Errors Detected:

Comments:
If input string is null, ERROR 30 is sent and the 0 bit string is returned.
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
The subbit partition is tested for validity before anything else is done. All ERROR
30s are sent during these tests. 4 halfwords containing the required partition are
loaded into a register pair. Unwanted bits are shifted off the top (left shift count =
first bit-1), and the bottom (right shift count = 64-width), leaving the required string
in R5.

X Compiler emitted code for HAL/S construct of the form:
BIT STRING = SUBBITFIRST TO LAST(CHAR STRING);

where the 'TO' subscript may be replaced by the
'AT' subscript under rules given by matrix types

Other Library Modules:

Type Precision How Passed Units
Char string - R2→descriptor -
Integer(first bit) SP R5 -
Integer(last bit) SP R6 -

Type Precision How Passed Units
Bit string Length(32) R5 -

Error # Cause Fixup
30 Subbit partition out of range 1) If first bit<1, set to 1 (keep constant

partition width by adjusting last bit)
2) If first or last bit>last bit of

character string, set equal to last
bit of char string
6-277 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CSLD
Secondary Entry Name: CPSLDP
Function: Loads selected bits of a partitioned character string.
Invoked By:

Execution Time (microseconds): 98.6 + 9.2 (if C is even)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
The character partition is checked for validity, and the 0 bit string is returned if last
character < first character. Then the subbit partition is checked, resetting the bit
pointer to point 8 bits farther on if the character partition begins in the second
character of a halfword. 4 halfwords containing the required partition are loaded
into register pair R4-R5. Unwanted bits are shifted off the top (shift count = relative
1st bit-1) and the bottom (shift count = 64-bit width), leaving the desired string in
R5.

X Compiler emitted code for HAL/S construct of the form:
BIT STRING = SUBBITA TO B(CHAR STRINGC TO D);

where either or both of the 'TO' subscripts may
be replaced by 'AT' subscripts under rules
given by matrix types

Other Library Modules:

Type Precision How Passed Units
Char string - R2→descriptor -
Integer(C) SP R5 -
Integer(D) SP R6 -
Integer(A||B) (SP||SP) R7 -

Type Precision How Passed Units
Bit string Length(32) R5 -

Error # Cause Fixup
17 Character subscript out of legal range (See CSLDP)
30 Subbit partition out of legal range (See CPSLD)
6-278 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CSLD
Secondary Entry Name: CPSST
Function: To store a bit string into specified bits of a character string.
Invoked By:

Execution Time (microseconds): 114.4
Input Arguments:

Output Results:

Errors Detected:

Comments:
CPSST cannot change the current length of the input character string. In particular,
a null character string input will result in a null string output.
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
Set character partition width to the current length of the character string. If it is 0,
exit immediately after sending ERROR 30.
[B] Test subbit partition for validity, and send ERROR 30 if anything is bad. Find
the first halfword containing the specified partition. The first bit relative to that
halfword, and the bit partition width thus:

Load 4 halfwords, beginning with the first halfword of the partition, into register pair
R4-R5.

Compiler emitted code for HAL/S construct of the form:
 SUBBITA TO B(CHAR STRING) = BIT STRING;

where the 'TO' subscript may be replaced with the
'AT' subscript under rules given by matrix types

Other Library Modules:

Type Precision How Passed Units
Bit string - R4 -
Integer(first bit) SP R5 -
Integer(last bit) SP R6 -

Type Precision How Passed Units
Char string - R2→descriptor -

Error # Cause Fixup
30 Subbit partition out of legal range (See CPSLD)

bit width = last bit- first bit + 1
first halfword = 1 + (first bit - 1)/16

relative first bit = first bit - 16(first halfword - 1)
6-279 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Prepare a mask with 0s in the specified bit positions and 1s elsewhere as the 1s
complement of:

(2bit width-1)(264-relative last bit)
where relative last bit = relative first bit + bit width - 1.
Use this mask to mask out the old bits in R4-R5. Shift the input bit string left by (64-
relative last bit) positions to align it with the specified bit positions. Then OR it into
the contents of R4-R5. Store this back into the character string, and exit.
6-280 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CSLD
Secondary Entry Name: CPSSTP
Function: To store a bit string into specified bits of a partitioned character string.
Invoked By:

Execution Time (microseconds): 145.0 + 9.2(if C is even)

Input Arguments:

Output Results:

Errors Detected:

Comments:
CPSSTP cannot change the current length of the input character string.
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
Check character partition for validity, give any error 17s necessary, and exit if last
char < first char or currlen = 0. Reset character pointer to 1 halfword before the first
halfword of the specified partition, bumping first and last bits by 8 if the first
character is even (so lies in low-order 8 bits of the halfword) after checking validity
of first bit, and sending error 30 if it is < 1. Then continue as [B] of CPSST.

X Compiler emitted code for HAL/S construct of the form:
SUBBITA TO B(CHAR STRINGC TO D) = BIT STRING;

where either or both of the 'TO' subscripts may be
replaced by 'AT' subscripts under rules given by
matrix types

Other Library Modules:

Type Precision How Passed Units
Integer(C) SP R5 -
Integer(D) SP R6 -
Integer(A||B) (SP||SP) R7 -
Bit string - R4 -

Type Precision How Passed Units
Character string - R2→descriptor -

Error # Cause Fixup
17 Character subscript out of legal range (See CSSTP)
30 Subbit partition out of legal range (See CPSST)
6-281 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CSLD
Secondary Entry Name: CSLDP
Function: Loads bit pattern of a partitioned character string.
Invoked By:

Input Arguments:

Output Results:

Errors Detected:

Comments:
0 bit string returned if last character specified < first character specified (with
ERROR 17).
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
The character partition is checked for validity before anything else is done. All error
17s are sent during this phase. [A] The partition width is checked, and if it is < 0,
the zero string is returned in R5. If greater than 4, it is set to 4. The address of the
halfword containing the first character of the partition is found by adding 1/2(1+first
character) to the address of the first halfword of the string. This halfword and the
next two halfwords are loaded into the low half of R4, and the high and low halves
of R5, respectively. Unwanted bits are masked off the left and shifted off the right
(shift count = 48-8*width), and the desired bit string is left in R5.

X Compiler emitted code for HAL/S construct of the form:
BIT STRING = SUBBITA TO B(CHAR STRINGWIDTH AT FIRST);

where the 'AT' subscript may be replaced by the
'TO' subscript under rules given by matrix
types

Other Library Modules:

Execution Time (microseconds): 69.7 + 0.8 (if WIDTH > 4)
+ 4.0 (if FIRST is even)

Type Precision How Passed Units
Character string - R2→descriptor -
Integer(first char) SP R5 -
Integer(last char) SP R6 -

Type Precision How Passed Units
Bit string Length(32) R5 -

Error # Cause Fixup
17 Character subscript out 1. If < 1, set to 1

of legal range 2. If > length of string, set to length(string)
3. If last char < first char, return 0 string
6-282 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CSLD
Secondary Entry Name: CSST
Function: Stores a bit string into a character string.
Invoked By:

Execution Time (microseconds):
if length(C) = 0: 26.6
if length(C) > 0: 135.8 + 1.0 (if length(C) > 4)

Input Arguments:

Output Results:

Errors Detected:

Comments:
If the length of the input character string is 0, no error is given, and nothing is
changed. CSST cannot change the length of the input string.
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
The first character is set to 1 by clearing R5, the character width is set to the current
length of the string. Processing continues as at [A] in the description of the
algorithm at entry CSSTP.

X Compiler emitted code for HAL/S construct of the form:
SUBBIT(C) = B, where B is a BIT string and C is a character

string.

Other Library Modules:

Type Precision How Passed Units
Bit string - R4 -

Type Precision How Passed Units
Char string - R2→descriptor -

Error # Cause Fixup
None
6-283 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CSLD
Secondary Entry Name: CSSTP
Function: To store a bit string into a partitioned character string.
Invoked By:

Execution Time (microseconds):
148 + KA + KB, where KA = 1.0 if B-A>4, 0 otherwise

 KB = 9.2 if A is even, 0 otherwise
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5,F0,F1.
CSSTP cannot change the current length of the character string: gives error if
subscript is out of current legal range.

Algorithm:
The character partition is checked for validity, and ERROR 17 is sent if anything is
bad.

X Compiler emitted code for HAL/S construct of the form:
SUBBITC TO D(CHAR STRINGA TO B) = BIT STRING;

where either or both of the 'TO' subscripts may be
replaced by 'AT' subscripts under rules given by
matrix types

Other Library Modules:

Type Precision How Passed Units
Bit string - R4 -
Integer(first char) SP R5 -
Integer(last char) SP R6 -

Type Precision How Passed Units
Char string - R2→descriptor -

Error # Cause Fixup
17 Character subscript out of

legal range
(See CSLDP), except if last char < first
char, then leave input string unchanged

[A] The character partition width is checked. If it is < 0, then the input
character string is returned unchanged. If > 4, then it is set to 4. The first
bit and last bit are determined as:
First bit = 1 + 8*(first character-1)
Last bit = First bit + 8*character width - 1

The first bit, last bit, and character width of the string are then sent to [B] under
entry CPSST.
6-284 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CSTRUC
Function: Compares two structures and returns result (= or ≠) in condition code.
Invoked By:

Execution Time (microseconds):
5.4 + 10.4n, n = # halfwords compared.

Input Arguments:

Output Results:

Errors Detected:

Comments:
In order that the correct code is in the condition code on exit, it is reset immediately
before branching back to the calling program (BCRE does not set the condition
code). An exclusive OR of a register with itself sets condition code to '00'(=). An
OR of a nonzero register (R4 is used because, as the return address register, it is
always assumed to be nonzero) resets condition code to '11'(≠).
Registers Unsafe Across Call: R2,R3,R4,R5,R6.

Algorithm:
The two structures are compared halfword by halfword until a pair does not match,
or all of the halfwords are compared and found to be equal. The condition code is
set by the compare instruction.

CSTRUC
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CSTRUC Size of Code Area 12 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
If S1 = S2 THEN..., where S1 and S2 are structures.

Other Library Modules:

Type Precision How Passed Units
Structure - R2→1st Hw -
Structure - R3→1st Hw -
Integer(count) SP R5 Hw

Type Precision How Passed Units
Equal/not equal - Condition code -

Error # Cause Fixup
None
6-285 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CTOB
Function: Conversion from character string data to bit string.

Invoked By:

Execution Time (microseconds):
 NCHAR

25.8 + Σ (27.8 + KAk + KB + KC)
 k=1

Input Arguments:

Output Results:

Errors Detected:

Comments:
If the input string includes more than 32 digits, then high-order bits will be lost. Null
string input causes an error.
Registers Unsafe Across Call: R5,F0,F1.

CTOB
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CTOB Size of Code Area 32 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE

X Compiler emitted code for HAL/S construct of the form:
BIT@BIN(C), where C is a character string.

Other Library Modules:

where: NCHAR = length(C)
KAX = 1.2 if X is odd

0 if X is even
KB = 6.0 if C$(K)='1'

0 otherwise.
KC = 4.4 if C$(K)=blank

0 otherwise.

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Bit Length=31 implicitly R5 -

Error # Cause Fixup
29 Input string not in standard format Return zero bit string
6-286 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Characters are examined one by one. Blanks are ignored. When a '1' is
encountered, a '1' bit is shifted into the low-order bit of the result register. When a
'0' is encountered, a '0' bit is shifted into the low-order bit of the result register.
6-287 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS
Primary Entry Name: CTOE
Function: Performs internal character to single precision scalar conversion.
Invoked By:

CSHAPQ

Execution Time (microseconds):

CTOE
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CTOE Size of Code Area 319 Hw
Stack Requirement: 38 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE

X Compiler emitted code for HAL/S construct of the form:
SCALAR(<character string>) or
SCALAR@SINGLE(<character string>)

X Other Library Modules

88.4 + 11.0 * (floor * (# leading blanks/2))
+ 12.0 (if # leading blanks odd)
+ 10.2 * (# trailing blanks)
+ 2.0 (if + sign)
+ 7.0 (if - sign)
+ 59.6 * (# significant digits where Sk < X'4E19999A')
+ 17.6 * (# significant digits)
+ 47.2 (if at least 1 significant digit)
+ 62.4 * (# significant digits where Sk > X'4E19999A')
+ 20.6 (if decimal point)
+ 9.6 (if no exponents of any kind)
+ 40.2 (if any exponents)
+ 9.6 * (# E type exponents)
+ 15.2 * (# H type exponents)
+ 18.2 * (# B type exponents)
+ 9.8 * (# exponents)
+ 37.8 * (# additional exponents)
+ 0.2 * (# exponents with `+' sign)
+ 7.8 * (# exponents with `-' sign)
+ 24.6 * (total number of exponent digits)
+ 22.8 (if any B or H exponents)
6-288 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
where p = total of E type exponents - (# significant digits after decimal point).
Input Arguments

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
First, leading and trailing blanks are stripped from the input string, and an error is
signaled if the string has length = 0 or consists entirely of blanks. Next, a scalar is
constructed from the digits of the input string to the left of the exponent. The
construction proceeds as follows:
First, we set S0 = 0. Now, at the kth step, k > 1, we let Sk=10*Sk-1+dk, where dk is
the kth digit in the string. All calculations are double scalar. When Sk becomes >
X'4E19999A', all further digits are insignificant and are scanned for validity but
otherwise ignored.

