
inter

FORTRAN-a6
lISER' 5 GUIDE

Copyright © 1981, 1982, 1984 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121570-003

-

FORTRAN-a6
USER'S GUIDE

Order Number: 121570-003

Copyright © 1981, 1982, 1984 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS
COMMputer
CREDIT
Data Pipeline
Genius
i
A
I

I2ICE
ICE
iCS
iDBP
iDIS
iLBX

im
iMMX
Insite
intel
intelBOS
Intelevision
inteligent Identifier
inteligent Programming
Intellec
Intellink
iOSP
iPDS
iRMX

iSBC
iSBX
iSDM
iSXM
KEPROM
Library Manager
MCS
Megachassis
MICROMAINFRAME
MULTIBUS
MULTICHANNEL
MUL TIMODULE

Plug-A-Bubble
PROMPT
Promware
QueX
QUEST
Ripplemode
RMX/80
RUPI
Seamless
SOLO
SYSTEM 2000
UPI

A1342 / 385 / 3K / DD / KH

SOFTWARE

]

REV. REVISION HISTORY DATE APPD.

-001 Original issue. 8/81

-002 Revised to support Version 1.5 of the Fortran-86 7/82
Compiler

-003 Revised to support COMPLEX data and C 12/84 D.N.
language procedure calls.

iii

PREFACE

This manual provides language, compiler, and run-time information specific to
Fortran-S6.

It is designed to support m~w users as well as those already familiar with Fortran.

This manual contains fifteen chapters and nine appendixes:

• Chapter 1, "Overview," describes Fortran-S6, the compiler, the run-time support,
the operating environment, and program development.

Chapter 2, "Program Structure," describes the parts of a Fortran program and
their required order.

• Chapter 3, "Language Elements," describes Fortran's lexical structure.

• Chapter 4, "Program Delimitors and Comments," describes comment lines,
procedure headings, and their use.

• Chapter 5, "Data and Specification Statements," describes data types, arrays,
arguments, and specification statements.

• Chapter 6, '''Subprograms,'' describes subroutines, external functions, intrinsic
functions, statement functions, and BLOCK DATA subprograms.

• Chapter 7, "Expressions," describes the Fortran expressions and their use.

Chapter S, "Executable Statements," describes assignment statements, control
statements, and data-transfer statements.

• Chapter 9, "Input and Output," describes the file-handling and I/O statements.

• Chapter 10, "Examples," describes sample Fortran-S6 programs.

Chapter 11, "Compiler Controls," describes the Fortran-S6 controls with an
indication of use.

• Chapter 12, "Compiler Operation," describes compiler invocation, input files,
output files, overlay files, and compiler messages.

• Chapter 13, "Compiler Output," describes the listing output and the object
module output.

• Chapter 14, "Linking, Relocating, and Executing Programs," describes how to
run programs.

• Chapter 15, "Errors and Warnings," describes language and run-time errors and
recovery.

• Appendix A, "Differences Between Fortran-S6 and Other Versions of Fortran,"
lists how Fortran-S6 differs from ANSI Fortran 77 and from Fortran-SO.

• Appendix B, "Processor-Dependent Features of Fortran-S6," lists the features
dependent on the S086, SOS7, and sass processors.

• Appendix C, "Compiler Capacity," lists the upper limits imposed by the compiler
or its environment.

• Apppendix D, "Language Summary," lists the Fortran statements, symbols,
intrinsic functions and subroutines.

• Appendix E, "Character Set and Collating Sequence," gives the ASCII
character set.

• Appendix F, "Hollerith Data Type," describes the Hollerith data type.

• Appendix G, "Run-Time Data Representations," describes the internal represen
tations of Fortran data types.

v

Preface Fortran-86

vi

• Appendix H, "Linking to Subprograms Written in Other Languages," describes
parameter passing, returned values from functions, and sharing of data between
Fortran-86 and other iAPX 86, 88 family languages.

• Appendix I, "Run-Time Interface," describes error handlers, interrupt process
ing, and the logical record interface for users not executing their programs on
the Series-III.

• Appendix J, "Additional Information for Series III and Series IV Operating
System Users," provides examples and information specific to the Series III and
Series IV Operating Systems.

Appendix K, "Additional Information for iRMX™ 86 Operating System Users,"
provides information and examples specific to the iRMX 86-based system.

"Microsystems 80" Nomenclature

Over the last several years, the increase in microcomputer system and software
complexity has given birth to a new family of microprocessor products oriented towards
solving these increasingly complex problems. This new generation of microprocessors
is both powerful and flexible and includes many processor enhancements such as
numeric floating point extensions, I/O processors, and operating system functionality
in silicon.

As Intel's product line has grown and evolved, its microprocessor product numbering
system has become inadequate to name VLSI solutions involving the above
enhancements.

In order to accommodate these new VLSI systems, we've allowed the 8086 family
name to evolve into a more comprehensive numbering scheme, while still including
the basis of the previous 8086 nomenclature.

We've adopted the following prefixes to provide differentiation and consistency among
our Microsystem 80 related product lines:

iAPX -- Processor Series
iRMX - Operating Systems
iSBC Single Board Computers
iSBX -- MULTI:tv10DULE Boards

Concentrating on the iAPX Series, two Processor Families are defined:

iAPX 86
iAPX 88

8086 CPU based system
8088 CPU based system

With additional suffix information, configuration options within each iAPX system
can be identified, for example:

iAPX 86/10 CPU Alone (8086)
iAPX 86/11 CPU + lOP (8086 + 8089)
iAPX 88/20 CPU + Math Extension (8088 + 8087)
iAPX 88/21 CPU + Math Extension + lOP (8088 + 8087 + 8089)

This nomenclature is intended as an addition to, rather than a replacement for, Intel's
current part numbers. These new series level descriptions are used to describe the
functional capabilities provided by specific configurations of the processors in the

Fortran-86

8086 Family. The hardware used to implement each functional configuration is still
described by referring to the parts involved (as is the case for the majority of the
8086 information described in this manual).

This improved nomenclature provides a more meaningful view of system capability
and performance within the evolving Microsystem 80 architecture.

Related Publications

For information on the Intellec Series-III Microcomputer Development System, see
the following manuals:

A Guide to the Intellec Series III Microcomputer Development System, 121632

• Intellec Series III Microcomputer Development System Product Overview,
121575

Intellec Series III Microcomputer Development System Console Operating
Instructions, 121609

Intellec Series III M'icrocomputer Development System Programmer's Refer
ence Manual, 121618

ISIS-II CREDIT CRT-Based Text Editor User's Guide, 9800902

• AEDIT Text Editor User's Guide, 121756

For information on the iRMX 86 operating system, see the following manuals:

• iRMX 86 Human Interface Reference Manual, 9803202

• iRMX 86 Nucleus Reference Manual, 9803122

EDIT Reference Manual, 143587

For information on auxiliary products, see the following manuals:

• 8086/8087/8088 Macro Assembly Language Reference Manual for 8086-Based
Development Systems, 121627

8086/8087/8088 Macro Assembler Operating Instructions for 8086-Based
Development Systems, 121628

iAPX 86,88 Family Utilities User's Guide for 8086-Based Development Systems,
121616

Pascal-86 User's Guide, 121539

PL/M-86 User's Guide, 121662

ICE-86 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800714

ICE-88 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800949

The 8086 Family User's Manual, 9800722

The 8086 Family User's Manual Numerics Supplement, 121586

• User's Guide for the iSBC 957 B iAPX 86,88 Interface and Execution Package,
143979

Notational Conventions

UPPERCASE Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or
lowercase.

Preface

vii

Preface

viii

italic

directory-name

filename

pathname

pathname1,
pathname2, ...

system-id

Vx.y

[]

{ }

L ..

(, ...]

punctuation

input lines

< c r)

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a path name that acts as a file locator by
identifying the device and/or directory containing the
filename.

Is a valid name for the part of a pathname that names a file.

Is a valid designation for a file; in its entirety, it consists of a
directory and a filename.

Are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

Is a generic label placed on sample listings where an oper
ating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA,SRC, '9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

Fortran-86

• @ n TABLE OF CONTENTS

CONTENTS
CHAPTER 1 PAGE
OVERVIEW
The Compiler and Run-Time: System ... 1-1

Compiler Features .. 1-1
Run-Time Support Libraries ... 1-1

Hardware and Software Environments 1-2
Program Development Environment 1-2
Run-Time Environment .. 1-2

Compiler Installation 1-3
The Program Development Process ... 1-3

CHAPTER 2
PROGRAM STRUCTURE
Basic Structure '" 2-1
Fortran Statements .. 2-1

Statement Order ... 2-2

CHAPTER 3
LANGUAGE ELEMENTS
Basic Alphabet ".. 3-1
Statement Elements ""... 3-1

Constants .. 3-1
Symbolic Name:s .. 3-2
Statement Labels 3-2
Keywords 3-2

Statements and Lines 3-3
Line Format .. 3-3

CHAPTER 4
PROGRAM DELIMITERS AND COMMENTS
Comments .. ".. 4-1
Headings .. ,.................. 4-1

PROGRAM Statement ".. 4-1
FUNCTION Statement ".. 4-1
SUBROUTINl~ Statement ".. 4-2
BLOCK DATA Statement .. 4-2

END Statement 4-2

CHAPTERS
DATA AND SPECIFICATION STATEMENTS
Data Types "... 5-1

Integer Data "... 5-2
Integer Constants "... 5-2
INTEGER l'ype Statement ... ,................. 5-3

Floating-Point Data 5-3
Floating-Point Constants .. 5-4
REAL Type Statement .. 5-4
DOUBLE PRECISION Type Statement ... 5-5
TEMPREAl" Type Statement 5-5
COMPLEX and COMPLEX* 16 Type Statement ... 5-6

Logical Data ... "... 5-6

ix

Table of Contents

x

Logical Constants .. .
LOGICAL Type Statement .. .

Character Data .. '"
Character Constants .. .
CHARACTER Type Statement

Hollerith Data
IMPLICIT Statement .. .
PARAMETER Statement .. .
Arrays .. .

DIMENSION Statement
Kinds of Array Declarators .. .
Properties of Arrays .. .
Referencing Array Elements ... ,.

Character Substrings .. .
Substring Specification
Substring Expressions

Memory Definition .. .
EQUIVALENCE Statement
COMMON Statement .. .

SAVE Statement .. ,.
DATA Statement .. .

Implied-DO in a DATA. Statement .. .
INTRINSIC Statement
EXTERNAL Statement

CHAPTER 6
SUBPROGRAMS

PAGE
5-6
5-6
5-7
5-7
5-7
5-8
5-8
5-9
5-9

5-10
5-10
5-11
5-12
5-13
5-13
5-13
5-13
5-13
5-14
5-15
5-15
5-16
5-16
5-17

Types of Subprograms ... 6-1
Arguments .. 6-1

Subroutines 6-2
Intrinsic Subroutines .. 6-2

Functions 6-2
Function Subprograms ... 6-3
Intrinsic Functions 6-3

Intrinsic Type-Conversion Functions ... 6-4
Truncation and Rounding Functions 6-8
The Remainder Functions .. 6-9
Choosing the Largest or Smallest Value Functions .. 6-12
The LEN and INDEX Functions .. 6-13
The Arithmetic Functions .. 6-14
The Trigonometric Functions ... 6-15
Hyperbolic Functions 6-18
The Lexical-Relationship Functions 6-19
8087 Control Intrinsics 6-20
8086 Interrupt Control Intrinsics .. 6-22

Statement Functions 6-23
The % VAL Function ... 6-25

BLOCK DATA Subprograms 6-25

CHAPTER 7
EXPRESSIONS
Arithmetic Expressions .. 7-1
Character Expressions ... 7-3
Relational Expressions ... 7-4

Arithmetic Relational Expressions .. 7-4
Character Relational Expressions .. 7-4

Logical Expressions .. 7-5
Bitwise Boolean Operations ... 7-6

Fortran-86

Fortran-86 Table of Contents

PAGE
Precedence of Operators .. 7-7
Floating-Point Topics ... 7-7

Rounding ... ".. 7-7
Normalized, Denormalized, and Unnormalized Numbers ... 7-8
Warning Mode 7-8
Infinity Arithmetic ... 7-9
Unordered Relation .. 7-9
Not a Number (NaN) .. 7-9
Trapping NaN .".. 7-10

CHAPTER 8
EXECUTABLE STATEMENTS
Assignment Statenlents

Arithmetic Assignment Statements .. .
Character Assignment Statements ... ' ..
Logical Assignment Statements

IF Statements
Block IF '

Block IF Statement .. .
ELSE IF Statement .. .
ELSE Statement
END IF Statement .. .

Logical IF Statement '
Arithmetic IF Statement .. .

DO Statement
CONTINUE Statement
CALL Statement .. .
RETURN Statem~!nt .. '.'
ASSIGN Statement .. .
GO TO Statements

Unconditional GO TO Statement ... '
Computed GO TO Statenlent .. .
Assigned GO T() Statement

Program Halt Statements
PAUSE Statement .. .
STOP Statement

CHAPTER 9
INPUT AND OUTPUT
Records, Files, and Units .. .

Records .. .
Files .. .

External Files
Internal Files .. .

Units .. .
File-Handling Statements

OPEN Statement .. .
Unit Specifier
I/O Status Specifier .. .
Error Specifier
File-Name Specifier .. .
File-Status Specifier
Access-Method Specifit~r .. .
Formatting Specifier
Record-Length Specifier
Blank Specifier
Carriage-Control Specifier .. .

8-1
8-1
8-2
8-2
8-3
8-3
8-3
8-3
8-4
8-5
8-5
8-5
8-5
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-8
8-9
8-9
8-9

9-1
9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-6
9-6
9-7

Xl

Table of Contents

xii

Opening a Connected Unit
CLOSE Statement .. .

Unit Specifier .. .
File-Disposition Specifier .. .

BACKSPACE Statement
REWIND Statement .. .
END FILE Statement

Data-Transfer I/O Statements
READ Statement .. .

Control-Information List
Input List
Implied-DO List .. .

WRITE Statement .. .
PRINT Statement

Formatted Data Transfer .. .
FORMAT Statement .. .

Repeatable Edit Descriptors
Nonrepeatable Edit Descriptors

List-Directed Formatting
List-Directed Input
List-Directed Output

Unformatted Data Transfer

CHAPTER 10
EXAMPLES

PAGE
9-7
9-8
9-8
9-8
9-9
9-9

9-10
9-10
9-10
9-11
9-13
9-13
9-13
9-14
9-14
9-15
9-15
9-20
9-22
9-23
9-24
9-25

I/O Examples .. , 10-1
Program lA (PROG lA.FTN) ... 10-1
Program IB (PROGIB.FTN) .. 10-2
Program lC (PROGIC.FTN) ... 10-3

TEMPREAL Example 10-4
Program 2 (PROG2.FTN) ... 10-4

$INTERRUPT Example 10-6
Program 3 (PROG3.FTN) ... 10-6

$REENTRANT Example 10-7
Program 4 (PROG4.FTN) 10-7

Function Subprogram Example 10-8
Program 5 (PROG5.FTN) ... 10-8

CHAPTER 11
COMPILER CONTROLS
Invoking the Compiler 11-1
Kinds of Compiler Controls ... 11-1
Using Compiler Controls ... 11-1

Listing Device or File Selection 11-2
Controlling Listed Format and Content .. 11-3
Source Selection and Processing 11-3
Object Selection and Content 11-3
Use of Controls in Stages of Development ... 11-4

Control Definitions 11-4
CODE/NOCODE ... 11-5
DEBUG/NODEBUG .. 11-6
D066/D077 .. 11-7
EJECT .. 11-8
ERRORLIMIT/NOERRORLIMIT .. 11-9
FREEFORM/NOFREEFORM ... 11-10
IGNORE .. 11-11
INCLUDE .. 11-12
INTERFACE ... 11-13

Fortran-86

Fortran-86 Table of Contents

PAGE
INTERRUPT ... 11-14
LISTjNOLIST .. II-IS
OBJECT jNOOBJECT .. 11-16
OVERLAPjNOOVERLAP .. 11-17
PAGELENGTH .. 11-18
PAGEWIDTH .. 11-19
PRINT jNOPRI1~T ... 11-20
REENTRANT ... 11-21
STORAGE ... 11-22
SUBTITLE 11-23
SYMBOLSjNOSYMBOLS ... 11-24
TITLE ... 11-2S
TYPEjNOTYPE: ... 11-26
XREF jNOXREF 11-27

CHAPTER 12
COMPILER OPERATION
InputFiles ... 12-1
Output Files ,.. 12-1
Work Files .. 12-2
Compiler Messages ,',.. 12-2

CHAPTER 13
COMPILER OUTPUT
Program Listing .. 13-1

Listing Preface .. ,.. 13-1
Source Listing 13-2
Symbol Listing .. 13-2
Pseudo-Assembly Language Listing .. 13-2
Error Message Listing ... 13-S
Compilation Sunlmary 13-6
Sign-off Message .. 13-6

Object Files ... 13-6
Work Files .. 13-7

CHAPTER 14
LINKING, RELOCATING, AND EXECUTING PROGRAMS
Introduction ... 14-1
Memory Allocation ,.. 14-1
Linking Object Modules 14-1

Use of Libraries .. 14-2
Run-Time Support Libraries ... 14-2
Linking with Overlays 14-3

Overlay Restrictions ,... 14-3
Linking with Fortran Procedures ... 14-4
Linking with Non-Fortran Procedures .. 14-S

Locating Object Modules .. 14-6
Preconnecting Files .. 14-6
Executing Progranls 14-7

CHAPTER 15
ERRORS AND WARNINGS
Compiler Controls and the Error Listing IS-1
Compiler Error Messages IS-1

Error Format .. lS-l
Error Messages lS-2
Compiler Control Error Messages ... IS-12
Compiler Failure Error Messages .. IS-12

xiii

Table of Contents

xiv

PAGE
Run-·Time Errors .. 15-12

Input/Output Exceptions ... 15-12
Operating Environment Error 15-21
Integer Exceptions 15-22
Range and Check Exceptions 15-22
Floating-Point Function Exceptions 15-22
Floating-Point 8087 Exceptions 15-22

Invalid Operation 15-23
Denormalized Operand 15-25
Zero Divide 15-25
Overflow .. 15-25
Underflow ... 15-25
Precision '" 15-26

APPENDIX A
DIFFERENCES BETWEEN FORTRAN-86 AND OTHER VERSIONS OF
FORTRAN
Extensions to Fortran 77
Deviations from the ANS-1978 Standard
Differences Between Fortran-80 and Fortran-86

APPENDIX B
PROCESSOR-DEPENDENT FEATURES OF FORTRAN-86

APPENDIXC
COMPILER CAPACITY

APPENDIX D
LANGUAGE SUMMARY

A-I
A-2
A-2

Statement Summary............ D-l
Symbol Summary .. D-15

APPENDIX E
CHARACTER SET AND COLLATING SEQUENCE

APPENDIX F
HOLLERITH DATA TYPE
Hollerith as a Data Type ... F-l
Hollerith Constants F-l

Hollerith Constants in DATA Statements .. F-I
Hollerith Constants in CALL Statements .. F-I

Hollerith Format Specification F-2
"A" Editing of Hollerith Data ... F-2

APPENDIXG
RUN-TIME DATA REPRESENTATIONS
Storage Units ... G-I
Data Types .. G-l

APPENDIXH
LINKING TO SUBPROGRAMS WRITTEN IN OTHER LANGUAGES
Introduction ... H-l
Calling Sequence ... H-2

Arguments ... H-2
Returned Values .. H-3
Data Types .. H-3

Floating-Point Data Types H-3
Integer Data Types H-3

Fortran-86

Fortran-86 Table of Contents

PAGE
Logical Data Types ... H-4
Character Data Types ... H-5
Arrays and Structures as Arguments H-5
Procedures as Argument.s .. H-6

Further Linkage Considerations ... H-6
C Language Considerations .. H-6

Register Usage .. H-7
Stack Usage ... H-8
Initialization of the Fortran-86 Run-Time Environment ... H-9

APPENDIX I
RUN-TIME INTERFACE
Run-Time Support Overview .. 1-1

Application Obj(~ct Code Independence .. 1-1
Low End Application .. 1-3

Run-Time Libraries ... 1-3
I/O Run-Time l,ibraries ... 1-3
Numerics Run-l'ime Libraries .. 1-3
Summary ... 1-3

Logical Record Interface ... ".. 1-4
Run-Time Interrupt Processing .. 1-4

Interrupt Procedure Preface and Epilogue .. 1-5
Interrupt Handling for Real Arithmetic Errors ... 1-7

APPENDIXJ
ADDITIONAL INFORMATION FOR SERIES III AND SERIES IV
OPERATING SYSTEM USERS
Program Development Environment J-l
Compiler Installation J-l
Program Disk Contents J-2
Compiler Operation ... J-2

Series III Invocation .. ,... J-2
Series IV Invocation ... J-3
Files Used by the Compih~r .. J-4

Input Files '" J-4
Output Files J-4
Work Files ... J-5

Compiler Messages ... J-5
Insufficient Memory Error Messages J-6

Linking, Locating, and Executing .. J-6
Series III Sample Link Operations ".. J-7
Series IV Sample Link Operations ... J-7
Examples J-8
Sample Locate Operations .. J-9
Executing Programs on a Series III J-9
Executing Programs on a Series IV ... J-I0

Specific Compiler Controls ... J-l1
Interrupt Handling on the Series III and Series IV , ... J-ll
Related Publications ... J-ll

APPENDIXK
ADDITIONAL INFORMATION FOR iRMX™ 86 OPERATING SYSTEM
USERS
Program Development Environment K-l
Compiler Installation .. K-l
Program Disk Contents ... K-l
Compiler Operation K-2

Invoking the Compiler on an iRMXTM 86-Based System .. K-2

xv

Table of Contents

xvi

Files Used by the Compiler
Input Files
Output Files .. .
Work Files .. .

Compiler Messages .. .
Linking, Locating, and Executing in an iRMXTM 86-Based Environment

Sample Link Operations .. .
Examples .. .

Locating Object Modules .. .
Preconnecting Files .. .
Executing Programs in an iRMXTM 86 Environment
iRMXTM 86 - Specific Examples .. .
Related Publications

FIGURES

PAGE

K-3
K-3
K-3
K-3
K-4
K-4
K-5
K-5
K-6
K-7
K-7
K-7
K-7

FIGURE TITLE PAGE

1-1 Fortran-86 Program Development Process .. 1-4
2-1 Order of Fortran Statements ... 2-2
3-1 Fortran Line Format ... 3-3
6-1 8087 Control Word Format for Fortran-86 ... 6-21
6-2 8087 Status-Word Format for Fortran-86 (STSW87) .. 6-22
8-1 Nesting Levels of IF, ELSE IF, and ELSE Blocks .. 8-4
10-1 PROGIA.FTN--Direct Access, Unformatted I/O ... 10-1
10-2 PROGIB.FTN--Sequential Access, Formatted I/O ... 10-2
10-3 PROGIC.FTN--List Directed I/O .. 10-3
10-4 PROG2.FTN-TEMPREAL .. 10-4
10-5 PROG3.FTN-$INTERRUPT Control... 10-6
10-6 PROG4.FTN-$REENTRANT Control ... 10-7
10-7 PROG5.FTN-Function Subprogram .. 10-8
13-1 Sample Portion of a Code Listing 13-3
14-1 Using the Overlay Feature to Link Fortran-86 Object Modules 14-4
H-l 8086 Stack Layout During Execution of a Fortran-86 Subprogram H-7
H-2 Sample ASM-86 Program .. H-8
1-1 Application Program and Run-Time Libraries in User System 1-1
1-2 Use of UDI Library ... 1-2
1-3 UDI Libraries in Series III Development ... 1-2
1-4 UDI Libraries with iRMXTM 86 Operating System ... 1-2
1-5 I/O and Numerics Run-Time Libraries in System .. 1-3
1-6 8086 Stack Layout When Interrupt Procedure Gains Control.......................... 1-5
1-7 8086 Stack Layout After Interrupt Procedure Preface and Before Procedure

Prologue .. 1-6
1-8 8086 Stack Layout During Execution of Interrupt Procedure Body................. 1-7
1-9 Routine to Redirect Interrupts .. 1-8

TABLES
TABLE TITLE PAGE

5-1 Value Ranges of INTEGER Data .. 5-2
5-2 Value Ranges of Floating-Point Data .. 5-4
5-3 Value Ranges of LOGICAL Data .. 5-6
5-4 Subscript Reference ... 5-12

Fortran-86

Fortran-86 Table of Contents

TABLE TITLE PAGE

6-1 Type-Conversion Functions 6-5
6-2 Truncation and Rounding Functions 6-8
6-3 Remainder Functions 6-10
6-4 Absolute Value, Sign Transfer, Positive Difference, and Double Precision

Product Functions " ... 6-11
6-5 Choosing the Largest or Smallest Value Functions 6-13
6-6 Length and Index Functions , ... 6-14
6-7 Arithmetic Functions ,. .. 6-15
6-8 Trigonometric Functions .. 6-17
6-9 Hyperbolic Functions ,., ... 6-18
6-10 Lexical-Relationship Functions , ... 6-19
6-11 8087 Control Intrinsics 6-20
6-12 Implicit Type Conversions in Statement Functions .. 6-24
7-1 Arithmetic Operators ... 7-1
7-2 Type and Length of Arithmetic Expressions (Addition,

Subtraction, Multiplication, Division, and Exponentiation) 7-2
7-3 Evaluation Methods for Y**X .. 7-3
7-4 Relational Operators .. 7-4
7-5 Logical Operators ,.. 7-5
7-6 Value of a LogicallExpression with .NOT. ... 7-5
7-7 Value of a LogicallExpression with .AND. ... 7-5
7-8 Value of a LogicallExpression with .OR. .. 7-5
7-9 Value of a Logical Expression with .EQV. ... 7-6
7-10 Value of a Logical Expression with .NEQV. .. 7-6
7-11 Length of Results of Logical Expressions (.AND., .OR., .EQV., .NEQV.) 7-6
8-1 Type Conversions in Arithmetic Assignment Statements 8-2
9-1 Output Forms of Exponents for D and E Editing .. 9-17
9-2 G Editing for O.l::sN < 10**d , .. 9-18
9-3 Interpretation of Band Z Values 9-19
9-4 Floating-Point Editing for Output with the Scale-Factor Edit Descriptor P 9-22
11-1 Types of Controls 11-2
L 1-2 Controls and Their Abbreviations,.. 11-2
D-l Arithmetic Operators ... D-15
D-2 Relational Operators " .. D-15
D-3 Logical Operators ... D-16
G-I Summary of Storage Units .. G-l
H-l Fortran-86 Data Types and Their Equivalents in Pascal-86, C-86,

PL/M·,86, and ASM-86 ... H-4

xvii

CHAPTER 1
OVERVIEW

This chapter introduces Fortran-86 and explains how it fits into the process of devel
oping software for an iAPX 86 or iAPX 88 application system.

Fortran-86 is a high-level language designed for programming the 8086 and 8088
microprocessors. Fortran-86 is a superset of the Fortran 77 subset defined by the
American National Standards Institute (ANSI), and is compatible with Fortran-80.
Fortran-86 also includes additional features that facilitate the programmer's task of
developing software.

The Fortran-86 compiler translates Fortran-86 source programs into relocatable 8086
object modules, which you can then link to other such modules, coded in Fortran or
in other 8086/8088 languages. The compiler provides listing output, error messages,
and a number of compiler controls that aid in developing and debugging programs.

The compiler provides a se:t of relocatable object libraries to be linked with your own
code; these provide complete run-time support for input/output, arithmetic functions,
and in-line code execution by using the optional 8087 Numeric Data Processor. After
linking your own modules together with these Intel-supplied library modules, you can
locate your final linked program in order to run it on an Intel development system,
or in RAM, PROM, or ROM on 8086-based or 8088-based custom hardware.

To perform the steps following compilation, you use the standard 8086 Family
software development utilities-LINK86, LOC86, LIB86, and OH86. Next, debug
your programs by using the resident monitor program, the ICE-86 In-Circuit
Emulator, or an lintel debugger (such as PSCOPE). For firmware systems, you may
then use the Universal Prom Programmer (iUP) with its Universal Prom Mapper
(UPM) software to burn your programs into PROM.

1. 1 The Compiler' and Run-Tinle System

The following sections describe the advantages offered by the Fortran-86 compiler
controls and run-time libraries.

1. 1. 1 Compiler Features

The Fortran-86 compiler includes a number of features that make software program
ming and debugging easier. Compiler controls allow you to specify the form and
content of your source code, object code, and output listing.

Controls are provided to copy (INCLUDE) source code from other files in addition
to the main source file, to output debug information in the object file for use by
LINK86 and the ICE-86 emulator, and to specify interrupt procedures. The compiler
also provides an optional symbol listing control, as well as controls that format the
output listing according to your specifications.

1. 1.2 Run-Time Support Libraries

The run-time support libraries, provided in relocatable object code form to be linked
to your compiled object program, allow you to run your program in a number of
hardware environments. You simply choose the run-time libraries that match the
hardware / software configuration you are using.

1-1

Overview

1-2

These libraries provide all I/O support, including device drivers, needed to run
programs on the system. You may also choose to have floating-point arithmetic
operations performed either by the floating-point software routines on an 8086
processor, or using the on-chip capabilities of an 8087 Numeric Data Processor (for
higher performance). Both options include all required arithmetic and interface
software in the run-time libraries.

In addition, the modular structure of the I/O libraries allows you to substitute your
own device drivers for non-standard I/O devices. For instructions, see Appendix I.

1.2 Hardware and Software Environments

The following sections describe the appropriate environments for developing and
executing Fortran-86 programs.

1.2. 1 Program Development Environment

To run the compiler, you must have certain hardware and software. The system
dependent appendixes (Appendix J for Series III and Appendix K for iRMX-86) list
these requirements.

A system with a printer is also recommended for producing hard-copy output listings,
but may be separate from the one used to compile programs.

To link and relocate programs after you have compiled them, and to prepare them
for loading (or PROM programming) and execution, you need the following software:

• LINK86

LOC86

LIB86

• OH86

Instructions for using these utility programs are given in the iAPX 86, 88 Family
Utilities User's Guide, order number 121616.

Depending on your development environment and your final run-time environment,
you also may choose to use the following hardware and software:

The ICE-86 In-Circuit Emulator

The SDK-86 System Design Kit, optionally with the SDK-C86 Software and
Cable Interface

The iSBC 957B iAPX 86,88 Interface and Execution Package

The Universal PROM Programmer (iUP) with the Universal PROM Mapper
(UPM) software

1.2.2 Run-Time Environment

Your compiled, linked, and located program code may run in any of the following
environments:

A Series-III development system under the Series-III resident operating system

An iSBC system with an iAPX 86,88 CPU board and the iRMX 86 operating
system

A custom-designed 8086- or 8088-based microcomputer system

Fortran-86

Fortran-86

In an environment without Intel operating system support, you will need to write your
own I/O drivers (as described in Appendix I) and provide a software interface to the
operating system ..

The amount of memory required at run time will depend on the size of your appli
cation program.

You may increase the speed of floating-point arithmetic operations and reduce code
size in your programs by including an 8087 Numeric Data Processor in your system.
Detailed specifications an~ provided in the iAPX 86, 88 User's Manual, 210201.

1.3 Compiler Ins1tallation

The Fortran-86 software package includes this manual (the Fortran-86 User's Guide),
the Fortran-86 Pocket Reference, supplementary literature including a customer letter
and Software Problem Report forms, and two single-density diskettes and one double
density program diskette. Series IV users also receive the Fortran compiler on one
Sif4-inch, double-·sided, double-density diskette. The contents of the disks are listed in
Appendixes J and K.

When your compile-time environment is configured, copy the compiler and run-time
library files from the product diskette to the single-density diskettes or the double
density diskette, or to the hard disk if you are using one on your system. Copying for
diskette systems is only necessary for backing-up the files or for storing the compiler
and libraries on other diskettes.

1.4 The Programl Development Process

The Fortran-86 compiler and run-time libraries are part of the integrated set of tools
that make up the total 8086 development solution for your microcomputer system.
Figure 1-1 shows how you use these tools to develop programs using Fortran-86. The
shaded boxes represent Intel products.

The steps in the software: development proc(~ss are as follows:

1. Define the problem completely.

2. Outline the proposed solution in terms of hardware and software.

3. Design the software for your system. This important step may consist of several
sub-steps, including breaking the task into modules, choosing the programming
language, and selecting the appropriate algorithms. You may decide to code some
modules in languages other than Fortran, such as 8086/8087/8088 Macro
Assembly Language, PL/M-86, or Paseal-86.

4. Code your programs and enter them on the system by using a CRT-based text
editor, such as CREDIT or AEDIT.

5. Use the Fortran-86 compiler to translate your Fortran program code.

6. Use the text editor to correct any compile-time errors reported by error messages,
and retranslate the program.

7. Using LINK86 (and LOC86 if needed), link the resulting relocatable object
module to the necessary run-time libraries supplied with Fortran-86 and the
operating system. The use of LINK86 and LOC86 depends on your application;
for detailed instructions, see the iAPX 86, 88 Family Utilities User's Guide, order
number 121616.

Overview

1-3

Overview

LEGEND

1;;;,j,;;IINTEL PRODUCTS

O USER·CODED
SOFTWARE

1-4

FORTRAN
86

SOURCE

OTHER
RELOCAT·

ABLE
OBJECT

MODULES

RELOCAT·
ABLE

OBJECT
MODULE

LIBRARIES

Fortran-86

r------------..,
I I

I I
LTL

CODE

ABSOLUTE

I
OBJECT I--....:.....t~

CODE

I I L ____________ J

CUSTOM·
DESIGNED

USER
SYSTEM

Figure 1-1. Fortran-86 Program Development Process 121570-1

Fortran-86

8. You now can run and debug your programs with the aid of Fortran's run-time
error messages. Your execution vehicle for debugging can be any of the follow
ing: a Series-III system with its resident monitor and an ICE-86 or ICE-88 In
Circuit Emulator (optional) or PSCOPE, an iRMX-based system, RAM on an
SDK-86 System Design Kit, or RAM on an iAPX 86,88 Single Board Computer
with a resident monitor.

9. Translate and debug your other system modules, including those coded in other
languages. Once you have performed the desired amount of testing on each
module, you can link the modules and optionally locate them by using LINK86
and LOC86 ..

10. Test and debug your software in the selt:~cted debug environment.

11. Produce a final debugged object module and transfer it to the run-time environ
ment. This step is dependent on the environment and on the tools you are using.

When the environment is a development system, use the execution command
to load and run your program.

• When the environment is RAM on an SDK-86 kit or an iAPX 86,88 Single
Board Computer system, use OH86 to obtain a hexadecimal object code file.
Then, if you are developing your programs on a Series-III, use an appropri
ate tool for downloading them into the execution board (the ICE-86 In-Circuit
Emulator, the SDK-C86 Software and Cable Interface, or the iSBC 957B
Interface and Execution Package).

• When the environment is ROM on an SDK-86, iAPX 86,88 Single Board
Computer system, or your own custom-designed hardware, use the Universal
PROM Programmer (iUP) with its Universal PROM Mapper (UPM)
software to burn your program into PROM.

Note that you can perform hardware and software development in parallel, and that
you can take intermediate hardware/software integration steps by using the ICE-86
In-Circuit Emulator.

For instructiom on the use of other Intel products discussed in this section, refer to
the manuals list~!d in the preface to this book.

Overview

1-5

· '" CHAPTER 2
PROGRAM STRUCTURE n

2.1 Basic StructUlre
You can divide a Fortran program into distinct program units. Each unit can be
thought of as a sequenc(~ of statements and comments. The first statement of a
program unit determines whether the compiler will treat the unit as a main program
or a subprogram. Although it is optional, a main program usually has a PROGRAM
statement as its first statement. A main program may contain any statements except
BLOCK DATA, FUNCTION, or SUBROUTINE statements because these are used
only to define subprograms. A main program cannot be referenced by a subprogram
or by itself. A Fortran program can have only one main program, but it may contain
any number of subprograms.

There are three kinds of subprograms: BLOCK DATA, FUNCTION, and
SUBROUTINE. A BLOCK DATA subprogram begins with a BLOCK DATA
statement, and provides initial values for variables and array elements in named
COMMON blocks. A detailed description is in Chapter 6, "Subprograms."

Any executable program is called a procedure. FUNCTION and SUBROUTINE
subprograms are external procedures. Either the main program or programs written
in other iAPX 86,88 languages can call these procedures. A FUNCTION subpro
gram begins with a FUNCTION statement and returns a value when referenced. A
SUBROUTINE subprogram begins with a SUBROUTINE statement. See Chapter
6 for a complete explanation of FUNCTION and SUBROUTINE subprograms.

2.2 Fortran Statements
In Fortran there are two kinds of statements: executable and nonexecutable. Execut
able statements do calculations, read or write data from external media, and control
program execution. Nonexecutable statements define the characteristics or values of
data and define program units. The following list classifies Fortran statements as
executable or nonexecutable. You can find complete definitions in the chapters
indicated below.

EXECUTABLE STATEMENTS:
• Arithmetic, logical, and character assignment statements (Chapter 8)
• ASSIGN statement (Chapter 8)
• Unconditional, assigned, and computed OOTO statements (Chapter 8)
• Arithmetic and logical IF statements (Chapter 8)
• Block IF, ELSE IF, ELSE, and END IF statements (Chapter 8)
• CONTINUE statement (Chapter 8)
• STOP and PAUSE statements (Chapter 8)
• DO statement (Chapter 8)
• READ, WRITE, and PRINT statements (Chapter 9)
• REWIND, BACKSPACE, ENDFILE, OPEN, and CLOSE statements

(Chapter 9)
• CALL and RETURN statements (Chapter 8)
• END statement (Chapter 4)

NONEXECUTABLE STATEMENTS:
• PROGRANl, BLOCK DATA, FUNCTION, and SUBROUTINE statements

(Chapter 4)

2-1

Program Structure Fortran-86

2-2

• DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, EXTERNAL,
INTRINSIC, and SAVE statements (Chapter 5)

• INTEGER, REAL, DOUBLE PRECISION, TEMPREAL, COMPLEX,
DOUBLE COMPLEX, LOGICAL, and CHARACTER type statements
(Chapter 5)

• DATA statement (Chapter 5)

• PARAMETER statement (Chapter 5)

• FORMAT statement (Chapter 9)

• Statement-function statement (Chapter 6)

2.2.1 Statement Order

Fortran program units must follow this standard order:

• Comment lines can appear anywhere before the END statement.

• The PROGRAM statement can appear only as the first statement of a main
program.

• FUNCTION, SUBROUTINE, and BLOCK DATA statements can appear only
as the first statement in a subprogram.

FORMAT statements can appear anywhere before the END statement.

PARAMETER statements can appear anywhere before DA T A, statement
function, and executable statements.

• IMPLICIT statements must appear before all other specification statements
except PARAMETER and FORMAT statements.

• All other specification statements (DIMENSION, COMMON, EQUIV A
LENCE, EXTERNAL, INTRINSIC, and SAVE) must appear before all DATA
statements.

• DA T A statements can appear anywhere after the specification statements.
All statement-function statements must appear before all executable
statements.

• All executable statements must appear before the END statement.
The END statement must be the last statement in a program unit.

Figure 2-1 summarizes the rules for ordering Fortran statements in a program unit.
In this figure, vertical lines separate statement types that can be mixed, and horizon
tal lines separate those that cannot.

PROGRAM, FUNCTION, SUBROUTINE
OR BLOCK DATA STATEMENTS

IMPLICIT
STATEMENTS

PARAMETER
COMMENT STATEMENTS OTHER LINES SPECIFICATION

FORMAT STATEMENTS
STATEMENTS

STATEMENT·
FUNCTION

DATA
STATEMENTS

STATEMENTS
EXECUTABLE
STATEMENTS

END STATEMENT

Figure 2-1. Order of Fortran Statements 121570-2

CHAPTER 3
LANGUAGE ELEMENTS

3. 1 Basic Alphabet

The character set for Fortran-86 is the set of all uppercase and lowercase letters, the
digits 0 through 9, and the following special characters:

Blank
Equal Sign

+ Plus
Minus

* Asterisk
I Slash
(Left Parenthesis
) Right Parenthesis

Comma
Single Quote

$ Dollar Sign
Pound Sign

Colon
Underscore

% Percent Sign

Blanks are significant only in character strings. They can be used to improve program
readability. For example,

A=B*C+{D**2/E)

and

A = B * C (D**2lE)

are equivalent statements..

However, blanks are counted in the total number of characters in a Fortran line.
Blanks are also significant in character strings and in column six of the standard line
format. Blanks have no effect on the total memory space allocated for the object
code.

3.2 Statenlent Elements

The letters, digits and special characters of the Fortran-86 character set form the
basic elements of a Fortran statement. These basic elements are constants, symbolic
names, statement labels, keywords, and operators. There are no reserved words in
Fortran; any combination of the character set is acceptable as long as it complies
with certain rules outlined in the next sections.

3.2.1 Constants

A constant is a value that does not change. In Fortran, there are arithmetic, logical,
and character constants. Each constant has a data type and a length. See Chapter 5,
"Data and Spec:ification Statements," for details on constants.

3-1

Language Elements

3-2

3.2.2 Symbolic Names

Each variable in Fortran must have a symbolic name. A symbolic name consists of 1
to 6 alphanumeric characters in standard Fortran, and 1 to 31 in Fortran-86. The
first character must be a letter or an underscore. For example, the symbolic names,

A
a
C3PQ
ZA82B
BEF974
_A8

is not correct because the first character is not a letter or an underscore.

The symbolic name,

1 A C G

is not correct because the first character is not a letter.

The compiler does not distinguish between uppercase and lowercase characters.

A symbolic name can be either global or local. Any global symbolic name applies
throughout the entire program. The following is a list that catagorizes global symbolic
names:

Main program name

Subroutine names

External function names

• BLOCK DATA subprogram names

Named COMMON names

A local symbolic name can represent different entities in different program units or
statement functions. The following is a list of local symbolic names:

• Array names

Variable names

• Statement-function names

• Intrinsic-function names

• Dummy procedure names

Variables that appear as dummy arguments in a statement function have a scope of
that statement only.

3.2.3 Statement Labels

Any statement can be labeled; any statement referenced from elsewhere in the program
must be labeled. This label is a 1-5 digit unsigned, nonzero integer constant placed
in columns 1-5 of the statement's initial line.

3.2.4 Keywords

Fortran keywords are very important. All but two types of statements begin with a
keyword, and the compiler uses the keyword to identify the statement. Most keywords

Fortran-86

Fortran-86 Language Elements

fulfill the requirements of a symbolic name. Since there are no reserved words,
however, the compiler distinguishes between keywords and symbolic names by the
context.

3.3 Statements and Lines

Each Fortran statement is made up of lines. The first line is the initial line, and each
subsequent line is a continuation line. Fortran-86 can have up to 19 continuation lines
per statement.

3.3. 1 Line Format

Fortran-86 lines must follow a specified order. Figure 3-1 shows this order.

Each line has a maximum of 132 characters. The first 5 positions may contain the
statement label. If there is no statement label for a line, or if this line is a continua
tion line, these positions must be left blank. Position 6 is the continuation field. If
this position contains a 0 or a blank, the line is an initial line. If this line contains any
other Fortran character, it is a continuation line. The actual statement does not begin
until column 7.

You can deviate from the: standard Fortran line format by using the FREEFORM
control. See Section 11.4.6, "FREEFORM CONTROL" for details.

I LINE CHARACTER POSITIONS I
.. 1 2 3 4 5 6 7 8 9 ••••.. . • . • " 70 71 72"

'---.... oy------' Y ''--------.---..'T'----------~I
CONTlNUJ\TION STATEMENT

STATEMENT FIELD FIELD
LABEL FIELD

Figure 3-1. Fortran Line Format 121570-3

3-3

· (~ CHAPTER 4
PROGRAM DELIMITERS AND COMMENTS n

4. 1 Comments

Comments in Fortran are llines that document the program. Comment lines are useful
for describing th(~ intent of the program between the lines. Each comment line must
begin with either the letter C or an asterisk (*) in position 1. A completely blank line
is treated as a comment. Comment lines can appear anywhere before the END state
ment, including between an initial line and its continuation lines or between any two
continuation lines. Comment lines have no effect on program execution or memory
requirements.

4.2 Headings

As described in Chapter 2, "Program Structure," you can divide a Fortran program
into a main program and any number of subprograms. Each unit begins with a differ
ent statement that defines the unit. The following sections describe these initial state
ments.

4.2. 1 PROGRAM Statement

The PROGRAM[statement names the main program. This statement is optional, but
if present, it must be the first statement in the main program. Its syntax is as follows:

PRO G RAM name

where

name is the symbolic name of the main program. This name applies
to the entire executable program and cannot be the same as
the name of any function, subroutine, BLOCK DATA
subprogram, common block, or any local variable within the
main program.

4.2.2 FUNCTION Statement

The FUNCTION statement introduces a FUNCTION subprogram, and must be the
first statement in the subprogram. Its syntax is as follows:

[type] F U 1'1 C T] 01'1 name ([arg [, arg]])

where

type

name

arg

is one of the specified data types INTEGER, REAL,
DOUBLE PRECKSION, TEMPREAL, COMPLEX,
DOUBLE COMPLEX, LOGICAL, or CHARACTER (see
Chapter 5, "Data and Specification Statements").

is the symbolic name of the subprogram.

is the name of a dummy argument that is either a variable,
an array, or a procedure.

4--1

Program D(~limiters and Comments

4--2

The FUNCTION name can appear as a variable within the subprogram. This name
is defined or redefined each time the program activates the function. The value of
this variable at the end of the subprogram is the resulting, or return, value of the
function. A function can change the values of its dummy arguments. If there are no
dummy arguments, the parentheses still must be present. The uses of FUNCTION
subprograms are described in Chapter 6, "Subprograms."

