
PSCOPE-86 HIGH-'LEVEL
PROGRAM DEBUGGER

USER'S GUIDE
(SUPPORTING THE iRMXTM-86

OPERATING SYSTEM)

Ipyright 1984, Intel Corporation
el Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 165496-001

I
I

PSCOPE-86 HIGH-LEVEL PROGRAM
DEBUGGER USER'S GUIDE

(SUPPORTING THE iRMX™ -86
OPERATING SYSTEM)

Order Number: 165496-001

Copyright 1984, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

I I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limit
ed to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes
no commitment to update nor to keep current the information contained in this document.

intei Corporation aSSUfTlt:S 110 fesponsibiiiiy for the use of aliY circuitry other than CiicuitiY embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior writ
ten consent ofIntel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BITBI IS il B\ iPOS OpenNfT
COMMpliter im iR\lX rlll~-,'-BlIhhle

CRFOiT iMnnx iSRC PROMPT
O:lla Pipeline iMMX iSBX Promware
Gcnill' In,ile iSOM QlleX

1\ Intel iSX\l Ql'fST i
i inlel Lihr:lrI' \'lana!!er R ipplCnlndc

12WF intelBOS MCS RMX/RO

WI' Inteic,'isinn 1vle!!ach:r<.;,i, RI'PI

if'S inteli!!ent Identifier MICROM f\1"'FRAMF Seamic"

iOBP inteli!!cnl Prnl..!r'lmnlinl..! \WLTlBlIS SYSTF\l ~OOO

inlS Intcllcc \ll'LTWllA,\'\FI { 'PI
Intcllink \1{'ITl\l()f)l1 F
iOSP

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright 1984, Intel Corporation

REV. REVISION HISTORY DATE

-001 Original issue. 8/84

I

I

I

I I

iiijiv

PREFACE

The PSCOPE-86 High-Leve/Program Debugger User's Guide contains the following:

• An introduction to the PSCOPE high-level program debugger.

• An introductory PSCOPE debugging session.

• A description ofPSCOPE's internal, screen-oriented editor.

• Descriptions and examples ofPSCOPE command language.

• Instructions for loading and executing user programs.

• An introduction to debug objects and symbols, as well as an expianation of
the commands used to manipulate debug objects.

• A description ofPSCOPE utility commands.

• PSCOPE error messages.

• Instructions for configuring non-Intel terminals to use PSCOPE.

• PSCOPE syntax.

• PSCOPE reserved keywords.

Manual Organization

This manual contains 11 chapters and 9 appendixes, as follows:

Chapter 1 defines PSCOPE and describes the program development process and
the host system execution environment. Chapter 1 also details PSCOPE's major
functions and provides an introductory sample session.

Chapter 2 explains how to invoke the debugger and discusses each of the invoca
tion controls. Chapter 2 also describes invocation error messages, how to enter
commands from the keyboard, and PSCOPE's internal editor.

Chapter 3 describes PSCOPE command lines and is an overview of tokens, sym
bolic references, and symbol object types. Chapter 3 defines the operands and
operators used in expressions and explains expression types, stepping, and the GO
command.

Chapter 4 details how to load programs and control execution using the GO
command.

Chapter 5 describes how to reference objects in a program and how to display and
modify program objects. Additionally, Chapter 5 discusses fully qualified and par
tially qualified symbol references.

Chapter 6 describes the four control constructs used by the PSCOPE command
language: REPEAT, COUNT, IF, and DO.

v

Preface

vi

PSCOPE-86 User's Guide

Chapter 7 describes the command syntax necessary for defining, displaying,
modifying, saving, and removing debug objects.

Chapter 8 describes what debug procedures are and how to define, use, display,
save, and remove them.

Chapter 9 explains how to use code patches in a user's program.

Chapter 10 describes and explains the syntax for each of the utility commands and
string functions available with PSCOPE.

Chapter 11 describes how to use breakpoints and trace points to control and moni
tor program execution.

Appendix A is a numerically ordered list of the PSCOPE error messages.

Appendix B provides the codes necessary to configure PSCOPE to run on non
Intel terminals.

Appendix C provides further information about using PSCOPE on the Series III
development system.

Appendix D provides further information about using PSCOPE on the Series IV
development system.

Appendix E contains the program upon which the examples in this manual are
based.

Appendix G lists the PSCOPE reserved keywords.

Appendix H lists PSCOPE commands and the pages on which they are discussed
in this manual.

Appendix I provides further information about using PSCOPE on the iRMX™
operating system.

Related Publications

The following publications contain further information on the high-level languages
PSCOPE supports:

Pascal-86 User's Guide, order number 121539

PLlM-86 User's Guide for 8086-Based Development Systems, order number
121636

FORTRAN-86 User's Guide, order number 121570

The following publications contain further information on the Series III:

Intellec @ Series III Microprocessor Development System Product Overview, order
number 121575

Intellec @ Series III Microprocessor Development System Console Operating
Instructions, order number 121609

PSCOPE-86 User's Guide

Intellec @ Series III Microprocessor Development System Programmer's Reference
Manual, order number 121618

The following publications contain further information on the Series IV:

Intellec@ Series IV Microcomupter Development System Overview, order number
121752

Intellec@ Series IV Operating and Programming Guide, order number 121753

Intellec@ Series IV ISIS-IV User's Guide, order number 121880

Notational Conventions

This manual adheres to the following conventions when describing PSCOPE com
mand syntax.

Convention

UPPERCASE WORDS

italics

abc

La b]

[a b]*

alb

a::= bc

punctuation

filename

pathname

directory- name

system-id

Meaning

PSCOPE keywords. You must enter these words exact
ly as they appear, except that you can use either up
percase or lowercase.

Grammar symbols for which you must substitute a
value. These symbols are in italic face type.

You must enter the symbols a, b, and c in exactly the
order specified.

The items between the brackets are optional.

The items between the brackets are optional and may
be repeated zero or more times.

Enter either the symbol a or the symbol b.

Replace the symbol a with the symbol b followed by c.

You must enter punctuation other than ellipses (...),
brackets ([]), and braces ({ }) entered as shown. For
example, you must enter all the punctuation shown in
the following command:

SUBMIT PLM86(PROGA,SRC,'9 SEPT 81')

A filename is a valid name for the part of a pathname
that names a file.

A path name uniquely specifies a file and consists of a
directory-name and a filename.

A directory- name is that portion of a pathname which lo
cates the file by identifying the device and the directory
containing the filename.

A system-id is a generic label placed on sample listings
where an operating system-dependent name would ac
tually be printed.

Preface

vii

Preface

CNTL

apostrophe

viii

PSCOPE-86 User's Guide

CNTL denotes the terminal's control key. For
example, CNTL-C means enter C while pressing the
control key.

If your terminal has two apostrophe (or single quotes)
symbols, determine which one PSCOPE accepts in
command syntax.

CHAPTERl
INTRODUCTION

PAGE

What PSCOPE Is 1-1
What PSCOPE Can Do 1-1

The Program Development Process 1-1
Host System Execution Environment 1-2

Compiling or Assembling the Source Code 1-2
Compiling Under the ISIS Operating System 1-3

Invoking the Pascal Compiler 1-3
Invoking the PL/M-86 Compiler 1-3

Compiling Under the iRMXTM-86
Operating System 1-3
Invoking the Pascal Compiler 1-3
Invoking the PL/M -86 Compiler 1-3

Linking the Object Code ,',' 1-3
Linking Under the ISIS Operating System 1-4

Invoking the Linker for a Pascal Program 1-4
Invoking the Linker for a PL/M -86 Program .. 1-4

Linking Under the iRMXTM-86
Operatlng System 1-4
Invoking the Linker for a Pascal Program 1-5
Invoking the Linker for a PL/M -86 Program ., 1-5

Major Functions , 1-5
Introductory Sample Session 1-6

A Debug Session with the Sample
Pascal Pmgiam 1-6

A Debug Session with the Sample
PL/M Program 1-14

CHAPTER 2
USING THE DEBUGGER
Invoking the Debugger 2-1
The CRT I NOCRT Control 2-1
The MACRO I NOMACRO Control 2-2
The NOSUBMIT I SUBMIT Control 2-3
The VSTBUFFER Control 2-4

Invocation Error Messages 2-4
Using the Debugger 2-5
Terminating a Session 2-6

Command Entry 2-6
Line-editing Keys 2-6
Syntax Errors 2-7
The Internal Screen-Oriented Editor 2-7

Entering the Internal Editor 2-8
Exiting the Internal Editor 2-8
Internal Editor Display 2-9
Internal Editor Commands 2-9

Menu Commands 2-11
BLOCK Command (B) 2-11
DELETE Command (D) 2-12
GET Command (G) 2-12
INSERT Command (I) 2-12
QUIT Command (Q) 2-13

CONTENTS

PAGE
VIEW Command (V) 2-13
XCHANGE Command (X) 2-13

The VIEW Command 2-13

CHAPTER 3
COMMAND LANGUAGE AND
EXPRESSIONS
Tokens 3-1

Delimiters 3-1
Names. 3-2

Names Format 3-2
Referencing Names 3-2

Line Numbers 3-3
Numeric Constants 3-3

Integers 3-3
Floating Point Numbers 3-4

Character String Constants 3-4
Operators 3-5
Comments 3-6

Types of Symbol Objects 3-7
Compilerl Assembler Type vs. PSCOPE

Type Names 3-7
Expressions 3-8
Operands 3-8

Numeric Constants 3-9
String Constants. .. 3-9
Program Symbol References ., 3-9
Machine Register References 3-9
Memory References with Explicit Typing 3-9
Line Number References 3-10
Debug Variable References 3-10
Debug Procedure Calls and Parameter

References 3-11
Operators 3-11
Type Conversions 3-12

Type Conversions for Expressions 3-13
Type Conversions for Assignments 3-13

CHAPTER 4
LOADING AND EXECUTING
PROGRAMS
The LOAD Command 4-1
The GO Command 4-2
The LSTEP and PSTEP Commands 4-3
The ISTEP Command 4-4

CHAPTERS
EXAMINING AND MODIFYING
PROGRAM SYMBOLS
Program Symbol References 5-1

Current Name Scope 5-1
Fully Qualified References 5-1

Partially Qualified References 5-3

ix

Contents

PAGE
Display Program Symbol 5-3
Change Program Symbol 5-5
Change 8086/8088 Flags 5-5
Change 8086/8088 Registers 5-7
The REGS Command 5-8
Change 8087 Registers 5-8
Read and Write 110 Ports 5-9
Change Name Scope 5-10
Active Function 5-11
Display Memory 5-11
Modify Memory. .. 5-12
The Single Line Assembler/Disassembler 5-13

The Disassembler 5-14
The Single Line Assembler (SLA) 5-15
RETFAR 5-17

CHAPTER 6
CONTROL CONSTRUCTS
The REPEAT and COUNT Constructs 6-1
The IF Construct 6-2
The DO Construct 6-3

CHAPTER 7
DEBUG OBJECT MANIPULATION
COMMANDS
Debug Objects 7-1

Memory Type Debug Objects 7-2
Debug Type Debug Objects 7-2

The DEFINE Command. .. 7-2
The DISPLAY Command 7-3
The MODIFY Command 7-5
The REMOVE Command 7-5
The PUT and APPEND Commands 7-6

CHAPTERS
DEBUG PROCEDURES
DEFINE Debug Procedure. 8-1
Debug Procedure Calls 8-2
Debug Procedure Return 8-2
Accessing Debug Procedure Parameters 8-3

CHAPTER 9
CODE PATCHES
Defining a Patch .. 9-1
Displaying a Patch 9-2
Removing a Patch 9-3

CHAPTER 10
UTILITY COMMANDS AND STRING
FUNCTIONS
The EXIT Command 10-1
The DIRectory Command 10-2
The CALLST ACK Command 10-4
The HELP Command 10-5
The LIST and NOLIST Commands 10-6
The INCLUDE Command.................... 10-6
The EV AL Command 10-7
The BASE Command 10-9

x

PSCOPE-86

PAGE
INPUTMODE 10-10
The WRITE Command 10-12
. The STRING Functions

(SUBSTR, CONCAT, STRLEN, and cn 10-13
The SELECTOR$OF andOFFSET$OF

Functions 10-15

CHAPTER 11
ADVANCED EXECUTION AND
TRACE COMMANDS
Breaking and Tracing 11-1

Break Registers (BRKREG) 11-1
Trace Registers (TRCREG) 11-3

The GO Command 11-4
Exception Trapping 11-6

APPENDIX A
ERROR MESSAGES
Classes of Errors A-I
Help ~ .. A-I
Error Messages A-I

APPENDIXB
CONFIGURING PSCOPE FOR
NON-INTEL TERMINALS
Configuration Commands B-1
Tested Configurations B-4

Adds Regent Model 200 B-5
Adds Veiwpoint 3A Plus B-6
Beehive Mini-Bee B-7
DEC VT52 B-8
DEC VT100 B-9
Hazeltine 1420 B-lO
Hazeltine 1510 B-11
Intel Series-IIIE B-13
Lear Siegler ADM-3A B-14
Televideo 910 Plus. .. B-15
Televideo 925 and 950 B-16
Zentec B-17

APPENDIXC
ADDITIONAL INFORMATION
FOR SERIES III USERS
Operation of the Series III C-l
Program Development Process C-l
Hardware and Software Required. C-2
User Programs Supported C-3
System Resources Used C-3

Memory C-3
File Requirements C-3
Other Resources Required C-4

Invocation Line C-4

APPENDIXD
ADDITIONAL INFORMATION FOR
SERIES IV USERS
Operation of the Series IV D-l
Program Development Process D-l

PSCOPE-86

PAGE
Hardware and Software Required. D-2
User Programs Supported D-3

System Resources Used D-3
Memory D-3
File Requirements D-3
Other Resources Required D-4

Invocation Line D-4

APPENDIXE
SAMPLE PROGRAM LISTING

APPENDIXF
PSCOPE GRAMMAR
PSCOPE Grammar F-l

APPENDIXG
RESERVED KEYWORDS
PSCOPE Keywords G-l
PSCOPE Operators and Delimiters G-2

TABLES

TABLE

3-1
3-2
3-3
3-4
3-5
3-6

3-7

5-1
B-1
B-2

B-3

TITLE PAGE

Special Character Delimiters 3-1
Names Format 3-2
Elements ofInteger Constants 3-3
Special Character Operators 3-5
Standard Symbol Object Types 3-6
Compiler/ Assembler Type vs. PSCOPE

Type Names 3-7
Precedence of Operators (Highest to

Lowest) 3-12
Default Display Formats 5-4
Configuration Commands , B-2
ADDS Regent Model 200

Configuration B-5
ADDS Viewpoint 3A Plus

Configuration B-6

FIGURES
FIGURE TITLE PAGE

1-1 Generalized Program Development
Process 1-2

1-2 Listing of Pager in Pascal-86 1-7
1-3 ListingofPagerinPL/M-86 1-17
2-1 Editor Display 2-9
C-l Series III Program Development

Process C-2
D-l Series IV Program Development

Process D-2

Contents

PAGE'
APPENDIXH
PSCOPE COMMAND INDEX

APPENDIX I
PSCOPE UNDER THE iRMXTM
OPERATING SYSTEM
Linking 1-1
Invocation 1-1
Multitasking Support 1-2
8087 Support 1-2
Other Resources Required 1-2

INDEX

TABLE

B-4
B-5
D L v-u

B-7
B-8

B-9

B-1O
B-11
B-12
B-13
B-14

TITLE PAGE

Beehive Mini-Bee Configuration B-7
DEC VT52 Configuration B-8
DEC VT100 Configuration 11-')

Hazeltine 1420 Configuration B-1O
Hazeltine 1510 Configuration

(Tilde Lead-in) B-11
Hazeltine 1510 Configuration

(ESC Lead-in) B-12
Intel Series-IIIE Configuration B-13
Lear Siegler ADM-3A Configuration B-14
Televideo 910 Plus Configuration. B-15
Televideo 925 and 950 Configuration B-16
Zentec Configuration B-17

xi/xii

• 0) CHAPTER 1
INTRODUCTION

This chapter introduces the high-level language debugger called PSCOPE-86. It
contains an overview ofPSCOPE-86's capabilities and describes the preparation of
a user program.

WhatPSCOPEls

PSCOPE-86 is an interactive, symbolic debugger for object modules produced by
the following compilers:

Pascal-86 (version 2.0 or later)
PL/M-86 (version 2.0 or later)
FORTRAN-86 (version 2.0 or later)
ASM -86 (version 2.0 or later)

Both PSCOPE and the program being debugged reside in the microcomputer sys
tem's memory (which is expandable to 1M byte). PSCOPE runs under the ISIS
operating system, the iNDX operating system, and the iRMX™_86 operating
system (release 5 or later).

WhatPSCOPE Can Do

With PSCOPE, you can examine and modify a program's execution to find soft
ware logic errors. With PSCOPE commands, you can do the following:

• Set breakpoints.

• Single-step through high-level language statements, assembly language
instructions, functions, or procedures.

• Patch user code at either high-level language or assembly language level.

• Display and modify program memory and 8086/8088 registers. When
PSCOPE-86 runs under the iRMX-86 operating system, you can also display
and modify 8087 registers.

• Create and edit debug procedures, save these debug procedures, and recall
them in future debug sessions.

The Program Development Process

PSCOPE is part of your microcomputer system's development software. Figure
1-1 shows how PSCOPE fits into a program development process.

Typical program development consists of the following steps:

1. Write the source code with the host system editor.

2. Compile the source code. This results in relocatable object code.

3. Correct any compile-time or assemble-time errors. Recompile or reassemble.

1-1

Introduction PSCOPE-86 User's Guide

RUN-TIME
LIBRARIES

OTHER

RE~B~~~:LE~
MODULES

r-----------,
~: i/:·::/).,',:,: >«

)i>

':·:'i:i·:: it

RELOCATABLE ---. :
OBJECT ~-~
MODULE t

I L.. __________ .J

PLlM-86
SOURCE

,':". ."::,'

LIBRARIES f--

Figure 1-1 Generalized Program Development Process

4. Link the object code file to selected library files with LINK86, using the
BIND option. This creates a loadable version of the program.

5. Execute, test, and debug the loadable object file using PSCOPE.

Host System Execution Environment

Appendixes B, C, D, and I contain information about the host system's execution
environment, including related manuals, required system hardware and software,
maximum user program size, and host system resources used by the debugger
(such as memory and open files) .

Compiling or Assembling the Source Code

When compiling or assembling the source code, include the following controls:

1. The DEBUG control. This control instructs the compiler or assembler to
place symbol information in the object file.

2. The TYPE control. This control instructs the compiler or assembler to place
type information in the object file. Symbol and type information is useful
when debugging a user program with PSCOPE.

3. With a compiler, the OPTIMIZE(O) control. This control instructs the
compiler to turn off object code optimization.

1369

PSCOPE-86 User's Guide

Compiling Under the ISIS Operating System

Assume that the source code file is called pager.src and you are running on an In
tellec® Series III development system under the ISIS operating system.

Invoking the Pascal Compiler

Assume that the Pascal compiler is on disk drive one and that the source code is
on disk drive zero. The following command will invoke the Pascal compiler.

-run:f1 :pasc86 pager.src debug type optimize(O)

Note that TYPE is a default option for the Pascal-86 compiler.

Invoking the PL/M -86 Compiler

Assume that the PL/M -86 compiler is on disk drive one and that the source code
is on disk drive zero. The following command will invoke the PL/M-86 compiler.

-run:f1 :plm86 pager.src debug type optimize(O)

Note that TYPE is a default option for the PL/M-86 compiler.

Compiling Under the iRMX™·86 Operating System

Assume that the source code file is called pager.src and that you are running on an
86/3xx system under the iRMX-86 operating system.

Choose either the COMPACT or the LARGE option. The iRMX-86 operating
system does not support the SMALL or MEDIUM option.

Invoking the Pascal Compiler

Assume that the pathname of the Pascal compiler is Ilang/pasc86 and that the
pathname of the source code is luser/world/prog/pager.src. The following com
mand will invoke the Pascal compiler.

-/lang/pasc86 luser/world/prog/pager.src compact debug type
optimize(O)

Invoking the PL/M -86 Compiler

Assume that the pathname of the PL/M -86 compiler is /lang/plm86 and that the
pathname of the source code is luser/world/prog/pager.src. Here's how to invoke
the PL/M -86 compiler.

-/lang/plm86 luser/world/prog/pager.src. compact debug type
optimize(O)

Linking the Object Code

PSCOPE does not support overlays. Do not link overlay files into the final debug
load module.

Introduction

1-3

Introduction PSCOPE-86 User's Guide

Be sure to use the library files supplied with the operating system. The library files
supplied with the ISIS operating system have the same names and perform the
same functions as those supplied with the iRMX-86 operating system, but they
differ internally.

PSCOPE requires that the user program be in load-time-Iocatable (LTL) code.
This means that code and data addresses are assigned by the system loader. Use
the BIND control when invoking LINK86.

Linking Under the ISIS Operating System

Assume that the object code file is called pager.ob}and you are running on an Intel
lec Series III development system under the ISIS operating system. Assume that
LINK86 and the library files are on disk drive one and that pager. obi is on disk
drive zero.

When the program you plan to debug with PSCOPE-86 does real arithmetic, you
have the choice of using the 8087 chip or the 8087 software emulator.

Invoking the Linker for a Pascal Program

The following command will invoke the linker for a Pascal program.

run-:f1 :link86 pager.obj, :f1 :p86rnO.lib, &
:f1 :p86rn1.lib, &
:f1 :p86rn2.lib, &
:f1 :p86rn3.lib, &
:f1 :87null.lib, &
:f1 :Iarge.lib to pager.86 bind

This example assumes that your microcomputer system does not contain the 8087
chip. Because the Pascal example in this chapter does not do real arithmetic,
e8087.lib and e8087 are not required; 87null.1ib is required to resolve external
references in p86rn2.lib and p86rn3.lib.

If your microcomputer system contains the 8087 chip, 8087.lib takes the place of
e8087.lib and e8087.

Invoking the Linker for a PL/M -86 Program

Here's how to invoke the linker for a PL/M-86 program.

-run:f1 :link86 pager.obj, :f1 :plm86.lib, &
:11 :compac.lib to pager.SS bind

This example assumes that you chose the COMPAC option when compiling the
PL/M -86 program. The default is SMALL.

Linking Under the iRMXTM-86 Operating System

Assume that you are running on an 86/3xx system under the iRMX-86 operating
system.

When running under the iRMX-86 operating system (release 5 or later) and
invoking LINK86, include the following two options during the finallink.

PSCOPE-86 User's Guide

1. SEGSIZE(STACK(+2048» This option increases the stack size by
2048 bytes.

2. MEMPOOL(+25000,OFFOOOH) LINK86 reserves 25000 bytes for
dynamic memory allocation.

When the program you plan to debug with PSCOPE-86 does real arithmetic, your
microcomputer system must contain the 8087 chip. The iRMX-86 operating
system does not support the 8087 software emulator.

Invoking the Linker for a Pascal Program

Assume that the pathname of link86 is Ilang/link86 and that the pathname of the
object file is luser/world/prog/pager.obj. The following command will invoke the
linker for a Pascal program.

-/lang/link86 luser/world/prog/pager.obj, &
Ilang/p86rnO.lib, &
Ilang/p86rn1.1ib, &
Ilang/p86rn2.lib, &
Ilang/p86rn3.lib, &
Ilang/87null.lib, &
Ilang/large.lib to luser/world/prog/pager.86 &
segsize(stack(+2048)} mempooi{+25000,OFFOOOH}
bind

If your program does real arithmetic, your microcomputer system must contain
the 8087 chip, and you must link your program with 8087.lib. Although the Pascal
example in this chapter does not do real arithmetic, 87null.1ib is required to
resolve external references in p86rn2.lib and p86rn3 .lib.

Invoking the Linker for a PL/M -86 Program

Assume that the pathname of link86 is /lang/link86 and that the pathname of the
object file is /user/world/prog/pager.obj. The following command will invoke the
linker for a PL/M -86 program.

-/lang/link86 luser/world/prog/pager.obj, &
Ilang/plm86.lib, &
Ilang/compacolib to luser/world/prog/pager.86 &
segsize (stack (+2048» mempool (+25000,OFFOOOH)
bind

Major Functions

The following list briefly describes PSCOPE's major functions and references the
chapters containing more detailed information.

• Internal editor (Chapter 2). The internal, screen-oriented editor lets you edit
commands, debug procedures, and patches from the keyboard.

• Single-stepping (Chapter 4). PSCOPE allows single-stepping through assem
bly language instructions, high-level language statements, and procedures.

• Control blocks (Chapter 6). You can use PSCOPE command language condi
tional and repetitive control constructs to build up blocks of debugger
commands.

Introduction

1-5

Introduction

1-6

PSCOPE-86 User's Guide

• Debug objects (Chapter 7). You can define and manipulate various types of
debug objects, such as debug variables, debug procedures, and LITERAL
LYs (a form of command macro).

• Debug procedures (Chapter 8). You can define and edit debug procedures.
Debug procedures consist ofPSCOPE-86 commands.

• Code patches (Chapter 9). PSCOPE lets you add and delete code at the state
ment or instruction level without permanently changing your program.
Patches made in PSCOPE are not permanent but they can be saved. Your
program will not run with those patches outside of PSCOPE. If you load
another program, PSCOPE deletes any previously defined patches.

• Single-line assembler and disassembler (Chapter 9). With these features you
can modify and display assembly language instructions.

• Utility commands (Chapter 10). With utility commands, you can perform
such functions as obtaining on-line help, recording all or part of a debug ses
sion in a log file, and executing command files.

• Breakpoints and tracepoints (Chapter 11). By setting breakpoints and
tracepoints, you can control and monitor debugging.

Introductory Sample Session

This section contains two sample programs, one in Pascal-86 and one in PL/M-86.
Both programs are caned pager.:lrc, anti bOlh perform the same function.

The program reads text from a file called txtin, formats the text, and writes it to a
file called txtout. The program inserts 10 spaces at the beginning of each line, thus
creating a left margin, inserts page breaks, writes a heading for each page, and
numbers the pages. The program may also double-space.

A Debug Session With the Sample Pascal Program

Figure 1-2 is the list file for the sample Pascal program.

SERIES-III Pascal-86, V3.0
Source File: PAGERSRC
Object File: PAGEROBJ
Controls Specified: XREF, CODE, DEBUG, OPT!M!ZE(O), TYPE.

STMT
1
2
3
4
5
6
7
8
8

LINE
1
2
3
4
5
6
7
8
9

NESTING
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
1 0

SOURCE TEXT: PAGERSRC
program pager(input,output);
const blank =' ';
var textin,textout :text;

ch :char;
leftmargin,i,linenumber :integer;
linesend,pagenumber :integer;
double :boolean;

procedure init(var leftmargin,linesend:integer;
var double:boolean;
var textin:text);

(figure continues)

PSCOPE-86 User's Guide Introduction

9 12 0 BEGIN (*inih)
9 13 1 leftmargin: = 1 0;

10 14 1 Iinesend:=50;
11 15 1 double: =false;
12 16 1 writeln ('Ieftmargin = ',leftmargin:2);
13 17 1 writel n ('I ines/page = ',linesend:2);
14 18 1 writeln ('double = ~,double);
15 19 1 writeln

END (*inih);

16 22 0 0 $eject

SERIES-III Pascal-86,

STMT LINE NESTING SOURCE TEXT: PAGER.SRC

16 24 0 reset(textin,'txtin');

17 25 0 rewrite (textout, 'txtout');

18 26 0 pagenumber: = 1;

19 27 0 linenumber: = 1 ;

20 29 0 initOeftmargin,linesend,double,textin);

21 31 0 while eof(textin) =false do

22 32 0 begin
22 33 0 2 writel n (textout);

23 34 0 2 writeln (textout);

24 35 0 2 writeln (textout,'
Intel Corporation

',pagenumber:4);
25 37 0 2 writeln (textout);

26 39 0 2 repeat
26 40 0 3 for i: = leftmargin down to 1 do
27 41 0 3 write(textout,blank);
28 42 0 3 while eoln (textin) =false do
29 43 0 3 BEGIN
29 44 0 4 read(textin,ch);
30 45 0 4 write (textout,ch)

END;
32 47 0 3 if double=true then
33 48 0 3 BEGIN
33 49 0 4 writeln (textout);
34 50 0 4 writeln (textout);
35 51 0 4 linen umber: =linenumber+ 2

END
36 53 0 3 else
37 54 0 3 BEGIN
37 55 0 4 writeln (textout);
38 56 0 4 linenumber: =linenumber+ 1

END;
40 58 0 3 readln (textin)

until (linenumber=linesend) or (eof(textin)=true);

42 61 0 2 page (textout);
43 62 0 2 writeln('page = ',pagenumber:4);
44 63 0 2 pagenumber:=pagenumber+ 1;
45 64 0 2 linenumber: = 1

end;
47 66 0 writeln;
48 67 0 writeln ('end of file on textin encountered')

END. (*main*)

Figure 1-2 Listing of Pager in Pascal-86

1-7

Introduction

1-8

PSCOPE-86 User's Guide

The sample Pascal program has a bug in it. Statement #41 should read as follows:

until (Iinenumber> linesend) or (eof(textin) = true);

rather than the following:

until (linenuinber= linesend) or (eof(textin) = true);

The program works with the equal sign if you choose the single-space option. The
loop does not terminate if you choose the double-space option and the program
variable linesendis an even number.

What follows is a sample debug session. The boxed text at the top explains the
action of the PSCOPE dialogue following the boxed text.

Invoke PSCOPE. Set up a list filecalledpager.log',Load the' program'
pager. 86. Define a debug variable called begin and set it equal to the current
'CS:IP, represented,by a dollar sign ($).

Define a debug procedure called again. This sets $,and namescope to begin.
This debug procedure is useful after you have executed your program once
inPSCOPE and wish to execute again.

Define a debug procedure called fixlinenumber. This debug procedure checks
if the program variable linenumberis greater than 50 and ifso, sets it to 50.

Define a break register called line41. If you execute your program with this
break register, execution stops atthe end of the loop .iustbefore the terminat
ing check. If you now call the debug procedure flXlinenumber, the loop termi
nates as intended.

Save the defined debug objects. Write them to the disk in a file called
pager.mac. You can call up this file and use these debug objects in later debug
session.

* list pager.log

* load pager.86

* *define pointer begin=$

* *define proc again=do
· *$=begin
· *namescope=$
.*end

*define proc fixlinenumber = do
· * if linenumber > 50 then
· . * Iinenumber=50
.. *end
.*end

* *define brkreg Iine41 =#41

* *putpagetmacdebug

PSCOPE-86 User's Guide

.. ~iJ:;i~ .,· ... ~~~G~~~i~·~~·~~;t~~~,~.!sO·1~st.· .
. ~iSpih~.~¥~#~k , ~K~($hWii~~~l~liW .\" .. \'··:X ',.; "
,; ~gin.~~~~x~.eu;tioll·'B~~jUst'~f»ie~~~uti!>;t.QI'~t¢m&nt#~r;', •. '."

.. Nat;ce'~~.in¥·Jlr9~~;:~~lf; ~i~~~tIal;~iatJ1lli.to"'~'W«:!lIi':~,§ .
',:,:.ou't~H'~;J~~ ¥t ',~nCl1i'4~d: itrfc~~t~~~;;J~Qtl,?~:: t~~,~h~"pr<?gr~atn';xa~i~ble,4al1"t,e;js;',
,:fal~e~,~1:t~ p:r:QgrallL,onl¥:~(~d~:;':V:hep,'d()U/Jle,ls;tr~e.:;; , ',:, " ',: , ", ,',,',' ,

" '~: ~ '~, ';', :', ~ .. ,'~, ;:":!."\ ~~;\ ~ :~. <;. S':~. 'i ,(:;, ~:~~;~; \:~.~~, ~\ v;:\ \ \l; .~~ ~~ " ~ " /. ~', " ~, ! ~ > ", \, : \

*dirdebug
L1NE41 . . brkreg
BEGIN . . pointer
FIXLNUMBER proc
AGAIN .. proc

*
*dir
DIR of :PAGER
PO_OUTPUT TEXT (file)
PQ_INPUT TEXT (file)
TEXTOUT TEXT (file)
TEXTIN TEXT (file)
CH char
L1NENUMBER integer
I integer
LEFTMARGIN integer
PAGENUMBER integer
L1NESEND integer
DOUBLE '" boolean
INIT procedure

* *$

LEFTMARGiN integer
L1NESEND integer
DOUBLE boolean
TEXTIN TEXT (file)

1 C88H:0159H
*go til #41
leftmargin = 10
lines/page = 50
double = F

[Break at #41]

"l~~~f!l~~~t,,~r~Wf;\~\ti~.~~~~,YI~~~~C)l~~.lt,~, '
Di~pla~ the' adcke,ss :of, 'lin~~'~in~e;' , Th~ ",~~,f,iod' ~J '~ig~iti~s '~the address, ot'; ,
Idetifify,;whaisyfu1JOlic····.vflri~fbi~ ::ts,.:~st6reid",~f:tha:t •... ad~iess with' th¢ 'EVAL'
command; The s'ymboldsrep,resents' the :daia''Segmel1tr~gister;':·' ';" ,: .

" , • '". : • .,.: < '.: ~. ,. • ... • '. ,. • , • " •••• ',~ '. : ' • ., : • , , ,

·bisplay;th~:dafu:.seirrt;erit\egister;'Be,dih§e·fhe·defauIt·iadi~·.is'deciinal,·the .
resulting,number' does 'riot- ;co~:resPQ1)d',~ith Jhes~leqtQL di~played • when" .
Jinenumbetwas entered. 'Change:thecurrenlr~dix.,tohexadecimal a11d re~' '
display the data segmenfregister. Then returD..the.currentradix'.fodecimaL

Determine. what .~rOfH~Il1:'Varla,ble~·.arYintegers.ApPlY· theJ~TEGER
memo~y' template command: to.Jirienumber.··NoticeJhat Y01iget 'both the ad~
dress, of linenumberand,tne,value stored there.· . ,

Introduction

1-9

Introduction

1-10

* linenumber
+2
* Iinenumber=3
*.linenumber
1 CC3H :0024H

* *eval ds:0024h symbol
:PAGER.LlNENUMBER

*
*ds
7363
*base=10h
*ds
1CC3
*base=10t

* *dir integer
DIR of :PAGER
LlNENUMBER
I
LEFTMARGIN
PAGENUMBER
LlNESEND
INIT.LEFTMARGIN
INIT.LlNESEND

* *integer .linenumber
1 CC3H:0024H +3

PSCOPE-86 User's Guide

Display the value of double. Apply the BOOLEAN memory template com
mand to .double. Set double to true and again apply the BOOLEAN memory
template command.

Resume execution and break again at statement #41. Display the program
variables linen umber and double. Display the break register line41. You in
tended this break register to call the debug procedure flXlinenumber, but you
neglected to include that call.

*double
FALSE
* boolean .double
1 CC3H :002EH FALSE
* double=true
* boolean .double
1 CC3H:002EH TRUE

* *;0 til #41
[Break at #41]
*linenumber
+5
*double
TRUE

* * brkreg Iine41
define brkreg LlNE41 = #41

PSCOPE-86 User's Guide

, :.':lid,it···th~:~.:b,re~ki::t~gist~·r,·:li~e'4j:"p'r¢~s~hl.~,,:i'·:key'i(,iQ:r:'~nse·;t)l .. Thei;·Il1en;4, .. ··i9k, .. th~:·:i··:
" ;hlstIine,oftli~screenchangest():[il1sertlJMuveth,e'c.u(sO.rlotheend:6fthe',
'. li'netln:d .~yp:ec~llflXlinen,?Jmber.:press tfte·E,SCkeY~,.·rhe11laihmen~ret,urn$.; :'i • . ',:

::~~!~'1!~~ilit&~~Wtessi~ ~~\~e!..(fOr~.Uitl.Th~.rt~nli ~h~eS.to\~e ~
,.'.:, ~"i' ;Abo'r:t,i'iExecul-e:;' '.