+ 7.6 * (total B exponent mod 4)
+ 14.0 (if p=0)
+ ⎡ (17.8 + 27.8 div(|p|,23)) (if p positive) ⎤
+ ⎢ (18.8 + 28.8 div(p,23)) (if p positive) ⎥
+ ⎢ 23.2 * ((# significant zeroes in the binary

⎢ representation of |p| mod 23) - 1
⎥
⎥

⎢ (if |p| mod 23 is even) ⎥
+ ⎢ 36.2 * ((# significant ones in the binary

⎢ representation of |p| mod 23) - 1
⎬ if p≠0
⎥

⎢ (if |p| mod 23 is odd) ⎥
+ ⎢ 14.2 (if |p| mod 23≠0) ⎥
+ ⎢ 28.0 ⎥
+ ⎣ 1.6 (if p < 0) ⎦
+ 14.4 * ((# of even indexed characters after leading blanks) + 1)
+ 15.6 * ((# of odd indexed characters after leading blanks) + 1)

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
20 Input string not in standard format Return 0
6-289 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
This yields a scalar which may be incorrect by a power-of-10 multiple, but
otherwise represents the decimal number of the left of the exponent. As for the
power of 10, if a decimal point is encountered while scanning the input string, a
count is kept of how many digits there are to the right of the decimal point in the
input string. The negative of this count is stored in temporary location COUNTE for
later use.
Next, the type of exponent (if any) is determined, and the value is calculated with a
simple fixed-point calculation (ab10 = 10a + b) and added to COUNTH, COUNTB,
or COUNTE accordingly as the type of exponent is hexadecimal, binary, or
decimal. Continue this process as long as there are remaining exponents.
If the end of the string is reached with no invalid characters found, then the scalar is
modified according to the exponents already computed. First, the power-of-2
exponents are combined as 4H + B, since

16H * 2B = 24H + B.
The high part of this (power of 16) is added to the exponent of the scalar, while the
low 2 bits control a loop in which the scalar is doubled 0-3 times.
Next, the decimal exponent, which has been combined with the correction for the
decimal point in the input, is used as a power of 10 in the standard way of taking
integral powers. The scalar intermediate is multiplied or divided by this result
according to the sign of the exponent, completing the conversion.
6-290 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CTOE
Secondary Entry Name: CTOD
Function: Performs internal character to double precision scalar conversion.
Invoked By:

CSHAPQ
Execution Time (microseconds): Time is computed by CTOE formula - 1.8.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2,F3,F4,F5.

Algorithm:
Same routine as CTOE; all conversions result in a double precision value of which
the portion in F1 is discarded when single precision is desired by the caller of this
routine.

X Compiler emitted code for HAL/S construct of the form:
SCALAR@DOUBLE(<character string>)

X Other Library Modules

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Scalar DP F0,F1 -

Error # Cause Fixup
20 Input string not in standard format Return 0
6-291 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CTOI
Function: Converts a character string to a double precision integer.

Invoked By:

CSHAPQ
Execution Time (microseconds):

where k = 72.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5,F0,F1.

CTOI
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CTOI Size of Code Area 104 Hw
Stack Requirement: 20 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE

X Compiler emitted code for HAL/S construct of the form:
INTEGER@DOUBLE(<character string>) or
BIT@DEC(<character string>).

X Other Library Modules:

k + 11.0 * (floor *(# leading blanks/2))
+ 18.6 (if # leading blanks odd)
+ 9.4 (if '-' sign)
+ 10.6 (if first character is a number)
+ 15.6 * (# even index characters after leading blanks)
+ 14.4 * (# odd index characters after leading blanks)
+ 13.0 (if # trailing blanks > 0)
+ 8.4 * (# trailing blanks)
+ 28.2 * ((# non blank characters) - 1)

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Integer DP R5 -

Error # Cause Fixup
22 Input string not in standard format Return 0
6-292 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
First, leading blanks are stripped from the input string. If a minus sign is
encountered, a flag is set. The basic conversion proceeds as follows: Initialize i0 to
0. At step k, k>1, let ik = 10.1k-1 + dk, where dk is the kth digit in the input string. At
the end, this fixed-point calculation gives a fullword integer. This sign is tacked on,
and the result is shifted left 16 bits if a halfword answer is required.
6-293 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CTOI
Secondary Entry Name: CTOH
Function: Converts a character string to a single precision integer.
Invoked By:

CSHAPQ

Execution Time (microseconds): Same as for CTOI, except k = 74.4.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
See CTOI.

X Compiler emitted code for HAL/S construct of the form:
INTEGER@SINGLE(<character string>)

X Other Library Modules:

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
22 Input string not in standard format Return 0
6-294 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CTOI
Secondary Entry Name: CTOK

Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
See CTOI.

Function: Converts a character string to a 32-bit string for use with the
@DEC of the BIT conversion function.

X Compiler emitted code for HAL/S construct of the form:
BIT@DEC(<character string>).

Other Library Modules:

85.8 + 11.0 * (floor * (# leading blanks/2))
+ 18.6 (if # leading blanks odd)
+ 15.6 * (# even index characters after leading blanks)
+ 14.4 * (# odd index characters after leading blanks)
+ 13.0 (if # trailing blanks > 0)
+ 8.4 * (# trailing blanks)
+ 28.2 * (# non blank characters - 1)

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Bit string 32-bit R5 -

Error # Cause Fixup
22 Input string not in standard format Return 0
6-295 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CTOX
Function: Conversion from character string to bit string, hexadecimal radix.
Invoked By:

Execution Time (microseconds):
 NCHAR

 32.0+ Σ (33.6 + KAk + Kbk)
 k=1

where:

Input Arguments:

Output Results:

Errors Detected:

Comments:
Imbedded blanks, or leading or trailing blanks, are all considered invalid characters.
An input string too long to be accommodated in 32 bits will cause high order bits to
be lost.
Registers Unsafe Across Call: R5,F0,F1.

CTOX
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CTOX Size of Code Area 60 Hw
Stack Requirement: 18 Hw Data CSECT Size: 4 Hw

Intrinsic X Procedure
Other Library Modules Referenced: GTBYTE

X Compiler emitted code for HAL/S construct of the form:
BIT@HEX(C), where C is a character string.

Other Library Modules:

NCHAR = length(C)'
KAX = 0 if C$(X) is alphabetic

6.8 if C$(X) is numeric
KBX = 1.2 if X is odd

0 if X is even

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Bit 32 bits R5 -

Error # Cause Fixup
32 String not in standard hexadecimal conversion format Return 0
6-296 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Characters are fetched one by one. In the CTOX entry, characters 'A' - 'F' are
converted to their bit equivalents, characters '0' - '9' are passed on to the common
section, and an error is signaled if the input character lies between X'39' and X'41'
(DEU characters '9' and 'A' respectively). In the CTOO entry, an error is sent if the
character is greater than X'37' (DEU character '7'). Other characters are passed to
the common section for translation.
In the common section, decimal digits 0-9 (0-7 for octal) are translated to their bit
equivalents, and an error is sent if the character precedes '0' in the collating
sequence. These bit equivalents, and the ones passed from the CTOX section, are
shifted into the low-order 4 bits (3 for octal) of the result register.
6-297 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CTOX
Secondary Entry Name: CTOO
Function: Conversion from character string to bit string, octal radix.
Invoked By:

Execution Time (microseconds):
 NCHAR

 33.4 + Σ (34.2 + KAk),
 k=1

where:

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5,F0,F1.

Algorithm:
See CTOX.

X Compiler emitted code for HAL/S construct of the form:
BIT@OCT(C), where C is a character string.

Other Library Modules:

NCHAR = length(C),
KAX = 1.2 if X is odd

0 otherwise.

Type Precision How Passed Units
Character - R2→descriptor -

Type Precision How Passed Units
Bit 32-bits R5 -

Error # Cause Fixup
31 String not in standard octal conversion format Return 0
6-298 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: DSLD
Function: Loads specified bits of a double precision scalar.
Invoked By:

Execution Time (microseconds): 36.5

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R5

Algorithm:
Get the double word operand in register pair R2-R3. If first bit - 1 < 0, then give
ERROR 30 and set to 0. Use first bit 1 as left shift count to eliminate unwanted
high order bits. Compute 64 - last bit + first bit - 1, and give ERROR 30 and set to
0 if it is < 0. Use this as right shift count to justify bit string in R3. Return contents
of R3.

DSLD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DSLD Size of Code Area 22 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
SUBBIT(SCALAR VAR@DOUBLE);
SUBBITFIRST TO LAST(SCALAR VAR@DOUBLE).

Other Library Modules:

Type Precision How Passed Units
Scalar DP R2→Scalar -
Integer(first bit) SP R5 -
Integer(last bit) SP R6 -

Type Precision How Passed Units
Bit string Length 32 R5 -

Error # Cause Fixup
30 Subbit partition out of range 1) If first bit<1, set to 1

2) If last bit>64, set to 64
6-299 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: DSST
Function: Stores a bit string into selected bits of a double precision scalar.
Invoked By:

Execution Time (microseconds): 64.6
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: None

Algorithm:
Check first bit. If < 1, send error 30 and set to 1. Save the last bit, and get the
partition width as last bit - first bit + 1. Create a mask of width = partition width as
2width - 1. If last bit < 64, shift left by 64 - last bit. If last bit > 64, send error 30 and
set last bit to 64 by shifting right by last bit - 64. Then invert the (doubleword) mask.
Mask out the selected bits of the operand in storage. Then, shift the input bit string
to the right position (left 64 - last bit, or right last bit - 64), and OR to the operand in
storage, completing the operation.

DSST
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: DSST Size of Code Area 54 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
SUBBITA AT B(DOUBLE SCALAR) = BIT STRING

Other Library Modules:

Type Precision How Passed Units
Integer(A) SP R5 -
Integer(B) SP R6 -
Bit string - R7 -

Type Precision How Passed Units
Scalar DP R2→Scalar -

Error # Cause Fixup
30 Subbit partition illegal 1) If first bit < 1, set to 1

2) If last bit > 64, set to 64
6-300 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ETOC

Invoked By:

Execution Time (microseconds): 336.9

Input Arguments:

Output Results:

Errors Detected:

Comments:
Maxlength of output string is ignored.
Registers Unsafe Across Call: F0,F1,F2.

Algorithm:
Clear F1 to convert to double precision. Determine the sign and get the absolute
value of the input. If input = 0, output string is 'b0.0' padded with blanks to length
14 (length 23 for DTOC).
The next operation reduces the exponent of the scalar to X'41' keeping track of the
change in exponent that this requires. Since log10x = (log1016)(log16x), this is done
by getting (exponent - 65)*log1016 and using this as an exponent of 10, dividing the
scalar by the result. It is possible for this to be off by 1, so another pass is made
before continuing. At this point, the number is between 1 and 16. If it is greater
than or equal to 10, multiply by 1/10 and record the exponent as one greater.
This causes the first decimal digit of the number to be the first hexadecimal digit of

ETOC
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ETOC Size of Code Area 320 Hw
Stack Requirement: 32 Hw Data CSECT Size: 64 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Converts a single precision scalar to standard internal character-string
format for a scalar.

X Compiler emitted code for HAL/S construct of the form:
CHARACTER(SCALAR VAR)

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Character string Length=14 R2→descriptor -

Error # Cause Fixup
None
6-301 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
the scalar, in bits 8-11 of F0. This is stored, together with a blank if the value is > 0,
or a '-' if the value < 0. The remaining mantissa is in fractional form in F0-F1. This
hexadecimal fraction is converted to decimal digit-by-digit by successive
multiplication by 10. One digit is generated and stored with the decimal point, then
6 digits are stored in the next three halfwords.
The sign of the exponent (as calculated above) is tested, and either 'E+' or 'E-' is
stored in the next halfword. Two decimal digits of exponent are stored in the last
halfword.
6-302 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ETOC
Secondary Entry Name: DTOC

Invoked By:

Execution Time (microseconds): 602.5

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1,F2.

Algorithm:
Similar to ETOC, except of course that F1 is not zeroed. Also, rather than 6 digits
being stored in the loop, 14 are computed and stored. The exponent section also
looks different, as one more digit is stored with the exponent, changing its
alignment, thus storing successively '<digit>E', '± <digit>', '<digit><garbage>' in the
last 3 halfwords.

Function: Converts a double precision scalar to standard internal character-string
format for scalar.

X Compiler emitted code for HAL/S construct of the form:
CHARACTER(DOUBLE SCALAR)

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0-F1 -

Type Precision How Passed Units
Character string Length=23 R2→descriptor -

Error # Cause Fixup
None
6-303 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ETOH
Function: Converts single precision scalar value to single precision integer.
Invoked By:

QSHAPQ
Execution Time (microseconds): 15.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Convert overflow (Error number 3:10) will occur if S is outside of the range,
-32768 ≤ S ≤ 32768, (hex'C4800000' ≤ S ≤ hex'447FFFFF')

Warnings:

ETOH
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ETOH Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic - Sector 0 Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
I = S; where I is a single precision integer, and S is a

single precision scalar.

X Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
None

1) The ETOH routine returns incorrect results when the input argument is
between 32767.5 and 32768. Fixed-point overflow occurs for this range,
but will not be detected if the program status word is set to mask out the
overflow.
6-304 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Registers Unsafe Across Call: R5,F0.
Algorithm:

The six most significant hex digits of the scalar argument are converted to a
fullword integer value. The 4 most significant hex digits of the integer value are left
in the top halfword of the fixed point register after rounding the fraction. When the
fractional portion of the result is less than or equal to 0.5 the result is rounded
down, otherwise the result is rounded up.