4.2.3 SUBROUTINE Statement

The SUBROUTINE statement introduces a SUBROUTINE subprogram, and must
be the first statement in the subroutine. Its syntax is as follows:

SUB R 0 UTI N E name C[arg [, arg]p

where

name

arg

is the symbolic name of the subroutine

is a dummy argument that is either a variable, array, or
procedure.

A subroutine can change the values of its dummy arguments. If there are no dummy
arguments, either form, SUBROUTINE name, or SUBROUTINE name () is
acceptable. The uses of subroutines are described in Chapter 6, "Subprograms."

4.2.4 BLOCK DATA Statement

The BLOCK DATA statement introduces a BLOCK DATA subprogram, and must
be the first statement in the subprogram. Its syntax is as follows:

B L 0 C K D A T A [name]

where

name is the optional name of the subprogram.

A BLOCK DATA subprogram initializes global data and contains no executable
statements. See Section 6.2, "BLOCK DATA Subprograms."

4.3 END Statement

The END statement indicates the end of a program unit. This unit may be either a
main program or a subprogram. Its syntax is as follows:

END

The END statement must be the last statement in a program unit. When executed in
a main program, END terminates the program. When executed in a subprogram,
END acts as a RETURN statement and restores control to the main program.

You must enter an END statement only in positions 7 through 132 of an initial line,
and the END statement cannot extend to a continuation line. No other statement can
have an initial line with the same characteristics as an END statement.

Fortran-86

• l«) CHAPTER 5
DATA AND SPECIFICATION STATEMENTS n

Fortran-86 supports a range of data types. Each data type has a specification state
ment that indicates the data type for a given argument, and directs the compiler to
allocate the appropriate amount of storage. This chapter describes the each of the
data types supported by Fortran-86 and provides the corresponding specification
statement for each data type.

5. 1 Data Types

Fortran-86 supports the following data types: integer, floating-point, logical, and
character. Floating-point data types include the following: REAL, DOUBLE
PRECISION, COMPLEX, COMPLEX* 16, and TEMPREAL. A symbolic name
representing a constant, variable, array, or function indicates data type.

You can specify the type of a named constant, variable, array, external function, or
statement function with a type statement. In the absence of a specific declaration,
the Fortran default typing convention takes effect. According to this convention, the
first letter of the name indicates the particular type. A first letter of I, J, K, L, M, or
N indicates type INTEGER; any other letter or an underscore indicates type REAL.
An IMPLICIT statement can change this convention (see Section 5.2).

Type statements can also specify data length or array dimension information. You
cannot specify the type of a name explicitly more than once in a program unit.
PROGRAM, SUBROUTINE, and BLOCK DATA names cannot appear in type
statements.

In Fortran, there are four levels at which data lengths can be set: compiler default,
the STORAGE control, the IMPLICIT statement, and type specification statements.
If you do not specifically declare any data lengths, the following compiler defaults
are in effect:

INTEGER
LOGICAL
REAL
DOUBLE PRECISION
CHARACTER
COMPLEX
TEMPREAL

2 bytes
1 byte
4 bytes
8 bytes
1 byte
8 bytes
10 bytes

If you use the STORAGE control when compiling your program, (see Section
11.4.19), you can change the default length specification for INTEGER and
LOGICAL data only.

If you specify a length in an IMPLICIT statement, this specification overrides both
the STORAGE control and the compiler defaults for the given class of names.

If you specify a length in a type statement, it overrides the IMPLICIT statement,
STORAGE control, and the compiler default for the given names.

5-1

Data and SlPecification Statements

5-2

5. 1. 1 Integer Data

An item of integer data always comprises the exact representation of an integer value.
The value can be positive, negative, or zero. An item of integer data requires one one
byte, two-byte, or four-byte numeric storage unit, depending on the default or explicit
length specification for the constant, variable, or function. Table 5-1 provides the
value ranges for integer data.

5 . 1 . 1 . 1 Integer Constants

The forms of an unnamed integer constant are as follows:

[sign] dig/et [dig/et]. ..

or

[sign] I dig/et [dig/et] ... base

where

sign

dig/et

base

is the optional plus (+) or minus (-) sign.

is one of the 10 digits (0 through 9) or one of six letters (A
through F).

is a base specifier that is one of the letters D, B, 0, Q, or H.

The base specifier indicates to the compiler what base the integer constant has. The
letter D indicates a decimal number, B indicates a binary number, 0 or Q indicates
an octal number, and H indicates a hexadecimal number.

If the base specifier is D, indicating a decimal number, each diglet must be one of
the digits 0 through 9. By default, an integer without a base specifier integer is a
decimal number.

If the base specifier is B, indicating a binary number, each diglet must be one of the
digits 0 or 1.

If the base specifier is either 0 or Q, indicating an octal number, each diglet must be
one of the digits 0 through 7.

If the base specifier is H, indicating a hexadecimal number, each diglet must be one
of the digits 0 through 9 and the letters A through F. The first diglet must be one of
the digits 0 through 9.

Fortran-86 gives a storage length equivalent to INTEGER *4 to the results of some
integer constant expressions. An integer constant in a constant list of a DATA state
ment is given a length that matches the length of the corresponding data item. Other
integer constants will be allocated to the smallest unit capable of holding their value,
up to a maximum of four bytes. An exception to this rule occurs when an integer
constant is used as an actual argument. In this case, the constant is assigned the
default length (see Section 11.4.19, Storage Control).

Table 5-1. Value Ranges of INTEGER Data

Type and Length Value

INTEGER*1 -128 TO +127
INTEGER*2 -32,768 TO +32,767
INTEGER*4 -2,147,483,648 TO +2,147,483,647

Fortran-86

Fortran-86 Data and Specification Statements

A value that exceeds the range of presentable values for the particular type of data
is undefined.

5. 1 .1 .2 INTEGER Type Statement

An INTEGER type statement declares names to be of type INTEGER. Its syntax is
as follows:

I N T E G E R [* len]name [, name] ...

where

len

name

where

var

array

array (d)

len

has one of the numb(!rs 1, 2, or 4.

is one of the following forms:

vclr[* len]

or

array [(d)][* len]

is the name of an integer constant, variable, function, or
dummy procedure.

is an array nam~~.

is an array declarator, (see Section 5.4.1, "DIMEN
SION Statement").

is the length in bytes of the integer variable or each
integer array element. The value len must be 1, 2, or 4.

The length specification immediately following the keyword INTEGER applies to
each item in the statement not having its own length specification. A length specifi
cation immediately following an item is for that item only. For an array, the length
applies to each array element. If no length is specified, the compiler assigns a length
(see Sections 5.2, "IMPLICIT Statement" and 11.4.19, "STORAGE Control").

5. 1.2 Floating-Point: Data

An item of floating-point data represents a processor approximation to the value of a
floating-point number. Floating-point data values can pe positive, negative, or zero.
The internal representation, the precision, and the range of floating-point values
conforms to the floating-point conventions established by the IEEE Proposed Standard
for Binary Floating-Point Arithmetic, Draft 8.0. For more information on floating
point arithmetic. see the iAPX 86,88 User's Manual, order number 210201.

Fortran-86 supports the following types of floating-point data: REAL, DOUBLE
PRECISION, TEMPREAL, COMPLEX, and COMPLEX*16. REAL data is stored
in one or two four-byte numeric storage units in a sequence depending on the explicit
or implicit length specification. DOUBLE PRECISION data is stored in two four
byte numeric storage units and TEMPREAL data in 10 bytes. COMPLEX data is
stored in two or four four-byte storage units .. The first half stores the real part and
the second half stores th(~ imaginary part.

Note that the internal representation of the REAL *8 data type is the same as that
of the DOUBLE PRECISION data type.

5-3

Data and Specification Statements

5-4

5.1.2.1 Floating-Point Constants

The basic form of a floating-point constant is as follows:

[sign] digit. digit[exponent]

where

sign

digit. digit

is an optional plus (+) or minus (-) sign.

is the integer and fractional part of the constant. Both the
integer part and the fractional part are strings of decimal
digits. You can omit either of these parts but not both. You
can write a floating-point constant with more digits than the
processor will use to approximate the value of the constant.
The compiler interprets a floating-point constant as a decimal
number.

There are three floating-point exponent forms that correspond to the floating-point
data types. The syntax is as follows:

letter [sign] digit

where

letter

sign

digit

is the letter E for REAL exponents, D for DOUBLE
PRECISION, and T for TEMPREAL.

is the optional plus (+) or minus (-) sign.

is a decimal integer constant.

The internal representation of the REAL*8 data type is the same as that of DOUBLE
PRECISION. Therefore, you must write REAL *8 constants with the D exponent.
The compiler will allocate any constant with the E exponent only one four-byte
numeric storage unit. The exponential form of COMPLEX data is based on its
component elements. A complex constant is represented by an ordered pair of REAL,
INTEGER, or DOUBLE PRECISION constants, separated by a comma, enclosed
in parenthesis.

Table 5-2 shows the approximate ranges for floating-point data.

5 . 1 .2 . 2 REAL Type Statement

A REAL type statement declares names to be of type REAL. Its syntax is as follows:

REA L [* len]name[I name] ...

Table 5-2. Value Ranges for Floating-Point Data

Type Value

REAL I 1.2*10**(- 38) I TO 13.4*1 0**{38) I
DOUBLE PRECISION I 3.4*10**(- 308) I TO I 1.8*10**(308) I
TEMPREAL 13.4*10**(-4932) I TO 11.2*10**(4932) I
COMPLEX *See note
COMPLEX*16 *See note

*Each component of a COMPLEX*8 number has the same value range as a REAL number. Each
component of a COMPLEX*16 number has the same value range as a DOUBLE PRECISION
number.

Fortran-86

Fortran-86 Data and Specification Statements

where

len

name

where

var

array

array (d)

len

is one of the numbers 4 or 8.

has the following form:

v8lr[* len]

or

array [(d)][* len]

is the name of a real constant, variable, function, or
dummy procedure.

is an array name.

is an array declarator (see Section 5.4.1, "DIMEN
SION Statement").

is the length in bytes of the real variable or each real
array element. The value len must be 4 or 8.

The length specification immediately following the keyword REAL applies to each
item in the statement not having its own length specification. A length specification
immediately following an item is for that item only. For an array, the length applies
to each array element. If no length is specified, the compiler assumes the default
length of four bytes, or the default length specified by the IMPLICIT statement (see
Section 5.2).

5.1.2.3 DOUBLE PRECISION Type Statement

The DOUBLE PRECISION type statement declares names to be of type DOUBLE
PRECISION. Its syntax is as follows:

DO U B L E PRE CIS ION name [I name] ...

where

name is a constant name, variable name, function name, dummy
procedure name, array name, or array declarator (see Section
5.4.1, "DIMENSION Statement"). The compiler assigns a
length of two four-byte numeric storage units to each name.

5 . 1 .2 .4 TElVlPREAIJ Type Statement

The TEMPREAL type statement declares names to be of type TEMPREAL. Its
syntax is as follows:

T E M PRE A L name [I name] ...

where

name is a constant name, variable name, function name, dummy
procedure name, array name, or array declarator (see Section
5.4.1, "DIMENSION Statement"). The compiler assigns a
length of one 10-byte numeric storage unit to each name.

5-5

Data and Specification Statements

5-6

5.1.2.5 COMPLEX and COMPLEX*16 Type Statement

The COMPLEX and COMPLEX*16 type statement declares names to be of type
COMPLEX, and has the following syntax:

COM P LEX [*Ien] J name [*Ien] J name [* len] J ...

where

name

where

v

a

a(d)

len

5. 1.3 Logical Data

is one of the forms:

v [* len]

or

a (d) [* len]

represents a variable name, function name, or dummy
procedure.

is an array name.

is an array declarator.

is the storage unit length. Len may be 8 or 16 for complex
data. Len may also be an integer constant expression that
evaluates to one of the above values (8 or 16), enclosed
in parenthesis. By default, the compiler assigns two or
four four-byte storage units to each name.

Logical data can assume only the values true or false. Logical data may have one,
two, or four-byte numeric storage units, depending on the explicit length specification
or the implicit length ror a LOGICAL variable or function (see Sections 5.2,
"IMPLICIT Statement" and 1l.4.19, "STORAGE Control"). Note that only the
first byte of a two or four-byte data item is actually used.

5 . 1 .3 . 1 Logical Constants

Table 5-3 shows the form and acceptable values of logical constants.

5.1.3.2 LOGICAL Type Statement

The LOGICAL type statement declares names to be of type LOGICAL. Its syntax
is as follows:

LOG I C A L[*len] name [J name]. ..

Table 5-3. Value Ranges of LOGICAL Data

Type and Length Value

LOGICAL*1 .TRUE. or .FALSE.
LOGICAL*2 .TRUE. or .FALSE.
LOGICAL*4 .TRUE. or .FALSE.

Fortran-86

Fortran-86 Data and Specification Statements

where

len

name

where

var

array

array (d)

len

is one of the numbers 1, 2, or 4.

has the following form:

v~!r[* len]

or

array [(d)][* len]

is the name of a logical constant, variable, function, or
dummy procedure.

is an array name.

is an array declarator (see Section 5.4.1, "DIMEN
SION Statement").

is the length in bytes of the logical variable or each logical
array element. The value len must be 1, 2, or 4.

The length specification immediately following the keyword LOGICAL applies to
each item in the statement not having its own length specification. A length specifi
cation immediately following an item applies to that item only. For an array, the
length applies to each array element. If no length is specified, the compiler assumes
the default length (see Sections 5.2, "IMPLICIT Statement", and 11.4.19,
"STORAGE Control").

5. 1.4 Character Oa1ta

Character data are strings of ASCII characters. Each character in the string has a
character position numb(~red consecutively from left to right beginning with 1. The
blank character is valid and significant in character data.

5 . 1 . 4 . 1 Character Constants

A character constant has the following form:

'CHARACTERS'

The apostrophe (') is not part of the character constant, but must be entered to
delineate the constant. Two consecutive apostrophes (n) represent a single apostrophe
within the string. For example:

IIMURPHYIlS LAW'

The length of a character string is the number of characters in the string. Each pair
of consecutive apostrophes counts as one character. The length of a character constant
must be greater than zero.

5.1 .4.2 CHARACTER Type Statement

A CHARACTER type statement declares names to be of type CHARACTER. Its
syntax is as follows:

C H A R ACT E R[* len] name [,name] ...

5-7

Data and SI)ecification Statements

5-8

where

len

name

where

var

array

array (d)

len

is any unsigned, non-zero, integer constant expression enclosed
in parentheses, or is an asterisk (*) enclosed in parentheses.

has one of the following forms:

var[* len]

or

array [(d)][* len]

is a character variable.

is an array name.

is an array declarator (see Section 5.4.1, DIMENSION
Statement).

is the number of characters in the character variable,
character array element, character constant with a
symbolic name, or character function.

The length specification immediately following the keyword CHARACTER applies
to each item in the statement not having its own length specification. A length speci
fication immediately following an item applies to that item only. For an array, the
length applies to each array element. If no length is specified, the compiler assumes
the standard default length for CHARACTER data (one byte). If a length has been
specified by an IMPLICIT statement (see Section 5.2), that length will be assigned
to the item.

5.1.5 Hollerith Data

Fortran-86 supports Hollerith data types. See Appendix F for details.

5.2 IMPLICIT Statement

The IMPLICIT statement defines the default type and length for symbolic names
that begin with the letter or letters specified by IMPLICIT. IMPLICIT overrides the
standard Fortran typing convention (see Section 5.1). Any type statement or explicit
type specification in a FUNCTION statement can override an IMPLICIT statement.

The syntax of the IMPLICIT statement is as follows:

IMP LIe I T type (Jet [J let] ...) [type (let [J let] ..)]. ..

where

type

let

is one of the Fortran-86 data types:

I N T E G E R [* len], REA L [* len], LOG I CAL[* len],
C H A RAe T E R [* len], D 0 U B L E PRE CIS ION,
T E M PRE A L, COM P LEX or COM P LEX * 1 6.

is a single letter or range of letters in alphabetical order in
the form let-let. For this range specification an underscore is
considered to immediately follow Z.

Fortran-86

Fortran-86 Data and Specification Statements

len is the length of the item in bytes. The value of len must be 1,
2, or 4 for INTEGER or LOGICAL data, 4 or 8 for REAL
data, 8 or 16 for COMPLEX data, and is the length of the
character string for CHARACTER data. If no length is
specified, the compilt!r assumes the following default lengths:
1 byte for CHARACTER data, 4 bytes for REAL data, and
8 bytes for COMPLEX data. The default lengths for
INTEGER and LOGICAL data are specified as described
in Section 11.4.19, "STORAGE Control".

The IMPLICIT statement applies only to the program unit in which it appears and
must precede all other specification statements in that program unit. A program unit
can have more than one IIVlPLICIT statement, but you can specify a particular letter
only once.

5.3 PARAMETER Statement

The PARAMETER statement gives constants symbolic names. Its syntax is as follows:

PAR A MET E R (name = €!Xp [, ...])

where

name is a symbolic name.

exp is a constant expression.

If the name is of type INTEGER, the corresponding expression must be of type
INTEGER. If the name is of type REAL, DOUBLE PRECISION, TEMPREAL,
COMPLEX, or COMPLEX* 16, the corresponding expression must also be a constant
of the same type. If the name is of type LOGICAL, then exp must be a logical
constant. If name is of type CHARACTER, exp must be a character constant.

Any symbolic name of a constant that appears as an expression in a PARAMETER
statement must have been defined previously in a PARAMETER statement (includ
ing the same PARAMETER statement).

If the symbolic name of a constant is not of default implied type or length, you also
must specify its type and length in either a type statement or an IMPLICIT state
ment before it appears in the PARAMETER statement. Subsequent statements,
including an IMPLICIT statement, cannot change the type or length.

A symbolic name in a PARAMETER statement may identify only the corresponding
constant in that program unit.

5.4 Arrays

An array is a sequence of data elements. You can refer to the sequence as a whole or
to individual clements in the sequence.

An array name is the symbolic name of the entire array. An array element name is
the symbolic name of one member of the array. An array element name is an array
name qualified by one or more subscripts enclosed in parentheses. An array name not
qualified by a su bscript identifies the entire array with the exception: in an EQUIV
ALENcE statement or CALL assignment list, the array name with no subscript
identifies the first element in the array.

5-9

Data and Sp,ecification Statements

5-10

You define an array by assigning a symbolic name to the array and specifying its
dimensions. This definition can occur in type statements (Section 5.1), a COMMON
statement (Section 5.5.2), or a DIMENSION statement (Section 5.4.1).

5.4. 1 DIMENSION Statement

The DIMENSION statement defines an array. Its syntax is as follows:

DIM ENS ION array (d) [, array (d) l ..

where

array (d)

where

array

s

is an array declarator that has the following form:

array (s [, ...])

is the symbolic name of the array.

is a dimension declarator. The number of dimension
declarators indicates the number of dimensions in the
array. Each dimension declarator indicates the number
of elements of that dimension. The maximum number of
dimensions is seven.

The form of a dimension declarator is as follows:

[d1:]d2

where

d1

d2

is the lower dimension bound.

is the upper dimension bound.

Both upper and lower bounds are arithmetic expressions; d1 may include only integer
constants and variables and d2 may include integer constants, variables, or an aster
isk (*). A dimension bound cannot contain a reference to either a function or an
array element. The values of upper and lower bounds can be positive, negative, or
zero. However, the upper bound must be greater than or equal to the lower bound. If
you do not specify a lower bound, the default value is one.

5.4.2 Kinds of Array Declarators

An array declarator (array (d» has three types: a constant, adjustable, or assumed
size array declarator.

In a constant array declarator, each of the dimension bounds is an integer constant
or integer constant expression. For example:

ARRAY(3,3,-3:4)

In an adjustable array declarator, one or more of the dimension bounds is an
INTEGER variable or expression. For example:

A R RAY (3 , 2 : MID D LEI T H I R D : + 8)

In an assumed-size array declarator, the upper bound of the last dimension is an
asterisk (*), as follows:

ARRAY(3,MIDDLE,*)

Fortran-86

Fortran-86 Data and Specification Statements

You can use an array name as a dummy argument in a FUNCTION or SUBROU
TINE subprogram. An actual array declarator must be a constant array declarator
whereas dummy array dec1arators may be constant, adjustable, or assumed-size. Like
actual array declarators, dummy declarators are permitted in DIMENSION or type
statements, but unlike actual array declarators, they cannot appear in COMMON
statements. Each variablt:~ name used in a dimension-bound expression must also
appear in the subprogram's dummy argument list or in a COMMON block in the
subprogram. You can avoid this requirement in the last dimension by using the aster
isk (*) feature for the upper bound.

5.4.3 Properties of Arrays

The DIMENSION statement defines the following properties for arrays:

The type of the array name

• The type of the array elements

The length of the array elements

• The number of dimensions in the array

The size of (~ach dimension

The total number of array elements

The number of dimensions equals the number of dimension declarators in the array
declarator. For example, the following array:

TABLEC-6:4,4)

has two dimensions.

The size of a dimension declarator has the following value:

d2 - d1 + 1

where

d1

d2

is the value of the lower dimension bound.

is the value of the upper bound.

You can compute the size of an array as the product of the sizes of the dimensions
specified by the array declarator. For example:

ARRAYC3,-1:1,3)

has 27 elements. To determine the number of elements in an assumed size array, do
the following:

• If the actual argument corresponding to the dummy array is an array name, the
size is that of the actual array.

If the actual argument is an array element name with a subscript value of p in
an array of size n, the size of the dummy array is n + 1 - p.

The compiler stores array elements sequentially. For example, in the following
sequence:

DIMENSION TABLEC3,3)
TABLEC3,1)=2.9
TABLEC2,3)=7.3

5-11

Data and Specification Statements

5-12

2.9 is in the third storage location in the block whose low address is TABLE, and 7.3
is in the eighth location, as shown below.

(1,1)(2,1)2.9(1 ,2)(2,2)(3,2)(1,3)7.3(3,3)

To determine the total number of bytes in an array, multiply the number of elements
by the number of bytes occupied by each element.

5.4.4 Referencing Array Elements

You reference an array element by qualifying the array name with SUbscripts. For
example:

array (s[) 5]. ..)

where

array

5

Dimension
n Declarator

1 ([Idu,)

2 ([I,:]u, ,[12 :]u2)

3 ([I,:]u, ,[12 :]u2,
[13:]U3)

· · · · · ·
7 ([, :]u1 ,[12:]U2,

... ,[Ir:]u7)

is the array name.

is the subscript. The number of subscripts must equal the
number of dimensions in the array declarator.

Each SUbscript must be an integer expression in the range
lower bound (=s (= upper bound. If the upper dimension
bound is an asterisk (*), the value of the corresponding
subscript must not exceed the effective upper bound of the
corresponding actual array. Table 5-4 shows how to calculate
which element in the storage sequence of array elements you
are referencing.

Table 5-4. Subscript Reference

Subscript Element Referenced

5, 5,-1,+1

(5,,52) (5,-1,+1)+
(52- 12)*(u,-I,+1)

(5,,52,53) (5,-11 +1)+
(52-12)*(u,-I, +1)
(53 -13)-(U, -1 1 + 1)*(U2 -12 + 1)

· · · · · ·
(5,,52,. .. ,57 (5,-1,+1)+

(52 -12)*(u,-I, + 1)
(53-13)-(u,-I, + 1)*(U2- 12+ 1 r+
'" +

(57-17)*(u,-I, + 1)*(u2-12+ 1) .. .*(us-Is+ 1)

where n = number of dimension5
I = value of lower bound
u = value of upper bound
5 = 5ub5cript expre5sion

Fortran-86

Fortran-86 Data and Specification Statements

5.5 Character Substrings

A character substring is a contiguous portion of a CHARACTER variable. It is
identified by a substring name and can be assigned values and referenced.

5.5.1 Substring Specification

The syntax is as follows:

v ([e 1] : [e2])
a (5 [, 5] ...) q e 1 J : [e2])

where

v

a(5[,5] ...)

e1 and e2

is a character variable name.

is a character array element.

are integer expressions called substring expressions.

The value e1 specifies the leftmost character position of the substring. The value e2
specifies the rightmost character position. For example d(3:5) specifies the charac
ters in positions three through five of the character variable d, and m (3,8) (2:4)
specifies the characters in positions two through four of the character array element
m(3,8).

The values of e1 and e2 must be such that:

1 <= e1 <= e2 <= le'n

where

len equals the length of the character variable or array element.
If omitted, the default value of e1 is one and the default value
of e2 is len. Both e1 and e2 may be omitted: for example, v
(:) is equal to v, and a(5[,5] ...) (:) is equal to a(5[,5] ...).
The length of a character substring is e2 - e1 + 1.

5.5.2 Substr~ng Expressions

A substring expf(~ssion may be any integer expression and it may contain array element
references and function references. Evaluation of a function must not alter the value
of any variable within th<;: same substring specification.

5.6 Memory Definition

Fortran includes two statements that control the location of memory areas: the
EQUIV ALENCE and COMMON statements.

5.6. 1 EaUIV ALENCIE Statement

The EQUIVALENCE statement allows items in a program unit to share memory.
Entities listed in the EQUIVALENCE statement share the same starting address in

5-13

Data and SIJecification Statements

5-14

memory, even if they are of unequal length. The syntax for an EQUIVALENCE
statement follows:

E QUI V ALE NeE (nlist> [J (nlist)]. ..

where

nlist is a list of two or more variable names, array names, or array
element names. An array name not qualified by a subscript
refers to the first element of the array. You cannot use
function names or dummy argument names in this list.

Entities listed in an EQUIVALENCE statement may be of different types. However,
since the EQUIVALENCE statement implies no type conversion, it is not
recommended.

The EQUIVALENCE statement must not cause the same storage item to occur more
than once in a memory sequence. It cannot result in the splitting of a memory sequence
already defined.

5.6.2 COMMON Statement

The COMMON statement associates memory among the same and different program
units, allowing common use of data and memory throughout an entire program. The
COMMON statement defines common blocks that are either named or unnamed
(blank). Its syntax is as follows;

COM M ON [/ [name] /]nlist [[J] / [name] / nlist]. ..

where

name

nlist

is the optional name.

is a list of variable names, array names or array declarators.
You cannot use function names or dummy argument names
in this list.

If you omit the first name in a COMMON statement, you can omit the slashes
(j I). For any other name you omit in the sequence, the slashes (j /) must be present.

The same common name (or blank name) can appear in other COMMON state
ments in the same program unit. The common block memory sequence consists of
the memory of all items listed in the COMMON statement(s), in order of their
appearance, for that common block name within a program unit.

An EQUIVALENCE statement can extend a common block. When this happens,
the compiler adds memory beyond the highest location in the common block. An
EQUIVALENCE statement cannot associate two different common blocks within a
program. Common blocks with the same name but defined in different program units
share the same starting address in memory.

A named COMMON block must be defined with the same length in every program
unit that references it. Data statements in BLOCK DATA subprograms can initialize
items only in named common blocks.

Fortran-86

Fortran-86 Data and Specification Statements

5.7 SAVE Statement

The SAVE statement ensures that specified variables within a FUNCTION or
SUBROUTINE subprogram do not become undefined upon execution of a RETURN
or END statement. Its syntax is as follows:

5 A V E I name 11[, I name I]. ..

where

name is the name of a common block enclosed in slashes, a variable
name, or an array name. Naming the common block in a
SAVE statement saves all items in that block. Only one
reference to a specific item can occur in a single SAVE state
ment. Local data names are not saved if the REENTRANT
control is specified.

In an overlayed program, the SAVE statement does not ensure that variables will be
saved across overlay, loading unless the subprogram is in the root. Values in common
blocks will be saved only ilf the common block is declared in at least one program or
subprogram in the root.

5.8 OAT A Staten.ent

The DATA statement gives the initial values of variables, arrays, and array elements.
DATA statements cannot initialize dummy arguments or functions. DATA state
ments can initialize common memory only if the DATA statements are part of a
BLOCK DATA subprogram. Its syntax is as follows:

OAT A nlist/ clist [, ...] I

where

nlist

clist

where

c

r

r* c

is a list of variable names, array names, array element names
and implied-DO lists.

has the following form:

[r*]c [, [r*]c] ...

is any constant, even a Hollerith constant.

is a repeat specifier that is an unsigned, nonzero, integer
constant.

is equivalent to r successive appearances of the constant
c.

Both n/ist and clist must have the same number of items since the lists correspond on
a one-to-one basis. If nlist contains an array name without a subscript, clist must have
one constant for each ekment in that array. All listed subscripts must be integer
constant expressions.

The type of any name in n/ist must agree with the type of the corresponding constant
in clist except that you can initialize an item of any non-character type to a Hollerith
constant.

5-15

Data and Specification Statements

5-16

If a variable or array element in nlist has a specific length, the length of its corre
sponding Hollerith constant in clist must be less than or equal to that length. If a
length in clist is less than the corresponding length in nlist, the compiler pads the
constant on the right with blanks until the two lengths are equal.

You can initialize a variable or an array element only once in a program. If an
EQUIVALENCE statement associates two items, you can initialize only one of these
items.

5.8. 1 Implied-DO in a DATA Statement

The form of the implied-DO list is:

where

dlist is a list of array element names and implied-DO lists.

is the implied-DO variable.

are integer constant expressions.

The range of an implied-DO list is dlist. The iteration count and the values of the
implied-DO variable are established from m l , m2 , and m3 exactly as for a DO (see
Section 8.3). When an implied-DO list appears in a DATA statement, items in dlist
are specified once for each iteration of the list with the appropriate substitution of
values for any occurrence of r. The presence of i in a DATA statement does not affect
the status of any other variable with the same name in the same program unit. The
following is an example of an implied-DO list in a data statement:

DIMENSION IARRAY (S)
DATA(IARRAY(I),1-1,S)/ 2,4,6,8, 10/

5.9 INTRINSIC Statement

The INTRINSIC statement confirms that a symbolic name represents an intrinsic
function and allows the use of that name as an actual argument. Its syntax is as
follows:

I NT R INS I C name[, name]. ..

where

name is an intrinsic-function name. An intrinsic-function name can
appear only once in any INTRINSIC statement in a program
unit. The same intrinsic function name cannot appear in both
an INTRINSIC statement and an EXTERNAL statement
in the same program unit.

The following intrinsic-function names cannot appear in INTRINSIC statements:
type conversion functions, lexical relationship functions, and functions for choosing
the largest or smallest value.

Fortran-86

Fortran-86 Data and Specification Statements

5.10 EXTERNAL Statement

The EXTERNAL statement confirms that a symbolic name represents an external
or dummy procedure and allows that name to appear as an actual argument. Its
syntax is as follows:

EXT ERN A L name [I name]. ..

where

name is the name of an external or dummy procedure.

If an intrinsic function name appears in an EXTERNAL statement, that name no
longer specifies an intrinsic function in the program unit, but instead becomes the
name of an external procedure.

• ('!) ~ CHAPTER 6 n ~ _________________ S_U_BP_R_O_G_R_A_M_S~

A Fortran program consists of a main program and any number of subprograms. This
chapter describes the various kinds of subprograms, including subroutines, functions,
and BLOCK DATA subprograms.

6. 1 Types of Subprograms

Subroutines or functions organize programs into structures and enable multiple use
of commonly used program units. A subprogram is largely self-contained, accepts
arguments and, in the case of a function, returns a value to the invoking program
unit.

Any other program unit can invoke a subroutine or function, but it cannot invoke
itself unless compiled with the REENTRANT Control (see Section 11.4.15).

Programs that are created separately must be linked together before execution. For
linking Fortran-86 procedures with procedures written in other programming
languages, see Appendix H.

6. 1. 1 Arguments

You use dummy arguments in an argument list when you define a subprogram. You
use actual arguments in a corresponding argument list when you reference that
subprogram.

The actual arguments of subprograms must agree in order, number, type, and length
with their corresponding dummy arguments. A dummy argument can be a variable,
an array, a function, or a subroutine. The corresponding actual argument must be an
expression, array, function, or subroutine, respectively.

The symbolic name of a dummy argument cannot appear in an EQUIVALENCE,
SAVE, INTRINSIC, DATA, or COMMON statement.

All subscripts and expressions appearing in an actual argument list are evaluated
before association of the actual and dummy arguments.

External and dummy procedures used as actual arguments must be defined in an
EXTERNAL statement (see Section 5.9). Intrinsic functions used as actual arguments
must be defined in an INTRINSIC statement (see Section 5.8). Statement functions
are not permitted as actual arguments.

The following intrinsic functions can not be used as actual arguments:

INT
IFIX
IDINT

REAL
FLOAT
SNGL
DBLE

:,::t~J:.::;t'X.Q:'~

ICHAR
CHAR
MAX
MAXO
AMAXl
DMAXI
AMAXO
MAXI
MIN
MINO
AMINI

DMINI
AMINO
MINI
LGE
LGT
LLE
LLT

6-1

Subprograms

6-2

6.2 Subroutines

The first statement of any subroutine must be a SUBROUTINE statement (see
Section 4.2.3, "SUBROUTINE Statement"). A subroutine can contain any type of
statement except a FUNCTION, BLOCK DATA, or PROGRAM statement.

You reference a subroutine using a CALL statement (see Section 8.5). After the
subroutine performs its operations, it restores control to the point of call with a
RETURN or END statement (see Section 8.6).

6.2. 1 Intrinsic Subroutines

Fortran-86 provides four intrinsic subroutines for handling input/output through eight
bit and sixteen-bit I/O ports.

For eight-bit ports, the forms of the subroutine call are as follows:

CAL LIN PUT (port 7 vary

CAL LOU T PUT (port 7 exp)

where

port

var

exp

is an integer constant in the range O<port<65535.

is an integer variable.

is an integer expression.

The value read or written for these intrinsic subroutines is a single-byte integer.

For sixteen-bit ports, the forms of the subroutine calls are as follows:

CAL LIN W (port 7 vary

CAL LOU T W (port 7 exp)

where

port

var

exp

is an integer constant in the range O<port<65535.

is an integer variable.

is an integer expression.

The value read or written for these intrinsic subroutines is a two-byte integer.

6.3 Functions

The types of functions available in Fortran-86 are as follows:

• FUNCTION subprograms-User-defined subprograms that the compiler identi
fies by their initial FUNCTION statements.

• Intrinsic functions--Predefined Fortran-86 functions which eliminate the coding
of common mathematical functions.

Statement functions-User-defined single statements which you define as
functions.

• % VAL function--A non-standard function that enables parameter passing by
value for program linkage with non-Fortran programs.

Fortran-86

Fortran-86

6.3.1 FUNCTION Subprograms

A FUNCTION subprogram is an external procedure that returns a value. The first
statement of a FUNCTION subprogram must be a FUNCTION statement (see
Section 4.2.2). The FUNCTION subprogram can contain any type of statement
except a SUBROUTINE, BLOCK DATA, or PROGRAM statement.

The name of a FUNCTION subprogram is global and cannot be used within the
subprogram except as a variable in the body of the subprogram which represents the
return value. Within the subprogram, the name can appear in a type statement if the
type has not already been specified in the FUNCTION statement. A type statement
is the only nonexecutable statement where the name can appear.

The following is an example of a FUNCTION" subprogram.

C THE FOLLOWING EXAMPLE TOTALS THE VALUES
C IN AN ARRAY OF LENGTH I
C THE TYPE OF THE FUNCTION 1S REAL BY DEFAULT

FUNCTI()N TOTAL(ARRAY,I)
DIM ENS ION A R RAY (I)
TOTAL. = 0.0
DO 1()0 K = 1,1

TOTAL = TOTAL + ARRAY(K)
100 CONTINUE

RETUI~N

END

You reference a function by specifying its name in an expression, along with any
necessary actual arguments.

6.3.2 Intrinsic Functions

An intrinsic function is a predefined Fortran-86 function which performs common
mathematical operations such as square root calculations and type conversions. The
name of an intrinsic function can be either a generic name or a specific name. A
generic name simplifies the referencing of an intrinsic function because you can use
it with any of the data types defined for that function. You can use a specific name
only with a data type defined for that name. You need to use the specific name if
you are using thle intrinsic function as an actual argument to a function or subroutine.
For direct calls, the generic name is sufficient.

Subprograms

6-3

Subprograms

6-4

You reference an intrinsic function by specifying it in an expression. For example:

A • 33 + SQRT (8)

The resulting value (A in the example) depends on the value of the actual argument
(B in the expression). There can be more than one argument in a list each separated
by a comma, depending upon the particular function used. Each argument in the list
must agree in type, number, and order with the specifications for the functions which
are detailed later in this chapter. Restrictions on the range of arguments and results
for intrinsic functions are given with the explanation of each function.

If the name of an intrinsic function appears in the dummy argument list of a
FUNCTION or SUBROUTINE subprogram, the name has no relationship to that
intrinsic function within the scope of the program unit. The data type associated with
the symbolic name is specified either by default or by a type statement.

If you use the name of an intrinsic function as an actual argument in a FUNCTION
or SUBROUTINE reference, you must specify it first in an INTRINSIC statement.
The intrinsic functions for type conversion, lexical relationship, and for choosing the
largest and smallest value cannot be actual arguments and can never appear in an
INTRINSIC statement.

6.3 .2. 1 Intrinsic Type-Conversion Functions

Intrinsic type-conversion functions take an argument of one type and return a value
of the type indicated by the particular function. The syntax is as follows:

name (arg)

where

name

arg

is the generic or specific function name.

is the value on which the function will be performed. Type
conversion functions can have only one argument.

Table 6-1 lists all the type-conversion functions by both generic and specific names
with the acceptable types of their arguments and results.

The INT, INTI, INT2, INT4 functions take an argument of one type and return a
value of type INTEGER. More specifically, INT(arg) returns an INTEGER value,
INTI(arg) returns an INTEGER * 1 value, INT2(arg) returns an INTEGER *2 value,
and INT4(arg) returns an INTEGER *4 value.

Each of the names INT, INTI, INT2, and INT4 are generic names. Only the function
INT has specific names associated with it as well. The function IFIX takes aREAL *4
argument and returns an INTEGER value. The results of IFIX(arg) and INT(arg)
are the same. The function IDINT(arg) takes a DOUBLE PRECISION argument
and returns an INTEGER value. See Table 6-1 for details.

For any real, double precision, or tempreal argument, two possible results exist. If
1 argl < 1, then INT(arg) = 0; if 1 argl > 1, then INT(arg) is the integer whose
magnitude is the largest integer that does not exceed the magnitude of 1 arg 1 and
whose sign is the same as that of argo For example:

IHT(-12.B)a-12

Fortran-86

Fortran-86

Generic
Name

INT

REAL

Specific
Name

INT
IFIX

IDINT

FLOAT

FLOAT

FLOAT

FLOAT

SNGL

Table 6-1. Type-Conversion Functions

Category

Type
Conversion

Type
Conversion

Function

Convert to
INTEGER

Convert to
REAL

Arguments

Subprograms

Type

Result

6-5

Subprograms

6-6

Generic
Name

CMPLX

DBLE

CHAR

Table 6-1. Type-Conversion Functions (Cont'd.)

Specific
Name

ICHAR

Category

Type
Conversion

Type
Conversion

Type
Conversion

Type
Conversion

Type
Conversion

Type
Conversion

Function

Convert to
COMPLEX

Convert to
COMPLEX

Convert to
DOUBLE
PRECISION

Convert to '
TEMPREAL

Convert CHAR

Type

Arguments

INTEGER
INTEGER*1
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
DOUBLE
PRECISION
TEMPREAL
COMPLEX*8
COMPLEX*16

INTEGER

INTt;GER*1 ' '

INfEGeR~f
,,, • c" ,;'. ","" >:~,"0 .~. ~ .. "

INTEGER
INTEGER*1
INTEGER*2~' ,
INTEGER*4
REAL*4 '
REAV8
DOUBLE
PRECISION,
TEMPREAL
COMPLEX*8"
C6MPLEX~16" "

Result

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX

~INTEGER CHARACTER INTEGER

Convert
INTEGER to
CHARACTER

CHARACTER

GHAR~CllER :,

>cf~~~tc~t~:c:~,

Fortran-86

Fortran-86

The REAL functRon takes an argument of any type and returns a corresponding
REAL*4 value. For any integer argument (type INTEGER, INTEGER*l,
INTEGER*2, INTEGER*4, or COMPLEX), you can use either of the names REAL
or FLOAT. The results of REAL(arg) and FLOAT(arg) are the same. For a double
precision argument, you can use the specific name SNGL in place of REAL. See
Table 6-1 for details.

For any integer, double-precision, or tempreal argument, the result of a REAL(arg)
function has as much precision of the significant part of arg that REAL data can
contain.

The CMPLX function takes one or two arguments of type INTEGER, REAL,
DOUBLE PRECISION, TEMPREAL, COMPLEX, or COMPLEX*16, and returns
a value of type COMPLEX. If there are two arguments, they must both be the same
type and must not be COMPLEX. If there are two arguments, the first argument
will be used as the real part of the returned value and the second argument will be
used as the imaginary part. If there is one argument of any type except COMPLEX
or COMPLEX* 16, the argument will be used as the real part of the returned value
and the imaginary part wil be zero. If the argument is COMPLEX or COMPLEX* 16,
the real and imaginary parts of the argument will be used as the corresponding parts
of the returned value.

The DCMPLX function takes one or two arguments of type INTEGER, REAL,
DOUBLE PRECISION, TEMPREAL, COMPLEX, or COMPLEX*16, and returns
a value of type COMPLEX* 16. If there are two arguments they must both be the
same type, and they must not be complex arguments. If there are two arguments, the
first argument will be us{~d as the real part of the returned value and the second
argument will be used as the imaginary part. If there is one argument of any type
except COMPLEX or COMPLEX* 16, the argument will be used as the real part of
the returned value and the imaginary part will be zero. If the argument is COMPLEX
or COMPLEX* 16, the real and imaginary parts of the argument will be used as the
corresponding parts of the returned value.

The DBLE Function takes an argument of any type and returns a double precision
value.

For any argument, integer, real, or tempreal, the result of a DBLE(arg) function has
as much precision of the significant part of arg that DOUBLE PRECISION data
can contain.

The TREAL function takes an argument of any type and returns a TEMPREAL
value.

For any integer, real, or double-precision argument, the result of a TREAL(arg)
function has as much precision of the significant part of arg as TEMPREAL data
can contain.

The ICHAR and CHAR functions provide a way to convert from characters to integers,
and vice versa, based on the position of the character in the ASCII collating sequence
(See Appendix E, "Character Set and Collating Sequence"). The first character in
the collating sequence corresponds to position 0 and the last to position n - 1, where
n is the number of characters in the collating sequence.

The value of ICHAR(arg) is an integer in the range 0 -< ICHAR(arg) -< n - 1,

where

arg is an argument of type CHARACTER and length one.

Subprograms

6-7

Subprograms

6-8

For example:

I C H ARC ' X ') 1 5 2 5 H

The function CHAR provides a way to convert integers to characters, based on the
ASCII collating sequence (see Appendix E.) The value of CHAR(arg) is the charac
ter that appears in the arg position in the collating sequence. The argument must be
an integer expression whose value is in the range of 0 -< arg -< n - 1. For example:

CHARC25H) i5 'X'

6.3 .2 .2 Truncation and Rounding Functions

Truncation and rounding functions perform numeric conversions. Both types of
functions take only one argument. See Table 6-2 for details. The syntax is as follows:

name(arg)

where

name is the intrinsic function name.

arg is the value on which the function will be performed.

The AINT function truncates an argument leaving a result that is the integer part of
the argument. For REAL*8 and DOUBLE PRECISION arguments, you can use
the specific name DINT in place of AI NT.

Table 6-2. Truncation and Rounding Functions

Type
Generic Specific Category Function Name Name Arguments Results

AINT Truncation Truncate REAL*4 REAL*4
AINT Argument REAL*8 REAL*8
DINT DOUBLE DOUBLE
DINT PRECISION PRECISION

TEMPREAL TEMPREAL

ANINT Rounding Round to REAL*4 REAL*4
ANINT Nearest REAL*8 REAL*8
DNINT Whole Number DOUBLE DOUBLE
DNINT \ PRECISION PRECISION

TEMPREAL TEMPREAL

NINT Rounding Round to REAL*4 INTEGER
NINT Nearest REAL*8 INTEGER
IDNINT Integer DOUBLE INTEGER
IDNINT PRECISION

TEMPREAL INTEGER

RINT Rounding Round to REAL*4 REAL*4
RINT Even Whole REAL*8 REAL *8
DRINT Number DOUBLE DOUBLE
DRINT PRECISION PRECISION

TEMPREAL TEMPREAL

IRINT Rounding Round to REAL*4 INTEGER
IRINT Even REAL*8 INTEGER
IDRINT Integer DOUBLE INTEGER
IDRINT PRECISION

TEMPREAL INTEGER

Fortran-86

Fortran-86

For any real, double-precision, or tempreal argument, AINT(arg) is the integer whose
magnitude is the largest integer that does not exceed the magnitude of arg and whose
sign is the same as argo Note that for -1.0 < arg < 0, a negative zero is returned
for AINT.