< "~ • ~:' ,:' ':. '.

< ~. ~ ~ ~. -:~ '0. \" "" ;.;-

,)iress' the e' key" (for ex~c~te)'Yfhe ',PS;G0PE prompt rett1;rns" a~d ,p~GaPE, i

h~defineis,the break regii~tet line4i. '. :,' i, ',' i.' ,:,' ,
~ .) , . .' " ~ .. : ~ .~ ~ ~ ;,

*edit Iine41
define brkreg LlNE41 = #41

Block Delete Get Insert Quit View Xchange

define brkreg UNE41 = #41

[insert]

define brkreg LlNE41 = #41 call fixlinenumber

Abort Execute

*define brkreg LlNE41 = #41 call fixlinenumber

i DiSphlyi\;th~:; break" r~giste~.fine41;,':Beiin ',~k:e.tu,tiofi;, wI,thi~th:i~,::ih~~a;k:\r,~gi~t~t . ,,:',
. The'~arni~g l11e,ss~ge,·'~~dicate$i Jhat~o;ll~:. de,bl.lg"prop:e~ure'.,hasprcib~ems~:, A' .

'. tl¢bug ~,prbcedflte. can~d: bya.'bt;ealtr,egist,ei-":n\cisf; rei~,in"abddfe~n~)\;~lue;;!nq~' ',',
. Jnean:s, \~r~al(:;:,.false: 'm;ea~S'i' ex,ec.4te,lhe~ p,ro<;e.q\lf;e; :~urre~u!lie '; th~, 'pro:gra!li:': " .

::~t~t~n~li~kn ~e·~kf.p6~~3Aa.rbci.~"Sri~ h~&~~aft¥ .. ·
.:.fhe:wflrnitig,,' message, irr(iie:a.tes ::that.',adalticy,nal "oJi--line:,. HlfQrmatloh \1$;' ..
,avijlabl¢! '~, , " , ,.,

, '.' ~\,' , '

, Edit the , debug ::pro,cedure; '€hange:it,. so:that i. ifdi§pldysithecurrent;:v:alue.,on
lintmumber' and. breaks. when i{hfenu;mbl;r: is', greater than 50~:.TAise~a1l1pie
skips· the editlngsessi,on' becailse .. it:. is,~imil~r to.that· with the brea'k fe,gistei':'
lille41. i' •

*brkreg Iine41
define brkreg LlNE41 = #41 call fixlinenumber

* *go using Iine41
WARNING #514: Invalid return type from PROe called at breakpoint. [*]
[Break at #41]
*helpe514

E514

Introduction

1-11

Introduction

1-12

PSCOPE-86 User's Guide

The de bugge(procedure call~d'~t the, break brfrace pdin(returned :;a ,value
with ,an ,invalid type, or had no return"value., The return value. must be. a
BYJE, WORD,DWORD, BQOLt:A"N' 'or INTEG,l~R(includi~,g

',LONG/SHORT). A returnvalue of TRUE is manufacture<l, "causingthe'as-,
sociated break 'ortrace to be done. '

* *edit fixlinenumber
*define proc FIXLNUMBER = do
· *write 'linenumber= ',linenumber
· * if linenumber > 50 then
· . * Iinenumber=50
· . *write 'linenumber= ',linenumber
· . * return true
· . *else return false
.. *end
.*end

, ,.

'Resume execution. 'The GO ,command' assumes the "last go specification.
Typing GO is the same as typing'GO USING line41. The debug procedure
Jlxlinenumber displays the line numbers asthey increment. Notice linenumbet
go from 51 to 50. Then the break occurs.

Step through three high-level language statements. The program writes the
program variable pagenumber to the screen. Because the program itself writes
to the screen, this output does not appear in the list file.

Step through one more statement. Display pagenumber and notice that it has
incremented. Step through another statement and notice that the program
has returned to the beginning of the loop, ready to take care of the second
page.

*go
linenumber= +9
linenumber= + 11
linenumber= + 13
linenumber= + 15
linenumber= + 17
linenumber= + 19
linenumber= + 21
linenumber= + 23
linenumber= + 25
linenumber= + 27
linenumber= + 29
linenumber= +31
linenumber= +33
linenumber= +35
linenumber= +37
linenumber= +39
linenumber= +41
linenumber= +43
linenumber= +45
linenumber= +47
linenun'lber= +49
linenumber= +51
linenumber= +50
[Break at #41]

PSCOPE-86 User's Guide

*
*Istep
[Step at :PAGER#42]
*Istep
[Step at :PAGER#43]
*Istep
page = 1
[Step at :PAGER#44]
*Istep
[Step at :PAGER#45]
* page number
+2
*Istep
[Step at :PAGER#21]

* go using Iine41
linenumber= +3
linenumber= +5
linenumber= + 7
linenumber= +9
linenumber= + 11
linenumber= + 13
linenumber= + 15
linenumber= + 17
linenumber= + 19
linenumber= + 21
linenumber= + 23
linenumber= + 25
linenumber= +27
linenumber= + 29
linenumber= +31
linenumber= +33
linenumber= +35
linenumber= +37
linenumber= +39
linenumber= +41
~inenumber= +43
linenumber= +45
linenumber= +47
linenumber= +49
linenumber= +51
linenumber= +50
[Break at #41]

*
* Istep; Istep; Istep
[Step at :PAGER#42]
[Step at :PAGER#43]
page = 2
[Step at :PAGER#44]
*Istep
[Step at :PAGER#45]
* integer .pagenumber
1CC3H:002AH +3

Introduction

1-13

Introduction

1-14

PSCOPE-86 User's Guide

Resume execution using the break register ·line4LThe .programencounters
an end-of-file before linenumberexceeds 50.

Close the list file. Exit PSCOPE.

* go using Iine41
linenumber= +3
linenumber= +5
linenumber= + 7
linenumber= +9
linenumber= + 11
linenumber= + 13
linenumber= + 15
linenumber= + 17
linenumber= + 19
linenumber= + 21
page = 3

end of file on textin encountered

EXCEPTION: Program call to DQ$Exit
[Stop at location 2178H :0030H]
*nolist
*exit
PSCOPE terminated

A Debug Session with the Sampie P l/ivi Program

Figure 1-3 is the list file for the PL/M -86 program.

SERIES-III PlIM-86 V2.3 COMPILATION OF MODULE PAGER
OBJECT MODULE PLACED IN PAGER.OBJ
COMPILER INVOKED BY: :F1 :PLM86.86 PAGER.SRC OPTIMIZE(O) COMPACT DEBUG

TYPE XREF CODE

pager:
do;

2 declare connection literally 'word';
3 declare (conin,conout) connection;
4 declare (bytes$read,err) word;
5 declare compl word;
6 declare boolean literally'byte';
7 declare true Iiterally'Offh';
8 declare false literally'OOh';
9 declare blank byte data(32);

10 declare Ifcr(2) byte data (10,13);
11 declareff bytedata(12);
12 declare (ch,n byte;
13 declare (textin,textout)

connection;

14 declare (leftmargin,linesend,linenumber,pagenumber) word;
15 declare double boolean;

$eject
/*The external procedure declarations foIIow.*/

(figure continues)

PSCOPE-86 User's Guide Introduction

16 dq$attachprocedure (path$p,excep$p) connection external;

17 2 declare path$p pointer,
excep$p pointer;

18 2 end;

19 dq$detacprocedure (conn,excep$p) external;
h:

20 2 declare conn connection,
excep$p pOinter;

21 2 end;

22 dq$creat procedure (path$p,excep$p) connection external;
e:

23 2 declare path$p pointer,
excep$p pointer;

24 2 end;

25 1 dq$open: procedure (conn,access,num$buf,excep$p) external;
26 2 declare conn connection,

access byte,
num$bufbyte,
excep$p pOinter;

27 2 end;

28 1 dq$close: procedure (conn,excep$p) external;
29 2 declare conn connection,

excep$p pointer;
30 2 end;

31 1 dq$read: procedure (conn,buf$p,count,excep$p) word external;
32 2 declare conn connection,

buf$p pOinter,
count word,
excep$p pOinter;

33 2 end;

34 1 dq$write: procedure (conn,buf$p,count,excep$p) external;
35 2 declare conn connection,

buf$p pointer,
count word,
excep$p pointer;

36 2 end;

37 1 dq$exit: procedure (completion$code) external;
38 2 declare completion$code word;
39 2 end;

$eject
/*The local procedures follow.*/

40 numout:
procedure (value,where);

41 2 declare value word;
42 2 declare where connection;
43 2 declare digits(*) byte data('0123456789');
44 2 declare chars(5) byte;
45 2 declare byte;

46 2 do i=1 to 5;
47 3 chars(5-j)=digits(value mod 10);
48 3 value=value/10;
49 3 end;
50 2 i=O;
51 2 do while chars(j) ='0' and i<4;
52 3 chars(j)=' ';
53 3 i=i+1;
54 3 end;
55 2 call dq$write(where,@chars,5,@err);
56 2 call dq$write(where,@lfcr,2,@err);
57 2 end numout; (figure continues)

1-15

Introduction

1-16

PSCOPE-86 User's Guide

$eject
I*Now begins the executable code*1

58 leftmargin = 10;
59 Iinesend=50;
60 double=true;

I*In the interest of space, initial variables are assigned in the code. A more useful program
would read leftmargin, linesend, and double as inpuL*1

61
62

63
64

65
66

67
68

69
70

71 1
72 1
73 1
74 2
75 2
76 2
77 1

78 2
79 2
80 2

pagenumber= 1;
linenumber= 1;

conout=dq$create(@(4,':CO:'),@err);
conin =dq$attach(@(4,':CI:'),@err);

call dq$open (conin, 1,0,@err);
call dq$open (conout,2,0,@err);

call dq$write(conout,@('leftmargin= '),12,@err);
call numout(leftmargin,conout);

call dq$write(conout,@('lines/page= '),12,@err);
call numout(linesend,conout);

call dq$write(conout,@('double = '),12,@err);
if double=true then

do;
call dq$write(conout,@('true'),5,@err);
call dq$write(conout, @lfcr,2, @err);
end;

else
do;
call dq$write(conout,@('false'),6,@err);
call dq$write (conout,@lfcr,2, @err);
end;

I*Attach the file txtin and create the file txtout; open them.*1

81 textout =dq$create(@(6,'txtout'),@err);
82 textin =dq$attach(@(5,'txtin'),@err);

83 call dq$open(textin,1,0,@err);
84 call dq$open(textout,2,2,@err);

$eject
I*Output to file textout.*1

85 bytes$read = 1 ;
86 do while bytes$read< >0;

87 2
88 3
89 3
90 2
91 2
92 2
93 2

94 2
95 3
96 4
97 4

I*Output the heading.*1

do i= 1 to 50;
call dq$write(textout,@blank, 1,@err);

end;
call dq$write(textout,@('lntel Corporation '),21,@err);
call numout(pagenumber,textout);
call dq$write(textout,@lfcr,2,@err);
call dq$write(textout,@lfcr,2,@err);

do while linenumber< =linesend and bytes$read< >0;
do i= 1 to leftmargin;

call dq$write(textout,@blank, 1,@err);
end;

(figure continues)

PSCOPE-86 User's Guide

98 3 bytes$read =dq$read(textin,@ch, 1,@err);
99 3 do while ch < > 13 and bytes$read < >0;

100 4 call dq$write(textout,@ch, 1,@err);
101 4 bytes$read =dq$read(textin,@ch, 1,@err);
102 4 end;
103 3 bytes$read =dq$read(textin,@ch, 1,@err);

104 3 if double=true then
105 3 do;
106 4 call dq$write(textout,@lfcr,2,@err);
107 4 call dq$write(textout,@lfcr,2,@err);
108 4 linenumber= linenumber+ 2;
109 4 end;
110 3 else

do;
111 4 call dq$write(textout,@lfcr,2,@err);
112 4 Iinenumber=linenumber+ 1;
113 4 end;
114 3 end;

115 2 call dq$write(textout,@ff,1,@err);
116 2 call dq$write(conout,@('page= '),6,@err);
117 2 call numout(pagenumber,conout);
118 2 pagenumber=pagenumber+ 1;
119 2 linenumber= 1;
120 2 end;

$eject
/*Close and detach files.*/

121 call dq$close(conin,@err);
122 call dq$close (conout, @err};
123 call dq$close(textin,@err);
124 call dq$close(textout,@err);

125 call dq$detach(conin,@err);
126 call dq$detach(textin,@err);
127 call dq$detach(textout,@err);

128 halt;
129 call dq$exit(compl);
130 end;

Figure 1-3 Listing of Pager in PL/M-86

This program does not contain any obvious errors. In the interest of space, the
code does not check the status returned after the file handling system calls. It is
good programming practice to check this status and enter an error routine if the
status is non-zero.

Invoke PSCOPE, load the program pager. 86. Define a debug procedure
called lnumber. This debug procedure is intended to be called by a trace
register. It prints out the current line number and returns a value of true.

Define'a trace register called linel15;Statement #U50fthePL/M program
writes a form feed at the end of a page iri thefiletxtout. Printing out linenum
ber at this time displays its value when the loop is exited.

Display the current value ofCS:IP.

Introduction

1-17

Introduction

1-18

*Ioad pager.86

* *define proc LNUMBER =do
. *write 'linenumber= ',linenumber
. * return true
.*end
*define trcreg LINE115 =#115 caliinumber
*$
1 CC6H :OOOOH

Begin execution with the . trace regist~r ·linel15. Exit PSCOPE.:. ~

*go using Iine115
leftmargin = 10
lines/page = 50
double= true
linenumber= 51
[At # 115]
page= 1
linenumber= 51
[At # 115]
page= 2
linenumber= 23
[At # 115]
page= 3

c::vrC::OTlf"'If\l· Prnnr!:am "'!:all tn nn¢.!='vit ,,"' , • ''''''II .••,;::1,-.... ••• " - - -,

[Stop at location 1 CC6H :04AEH]
*exit
PSCOPE terminated

PSCOPE-86 User's Guide

• C) CHAPTER 2
US'ING THE DEBUGGER

This chapter describes how to use the debugger, including the following:

• Invoking the debugger using initialization and configuration controls.

• Entering commands from the keyboard.

• Editing command lines with the line editor or the internal editor.

• Using the menu commands.

Invoking the Debugger

Invoke the debugger by entering the following invocation line (notational conven
tions are defined in the Preface) :

[RUN] [directory-name] PSCOPE [controls]*

Where:

directory-name is the host system's fiie path name.

controls is any of the following invocation controls. The first con
trollisted in each pair is the default. The controls can be
specified in any order.

CRT I NOCRT
MACRO I NOMACRO
NOSUBMIT I SUBMIT
VSTBUFFER (decimal- number)

Each control is described in the following sections.

The CRT I NOCRT Control

CRT specifies a file which defines CRT characteristics that describe the control se
quences for communicating with the terminal. The form of this file is described in
AppendixB.

If you do not enter either CRT or NOCR T, the debugger looks for the CRT file
PSCOPE.CRT in the same directory from which the debugger was invoked. If
PSCOPE does not find the file PSCOPE.CRT, the debugger assumes that the key
board and CRT control sequences are the same as those on a standard Series III or
Series IV development system.

If you specify CRT without a file name, the default file (PSCOPE.CRT) must
exist; otherwise, PSCOPE displays an error message.

2-1

Using the Debugger PSCOPE-86 User's Guide

2-2

If you specify NOCRT, the debugger does not look for a CRT file. It assumes a
Series 111- or Series IV-based machine.

If you rename the debugger file and invoke it with the new name, the debugger
looks for a CRT file with the new name.

Syntax

CRT [(filename))
NOCRT

Abbreviation

CRINOCR

Default

PSCOPE.CRT

Example

Following are some examples of the CRT !NOCRT control commands.

RUN PSCOPE
run pscope crt(I 51 Ot.crO
RUN PSCOPE NOCRT

The MACRO I NOMACRO Control

MACRO specifies a file containing debugger commands to be executed during
debugger initialization. You create MACRO files containing command definitions
useful to a particular application, such as abbreviations or debugger procedures
which will be used over several debug sessions.

If you do not enter either MACRO or NOMACRO, the debugger looks for the file
PSCOPE.MAC in the same directory from which the debugger was invoked.

The PSCOPE.MAC file can contain any number of debugger commands to be ex
ecuted on initialization. For example, the MAC file can automatically define
abbreviations using the LITERALLY command (discussed in Chapter 7).

If you specify MACRO without a file name, the default macro file must already
exist.

If you specify NOMACRO, the debugger does not look for a macro file.

If you rename the debugger and invoke it with the new name, the debugger auto
matically looks for a MAC file with the new name.

A macro file is not required.

PSCOPE-86 User's Guide U sing the Debugger

Syntax

MACRO [(filename)]
NOMACRO

Abbreviation

MRINOMR

Default

PSCOPE.MAC

Example

Here are some sample MACRO I NOMACRO control commands.

run pscope macro (procs.mac)
RUN PSCOPE NOMR

The NOSUBMIT I SUBMIT Control

SUBMIT indicates that PSCOPE is to operate inside of a SUBMIT file. If you speci
fy SUBMIT, you must use the standard system line editor rather than PSCOPE's
extended line editor. Using the standard system line editor ensures that SUBMIT
file commands are echoed properly to the system terminal.

Syntax

NOSUBMIT
SUBMIT

Abbreviation

NOSMlsM

Default

NOSUBMIT

Example

The following illustrates how to use the NOSUBMIT I SUBMIT control.

run pscope sm
RUN PSCOPE NOSM

2-3

U sing the Debugger PSCOPE-86 User's Guide

2-4

The VSTBUFFER Control

PSCOPE employs a virtual symbol table. Only a portion of the user-program
symbol table need reside in physical memory at anyone time. The entire symbol
table resides on disk.

VSTBUFFER specifies the amount of physical memory to be used for the virtual
symbol table. Replace decimal-number with the number of kilobytes that you want
reserved for the virtual symbol table buffer. The parameter decimal-number must
be a number in the range 5 through 61.

The larger the virtual symbol table buffer is, the less time PSCOPE must spend
manipulating the symbol table. On the other hand, a small virtual symbol table
buffer frees up more memory for use by the user program and debug objects.

Syntax

VSTBUFFER(decimal-number)

Where:

decimal-number is a number in the range 5 through 61, specifying the
amount of physical memory in kilobytes to be used for
the virtual symbol table.

Abbreviation

VSTB (decimal-number)

Default

VSTB(5)

Invocation Error Messages

You can make three types of errors when entering the invocation line:

• An unrecognized control

• A control missing a required parameter

• A control with an invalid parameter

When an invocation error occurs, PSCOPE displays an error message, followed by
the operating system prompt. You can then enter a corrected invocation line.

PSCOPE displays the following error message when you enter an unrecognized
control character:

UNKNOWN CONTROL: control

PSCOPE-86 User's Guide U sing the Debugger

PSCOPE displays the following error message when you do not include the re
quired parameter with the invocation line:

PSCOPE OPTION ERROR
OPTION: control
ERROR: message

PSCOPE terminated

PSCOPE displays the following error message when you enter an invalid
parameter:

PSCOPE I/O ERROR
FILE: file-type
NAME:filename
ERROR: message

PSCOPE terminated

Where:

file-type is CRT or MAC.

filename is the name of your file.

message is the error message that identifies the problem.

Using the Debugger

After you correctly enter the invocation line, the debugger clears the screen and
displays the following sign-on message:

system-id PSCOPE-86, Vx.y

The system-id identifies the host system. On the Series III, the host system-id is
SERIES III.

In Vx.y, xis the debugger version number, andyis the change number. After sign
ing on, the debugger prompts for commands with an asterisk (*). User software
can then be loaded, executed, tested, and debugged by entering the commands de
scribed in subsequent chapters. After completing an operation in response to a
command, the debugger prompts for new input.

You can perform any of the following operations when the debugger prompt is
displayed:

• Enter a command from the keyboard.

• Enter commands from an external file.

• Re-execute the last command (CNTL-E).

• Enter the internal editor to create debug objects or edit commands.

• Suspend or cancel debugger terminal output.

While the debugger is executing, you can interrupt operation as follows:

• Suspend terminal output by entering CNTL-S and resume terminal output
by entering CNTL-Q.

2-5

U sing the Debugger PSCOPE-86 User's Guide

2-6

• Cancel the command in progress by entering CNTL-C.

You can create a file containing debugger commands, then use the INCLUDE
command described in Chapter 10, to enter the commands from that file.

You can record the debugging session by using the LIST command (described in
Chapter 10). The LIST command sends all debugger terminal output to the speci
fied file, either on disk or hard copy. The file includes PSCOPE prompts, user
input lines, PSCOPE output, and error messages. It does not, however, contain
output from the program being debugged.

Terminating a Session

Enter the following EXIT command to exit the debugger:

EXIT

The debugger responds with the following message:

PSCOPE terminated

The debugger closes all open files and returns to the operating system.

Command Entry

The debugger prompt (*) indicates that the system is in command-entry mode. In
this mode, the debugger places characters entered at the terminal in a command
buffer until the end of a complete command coincides with the end of a command
line. At this point, the debugger executes all commands in the buffer in the order
in which they were read. (Legal command line length is virtually unlimited,
depending on the amount of workspace available.)

You can continue commands which will not fit on one line on subsequent lines.
The continuation flag, an ampersand (&) at the end of the line to be continued, is
optional because the debugger can recognize the end of a completed command in
most cases. (PSCOPE issues a double asterisk (* *) prompt if it needs more com
mand input.) The exception is when a command has an optional parameter that is
placed on the next line. In this case, the debugger executes the partial command
(since it is complete) unless you include the continuation flag.

Continuation flags let you specify a multi-line sequence of commands before they
are executed (without using the DO construct explained in Chapter 6).

You must separate commands with a semicolon when you specify more than one
command on a line.

Line- Editing Keys

You can edit command input in line-oriented mode using the following line editing
functions:

RUBOUT key Deletes the character to the left of the cursor,

PSCOPE-86 User's Guide Using the Debugger

CNTL-F
or

DEL CHAR
(RUB OUT)

CNTL-X

CNTL-A

CNTL-Z

Deletes the character at the cursor.

Deletes all characters to the left of the cursor.

Deletes the character at the cursor and all characters to the
right of the cursor.

or Deletes the entire current line.
CLEAR LINE

Left Arrow key Moves the cursor one character to the left.

Right Arrow key Moves the cursor one character to the right.

HOME key

CNTL-C

ESC key

Syntax Errors

Operates with the left or right arrow key. Moves the cursor
to the beginning of the line if pressed after the left arrow
key. Moves the cursor to the end of the line if pressed
after the right arrow key.

Canceis the command in progress.

Enters PSCOPE's internal editor.

A syntax error is an error in the command's format. When the debugger finds a
syntax error, it displays the following message:

jSyntax error

The arrow (j) is aligned under the portion of the command line containing the
error. If the error is located near the right edge of the screen, the message takes
the following form:

Syntax error j

You can correct commands in which errors were detected by pressing ESC to
invoke the internal editor and using the appropriate editor commands. You can
then execute the corrected command after exiting from the editor.

The Internal Screen-Oriented Editor

PSCOPE contains a built-in editor for modifying debug procedures,
LITERALLY s, patches, debug registers, the most recent command, and the most
recent GO command. For example, use the editor to modify the specification of a
break register.

The edit-item may be the name of a debug procedure, the name of a debug register,
the name of a LITERALLY definition, the keyword PATCH followed by the
patch's starting address, or the keyword GO (for editing the current GO
specification) .

Without an argument, the EDIT command is invoked with an empty buffer. Press
ing the ESC key invokes the editor with the last command as the edit item.

2-7

U sing the Debugger PSCOPE-86 User's Guide

2-8

The internal editor is screen-oriented. Figure 2-1 shows a typical menu. If you do
not have an Intel terminal, you must include a CRT configuration file when you
invoke PSCOPE. This file (called PSCOPE.CR T) contains the I/O sequences for
cursor control. You can also use this file to reprogram special keys such as the di
rection arrows, ESC, and HOME keys to map their functions to other keys.

Because the internal editor is interactive and screen-oriented, you cannot use it if
you specified the SUBMIT control when you invoked PSCOPE. Nor can you use
the VIEW command when PSCOPE is running under SUBMIT.

Entering the Internal Editor

You can invoke the internal editor in the following two ways:

• By pressing the ESC key either at the debugger prompt or during command
entry.

If you press ESC immediately after the debugger prompt, the last command
is recalled for editing.

If you press ESC during command entry, you can edit the entire command
being entered.

• By entering the EDIT command immediately after the debugger prompt.

Syntax

EDIT [edit-item]

Where:

edit-item is one of the following:

debug-symbol is the name of an existing debug object of one of the
debug types (not memory or user types) specified in
Table 3-5. If you specified debug-symbol, its defini
tion (the command that defined the debug object) is
brought up for editing.

PATCH address

GO

If you specify PATCH, the corresponding debugger program PATCH is made
avaiiabie for ediiing.

If you specify GO, the text of the last GO command is brought up for editing.

If you do not specify anything, the editor invokes with an empty edit space.

Exiting the Internal Editor

After exiting the internal editor (using the QUIT command), you can either exe
cute or ignore the command(s) you just edited.

PSCOPE-86 User's Guide U sing the Debugger

Internal Editor Display

As shown in Figure 2-1, the internal editor uses the screen's two bottom lines for
the edit message line and the menu option line. The remainder of the screen is the
edit display area.

<text>

---<msg>
Block Delete Get Insert Quit View Xchange

1372

Figure 2-1 Editor Display

The internal editor displays a maximum of 79 columns of text but supports longer
lines. For lines exceeding 79 characters, an exclamation point (n is displayed as
the last character to indicate that more text exists beyond the end of the display.
When you move the cursor logically beyond the display, it remains physically in
the right-most position in the line. All edit functions can act on text existing
beyond the display area, but the display is not affected.

The internal editor displays the printable ASCII characters (20h to 7Eh). It dis
plays unprintable characters as question marks (?). The internal editor considers
the carriage return (CR) and the linefeed (LF) characters printable characters.
The CR/LF combination acts as a single character called return. A tab is interpret
ed as four spaces.

Internal Editor Commands

The internal editor uses the cursor control keys and editor display options for com
mand input.

Cursor Control Keys. The following cursor control keys control movement
within the text being edited:

• Up arrow

• Downarrow

• Left arrow

• Right arrow

• HOME

• RETURN

2-9

Using the Debugger PSCOPE-86 User's Guide

2-10

The cursor control keys operate as described in the following sections.

Up Arrow Key. Pressing the up arrow key moves the cursor up one line from its
current column position. If the cursor is already in the top line of the screen, press
ing the up arrow key moves the cursor to the preceding line and displays the text
with that line positioned six lines from the top of the screen (standard Intel
terminals). The up arrow has no effect if the cursor is on the first line of the text
being edited.

Down Arrow Key. Pressing the down arrow key moves the cursor one line down
from its current column position. If the cursor is already in the last line on the
screen, the text scrolls up one line. The down arrow key has no effect if the cursor
is in the last line of text.

Left Arrow Key. Pressing the left arrow key moves the cursor one character to
the left. If the cursor is at the beginning of a line, the cursor moves to the carriage
return at the end of the preceding line. If the cursor is at the beginning of the
screen, pressing the left arrow key moves the cursor to the end of the preceding
line and displays the text with that line positioned six lines from the top of the
screen (standard Intel terminals). The left arrow key has no effect if the cursor is
at the beginning of the text.

Right Arrow Key. Pressing the right arrow key moves the cursor one character to
the right. If the cursor is at the last character of the last line on the screen, the
screen scrolls up one line. The right arrow key has no effect if the cursor is at the
end of the text.

HOME Key. The HOME key is used with the directional cursor keys, as follows:

• Pressing HOME after pressing an up or down arrow key displays the previous
or next screen of text, respectively. The cursor remains in the same relative
location on the new page.

• Pressing HOME after pressing a left or right arrow key moves the cursor to
the beginning or end of the line, respectively.

You can press HOME any number of times after pressing a directional key.

RETURN Key. Pressing the RETURN key when the editor is expecting a com
mand moves the cursor to the beginning of the next line of text. If the cursor is in
the last line of the text display area, the text is scrolled up one line. If the cursor is
at the end of the text, pressing the RETURN key has no effect.

Delete Keys. You can use the following delete keys when the editor is at the com
mand level or in the insert or exchange mode:

• RUBOUTkey
Deletes the character to the left of the cursor.

• CNTL-F
Deletes the character at the cursor.

PSCOPE-86 User's Guide U sing the Debugger

• CHARDEL
Deletes the character at the cursor.

• CNTL-X
Deletes all characters to the left of the cursor.

• CNTL-A
Deletes the character at the cursor and all characters to the right of the
cursor.

• CNTL-Z
Deletes the current line.

• CLEARLINE
Deletes the current line.

Menu Commands

The menu command provides the following command options:

• Block

• Delete

• Get

• Insert

• Quit

• View

• Xchange

To select each menu command, enter the first letter of the command (either
lowercase or uppercase). The editor beeps if you give it an unexpected command
character.

Enter CNTL-C to abort the menu command in progress. The editor ignores the
CNTL-C ifit is waiting for a command.

The menu always indicates which options are available. Some menu commands
lead to sub-menus (for example, Quit and Block).

BLOCK Command (B)

The BLOCK command lets you mark off a block of text and place it in the block
buffer for later retrieval (with the GET command).

To place text into the buffer, move the cursor to the first character in the block of
text desired and press B. The editor displays the following sub-menu:

Buffer Delete

2-11

U sing the Debugger PSCOPE-86 User's Guide

2-12

Move the cursor just beyond the character at the end of the block to be delimited
and again enter B. (The beginning and ending characters of the block being
delimited are marked with an at sign (@).) The text is now in the buffer.

Use the left, right, up and down arrow keys and the HOME and RETURN keys to
move the cursor to the end of the block.

Note that the block buffer holds only one block of text. If you execute a block or
delete command before retrieving the contents of the block buffer with the GET
command, the original contents are overwritten by the new block of text.

DELETE Command (D)

The DELETE command lets you mark off a block of text, place it in the block
buffer for later retrieval (with the GET command), and then delete it.

To place text in the buffer, move the cursor to the first character in the block of
text desired and press D. The editor displays the following sub-menu:

Buffer Delete

Move the cursor just beyond the character at the end of the block to be delimited
and again enter D. (The beginning and ending characters of the block being
delimited are marked with an at sign (@).)

Use the left; right; up and down arrow keys and the HOME and RETURN keys to
move the cursor to the end of the block.

Note that the block buffer holds only one block of text. If you execute a block or
delete command before retrieving the contents of the block buffer with the GET
command, the original contents are overwritten by the new block of text.

GET Command (G)

The GET command retrieves the contents of the block buffer (see the block and
delete commands) and inserts it at the current cursor location. The block buffer is
initially the null string.

You can move text from one part of the file to another by doing one of the
following:

• Placing the text to be inserted in the block buffer with the delete command.

• Moving the cursor (with the cursor control keys) to where you want the text
inserted.

• Entering the GET command.

INSERT Command (I)

The INSERT command puts the editor into insert mode, which is indicated by
[insert] on the menu line. Each character you enter is then inserted at the cursor
until you press ESC. The display echoes the new text as you insert each character.

PSCOPE-86 User's Guide U sing the Debugger

In insert mode, you can use the cursor control keys (left, right, up and down
arrow, HOME and RETURN) and the delete keys. Pressing RETURN after insert
ing text in the last line scrolls the text up one line.

If the cursor is positioned beyond the end of a line when entering text in insert
mode, the cursor moves to the point immediately before the end (or carriage
return) of the current line, and the insertion begins beyond the line.

QUIT Command (Q)

The QUIT command lets you exit the editor and either pass or not pass a command
back to the debugger. The editor displays the following sub-menu when you enter
Q:

Abort Execute

Enter A (abort) to exit the editor without passing a command back to the
debugger.

Enter E (execute) to exit the editor and process the edited text as a command.

VIEW Command (V)

The VIEW command redisplays the screen with the line containing the cursor
positioned in the middle of the screen, unless centering places the beginning of
the text below the top of the screen.

XCHANGE Command (X)

The XCHANGE command puts the editor into exchange mode, indicated by
[exchange] on the menu line. The XCHANGE command lets you replace the char
acter at the cursor, one for one. The cursor moves one character to the right each
time you replace a character.

Press ESC to end the exchange mode.

While in exchange mode, you can use any of the cursor control keys to move the
cursor. Characters you enter beyond the end of a line are inserted before the
RETURN in that line.

The VIEW Command

The VIEW command allows you to examine files without exiting PSCOPE. This is
a PSCOPE command; it is distinct from the view command that belongs to the
PSCOPE internal editor.

Syntax

VIEW pathname

Where:

pathname is the fully-qualified name of the text file you want to examine.

2-13

Using the Debugger PSCOPE-86 User's Guide

2-14

Description

The VIEW command is menu driven. After you issue the command, the first 23
lines of the specified file appear on the screen. The last two lines of the screen con
tain the VIEW menu as shown in the following example:

- - - - - VIEW :f1 :pager.src
Again Find -find Jump Quit Roll Set View

Choose a menu item by entering its first letter (VIEW is not case-sensitive). For
example, entering Q chooses Quit, which terminates the VIEW command and re
turns you to the PSCOPE prompt.

Again

Find

-find

Jump

Repeats the last command option. For example, if you just
searched for the text string "reset", entering A searches for the
next occurrence of that text string.

Searches for a text string in the forward direction. After you enter
the F, VIEW requests a text string. Enter the text string and termi
nate it with an ESC. Find remembers the specified text string. If
you enter another F, you can search for the next occurrence of the
string by just entering an ESC.

Searches for a text string in the reverse direction. After you enter
the hyphen (-), VIEW requests a text string. Enter the text string
and terminate it with an ESC.

Moves the cursor to the start or the end of the file. After you enter
the J, VIEW presents the following new menu:

Start End

Choose S for the start of the file and E for the end of the file.

Quit Returns you to the PSCOPE prompt.

Roll Moves the cursor to the last line on the screen, then moves the
screen down through the file one line at a time. You can stop rolling
with CNTL-S and resume rolling with CNTL-Q. Terminate the roll
with an ESC.

Set Determines the way VIEW displays the file. After you enter the S,
VIEW presents the following new menu:

Leftcol Tabs Viewrow

Choose one item by entering its first letter.

Leftcol is zero by default~ zero identifies the first column. You can
change the first column displayed on the screen. This is useful
when your file contains rows longer than the screen display. When
leftcol is other than zero, column zero contains an exclamation
point (D.

PSCOPE-86 User's Guide U sing the Debugger

Tab is four spaces by default. You can alter the tab settings in your
file display. This alteration is only for the display. Your file is not
edited.

Viewrow is line five by default. The rows on the screen are labeled
o through 22. Setting viewrow to a row number moves the row the
cursor is on to that row number.

2-15/2-16

CHAPTER 3
COMMAND LANGUAGE AND

EXPRESS'IONS

This chapter describes PSCOPE command line format. It gives an overview of
tokens and symbol object types. It defines the operands and operators you can use
in expressions and explains the rules for combining different expression types.

Tokens

Tokens are the smallest meaningful units in a command line. Each token belongs
to one of the following classes:

• Delimiters

• Names

• Line numbers

• Numeric constants

• Character string constants

• Operators

• Comments

Delimiters

A delimiter is a character or a pair of characters that separate or mark the beginning
or end of a token. The debugger recognizes delimiters for names, lines,
commands, strings, range specifications, modules, lists, and comments. Table 3-1
lists the delimiters.