2) Due to the use of CVFX instruction, the precision is lost during the
conversion for the following input arguments (S) and inputs will be
rounded incorrectly. I denotes the integer portion of S.
a. 1≤ABS(I), and the fractional portion is slightly greater than 0.5.
 For example: S = hex '41x8000y'; where 1≤x≤F, 1≤y≤F.
b. I = 0, and the fractional portion is slightly greater than 0.5.
 For example: S = hex '408000yy'; where 01≤yy≤FF.
6-305 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ETOH
Secondary Entry Name: DTOH
Function: Converts a double precision scalar value to a single precision integer.
Invoked By:

Execution Time (microseconds): 17.4

Input Arguments:

Output Results:

Errors Detected:

Comments:
Warnings:

Registers Unsafe Across Call: R5,F0.
Algorithm:

See ETOH.

X Compiler emitted code for HAL/S construct of the form:
I = D; where I is a single precision integer, and D is a

double precision scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -

Type Precision How Passed Units
Integer SP R5 -

Error # Cause Fixup
None

1) The DTOH routine returns incorrect results when the input argument (S) is
in the range of 32767.50390625 ≤ S < 32768 (hex '447FFF8100000000' ≤
S < hex'447FFFFFFFFFFFFF'). Fix point overflow occurs for this range,
but no error will be generated if the fixed point overflow interrupt is masked
in the program status word.

2) Due to the use of the CVFX instruction, the precision is lost during the
conversion for the following input arguments (S) and inputs will be rounded
incorrectly. I denotes the integer portion of S.
a. 1 ≤ ABS(I), and the fractional portion is slightly greater than 0.5.

For example: S = hex '41x8000yzzzzzzzz'; where 1 ≤ x ≤ F, 1 ≤ y ≤ F,
and z is any number.

b. I = 0, and the fractional portion is slightly greater than 0.5.
For example: S = hex '408000yyzzzzzzzz'; where 01 ≤ yy ≤ FF and z
is any number.
6-306 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: GTBYTE

Invoked By:

CPAS, CTOE, CLJSTV, CINDEX, CRJSTV, CTOB, CTOI, CTOX, CRTIMV
Execution Time (microseconds): 14.4 to obtain lower byte

 15.6 to obtain upper byte
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R2,R4,R5,F0.

Algorithm:
The halfword off of the pointer is loaded into a register for manipulation. If the flag
indicates the upper byte is requested, the register is shifted right 8 bits and the
lower half of the register is cleared to leave only the desired byte in the upper
halfword of the register. If the flag indicates the lower byte is requested, then the
first byte of the register is cleared. The flag is reset to indicate the upper byte if the
lower byte was requested and vice versa, and the pointer is updated if the fetched
byte was even. This is done now since GTBYTE is usually called a number of
times from a loop.

GTBYTE
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: GTBYTE Size of Code Area 14 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

Function: Fetches one character from a character string. Used for character
manipulation by other library routines.

Compiler emitted code for HAL/S construct of the form:

X Other Library Modules:

Type Precision How Passed Units
Pointer - R2→1 Hw in front of Hw to fetch from -
Flag (Which byte to fetch) - Lower half of R2:

00-upper byte, X'8000'-lower byte
-

Type Precision How Passed Units
Single character - R5- upper halfword -

Error # Cause Fixup
None
6-307 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ITOC

Invoked By:

Execution Time (microseconds): 254.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
No leading zeros or leading or trailing blanks. Maxlength of output area ignored.
Registers Unsafe Across Call: None

Algorithm:
Digits are generated one by one. Thus: Let I = input integer. Then:

dk = Ik - 10(Ik/10) integer multiply and divide.
Ik+1 = (Ik - dk)/10.

The process terminates when Ik = 0. As pairs of digits are generated, they are
stored, right to left, in a temporary output area. The temporary result is then given
a sign if necessary and moved to the output area. If an odd number of characters
were generated, the move is with 8 bits offset for left alignment.

ITOC
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ITOC Size of Code Area 104 Hw
Stack Requirement: 28 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Converts a fullword integer into standard internal character string
format for integers.

X Compiler emitted code for HAL/S construct of the form:
CHARACTER(FULLWORD INTEGER)

Other Library Modules:

Type Precision How Passed Units
Integer DP R5 -

Type Precision How Passed Units
Character string - R2→descriptor -

Error # Cause Fixup
None
6-308 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ITOC
Secondary Entry Name: HTOC

Invoked By:

Execution Time (microseconds): 189.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
No leading zeroes or leading or trailing blanks. Maxlength of output area ignored.
Registers Unsafe Across Call: None.

Algorithm:
Shift right algebraic 16 to convert single integer to double. Then proceed as in
ITOC.

Function: Converts a halfword integer into standard internal character-string
format for integers.

X Compiler emitted code for HAL/S construct of the form:
CHARACTER(HALFWORD_INTEGER)

Other Library Modules:

Type Precision How Passed Units
Integer SP R5 -

Type Precision How Passed Units
Character string - R2→descriptor -

Error # Cause Fixup
None
6-309 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ITOD
Function: Converts a double precision integer to a double precision scalar.
Invoked By:

QSHAPQ
Execution Time (microseconds): 15.6

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
If the input argument is non-negative, then the register (F0) is loaded with
HEX'4E800000'. F1 is then loaded with the value of the input argument. Next, the
value HEX'4E800000 00000000' is subtracted from the (F0, F1) register pair and
the result is returned to the calling program.
For negative values, the algorithm is the same, except the input argument is
complemented before any other operations are performed. Also, the value used
when manipulating the (F0, F1) register pair is HEX'CE800000 00000000' instead
of HEX'4E800000 00000000'.

ITOD
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ITOD Size of Code
Area

 24 Hw

Stack Requirement: 0 Hw Data CSECT Size: 0 Hw
X Intrinsic - Sector 0 Procedure

Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
D = I; where D is a double precision scalar, and I is a

double precision integer.

X Other Library Modules:

Type Precision How Passed Units
Integer DP R5 -

Type Precision How Passed Units
Scalar DP F0 -

Error # Cause Fixup
None
6-310 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: ITOE
Function: Converts a double precision integer to a single precision scalar.
Invoked By:

QSHAPQ
Execution Time (microseconds): 12.0

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R4,R5,F0,F1.

Algorithm:
The integer argument is converted to floating point by the CVFL instruction and the
binary point is adjusted by multiplication by a scale factor.

ITOE
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: ITOE Size of Code
Area

 6 Hw

Stack Requirement: 0 Hw Data CSECT Size: 0 Hw
X Intrinsic - Sector 0 Procedure

Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
S = I; where S is a single precision scalar, and I is

a double precision integer

X Other Library Modules:

Type Precision How Passed Units
Integer DP R5 -

Type Precision How Passed Units
Scalar SP F0 -

Error # Cause Fixup
None
6-311 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: KTOC
Function: Performs bit-string to character conversion with decimal radix.
Invoked By:

Execution Time (microseconds): 262.5 (for 16 bits)
Input Arguments:

Output Results:

Errors Detected:

Comments:
Maxlength of output area ignored. No leading or trailing blanks. "Sign bit" of input
string ignored.
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0,F1.

Algorithm:
The length of the character string is computed as:

1 + (log102)(bit length) truncated to an integer
A halfword count is computed from this as:

halfword count = (1 + character count)/2

KTOC
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: KTOC Size of Code Area 70 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
CHARACTER@DEC(BIT STRING)

Other Library Modules:

Type Precision How Passed Units
Bit string - R5 -
Integer(length of bit string) SP R6 -

Type Precision How Passed Units
Character string - R2→descriptor -

Error # Cause Fixup
None
6-312 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Decimal digits are generated one at a time, from right to left, thus: Let I0=input
string as unsigned integer,

dk = Ik - 10(Ik/10) integer multiply and divide
Ik+1 = (Ik - dk)/10

The process terminates when the halfword count is reached, with two digits stored
per halfword. At the end, if an odd number of characters have been stored, the
string must be shifted one character to the left for proper alignment.
6-313 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:

Primary Entry Name: QSHAPQ
Function: Shapes data of a given type and precision to data of an explicit type and
precision.
Invoked By:

Execution Time (microseconds): 42.6 + 31.8n, n = # times transferred.

Input Arguments:

Output Results:

Errors Detected:

Comments:
QSHAPQ is called only if more than one item of the same data type must be
shaped. If only one item must undergo conversion, the conversion functions
(DTOI, ETOI, ITOD, HTOE, etc.) are used.
Registers Unsafe Across Call: F0,F1.

QSHAPQ
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: QSHAPQ Size of Code Area 74 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: ETOH(DTOH), ROUND(DTOI), ITOE,
ITOD

X Compiler emitted code for HAL/S construct of the form:
Used by the INTEGER, SCALAR, MATRIX, and VECTOR shaping
functions.

Other Library Modules:

Type Precision How Passed Units
Integer/scalar SP/DP R2→first Hw -
Integer(flag) DP R6: upper half for input data,

lower half for output
-

Integer(count) SP R5: number of times to transfer -

Type Precision How Passed Units
Integer/scalar SP/DP R1→first Hw -

Error # Cause Fixup
15 Scalar too large for

integer conversion
Set to maximum representable value
6-314 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
The flags for the input and output data are examined. The appropriate 'LOAD'
routine is executed to load one item to be shaped. The appropriate 'STORE', or in
some cases, 'CONVERT AND STORE' routine stores the shaped data item in the
area pointed to by the destination pointer. The source pointer is updated after each
load; the destination pointer is updated after each store. Data is shaped and
transferred item-by-item.
The values of the flags (R6 upper and lower) are:

0 = HW integer
1 = FW integer
2 = FW scalar
3 = DW scalar
6-315 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: RANDOM
Function: Generates random number with uniform distribution in range (0.0, 1.0).
Invoked By:

Execution Time (microseconds): 54.4
Input Arguments:

Output Results:

Errors Detected:

Comments:
The original SEED(F'1435') is declared as a data constant. To allow storage into
this "constant" for updating SEED, the storage protection is turned off for SEED.
Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:
Multiply F'65539' by SEED. SEED originally=F'1435', but is updated on each pass
through RANDOM. Use the least significant 32 bits of this product (SEED x 65539)
to form the new SEED. If the result is > 0, then RESULT = new SEED. If RESULT
< 0, then new SEED = RESULT - NEGMAX, where NEGMAX = X'80000000'. The
positive new SEED is saved for future use, and is also converted to a floating point
number for present computation of a random number. Multiply the floating point
value by 2-31 to produce a random number in the range (0.0, 1.0).

RANDOM
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: RANDOM Size of Code Area 46 Hw
Stack Requirement: 18 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 ...RANDOM...

Other Library Modules:

Type Precision How Passed Units
None

Type Precision How Passed Units
Scalar DP F0/F1 -

Error # Cause Fixup
None
6-316 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
RANDOM
Secondary Entry Name: RANDG
Function: Generates random number from Gaussian distribution, mean zero, variance

one.
Invoked By:

Execution Time (microseconds): 575.8

Input Arguments:

Output Results:

Errors Detected:

Comments:
Same as RANDOM.
Registers Unsafe Across Call: F0,F1,F2,F3.

Algorithm:

X Compiler emitted code for HAL/S construct of the form:
 ...RANDOMG...

Other Library Modules:

Type Precision How Passed Units
None

Type Precision How Passed Units
Scalar DP F0/F1 -

Error # Cause Fixup
None

12

RANDG uses the formula Y = Σ Xi - 6.0, where Xi is a random number
generated by RANDOM. i=1
6-317 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: STBYTE

Invoked By:

CLJSTV, CPAS, CRJSTV, CTRIMV
Execution Time (microseconds): 19.2 to store in upper byte.

17.2 to store in lower byte.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: R1,R4,R5,F0.

Algorithm:
The flag is tested for an even or odd byte to store into. If odd (upper), the flag is set
to indicate even (lower) for the probable loop that STBYTE is in. Then, the byte is
inserted into the upper byte of the appropriate halfword. If the flag indicates an
even byte to store into, then the byte is inserted into the lower byte of the
appropriate halfword. The flag is set to 0 to indicate that the next time around the
loop, the byte will be odd. The pointer is updated to the next halfword.

STBYTE
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: STBYTE Size of Code Area 22 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

Function: Stores one character into a character string; Used for character
manipulation by other library routines.

Compiler emitted code for HAL/S construct of the form:

X Other Library Modules:

Type Precision How Passed Units
Single character - R5 -
Flag (which byte to
store into)

- Lower Hw of R1:
00-upper byte, X'8000' to lower byte

-

Type Precision How Passed Units
Pointer - R1→Hw to store into -

Error # Cause Fixup
None
6-318 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:

Primary Entry Name: XTOC

Function: Converts bit string to a string of hexadecimal characters.
Invoked By:

Execution Time (microseconds):
35.9 + 32.2 * (# of digits 0-9) + 33.9 * (# of letters A-F),
where 8 * ((# of digits)+(# of letters))= # bits.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Output string length depends on input string length. The maxlength of the output
area is ignored.
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0.

Algorithm:
A character count is determined as the integer part of (bit length +3)/4. The bit
string is positioned in register pair R4-R5 with the first hexadecimal digit in bits 12-
15 of R4 thus:
1) Clear R4; string right-justified in R5 on input.
2) Compute greatest multiple of 4 in 52 - bit length.
3) Use result of 2) as a shift count to shift R4-R5 left double.