The ANINT function rounds an argument to the nearest whole number. For REAL *8
and DOUBLE PRECISION arguments, you can use the specific name DNINT in
place of ANI NT. The following formulas apply:

ANINT(x)= AI NT (x + .5), if x>O
AI NT (x - .5), if x<O

The NINT function rounds an argument to the nearest INTEGER. For REAL*8 and
DOUBLE PRECISION arguments, you can use the specific name IDNINT in place
of NINT. The following formula applies:

NINT(x) = INT (ANINT(x»

The RINT function rounds an argument to the nearest or even whole number. For
REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DRINT in place of RINT. The following formula applies:

RINT(x) = AINT(x), if I AINT(x)= I x I -,.5 and is even
= ANINT(x), otherwise

The IRINT function rounds an argument to the nearest INTEGER, or to the nearest
even INTEGER if the argument is at the midpoint between two whole INTEGERS.
For REAL *8 or DOUBLE PRECISION arguments, you can use the specific name
IDRINT in place of IRINT. The following formula applies:

IRINT(x) = INT(RINT(x»

6 . 3 • 2 . 3 The RemaindeJr Functions

The remainder functions perform a division operation on two arguments and return
the remainder. See Table 6-3 for details. The syntax is as follows:

name (arg 1 J arg2)

where

name is the intrinsic function name.

arg1 and arg2 are; the values on whkh the function will be performed.

The remainder functions will never incur a rounding error. In addition, the result of
a valid remainder operation is never an unnormal number.

The MOD function is equivalent to the operation that follows:

argl - AINT(argl/arg2)*arg2

For REAL *4 arguments, you can use the sp.~cific name AMOD in place of MOD.
For REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DMOD in place of MOD.

The RMD function is equivalent to the operation that follows:

argl - RINT(argl/arg2) *arg2

Subprograms

6-9

Subprograms

6-10

Table 6-3. Remainder Functions

Type
Generic Specific Category Function Name Name Arguments Results

MOD Remainder arg1-AINT INTEGER INTEGER
(arg 1/ arg2) INTEGER*1 INTEGER*1
*arg2 INTEGER*2 INTEGER*2

INTEGER*4 INTEGER*4
AMOD REAL*4 REAL*4
DMOD REAL*8 REAL*8
DMOD DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

RMD IRMD Remainder arg1-RINT INTEGER INTEGER
(arg1/arg2) INTEGER*1 INTEGER*1
*arg2 INTEGER*2 INTEGER*2

INTEGER*4 INTEGER*4
REAL*4 REAL*4

DRMD REAL*8 REAL*8
DRMD DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

For INTEGER arguments, you can use the specific name IRMD in place of RMD.
For REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DRMD in place of RMD.

The ADS function returns the absolute value of an argument. Its syntax is as follows:

A B 5 (arg)

where

arg is the value on which the function will be performed.

See Table 6-4 for details.

For INTEGER arguments, you can use the specific name iABS in place of ABS. For
REAL *8 or DOUBLE PRECISION functions, you can use the symbolic name DABS
in place of ABS. You can use the symbolic name CABS for COMPLEX*8 arguments.
For COMPLEX*16 arguments, you can use the symbolic name CDABS.

The SIGN function takes the sign of the second argument and transfers this sign to
the first argument. Specifically, it returns the following value:

I argll, if arg2 >0
- I argll, if arg2 <0

The syntax is as follows:

5 I G Ii (arg1 J arg2)

where

arg1 and arg2 are the values on which the function will be performed.

See Table 6-4 for details.

Fortran-86

Fortran-86

Table 6-4. Absolute Value, Sign Transfer, Positive Difference, and
Double Precision Product Functions

Type
Generic Specufic

C':ltegory
Name Name

Functiion
Arguments Results

ABS lABS Ab,solute Return INTEGER INTEGER
Value Absolute INTEGER*1 INTEGER*1

Value INTEGER*2 INTEGER*2
INTEGER*4 INTEGER*4

ABS REAL*4 REAL*4
DABS REAL*8 REAL*8
DABS DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CABS COMPLEX*8 COMPLEX*8
CDAI3S COMPLEX*16 COMPLEX*16

SIGN ISIGN Sign Transfer INTEGER INTEGER
Transfer Sign of INTEGER*1 INTEGER*1

arg2 to arg1 INTEGER*2 INTEGER*2
sign(y,x)= INTEGER*4 INTEGER*4

SIGN 1y1.x2:0 REAL*4 REAL*4
DSIGN 1y1.x~O REAL*8 REAL*8
DSIGN DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

DIM 101M Positive Return INTEGER INTEGER
Difference arg1-arg2 INTEGER*1 INTEGER*1

if arg1 >arg2 INTEGER*2 INTEGER*2
else 0 INTEGER*4 INTEGER*4

DIM REAL*4 REAL *4
DDIM REAL*8 REAL*8
DDIM DOUBLE DOUBLE

PRECISION PRECISION
DDIM TEMPREAL TEMPREAL

DPROD Double Multiply REAL*4 DOUBLE
Precision arg1 by arg2 PRECISION
Product

For INTEGER arguments, you can use the specific name ISIGN in place of SIGN.
For REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DSIGN in place of SIGN.

If the value of the first argument is zero, the result is zero.

The DIM function returns the result of th(~ operation arg1 - arg2 as long as this
result is positive. If the operation gives a negative result, the result of the function is
zero. Specifically, it returns the following value:

argl - arg2, if argl >- tirg2
otherwise, 0.0

If the result of the subtraction is negative, an underflow exception cannot occur.

Subprograms

6-11

Subprograms

6-12

The syntax is as follows:

DIM (arg 1 , arg2)

where

arg1 and arg2 are the values on which the function will be performed.

See Table 6-4 for details.

For INTEGER arguments, you can use the specific name IDIM in place of DIM.
For REAL *8 or DOUBLE PRECISION arguments, you can use the specific name
DDIM in place of DIM.

The DPROD function takes two arguments of type REAL *4, multiplies them, and
returns a DOUBLE PRECISION result. Its syntax is as follows:

D PRO D (arg 1 , arg2)

where

arg1 and arg2 are the arguments on which the function will be performed.

See Table 6-4 for details. DPROD is sensitive to the precision mode on the 8087
processor. You can use this function meaningfully only if the precision is set to 53 or
64 bits. DPROD provides no advantage over the multiplication operation (*) in
Fortran-86.

6 .3 . 2 . 4 Choosing the Largest or Smallest Value Functions

The largest or smallest value functions evaluate a list of at least two arguments and
choose the largest or smallest value, depending upon the function. The syntax is as
follows:

name (arg1, arg2 ...)

where

name is the intrinsic function name.

arg 1, arg2, ... are the arguments from which it chooses.

See Table 6-5 for details.

The MAX function evaluates a list of at least two arguments and chooses the largest
value. For INTEGER arguments, you can use the specific name MAXO in place of
MAX. For REAL*4 arguments, you can use the specific name AMAXI in place of
MAX. For DOUBLE PRECISION arguments, you can use the specific name
DMAXI in place of MAX.

The AMAXOfunction evaluates a list of at least two arguments and chooses the largest
value. The arguments can be only of type INTEGER or type REAL *4. For REAL *4
arguments, you can use the specific name MAX I in place of AMAXO.

The MIN function evaluates a list of at least two arguments and chooses the smallest
value. For INTEGER arguments, you can use the specific name MINO in place of
MIN. For REAL*4 arguments, you can use the specific name AMINI in place of
MIN. For DOUBLE PRECISION arguments, you can use the specific name DMIN I
in place of MIN.

Fortran-86

Fortran-86

Table 6-5. Choosing the Largest or Smallest Value Functions

Type
Generic Specific C.ategory Function Name Name Arguments Results

MAX MAXO Largest Choose INTEGER INTEGER
Value Largest INTEGER*1 INTEGER*1

Value INTEGER*2 INTEGER*2
AMAX1 in List INTEGER*4 INTEGER*4

REAL*4 REAL*4
DMAX1 REAL*8 REAL*8

DOUBLE DOUBLE
PRECISION PRECISION
TEMPREAL TEMPREAL

AMAXO Largest Choose INTEGER REAL*4
Value Largest INTEGER*1 REAL*4

Value INTEGER*2 REAL*4
in List INTEGER*4 REAL*4

MAX1 REAL*4 INTEGER

MIN MINO Smallest Choose INTEGER INTEGER
Value Smallest INTEGER*1 INTEGER*1

Value INTEGER*2 INTEGER*2
in List INTEGER*4 INTEGER*4

AMIN1 REAL*4 REAL*4
REAL*8 REAL*8

DMIN1 DOUBLE DOUBLE
PRECISION PRECISION
TEMPREAL TEMPREAL

AMINO Smallest Choose INTEGER REAL*4
Value Smallest INTEGER*1 REAL*4

Value INTEGER*2 REAL*4
in List INTEGER*4 REAL*4

MINi REAL*4 INTEGER

The AMINO function evaluates a list of at least two arguments and chooses the small
est value. The arguments can be only of type INTEGER or type REAL *4.

For REAL *4 arguments, you can use the specific name MIN 1 in place of AMINO.

6.3.2.5 The LEN and INDEX Functions

The LEN function returns the length of a character string. Its syntax is as follows:

L E H (arg)

where

arg is the character string.

When the program executes the LEN function, the value of the argument need not
be defined.

The INDEX function determines whether a character string appears in a second
character string. It returns an INTEGER value representing the starting character
position of the first string in the second string if found; otherwise, a zero value is
returned. Its syntax is as follows:

I H D E X (arg 1 I clrg2)

Subprograms

6-13

Subprograms

6-14

where

arg1 and arg2 are character strings.

See Table 6-6 for details of both these functions.

6.3 .2.6 The Arithmetic Functions

The Arithmetic functions perform specific arithmetic functions. The syntax is as
follows:

name (arg>

where

name is the intrinsic function name.

arg is the argument on which the function will be performed. All
functions expect and return floating-point values.

See Table 6-7 for details.

The PROJ Function provides a mechanism for uniformly handling complex infinities.
A complex infinity is any complex number with at least one infinite component.
Whenever users are performing algebraic computations in which they suspect that a
complex infinity may arise as input to an algebraic operation, they should apply the
PROJ function to such inputs.

The PROJ function is defined as follows:

PROJ«x.y))=(INFINITY, SIGN(O,Y)), if either X or Y is infinite;
= (x,y), otherwise.

The AI MAG function returns the imaginary part of a COMPLEX argument.

You can use the specific name AIMAG for COMPLEX*8 arguments, and the specific
name DAIMAG for COMPLEX* 16 arguments.

The CONJG function returns the conjugate of a COMPLEX argument.

You can use the specific name CONJG for COMPLEX*8 arguments, and the specific
name DCONJG for COMPLEX*16 arguments.

The SQRT function returns the square root of an argument. The argument must be
greater than or equal to zero.

For REAL*8 and DOUBLE PRECISION arguments, you can use the specific name
DSQRT in place of SQRT. You can use the specific name CSQRT for COMPLEX*8
arguments. For COMPLEX* 16 arguments, you can use the specific name CDSQR T.

The EXP function returns a value that is equal to e raised to the power of the
argument.

Table 6-6. Length and Index Functions

Specific
Type

Generic Category Function Name Name Arguments Results

LEN length Determine
the Length
of Character

CHARACTER INTEGER

Entity

INDEX Index of Return CHARACTER INTEGER
Substring Location of

Substring arg2
in String arg1

Fortran-86

Fortran-86

Table 6-7. Arithmetic Functions

Generic Spec:lfic
Type

Category Function Name Name Arguments Results

AIMAG AIMAG Arithmetic Returns COMPLEX*S REAL
DAIMAG Imaginary COMPLEX*16 DOUBLE

Part of a PRECISION
Complex
Argument

CONJG CONJG Arithmetic Returns COMPLEX COMPLEX
DCONJG Conjugate of COMPLEX*S COMPLEX*S

a Complex COMPLEX*16 COMPLEX*16
Argument

SORT SORT Arithmetic Return REAL*4 REAL*4
DSORT Square REAL*S REAL*S
DSORT Root DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CSORT COMPLEX*S COMPLEX*S
CDSQRT COMPLEX*16 COMPLEX*16

EXP EXP Arithmetic Return e REAL*4 REAL*4
DEXP Raised to REAL*S REAL*S
DEXP Power of DOUBLE DOUBLE

Argument PRECISION PRECISION
TEMPREAL TEMPREAL

CEXP COMPLEX*S COMPLEX*S
CDEXP COMPLEX*16 COMPLEX*16

LOG ALOG Arithmetic Return REAL*4 REAL*4
DLOG Natural REAL*S REAL*S
DLOG Logarithm DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CLOG COMPLEX*S COMPLEX*S
CDLOG COMPLEX*16 COMPLEX*16

LOG10 ALOG10 Arithmetic Return REAL*4 REAL*4
DLOG10 Common REAL*S REAL*S
DLOG10 Logarithm DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

For REAL '4<8 or DOUBLE PRECISION arguments, you can use the specific name
DEXP in pIa\. ~ of EXP. For COMPLEX*8 arguments, you can use the specific name
CEXP. You ca. use the specific name CDEXP for COMPLEX*16 arguments.

The LOG function . .!turns the natural logarithm of an argument. The argument must
be greater than or equal to zero.

For REAL *4 arguments, you can use the specific name ALOG in place of LOG. For
REAL*8 or DOUBLE PRECISION arguments, you can use the specific name DLOG
in place of LOG. You can use the specific name CLOG for COMPLEX*8 arguments.
For COMPLEX* 16 arguments, you can use the specific name CDLOG.

The ALOGIO fundion returns the common logarithm of an argument. The argument
must be greater than zero.

For REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DLOG lOin place of ALOG 1 O.

6.3 .2 . 7 The Trigonometric Functions

The trigonometric functions perform specified trigonometric functions. The syntax is
as follows:

name (arg)

Subprograms

6-15

Subprograms

6-16

where

name

arg

is the intrinsic function name.

is the value on which the function will be performed. All
trigonometric functions expect and return floating-point
values.

See Table 6-8 for details.

The SIN function returns the sine of an argument. The absolute value of the argument
is not restricted to be less than 2PI. The range of the result is - 1 < result < 1.

For REAL*8 and DOUBLE PRECISION arguments, you can use the specific name
DSIN in place of SIN. You can use the specific name CSINH for COMPLEX*8
arguments. For COMPLEX* 16 arguments, you can use the specific name CDSINH.

The COS function returns the cosine of an argument. The absolute value of the
argument is not restricted to be less than 2PI. The range of the result is - 1 < result
<1.

For REAL*8 and DOUBLE PRECISION arguments, you can use the specific name
DCOS in place of COS. You can use the specific name COSH for arguments that
are COMPLEX*8. For arguments that are COMPLEX* 16, you can use the specific
name CDCOSH.

The TAN function returns the tangent of an argument. The absolute value of the
argument is not restricted to be less than 2PI.

For REAL*8 and DOUBLE PRECISION arguments, you can use the specific name
DTAN in place of TAN. You can use the specific name CTANH for COMPLEX*8
arguments. For COMPLEX* 16 arguments, you can use the specific name CDTANH.

The ASIN function returns the arcsine of an argument. The absolute value of the
argument must be < 1. The range of the result is - PI/2 < result < PI/2.

For REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DASIN in place of ASIN. You can use the specific name CASIN for COMPLEX*8
arguments. For COMPLEX* 16 arguments, you can use the specific name CDASIN.

The ACOS function returns the arccosine of an argument. The absolute value of the
argument must be < 1. The range of the result is 0 < result < PI.

For REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DACOS in place of ACOS. You can use the specific name CACOS for COMPLEX*8
arguments. For COMPLEX* 16 arguments, you can use the specific name CDACOS.

The ATAN function returns the arctangent of an argument. The range of the result
is - PI/2 < result < PI/2. If the value of the argument is positive, the result is
positive.

For REAL*8 or DOUBLE PRECISION arguments, you can use the specific name
DA TAN in place of AT AN. You can use the specific name CAT AN for
CO MPLEX * 8 arguments. For COMPLEX * 16 arguments, you can use the specific
name CDATAN.

The ATAN2 function computes the principal value of the angular component of the
polar coordinates of a point whose rectangular coordinates are argl and arg2, its first
and second arguments, respectively. The restriction to principal value means that the
result satisfies - PI < result < PI, and guarantees that any finite point other than

Fortran-86

Fortran-86 Subprograms

Tnble 6-8. Trigonometric Functions

Type
Generic Specific

Category FUl1lction
Name Name Arguments Results

SIN Trigonometric Return REAL*4 REAL*4
DSIN Sine REAL*8 REAL*8
DSIN DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CSIN COMPLEX*8 COMPLEX*8
CDSIN COMPLEX*16 COMPLEX*16

COS Trigonometric Return REAL*4 REAL*4
DCOS Cosine REAL*8 REAL*8
DCOS DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CCOS COMPLEX*8 COMPLEX*8
CDCOS COMPLEX*16 COMPLEX*16

TAN Trigonometric Return REAL*4 REAL*4
DTAN Tangent REAL*8 REAL*8
DTAN DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CTAN COMPLEX*8 COMPLEX*8
CDTAN COMPLEX*16 COMPLEX*16

ASIN Trigonometric Return REAL*4 REAL*4
DASII\J Arcsine REAL*8 REAL*8
DASIN DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CASIN COMPLEX*8 COMPLEX*8
CDASIN COMPLEX*16 COMPLEX*16

ACOS Trigonometric Return REAL*4 REAL*4
DACOS Arccosine REAL*8 REAL*8
DACOS DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CACOS COMPLEX*8 COMPLEX*8
CDACOS COMPLEX*16 COMPLEX*16

ATAN Trigonometric Return REAL*4 REAL*4
DATAN Arctangent REAL*8 REAL*8
DATAN with one DOUBLE DOUBLE

Argument PRECISION PRECISION
TEMPREAL TEMPREAL

CATAN COMPLEX*8 COMPLEX*8
CDATAN COMPLEX*16 COMPLEX*16

ATAN2 Trigonometric Return REAL*4 REAL*4
DATAN2 Arctangent REAL*8 REAL*8
DATAN2 with two DOUBLE DOUBLE

Arguments PRECISION PRECISION
TEMPREAL TEMPREAL

6-17

Subprograms

6-18

the origin has a unique angular component. The function assigns angular components
to the origin (± 0, ± 0) also, namely +0 or ± 'Jr, depending on the signs of the rectan
gular coordinates.

The results for other finite inputs are as follows:

ATAN(arg2/argJ), if argl > 0

SIN(PI/2,arg2), if argl =0 and arg2 =F 0

ATAN(arg2/argl) + SIGN(PI,arg2), if argl <0

Note that a correct result is returned even if some of the arguments are infinite.

6 .3 .2.8 Hyperbolic Functions

Hyperbolic functions perform specified hyperbolic functions. The syntax is as follows:

name (arg)

where

name

arg

is the intrinsic function name.

is the value on which the function will be performed. All
hyperbolic functions expect and return floating-point values.

See Table 6-9 for details.

Table 6-9. Hyperbolic Functions

Type
Generic Specific

Category Function
Name Name Arguments Results

SINH Hyperbolic Return REAL*4 REAL*4
DSINH Hyperbolic REAL*8 REAL *8
DSINH Sine DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CSINH COMPLEX*8 COMPLEX*8
CDSINH COMPLEX*16 COMPLEX*16

COSH Hyperbolic Return REAL*4 REAL*4
DCOSH Hyperbolic REAL*8 REAL*8
DCOSH Cosine DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CCOSH COMPLEX*8 COMPLEX*8
CDCOSH COMPLEX*16 COMPLEX*16

TANH Hyperbolic Return REAL*4 REAL*4
DTANH Hyperbolic REAL*8 REAL *8
DTANH Tangent DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAL TEMPREAL

CTANH COMPLEX*8 COMPLEX*8
CDTANH COMPLEX*16 COMPLEX*16

Fortran-86

Fortran-86

The SINH function returns the hyperbolic sine of an argument. For REAL *8 or
DOUBLE PRECISION arguments, you can use the specific name DSINH in place
of SINH. You can use the specific name CSINH for COMPLEX*8 arguments. For
COMPLEX* 16 arguments, you can use the specific name CDSINH.

The COSH functnon returns the hyperbolic cosine of an argument. For REAL *8 or
DOUBLE PRECISION arguments, you can use the specific name DCOSH in place
of COSH. You can use the specific name CCOSH for COMPLEX*8 arguments.
For COMPLEX* 16 arguments, you ca use the specific name CDCOSH.

The TANH function returJlls the hyperbolic tangent of an argument. For REAL*8 or
DOUBLE PRECISION arguments, you can use the specific name DT ANH in place
of TANH. You can use the specific name CTANH for COMPLEX*8 arguments.
For COMPLEX* 16 arguments, you can use the specific name CDT ANH.

6.3.2.9 The Lexical-Relationship Functions

The lexical-relationship functions take two CHARACTER arguments and depending
on the position of the arguments in the ASCn collating sequence (see Appendix E),
return a LOGICAL value. The syntax is as follows:

name (arg 1 , arg2)

where

name

arg 1 and arg2

is the intrinsic-function name.

are the CHARACTER arguments on which the function will
be performed.

See Table 6-10 for details.

The LGE function determines if the first argument is equal to, or greater than, the
second argument in the ASCII collating sequence. If the arguments have the same
value or arg1 follows arg2 in the collating sequence, the result is .TRUE .. If any other
condition exists, the result is .FALSE ..

The LGT function determines if the first argument is greater than the second argument
in the ASCII collating s(~quence. If arg1 follows arg2 the result is .TRUE .. If any
other condition exists, the:n the result is .FALSE ..

Table 6-10. Lexical-Relationship Functions

Type
Generic Specific Category Function Name Name Arguments Results

LGE LGE Lexical Lexically CHARACTER LOGICAL
Relationship Greater

or Equal

LGT Lexical Lexically CHARACTER LOGICAL
Relationship Greater

LLE Lexical Lexically CHARACTER LOGICAL
Relationship Less or

Equal

LLT Lexical Lexically CHARACTER LOGICAL
Relationship Less

Subprograms

6-19

Subprograms

6-20

The LLE function determines if the first argument is equal to, or less than, the second
argument in the ASCII collating sequence. If the arguments have the same value or
8rg2 follows 8rg1 in the collating sequence, the result is .TRUE .. If any other condi
tion exists, the result is . FALSE ..

The LLT function determines if the first argument is less than the second argument
in the ASCII collating sequence. If 8rg2 follows 8rg1 the result is .TRUE .. If any
other condition exists, the result is .FALSE ..

6 .3 . 2 . 10 8087 Control Intrinsics

Fortran-86 provides default computation modes and exception masks which are
suitable for most floating-point applications. Occasionally, however, you may require
a special option, such as unmasked overflow exception handling, or normalizing mode
for denormal (gradual-underflow) results. Changing computation modes and excep
tion masks, as well as in-line testing of (masked) exception flags, is possible using
8087-control intrinsic procedures.

Table 6-11 shows the 8087 control intrinsics together with the resulting in-line
assembly instructions. Figure 6-1 describes the format of the 8087 control word, which
specifies the various processor options relevant to Fortran-86. Also shown is the 8087
status-word format which is required for testing whether masked exceptions have
occurred (STSW87).

For further information relating to the 8087 Numeric Data Processor, refer to the
ASM86 Language Reference Manual, 121703, which explains the 8087 instructions
and control in detail.

Table 6-11. 8087 Control Intrinsics

Form Function
8087 Instruction

Generated

Call STSW87(wd) Store 87 Status Word PUSHF
CLI
FNSTSW@wd
FNCLEX
FWAIT
POPF

Call LDCW87(wd) Load 87 Control Word PUSHF
CLI
FNLDCW@wd
POPF

Call STCW87(wd) Store 87 Control Word PUSHF
CLI
FNSTCW@wd
POPF

Call SAV87(st) Save 87 State PUSHF
CLI
FNSAVE @ st
FWAIT
POPF

Call RST87(wd) Restore 87 State FRSTOR @ st
FWAIT

Fortran-86

Fortran-86 Subprograms

INVALID OPERATION MASK (1)

ORMALIZING MODE (5)

'--,---ZERO DIVIDE MASK (1)

'---,---uvERFLOW MASK (1)

'--------uNDERFLOW MASK (1)

'-----·---PIRECISION MASK (1)

'-----------INTERRUPT ENABLE MASK (1)

'------------PRECISION MODE (2)

'---,------------ROUNDING MODE (3)

'-----------------INFINITY MODE (4)

(1) EXCEPTION AND INTERRUPT ENABLE MASKS:
o = UNMASKED (ENABLED)
1 = MASKED (DISA,BLED)

(2) PRECISION MODE:
00 = 24 BITS
01 = (RESERVED)
10 = 53 BITS

(4) INFINITY MODE:
o = PROJECTIVE
1 = AFFINE

(5) NORMALIZING MODE:
o = NORMALIZING
1 = WARNING

(6)

11 = 64 BITS

(3) ROUNDING MODE:

(6) WHENEVER ONE OF THESE BITS
IS SET TO ZERO. THE
INTERRUPT·ENABLE BIT

00 = ROUND TO NEAREST OR EVEN
01 = ROUND DOWN (TOWARD - 00)
10 = ROUND UP (TOWARD + 00)
11 = CHOP (TRUNCATE TOWARD ZERO)

MUST ALSO BE SET TO
ZERO.

Figure 6-1. 8087 Control Word Format for Fortran-86 121570·4

STORE/LOAD 8087 Control Word. STCW87 and LDCW87 are used to change
computation modes and exception masks. They may also be used separately to examine
current settings or to set all options simultaneously. The following example changes
the default ''''warning'' mode to ''''normalizing'' mode for denormalized operands,
and illustrates the use of these intrinsics:

INTEGER*2 ICW87
CALL STCW87(ICW87)
ICW87 ICW87 .AND. #FF7DH
CALL LDCW87 (I CW87)

See Figure 6-1 for an overview and explanation of the 8087 control word. Other
control-word changes can be done in a similar manner.

STORE 8087 Status Word. STSW87 returns the current exception status of the
floating-point processor in the form of an INTEGER *2 bit string (see Figure 6-2),
and clears the 8087 exception flags. The 8087 status word represents an accumula
tion of all masked floating-point exceptions that have occurred since execution of the

6-21

Subprograms

6-22

15

I I
EXCEPTION FLAGS
(1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION

'----ZERO DIVIDE

'------OVERFLOW

'--------UNDERFLOW

L-------PRECISION

Figure 6-2. 8087 Status-Word Format for Fortran-86 (STSW87) 121570-5

program began or since the last time STSW87 was executed. The following example
tests to see if a masked overflow exception has occurred, and illustrates the use of
this intrinsic:

INTEGER*2 ISW87
CALL STW87(ISW87)
IF (ISW87 .AND. 00008H) 20,10,20

20 (exception has occurred)
1 0

SAVE/RESTORE 8087 State. SA V87 and RST87 transfer the state of the 8087
Numeric Data Processor to and from memory. These functions are useful for preserv
ing the context of the processor for reentrancy, or for determining the cause of a
floating-point exception and recovering from it. Both intrinsics operate on a 47-word
buffer in memory. The format of the 8087 state information present in that buffer is
defined in the 8087 Numeric Supplement. The following is an example of these
functions:

CHARACTER*94 STATE
CALL SAVE87(STATE)

CALL RST87(STATE)

6.3 .2 . 11 8086 Interrupt Control Intrinsics

SETINT establishes a current interrupt procedure and associates it with an interrupt
number. Its syntax is as follows:

CAL L SET I N T (num , name)

where

num

name

is an integer expression that is the interrupt number.

is the name of the external procedure.

Interrupt procedures may be written in any language that supports 8086 interrupts.
See Chapter 11 for more information on the INTERRUPT compiler control.

Fortran-86

Fortran-86

Example:

SINTERRUPT
SUBROUTINE INTRPT

(INTERRUPT PROCESSING CODE)

RETURN
END

PROGRAM main

EXTERNAL INTRPT

CALL SETINT(8, INTRPT)

When an interrupt occurs, the hardware automatically disables further interrupts,
and enables them again at termination of the procedure. ENABLE/DSABLE provide
the user with additional flexibility both within and outside of interrupt procedures.

DSABLE

CALL DSABLE

DSABLE disables the 8086 interrupt mechanism (prevents interrupts from occur
ring) until it is ENABLEd again.

ENABLE

CALL ENABLE

ENABLE enables the 8086 interrupt mechanism.

NOTE
Do not use the interrupt procedures in any program that will run in an iRMX
86 environment. Instead use the iRMX 86 system calls to set up interrupt
processing routines.

6.3.3 Statement FUlIlctions

A statement function is a user-defined internal function that calculates a mathemat
ical value. All statement-function definitions must follow all specification statements
and must precede all executable statements. Its syntax is as follows:

nameC[arg, [arg, ...]]) = exp

where

name

arg

exp

is the symbolic name you give your statement function.

is a dummy argument that becomes associated with an actual
argument when the function is referenced.

is an expression.

Subprograms

6-23

Subprograms

6-24

The statement-function name and its expression can be of different result types. Table
6-12 shows the implicit type conversions of statement functions.

Each operand in the statement-function expression must be one of the following:

• One of the dummy arguments, arg

A constant

• A variable reference

• An array-element reference

• An intrinsic-function reference

• A statement-function reference

• An external-function reference

• A dummy-procedure reference

The symbolic name of a statement function is local and cannot be a symbolic name
in any specification statement, except a type statement. You cannot use the name in
an EXTERNAL statement or as an actual argument.

The dummy argument list indicates the order, number and type of arguments for the
statement function. These dummy argument names have the scope of the statement
function only, and each name can appear only once in the dummy argument list. The
type of the dummy argument name is the same as it would be if you used it outside
the statement function.

You can use the dummy argument name to identify other dummy arguments of the
same type in other statement-function statements. You can also use it to identify a
variable of the same type within the same program unit, but they have no other
relationship.

You reference a statement function by specifying its symbolic name, with all required
actual arguments. For example:

DATA A,B,C/10.0,10.0,3.81
FSUMeX)-A * eXt'*2) + B*X+C
TOTAL - 33.0 + FSUMe3.0)

Table 6-12. Implicit Type Conversions in Statement Functions

Statement Function Type Type Conversion

INTEGER INTEGER INT(exp)
INTEGER*1 INT1(exp)
INTEGER*2 INT2(exp)
INTEGER*4 INT4(exp)

REAL REAL REAL(exp)
REAL*4 REAL(exp)
REAL*8 DBL(exp)

DOUBLE DOUBLE DBLE(exp)
PRECISION PRECISION

TEMPREAL TEMPREAL TREAL(exp)

Complex COMPLEX*8 CMPLX(e)
COMPLEX*16 DCMPLX(e)
COMPLEX CMPLX(e)

Fortran-86

Fortran-86

In this example, Fortran substitutes the value 3.0 for every occurrence of X in the
function definition. At the end of the operation, the value of TOTAL is 156.8.

You can reference a statement function only in the program unit where you defined
it. A statement function in a FUNCTION subprogram cannot reference the name of
the subprogram. A reference to an external function in the expression of a statement
function must not cause a dummy argument of the statement function to become
undefined or redefined.

6.3.4 The % VAL Function

The % VAL function is a Fortran-86 extension which enables parameter passing by
value for program linkage with non-Fortran programs. It can appear only as an actual
argument in external function or subroutine references, or as a dummy argument in
SUBROUTINE or FUNCTION statements. The % VAL function accepts only one
actual argument, which must be a constant, variable, array element, or expression of
type INTEGER or LOGICAL.

For INTEGER arguments passed to a subroutine or function, the length of the
argument passed is determined by the argument length, not by the default length.
This allows you to explicitly control the argument length using the functions INT 1,
INT2, or INT 4.

For variables, function reft~rences, and symbolic constants, the length is the explicitly
or implicitly defined length of the name. For numeric constants, the length is the
minimum length required to contain the valut~.

6.4 BLOCK OAT A Subprograms

A BLOCK DATA subprogram initializes variables and array elements in named
COMMON blocks using DATA statements. The first statement of any BLOCK
DATA subprogram must be a BLOCK DATA statement (see Section 4.2.4). The
last statement must be the END statement. You can use only IMPLICIT, DIMEN
SION, named COMMON, SAVE, EQUIVALENCE, DATA, and type statements
in a BLOCK DATA subprogram.

The name of a BLOCK DATA subprogram is optional. If you do name the subpro
gram, that name is global and cannot be the same as the name of any external proce
dure, main program, COMMON block, or other BLOCK DATA subprogram. You
can have at most one unnamed BLOCK DATA subprogram per executable program.

Only variables appearing in named COMMON statements can appear in a DIMEN
SION, EQUIVALENCE, DATA, SAVE, or type statement in a BLOCK DATA
subprogram.

If you initialize a named COMMON block, you must Ijst all the variables in that
block even if you are not initializing all of them. You can initialize variables in more
than one named COMMON block in a single BLOCK DATA subprogram, but you
cannot specify the same named COMMON block in more than one BLOCK DATA
subprogram.

Subprograms

6-25

CHAPTER 7
EXPRESSIONS

Expressions in Fortran consist of symbols, constants, and operators (including paren
theses) which perform spe:cified operations. There are four types of expressions in
Fortran:

• Arithmetic

• Relational

• Logical

• Character

7. 1 Arithmetic Expressions

An arithmetic expression performs a numeric computation. The range and precision
of numeric values representable in Fortran restricts the range and precision of the
results.

Table 7-1 lists the arithmetic operators and their meanings.

The types of the operands in an arithmetic expression determine the type of the result.
An operand may be type INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
COMPLEX* 16, or TEMPREAL. When a plus sign (+) or a minus sign (-) precedes
a single operand, the type and length of the result are those of the operand. Table 7-
2 shows the data type and length of the result when an arithmetic operator joins a
pair of operands. The tyPt~ rules are the same for all operators.

For mixed-mode arithmetic, Fortran converts both operands to the same type (the
type of the result) before doing the operation, except for an INTEGER exponent
which is sometimes used for repeated multiplications (see Table 7-3).

Table 7-1. Arithmetic Operators

Operator Meaning

'H Exponentiation

/ Division

* Multiplication

+ Unary or Binary Addition

- Unary or Binary Subtraction

7-1

Expressions

7-2

Table 7-2. Type and Length of Arithmetic Expressions (Addition,
Subtraction, Multiplication, Division and Exponentiation)

INTEGER'4 REAL'4

·INTEGER*4 REAL*4

INTEGER*4 REAL*4

INTEGER·4 INTEGER*4 REAL*4

REAL*4 REAL *4 REAL*4

REAL*8

DOUBLE DOUBLE
PRECISION PRECISION

TEMPREAL TEMPREAL

COMPLEX*8 COMPLEX"8

For example, Fortran computes the expression that follows:

INTEG1 + REAL4

as though you had written the following:

TREALCINTEG1) + TREALCREAL4)

with a result of type TEMPREAL, unless the result is an argument in a function or
subroutine reference. In that case, Fortran computes the following:

REALCTREALCINTEG1) + TREALCREAL4»

NOTE

When one INTEGER divides into another INTEGER, Fortran truncates
the result towards zero. For example:

The value of 1 /3 is 0
The value of 8/3 is 2
The value of -8/3 is -2

INTEGER division by zero always causes invocation of the current error handler and
cannot be masked. INTEGER overflow results in unsigned arithmetic modulo
2**(8*n), where n is the size in bytes of the expression result.

Fortran-86

Fortran-86

Table 7-3. Evaluation Methods For y**X

x

INTEGER
INTEGER
(O<X<64)

INTEGER
(X>64)
REAL

INTEGER
(X<O)

NOTES:

INTEGER,
REAL,

v

DOUBLE PRECISION, or
;;~~~';t;M;E{i$It:::::;~;:~~::';;:;!~;;,:;.

REAL,
Dou~q;P8sCI$I()N, 9[

::;~;~~~:Jtl:Rg~t2~tl!;;:0~~!;£:!!~'~!::

REAL,
DOUBLE PRECISION, or

:~;r·:.:::i!N1~Bi~k:;£,~::~~~::~:~';:!:!·i!~.;:·!~·~

1. If Y is unnormal, then the first method (multiplication) is used.

2. If Y is negative, then x must be a whole number.

Evaluation
Method

y*y*y* ... [x times]

2**(x * Ig 2(y»

1 /(y** 1 x I)
If over- or underflow
occurs, or Y is un normal
then (1/y)** 1 x 1

The following floating-point exceptions can occur during the evaluation of arithmetic
expressions:

Division by zero

Overflow

Underflow

Inexact result

• Invalid operation (including INTEGER overflow during conversion from
floating-point)

See Section 15.3.6 for details on the causes and handling of these exceptions.

7.2 Character Expressions

A character expression f{~sults in a character string. This expression can be a single
character operand (character constant, character variable, character array element,
character substring, or character function reference), multiple operands joined by the
character operator, or another character (~xpression in parentheses. A character
expression always returns a value of type CHARACTER.

The only character operator is / /, representing concatenation.

The length of the result of a concatenation operation is the sum of the length of the
operands. For example, if the following expression:

'AB' II 'CDE'

appears, the result is the string that follows:

'ABCDE'

Expressions

7-3

Expressions

7--4

7.3 Relational Expressions

A relational expression compares two arithmetic or two character expressions and
returns a TRUE or FALSE value of type LOGICAL.

Table 7-4 lists the relational operators and their meanings.

7.3. 1 Arithmetic Relational Expressions

An arithmetic relational expression compares two arithmetic expressions and returns
a TRUE or FALSE value of type LOGICAL. Its syntax is as follows:

exp 1 reJop exp2

where

exp1 and exp2

reJop

are arithmetic expressions (see Section 7.1).

is any relational operator.

If the operands are of different arithmetic types, they are converted to the same type
as that of an arithmetic expression with the same operands (see Section 7.1).

Jf:. ~~e.~perands .of a floating-point relationaJoperation areuno~q~t:e~_t~¥~::S~Cfi<t1i!'.::
-7-}7~<'Floatirtg Point Topics"). then the LOGICAL result is.IRtJE~ -for;~q~ -::NB~:;
-operator but .FALSE for any other relational operator. . ,. - '::~i>::'~ ;:-:;:::

7.3.2 Character Relational Expressions

A character relational expression compares two character expressions and returns a
value of TRUE or FALSE of type LOGICAL. Its syntax is as follows:

exp 1 reJop exp2

where

exp1 and exp2

reJop

are character expressions.

is any relational operator.

The relative positions of exp1 and exp2 in the ~Stlr.collating sequence compared
from left to right determines the value of the result unless the operator is either "equal
to" (.EQ.) or "not equal to" (.NE.). If the operators are of unequal length, then
Fortran extends the shorter operand to the right with blanks so that its length equals
the length of the longer operand, and then compares the lengths of the two operands.

Table 7-4. Relational Operators

Operator Meaning

.LT. Less Than

.LE. Less Than or Equal To
.EO. Equal To
.NE. Not Equal To
.GT. Greater Than
.GE. Greater Than or Equal To

Fortran-86

Fortran-86

7.4 Logical Expressions

A logical expression performs a logical computation and returns a value of TRUE or
FALSE of type LOGICAL. This expression can be a single logical operand (logical
constant, logical variable reference, logical array element, logical function reference,
or relational expression) or a combination of logical operands joined by logical opera
tors and parentheses. Table 7-5 shows the logical operators and their meanings.

Table 7-5. Logical Operators

Opell'ator Meaning

.NOT. Logical Negation

.AND. Logical Conjunction

.OR. Logical Inclusive Disjunction

.EQV. Logical Equivalence

.NEQV. Logical Nonequivalence

Fortran determines the value of a logical expression using the rules summarized in
Tables 7-6 through 7-10.

A logical expression involving .NOT. has th(~ opposite value as its operand as shown
in Table 7-6.

Table 7-6. Value of a Logical Expression with . NOT .
-

OP1 .NOT.OP1

.TRUE. .FALSE.

.FALSE. .TRUE.

In a logical expression with .AND., the result is .TRUE. only if both operands are
.TRUE., as shown in Table 7-7.

Table 7-7. Value of a Logical Expression with . AND.

OP1 OP2 OP1 .AND. OP2

.TRUE. .TRUE. .TRUE.

.TRUE. . FALSE. .FALSE.

. FALSE. .TRUE . .FALSE.

. FALSE. .FALSE. .FALSE.

In a logical expression with .OR., the result is .FALSE. only if both operands are
.FALSE., as shown in Table 7-8.

Table 7-8. Value of a Logical Expression with .OR.

OP1 OP2 OP1 .OR. OP2

. TRUE. .TRUE. .TRUE .

.TRUE. .FALSE . .TRUE.

. FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE.

Expressions

7-5

Expressions

7-6

In a logical expression with .EQV., the result is .TRUE. only if both operands are
logically the same, as shown in Table 7-9.

Table 7-9. Value of a Logical Expression with. EQV.

OP1 OP2 OP1 .EQV. OP2

.TRUE. .TRUE. .TRUE.

. TRUE. .FALSE . .FALSE .

. FALSE. .TRUE. .FALSE.

.FALSE. .FALSE. .TRUE.

[n a logical expression with .NEQV., the result is .TRUE. only if both operands are
logically different, as shown in Table 7-10.

Table 7-10. Value of a Logical Expression with .NEQV.

OP1 OP2 OP1 .NEQV. OP2

.TRUE. .TRUE. .FALSE.

. TRUE . .FALSE. .TRUE .

. FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE.

:AitY,~QglC.~~:,dllta,;eleIl1:entcan occupy one, two, orf()urlJytes.l)~ble 7~tl~~l;i,()W~;:;"<
~h~1~llgt~9(t:h~,,[~$\lJt,.~f a,log~p,~J ,~xpr~ssion: Th~ type nd~s ar~ the.sari),ef9t:,~U
~~er~~2!:~;:For:~ny"I~¥ic~r expression wi~~ .NOT., the,resulting ,value. ht\s'"t~e~sa~~¢~~~
'lengtn a~,lts operand. '

f '. :; t: 4 ;'- ~ . < ~.' ,

LelJgth ()fRe~uU~ of Lo~ical Ex~;essi~ns,
(.AND~, .9~.,.EQV ',' .NEQ';'.)

LOGfCAL" 1 LOGICAL"2

LOGICAL*1 LOGICAL*2

LOGICAL*2 LOGICAL*2

'f~}~J:'~~;R~'all~~sthe~se'ofl()gical operllt()rs"with,INTEOI;Ra~"w:e.){,~Q(;i<::~~~::
;?IJ~~a9~~:Ipt~~~9,f\SI!" t~e resulti.nglNI~GERy<!l!lei~ t~e'·,bjl~,ise.:99mp:l~ll,1;~.'
'~§n~W9Ptiirt~ ii1c1u$ive'(Iisjunction, eq~ivalence, or exclusivyqisJunSJ,iou9f ~tte, int , .:~~
()peta~tl,s.t~~~"f~atureis a machine-dependent extension' and, 'asstlfl1es;:~!rar,the~'~:
,,~~~Bes~or.t~pr~s~n!sI~TEGER data in two's ,cornpl(ilmentJorm:,IftheIen8~tbs:'Qf~P~~';:
~wQ'9per,~t9as,dif[t(rJf9rtran sign-eJ,'tends~he shorter operand, : ", "';:""':

::".:} "';,.'i

Jf~h~j)pehttor is;NQl'., the length of the result is the same a~ the :le,ngth,:pt~ .. he\;
,:9peraryd.Tlje 1~fl8th of anexpressi9n result with twooperan4s ~s the ~afl1e ~s+~atfQr,:: ~
iIlteger arithmetic expressions (see Table 7-2). .. ," ";;.,',::"",:.,

'" ~, . '. ., . '. 'f; .. · , ',' . :, .' ' ; : ~. ~. :.:' <. • • ;.,.

, -
:fortrall~,8~;d~~,~.(l;9t, aHow operations betw~en .. LOG leAL,and' INTEG ER'(a?91e~!\)';:
operands."'" " ' ",L:'

Fortran-86

Fortran-86

7.6 Precedence of Operators

Fortran generally evaluates operators of higher precedence before operators of lower
precedence. When two operators have equal precedence, Fortran evaluates the leftmost
one first.

The use of parentheses overrides the normal rules of precedence. The part of the
expression enclosed in parentheses is evaluated first. With nested parentheses, Fortran
evaluates the innermost set first.

The following list shows the precedence of operators in decending order:

• Parenthesized expressions

Concatenation: / /

Exponentiation: **

• Multiplication or Division: *, /

Addition or Subtraction (unary and binary): +,
Relational Operators: .L T.,.LE.,.EQ.,.NE.,.GT.,.GE.

Logical or .NOT.

• Logical or

• Logical or

Logical or

.AND.

.OR.

EQV.,.NEQV.