Table 3-1 Special Character Delimiters

Character Description Function

Space Blank separator
Tab Blank separator

<cr> Carriage return Line terminator
& Ampersand Continuation line indicator

Semicolon Command separator
,

Apostrophe String delimiter
Dot Compound name separator

" Quotation marks User symbol flag
Colon Module name prefix
Comma List separator

/* Slash asterisk Start-of-comment delimiter

*/ Asterisk slash End-of-commment delimiter

3-1

Command Language and Expressions PSCOPE-86 User's Guide

3-2

Names

There are three types of names:

• Keywords
Keywords are reserved elements of the debugger command language. Key-
words have special meaning within the debugger language and, therefore,
cannot be used in other ways. For example, a keyword cannot be used as a
debug symbol. Appendix G contains a complete list ofPSCOPE keywords.

• Program symbols
The compiler includes program symbol information in your object file when
you compile your source module with the compiler DEBUG control. The
debugger enters the program symbols into its symbol table when you load
your object code.

• Debug symbols
Debug symbols are any symbols defined by the user in a debug session.
Chapters 7 and 8 describe debug symbols and their use.

N ames Format

A name is a sequence of letters, digits, underscores, at-signs, question marks, or
dollar signs, of which the first character must be a letter, underscore, at-sign, or
question mark. This format is summarized in Table 3-2.

Valid
First Character

A-Z
@

?

Table 3-2 Names Format

Valid
Remaining Characters

-Z
@

?
0-9
$

Description

Letters
At-sign
Question mark
Digits
Dollar sign*
Underscore

"Embedded dollar signs are ignored by the debugger and may be used to improve the readability of a
name.

To convert Pascal labels (which are numbers in the source code) to the name
format, the compiler removes leading zeros from each label and attaches a leading
at sign (@) to the label. For example, the label '9999' in module 'DC' is as follows:

:DC.@9999

The debugger accepts names of unlimited length; however, it uses only the first 40
characters. The debugger interprets uppercase and lowercase characters as the
same character (i.e., band B are interpreted as the same character).

Referencing Names

Names have the following precedence: command keywords, debug symbols, pro
gram symbols. The debugger checks symbols it encounters to see if they are

I

PSCOPE-86 User's Guide Command Language and Expressions

keywords. If a symbol is not a keyword, the debugger checks to see if it is the name
of a debugger object. If the symbol is not the name of a debugger object, the debug
ger assumes that the symbol is the name of a program object.

A debug symbol must not duplicate a keyword. A debug symbol is referenced by
entering its name.

A program symbol name may duplicate a keyword or debug symbol if you precede
it with quotation marks ("), as shown in the following example:

FOO + "Line

In all cases, you can reference a program symbol by using a fully qualified name. A
fully qualified name is a compound name, where each level of the name is specified
beginning with the module name, including any names of enclosing procedures,
and ending with the symbol name. For example, use the following reference for
the variable "TEST" in procedure "GETSCORE" of module "SYSTEM":

:SYSTEM.GETSCORE.TEST

Alternatively, you can use a partially qualified reference depending on where you
are in the program. A partially qualified reference lets you abbreviate the reference
by omitting leading parts of the reference, such as the module name. This method
is explained further in Chapter 5.

Line Numbers

The compiler produces line numbers. The following format is for a line number
reference.

[:module-name] #line-number

For example:

:MODl#23
or

#23

Note that module names must begin with a colon (:), as shown in the first
example.

Numeric Constants

Numeric constants are integers or floating point numbers.

Integers

An integer constant is a number consisting of one or more digits and an optional
one-character suffix that identifies the number base. The suffix is not required if
the integer's number base corresponds to the current default base set with the
BASE command. (Note that a 0 (zero) must precede hexadecimal numbers begin
ning with the letters A through F to distinguish them from names.)

You can enter alphabetic hexadecimal digits A through F and base suffixes (Y, T,
H, K) in either uppercase or lowercase.

3-3

Command Language and Expressions PSCOPE-86 User's Guide

3-4

Table 3-3 summarizes integer constants.

Table 3-3 Elements of Integer Constants

Number Base Valid Digits Suffix Example

Binary (base 2) 0,1 Y 11110011 Y
Decimal (base 10) 0-9 T 243T
Hexadecimal (base 16) 0-9,A-F H OF3H
Decimal multiple of 1024T 0-9 K 4K

Floating Point Numbers

Floating point numbers are decimal numbers consisting of a significand
(expressed in one or more digits), a decimal point, one or more additional digits,
and an optional exponent. The exponent consists of the letter E followed by a
signed integer value. For example, the following decimal value:

0.24 x 10 -2

May be expressed as follows:

0.0024
or

0.24E -2

Use the following guidelines when working with floating point numbers:

• You must use the decimal point in a floating point number to distinguish the
E as a scale factor (e.g., 44.0E30) ~ otherwise, E might look like a digit in a
hexadecimal number (e.g., 44E30).

• Digits must appear on both sides of the decimal point. For example, 0.85E2
and 85.0E2 are acceptable, but .85E2 is not because there is no digit before
the decimal point.

• A floating point number must have a value in the following range: 64-bit
mantissa, 15-bit exponent, and a sign bit, for a total of80 bits.

Floating point (real) arithmetic used in PSCOPE conforms to the proposed IEEE
standard for binary floating point arithmetic. This standard specifies internal data
representations, normalization, rounding modes, and error handling. All real
arithmetic performed by Intel microprocessors and software (except VSP
software) conforms to this standard. (The 8086 Family User's Manual explains the
proposed IEEE floating point standard.)

Character String Constants

The term string in a command format means a sequence of one or more ASCII
printing characters enclosed in delimiters of apostrophes. Examples are as follows:

'ABCDE'
'Testing 1 2 3'
'X'
'THIS IS A STRING'
'This is a string'

PSCOPE-86 User's Guide Command Language and Expressions

To enter a literal apostrophe inside a string, use two apostrophes to distinguish the
literal apostrophe from those used as delimiters.

For example, the following:

'WRAT"S UP?'

Is stored as follows:

WRAT'SUP?

The debugger accepts strings of up to 254 characters, not counting the enclosing
delimiters. You can extend strings over more than one line; the debugger concate
nates (links) adjacent strings into a single string. You can separate adjacent strings
with spaces, tabs, or carriage returns.

When a string value is stored in memory, the value is the one-byte ASCII value of
each character. If the string has more than one character, the debugger stores the
subsequent ASCII values in consecutive locations.

Operators

The command language contains tokens that serve as operators. Table 3 -4 lists the.
special character operators that the debugger recognizes.

Table 3-4 Special Character Operators

Operator Description

Multiply sign
Minus sign

+ Plus sign
I Slash

Double equal
signs

< > Angle brackets
> Angle bracket
< Angle bracket
> = Bracket,equals
< = Bracket,equals

Dot
() Parenthesis
[] Square brackets

Equal sign
Colon

Function

L Multiplication
Negation or subtraction
Identity or addition
Division
Equality

Inequality
Greater than
Less than
Greater than or equal to
Less than or equal to
Address of (prefix operator)
Bracketing
Array indexing
Assignment
Pointer constructor

In addition to the special character operators shown in Table 3-4, PSCOPE also
supports several keyword operators. OR, XOR, AND, and NOT are the conven
tional Boolean operators. MOD is the conventional remainder (or modulo) opera
tor (as defined in Pascal), extended to also work with real numbers.

3-5

Command Language and Expressions PSCOPE-86 User's Guide

3-6

Comments

The debugger ignores characters enclosed by the comment delimiters, 1* and *1.
The following comments would be ignored by PSCOPE:

1* THIS PROGRAM WAS DEBUGGED WITH PSCOPE *1

1* THIS COMMENT IS
SPREAD OVER TWO LINES. */

Types of Symbol Objects

All objects referred to by debug or program symbols have an associated type. Sym
bols are divided into three types. The first two types, memory and debug, are basic
types whose names and definitions are determined by PSCOPE. The third type,
referred to as user types, consists of user-defined symbols. PSCOPE obtains this
type of information from the debug information in the load module of a program.
Table 3-5 lists the standard types recognized by the debugger.

Table 3-5 Standard Symbol Object Types

Symbol Object Type Definition
Type

Memory BOOLEAN TRUE or FALSE
CHAR String of ASCII character(s)
POINTER Pointer value
"".,...,.... 11 __ = ___ -' n 1-:.1. _ •• __ .1.:.1. ••

01 Ie U";:,ty"CU a-ull l.jualiUty

WORD Unsigned 16-bit quantity
DWORD Unsigned 32-bit quantity
SELECTOR Unsigned 16-bit quantity
ADDRESS Unsigned 16-bit quantity
SHORTINT Signed 8-bit quantity
INTEGER Signed 1 6-bit quantity
LONGINT Signed 32-bit quantity
EXTINT Signed 64-bit quantity
BCD Signed 18-digit binary coded

decimal number
REAL 32-bit floating point number
LONGREAL 64-bit floating point number
TEMPREAL 80-bit floating point number

Debug PROC Debug procedure
LITERALLY String macro
BRKREG Break register
TRCREG Trace register
PATCH Debug patch code

User ARRAY Array
RECORD Pascal record or PLIM

structure
PROCEDURE User program procedure or

function
LABEL User program label
LINE User program line number
FILE User file
MODULE User program module
ENUMERATION User-defined PASCAL

enumerated type

PSCOPE-86 User's Guide Command Language and Expressions

Compiler/Assembler Type vs. PSCOPE Type Names

PSCOPE does not always identify a program variable as the same memory type as
the user program. For example, PSCOPE considers an ASM-86 program variable
of type DWORD to be a program variable of type POINTER. Table 3-6 lists the
memory type differences between ASM-86, PL/M-86, Pascal-86, FORTRAN-86,
andPSCOPE.

Table 3-6 Compiler/Assembler Type vs. PSCOPE Type Names

ASM-86 PSCOPE for ASM-86 PL/M-86 PSCOPE for PL/M-86

BYTE BYTE BYTE BYTE
WORD WORD WORD WORD

INTEGER INTEGER
SELECTOR SELECTOR

POINTER POINTER POINTER (small) ADDRESS
POINTER (compact POINTER
or large)

DWORD POINTER DWORD DWORD
REAL REAL

aWORD LONGREAL

TBYTE TEMPREAL

STRUC RECORD STRUCTURE RECORD
RECORD
RFIELD

STRUC ARRAY OR RECORD STRUCTURE ARRAY ARRAY OF RECORD
ARRAY

Pascal-86 PSCOPE for FORTRAN-86 PSCOPE for
Pascal-86 FORTRAN-86

BOOLEAN BOOLEAN LOGICAL*1 BOOLEAN
CHAR CHAR INTEGER*1 SHORTINT

CHARACTER*n CHAR

WORD WORD LOGICAL*2 WORD
INTEGER INTEGER INTEGER*2 INTEGER

LONGINT LONGINT LOGICAL*4 DWORD
REAL REAL REAL*4 REAL

INTEGER*4 LONGINT

LONGREAL LONGREAL REAL*8 LONGREAL
DOUBLE PRECISION

TEMPREAL TEMPREAL TEMPREAL TEMPREAL

RECORD RECORD

ARRAY ARRAY
FILE FILE
SET SET

Pascal-86 uses POINTER types to allocate, access, and de-allocate dynamic
variables. Pascal POINTERs are not analagous to PL/M -86 POINTERs.

3-7

Command Language and Expressions PSCOPE-86 User's Guide

3-8

Expressions

Expressions can be used as command arguments to specify numeric, Boolean, or
string values.

Expressions can be one of the following:

• A single number, constant, or symbolic reference. Example areas follow:

o (Number without explicit suffix)
100H (Hexadecimal numeric constant)
I A' (One-character string constant)
X (Symbolic reference yielding a value)

• A formula applying operators and functions to numbers, constants, and sym
bolic references as operands.

The debugger performs the calculation, using parenthetical and operator
precedence and left-to-right order to determine the sequence of operations.

Examples of expressions are as follows:

2+3
174/4
0100H + OOFH
2 * (6 + 4)
.BUFFER + 2
....... ""',......., 6 f ""' ..
:lVIVU l..:)1\.lVl T L.l

To evaluate and display the value of an expression, enter the expression. An ex
pression evaluates to a type component and a value component. The rules for
determining expression types and values are discussed later in this chapter.

Operands

You can use the following types of operands in expressions:

• Numeric constants

• String constants

• Program symbol references

• Machine register references

• Memory references with explicit typing

• Line number references

• Debug variable references

• Debug procedure calls

• Debug procedure parameters

• Debug built-in function calls

PSCOPE-86 User's Guide Command Language and Expressions

Numeric Constants

Numeric constants can be integers or floating point numbers, described previously
in this chapter.

String Constants

You can use character strings as arithmetic values in expressions, as follows:

• A one-character string, which has a byte value corresponding to the charac
ter's ASCII representation. For example, the string constant' A' has the
value 41H.

• Longer string constants (up to 254 characters), which you may also use as
parameters of debug procedures or as arguments to built-in string functions.

Program Symbol References

When you enter a program symbol reference as an operand, its value is obtained
from the debugger symbol table and used in the associated expression.

To reference the value of a program symbol, use the following format:

symbolic-reference

Where:

symbolic-reference is a fully or partially qualified reference as described
in Chapter 5.

To reference the address of a program symbol, prefix symbolic-reference with the
dot operator as shown in the following example:

. symbolic-reference

Machine Register References

You can reference the 8086 registers symbolically, within expressions, just like
variables.

The registers are as follows:

AH AL AX BH BL BP
BX CH CL CS CX DH
DI DL DS DX ES FH
FL FLAG IP SI SP SS

Memory References with Explicit Typing

To reference a memory location and interpret it as a particular type of object in an
expression, use the following format:

memory-type location

3-9

Command Language and Expressions PSCOPE-86 User's Guide

3-10

Where:

memory-type is one of the object types shown in Table 3-5.

location is an expression that evaluates to a pointer. The pointer must
refer to a single valid address.

The memory reference format uses memory-type to interpret the area of memory
pointed to by the address expression. The following example:

BYTE.FOO

interprets the first byte at the address of Faa as a byte regardless of the type of
Faa.

Other examples of memory references are as follows:

BYTE (. buffer + bufindex)
WORD DS:22H
X + (INTEGER .ABLE)
(LONGREAL TEST) MOD 5

Line N umber References

When you use a line number reference in an expression, you get the address of the
first instruction generated by the compiler for the source line number. In other
words, you are referencing a program location through the line number.

If different modules (each with their own statement numbers) are linked, you
must sometimes specify a module name in the line number reference, as follows:

[:module] #/ine-number

You must use fully qualified line references (those with a module specified) when
referring to a line number that is not in the current default module (determined by
the current name scope). You can use partially qualified references (those without
a module name) when the line reference is in the current default module.

The statement number must be a decimal integer. Examples of line number refer
ences are as follows:

#45
:TEST#l
#23

Debug Variable References

After defining a debug variable (described in Chapter 7), you can use its value as
an operand within an expression. PSCOPE also includes the following predefined
variables:

Name Object Type

BASE BYTE

NAMESCOPE POINTER

$ POINTER

Use

Current default numeric base

Starting point for program symbol
lookup

Value ofCS:IP

PSCOPE-86 User's Guide Command Language and Expressions

Debug Procedure Calls and Parameter References

After defining a debug procedure within the debugger (described in Chapter 8),
you can call that procedure from within an expression and have it return a value.

PSCOPE includes several built-in functions, as follows:

Name

SUBSTR

CONCAT

STRLEN

CI

ACTIVE

SELECTOR$OF

OFFSET$OF

Operators

Use

Substring selection (Chapter 10)

String concatenation (Chapter 10)

String length (Chapter 10)

Console character input (Chapter 10)

Testing for program symbol accessibility (Chapter 5)

Segment portion of pointer (Chapter 10)

Offset portion of pointer (Chapter 10)

An expression can contain any combination of unary and binary operators.

The debugger recognizes five groups of operators: dereference operators, pointer
selector operators (pointer selection uses built-in functions), arithmetic
operators, memory-type operators, relational operators, and logical operators.

Table 3-7 shows the operators in each group in descending order (from highest to
lowest precedence). In the table, all operators apply to both real and integer oper
ands unless otherwise noted. All operations are binary unless specified as unary
operations.

3-11

Command Language and Expressions PSCOPE-86 User's Guide

3-12

Table 3-7 Precedence of Operators (Highest to Lowest)

Group Operator Operation Precedence

Arithmetic + Unary plus 1
- Unary minus (2's complement)

* Multiplication 2 I
/ Division
MOD Integer remainder

+ Addition 3
- Subtraction

Relational - - Is equal to 4
> Is greater than
< Is less than
>= Is greater than or equal to
<= Is less than or equal to
<> Is not equal to

Logical NOT 1's complement 5
AND Logical AND 6
OR Logical OR 7
XOR Exclusive OR

Memory BOOLEAN TRUE or FALSE value S
Type CHAR S-bit ASCII character

POINTER Pointer value
BYTE Unsigned S-bit quantity
WORD Unsigned 16-bit quantity
ADDRESS Unsigned 16-bit quantity
SELECTOR Unsigned 16-bit quantity
DWORD Unsigned 32-bit quantity
SHORTINT Signed S-bit quantity
INTEGER Signed 16-bit quantity
LONGINT Signed 32-bit quantity
EXTINT Signed 64-bit quantity
BCD Signed 18-digit binary coded

decimal number
REAL 32-bit floating point number
LONGREAL 64-bit floating point number
TEMPREAL SO-bit floating point number

Type Conversions

PSCOPE automatically converts values from one type to another during expres
sion evaluation and during modify commands (described in Chapter 7).

The following type classification is useful for describing the type conversions per
formed by PSCOPE. The numbers in parentheses are the number of bytes used to
store a value of that type (precision). The type in each class considered to have the
maximum precision for that class is listed at the bottom of each column.

PSCOPE-86 User's Guide Command Language and Expressions

Unsigned

BYTE (1)
WORD (2)
ADDRESS (2)
SELECTOR (2)
DWORD (4)

Signed

SHORTINT (1)
INTEGER (2)
LONGINT (4)

Real

REAL (4)
LONG REAL (8)
EX TINT (8)
BCD (10)
TEMPREAL (10)

Note that Pascal enumeration types are treated as unsigned types of the smallest
precision necessary to hold the ordinal representation of that type.

Type Conversions for Expressions

The automatic type conversions that PSCOPE performs during expression evalua
tion are dictated by the following two things:

• The type of value expected by an operator or function.

• Not losing any significant portion of a value when performing an operation.

To accomplish these objectives, PSCOPE performs the following type conversions
during expression evaluation:

1. Each value used by the operation is extended to the maximum precision for
that type class.

2. Each value is converted to the type required by the operation.

3. The operation is performed, and the resulting value is left in its maximum
precision and passed on as a value to other operations in the expression (if
any).

Type Conversions for Assignments

The type of the source value and the type of the target variable dictate the automat
ic type conversions PSCOPE performs during assignment. In general, the type
conversion proceeds as follows:

1. The source value is extended to the maximum precision for its type class.

2. The resulting value is converted to the maximum precision type of the type
class of the target variable.

3. The resulting value is truncated to the exact precision required for the target
variable type.

There are a few minor exceptions to these rules when non-numeric types are in
volved (CHAR, POINTER, and BOOLEAN). In these cases, conversions between
some types may not be allowed or are handled as special cases. However, even for
these types, the automatic conversions performed by PSCOPE extend those
provided by Pascal and PL/M. ..

3-13/3-14

CHAPTER 4
LOADING AND

EXECUTING PROGRAMS

This chapter describes how to load programs and control execution by setting
breakpoints with the GO command and by stepping through the program.

The LOAD Command

The LOAD command loads the program file you want to debug. With the LOAD
command, you can specify that certain debugging information not be loaded, that
the 8087 emulator be linked with the program file (ISIS and iNDX only), or that
8087 chip support be included (iRMX-86 only).

Syntax

LOAD file [load-Option] * [CONTROLS command-tail]

Where:

file

load-option

E808?

CH808?

NOLINES

is the name of the program file you want to debug.
This name may be a complete pathname.

is one of the following:

informs PSCOPE that your program uses the 8087 soft
ware emulator. Select this option if your program per
forms real arithmetic and PSCOPE is running under
the ISIS or iNDX operating systems. (The 8087 Support
Library Reference Manual contains information on the
8087 emulator and numeric support.)

informs PSCOPE that your program uses the iSBC@
337 MULTIMODULETM (the 8087 hardware). Select
this option if your program performs real arithmetic
and PSCOPE is running under the iRMX-86 operating
system.

specifies that line number information is not loaded
from the program file.

NOSYMBOLS specifies that symbol information is not loaded from
the program file.

command-tail

Description

is any arbitrary text expected by your program. For
example, if your program expects parameters on its
invocation line, (a PL/M -86 program that uses the
DQGETARGUMENT system call), those parame
ters would appear here.

The load command loads the specified file into the microcomputer system
memory. The debug information in file is processed to produce PSCOPE's symbol

4-1

Loading and Executing Programs PSCOPE-86 User's Guide

4-2

table of information about the loaded program. If necessary, PSCOPE sends part
of this symbol table to disk, using a temporary work file.

The controls command lets you specify information your program may need to
execute.

You can extend the invocation line as you would any command line.

The object file must conform to the 8086 object module formats. The object pro
gram must be position independent code (PIC) or load time locatable (LTL), with
absolute segments for interrupt vectors only. Because they do not use absolute
addressing, PIC and LTL object programs are less likely to cause conflicts with
PSCOPE's address base. PSCOPE issues an error message if you try to load a pro
gram which is neither PIC nor LTL.

The loaded object file must contain information initializing the CS, IP, SS, and DS
8086 registers. If these registers are not initialized during loading, PSCOPE dis
plays an error message.

PSCOPE removes all previously set break registers (BRKREGs), trace registers
(TRCREGs), and patches when you load a program, even if the load is
unsuccessful.

Example

The following example uses the LOAD command.

*LOADdc.86

The GO Command

The GO command transfers execution control to the loaded program.

Syntax (simplified)

GO [TIL expression [, expression]*]

or

GO FOREVER

Where:

expression is a symbolic expression specifying an address in the program
code where you want a breakpoint.

Description

The GO command transfers control from PSCOPE to the program under debug
and specifies the conditions under which the user program stops executing and
transfers control back to PSCOPE.

TIL lets you specify any number of breakpoints. Breakpoints are stopping points at
specific addresses in your program.

PSCOPE-86 User's Guide Loading and Executing Programs

GO FOREVER specifies that your program will be executed without breakpoints.

If you do not specify neither TIL nor FOREVER, control passes to your program
using the same breakpoints as those used by the previous GO command (if any) .

During program execution, you can interrupt execution any time by entering
CNTL-C. Note that entering CNTL-C while your program is executing the UDI
primitive DQ$Read from :CI: causes an end of file condition on :CI:. The sample
program DC (found in Appendix E) is included on the PSCOPE disk and shows
one way of avoiding this problem in its procedure GET.-LINE.

Note that the GO command always executes at least one instruction, so you can
set a breakpoint at the current execution point.

Chapter 11 explains how to use the GO command with break and trace registers.

Example

Each of the following examples is based on the sample program DC found in Ap
pendix E.

The following example executes the program using two breakpoints, one set at a
specific statement and the other set at the address of a procedure.

*go til :dc#26, :dc.gettoken

The following example executes using the previous breakpoints:

*go

The following example executes using no breakpoints at all:

*go forever

The LSTEP and PSTEP Commands

The LSTEP and PSTEP commands let you single-step through the program by ex
ecuting numbered (high-level) language statements.

Syntax

LSTEP

or

PSTEP

Description

PSTEP and LSTEP are PSCOPE's source-level statement stepping commands.
PSTEP treats a procedure or function as a single statement, executing it entirely
before returning control to you at the next statement. LSTEP steps through proce
dures and functions one statement at a time.

4-3

Loading and Executing Programs PSCOPE-86 User's Guide

4-4

IF you enter PSTEP or LSTEP from a normal command level, PScOPE returns
the following message after executing the statement:

[Step at line-number]

Where:

line-number refers to the current execution point, after the step is
complete.

PScOPE does not print a message if either command is issued from a nested
PScOPE command (DO, IF, COUNT or REPEAT).

PSTEP and LSTEP must be entered when the execution point is at the start of a
statement. Note that any code patches are executed when stepping, but that no
other user-set breakpoints are active (run-time exceptions, however, are still
trapped).

Note also that both PSTEP and LSTEP require line information; stepping from a
location with line information into one without it causes execution to continue
until a known line is reached.

Example

The following example uses the PSTEP command.

*pstep

The ISTEP Command

The ISTEP command allows you to single-step your program through assembly
language instructions.

Syntax

ISTEP

Description

The ISTEP command executes one assembly language instruction, displays the
next assembly language instruction to be executed, then halts. When stepping
through an intruction that alters a segment register the step will execute two
instructions.

CHAPTER 5
EXAMINING AND MODIFYING

PROGRAM SYMBOLS

This chapter describes how to reference objects (variables, procedures, etc.) in a
program you have loaded and how to display and modify program objects. It ex
plains the concept of current name scope (CNS) and how CNS allows abbreviated
(partially qualified) references to program symbols. The following commands are
explained in this chapter:

• Program symbol references
Display program symbol
Change program symbol
Change 8086/8088 flags
Change 8086/8088 registers
The REGS command
Change 8087 registers
Change name scope
Active function

• Memory manipulation commands
Display memory
Modify memory
The single line assembler/disassembler

Program Symbol References

Program symbols are produced by the compiler (when you specify the DEBUG
option) and loaded into the debugger symbol table with the LOAD command
(described in Chapter 4) .

Current Name Scope

The current name scope (CNS) is the set of symbols accessible from a specific loca
tion in the program, as defined by the compiler. This program location is called the
debug cursor and changes as the program execution point changes. You can also
change the debug cursor with the NAMESCOPE command (described later in this
chapter).

In a Pascal procedure, the scope of local variables is the procedure they are defined
in; outside that scope, the symbols have either no meaning or an entirely different
meaning. To illustrate, suppose you have two variables of the same name in two
different procedures. In this case, specifying the variable name alone is not
sufficient. You must also specify the procedure in which the variable is found.

References to program symbols can be fully or partially qualified, as explained in
the following section.

Fully Qualified References

A fully qualified reference always begins with a module name. It also specifies the
name of the procedure (or procedures) containing the referenced symbol, includ
ing the names of all procedures enclosing the symbol.

5-1

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-2

Syntax
:module-name Lprocedure-symbon* .symbol-reference

Where:

module.name is the name of the load module.

procedure-symbol is the name of the procedure.

symbol-reference is one of the following:

variable-symbol is a program symbol that specifies a program
variable.

variable-name [qualifier] *
variable-name is a variable name.

qualifier is one of the following:

Description

left-bracket expr [, expr] * right-bracket

expr

left-bracket and right-bracket are the characters [and] and
specify array indexing.

is an expression used to index an array variable.

. field-symbol specifies a field within a record (structure)

pOinter

variable.

is the character 1 and indicates Pascal pointer
dereferencing.

For fully qualified references, procedure-symbols must be direct references to
procedure names; procedure variables are not allowed.

To illustrate, assume you want to reference a parameter named C contained in the
function DIGIT in the procedure GET_TOKEN of module DC. Your fully quali
fied reference to the variable C is the following:

:dc.geLtoken.digit.c

A fully qualified reference establishes a path from the module level of the program
down to the desired symbol.

For example, to reference the variable named VARIABLE-INDEX of the proce
dure FACTOR, you must specify both the variable and the procedure containing
it. Specifying the following:

:dc. variable~ndex

does not work. Because PSCOPE does not know which procedure contains the
variable VARIABLE-INDEX, it assumes that VARIABLE-INDEX is either a
variable or a procedure declared at the main level of DC. Specifying the following:

:dc.factor. variable_index

establishes a path for PSCOPE to follow to the desired variable.

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

Structures nested within other structures (or records within records) are refer
enced in the same way (outer to inner levels), thus establishing a path that speci
fies all enclosing structures.

Partially Qualified References

A partially qualified reference omits some or all of the leading part of a fully quali
fied reference, depending on the current name scope (CNS).

Using the previous fully qualified reference example (:dc.geL~ken.digit.c), you
can use varying degrees of partially qualified references, depending upon the cur
rent name scope. For example, if the CNS is within the procedure GET_TOKEN,
the partially qualified reference DIGIT.C is sufficient. If, however, the debug
cursor is at the main level of module DC, the partially qualified reference should
be as follows:

geLtoken.digit.c

The fully qualified reference is required when the debug cursor is in a module
other than DC.

The following examples illustrate fully qualified references (FQR) and partially
qualified references (PQR):

FQR PQR Required eNS for PQR

:dc.geLtoken.digit.c c :dc.geLtoken.digit
digit.c :dc.geLtoken

:dc. term. term_value term_value :dc.term
term. term_value :dc

dC.@9999 @9999 :dc

Note that changing the name scope or using a more qualified reference lets you
reference symbols outside of the symbols scope. This is useful for operations like
setting breakpoints, patches, etc. However, referencing symbols outside of their
scope may not let you examine the value of some local variables because the
values are undefined outside their scope.

Display Program Symbol

You can obtain the value of the program symbol, like the value of an expression,
by entering the name of the program object whose value you want.

Syntax

symbol-name

Where:

symbol-name

Description

is either a fully qualified or a partially qualified symbolic
reference to a program symbol.

Entering symbol-name yields a typed value. The format of the symbol value dis
played depends on the referenced symbol type. Table 5-1 describes default display
formats.

5-3

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-4

Example

The following example references a CHAR variable C (with a value of a) in the
sample program DC (found in Appendix E):

* :dc.geLtoken.digit.c
a
*c
a

The following example displays the value of a field CLASS in the record T. Note
that class is of type enumeration:

*t.class
3

The following example references an element of an array within a record. Note
that the components of the array are of type CHAR:

*buffer.str[1]
a

Table 5-1 shows the default display formats for predefined program symbol types.
These formats are used by the display program symbol, unformatted WRITE, and
display memory commands.

Table 5-1 Default Display Formats

Predefined Symbol Types

Type Display

BOOLEAN Byte value displays FALSE if low order bit is 0 or TRUE if low order bit
is 1.

BYTE Unsigned 8-bit quantity in current base.
CHAR 8-bit ASCII character.
WORD Unsigned 16-bit quantity in current base.
DWORD Unsigned 32-bit quantity in current base.
POINTER Pair of words as nnnn:nnnn (always hex).
ADDRESS Unsigned 16-bit quantity in current base.
SELECTOR Unsigned 16-bit quantity in current base.
SHORTINT Signed 8-bit quantity in current base.
INTEGER Signed 16-bit quantity in current base.
LONGINT Signed 32-bit quantity in current base.
EXTINT Signed 64-bit quantity in current base.
BCD Signed 18-digit quantity in current base.
REAL 32-bit quantity in floating point notation, (always decimal).
LONGREAL 64-bit quantity in floating point notation, (always decimal).
TEMPREAL 80-bit quantity in floating point notation,(always decimal).
ENUMERATION Elements displayed as ordinal number.
ARRAY Array components that are predefined symbol types are displayed as

described previously. PSCOPE does not display entire arrays or array
components that are not predefined types.

PROCEDURE Entry point address.
LABEL Address.
FILE No display.
MODULE Address.
RECORD Record fields that are predefined symbol types are displayed as de-

scribed previously. PSCOPE does not display entire records or fields
that are not pre-defined types.

,

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

Change Program Symbol

This section shows you how to change the value of a program symbol.

Syntax

symbol-name = new-value

Where:

symbol-name is the name of a program symbol.

new-value

Description

is the new value for symbol-name. The new-value can be an
expression that evaluates to the correct type for the
assignment. The expression can contain program or debug
symbol references, constants, strings, etc.

The new value must yield a typed value that matches the type of the program
symbol referenced, or the new value can be forced to match under the type coer
cion rules given in Chapter 3.

The debugger displays an error message if the change value yields the wrong type.

Example

The following example illustrates how to change the value of a program symbol.

*buffer.str[buffer.index] = 'x'
*buffer.index = buffer. index + 1
*term.factor_1_value = 0
* :dc.variable_table['a'] = -23

Change 8086/8088 Flags

PSCOPE allows you to display and modify 8086/8088 flags.

Syntax

{
~~AG } [= expression]

~~86/8088-f1ag
Where:

expression resolves to a 16-bit number to be loaded into the FLAG
word.

BOB6-BOBB-f1ag is a symbol representing one of the 8086/8088 flags.

FLAG represents the flag word.

5-5

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-6

FH represents the upper (most significant) byte of the flag
word.

FL represents the lower (least significant) byte of the flag
word.

8086-8088
Flag

OFL
DFL
IFL
TFL
SFL
ZFL
AFL
PFL
CFL

Description

Overflow flag
Direction flag
Interrupt flag
Trap flag
Sign flag
Zero flag
A uxiliary flag
Parity flag
Carry flag

Type

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

Interpret the FLAG word as follows:

15 0

where X represents a don't-care bit.

Description

The FLAG word displays in the current radix. The flag names are pseudo-variables
and may be used within an expression.

These pseudo-variables only affect the copy of the 8086/8088 flags used by the pro
gram being debugged. These pseudo-variables do not affect the copy of the
8086/8088 flags used by PSCOPE.

Example

To display the 8086/8088 flags, enter the following:

*BASE=10Y;BASE I*Setting the current radix to binary*1
BINARY
*FLAG
1111000010000110

To set the overflow flag (OFL) enter the following:

*OFL=TRUE
*OFL
TRUE

Another way of setting the overflow flag is as follows:

*FLAG=FLAG OR 01 OOH

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

Change 8086/8088 Registers

PSCOPE allows you to display and modify 8086/8088 registers.

Syntax

8086-8088-regisfer [= expression]

Where:

expression resolves to a number to be loaded into the specified
8086/8088 register.

BOB6lBOBB-register is a symbol representing one of the 8086/8088
registers.

8086-8088 Description Type
Register

AX Accumulator register WORD
AH Accumulator high byte BYTE
AL Accumulator low byte BYTE

BX B register WORD
BH B register high byte BYTE
BL B register low byte BYTE

CX C register WORD
CH C register high byte BYTE
CL C register low byte BYTE

DX D register WORD
DH D register high byte BYTE
DL D register low byte BYTE

CS Code segment register WORD
DS Data segment register WORD
ES Extra segment register WORD
SS Stack segment register WORD

SP Stack pointer WORD
BP Base pointer WORD
IP Instruction pointer WORD

DI Destination index WORD
SI Source index WORD

Description

These pseudo-variables only affect the copy of the 8086/8088 flags used by the pro
gram being debugged. These pseudo-variables do not affect the copy of the
8086/8088 flags used by PSCOPE.

5-7

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-8

Example

The following example illustrates how to load the AX register with 12ABH:

*AX=12ABH
*AX
12AB

The REGS Command

The REGS command displays the 8086/8088 registers.

Syntax

REGS

Description

The REGS command displays the registers in hexadecimal regardless of what the
current radix is. Flags are identified by mnemonic only when they are set. If no
flags are set, the word none appears.

The registers displayed are the four data registers (AX, BX, CX, and DX), the
four segment registers (CS, DS, SS, and ES), the instruction pointer (IP), the
base pointer (BP) , the stack pointer (SP), and the two index registers (SI and DI).

Example

To display the 8086/8088 registers enter the following command:

*REGS
AX=0004H
CS=5588H
IP=46C7H
DI=03A2H
FLAGS: ZFL PFL

BX=0005H
DS=0188H
BP=0634H

Change 8087 Registers

CX=OOOOH
SS=0104H
SP=0104H

DX=0002H
ES=OOOOH
SI=0830H

When running under the iRMX -86 operating system, PSCOPE requires that your
microcomputer system contain the iSBC 337 MULTIMODULE (the 8087
hardware). The MULTIMODULE resides on the 86/30 card. When loading your
program, use the CH8087 option.

When running under the ISIS or iNDX operating systems, PSCOPE requires that
your program be linked with the 8087 software emulator. When loading your
program, use the E8087 option.

When running under the iRMX-86 operating system, PSCOPE allows you to dis
play and modify 8087 registers.