XTOC
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: XTOC Size of Code Area 68 Hw
Stack Requirement: 0 Hw Data CSECT Size: 0 Hw

X Intrinsic Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 CHARACTER@HEX(BIT STRING)

Other Library Modules:

Type Precision How Passed Units
Bit string - R5 -
Integer(length of Bit string) SP R6 -

Type Precision How Passed Units
Character string - R2→descriptor -

Error # Cause Fixup
None
6-319 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Compute a halfword count for use as a loop counter:
halfword count = (1 + character count)/2

The character count is stored in the descriptor halfword as the current length of the
output string. Digits are generated by shifting left 4 and stored two at a time in the
output string, after converting DEU format by adding X'30' to each digit. Exit when
proper number of halfwords have been stored.
6-320 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
XTOC
Secondary Entry Name: OTOC
Function: Converts a bit string into a string of octal characters.
Invoked By:

Execution Time (microseconds): 46.2 + 32.3*(# of digits),
 where 6 *(# of digits) = # bits + 2.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Output string length depends on input string length. The maxlength of the output
area is ignored.
Registers Unsafe Across Call: R1,R2,R3,R4,R5,R6,R7,F0.

Algorithm:
First, a character count is determined as the integer part of (bit length + 2)/3. The
bit string is positioned in register pair R4-R5 with the first octal digit in bits 13-15 of
R4 as follows:
1) Begin with R4 clear and the string right-aligned in R5.
2) Compute the shift count as 51-3(character count) and
3) shift R4-R5 left double by this amount.
Complete a halfword count for use as a loop counter as:

halfword count = (1 + character count)/2
The character count is stored in the descriptor halfword of the output string. Then,
digits are generated in a loop, two at a time, by shifting R4-R5 left double 3 bits and
adding X'30' to give the appropriate DEU character. As pairs of digits are
assembled, they are stored into the output string, and exit is taken when the proper
number of halfwords have been stored.

X Compiler emitted code for HAL/S construct of the form:
CHARACTER@OCT(BIT_STRING)

Other Library Modules:

Type Precision How Passed Units
Bit string - R5 -
Integer(length of bit string) SP R6 -

Type Precision How Passed Units
Character string - R2→descriptor -

Error # Cause Fixup
None
6-321 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6.3.7 REMOTE Routine Descriptions
This subsection describes those routines which perform operations on REMOTE data.
REMOTE data is data which may reside in a sector of AP-101 core which is neither
sector 0 nor the current data sector indicated in the Program Status Word at the time
the routine is called. In order to ensure addressability of such data, these routines are
passed, instead of pointers directly to their arguments, pointers to complete address
constants, or "ZCONs", containing both the address of the argument and the number of
the sector in which it resides. These complete address constants, together with a
special AP-101 addressing mode, allow access to any area of AP-101 core without
changing bits in the Program Status Word.

REMOTE routines are invoked (rather than the normal versions of the same routines)
when at least one of the arguments of the routine has the REMOTE attribute.
Aggregate data types (VECTOR, MATRIX, STRUCTURE and CHARACTER types) and
arrays of these data types currently have REMOTE routines. For arrays of
single/double precision scalars or integers, no REMOTE routines exist and a severity 2
FT108 error message is emitted when an attempt is made to pass the REMOTE
argument to a function.
6-322 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CASRPV

Invoked By:

Execution Time (microseconds):
If P = 0 and length(C2) = 0: 76.8
If P > 0 and I is odd: 89.0 + 15.8 * ceiling(n/2)
If P > 0 and I is even: 94.2 + 21.2 * ceiling(n/2)
where P = J - I + 1
n = minimum (p,255) Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: None

CASRPV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name CASRPV Size of Code Area 86 Hw
Stack Requirement: 22 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Assigns a partition of a REMOTE character string into a temporary
character string in a virtual accumulator.

X Compiler emitted code for HAL/S construct of the form:
…C2I TO J … where C2 is a REMOTE character variable and

result is a temporary string.

Other Library Modules:

Type Precision How Passed Units
Integer(I) SP R5 -
Integer(J) SP R6 -
Character(C2) - R4→ZCON→descriptor -

Type Precision How Passed Units
Character(temporary) - R2→ZCON→descriptor -

Error # Cause Fixup
17 Specified partition outside

current string range
Set bad partition pointer(s) to the
limits of the current string

Last character indicator less
than first character indicator
and output string is not null

Return null string
6-323 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Set maxlength of result to 255. Test position of first character of partition. If < 1
then send error and set to 1.
Compare position of last character of partition. If it is > maxlength, reset to
maxlength, and send error. Compare first and last positions. If last < first, then if
input string is null do not send error. If input string is not null, send error and set
result to null string. Make sure partition length does not exceed the maxlength of
the destination string. If it does, truncate it. Increment character count before
dividing by 2 to round resulting halfword count to next highest halfword. If position
of first character of partition is odd, then transfer halfword by halfword. Otherwise,
it is necessary to line characters up into right halves of halfwords by shifting.
6-324 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CASRPV
Secondary Entry Name: CASRP
Function: REMOTE character assignment to declared data, partitioned input.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: None

Algorithm:
Same as CASRPV except maxlength of resultant string is used as passed and not
set to 255.

X Compiler emitted code for HAL/S construct of the form:
C1 = C2I TO J; where C1 and/or C2 are REMOTE character

data.

Other Library Modules:

If P = 0 and length(C2) = 0: 69.4
If P > 0 and I is odd: setup + 15.8 * (ceiling(n/2))
If P > 0 and I is even: setup + 5.2 + 21.2 * (ceiling(n/2))
where P = J- I + 1
setup = 81.6 if P>max length(C1)

82.4 if P>max length(C1)
n = minimum (P, max length(C1))

Type Precision How Passed Units
Integer(I) SP R5 -
Integer(J) SP R6 -
Character(C2) - R4→ZCON→descriptor -

Type Precision How Passed Units
Character(C1) - R2→ZCON→descriptor -

Error # Cause Fixup
17 Same causes and fix-ups as CASRPV -
6-325 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CASRV

Invoked By:

Execution Time (microseconds):
If n = 0: 59.6
If n > 0: 60.8 + 12.6 * (ceiling(n/2))
where n = length(C2)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: None

Algorithm:
Sets maxlength of result to 255. If the current length of the input string > maxlength
of result, set current length of result to maxlength. Otherwise, set current length of
result to current length of input. Find # of halfwords to move by shifting right 1 # of
characters. Move halfword by halfword. If there is an odd # of characters, last byte
moved is garbage.

CASRV
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CASRV Size of Code Area 36 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Assigns a REMOTE character string into a temporary character string
in a virtual accumulator.

X Compiler emitted code for HAL/S construct of the form:
C1 = C2 where C1 and/or C2 is a REMOTE character string, C1

is a temporary.

Other Library Modules:

Type Precision How Passed Units
Character(C2) - R4→ZCON→descriptor -

Type Precision How Passed Units
Character(temporary) - R2→ZCON→descriptor -

Error # Cause Fixup
None
6-326 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
CASRV
Secondary Entry Name: CASR
Function: Assigns a REMOTE character string to a character variable.
Invoked By:

Execution Time (microseconds):
If n = 0: 52.6
If n > 0: 51.8+12.6*(ceiling(n/2))+.8 (if length(C2) > maxlength(C1)),
where n = minimum(length(C2), maxlength(C1)).

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: None

Algorithm:
Same as CASRV, but do not set maxlength of result to 255.

X Compiler emitted code for HAL/S construct of the form:
C1 = C2, where C1 and/or C2 is a REMOTE character
string.

Other Library Modules:

Type Precision How Passed Units
Character string - R4→ZCON→descriptor -

Type Precision How Passed Units
Character string - R2→ZCON→descriptor -

Error # Cause Fixup
None
6-327 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CPASR
Function: Remote character assignment to a partitioned receiver.
Invoked By:

CPASRP
Execution Time (microseconds):
 LHP

 77.9 + KA + KB + Σ (6.0 + KCLOUT+K) + KD
 k=1

 NCHAR

 + Σ (8.4 + KEk + KCI+K-1) + KF
 k=1

 RHP

 + Σ (6.0 + KCI+LIN+K-1) + KG
 k=1

where:

CPASR
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CPASR Size of Code Area 132 Hw
Stack Requirement: 24 Hw Data CSECT Size: 2 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
C1I TO J = C2, where C1 or C2 is a REMOTE character
string.

X Other Library Modules:

LOUT = length(C1) before assignment
LIN = length(C2)
KA = 0 if J < LOUT

13.0 if J > LOUT
LPART = J - I + 1

KB = 15.8 if LPART > 0 and LIN < LPART
12.0 if LPART > 0 and LIN > LPART
0 if LPART = 0

LHP = I-LOUT-1 if I > LOUT + 1
0 otherwise

KCX = 19.8 if X is odd
20.2 if X is even
6-328 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Note: If any of LHP, NCHAR, RHP is zero, then that respective summation is also zero.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
If R5 < 1 then send error and set to 1.
If R6 > max length then send error and set to max length.
If R6 > current length of receiver, then update current length of receiver.
If R6 < R5 then send error and exit immediately. Otherwise, move partition
character by character.

KD = 3.2 if LHP = 0 and I is odd
4.2 if LHP = 0 and I is even
1.0 if LHP > 0 and LOUT is odd
0 if LHP > 0 and LOUT is even

NCHAR = minimum(LPART,LIN)
KEX = 13.8 if X is odd

14.4 if X is even
KF = -0.8 if NCHAR > 0

0 if NCHAR = 0
RHP = LPART-LIN if LPART > LIN

0 otherwise
KG = 0 if RHP > 0

0.4 if RHP = 0

Type Precision How Passed Units
Integer(I) SP R5 -
Integer(J) SP R6 -
Character(C2) - R4→ZCON→descriptor -

Type Precision How Passed Units
Character(C1) - R2→ZCON→descriptor -

Error # Cause Fixup
17 Index of first character < 1 Set to 1

Index of last character > max length of receiver Set to max length
Index of last character < index of first character Return receiver unchanged
6-329 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CPASRP
Function: Remote character string assignment of partitioned input to partitioned output.
Invoked By:

Execution Time (microseconds):
 LHP

 132.3 + KA + KB + KC + Σ(6.0 + KDOUTLEN+K) + KE
 k=1

 NCHAR

 + Σ (8.4 + KFk + KDI+K-1) + KG
 k=1

 RHP

 + Σ (6.0 + KDI+INLEN+K-1) + KH
 k=1

where:

CPASRP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CPASRP Size of Code Area 16 Hw
Stack Requirement: 146 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: CPASR, CASRPV

X Compiler emitted code for HAL/S construct of the form:
C1i TO j = C2k to l where C1 and C2 are character strings.

Other Library Modules:

INPART = L - K + 1 if L > K
0 otherwise

INLEN = minimum(INPART, 255)
KA = 76.8 if INPART = 0 and length(C2) = 0

89.0 + 15.8(ceiling(INLEN(2)) if inpart > 0 and K is odd
94.2 + 21.2(ceiling(INLEN(2)) if inpart > 0 and K is even

OUTLEN = length(C1) before assignment
KB = 0 if J < OUTLEN

13.0 if J > OUTLEN
OUTPART = J - I + 1 if J > I, 0 otherwise

KC = 15.8 if OUTPART > 0 and INLEN = OUTPART
12.0 if OUTPART > 0 and INLEN¹ OUTPART
0 if OUTPART = 0

LHP = I - OUTLEN - 1 if I > OUTLEN + 1, 0 otherwise
KDX = 9.8 if X is odd

20.2 if X is even

6-330 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Note: If any of LHP, NCHAR, RHP is zero, then the respective summation is also zero.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Saves pointer to result in work area, loads address of vac in R1, and branches to
CASRPV. Returns, loads result address in R1, loads arg 3 and arg 7 in R5 and R6
respectively and branches to CPASR, and returns.

KE = 3.2 if LHP = 0 and I is odd
4.2 if LHP = 0 and I is even
1.0 if LHP > 0 and OUTLEN is odd
0 if LHP > 0 and OUTLEN is even

NCHAR = minimum(OUTPART,INLEN)
KFX = 13.8 if X is odd

14.4 if X is even
KG = -0.8 if NCHAR > 0

0 if NCHAR = 0
RHP = OUTPART - INLEN if OUTPART > INLEN, 0 otherwise

KH = 0 if RHP > 0
0.4 if RHP = 0

Type Precision How Passed Units
Character (C2) - R4→ZCON→descriptor -
Integer(k) SP R5 -
Integer(l) SP R6 -
Integer(i||j) (SP||SP) R7 -

Type Precision How Passed Units
Character(C1) - R2→ZCON→descriptor -

Error # Cause Fixup
17 Subscript of character

string out of bounds
Set out-of-bounds value to first or last
character of associated string
6-331 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: CSTR
Function: Comparison of REMOTE structures.
Invoked By:

Execution Time (microseconds):

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: None.

Algorithm:
Compares structures, halfword by halfword, until two are found that are different or
the end of the structure is reached. If inequality is found then set CC to 1 and
return. If equal, then set CC to 0 and return.

CSTR
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: CSTR Size of Code Area 18 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
IF S1 = S2... Where S1, S2, or both is a REMOTE structure

occupying n halfwords.

Other Library Modules:

22.8 + 14.8n if structures compare, where n = # of halfwords in structure.
19.6 + 14.8n if structures do not compare, where n = index of first non-

matching halfwords in structures.

Type Precision How Passed Units
Structure
(left comparand) S1 - R2→ZCON→first Hw -
Structure
(right comparand) S2 - R4→ZCON→first Hw -
Integer(n) SP R5 -

Type Precision How Passed Units
Equal/not equal - Condition Code -

Error # Cause Fixup
None
6-332 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: MR0DNP

Invoked By:

Execution Time (microseconds): 22.8 + n (5.6 + 9.8m)

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as MR0SNP except use 4 * (# columns) as row length in halfwords, and use
double precision store.