For example, Fortran interprets the expression that follows:

D .oR. A + B .GE. C

as though you had written the following:

D .oR. ((A B) .GE. C)

The only exception to the left-to-right rule is the case where two or more exponentia
tion terms occur together. For example:

A ** B ** C

In this case, the compiler interprets the expression from right to left as though you
had written the following:

A ** (B**C)

Expressions

7-7

Expressions

7-8

7.7.2 Normalized, Denormalized, and Unnormali2:ecfNum6er8~'
~:)~. ~": "'--... :' ~ .. ;~~. :\':·0-,:<",·".:··'·:::~7:' .. :'L·w'.-·'>·';:; '" ... :!/~ ... <";--:~: .,,-:~~';;.i:lf:S:~~:~·'}~fi;';;yi.~~}.'<;>'";., ·y<;:~>.t·:.,~

r~l\l.~j~",!QrtrVIU~g,fl;,i1:1tj~",\V1thiJ1ith~~r~~g~an<iprecision denl1e~'(~t,~t,~:!l~ia.i!~~.~J
,~.~f(rl1J(11izedniqmt>,~x j~ Qnei;w1}9.~Y ex;p(m~nt hat)underfloweqtP~exp0tleJlt, tat}8'e'j
:,'data t;rpe, but which still apQroxil11ates the intended value by cont~iojng.:z~ro(;}s:

te left of itsfraction digits with a corresponding loss of precision ('~grad~a~:und~t(;
q()W'~). J\rtunnormal!zeq PlJl1l Qierj~pl1~. 'xllos~f:x,ponent isnormal, 'but;whQse.prec:i~;.~;
s,l?rit~lli~s.ame as (inherit(!d frQm)a denor11lal.value. The term.lfrt,!Orm~azecl,applies'!
only to values in TEMPREALformat, including temporary operands anct result$of~;
~xpr~~siol1s. ';

·7~.1,3,W~rl1~l1gNlQ<I.
. ,," ., "" - ~ iv { "

1~;;';1'ii:J.:!,;r~:~mti4e,' unnormal nU11lbers m~y appear as .tile re~~I't~s· Rf.QJ)~r;a0fjQPs':'::
• p:f .. ,'" ". .9~ ~epotmalnumbexs.Sjl1ce a d~n()rmall1ul1lber result!ifro:mU(lqyrfl9:¥:"~:
W'~hic~:ro()re,precision has be~n Ipst than rOl!Qding can Zlccount for, til~·untl()'irQZll.;:
n!V'ub~r,,~¥Jye,~. ,!sa remipQer that tn<; precision Joss has. OC~\lrr~d .. If anul1nQt~at~r:

9fl1la[nWIlber is added. to, or §.uQt(~Pt~d fr,()l1l, a., Qorl1l~li.zedn:ul1lber..<;lfg:re~ter,· '.
,:QIlJteiyal'U~,therefnllt is noqnaliz~q.~iJlc.~ th~ precision loss due to the.<i.~non:n,~l-:,~:

lzatioQ is llQW, within t he range of rounding error~ ..J, .' '.,,' :

rJ!eJollg~in~ru;es apply when at least one operand is no~ l1"rin~O~,j\ml'i4!<iltli~ ..
'~~v~Vd{fpera!ion exception does not occur. They spe~ifY wtI~nnorl1lali~at.ion, isJ()~c
·~iccur:it\n~ .. the .. resulting exponent value if normalization .. 9,()es •. nQt9c9~~< ROllJ'ldi~g:·:
apd Jhe,baJldHrig of overflow and., upderflQ,w arep~rforrnf(staft~r ,the,"<l~~igrU:l'lenKs.::
~h()~nJ)~l?~.Such rounding andov;erOo~/und~rOow.handlingmay ~lOdifY there~u(ts~:~,
In t:p,e f<il)Qwing, x and yare. real"expression~,. and 8xpon(x) refers to. the' expommE" orX.' , .',. ' .. ;..i.,.",:::;., 'r"

(z:=x*PLUS/M(~tJS~y): L~t •... r,ri··==m~~(exp~l1{x)):~l
expon(y»). If at lea~t oneof the operands h(lvll1ge~~onent~<
is '. ~orm~liz.~., th.e~.4 iSI19rl1lali~e4.beJp~x,xql!.Qpi~~:9th~~,:·;~i
wise expon(z) "=m. . . ',...; ,

Fortran-86

Fortran-86 Expressions

7-9

Expressions Fortran-86

7-10

CHAPTER 8
EXECUTABLE STATEMENTS

There are two categories of Fortran statements: nonexecutable and executable.
Nonexecutable statements define the characteristics or initial values of data, or define
program units. These statements are described in previous chapters. Executable
statements do calculations, control program execution, and read or write data from
external media. The executable statements for doing calculations and controlling
program execution are described in this chapter. The I/O statements are described
in Chapter 9, "Input and Output."

8. 1 ASSignment Statements

Assignment statements give values to variables, arrays, or array elements. There are
three kinds of assignment statements:

Arithmetic

• Logical

Character

8. 1. 1 Arithmetic Assignment Statements

An arithmetic assignment statement resembles a conventional arithmetic formula. Its
syntax is as follows:

name ,. exp

where

name

exp

is the name you give to a variable, array, or array element.

is an arithmetic expression.

means "is assigned the value" rather than "is equal to".
Therefore, the statement that follows:

I ,. I + 1

is legal in Fortran.

Execution of an arithmetic assignment statement causes Fortran to evaluate exp
according to the rules for arithmetic expressions (see Table 7-2). It then converts the
result to the type of name and assigns it to name. Table 8-1 shows this process for
different Fortran-86 data types. In Table 8-1, the functions in the CONVERSION
column are the generic type conversion functions described in Section 6.1.2.2,
"Intrinsic Functions."

If the length of name is longer than the result of exp, Fortran converts the length of
result to the length of name while preserving its value.

8-1

Executable Statements

8-2

Table 8-1. Type Conversions in Arithmetic Assignment Statements

Type of
Target Variable

INTEGER

Type Conversion

INT(exp}

: ····"INTEGER·1.
/;" "':""',"U= ~~.:" ":; ~':.~~

'-NJJ;GER~~r

INTEGER'4

REAL

REAL*4

~··REAL*8

DOUBLE
PRECISION

TEMPRE/\L

*Note that conversions on COMPLEX data in arithmetic assignment statements take place on the
component data types.

8. 1.2 Character Assignment Statements

The character assignment statement assigns a character value to a character variable
or array element. Its syntax is as follows:

name • exp

where

name

exp

is the name you give to a character variable or character array
element. Name may be a substring, but must not contain or
overlap any string referenced in expression.

is a character expression (see Section 7.2).

The two sides of a character assignment statement can have different lengths. If name
is longer than the result of exp, Fortran pads the result on the right with blanks. If
name is shorter than the result of exp, Fortran truncates exp on the right until it fits
into name.

8. 1.3 Logical Assignment Statements

The logical assignment statement assigns the value .TRUE. or .FALSE. to a logical
variable or array element. Its syntax is as follows:

name • exp

where

name

exp

is the name you give to a logical variable or logical array
element.

is a logical expression (see Section 7.4).

Fortran-86

Fortran-86 Executable Statements

8.2 IF Statements

An IF statement transfers control from one part of the program to another under
certain specified (~onditions. It can also provide alternative actions for the program to
perform if these conditions are not met. There are three basic IF constructs:

• Block IF

• Logical IF

• Arithmetic IF

8.2.1 Block IF

A block IF construct is introduced by a block IF statement, and terminated by an
END IF statement. The intervening statem(~nts form the IF block, any number of
ELSE IF blocks, and at most one ELSE block, in that order. The first statement of
each of these blocks must be IF, ELSE IF, or ELSE statements, respectively; the
block is terminated by the next ELSE IF, ELSE, or END IF statement.

These blocks can be nested. For example, an IF block may contain another IF block,
which may contain another IF block, etc. These blocks can also be empty, meaning
that there need not be any executable statements between the first statement of a
block and its corresponding terminating statement.

You cannot transfer control into an IF, ELSE IF, or ELSE block from outside the
IF block.

Figure 8-1 illustrates a possible nesting of IF, ELSE IF, and ELSE blocks.

8.2. 1 . 1 Block IF Statement

The block IF statement introduces an IF block and must be the first statement of
that block. Its syntax is as follows:

I F (exp) THE H

where

exp is a logical expression (see Section 7.4). If the value of exp is
true, Fortran executes the statements of the IF block. As soon
as an ELSE IF or ELSE statement on the same nesting level
as the block IF is encountered, control passes to the END IF
statement of the block IF statement. If exp is false, Fortran
passes control to the first ELSE IF, ELSE, or END IF state
ment on the same nesting level as the block IF statement.

Each block IF statement must have a corresponding END IF statement in the same
program unit.

8.2. 1 .2 ELSE IF Statement

The ELSE IF statement introduces an ELSE IF block and must be the first state
ment in that block. Its syntax is as follows:

E L 5 ElF (exp) THE H

8-3

Executable Statements

8-4

where

exp

IF • • •

IF BLOCK

ELSE I F·· •

IF ••• =:]
: IF BLOCK ELSE IF BL

ENDIF

OCK

ELSE

IF • • • · ·
IF ••• =:]
• IF IF
• BLOCK BLOCK

ENDIF

ELSE BLOCK

· · ENDIF

ENDIF

Figure 8-1. Nesting Levels of IF, ELSRfF, and ELSE Blocks
!

121570-6

is a logical expression. If exp is true, execution continues with
the first statement of the ELSE IF block. If exp is false,
Fortran passes control to the next ELSE IF, ELSE, or END
IF statement on the same nesting level as the ELSE IF
statement.

An ELSE block must be immediately preceded by an IF or another ELSE IF block
of the same nesting level and is terminated by another ELSE IF, ELSE, or END IF
statement. No statement can reference the statement label of an ELSE IF statement.

8.2. 1 .3 ELSE Statement

An ELSE statement introduces an ELSE block. Its syntax is as follows:

E L 5 E

An ELSE block must be immediately preceded by an IF or ELSE IF block, and is
terminated by the END IF statement.

No statement can reference the statement label of an ELSE statement.

Fortran-86

Fortran-86 Executable Statements

8 .2. 1 .4 END IF Statement

The END IF statement terminates the last IF, ELSE IF, or ELSE block of a block
IF construct. Its syntax is as follows:

END I F

Each block IF statement must have a corresponding END IF statement.

8.2.2 Logical IF Stat.ement

The logical IF statement executes a statement in the program depending on the value
of a controlling expression. Its syntax is as follows:

I F (exp) stmt

where

exp

stmt

is a logical expression.

is any executable statement except a DO or another IF
statement.

If exp is true, Fortran executes stmt next. If it is false, Fortran executes the statement
following the logical IF and ignores stmt.

A function reference in the controlling logical expression can affect the operands in
stmt.

8.2.3 Arithmetic IF Statement

The arithmetic IF statement transfers control of the program to one of four possible
statements depending on the value of a controlling expression. Its syntax is as follows:

I F (exp) s 1 I s2 I s3

where

exp

s1, s2, and s3

is any expression (see Section 7.1). If the value of exp is less
than zero, control passes to the first statement listed. If exp
equals zero, control passes to the second statement. If exp is
greater than zero, control passes to the third statement. If the
result of exp is unordered (see Chapter 7), control continues
with the next executable statement following the arithmetic
IF statement.

are statement labels of any executable statements in the same
program unit as the arithmetic IF. The same statement label
can appear more than once in the same arithmetic IF
statement.

8.3 DO Statement

Frequently, you will want to repeat a series of operations several times. Rather than
copy the statements that perform these operations many times, you can create a loop
that causes the program to perform the same statements over and over a specified

8-5

Executable Statements

8-6

number of times. This is the concept of a DO loop. The DO statement introduces and
defines a DO loop. Its syntax is as follows:

D 0 stl [)] var· e 1) e2 [) e3]

where

stl

var

e1, e2, and e3

is the statement label of an executable statement that is the
last statement in the DO loop.

is an integer variable that acts as the index value of the DO
loop.

are integer expressions. In this format, e1 is the initial index
value, e2 is the loop termination value, and e3 is the optional
loop increment/decrement value. If you do not specify e3,
the compiler assumes an increment of one. The values of e1
and e2 may be such that no iterations are performed. (See
Section 11.4.3, D066 D077 Controls for details.)

The last statement of a DO loop must not be an unconditional GO TO, assigned GO
TO, arithmetic IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or
DO statement. If the last statement of the DO loop is a logical IF statement, it can
contain any executable statement except a DO, block IF, ELSE IF, ELSE, END IF,
END, or another logical IF statement.

DO loops can be nested. For example, a DO loop can contain another DO loop which
can contain another DO loop, etc. If a DO statement appears within the range of
another DO loop, the entire inner DO loop must be within the range of the outer DO
loop. DO loops can share the same last statement.

If a DO statement appears within an IF, ELSE IF, or ELSE block, the range of the
DO loop must be entirely within that block.

If a block IF statement is within the range of a DO loop, its corresponding END IF
statement must also be within the range of the DO loop.

You cannot transfer program control into a DO loop.

8.4 CONTINUE Statement

The CONTINUE statement has no effect on program execution. Execution simply
continues with the next executable statement. Its syntax is as follows:

CONTINUE

8.5 CALL Statement

The CALL statement invokes a subroutine. The main program or any subprogram
can reference a subroutine using the CALL statement. Its syntax is as follows:

CAL L name [([arg [) arg] ...])]

Fortran-86

Fortran-86 Executable Statements

where

name

arg

is the name of the subroutine.

is an actual argument. The actual arguments in the CALL
statement must agree in order, number, type, and length with
the corresponding dummy argument list of the referenced
subroutine. (See Section 6.1 for a complete description of
subroutines and arguments.)

8.6 RETURN Statement

The RETURN statement transfers control back to the calling program unit. Its syntax
is as follows:

RETURti

The RETURN statement may appear only in FUNCTION or SUBROUTINE
subprograms. These subprograms may have one or more RETURN statements, or
none at all. An END statement terminating such a program unit has the same effect
as a RETURN statement.

When Fortran executes a RETURN statement in a FUNCTION subprogram, a
return value of the function must already have been defined.

When Fortran executes a RETURN statement, it terminates the association between
the dummy arguments of the procedure and the current actual arguments (see Section
6.1, "Subroutines and Functions").

8.7 ASSIGN Statement

The ASSIGN statement is the only way you can assign a statement label to a symbolic
name. A GO TO statement or a format identifier in an I/O statement can then refer
ence this symbolic name .. To use the symbolic name in another context, you must
redefine it with an integer value in an arithmetic assignment statement. Its syntax is
as follows:

ASS I G ti stl T 0 name

where

stl

name

is a statement label. The statement label must be the label of
an executable statement or a FORMAT statement in the
same program unit as the ASSIGN statement.

is an integer variable name. You cannot declare name to be
of length INTEGER * 1.

8.8 GO TO Statements

The GO TO statements pass program control to another part of the program, either
conditionally or unconditionally. There are three GO TO statements:

Unconditional GO TO
Computed GO TO
Assigned GO TO

8-7

Executable Statements

8-8

8.8. 1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to a specified statement. Its
syntax is as follows:

GOT 0 stl

where

stl is a statement label of an executable statement in the same
program unit as the GO TO statement.

8.8.2 Computed GO TO Statement

The computed GO TO statement branches to one of several executable statements
based on the value of a controlling expression. Its syntax is as follows:

GOT 0 (stl [I stl]. ..) exp

where

stl

exp

is the statement label of an executable statement in the same
program unit as the computed GO TO statement. The same
statement label can appear more than once in the same
computed GO TO statement.

is an integer expression. If exp has a value in the range 1 <
exp < n (where n is the number of statement labels in the
list), control passes to the statement that corresponds to this
value. If exp is outside of this range, execution continues with
the statement following the GO TO and all the statement
labels in the list are ignored.

8.8.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to one of several executable state
ments based on an integer variable name. You use it with the ASSIGN statement.
Its syntax is as follows:

GOT 0 name [(stl [I stl] ...)]

where

name

stl

is an integer variable name. Before the assigned GO TO
statement can be executed, an ASSIGN statement in the
same program unit must have defined the variable name with
the value of a statement label.

is the statement label of an executable statement in the same
program unit as the assigned GO TO statement. The same
statement label may appear more than once in the statement.
If the parenthesized list of statement labels is present, the
statement label assigned to name must be one of the labels in
the list.

Fortran-86

Fortran-86 Executable Statements

8.9 Program Halt Statements

Fortran provides the following three statements for halting or terminating program
execution:

PAUSE

STOP

END

For details on the END statement, see Section 4.3.

8.9. 1 PAUSE Statenlent

The PAUSE statement suspends program ex(!cution and allows execution to continue
or terminate depending on an external signal. Its syntax is as follows:

P A U S E[msg]

where

msg is either a string of not more than five digits or a character
constant.

When the PAUSE statement is executed, a message in the following form:

* * * PRO G RAM P A USE. [msg]

is written to the file connected to Unit 6 (see Section 14.5, "Preconnecting Files"),
and program execution is suspended. By ent(~ring anything starting with an S (either
upper or lower case) on Unit 5, the operator can cause execution of the program to
terminate; any other input causes execution to continue with the statement following
the PAUSE statement.

8.9.2 STOP Statement

The STOP statement terminates program execution from within a program. Its syntax
is as follows:

STOP [msg]

where

msg is either a string of not more than five digits or a character
constant.

When the STOP statement is executed, a message in the form

* * * PRO G RAM S TOP. [msg]

is written to the file connected to Unit 6 (st!e Section 14.5), and program execution
is terminated.

The STOP statement is intended as a means to terminate program execution abnor
mally, that is, to inform the operator of a special program-detected condition that
makes further execution undesirable or impossible. For normal program termination,
execution of the END statement of the main program is preferred for reasons of
run-time efficiency.

8-9

• (R) CHAPTER 9
INPUT AND OUTPUT n

Fortran input/output statements direct the transfer of data between the processor
and some external unit or within the processor itself. There are two categories of
statements: file handling and data transfer. The file-handling statements connect and
disconnect, position, and mark the end of files. The data-transfer statements supply
the external or internal unit and the list of input or output variables including any
necessary formatting information. This chapter describes each of these statements.

9. 1 Records, Files and Units

The following sections provide information on records, files, and units.

9. 1. 1 Records

A record is a logically rdated set of values or characters. There are two types of
records: formattt~d and unformatted.

A formatted record is a sequence of ASCII printable characters. An unformatted
record is a sequence of values containing any combination of data types. Only
formatted and unformatted I/O statements, respectively, can read or write these
records.

9.1.2 Files

A file is a sequence of records. There are two kinds of files: external and internal.

9 . 1 . 2 . 1 External Files

An external file is stored on an external unit, such as a line printer or flexible disk.
You can access an external file in one of two ways: sequentially or directly.

A sequential-access file has the following characteristics:

• The file consists of a sequence of variable-length records.

The records are all accessed in the same order as they were created.

• The records are either all formatted or all unformatted.

You can read from or write to the files using only sequential-access I/O
statements.

A direct-access file has the following characteristics:

All the records have the same length.

You can read from or write to the file in any order.

The records are either all formatted or all unformatted.

You can read from or write to the file using only direct-access I/O statements.

Each record has a unique record number determined when the record was created.
You may not delete a record or change its number. You can rewrite an existing
record.

9-1

Input and Output

9-2

9 . 1 .2.2 Internal Files

An internal file is a character variable, character array, or character array element.
Using internal files, you can transfer and format data within processor memory.

An internal file has the following characteristics:

Each record is a character variable or array element.

• The size of the file depends on the kinds of records in the file. If the file is a
character variable or array element, it is a single record whose length is that of
the variable or array element. If it is a character array, every record has the same
length as an array element in that array and the file has as many records as the
array has elements.

You cannot reference an internal file in a file-handling statement. You can use only
sequential-access, formatted I/O statements that do not specify list-directed
formatting.

9.1.3 Units

A unit is a logical way of referring to a file. A unit can be connected or disconnected.
All I/O statements, except OPEN and CLOSE, must reference a unit connected to
a file.

You can connect a file to a unit using the OPEN statement and disconnect the file
using the CLOSE statement. Depending on the operating environment, some units
may be preconnected and you can reference them in I/O statements without first
using an OPEN statement. A preconnected file becomes connected the first time an
I/O statement references it.

For example, in the Series-III operating system environment, the console output device
and console input device are always preconnected for unit numbers 6 and 5 respec
tively, but you can override these defaults by preconnecting the units explicitly (see
Section 14.5).

A unit cannot be connected to more than one file at a time and vice versa. The only
way to refer to a disconnected file is by naming it in an OPEN statement. Conse
quently, an unnamed file cannot be reconnected once it has been disconnected.

9.2 File-Handling Statements

Fortran provides five file-handling statements: OPEN, CLOSE, BACKSPACE,
REWIND, and ENDFILE. These statements are valid for external files only.

9.2.1 OPEN

The OPEN statement can connect an existing file to a unit, create a preconnected
file, create a file and connect it to a unit, or change certain specifiers in an existing
file/unit connection. Its syntax is as follows:

OPE ti (open-list)

Fortran-86

Fortran-86 Input and Output

where

open-list is a list of specifiers separated by commas. The list of speci
fiers is as follows:

[U NIT =] unit
I I] 5 TAT = stname
E I~ R = stl
F I L E = name
5 TAT U 5 = stat
ACe E 5 5 = aee
FOR M = fmat
R EeL = reelen
B l A N K = blank

u. ''Cz1''::g:i(:' . <:
k;L~·:;!l~'iI'*-

U nit specifier
I/0 status specifier
Error specifier
File-name specifier
File-status specifier
Access-method specifier
Formatting specifier
Record-length specifier
Blank s ecifier

The unit specifier, unit, must be present. All of the other specifiers are optional except
that if you connect a file for direct access, the record-length specifier must be present.
Some specifiers have default values. The following sections describe each of the speci
fiers in detail.

9.2.1.1 Unit Specifier

The format of the unit specifier is as follows:

[U NIT =] unit

where

unit

Examples:

OPEN(UNIT=3)
OPEN(4)

is an integer value between 0 and 255 that identifies an
external file. If you omit the optional UNIT = , unit must be
the first item in open-list.

9.2.1.2 I/O Status Specifier

The format of the I/0 status specifier is as follows:

I 0 5 TAT = stname

where

stname

Example:

is an integer variable or integer array-element name. The
variable must be INTEGER *2.

If no error occurs, executing an I/0 statement with this
specifier causes stname to be assigned a zero value. If an error
does occur, stname is assigned an error message number (see
Section 15.3, "Run-Time Errors").

OPEN(4,IOSTAT=ERRFLG)

9-3

Input and Output

9-4

9 . 2 . 1 .3 Error Specifier

The format of the error specifier is as follows:

ERR = stl

where

stl is the statement label of an executable statement in the same
program unit as the I/O statement.

If an error occurs during execution of the I/O statement, the following steps occur:

1. The I/O operation terminates.

2. The position of the file specified by the I/O statement becomes indeterminate.

3. If the I/O statement has an 10STA T specifier, Fortran sets stname to reflect
the error condition.

4. Execution continues with the statement named by the ERR specifier. If you did
not specify ERR, a run-time error occurs.

Example:

OPEN(4)IOSTAT=ERRFLG)ERR-200)

9.2.1.4 File-Name Specifier

The format of the file-name specifier is as follows:

F I L E = name

where

name

Example:

is the name of the file expressed as a character constant
enclosed in quotation marks or a variable. It must be a valid
file name for the operating environment. If you omit FILE,
the unit is connected to a scratch file (:WORK:) unless it
was previously associated with a specific file (i.e., in a
preconnection). A filename cannot be specified if STATUS
== 'SCRA TClI' is specified.

OPENCUNIT-3)FILE-'MYPROG,FIL')

9 .2 . 1 .5 File-Status Specifier

The format of the file-status specifier is as follows:

5 TAT US· stat

Fortran-86

Fortran-86 Input and Output

where

stat

Example:

is a character expre~ssion evaluating to 'OLD', 'NEW',
'SeRA TCH', or 'UNKNOWN'. If you omit the STATUS
specifier, the default value is UNKNOWN.

If you specify OLD or NEW, the FILE specifier must also
be present or the file must be preconnected.

When you specify SCRATCH, a temporary file is connected
to the specified unit for the duration of program execution or
until you issue a CLOSE statement for the same unit and
then delete it. You cannot specify SCRATCH with a named
file!.

If you specify UNKNOWN, the file status is environment
dependent. In the Series-III environment, UNKNOWN is
allowed only for a named file. In this case, it is equivalent to
OLD if the file exists and NEW if it does not.

OPEN(3,FILE-'MYPROG.FIL',STATUS-'NEW')

9 . 2 . 1 . 6 Access-Method Specifier

The format of the access-method specifier is as follows:

Ace E 5 5 • aee

where

aee is a character expression evaluating to either 'SEQUEN
TIAL' or 'DIRECT' (see Section 9.1.2.1). If you omit the
ACCESS specifier, the default is SEQUENTIAL.

If the file already exists, the specified access method must match the characteristics
of that file. For example, iRMX 86 physical files are by definition sequential files
and must be opened for sequential access only. New files are created with the speci
fied access method. If the access method is DIRECT, the record-length specifier must
be present in the specifier list.

Example:

OPEN(3,FILE='MYPROG',STATUS='NEW',
& Ace E 5 5 • ' 5 E QUE N 'r I A L ')

9 .2. 1 . 7 Formatting Specifier

The format of the formatting specifier is as follows:

FOR M • fmat

where

fmat is a character expression evaluating to 'FORMATTED' or
'UNFORMATTED'. If you omit the FORM specifier, the
default is UNFORMATTED if you connect the file for direct
access and FORMATTED if you connect the file for sequen
tial access.

9-5

Input and Output

9--6

Example:

OPEN(3,FILE:'MVPROG.FIL' ,STATUS·'NEW',
&ACCESS·'SEQUENTIAL' ,FORM·'FORMATTED')

9.2.1.8 Record-Length Specifier

The format of the record-length specifier is as follows:

R E C L • ree/en

where

ree/en

Example:

is a positive integer expression that evaluates to the length of
each record of the file being connected for direct access.

If you connect the file for formatted I/0, ree/en is the number
of characters. If you connect the file for unformatted I/0,
ree/en is the number of bytes.

You must include the REeL specifier in the OPEN state
ment when you connect the file for direct access.

When.you.connect th~ fi~~fQF seq':le~ti~d.<)c(;<r~s~.~Jie·f#~~~!i~~:~:'
system.lls~s t~e, rt:cpr<;ll~ngt~.to H~d !or~wttegjllJ?utrec9r<ff:
with blanks to simplify .. <lata entrYtlsif1ga·;:te~min{;tJ;T:he::;
I{Ec:L spe~ifi~r is. ignor~d for f~~mattet1. s~que~tial .. Qutp~r:;·:
,and invalid for unfonnatte4' ~equ~ntial 1/9::': ; :.: < .' .

OPEN(3,FILE·'MVPROG.FIL' ,STATUS·'NEW',
&ACCESS·'DIRECT',FORM·'FORMATTED',RECL-aO)

9 . 2 . 1 . 9 Blank Specifier

The format of the blank specifier is as follows:

B LAN K • blank

where

blank

Example:

is one of the character constants 'NULL' or 'ZERO'. If you
omit the BLANK specifier, the default value is NULL.

If you specify NULL, Fortran ignores all blanks in numeric
formatted input fields, except that a field of all blanks has
the value zero. If you specify ZERO, all blanks, except
leading blanks, have the value zero.

You can use this specifier only for formatted I/O.

OPEN(3,FILE·'MVPROG.FIL' ,STATUS·'NEW',
&FORM-'FORMATTED' ,BLANK-'ZERO')

Fortran-86

Fortran-86 Input and Output

9 . 2 . 1 . 11 Opening a Connected Unit

A unit is considered conm~ctcd if it was referenced in a previous I/O statement without
an intervening CLOSE statement. You can specify an OPEN statement for a unit
already connected to a file.

If the file name specified by the OPEN statement is missing or is the same as that of
the connected file, the BLANK and CARRIAGE specifiers (and the RECL specifier
for sequential files) can differ from existing attributes, and result in changes to those
attributes.

If the file name specified by the OPEN statement is not the same as that of the
connected file, Fortran disconnects the previous file as if a CLOSE statement, without
STATUS specifier, were issued and opens the new one with the new
attributes.

If a file is already connected to a unit, you cannot specify an OPEN statement
connecting that file to a different unit.

9-7

Input and Output

9-8

9.2.2 CLOSE Statement

The CLOSE statement disconnects a file from a unit. Its format is as follows:

C LOS E (close-list)

where

close-list is the following list of specifiers separated by commas:

[U NIT .] unit
IDS TAT .. stname
ERR" stl
S TAT US" stat

U nit specifier
I/O status specifier
Error specifier
File disposition specifier

The unit specifier must be present. All other specifiers are optional, and you can only
specify them once.

The IOSTAT and ERR specifiers have the same interpretations as for the OPEN
statement. (See Sections 9.2.1.2 and 9.2.1.3.)

9.2.2.1 Unit Specifier

The unit specifier has the same interpretation as in the OPEN statement. However,
execution of the CLOSE statement containing this specifier need not occur in the
same program unit as its corresponding OPEN statement. If the specified file does
not exist, CLOSE has no effect.

Once a CLOSE statement disconnects a unit, it can be reconnected to the same file
or a different file within the same program. Similarly, once a CLOSE statement
disconnects a file, it can be reconnected to the same or a different unit, so long as the
file still exists.

Example:

CLOSE(3,IOSTAT"ERRFLG,ERR-100)

9.2.2.2 File-Disposition Specifier

The format of the file-disposition specifier is as follows:

S TAT US" stat

where

stat is a character expression evaluating to 'KEEP' or 'DELETE'.
If you omit this specifier, the default value is DELETE for a
file that previously had a status of SCRATCH, and KEEP
otherwise. You cannot specify KEEP for a file opened with
SCRATCH status.

If you specify KEEP for an existing file, the file continues to
exist after Fortran executes the CLOSE statement. KEEP
has no other effect.

If you specify DELETE, the file ceases to exist after Fortran
executes the CLOSE statement.

Following normal program termination, Fortran closes all
connected units and deletes all those designated as scratch
files.

Fortran-86

Fortran-86 Input and Output

Example:

CLOSE(4 ,ERR= 1 00 ,STATUS= 'KEEP')

9.2.3 BACKSPACE

The BACKSPACE statement causes the file pointer to move to the start of the
preceding record.. The file must be connected for sequential access. The possible
formats are as foUows:

B A C K SPA C E unit
B A C K SPA C E (arg-list)

where

unit

arg-list

is an integer expression between 0 and 255 that identifies an
external unit. The external-unit specifier must be present but
the other specifiers are optional.

is a list of arguments separated by commas. The following is
a list of the arguments:

[U t-I I T =]unit
IDS TAT = stname
ERR = stl

External-unit specifier
I/O status specifier
Error specifier

If the file has no preceding record, the BACKSPACE statement has no effect. If the
last I/O statement was a READ past the end-of file, the file is repositioned to the
end of the file. You cannot backspace over a record written using list-directed
formatting.

Backspacing a file that is connected but does not exist is prohibited. Do not use the
BACKSPACE statement to manipulate iRMX 86 physical files such as :CI:, :CO:,
line printers, or other such files. Fortran-86 returns run-time errors in these cases.

Examples:

BACKSPACE 3
BACKSPACE(3, ERR='1 00)

9.2.4 REWIND

The REWIND statement causes the file pointer to move to the initial point of the
file. The file must be connected for sequential access. The possible formats are as
follows:

R E W I t-I D unit
R E W I t-I D (arg-list)

where

unit

arg-list

is an integer expression between 0 and 255 that identifies an
external unit.

is a list of arguments separated by commas. The arg-list for
REWIND and the arg-list for BACKSPACE are the same.

If the file is positioned at its initial point, the REWIND statement has no effect.

9-9

Input and Output

9-10

Example:

REWIMD 3
REWIMDC3,IOSTAT-ERRFLG)

9.2.5 ENDFILE

The ENDFILE statement causes the preceding record to become the last record of
the file. No further data-transfer I/O statements can be executed without first issuing
a BACKSPACE or a REWlND statement. The file must be connected for sequential
access.

The possible formats are as follows:

END F I L E unit
END F I L E C arg-list)

where

unit

arg-list

is an integer between 0 and 255 that identifies an external
unit.

is a list of arguments. These arguments are the same as those
for BACKSPACE and REWIND.

Do not use the ENDFILE statement to manipulate iRMX 86 physical files such as
:CO:, :CI:, line printers, or other such files. Fortran-86 will return a run-time error
in such cases.

Examples:

EMDFILE 4
ENDFILEC4,ERR-100)

9.3 Data-Transfer 1/0 Statements

Fortran provides three data-transfer I/O statements: READ, WRITE, and PRINT.

9.3. 1 READ Statement

The READ statement reads data from a specified unit. Its formats are as follows:

REA D C etl-list> [in-list]
REA D f[, in-list]

where

etl-list

in-list

f

is a list of control information specifiers. The control
information specifiers are as follows:

[U MIT -] unit U nit specifier
I: F M T .] f Format specifier
R E C • reeno Record number specifier
IDS TAT • stname I/O status specifier
ERR • stl Error specifier
E MD· stl End-of-file specifier

is a list of the variables which are to receive the input data.

is a format identifier, which is the same as the FMT specifier
in etl-list.

Fortran-86

Fortran-86 Input and Output

9.3.1.1 Control-Information List

The control-information list must contain a unit specifier. If you use the second form
of the READ statement, the unit is the default input unit.

The list can contain only one of each of the other specifiers.

The following sections describe the control list specifiers in detail.

Unit Specifier

The unit specifier has the form that follows:

[U NIT =] unit

where

unit

Example:

is an integer value between 0 and 255 that identifies an
external unit, an asterisk (*) to specify the default input unit,
or an internal file. For internal files, etl-list must contain a
format identifier but must not contain a record number
specifier.

If you omit UNIT= , unit must be the first item in etl-list.

READ(2)BILl.)STAT

Format Specifier

If etl-list contains a format specifier, the READ statement is a formatted I/O state
ment. Otherwise, it is an unformatted I/O statement.

The format is as follows:

[FMT=]f

where

f is one of the following:

• The label of a FORMAT statement in the same program
unit as the READ statement

• An integer variable assigned the label of a FORMAT
statement in an ASSIGN statement

• A character array name, character variable name, or
character expression containing a format specification

,':ti q·w«,· • '««« .:~ «. \]iij~!;;~i:!.l!;Q~:t§~fl~:g,f:~:~i
«,ti!ting lfl. " .'~l}~. t~~~th~d~f~:; ;:::::I = ~~

~'7%."..:; :;'-0., ~ ... ~ v 'ft;:;::(,;d:>"':': .;:,x-,~.. • ~.x.-> :.::':>:-....,. ;. :!$;-",f.~."N'N

• An asterisk (*) specifying list-directed formatting (Section
9.4.2)

If you omit FMT=, the format specifier must be the second
item in etl-list and you must omit UNIT= as well.

If you specify an asterisk (*) as f, etl-list cannot contain a
n:~cord number specifier. If the unit is an internal file, the
format specifier must also be present, but cannot be an aster
isk (*).

Input and Output

9-12

Examples:

READ(2,25)BILL,STAT
25 FORMAT

READ 3D , BILL,STAT
30 FORMAT

ASSIGN 45 TO HORN
READ(2,HORN)BILL

45 FORMAT

READ(2,*)BILL

Record-Number Specifier

If you connected the file for direct access, you must include the record-number speci
fier in etl-Jist. Its format is as follows:

R E C = reeno

where

reeno

Examples:

READ(3,REC-15)
READ(2,REC-J)

is a positive integer expression whose value is the number of
the record to be read.

Input/Output Status Specifier

The I/O status specifier is essentially the same as for the OPEN statement (Section
9.2.1.2). In addition, Fortran assigns the variable stname a negative value at end-of
file.

Error Specifier

The error specifier has a similar interpretation as for the OPEN statement (Section
9.2.1.3), with one difference: if the error is the result of an end-of-file condition, the
position of the file is defined as past the end-of-file marker; further I/O operations
except CLOSE, REWIND, or BACKSPACE are undefined.

End-Or-File Specifier

The format of the end-of-file specifier is as follows:

END - stl

where

stl is the label of an executable statement in the same program
unit as the READ statement.

When Fortran detects an end-of-file during a READ operation, processing procedes
as for the error specifier except that execution continues with the statement specified
by END.

If you specify END, the file must be connected for sequential access.

Fortran-86

Fortran-86 Input and Output

Example:

READC3,30,IOSTAT=STFLG,ERR=100,END-300)BILL,STAT

9 .3 . 1 .2 Input List

The input list, in-Jist, identifies the items to be read. An item in in-list must be a
variable name, array name" or array element name. If you list an array name, Fortran
reads the entire array in normal array element ordering sequence. You cannot list
the name of an assumed-size dummy array in the input list.

9.3.1.3 Implied-DO List

An implied-DO list embedded in the READ statement allows you to use a range of
subscripts for input list array elements. For example, Fortran can read some of the
items in an array without your specifying each individual array element. The format
of the implied-DO list is as follows:

C inlist, var= e1, e2, e3)

where

var,e1,e2 and e3 have the same interpretation as for the DO statement (Section
8.3).

inlist is the list of input items described above. The list, in-Jist, may
contain additional implied-DO lists.

For READ statements, the DO variable var cannot appear as an item in in-list.

Example:

C READ THE ODD ELEMENTS IN THE ARRAY 'TABLE'
DIMENSION TABLE(60)
READ C2,20)CTABLECN),N=1,S9,2)

20 FORMAT

9.3.2 WRITE

The WRITE statement outputs data to a specified unit. The format is as follows:

W R I T E C ct/-Jist) [out-list]

where

ct/-Jist

out-Jist

is a list of control-information specifiers. The control-list
specifiers are analogous to those for READ (Section 9.3.1.1).
The control-information list is as follows:

[U NIT] unit U nit specifier
[F M T =] f Format specifier
R E C = recno Record-number specifier
lOS TAT = stname I/O status specifier
ERR = stl Error specifier

is a list of the data to be written.

The syntax of the output list, out-Jist, is similar to that of the
in-list in the READ statement, including the implied-DO
option (Sections 9.3.1.2 and 9.3.1.3). In addition, an output
list item may be an expression of any data type.

9-13

Input and Ollltput

9-14

Examples:

WRITECS,120)BILL,STAT
120 FORMAT ••••

WRITECS, 120, IOSTAT=ERRFLG,ERR=200)
&BILL+1 I STAT+1

120 FORMAT

DIMENSION BILL(25),STATC25)
C WRITE A DOUBLE COLUMN PRINTOUT OF THE
C FIRST ITEMS OF EACH ARRAY

WRITECS , 120)CBILLCH) ,STATCH) ,H-1 1 10)
120 FORMATC1X , A , 5X , F4.3)

9.3.3 PRINT

The PRINT statement outputs formatted data to the default output unit. Its format
is as follows:

P R I N T f[, out-list]

where

f

out-list

is a format identifier.

is a list of the data to be written.

The format specifier f and out-list have the same meaning as in the WRITE statement.

Examples:

PRINT 50,BILL,HORN
50 FORMAT ••••

ASSIGN 50 TO STAT
PRINT STAT,BILL,HORN

50 FORMAT ••••

9.4 Formatted Data Transfer

The default for the FORM specifier in the OPEN statement is FORMATTED for
sequential-access files. During formatted data transfer, Fortran transfers data with
editing between the file and the I/0 list. The editing is directed by some kind of
formatting specification. You can specify formats as follows:

• In FORMAT statements

• As values of character arrays, character variables, or other character expressions

• . ,As Hollerith vaJlles. assigned. to integer, floating~point, or JoSic~~;;~!t}}&~\~~
• As list-directed I/0 (see Section 9.4.2)

If the format specifier in a formatted I/O statement is an array or expression, its
value must be a valid format specification in its leftmost character or Hollerith
positions. Any data following the right parenthesis that ends the format specification
has no affect on the format specification itself.

Ifa~ ~ornJatted rec9rd is wriHenusing the CARRIAGE,~'Fohr41~{;?p~ioh~:t!1"~.(itS(;;
character· of the record is not printed. This character .jndicB;tes yer~ical~paqjn;g. fo,r:;

Fortran-86

Fortran-86 Input and Output

9.4. 1 FORMAT Statement

The form of the FORMAT statement is as follows:

stl FOR MAT ([flist])

where

stl

flist

is a 1 to 5 digit statement label.

is a format specification list whose items are separated by
commas. Each item in flist must be an edit descriptor or
another (imbedded) parenthesized flist.

You can specify a FORMAT statement with no flist only if
the I/O list is also empty.

There are two kinds of edit descriptors, repeatable and
non repeatable. You repeat an edit descriptor by prefixing it
with a nonzero, unsigned integer constant called a repeat
specification. A repeat specification may also be present for
an imbedded flist.

Both the format specification and its corresponding I/0 list
are scanned from left to right. Each item in the I/O-list
corresponds to the next repeatable edit descriptor. For
example, if a repeatable edit descriptor is repeated five times,
it corresponds to five consecutive I/0 list items. There is no
corresponding I/O-list item for non repeatable edit descrip
tors which take effect whenever they are encountered.

If an embedded flist its preceded by a repeat specification, flist
is scanned that many times before continuing to the next
format item.

If a format-specification list ends before the I/0 list ends, it
reverts to the beginning of the last imbedded flist in the
FORMAT statement including its repeat specification. If
none is present, then it reverts to the beginning of the
FORMAT statement. Repeat specifications have the same
effect as during the first pass through the format specifica
tion list. A new record is begun each time format reversion
occurs.

9 .4 . 1 . 1 Repeatable Edit Descriptors

Each repeatable edit descriptor generally consists of a letter indicating the type of
data involved and a number indicating the size of the data field; additional informa
tion may specify how it will be divided. The repeatable edit descriptors are as follows:

Iw
Fw.d
Ew.d[Ee]
Dw.d
Gw.d[Ee]
Lw

Integer descriptor
Floating-point descriptor
Floating-point descriptor
Floating-point descriptor
Floating-point descriptor
Logical descriptor
Alphanumeric descri

Input and Output

9-16

where

I,F,E,D

W

d

e

G,L, and A

INTEGER Editing

indicate the external type of data being edited.

~~gi~~te ,~;~~;;J:1;~1~fP~tm\m9,r.?~§.~'~:{;:;9;~!~~ ',;,' ~';t~;~~}~'~'I;~;~'~~~:;':~~j
is a nonzero, unsigned integer constant representing the width
of the entire external field.

is an unsigned integer constant representing the number of
digits that follow the decimal point.

is a nonzero, unsigned integer constant representing the
number of digits of the exponent.

The I, F, 0, E, and G edit descriptors are used for numeric
data. E and G editing allows output of floating-point numbers
in scientific notation.

The following remarks apply to the I, F, 0, E, and G edit
descriptors.

On input, leading blanks are not significant. Further
blanks are treated according to the setting of the nonre
peatable descriptors BN and BZ and the value of the
BLANK specifier in the OPEN statement.

A decimal point in input data overrides the decimal-point
location specified by a descriptor. The input field may
have more digits than are necessary for the value of the
data item to be approximated.

On output, Fortran right-justifies values. If necessary, the
compiler fills the field with blanks on the left.

On output, if the number of characters exceeds the field
width W, or an exponent has more than e digits, the entire
field is filled with asterisks (* *).

Tne'ij ~n4.t::~dHd~s~Jiptor~SP(!cify
he~adecimaln9tatiQn~ respectiv~lr'

An I/O-list item matched with an I W edit descriptor must be of type INTEGER.
The integer constant read or written always consists of at least one digit.

Examples:

PRINT 20,INTNUM
20 FORMATCIS)

READC3,20)INTNM1, INTNM2, INTNM3
20 FORMATC2IS,I4)

F Descriptor Editing

An I/O-list item matched with an FW.d descriptor must have a floating-point data
type. If the input to this descriptor contains no decimal point, Fortran interprets the
rightmost d digits of the string as the fractional part of the input value.

On input, an exponent consisting of a signed integer constant or the letter E followed
by an optionally signed integer constant can follow the string of digits.

Fortran-86

Fortran-86 Input and Output

Fortran rounds output edited by the F descriptor to d fractional digits and can modify
it by an established scale factor. (See the description of the nonrepeatable edit
descriptor P.)

Examples

READ[2,20)BILLN
20 FORMAT(FS.3)

DIMENSION TABLE(10)
PRINT 30,TABLE

30 FORMAT(S(FS.3,2X,FS.3»
C THE TABLE WILL PRINT IN TWO COLUMNS

E and D Descriptor Editing

An I/O-list item matched with an EW.d, Dw.d, or Ew.dEe descriptor must have a
floating-point data type. The exponent e has no effect on input data.

On output, the format of the output field for a scale factor of zero is as follows:

[sign] [0].xlx2 ... xd exp

where

sign

x1 ... xd

exp

is either a plus (+) or a minus (-) sign.

are the d most significant digits of the value after rounding.

is a decimal exponent having one of the forms found in Table
9··1.

The scale factor, k (see the description of the nonrepeatable edit descriptor P), controls
decimal normalization. If - d < k < 0, the number written will have exactly I k I
leading zeros and d- I k ~ significant digits following the decimal point. If 0 < k <
d + 2, the number will have exactly k significant digits to the left of the decimal
point and d - k + 1 significant digits to the right of the decimal point. Other values
of k are illegal.

Examples

READ(2,20)RLNUMB
20 FORMAT(E4.2)

WRITE(S,110)ROUT
110 FORMAT(E15.SES)

Table 9-1. Output Forms of Exponents For D and E Editing

Edit Magnitude Form of
Descriptolr of Exponent (exp) exponent (y = digit)

Ew.d 1 exp I.::::: 99 E±Y1Y2
99 < 1 exp 1 .::::: 999 ±Y1 Y2 Y3

Ew.d Ee 1 exp 1 ':::::(1 O**e)--1 E±Y1 Y2···Ye

Dw.d 1 exp I.::::: 99 D± Y1 Y2
99 < 1 exp 1 .::::: 999 ± Y1 Y2 Y3

9-17

Input and Output

9-18

G Descriptor Editing

An I/O list item matched with a GW.d or GW.d Ee must have a floating-point data
type.

On input, G descriptor editing is the same as F descriptor editing.

On output, editing depends on the magnitude of the value to be written. Let n be the
magnitude of the value. If n < 0.1 or n > 10**d, G editing is the same as E editing
with the current scale factor. If 0.1 -< n < 10**d, the scale factor has no effect.
Table 9-2 describes the editing in this case.

LOGICAL Editing

An I/O-list item matched with an Lw descriptor must have a logical data type.

The input field includes optional blanks preceding an optional period followed by a
T (for TRUE) or F (for FALSE). These letters may be followed by additional
characters. For example, the logical constants .TRUE. and .FALSE. are acceptable
inputs.

The output field consists of the letters T and F based on the TRUE or FALSE value
of the internal data preceded by blanks, if necessary, to fill the output field.

Examples

LOGICAL TRUTH
DIMENSION TRUTH(4)
READC3,50)TRUTHC1),TRUTHC4)

50 FORMATC2LS)

WRITECS,80)TRUTHC 1)
80 FORMATCL1)

Alphanumeric Editing

An I/O-list item matched with an A or Aw descriptor must have type CHARAC
TER or be defined with Hollerith data. If you specify the field width, w, the field
consists of w characters. Otherwise, the number of characters in the field is the length
of the I/O-list item.