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

Syntax

BOB7-register [= expression]

Where:

expression resolves to a number to be loaded into an 8087 register.

B087-register is a symbol representing one of the 8087 registers.

8087 Description Type
Register

STO Internal stack register 0 TEMPREAL
STI Internal stack register 1 TEMPREAL
ST2 Internal stack register 2 TEMPREAL
ST3 Internal stack register 3 TEMP REAL
ST4 Internal stack register 4 TEMPREAL
ST5 Internal stack register 5 TEMP REAL
ST6 Internal stack register 6 TEMP REAL
ST7 Internal stack register 7 TEMPREAL

FSW Status word WORD
FCW Control word \VORD
FIA Instruction address DWORD
FDA Data address DWORD
FlO Instruction WORD

Example

To display the ST4 register enter the following command:

*ST4
+ 2.359687 4320856382E + 00001

Read and Write 110 Ports

This section explains how to read and write the I/O ports. The 8086/8088 I/O
space contains byte-wide ports and word-wide ports. The port addresses are from
OOOOH to FFFFH.

Syntax

[~~~TRJ (expr-for-port-number) [= expr]

Where:

PORT identifies a byte-wide port.

WPORT . identifies a word-wide port.

expr-for-port-number represents the port number in the current radix.

expr represents the data in the current radix. If the value
takes up more than one byte, PSCOPE truncates
the data to a byte.

5-9

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-10

Example

The following example writes 10 to the port 100. The H identifies 199 as a hex
number. The T identifies the 100 as a decimal number. The value 199H is written
to a byte-wide port.

*PORT(1 OOT)=1 OH

The following example writes 199 to the port 100. The H identifies the 199 as a
hex number. The T identifies the 100 as a decimal number. The value 199H is writ
ten to a word-wide port.

*WPORT(100T)=199H

The following example displays the word-wide port 100. PSCOPE always displays
the port value in hexadecimal, regardless of what the current radix is.

*PORT(100T)
199

Note that accessing ports on the microcomputer system may cause undesirable
results. Consult the user documentation for your microcomputer system before
you access any of its ports.

Change Name Scope

This section explains how to move the debug cursor to a new location, thus chang
ing the current name scope (CNS).

Syntax

NAMESCOPE [= expression]

Where:

expression is the location to which the debug cursor is to be reset.

Description

If you do not specify an expression, PSCOPE displays the address of the current
name scope. Changing the current name scope affects the set of symbols to which
the debugger has access. However, changing the current name scope does not acti
vate symbols that are not already active.

Note that the dollar sign ($) is a predefined symbol equivalent to the current exe
cution point. Entering the following:

NAMESCOPE = $

returns the current name scope to the current execution point.

Resuming program execution (using GO, LSTEP, ISTEP, or PSTEP) automatical
ly resets the debug cursor to the current execution point

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

Example

The following example illustrates how changing the current name scope affects the
lookup of a partially qualified reference to the procedure DIGIT in the sample pro
gram DC (found in Appendix E):

* geLtoken.digit
1 C50H :02D2H
*digit
DIGIT
ERROR # 12: Symbol not known in current context.
* namescope = geLtoken
*digit
1 C50H :02D2H

Active Function

The ACTIVE function determines if a program object is active at the point where
execution was suspended. ACTIVE will tell you if a stack-based variable is current
ly allocated and accessible.

ACTIVE (symbolic-reference)

Where:

symbolic-reference is any program symbol, fully or partially qualified.

Description

ACTIVE is a Boolean function which indicates whether a symbolic-reference refers
to a program object that can be displayed or modified at the current execution
point. Statically allocated variables are always active. Dynamically allocated
(stack-based) variables are active if they are available in the current (top) stack
frame. ACTIVE returns a TRUE if symbolic-reference is active and a FALSE ifit is
not.

Example

*ACTIVE (:dc.factor.expressio"-value)
TRUE
*if ACTIVE(op) then write 'op = ',op
. * else write' -op not active-'
. *endif
-op not active-

Display Memory

This section explains how to display the contents of one or more memory
locations.

5-11

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-12

Syntax

memory-type start-address [length-specifier]

Where:

memory-type

start-address

is one of the predefined memory types listed in Table 5 -1.

is the address of the first location in memory to be
displayed, expressed with an expression. Recall that you
can obtain the address of a symbol by prefixing the
symbol with the dot operator.

length-specifier is one of the following:

LENGTH expression specifies the number of adjacent objects of the
specified memory type to be accessed.

TO end-address specifies the last address of a range of memory to
be displayed.

Description

You can specify portions of memory you want displayed using memory-type
(indicates the memory type to be used in displaying that portion of memory). The
memory address is displayed first (as a pointer value), followed by the value(s) at
that location.

Example

The following example illustrates using the display memory command.

*char .buffer.str[1] to .buffer.str[buffer."length]
1CCBH:0018H'1 +2+3+4+5+'

The following example references the CHAR variable c, (in the sample program
DC found in Appendix E) as a BYTE. Displaying memory as BYTE values also dis
plays them as CHARs, as shown here:

*byte .c
1CCBH:0074H

Modify Memory

97 'a'

This section explains how to modify the contents of one or more memory
locations.

Syntax

mem-type start-addr [length-specifier] = chg-va/ue

Where:

mem-type is one of the memory types shown in Table 5-1.

start-addr is the first memory address to be displayed.

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

length-specifier is one of the following:

LENGTH expression specifies the number of adjacent objects of the
specified memory type to be displayed.

TO end-addr is the last address of a range of memory to be
displayed.

chg-value is the new value to which the contents of the specified
memory locations are to be set; chg- value is one of the
following:

expression [, expression] *
mem-type start-addr [length-specifier]

Description

The change value must be of a type that either matches the memory type or can be
forced to match under the type coercion rules given in Chapter 3. The debugger
displays an error message if the change value is the wrong type.

Example

The following example initializes the first five values in the array "variable_table":

*integer .variable_table = 2,4,6,8,10

The following example initializes the entire contents of the -array variable_table to
o and 1, with 0 in the first location and every other location thereafter, and 1 in the
second location and every other location thereafter:

*integer .variable_table length 26 = 0,1

The following example uses the 8086 registers to reference the WORD value on
top of the 8086 stack and set it to 0:

*word ss:sp = 0

The Single Line Assembler/Disassembler

You can modify and display memory as 8086/8088/8087 mnemonics.

Syntax

Assignment

[l~~~ address = 'assembler-mnemonic' [,' assembler-mnemonic '] *

Display

ASM start-address [length-specifier]

5-13

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-14

Where:

SASM and ASM

start-address

length-specifier

are keywords identifying the single-line assembler.
SASM and ASM are equivalent. SASM is included
to make the PSCOPE syntax familiar to I2ICE™
users.

is the address of the first location in memory to be
displayed.

is one of the following:

LENGTH expression specifies the number of instructions to
disassemble.

TO end-address specifies the last address of a range of
memory to be displayed.

address is a single address or an expression that resolves to
a single address.

assembler-mnemonic is an 8086/8088/8087 instruction.

Description

With the disassembler, you can display memory locations as 8086/8088/8087
mnemonics.

With the assembler, you can load memory locations with 8086/8088/8087
instructions.

The Disassembler

PSCOPE interprets the start-address as the beginning of an assembly language
instruction. If you give a start-address that is not the beginning of an instruction,
PSCOPE stili interprets the memory location as an instruction.

A single address displays the instruction beginning at that address. A range of ad
dresses (start-address TO end-address) displays all instructions that start within
that range. To specify an exact number of instructions to be displayed, use the
form, start-address LENGTH number-oj-instructions.

The following example displays the assembly language instructions making up
statement # 16.

*ASM :pager#16 TO :pager#17
063CH:01 F9H FF361 COO PUSH ES:WORD PTR [SI]
063CH:01 FDH 9AOOOOOOOO CAli 0:0
063CH:0202H 3COO CMP AL,OH
063CH:0204H 7403 JE $+5H
063CH:0206H E95401 JMP $+OOOOAH
063CH:0209H FF361400 PUSH ES:WORD PTR [SI]

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

Interpret the display this way. The first entry is the starting address where the in
struction resides; the second entry is the hexadecimal representation of the in
struction (displayed in hex, regardless of what the current radix is); the third entry
is the mnemonic representation of the instruction.

If you did not specify a partition, you would only get the assembly language in
struction at the start address, as in the following example:

*ASM :pager#16
01 F9 FF361 COO PUSH ES:WORD PTR [SI]

The Single Line Assembler (SLA)

You specify the instructions with assembler mnemonics. The SLA does not accept
all the possible forms of the 8086 instructions (as described in the Assembler
Operators section) .

Assembler Directives. The SLA does not support assembler directives. For
example, you cannot replace assembier-mnemonicwith MY_VAR DB ? What you
put in for assembler-mnemonic must actually generate code.

Assembler Operators. The SLA does not recognize all the possible assembler
operators. Consider the instruction MOV AL,BYTE PTR [BX]. This instruction
would be an incorrect form for the SLA because the SLA does not recognize PTR.
You can still put that instruction into memory with the SLA, but you must code it
as MOV AL,BYTE [BX]. In some cases, what is a correct form for the SLA is an
incorrect form for ASM-86.

The assembler type operators recognized by the SLA are the following:

BYTE Specifies a number that takes up one byte. The corresponding
PSCOPE memory type is BYTE.

DWORD Specifies a number that takes up four bytes. The corresponding
PSCOPE memory type is POINTER.

FAR Specifies that both the CS and the IP take part in a JMP or CALL.

QWORD Specifies a number that takes up eight bytes. The corresponding
PSCOPE memory type is LONG REAL.

TBYTE Specifies a number that takes up 10 bytes. The corresponding
PSCOPE memory type is TEMPREAL.

WORD Specifies a 16-bit unsigned number. The corresponding PSCOPE
memory type is WORD.

segment Specifies that an operand is to be taken from a non-default
override segment.
prefixes

Absolute Addresses. Unlike ASM-86, the SLA allows you to specify an absolute
address within an instruction. For example, the SLA recognizes the instruction
JMP 12:34. This instruction is a direct-far jump. ASM-86 would require that you
use a label or jump indirectly through a register.

5-15

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-16

Like ASM-86, the SLA accepts a symbol, but the SLA requires a fully-qualified
symbolic reference. For example, to jump to a label within the same module and
procedure, you must code JMP :mod.proc.labeL To load BX with a program
variable, code MOV BX, .:mod.proc.var.

Remember that PSCOPE itself consists of load-time-Iocatable code. So does the
program that you are debugging. The result is that the absolute addresses corre
sponding to program locations may differ from application to application. Be care
ful only to change instructions that exist in locations assigned to your program. Do
not change instructions in any locations used by PSCOPE. The consequence of
this restriction is that the SLA is good for replacement patches, not for insertion
patches.

Also, when constructing a replacement patch, be careful not to leave part of an in
struction hanging. You may need to pad your replacement with NOPs.

Jumps and Calls. The SLA expects the control transfer instruction to obey slight
ly different mnemonic conventions than ASM-86. Consider the five kinds of
jumps: direct-short, direct-near, indirect-near, direct-far, and indirect-far.

The SLA does not produce a direct-short jump. This is not a problem because you
can use a direct-near jump instead.

The direct- near jump consists of three bytes. The first byte is E9, the opcode. The
next two bytes are the difference between the current location and the destination.

The SLA uses an absolute address as the operand for a direct-near jump. With this
feature, you always know the destination of the jump without having to compute
the relative offset from the current IP. For example, to load the absolute addresS
IBFOOH with a direct-near instruction that jumps to absolute address IBFOSH,
enter the following:

*SASM 1 BFOOH=' JMP 1 BF05H'
01BFOO E90200

The relative displacement from the IP is 0002. This instruction skips two bytes. To
load absolute address IBFOOH with a direct-near instruction that jumps to absolute
address IBFFCH, enter the following:

*SASM 1 BFOOH=' JMP 1 BFFCH'
01BFOO E9F9FF

The relative displacement from the IP is FFF9H. This is a -7 in 2's complement
notation.

The indirect-near jump consists of two bytes and possibly a 16-bit displacement.
The first byte is the opcode FF, and the second byte contains the MOD fieid, the
RIM field, and three more bits of the opcode (I OOY). For example, to load abso
lute address IBFOOH with an instruction that jumps to the offset contained in BX
(the instruction assumes the current CS), enter the following:

*ASM 1 BFOOH=' JMP BX'
01BFOOH FFE3

The previous example used the keyword ASM instead of SASM. ASM is an alter
nate form of SA SM.

You can get another level of indirection by using brackets around the register
name. For example, to load absolute address IBFOOH with an instruction that

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

jumps to the offset (assuming current CS) that is stored in the memory location
whose offset is in BX (assuming the current DS), enter the following:

*SASM 1 BFOOH=' JMP [BX]'
01 BFOOH FF27

The direct-far jump consists of five bytes. The first byte is the opcode EA, and the
last four bytes contain the offset and the selector of the target instruction. The
SLA recognizes a direct-far jump by the FAR operator. For example, to load loca
tion 3:300H with an instruction that jumps to location 12:34, enter the following:

*ASM 3:300H=' JMP FAR 12:34'
0003:0300H EA34001200

If you leave out the selector of the target address, the SLA assumes zero. For
example, JMP FAR 34H transfers control to the location 00:34. If you specify an
address that takes up more than 16 bits, the extra upper bits are ignored. For
example, JMP FAR 12345H transfers control to the location 00:2345H.

The indirect-far jump consists of two bytes and possibly a 16-bit displacement. The
firsi byie is ihe opcode FF. The second byte contains the MOD field, the RIM
field, and three more bits of the opcode 001 y). For example, to load absolute ad
dress 1BFOOH with an instruction that jumps to the selector and the offset
(assuming the current CS) stored in the memory location whose offset is in BX
(assuming the current DS), enter the following:

*SASM 1 BFOOH=' JMP DWORD [BX]'
01 BFOOH FF2F

The SLA mnemonic conventions are similar for the CALL instruction.

RETFAR

To return from a far jump or a far call, the SLA requires the mnemonic RETFAR.
ASM-86 knows whether a procedure is near or far, and consequently, it generates
the appropriate return. Because the SLA does not have this information, you must
specify whether you want a near return or a far return. With the SLA, specify a
near return as RET and a far return as RETFAR. For example, to load absolute ad
dress 1BFOOH with a far return that discards three words from the stack after
returning, enter the following:

*SASM 1 BFOOH='RETFAR 6'
01 BFOOH CA0300

Symbolic Addresses. The SLA will accept symbolic addresses, but, because the
SLA does not use the current NAMESCOPE, you must supply a fully-qualified
symbolic reference. For example, the SLA accepts the instruction MOV
AX,.:mod.proc.var

The period before the colon is a standard PSCOPE operator. It identifies the sym
bolic reference as resolving to the address of var and not the actual value of var.

Multiple Forms of an Instruction. ASM -86 is a versatile assembler that often
allows more than one version of the same instruction. For example, ASM-86 has a
form of the MOV instruction that moves a byte from AL to a memory location.
This form is distinct from the one that moves a byte from a register to a memory
location. The general MOV from register to memory does contain the ability to

5-17

Examining and Modifying Program Symbols PSCOPE-86 User's Guide

5-18

specify AL, but ASM-86 uses the shorter form because AX is the accumulator and
hence a preferred register.

The SLA assembles the general form and not the shorter form. For example, con
sider the instruction MOV SUM,AL. ASM-86 assembles this in three bytes as
A200 01H, assuming that 100H is the offset of the program variable sum. The SLA
requires a fully qualified symbolic reference for sum and assembles the same in
struction in four bytes as 8806 0001H.

Indirect Addressing. ASM -86 allows you to express an indirect address in many
different ways. For example, with ASM-86, the following instructions assemble to
the same value.

MOV AX,[BX+Dl+2]
MOV AX, [BX] [DI] [2]
MOV AX, [BX] [DI] + 2

The SLA only accepts the last form. The following is the general form for an indi
rect address accepted by the SLA.

symbo/[basereg] [indexreg] + offset

All the parts are optional. The brackets are part of the syntax and are required
when you choose the option. You must choose an option in the order given. For
example, if you construct an indirect address with a base register (BX or BP) and
an index register (SI or DI), the base register must precede the index register. For
example, to load offset 21:3CH with an instruction that moves the contents of the
AX register to memory through an indirect address, enter the following:

*SASM 21 :3C='MOV .:cmaker.purchase[BX][SI]+300H,AX'
0021 :003CH 89801003

This instruction loads a memory location with the contents of AX. It forms the ad
dress of the memory location in the following way:

1. Adds 300H to the offset of the address of the program variable purchase in
the module cmaker. The address of purchase is 44: 10H.

*. :cmaker.purchase
0044:0010H
*DS
0044

2. At runtime, adds the contents of BX, the contents of SI, and the sum from
step 1. This value is the final offset.

3. Assumes the data segment. Gets the selector value from the DS register.
Constructs the physical address and loads the contents of AX into the ad
dressed memory location.

The Default Radix. The SLA assumes the PSCOPE current radix. You can over
ride the current radix for an individual number by appending a letter to the
number. The SLA interprets a number as binary if you append a Y, as decimal if
you append a T, as hexadecimal if you append an H, and as a multiple of 1024
(decimal) if you append a K. PSCOPE always considers line numbers to be decimal
regardless of what the current radix is. The SLA always displays the assembled in
struction in hexadecimal regardless of what the current radix is.

PSCOPE-86 User's Guide Examining and Modifying Program Symbols

String Moves. ASM-86 provides the MOVS, MOVSB, and the MOVSW
mnemonics. You must have previously loaded the SI and DI registers. The
mnemonic MOVS requires two operands: the name of the destination string (the
symbolic name for the first location) and the name of the source string. ASM-86
uses these operands to determine whether you are moving bytes or words. The
mnemonics MOVSB and MOVSW do not require operands because the Band W
identify whether you are moving bytes or words.

The SLA only accepts the MOVSB and MOVSW mnemonics.

8087 Instructions. The SLA handles 8087 instructions differently than ASM-86.
There are four areas of difference, as follows:

1. The SLA represents a stack register without the syntactic parentheses.
2. The SLA does not recognize the ESC mnemonic.
3. The SLA is consistent in its treatment of the 8087 no-wait mnemonics.
4. The SLA does not recognize FWAIT. (FWAIT is an alternate way of specify

ing WAIT, which the SLA does recognize.)

The Stack Registers. The SLA expects the 8087 stack registers to be STO
through ST7 rather than ST(O) through ST(7). ASM-86 accepts ST as a symbol for
the top of the stack. The SLA does not recognize ST; you must code STO.

The ESC Mnemonic. The SLA supports all of the 8087 mnemonics except the
ESC mnemonic. For example, with the SLA, you can code FADD STO,STI. This
corresponds to FADD ST(O),ST(1) for ASM-86. ASM-86, but not the SLA, ac
cepts ESC 18H,1 as well. ASM -86 would accept both forms of the instruction and
load memory with the word, D8CIH.

The No-Wait Mnemonics. ASM-86 inserts a WAIT instruction before the 8087
instruction unless you insert an N as the second character in the 8087 mnemonic.
For example, FDISI is preceded by a WAIT; FNDISI is not preceded by a WAIT.
There is one exception. The 8087 instruction FNOP is a no-operation that does
generate a wait.

The SLA, however, is consistent when it interprets the second character of the
8087 mnemonic. FNOP does not generate a WAIT; FOP does generate a WAIT.
ASM-86 does not recognize FOP.

In addition, ASM-86 does not allow some 8087 instructions to have the no-wait
form. The SLA always accepts a no-wait mnemonic.

FWAIT. FWAIT is actually not an 8087 instruction. It is an alternate form of the
CPU instruction WAIT. The SLA considers one form to be sufficient.

5-19/5-20

CHAPTER 6
CONTROL CONSTRUCTS

This chapter describes the four control constructs used in PSCOPE's command
language; REPEAT, COUNT, IF, and DO.

The IF construct conditionally executes commands. The REPEAT and COUNT
constructs repeat a sequence of debugger commands under the control of a variety
of exit conditions. The DO construct groups multiple commands and treats them
as a single command.

The level to which you can nest REPEAT, COUNT, IF, and DO control constructs
depends upon the amount of workspace available to the debugger.

After you enter the first line of a compound command, each subsequent line dis
plays a prompt preceded by a dot (.). The dot indicates that the line is inside a com
pound construct. The number of dots preceding the prompt indicates the current
nesting level.

The REPEAT and COUNT Constructs

The REPEAT and COUNT constructs let you repeat a sequence of debugger com
mands controlled by any number of exit conditions.

Syntax

or

REPEAT
[loop-item] *

ENDREPEAT

COUNT expression
[loop-item] *

ENDCOUNT

Where:

loop-item is any of the following:

command is any debugger command.

WHILE expression

UNTIL expression

expression is any expression that can be forced to a Boolean value.

Description

The loop-item of the REPEAT command executes until an UNTIL expression eval
uates to TRUE or until a WHILE expression evaluates to FALSE.

6-1

Control Constructs PSCOPE-86 User's Guide

6-2

The COUNT command is evaluated similarly, but the number of times that the
loop body is executed is bound by COUNT expression. COUNT expression is eval
uated only once, when the command is first encountered.

If you prefer, you can use END in place of END REPEAT or ENDCOUNT.

Example

The following example uses REPEAT to implement a form of data breakpoint:

*repeat
· *Istep
· *until :dc.c = = '+'
.endrepeat

The following example steps through 10 statements and then stops:

*COUNT10
· *LSTEP
.*END

The IF Construct

The IF construct lets you conditionally execute commands.

Syntax

IF expression THEN
[command]*

[ORIF expression THEN
[command]*]*

[ELSE
[command]*

ENDIF

Where:

expression is any expression that evaluates to a Boolean value.

command is any PSCOPE command.

Description

The IF construct contains an IF clause, any number of ORIF clauses, an optionai
ELSE clause, and a closing ENDIF.

PSCOPE evaluates IFs as follows:

• If the IF expression evaluates to TRUE, PSCOPE executes the command list
following the IF expression up to the first OR IF clause, the ELSE clause, or
the ENDIF.

• If the IF expression is FALSE, PSCOPE evaluates the subsequent ORIF
clauses in order until it finds an ORIF expression that is TRUE, in which case
it executes the ensuing command list up to the next ORIF clause, ELSE
clause, or END IF.

PSCOPE-86 User's Guide Control Constructs

• If the IF clause is FALSE and there are no TRUE ORIF clauses (or no ORIF
clauses at all), PSCOPE executes the ELSE clause (if present) up to the
ENDIF.

• If the IF clause and no ORIF clauses are TRUE and no ELSE clause is
present, PSCOPE resumes execution with the first executable statement fol
lowing the IF construct.

You may use END, if you prefer, in place of END IF.

Example

The following example illustrates using the IF construct.

*IF1 ==2THEN
· * 'THIS SHOULDN"T BE PRINTED'
· *ORIF 2 = = 2 THEN
· * 'THIS SHOULD BE PRINTED'
• *ELSE
· * THIS ALSO SHOULDN"T BE PRINTED'
.*END
THIS SHOULD BE PRINTED

The DO Construct

The DO construct lets you group commands.

Syntax

DO
[command] *

END

Where:

command is any PSCOPE command (with a few restrictions, like LOAD
and INCLUDE).

Description

Debugger objects defined in a DO block (using the DEFINE command described
in Chapter 7) are local to that block and supercede any previously defined debug
symbols with the same names. You can define global debug symbols within a DO
block by using the GLOBAL option on the DEFINE command.

You can nest DO blocks; however, each DO must have a corresponding END. A
DO block is not complete (and is not executed) until PSCOPE reaches its match
ingEND.

6-3/6-4

CHAPTER 7
DEBUG OBJECT

MANIPULATION COMMANDS

Debug objects, which you define during the debugging session, are symbolic enti
ties similar to the variables and procedures in your program. Debug objects can be
variables of any memory type, command abbreviations, debug procedures, code
patches, or a collection of breakpoints and tracepoints.

Note that PSCOPE uses the same commands to display, modify, and obtain a
directory of program objects and debug objects. Program objects are part of a
program; they are accessible to PSCOPE when the program is loaded and are inac
cessible when a different program is loaded. Debug objects are not tied to any par
ticular program. PSCOPE has explicit commands to define debug objects, to
remove them, and to save their definitions.

This chapter describes the following commands which are used to manipulate
debug objects:

Define debug object
Display debug object
Modify debug object
Remove debug object
Put/append debug objects

Debug Objects

Like objects in a program, debug objects have a name and a type. The DEFINE
command which creates the debug object specifies the name and type, Debug ob
jects are either global or local.

Global debug objects exist from the time you create them until you remove them
with the REMOVE command. (The LOAD command (described in Chapter 4)
implicitly removes some global debug objects.) Local objects can exist only within
PSCOPE's DO blocks. PSCOPE automatically removes them when control passes
out of the DO block within which they were defined.

Like keywords, debug object names have precedence over program symbol
names. Thus, to access a program symbol with the same name as a debug object,
you must prefix the program symbol with quotation marks ("). ("Referencing
Names" in Chapter 3 discusses how to do this.)

Some debug object names also have precedence over other debug object names.
Local debug objects have precedence over global debug objects of the same name.
Likewise, the most recently defined local debug object takes precedence over
other local debug objects with the same name.

You must remove a global debug object's name (with the REMOVE command,
described later in this chapter) before you can redefine the global debug object to
be a different type. You can define a local debug object with the same name as a
global debug object without affecting the definition or value of the global debug
object.

You cannot find the address of a debug object using the dot operator (.) explained
in Chapter 3. PSCOPE displays an error message if you try.

Debug objects can have any of the memory types or debug types specified in Table
3-5. The properties of the debug objects depend on their type.

7-1

Debug Object Manipulation Commands PSCOPE-86 User's Guide

7-2

Memory Type Debug Objects

In general, you can use a debug object defined as a memory type (BYTE, WORD,
INTEG ER, REAL, etc.), like a program variable of that type (in expressions, to
display and modify). Hence, a memory type debug object is a debug variable.

Debug variables of type CHAR have more capabilities than CHAR variables in a
Pascal-86 program. Debug variables can be assigned string values from 0 to 254
characters, including the results the PSCOPE built-in string functions CONCAT
and SUBSTR return.

Debug Type Debug Objects

A debug object defined to have one of the five debug types listed in Table 3-5 has
different properties from those of program objects.

LITERALLYs are string-replacement macros. When PSCOPE finds a symbol that
is a LITERALLY name, it replaces the LITERALLY name with the string value
associated with that name (just as in PL/M). LITERALLYs provide a convenient
way to abbreviate commands and keywords.

The debug type debug objects are as follows:

Type

PROC
BRKREG
TRCREG
PATCH

Description

Debug procedure
Group of breakpoints
Group of tracepoints
Debug patch code

Reference

Chapter 8
Chapter 11
Chapter 11
Chapter 9

You must redefine debug type objects in order to change their definitions. Use the
EDIT command to recall the previous definition of a debug type object in order to
redefine it.

The DEFINE Command

The DEFINE command creates a debug object.

Syntax

DEFINE [GLOBAL] type symbol-name [= value]

Where:

GLOBAL

type

indicates that the debug object will be global. Debug
type debug objects are always global~ the GLOBAL
option is not allowed for these objects. Memory type
debug objects are global unless they are defined inside
a PSCOPE DO block. Hence, use the GLOBAL option
for memory type objects inside a DO block that you do
not want to be automatically removed when control
passes out of that block.

is any of the memory types or debug types shown in
Table 3-5.

PSCOPE-86 User's Guide Debug Object Manipulation Commands

symbol-name

value

Description

is any name other than a PSCOPE keyword (for local
objects) or a keyword or existing debug object name
(for global debug objects). The name can be up to 254
characters long; the first 40 characters must be a
unique combination.

is the value to be assigned to the debug object. The
value can be the result of evaluating an expression.
PSCOPE assigns a null value if you do not give a value.
The value is required for debug type debug objects.
The value is optional for memory type debug objects.

The DEFINE command creates a debug object with the name, type, and value you
specify. If the object being defined is a memory type, the debug object has the
same properties as a program variable of the same type. Memory type debug ob
jects can be any of the object types listed in Table 3-5, but cannot be a user-defined
type. You cannot use the same name for two different debug objects unless a
debug object is defined locally within a DO block. When PSCOPE exits the block,
PSCOPE automatically removes the local debug object. You can then assign the
name to another object of a different type for use in another block.

The DEFINE command lets you optionally assign initial values to the objects
being defined.

Example

The following example illustrates memory type debug variables.

*define byte num
*define integer i = 13
*do
.*define word locaLword = 2 * i
.*end
*define char char_1 = 'this is a string'

The following example illustrates LITERALLY s.

define literally lit = 'literally'
define lit def = 'define'
def lit el = 'eval Sline'

The DISPLAY Command

The DISPLAY command displays the values of debug objects.

7-3

Debug Object Manipulation Commands PSCOPE-86 User's Guide

7-4

Syntax

[type] symbol-name

Where:

type

symbol-name

Description

defines the debug symbol. If you specify type, PSCOPE
displays the definition of the debug symbol. If you
omit type, PSCOPE expands the symbol (for
LITERALLY s) or executes the symbol (for PROCs).
You must enter type to display any of the following:

• LITERALLY
• PROC
• PATCH
• BRKREG/TRCREG

is the name of a previously defined debug object.

For program symbols and memory-type debug variables, you can access the value
of a symbol by entering the symbol name. PSCOPE displays the value of the
symbol on the following line. Similarly, you can access the value in an expression
by entering the name of the symbol.

For debug objects of any of the debug types, you can access the definition of the
debug object by entering the type, followed by the symbol name. PSCOPE displays
the definition of the named object.

Example

Suppose you defined a memory type debug variable as follows:

*define word w1 = 400

Entering the symbol name yields the following value:

*w1
400

However, a debug type debug object functions differently. Consider the following
LITERALLY definition:

*define literally w = 'write'

Entering w by itself automatically expands the LITERALLY, as though you en
tered write. You can display w definitions by preceding the w with its type, as
follows:

* literally w

PSCOPE responds by printing the following:

define literally W = 'write'

which is the definition of w.

PSCOPE-86 User's Guide Debug Object Manipulation Commands

The MODIFY Command

The MODIFY command modifies the previously defined value of a memory type
debug symbol.

Syntax

name = value

Where:

name is the name of a memory type variable.

value is the new value to be assigned to the debug symbol.

Description

The type of value must be the same as names type, or you must be able to force
that type (using the type coercion rules described in Chapter 3). PSCOPE displays
an error message if the change is not possible. Note that the MODIFY command
for debug memory type variables has the same syntax as the MODIFY command
for program symbols.

The MODIFY command works only with memory type objects. You must redefine
a debug type object in order to modify it.

Exampie

The following example shows the operation of the MODIFY command:

*define integer i = -150
*i
-150
*i = -2 * i
*i
+300

The REMOVE Command

The REMOVE command deletes one or more debug symbols from the debug
symbol table by symbol name and object type (or by symbol name or object type).

Syntax

REMOVE remove-list

Where:

remove-list is one of the following:

DEBUG

7-5

Debug Object Manipulation Commands PSCOPE-86 User's Guide

7-6

remove-item [, remove-item]*

remove-item is one of the following:

memory-type

debug-type

is one of the memory types given in Table
3-5. PSCOPE deletes all debug symbols of
the specified type.

is one of the debug-types given in Table
3-5. PSCOPE deletes debug symbols of the
specified type.

PATCH expression is an expression yielding an address where
you set a patch. PSCOPE removes the
patch at this location.

symbol-name

Description

is the name of a debug symbol of any
memory type or debug type (except patch).
PSCOPE deletes the specified symbol.

The REMOVE command deletes global debug objects. The user specifies the
debug type or the memory type object (or a list of objects) to be deleted by type
and name (or by type or name). Specifying DEBUG instead of a list of types and
names (or a list of types or names) removes all debug objects.

Do not use the REMOVE command to deiete iocai debug objects; PSCOPE auto
matically deletes them once control passes out of the PSCOPE DO block in which
they are defined.

Example

The following examples use the REMOVE command.

* remove proc
*remove i
*remove debug
* remove proc, i

1* Remove all PROCs *1
1* Remove the single object i *1
1* Remove all debug symbols *1
1* Remove all PROCs and i *1

The PUT and APPEND Commands

The PUT and APPEND commands save the definitions of the debug objects in a
disk file.

Syntax

PUT pathname put-list

APPEND pathname put-list

Where:

pathname is the path name which identifies a file (or any output device)
to which you want to send the text containing the debug object
definitions.

PSCOPE-86 User's Guide Debug Object Manipulation Commands

put-list is one of the following:

DEBUG

put-item [, put-item]*

put-item is one of the following:

memory-type

debug type

is one of the memory types given in Table
3-5. PSCOPE saves the definitions of all
debug symbols of the specified type in the
specified file.

is one of the debug types given in Table
3-5. PSCOPE saves the definitions of all
debug symbols of the specified type in the
specified file.

PATCH expression is an expression yielding an address where
you set a patch, PSCOPE saves the patch at
this address in the specified file.

symbol-name

Description

is the name of a debug symbol of any
memory type or debug type (except
PATCH). PSCOPE saves the definition of
the specified debug symbol in the specified
file.

The PUT and APPEND commands place definitions of the specified objects in the
selected disk file (or the specified output device). (You can retrieve the definitions
with the INCLUDE command described in Chapter 10.)

PUT creates a new file to contain the specified definitions, unless a file of that
name already exists. In that case, PUT replaces the old file with a new file contain
ing the definitions.

APPEND adds onto the end of an existing file or creates a new file if the specified
file does not already exist.

For debug type debug objects, the entire definition text {including the value
portion} is placed in the specified file. For memory type debug variables, only the
type and name are included in the object definition because memory type debug
objects can be easily changed using the modify command, whereas debug type
debug objects must be redefined.

Note that except for the file specification, the formats of the PUT and APPEND
commands are identical to the REMOVE command's format.

Example

The following example illustrates using the PUT command.

*define literally lit = 'literally'
*define lit def = 'define'
*def lit stacktop = 'word ss:sp'
*def integer i = 13
*def word j = 100
*put defs.mac debug

7-7

Debug Object Manipulation Commands PSCOPE-86 User's Guide

7-8

The file DEFS.MAC contains the following:

define literally lit = 'literally'
define literally def = 'define'
defliterally stacktop = 'word ss:sp'
define integer i
define word j

Note that the values of the memory type variables i andj are not saved.

The following PUT command:

put defs2.mac lit, def, integer

places the following text into the file DEFS2.MAC:

define literally lit = 'literally'
define literally def = 'define'
define integer i

Note that in this example, lit is not expanded to literally when it appears in the
PUT command. PSCOPE treats lit as the name of a debug object that happens to
be a LITERALLY. The same is true for the REMOVE command and, in fact, for
all commands that let you specify a debug object by name.

CHAPTER 8
DEBUG PROCEDURES

PSCOPE lets you define debug procedures to expand the debugger command lan
guage and to aid development of the program you are debugging. Debug proce
dures are one ofPSCOPE's most powerful features.

You can use debug procedures (whose type is PROC) to automate the software
test process, set up breakpoints based on data values or Boolean conditions, and
put together complex commands using PSCOPE's command language. Debug
procedures let you use parameters (LITERALLYS do not).

This chapter explains debug procedures basics: how to define them, return values
from them, make calls to them, and remove them.

Define Debug Procedure

The DEFINE command defines a debug procedure.

Syntax

DEFINE PROe name = command

Where:

name is any name except a reserved keyword. The name can be up to
254 characters long, of which the first 40 must be a unique
combination.

command is a PSCOPE command.

Description

A debug procedure contains a single PSCOPE command. This command is usually
a DO construct, which allows multiple commands and the declaration of local
variables.

A debug procedure does not execute when it is defined, only when it is called.
PSCOPE checks syntax when you define the debug procedure. However, if you
define a debug procedure within another debug procedure, PSCOPE does not
define the inner debug procedure until the enclosing debug procedure is called.
Note that while you can define a debug procedure within another debug
procedure, all debug procedures are global.