MR0DNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:MR0DNP Size of Code Area 16 Hw
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a scalar value to all positions of a partition of a REMOTE double
precision matrix.

X Compiler emitted code for HAL/S construct of the form:
 MA TO B,C TO D=X; where M is a double precision REMOTE

matrix, and either or both 'TO' subscripts
may be replaced by the 'AT' subscripts
under rules given for matrix types. The
indices A,B,C, and D must be literal
values. X is a scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Matrix(n,m) DP R2→ZCON→0th element -

Error # Cause Fixup
None
6-333 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: MR0SNP

Invoked By:

Execution Time (microseconds): 22.8 + n (5.6 + 8.6m) for an n x m partition.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0.

MR0SNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MR0SNP Size of Code Area 16 Hw
Stack Requirement: 20 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a scalar value to all positions of a partition of a REMOTE single
precision matrix.

X Compiler emitted code for HAL/S construct of the form:
 MA TO B,C TO D=X; where M is a REMOTE single precision matrix

and either or both 'TO' subscripts may be
replaced by the 'AT' under rules given for
matrix types. The indices A,B,C, and D
must be literal values. X is a scalar.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Matrix(n,m) SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-334 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Find row length in halfwords by SLL # columns, 1 add row length to outdel

Loop: Indexing on # rows, using BCTB
Loop: Indexing on # columns, using BCTB

Store scalar in pointed to output element
End.
Add outdel (with row size) to output pointer

End.
6-335 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: MR1DNP

Invoked By:

Execution Time (microseconds): 28.4 + n (8.2 + 15m) for an n x m partition.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

MR1DNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:MR1DNP Size of Code Area 22 Hw
Stack Requirement: 22 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a partition of a double precision matrix to a partition of a double
precision matrix. At least one of the matrices has the REMOTE
attribute.

X Compiler emitted code for HAL/S construct of the form:
M1=M2A TO B,C TO D;

M1A TO B,C TO D=M2;

where M1 and M2 are double precision
matrices, and at least one of M1 and M2
is REMOTE and either or both 'TO'
subscripts may be replaced by 'AT'
subscripts under rules given for matrix
types. The indices A,B,C, and D must be
literal values.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) DP R4→ZCON→0th

element
-

Integer(rows) SP R5 -
Integer(columns) SP R6 -
Integer(indel, outdel) SP R7 -

Type Precision How Passed Units
Matrix(n,m) DP R2→ZCON→0th element -

Error # Cause Fixup
None
6-336 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Same as MR1SNP, except use double precision loads and stores and use
4*(# columns) as row length.
6-337 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: MR1SNP

Invoked By:

Execution Time (microseconds): 28.4 + n (8.2 + 12.6m) for an n x m partition.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0.

MR1SNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:MR1SNP Size of Code Area 22 Hw
Stack Requirement: 22 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a partition of a single precision matrix to a partition of a single
precision matrix. Either or both matrices have the REMOTE
attribute.

X Compiler emitted code for HAL/S construct of the form:
M1=M2A TO B,C TO D;

M1A TO B,C TO D=M2;

where M1 and M2 are single precision
matrices, and at least one of M1 and M2 is
REMOTE and either or both 'TO' subscripts
may be replaced by 'AT' subscripts under
rules given for matrix types. The indices
A,B,C, and D must be literal values.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) SP R4→ZCON→0th element -
Integer(n) SP R5 -
Integer(m) SP R6 -
Integer(indel, outdel) (SP||SP) R7 -

Type Precision How Passed Units
Matrix(n,m) SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-338 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Separate indel and outdel into separate registers. Find row size, in halfwords, of
result matrix by shifting left 1,

columns
Add rowsize to indel
Add rowsize to outdel

Loop: Indexing on # of rows of output, and using BCTB
Loop: Indexing on # of columns of input, using BCTB

load (single precision) pointed to input element
store (single precision) pointed to output element

End.
Add indel (with row size added) to input pointer
Add outdel (with row size added) to output pointer

End.
6-339 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: MR1TNP

Invoked By:

Execution Time (microseconds): 31.2 + n (7.6 + 13.8m) for an n x m partition.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

MR1TNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:MR1TNP Size of Code Area 24 Hw
Stack Requirement: 22 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a partition of a double precision matrix to a partition of a
single precision matrix. At least one of the matrices has the
REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
M1=M2A TO B,C TO D;

M1A TO B,C TO D=M2;

where M1 is a single precision
matrix, M2 is a double precision
matrix, and at least one of M1 and M2
is REMOTE and either or both 'TO'
subscripts may be replaced by 'AT'
subscripts under rules given for
matrix types. The indices A,B,C, and
D must be literal values.

Other Library Modules:

Type Precision How Passed Units
Matrix(n,m) DP R4→ZCON→0th element -
Integer(rows) SP R5 -
Integer(columns) SP R6 -
Integer(indel, outdel) (SP||SP) R7 -

Type Precision How Passed Units
Matrix(n,m) SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-340 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Algorithm:
Same as MR1SNP, except use double precision load for index alignment, and use
4 * (# columns) as the length in halfwords of double precision partition.
6-341 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: MR1WNP

Invoked By:

Execution Time (microseconds): 32.8 + n (8.2 + 13.8m) for an n x m partition.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as MR1SNP, except use double precision stores after zeroing the low half of
the floating point register.

MR1WNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:MR1WNP Size of Code Area 24 Hw
Stack Requirement: 22 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a partition of a single precision matrix to a partition of a double
precision matrix. Either or both matrices have REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
M1=M2A TO B,C TO D;

M1A TO B,C TO D=M2;

where M1 is a double precision matrix,
M2 is a single precision matrix, and at
least one of M1 and M2 is REMOTE and
either or both 'TO' subscripts may be
replaced by 'AT' subscripts under rules
given for matrix types. The indices
A,B,C, and D must be literal values.

Other Library Modules:

Type Precision How Passed Units
Matrix SP R4→ZCON→0th element -
Integer(rows) SP R5 -
Integer(columns) SP R6 -
Integer(indel, outdel) (SP,SP) R7 -

Type Precision How Passed Units
Matrix DP R2→ZCON→0th element -

Error # Cause Fixup
None
6-342 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: MSTR
Function: Moves a structure to or from a REMOTE location.
Invoked By:

Execution Time (microseconds): 16.8 + 15n

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: None.

Algorithm:
Moves structure halfword by halfword.

MSTR
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: MSTR Size of Code Area 42 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
S1=S2... where S1 or both S1 and S2 are REMOTE

structures occupying n halfwords.

Other Library Modules:

Type Precision How Passed Units
Structure(S2) - R4→ZCON→first Hw -
Integer(n) SP R5 -

Type Precision How Passed Units
Structure(S1) - R2→ZCON→first Hw -

Error # Cause Fixup
None
6-343 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR0DN

Invoked By:

Execution Time (microseconds): 16.4 + 9.2n, where n = size of vector.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as VR0SN, except use double precision store.

VR0DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR0DN Size of Code Area 6 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a scalar to all elements of a double precision vector with the
REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
V=0; where V is a REMOTE double precision vector.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R4→ZCON→0th

element
-

Error # Cause Fixup
None
6-344 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR0DNP
Function: Moves a scalar to all elements of a column of a double precision matrix.
Invoked By:

Execution Time (microseconds): 21.2 + 10.0n, n = length of vector result.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0, F1.

Algorithm:
Same as VR0SNP, except use double precision stores.

VR0DNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR0DNP Size of Code Area 10 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 M*,I=0; where M is a double precision REMOTE matrix.

Other Library Modules:

Type Precision How Passed Units
Scalar DP F0 -
Integer(n) SP R5 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector(n) DP R2→ZCON→0th element -

Error # Cause Fixup
None
6-345 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR0SN

Invoked By:

Execution Time (microseconds): 16.4 + 8n, n = size of vector.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0.

Algorithm:
Store elements in reverse order using the input length both as an index and to
control the loop.

VR0SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR0SN Size of Code Area 6 Hw
Stack Requirement: 18 Hw Data CSECT Size 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a scalar to all elements of a single precision vector with the
REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V=0; where V is a REMOTE single precision vector.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-346 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR0SNP
Function: Moves a scalar to all elements of a column of a single precision matrix.
Invoked By:

Execution Time (microseconds): 21.2 + 8.8n, n = length of vector result.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0.

Algorithm:
Store elements one at a time, adding outdel to the pointer after each store.

VR0SNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR0SNP Size of Code Area 10 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

X Compiler emitted code for HAL/S construct of the form:
 M*,I=0; where M is a single precision REMOTE matrix.

Other Library Modules:

Type Precision How Passed Units
Scalar SP F0 -
Integer(n) SP R5 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector(n) SP R2→ZCON→0th

element
-

Error # Cause Fixup
None
6-347 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1DN

Invoked By:

Execution Time (microseconds): 16.4 + 15n, n = length of vector.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as VR1SN, except use double precision loads and stores.

VR1DN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR1DN Size of Code Area 8 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a double precision vector to a double precision vector, where at
least one of the vectors has the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V2=V1; where V1 or V2 has been declared a REMOTE vector,

and V1, V2 are both double precision.

Other Library Modules:

Type Precision How Passed Units
Vector DP R4→ZCON→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R1→ZCON→0th element -

Error # Cause Fixup
None
6-348 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1DNP

Invoked By:

Execution Time (microseconds) : 17.0n + 29.6 if neither input nor output is contiguous.
 17.0n + 30.4 if either input or output is contiguous,

 where n = length of vector.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as VR1SNP, except if indel or outdel = 0, sets to 4, and does double
precision loads and stores.

VR1DNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR1DNP Size of Code Area 20 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a double precision vector to a double precision vector when
elements of source or receiver are not contiguous, and at least one
has the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V=M*,J;

M*,J=V;

where V has been declared a double precision
vector, M is a double precision matrix, and V or M
is REMOTE.

Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R4→ZCON→0th element -
Integer(n) SP R5 -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector(n) DP R2→ZCON→0th element -

Error # Cause Fixup
None
6-349 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1SN

Invoked By:

Execution Time (microseconds): 16.4 + 12.6n, n = length of vector.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0.

Algorithm:
Loops n times, using length both as index and to control the loop. Load, then store,
each element in turn.

VR1SN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR1SN Size of Code Area 8 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a single precision vector to a single precision vector where at
least one of the vectors has the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V1=V2; where V1 and/or V2 are REMOTE and both V1 and V2

are single precision.

Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R4→ZCON→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-350 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1SNP

Invoked By:

Execution Time (microseconds):
14.6n + 30.4 if either input or output is contiguous.
14.6n + 29.6 if neither input nor output is contiguous, where n=length of vector.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
If outdel = 0, sets it to 2.
If indel = 0, sets it to 2.
Loops 'length' times, moving one element each loop. Adds indel to input pointer
and outdel to output pointer after each move.

VR1SNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR1SNP Size of Code Area 20 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a single precision vector to a single precision vector when
elements of source or receiver are not contiguous and at least one has
the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V = M*,J;

M*,J= V;

where V is a single precision vector, M is a
single precision matrix, and V or M has the
REMOTE attribute.

Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R4→ZCON→0th element -
Integer(n) SP R5 -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-351 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1TN

Invoked By:

Execution Time (microseconds): 16.4n + 13.8n, n = length of vector.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as VR1SN, except use double precision loads.

VR1TN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR1TN Size of Code Area 8 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a double precision vector to a single precision vector, where at
least one of the vectors has the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V1=V2; where V1 is a single precision vector, V2 is a

double precision vector, and at least one of V1
and V2 is REMOTE.

Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R4→ZCON→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-352 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1TNP

Invoked By:

Execution Time (microseconds):15.8n + 30.4 if either input or output is contiguous.
15.8n + 29.6 if neither input nor output is contiguous,
where n=length of vector.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as VR1SNP, except if indel = 0, sets it to 4, and does double precision loads.

VR1TNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR1TNP Size of Code Area 20 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a double precision vector to a single precision vector, when
elements of source or receiver are not contiguous, and at least one of
them has the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V=M*,J; where V is a single precision vector, M is a

double precision matrix, and V or M is REMOTE.

Other Library Modules:

Type Precision How Passed Units
Vector(n) DP R4→ZCON→0th element -
Integer(n) SP R5 -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector SP R2→ZCON→0th element -

Error # Cause Fixup
None
6-353 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1WN

Invoked By:

Execution Time (microseconds): 20.6 + 13.8n, n = length of vector.
Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as VR1SN, except use double precision store with low half of floating register
zeroed.

VR1WN
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name: VR1WN Size of Code Area 10 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a single precision vector to a double precision vector, where at
least one of the vectors has the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V1=V2; where V1 or V2 are remote, V1 double precision, and

V2 single precision.

Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R4→ZCON→0th element -
Integer(n) SP R5 -

Type Precision How Passed Units
Vector(n) DP R2→ZCON→0th element -

Error # Cause Fixup
None
6-354 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
ENTRY POINT DESCRIPTIONS:
Primary Entry Name: VR1WNP

Invoked By:

Execution Time (microseconds): 15.8n + 31.2 if either input or output is contiguous.

15.8n + 32.0 if neither input nor output is contiguous.

Input Arguments:

Output Results:

Errors Detected:

Comments:
Registers Unsafe Across Call: F0,F1.

Algorithm:
Same as VR1SNP, except if outdel=0, sets it to 4, and uses double precision
stores, after clearing the low half of the floating point register.

VR1WNP
HAL/S-FC LIBRARY ROUTINE DESCRIPTION

Source Member Name:VR1WNP Size of Code Area 22 Hw
Stack Requirement: 18 Hw Data CSECT Size: 0 Hw

Intrinsic X Procedure
Other Library Modules Referenced: None

Function: Moves a single precision vector to a double precision vector, when
elements of source or receiver are not contiguous, and at least one of
them has the REMOTE attribute.