Table 9-2. G Editing for 0.1 -< N < 10**d

Magnitude
of Equivalent Conversion

Data

0.1 ~ N < 1 F(w-n).d, n(b)

1 ~ N < 10 F(w-n).(d-1), n(b)

· · · · · ·
10**(d-2) ~ N < 10**(d-1) F(w-n).1.n(b)

10**(d-1) ~ N < 10**d F(w-n).O, n(b)

where n = 4 for GW.d
e + 2 for GW.d Ee

b = blank

Fortran-86

Fortran-86 Input and Output

With Aw editing, if w > length, the following are equivalent:

Aw and (w - length)X,Alength

If w < length, then the data IS transferred according to the rules for character
assignment.

The following illustrates Aw editing. In these examples, b indicates a blank.

A5 to CHARACTER*3:

CHARACTER*3 to A5:
A3 to CHARACTER*5:

CHARACTER*5 to A3:

ABCDE becomes CDE
w>length

ABC becomes bbABC
ABC becomes ABCbb

w<length
ABCDE becomes ABC

* COMPLEX data is interpreted as two REAL values.
**Zero Padding occurs only on input.

9-19

Input and Output

9-20

9.4. 1 .2 Nonrepeatable Edit Descriptors

The nonrepeatable edit descriptors are

'clc2 ... cn'
nHclc2 ... cn
nX

/
kP
BN
BZ

where

apostrophe ('), H,
indicate the kind of editing.
X, slash (j), P,

Literal-string descriptor
Hollerith-string descriptor
Record-position control descriptor
Record-termination descriptor
Scale-factor descriptor
Blank descriptor
Blank descriptor
Alternqte re~or4-tep;l1iQ~ti91f,~¢.~crlp,iijf:~:;:::<::;~::j

".,,,. ~:.:" ,', .. - ,.,,~.:<-. :',- .. <.: ~~.i ~<.: A/:.;:.'~'.'·~N ;" .. : :'.-«' " .. "*~,_.{(_"./ ::A

B!'f, BZ,[~n'~,1l1~,:
;:(f()U~rs~gnJ~)· i indicate the kind of editing.

c is any ASCII character.

n

k

Apostrophe Editing

is a nonzero, unsigned integer constant.

is an optionally signed integer constant representing a scale
factor.

You use the apostrophe edit descriptor only for output. It causes Fortran to write the
characters enclosed in apostrophes literally. To indicate an apostrophe within the
character field, show it as two consecutive apostrophes.

The width of the field is the length of the character string.

Example

WRITE(7,100)ITSTNO
100 FORMAT('THIS IS TEST NUMBER',2X,I2)

H Descriptor Editing

The Hollerith edit descriptor is an alternate way to perform literal-string editing.
Like apostrophe editing, you can use it only for output. The nH descriptor causes the
compiler to write the n characters following the H.

Example

WRITE(7,100)ITSTNO
100 FORMAT(1H1,19HTHIS IS TEST NUMBER,2X,I2)
C FIRST H DESCRIPTOR CAUSES A SKIP TO A NEW PAGE

X Descriptor Editing

The nX descriptor indicates that the next edit descriptor applies to the character n
positions from the current record position. On output, Fortran inserts n blanks into
the output record. No blanks are output if there are no more items in the I/O list.

Fortran-86

Fortran-86 Input and Output

Example

WRITE(7,100)ITSTNO
1 0 0 FOR MAT (1 X , , T HIS IS T E S TN U M B E R ' , 2 X , I 2)
C FIRST X DESCRIPTOR CAUSES SINGLE SPACING
C BY INSERTING A BLANK AS THE FIRST
C CHARACTER OF THE RECORD

Slash Editing

The slash (j) edit descriptor acts as an end-of-record indicator.

On input, Fortran skips the remainder of the current record. If the file is positioned
at the beginning of a record, Fortran skips the entire record.

On output, Fortran terminates the current record and begins a new record. You can
use the slash edit descriptor to write an empty record, a convenient way to provide
blank lines on printed output.

The comma that normally separates FORMAT list items is not required before or
after a slash.

Example

WRITE(7,100)
100 FORMAT(1H1,' BILL AVERAGE'/)
C THIS SLASH CAUSES A BLANK LINE FOLLOWING
C THE HEADINGS TO BE WRITTEN

WRITE(7,150)BILL,AVG
150 FORMAT(1X,A12,4X,F4.3)

Scale Factor (P) Editing

The kP descriptor establishes a scale factor, k, which applies to certain subsequent
floating-point descriptors until a new scale factor is specified. You can use it with the
F, D, E, and G descriptors when editing floating-point numbers. If an F, D, E, or G
immediately follows the P, no intervening comma is necessary.

Fortran assumes. a scale factor of zero at the beginning of an I/O statement. Once
the kP descriptor changes it, the new scale factor remains in effect until you assign
another scale factor or until the end of the I/O statement.

On input, the scale factor has no effect if there is an exponent in the F, D, E, or G
input field. Othe:rwise, the effect is that the {~xternally represented number equals the
internally represented number multiplied by 10** k. The same is true on output with
F editing.

On output with E or D editing, Fortran moves the decimal point k positions to the
right (left if negative) and reduces the exponent by k.

On output with G editing, Fortran suspends the effect of the scale factor as long as
the value is within the range of F editing. If not, the effect is the same as described
for E editing.

The output range of a significand printed in scientific notation is 0.1 to, but not
including, 1.0, with a scale factor of zero. Setting the scale factor to 1 P changes this
range to 1.0 to 10.0. Changing the scale factor is useful for very small or very large

9-21

Input and Output

9-22

E-edited numbers, but generally not for F-edited numbers. You should reset the scale
factor as necessary for subsequent floating-point items.

Table 9-4 illustrates the use of the scale factor with E editing on output.

BN and BZ Editing

You can use these two edit descriptors to specify the interpretation of blanks, other
than leading blanks, on input. If you specify BN, Fortran ignores all blanks, except
that it treats a field of all blanks as zero. If you specify BZ, Fortran treats all blanks
as zeros.

Unless you specify the BN or BZ descriptor, the BLANK specifier in the OPEN
statement determines the interpretation of blanks. Once BN or BZ has been speci
fied, the new specification remains in effect until changed again explicitly, or until
the end of the I/O statement.

Example

READ(2,50)INTNUM,FPNUM
50 FORMAT(BN,I5,5X,BZ,F7.4)

If the input values for this example are IbO and IbO.O, where b is a blank, then the
variables will contain 10 and 100.0, respectively.

DQn~r-Sign Editing ,

YoU-use the,~dbl1ar-sign ($) edit de§cript()rf,or intt(ractiveIlO'~brougIia'"qansoie
~e,rll1ip~l. Itle~ves .the terminal cursor .. at theposition,immeQiately following:th~ Qutput;
4~t~~}u§~prQcessed, rather than at the, beginning of a new line;)(theFORMi\J,
scanner,~~WqJ.rrltersadollar sign after processing the last output I/O;.Hstitel11"Jor!llat,
controlterminat~s W~UNl,ltpositiopjng. the file to the beginningorthe"next:re~or~.;
Any other imbedded dolhtr signs are ignored. The dollar-sign descriptor·is\guoredU
the fUe isn,otdefinedfor sequential output with. CARRIAGE ~ ~CONSOLI;' in,th'e
OPEN statement.' . . .

'~x~~p~e

'25
, e'R" iN,! 25 ,B ILL

fORMA"(A20, $)

9.4.2 List-Directed Formatting

List-directed formatting allows free-form formatted input and output. To specify list
directed formatting, place an asterisk (*) in the format-specifier position of the data
transfer statement's control list. No FORMAT statement is necessary.

Table 9-4. Floating-Point Editing for Output with the Scale-Factor
Edit Descriptor P

Real F6.2 E11.S 1PE10.4
Number

4.32 4.32 0.43200 E + 01 4.3200 E + 00

7255000.0 ****** 0.72550 E + 07 7.2550 E + 06

0.0065 0.01 0.65000 E - 02 6.5000 E - 03

Fortran-86

Fortran-86 Input and Output

A list-directed file is an external file whose records contain values and value separa
tors. Each value can be any of the following:

A constant

A null value

A constant or null value prefixed by a repeat specifier in the form that follows:

r*c

or

r*

where

r

c

is an unsigned, nonzero integer constant.

is a value.

The form r*c is equivalent to r occurences of the value c.
The form r* is equivalent to r successive null values.
Neither form can contain embedded blanks, except within
the value c.

A value separator can be any of the following:

• A comma, optionally preceded or followed by blanks

A slash, optionally preceded by blanks

• One or more blanks between two values or following the last value

9.4.2.1 List-Directed Input

Execution of a list-direct{~d READ statement begins a new record and formats each
input value according to the type of the corresponding input-list item and the width,
w, of the value as follows:

Type of Input Item

CHARACTER*n

LOGICAL*n

INTEGER*17

REAL*n

DOUBLE PRECISION

TEMPREAL

COl\1PLEX

COMPLEX*16

Equivalent Format
Descriptors

Aww<n
An, (w-n)X otherwise

Lw

Iw

Fw.O

Fw.O

Fw.O

'('Fw.O' ,'Fw.O')'

'('Fw.O','Fw.O')'

All values acceptable to these FORMAT specifications are acceptable for list-directed
formatting with a few exceptions:

Since blanks are treated as separators, imbedded blanks are allowed only within
character strings.

• An end-of-record specifier has the same effect as a blank except within a charac
ter string, which is continued on the next record.

9-23

Input and Output

9-24

An input LOGICAL value must contain neither commas nor slashes among the
optional characters following the T or F.

• An input character value consists of a string of characters enclosed by an
apostrophe at each end.

You represent an apostrophe within the character constant by two consecutive
apostrophes without intervening blanks or end-of-record. You can continue a charac
ter constant from the end of one record to the beginning of the next record. Although
in list-directed formatting an end-of-record normally has the effect of a blank, that
does not apply in this case. The characters blank, comma, and slash can appear within
character constants. Fortran transfers a character string left justified, and blank fills
or truncates them on the right if its width is not the same as the width of the input
list item.

You can specify null values in one of two ways.

By having no values between successive separators or preceding the first value
separator

By specifying the r* form

An end-of-record following a value, a comma, or another end-of-record, with or
without separating blanks, does not imply a null value.

A null value has no effect on the corresponding input-list item. The item retains its
previous value or remains undefined, depending on its status before the null value is
encountered.

If you use a slash as a value separator during execution of a list-directed input state
ment, execution of that input statement is terminated at that point. If there are
additional items in the input list, they are treated as null values.

9.4.2.2 List-Directed Output

Execution of a list-directed WRITE (or PRINT) statement begins a new record and
formats the value of each output-list item by type as follows:

Type of Output Item

CHARACTER*n
LOGICAL*n
INTEGER*n
REAL*n
DOUBLE PRECISION
TEMPREAL
COMPLEX
COMPLEX*16

Equivalent Format
Descriptors

A
L2
113
IP, E25.15E4
IP, E25.15E4
IP, E25.15E4

IP, (E25.15E4, E25.15E4)
IP, (E25.15E4, E25.15E4)

See Section 9.4.1 for a description of these format descriptors.

Fortran-86 separates the output values into records of not more than 80 characters,
with one exception: a character string of more than 80 characters results in a separate
record whose size is the same as the length of the character string.

Fortran-86

Fortran-86 Input and Output

The following is an example of list-directed output:

CHARACTER
LOGICAL

CH100*100,CHS*S
LOG 1

is equivalent to the following:

PRINT 100 CHS,CH100,LOG1,I,X
100 FORMATCA,/,A,/,L2, I 13,1P,E2S.1SE4)

9.5 Unformatted Data Transfer

Only external units are allowed in data-transfer statements involving unformatted
data. The default for the form specifier in the OPEN statement is UNFORMAT
TED for direct-access files. Fortran transfers data without editing between the current
record of the connected file and items on the I/O list. Exactly one record is read or
written.

The number of items in an input list must not exceed the number of values in the
record. The type of each value in the record must agree with the type of the corre
sponding input list item. The item and its value also must agree in length.

On output, if the file is connected for direct access and the values in the output list
do not fill the record, the remainder of the record is undefined.

9-25

• @ ~ CHAPTER 10 n ~ _________ , ___________ EX_A_M_P_L_E_S~

This chapter gives example programs that illustrate Fortran-86 features. Each program
resides on a Fortran-86 software package product disk.

10.1 I/O Examples

10.1.1 Program 1A (PROG1A.FTN)

The following example illustrates the use of direct access, unformatted I/O. The
program first writes the digits 1 through 10 into the file LIST on drive : F 1:. After
reading two distinct sections of that file, the program prints the digits 5 through 10
and 3 through 7 to the console.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-1 lists PROGIA.FTN.

PROGRAM PROG1A
OPEN (1,FILE=':F1:LIST',ACCESS='DIRECT',RECL=2)

DO 1201:1,10
WRITE (1,REC:I) I

120 CONTINUE

C

DO 140 K:5,10
READ (1,REC:K) I

C SEQUENTIAL, FORMATTED I/O TO THE CONSOLE.
C

WRITE (6,130) I
130 FORMAT (12)
140 CONTINUE

C

DO 160 J=3,1
READ (1,REC:J) I

C SEQUENTIAL, FORMATTED I/O TO THE CONSOLE.
C

WRITE (6,150) I
150 FORMAT (12)
160 CONTINUE

END

Figure 10-1. PROGIA. FTN-Direct Access, Unformatted I/O

10-1

Examples

C
C

10.1.2 Program 18 (PROG1B.FTN)

The following example illustrates the use of sequential access, formatted I/0 with
the console. The program asks for two inputs: your name and your social security
number, prompting you for the correct format.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-2 lists PR OG 1 B. FTN.

PROGRAM PROG1B

CHARACTER-20 NAME
INTEGER-4 SSNUM

5 WRITE(6,10)
10 FORMAT('What is your name?'1,5x, 'enter using A20 format ',$)

READ(5,20,ERR=70)NAME
20 FORMAT(A20)

WRITE(6,50)

Fortran-86

50 FORMAT('What is your social security number?'1,5x, 'enter as nnnnnnnnn
&$)

READ(5,60,ERR=70)SSNUM
60 FORMAT(I9)

GOTO 90

70 WRITE(6,80)
80 FORMAT('Incorrect input ••• please enter again'll)

GOTO 5
90 CONTINUE

WRITE(6,100)NAME,SSNUM
100 FORMAT('Name is: ',A20,1,'Social Security Nu:nber is: ',19)

END

Figure 10-2. PROGIB.FTN-Sequential Access, Formatted I/O

10-2

Fortran-86

10.1.3 Program 1C (PROG1C.FTN)

The following example illustrates the use of list-directed I/0 with the console. The
program initially asks for two inputs: the first of one character, the second of six.
Each input must be a quoted string. The program then prompts for you to re-enter
your original input using an appropriate delimiter (a comma, a space, or a return).
An input of X will terminate the program.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-3 lists PROG 1 C.FTN.

PROGRAM PROG 'IC
CHARACTER.1 JlNS1
CHARACTER*6 ANS2

Examples

10 WRITE(6,*) 'INPUT 11 CHARACTER - AN INPUT OF "X" WILL TERMINATE',
& 'THE PROGRAM'

READ(5,*) ANS1

IF (ANS1.EQ. 'X t) GO TO 20

WRITE(6,*) 'THE CHARACTER YOU CHOSE IS: ' ANS1

WRITE(6,*) 'INPUT 6 CHARACTERS'
READ(5,.) ANS2
WRITE(6,*) 'THE NEW CHARACTERS ARE: ANS2

WRITE(6,·) 'NOW INPUT BOTH CHARACTERS. REMEMBER TO USE A DELIMITER',
& 'BETWEEN EACH CHARACTER (IE., COMMA, SPACE, or RETURN)'

READ(5,·) ANS1,ANS2
WRITE (6,.) ''YOUR TWO INPUTS ARE " ANS 1 , " t, ANS2

GO TO 10

20 STOP
END

Figure 10-3. PROGIC.FTN-List Directed I/O

10-3

Examples

10.2 TEMPREAL Example

10.2.1 Program 2 (PROG2.FTN)

The following example illustrates the use of the TEMPREAL data type. This data
type is recommended for use as an intermediate result of double precision arithmetic.
The program asks for two real inputs prompting you for the correct format. These
inputs are used to fill an array with double precision values. Two summations are
calculated from this input: one double precision and one TEMPREAL. The inter
mediate results are compared and their difference is printed to the console.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-4 lists PROG2.FTN.

PROGRAM PROG2
DOUBLE PRECISION RARRAY,RTOTAL,RESULT,DPRES
TEMPREAL TMPRES
COMMON RTOTAL, RARRAY(500)

CALL GETDAT
DPRES = 0.0
TMPRES = 0.0

DO 10, I = 1,500
DPRES = DPRES + RARRAY(I)/RTOTAL
TMPRES = TMPRES + RARRAY(I)/RTOTAL

10 CONTINUE

100

200

RESULT = TMPRES

PRINT 100, RESULT, DPRES
FORMAT ('RESULT = " E26.20E2, ' D-P RESULT =

RESULT = DPRES - RESULT

PRINT 200, RESULT
FORMAT ('DIFFERENCE =

END

SUBROUTINE GETDAT

E13.5E4)

DOUBLE PRECISION RARRAY,RTOTAL,RVALUE,FACTOR
TEMPREAL TMPTOr
COMMON RTOTAL, RARRAY(500)

TMPTOT = 0.0

PRINT 100

E26.20E2)

Fortran-86

100 FORMAT('ENTER STARTING VALUE BETWEEN 0.00 AND 4.00 IN F4.2 FORMAT')
READ 200, RVALUE

200 FORMAT(F4.2)
PRINT 300

300 FORMAT('ENTER MULTIPLICATIVE FACTOR BETWEEN 0.00 AND 4.00 IN F4.2 FORMaT'
READ 200, FACTOR

Figure 10-4. PROG2. FTN-TEMPREAL

10-4

Fortran-86

DO 10, I = 1 I 500
RARRAY(I) = RVALUE
TMPTOT = TMPTOT + RVALUE
RVALUE = RVALUE • FACTOR

10 CONTINUE

RTOTAL = TMPTOT

END

F'igure 10··4. PROG2. FTN--TEMPREAL (Cont'd.)

Examples

10-5

Examples

10-6

10.3 $INTERRUPT Example

10.3. 1 Program 3 (PROG3.FTN)

The following example illustrates the use of the $INTERRUPT control and the
SETINT intrinsic. This program initializes an 8253 interval timer on an
iSBC-86/ 12A board to interrupt the host processor every ten milliseconds.

You must link this program with the run-time libraries listed in the system specific
appendix. Figure 10-5 lists PROG3.FTN.

C

PROGRAM PROG3

INTEGER-1 CONTPT,CONTWD,CNTLOW,CNTHI,CNTREG
EXTERNAL TIMER

CALL SITINT (6,TIMER)

CONTPT = IOD6H
CONTWD = 1030H
CALL OUTPUT (~ONTPT,CONTWD)

CNTREG = 10DOH
CNTLOW = lOCH
CNTHI = 1030H

C LOAD THE LOW ORDER COUNTER BYTE.
C

CALL OUTPUT (CNTREG,CNTLOW)
C
C LOAD THE HIGH ORDER COUNTER BYTE.
C

CALL OUTPUT (CNTREG,CNTHI)
C
C ALWAYS TRUE TEST TO CONTINUE INTERRUPTS FOREVER.
C

5 IF (1.NE.1) GO TO 10
GO TO 5

10 END

$INTERRUPT

SUBROUTINE TIMER
INTEGER-' CNTREG,CNTLOW,CNTHI

CNTREG = 10DOH
CNTLOW = lOCH
CNTHI = 1030H

CALL OUTPUT (CNTREG,CNTLOW)
CALL OUTPUT (CNTREG,CNTHI)

RETURN
END

Figure 10-5. PROG3. FTN-$INTERRUPT Control

Fortran-86

Fortran-86 Examples

10.4 $REENTRANT Example

10.4. 1 Progrclm 4 (PROG4.FTN)

The following example illustrates the use of the $REENTRANT control to write a
recursive procedure. This program solves the Towers of Hanoi problem. A description
of the problem is as follows:

There are three pegs labelled A, B, and C. Peg A holds a stack of discs
(number provided by operator). Pegs Band C have none. Each disc is of a
different size. The discs are ordered on Peg A by size, starting with the largest
on the bottom. The discs can be moved one at a time to any other peg as
long as no disc is placed on top of another disc that is smaller in size. The
object is to transfer the discs from Peg A to Peg C.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-6 lists PROG4.FTN.

PROGRAM PROG4

WRITE(6,100)
100 FORMAT('How many disks are to be moved from peg A to pe~ B: ',$)

READ(5,200)NUM
200 FORMAT(I5)

CALL HANOI('A','B','C',NUM)

END

$REENTRANT

SUEROUTINE HANOI(FROM,TO,BUFF,NUM)
CHARACTER-' FROM,TO,BUFF

IF(NUM .EQ., 0) RETURN

CALL HANOI(FROM,BUFF,TO,NUM-1)

WRITE(6,100)FROM,TO
100 FORMAT('Move a disk from peg ',A,' to peg ',A)

CALL HANOI(BUFF,TO,FROM,NUM-1)

END

Figure 10··6. PROG4. FTN-$REENTRANT Control

10-7

Examples

10-8

10.5 Function Subprogram Example

10.5.1 Program 5 (PROG5.FTN)

The following example illustrates the use of a function subprogram by calculating
the area of a rectangle. The program asks you for two inputs: the height and the
width. Using these measurements, the program calculates the area and outputs the
result to the console.

To execute this program, link it with the run-time libraries listed in the system specific
appendix. Figure 10-7 lists PROG5.FTN.

C

PROGRAM GEO
REAL-4 HEIGHT,WIDTH,ANSW,AREA
CHARACTER-' MORE
EXTERNAL AREA

C INPUT THE DATA
C

5 WRITE(6,10)

C

READ(5,20)HEIGHT
WRITE(6,30)
READ(5,20)WIDTH

C INVOKE THE AREA FUNCTION
C

ANSW:AREA(HEIGHT,WIDTH)
C
C OUTPUT THE AREA AND CONTINUE
C

C

WRITE(6,40)ANSW
WRITE(6,50}
READ(5,60) MORE

IF(MORE.EQ. 'Y'.OR.MORE.EQ.'y') GOTO 5

C FORMAT STATEMENTS
C

10 FORMAT(II'Enter the height of the rectangle ',$)
20 FORMAT(F10.5)
30 FORMAT('Enter the width of the rectangle ',$)
40 FORMAT('The area of the rectangle is ',F10.5)
50 FORMAT('Continue with another input? (Y ~r N) ',$}
60 FORMAT(A1)

END

REAL FUNCTION AREA(X,Y}
REAL-4 X,Y

AREA:X-Y

RETURN
END

Figure 10-7. PROG5. FTN-Function Subprogram

Fortran-86

CHAPTER 11
COMPILER CONTROLS

Compiler controls manipulate Fortran-86 compiler features, such as whether a listing
will be produced or whether an object file will be generated during compilation. All
controls have default values preset to their most common usage, so few controls need
to be specified for a typical compilation.

By default, the Fortran-86 compiler produces two files: source.OBJ for the object
module with type records, and source.LST for the source listing including error
messages, where source is the filename (without extension) of the Fortran-86 program
text file.

11. 1 Invoking the Compiler

The system specific appendix provides instructions and examples of compiler
invocation.

11.2 Kinds of Compiler Controls

Compiler controls fall into two main categories:

• Primary controls precede the first line of a program or module, or are part of
the command line that calls the Fortran-86 compiler. Some primary controls can
be specified only once. Certain controls are considered initial primary controls.
They are PRINT /NOPRINT and OBJECT /NOOBJECT. They can be speci
fied only at the beginning of compilation (command line or before the first
module), but cannot be changed between modules. All other primary controls
can appear between modules.

• General controls are interspersed anywhere throughout your program source code.
Additionally, you can specify most general controls in the Series-III RUN
command line that calls the Fortran-86 compiler. Any controls embedded in the
source program must appear on a line beginning with a dollar sign ($). Use blanks
to separate more than one control placed on a single line.

Table 11-1 lists the primary and general controls.

You can specify negation of most controls with the prefix NO. Table 11-2 shows the
compiler controls and their standard abbreviations. In this table, a plus sign (+)
after a control name signifies that you cannot negate the control.

11.3 Using Compiler Controls

Controls to the compiler govern the format, processing, and content of both the input
source file(s) and the output file(s). Certain controls override other controls even if
they are explicitly specified. This section describes the use of controls and suggests
which controls should be used during specific stages of program development.

11-1

Compiler Controls

11-2

Table 11-1. Types of Controls

Category Primary General
Controls Controls

Listing Content PRINT LIST
SYMBOLS CODE
XREF

Listing Format TITLE SUBTITLE
PAGEWIDTH EJECT
PAGE LENGTH

Input Format INCLUDE
FREEFORM

Object File OBJECT
0066/0077
STORAGE
+INTERFACE
ERRORLIMIT
DEBUG
TYPE OVERLAP
INTERRUPT
REENTRANT

Control Status IGNORE

Table 11-2. Controls and Their Abbreviations

Control Abbreviation

CODE CO
DEBUG DB

+0066/0077 none
+EJECT EJ

ERRORLIMIT EL
FREEFORM FF

+IGNORE IN
+INCLUDE IC
+INTERRUPT IT

LIST LI
OBJECT OJ

+ PAGELENGTH PL
+PAGEWIDTH PW

PRINT PR
+REENTRANT RE
+STORAGE SR
+SUBTITLE ST

SYMBOLS SB
+TITLE TT

XREF XR
+INTERFACE ITF

I

11.3. 1 Listing Device or File Selection

The PRINT control governs the selection of the file and device to receive printed
output. To generate a listing that includes error messages and the source listing, use
the PRINT control to specify the listing file, or allow the default PRINT control to
send the listing to source. LST.

The NOPRINT control overrides all of the listing format controls described in 11.3.2
because it governs all printed output.

Fortran-86

Fortran-86 Compiler Controls

11.3.2 Controlling Listed Format and Content

If PRINT is active, the following controls govern the format and content of printed
output:

CODE/NOCODE
EJECT
LIST /NOLIST
SUBTITLE(' subtitle')
SYMBOLS/NOSYMBOlLS
TITLE('title')
XREF /NOXREF

The default values specify listing of the source program without the assembly code
listing (NOCODE), and without the symbol-table listing (NOSYMBOLS).

These default values assume the general case. If you need the assembly code listing
of portions of the source file, use the CODE control. If you need to supress certain
portions of the source listing, use NOLIST. Note that the NOLIST control does not
override the CODE control.

The SYMBOLS control directs the compiler to produce a symbol-table listing as
described in Sectilon 1l.4.18. NOSYMBOLS (the default) suppresses this action and
NOPRINT overrides SYMBOLS.

Although paging is automatic, you can force a page eject on any line using the EJECT
control. An EJECT in a control line is ignored if the control line occurs in an area
governed by the NOLIST control. TITLE and SUBTITLE controls specify titles and
subtitles in the listing. If NOLIST is in effect, the subtitle is saved until listing resumes
with the LIST control. The compiler ignores all of these controls if NOPRINT is
active.

11.3.3 Source Selection and Processing

The INCLUDE control governs the selection and processing of source files. There is
only one primary source file but you can include other source files in the compilation
by specifying them in INCLUDE controls.

The INCLUDE control must be the rightmost (last) control on a source control line.
If controls are to the right of the INCLUDE control on a control line, the compiler
issues a non-fatal error message and ignores the control.

11.3.4 Object Selection and Content

The following controls govern selection of the file to hold the object module, and the
content of the object module, and the code generated.

DEBUG/NODEBUG
INTERRUPT(proc[= n[, ...])
o BJECT(file) /N 00 BJECT

D066/D077
STORAGE
INTERFACE

REENTRANT

The OBJECT control selects a file to receive the object module. The default file
name has the same root name as the source file, with the extension OBJ. For example,
if PROG l.SRC is the source file, PROG l.OBJ becomes the object file. NOOBJECT
prevents the generation of an object module.

11-3

Compiler Controls

11-4

The INTERRUPT control enables you to compile specific procedures as interrupt
procedures. Interrupt handling is discussed in Appendix I.

The DEBUG control generates debug records in the object module that are used by
symbolic debuggers such as the ICE-86 emulator. The default value NODEBUG
suppresses the generation of debug records. NOOBJECT overrides DEBUG.

D066 and D077 are primary controls that specify that all DO-loops in a program
unit will conform to the ANSI 1966 or 1977 standard, respectively.

INTERFACE is a primary control that enhances the compatability of Fortran-86
with other programming languages. The INTERFACE control allows Fortran-86
programs to call procedures written in other languages. INTERFACE allows proce
dures written in other languages to call procedures written in Fortran-86. The calling
conventions for procedures written in Pascal, Fortran, and PL/M are identical; there
fore, the only language that needs a special designation for its calling convention
is C.

The REENTRANT control specifies that reentrant code can be produced for a speci
fied FUNCTION or SUBROUTINE.

The STORAGE control is a primary control that specifies default lengths, in bytes,
as they apply to INTEGER and/or LOGICAL data items.

11.3.5 Use of Controls in Stages of Development

When you are compiling a program for the first time, use the default control settings
with the following exception:

• Use XREF to generate a symbol and cross reference listing to aid your initial
debugging effort.

As you develop and debug your program modules, you may use DEBUG to generate
d~bug records for symbolic debugging. Selected source statements can be maintained
in a separate file and included with the source file by using the INCLUDE control.

For quick compiling, you can maximize compilation speed by using default settings
for all controls, with the following exception:

• Use NOPRINT to suppress printed output.

When preparing programs to test with the ICE-86 or ICE-88 emulators, use the
CODE control to list the pseudo-assembly instructions and addresses.

Use the NOLIST control to save listing space by not listing portions of the source
code that are already debugged. To make your listing more readable, use EJECT,
TITLE, and SUBTITLE. You can direct the final listing to a specific output file
using the PRINT control.

11.4 Control Definitions

The following sections present a description of each of the Fortran-86 compiler
controls.

Fortran-86

Fortran-86 Compiler Controls

11.4. 1 CODE/NOCODE
The CODE/NOCODE controls permit or prevent the listing of object code in pseudo
assembly language.

Syntax

CODE
NOCODE

Abbreviation

CO/NOCO

Default

NOCODE

Type

General

Description

The CODE control directs the compiler to produce a listing of the generated object
code in pseudo-assembly language (a form that resembles the 8086 assembly
language). This listing occurs only for portions of the source program where the CODE
control is active; listing stops when a NOCODE is encountered. The pseudoassembly
listing is appended to the source listing in the listing file created by the PRINT control
(see Section 11.4.16, PRINT /NOPRINT).

The NOCODE control prevents the generation of this listing. If you specify neither
control, the default is NOCODE.

The CODE control cannot create printed output if the NOPRINT control is in effect.

For an example of a listing in pseudo-assembly language, see Chapter 13.

11-5

Compiler Controls Fortran-86

11-6

11.4.2 DEBUG/NODEBUG
The DEBUG/NODEBUG controls generate debug records in the object module.

Syntax

DEBUG
tiODEBUG

Abbreviation

DB/NODB

Default

NODEBUG

Type

Primary

Description

If an object file has been requested, the DEBUG control specifies that the object
module will contain debug records. These records contain the name, data type, and
relative address of each symbol in the program, and the statement number and relative
address of each source program statement. This information can later be used for
symbolic debugging of the source program using the ICE-86 emulator, DEBUG 86,
or PSCOPE.

The default setting, NODEBUG, prevents generation of these records.

The compiler ignores the DEBUG control if the NOOBJECT control is in effect,
since the compiler will not generate an object module.

NOTE

Array subscript references for the debugger must be written in reverse order.
For example, in order to display the array element A(3,5) in the Fortran-86
program, you must use A(5,3) when communicating with the debugger. This
is due to the reverse ordering of arrays in Fortran compared to other high
level languages. Intel debuggers are designed to support all high-level
languages.

Fortran-86 Compiler Controls

11.4.3 0066/0077
The D066/DOT! controls specify that all DO-loops in a program must conform to
the ANSI 1966 or 1977 standard, respectively.

Syntax

0066
0077

Abbreviation

none

Default

D077

Type

Primary

Description

D066 specifies that all DO-loops perform at least one iteration during execution,
conforming to the ANSI 1966 standard.

D077 permits zero iterations of DO-loops, which conforms to the ANSI 1977
standard.

11-7

Compiler Controls

11-8

11.4.4 EJECT
The EJECT control forces the start of a new page of printed output.

Syntax

E J E C T [(number)]

Abbreviation

EJ

Default

paging as implied by the PAGELENGTH control

Type

General

Description

The EJECT control terminates the printing of the current page and starts a new
page. The control line containing the EJECT control is the first line printed (follow
ing the page heading) on the new page.

If you do not use the EJECT control, a page eject will occur automatically as speci
fied by the PAGELENGTH control.

The compiler ignores the EJECT control if the NO LIST or NOPRINT controls are
in effect, since the compiler will not produce any printed output.

The EJECT control does not apply to the CODE listing.

Fortran-86

Fortran-86 Compiler Controls

11.4.5 ERRORLIMIT INOERRORLIMIT
The ERRORLIfVlIT /NOERRORLIMIT controls terminate compilation prema
turely after detecting a specified number of errors.

Syntax

ERR a R LIM I T (number)
N a ERR a R LIM I T

Abbreviation

EL/NOEL

Default

NOERRORLIM1[T

Type

Primary

Description

The ERRORLIMIT control enables the user to specify the number of compiler
detected errors which will cause the compiler to cease compilation before a normal
termination. The result of early termination can be incomplete PRINT listings, and
all other compiler output will be deleted as if NOOBJECT were in effect.

The NOERRORLIMIT control allows compilation to continue until the end of the
program regardless of the number of errors the compiler encounters.

11-9

Compiler Controls

11-10

11.4.6 FREEFORM/NOFREEFORM
The FREEFORM/NOFREEFORM controls permit or prevent entry of Fortran
statements in a non-standard input format. (See Section 3.3.1, Line Format for a
description of the Fortran-86 standard line format.)

Syntax

FREEFORM
HOFREEFORM

Abbreviation

FF/NOFF

Default

NOFREEFORM

Type

General

Description

Program statements after the FREEFORM control may begin in position 2 instead
of position 7. Statement labels, continuation indicators (only the ampersand (&»,
and comment indicators (both the asterisk (*) and the letter C) must begin in position
1. If a statement begins with any character except C, it may also start in column 1.

NOFREEFORM causes the compiler to issue error messages for all lines not
conforming to the standard Fortran input format. Specifically, comment indicators
(asterisk (*) and the letter C) belong in position 1, statement labels in positions 1-5,
continuation line indicators in position 6, and statements in positions 7-132.

Fortran-86

Fortran-86 Compiler Controls

11.4. 7 IGNORE
The IGNORE control allows specified general controls to be ignored by the compiler.

Syntax

I G NOR E (control [) ...])

Abbreviation

IN

Default

None

Type

Primary

Description

The IGNORE control enables the user to specify certain general controls that will
be ignored during the current compilation. If not specified otherwise prior to the
appearance of the IGNORE control, the default settings for the specified controls
will apply.

11-11

Compiler Controls

11-12

11.4.8 INCLUDE
The INCLUDE control adds other source files as input to the compiler.

Syntax

I Ii C L U D E (file)

Abbreviation

IC

Default

no included files

Type

General

Description

When the compiler encounters the INCLUDE control in the source file, it reads from
the other source file, file, until it reaches the end of that file. Then the compiler
resumes reading the source lines that follow the INCLUDE control line in the origi
nal source file.

The INCLUDE control must be the rightmost control in the control line or the only
control in that line.

The included file itself may contain INCLUDE controls, but the nesting of included
files cannot exceed five (six included files).

The compiler always forces an end-of-line before reading from an included file.

END statements within INCLUDE files are ignored.

Your file must be a valid filename or an error will occur.

Fortran-86

Fortran-86 Compiler Controls

11.4.9 INTERIFACE
The INTERFACE control allows Fortran-86 programs to call procedures written in
other languages. In addition, INTERFACE allows procedures written in other
languages to call procedures written in Fortran-86. The calling conventions for proce
dures written in Pascal, Fortran, and PL/M are identical; therefore, the only language
that needs a special designation for its calling convention is C.

Syntax

I t-I T E R F ACE (lang

where

lang

name

Abbreviation

ITF

Default

none

Type

Primary

Description

name [name) ...])

is the name of the language that requires a different calling
convention for procedures; in this case, the language is C.
Specifying INTERFACE for a language other than C has no
effect; the standard calling convention for Fortran will be
used.

represents the module(s) that will be called or referenced from
the Fortran program. If name is the name of a Fortran
subroutine or function, the compiler generates code that can
be called according to the calling convention of the specified
language. Any calls made to a subroutine or function with
the specified name will use the calling conventions of the
specified language unless the name is a dummy parameter to
a subroutine or function.

Note that if other Fortran modules that are compiled separately reference the proce
dure, the name must be in an INTERFACE control that precedes the referring
module. This control affc~cts only the calling conventions for the names specified.
INTERFACE does not affect the naming convention of procedures. (Many C
compilers append an underline (_) to the name declared in the C program.)

11-13

Compiler Controls

11-14

11.4.10 INTERRUPT
The INTERRUPT control designates procedures as interrupt procedures.

Syntax

INTERRUPT [n]

Abbreviation

IT

Default

None

Type

General

Description

The INTERRUPT control allows you to specify procedures to be compiled as 8086
interrupt procedures.

Whatever procedure immediately follows the INTERRUPT control will be compiled
with special prologue and epilogue code sequences so that it may be used to process
interrupts during execution. In order for this to happen, however, you must associate
each of your INTERRUPT procedures with the number of the interrupt it is designed
to handle. This is done dynamically at run-time using the SETINT builtin procedure
(see Section 6.1.2.4).

If n is specified, it represents the number of the interrupt associated with the specified
procedure. The interrupt number must be a value between 0 and 255. You may also
associate an interrupt procedure with an interrupt at run-time by using the SETINT
built-in procedure (see Section 6.1.2.4).

Fortran-86

Fortran-86 Compiler Controls

11.4.11 LIST/NOLIST
The LIST /NOLIST controls permit or prevent the listing of source lines.

Syntax

LIS T
I'lOLIST

Abbreviation

LI/NOLI

Default

LIST

Type

General

Description

The LIST control directs the compiler to begin or resume listing of the program with
the next source line.

The NOLIST control directs the compiler to stop listing the program until the next
occurrence, if any, of a LIST control.

When you specify neither control, or when LIST is in effect, the compiler lists all
lines from the source file (or from a file read in with the INCLUDE control), includ
ing control lines. When NOLIST is in effect, the compiler lists only source lines
associated with error messages.

The LIST control is ignored if the NOPRINT control is in effect.

The NOLIST control dO(~s affect the CODE control, which directs the compiler to
produce a separate listing of the generated object code.

11-15

Compiler Controls Fortran-86

11-16

11.4. 12 OBJECT / NOOBJECT
The OBJECT /NOOBJECT controls specify that an object module is to be created
and the file name for that object module or prevent the creation of an object module.

Syntax

o B J E C T [(filename)]
HOOBJECT

Abbreviation

OJ/NOOJ

Default

OBJECT (source.OBJ)

Type

Primary

Description

The OBJECT control directs the compiler to produce an object module. You can
optionally specify a file for this object module by providing a legal filename (with
optional device specifier) for file ..

If you do not specify a file, or if you do not use the OBJECT control, the compiler
will still produce the object module and direct it to the same disk or device as the
source file, using filename source.OBJ (where source is the root name of the program
text file).

The NOOBJECT control prevents the creation of an object module.

For details on the contents of the object modules, see Chapter 13, "Compiler Output."

Fortran-86 Compiler Controls

11.4.'13 OVERLAP/NOC)VERLAP
The OVERLAP control enables porting of large programs to Fortran-86 without
changes to the program logic.

Syntax

OVERLAP
NOOVERLAP

Abbreviation

OL/NOOL

Default

NOOVERLAP

Type

Module

Description

The OVERLAP control allows compilation of subprograms where a dummy variable
or array element may be contained in more than one segment. OVERLAP allows the
program to invoke special out-of-line run-time procedures for every reference to a
dummy argument longer than one byte (except % VAL arguments).

Use this control only when the compiler requests it (compiler message F207), during
a compilation of a program that refers to the subprogram.

The control is necessary when one or more of the actual arguments passed to the
procedure has been allocated noncontiguous memory and requires special handling.
The OVERLAP control is most likely to be needed with very large COMMON blocks,
but also result from mixed-type EQUIVALENCE statements or odd-length
CHARACTER arrays exceeding 64K bytes in size. See the description of the compiler
message (F206) in Chapter 15 for alternative actions.

With the NOOVERLAP control, all dummy arguments are accessed directly from
in-line instructions.

11-17

Compiler Controls

11-18

11.4.14 PAGELENGTH
The PAGELENGTH control specifics the maximum number of lines to appear on
each page of the PRINT file.

Syntax

PAGELENGTHCn)

Abbreviation

PL

Default

PAGELENGTH(60)

Type

Primary

Description

The PAGELENGTH control enables the user to specify the maximum number of
lines to appear on each page of the program listing. The minimum length is 5, which
includes the four lines of each page heading. The maximum acceptable value for
PAGELENGTH is 255 lines per page.

Fortran-86

Fortran-86 Compiler Controls

11.4.15 PAGEWIDTH
The PAGEWIDTH control specifies the maximum number of characters to appear
on one line of the PRINT file.

Syntax

PAGEWIDTHCn)

Abbreviation

PW

Default

PAGEWIDTH(120)

Type

Primary

Description

The PAGEWIDTH control enables the user to specify the maximum number of
characters to appear on one line of the program listing. The minimum width is 60.
The maximum acceptable value for PAGE'¥IDTH is 132.

11-19

Compiler Controls

11-20

11.4.16 PRINT INOPRINT
The PRINT /NOPRINT controls permit or prevent printed output, or select the device
or file to receive printed output.

Syntax

P R I ti T [(filename)]
tiOPRltiT

Abbreviation

PR/NOPR

Default

PRINT(source. LST)

Type

Primary

Description

The PRINT control directs the compiler to produce printer output (listings), and the
NOPRINT control stops the compiler from producing printed output. If you specify
neither control, the compiler will produce listings and put them in a file that has the
same name as the source input file, only with an LST extension. This new LST file
will be created on the same device used for the source file. For example, if your
source file is named progrm and it is on drive 1 (:FI : progrm) , and you use neither
control, or use only the simple PRINT control (the default), the compiler will create
the listing as :Fl :progrm.LST.

If you specify a PRINT control with a file in parentheses, the compiler will put the
listings in the file or device named by file, which must be a legal filename for a file
or device.

If you specify the NOPRINT control, the compiler will not produce listings-even if
you specify other controls, such as LIST or CODE. If the NOPRINT control is in
effect, the compiler will not produce any printed output. In addition, if you specify
NOPRINT, error messages will not appear on the console.

Fortran-86

Fortran-86 Compiler Controls

11.4. 17 REENTRANT
The REENTRANT control indicates that a particular SUBROUTINE or
FUNCTION can call itself.

Syntax

REENTRANT

Abbreviation

RE

Default

none

Type

General

Description

The REENTRANT control indicates that reentrant code be produced for the speci
fied FUNCTION or SUBROUTINE. That is, all local variables contained in these
subprograms win be dynamically allocated on the run-time stack and removed at
each RETURN statement.

11-21

Compiler Controls

11-22

11.4. 18 STORAGE
The STORAGE control specifies default lengths, in bytes, applied to INTEGER and/
or LOG I CAL data items.

Syntax

5 TOR AGE (I N T E G E R * intlen [J LOG I CAL * loglen])

or

5 TOR AGE (LOG I CAL * loglen [J I N T E G E R * intlen])

Abbreviation

SR

Default

STORAGE(INTEGER *2,LOGICAL * 1)

Type

Primary

Description

The STORAGE control permits the user to specify the default lengths, in bytes,
applicable to INTEGER and/or LOGICAL data items that are not explicitly implied
by Fortran-86 type-statements or constant specifications.

Each length specification (intlen or loglen, above) may be 1, 2, or 4. INTEGER * intlen
may be abbreviated as lintlen, and LOGICAL *Ioglen may be abbreviated as Lloglen.

NOTE
The ANSI 1977 allocation requirements for "numeric storage units" imply
STORAGE(INTEGER *4,LOGICAL *4).

Fortran-86

Fortran-86 Compiler Controls

11.4. 19 SUBTITLE
The SUBTITLE control prints a subtitle on each page of printed output.

Syntax

5 U BTl T L E (I text I)

Abbreviation

ST

Default

SU BTITLE(, ')

Type

General

Description

The SUBTITLE control prints a subtitle on every page of printed output. To specify
a subtitle, supply a sequence of printable ASCII characters (a string) for text, enclosed
within apostrophes.

The compiler places the subtitle text on the subtitle line of each page of listed output,
and truncates this subtitle on the right if necessary. You can specify a maximum
length of 60 characters, but a narrow pagewidth may restrict this number further.

When a SUBTITLE control appears before the first noncontrol line in the source
file, it puts the text on the first page and on all subsequent pages until the compiler
encounters another SUBTITLE control. A subsequent SUBTITLE control causes a
page eject, and the new text is put on the next page and on all following pages until
another SUBTITLE control appears in the source program.

If the NaLlSI' control is in effect, the compiler saves this text and this text appears
again as a subtitle when the listing resumes.

The SUBTITLE control does not apply to the CODE listing.