PSCOPE determines the types of all objects in the debug procedure when you
define the debug procedure. Changing the type and the definition (or the type or
the definition) of an object referenced in a debug procedure before you execute it
can cause errors when you run the debug procedure.

Referencing actual and formal parameters when you execute a debug procedure is
described later in this chapter.

8-1

Debug Procedures PSCOPE-86 User's Guide

8-2

Debug Procedure Calls

You can call debug procedures using the syntax shown in the following section.

Syntax

name [(expr[,expr]*)]

Where:

name is the name of the debug procedure.

expr is any expression yielding a numeric or string value that is to be
passed as an actual parameter in the debug procedure.

Description

PSCOPE executes the command specified in the debug procedure definition.
PSCOPE substitutes the values of expr for the actual parameter specifier during
the execution of the command.

You can call a debug procedure in the following three ways:

• In response to a PSCOPE prompt.

~ As an operand of an expression.

• Upon reaching a breakpoint or tracepoint that uses the CALL option (as ex
plained in Chapter 11) .

Debug Procedure Return

You can return a value from a debug procedure by placing the RETURN command
in the debug procedure.

Syntax

RETURN [expr]

Where:

expr is any expression.

Description

PSCOPE returns the null value if you do not specify expr. This can cause a type
conversion error if you use the debug procedure as a function.

PSCOPE displays the expr value if you use a RETURN command outside a debug
procedure. PSCOPE displays an error message if it expects a return value (such as
when the debug procedure is used in an expression) but no RETURN is executed.

PSCOPE-86 User's Guide Debug Procedures

Return values are required from debug procedures used as operands in expressions
or automatically called upon reaching a breakpoint or a tracepoint (but not from
debug procedures called in response to a PSCOPE prompt) .

Accessing Debug Procedure Parameters

You can reference the values of the parameters passed to the debug procedure
when it executes.

Syntax

% parameter

Where:

parameter is one of the following:

integer-constant is an arbitrary unsigned integer constant specifying
which parameter you desire. Note that %0 specifies
the first parameter in the list of parameters passed
to the debug procedure, %1 specifies the second
parameter in the list, and so forth.

(expr) is an expression that specifies the desired
parameter.

NP is the total number of parameters in the parameter
list passed to the debug procedure. PSCOPE does
not limit the number of parameters that you can
pass to a debug procedure.

Description

All parameters are passed by value and are local to the specific execution of the
debug procedure to which they are passed. Thus, you can call debug procedures
recursively.

A debug procedure cannot assign new values to the parameters passed to it.

PSCOPE displays error messages if you try to access non-existent parameters or
try to access parameters when no debug procedure is executing.

Example

The following debug procedure executes a recursive factorial function:

* define proc factorial = do
· *if %0 < 2 then return 1
· . *else return %0 * factorial(%O - 1)
· . *endif
.*end

*factorial(5}
120

8-3

Debug Procedures PSCOPE-86 User's Guide

8-4

The following debug procedure returns the sum of all the parameters passed to it:

*define proc sum = do
· *define longint n = 0
· *define integer i = 0
· *count%np
· . *n = n + %(0
· .*i=i+ 1
· . *endcount
. *return n
.*end

*sum(1,2,3,4)
+10

*sum(factorial(3), factorial(4»
+30

The following debug procedure lets you trace a byte value every time it is modified
in a program:

* define proc trace_byte = do
· * define byte currenLvalue = byte %0
· * write 'value =', currenLvalue
· * repeat until $ == % 1
· . * Istep
· . * if currenLvalue < > byte %0 then
· .. * currenLvalue = byte %0
· .. * eval $ line
· .. * write 'value =', currenLvalue
· .. * endif
· . * end repeat
· * eval $ line
.* end

* trace_byte (.c, geLline)
value = 32
:DC#

CHAPTER 9
CODE PATCHES

This chapter shows you how to define, display, and remove code patches from
your program.

This chapter describes the following commands:

Define patch
Display patch
Remove patch

Defining a Patch

The DEFINE command is used to create a PATCH.

Syntax

DEFINE PATCH addr1 [TIL addr2] = patch-value

Where:

addr1 and addr2 are expressions which evaluate to a program location
(e.g., line, procedure, or label reference, preceded by a
module name if necessary) .

patch-value is one of the following:

command is any PSCOPE command, except LOAD, GO, LSTEP,
or PSTEP. Use a compound construct (see Chapter 6) to
specify more than one command.

NOP is a special command which implies that no operation is
to be performed in the patch. When used with TIL add,2,
NOP allows statements in your program to be effectively
deleted.

Description

A PSCOPE patch is a PSCOPE command that is executed prior to a statement in
your program or instead of a sequence of statements in your program. Like all
other PSCOPE commands, patches are interpreted (rather than translated).

Patches are active as soon as you define them and remain active until you remove
them. Note that the LOAD command implicitly removes them.

You are allowed only one patch per address; PSCOPE will replace the first patch if
you specify a second patch.

If you specify only add,l, then program execution resumes at add,1. If you specify
both addr 1 and add,2, then program execution resumes at add,2. In either case the
patch may have changed the execution point (by reassigning $ or CS:IP), in which
case execution resumes at the reassigned location.

9-1

Code Patches

9-2

PSCOPE-86 User's Guide

PSCOPE executes patches after it handles any breaks or traces at the same
location. (Chapter 12 discusses the break and trace commands.)

PSCOPE executes command (or NOP) upon reaching but before executing add,1.

Be careful not to overlap patches. For example, because the following:

DEFINE PATCH #10 TIL #15

and the following:

DEFINE PATCH # 13 TIL # 18

overlap, PSCOPE ignores part of the second patch. The first patch skips lines 10
through 14 and resumes at line 15; PSCOPE will not see the patch at line 13.

You can stop program execution and set the execution point to the location where
the patch exists by pressing CNTL-C while executing the patch.

Example

The following patch inserts a command before statement 10:

define patch # 1 0 = write IX = I,X

The following patch skips statement 15:

define patch 15 til 16 = NOP

Displaying a Patch

This section shows you how to display patches.

Syntax

PATCH addr1

Where:

addr1 is an expression that evaluates to a location in your program that is
the beginning of a patch.

Description

PSCOPE displays the patch that begins at add,1.

Since add, is an expression, you can use any other expression which evaluates to
the same program location to reference a patch. However, do not use a symbol
whose name is a constant but whose value changes (e.g., $) as a patch name.

PSCOPE-86 User's Guide

Example

The following example displays a patch in the sample program DC (found in Ap
pendix E):

*define patch #41 = write 'enter geLline'
*patch #41
define patch #41 = write 'enter get_line'

Removing a Patch

You can delete patches with the REMOVE command.

Syntax

REMOVE PATCH [addr]

Where:

addr is the location of the patch you want to remove.

Description

The REMOVE command lets you delete the patch at addr. If you do not specify
addr, PSCOPE deletes all patches. PSCOPE displays an error message if you try to
remove a patch which you have not defined.

This syntax is required regardless of which form of the DEFINE command you
used to define the patch.

Example

The following example removes the patch at line (or statement) 10:

*remove patch #10

Code Patches

9-3/9-4

CHAPTER 10
UTILITY COMMANDS AND

STRING FUNCTIONS

PSCOPE furnishes a variety of utility commands. This chapter discusses these
commands, which include the following:

• EXIT

• DIR

• CALLSTACK

• HELP

• LISTINOLIST

• INCLUDE

• EVAL

• BASE

• INPUTMODE

• WRITE

This chapter also describes the following PSCOPE built-in functions:

• SUBSTR

• CONCAT

• STRLEN

• CI

• SELECTOR$OF

• OFFSET$OF

The EXIT Command

The EXIT command ends the debugging session.

Syntax

EXIT

The EXIT command has no arguments.

Description

The EXIT command automatically closes all open files, prints a termination
message, and returns you to the host operating system.

10-1

Utility Commands and String Functions PSCOPE-86 User's Guide

10-2

Example

The following example illustrates using the EXIT command.

exit / User ends debug session */
PSCOPE terminated /* PSCOPE prints termination message */

The DIRectory Command

The DIR command displays the names of all objects of a specified type that are
found in a specified set of symbols. The set of symbols can be either program sym
bols or debug symbols.

Syntax

DIR [directory] [type]

Where:

directory is one of the following:

DEBUG

01101 If'
. VUL..',-,

specifies that the symbols PSCOPE displays come
from the set of debug symbols (those that were creat
ed with the DEFINE command).

specifies that the symbols PSCOPE displays are those
found in the user program and that only those sym
bols with the PUBLIC attribute are to be listed.

module-name specifies that the program symbol table (as opposed
to the debug symbol table) is to be used for the direc
tory and that symbols in only the specified module
are to be listed.

type is any type (memory, debug, or user). PSCOPE lists only objects
of the specified type.

Description

The DIR command displays the names and types of the set of objects that
PSCOPE recognizes. You can list either program symbols or debug symbols with
the D IR command.

PSCOPE lists all symbols from the specified directory if you do not specify type.

If you do not specify directory, PSCOPE uses the current module of the user
program, unless type implies that PSCOPE uses the debug directory.

Example

Suppose that you entered the following commands:

define literally lit = 'literally'
define lit def = 'define'
load dc.86

PSCOPE-86 User's Guide Utility Commands and String Functions

The following command lists all debug symbols:

*dir debug
DEF literally
LIT literally

The following command lists all symbols in the module DC. The indentation
within some of the procedures indicates local symbol definitions:

*dir :dc
DIRof :DC
PQ_OUTPUT TEXT (file)
PQ_INPUT TEXT (file)
@ 1 000 label
@ 9999 label
T TOKEN (record)
C char
BUFFER TEXT_BUFFER (record)
VARiABLE_TABLE array of integer
ERROR procedure
E ERROR_CLASS (enumeration)
GET_LINE procedure
GET_TOKEN procedure

DIGIT procedure
C char

UPPER_CASE procedure
C char

LOWER_CASE procedure
C char

GET_CHAR procedure
FACTOR procedure
FACTORjfALUE integer
EXPRESSION_VALUE integer
VARIABLE_INDEX char
TERM procedure
TERM_VALUE integer
FACTOR_1_VALUE integer
FACTOR_2_VALUE integer
OP char
EXPRESSION procedure
EXPRESSION_VALUE integer
TERM_1_VALUE integer
TERM_2_ VALUE integer
OP char
STATEMENT procedure
EXPRESSION_VALUE integer

In the following example, PSCOPE assumes module DC because the user did not
specify a module. Note that additional qualification indicates local (not module
level) symbols.

10-3

Utility Commands and String Functions PSCOPE-86 User's Guide

10-4

*dir procedure
DIRof :DC
ERROR
GET_LINE
GET_TOKEN
GET _ TOKEN.DIGIT
GET _ TOKEN.UPPER_CASE
GET _ TOKEN.LOWER_CASE
GET _ TOKEN.GET _CHAR
FACTOR
TERM
EXPRESSION
STATEMENT

In the following example, the user does not specify a module, but the type speci
fied is a debug type. Hence, PSCOPE uses the debug symbol table for the
directory:

*dir literally
DEF
LIT

The CALLSTACK Command

The CALLSTACK command displays your program's dynamic calling sequence.

Syntax

CALLSTACK[n]

Where:

n is an optional integer expression that indicates how much of the call
stack you want to see.

Description

Using the CALLSTACK command, you can symbolically display the current
chain of procedure calls in your program. In response to this command, PSCOPE
prints a sequence of fully qualified references to procedures, one per line. The
reference listed first is the point to which execution control will return when the
current procedure returns (its return address). The second entry is the return ad
dress for the procedure that called the current procedure, and so on.

The optional expression n indicates how much of the call stack you want PSCOPE
to display. PSCOPE displays the entire call stack if you do not specify n. A positive
n value indicates that the first n entries are to be displayed (the nmost recent proce
dure calls). A negative n value indicates that the bottom n entries of the call stack
are to be displayed (the nleast recent procedures).

Note that the CALLSTACK command works only when the current execution
point is inside a module for which PSCOPE has symbol information.

Example

The foilowing example illustrates using the CALLSTACK command.

PSCOPE-86 User's Guide Utility Commands and String Functions

*Ioad dc.86
* go til geLchar
[Break at geLcharl
*callstack
:DC.GET_TOKEN +323
:DC.FACTOR + 156
:DC.TERM + 15
:DC.EXPRESSION + 37
:DC.STATEMENT + 15
:DC +1787

NOTE
The CALLSTACK command does not operate correctly if the
nesting sequence includes a procedure written in assembly
language.

The CALLSTACK command does not operate correctly if the last
executable statement of the main module calls a procedure. The
top-level return address must not be within a procedure.

The HELP Command

The HELP command displays explanatory text about various topics, including
PSCOPE commands and extended messages for those errors whose primary error
message ends with [*].

Syntax

HELP [topic]

Where:

topic is one of of the following;

topic-name is the topic name for which you want help information.

En

Description

is the error number for which you want the extended
error message. Note that the form En is used even for
warnings.

If you do not specify topic, PSCOPE lists all topics for which help is available.

Example

The following example shows how the HELP command is used to get information
about the BASE command.

*help base

BASE

... (The help information is printed here.)

10-5

Utility Commands and String Functions PSCOPE-86 User's Guide

10-6

The following example shows what happens when you request HELP on a topic
for which there is no HELP information.

* help problem

PROBLEM

< sorry, but no help is available>

The LIST and NOLIST Commands

The LIST command puts all of PSCOPE terminal output into the specified file,
and NOLIST closes the file.

Syntax

LIST [file-name1

NOLIST

Where:

file-name is the name of the file into which all PSCOPE terminal output
is placed.

Description

The LIST command sends all PSCOPE output to the specified file. If you do not
specify file-name, PSCOPE displays the name of the currently selected LIST file.

NOLIST closes the currently active LIST file (if any). Changing the LIST file
closes the old LIST file.

Note that PSCOPE sends only PSCOPE terminal output to the file. PSCOPE does
not send any terminal output printed by a user program to the LIST file.

Example

The following example uses the LIST and the NOLIST command.

* list exampl.log
* list
exampl.log
*nolist

The INCLUDE Command

The INCLUDE command gets input from a file.

PSCOPE-86 User's Guide Utility Commands and String Functions

Syntax

INCLUDE file-name [NOLlST]

Where:

file-name is the name of the file from which input is to be taken.

NOLIST suppresses echoing of the selected file's input on the screen.

Description

The INCLUDE command takes input from file-name until it reaches the end of
the file, at which point input continues from the previous source.

INCLUDE commands may be nested. The level of nesting depends upon available
memory.

You can enter INCLUDE commands from the terminal; they must be the last
command on a line.

Depending on the severity of the error, an error in the INCLUDE file returns exe
cution to the next command or to the standard command level.

Example

The following example illustrates using the INCLUDE command.

*include regs.inc
include file2 nolist / Suppress printing of contents */

The EVAL Command

The EVAL command has two forms. The first form evaluates expressions and
prints the results. The second form displays program locations symbolically.

Syntax

EVAL expr [eva/-type]

Where:

expr is the expression to be evaluated.

eva/-type is one of the following three optional evaluation types:

LINE indicates line number
PROCEDURE indicates procedure name
SYMBOL indicates a fully-qualified reference
SYMBOL ALL indicates all symbolic variables referenced by

a particular address

10-7

Utility Commands and String Functions PSCOPE-86 User's Guide

10-8

Description

EVAL prints the results of the expression according to the indicated eval-type.
EVAL can evaluate an expression in different bases or as a program symbol or line
number.

If you do not specify eval-type, the value of expr is printed in the following manner,
depending upon its type:

Type Form of EVAL Display

BYTE All 3 bases (binary, decimal, hex) and ASCII
BOOLEAN
WORD
ADDRESS
SHORTINT
INTEGER
LONGINT
SELECTOR
DWORD

POINTER seg:off (hex) and 20-bit normalized address

REAL Hexadecimal bytes
LONGREAL
TEMPREAL
EXTINT
BCD

CHAR

Note that PSCOPE prints non-printing ASCII characters as a dot (.).

If you specify eval-type, PSCOPE tries to find a program symbol whose address is
equal to the value obtained by evaluating the expression.

If eval-type is LINE, then PSCOPE displays the following:

:module-name #line-number [+ offset]

Where:

module-name is the name of the module in which the address occurs.

line-number is the nearest line number in that module-name to that
address.

offset is the amount by which the address exceeds the exact ad
dress of line- number.

If eval-type is PROCEDURE, then the next message is displayed:

:module-name Lprocedure-name]* [+ offset]

Where:

module-name is the name of the module in which the address occurs.

procedure-name is the name of the procedure with the closest match to the
address.

PSCOPE-86 User's Guide Utility Commands and String Functions

offset is the amount by which the address exceeds the exact ad
dress of the procedure-name.

If eval-typeis SYMBOL, then the next message is displayed:

fully-qualified-reference [+ offset]

Where:

fully-qualified-reference is a fully qualified reference, such as
ds:toke1Ll.m.

offset is the amount by which the address exceeds
the exact address of fully-qualified-reference.

Example

The following example uses the EVAL command.

*evai $ procedure
*eval$
*eval ds:14h symbol

If eval-type is SYMBOL ALL, PSCOPE displays all symbolic variables whose start
ing address is expr, that is, PSCOPE supports the FORTRAN EQUIVALENCE
and COMMON statements and the PL/M AT attribute. For example, if expr is the
address of more than one program variable, PSCOPE displays all variables stored
at that location.

The BASE Command

The BASE command establishes the default base for numeric constants during
input and output.

Syntax

BASE [= expr]

Where:

expr is an expression that evaluates to 2, 10, or 16 (decimal).

Description

PSCOPE displays the current radix. When the current base is hexadecimal,
PSCOPE displays HEX. When the current base is decimal, PSCOPE displays
DECIMAL. When the current base is binary, PSCOPE displays BINARY.

You can change the current radix by setting BASE equal to 2T, lOT, or l6T as
shown in the following example.

*BASE=10H I*Setting the current radix to hex.*1
*BASE=16T I*Another way of setting the current radix to hex.*/
*BASE=10000Y I*Another way of setting the current radix to hex.*1
*BASE
HEX

10-9

Utility Commands and String Functions PSCOPE-86 User's Guide

10-10

The initial default base is decimal. During input, you can override the default base
by putting an explicit base suffix on the constant (for example, 12t).

Note that PSCOPE command processing goes through the following two steps:

• Scanning for syntax errors and deciding what to do.

• Executing the command.

PSCOPE evaluates numeric constants during the first phase of command
processing. PSCOPE assigns values to variables during the second phase. Thus,
commands such as the following:

*base = 10t
*base = 16; VAR1 = 10

will give VAR1 the value 10 (decimal), not 16 (decimal), because PSCOPE scans
the entire second command line before either of the two commands in the com
mand line are executed. Thus, the numeric constant 10, in the second command
line, is interpreted as 10 (decimal). If you want VAR1 interpreted as 16 (decimal),
put the expression VAR1 = 10 on a separate line, as shown below:

*base = 10t
*base = 16
*VAR1 = 10

The following examples use the BASE command.

*base = 16t
*base=OA

INPUTMODE

With the INPUTMODE pseudo-variable, you inform PSCOPE what DQ$SPE
CIAL mode the program being debugged is using. The DQ$SPECIAL mode deter
mines how the operating system interprets console input.

Syntax

INPUTMODE[= n]

Where:

n is an expression resolving to 1 T, 2T, or 3T.

Default

2

PSCOPE-86 User's Guide Utility Commands and String Functions

Description

INPUTMODE informs PSCOPE what DQ$SPECIAL mode the program being
debugged uses. PSCOPE uses mode 1. Whenever your program reaches a
breakpoint, PSCOPE sets DQ$SPECIAL to 1 before delivering the prompt. When
your program resumes executing (you enter a GO command or a STEP
command), PSCOPE sets DQ$SPECIAL to the value specified by INPUTMODE.

You need to be aware of this if your program sets the DQ$SPECIAL mode to
other than the current setting of INPUT MODE. If you break and then resume pro
gram execution, your program may be resuming with a different DQ$SPECIAL
mode than what you intended.

DQ$SPECIAL is a UDI system call that determines how another UDI system call,
the DQ$READ, handles input from the console keyboard.

Input comes from the console keyboard into a system buffer. The DQ$READ
transfers the input from the system buffer to a user buffer specified as a
DQ$READ parameter. There are three DQ$SPECIAL modes, called 1, 2, and 3.
The default is 2, line-editing mode. The following describes modes 1, 2, and 3.

1 Transparent 1 mode. Sometimes this mode is just referred to as transparent
mode.

The DQ$READ specifies a number of characters. When the system buffer
contains that number, the DQ$READ transfers those characters to the user
buffer. If the system buffer already contains the specified number of
characters, the DQ$READ transfers them immediately, and the user pro
gram continues. Otherwise, the DQ$READ waits until the system buffer
gains the specified number of characters.

The DQ$READ transfers the characters exactly as you type them. All charac
ters (except CNTL-D and CNTL-C) go into the user buffer. These characters
are not echoed to the screen.

2 Line-editing 2 mode. This mode is the default. The operating system allows
editing of the console input line. A line terminates with a carriage return.
Once you enter the carriage return, you lose the ability to edit that line. The
operating system interprets and removes all editing characters (such as
backspace) from the input line and adds a linefeed to the final carriage return
if the buffer has enough room.

If the system buffer already contains an edited line, the DQ$READ transfers
it immediately, and the user program continues. Otherwise, the DQ$READ
waits until the system buffer obtains a carriage return and completes the line
editing.

3 Transparent 3 mode. This mode is sometimes called flush mode and some
times called polling mode.

The DQ$READ transfers whatever characters are in the system buffer to the
user buffer. If the system buffer contains no characters, no characters are
transferred. The DQ$READ does not wait for the system buffer to obtain
any characters.

The DQ$READ transfers the characters exactly as you type them. All charac
ters (except CNTL-D and CNTL-C) go into the user buffer. These characters
are not echoed to the screen.

10-11

Utility Commands and String Functions PSCOPE-86 User's Guide

10-12

Example

Set INPUTMODE to 1 and display it as follows.

*INPUTMODE=1
*INPUTMODE
1

Because INPUTMODE is a pseudo-variable, you can use it in a debug procedure.
For example, the following debug procedure displays yes on the console if INPUT -
MODE is 1 and no otherwise.

*DEFINE PROC checkinput=DO
· *IF INPUTMODE==1 THEN WRITE 'yes'
· . *ELSE WRITE 'no'
· . *ENDIF
.*END
*checkinput
no

The WRITE Command

The WRITE command lets you display and format information at the terminal.

Syntax

WRITE [USING ('[radix,] format-item L [radix,] format-item]*')] list

Where:

USING lets you control output using a format string.

radix is one of the following:

H Set WRITE command display base to hexadecimal.

T Set WRITE command display base to decimal.

Y Set WRITE command display base to binary.

format-item is one of the following:

n Decimal number specifying the width of the output field.
PSCOPE determines the format of the field by the type of the
expression in the argument corresponding to this format item.
If n = 0, then PSCOPE uses the normal display length of the
item without padding or truncation for the width of the output
field.

nC Move output buffer to column n (first column is 1).

nX Skip n spaces in the output buffer.

Terminates the format string (optional).

PSCOPE-86 User's Guide Utility Commands and String Functions

> Terminates the format string and specifies that no carriage
return or line feed is to be issued following the WRITE
command.

& Terminates the format string and specifies that the write
output buffer is not to be flushed at the end of this WRITE
command but is to be added to by later WRITE commands.

"text" Puts the text between the quotation marks (") into the output
buffer.

list uses the following syntax:

{

name }
expression
string-spec [

,name ~ *
, ex/?ression
,strmg-spec

Where:

string-spec is an expression that evaluates to a string.

expression is an expression whose value you want to display at the
terminal.

Description

The WRITE command displays the items in its argument list at your terminal.

In its simplest form, the WRITE command lets you print a list of expressions.
PSCOPE prints the value to be printed according to the current output base.

The USING option lets you control output using a format string consisting of
format items separated by commas. If you use a format item for one variable, then
you must use a format item for each variable in list. When text is the only format
item, you must use a terminator (., >, or $).

Example

The following example uses the WRITE command.

*write 'hello'
hello

*define byte b = 5
*write using ("'b =",0') b
b=5

The String Functions (SUBSTR, CONCAT,
STRLEN, and cn
PSCOPE provides three string manipulation commands: SUBSTR, CONCAT, and
STRLEN. In addition, the CI function lets you enter a single character string from
the keyboard.

10-13

Utility Commands and String Functions PSCOPE-86 User's Guide

10-14

Syntax

SUBSTR (string-spec, start, length)

CONCAT (string-spec [, string-spec] *)

STRLEN (string-spec)

CI

Where:

string-spec is an expression that evaluates to a CHAR value.

start and length are expressions that evaluate to integer values.

Description

The SUBSTR function returns the specified substring starting at start and oflength
length. The first character of a string is in position 1. PSCOPE returns the null
string if arguments do not make sense (for example, negative length, start past
end of string, etc.). If start is valid but length goes beyond the end of the string,
PSCOPE returns the rest of the string beginning at start.

The CONCAT function creates a new string by concatenating specified string-specs.
You can implicitly concatenate string constants (as described in Chapter 3).

The STRLEN function returns the length of its argument string. The length of the
null string is zero. You can use the STRLEN function anywhere a number is valid.

The CI function reads one character from the keyboard and returns a string of
length one having that character as its value. When CI is referenced in an
expression, execution pauses until you enter a character. PSCOPE does not display
the entered character on the terminal screen.

Example

The following examples use the CON CAT, SUBSTR, and the STRLEN
commands.

*define char ch1 = 'The'
*define char ch2 = ' quick'
*define char ch3 = ' brown'
*define char ch4 =' fox'
*concat (ch1 ,ch2,ch3,ch4)
The quick brown fox

*SUBSTR (ch3, 3, 3)
row

*STRLEN (CONCAT(ch1, ch4)}
7

PSCOPE-86 User's Guide Utility Commands and String Functions

The following example assumes that the character z is entered when execution
pauses during the execution of the command:

*if ci = 'z' then write 'sleepy?'
.*endif
sleepy?

The SELECTOR$OF and OFFSET$OF Functions

PSCOPE provides two functions for extracting the selector (or segment) and
offset portions of a pointer value.

Syntax

SELECTOR$OF (expr)

OFFSET$OF (expr)

Where:

expr is an expression that evaluates to a pointer value.

Description

SELECTOR$OF returns the selector (or segment) portion of a pointer value.

OFFSET$OF returns the offset portion of a pointer value.

The dollar sign ($) in the names of these functions is optional (as in all PSCOPE
names) and is included here to improve readability.

Note that these functions correspond to the PL/M V2.0 functions with the same
names.

Example

The following examples use the SELECTOR$OF and the OFFSET$OF functions.

*base = 16t
*define pointer p = 123:456
*p
0123H:0456H

*selector$of(p)
123

*offset$of(p)
456

10-15110-16

CHAPTER 11
ADVANCED EXECUTION AND

TRACE COMMANDS

This chapter explains how to control and trace program execution. It describes the
break and trace registers, as well as how to load and use them. Automatic calling of
debug procedures, conditional break and trace, and the break/trace/patch table are
covered as well.

Breaking and Tracing

Using procedures, labels, and statements, PSCOPE's breaking and tracing com
mands let you control and monitor the execution of the program you are
debugging.

Breaking and tracing makes use of debugger objects called break registers
(BRKREGs) and trace registers (TRCREGs). Breakpoints and tracepoints are
defined and stored in these registers and activated with the GO command.

Break Registers (BRKREG)

Break registers are named registers that can hold any number of breakpoints. You
can define any number of break registers within PSCOPE's workspace limits.

Placing breakpoints in a named break register lets you easily switch active break
points while maintaining control of program execution.

PSCOPE lets you break upon reaching a particular program location, which can be
referenced symbolically as a line number, label, or procedure (see Chapters 3 and
5) or as an actual address. In the latter case, PSCOPE assumes that the user en
tered a valid break location. This location must be on an instruction boundary.

A break occurs when PSCOPE reaches a specified location and before execution of
the statement at that location. If you set a breakpoint at a procedure, PSCOPE
stops execution at the prologue of the procedure, before processing the declara
tions for the procedure and before the first executable statement of the procedure.

Since BRKREG is a debug type, the standard debug object manipulation com
mands described in Chapter 7 apply to BRKREGs. Also, you must enter the value
in the definition; it must be a list of location references (line numbers, labels,
procedures, or actual addresses) separated by commas as specified in the following
syntax section.

The address you specify in a break register can be the address of a high-level lan
guage statement or an assembly language instruction.

Syntax

DEFINE BRKREG name = break-item [, break-ifem]*

Where:

name is the name of the break register.

11-1

Advanced Execution and Trace Commands PSCOPE-86 User's Guide

11-2

break-item is one of the following:

breaks [CALL proc-name]

breaks is one of the following:

break-pt[, break-pt]*

break-pt can be any expression that evaluates to a location in
your program.

proc-name is the name of a debug procedure that returns a value.

Description

You can create a break register with a specified name that contains all the listed
break-pt's as its breakpoints. Note that PSCOPE associates the breakpoints only
with their defined break register. Breakpoints are not active until you specify their
break register in a GO command. (The GO command is discussed later in this
chapter.)

If you specify the CALL option, PSCOPE associates proc-name with the single or
parenthesized list of break-pt'spreceding it.

Note that you cannot modify break registers with a PSCOPE modify command;
you must redefine break registers. However, you can add or delete breakpoints
from an existing break register by editing the BRKREG definition with PSCOPE's
internal editor (discussed in Chapter 2).

After you activate a break register with the GO command, program execution pro
ceeds until PSCOPE encounters one of the breakpoints contained in that register
(i.e., program execution reaches that point). Then PSCOPE stops program execu
tion and displays a breakpoint message. If a debug procedure is associated with the
breakpoint, PSCOPE automatically executes the debug procedure. PSCOPE con
verts the return value from the debug procedure to a Boolean. If the Boolean value
is TRUE, PSCOPE breaks and displays a break message, as if it had not called the
debug procedure. If the Boolean value is FALSE, PSCOPE continues execution
without interruption, as if no breakpoint was there. If there is no return value,
PSCOPE detects an error and stops execution. This feature lets you set conditional
breakpoints with the decision to break based on any Boolean condition, including
program variable values or terminal input (see the CI command in Chapter 10).
Note that PSCOPE does not allow parameters on the debug procedure specified in
the CALL option.

Break messages have the following form:

[Break at break-ptJ

Where:

break-pt is the location you specified in the definition of the break register.

Example

Note that all the following examples use the sample program DC (shown in Ap
pendix E).

PSCOPE-86 User's Guide Advanced Execution and Trace Commands

The following example defines one break register containing four breakpoints,
each at a different procedure in DC:

* Define Brkreg break_1 = error, statement, term, factor

This break register has one breakpoint, which calls a debug procedure:

* Define Brkreg inpuLcheck = geLline CALL PROC2

The following example defines a break register with four breakpoints, two of
which call the debug procedure PRl:

*Define Brkreg special = (term, value) CALL PR1,
** :dc#68, :dc + 1741

Trace Registers (TRCREG)

Trace registers (TRCREG) are defined and operate almost exactly like break regis
ters (BRKREG). The only difference is that the trace points contained in trace
registers do not stop program execution; they display trace messages instead.

Trace registers are named registers that can hold any number of tracepoints. You
can define any number of trace registers within PSCOPE's workspace limits.

Putting tracepoints into a named trace register lets you easily switch active trace
points while maintaining control of program execution.

PSCOPE lets you trace upon reaching a particular program statement, label, or
procedure.

The trace occurs when PSCOPE reaches a specified location and before execution
of the statement at that location. Tracing a procedure stops execution at the prol
ogue of the procedure, before the declarations in the procedure are processed and
before the procedure's first executable statement.

Since TRCREG is a debug type, the standard debug object manipulation com
mands described in Chapter 7 apply to TRCREGs. Also, you must enter the value
in the definition; it must be a list of location references (line numbers, labels,
procedures, or actual addresses) separated by commas as specified in the following
syntax section.

Syntax

DEFINE TRCREG name = trace-item [, trace-item] *

Where:

trace-item is one of the following:

traces [CALL proc-name]

traces is one of the following:

trace-pt [, trace-pt] *
trace-pt can be any expression that evaluates to a location

within the user program.

proc-name is the name of a debug procedure that returns a value.

11-3

Advanced Execution and Trace Commands PSCOPE-86 User's Guide

11-4

Description

You can create a trace register with a specified name that contains all the listed
trace-pt's as its tracepoints. Note that PSCOPE associates the tracepoints only with
their defined trace register. Tracepoints are not active until you specify the trace
register in a GO command. (The GO command is discussed later in this chapter.)

If you specify the CALL option, PSCOPE associates proc-name with the single
trace-pt or parenthesized list of trace-pts preceding it.

Note that you cannot modify trace registers with a PSCOPE modify command; you
must redefine trace registers. However, you can add or delete tracepoints from an
existing trace register by editing the TRCREG definition with PSCOPE's internal
editor (discussed in Chapter 2).

After you activate a trace register with the GO command, program execution pro
ceeds until PSCOPE encounters one of the trace points contained in that register
(i.e., program execution reaches that point). Then PSCOPE displays a trace
message, and program execution continues. If a debug procedure is associated
with a tracepoint, PSCOPE automatically executes the debug procedure. PSCOPE
converts the return value from the debug procedure to a Boolean. If the Boolean'
value is TRUE, PSCOPE displays the trace message, as if the debug procedure was
called. If the Boolean value is FALSE, PSCOPE continues execution without dis
playing a message, as if there was no tracepoint. If there is no return value,
PSCOPE detects an error but continues program execution. This feature lets you
set conditional tracepoints with the decision to trace based on any Boolean
condition, including program variable values or terminal input (see the CI com
mand in Chapter 10). Note that PSCOPE does not allow parameters on the debug
procedure specified in the CALL option.

Trace messages have the following format:

[At trace-pt]

Where:

trace-pt is the location specified in the definition of the trace register.

Example

Note that all the following examples use the sample program DC (found in Appen
dix E).

The following example defines a trace register containing three tracepoints:

*define TRCREG trace_1 = #80, #224, @1 000

The following trace register contains one tracepoint, which calls a debug
procedure:

*define trcreg error_check = :dc.error CALL write_message

The GO Command

The GO command controls user program execution. It also lets you activate any
number of breakpoints or tracepoints.

PSCOPE-86 User's Guide Advanced Execution and Trace Commands

Syntax

GO [brk-spec]*

GO FOREVER

Where:

brk-spec is one of the following:

TIL break-pt [, break-pt]*

USING reg-item [, reg-item]*

reg-item is one of the following:

break-register specifies a previously defined break register.

trace-register specifies a previously defined trace register.

BRKREG

TRCREG

Description

The GO command starts executing your program from the current execution
point ($). The LOAD command sets the initial value of$.

If you specify FOREVER, PSCOPE starts executing without any breakpointso
Note that you can use CNTL-C to interrupt execution, but execution may stop in a
location for which PSCOPE has no symbol information (for example, inside UDI,
the universal development interface) .

If you do not specify brk-spec, PSCOPE resumes execution with the same set of
break and tracepoints that the last GO command used (except for any break regis
ters or trace registers that were removed or redefined, in which case they are
inactive). If you specify USING, PSCOPE starts program execution using the
breakpoints and tracepoints in the break and trace registers specified. If you specify
the keywords BRKREG and TRCREG with USING, PSCOPE uses all break regis
ters or trace registers.

If you specify TIL, PSCOPE starts program execution using the points listed. As
described in Chapter 4, these may be labels, line numbers, procedures, or actual
addresses (in which case PSCOPE assumes that the user entered a valid break
address).

You can specify any number of TIL and USING clauses. The number of active
breakpoints and tracepoints is limited only by the amount of PSCOPE workspace
available.