X Compiler emitted code for HAL/S construct of the form:
 V=M*,J; where V is a double precision vector, M is a single

precision matrix, and V or M is REMOTE.

Other Library Modules:

Type Precision How Passed Units
Vector(n) SP R4→ZCON→0th element -
Integer(n) SP R5 -
Integer(indel) SP R6 -
Integer(outdel) SP R7 -

Type Precision How Passed Units
Vector(n) DP R2→ZCON→0th element -

Error # Cause Fixup
None
6-355 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Table 6-1 Index of Library Entry Name
A
ACOS ,6-54
ACOSH ,6-57
ASIN ,6-55
ASINH ,6-58
ATAN ,6-96
ATANH ,6-59

B
BTOC ,6-273

C
CAS ,6-237
CASP ,6-234
CASPV ,6-232
CASR ,6-327
CASRP ,6-325
CASRPV ,6-323
CASRV ,6-326
CASV ,6-235
CAT ,6-240
CATV ,6-238
CEIL ,6-46
CINDEX ,6-241
CLJSTV ,6-243
COS ,6-115
COSH ,6-111
CPAS ,6-245
CPASP ,6-247
CPASR ,6-328
CPASRP ,6-330
CPR ,6-248
CPRA ,6-251
CPRC ,6-250
CPSLD ,6-277
CPSLDP ,6-278
CPSST ,6-279
CPSSTP ,6-281
CRJSTV ,6-253
CSHAPQ ,6-274
CSLD ,6-276
CSLDP ,6-282
CSST ,6-283
CSSTP ,6-284
CSTR ,6-332
CSTRUC ,6-285
CTOB ,6-286
CTOD ,6-291
CTOE ,6-288
CTOH ,6-294

CTOI ,6-292
CTOK ,6-295
CTOO ,6-298
CTOX ,6-296
CTRIMV ,6-255

D
DACOS ,6-60
DACOSH ,6-63
DASIN ,6-61
DASINH ,6-64
DATAN ,6-68
DATAN2 ,6-66
DATANH ,6-65
DCEIL ,6-47
DCOS ,6-83
DCOSH ,6-79
DEXP ,6-69
DFLOOR ,6-48
DLOG ,6-71
DMAX ,6-257
DMDVAL ,6-36
DMIN ,6-258
DMOD ,6-38
DPROD ,6-259
DPWRD ,6-73
DPWRH ,6-76
DPWRI ,6-74
DROUND ,6-49
DSIN ,6-84
DSINH ,6-77
DSLD ,6-299
DSNCS ,6-80
DSQRT ,6-85
DSST ,6-300
DSUM ,6-260
DTAN ,6-88
DTANH ,6-91
DTOC ,6-303
DTOH ,6-306
DTOI ,6-50
DTRUNC ,6-51

E
EATAN2 ,6-93
EMAX ,6-261
EMIN ,6-262
EMOD ,6-40
EPROD ,6-263
EPWRE ,6-97

EPWRH ,6-100
EPWRI ,6-98
ESUM ,6-264
ETOC ,6-301
ETOH ,6-304
ETOI ,6-52
EXP ,6-101

G
GTBYTE ,6-307

H
HMAX ,6-265
HMIN ,6-266
HMOD ,6-42
HPROD ,6-267
HPWRH ,6-106
HREM ,6-44
HSUM ,6-268
HTOC ,6-309

I
IMAX ,6-269
IMIN ,6-270
IMOD ,6-41
IPROD ,6-271
IPWRH ,6-105
IPWRI ,6-103
IREM ,6-43
ISUM ,6-272
ITOC ,6-308
ITOD ,6-310
ITOE ,6-311

K
KTOC ,6-312

L
LOG ,6-107

M
MM0DNP ,6-122
MM0SNP ,6-124
MM11D3 ,6-138
MM11DN ,6-137
MM11S3 ,6-140
MM11SN ,6-139
MM12D3 ,6-143
MM12DN ,6-141
MM12S3 ,6-146
MM12SN ,6-144
6-356 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
MM13D3 ,6-148
MM13DN ,6-147
MM13S3 ,6-150
MM13SN ,6-149
MM14D3 ,6-152
MM14DN ,6-151
MM14S3 ,6-155
MM14SN ,6-153
MM15DN ,6-156
MM15SN ,6-157
MM17D3 ,6-158
MM17DN ,6-159
MM17S3 ,6-160
MM17SN ,6-161
MM1DNP ,6-125
MM1SNP ,6-127
MM1TNP ,6-129
MM1WNP ,6-131
MM6D3 ,6-134
MM6DN ,6-133
MM6S3 ,6-136
MM6SN ,6-135
MR0DNP ,6-333
MR0SNP ,6-334
MR1DNP ,6-336
MR1SNP ,6-338
MR1TNP ,6-340
MR1WNP ,6-342
MSTR ,6-343
MV6D3 ,6-163
MV6DN ,6-162
MV6S3 ,6-165
MV6SN ,6-164

O
OTOC ,6-321

Q
QSHAPQ ,6-314

R
RANDG ,6-317
RANDOM ,6-316
ROUND ,6-45

S
SIN ,6-116

SINH ,6-109
SNCS ,6-112
SQRT ,6-117
STBYTE ,6-318

T
TAN ,6-119
TANH ,6-121
TRUNC ,6-53

V
VM6D3 ,6-167
VM6DN ,6-166
VM6S3 ,6-169
VM6SN ,6-168
VO6D3 ,6-171
VO6DN ,6-170
VO6S3 ,6-173
VO6SN ,6-172
VR0DN ,6-344
VR0DNP ,6-345
VR0SN ,6-346
VR0SNP ,6-347
VR1DN ,6-348
VR1DNP ,6-349
VR1SN ,6-350
VR1SNP ,6-351
VR1TN ,6-352
VR1TNP ,6-353
VR1WN ,6-354
VR1WNP ,6-355
VV0DN ,6-174
VV0DNP ,6-175
VV0SN ,6-176
VV0SNP ,6-177
VV10D3 ,6-223
VV10DN ,6-226
VV10S3 ,6-227
VV10SN ,6-229
VV1D3 ,6-179
VV1D3P ,6-180
VV1DN ,6-178
VV1DNP ,6-181
VV1S3 ,6-183
VV1S3P ,6-184
VV1SN ,6-182
VV1SNP ,6-185

VV1T3 ,6-187
VV1T3P ,6-188
VV1TN ,6-186
VV1TNP ,6-189
VV1W3 ,6-191
VV1W3P ,6-192
VV1WN ,6-190
VV1WNP ,6-193
VV2D3 ,6-195
VV2DN ,6-194
VV2S3 ,6-197
VV2SN ,6-196
VV3D3 ,6-199
VV3DN ,6-198
VV3S3 ,6-201
VV3SN ,6-200
VV4D3 ,6-203
VV4DN ,6-202
VV4S3 ,6-205
VV4SN ,6-204
VV5D3 ,6-207
VV5DN ,6-206
VV5S3 ,6-209
VV5SN ,6-208
VV6D3 ,6-211
VV6DN ,6-210
VV6S3 ,6-213
VV6SN ,6-212
VV7D3 ,6-215
VV7DN ,6-214
VV7S3 ,6-217
VV7SN ,6-216
VV8D3 ,6-218
VV8DN ,6-219
VV8S3 ,6-220
VV8SN ,6-221
VV9D3 ,6-224
VV9DN ,6-225
VV9S3 ,6-222
VV9SN ,6-228
VX6D3 ,6-230
VX6S3 ,6-231

X
XTOC ,6-319
6-357 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
6-358 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
7.0 System Interfaces
This section deals with characteristics and behavior of the HAL/S-FC compiler as
related to the environment in which the compiler operates. Specifically, these items are
in relation to the host computer in which the compiler is executed.

7.1 Internal System Interfaces
The HAL/S-FC compiler is designed to operate under OS/360 MVT or an equivalent
operating system (such as OS/VS2 on IBM 370 equipment). The compiler was
developed under Release 21.6 of OS and uses many of the features of that system.

7.1.1 Macro Instructions
All operating system communication is performed via standard assembler language
macro instructions as provided with OS MVT. The following list contains the names of
all macros executed directly by the HAL/S-FC compiler.

The forms of some of these macros require further explanation:

ABEND BLDL CHECK CLOSE DCB
DCBD DELETE FIND FREEMAIN FREEPOOL
GET GETBUF GETMAIN LOAD NOTE
OPEN POINT PUT READ RETURN
SAVE SPIE STIMER STOW TIME
TTIMER WRITE

FREEMAIN - All FREEMAIN macros use the SP parameter to indicate
subpool 22. Both freeing of single elements of storage and
freeing of an entire subpool are performed.

GETMAIN - All requests for main storage are made with the SP operand
specifying subpool 22. GETMAINs are done for both single
elements of storage of specific size and once, during compiler
initialization, for a variable region using the VC form of
GETMAIN. This initialization GETMAIN obtains the largest
contiguous element of memory available in the job step
region. This memory (assigned to subpool 22) is used to hold
executable compiler code and as a data area for the compiler.

STIMER - The STIMER macro with the TASK option is used to start an
accounting of CPU time used by the compiler.

TTIMER - The TTIMER macro is used to test the TASK interval timer as
started by the STIMER macro to determine elapsed CPU time
at various points in a compilation.
7-1 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
7.1.2 Dynamic Invocation of the Compiler
The HAL/S-FC compiler may be dynamically invoked by another processing program.
The details of this interface are controlled by the HAL/SDL ICD.
The dynamic invocation capability allows:

• specification of a parameter string to be acted upon by the compiler,
• specification of an alternate DDNAME list for those DD cards referenced by the

compiler, and
• specification of communication areas in which the compiler will supply information

to the invoking program.
The compiler takes the following actions to restore its environment upon return to the
program which performed the invocation.

• All DCBs opened by the compiler are closed and any automatically acquired buffers
are FREEPOOLed.

• All GETMAINed storage is FREEMAINed.
• The SPIE exit (if any) is restored to its status upon entering the compiler.

7.1.3 OS/360 Access Methods
In performing input/output processing the HAL/S-FC compiler uses the OS Data
Management Access Methods:

BSAM QSAM BPAM

No other access methods are used, and all datasets manipulated by the compiler are
standard OS/360 datasets.

7.2 User or External System Interfaces
The majority of ways in which users of the HAL/S-FC compiler interact with the compiler
are described in Sections 2 through 5 of this document. However, the primary vehicle
for user communication with this system is Job Control Language which is a part of the
compiler's interface to the system in which it operates. This subsection describes the
two areas of external or user interfaces to the system:

7.2.1 User-defined Options
The HAL/S-FC compiler has a number of optional features which may be exercised by
the user. These options are indicated via key word parameters passed to the compiler
in the standard OS/360 method. The options are either passed to the compiler during
dynamic invocation as described in the HAL/SDL ICD, or are passed via the PARM field
on the EXEC card in the JCL invoking the compiler. A list of these options and their
effects may be found in Section 5 of the HAL/S-FC User's Manual.

1) user-defined options acted upon by the compiler, and
2) the JCL with which the user defines the compiler's data and hence the

environment in which the compiler is to operate.
7-2 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
7.2.2 Job Control Language Specification
JCL is the means by which any user of the compiler defines the set of data upon which
the compiler is to operate. This JCL is therefore the first interface of the user and the
compiler. Once this set of data is specified, all other interfaces with the user are
through this data in the manner described in preceding chapters. The remainder of this
subsection consists of two parts:

Typical JCL for Compiler Invocation

1) a listing of some typical JCL for compiler invocation; and
2) a chart describing the uses, presumed attributes, and access methods for all

DD cards.
//HALFC PROC OPTION=,LEVEL=HALS101 00010000
//HAL EXEC PGM=MONITOR,REGION=350K,TIME=1, 00020000
// PARM='NOZCON,&OPTION' 00030000
//STEPLIB DD DISP=SHR,DSN=&LEVEL..MONITOR 00040000
//PROGRAM DD DISP=SHR,DSN=&LEVEL..COMPILER 00050000
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133, 00060000
// BLKSIZE=3458) 00070000
//LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133, 00080000
// BLKSIZE=3458) 00090000
//OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)), 00100000
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400), 00110000
// DSN=&&HALOBJ 00120000
//OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80, 00130000
// BLKSIZE=400) 00140000
//OUTPUT5 DD DISP=(MOD,PASS),DSN=&&HALSDF, 00150000
// SPACE=(TRK,(2,2,1)),UNIT=SYSDA, 00160000
// DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680) 00170000
//OUTPUT6 DD DISP=(MOD,PASS),DSN=&&TEMPLIB, 00180000
// SPACE=(TRK,(2,2,1)),UNIT=SYSDA, 00190000
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680) 00200000
//OUTPUT7 DD DUMMY,DCB=(RECFM=FM,LRECL=121,BLKSIZE=121) 00210000
//ERROR DD DISP=SHR,DSN=&LEVEL..ERRORLIB 00220000
//FILE1 DD UNIT=SYSDA,SPACE=(CYL,3) 00230000
//FILE2 DD UNIT=SYSDA,SPACE=(CYL,3) 00240000
//FILE3 DD UNIT=SYSDA,SPACE=(CYL,3) 00250000
//FILE4 DD UNIT=SYSDA,SPACE=(CYL,3) 00260000
//FILE5 DD UNIT=SYSDA,SPACE=(CYL,3) 00270000
//FILE6 DD UNIT=SYSDA,SPACE=(CYL,3) 00280000
7-3 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
NOTES:

Compiler DDNAMES, Uses, and Requirements
DDNAME FUNCTION DEVICE

REQUIREMENTS
LRECL RECFM BLKSIZE BUFNO3 DSORG ACCESS

METHOD, MACRF

PROGRAM Executable compiler phases direct access
magnetic tape

7200 F 7200 0 PS BSAM, R

SYSPRINT Primary listing printer
intermediate storage

133 FBA 34581 1 PS QSAM, PL

LISTING2 Secondary unformatted listing printer
intermediate storage

133 FBA 34581 1 PS QSAM, PL

OUTPUT3 Object module output direct access
magnetic tape

80 FB 4001 1 PS QSAM, PL

OUTPUT4 Duplicate object module output direct access
magnetic tape

80 FB 4001 1 PS QSAM, PL

OUTPUT5 Simulation data file output direct access 16804 F4 16804 0 PO BPAM, W

OUTPUT6 Template search and creation direct access 802 FB 16802 1 PO BPAM, WR

OUTPUT7 Pseudo-assembly listing for
linkedit ABSLIST function

direct access
magnetic tape

133 FBM 34581 1 PS BSAM, PL

ERROR Compiler error message retrieval direct access 80 FB 400 1 PO BPAM, R

FILE1 Phase 1, Optimizer HALMAT
work file Auxiliary HALMAT file

direct access 7200 F 7200 0 PS BSAM, RWP

FILE2 Literal communication area direct access 1560 F 1560 0 PS BSAM, RWP

FILE3 Phase 1 Init/Const work area
Phase 2 code gen. work area

direct access 1600 F 1600 0 PS BSAM, RWP

FILE4 Phase 2 HALMAT work file direct access 7200 F 7200 0 PS BSAM, RWP

FILE5 Phase 3 paging area direct access 1680 F 1680 0 PS BSAM, RWP

FILE6 Statement data communication
area

direct access 512 F 512 0 PS BSAM, RWP

SYSIN Primary source input intermediate storage 80≤
LRECL≤
132

FB legal multiple
of LRECL1

1 PS QSAM, GL

INCLUDE Secondary source input direct access 80≤
LRECL≤
132

FB legal multiple
of LRECL1

1 PO BPAM, R

ACCESS ACCESS Rights control direct access 802 FB 16802 1 PO BPAM, R

1 BLKSIZE value may be altered by user to any installation-legal value.
2 Compiler will use LRECL and BLKSIZE supplied by user.
3 BUFNO may be specified by user for any PS type datasets.
4 Defaults are shown; Records are always written as 1680 blocks but user-

supplied attributes will be retained.
7-4 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
8. 0 PASS/BFS Differences
8.1 Introduction and Background
This section outlines the differences between the Primary Avionics Software System
(PASS) and the Backup Flight Software (BFS) versions of the HAL/S-FC merged
compiler as of release BFS 7v0. The merging of PASS and BFS compiler source code
was authorized via CR11114. BFS 7v0 was a merge of the separate PASS and BFS
compiler source code designed to reduce the sustained engineering costs of
maintaining two separate compilers. The PASS compiler version 23v2 was used as a
baseline for adding BFS version 6v0 unique code and certain PASS and BFS unique
discrepancy reports (DRs) and change requests (CRs). Although much of the source
became common between the two compilers, there exist differences that can be
attributed to required PASS/BFS interfaces and certain desired but not required
compiler features. For more information, refer to the Backup Operating System
Interface Control Document (BOS ICD, OV102). BFS 7v0 is functionally equivalent to
PASS 23v2 except for the differences described in the following sections.

8.2 Interface Differences (Required)

8.2.1 Operating Systems (BOS vs. FCOS)

The BFS compiler system interfaces with the Backup Operating System (BOS) while
the PASS compiler interfaces with the Flight Computer Operating System (FCOS).
The SVCI statement is implemented for BFS and must be the last statement before the
CLOSE statement in a HAL/S program. SVCI is not implemented for PASS since an
automatic SVC is generated.
The BFS compiler system contains Initial Entry processing using a carry bit parameter
passed in by the BOS. HAL/S programs use this to determine if a task was

1) inactive prior to current entry
2) active, but normal sequence of execution was interrupted
3) OFF - active, normal sequence of execution

All code areas, as well as constants and literals in data areas, are protected for BFS.
PASS groups all data areas in Control Sections (CSECTs) and cannot selectively
protect a portion of a CSECT. Therefore, data areas are unprotected for PASS.
Real-time statements SCHEDULE, TERMINATE, CANCEL, WAIT, UPDATE PRIORITY,
SIGNAL, SET, RESET, SEND ERROR, RUNTIME, CLOCKTIME, DATE, PRIO,
ERRGRP, and ERRNUM are disallowed in BFS due to the BOS's synchronous nature.
FCOS is asynchronous, therefore the aforementioned functions are allowed in PASS.
BFS program and task names are formed with a "$" appended to the front of a seven
character (maximum) non-underscored HAL/S program or task name. PASS program
and task names are formed with two possible characters ($0-$9) appended to the front
of a six character name.
UPDATE blocks and EXCLUSIVE procedures or functions are allowed in PASS,
8-1 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
however they are disallowed in BFS.
Block definitions are generated differently for BFS and PASS. When a BFS program
and task is invoked, the stack address is already in Register 0 (R0). Additionally, an
SVC 15(3) instruction is always generated for alternate entry processing for BFS. For
PASS, the stack address has to be loaded into R0 at the beginning of a program or task
and no SVC 15(3) instruction is generated (no-SDL only).

8.2.2 Linkage Editors (PILOT vs. AP101)

At the start of the HAL/S compiler development, BFS used a different hardware
platform than PASS. The BFS system used the ECLIPSE, while PASS used the IBM
360 mainframe. Therefore, the BFS object code format was different and the PILOT
linker was created. The ECLIPSE system was found to be too slow, so BFS switched
to the IBM platform. However, BFS still uses PILOT as a linker versus the AP101 linker.
Thus, the BFS system generates PILOT-formatted object code, while the PASS system
generates IBM 360-formatted object code.

8.2.3 Compiler Features

Major Function ID (MFID) is a Type 2 option passed to the PASS compiler that PASS
flight software (FSW) uses for grouping modules together for job related purposes. The
MFIDs are stored in the #E CSECT (Process Directory Entry) bits 11-15 in the 6th half
word. The PASS compiler will generate a Process Directory Entry for all programs and
tasks within a compilation unit. FCOS must have a Process Directory Entry (#E). The
BFS compiler does not generate a #E CSECT (and likewise a MFID) since this CSECT
is used for scheduling, canceling, or terminating events which are unimplemented
features in the BFS compiler.
Specifying the NOSCAL option in BFS specifically inhibits the use of the SCAL and
SRET instructions for subroutine linkage, even if the MICROCODE option was also
chosen. MICROCODE and NOSCAL together thus cause BAL linkage to be used
instead of the SCAL/SRET instructions. If NOMICROCODE was specified, neither
SCAL nor NOSCAL has any effect.
The DATA REMOTE directive is restricted in BFS (CR11142, BFS 8.0) due to BOS
incompatibility, even though the source code to use it exists in the compiler. If used by
BFS, a "B102-UNIMPLEMENTED FEATURE OF HAL/S CALLED FOR", severity 2
error message is emitted.
BFS does not support the NAME TASK and NAME PROGRAM constructs.
8-2 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
8.3 Compiler Feature Differences (Not Required)

8.3.1 Changes Due To CRs/DRs

CR8301 was implemented in PASS release 20v1. This CR changed the Branch
instruction BCR to BCRE, and is PASS unique since its implementation would cause
object code changes in Backup Flight Software.
CR8348 was implemented in PASS release 20v1. This CR changes Address
Constants (ADCONs) offsets, condenses branch instructions and is PASS unique since
its implementation would cause object code changes generated by Backup Flight
Software.
DR101925, implemented in BFS release 7v0, changed the object file from OUTPUT8 to
OUTPUT3. This DR also changed the data set organization of OUTPUT3 in the
Monitor member, MONITOR, from sequential to partitioned for BFS since BFS compiler
source contains a Monitor call that requires OUTPUT3 to be partitioned. This differs
from PASS which uses sequential organization to support the PASS FSW tool Program
Maintenance Facility (PMF).
CR11114 changed the Monitor member COMPOPT to set apart the option bits used by
each compiler.
CR11114 added the ERRORLIB members PR1-PR5 and DR106214 added ERRORLIB
member PR6. These error messages can only be emitted by the BFS compiler since
the invocation of these members are contained in BFS unique code.
BIX loop combining related to optimization was made PASS specific since its
implementation would cause object code differences generated by Backup Flight
Software. Note, BIX loop combining could not be attributed to a particular CR or DR but
was implemented before PASS 19v0.
CR13538 changed the object code for YCON to ZCON conversions so that the OHI
instruction would not be emitted for BFS. This was necessary since the BFS Pilot does
not set the Most Significant Bit (MSB) for ZCON data in Sector 0. The OHI was
removed to prevent incorrect NAME compares with data converted using the YCON to
ZCON routine in the compiler.

8.3.2 Functions Not Implemented In BFS Compiler

The macros %NAMEADD and %NAMEBIAS are not implemented in the BFS compiler
and will generate an "XM1 - %NAMEADD (%NAMEBIAS) IS A NON-EXISTENT
%MACRO" error message if the user tries to invoke them.
8-3 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
8.4 BFS/Pass Differences By Compiler Subsystem

Figure 8-1

MONITOR PASS1 PASS2 PASS3 OPT
OLDTPL (BFS)/
MFID (PASS)-options

OLDTPL/MFID Intial entry CSECT Names BIX Loop
Combining

SCAL (BFS-options %SVCI Constant and Literal
protection

OUTPUT3
-Sequential (PASS)
-PDS (BFS)

%NAMEADD Real-time statement

%NAMEBIAS %SVCI
 Object code format

Process Directory Entry
UPDATE Blocks
EXCLUSIVE procedures
Alternate entry
processing
Program and task
names
BCR/BCRE instruction
(CR8348)
ADCON offsets
(CR8348)
Branch Condensing
(CR8348)
OHI in YCON to ZCON
conversions (CR 13538)
8-4 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
8.5 Summary of PASS/BFS Differences

Figure 8-2

BFS PASS
• BOS • FCOS
• Pilot linker • AP101 linker
• Pilot - formatted object code • 360 - formatted object code
• SVCI implemented. Must be last

statement before CLOSE
• SVCI not implemented. Automatic

SVC generated. (see Table 7-1 for a
list of SVC Options)

• Initial Entry processing - carry bit • No Initial Entry support
• Constants and literals in data areas

are protected and unprotected on a
half word basis

• All data areas are unprotected and
code areas protected on a CSECT
basis

• SCHEDULE, TERMINATE, CANCEL,
WAIT, UPDATE PRIORITY, SIGNAL,
SET, RESET, SEND ERROR,
RUNTIME, CLOCKTIME, DATE,
PRIO, ERRGRP, ERRNUM are
disallowed

• The mentioned functions are allowed

• No Process directory entry • Process directory entry (#E - stacks
and flags)

• Program and task names formed with
'$' appended to front of a 7 character
name

• Program and task names formed with
2 character($0 - $9) appended to
front of a 6 character name
8-5 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Summary of PASS/BFS Differences (continued)

Figure 8-3

BFS PASS
• UPDATE blocks and EXCLUSIVE

procedures or functions are
disallowed

• Allowed

• Block definition of Program and Task • Block Definition of Program and Task
• When program or task is invoked,

stack address is already in R0
• The stack address has to be loaded

into R0 at the beginning of program or
task

• An SVC 15(3) instruction is always
generated for alternate entry
processing

• No SVC 15(3) instruction is
generated

• SCAL inhibits use of SCAL and SRET
instructions

•

• MICROCODE and NOSCAL results
in BAL linkage use

•

• If NOMICROCODE specified neither
SCAL nor NSCAL has any effect

•

• • Allows specification of the Major
Function IDs
8-6 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
Table 8-1 SVC Options

FFFF TASK QUIT- TERMINATE CURRENT TASK
0000 TASK NEXT- GO TO NEXT TASK
000F ERROR RESTART
0010 MSEC CARD 07- NONCRITICAL I/O REQUEST
0011 MSEC CARD 11- NONCRITICAL I/O REQUEST
0012 MSEC RESET
0013 MSEC CRITICAL I/O
0014 HAL/S RTL ERROR
0015 ASYNCHRONOUS I/O REQUEST
0016 TASK ATTACH REQUEST*
0017 TASK DETACH REQUEST*
0018 TASK STOP REQUEST*
0019 MAKE A GPC ERROR LOG ENTRY
001A EIU1 MSTR RESET
001B EIU1 STAT OVERRIDE
001C EIU2 MSTR RESET
001D EIU2 STAT OVERRIDE
001E EIU3 MSTR RESET
001F EIU3 STAT OVRD

* The SVC code is the first halfword of a list of actions to be performed. The
actual parameter passed by the SVC instruction is the address of the list
that contains the SVC code and address and mask pairs.
8-7 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
This page intentionally left blank.
8-8 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
 Appendix A Error Classifications
Note: “b” denotes a blank.