11-23

Compiler Controls

11-24

11.4.20 SYMBOLS/NOSYMBOLS
The SYMBOLS control provides a symbol-table listing of source program identifiers.

Syntax

SYMBOLS
I'IOSYMBOLS

Abbreviation

SB/NOSB

Default

NOSYMBOLS

Type

Primary

Description

The SYMBOLS control directs the compiler to produce a symbol-table listing of all
identifiers and labels in the source program. The compiler prints an entry for each
Fortran-86 constant, type, variable, argument, procedure, function, or label that occurs
in the source program, in alphabetical order. The compiler appends this listing to the
file that the PRINT control creates.

The NOSYMBOLS control prevents this symbol-table listing. The default setting is
NOSYMBOLS.

Fortran-86

Fortran-86 Compiler Controls

11.4.21 'TITLE
The TITLE control prints a title on each page of printed output.

Syntax

TIT L E (I text I)

Abbreviation

TT

Default

module name

Type

Primary

Description

The TITLE control prints a title on every page of printed output. To specify a title,
supply a sequence of printable ASCII characters (a string) for text, enclosed within
apostrophes.

The compiler places the title text on the title line of each page of listed output, and
truncates the title on the right, if necessary. You can specify a maximum length of
60 characters, but a narrow pagewidth may restrict this number further.

11-25

Compiler Controls

11-26

11.4.22 TYPE/NOTYPE
The control directs the compiler to include type records in the object modules. This
allows link-time parameter type checking.

Syntax

TYPE
tiOTYPE

Abbreviation

TY/NOTY

Default

TYPE

Type

Primary

Description

This TYPE records included in the object modules describe attributes of symbols
used in the source program, and are used later for type checking by the linker. Type
records provide a mechanism of promoting type compatibility between subprograms.

The TYPE control also enables internal type checking among multiple external
procedure references.

The NOTYPE control prevents the inclusion of type records in the object module,
and suppresses internal type checking.

NOTE
The type checking mechanism produces warning messages that are intended
for convenience in debugging new programs. These messages may be ignored
if you have observed the ANSI programming rules.

In particular, a valid array argument can produce a type-checking warning
if the corresponding actual argument is an array element, or an array with a
different dimension specification.

Fortran-86

Fortran-86 Compiler Controls

11.4.23 XREF INOXREF'
The XREF /NOXREF controls permit or prevent a symbol and cross reference listing
of source program identifiers. The XREF control is equivalent to the SYMBOLS
control.

Syntax

X REF
NOXREF

Abbreviation

XR/NOXR

Default

NOXREF

Type

Primary

Description

The XREF control directs the complier to produce an alphabetical listing of all the
symbols defined in the program and their attributes cross-referenced with numbers
of all the source statements that reference th<~m. The compiler appends this listing to
the file that the PRINT control creates. (See PRINT /NOPRINT, Section 11.4.16).
XREF is ignored when NOPRINT is used.

The NOXREF control prevents this symbol-table listing. The default setting IS

NOXREF.

11-27

• @ ~ CHAPTER 12 n ~ __________ , ___ C_O_M_P_IL_E_R __ O_P_E_RA_T_I_O_N~

You create a Fortran-86 program by typing instructions into a file using a text editor
and submitting the file to the Fortran-86 compiler. The compiler accepts the source
code for processing. A single object file results from this compilation. After the linker
and locater process the object file, the code is considered executable object code,
implying that your Fortran-86 program can be run.

Chapter 1 of this manual describes the software development process and the system
specific appendix explains compiler invocation.

12. 1 Input Files

You supply the name of the Fortran-86 source program in the invocation line. You
can also include other source files by using the INCLUDE control, as described in
Section 11.4.8. These files must be standard operating system files containing the
text of Fortran-86 statemtmts.

The Fortran-86 compiler expects a source file consisting of a sequence of program
units, i.e., BLOCK DATA subprograms, FUNCTION subprograms, SUBROU
TINE subprograms, and/or a main program. The compiler processes each program
unit independently. Comment lines and compiler control lines may appear anywhere
in program units, but the compiler assumes that any comments found after an END
statement belong to the nt~xt program unit.

Ordinarily, program text lines must be in the standard ANSI Fortran 77 format:

Positions 1 through 5 contain the statement number.

• Position 6 indicates statement continuation.

Positions 7 through 132 consist of the actual Fortran statement.

The FREEFORM control (see Section 11.4.6). permits you to write source code in a
more convenient format for terminal entry following these guidelines:

If the statement has a label, position 1 must contain the label number.

If the line is a continuation line, position 1 must contain an ampersand (&).

If the line is a control line, position 1 must contain a dollar sign ($).

Actual statements can begin in position 2, or in position 1 if the first character
is not C.

Comment lines are the same in both formats; the first character must be either a C
or an asterisk (*).

Once you have entered your source code into a text file, you can invoke the compiler,
as described earlier, to process your program.

12.2 Output Files

Unless you use specific controls to suppress them, the compiler produces two output
files: the object file and the listing file.

12-1

Compiler Ol)eration

12-2

The listing file, or PRINT file, contains a listing of the source program and any other
printed output generated by the compiler as specified by the listing selection controls
described in Chapter 11. The object file contains the actual code in object module
format. The system can execute the object file after you use the linking and locating
facilities described in Chapter 14. The compiler output files are described in greater
detail in Chapter 13.

The listing file and the object file, unless changed by the PRINT or OBJECT controls
(see Sections 11.4.14 and 11.4.11), have the same basic name as the source file, with
different extensions. The listing file has the extension LST and the object file has the
extension OBJ. The compiler creates both files if they do not exist, or overwrites them
if they do. By default, the compiler places these files on the same drive as the source
file.

The system specific appendix provides examples.

12.3 Work Files

The compiler creates and uses work files during its operation and deletes them upon
the completion of compilation. These files are designated :WORK:, so they do not
conflict with your files. See Chapter 13, "Compiler Output," for more specific infor
mation about Fortran-86 work files.

12.4 Compiler Messages

When you invoke the compiler, it displays the following sign-on message:

system FOR T RAN - 8 6 COM P I L E R I V X. Y

where system is the operating system, x is the compiler version number, and y is the
change number within the version.

When a compilation is finished, the compiler terminates with the following message:

m TOTAL ERRORS DETECTED
n TOTAL WARNINGS DETECTED

END OF FORTRAN-a6 COMPILATION

Chapter 15 lists all of the compiler errors.

Fortran-86

CHAPTER 13
COMPILER OUTPUT

During compilation, the compiler produces a listing of the source program and an
object module. Compiler controls can affect both the listing and object files. These
controls are described in detail in Chapter 11. This chapter discusses the contents of
these files.

13. 1 Program Listing

Unless you specified the NOPRINT control (see Section 11.4.14), the program listing
file is either the file you defined with a PRINT control or the default listing file.

The listing file contains, minimally, a "sign-on" preface, any syntactic error messages,
a compilation summary, and a sign-off message. You modify the listing by specifying
different controls. If the LIST control is active, the compiler produces a program
source listing. If the CODE control is active, a pseudo-assembly language listing of
the source code is also created. If the SYMBOLS control is active, the listing file
includes a listing of all symbols used in the program. NOLIST and NOCODE supress
these listings, respectively.

If the NOPRINT control is active, no listing file is produced. Any error messages
appear on the system console (:CO:).

Paging occurs automatically during the source and symbol-table listings, but you can
force a page eject using the EJECT or SUBTITLE controls. The following sections
describe each part of the listing file in detail.

13. 1. 1 Listing Prefalce

Each page of the listing file has a numbered page header identifying the compiler,
the subprogram currently being compiled, the date and time of the compilation, and
optionally, a title and subtitle. The compil(~r truncates the title and subtitle to 60
characters or less depending on the pagewidth setting. The page heading is followed
by two blank lines. The following is the Fortran-86 header:

system FOR T RAN - 8 6 COM P I L E R title date/time P AGE nnn
filename subtitle modulename

where

system

title

subtitle

date/time

filename

modulename

nnn

is the name of the operating system.

is the name you specified in the TITLE control.

is the name you specified in the SUBTITLE control.

is the running date and the starting time supplied and updated
by the operating system.

is the name of your source program.

is the name of your (sub)program.

is the number of pages in the PRINT file.

13-1

Compiler Output

13-2

13. 1.2 Source Listing

The source listing includes the source code of the module being compiled, any errors
detected during compilation, and optional symbol-table and pseudo-assembly listings.

Source lines appear as they do in the Fortran-86 input file with the following additions:

Positions 1-4 contain a statement number for each Fortran-86 statement. The compiler
associates each Fortran statement printed or not with a unique statement number,
and prints it at the beginning of that statement. Error messages refer to these state
ment numbers, not to statement labels coded as part of the Fortran-86 program.

If an INCLUDE control inserted a line into the source code, an equal sign (=) and
a digit indicating the nesting level of the INCLUDE follow the statement number in
positions 5-6.

Position 7 contains a hyphen (-) if the compiler continued the line on another line
because of a PAGEWIDTH limitation.

The remainder of the listing line, beginning with position 8, contains the source code
as read (or added using the INCLUDE control) from the Fortran-86 text file.
However, any ASCII TAB characters are expanded to multiple blanks, as necessary,
to reach the next character position, which is a multiple of eight.

13.1.3 Symbol Listing

If you specified the SYMBOLS control, the compiler creates a listing with an entry
for each variable, array, function, subroutine and run-time procedure that appears in
the source program. These are in ASCII sequence by symbol name or statement
number you defined in the program. Each entry includes the following:

the source identifier (symbol)

the kind (label, array, etc.)

the data type (integer, logical, etc.)

the length in bytes

the scope (external, common, etc.)

the address relative to the beginning of the segment

the statement number of its declaration

Additionally, the compiler produces a separate listing of run-time procedures refer
enced in the program. The run-time procedure listing provides helpful support for
identifying critical areas for reducing program size. Each procedure name has one or
more modules associated with it, all of which are required to fulfill the function for
which the first module was called. The user can identify these modules, using the
Run-Time Module Directory, and can determine their sizes by using the LINK86
map.

13. 1.4 Pseudo-Assembly Language Listing

If you specified the CODE control, the compiler generates a pseudo-assembly language
equivalent of the compiler-generated object code. The list-formatting controls TITLE,
PAGEWIDTH, and PAGE LENGTH apply to the CODE listing as well as to the
source listing.

Fortran-86

Fortran-86 Compiler Output

The pseudo-assembly listing for each program unit always begins on a new page. A
comment line with the statement number of the corresponding source statement will
head the code resulting from each source statement.

The code listing conforms to standard assembly-language format of six columns of
information, although not all six of these columns will necessarily apply to every line
of the listing. The columns of information are

• Relocatable location counter (hexadecimal notation)

• Resultant binary cod(! (hexadecimal notation)

• Label field

• Symbolic operation code (mnemonic notation)

Symbolic arguments

• Comment field

If you used the CODE control, the compHer generates the appropriate assembly
directives to declare local symbols and constants in the listing. An at-sign (@) precedes
compiler-generated labels, such as those which mark the beginning and ending of a
DO loop. A question mark (?) precedes source-program statement labels to distin
guish them from compiler-generated labels and numeric constants. Comments
appearing on PUSH and POP instructions indicate the stack depth associated with
the stack reference.

Figure 13-1 shows a portion of the pseudo-assembly listing for a sample
Fortran-86 program, along with the source lines from which it was generated.

FORTRAN-86 COMPILER GENEJRATED CODE
aF1:PROG2.FTN

; STATEMENT * 1
003D 8BEC MOV SP.SP
003F 9AOOOOOOOO CALL INITFP
0044 9AOOOOOOOO CALL TO_OOl
0049 FB STI

STATEMENT * 5
004A 9AOOOOOOOO CALL GEl'DAT

STATEMENT * 6
004F 9BD9EE FLDZ 1
0052 9BDDH!0000 FSTP lDPRES 1
0051 9B HAlT

STATEMENT * 1
0058 9BD9EE FLDZ 1
005B 9BDB3E1200 FSTP 'l'MPRES 1
0060 9B HAlT

STATEMENT * 8
0061 C10610000100 MOV L1H

@@OOOOOO:
0067 8B06l000 MOV AX.I
006B 81F8F401 CMP AX.1F4H
006F 1E03 JLE $+5H
0011 E93COO JMP 1~@000001

STATEMENT * 9
0014 81D8 XCHG :ax.AX
0076 B80800 MOV AX.8H
0079 F1EB lMUL :ax
001B 2E8EOE;3900 MOV ES.CS;@CONST+39H
0080 9B26DD061000 FLD ES;RTOTAL
0086 81D8 XCHG aX.AX
0088 9B26DG1FI0 FDIVR ES;RARRAY[BX-8HJ; 1
008D 9BDDDI FST @TOS+1H
0090 9BDCOE)0000 FADD :OPRES 1
0095 9BDDl.EOOOO FSTP DPRES 1
009A 9B WAIT

STATEMENT # 10
009B 9BDB2E1200 FLD TMPRES 1
OOAO 9BDECI FADDP 1
00A.3 9BDB3m200 FSTP TMPRES
00A.8 9B WAIT

no;

Figure 13-1. Sample Portion of a Code Listing

13-3

Compiler Output Fortran-86

FORTIWf-86 COMPILER GENERATED CODE
: FI : PROG2 • FTN

STATEMENT # 11
00A9 }"F061000 INC I
OOAD E9B7FF JMP @@OOOOOO

@@000001:
STATEMENT # 12

OOBO 9BDB2E1200 FLD TMPRES 7
00B5 9BODlE0800 FSTP RESULT 7
OOBA 9B WAIT

STATEMENT # 13
OOBB OE PUSH CS 1
OOBC 07 POP ES 1
OOBO 80360000 LEA S1, ?lOO
00C1 B006 MOV AL,6H
00C3 9AOOOOOOOO CALL FO_1l2
00C8 9BOO060800 FLO RESULT ; 7
OOCO 9AOOOOOOOO CALL FO_32 0
0002 9BOO060000 FLD OPRES ; 7
00D7 9AOOOOOOOO CALL FQ_320
o one 9AOOOOOOOO CALL FQ_901

STATEMENT # 15
00E1 9BOO060800 FLD RESULT 7
00E6 9BDC2EOOOO FSUBR OPRES 7
OOEB 9BODlE0800 FSTP RESULT 7
OOFO 9B WAIT

STATEMENT # 16
00F1 OE PUSH CS 1
00F2 07 POP ES 1
00F3 8D362500 LEA SI,noo
00F7 B006 MOV AL,6H
00F9 9AOOOOOOOO CALL FQ_1l2
OOFE 9BOO060800 FLD RESULT ; 7
0103 9AOOOOOOOO CALL FQ_32 0
0108 9AOOOOOOOO CALL FO_901

STATEMENT # 18
0100 9AOOOOOOOO CALL TQ_999

; STATEMENT # 1
0087 IE PUSH OS
OOBB 2EBE1E8500 MOV OS,CS:@@OATA$FRAME
OOBO 55 PUSH BP
OOBE BBEC MOV BP,SP

STATEMENT # 5
0090 9B09EE FLOZ 7
0093 9BOB3E1200 FSTP TMPTOT 7
0098 9B WAIT

STATEMENT # 6
0099 OE PUSH CS 1
009A 07 POP ES 1
009B 80360000 LEA SI, ?l00
009F B006 MOV AL,6H
00A1 9AOOOOOOOO CALL FQ_1l2
00A6 9AOOOOOOOO CALL FO_901

STATEMENT # 8
OOAB OE PUSH CS 1
OOAC 07 POP ES 1
OOAD 80363COO LEA SI,noo
00B1 B005 MOV AL,5H
00B3 9AOOOOOOOO CALL FQ_110
00B8 9AOOOOOOOO CALL FQ_318
OOBO 9BDDlE0800 FSTP RVALUE 7
00C2 9B HAlT
00C3 9AOOOOOOOO CALL FQ_901

STATEMENT # 10
OOCB OE PUSH CS 1
00C9 07 POP ES 1
OOCA 80364000 LEA SI,1300
OOCE B006 MOV AL,6H
0000 9AOOOOOOOO CALL FQ_1l2
00D5 9AOOOOOOOO CALL FQ_901

STATEMENT # 12
OOOA OE PUSH CS 1
OODB 07 POP ES 1
oone 80363COO LEA SI,noo
OOEO B005 MOV AL,5H
00E2 9AOOOOOOOO CALL FQ_110

Figure 13-1. Sample Portion of a Code Listing (Cont'd.)

13-4

Fortran-86 Compiler Output

FORTJWf·-86 COMPILER GENERATED CODE
IF1:PROG2.FTN

00E7 9AOOOOOOOO CALL FQ_318
OOEC 9BDDlEOOOO FSTP FACTOR ; 7
OOFI 913 WAIT
00F'2 9AOOOOOOOO CALL FQ_901

; STATEMENT # 13
00F7 C70610000100 MOV LIH

@@000002:
OOFD 8B061000 MOV AX,I
0101 81F8F401 CMP AX,lF4H
0105 7E:03 JLE $+5H
0107 E94300 JMP @@000003

STATEMENT # 14
010A 87D8 XCHG EX,AX
010e BEl0800 MOV AX,8H
010F F7EB IMUL ax
0111 87D8 XCHG ax,AX
0113 9BDD060800 FLD RVALUE 7
0118 2E:8E068300 MOV ES,CS:@CONST+83H
onD 9B26DD5FlO F'STP ES:RARRAY[BX-8HJ; 7

0122 9B WAIT
STATEMENT # 15

0123 9BDD060800 FLD RVALUE 7
0128 9BDB2E1200 FLD TMPTOT 6
012D 9BDECl FADDP 6
0130 9BDB3E1200 FSTP TMPTOT 7
0135 9B WAIT

STATEMENT # 16
0136 9BDD060000 FLD FACTOR 7
013B 9BDCOE0800 FMUL RVALUE 7
0140 9BDDlE0800 FSTP RVALUE 7
0145 9B WAIT

710:
STATEMENT # 17

0146 FF061000 INC I
014A E9BOIT JMP @@000002

@@000003:
STATEMENT # 18

014D 9BDB2E1200 FLD TMPTOT ; 7
0152 2E8E068300 MOV ES,CS:@CONST+83H
0157 9B26DDlEI000 FSTP ES:RTOTAL; 7
015D 9B WAIT

; STATEMENT # 19
015E 8BE5 MOV SP,BP
0160 501 POP BP
0161 IF POP DS
0162 eB RET

Figure 13-1 .. Sample Portion of a Code Listing (Cont'd.)

13. 1.5 Error Messa~Je Listing

Error messages for your compiled Fortran-86 program appear after the source listing.
The compiler controls PAGEWIDTH, PAGELENGTH, and TITLE apply to the
error-message listing as well.

The format for the error messages is as follows:

[S TAT E MEN T n][I N EAR symbol]) errortype m: message

where

errortype

m

n

symbol

message

is either ERROR or WARNING.

is the specific error or warning number.

is the internal numb<!r of the statement containing the error.

is a pointer to the location of the error within the statement.

is the actual error message (see Chapter 15, "Error
Messages").

13-5

Compiler Output

13-6

13. 1.6 Compilation Summary

The compiler generates the following messages at the end of each program listing:

STORAGE REQUIREMENTS FOR MODULE modu~:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
I I
I SEGMENTNAMEI

mmm ERRORS DETECTED.
nnn WARNINGS DETECTED.
ENTRY POINT IS x.

xxxxH
xxxxH
xxxxH
xxxxH
xxxxH

[FLOATING POINT OPERATIONS WERE GENERATED.]
COM P I L A T ION 0 F module status.

yyyyD
yyyyD
yyyyD
yyyyD
yyyyD

In this message, module is the name of the compiled module. The module size appears
in both hexadecimal, xxxx, and decimal, yyyy. The compiler differentiates between
the number of errors, mmm, and the number of warnings, nnn, showing both. The
status of the compilation can be completed or aborted if the compiler detected any
errors.

When the dictionary exceeds compile-time memory capacity, a temporary spill file is
opened on the disk. When this happens, the following message appears on the screen:

DICTIONARY SPILLING TO DISK

This message indicates that compilation time will be noticeably greater than normal.

13. 1.7 Sign-Off Message

The compiler prints the sign-off message, as described in Section 12.5, at the end of
the listing.

13.2 Object Files

The Fortran-86 compiler outputs a file containing relocatable object modules. By
linking this file with the Fortran-86 run-time libraries and other relocatable files, you
can produce a single executable object module.

Each source file submitted to the compiler produces one object file. Each program
unit in the source file produces one object module in the object file. Object modules
have the same names as their respective program units. For a module of an unnamed
main program or BLOCK DATA subprogram, the compiler assigns the names, @

MAIN or @ BLOCKDA TA, respectively.

Each object module generated by the compiler will contain one each of the following
8086 segments:

• A CODE segment

• A DATA segment

• A STACK segment

Fortran-86

Fortran-86 Compiler Output

The CODE segment is named programname _CODE, and the DATA segment,
programname _DATA. (Multiple DATA segments are named programname _DAT An
(where n= 1,2, ...). Each COMMON block is a separate segment named @ common
name, with a single @ for blank COMMON.

Local arrays and COMMON blocks exceeding 64K bytes in size are allocated on
multiple, chained segments. The first such segment is named as described above; each
successive segment has the same name, but with the suffixes @OFLn (where n= 1,
2, ...).

The following class definitions appear for your convenience in case you want to locate
your program with absolute addresses:

• CODE-consisting of all CODE segments (including constants)

• DATA-consisting of all DATA segments

• STACK-consisting of the STACK segment

• COMMON--consisting of all COMMON segments

You specify generation of object files using the OBJECT control (see Section 11.4.11).
The compiler will not produce an object file if you specify the NOOBJECT control.

13.3 Work Files

The compiler temporarily allocates work files and deletes them when they are no
longer needed or at the termination of the compilation. Up to six work files can be
allocated. The system specific appendix provides examples.

13-7

• l'3l
CHAPTER 14

LINKING, RELOCATING, AND
EXECUTING PROGRAMS

n

14.1 Introduction

Before you can execute your Fortran-86 program, you must link the object modules
and optionally locate them in memory. Th{~ compiled modules that make up your
final program need not be: written in the same language. You can freely link together
programs written in Fortran-86, Pascal-86, PL/M-86 or assembly language to make
the most efficient use of language features. Additionally, some built-in Fortran-86
functions reside in the run-time support libraries which you must link with your object
code before the program ean be executed successfully.

Intel provides the utilities necessary for linking your program, locating it in memory,
and loading it for execution. These utilities are listed in the system specific appendixes.

The 8086-based linker and locater are described in detail in the iAPX 86,88 Family
Utilities User's Guide. This guide also provides an overview of 8086 memory address
ing techniques, definitions of segments, classes, and groups, discussions of segment,
class, and group combining, and descriptions of how the locator binds segments to
addresses. The utilities guide also descibes the mechanics of loading and executing
programs and the maintenance of program libraries using the 8086 resident library
utility and the object-code print utility.

14.2 Memory Allocation

Each Fortran-86 compilation allocates the memory for the program unit in several
independent, relocatable segments. They are CODE, DATA, STACK, blank
COMMON, and named COMMON.

The CODE segment contains the executable object code for your Fortran-86 program.
The compiler also places all data constants in the CODE segment. Format specifi
cations from FORMAT statements are also in this segment.

The compiler allocates memory in DATA segments for all local variables and arrays,
except those in subprograms compiled while the REENTRANT control is active.
The compiler plaees temporary storage for intermediate values and copies of argument
addresses in the STACK segment.

The blank COMMON segment holds all variables and arrays in blank COMMON
blocks. For named COMMON blocks, the compiler allocates all variables and arrays
to separate CQMMON segments corresponding to the names you supplied for those
COMMON blocks.

In addition to th(~ Fortran-86 segments (CODE, DATA, STACK, and COMMON),
the relocatable object module may contain other segments. These are segments
provided by the Fortran-86 run-time libraries and user modules originally written in
other languages.

14.3 Linking Object Modules

The 8086-based linker (L][NK86) produces a single output module. While combining
modules, the linkc!r adjusts all addresses to be relative to the beginning of the segments

14-1

Linking, Relocating, and Executing Programs

14-2

in the new output module. The linker also searches libraries for modules that resolve
external references in the modules being combined, and includes the new modules in
the output file. Throughout this process, the linker generates a link map, and error
messages for abnormal conditions.

The output module can be processed by the SOS6-based locater (LOCS6), which
assigns absolute memory locations to the code in the object module. The output file
from the locater can be passed again to the linker (LINKS6) to be combined with
other modules into an expanded output module. The linked module may be executed
on the iRMX S6 operating system without locating (LOCS6) if the BIND control is
used.

14.3. 1 Use of Libraries

A library is a file containing object modules. It is created and maintained by the
library utility, LIBS6. You use the libraries to build your programs by referring to
the object modules as external procedures in your programs and linking the libraries
to your programs.

The linker treats library files in a special manner. When you specify input modules
to the linker, the linker combines them while keeping track of all external references.
When a library file is included as input to the linker, the linker searches the library
for modules that satisfy these unresolved external references. This means that librar
ies should be specified to the linker after the input primary modules. If a module has
an external reference to another module in the library, the linker searches the library
again to try to satisfy the reference. The process continues until all external refer
ences are satisfied, or until the linker cannot find any more public symbols to satisfy
an external reference.

The library utility is described in detail in the iAPX 86,88 Family Utilities User's
Guide (121616).

14.3.2 Run-Time Support Libraries

Intel supplies libraries that provide run-time support for Fortran-S6 modules. The
run-time support is divided into separate libraries so that you can link in the appro
priate libraries for your application. You do not have to maintain these libraries using
LIBS6, since they are already supplied as libraries.

A list of all run-time libraries follows:

CELS7.LIB and EHS7.LIB are required to support floating-point and error handling
functions.

FS6RNO.LIB, FS6RN I.LIB, and FS6RN2.LIB are required for any run-time support.
These libraries provide Fortran run-time support for I/O, internal I/O, intrinsic
functions, 32-bit integer arithmetic, character strings, and multiple segment variables.

FS6RN3.LIB and FS6RN4.LIB are the default logical record system libraries. For
more information see the Run-Time Support iAPX 86,88 (121776).

RTNULL.LIB instead of FS6RN3.LIB and FS6RN4.LIB to resolve external refer
ences when you do not use external I/O or if you intend to provide your own logical
record interface.

S087.LIB is required to support floating-point arithmetic with the SOS7 Numeric
Data Processor. When using the SOS7 Emulator use the ESOS7 and the module

Fortran-86

Fortran-86 Linking, Relocating, and Executing Programs

8087.LIB is required to support floating-point arithmetic with the 8087 Numeric
Data Processor. When using the 8087 Emulator use the E8087 and the module
E8087.LIB instead of the 8087.LIB. If you are not performing any floating-point
arithmetic, use 87NULL.LIB. DCON87.LIB is not normally needed for Fortran
support. This library provides functions that convert floating-point numbers from
ASCII to floating-point representation, and vice-versa. See the 8087 Support Library
Reference Manual, order number 121725, for additional information.

LARGE.LIB is required to execute Fortran-,86 programs in the Series III environ
ment when using F86RN3. LIB and F86RN4.LIB. Do not use LARGE.LIB if you
linked in RTNULL.LIB (for no run-time support), except when using your own run
time support libraries that rely on the Universal Development System Interface (UDI)
or make UD I calls in the program.

LARGE.LIB is required to execute Fortran··86 programs in an iRMX-86 environ
ment. Do not use LARGE.LIB if you linked in RTNULL.LIB (for no runtime
support), except when using your own run-time support libraries that rely on the
UDI, or if your program makes UDI calls.

14.3.3 Linking with Overlays

In some cases a Fortran-86 program will be too large to fit into the available memory
on the system. The overlay feature, provided by LINK86, provides a mechanism for
memory usage that allows these programs to fit on the system by allowing different
parts of a program to shan:! the same memory. Overlayed programs consist of a single
root portion and multiple overlays. The root is in memory for the entire execution of
the program. All of the overlays share the same memory, so only one overlay can be
in memory at a time.

When linking libraries in overlays, you can use the ASSUMEROOT control of
LINK86 to prev{~nt modules that have been linked into the root from being linked
into an overlay as well. However, two of the Fortran-86 libraries (F86RN2.LIB and
F86RN4.LIB) as well as EH87.LIB contain dummy versions of run-time routines.
The run-time libraries are set up only to link in the run-time modules that are actually
needed by the program. The dummy modules contained in these libraries resolve
external referenc(!s to routines that are not needed. Normally these routines will not
be called and will cause an exception if th{~y are called. However, if a routine is
needed by a module in an overlay and the dummy version has already been linked
into the root, the real version will not be included because LINK86 cannot distin
guish the real module from the dummy module.

Linking the real versions of these modules, whether they are needed or not, avoids
this complication. Each of the libraries that contains dummy modules includes a
module that has external references to all of the public symbols that have dummy
versions. By linking in this module before llinking the library containing the real
versions of these routines, you can force all of the real routines to be linked into the
root. Figure 14-1 illustrates this process in a Fortran-86 program.

14.3.3.1 Overlay Restrictions

The SAVE statement will not save the values of variables in an overlay if the overlay
is reloaded. COMMON block values are not saved when a new overlay is loaded
(even if the common block is specified in a SAVE statement), unless the COMMON
block also is specified in the root.

14-3

Linking, Relocating, and Executing Programs

14-4

LIHK ROOT

LIHK86 :f1:root.OBJ,'
EH87.LIB(TGIHSTRUCTIOH_RETRY), ,
CEL87.LIB,F86RHO.LIB, ,
F 86 R H 2. L IB (I H PUT _ EDIT _ TAB L E , 0 U T PUT _ E D I T _ TA B L E), ,
F86RH1.LIB,F86RH2.LIB, ,
F86RH4.LIB(FORMAT_SEG_DEVICE_DRIVER, ,

UHFORMAT_SEG_DEVICE_DRIVER), ,
F86RH3.LIB,F86RH4.LIB, ,
EH87.LIB,E8087,E8087.LIB,LARGE.LIB TO :f1:root.LHK'

OVERLAY(ROOT) HOBIHD

LIHK OVERLAY 1

LIHK86 :f1 :ovl.OBJ,CEL87.LIB,F86RHO.LIB, ,
F 86 R H 1 . L IB , F 8 6 R H 2 . LIB, F 8 6 R H 3. LIB, F 8 6 R H 4 . LIB, ,
E8087.LIB,LARGE.LIB TO :f1:ovl.LHK ,

OVERLAY(OVERLAY1) ASSUMEROOT(:f1 :root.LHK) HOBIHD

LIHK OVERLAY 2

LIHK86 :f1:ov2.0BJ,CEL87.LIB.F86RHO.LIB, ,
F 86 R H 1 . L IB , F 86 R H 2 . L IB , F 86 R H 3 . L IB , F 86 R H 4 . LIB, ,
E8087.LIB,LARGE.LfB TO :f1 :ov2.LHK ,

OVERLAY(OVERLAY2) ASSUMEROOT(:f1:root.LHK) HOBIHD

FIHAL LIHK

LIHK86 : f 1: root. LHK,: f 1: ovl. LHK,: f 1: ov2. LHK TO root.86 BIHD

Figure 14-1. Using the Overlay Feature to Link Fortran-86 Object Modules

14.3.4 Linking with Fortran Procedures

The following link operation takes two object modules, MYMOD 1.OBJ and
MYMOD2.0BJ, links them together, than links in the Fortran run-time libraries to
form the output module MYPROG.86. To extend the LI-NK86 command to the next
line without transmitting the command, type the ampersand (&) character before
the RETURN key, and continue typing the command on the next line (do not type
the ampersand character between letters of a filename). The continued line will start
with an angle bracket ()).

Series III:

)

)

Fortran-86

Fortran-86 Linking, Relocating, and Executing Programs

Series IV:

The linker first reads MYMOD l.OBJ and ~v1YMOD2.0BJ for external references
and resolves thos(~ references. Then, the linker attempts to resolve any more external
references in the modulles by looking at the public symbols in the libraries
F86RNO.LIB, F86RNll.LIB, F86RN2. LIB, F86RN3.LIB, F86RN4.LIB,
87NULL.LIB, and LARGE. LIB. Use the 87NULL.LIB when the modules do not
perform real arithmetic. The final output module is MYPROG.86. This module can
be loaded and executed on the Series III.

When the modules MYMODl.OBJ and MYMOD2.0BJ do perform real arithmetic,
link them with the 8087 Numeric Data Processor or the 8087 Emulator. The LINK86
command when using the emulator is:

Series III:

EH87.LIB, E8087,

Series IV:

EH87.LIB, E8087, 'E8087.LIB,

To support real arithmetic when using the 8087, replace E8087 and E8087.LIB with
8087.LIB. EH87.LIB provides exceptions handling support for the 8087 Numeric
Data Processor or its emulator. This is the link sequence that should be used in a
full-featured operating system. The BIND option used with LINK86 provides an
output file that is ready to be executed (if th(! operating system has an L TL loader).

14.3.5 Linking with INon-Fortran Prc)cedures

The relocatable object modules produced by the Fortran-86 compiler are compatible
with those generated by the Pascal-86 compiler, the PL/M-86 compiler, and the 8086/
8087/8088 Macro Assembler. You can link together modules written in these iAPX
86,88 family languages. This feature allows you to use Fortran-86 to code those
segments of your application to which the features of Fortran-86 are particularly well
suited: multidimensional arrays, formatted and direct access I/O, floating-point
arithmetic, and/or Fortran-86 intrinsic functions. Other facets of your programming
task can be written in another language with no loss of compatibility.

Pascal-86 subprograms must be linked to the first two Pascal-86 run-time libraries
before linking to Fortran-86 object files, as follows:

llHK86 PASMOD.OBJ, P86RHO.LIB, P86RH1.LIB, &
TOP A 5 MOD . L H K HOP U B lie 5 E X C E P T names

where

names are those names that are referenced by the Fortran program.

14-5

Linking, Relocating, and Executing Programs Fortran-86

14-6

PASMOD.LNK is then used in the Fortran-86 LINK86 command in the same way
as Fortran-86 object files.

A one-LINK-step alternative:

LINK86 FTNMOD.OBJ,
F86RN2.LIB,
F86RN3.LIB,

CEL87.LIB, F86RNO.LIB, F86RN1.LIB, &
PASMOD.OBJ, P86RNO.LIB, P86RN1.LIB, &
F86RN4.LIB, 8087.LIB, e~

For more specific information about mixing Fortran-86 subprograms with sub
programs in other languages, see Appendix H of this manual.

Be sure to invoke the RUN utility (as shown above) when linking in a Series III.

14.4 Locating Object Modules

The 8086-based locater (LOC86) binds locatable segments to absolute memory
addresses. The locater creates an absolute output module from a single input module,
generates a memory map that summarizes the results of address binding, produces a
symbol table that shows the addresses of certain symbols, detects any errors that arise
in the locating process, and filters locating information and compiler-generated
debugging information. The locating process is described in detail in Chapter 3 of
the iAPX 86,88 Family Utilities User's Guide for 8086-Based Development Systems.

The output module from the locater is a program that you can load and execute. The
system specific appendix provides examples.

The locator includes several controls that enable you to specify exactly where portions
of your program will be located in memory. These controls can be specified as part
of the command syntax to the locater. This section describes specific considerations
for locating Fortran-86 object modules.

The ORDER control allows you to dictate the sequence of segment types in memory.
The format of this control is as follows:

o R D E R (segids)

where

segids is some combination of the segment names CODE, DATA,
/ commonname/ (for a named COMMON), / / (for blank
COMMON), and STACK.

If you do not specify the ORDER control, the system locates module segments
sequentially in memory in the following order: CODE, STACK, COMMON, and
DATA; the term COMMON means all COMMON segments in an arbitrary order.

The ORDER list can be partial; you need not list all module segments. In this case,
the locater takes all segments specified in the ORDER control in the order specified.
It takes the remaining segments in the default order, after the modules listed in the
ORDER control.

14.5 Preconnecting Files

Fortran-86 I/O statements operate on device units that are connected to files on a
one-to-one basis. A unit-to-file connection can be made when the file is opened (by
the OPEN statement) or by preconnecting the unit to the file at run-time.

Fortran-86 Linking, Relocating, and Executing Programs

In the Series-III run-timt! environment, FOl'tran-86 provides the following default
preconnections:

Unit

5
6

other

Device

console input
console output
system work file

The system specific appendix provides examples for overriding the default preconnec
tions. You can specify the UNIT load-time control at execution time. The format of
the UNIT control is as follows:

source (U NIT n = path)

where

source

n

path

is the name of your relocated object code.

is a number between 0 and 255.

is an operating environment filename.

Note the following examples:

PROGRM (UN:lT4=:LP:) (cr)
PROGRM.LOC (UNIT1=:CI:)UNITO=:CO:)(cr)

The preconnectlon feature applie5 to Fortran-aS
pro g ram 5 t hat h a v e bee nco m p i led) lin ked) and
optionally located to run in your 5Y5tem.

When preconnecting a file) the 5tring UNITn may not
contain 5pi:lCe5j i.e.) UNIT7) not UNIT 7.

14.6 Executing Programs

Your linked (and relocated) program can now be loaded and executed. Your program
file could also be used as input to the DEBUG-86 debugger.

To run correctly, a program must be complete; i.e., it must contain all the modules
necessary to run. A program must contain modules from the run-time support library
described in Section 14.3.2. The system specific appendix provides examples of
program execution.

14-7

• (~I r--- CHAPTER 15 n ~ ____________ E_RR_O_R_S __ A_N_D __ W_A_R_N_IN_G_S~

This chapter lists all the compiler and run-time error and warning messages. The
compiler makes a distinction between errors and warnings, since the latter produces
executable object code despite the diagnostic messages.

Operating system error messages can be found in the manuals listed in the system
specific appendix. LINK86, LOC86, LIB86, and OH86 error messages can be found
in the iAPX 86,88 Family Utilities User's Guide for 8086-Based Development
Systems.

15. 1 Compiler Controls and the Error Listing

The compiler errors and warnings appear in the error message listing on the device
specified by the PRINT compiler control. If the NOPRINT control is active, the
compiler does not generate an error message listing. Specifying the LIST control
causes the compiler to produce a complete listing of the program code, including
statements associated with error messages. Using the NOLIST control, however,
causes the compiler to list only those statements where errors were detected.

Source program errors are usually not fata1. An error in your source code will be
logged in the error message listing and the compiler will continue to process your
source file, if possible. You can request that the compiler halt upon encountering one
or more errors using the ERRORLIMIT compiler control. See Section 11.4.5 for
specifics about this option.

15.2 Compiler Error Message!»

The Fortran-86 compiler can issue the following types of error messages:

• Fortran-86 source program errors

• Compiler control errors

• Input/Output errors

• Insufficient memory errors

• Compiler failure errors

15.2. 1 Error Format

A more detailed description of the error message listing format can be found in Section
13.1.5 of the Compiler Output chapter. Errors and warnings within Fortran-86 source
code are printed in this listing in this format:

S TAT E ME'" T n [I '" E ~\ R symbol] I errortype m : message

where

errortype

m

n

symbol

message

is either error or a warning.

is the specific error or warning number.

is the internal number of the statement containing the error.

is a pointer to the location of the error within the statement.

is the actual error message.

15-1

Errors and Warnings

15-2

The compiler summarizes source program error totals at the end of program listing
for each program unit, as described in Section 13.1.6.

15.2.2 Error Messages

The following lists the compiler error messages. Each line gives the number and
message for each error. If any message appears without a number, call your Intel
representative; this indicates a compiler failure.

F 0 0 1 < element> NEE D E D N EAR < source text>

< element> is required to complete a valid Fortran-86 statement or control. The rest
of the statement is not compiled.

F002 INCORRECTLY PLACED PRIMARY CONTROL

F003 UNIMPLEMENTED GENERAL CONTROL

F004 UNIMPLEMENTED PRIMARY CONTROL

FOOS INITIAL CONTROL CANNOT BE CHANGED

F006 PARSING TERMINATED BEFORE END OF STATEMENT

F007 UNSUPPORTED STATEMENT

F008 DUPLICATE LABEL

FOOS STATEMENT ILLEGAL FOR BLOCK DATA

F010 STATEMENT OUT OF ORDER

F011 NAME ALREADY IN COMMON

F012 NAME CANNOT BE IN COMMON

F013 ARRAY NAME MUST HAVE DIMENSIONS

F014 ONLY DUMMY ARGUMENTS CAN HAVE VARIABLE
DIM ENS ION S

F01S NAME CANNOT BE AN ARRAY

F016 DUPLICATE DIMENSION SPECIFICATION

F017 NUMBER OF DIMENSIONS EXCEEDS SEVEN

F018 ONLY LAST DIMENSION CAN BE STAR

F01S LOWER BOUND CANNOT RE STAR

F020 NAME CANNOT BE INITIALIZED

F021 ILLEGAL NAME IN DATA EXPRESSION

F022 CONSTANT IN DATA EXPRESSION MUST BE INTEGER

F023 NAME IN CONSTANT LIST IS NOT A CONSTANT

Fortran-86

Fortran-86

F 0 24

F 025

F026

F 0 2 7

F028

F 029

F 030

F 0 3 1

F 032

F 033

F 034

F 035

F 036

F 037

F 038

F039

F 0 4 0

F 0 4 1

F 042

F 043

F 0 4 4

F 045

F 0 46

F 047

F 0 48

F 0 49

F 0 5 0

Errors and Warnings

NAME ILLEGAL FOR MEMORY ASSOCIATION

CONSTANT EXPRESSIONS OF THIS DATA TYPE ARE
NOT SUPPoR~TED

NAME CANNOT BE A SYMBOLIC CONSTANT

DUPLICATE DEFINITION OF SYMBOLIC CONSTANT

RIGHT SIDE OF CONSTANT EXPRESSION IS NOT
CONSTANT

DUPLICATE DEFINITION OF EXTERNAL PROCEDURE

NAME CANNOT BE AN EXTERNAL PROCEDURE

DUPLICATE DEFINITION OF INTRINSIC PROCEDURE

NAME CANNOT BE AN INTRINSIC PROCEDURE

UNSUPPORTED STATEMENT

ALTERNATE RETURN NOT SUPPORTED

NAME IS ALREADY A DUMMY ARGUMENT

NAME CANNOT BE A DUMMY ARGUMENT

LABEL MISSING ON FoRMI~T STATEMENT

STATEMENT-FUNCTION DUMMY ARGUMENT MUST BE A
NAME

NAME ILLEGAL AS STATEMENT-FUNCTION ARGUMENT

DUPLICATE DUMMY ARGUMENT OF STATEMENT
FUNCTION

STATEMENT-FUNCTION DUMMY ARGUMENT CANNOT BE
SUBSCRIPTED

ILLEGAL ASSIGNMENT TARGET

ILLEGAL USE OF NAME AS A FUNCTION

ILLEGAL USE OF NAME AS A SUBROUTINE

LENGTH EXPRESSION IS NOT AN INTEGER CONSTANT

EXPRESSION IS NOT CONSTANT

EXPRESSION IS NOT OF TYPE INTEGER

ILLEGAL OPERATOR OR C()NSTRUCT

ALTERNATE RETURN IS N()T SUPPORTED

MISSING TERMINATION FOR A DO OR BLOCK IF

15-3

Errors and Warnings Fortran-86

15-4

FOS1 MISSING TERMINATION FOR A CONTAINED DO

FOS2 MISSING ENDIF FOR A CONTAINED BLOCK IF

FOS4 ILLEGAL STATEMENT FOLLOWING LOGICAL IF

FOSS 1'10 MATCHING BLOCK IF

FOS6 ELSE OR ELSEIF FOLLOWING ELSE IS ILLEGAL

FOS7 DO VARIABLE IS NOT AN INTEGER VARIABLE

FOSS END SPECIFIER ILLEGAL WITH WRITE OR DIRECT
ACCESS

FOSS UNFORMATTED INTERNAL 10 NOT ALLOWED

F060 DIRECT ACCESS NOT ALLOWED FOR INTERNAL OR
LIST 10

F061 MISSING UNIT SPECIFIER

F062 MULTIPLE UNIT SPECIFIERS

F063 MULTIPLE FILE SPECIFIERS

F064 MULTIPLE RECORD SPECIFIERS

F06S MULTIPLE 10STAT SPECIFIERS

F066 MULTIPLE ERR SPECIFIERS

F067 MULTIPLE END SPECIFIERS

F06S INVALID STATUS SPECIFIER

F06S MULTIPLE FILE SPECIFIERS

F070 MULTIPLE RECL SPECIFIERS

F071 INVALID STATUS SPECIFIER

F072 MULTIPLE STATUS SPECIFIERS

F073 INVALID ACCESS SPECIFIER

F074 MULTIPLE ACCESS SPECIFIERS

F07S INVALID FORM SPECIFIER

F076 MULTIPLE FORM SPECIFIERS

F077 INVALID BLANK SPECIFIER

F07S MULTIPLE BLANK SPECIFIERS

F07S INVALID CARRIAGE SPECIFIER

FOSO MULTIPLE CARRIAGE SPECIFIERS

Fortran-86 Errors and Warnings

F081 WRONG NUMBER OF ARGUMENTS

F082 ARGUMENT MUST BE AN EXTERNAL PROCEDURE

F083 TWO-BYTE RESULT FIELD NEEDED

F084 DIMENSION VARIABLE NOT AN ARGUMENT OR IN
COMMON

F08S FORMAT SPECIFIER IS NOT A FORMAT LABEL

F086 FOUR-,BYTE FIELD LENGTH REQUIRED

F087 TWO-BYTE FIELD LENGTH REQUIRED

F088 DATA TYPE INTEGER OR LOGICAL REQUIRED

F08S VARIABLE REFERENCE RE(~UIRED

FOSO DATA TYPE INTEGER REQUIRED

FOS1 ARITHMETIC EXPRESSION REQUIRED

FOS2 DATA TYPE LOGICAL REQUIRED

FOS3 CHARACTER DATA TYPE REQUIRED

FOS4 ILLEGAL USE OF PROCEDURE NAME

FOSS SUBSCRIPTS MISSING IN ARRAY REFERENCE

FOS6 SUBSTRING ALLOWED WITH TYPE CHARACTER ONLY

FOS7 INCORRECT NUMBER OF SUBSCRIPTS

FOS8 THIS PROCEDURE CANNOT BE USED AS AN ACTUAL
ARGUI~ENT

FOSS WRONG NUMBER OF ARGUMENTS

F100 INCOMPATIBLE DATA TYPE

F101 ARRAY SIZE IS UNKNOWN

F102 RIGHT SIDE IS NOT A CHARACTER EXPRESSION

F103 VARIABLE-LENGTH FUNCTION NOT ALLOWED

F104 VARIABLE-LENGTH CHARACTER STRING NOT ALLOWED

F10S LABEL IS NOT DEFINED AT AN EXECUTABLE
STATEMENT

F106 SUBSTRING FOR NONCHARACTER VARIABLE IS
IGNORED

F107 ILLEGAL SUBSTRING START IS ASSUMED

15-5

Errors and W'arnings Fortran-86

15-6

F108 SUBSTRING END CANNOT BE LESS THAN SUBSTRING
START

F109 SUBSCRIPTS FOR NON-ARRAY IGNORED

F110 WRONG NUMBER OF SUBSCRIPTS-FIRST ELEMENT
ASSUMED

F111 SUBSCRIPT VALUE IS LESS THAN LOW BOUND

F112 SUBSCRIPT VALUE EXCEEDS UPPER BOUND

F113 VARIABLE DIMENSION NOT ALLOWED

F114 DUMMY ARGUMENTS ILLEGAL IN INTERRUPT
PROCEDURE

F115 ONLY SUBROUTINES AND FUNCTIONS CAN BE
REENTRANT

F116 INTERRUPT PROCEDURE MUST BE A SUBROUTINE

F118 BUILTIN OPERAND MUST BE IN CONTIGUOUS STORAGE

The 8087 built-in functions STSW87, LDCW87, STCW87, SA V87, and RST87, do
not accept operands in noncontiguous storage. This is because they translate directly
into their corresponding 8087 machine instructions. See error F206 for a description
of how to avoid this problem.