You can set both a breakpoint and a tracepoint at the same location but only one of
each type at the same location. PSCOPE displays a warning message if you try to
set a breakpoint (or tracepoint) where an active break (trace) point already exists.
The original breakpoint (tracepoint) remains intact.

In addition, you can define a patch at a breakpoint and a tracepoint location (or a
breakpoint or a trace point location). In this case, PSCOPE handles the tracepoint

11-5

Advanced Execution and Trace Commands PSCOPE-86 User's Guide

11-6

first (including any debug procedures associated with it). PSCOPE next handles
the breakpoint (including any debug procedures associated with it) and finally the
patch. However, if PSCOPE stops because of the breakpoint, PSCOPE does not
execute the patch until the next GO command.

Breakpoints and tracepoints are active only during execution initiated with the GO
command. They are automatically deactivated when control returns to PSCOPE.
Note that breakpoints and tracepoints are not active during stepping with the
PSTEP and LSTEP commands, while patches are active during stepping.

Note that PSCOPE deactivates all breakpoints and removes all break registers,
trace registers, and patches when you invoke the LOAD command.

Example

The following example executes break and trace registers:

GO USING breaLI, error_check, input

The following example reuses the breakpoints and tracepoints activated during the
previous GO command:

GO

The following example activates all trace registers and one breakpoint:

GO USING trcreg TIL :dc.error

The following example initiates execution with no break or tracepoints:

GO FOREVER

The following sequence of commands illustrates the combined use of break
registers, trace registers, and breakpoints. The example starts execution and prints
a trace message every time procedure geLtoken is called. Execution stops when
either error or geLline is called:

DEFINE TRCREG T1 = :dc.geLtoken
*DEFINE BRKREG B3 = error
*GO USING T1 , B3 TIL geLline

Exception Trapping

PSCOPE automatically traps exception conditions within the user program. The
exceptions trapped are from UTS, UDI, and the 8087 emulator and include
DQEXIT. Unlike standard user breakpoints, these exceptions are always active;
they are created, removed, and replaced only by the LOAD command.

PSCOPE displays two messages when an exception condition occurs. The first
message identifies the type of exception. The second message is as follows:

[Stop at location]

Where:

loca tion is the line number or address of the exception handler, not the lo
cation within the user program where the exception occurred.

PSCOPE-86 User's Guide Advanced Execution and Trace Commands

A trap at DQ$EXIT lets you inspect variables and continue normal debugging
when the program has completed its execution. This is a good opportunity to save
definitions of debugger objects that you want to use in future debug sessions, such
as patches, debug procedures, and break registers. At this point, you cannot con
tinue program execution. A GO command after trapping at DQEXIT causes
PSCOPE to exit.

11-7111-8

APPEND'IXA
ERROR MESSAGES

This appendix lists the PSCOPE error messages. PSCOPE error messages are
coded by number and listed in numeric order for easy reference.

Classes of Errors

Each of the errors detected by PSCOPE falls into one of the following five classes:

• WARNING. A minor problem which PSCOPE attempts to correct, then
executes.

• ERROR. A problem of sufficient severity that PSCOPE aborts the command
currently executing and either prompts for a new command or retrieves the
next command from the current IN CL UD E file (if any) .

• SEVERE ERROR. A problem that may cause difficulties beyond the current
command. PSCOPE aborts the current command, cancels any pending com
mands from INCLUDE files, and prompts for a new command from the
terminal.

• FATAL ERROR. A problem from which PSCOPE cannot recover and relia
bly continue operating. PSCOPE closes all files, frees all resources that it or
the program being debugged may have allocated, and returns control to the
host operating system. (Very few PSCOPE errors are fatal. Do not worry
about fatal errors aborting a debug session.)

• INTERNAL ERROR. A violation of one of PSCOPE's internal consistency
checks. Please document the situation in which the error occurred and report
it to your Intel representative.

HELP

Some errors have extended error messages. You can reach the extended error
messages by using the following HELP command:

HELP En

Where:

n is the number of the error message.

PSCOPE indicates errors that have extended error messages by placing an asterisk
enclosed in brackets ([*]) at the end of the primary message for that error.

Error Messages

o Type definition record with an unrecognizable format.

1 Array's lower bound is unknown - zero is assumed.

2 Symbol is not an array or the symbol has fewer dimensions than
specified.

A-I

Error Messages

A-2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

PSCOPE-86 User's Guide

Size of the array elements is not known.

Referenced array expects a single character array index.

Address of module is not known.
Tried to reference an assembly language module, a run-time library,
OS run-time, or a module with no debug information.

Unknown module specified.

No line information was loaded for module.

No symbol information was loaded for module.

Cannot determine module for specified location. [*]
Could not find specified location in any known module. Specified loca
tion is either outside of the program or in a module for which there is
no symbol information.

Cannot determine current default module. [*]
Could not find current location in any known module. Either the cur
rent execution point is outside of the program or it is in a module for
which there is no symbol information.

Symbol currently not active. [*]
Symbol is either not known or is not local to the current procedure.
12. Symbol not known in current context. Change context with the
NAMESCOPE command or use a fully qualified symbol reference.

No symbol information was loaded for program.

Attempt to reference a program symbol of an unsupported type.

Symbol is not known to be a record and cannot be qualified.

Symbol is not a known record field name.

Cannot determine offset of a field from the start of record. [*]. The
requested field cannot be referenced because the debugger cannot
determine the size of one of the preceding record fields.

Nested symbolic references not permitted.

Symbol isn't a pointer variable or its dereference type is unknown.

Specified line is not an executable statement.

Specified line does not exist in module.

Cannot evaluate line reference. [*]
The segment part of the line reference pointer is not known. Maybe
the symbol information was not loaded for the module.

Specified type is incompatible with directory. [*]
Specified type cannot be used with the specified (or default) directory.
For example, DIR PUBLIC LINE is contradictory, as there are no
public lines.

Cannot perform symbol table request. No user program loaded.

PSCOPE-86 User's Guide

40

41

42

43

44

45

46

47

48

49

50

51

52

64

65

66

67

68

69

70

71

72

73

74

75

Error Messages

Tried to REMOVE debugger object declared locally in DO .. END
block.

Workspace exceeded. [*]
Out of workspace. Delete any unnecessary debugger objects (e.g.,
PROCs, LITERALLYs, PATCHes). This can also be caused by
deeply recursive debug procedures.

The name is either undefined or not of the correct type.

The name is undefined.

The name is already defined with a different type.

Parameter outside the body of a PROC.

The name is not a PROC.

Illegal type specified in DIR DEBUG command.

The named object is not a literally.

Illegal assignment to register.

String too long to perform assignment.

Error in debug symbol lookup. [*]
May be caused by removing a global debug variable referenced in a
debug procedure (or patch) and then executing the debug procedure
(or patch).

No patch defined at the specified location.

Attempt to PUT or APPEND a local debug object.

I/O error on PUT file.

This command is not currently implemented.

This command not allowed inside of a compound command.

Invalid type.

Invalid type conversion.

String longer than 254 characters.

String too long for numeric conversion. [*]
Character strings must be oflength 1 to convert to unsigned numbers.

Illegal type in output.

Unmatched double quotes in format string.

Write list too long.
The maximum is 20 items.

W ri te data too large.
The maximum is 256 bytes.

A-3

Error Messages

A-4

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

110

111

PSCOPE-86 User's Guide

Invalid format string in WRITE command.

Output buffer overflow.
The limit is 128 characters per line.

Invalid floating point value for output.

Invalid expression for MTYPE.
An illegal value is being assigned to a memory template.

Invalid boolean operation.

Invalid string operation.

Invalid pointer operation.

Invalid unknown operation.

Attempt to assign value to code instead of variable. [*]
Tried to assign an expression to a location associated with user data
(e.g., :main.proc1 = 5, where proc1 is a procedure in module main).
Straight assignments may be made only to variables or with memory
modify commands (e.g., byte 100:200 = 5).

Attempt to assign illegal value to BASE variable.

Cannot use editor if debugger was invoked with SUBMIT control.

Not in a procedure or in a procedure with no debug information. [*]
In order for the calling procedure to be identified (and the CALL
STACK command to function properly), the current execution point
must be in a procedure or in a procedure for which there is debug
information.

The debugger has overflowed its 86 stack. [*]
The debugger has overflowed its stack, probably due to deep recursion
of a debug procedure.

UOI exception.
A PSCOPE operation resulted in a UOI exception. A divide-by-zero
on unsigned values will cause this error.

Literally nesting too deep.

Illegal extended integer.

Attempt to assign illegal value to INPUTMODE variable.

Error in VIEW command.

No data segment information. Program may execute incorrectly. [*]
The load module did not provide any information about the data
segment. Therefore, execution of the program may have unexpected
results.

No stack segment information. Program may execute incorrectly. [*]
The load module did not provide any information about the stack
segment. Therefore, execution of the program may have unexpected
results.

PSCOPE-86 User's Guide Error Messages

112

113

114

115

116

117

118

119

120

Program cannot be loaded. [*]
Program start address needs a fix up by the linker.

The 8087 Emulator was not found in the load module. [*]
If the E8087 option is specified in the load command, then the 8087
emulator must be linked into the program being debugged. It was not
found at load, so it either never existed or it was purged.

Missing CH8087 option when loading a program with real math.

Bad object record in load file.
Verify that you are loading an LTL object file. If there are still bad
records, reI ink module.

Load file contains absolute load addresses. [*]
Load file is not PIC or LTL. Relink with the BIND control.

Load file contains unresolved externals.
Program must be relinked before debugging.

Support for overlays not implemented.
Loaded program cannot contain overlays.

Memory segment request failure during load. [*]
More memory is needed to load the program. Deleting debugger ob
jects will not increase available memory for loading.

Load module contained no starting address information. [*]
The load module did not provide any information about the starting
address. The load was aborted, and execution of the program is not
possible.

136 Divide by zero (operation yields 0 result).

137 Invalid type for arithmetic.

138 Invalid integer operation.

139 Real math is not available. [*]
In order to use real math (including any operations or reference to
real numbers), you must use the E8087 option on the LOAD com
mand and have the 8087 emulator linked into the program under
debug. This error may be detected if the E8087 option was used on
the LOAD command with a program that appears to have the emula
tor linked into it but does not. (This can happen with Pascal and FOR
TRAN programs linked with 87NULL.LIB.)

140 Invalid real number.

141 Attempted real comparison with NAN, + infinity or -infinity.

142 Invalid real operation.

143 Invalid extended integer operation.

144 Illegal numeric constant.

160 Attempt to INCLUDE :CI:.

161 I/O error on INCLUDE file.

A-5

Error Messages

A-6

162

163

164

165

166

167

168

169

177

178

196-249

353

354

355

356

357

358

359

360

361

PSCOPE-86 User's Guide

I/O error on LIST file.

I/O error while loading object file.

Could not open load file.

Error while attempting to open virtual symbol table. [*]
The virtual symbol table uses :WORK: for the disk-resident portion of
the virtual symbol table. Ensure that the device for :WORK: is ready
and that PSCOPE has access rights to it.

Error while attempting to seek in virtual symbol table.

Error while attempting to write to virtual symbol table.

Error while attempting to close virtual symbol table.

Error while attempting to read virtual symbol table.

First address is greater than second address.

Attempt to use VIEW command while running PSCOPE under
SUBMIT.

Errors 196 through 511 are PSCOPE internal errors. They result from
consistency check failures and should never occur. If an internal error
does occur, please notify an Intel representative.

Illegal number.

Unrecognized 8086/8087 mnemonic.

Illegal use of indirect addressing. [*]
The correct forms of indirect addressing are:

< symbolic ref> [BX] + offset
< symbolic ref> [BP] + offset
< symbolic ref> [DI] + offset
< symbolic ref> lSI] + offset
< symbolic ref> [BP] [DI] + offset
< symbolic ref> [BP] lSI] + offset
< symbolic ref> [BX] [DI] + offset
<symbolic ref> [BX] lSI] + offset

The symbolic reference (of the form :MODULE.SYMBOL.SYM
BO L. etc) and the' + offset' are optional.

Illegal single line assembler operand.

Single line assembler syntax error. See HELP SASM.

Memory pointer (eg. BYTE, WORD, etc) without memory
operand (eg. number or symbolic reference).

Too few operands for this instruction.

Illegal operands, both operands appear to reference memory.

The types of the operand (s) do not match the mnemonic or each
other.

PSCOPE-86 User's Guide

362

512

513

514

515

528

529

530

531

532

544-546

Error Messages

One byte relative jump is out of range. Range is -128 to + 127.

The cause of execution break is unknown to PSCOPE. [*]
PSCOPE cannot determine how execution was broken; it was not
through a known breakpoint or a CNTL-C. You probably placed an in
terrupt at the given address or entered CNTL-D.

This breakpoint is already active. [*]
You can activate only one breakpoint of each type (break, trace, or
patch) at anyone address. The break you originally activated is still
intact.

Invalid return type from PROC called at breakpoint. [*]
The debugger procedure called at the breakpoint or tracepoint re
turned a value with an invalid type or had no return value. The return
value must be a BYTE, WORD, DWORD, BOOLEAN, or INTEGER
(including LONG/SHORT). PSCOPE manufactured a return value of
TRUE, causing the associated break or trace to be executed.

There was a patch in progress and it was not completed. [*]
A code PATCH was being executed when execution was interrupted.
The current execution point is the standard resume address (the point
in the program to which control would normally be transferred after
the patch), as if the PATCH had completed (unless the PATCH
changed it). The entire PATCH will most likely not have completed
execution. If the resume address is the PATCH address, then restart
ing execution re-executes the patch.

Attempted recursive definition of a break or trace register. [*]
Tried to define the named break register or trace register while already
in the process of defining one. This happens when an expression in
the definition of a break or trace register calls a debug procedure
which defines the named break or trace register.

Cannot determine proper statement address for step. [*]
Either PSCOPE cannot determine the current execution point and,
therefore, cannot do statement level stepping, or you tried to start
statement-level stepping when the current execution point is not the
beginning of a statement. In the latter case, use the GO command to
get to a statement, then retry the step.

No break or trace registers (of the requested type) have been defined.

This command cannot occur inside ofa PATCH.

No program was loaded.

Errors 544 through 546 are PSCOPE internal errors. They result from
consistency check failures and should never occur. If an internal error
does occur, please notify an Intel representative.

A-7/ A-8

APPENDIX B
CONFIGURING PSCOPE FOR

NON-INTEL TERMINALS

Configuration Commands

PSCOPE is designed to run on an Intellec Series III or Series IV development
system. The editor expects code from the terminal or sent to the terminal to be
code used by Intel terminals.

You can, however, configure PSCOPE to operate with other terminals. You need
configuration files when using a non-standard or non-Intel terminal with charac
teristics different from those of the Series III or Series IV screen. Configuration
files let you indicate characteristics of Y6ur particular terminal by setting various
parameters and specifying control sequences by which various screen functions
can be performed. Configuration files are not needed when using a Series III or
Series IV with the integrated screen.

You should put configuration commands in a CRT configuration file (e.g.,
PSCOPE.CR T) so that they are automatically executed when you invoke
PSCOPE. The configuration commands let you modify certain keyboard and CRT
codes. In some situations, you may not be able to use certain editing functions.

To create a PSCOPE configuration file, compare your terminal's behavior to the
actions expected by PSCOPE. Refer to your user manual for the codes that your
terminal expects and generates. (See Table B-1 for a list of the PSCOPE configura
tion commands, their default values, and meaning.)

Note that the CRT configuration commands are compatible with the configuration
commands accepted by the Series III or a Series IV text editor, AEDIT, in its
AEDIT.MAC file. (See AEDIT Text Editor User's Guide, order number 121756.)

PSCOPE expects the following characteristics in a terminal:

• ASCII codes 20R through 7ER display some symbol requiring one column
space. Carriage return (ODR) and line feed (OAR) perform their usual
functions.

• There are cursor key output codes and CRT cursor output codes for the fol
lowing cursor functions: down, home, left, right, and up. Output codes for
clear screen, clear rest of screen, clear line, clear rest of line, and direct
cursor addressing are desirable but not required. You can change default
-codes, shown in Table B-1, with the configuration commands.

• The terminal accepts a blankout code that blanks out the contents of the
screen location from which it is entered. You can change the default, 20R,
with the configuration commands.

• The CRT has 22 to 25 lines. You can change the default, 25 lines, with the
configuration commands.

• PSCOPE automatically generates a line feed each time you enter a carriage
return. Your terminal should not generate a line feed with a carriage return.
You can switch this feature on and off on some terminals.

B-1

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User's Guide

B-2

When configuring to execute on a non-Intel terminal, you may have to change
some or all of the codes assigned to the following configuration commands:

• The cursor key output codes expected by the editor: AFCH, AFCU, AFCD,
AFCR, and AFCL.

• The editor-generated cursor movement codes sent to the CRT: AFMH,
AFMU, AFMD, AFMR, AFML.

• The erase screen code, AFES.

• The blankout code, AFBK.

• The screen size code, AV.

• The BREAK character code, AB.

• The codes expected by the editor for the screen mode commands: AFXA,
AFXF, AFXX, AFXU, and AFXZ. You may want to change these codes to
match function keys or other convenient keys on the terminal keyboard.

Table B-1 lists the configuration commands, their default values, and their
meaning.

The following conventions apply to Table B-1:

• nmust be 22,23,24, or 25.

• h is a one-byte hexadecimal number.

• hhhh is a one- to four-byte hexadecimal number. A null value indicates that
the function is not available.

• T is 'T' or 't', indicating true.

• F is 'F' or T: indicating false.

You must end all commands in the CRT file with a semicolon () or a carriage
return.

Command

AV=n

AB=hhhh

AR=hhhh

AFXA=hhhh

AFXF=hhhh

AFXX=hhhh

Table B-1 Configuration Commands

Series III I
Default

25

1BH

7FH

1H

6H

18H

Meaning

Sets the number of lines of the display.

Sets ESC.

Sets RUBOUT.

Sets DELETE RIGHT (CNTL-A)

Sets CHAR DELETE (CNTL-F)

Sets DELETE LEFT (CNTL-X)

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

Table B-1 Configuration Commands (continued)

Series III
Command Default Meaning

AFXZ=hhhh 1AH Sets CLEAR LINE (CNTL-Z)

AFCD=hhhh 1CH Sets DOWN.

AFCH=hhhh 1DH Sets HOME.

AFCL=hhhh 1FH Sets LEFT.

AFCR=hhhh 14H Sets RIGHT.

AFCU=hhhh 1EH Sets UP.

AFIG=h This character will be ignored if it is entered. This character
is needed on terminals, which have multiple character key
codes for UP and DOWN, such as the Hazeltine 1510. AFIG
should be set to the lead in (tilde) and UP and DOWN should
be set io ihe second ietier of the cursor up or down key code.
This avoids problems caused by the lack of a type-ahead
buffer.

AFMB=hhhh ODH Moves the cursor to the start of the line.

AFMD=hhhh 1CH Moves the cursor down.

AFMH=hhhh 1DH Moves the cursor home.

AFML=hhhh 1FH Moves the cursor left.

AFMR=hhhh 14H Moves the cursor right.

AFMU=hhhh 1EH Moves the cursor up.

AFES=hhhh 1B45H Erases the entire screen.

AFER=hhhh 1B4AH Erases the rest of the screen.

AFEK=hhhh 1B4BH Erases the entire line.

AFEL=hhhh Erases the rest of the line.

AFAC=hhhh Addresses the cursor lead-in. When used, the code will be
followed by a column number (0 to 79) and a row number (0 to
24).

AO=h OH Offset to add both a row and a column number with an ad-
dress cursor command.

AX=Tor F T True if X (column) precedes Y (row) in the address cursor
command.

AW=Tor F T Allows the user to indicate that the terminal wraps when the
character is printed in column 80.

AFIL=hhhh Inserts the line code. Used in line 0 for reverse scrolling.

AFDL=hhhh Deletes the line code. Used to speed up the display on the
Hazeltine 1510 and similar terminals.

AFBK=h 20H Blankout character. BLANK on most terminals.

B-3

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User's Guide

B-4

Tested Configurations

This appendix contains tested configurations for several non-Intel terminals. The
terminals presented here are not the only ones on which you can use PSCOPE;
they are just the ones that have been tested. The following sections list the configu
ration functions and values required to run PSCOPE on the Intel tested terminals.
The terminals are as follows:

• ADDS Regent 200 (2400 baud only)

• ADDS Viewpoint 3A Plus

• Beehive Mini-Bee

• DECVT52

• DEC VT100

• Hazeltine 1420

• Hazeltine 1510 (Tilde lead-in)

• Hazeltine 1510 (ESC lead-in)

• Intel Series III E

• Lear Seigler ADM-3A

• Televideo 910 Plus

• Televideo 925 and 950

• Zentec

The commands to configure PSCOPE for the tested terminals are included on the
disk with the PSCOPE program. The name of the file is included in each
description.

Configuration files for the following terminals can be created by entering the com
mands specified in the corresponding tables.

ADDS Viewpoint 3A Plus
Hazeltine 1420
Intel Series IIIE
Televideo 910 Plus
Televideo 925 and 950
Zentec

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

ADDS Regent Model 200

The ADDS model has a 24-1ine CRT display with 80 characters per line. Each char
acter is formed in an 8 by 8 dot matrix as a dark character on a light background.
The 25th line of the screen displays the operating condition of the terminal. Table
B-2 shows the ADDS Regent Model 200 configuration.

Table B-2 ADDS Regent Model 200 Configuration

Function Hexadecimal
Code Value

CD
CH
CL
CR
CU

MD
MH
ML
MR
MU

AC
EK
ER
ES

XA
AO
AX
XF
XZ
AB
AV

Command File: ADDS.CRT

AFCD=OA
AFCU=lA
AFML=15
AFMH = IB 59 20 20
AV=24
AFER=lb6b
AX=F
AB=5C

OA
01
15
06
1A

OA
1B 592020
15
06
1A

1B 59
not available
1B 6B
OC

14
20
F
1B 45
1B 6C
5C

AFCL=15
AFCH=Ol
AFMR=06
AFEK=
AFXA=14
AFAC=lB 59
AFXF=lB45

NOTE

Graphic or
ASCII Name

Line Feed
SOH
NAKorBS
ACK
SUB

Line Feed

NAKor BS
ACK
SUB

ESCY

ESCK
FF

DC4
SP

ESCE
ESC I

24

AFCR=06
AFMD=OA
AFMU=lA
AFER=lB6B
AFES=OC
AO=20
AFXZ=lB6C

You must enter DEL CHAR instead of CNTL-F for the delete
character. You must enter DEL LINE instead of CNTL-Z for
delete line. You must enter CNTL-T instead of CNTL-A for
delete right. You must enter the backslash (\) instead of
ESCAPE.

B-5

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User's Guide

B-6

ADDS Viewpoint 3A Plus

This terminal has a 24-line CRT display with 80 characters per line. Table B-3
shows the ADDS Viewpoint 3A Plus configuration.

Table B-3 ADDS Viewpoint 3A Plus Configuration

Function Hexadecimal
Code

CO
CL
CR
CU
CH
MO
ML
MR
MU
MH

EK
ER
EL
ES

AC
AO
AX
AV

Command File: ADDS.CRT

AFCD=OA
AFCU=OB
AFML=08
AFMH=lE
AFEL=lB 54
AO=20

Value

OA
08
OC
OB
1E
OA
08
OC
08
1E

not available
1859
1854
182A

1830
20

AFCL=08
AFCH=lE
AFMR=OC
AFEK=
AFES=lB 2A
AX=F

Graphic or
ASCII Name

Line Feed
BS
FF
VT
RS
Line Feed
BS
FF
VT
RS

ESCY
ESC
ESC

ESC=
SP
F
24

AFCR=OC
AFMD=OA
AFMU=OB
AFER=lB 59
AFAC=lB3D
AV=24

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

Beehive Mini-Bee

You can format the Beehive Mini-Bee terminal to display either 12 or 25 lines of
80 characters per line. Only the 25-character format is usable with PSCOPE. Each
character is generated in a 5 by 7 dot matrix. The maximum transmission rate for
this terminal is 9600 baud. Note that you must change the ESCAPE character so
that the default ESCAPE code can be used; choosing the jK is a personal
preference. Table B-4 shows the Beehive Mini-Bee configuration.

Table B-4 Beehive Mini-Bee Configuration

Function Hexadecimal
Code Value

CD 1842
CH 1848
CL 1844
CR 1843

II c 1 iii .8

MD 1842
MH 1B 48
ML 1844
MR 1843
MU 1841

EL 1848
ER 184A
B OB
AV

Command File: MICROB.CR T

AFCU=IB 41
AFCL=IB44
AFMD=IB42
AFMH=IB48
AB=OB

AFCD=lB42
AFCH=lB48
AFMR=lB43
AFEL=lB4B
AV=24

NOTE

Graphic or
ASCII Name

ESC 8
ESCH
ESC 0
ESCC

"A ESvl"\

ESC8
ESCH
ESCD
ESCC
ESCA

ESCK
ESCJ

lK
24

AFCR=lB43
AFMU=IB41
AFML=lB44
AFER=lB4A

You must enter CNTL-K instead of ESCAPE.

B-7

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User's Guide

B-8

DEC VT52

The DEC VT52 dispiays 24 lines of 80 characters per line. The characters are
generated in a 7 by 9 dot matrix. The maximum transmission rate is 19.2K baud.
Note that you must change the ESCAPE character so that the default ESCAPE
code can be used; choosing CNTL-K q K) is a personal preference. The DEC
VT52 does not have a HOME key. Choosing CNTL-O q 0) for the HOME func
tion is a personal preference. Table B-5 shows the DEC VT52 configuration.

Table B-5 DEC VT52 Configuration

Function
Code

CD
CH
CL
CR
CU

MD
MH
ML
MR
MU

Ae
W
AO
AX

EL
ER
ES
EK
AV
B

Command File: VT52.CRT

AFCU=lB41
AFCL=lB44
AFMD=lB42
AFMH=lB48
AFEL=lB 4B
AV=24
AX=F

Hexadecimal
Value

1B 42
OF
1B 44
1B 43
1B 41

1B 42
1B 48
1B 44
1B 43
1B 41

~D r::n
IU VV

F
20
F

1B 4B
1B 4A
not available
not available

OB

AFCD=lB42
AFCH=OF
AFMR=lB43
AFES=
AFEK=
AFAC=lB 59
AW=F

NOTE

Graphic or
ASCII Name

ESCB
TO
ESCD
ESCC
ESCA

ESCB
ESCH
ESCD
ESCC
ESCA

r-~,.... v
~"v I

SP

ESC K
ESCJ

24
TK

AFCR=lB43
AFMU=lB41
AFML=lB44
AFER=lB4A
AB=OB
AO=20

You must enter CNTL-K instead of ESCAPE. You must enter
CNTL-O instead of HOME.

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

DEC VT100

You can format the DEC VT100 terminal with 14 lines of 132 characters per line
or 24 lines of 80 characters per line. Only the 24-line format is compatible with
PSCOPE. The characters are generated in a 7 by 9 dot matrix. The maximum trans
mission rate is 19.2K baud. You can choose between the DEC VT52 compatible
and the ANSI standard (X3.41-1974, X3.64-1977) compatible terminal escape se
quences for cursor control and screen erase functions. The ANSI codes are given
in the following table. See the DEC VT52 description for the VT52 codes. Note
that you must change the ESCAPE character so that the default ESCAPE code can
be used; choosing CNTL-K (j K) is a personal preference. The DEC VT100 termi
nal does not have a HOME key. Choosing CNTL-O (j 0) for the HOME function
is a personal preference. Table B-6 shows the DEC VT100 configuration.

Table B-6 DEC VT100 Configuration

Function
Code

CD
CH
CL
CR
CU

MD
MH
ML
MR
MU

EK
ER
ES
EL

W
AV
8

Command File: VTl OO.CR T

AFCU=IB41
AFCL=IB44
AFMD = IB 5B 42
AFMH=IB 5B 48
AFEK= IB 5B 30 4B
AV=24

Hexadecimal
Value

1842
OF
1844
1843
1841

185842
185848
185844
185843
185841

18583048
1858304A
not available
185848

F

OB

AFCD=IB42
AFCH=OF
AFMR= IB 5B 43
AFES=
AFEL= IB 5B 4B
AW=F

NOTE

Graphic or
ASCII Name

ESC 8
fO
ESCD
ESCC
ESCA

ESC[8
ESC [H
ESC[D
ESC [C
ESC[A

ESC [OK
ESC[OJ

24
f K

AFCR=IB 43
AFMU=IB 5B 41
AFML=IB 5B 44
AFER= IB 5B 30 4A
AB=OB

You must enter CNTL-K instead of ESCAPE. You must enter
CNTL-O instead of HOME.

B-9

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User's Guide

B-10

Hazeltine 1 420

This terminal displays 24 lines, with 80 characters per line. The maximum trans
mission rate is 9600 baud. You may choose between the tilde key or the ESC char
acter as the control sequence lead-in. To use the ESC character as the lead-in, sub
stitute escape (1 B) for the tilde (7E) in the command file, and add the function
code AB = 7E. When using the escape lead-in, the tilde must be typed instead of
escape. Table B-7 shows the Hazeltine 1420 configuration.

Table B-7 Hazeltine 1420 Configuration

Function
Code

CD
CH
CL
CR
CU

MD
MH
ML
MR
MU
MB

ES
ER
EK
EL
AC
IL
DL
AV
IG

Command File: 1420T.MAC

AV=24
AFCD=OB
AFCH=12
AFMR=10
AFMB=OD
AFEK=
AFIL=7E lA

Hexadecimal
Value

DB
12
08
10
DC

7EOB
7E 12
08
10
7EOC
00

not available
7E 18
not available
7EOF
7E 11
7E 1A
7E 13

7E

AFIG=7E
AFCR=10
AFMU=7EOC
AFML=8
AFES=
AFEL=7EOF
AFDL=7E 13

Graphic or
ASCII Name

VT
DC2
BS
OLE
FF

- VT
- DC2
BS
OLE
- FF
CR

- CAN

- SI
- DC1
- SUB
- DC3
24
-

AFCU=OC
AFCL=8
AFMD=7EOB
AFMH=7E 12
AFER=7E 18
AFAC=7E 11

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

Hazeltine 1510

The Hazeltine 1510 terminal displays 24 lines of 80 characters per line. The charac
ters are generated in a 7 by 10 dot matrix. The maximum transmission rate is
19.2K baud. You can choose between the ESC or the tilde character (-) as the
control sequence lead-in. However, if you use ESC, you must change the BREAK
character, so the tilde is easier to use. Table B-8 shows the Hazeltine 1510 configu
ration with the tilde lead-in and Table B-9 shows the Hazeltine 1510 configuration
with the ESC lead-in.

Table B-8 Hazeltine 1510 Configuration (Tilde Lead-in)

Function
Code

CD
CH
1"'1

CR
CU

MD
MH
ML
MR
MU
MB

AC
EK
ER
ES
EL
XP

IL
DL
AV

Command File: 1510T.CRT

AV=24
AFCD=OB
AFCH=12
AFMR=10
AFMB=OD
AFEK=
AFIL=7E 1A

Hexadecimal
Value

(- lead-in)

08
12
n v8
10
OC

7EOB
7E 12
08
10
7EOC
OD

7E 11
not available
7E 18
not available
7EOF
OF

7E 1A
7E 13

AFIG=7E
AFCR=10
AFMU=7EOC
AFML=8
AFES=
AFEL=7EOF
AFDL=7E 13

Graphic or
ASCII Name

- VT
- DC2
- 8S
- DLE
--FF

- VT
- DC2
- BS
- DLE
- FF

- DC1

- CAN

-
SI

- SUB
- DC3
24

AFCU=OC
AFCL=8
AFMD=7EOB
AFMH=7E 12
AFER=7E 18
AFAC=7E 11

B-ll

Configuring PSCOPE for Non-Intel Terminals

Table B-9 Hazeltine 1510 Configuration (ESC Lead-in)

B-12

Function
Code

CO
CH
CL
CR
CU

MO
MH
ML
MR
MU
MB

EK
ER
ES
EL
IL
OL
XP

Command File: I5IOE.CRT

AV=24
AFCU= OC
AFCL=8
AFMD=IBOB
AFMH=IBI2
AFER= IBI8
AFAC=IBll

Hexadecimal
Value

(ESC lead-in)

DB
12
08
10
DC

1B DB
1B12
08
10
1BOC
00

not available
1B18
not available
1B OF
1B1A
1B13
OF

AB=7E
AFCD= OB
AFCH= 12
AFMR=IO
AFMB=OD
AFEK=
AFIL= IBIA

Graphic or
ASCII Name

ESCVT
ESC OC2
ESC BS
ESC OLE
ESCFF

ESCVT
ESC OC2
ESC BS
ESC OLE
ESCFF

ESC CAN

ESC SUB
ESC OC3
SI

ESC OC1
24

I

AFIG=IB
AFCR=IO
AFMU=IBOC
AFML=8
AFES=
AFEL=IBOF
AFDL=IBI3

PSCOPE-86 User's Guide

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

Intel Series-IUE

The Intel Series-HIE terminal displays 24 lines of 80 characters per line. The maxi
mum transmission rate is I9.2K baud. Table B-IO shows the Intel Series-HIE
configuration.

Table B-IO Intel Series-HIE Configuration

Function
Code

ER
AC
IL
DL
EL

AX
AO

Command File: 5IIIOC.MAC

AX=F
AFAC= IB59
AFEL=IB 52

Hexadecimal Graphic or
Value ASCII Name

1853 ESCS
1859 ESCY
1857603F ESCW'?
1857 3F 60 ESCW?'
1852 ESCR

F
20 SP

AO=20
AFIL= IB 57 60 3F

AFER=lB 53
AFDL= IB 57 3F 60

NOTE
A Series-HIE with 511 IOC firmware must use this macro to take
advantage of the enhanced functionality.

B-13

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User's Guide

B-14

Lear Siegler ADM-3A

The Lear Siegler ADM-3A terminal displays 24 lines of 80 characters per line. The
characters are generated in 5 by 7 dot matrix. The maximum transmission rate is
19.2K baud. Table B-11 shows the Lear Siegler ADM-3A configuration.

Table B-ll Lear Siegler ADM-3A Configuration

Function
Code

CD
CH
CL
CR
CU

MO
MH
ML
MR
MU

EK
ER
ES

AX
AO
AC
AV

Command File: LEAR.CR T

AFCU=OB
AFCL=08
AFMD=OA
AFMH=lE
AFER=
AX=F

Hexadecimal
Value

OA
1E
08
OC
OB

OA
1E
08
OC
OB

not available
not available
1A

F
20
1B 3D

AFCD=OA
AFCH=lE
AFMR=OC
AV=24
AFEK=
AO=20

Graphic or
ASCII Name

LF
RS
BS
FF
VT

LF
RS
BS
FF
VT

SUB

SP
ESC =

24

AFCR=OC
AFMU=OB
AFML=08
AFES=lA
AFAC=lB 3D

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

Televideo 91 0 Plus

The Televideo 910 Plus displays 24 lines of 80 characters per line. The maximum
transmission rate is 19.2K baud. Table B-12 shows the Televideo 910 Plus
configuration.

Table B-12 Televideo 910 Plus Configuration

Function Hexadecimal
Code Value

CD 16
CH 1E
CL 08
CR DC
CU DB

MD 16
MH 1E
ML 08
MR DC
MU DB

ES 1B 2B
ER 1B 59
EK not available
EL 1B 54

AC 1B 3D
AX
AO 20
IL 1B 45
DL 1B 52
AV

Command File: TV91 OP .MAC

AFCU=OB
AFCL=08
AFMD=16
AFMH=lE
AFER=lB 59
AFAC=lB3D
AFIL=lB45

AFCD=16
AFCH=lE
AFMR=OC
AV=24
AFEK=
AX=F
AFDL=lB 52

Graphic or
ASCII Name

SYN
RS
BS
FF
VT

SYN
RS
B~
FF
VT

ESC +
ESCY

ESCT

ESC :;::
F
SF
ESCE
ESCR
24

AFCR=OC
AFMU=OB
AFML=08
AFES=lB2B
AFEL=lB 54
AO=20

B-15

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User's Guide

B-16

Televideo 925 and 950

The Televideo 925 and 950 displays 24 lines of 80 characters per line. The maxi
mum transmission rate is 19.2K baud. Table B-13 shows the Televideo 925 and
950 configuration.