CLASS A: ASSIGNMENT STATEMENTS
A ARRAY ASSIGNMENT399
V COMPLEX VARIABLE ASSIGNMENT
b MISCELLANEOUS ASSIGNMENT

CLASS B: COMPILER TERMINATION
B HALMAT BLOCK SIZE
I INTERNAL ERRORS
N NAME SCOPE NESTING
S STACK SIZE LIMITATIONS
T TABLE SIZE LIMITATIONS
X COMPILER ERRORS
b MISCELLANEOUS

CLASS C: COMPARISONS
b GENERAL COMPARISONS

CLASS D: DECLARATION ERRORS
A ATTRIBUTE LIST
C STORAGE CLASS ATTRIBUTE
D DIMENSION
I INITIALIZATION
L LOCKING ATTRIBUTE
N NAME
Q STRUCTURE TEMPLATE TREE ORGANIZATION
S FACTORED/UNFACTORED SPECIFICATION
T TYPE SPECIFICATION
U UNDECLARED DATA
b MISCELLANEOUS

CLASS E: EXPRESSIONS
A ARRAYNESS
B BIT STRING EXPRESSIONS
C CROSS PRODUCT
D DOT PRODUCT
L LIST EXPRESSIONS
M MATRIX EXPRESSIONS
N NAME
O OUTER PRODUCT
V VECTOR EXPRESSIONS
b MISCELLANEOUS EXPRESSIONS
A-1 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
CLASS F: FORMAL PARAMETERS & ARGUMENTS
D DIMENSION AGREEMENT
N NUMBER OF ARGUMENTS
S SUBBIT ARGUMENTS
T TYPE AGREEMENT
b MISCELLANEOUS

CLASS G: STATEMENT GROUPINGS (DO GROUPS)
B BIT TYPE CONTROL EXPRESSION
C CONTROL EXPRESSION
E EXIT/REPEAT STATEMENTS
L END LABEL
V CONTROL VARIABLE

CLASS I: IDENTIFIERS
L LENGTH
R REPLACED IDENTIFIERS
S QUALIFIED STRUCTURE NAMES

CLASS L: LITERALS
B BIT STRING
C CONVERSION TO INTERNAL FORMS
F FORMAT OF ARITHMETIC LITERALS
S CHARACTER STRING

CLASS M: MULTILINE FORMAT
C OVERPUNCH CONTEXT
E E-LINE
O OVERPUNCH USE
S S-LINE
b COMMENTS

CLASS P: PROGRAM CONTROL & INTERNAL CONSISTENCE
A ACCESS CONTROL
C COMPOOL BLOCKS
E EXTERNAL TEMPLATES
F FUNCTION RETURN EXPRESSIONS
L LABELS
M MULTIPLE DEFINITIONS
P BLOCK DEFINITION
R ON ERROR/SVCI MACRO (ONLY EMITTED BY BFS COMPILER)
S PROCEDURE/FUNCTION TEMPLATES
T TASK DEFINITIONS
U CALLS FROM UPDATE BLOCKS
b MISCELLANEOUS
A-2 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
CLASS Q: SHAPING FUNCTIONS
A ARRAYNESS
D DIMENSION INFORMATION
S SUBSCRIPTS
X ARGUMENT TYPE

CLASS R: REAL TIME STATEMENTS
E ON/SEND ERROR STATEMENTS
T TIMING EXPRESSIONS
U UPDATE BLOCKS

CLASS S: SUBSCRIPT USAGE
C SUBSCRIPT COUNT
P PUNCTUATION
Q PRECISION QUALIFIER
R RANGE OF SUBSCRIPT VALUES
S USAGE OF ASTERISKS
T SUBSCRIPT TYPE
V VALIDITY OF USAGE

CLASS T: I/O STATEMENTS
C CONTROL
D DEVICE NUMBER
b MISCELLANEOUS

CLASS U: UPDATE BLOCKS
I IDENTIFIER USAGE
P PROGRAM BLOCKS
T I/O

CLASS V: COMPILE-TIME EVALUATIONS
A ARITHMETIC OPERATIONS
C CATENATION OPERATIONS
E UNCOMPUTABLE EXPRESSIONS
F FUNCTION EVALUATION

CLASS X: IMPLEMENTATION DEPENDENT FEATURES
A PROGRAM ID DIRECTIVE
D DEVICE DIRECTIVE
I INCLUDE DIRECTIVE
M %MACRO
Q INDIRECTION
R DATA_REMOTE DIRECTIVE
S LANGUAGE (E.G. $$$SUBSET)
U UNKNOWN OR INVALID DIRECTIVE
A-3 November 2005

HAL/S Compiler System Specification USA003089
 32.0/17.0
V VERSION DIRECTIVE

CLASS Y: ADVISORY MESSAGES
A ASSIGNMENTS
C COMPARISONS
E EXPRESSIONS
F FORMAL PARAMETERS AND ARGUMENTS

CLASS Z: PRODUCE ‘TRAP’ MESSAGES FROM THE COMPILER
B BIT INSTRUCTION
C %COPY
O OPTIMIZER
P REGISTER PRESSURE
S SUBBIT EXPRESSION
A-4 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
 Appendix B Revision History

Revision Release Date CR/DR
Number

Sections Changed

03 7.0 03/16/75
04 - Unknown
05 11.0 03/01/76
06 13.0 01/15/77
07 21.7 08/12/88
08 23.1 02/04/91 Total Reprint
09 24.0 03/30/92
10 BFS7.0 11/12/92
11 BFS8.0 03/15/93
12 24.1, 25.0 09/03/93
13 24.2 10/22/93
14 25.1/9.1 01/11/94
15 21.B 02/15/94
16 26.0/10.0 09/02/94
17 27.0/11.0 12/01/95 Total Reprint
18 27.1/11.1 07/01/96 pp. vii, 3-19, 3-19A, 3-22, 3-23, 3-36, 3-77,

3-78, 5-1, 5-1A, 5-3, 5-9, 5-10, 5-17, 5-18
thru 5-33 deleted, 5-43 thru 5-55, 5-57
thru 5-60, 5-73, 5-114, 5-116 thru 5-125,
5-141, 5-152 thru 5-159, 5-345 thru 5-355,
5-430 thru 5-440, 5-543, 5-544, 7-3, C-1

19 28.0/12.0 08/19/1997 Total Reprint to Bring to HAL
Documentation Standards and HTML
Compatibility

CR11148 5.2.7 - pp. 5-14
CR12709 2.6.1

3.1.1.3
3.1.1.5
3.1.7.4
3.1.9.2
3.1.13.
3.1.13.
3.1.14.
3.1.15.
5.2.5.2
5.3.1
5.3.2
5.3.7
7.2.1
7.2.3
App. A

- pp. 2-6, 2-7, 2-8
- p. 3-5
- p. 3-8
- p. 3-35
- p. 3-37
- pp. 3-49, 3-51
- pp. 3-51, 3-52
- p. 3-53
- p. 3-58
- p. 5-9
- pp. 5-36, 5-37, 5-48
- p. 5-90
- p. 5-364
- p. 7-2
- p. 7-2
- p. A-5
B-1 November 2005

HAL/S Compiler System Specification USA003089
32.0/17.0
This is the Last Page of the Document.

CR12713 2.1
2.6.1

- p. 2-2
- pp. 2-6, 2-7, 2-8

CR12432A 3.1.15.3
2.3

- p 3-55
- p. 2-4
- p. 5-10, 5-11, 5-13, 5-23, 5-
24, 5-25, 5-26, 5-34, 5-36, 5-
38, 5-44, 5-45, 5-45, 5-46, 5-
47, 5-49, 5-50, 5-53, 5-55, 5-
58, 5-91, 5-211
B-2 November 2005

DRD NUMBER: 1.4.3.8-b DOCUMENT NUMBER: USA003089

TITLE: HAL/S-FC Compiler System Specification

Submit NASA distribution changes, including initiator’s name and phone number, to JSC Data Management/BV or call 281-
244-8506. Submit USA distribution changes to USA Data Management/USH-121E or via e-mail to usadm@usa-
spaceops.com. Most documents are available electronically via USA Intranet Web (usa1.unitedspacealliance.com), Space
Flight Operations Contract (SFOC), SFOC Data and Deliverables.

Indicates hardcopy

11/23/2005 7:03 AM

NASA-JSC
*BV N. Moses
MS4 D. Stamper
EV111 EV Library (D. Wall)

USA-Houston
*USH-121G SFOC Technical Library
USH-634G Abel Puente
USH-64A6X L.W. Wingo
USH-633L Anita Senviel
USH-633L Benjamin L. Peterson
USH-633L Cory L. Driskill
USH-633L Judy M. Hardin
USH-633L Mark E. Lading
USH-633L Quinn L. Larson
USH-633L James T. Tidwell
USH-633L Vicente Aguilar
USH-633L Betty A. Pages
USH-633L Jeremy C. Battan
USH-633L George H. Ashworth
USH-634L Mark Caronna
USH-634L Burk J. Royer
*USH-635L Joy C. King
USH-635L Ling J. Kuo
USH-635L Trang K. Nguyen
USH-635L Billy L. Pate
USH-635L Karen H. Pham
*USH-635L Dan A. Strauss
USH-635L Pete Koester
USH-632L Renne Siewers
*USH-635L Barbara Whitfield (2)

Boeing
HS1-40 B. Frere
blake.a.frere@boeing.com

* Denotes hard copy

	COVER
	SIGNATURE
	REVISION LOG
	LIST OF EFFECTIVE PAGES
	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. 0 Introduction
	1.1 Scope of Document
	1.2 Outline of the Document
	1.3 Status of Document

	2. 0 Phase 1 - Syntax Analysis
	2.1 Primary Source Input
	2.2 Secondary Source Input - The Include System
	2.3 Access Rights Implementation
	2.4 Compiler Directive Parsing
	2.5 Template Checking and Generation
	2.6 Listing Generation
	2.6.1 Options
	2.6.2 Primary Formatted Listing
	2.6.3 Error Messages
	2.6.4 Block Summaries
	2.6.5 Compilation Layout Summary
	2.6.6 Symbol & Cross Reference Table Listing
	2.6.7 Built-in Function Cross Reference
	2.6.8 Replace Macro Text
	2.6.9 Unformatted Source Listing

	2.7 Symbol Table Generation
	2.8 Statement Table Generation
	2.9 Literal Table Creation
	2.10 HALMAT Creation
	2.11 The Optimizer

	3. 0 PHASE 2 - Code Generation
	3.1 Code Generation
	3.1.1 Bases and Conventions
	3.1.2 Integer and Scalar Operations
	3.1.3 Bit String Operations
	3.1.4 Character String Operations
	3.1.5 Vector Matrix Operations
	3.1.6 Structure Operations
	3.1.7 Indexing and Arrayed Statements
	3.1.8 PROCEDURE/FUNCTION Calls
	3.1.9 Block Definition
	3.1.10 Flow of Control Statements
	3.1.11 Built-In Functions
	3.1.12 Real Time Statements
	3.1.13 I/O Statements
	3.1.14 NAME Operations
	3.1.15 %MACROS
	3.1.16 NONHAL References
	3.1.17 Block Move Algorithm

	3.2 Object Code Naming Conventions
	3.3 Printed Data from Phase 2
	3.3.1 Formatted Assembly Listing
	3.3.2 Symbol Information
	3.3.3 RLD Information
	3.3.4 Variable Offset Table
	3.3.5 Memory Map Table
	3.3.6 Structure Template Layout Table

	3.4 Symbol Table Augmentation
	3.5 Statement Table Augmentation

	4. 0 Incremental #D (DATA_REMOTE Directive) REQUIREMENTS AND CODE DESIGN
	4.1 Introduction
	4.2 Requirements and Code Design
	4.2.1 Provide for Selective Migration of #D Data
	4.2.2 Provide for Management of Extended Addressing Feature
	4.2.3 Enforce Compiler Restrictions on #D Data
	4.2.4 Manipulate #D Data Using Extended Addressing Techniques

	5. 0 PHASE 3 - SIMULATION DATA FILE GENERATION
	5.1 SDF Generation
	5.1.1 Overall SDF Design

	5.2 Phase 3 Printed Data

	6. 0 RUNTIME LIBRARY
	6.1 Introduction
	6.2 Basics and Conventions
	6.2.1 Origin and Format
	6.2.2 Purpose
	6.2.3 Intrinsics and Procedure Routines
	6.2.4 Register Conventions in Runtime Library Routines
	6.2.5 Referencing Conventions
	6.2.6 Coding Structure
	6.2.7 The Macro Library
	6.2.8 Precision Requirements
	6.2.9 Usage Restrictions

	6.3 Library Routine Descriptions
	6.3.1 Arithmetic Routine Descriptions
	6.3.2 Algebraic Routine Descriptions
	6.3.3 Vector/Matrix Routine Descriptions
	6.3.4 Character Routine Descriptions
	6.3.5 Array Function Routine Descriptions
	6.3.6 Miscellaneous Routine Descriptions
	6.3.7 REMOTE Routine Descriptions

	7. 0 System Interfaces
	7.1 Internal System Interfaces
	7.1.1 Macro Instructions
	7.1.2 Dynamic Invocation of the Compiler
	7.1.3 OS/360 Access Methods

	7.2 User or External System Interfaces
	7.2.1 User-defined Options
	7.2.2 Job Control Language Specification

	8. 0 PASS/BFS Differences
	8.1 Introduction and Background
	8.2 Interface Differences (Required)
	8.2.1 Operating Systems (BOS vs. FCOS)
	8.2.2 Linkage Editors (PILOT vs. AP101)
	8.2.3 Compiler Features

	8.3 Compiler Feature Differences (Not Required)
	8.3.1 Changes Due To CRs/DRs
	8.3.2 Functions Not Implemented In BFS Compiler

	8.4 BFS/Pass Differences By Compiler Subsystem
	8.5 Summary of PASS/BFS Differences

	Appendix A Error Classifications
	Appendix B Revision History
	Distribution