F119 THIS STATEMENT IS TOO COMPLEX

F120 ONLY INTEGER AND LOGICAL SUPPORTED FOR VALUE
ARGUMENTS

F121 UPPER BOUND IS LESS THAN LOWER BOUND

F122 DUPLICATE TYPE SPECIFICATION IGNORED

F123 ILLEGAL USE OF HOLLERITH

F124 ARRAY SIZE EXCEEDS COMPILER CAPACITY

F125 INVALID COMPONENT DATA TYPE

F126 COMPLEX ORDERED COMPARISON ILLEGAL

F127 DUPLICATE PROCEDURE NAME IN INTERFACE CONTROL

F151 END STATEMENT MISSING

F152 END STATEMENT IN INCLUDE IGNORED

F153 MAXIMUM PAGELENGTH IS 255

F154 MINIMUM PAGELENGTH IS 5

F155 MAXIMUM PAGEWIDTH IS 132

F156 MINIMUM PAGEWIDTH IS 60

Fortran-86 Errors and Warnings

F 1 57 MORE DATA VARIABLES THAN DATA CONSTANTS

F 1 58 THIS STATEMENT IS TOO COMPLEX

F 1 59 ATTEMPT TO DIVIDE BY 0

F 1 60 OVERFLOW IN CONSTANT DIVISION

F 161 THE l.INE AT OR AFTER THIS STATEMENT IS TOO
LONG

F 162 TOO MANY CHARACTERS IN STATEMENT

F 163 NONDIGIT IN STATEMENT-LABEL FIELD

F 164 FIRST LINE OF A STATEI~ENT IS A CONTINUATION
LIN E

F 165 MORE THAN 19 CONTINUATION LINES NOT SUPPORTED

F 166 LABEL PRESENT ON CONTINUATION LINE--LINE
IGNORED

F 167 INVALID CHARACTERCS) IN SOURCE AT OR AFTER
THIS STATEMENT

F 168 CONTROL NEAR 'XXX' CANNOT BE NEGATED

F 169 HOLLERITH STRING LONGER THAN 255--TRUNCATED
ON RIGHT

F 1 7 0 ZERO-LENGTH HOLLERITH STRING ILLEGAL

F 1 7 1 STATEMENT ENDS BEFORE END OF HOLLERITH STRING

F 1 72 TOO MANY NESTED INCLUDE LEVELS

F 173 INTERRUPT NUMBER MUST BE BETWEEN 0 AND 255--
LOW BYTE USED

F 1 74 UNKNOWN CONTROL IN SOURCE PROGRAM NEAR

F 1 7 5 THE BLOCK CONTAINING THIS STATEMENT IS TOO
COMPLEX

F 1 76 INTRINSIC HAS INCORRECT NUMBER OF OPERANDS

F 1 7 7 TYPES OF [)PERANDS INCOMPATIBLE

F 178 TYPE OF ARGUMENT INCOMPATIBLE WITH INTRINSIC

F 179 MORE DATA CONSTANTS THAN DATA VARIABLES

F 1 80 THIS STATEMENT IS TOO COMPLEX

F 1 8 1 ASSIGN VARIABLE MUST BE AT LEAST TWO BYTES
LONG

F182 TYPES OF OPERANDS INCOMPATIBLE WITH OPERATION

15-7

Errors and Warnings Fortran-86

15-8

F183 PARAMETER TYPE MISMATCH WITH EARLIER
INVOCATION OF PROCEDURE

F191 SOURCE FILENAME MISSING

F192 UNKNOWN CONTROL IN COMMAND TAIL

F194 INVALID NUMERIC DIGIT

F201 TOO MANY NAMES TO SORT

F202 EQUIVALENCE OF TWO ITEMS IN DIFFERENT COMMONS
IGNORED

F203 EQUIVALENCE OF AN ITEM AT TWO DIFFERENT
LOCATIONS IGNORED

F204 ATTEMPT TO EXTEND COMMON ON LEFT BY
EQUIVALENCE IGNORED

F20S EQUIVALENCE LIST WITH FEWER THAN TWO LEGAL
ELEMENTS IGNORED

F206 VARIABLE OR ARRAY ELEMENT ALLOCATED
NONCONTIGUOUS STORAGE

A variable or array element in the program overlaps a 64K-byte segment boundary
and therefore must be accessed by an out-of-line run-time procedure when referenced
in an executable statement.

This message is not an error or a program restriction. It is issued as an aid to users
who want to optimize their program performance.

Special out-of-line handling can be avoided by redefining certain memory sequences
so that no single variable or array element overlaps 64K-segment boundaries. To do
this:

l. Do not mix data lengths in a numeric/logical COMMON block that exceeds
65,520 (or 64K-·16) bytes in length.

2. When a local CHARACTER array exceeds 64K bytes in length, the element
length should divide 65,520 evenly. (65,520 = 24 X 32 X 5 X 7 X 13, so an
element length of any combination of these factors will avoid this warning.)

3. If mixed data lengths, including odd-length CHARACTER types, are necessary
in a COMMON block that exceeds 65,520 bytes in length, reorder the elements
or add filler variables so that the 65,521st (131,041st, etc.) byte coincides with
the first byte of a variable or array element.

4. If the overlapping variable is the result of a mixed-length EQUIVALENCE
specification, change your program to avoid the need for the mixed-length
EQUIVALENCE specification.

F 2 0 7 OVERLAP ACTUAL ARGUMENT--SPECIAL COMPILATION
REQUIRED.

A variable or array element that has been allocated noncontiguous storage (or an
array containing such an element) has been used as an actual argument for a subrou
tine or function. Since variables in noncontiguous storage require special handling by
the compiler, the subroutine or function indicated must be compiled using the
OVERLAP control.

Fortran-86 Errors and Warnings

As an alternative to the OVERLAP control, you may redefine the calling program's
actual arguments so that no single variable or array element overlaps 64K-segment
boundaries. For more information, see the explanation of the compiler warning
message F206.

F208 CONSTANT/VARIABLE TYPE MISMATCH IN A DATA
STATEMENT--ENTRIES IGHORED

F209 NONBLANK CHARACTERS FOLLOWING FORMAT
SPECIFICATIONS IGNORED

F210 FORMAT DOES NOT BEGIN WITH 'C'

F211 INVALID OR MISSING DELIMITER--',', '/', ':',
OR ':1' NEEDED

F212 UNRECOGNIZABLE FORMAT EDIT DESCRIPTOR FOUND

F213 '-' HOT FOLLOWED BY Ali INTEGER

F214 A NEGATIVE INTEGER IS ALLOWED ONLY WITH 'P'

F215 'B' I~EQUIRES A NONZERO POSITIVE INTEGER WIDTH

F216 'I' I~EQUIRES A NONZERIJ POSITIVE INTEGER WIDTH

F217 'I' I~EQUIRES A NONNEGATIVE INTEGER AFTER THE , ,

F218 'Z' REQUIRES A NONZERIJ POSITIVE INTEGER WIDTH

F219 'L' I~EQUIRES A NONZERIJ POSITIVE INTEGER WIDTH

F220 'F' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

F221 'F' I~EQUIRES A ' , AFTER ITS WIDTH

F222 'F' REQUIRES A NONNEGATIVE INTEGER AFTER THE , ,

F223 '0' I~EQUIRES A ' , AFTER ITS WIDTH

F225 '0' REQUIRES A NONNEGATIVE INTEGER AFTER THE , ,

F226 'E' I~EQUIRES A NONZERO POSITIVE INTEGER WIDTH

F227 'E' I~EQUIRES A ' , AFTER ITS WIDTH

F228 'E' REQUIRES A NONNEGATIVE INTEGER AFTER THE , ,

F229 'E' I~EQUIRES A NONZER'O POSITIVE INTEGER
EXPOI~ENT 'E' FIELD

F230 'G' I~EQUIRES A NONZERO POSITIVE INTEGER WIDTH

F 23 1 'G' I~EQUIRES A
, , AFTER ITS WIDTH

15-9

Errors and Warnings

F232 'G' REQUIRES A NONNEGATIVE INTEGER AFTER THE

F233

F234

F235

F236

F237

F238

F239

F 2 4 0

F 2 4 1

F242

F243

F244

F245

F246

F247

F 25 1

F252

F253

F254

F255

F256

F257

15-10

, ,

'G' REQUIRES A NONZERO POSITIVE INTEGER
EXPONENT 'E' FIELD

A SIGNED INTEGER CONSTANT MUST PRECEDE 'P'

A NONZERO POSITIVE INTEGER CONSTANT MUST
PRECEDE 'X'

A NONZERO POSITIVE INTEGER CONSTANT MUST
PRECEDE 'H'

CLOSING QUOTE MISSING FOR QUOTED STRING

'H' FORMAT SPECIFIES MORE CHARACTERS THAN ARE
AVAILABLE

DECIMAL PART LARGER THAN DESCRIPTOR FIELD
WIDTH

ILLEGAL OR UNPRINTABLE FORMAT DESCRIPTOR
FOUND

REPEAT NESTING EXCEEDS 3 LEVELS

ILLEGAL CHARACTER IN A QUOTED STRING

'P' FORMAT IS OUT OF RANGE

MORE LEFT PARENTHESES THAN RIGHT

INTEGER SPECIFIED IS OUT OF RANGE ALLOWED IN
FORMAT STATEMENTS

THE DECIMAL PART OF AN 'I' IS GREATER THAN
ITS WIDTH

DECIMAL AND EXPONENT PARTS LARGER THAN
DESCRIPTOR FIELD WIDTH

TOO MANY PROCEDURE NAMES AND LABELS TO SORT

MORE THAN 64K OF DATA OUTSIDE COMMON--64K
USED

CODE CROSSES 64K BOUNDARY AT OR AFTER THIS
STATEMENT

MORE THAN 64K OF CODE INCL. CONSTANTS--64K
USED

MORE THAH 64K OF STACK NEEDED--64K USED

MORE THAN 64K OF PARAMETERS--64K USED

ILLEGAL USE OF DATA STATEMENT IGNORED

Fortran-86

Fortran-86 Errors and Warnings

F258 .DATA CONSTANT EXCEEDS 255 BYTES

F259 TOO MANY ARGUMENTS FOR TYPE CHECKING

F261 TOO MANY ERRORS TO SORT

F271 CONSTANT CONTAINS AN ILLEGAL CHARACTER--BLANK
ASSU~IED

F272 INTEGER CONSTANT WON'T FIT IN FOUR BYTES-
TRUNCATED ON LEFT

F273 LABEL IS GREATER THAN 99999--RIGHTMOST DIGITS
TRUNCATED

F274 NULL STRING IS ILLEGAl.--' , ASSUMED

F275 QUOTED STRING LONGER THAN 255 CHARACTERS-
TRUNCATED ON RIGHT

F276 LABEL OF ZERO IS ILLEGAL

F277 NAME LONGER THAN 6 CHARACTERS--TRUNCATED ON
RIG H T

F278 DIGIT STRING OF MORE THAN FIVE DIGITS IS
ILLEGAL

F279 INCO~IPATIBLE LENGTHS FOR SYMBOLIC AND ACTUAL
CONSTANT

F280 IMPLICIT RANGE INVALID--ONLY FIRST LETTER
USED

F281 INCOMPATIBLE DATA TYPE AND LENGTH

F282 LETTER ALREADY GIVEN AN IMPLICIT TYPE

F283 SUBPROGRAM NAME IS ALREADY A SUBPROGRAM NAME

F284 SUBPROGRAM NAME IS ALREADY A COMMON NAME

F285 COMMON NAME IS ALREADY A SUBPROGRAM NAME

F286 LENGTH CANNOT BE STAR

F287 EXPLICIT LENGTH ILLEGAL--DEFAULT USED

F288 NAME CANNOT BE CHARACTER* {*)--CHARACTER*1
USED

F289 THE TYPE OF THIS INTRINSIC FUNCTION IS
CHANGED TO ITS DEFAULT

F290 LENGTH SPECIFICATION EXCEEDS 64K--DEFAULT
USED

F291 OVER 49 OVERFLOW SEGMENTS ALLOCATED

15-11

Errors and 'Varnings

15-12

15.2.3 Compiler Control Error Messages

If the Fortran-86 compiler detects an error in a compiler control (whether in a control
line embedded in source code or in the compiler invocation line), the compilation may
be halted. If this happens, the compiler issues an error message to both the console
and the list file. The form of the message is:

***FORTRAN COMPILATION TERMINATED <MESSAGE NUMBER>

15.2.4 Compiler Failure Error Messages

Compiler failure messages are indicated by unnumbered error messages.

The following unnumbered compiler error message-

***FORTRAN COMPILATION TERMINATED: MAXIMUM VIRTUAL
SYMBOL TABLE SPACE EXCEEDED IN PHASE a

indicates that the symbol table space required for the compilation exceeds the
maximum size of 256K bytes. This can occur when a source file contains multiple
modules. To avoid this error, break up the source file and compile the modules
separately.

Fatal compiler failure errors are internal Fortran-86 compiler errors that should never
occur. If you encounter one of these errors, please report it to Intel Corporation, 3065
Bowers Avenue, Santa Clara, California 95051, Attention: Software Support
Services.

15.3 Run-Time Errors

Certain Series-III operating system errors may occur that are documented in the
Intellec® Series-III Microcomputer Development System Console Operating
Instructions. Run-time errors that are unique to the Fortran-86 run-time support
software are described in this section.

A masked floating-point run-time error can occur without stopping the program. When
a run-time error other than a masked floating-point error occurs, the system stops
running the program, prints a run-time exception message, and returns control to the
operating system.

Run-time system exception messages take the following form:

* * *
* * *
* * *

R U ti - TIM E type E X C E P T ION code
ti EAR L 0 CAT ION hhhh H : hhhh H
JOB ABORTED.

The type of the run-time exception can be one of the following types:

FORTRAN I/O
I/O
OPERA TING ENVIRONMENT
INTEGER ZERO DIVIDE
INTEGER OVERFLOW
RANGE
CHECK

Fortran-86

Fortran-86 Errors and Warnings

For each type, the code is the hexadecimal exception code number for each message.
The hexadecimal locations hhhhH:hhhhH are the values in CS:IP after control returns
from the run-time system to the program. Each message is described in the subse
quent sections by type and by code number.

15.3.1 Input/Output Exceptions

If a Fortran-86][/0 statement includes the ERR specifier in its control list, the
compiler transfers control to the statement designated by ERR when an error is
detected. The default error handler is not called in this case.

If you include the lOST AT specifier in the control list of a Fortran-86 I/O state
ment, I/O operations return a numerical code as well as the value of a symbol desig
nated by lOST AT.

RUN-TIME FCIRTRAN 110 EXCEPTjON: 1200H

An invalid link sequence was specified for th(~ run-time libraries.

RUN-TIME F(JRTRAN 110 EXCEPTXON: 1201H

Negative system error detected.

RUN-TIME F(JRTRAN 110 EXCEPTXON: 120EH

Output list specifies more values than can fit into a direct access record.

RUN-TIME FORTRAN 110 EXCEPTION: 1210H

An initial left parenthesis is required to define a format statement.

RUN-TIME FORTRAN 110 EXCEPTION: 1211H

Invalid delimiter was found in a FORMAT statement (expecting ",","/", or ")".

RUN-TIME FORTRAN 110 EXCEPTION: 1212H

An unrecognizable edit descriptor was found in a FORMAT statement.

RUN-TIME FIlRTRAN 110 EXCEPTION: 1213H

A nondigit followed a + or a dash (-) in the FORMAT statement (note that "-P"
must "-lP").

RUN-TIME FORTRAN 110 EXCEPTION: 1214H

Only P-format descriptor can follow a negative integer.

RUN-TIME FIJRTRAN 110 EXCEPTION: 1215H

B-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN 110 EXCEPTION: 1216H

I-format descriptor must be followed by a positive integer width field.

15-13

Errors and Warnings Fortran-86

15-14

RUN-TIME FORTRAN 1/0 EXCEPTION: 1217H

Iw.m-format descriptor must have a positive integer following the decimal point.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1218H

Z-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1219H

L-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 121AH

F-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 121BH

F-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 121CH

F-format descriptor must have a nonnegative integer following the decimal point.

RUN-TIME FORTRAN 1/0 EXCEPTION: 121DH

D-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 121EH

D-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 121FH

D-format descriptor must have a nonnegative integer following the decimal point.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1220H

E-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1221H

E-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1222H

E-format descriptor must have a nonnegative integer following the decimal point.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1223H

E-format descriptor must have a positive integer following the E in the exponent
field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1224H

G-format descriptor must be followed by a positive integer width field.

Fortran-86 Errors and Warnings

RUN-TIME FORTRAN 1/0 EXCEPTION: 1225H

G-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN I/O EXCEPTION: 1226H

G-format descriptor must have a nonnegative integer following the decimal point.

RUN-TIME FORTRAN I/O EXCEPTION: 1227H

G-format descriptor must have a positive integer following the E in the exponent
field.

RUN-TIME FORTRAN I/O EXCEPTION: 1228H

A signed integer constant must precede P-format descriptor.

RUN-TIME FORTRAN I/O EXCEPTION: 1229H

A positive integer constant must precede X-format descriptor.

RUN-TIME FORTRAN I/O EXCtPTIoN: 122AH

A positive integer constant must precede H-format descriptor.

RUN-TIME FORTRAN I/O EXCEPTION: 1231H

The closing quote for a quoted string is missing.

RUN-TIME FORTRAN I/O EXCEPTION: 1232H

H-format descriptor requires more characters than are available.

RUN-TIME FORTRAN I/O EXCEPTION: 1233H

The width field must be greater than or equal to the decimal field of a floating-point
edit descriptor (E, G, D).

RUN-TIME FORTRAN I/O EXCEPTION: 1234H

A character in the FORMAT statement was found to be outside the set of characters
allowed for format edit descriptors.

RUN-TIME FORTRAN I/O EXCEPTION: 1235H

The nesting of brackets in a FORMAT statement exceeds limit (3).

RUN-TIME FORTRAN I/O EXCEPTION: 1236H

An illegal character was found within a quoted string.

RUN-TIME FORTRAN I/O EXCEPTION: 1237H

The integer specified for P-format descriptor was out of range (- 2** 15,2** 15 -1).

RUN-TIME FORTRAN I/O EXCEPTION: 1239H

Integer specified is out of range allowed by FORMAT statements.

15-15

Errors and Warnings Fortran-86

15-16

RUN-TIME FORTRAN liD EXCEPTION: 1238H
More left parentheses than right.

RUN-TIME FORTRAN liD EXCEPTION: 123AH
Integer size greater than field width.

RUN-TIME FORTRAN liD EXCEPTION: 1240H
H-format descriptor not allowed on input.

RUN-TIME FORTRAN liD EXCEPTION: 1241H
A logical data item was expected on input.

RUN-TIME FORTRAN liD EXCEPTION: 1242H
An integer data item was expected on input.

RUN-TIME FORTRAN liD EXCEPTION: 1243H
A floating-point data item was expected on input.

RUN-TIME FORTRAN liD EXCEPTION: 1244H
An invalid logical data field was found on input.

RUN-TIME FORTRAN liD EXCEPTION: 1248H
An invalid hexadecimal data field was found on input.

RUN-TIME FORTRAN liD EXCEPTION: 1249H
An invalid binary data field was found on input.

RUN-TIME FORTRAN liD EXCEPTION: 124AH
A repeatable edit descriptor is missing, causing an infinite loop to occur in the
processing of a repeated FORMAT statement.

RUN-TIME FORTRAN liD EXCEPTION: 124BH
The scale of an input exponent is out of range.

RUN-TIME FORTRAN liD EXCEPTION: 124CH
Quoted string input is invalid.

RUN-TIME FORTRAN liD EXCEPTION: 1251H
End of file record was encountered with no END = specified.

RUN-TIME FORTRAN liD EXCEPTION: 1252H
An attempt was made to read or write beyond end of record.

Fortran-86 Errors and Warnings

RUN-TIME FORTRAli I/O EXCEPTION: 1254H

The data transfer mode is inconsistent with the file's FORM attribute.

RUN-TIME FORTRAN I/O EXCEPTION: 1255H

The data transfer mode is inconsistent with the file's ACCESS attribute.

RUN-TIME FORTRAN I/O EXCEPTION: 1256H

Syntax error in formatted binary or hexadecimal input field.

RUN-TIME FORTRAN I/O EXCEPTION: 1260H

Invalid delimiter in list directed input field.

RUN-TIME FORTRAH I/O EXCEPTION: 1261H

Syntax error in list directed alphanumeric input field.

RUN-TIME FORTRAN I/O EXCEPTION: 1262H

Syntax error in formatted/list directed logical input field.

RUN-TIME FORTRAN I/O EXCEPTION: 1263H

Syntax error in formatted/list directed floating-point input field.

RUN-TIME FORTRAN I/O EXCEPTION: 1264H

Syntax error in formatted/list directed integer input field.

RUN-TIME FORTRAN I/O EXCEPTION: 1265H

Zero-valued repeat factor not allowed in list-directed input.

RUN-TIME FORTRAN I/O EXCEPTION: 1270H

An attempt was made to append to an internal file.

RUN-TIME FORTRAN I/O EXCEPTION: 1272H

The input data transfer conflicts with CARRIAGE = specifier.

RUN-TIME FORTRAN I/O EXCEPTION: 1273H

The next I/O list element and repeatable edit descriptor do not match.

RUN-TIME FORTRAN I/O EXCEPTION: 1274H

Invalid repeat specifier in FORMAT statement.

RUN-TIME FORTRAN I/O EXCEPTION: 1275H

Expected repeatable edit descriptor is missing.

15-17

Errors and Warnings Fortran-86

15-18

RUN-TIME FORTRAN I/O EXCEPTION: 1276H
Recursion error. Attempt was made to perform I/O on a file which is active on the
same unit.

RUN-TIME FORTRAN I/O EXCEPTION: 1282H
Attempt to read or write past the ENDFILE record.

RUN-TIME FORTRAN I/O EXCEPTION 1283H
The integer field on input does not conform to the decimal signed integer syntax.

RUN-TIME FORTRAN I/O EXCEPTION 1284H
The floating point field on input does not conform to the run-time signed number
syntax.

RUN-TIME FORTRAN I/O EXCEPTION 1285H
The integer field on formatted input defined a signed integer which could not fit into
the INTEGER*2 range.

RUN-TIME FORTRAN I/O EXCEPTION 1286H
The integer field formatted input defined a signed integer which could not fit into
the INTEGER * 2 range.

RUN-TIME FORTRAN I/O EXCEPTION 1287H
The floating point field on formatted input defined a signed number whose magni
tude was too large to fit into the temp real range.

RUN-TIME FORTRAN I/O EXCEPTION 1288H
The floating point field on formatted input defined a signed number whose magni
tude was too small to fit into the tempreal range.

RUN-TIME FORTRAN I/O EXCEPTION 1289H
The integer field on formatted input defined a signed integer which could not fit into
the INTEGER * 1 range.

RUN-TIME FORTRAN I/O EXCEPTION: 12A1H
The string passed in the STATUS specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN I/O EXCEPTION: 12A2H
The string passed in the ACCESS specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN I/O EXCEPTION: 12A3H
The string passed in the FORM specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN I/O EXCEPTION: 12A4H
The string passed in the BLANK specifier of an OPEN statement is illegal.

Fortran-86 Errors and Warnings

RUN-TIME FORTRAN lID EXCEPTION: 12ASH

The string passed in the CARRIAGE specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN lID EXCEPTION: 12A6H

A FILE= specifier must be given in the OPEN statement when STATUS='NEW'.

RUN-TIME FORTRAN lID EXCEPTION: 12A7H

A FILE= specifier must be given in the OPEN statement when STATUS='OLD'.

RUN-TIME FORTRAN lID EXCEPTION: 12A8H

A FILE/ specifier must not be given in the OPEN statement when STATUS/
'SCRATCH'.

RUN-TIME FORTRAN lID EXCEPTION: 12A9H

Of those attributes specified in the OPEN statement, only BLANK =,
CARRIAGE=, and/or RECL= can change for an existing file-unit connection.

RUN-TIME FORTRAN lID EXCEPTION: 12AAH

The integer value specified for RECL = in the OPEN statement must be positive.

RUN-TIME FORTRAN lID EXCEPTION: 12ABH

RECL= must not be specified in the OPEN statement when
ACCESS='SEQUENTIAL' and FORM='UNFORMATTED'.

RUN-TIME FORTRAN lID EXCEPTION: 12ACH

RECL= must be specified in the OPEN statement when ACCESS='DIRECT'.

RUN-TIME FORTRAN lID EXCEPTION: 12ADH

RECL= attribute of an existing connection must not be changed in the OPEN state
ment unless ACCESS='SEQUENTIAL' and FORM='FORMATTED'.

RUN-TIME FORTRAN lID EXCEPTION: 12AEH

BLANK = must not be specified in the OPEN statement for a new connection when
FORM = 'UNFORMATTED'.

RUN-TIME FORTRAN lID EXCEPTION: 12AFH

BLANK = must not be specified in the OPEN statement for an existing connection
when FORM='UNFORMATTED'.

RUN-TIME FORTRAN lID EXCEPTION: 12BOH

CARRIAGE= must not be specified in the OPEN statement for a new connection
when FORM='UNFORMATTED'.

RUN-TIME FORTRAN lID EXCEPTION: 12B1H

CARRIAGE= must not be specified in the OPEN statement for an existing connec
tion when FORM='UNFORMATTED'.

15-19

Errors and Warnings Fortran-86

15-20

RUN-TIME FORTRAN liD EXCEPTION: 12B2H

The file-unit does not exist.

RUN-TIME FORTRAN liD EXCEPTION: 12C1H

KEEP must not be specified for a file whose status prior to execution of the CLOSE
statement is SCRATCH.

RUN-TIME FORTRAN liD EXCEPTION: 12C2H

The string passed in the STATUS specifier of a CLOSE statement is illegal.

RUN-TIME FORTRAN liD EXCEPTION: 12D1H

The external unit specified by a BACKSPACE statement was not connected.

RUN-TIME FORTRAN liD EXCEPTION: 12D2H

The external unit specified by a BACKSPACE statement was not connected for
sequential access.

RUN-TIME FORTRAN liD EXCEPTION: 12D3H

Backspacing over records written using list-directed formatting is illegal.

RUN-TIME FORTRAN liD EXCEPTION: 12E1H

The external unit specified by a REWIND statement was not connected.

RUN - TIM E F O.R T RAN I IDE X C E P TID N: 1 2 E 2 H

The external unit specified by a REWIND statement was not connected for sequen
tial access.

RUN-TIME FORTRAN liD EXCEPTION: 12F1H

The external unit specified by an END FILE statement was not connected.

RUN-TIME FORTRAN liD EXCEPTION: 12F2H

The external unit specified by an ENDFILE statement was not connected for sequen
tial access.

RUN-TIME liD EXCEPTION: 9102H

The end of file was encountered when illegal.

RUN-TIME liD EXCEPTION: 9103H

The integer field on input does not conform to the decimal signed integer syntax.

RUN-TIME liD EXCEPTION: 9104H

The floating-point field on input does not conform to the run-time signed number
syntax.

Fortran-86 Errors and Warnings

RUN-TIME 1/0 EXCEPTION: 910SH
The integer field on formatted input defined a signed integer which could not fit into
the INTEGER 2 range.

RUN-TIME 1/0 EXCIEPTION: 9106H
The integer field on formatted input defined a signed integer which could not fit into
the INTEGER 4 range.

RUN-TIME 1/0 EXCEPTION: 9107H
The floating-point field on formatted input defined a signed number whose magni
tude was too large to fit into the TEMP REAL range.

RUN-TIME 1/0 EXCEPTION: 9108H
The floating-point field on formatted input defined a signed number whose magni
tude was too small to fit into the TEMPREAL range.

RUN-TIME 1/0 EXCEPTION: 9109H
The integer field on formatted input defined a signed integer which could not fit into
INTEGER 1 range.

15.3.2 Operating Environment ErrOl'

RUN-TIME EXCEPTION:· 1500H
Configuration exception. Call your local Intel representative.

RUN-TIME EXCEPTION: 1501H
Command line preconnection facility has detected invalid preconnection syntax.

RUN - TIM E E X C E P T ION: 1 5 0 2 H
An attempt was made to open a file which should have not already existed.

RUN-TIME EXCEPTION: 1503H
Configuration error. File not open for write access.

RUN - TIM E E X C E P T ION: 1 5 0 4 H
Configuration error. File not open for read access.

RUN - TIM E E X C E P T ION: 1 5 0 5 H
More than six file's descriptors were requested from the R TNULL descriptor
allocator.

RUN-TIME EXCEPTION: 1506H
Unformatted sequential n~cord is inconsistent.

15-21

Errors and Warnings Fortran-86

15-22

RUN-TIME EXCEPTION: 1S07H
Seek out or range. Attempt to seek when offset (i.e., rec_Ien * rec_num >
(2**30-0.

RUN-TIME EXCEPTION: 1S08H
DIRECT record length too large (maximum allowable: formatted, 65,503, unfor
matted, 65,503).

15.3.3 Integer Exceptions

RUN-TIME INTEGER EXCEPTION: 8000H
8-bit, 16-bit, or 32-bit signed integer zero divide.

RUN-TIME INTEGER EXCEPTION: 8001H
8-bit, 16-bit, or 32-bit signed integer overflow.

15.3.4 Range and Check Exceptions

RUN-TIME EXCEPTION: 8017H
Compiler generated check exception (e.g., stack overflow).

15.3.5 Floating-Point Function Exceptions

Floating-point function error messages take the following form:

f f f RUN - TIM E FLO A TIN G - POI N T function E X C E P T ION status
f f f N EAR L 0 CAT ION hhhhh H
fff JOB ABORTED

The function can be one of the following:

SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2
ALOG
ALOGIO
INT
AINT

ANINT
NINT
RINT
IRINT
SINH
COSH
TANH
SQRT
DIM
EXP
MOD

RMD
SIGN
y**x
Y**i
MIN
MAX
CDPRJ
CPRJ
CDCMPLX
CMPLX

Fortran-86 Errors and Warnings

The status is the hexadecimal value of the 8087 STATUS register and the location
hhhhh is the 20-bit physical address of the location of the exception. The 8087
STATUS values are described in the 8086 Family User's Manual Numerics Supple
ment. General floating-point exceptions are discussed in the next section.

15.3.6 Floating-Point 8087 Exceptions

Floating-point error messages take the following form:

* * *
* * *
* * *
* * *
* * *

R U H - T I ~1 E 8 0 8 7 E X C E P TID H status
I H 5 T R [) P COD E op
M E MOP ADD RES 5 hhhhh H
H EAR L [) CAT I 0 H hhhhh H
JOB AB[)RTED.

The status is the hexadecimal value in the 8087 STATUS register. The op is the
hexadecimal value of the 8087 instruction opcode register. The hhhhhH is a hexadec
imal 20-bit physical address. The 8087 registers are described in the 8086 Family
User's Manual Numerics Supplement.

There are six possible 8087 floating-point, or exception conditions: invalid operation,
denormalized operand, zero divide, overflow, underflow, and precision. Not all excep
tions are errors.

This section first discusses the meaning of the six types of exceptions, what conditions
cause them, and the actions performed when each exception occurs with the corre
sponding exception controls unmasked. The 8086 Family User's Manual Numerics
Supplement discusses the unmasked case.

Section 7.6 contains explanations of rounding, denormalized and unnormalized
numbers, unnormalized arithmetic, infinity arithmetic, and NaNs. These discussions
should suffice for Fortran .. 86 users; however, if you are also writing modules in other
languages to interface with the 8087 chip or emulator, you may wish to see the 8086
Family User's Manual Numerics Supplement for a fuller explanation of some topics.

NOTE
Fortran-86 presets the 8087 computation modes and exception masks
(explained in the 8086 Family User's Manual Numerics Supplement) to the
following recommended settings:

• The infinity arithmetic mode is projective.

• The rounding mode is round-to-nearest.

• The precision mode for intermediate results is 64 bits of precision.

• The denormal arithmetic mode is warning mode.

• All 8087 exception conditions are masked except invalid operation, which
is unmasked.

• The 8087 interrupt enable mask bit is zero (interrupt enabled).

You can change the computation modes and exception masks in a Fortran-86 program
by using the 8087 control intrinsics (see Section 6.l.2.3). The following discussions
assume that you have not changed any of these settings. If you use any of the functions
SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, EXP, ALOG, ALOGIO, SINH,

15-23

Errors and Warnings

15-24

COSH, TANH, y**x, y**;, NINT, ANI NT, MOD, or RMD you must not unmask
the precision error and the precision exception bit in the 8087 STATUS word is
undefined after the operation is completed.

15.3.6.1 Invalid Operation

An invalid operation exception occurs when either an operand is invalid for the speci
fied operation, or the operation itself is invalid. This exception generally indicates a
program error such as a reference to an uninitialized variable; so even if you mask
all other exceptions, it is recommended that you leave Invalid Operation unmasked.
An Invalid Operation exception is signalled when anyone of the following conditions
occurs:

• One or more of the operands is a Trapping NaN.

• One or more of the operands in the computation sequence was unnormalized or
denormalized, and the result cannot be guaranteed because significant informa
tion was lost. (Not all operations on unnormalized or denormalized numbers result
in loss of significant information; those that do not will not signal Invalid
Operation.)

• Any of the following operations is attempted: infinity + infinity (in projective
mode), infinity-infinity, O.O*infinity, infinity*O.O, infinity/infinity, 0.0/0.0, normal
number /unnormalized number, normal number /denormalized number (in
warning mode).

• In INT, NINT, or IRINT, the operand is too large to fit into the INTEGER
format (INTEGER *2 and INTEGER *4 only).

• In comparisons using any of the relational operators, .LT., .LE., .GT., or .GE.,
the two operands are '''unordered'.

The invalid operation is a "before" error, so that when unmasked, the original operands
are available to the exception handler.

The following are specific cases that cause invalid operation exceptions:

• SQRT(x) where x is a negative number, a denormal number (in warning mode),
an unnormal number, or ± infinity (in projective mode).

• SIN(x), COS(x), TAN(x) where x is ± infinity, or I x I >2-63 and x is an un nor
mal number.

• ARCSIN(x), ARCCOS(x) where x is ± infinity, or I x I >2-6~ and unnormal
number, or I x I > 1.

• ARCTAN(x), EXP(x) I x I >2-63 and an unnormal number.

log (x), 10gI0(x) where x is a negative number, a denormal (in warning mode)
or unnormal number, or ± infinity (in projective mode).

• exp(x) where x is ± infinity (in projective mode), or I x I >2-63 and x is an
unnormal number.

SINH(x), COSH(x), T ANH(x) where x is an unnormal number and I x I >2 -63.

± infinity **x, 0**0, and ** ± infinity (all in projective mode).

• - infinity ** x unless x is an INTEGER whole number, ± infinity **0, and 0**0
(all in affine mode).

• y**x where y is a negative number and x is not a whole number.

• y**i where; is a negative number, y is an un normal number, and; cannot be
converted into a 32-bit integer.

• AMOD(y,x), RMD(y,x) where y is ± infinity and x is unnormal or denormal.

Fortran-86

Fortran-86 Errors and Warnings

• ATAN2(y,x) where)(' and yare unnormal numbers and I ylx I >2-63 , I x I = I y I
=0, or I y I == I y I = infinity.

• DIM(x,y) where x and yare infinite (in projective mode).

In some cases, an 8087 invalid exception is raised for valid operations. When not
masked (default), the run-time system intercepts the exception before the error handler
is invoked and causes program execution to continue normally. These cases are:

• Any otherwise valid arithmetic or conversion operation involving a non-Trapping
NaN.

• A comparison between two unordered operands, neither one a Trapping NaN,
using the relational operators .EQ. and .NE. See Section 7.7 for descriptions of
NaN's and unordered. relations.

If the invalid exception is masked at the time of the operation, then the same results
occur, but the exception flag is undefined.

15.3.6.2 Denormalized Operand

This exception arises when one or more of the operands is a denormalized number. It
can occur if a masked underflow exception has occurred in a previous operation. It is
never an error.

The unmasked denormalized exception implements "normalizing mode" arithmetic.
The run-time system intercepts these exceptions and takes action as described in
Section 7.7.

15.3.6.3 Zero Divide

In a division operation, if the divisor is a normal zero and the dividend is a finite
nonzero number, then the zero divide exception occurs. If this exception is masked,
the result is infinity. If unmasked, an error occurs and the original operands are avail
able to the exception handler.

Zero divide occurs when an infinity is introduced by an operation that does not
overflow. Infinity is the exact answer of the zero divide. The following specific cases
result in operation exceptions:

• LOG(O)

• LOGIO(O)

• 0** x, where x is negative

• 0**;, where i is negative

15.3.6.4 Overflow

If a rounded result is finite but its exponent is too large to represent in the result
floating-point format, the overflow exception occurs. If this exception is masked, an
overflow yields infinity, and the precision exception also occurs.

For the operations EXP, SINH, COSH, y**x, and y**;, overflow is a "before" error.
Consequently, when it is unmasked, the original operands are available to the excep
tion handler.

15-25

Errors and Warnings

15-26

For the operations "+" "-" "*,, "j" and DIM overflow is an "after" error , , '" .
Consequently, when it is unmasked, a result with a wrapped exponent is available to
the exception handler.

15.3.6.5 Underflow

The underflow exception occurs when either of the following conditions arises:

• A rounded result has too small an exponent to be represented in the result float
ing-point format without normalizing.

• An intermediate product or quotient, where neither operand is a normal zero, is
indistinguishable from a normal zero. (This cannot occur with normalized
operands.)

If the Underflow exception is masked, the result is a correctly rounded denormalized
number or zero.

For the operations y**x and y**;, underflow is a "before" error. Consequently, when
it is unmasked, the original operands are available to the exception handler.

For the operations "+", "-', "*", "j", DIM, ATAN(y,x), AMOD, and RMD,
underflow is an "after" error. Consequently, when it is unmasked, a result with a
wrapped exponent is available to the exception handler.

15.3.6.6 Precision

If the correctly rounded result of an operation is not the same as the unrounded value,
the precision exception occurs. If this exception is masked, no special action is
performed; the correctly rounded result is delivered.

Fortran-86

• ,0\ C APPENDIX A
DIFFERENCE~S BETWEEN FORTRAN-a6 n

_A_N_D _____ o_T_HE_R __ V_E_R ___ s---.-;;Io~N___.;.S~O_F_F_O.;..._R_T_R_A_N___I

This appendix lists the differences between Fortran-86 and other versions of Fortran.
Specifically, the appendix describes the:

• Features of Fortran-86 that are not part of the American National Standards
Institute (ANSI) Fortran 77

• Deviations from the ANS-1978 Standard

• Features of Fortran-86 that are different from Fortran-80

The number that appears after each feature listed in Sections A.I and A.3 refers to
the section or chapter of this manual where the feature is described.

A. 1 Extensions to Fortran 77

• Binary-, octal-, and h(~xadecimal-based INTEGER constants. (5.1.1)

• INTEGER values with storage-unit lengths of I and 2 bytes. (5.1.1)

• The TEMPREAL data type. (5.1.2)

A REAL *8 data type that is equivalent to the DOUBLE PRECISION data
type. (5.1.2.2)

• LOGICAL values with storage unit lengths of 1 and 2 bytes. (5.1.3)

• Values of different types and lengths within the same storage sequence. (5.10.1)

• 8087 intrinsics. (6.1.2,,3)

• The intrinsic functions INTI, INT2,][NT4, RINT, IRINT, IDRINT, and
TREAL. (6.1.2.2)

• The RMD intrinsic function. (6.1.2.2)

• The % VAL function. (6.1. 2. 6)

• Bitwise Bool(~an operations. (7.5)

• Implicit length extensions for INTEGER, REAL, or LOGICAL expressions in
assignment statements. (8.1.1)

A format descriptor to suppress a carriage return on a terminal output device at
the end of a record. (9.4.1.2)

• Port-I/O intrinsics for byte and word values. (6.1.1.1)

• The Band Z edit descriptors in the FORMAT statement. (9.4.1.1)

• The CARRIAGE sp(~cifier and the RECL specifier for sequential, formatted
access in an OPEN statement. (9)

• Hollerith format specifications in INTEGER, REAL, LOGICAL, and DOUBLE
PRECISION arrays. Hollerith data-type constants. (Appendix F)

• COMPLEX'" 16 data type.

• Operations and intrinsic functions for COMPLEX and COMPLEX* 16 data.

A-I

Differences Hetween Fortran-86 and Other Versions

A-2

A.2 Deviations from the ANS-1978 Standard

• The ENTRY and alternate return features are not supported.

• The FORMAT edit descriptors T, TR, TL, S, SS, SP, Iw.rn, and colon are not
supported.

• The INQUIRE statement is not supported.

• REAL and DOUBLE PRECISION control expressions for DO and computed
GO TO are not supported.

The PARAMETER statement is restricted to simple constants of any data type,
or expressions of type INTEGER. Conversions between INTEGER and floating
point constants are not supported.

• IOSTAT variables must be of type INTEGER*2.

The Fortran-86 source line size is not limited to 72 characters; up to 132 source
characters per line are accepted by the compiler. This feature is designed to
simplify program entry using a video terminal.

• The DATA statement may not imply conversion between INTEGER and
floating-point constants.

A.3 Differences Between Fortran-80 and Fortran-86

DATA statements can appear anywhere after the specification statements. (2.2.1)

• The DOUBLE PRECISION data type. (5.1.2.3)

• The TEMPREAL data type. (5.1.2.4)

• CHARACTER data-type functions and substrings. (5.4)

The PARAMETER statement. (5.3)

Lower and upper bounds for array dimensions. (5.4.1)

Generic intrinsic-function names. (6.1.2.2)

The intrinsic functions INTI, INT2, INT3, RINT, IRINT, IDRINT, RMD,
and TREAL. (6.1.2.2)

• Statement functions. (6.1.2.4)

• The %VAL function. (6.1.2.6)

The D and G edit descriptors. (9.4.1.1)

• Port I/O intrinsics for byte and word values. (6.1.1. 1)

• 8087 intrinsics (6.1.2.3)

New execution-environment interfaces. (Appendix I)

Changed OPEN-statement semantics. (9.2.1)

Revised error messages. (15)

The COMPLEX data type. (5.1.2.5)

Fortran-86

I
• In) C APPENDIX B

PROCESSOR-DEPENDENT
________ FE~A...;;....T;;.......;;;U;........R-=E~S_O~F -...;;.F.....;;O;.....;...R..;....;..T....;;.....;R~A;.;;......;.N.....;;-8;.....;;.6---1

n

The following Fortran-86 features are dependent on the 8086, 8087, and 8088 micro
processors on whi.ch Fortran-86 programs run. Following each entry is a chapter or
section reference where thl~ feature is described in this manual.

• Equivalence of upper- and lowercase letters in the character set. (3.2.2)

• Values of different types and lengths within the same storage sequence. (5.10.1)

• Port-I/O intrinsics for byte and word values. (6.1.1.1)

• Interrupt procedures with the INTERRUPT control. 01.4.10)

• The %VAL function. (6.1.2.6)

• 8087 control intrinsics. (6.1. 2. 3)

• Reentrant subprograms with the REENTRANT control. (11.4.18)

• Unit preconnection. (14.5)

• The size and structure: of storage allocation for variables. (Appendix G)

B-1

• @ I APPENDIX C n ~ __________ , ____ C_O_M_P_IL_E_R __ C_A_P_A_C_IT_Y~

This appendix lists the limits imposed on Fortran-86 programs by either Fortran-86
or its environment.

• The compiler accepts up to 19 continuation lines.