Table B-13 Televideo 925 and 950 Configuration

Function
Code

XA
XF
XU
XX
XZ

CD
CH
CL
CR
CU

MB
MD
MH
ML
MR
MU

ES
ER
EK
DL
EL

IL
AC
AO
AX
AV
AB
AR
BK

Command File: TV925.MAC

AV=24
AFBK=20
AFXU=15
AFCD=16
AFCR=OC
AFMD=16
AFMR=OC
AFER=IB59
AFEL=lB 54
AO=20

Hexadecimal
Value

01
06
15
18
1A

16
1E
08
OC
OB

00
16
1E
08
DC
OB

1B 2B
1B 59
not available
1B 52
1B 54

1B 45
1B 3D
20

1B
7F
20

AB=lB
AFXA=l
AFXX=18
AFCH=lE
AFCU=OB
AFMH=lE
AFMU=OB
AFEK=
AFIL=lB45
AX=F

Graphic or
ASCII Name

NUL
ACK
NAK
CAN
SUB

SYN
RS
BS
FF
VT

CR
SYN
RS
BS
FF
VT

ESC +
ESCY

ESCR
ESCT

ESCE
ESC =

SP
F
24
ESC
DEL
SP

AR=7F
AFXF=6
AFXZ=lA
AFCL=08
AFMB=OD
AFML=08
AFES=lB 2B
AFDL=lB 52
AFAC=lB3D

PSCOPE-86 User's Guide Configuring PSCOPE for Non-Intel Terminals

Zentec

The Zentec displays 24 lines of 80 characters per line. The maximum transmission
rate is 19.2K baud. To rub out a character on this terminal you must use the delete
key, SHIFT plus ESC. Table B-14 shows the Zentec configuration.

Table B-14 Zentec Configuration

I

Function
Code

XA
XF
XU
XX
XZ

CD
CH
CL
r" vR
CU

MB
MD
MH
ML
MR
MU

ES
ER
EK
DL
EL

IL
AC
AO
AX
BE

AV
AB
AR

Hexadecimal

1
6
15
18
1A

OA
1E
08
" vC
OB

OD
OA
1E
08
OC
OB

Value

iB 2B
1B 59
not available
1B 52
1B 54

1B 45
1B 3D
20

20

1B
7F

Command File: ZENTEC.MAC

AV=24
AFXA=l
AFXX=18
AFCH=lE
AFCU=OB
AFMH=lE
AFMU=OB
AFEK=
AFIL=lB45
AX=F

AB=lB
AFXF=6
AFXZ=lA
AFCL=08
AFMB=OD
AFML=08
AFES=lB2B
AFDL=lB 52
AFAC=lB3D
AFBK=20

Graphic or
ASCII Name

SOH
ACK
NAK
CAN
SUB

LF
RS
BS
FF
VT

CR
LF
RS
BS
FF
VT

ESC +
ESCY

ESCR
ESCT

ESCE
ESC =

SP
F
SP

24
ESC
DEL

AR=7F
AFXU=15
AFCD=OA
AFCR=OC
AFMD=OA
AFMR=OC
AFER=lB 59
AFEL=lB 54
AO=20

B-17/B-18

APPENDIX C
ADDITIONAL INFORMATION FOR

SERIES III USERS

This appendix contains specific information on the Intellec Series III development
system. It covers the following subjects:

• Series III program development process (and related manuals).

• Hardware and software required.

• User programs supported.

• System resources used by the debugger.

• System-specific examples of debugger invocation line, sign-on message, and
commands.

Operation of the SerieslU

The following manuals describe the general operation of the Series III:

• Intelle~ Series III Microcomputer Development System Product Overview,
order number 121575

• Intelle~ Series III Microcomputer Development System Console Operating
Instructions, order number 121609

• Intelle~ Series III Microcomputer Development System Programmer's Reference
Manual, order number 121618

Program Development Process

Figure 1-1 shows how the debugger fits into your program development process.
Figure C-l shows the same process. The following manuals will provide informa
tion on the different stages of your program development.

• ISIS-II CREDITTM CRT-Based Text Editor User's GUide, .
order number 9800902

• AEDIT TEXT EDITOR User's GUide, order number 121756

• Pascal-86 User's GUide, order number 121539

• PLIM-86 User's GUidefor 8086-Based Development System,
order number 121636

• FORTRAN-86 User's GUide, order number 121570

• iAPX 86,88 Family Utilities User's Guide, order number 121616

C-I

Additional Information for Series III Users PSCOPE-86 User's Guide

C-2

r FORTRAN-86 '---
SOURCE I ~

PASCAL-86
SOURCE

PL/M-86
SOURCE

i .. · ·.<i

RUN-TIME
LIBRARIES

OTHER

RE'-gB~~~,.eLE r-
MODULES

I LIBRARIES ~
I I

I

I
I

.... ----------~

Figure C-l Series III Program Deveiopment Process

Hardware and Software Required

You need the following hardware and software to run the debugger:

• Intellec Series III development system (run release 2.0 or later).

• ISIS operating system (release 4.1 or later).

• At least one single- or double-density flexible disk drive, a hard disk unit
plus a single- or double-density flexible drive, or a remote disk on an NDS I
orNDS II.

• Pascal compiler (release 2.0 or later), PL/M-86 compiler (release 2.0 or
later), or FORTRAN-86 compiler (release 2.0 or later).

• 8086-based utilities.

• PSCOPE high-level program debugger.

1369

PSCOPE-86 User's Guide Additional Information for Series III Users

User Programs Supported

The amount of memory available to your program (the program under debug)
depends upon the amount of memory in your system. You can expand the Series
III up to one megabyte of memory addressable by the 8086. PSCOPE requires ap
proximately 1l0K bytes. You must add more memory to accommodate additional
workspace and your program.

Your program must be a load-time locatable (LTL) or a position independent code
(PIC) object module produced by LINK86 with the BIND control. You must pro
duce the object modules used as input to LINK86 with either a Pascal-86 compiler
(release 2.0 or later), a PL/M-86 compiler (release 2.0 or later), or a
FORTRAN-86 compiler (release 2.0 or later) with the DEBUG control. Because
the reliability of some debug functions can be affected by cross-statement compiler
optimizations, you must use OPTIMIZE (0).

System Resources Used

The debugger requires certain system resources, such as memory space and open
files, that can affect your program.

Memory

The debugger occupies 1l0K bytes of memory, including space for symbol and
line number information.

To reduce memory usage, the debugger provides for virtual storage of compiler
generated debug information. Symbol table information (from the compiler) is
sent out to disk if necessary. Your program must reside in memory, however.

File Requirements

Under the Series III operating system, up to six open files are available for an
application, plus terminal input. (Terminal output does not count as an open file.)
Terminal input does not count against the total of six open files allowed because
the operating system shares terminal input between PSCOPE and your program.

Of those six files, PSCOPE may require one or more files from each of the follow
ing groups:

• Console input

• Virtual symbol table

• LOAD, HELP, PUT, INCLUDE, CRT, MACRO, PSCOPE overlay

• List

The number of open files increases if you have nested open files, such as a PUT
command inside of an INCLUDE file.

C-3.

Additional Information for Series III Users PSCOPE-86 User's Guide

C-4

Other Resources Required

The debugger requires the following additional host system resources:

• The software interrupt 3 (the one-byte, debugger-oriented INT instruction)

• The trap flag (used for single-stepping)

• The CNTL-C trap (system call DQ$TRAP$CC)

Your program should not use these host system resources.

In addition, PSCOPE uses interrupts 0, 4, 5, 16, 17, and 20 through 31 for error
handling and floating point operations. However, your program can use these
interrupts, since PSCOPE maintains separate copies of these interrupt vectors for
itself and your program.

Invocation Line

To invoke the debugger in the 8086 execution environment of the Series III, pre
face the invocation line with the RUN command. The ISIS-II operating system
prompt is a hyphen (-).

The general format of the invocation is:

-RUN [:Fn:] PSCOPE [controls]

or

> [:Fn:] PSCOPE [controls]

Where:

:Fn: is the disk in drive n. The ncan be 0 through 9.

controls is any number of invocation controls from the list specified in
Chapter 3.

PSCOPE signs on with the following message:

SERIES-III PSCOPE-86, Vx.y

Example

The following example shows the beginning of a PSCOPE debugging session:

-RUN PSCOPE MACRO(:F1 :PROCS.MAC)

SERIES-III PSCOPE-86, Vx.y
*LOAD :F1 :DC.86
*GO

APPENDIX D
ADDITIONAL INFORMATION FOR

SERIES IV USERS

This appendix contains specific information on the Intellec Series IV development
system. It covers the following subjects:

• Series IV program development process (and related manuals) .

• Hardware and software required.

• User programs supported.

• System resources used by the debugger.

• System-specific examples of the debugger invocation line, sign-on message,
and commands.

Operation of the Series IV

The following manuals describe the general operation of the Series IV:

• Intelle~ Series IV Microcomputer Development System Overview,
order number 121752

• Intelle~ Series IV Operating and Programming GUide, order number 121753

• Intelle~ Series IV ISIS-IV User's Guide, order number 121880

Program Development Process

Figure 1-1 shows how the debugger fits into your program development process.
Figure D-l shows the same process. The following manuals provide information
that will aid in your program development.

• ISIS-IVCREDIT™ CRT-Based Text Editor User's GUide,
order number 9800902

• AEDIT TEXT EDITOR User's GUide, order number 121756

• Pascal 86 User's GUide, order number 121539

• PLIM-86 User's GUide/or 8086-Based Development System,
order number 121636

• FORTRAN-86 User's GUide, order number 121570

• iAPX 86,88 Family Utilities User's GUide, order number 121616

D-I

Additional Information for Series IV Users PSCOPE-86 User's Guide

D-2

Hardware and Software Required

You need the foliowing hardware and software to run the debugger:

• Intellec Series IV development system.

• iNDX operating system.

• At least one single- or double-density flexible disk drive, a hard disk unit
plus a single- or double-density 5 114 inch floppy, or a remote disk on an
NDS lor NDS II.

• Pascal compiler (release 2.0 or later), PL/M-86 compiler (release 2.0 or
later), or FORTRAN-86 compiler (release 2.0 or later).

• 8086-based utilities.

• PSCOPE high-level program debugger.

I
I,-------J·~ I FO:J~~~E86 ~ Lo.-...;~...;........i'""'--l

RUN-TIME
LIBRARIES

OTHER
RELOCATABLE

OBJECT
MODULES

1 ~[--'---------1

JVf6R ~ P~~~~~:6 ~ rr:3:.t:: ~~ RE~i~l~~LEt------;--..: I ... : .. · ... ·: · .. L •.•••••.•• N .••.•• K .• : ..•.•..••... $ •. 6.· .•••..••.•.•••.•• : .•..•..•• ··.:.·.1 ~I.··.· •. · •. ·.·.·:p .. · •.• ·.• ..•... ·:·.c .•. ·: .•. • ... · .. o .•.•.•. · •. ·.P .•... E .. · ·.: ..•.••.•. •.• .•.•• •• •. 1 ' r :."'" !."'" 1 I ~ __________ J

PLlM·.O ~ 1'1;,."" I- r-::-l
SOURCE ~ ._ y

,
LIBRARIES

1369

Figure D-l Series IV Program Development Process

PSCOPE-86 User's Guide Additional Information for Series IV Users

User Programs Supported

The amount of memory available to your program (the program under debug)
depends upon the amount of memory in your system. You can expand the Series
IV up to one megabyte of memory addressable by the 8086. PSCOPE requires ap
proximately 110K bytes. You must add more memory to accommodate additional
workspace and the user program.

Your program must be a load-time locatable (LTL) or a position independent code
(PIC) object module produced by LINK86 with the BIND control. You must pro
duce the object modules used as input to LINK86 with either a Pascal-86 compiler
(release 2.0 or later), a PL/M-86 compiler (release 2.0 or later), or a
FORTRAN-86 compiler (release 2.0 or later) with the DEBUG control. Because
the reliability of some debug functions can be affected by cross-statement compiler
optimizations, you must use OPTIMIZE (0).

System Resources Used

The debugger requires certain system resources, such as memory space and open
files, that can affect your program.

Memory

The debugger occupies 1l0K bytes of memory, including space for symbol and
line number information.

To reduce memory usage, the debugger provides for virtual storage of compiler
generated debug information. Symbol table information (from the compiler) will
be sent out to disk if necessary. Your program must reside in memory, however.

File Requirements

Under the Series IV operating system, up to six open files are available for an
application, plus terminal input. (Terminal output does not count as an open file.)
Terminal input does not count against the total of six open files allowed because
the operating system shares terminal input between PSCOPE and your program.

Of those six files, PSCOPE may require one or more files from each of the follow
ing groups:

• Terminal input

• Virtual symbol table

• LOAD, HELP, PUT, INCLUDE, CRT, MACRO, orPSCOPE overlay

• List

The number of open files increases if you have nested open files, such as a PUT
command inside of an INCLUDE file.

D-3

Additional Information for Series IV Users PSCOPE-86 User's Guide

DA

Other Resources Required

The debugger requires the following additional host system resources:

• The software interrupt 3 (the one-byte, debugger-oriented INT instruction).

• The trap flag and interrupt 1 (used for single-stepping).

• The CNTL-C trap (system call DQ$TRAP$CC) .

Your program or any background program should not use these host system
resources.

In addition, PSCOPE uses interrupts 0,4,5,16,17, and 20 through 31 for error
handling and floating point operations. Your program can use these interrupts,
since PSCOPE maintains separate copies of these interrupt vectors for itself and
your program. However, a background program must not use any of these
interrupts.

Invocation Line

The general format of the invocation is as follows:

/W/ PSCOPE [controls]

or

PSCOPE [controls]

Where:

controls is any number of invocation controls from the list specified in
Chapter 3.

PSCOPE signs on with the following message:

SERIES-IV PSCOPE-86, Vx.y

Example

The following example shows the beginning of a PSCOPE debugging session:

-PSCOPE MACRO(PROCS.MAC)

SERIES-IV PSCOPE-86, Vx.y
*LOAD DC.S6
*GO

APPEND·IX E
SAM.PLEPROGRAM L·IST·ING

This appendix contains the sample program DC referred to throughout this
manual.

SERIES-III P&sc&I-86, VZ.O

Source File: ;F7:DC7.PAS
Object File: :F7:DC7.0BJ
Controls Specified: XREF, DEBUG •.

STHT LINE NESTING
1 1 0 0

2 10 0 0

3 12 0 0

4 14 0 0

5 18 0 0

6 21 0 0
6 22 0 1
7 23 0 1
8 24 0 1
9 25 0 1

10 %6 0 1
11 27 0
12 28 0
13 29 0
14 30 0
U5 31 0

16 33 0 0
16 34 0 1
17 35 0 1
18 36 0 1
19 37 0 1

SOURCE TEXT: :F7:DC7.PAS
(* This progr&m implements &n inter&ctive Desk C&lcul&tor. It

&ccepts lines of text &s input. E&ch line should cont&in one
expression. E~ch line is p&rsed, ev&lu&ted, and the result
is printed. The expressions &re &llowed to cont&in embeddeD
&ssignment st&tements to single-letter v&ri&bles. An error
will abort the ev&lu&tion of the current expression. *)

~rogr&m dc (input! output);

l&bel 1000, 9999;

const m&x_Iine_iength = 40;

type error clas5 (illeg&l_tokeo, line_t?o_long, end_of_line,
missing_r_p&ren, error_ln_expression, error_in_'&ctor,
error_in_st&tement, error_In_term);

token_cl&ss = (&dd_op, mul_op, &ssign, l_p&ren,
r_p&ren, u&ri&ble, int_const, line_end);

token = record
c&se cl&ss

&dd_op
mul_op
asSign
l_pCi.fiHi
r_p&ren
vuhble
int const
line end :

end (*-record

record

token chss 0'
(&dd_op_v&lue
(mul_op_v&lue
0;
Ci;
();

(v&rhble v&lue
(int const vdue
(); -
*l;

chv) ;
ch&r);

char) ;
integer);

st&tus (empty, full);
length 0 .. m&x_line_length;
index 0 •• m&x_Iine_Iength;
l&st_index 0 •• m&x_line_length;

20 38 0 1 str p&cked &rr&y C1 •• m&x_Iine_lengthl of ch&r

21 41 0 0
22 42 0 0
23 43 0 0

24 45 0 0

25 47 0 0

26 49 0
26 50 1
27 51 1

v&r
c
buller

end (* record *);

token;
ch&r;
text_buller;

u&ri&ble_t&ble : arr&yC'&' •• 'z'] of integer;

<* --- *)
procedure error<e : error_cl&ss); (* print error & rest&rt .)
begirl

write (' ':(buffer.hst_index+3), 'A DC Error: ');
cau·, 0'

E-l

Sample Program Listing

SERIES-III Pascal-86, V2.0
ERROR

PSCOPE-86 User's Guide

STMT LINE NESTING SOURCE TEXT: :F7:DC7.PAS

E-2

28
29
30
31
32
33
34
35
36
38
39
40

41

42
42
43
44
45
45
46
48
49
50
51

52
54
55
57
58
59
60

61

62
63
63

64
65
65

66
67
67

68.

52 1 2
53 1 2
54 1 2
55 1 2
56 1 2
57 1 2
58 1 2
59 1 2
60 1 2
61 1 1
62 1 1
63 1 1

65 0 0

67 0
68 1
69 1
70 1
71 1
7Z 2
73 2
74 2
75 2
76 3
77 3

79 2
80 2
81 2
82 1
83 1
84 1
85 1

87 0 0

90 1 0
91 2 0
92 2 1

95 1 0
96 2 0
97 2: 1

100 1 0
101 2: 0
102 2 1

105 0

illegal_token wri te ('Illegal token');
line _too_long wri te ('Input line too long');
end -of line wri te ('End of line') ;
missing_ r _paren blri te ('Missing right paren');
error - in - factor write ('Illegal factor');
error in term wri te ('Error detected in term');
error_in_expression write ('Error detected in expression') ;
error in statement write ('Illegal statement') ;

end (* case *) ;

writeln;
goto 9999;

end (* error *) ;

(* --- *l
procedure get_line; (* input line & set c to 1st char of line *>
begin (* get_line *l

buffer. length := 0;
buffer.status := empty;
buffer. last index := 1;
repeat -

write(' ');
while eof do reset{input);
while not eoln do

if buffer. length (max_l~ne_length then begin
buffer. length := buffer. length + 1;
read(buffer.strCbuffer.lengthJI

end
else error(line_too_long);

readln;
until buffer. length) 0;
buffer. status := full;
buffer. index := 1;
c := buffer.strCbuffer.indexJ;

end (* get_line *1;

(* --- *)
procedure get_token; (* scan line & set t to its value *1

function digit(c: char): boolean; (* true if c is a digit *l
begin

digit := ('0' <= c) and (c <= '9')
!~d;

function upper_case(c: char): boolean; (* true if c is upper case *l
begin

upper_case := ('A' <= c) and (c <= 'Z')
end;

function lower_case(c: charI: boolean; (* true if c is lower case *>
begin

lower case := ('a' <= c) and (c <= 'z')
end; -

(* ---------------------------------- *l
procedure get_char; (* set c to next char in line *)

PSCOPE-86 User's Guide

SERIES-III Pascal-86, V2.0
GET_CHAR

Sample Program Listing

STMT
69
69
70
71
72
73
74
75
76
77

LINE
107
108
109
110
111
112
113
114
115
116

NESTING
2 0

SOURCE TEX~: :F7:DC7.PAS

78
79

80

118
119

121

80 124
82 125

83 127
84 lZ8
85 129
86 130
87 131

88 133
90 134
91 135
9Z 136
93 137

94 139
96 140
97 141
98 142
99 143

100 144
101 145
103 146

104 148
106 149
107 150
108 151

109 153
110 154
111 155
115 156
119 157
119 158
120 159
121 160
123 161

2 1
2 1
2: 2
2 3
2 3
2 3
2 Z
2 3
2 3

2 2
2 1

o

1
Z
2
2
2

1
2
Z
2
2

1
2
Z
2
3
3
3
2

1
Z
Z
2

1
2
3
3
3
4
4
4
4

begin (* get_char *l
if buffer.status =
else begin

empty then get_line

if buffer. index < buffer. length then begin
buffer. index := buffer. index + 1;
c

end
:= buffer.strCbuffer.indexJ;

else begin
c := cr;
buffer.status := empty

end
end

end (* get_char *);

(* ---------------------------------- *)
begin (* get_token: scan line & set t to its value *)

while c = , , do get_char; (* skip leading spaces *)
buffer. last_index := buffer. index; (* for error reporting *)

if lower case(c) then begin
t.class := variable;
t.variable Value := c;
get_char; -

end

(* lower case variable *)

else if upper_case(c) then begin (* upper case uari~ble *1
i.class := variable;
t.variable value := chr(ord(c) + (ord('a') - ord('A'»);
get_char; -

end

else if digit(c) then begin <* integer constant *)
t.class := int_const;
t.int_const_value := 0;
while digit(c) do begin

t.int const value := 10*t.int const_value + ord(c) - ord('O');
get_char; -

end;
end

else if c = cr then begin (* end of line *)
t.class := line_end;

:= If;
end

else begin
case c of

'+' ,
'*' ,
':'

, -,
, I'

(* symbol: + - * I := () # *)

begin t.class := add_op; t.add_op_value := C; end;
begin t.class := mul_op; t.mul_op_value := c; end;
begin

get_chu;
if c = '=' then t.class := assign
else error(illegal_token);

end;

E-3

Sample Program Listing

SERIES-Ill Pascal-86, V2.0
GET_TOKEN

PSCOPE-86 User's Guide

STI1T
125
126
127
128
130
132
133

LINE
162
163
164
165
166
167
168

NESTING
1 3

SOURCE TEXT: :F7:DC7.PAS

1 3
1 3
1 3
1 3
1 2
1 2

135 170

136 172 0 0

137 174 0

138 176 0
139 177 0
139 178 1
140 179 2
140 180 3
141 181 3
142 182 3
143 183 3

144 185 4
145 186 4
146 187 4
147 188 4
148 189 4
150 190 3
152 191 2
152 192 3
153 193 3
154 194 3
155 195 3
156 196 3

158 198 3
160 199 2
164 200 2
166 201 2
168 202 1

169 204 0 0

170 206 0

171 208 0
172 209 0
173 210 0
173 211 1
174 212 1
175 213 2
176 214 2
177 2)5 2
178 216 Z

E-4

'(' t.class := l_parenj
')' : t.class := r_paren;
'#' : goto 1000;
otherwise error(illegal_token);

end <* ca.se *);
get_char;

end <* begin *) j

(* --- *)
procedure fa.ctor(var factor_value integer);
(* parse: <variable> [":=" <expression>] I "("<expression>")" I <number> *)

var expression_value integer;
variable_index : char;

begin (* factor *1
case t.class of

vuiable : begin
variable index := t.variable_value;
get_token;
if t.class <> assign then

factor value := variable table[variable index]
else begin -

get_token;
expression(expression_value);
variable table[variable index] := expression_value;
factor_value := expressIon_value;

end;
end;

l_puen begin
get_token;
expression(expression_value)j
factor_value := expression_valuej
if t.class = r_paren then

get_token
else error(missing_r_paren)j

endj
int const
oth.rwise

end <* case
end <* factor

begin factor_value := t.int_const_value; get_token; end;
error<error_in_factor);
*) ;
*) ;

(* --- *1
procedure term(var term_value integer)j
(* parse: <factor> C{mul_op> <factor>] ••• *l

var factor_I_value integer;
factor_2_value : integerj
op : cha.r;

begin <* term *)
factor (factor l_value)j
while t.clas5 - mul_op do begin

op := t.mul_op_valuej
get_token;
factor (factor_Z_valuelj
c.se op of

PSCOPE-86 User's Guide Sample Program Listing

SERIES-III Pascal-86, V2.0
TERM

STMT
179
180
181
183
185
187
188

LI NE NEST! NG
217 1 3
218 1 3
219 1 3
220 1 3
221 1 2
222 1
223 1

189 ZZS 0 0

190 227 0

191 229 0
192 230 0
193 231 0
193 232 1
194 233 2
195 234 2
196 235 2
197 236 1
199 237 1
200 238 1
201 239 2
202 240 2
203 241 2
205 242 2
207 243 1
208 244 2
209 l4S l
210 246 2
211 247 2
l12 248 3
213 249 3
214 250 3
216 251 3
ZIS 252 Z
2Z0 253 1
221 254 1

222 ZS6 0 0

223 258 0

224 260 0
224 261 1
225 262 1
226 263 1
228 264 1

229 267 0 0

229 269 0

SOURCE TEXT: :F7;DC7.PAS
'*' : factor I value := factor 1 value * factor_2_value;
'1' factor-I-value:= factor 1 value div factor_2_value;
otherwise error (error_in_term>;-

end (* case *>;
end;
term value ;= factor_I_value;

end (*-term *>;

(* --- *l
procedure expression (var expression_value integer);
<* parse: r<add_op») <term) r<add_op) <term») •.• *)

var term_I_value: integer;
term_2_value : integer;
op : char;

beg i n (* ex pre s s i o,n * l
if t.class = add_op then begin

op := t.add_op_value;
get_tok.en;

end
else op := '+';
term (term_I_value);
case op of

'+' : (* null *);
,-, : term_I_value := -term_I_value;
otherwise error<error_in_expressionl;

end <* case *);
while t.class = add_op do begin

op := t.add_op_vaiue;
get_tok.en;
term (term_2_value);
case op of

'+' : term 1 value := term_I_value + term_2_valuej
,-, : term:l:value := term_l_value - term_Z_valuej
otherwise error(error_in_expression);

end (* case *);
end;
expression_value := term_I_value;

end <* expression *);

<* --- *l
procedure statement;
<* parse: <expression) <line_end) *)

var expression_value: integer;
begin (* statement *>

expression (expression_value);
if t.class = line_end then writeln(expression_value:ll
else error(error in statement)j

end <* statement *>j -

begin <* main program *)

(* initialize variable table *)
for c := 'a' to 'z' do variable tablercJ := 0;

E-5

Sample Program Listing PSCOPE-86 User's Guide

SERIES-III Pascal-86, V2.0

STMT LINE NESTING SOURCE TEXT: :F7:DC7.PAS
231 272 0 1 (* sign on *)

wri teln ('Desk Ci.lculi.tor <DC)') ;

232 275 0 (* error restilrt *)
9999:
repeat <* forever *)

232 278 0 2 get_line;
233 279 0 2 get_token;
234 280 0 2 statement;
235 281 0 2 until false;

237 283 0 (* sign off *)
1000:
writeln ('Exi t');

238 287 0 end.

E-6

PSCOPE-86 User's Guide Sample Program Listing

SERIES-III Pascal-86, V2.0
Cross-Reference Listing

Nallle OHsef Length Attributes and References

1000 • • •
9999 ••
ADD OP •
ASsIGN •
BOOLEAN.
BUFFER

C.

C.
C.
C ••
CHAR ••
CR ••
DIGIT •
E ••••
EMPTY ••••
END OF LINE.
ERROR. - ••••
ERROR CLASS. • • • •
ERROR:IN_EXPRESSION.
ERROR IN FACTOR. • •
ERROR:IN:STATEMENT •
ERROR_IN_TER!'! ••
EXPRESSION •••
EXPRESSION VALUE •
EXPRESSION-VALUE •
EXPRESSION-VALUE
FACTOR •• - •••
FACTOR 1 VALUE
FACTOR-2-VALUE •
FACTOR-VALUE •
FALSE. - ••
FULL • • • •
GET CHAR • • •
GET-LINE ••
GET-TOKEN •••
ILLEGAL TOKEN.
INPUT. :- ••
INTEGER ••
INT CONST ••••
LF :- •••••
LINE_END • • •
LINE TOO LONG.
LOWER CASE ••
L PAREN ••••
MAX LINE LENGTH.
MISSING R PAREN.
I'IUL OP : -
OP :- •••
OP ••
OUTPUT •

14H

74H

4H
4H
4H

4H

4H
FFFCH
FFFCH

FFFCH
FFFAH

4H

8H

FFF9H
FFF9H

OH

1
1
1

44

1
·1
1
1
1

2
2
2

2
Z
2
1
1

1
8
2
1

1
2
1
1
1
1
8

label in DC at 237; read: 127.
label in DC at 232; read: 39.
TOKEN_CLASS constant in DC at 5; read: 7 111 193 207.
TOKEN_CLASS constant in DC at 5; read: 9 121 142.
primitive type; read: 62 64 66.
TEXT_BUFFER variable in DC at 23; write: 42 43 44 50 51 57 58 72 77 82;
read: 26 49 50 51 56 59 59 69 71 71 72 73 73 82.

CHAR variable in DC at 22; write: 59 73 76 107 229; read: 80 83 85 89 91 95
98 99 105 110 112 116 120 230.
CHAR parameter in DIGIT at 62; read: 63 63.
CHAR parameter in LOWER_CASE at 66; read: 67 67.
CHAR parameter in UPPER_CASE at 64; read: 65 65.
primitive type; read: 7 8 12 20 22 62 64 66 138 172 192.
predefined CHAR constant; read: 76 105.
BOOLEAN function in GET_TOKEN at 62; write: 63; read: 95 98.
ERROR_CLASS parameter in ERROR at 25; read: 27.
(EI'IPTY, ••• ,FULL) constant in DC at 16; read: 43 69 77.
ERROR_CLASS constant in DC at 4; read: 30.
procedure in DC at 25; read: 53 122 129 157 165 182 204 215 227.
(ILLEGAL_TOKEN, ••• JERROR_IN_TERM) ~ype in DC at 4; read: 25.
ERROR_CLASS constant in DC at 4; read: 34 204 215.
ERROR_CLASS constant in DC at 4; read: 32 165.
ERROR_CLASS constant in DC at 4; read: 35 227.
ERROR_CLASS const~nt in DC ~t 41 re~d: 33 182.
procedure in DC at 189; read: 145 153 224.
INTEGER var parameter in EXPRESSION at 189; write: 220.
INTEGER variable in FACTOR at 137; write: 145 153; read: 146 147 154.
INTEGER variable in STATEMENT at 223; write: 224; read: 226.
procedure in DC at 136; read: 173 177.
INTEGER variabie in TERM at 170; write: 173 179 180; read: 179 180 187.
INTEGER variable in TERM at 171; write: 177; read: 179 180.
INTEGER var parameter in FACTOR at 136; write: 143 147 154 160.
predefined BOOLEAN constant; read: 236.
(EMPTY, ••• ,FULL) constant in DC at 16; read: 57.
procedure in GET_TOKEN at 68; read: 81 86 92 100 119 132.
procedure in DC at 41; read: 70 232.
procedure in DC at 61; read: 141 144 152 156 161 176 195 209 233.
ERROR_CLASS constant in DC at 4; read: 28 122 129.-
predefined TEXT variable; write: 47; read: 46 48 51 -54.
pri.itive type; read: 13 24 136 137 169 170 171 189 190 191 223.
TOKEN_CLASS constant in DC at 5; read: 13 96 160.
predefined CHAR consiani; read: 107.
TOKEN_CLASS constant in DC at 5; read: 14 106 225.
ERROR_CLASS constant in DC at 4; read: 29 53.
BOOLEAN function in GET_TOKEN at 66; write: 67; read: 83.
TOKEN_CLASS constant in DC at 5; read: 10 125 152.
INTEGER constant in DC at 3; read: 17 18 19 20 49.
ERROR_CLASS constant in DC at 4; read: 31 157.
TOKEN_CLASS constant in DC at 5; read: 8 115 174.
CHAR variable in EXPRESSION at 192; write: 194 198 208; read: 200 211.
CHAR variable in TERM at 172; write: 175; read: 178.
predefined TEXT variable; read: 26 28 29 30 31 32 33 34 35 38 45 226 231

E-7

Sample Program Listing

SERIES-III P~sc~l-86, V2.0

R PAREN •••
STATEMENT.
T ••

TERM • • . .
TERM_I_VALUE •

TERM 2 VALUE
TERM-VALUE •
TEXT-BUFFER.
TOKEN •••.
TOKEN CLASS.
UPPER-CASE .
VARIABLE •.•
VARIABLE INDEX •
VARIABLE:TABLE

Summ~ry Information:

PROCEDURE
ERROR
GET LINE
GET-TOKEN
DIGIT
UPPER CASE
LOWER-CASE
GET CHAR
FACTOR
TERM
EXPRESSION
STATEMENT
DC
-CONST IN COOE-

Tohl

287 Lines Read.
o Errors Detected.

75H

FFFCH

FFFAH
4H

FFFBH
40H

OFFSET
00C8H
0214H
0399H
0202H
02FEH
032AH
0356H
04EOH
0594H
060FH
06C6H
06FCH

44% Utilization of Memory.

E-8

PSCOPE-86 User's Guide

Cross-Reference Listing

3

2

2
Z

44
3
1

1
1

52

CODE
014CH
OOBEH
0147H
002CH
002CH
002CH
0043H
OOB4H
007BH
00B7H
0036H
00E7H
00C8H

07E3H

237.
TOKEN_CLASS constant in DC ~t 5; re~d: 11 126 155.
procedure in DC ~t Z22; read: 234.
TOKEN variable in DC at 21; write: 84 85 90 91 96 97 99 106 111 112 115 116
121 125 126; re~d: 99 139 140 142 155 160 174 175 193 194 207 208 225.
procedure in DC at 169; read: 199 210.
INTEGER variable in EXPRESSION at 190; write: 199 202 212 213; read: 202
212 213 220.
INTEGER variable in EXPRESSION at 191; write: 210; read: 212 213.
INTEGER var par~meter in TERM ~t 169; write: 187.
record type in DC ~t 16; re~d: 23.
record type in DC ~t 6; read: 21.
(AOD_OP, ..• ,LINE_ENOJ type in DC at 5; read: 6.
BOOLEAN function in GET_TOKEN at 64; write: 65; read: 89.
TOKEN_CLASS constant in DC at 5; read: 12 84 90 140.
CHAR variable in FACTOR at 138; write: 140; read: 143 146.
array['a' .• 'z'] of INTEGER variable in DC at 24; write: 146 2301 read:
143.

SIZE DATA SIZE STACK SIZE
3320 OOOEH 140
1900 0012H 180
3270 0008H 80

440 0008H- 80
440 OOOSH 80
440 0008H 80
670 OOOSH 80

1800 OOOEH 140
1230 0010H 160
1830 0010H 160
540 OOOCH 120

2310 0078H 1200 OOOEH 140
2000

20190 0078H 1200 00C4H 1960

APPEND'IX F
PSCOPEGRAMMAR

This appendix contains the grammar that describes the syntax ofPSCOPE's com
mand language. "Notational Conventions" in the Preface to this manual explains
the notational conventions used.

Note thai the command line is the unit in which PSCOPE commands are
processed. Hence, the symbol command-line is the start symbol of the grammar.

PSCOPE Grammar

command-line:: = [command] [; command]*

command:: = 88m-command
I base-command
, callstack-command
I count-command
, define-command
I directory-command
I display-command
I do-command
I edit-command
I eval-command
, exit-command
I go-command
, help-command
I if-command
I inputmode-command
I include-command
I list-command
,load-command
, modify-command
I port-command
I put-command
I remove-command
I repeat-command
I return-command
I step-command
I view-command
I write-command

asm-command :: = ASM ADDRESS = I assembler-mnemonic

ISASM

IASM
ISASM

I L I assembler-mnemonic] *
ADDRESS = I assembler-mnemonic

I L I assembler-mnemonic] *
ADDRESS [length-spec]
ADDRESS [length-spec]

base-command:: = BASE [= expr]

callstack-command :: = CALLSTACK [expr]

F-I

PSCOPE Grammar

F-2

count-command:: = COUNT expr
[/oop-command]*

end-count

loop-command ::= WHILE expr
I UNTIL expr
I [command]

end-count:: = ENDCOUNT
lEND

PSCOPE-86 User's Guide

define-command:: = DEFINE BRKREG name = break-group [, break-group]*
I DEFINE TRCREG name = break-group L break-group]*
I DEFINE PATCH expr [TIL expr] = patch-value
I DEFINE PROC name = command
I DEFINE LITERALLY name = string [string] *
I DEFINE [GLOBAL] mtype name [= expr]

break-group:: = (break-point [, break-point]*) [CALL proc-name]
I break-point [CALL proc-name]

break-point:: = expr

patch-value:: = command
INOP

directory-command:: = DIR [directory] [directory-type]

directory::= DEBUG
IpUBLIC
I: module-name

directory-type:: = mtype
Idtype
I PATCH
IARRAY
IENUMERATION
IFILE
ILABEL
ILiNE
IMODULE
IPROCEDURE

·IRECORD
ISET

display-command:: = PROC proc-name
I LITERALLY literally-name
I BRKREG brkreg-name
ITRCREG trcreg-name
I PATCH expr
I mtype address [length-spec]
lexpr
IREGS

length-spec:: = LENGTH expr
ITO expr

do-command:: = DO
[command]*

END

PSCOPE-86 User's Guide

edit-command:: = EDIT [edit-item]

edit-item:: = name
I PATCH expr
IGO

eval-command:: = EVAL expr [eval-type]

eval-type ::= LINE
IPROCEDURE
I SYM BOL [ALL]

exit-command:: = EXIT

go-command ::= GO [break-spec]*
IGO FOREVER

break-spec:: = USING brkreg-item [, brkreg-item]*
ITIL expr [, expr]*

brkreg-item :: = BRKREG
I brkreg-name
ITRCREG
I trcreg-name

help-command:: = HELP [name]

if-command ::= IF expr THEN
[command]*

[ORIF expr THEN
[command]*]*

[ELSE
[command]*]

end-if

end-if::= ENDIF
lEND

include-command:: = INCLUDE pathname [NOLlST]

inputmode-command::= INPUTMODE [=N]

list-command ::= LIST [pathname]
INLIST

load-command:: = LOAD pathname [load-option] *
[CONTROLS controls-text]

load-option :: = NOLINES
INOSYMBOLS
ICH808?
IE808?

/*for iRMX*/
/*for Series III/Series IV*/

port-command:: = PORT port-# expr [= expr]
I WPORT port-# expr [= expr]

modify-command:: = variable = expr
I mtype address [length-spec] = mOdify-list

PSCOPE Grammar

F-3

PSCOPE Grammar

F-4

modify-list:: = expr [, expr]*
I mtype address [length-spec]

length-spec:: = LENGTH expr
ITO expr

put-command:: = PUT pathname put-list
IAPPEND pathname put-list

put-list:: = put-item [, put-item] *
IDEBUG

put-item:: = mtype
I dtype
Iname
I PATCH [expr]

remove-command:: = REMOVE remove-item [, remove-item]*
I REMOVE DEBUG

remove-item:: = mtype
Idtype
Iname
I PATCH [expr]

repeat-command ::= REPEAT
[Joop-command]*

end-repeat

loop-command ::= WHILE expr
IUNTIL expr
I [command]

end-repeat:: = ENDREPEAT
lEND

return-command:: = RETURN [expr]

step-command:: = LSTEP
IpSTEP
IISTEP

view-command:: = VIEW view-item

view-item:: = file-name

write-command:: = WRITE
[USING (string-expr)]
[expr [, expr]*]

expr:: = logic-term [or-op logic-term] *

or-op ::= OR
IXOR

logic-term :: = logic-factor[AND logic-factor] *
logic-factor:: = [NOT] logic-primary

PSCOPE-86 User's Guide

logic-primary:: = arith-expr [rela tional-op arith-expr]

PSCOPE-86 User's Guide PSCOPE Grammar

relational-op :: = <
I>
1= =
I 1<=
1>=
1<>

arith-exp:: = [mtype] address

address:: = term [add-op term] *

add-op ::= +
I-
II
IMOD

term:: = factor [mult-op factor] *

factor:: = [add-op] primary

primary:: = primitive [: primitive]

primitive ::= (expr)
I variable
t value

variable:: = symbolic-reference
I mtype-variable-name
1$
IBASE
!NAMESCOPE
1 reg-name

symbolic-reference :: = [: module-name.]
symbol [qualifier]*

1 [: module-name]
line-number

Isymbol ::= ["] name

qualifier:: = left-bracket expr [, expr]*
right-bracket

I. symbol
IT

left-bracket:: = [

right-bracket::=]

F-5

PSCOPE Grammar

F-6

dtype :: = LITERALLY
IBRKREG
ITRCREG
IPROC

PSCOPE-86 User's Guide

reg-name:: = AX
IBX

/* for iRMX only */
STO

ICX ST1
lox ST2
IBP ST3
ISP ST4
101 ST5
lSI ST6
Ics ST7
los FIA
IES FlO
ISS FCW
liP FOA
IFLAGS
IAL
IAH
IBL
IBH
ICL
ICH
10L
10H
IFL
IFH

value:: = integer-constant
I real-constant
I Boolean-constant
1_.&_: ______ .& __ .&r_.&_: ______ .& __ .&1 .•.

I \:iLfI"~:rfjU"\:iLdIlL L\:iLfllI!:j-fjUII\:ildIlLj 1f.

Iproc-name [(expr[, expr]*)]
I % actual-parameter
I SUBSTR (string-expr, expr, expr)
I CON CAT (string-expr[, string-expr] *)
I STRLEN (string-expr)
ICI
I ACTIVE (symbolic-reference)
I. symbolic-reference
I SELECTOROF (expr)
I OFFSETOF (expr)

I actual-parameter:: = integer-constant

I
(expr)
NP

PSCOPE-86 User's Guide

mtype :: = BOOLEAN
ICHAR
I BYTE
jWORD
/DWORD
IADDRESS
rSELECTOR
IPOINTER
ISHORTINT
IINTEGER
ILONGINT
/EXTINT
IBCD
IREAL
ILONGREAL
',TEMPREAL

PSCOPE Grammar

F-7!F-8

APPENDIXG
RESERVED KEYWORDS

This appendix contains the keywords PSCOPE recognizes and uses. You cannot
use keywords as user-defined object names. To reference a program symbol whose
name is the same as a PSCOPE keyword, you must prefix the symbol with a quota
tion mark ("), as discussed in Chapter 3. PSCOPE also recognizes special operators
and delimiters which, like the reserved keywords, you cannot use in any other
way. PSCOPE reports all attempts to incorrectly use a PSCOPE keyword or delimi
ter as syntax errors.

PSCOPE Keywords

A
AH
APPEND
BASE
BOOLEAN
BYTE
CH8087
CL
CS
DFL
DL
DX
END
ENUMERATION
EX TINT
FDA
FL
GLOBAL
IFL
IP
LINE
LONGINT
MODE
NOLINES
NOT
OFL
PFL
PROCEDURE
REAL
REPEAT
SELECTOR$OF
SHORTINT
STO
ST4
STRLEN
TFL
TRACEACT
UNTIL
VSTBUFFER
WRITE

ACTIVE
AL
ARRAY
BCD
BP
CALL
CH
CON CAT
CX
DH
DO
E8087
END COUNT
ES
FALSE
FIA
FLAG
GO
INCLUDE
ISTEP
LIST
LONG REAL
MODULE
NOLIST
NP
OR
POINTER
PSTEP
RECORD
RETURN
SELECTOROF
SI
STI
ST5
SUBSTR
THEN
TRACEREGS
USING
WHILE
XOR

ADDRESS
ALL
ASM
BH
BRKREG
CALLSTACK
CHAR
CONTROLS
DEBUG
DI
DS
EDIT
ENDIF
EVAL
FCW
FILE
FOREVER
HELP
INPUTMODE
LABEL
LITERALLY
LSTEP
NAMESCOPE
NOSYMBOLS
OFFSET$OF
ORIF
PORT
PUBLIC
REGS
SASM
SET
SP
ST2
ST6
SYMBOL
TIL
TRCREG
VIEW
WORD
ZFL

AFL
AND
AX
BL
BX
CFL
CI
COUNT
DEFINE
DIR
DWORD
ELSE
END REPEAT
EXIT
FH
FlO
FSW
IF
INTEGER
LENGTH
LOAD
MOD
NOCODE
NOP
OFFSETOF
PATCH
PROC
PUT
REMOVE
SELECTOR
SFL
SS
ST3
ST7
TEMP REAL
TO
TRUE
VSTB
WPORT

G-I

PSCOPE-86 User's Guide

PSCOPE Operators and Delimiters

<=

0-2

<

$

>

1/

>= <>

Reserved Keywords

%

+ * /

APPENDIX H
PSCOPE COMMAND INDEX

This appendix lists each PSCOPE command and refers you to the section in this
manual where you can find more information.

Command Page Command Page

% ••••••••••••••••••••••••• 8-3 INCLUDE 10-6
INPUTMODE 10-10

ACTIVE 5-11 I(nsert) 2-11
APPEND 7-6 ISTEP 4-4
ASM 5-13

line number reference 3-3
BASE 10-9 LIST 10-6
BOock) 2-11 LOAD 4-1
BRKREG 11-1 LSTEP 4-3

call de bug procedures 8 -2 MACRO 2-2
CALLSTACK 0" 10-4 memory reference 3-9
change 8086/8088 flags 5-5 MODIFy 7-5
change 8086/8088 registers 5-7 modify memory 5 -12
change 8087 register 5-8 modify debug symbol 7-5
change NAMESCOPE 5-10
change program symbol 5-5 NAMESCOPE 5-1,5-10
CI ,................. 10-13 NOCRT 2-1
CONCAT 10-13 NOLIST 10-6
COUNT 6-1 NOMACRO 2-2
CRT 2-1 NOSUBMIT 2-3

debug procedure calls 8-2 OFFSET$OF 10-15
debug procedure parameters ... 8-3
debug procedure return 8-2 PATCH 9-1
D (elete) 2-11 PSTEP 4-3
DEFINE " ... " 7-2 PUT 7-6
DEFINE debug procedure 8-1
DIR 10-2 Q(uit) 2-12
DISPLAY 7-3
display debug objects 7-3 REGS 5-8
display memory 5-11 read and write I/O ports 5-9
display program symbol 5-3 REPEAT 6-1
DO 6-3 REMOVE 7-5

RUN 2-1
EDIT 2-8
EVAL 10-7 SASM 5-13
EXIT 10-1 SELECTOR$OF 10-15

SLA 5-15
fully qualified reference 5-1 STRLEN 10-13

SUBMIT 2-3
G(et) 2-11 SUBSTR 10-13
GO 4-2, 11-4 symbolic reference , 3-9

HELP 10-5, A-I TRCREG 11-3

IF 6-2 V (iew) 2-12,2-13

H-l

Command Index PSCOPE-86 User's Guide

Command Page

VSTBUFFER 2-4

WRITE. 10-12

X (change) 2-12

H-2

APPEND'IX'I
PSCOPE UNDER THE iRMXTM

OPERAT'ING SYSTEM

PSCOPE runs on any 86/3xx microcomputer system running the iRMX-86 operat
ing system, release 5 or greater. PSCOPE requires at least 11 OK bytes of user
memory. Your application program requires additional memory.

The following major iRMX-86 subsystems must be present.

Nucleus
Basic I/O system
Extended I/O system
Human interface
Application loader
Universal Development Interface (UDI)

When running under the iRMX -86 operating system, PSCOPE differs in the fol
lowing areas.

Linking
Invocation
Multitasking support
8087 support
CNTL-C limitation

Linking

Be sure to use the link library files supplied with the iRMX -86 operating system.

When invoking link86, include the following two options during the final link.

SEGSIZE (STACK (+2048))
MEMPOOL(+ 2500,OFFOOOH)

Invocation

Because systems that run iRMX-86 are 8086-based, you do not use the RUN pro
gram to invoke PSCOPE. A typical invocation line is as follows:

path name PSCOPE.86 options

Where:

pathname specifies the path of the file back to the root directory.

For example, /user/world/prog/pscope.86 means that PSCOPE is a file in the
directory prog which itself is in the directory world which itself is in the directory
user which is a directory under the root.

I-I

PSCOPE Under The iRMXTM Operating System PSCOPE-86 User's Guide

1-2

Multitasking Support

Although the iRMX -86 operating system handles multiple tasks, PSCOPE can
only debug one task at a time. PSCOPE has no cognizance of tasks initiated by the
task being debugged.

Because PSCOPE directly manipulates the iRMX-86 interrupt vector table, no
other task may manipulate the interrupt vector table while PSCOPE is running.
When you invoke PSCOPE, PSCOPE saves the interrupt vector table. When you
exit PSCOPE, PSCOPE restores the interrupt vector table. The consequence of
this is that in a multi-station system, only one station at a time may run PSCOPE.

If PSCOPE hangs, you cannot be sure of what the interrupt vector table may hold.
Reboot the system to return the interrupt vector table to a known state.

8087 Support

If the program you want to debug performs real arithmetic, the microcomputer
system must contain the iSBC 337 MULTIMODULE (8087 hardware). You
cannot use the 8087 software emulator.

When you load your program with the LOAD command, include the CH8087
option, as in the following example:

* LOAD pager.86 CH8087

Other Resources Required

The debugger requires the following additional host resources:

• The software interrupt 3 (the one-byte, debugger-oriented INT instruction).

• The trap flag and interrupt 1 (used for single-stepping) .

• The CNTL-C trap (system call DQ$TRAP$CC) .

Your program should not use these host system resources.

In addition, PSCOPE uses interrupts 0,4,5,16,17, and 20 through 31 for error
handling and floating point operations. However, your program can use these in
terrupts since PSCOPE maintains separate copies of these interrupt vectors for
itself and your program.

&,2-6,3-1
$,3-2, 11-5
%,8-3

Accessing debug procedure parameters, 8-3, 8-4
ACTIVE function, 5-11
ADDS Regent Model 200 (2400 baud only)

configuration, B-5
ADDS Viewpoint 3A Plus configuration, B-6
APPEND command, 7-6 thru 7-8

BASE command, 10-9, 10-10
BLOCK command, 2-11, 2-12
Break registers, 11-1 thru 11-3
Beehive Mini-Bee configuration, B-7
Breakpoints, 11-1 thru 11-7
BRKREG command, 11-1 thru 11-3

Calling debug procedures, 3-11, 8-2
Calling sequence, see CALLSTACK command
CALLSTACK command, 10-4, 10-5
Change 8086/8088 flags, 5-5, 5-6
Change 8086/8088 registers, 5-7, 5-8
Change 8087 registers, 5-8, 5-9
Change name scope, 5-10, 5-11
Change program symbol, 5-5
Character string constants, 3-4, 3-5
CI command, 10-13 thru 10-15
Code patch display, 9-2, 9-3
Code patches, 9-1 thru 9-3
Command entry, 2-6
Command index, H-1, H-2
Commands, see PSCOPE commands
Comments, 3-6
Compile restrictions, 1-2
CONCAT command, 10-13 thru 10-15
Configuration commands, B-1 thru B-3
Configuration

ADDS Regent Model 200 (2400 baud only), B-5
ADDS Viewpoint 3A Plus, B-6
Beehive Mini-Bee, B-7
DEC VT52, B-8
DEC VT100, B-9
Hazeltine 1420, B-lO
Hazeltine 1510 (Tilde Lead-in), B-11
Hazeltine 1510 (ESC Lead-in), B-12
Intel Series HIE, B-13
Lear Siegler ADM-3A, B-14
Televideo 910 Plus, B-15
Televideo 925 and 950, B-16
Zentec, B-17

Configuring PSCOPE for non-Intel
terminals, B-1 thru B-17

Constants, 3-9

INDEX

Continuation flags
&,2-6,3-1
!,2-9

Control constructs
COUNT, 6-1, 6-2
DO, 6-3
IF, 6-2, 6-3
REPEAT, 6-1, 6-2

COUNT control construct, 6-1, 6-2
CRT invocation control, 2-1, 2-2
Current name scope, 5-1 thru 5-3
Cursor control keys (for edit), 2-6, 2-7, 2-9 thru 2-11

DEC VT52 configuration, B-8
DEC VT100 configuration, B-9
Debug objects, 7-1, 7-2

debug type, 7-2
memory type, 7-2

Debug parameter reference, 3-11
Debug procedure calls, 3-11, 8-2
Debug procedure definitions, 8-1
Debug procedure parameter access, 8-3, 8-4
Debug procedure return, 8-2, 8-3
Debug session example, 1-6 thru 1-18
Debug symbol object types, 3-3
Debug symbols, 3-2
Debug type debug objects, 7-2
Debug variable references, 3-10
Debugger invocation, 2-1
Debugging session termination, see EXIT command
DEC VT52 configuration, B-8
DEC VT100 configuration, B-9
DEFINE BRKREG command, 11-1 thru 11-3
DEFINE code patches, 9-1, 9-2
DEFINE command, 7-2, 7-3, 8-1
DEFINE debug procedures, 8-1
DEFINE PATCH command, 9-1, 9-2
DEFINE PROC command, 8-1
DEFINE TRCREG command, 11-3, 11-4
DELETE (D) command, 2-12
Delimiters, 3-1, G-2
DIR command, 10-2 thru 10-4
Directory command, see DIR command
Display code patch, 9-2, 9-3
DISPLAY command, 7-3, 7-4
Display information at the terminal,

see WRITE command
Display memory, 5-11, 5-12
Display program symbol, 5-3, 5-4
DO control construct, 6-3

EDIT command, 2-8
Editor display, 2-9
Editor, see internal screen-oriented editor

Index-l

Index

End a debugging session, see EXIT command
Enter PSCOPE commands, 2-1, 2-2 thru 2-6
Error messages, A-I thru A -7
Error messages, invocation, A-I
Errors in syntax, 2-7
ESC key to invoke the internal editor, 2-8
EVAL command, 10-7 thru 10-9
Evaluating expressions, see EVAL command
Example PSCOPE debug session, 1-6 thru 1-18
Exception trapping, 11-6, 11-7
Execute user program, see GO command
EXIT command, 10-1, 10-2
Explicit typing of memory references,

see memory references with explicit typing
Expression evaluation, see EVAL command
Expressions, 3-8

Fatal errors, A-I
Floating point numbers, 3-4
Fully qualified line references, 5-1 thru 5-3
Fully qualified name, 5-1 thru 5-3
Fully qualified references, 5-1 thru 5-3
Further reading, vi, vii

GET (G) command, 2-12
Global debug objects, 7-1
GO command, 4-2, 4-3, 11-4 thru 11-6
Grammar, PSCOPE, F-l thru F-7

Hazeltine 1420 configuration, B-1O
Hazeltine 1510 (Tilde Lead-in) configuration, B-ll
Hazeltine 1510 (ESC Lead-in) configuration, B-12
HELP command, 10-5, 10-6, A-I
Host system execution environment, 1-2

IF control construct, 6-2, 6-3
INCLUDE command, 10-6, 10-7
Index ofPSCOPE commands, H-l
INPUTMODE command, 10-10 thru 10-12
iRMX information, 1-1
INSERT (I) command, 2-12, 2-13
Integers, 3-3, 3-4
Intellec Series III information, C-l
Intellec Series IV information, D-l
Intel Series III E configuration, B-13
Internal errors, A-I
Internal screen-oriented editor, 2-7 thru 2-11

Cursor control, 2-9 thru 2-11
Commands, 2-9
Display, 2-9
Entering, 2-8
Exiting, 2-8

Invocation controls, 2-1 thru 2-5
CRTI NOCRT, 2-1, 2-2
MACRO I NOMACRO, 2-2, 2-3
NOSUBMIT I SUBMIT, 2-3
VSTBUFFER, 2-4

Invocation error messages, 2-4, 2-5
Invoking the debugger, 2-1

Index-2

PSCOPE-86 User's Guide

ISTEP command, 4-4

Keys
Cursor control during edit, 2-9 thru 2-11
Line editing, 2-6, 2-7

Keywords, 3-2, 3-3, G-l

Lear Siegler ADM-3A configuration, B-14
Line editing keys, 2-6, 2-7
Line number references, 3-3, 3-10
Line numbers, 3-3
LIST command, 10-6
Listing file, see LIST command
LOAD command, 4-1, 4-2
Local debug objects, 7-1
LSTEP command, 4-3, 4-4

Machine register references, 3-9
MACRO invocation control, 2-2, 2-3
Memory display, 5-11, 5-12
Memory modification, 5-12, 5-13
Memory references with explicit typing, 3-9, 3-10
Memory symbol objecttypes, 7-5, 7-6
Memory type debug objects, 7-2
Memory type differences, 3-7
Menu commands, see PSCOPE menu commands
MODIFY command, 7-5
Modify memory, 5-12 thru 5-14

Name scope, 5-1 thru 5-3
Name scope change, 5-10, 5-11
Names, 3-2, 3-3
NOCRT invocation control, 2-1, 2-2
NOLIST command, 10-6
NOMACRO invocation control, 2-2, 2-3
NOSUBMIT invocation control, 2-3
Notational conventions, vii, viii
Number base, see BASE command
Numeric constants, 3-3, 3-4

Object file, 7-6 thru 7-8
OFFSET$OF command, 10-15
Operands, 3-8 thru 3-11
Operators, 3-5, 3-11, 3-12, G-2
OPTIMIZE(O) compiler option, 1-2 thru 1-4

Parameter accessing, 8-3, 8-4
Parameter references, 3- i i
Partially qualified line references, 3-3, 5-3
Pascal program example,

see sample PSCOPE debug session
PATCH command, 9-1 thru 9-3
Patch definition, 9-1, 9-2
Patch removal, 9-3
PL/M program example,

see example PSCOPE debug session
Precedence of operators, see operators
PROC command, 8-1
Proced ure calls, 3 -11, 8 -2

PSCOPE-86 User's Guide

Product definition, 1-1
Program. development process, 1-1, 1-2
Program example, E-1 thru E-8
Program execution, see GO command
Program symbol change, 5-5
Program symbol display, 5-3, 5-4
Program symbol references, 3-9, 5-1 thru 5-3
Program symbols, 3-2
PSCOPE command entry, 2-6
PSCOPE command index, H-l
PSCOPE commands

Accessing debug procedure parameters, 8-3, 8-4
ACTIVE, 5-11
APPEND, 7-6 thru 7-8
ASM, 5-13 thru 5-19
BASE, 10-9, 10-10
BLOCK, 2-11, 2-12
BRKREG, 11-1 thru 11-3
CALLSTACK, 10-4, 10-5
Change name scope, 5-10,5-11
Change program symboi, 5-5
Change 8086/8088 flags, 5-5, 5-6
Change 8086/8088 registers, 5-7, 5-8
Change 8087 registers; 5-8, 5-9
CI, 10-13 thru 10-15
CONCAT, 10-13 thru 10-15
COUNT construct, 6-1, 6-2
Debug procedure calls, 8-2
Debug procedure return, 8-2, 8-3
DEFINE, 7-2, 7-3
DEFINE BRKREG, 11-1 thru 11-3
DEFINE debug procedure, 8-1
DEFINE PATCH, 9-1, 9-2
DEFINE PROC, 8-1
DEFINE TRCREG, 11-3, 11-4
DELETE, 2-12
DIR, 10-2 thru 10-4
DISPLAY, 5-11, 5-12, 7-3, 7-4
Display PATCH, 9-2, 9-3
Display program symbol, 5-3, 5-4
DO construct, 6-3
EDIT, 2-8
EVAL, 10-7 thru 10-9
Exception trapping, 11-6, 11-7
EXIT, 10-1, 10-2
Fully qualified references, 5-1 thru 5-3
GET, 2-12
GO, 4-2, 4-3, 11-4 thru 11-6
HELP, 10-5, 10-6, A-I
IF construct, 6-2, 6-3
INCLUDE, 10-6, 10-7
INPUTMODE, 10-10 thru 10-12
INSERT, 2-12, 2-13
ISTEP, 4-4
LIST, 10-6
LOAD, 4-1, 4-2
LSTEP, 4-3, 4-4
MODIFY, 5-12, 5-13, 7-5
NOLIST, 10-6

OFFSET$OF, 10-15
PATCH, 9-1 thru 9-3
PROC, 8-1
PSTEP, 4-3, 4-4
PUT, 7-6 thru 7-8
QUIT, 2-13
Read and Write 110 ports, 5-9, 5-10
REGS, 5-8
REMOVE, 7-5, 7-6
REMOVE PATCH, 9-3
REPEAT construct, 6-1, 6-2
SASM, 5-13 thru 5-19
SELECTOR$OF, 10-15
STRLEN, 10-13 thru 10-15
SUBSTR, 10-13 thru 10-15
TRCREG, 11-3, 11-4
VIEW, 2-13 thru 2-15
WRITE, 10-12, 10-13
XCHANGE, 2-13

PSCOPE constructs
COUNT, 6-1, 6-2
DO, 6-3
IF, 6-2, 6-3
REPEAT, 6-1, 6-2

PSCOPE controls
CRT, 2-1, 2-2
Invocation, 2-1
MACRO, 2-2, 2-3
NOCRT, 2-1, 2-2
NOMACRO, 2-2, 2-3
NOSUBMIT, 2-3
SUBMIT, 2-3
VSTBUFFER, 2-4

PSCOPE debug session example, 1-6 thru 1-18
PSCOPE delimjters, G-2
PSCOPE directory, 10-2 thru 10-4
PSCOPEgrammar,F-l thruF-7
PSCOPE menu commands

BLOCK (B), 2-11, 2-12
DELETE (D), 2-12
GET (G), 2-12
INSERT (1),2-12,2-13
QUIT (Q), 2-13
VIEW (V), 2-13 thru 2-15
XCHANGE (X), 2-13

PSCOPE operators, G-2
PSCOPE reserved keywords, G-1
PSCOPE.CRT file, 2-8
PSCOPE.MAC file, 2-2
PSTEP command, 4-3, 4-4
PUT command, 7 -6 thru 7-8

QUIT (Q) command, 2-13

Related publications, vi, vii
Read and write 110 ports, 5-9, 5-10
Referencing names, 3-2, 3-3
Referencing program symbols,

see program symbol reference

Index

Index-3

Index

Registers
Break, 11-1 thru 11-3
Trace, 11-3, 11-4

Remove code patch, 9-3
REMOVE command, 7-5, 7-6
REMOVE PATCH command, 9-3
REPEAT control construct, 6-1, 6-2
Reserved keywords, G-l
Returning from a debug procedure, 8-2, 8-3
RUN command, C-4

Sample Pascal program,
see sample PSCOPE debug session

Sample PL/M-86 program,
see sample PSCOPE debug session

Sample PSCOPE debug session, 1-7 thru 1-18
Screen-oriented editor,

see internal screen-oriented editor
SELECTOR$OF command, 10-15
Series III information, C-l
Series IV information, D-l
Severe errors, A-I
SLA, see single-line assembler
Single-line assembler, 5-13 thru 5-17
Single-line disassembler, 5-13 thru 5-17
Single-stepping through a program, 4-3, 4-4
Stepping commands,

see the ISTEP, LSTEP, and PSTEP commands
String constants, 3-9
String functions

CI, 10-13 thru 10-15
CONCAT, 10-13 thru 10-15
STRLEN, 10-13 thru 10-15
SUBSTR, 10-13 thru 10-15

STRLEN command, 10-13 thru 10-15
SUBMIT file, 2-3
SUBMIT invocation control, 2-3
SUBSTR command, 10-13 thru 10-15
Symbol object types, 3-6
Symbol references, see program symbol references
Symbol table, 3-6

IndexA

PSCOPE-86 User's Guide

Syntax errors, 2-7
Syntax notation conventions, vii, viii

Televideo 910 Plus configuration, B-15
Televideo 925 and 950 configuration, B-16
Terminate debugging session, 2-6
Tested configurations, B-4 thru B-17
Tokens, 3-1 thru 3-6
Trace registers, 11-3, 11-4
Tracepoints, 11-3 thru 11-6
Trapping exceptions, 11-6, 11-7
TRCREG command, 11-3, 11-4
Type conversions, 3-12, 3-13

for expressions, 3-13
for assignments, 3-13

Unprintable characters, 2-9
User symbol object types, 3-6
Utility commands, 10-1 thru 10-13

BASE, 10-9, 10-10
CALLSTACK, 10-4, 10-5
DIR, 10-2 thru 10-4
EVAL, 10-7 thru 10-9
EXIT, 10-1, 10-2
HELP, 10-5, 10-6, A-I
INCLUDE, 10-6, 10-7
INPUTMODE, 10-10 thru 10-12
LIST, 10-6
NOLlST, 10-6
WRITE, 10-12, 10-13

VIEW command, 2-13 thru 2-15
Virtual symbol table, see VSTBUFFER invocation control
VSTBUFFER invocation control, 2-4

Warnings, A-I
WRITE command, 10-12, 10-13

XCHANGE (X) command, 2-13

Zentec configuration, B-l 7

1e Single Line Assembler/Disassembler

ASM address [LENGTH expr
TO address]

IASM address ~ 'assembler-mnemonic'[,assembler-mnemonicl
SASMj

;COPE Memory Types

ADDRESS
BCD
BOOLEAN
BYTE
CHAR
DWORD
EXTINT
INTEGER
LONGINT
LONGREAL
POINTER
REAL
SELECTOR
SIiORTINT
TEMPREAL
WORD

.COPE Operations

AND
MOD
NOT
OR
XOR

+
/

<>
>
<
>=
<=

()
[]

Logical AND
Modulo
Logical NOT
LogiealOR
Logical exclusive OR

Multiplication
Negation or subtraction
Identity or addition
Division
Boolean equality

Inequality
Greater than
Less than
Greater than or equal
Less than or equal
The address of
Bracketing
Array indexing

Assignment
Pointer constructor

5

PSCOPE-86
Pull-out Reference Card

'-

---1 inter ~
Copyright 1983, 1984, Intel Corporation

How to Use This Card

ilOlics Italics indicate a generic term. Replace it with a user-defined symbol. a
PSCOPE keyword. or other system-defined term.

[I Brackets indicate an option. You mayor may not enter one of the
choices set off by brackets. Do not type the brackets.

II Braces indicate a required choice. You must choose one of the choices
set off by the braces. Do not type the braces.

An asterisk after a set of brackets means that you can make multiple
choices from within the brackets or repeat your choice. Do not type the
asterisk.

Any other symbols (parentheses or commas) are to be considered as part of the
command.

Invoking and Exiting PSCOPE

l[pathname)PSCOPE.86 [Cln [MACRO [SUBMIT [VSTB(decima/-numberl]

RUN[pathname]PSCOPE} NOCRT] NOMACRO] NOSUBMIT]

EXIT

File Handling Commands

APPEND pathname [memory-type !.memory-type
debug-type ,debug-type
PATCH address ,PATCH address
debug-object-name] ,debug-obJect-name]-

INCLUDE pathname [NOLlST]

LIST [pathname]

LOAD pathname [E8087 [CONTROLS command-tail]
CH8087
NOLINES
NOSYMBOLS)

NOLIST

PUT pathname [memory-type I,memory-type
debug-type .debug-type
PATCH address ,PATCH address
debug-object-name] ,debug-object-name]-

Defining Debug Registers

DEFINE BRKREG name- break-pt [CALL proc-name]!.break-pt [CALL proc-namell

DEFINE TRCREG name- trace-pt [CALL proc-name]!. trace-pt [CALL proc-nameJ)-

The called debug procedure must return a boolean value. as follows.

RETURN TRUE
RETURN FALSE

Defining Debug Procedures, Debug Variables and Patches

DEFINE PROC name - [command!

Accessing Debug Procedure Parameters

%expr-for-passed-parameter
""'NP

DEFINE memory-tyep name - expr

DEFINE PATCH address [TIL addressl - [command
NOP]

2

Removing Debug Objects

REMOVE [memory-type !.memory-type
debug-type . debug-type
PATCH address . PATCH address
debug-object-name] ,debug-object-name]-

Entering Emulation

GO [TIL break-pt !.break-ptl-
USING Ibreak-register-name

trace-register-n.lme
BRKREG

I.break-register-name
,trace-register-name
,BRKREG

TRCREG ,TRCREG]-:
FOREVER

ISTEP

PSTEP

LSTEP

]

Displaying Debug Object., Program Variables, and Registers

BRKREG break-register-namo

TRCREG trace-register-name

name

memory-type I address [LENGTH expr
.name } TO address]

PATCH address

REGS

8086/8088 Registers:

AX CX
AH CH
AL
BX
BH
BL

8087 Registers:

STO
STI
STJ
ST4

CL
DX
DH
DL

5T4
5T5
ST6
ST7

Block Commands

COUNTexpr
[WHILE expr
UNTILexpr
[command!-]

END [COUNT]

REPEAT
[WHILE expr
UNTIL expr
[command!.

END[REPEAT]

DO
[command!.
END

CS
DS
ES
S:;
SP
II'

FSW
Few
FIA
FDA

IF exprTHEN [command!
[ORIF exprTHEN [comm.nd!).
[ELSE [command!1
ENDIIF]

3

DI
51

FlO

String Clt)mmands

CONCAT (string-spec!. string-specH

CI

STRLEN(string-spec)

SUBSTR(string-spec,start,/ength)

Utility Cc)mmands

$[-elCpn

ACTIVE (symolic-reference)

BASE\-expn

CALLSTACK [expn

DIR [DEBUG
PUBLIC
module-name)

[memory-type
debug-type
user-type

EDIT [debug-object-name
GO
PATCH address

CNTL-A
CNTL-C
CNTL-F
CNTL-X
CNTL-Z
HOME
RUBOUT

Deletes line to right of cursor.
Cancels current editing command.
Deletes character at the cursor position.
Deletes line to left of cursor.
Deletes current line.
Moves cursor to left/right of line after left/right arrow.
Deletes character to left of cursor.

EVAL oxpr [LINE
PROCEDURE
SYMBOL [ALL])

HELP Itopic-name
en

INPUTMODE[- expn

Utility CCllmmand.

NAMESCOPE[- expn

OFFSET$OF(exprl

PORT (port-numberl [- expn

WPORT(port-numbe,H - expn

SELECTOR$OF(exprl

WRITE [USING (format-item)) [expt{.expn.)

formal-item -

n Decimal number specify in, the width of the output field.
n C Move output buffer pointer to column n (first column).
n X Skip n spaces.
H Set display base in hexadecimal.
T Set display base to decimal.
Y Set display base to binary.

Terminate the format strin,.
> Terminate the format strin,; do not issue a <cr> or <If> until

the next WRITE; only has meanin, when within a block command
or procedure that hiS more than one WRITE.

&: Terminate the format strin,; do not execute the WRITE until the
next WRITE.
Delimit text to be wrilten.

VIEW I,athname

4

REQUEST FOR READER'S COMMENTS

PSCOPE-86 User's Guide
165496-001

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

, Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME ________________________ ___ DATE ____________ _

TITLE ___ _

COMPANYNAME/DEPARTMENT ____________ --------------------------------
ADDRESS ___ _

CITY _______________________ _ STATE __________ _ ZIP CODE __________ _
(COUNTRY)

Please check here if yOU reauire a written reply. D

~E'D LIKE YOUR COMMENTS .,.

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSiNESS REPLY VIAlL
FIRST CLASS PERMIT NO. 79 BEAVl ~RTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Parkway.
Hillsboro, Oregon 97123

OSHO Technical Publications

NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

INSTRUMENTATION

DS-132/5K/0784/0SPS