• An INTEGER * 1 value must be within the range -128 to + 127.

• An INTEGER *2 value must be within the range - 32,768 to + 32,767.

• An INTEGER *4 value must be within the range - 2, 147,483,648 to
+2,147,483,647.

• A REAL value must have magnitude approximately in the range 1 1.2 * 10(-38) 1
to 13.4 * 10(38) I.
A DOUBLE PRECISION value must have magnitude approximately in the range
13.4 * 10(-308) I to 11.8 * 10(308) 1 .

• A TEMPREAL value must have the magnitude approximately in the range 13.4
* 10(-4932) 1 to 1 1.2 * 10(4932) 1 .

• INTEGER operations addition, subtraction, multiplication, division, and
exponentiation are performed modulo 256 for two INTEGER * 1 values, modulo
65,536 for two INTEGER *2 values and modulo 4,294,967,296 otherwise.

The compiler performs INTEGER assignment modulo 256, modulo 65,536, or
modulo 4,294,967,296 if the target variable has the data type INTEGER * 1,
INTEGER *2, or INTEGER *4, respectively.

Subscript values are taken modulo 65,536 for arrays declared to be less than
65,536 bytes in length; otherwise modulo 4,294,967,296 applies.

• The variable specified in an IOSTAT option must be INTEGER *2.

• The maximum record lengths for I/O are as follows: 65535 for unformatted
sequential, 32767 for formatted direct, and 32767 for unformatted direct. There
is no limit to the record length for formatted sequential.

C-l

APPENDIX D
LANGUAGE SUMMARY

This appendix summarizes the Fortran-86 statements, and special punctuation
symbols.

D. 1 Statement Summary

ASSIGN Statement

Syntax

ASS I G N stl T IJ name

Function

Assign a statement label stl to an integer variable name

Category

Executable

Assignment Statement

Syntax

name = exp

Function

Assign the value of an expression exp to a variable name

Type

Arithmetic, Logical, Character

Category

Executable

BACKSPACE Statement

Syntax

B A C K 5 PAC E unit
B A C K 5 PAC E arg-list

D-l

Language Summary

D-2

Function

Position file connected to unit before preceding record

where

unit

arg-list

BACKSPACE

Category

Executable

is the unit specifier.

is

[U Ii IT·]unit unit specifier
I 0 5 TAT • stname I/O status specifier
ERR • stl error specifier

is for sequential files only.

BLOCK DATA Statement

Syntax

B L 0 C K D A T A [name]

Function

Identify and optionally name a BLOCK DATA subprogram.

Category

Nonexecutable

CALL Statement

Syntax

CALL name[C[arg[,arg]. .. ;>]

Function

Call the subroutine, name with actual argument(s) argo

Category

Executable

CHARACTER Statement

Syntax

C H A R ACT E R [* len] name [* len][I name [* len]] ...

Fortran-86

Fortran-86

Function

Specify name and len for character type variable or array.

Category

Nonexecutable, specification, type

CLOSE Statement

Syntax

C LOS E (close-list)

Function

Close the file described by close-list

where

close-list

Category

Executable

IS

[U I~ I T =] unit
I 0 5 TAT = stname
ERR = stl
5 TAT U 5 = stat

Comment Line Statement

Syntax

unit specifier
I/O status specifier
error specifier
file disposition specifier

Language Summary

The character 'C' or asterisk (*) in position 1; any other characters in positions 2-72.

Function

Program documentation

Category

Nonexecutable

COMMON Statement

Syntax

COM M 0 N[/name]/]nlist[[I]/name/nlist] ...

D-3

Language Sl\lmmary

D-4

Function

Name and define the contents of COMMON block(s), name. If name is not speci
fied, a blank COMMON is defined.

Category

Nonexecutable, specification

COMPLEX and COMPLEX· 16 Type Statement

Syntax

COM P LEX [* len], name [* len], name [* len] , ...

Function

Declares a variable name, function name, or dummy procedure to be of type
COMPLEX with length len.

Category

Nonexecutable, specification type.

CONTINUE Statement

Syntax

CONTINUE

Function

No effect unless this is the terminal statement of a DO loop; then action depends on
the DO variable.

DATA Statement

Syntax

D A T A nlist / clist ...

Function

Assign values in clist to the items in nlist.

Category

Nonexecutable

Fortran-86

Fortran-86

DIMENSION Statement

Syntax

DIM E H S I 0 H array (d) [, array (d)] ...

Function

Name array(s) and define dimension(s) d.

Category

Nonexecutable, specification

DO Statement

Syntax

DO Sf/[,]var=e1, e2[,e3]

Function

Define the beginning of DO loop and set up loop counters

where

sfl

var

e1

e2

e3

Category

Executable

is label of last (executable) statement in DO loop.

is DO loop index variable.

is initial loop index value.

is loop termination value.

loop increment/decrement value.

DOUBLE PRECISION Statement

Syntax

D 0 U B L E PRE CIS I 0 H name[, name]

Function

Specify name(s) for a double precision type variable or array.

Category

Nonexecutable, specification, type

Language Summary

0-5

Language Summary

0--6

ELSE Statement

Syntax

ELSE

Function

Provides alternate execution path from IF or ELSE IF.

Category

Executable, block IF

ELSE IF Statement

Syntax

E L S ElF (exp) THE ti

Function

Continue execution if expression exp is TRUE.

Category

Executable, Block IF

END Statement

Syntax

EtiD

Function

Terminate main program; return from subprogram; mark end of program unit.

Category

Executable

END IF Statement

Syntax

E ti D I F

Function

Mark end of IF block; continue execution.

Fortran-86

Fortran-86 Language Summary

Category

Executable, block IF

ENDFILE Statement

Syntax

E H D F I L E unit
E H D F I L E (arg-list)

Function

Write end-of-filt~ record on file connected to unit

where

unit

arg-list

ENDFILE

Category

Executable

is the unit specifier.

is

[U HIT =]unit unit specifier
I 0 5 TAT • stname I/O status specifier
ERR • stl error specifier

is for sequential files only.

EaUIV ALENCE Statement

Syntax

E QUI V ALE H C E (nlist) [I (nlist)]] ...

Function

Allow entries in nlist to share the same storage area.

Category

Nonexecutable, specification

EXTERNAL Statement

Syntax

EXT E R HAL name [I name] ...

Function

Allows the name of an <:~xternal/dummy procedure name to be used as an actual
argument.

D-7

Language Summary

D-8

Category

Nonexecutable, specification

FORMAT Statement

Syntax

stl FOR MAT <[flist]>

Function

Specifies the format of formatted I/O data where flist includes the following repeat
able and nonrepeatable edit descriptors

Iw
FW,d
Ew,d[Ee]
Dw,d
Gw,d[Ee]
Lw
A[w]
Bw
Zw

Category

Nonexecutable

Repeatable

integer
real
real
real
real
logical
al phan umeric
binary
hexadecimal

FUNCTION Statement

Syntax

[type] FUN C TID N nameqarg [) arg] ...]>

Function

'string'
nHstring
nX

/
kP
BN
BZ
$

N onrepeatable

literal
Hollerith
record position
record termination
scale factor
blank
blank
alternate-record
termination

Name the FUNCTION subprogram and define its type and dummy argument(s).

Category

Nonexecutable

GO TO Statement

Syntax

GOT 0 stl
GOT 0 (stl [) stl] ...) exp
GOT 0 name [(stl [) st/] ...)]

Fortran-86

Fortran-86 Language Summary

Function

Transfer control to statement labelled 5tl or ASS I G NED to variable name. The first
branches unconditionally; the second branches based on the value of the integer
expression exp; the third branches unconditionally, but statement label corresponding
to name must be included in list.

Category

Executable

IF Statement

Syntax

I F (exp) 51) 52) 53
I F (exp) 5tmt
I F (exp) THE N

Function

Transfer control to a specified statement or perform specified action(s) based on the
value of the expression expo In the first format, exp is an arithmetic expression and
51, 52, and 53 are statement labels; control passes to:

51 if exp<O
52 if exp=O
53 if exp>O

[n the second format, the statement 5tmt is executed if the logical expression is TRUE.
Third format introduces IF block; statements following IF-THEN are executed if
logical expression is TRUE.

Category

Executable

IMPLICIT Statement

Syntax

IMP LIe I T n(ype(let [let]. ..) ...

Function

Define implicit typing for variable names whose first letter is let or in the range
let-let.

Category

Nonexecutable, specification

D-9

Language Summary

0-10

INTEGER Statement

Syntax

I N T E G E R [* len] name[* len][name[* len]] ...

Function

Define name to be of type integer with length len.

Category

Nonexecutable, specification, type

INTRINSIC Statement

Syntax

I N T R INS I C name[~ name] ...

Function

Allow intrinsic function(s) to be used as actual argument(s).

Category

Nonexecutable, specification

LOGICAL Statement

Syntax

LOG I CAL [*len]name[*lenH I name[*len]]. ..

Function

Define name to be of type logical with length len

Category

Nonexecutable, specification, type

OPEN Statement

Syntax

OPE N (OPEN-LIST)

Fortran-86

Fortran-86 Language Summary

Function

Open the specified file with open-list consisting of the following:

[U HIT •]unit
I 0 5 TAT • stname
ERR • st/
F I L E • 'name
5 TAT US· stat
Ace E 5 5 • ace
FOR M • 'mat
R EeL • ree/en
B LA H K • b/nk
CAR R I AGE • car

Category

Executable

PAUSE Statenlent

Syntax

PAUSE[msg]

Function

unit specifier
I/O status specifier
error specifier
filename specifier
fill:! status specifier
access method specifier
formatting specifier
record length specifier
blank specifier
carriage control specifier

Halt program execution; n~sume,under control of external signal; msg is 1-5 digits or
a character constant.

Category

Executable

PARAMETER Statement

Syntax

PAR A MET E R (name • exp ...)

Function

Assigns a name to a constant expression expo

Category

Nonexecutable, specification

PRINT Statement

Syntax

P R I H T f[I outlist]

D-ll

Language Summary

D-12

Function

Output items in outlist to preconnected unit in format specified by f.

Category

Executable

PROGRAM Statement

Syntax

PRO G RAM name

Function

Optionally name main-program unit. If missing, the compiler will assign @MAIN as
the program name.

Category

Nonexecutable

READ Statement

Syntax

REA D (ctl-list> [inlist]
REA D f [, inlist]

Function

Input items in inlist as directed by specified controls in ctl-list

[U HIT a] unit
[FMTa]f
R E C a recno
I 0 5 TAT a stname
ERR a stl
ENDa!tl

unit specifier
format specifier
record number specifier
I/O status specifier
error specifier
end-of-file specifier

Second format is for preconnected units; f is the format specifier.

Category

Executable

REAL Statement

Syntax

REA L [*len]name[*/enH ,name[*/en]]. ..

Fortran-86

Fortran-86

Function

Define name to be of type real with length len.

Category

Nonexecutable, specification, type

RETURN Statement

Syntax

RETURI'I

Function

Return from FUNCTION or SUBROUTINE subprogram.

Category

Executable

REWIND Statement

Syntax

R E W I 1'1 D unit
R E W I 1'1 D (arg-list>

Function

Reposition file connected to unit at its initial point with arg-list including:

[U 1'1 I T =] unit
I a 5 TAT = stname
ERR = stl

unit specifier
I/O status specifier
error specifier

REWIND is for sequential files only.

Category

Executable

SAVE Statement

Syntax

5 A V E name[I name] ...

Language Summary

D-13

Language Summary

D-14

Function

Save data in name on return from subprogram.

Category

Nonexecutable, specification

Statement Function Statement

Syntax

name <[arg [J arg]. ..]) • exp

Function

Define function name

Category

Nonexecutable

STOP Statement

Syntax

5 TOP [msg]

Function

Terminate program execution, with optional message, msg.

Category

Executable

SUBROUTINE Statement

Syntax

5 U B R 0 UTI N E name [<[arg [J arg] ...]>]

Function

Define SUBROUTINE subprogram name with dummy argument(s) argo

Category

Nonexecutable

Fortran-86

Fortran-86

TEMPREAL Statemelrlt

Syntax

T E M PRE A L nlilme [, name] ...

Function

Define name to be of type: tempreal.

Category

Nonexecutable, specification, type

WRITE Statement

Syntax

W R I T E (ctl-list) [outlist]

[U NIT •] unit
[FMT-]f

unit specifier
format specifier

R E C - recno
I 0 5 TAT - stname
ERR - stl

record number specifier
I/O status specifier
error specifier

0.2 Symbol Summary

Table D-l lists the arithmetic operators and their meanings.

Table D-l. Arithmetic Operators

Opelrator Meaning

** Exponentiation
/ Division
* Multiplication
+ Addition
- Subtraction

Table D-2 lists the relational operators and their meanings.

Table D-2. Relational Operators

Operator Meaning

.LT. Less Than

.LE. Less Than or Equal To

.EO. Equal To

.NE. Not Equal To

.GT. Greater Than

.GE Greater Than or Equal To

Language Summary

0-15

Language Summary Fortran-86

Table D-3 lists the logical operators and their meanings.

Table D-3. Logical Operators

Operator Meaning

.NOT. Logical Negation

.AND . Logical Conjunction

. OR. Logical Inclusive Disjunction

.EQV. Logical Equivalence

.NEQV. Logical Nonequivalence

D-16

ASCII HEX FORTRAN-86
CHARACTER CHARACTER

NUL 00 no
SOH 01 no
STX 02 no
ETX 03 no
EOT 04 no
ENQ 05 no
ACK 06 no
BEL 07 no
BS 08 no
HT 09 no
LF OA no
VT OB no
FF OC no
CR OD no
SO OE no
SI OF no
DLE 10 no
DCI 11 no
DC2 12 no
DC3 13 no
DC4 14 no
NAK 15 no
SYN 16 no
ETB 17 no
CAN 18 no
EM 19 no
SUB 1A no
ESC 1B no
FS 1C no
GS 1D no
RS 1E no
US 1F no
space 20 yes
! 21 no
" 22 no
23 yes
$ 24 yes
0/0 25 no
& 26 no

27 yes
(28 yes
) 29 yes
* 2A yes
+ 2B yes

2C yes
- 2D yes

2E yes
/ 2F yes
0 30 yes
1 31 yes
2 32 yes
3 33 yes
4 34 yes
5 35 yes
6 36 yes
7 37 yes
8 38 yes
9 39 yes

3A yes
3B no

< 3C no
= 3D yes
> 3E no
? 3F no

APPENDIX E
CHARACTER SET AND

COLLATING SEQUENCE

ASCII HEX FORTRAN-86
CHARACTER CHARACTER

@ 40 no
A 41 yes
B 42 yes
C 43 yes
D 44 yes
E 45 yes
F 46 yes
G 47 yes
H 48 yes
I 49 yes
J 4A yes
K 4B yes
L 4C yes
M 4D yes
N 4E yes
0 4F yes
P 50 yes
Q 51 yes
R 52 yes
S 53 yes
T 54 yes
U 55 yes
V 56 yes
W 57 yes
X 58 yes
Y 59 yes
Z SA yes
[5B no
\ 5C no
] 5D no

1\(t) 5E no
- SF yes

\ 60 no
a 61 yes
b 62 yes
c 63 yes
d 64 yes
e 65 yes
f 66 yes
9 67 yes
h 68 yes
i 69 yes
j 6A yes
k 6B yes
I 6C yes

m 6D yes
n 6E yes
0 6F yes
p 70 yes
q 71 yes
r 72 yes
s 73 yes
t 74 yes
u 75 yes
v 76 yes
w 77 yes
x 78 yes
y 79 yes
z 7A yes
{ 7B no
I 7C no
} 7D no
-- 7E no

DEL 7F no

E-I

• (I» r-- APPENDIX F n ~ ____________ H_O_L_L_E_R_IT_H __ DA_T_A __ T_Y_P_E~

This appendix describes the Hollerith data type that is a carryover from Fortran 66.
The character data type provides better processing capability but the Hollerith type
has been retained for compatability.

F. 1 Hollerith as a Data Type

Although Hollerith is a data type, a symbolic name cannot be of type Hollerith. You
identify Hollerith data (other than Hollerith constants) using an INTEGER, float
ing-point (REAL, DOUBLE PRECISION, TEMPREAL, COMPLEX,
COMPLEX*16), or LOGICAL type name. You cannot use type CHARACTER.

You can define INTEGER, floating-point or LOGICAL items with a Hollerith value
using either D A T A or READ statements. Equivalenced items become associated with
that Hollerith value also. 'When this definition occurs, the defined item loses its
INTEGER, floating-point, or LOGICAL characteristic.

F.2 Hollerith Constants

The format of a Hollerith constant is

nHh1h2 ... hn

where

n

h

is a nonzero, unsigned, integer constant.

is any representable character.

Blanks are significant in th(! character string following the H.

Hollerith constants can appear only in DATA statements and in the argument list of
CALL statements.

F.2.1 Hollerith Constants in DATA Statements

A Hollerith constant may appear in the clist of a DATA statement. The correspond
ing argument in nlist must be type INTEGER~ floating-point, or LOGICAL.

For an argument of type INTEGER, floating-point or LOGICAL, the number of
characters n in the corresponding Hollerith constant must be less than or equal to 9
(where 9 is the length of the argument in bytes). If n is less than g, the compiler
initializes the argument with the n Hollerith characters extended on the right with
g-n blank charact<:~rs.

Each Hollerith character initializes exactly one variable or array element.

F-l

Hollerith Data Type

F-2

F.2.2 Hollerith Constants in CALL Statements

An actual argument in a CALL statement can be a Hollerith constant, as long as the
corresponding dummy argument has type INTEGER, floating-point, or LOGICAL.
This is an exception to the rule that actual and dummy arguments must agree in
type. The length of the dummy argument, however, must agree with the length of the
actual argument.

F.3 Hollerith Format Specification

A format specification can be an array name of type INTEGER, floating-point, or
LOGICAL. In this case, the leftmost characters of the specified entity must contain
Hollerith data constituting a legal format specification. Blank characters may precede
the format specification and data may follow the right parenthesis ending the speci
fication with no affect.

A Hollerith format specification must not contain an apostrophe edit descriptor or
an H edit descriptor.

F.4 "A" Editing of Hollerith Data

You can use the Aw edit descriptor with Hollerith data if the corresponding I/O list
item has type INTEGER, floating-point, or LOGICAL.

Editing is the same as for Aw editing of character data, except that n is the maximum
number of characters that the system can store in the list item.

Fortran-86

• ® APPENDIX G
RUN-TIME DATA REPRESENTATIONS n

The Fortran-86 compiler determines the amount of storage needed at run time for
each data type, and the run-time support software allocates the storage when you
execute the Fortran program. This appendix describes the storage necessary for each
data type.

G. 1 Storage Units

There are two types of storage units: numeric storage units and character storage
units. A numeric storage unit is one, two, four, or ten bytes depending on the length
of the specified data type. The standard length is four bytes. A character storage unit
is always one byte. A storage sequence is a consecutive series of either numeric storage
units or character storage units depending on the type of the data ..

G.2 Data Types

Fortran-86 supports thc~ following data types: INTEGER, REAL, DOUBLE
PRECISION, TEMPREAL, COMPLEX, COMPLEX*16, CHARACTER, and
LOGICAL. Table G-I summarizes the storage necessary for each data type.

Table G-l. Summary of Storage Units

Number Length
Data Type of of Bytes

Units Unit

INTEGER*1 1 1 byte 1
INTEGER*2 1 2 bytes 2
INTEGER*4 1 4 bytes 4

REAL*4 1 4 bytes 4
REAL*8 2 4 bytes 8

DOUBLE 2 4 bytes 8
PRECISION

TEMPREAL 1 10 bytes 10

COMPLEX*8 2 4 bytes 8
COMPLEX*16 4 4 bytes 16

LOGICAL*1 1 1 byte 1
LOCIGAL*2 1 2 bytes 2
LOGICAL*4 1 4 bytes 4

CHARACTER*n n 1 byte n
(0~n~256)

-

G-I

• (R) L APPENDIX H
LINKING TO SUBPROGRAMS

___ ~W~R~IT~T~I:::;.;;;...;N;...---=..::...IN..::...........O~T...:....;;H;.;::;:;.E.;;....;:..R---=L=A...;:.;;.N..;....;:G:;;.;;....;:U:;...;;;..A~G=E~S;........J
n

This appendix describes the calling conventions used by iAPX 86,88 family languages.
These calling conventions are standardized so that a program written in
Fortran-86 can communicate with procedures, subroutines, and subprograms written
in other iAPX 86,88 family languages.

NOTE
The information contained in this appendix is dependent on current imple
mentations of the Fortran-86, PL/M-86, C-86, and Pascal-86 compilers. As
such, it is subject to change with any new version of one of these compilers.
Programmers using this appendix are urged to carefully document assump
tions based on this information to enable upgrading to new versions as they
are released, if nec(~ssary. Any changes will be reflected in the respective
language user's guides.

As a Fortran-86 programmer linking PL/M-86, C-86, or Pascal-86 procedures with
Fortran-86, you need to know the PL/M-86, C-86, and Pascal-86 data types that
match Fortran-86 data types and the order and number of arguments to supply for
the C-86, PL/M-86, or Pascal-86 parameters, described in Section H.2. You must
also know how to link subprograms, as described in Chapter 14.

PL/M-86, C-86, and Pascal-86 procedures linking with Fortran-86 procedures must
be compiled under the LARGE model of segmentation.

As a Fortran-86 programmer calling 8086/8087/8088 Macro Assembly Language
subroutines, you need to know the calling conventions of the stack and register usage
and the corresponding data types, describ(~d in this appendix, in order to write an
assembly language subroutine that can pick up the data your Fortran-86 program
passes to it. The same information is necessary for a macro assembly language
programmer calling Fortran-86 subprograms. Refer to the 8086/8087/8088 Macro
Assembler Operating Instructions for 8086-8ased Development Systems, Appendix
B, for more information about linking to the macro assembly language programs and
for examples of linking such programs to PL/M-86 programs.

H. 1 Introduction

A Fortran-86 program consists of a main program and any number of subprograms.
Not all of these program units have to be written in Fortran-86. You can choose the
appropriate language for each subprogram as long as you link the subprograms
properly with LINK86, the 8086-based link(~r. Since the iAPX 86,88 family languages
follow the same calling conventions, control will pass to a subprogram called correctly.
However, the called subprogram may not be able to deal intelligently with the data
passed to it, because different languages treat data structures differently.

NOTE
Subprogram is a term used in Fortran-86 referring to both subroutines and
functions. Procedure is the term used in Pascal-86, C-86, and PL/M-86. The
assembly language term is subroutine. In this appendix, the word subpro
gram denotes any entity written in any iAPX 86,88 language that can call a
Fortran-86 subroutine or function, or be called from a Fortran-86
subprogram.

B-1

Linking to Subprograms Written in Other Languages

H-2

If you want to link your Fortran-86 application with a subprogram written in
Pascal-86 or PL/M-86, Section H.2 should be sufficient for your needs. However, if
your main program is written in PL/M-86, you must also know how to initialize the
Fortran-86 run-time environment described in Section H.S.

Writing assembly-language subprograms to be called from Fortran-86 programs
requires an understanding of this entire appendix.

The calling convention for programs written in C differs from the calling conventions
used for Fortran-86, Pascal-86, and PL/M-86. As a result, a primary control named
INTERFACE has been provided that allows Fortran-86 programs to call procedures
and functions written in C. This control allows procedures written in C to call
Fortran-86 programs.

H.2 Calling Sequence

The calling convention for the invocation of a subprogram is essentially the same for
Fortran-86, Pascal-86, and PL/M-86 (LARGE model of segmentation), for most
equivalent argument types. The arguments are pushed on the 8086 or 8087 stack in
left-to-right order, and then the subprogram is invoked with an 8086 intersegment
call instruction. If the subprogram is a function, the returned value is delivered in
predefined 8086 registers, on the top of the 8087 stack, or via an additional reference
parameter on the 8086 stack, depending on the value's data type.

You can see the pseudo-assembly listing of this sequence if you specify the CODE
control when compiling a Fortran-86 program that contains a reference to an exter
nal subroutine or function.

The called subprogram has the responsibility of saving certain 8086 registers and
restoring them before returning to the caller. The subprogram also removes the
arguments from the stack. A pseudo-assembly listing (CODE control) of a
Fortran-86 SUBROUTINE or FUNCTION will illustrate these instruction sequences,
which are similar to those generated for Pascal-86 and PL/M-86 subprograms.

H.2.1 Arguments

There are two methods of passing arguments to other subprograms: by value and by
reference. The first method, by value, passes the actual value of the argument to the
subprogram. With the second method, by reference, the address of the argument is
passed to the subprogram, and the called subprogram must use the address to locate
the data associated with the argument. The called program must know which method
is being used for each argument.

In Fortran-86, arguments for subprograms are passed by reference on the 8086 stack.
PL/M-86 subprograms linking with Fortran-86 must use long (doubleword) pointers
to pass or accept arguments. Pascal-86 arguments must be specified as V AR param
eters when communicating with standard Fortran-86 subprograms.

Fortran-86 provides the nonstandard % VAL function (see Section 6.2.1.7) that creates
or accepts a value argument for certain simple data types. While the % V AL method
is useful for linking with existing non-Fortran subprograms, the reference method is
standard and strongly recommended to ensure software portability.

In the following sections, arguments are assumed to be passed by reference unless
otherwise qualified. Pointers are always long (double words).

Fortran-86

Fortran-86 Linking to Subprograms Written in Other Languages

H.2.2 Returned Values

The methods of returning values from function subprograms is consistent across
Fortran-86, PL/M-86, and Pascal-86 for all supported data types. The following rules
apply:

1. All floating-point data types are returned on the top of the 8087 stack. In the
case of COMPLEX values, the real component is pushed onto the stack first and
the imaginary part is pushed last.

2. A character string (Fortran only) is returned via a CHARACTER argument for
the target location provided by the calling program. The calling sequence is the
same as that of a SUBROUTINE call with the target string location specified
as the first argument (see Section H.2.3.4). The calling subprogram determines
the length of the returned string.

3. All other data types allowable as returned values are returned in 8086 registers
depending on their length: I-byte values in AL, 2-byte values in AX, and 4-byte
values in DX/AX.

H.2.3 Data Types

Data-type compatibility between Fortran-86 and PL/M-86, C-86, or Pascal-86 varies
considerably due to the characteristics of these languages and their implementation.
ASM-86, having the weakest typing of all, can be considered to be fully compatible
with Fortran-86 as long as Fortran-86 data-type conventions are followed.

H .2 .3 . 1 Floating-Point Data Types

Fortran-86's REAL *4 is identical to REAL in both PL/M-86 and Pascal-86. REAL *8
and DOUBLE PRECISKON are supported in Pascal-86 and C-86, but not in
PL/M-86. TEMPREAL is supported in Pascal-86 but not in PL/M-86 or C-86.
TEMPREAL is supported in Pascal-86 but not in PL/M-86 or C-86. Floating-point
values in ASM-86 must have data formats as defined by the 8086,87 Family User's
Guide Numerics Supplement. In addition, Fortran-86 distinguishes Trapping NaN's
from nontrapping NaN's by the most significant bit of the significand.

Use of the % V AL function with floating-point variables is not supported by floating
point data types.

H . 2 .3 . 2 Integer Data Types

INTEGER *2 in Fortran-86 is equivalent to INTEGER in both PL/M-86 and
Pascal-86, and INTEGER* 1 is compatible with the Pascal-86 subrange -128 ... + 127
and with PL/M-86's BYTE for positive values that are less than 128. INTEGER *4
is supported by lPascal-86 but not PL/M-86. INTEGER *4 is compatible with the
PL/M-86 DWORD for positive values, and LONGINT for Pascal-86. ASM-86
subprograms can support all Fortran INTEGER types when only signed operations
are used.

Any Fortran INTEGER type may be passed by value on the 8086 stack using the
% V AL function.

H-3

Linking to Subprograms Written in Other Languages

H-4

INTEGER data types used in bitwise boolean operations are compatible with
Pascal-86's SET type, if the field lengths and bit sequences are carefully observed.
See the Pascal-86 User's Guide for implementaion details.

H . 2 .3 .3 Logical Data Types

With Fortran's LOGICAL data types, only the least significant bit is relevent (0 for
.FALSE., 1 for .TRUE.), and the remaining bits are undefined. LOGICAL*l in
Fortran-86 is the same as PL/M-86's BYTE data type used in boolean expressions.
While Pascal-86's BOOLEAN type is fully acceptable to a Fortran-86 subprogram
as a LOGICAL * 1 dummy argument or returned value, the reverse is not supported.

The problem of passing or returning a LOGICAL * 1 value to a Pascal-86 subprogram
is that Pascal-86 requires all high-order bits to be zero (see Table H-l), whereas
these bits are unpredictable in Fortran-86. Use of INTEGER * 1 containing the integer
o (.FALSE.) or 1 (.TRUE.) is a way to bypass this restriction.

All Fortran-86 LOGICAL data types may be passed using the % VAL function, except
that LOGICAL *4 must not be used with % V AL when linking with Pascal-86.

Table H-l. Fortran-86 Data Types and Their Equivalents in Pascal-86,
C-86, PL/M-86, and ASM-86

Fortran-S6 Pascal-S6 PL/M-S6 ASM-S6 C-S6

REAL"4 REAL REAL DD (SOS7 real
LONGREAL single precision
TEMPREAL

REAL"S or DO (SOS7 double
DOUBLE double precision)
PRECISION

TEMPREAL DT(SOS7
extended precision)

INTEGER'1 [0 ... 127] BYTE (1) DB (signed) int

INTEGER*2 INTEGER INTEGER DW (signed) long int

INTEGER*4 DD (signed)

LOGICAL*1 BOOLEAN (2) BYTE (2) DB (2)

LOGICAL*2 DW(2)

LOGICAL*4 DD(2)

CHARACTER*n { array [1 ... n] of CHAR, {BYTE (n), {DB nDUP, int
INTEGER} (2) INTEGER} (3) word} (3) char[n]

COMPLEX'S Record Structure(STRUC struct {
Realpart: Real; Realpart Real REALPART DD/DO real REALPART;
Imagpart: Real; Imagpart Real) IMAGPART DD/DO reaIIMAGPART}
End; ENDS

COMPLEX*16 Record Structure(STRUC struct {
REALPART: LONGREAL; Realpart Real REALPART DD/DO double REALPART;
IMAGPART: LONGREAL; Imagpart Real) IMAGPART DD/DO double IMAGPART }

End; ENDS

NOTES:

(1) For values 0 through 127 only.

(2) Only rightmost Significant bit; Remaining bits are undefined, except for Pascal-S6, which requires them to be
zero.

(3) See Section H.2.3.4

Fortran-86

Fortran-86 Linking to Subprograms Written in Other Languages

H . 2 .3 .4 Character Data Types

Fortran-86 character-string arguments and returned values are passed in a unique
manner that is not directly supported by PL/M-86 or Pascal-86. Familiarity with
Fortran-86 conventions, however, will enable you to pass or accept Fortran character
strings to or from non-Fortran sUbprograms.

A Fortran-86 character-string argument has two components: the address of the string
and its length. For each CHARACTER argument, a word containing the string length
is placed (by value) immediately after the corresponding string address on the 8086
stack. Note that this description also applies to the argument inserted by the compiler
to receive the returned value of a CHARACTER function (see Section H.2.2). In
both cases, the calling subprogram specifies the string length.

[~~I
All Fortran arguments of type CHARACTER[*n] are passed in the same
manner. CHARACTER * 1 is not the same as PL/M-86's BYTE or
Pascal-86's CHAR.

Example:

A Fortran function is defined as follows:

CHARACTER*O FUNCTION CHFUN(A)
CHARACTER*(*)A

A PL/M-86 program can invoke this function using the following procedure
declaration:

CHFUN: PROCEDURE (RES,RLEN,ARG,ALEN)EXTERNAL;
DECLARE (RES,ARG) POINTER;
DECLARE (RLEN,ALEN) INTEGER;
END;

In this example, the character strings pointed to by RES and ARG are BYTE arrays
whose lengths are specified by the caller in RLEN and ALEN, respectively. Note
that any string lengths defined in the function for arguments and returned values are
ignored.

Use of % V AL with character strings is not supported in Fortran-86.

H . 2.3.5 Arrays and Structures as Arguments

Fortran-86 array arguments are fully compatible with those of PL/M-86 and Pascal-
86, as long as the component data types are compatible. The argument consists of a
long pointer (two words) on the 8086 stack. Fortran-86 has no structure or record
data type except for LARGE ARRAY support.

NOTE
For multidimensional arrays, Fortran dimensions are specified in reverse
sequence from those of Pascal-86 and PL/M-86.

Use of the % V AL function is not supported for arrays.

1-1-5

Linking to Subprograms Written in Other Languages

H-6

H . 2 .3 .6 Procedures as Arguments

Procedure arguments are fully compatible between Fortran-86 and PL/M-86
(LARGE model). They are passed by reference using a long pointer (two words) on
the 8086 stack. Use of the % V AL function is not supported.

Procedure arguments cannot be passed between Pascal-86 and Fortran-86.

H.2.4 Further Linkage Considerations

Fortran-86 subprograms always assume that the 8087 stack is completely empty on
entry to the subprogram. On return it will contain one floating-point returned value,
with the exception of COMPLEX data, which returns two values. PL/M programs
must not call Fortran-86 functions within floating-point expressions or parameter lists
since PL/M-86 does not conform to this convention.

H.2.5 C Language Considerations

The INTERFACE control handles differences in calling conventions, making it
possible to link modules written in C with those written in Fortran-86, Pascal-86,
PL/M-86, or ASM86.

H.3 Register Usage

A Fortran-86 subprogram assumes that all 8086 and 8087 registers and flags are
volatile and need not be saved/restored before returning, except for the following:

• SS stack-segment register (never changed)

• CS code-segment register (restored by RETURN)

• DS data-segment register (saved on entry, restored on return)

• BP stack-base pointer (saved on entry, restored on return)

• SP top-of-stack pointer (restored, and arguments deleted, on return)

The 8087 stack is assumed to be completely empty on entry, and will contain one
floating-point value on return, with the exception of COMPLEX data, which returns
two values.

Assembly-language subprograms called by Fortran-86 programs are expected to
conform to these Fortran-86 conventions. It is recommended that you compile sample
Fortran-86 subprograms with the CODE control as an illustration before writing your
ASM-86 subprogram.

H.4 Stack Usage

Each 8086 stack position holds one word. Arguments passed by reference normally
take two words, the segment address and offset. Character arguments require a third
word to pass the length (value). Arguments passed by value take one or two words,
depending on the data length. One-byte arguments have an undefined high-order byte.

Figure H-I shows the 8086 stack layout for a Fortran-86 subprogram.

Fortran-86

Fortran-86 Linking to Subprograms Written in Other Languages

HIGH ADDRESS

RETURN TO
STACK --t-.......... ---------1} POINTER ON

CALLER FIRST ARGUMENT (BY REFERENCE)

·LENGTH FOR CHARACTER
ARGUMENTS ONLY

STACK
POINTER ON
SUBPROGRAM
ENTRY

STACK
POINTER
DURING
SUBPROGRAM
EXECUTION

· • •

LENGTH*

~-----------~ SEGMENT ADDRESS
OFFSET

~ ~-----------~
SEGMENT ADDRESS

SEGMENT ADDRESS
OFFSET

+-.....-:=::::::.----1

LOW ADDRESS

} LAST ARGUMENT IBY REFERENCE)

} RETURN ADDRESS (CS: OFFSET)

OLD DATA SEGMENT (DS)

OLD STACK BASE (BP)

}
LOCAL VARIABLES (REENTRANT ONLY)
&TEMPORARYSTORAGE

} TEMPORARY STORAGE

NOTE: REFERENCE ARGUMENTS CAN BE REPLACED BY ACTUAL VALUES WHEN USING
%VAL FUNCTION.

Figure "-1. 8086 Stack Layout During Execution of a
Fortran-86 Subprogram 121570-7

All the elements past the return address are pushed on the stack by the called program,
and need to be saved only when they are changed by the called subprogram. The
arguments are removed on return using the RET n instruction. See the 8086/8087/
8088 Macro Assembler Operating Instructions for 8086-Based Development Systems
for further details of stack management.

H.S Initialization of the Fortran-a6 Run-Time
Environment

If your application program consists of a main program written in PL/M-86 or
ASM-86 and one or more subprograms written in Fortran-86, you must explicitly
initialize Fortran-86's run·-time environment. Fortran-86 and Pascal-86 share the same
environment.

H-7

Linking to Subprograms Written in Other Languages Fortran-86

H-8

Compiling a sample Fortran program using the CODE control illustrates this
initialization.

Each main program must execute the following two instructions before invocation of
any Fortran-86 subprogram:

CALL
CALL

Execution of your program is terminated using:

The procedure TQ_OOI initializes global I/O tables and error-handling facilities for
both Fortran-86 and Pascal-86. If called more than once during program execution,
TQ_OOI will normally destroy the previous status of the I/O system. TQ_999 closes
Fortran-86 and Pascal-86 files, and halts execution of the program.

INITFP initializes the floating-point environment. If your application does not perform
any floating-point operations, you should still include this call to allow for future
changes. See Section 14.2.2 for a description of the libraries that resolve these exter
nal references, and instructions on how to configure your object programs at link
time.

Figure H-2 lists a sample ASM-86 program that calls Fortran-86 subprograms.

8086/808118088 MACRO ASSEMBL8R ASMEX 09/01/80 PAGE

SERIES-III 808618087/8088 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE ASMEX
OBJECT MODULE PLACED IN :F1:ASMEX.OBJ
INVOCATION LINE CONTROLS: PRINT(:F1:ASMEX.LST) OBJECT(:F1:ASMEX.OBJ)

LOC OBJ LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

SOURCE

NAME ASMEX
,
;This program demonstrates procedure linkage to FORTRAN-86,
;focusing on the parameter passin~ conventions.
,
;This procedure takes four arguments for four parameters:
j8 character variable, an integer'2 value, an integer (or logical)
ivariable, and an integer function.
iThey are pushed onto the stack in that order.
iThey must be popped at exit (with RET instruction).
,
iThe prologue code saves BP, and points BP to the
istructure defined below. After prologue executes,
istack looks like this:

high memory

I (segment) I}
----PARM1-------}
I (offset) I}--->argument A
----PARM1-------}

Figure H-2. Sample ASM-86 Program

Fortran-86

0000
0002
0004
0008
OOOC
0010

0012
0014

0000 ??

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 +1
41
42
43
44
45
46
47
48
49
50
51 +1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

8086/8087/8088 MACRO ASSEMBLER

LOC OBJ

0000
0000 1E
0001 55
0002 8BEC
0004 B8----
0007 8ED8,

0009 FF5C08

R

LINE

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Linking to Subprograms Written in Other Languages

I (size) 11

PARM2 I---->argument B

I (segment) 11
----PARM3-------1--->argument C
I (offset) 11

I (segment) I}
----PARM4-------}--->argument FUNC
I (offset) I}

I old DS
---------------- }saved in prologue
I old BP
---------------- <---SP, BP point to here

low memory

$EJECT
;The required structure definition is:
,
DSA STRUC

OLD_SP
OLD_DS
RETURN
PARM4
PARM3
PARM~'

DW
DW
DD
DD
DD
DW

;Prologue code saves BP here.
;Prologue code saves DS here.
;A double word for FAR procedures.
;Pointer to code of FUNC function.
;Pointer to integer or logical variable.
;A FORTRAN-86 Integer*2 value.

LEN
PARM'

DW
DD

;(parameter passing with %VAL is not recommended)
;A FORTRAN-56 Integer*2 variable. (Length)

(Pointer to integer or logical value).

DSA ENDS

;Inside the subprogram, value arguments are accessed simply
;by using a structure reference, with BP as the base, and the
;appropriate field name as the qualifier; example: [BP).PARM3.
,
;NOTE:: The structure fields for the arguments are declared in

reverse order in which they were pushed, due to the fact
that the 8086 stack grows towards low memory.

,
;The saved value of BP and the return address must be declared
;in t.he structure, since these two items are pushed between the
;arguments and the spot pointed to by BP.

SUBPRG_DATA SEGMENT
A_LOGAL DB
SUBPHG_DATA ENDS

ASMEX

SOURCE

SUBPRG_CODE SEGMENT

,

;not combinable
;local variables go here

09/01/80 PAGE

;not combinable

;SUBPRG does nothing except call the function PARM4 and access
;the first three arguments. The prologue
;code saves BP, and then copies SP to BP, allowing the value
;arguments to be picked up conveniently with the BP register.

SUBPRG

PUBLIC
ASSUME
PROC
PUSH
PUSH
MOV
MOV
MOV

SUBPRG
CS:SUBPRG_CODE,
FAR
DS
BP
BP,SP
AX, SUBPRG_DATA
DS,AX

DS:SUBPRG_DATA

;Prologue code, preserve DS.
;Preserve BP for FORTRAN-86.

;Address local data seg.
;with DS.

2

;Call the function argument PARM4. Result is in the register(s).
;1 byte => AL, 2 byte => AX, 4 byte => DX:AX.

CALL [SI).PARM4 ;Indirect call to PARM4.

Figure 11-2. Sample ASM-86 Program (Cont'd .)

H-9

Linking to Subprograms Written in Other Languages Fortran-86

OOOC 8fl ilE 12 96 MOV CX,[BP).LEN Length of PARMl is at BP+12h.
OOOF C45E14 91 LES BX,[BP].PARMl Ptr. to PARMl 1s at BP+14h.
0012 268A01 98 MOV AL,ES;[BX) First byte of PARM1.
0015 8B5610 99 MOV J)X,[BP).P~RM2 PARM2 is at BP+l0h.
0018 Cll5EOC 100 LES BX,[BP).PARM3 Ptr. to PA RM3 is at BP+OCh.
001B 268AIF 101 MOV BL,ES:[BX) Assu'lle PARMl 15 1 byte (or 2 or 4).

102
001E 5D 103 POP BP
001F IF lOll POP DS
0020 CA1000 105 RET 16 jReturn and pop 16 parameter bytes.

106
101 SUBPRG ENDP
108 SUBPRG_CODE ENDS
109
110 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure H-2. Sample ASM-86 Program (Cont'd .)

H-IO

• (e) I APPENDIX I n ~ __________ , ____ RU_N_-_T_IM_E __ IN_T_E_R_F_A_C_E~

This appendix describes the run-time system supporting Fortran-86. It also describes
how to run your application object code on your target system and run-time interrupt
processing.

I. 1 Run-Time Support Overview

The run-time libraries map language-dependent operations into the operating system
format. Figure 1-1 shows how your application program exists in your system with
the run-time libraries.

I. 1. 1 Application Object Code Independence

In order to allow your application program developed in an Intel operating system
environment to run in your 8086-based target system without modification, a Univer
sal Development System Interface (UDI) has been provided. UDI is the specification
for handshaking between programs (including run-time libraries) and operating
systems. The specification includes calling conventions and data types that are defined
as the primitives described in the Run-Time Support Manual for iAPX 86,88
Applications.

You must provide a library, using the UDI specification, that sits between the appli
cation (including run-time libraries) and the operating system as in Figure 1-2.

Figure 1-3 shows the Series-III Development: System UDI Libraries. Figure 1-4 shows
the iRMX 86 UDI Libraries.

Note that both the run-time libraries and the application object code may make UDI
calls to the Series-III operating system.

When you move your application from one operating system to another, link your
application program and run-time libraries to the UDI libraries to support the
operating system.

If you provide your own 8086-based operating system, you must write your own UDI
library for your operating system.

APPLICATION PROGRAM OBJECT CODE

RUN-TIME LIBRARIES I
OPERATING SYSTEM I
HARDWARE

Figure 1-1. Application Program and Run-Time Libraries in
User System 121570-8

1-1

Run-Time Interface Fortran-86

APPLICATION PROGRAM OBJECT CODE

UDI
------~ UDI LIBRARY
SPECIFICATION

OPERATING SYSTEM

HARDWARE

Figure 1-2. Use of UDI Library 121570-9

APPLICATION PROGRAM OBJECT CODE

~ ~U~-~I~E~I~~~I~S ____ J _____
UDI/SERIES-IiIOPERATING

UDI SYSTEM LIBRARY
SPECIFICATION LARGE.LlB

SERIES·III OPERATING SYSTEM

SERIES-III HARDWARE

Figure 1-3. UDI Libraries in Series III Development 121570-10

APPLICATION PROGRAM OBJECT CODE

UDI :~:~:~~~~~~~ ___ J _________
•

SPECIFICATION iRMXS6
OPERATING SYSTEM LIBRARY

LRG.LlB

iRMX S6 OPERATING SYSTEM

SOS6·BASED
TARGET SYSTEM

Figure 1-4. UDI Libraries with iRMX™ 86 Operating System 121570-11

1-2

Fortran-86 Run-Time Interface

I. 1.2 Low End Application

It is also possible to use a logical record interface instead of UDI for device drivers
or simple operating systems as shown later in Figure 1-6. (See Section 1.3 for details.)

1.2 Run-Time Libraries

There are two types of run-time libraries: I/0 and numeric support.

1.2.1 I/O Run~ Time Libraries

The Fortran-86 I/O Run-Time Libraries have the format F86RNx.LIB and include:

F86RNO.LIB
F86RNl.LIB
F86RN2.LIB

F86RN3.LIB
FS6RN4.LIB

Formatting and I/O Libraries

Default Logical Record
System Libraries

1.2.2 Numerics Run-Time Libraries

The numerics libraries support the SOS7 (SOS7.LIB) or the SOS7 Emulator
(ESOS7.LIB). Common functions for high-level numerics processing are contained in
a separate library, CEL.LlB. In addition, S7ERH.LIB handles SOS7 exceptions.

1.2.3 Summar'y

Figure 1-5 shows the run-time libraries and how they interface to the operating system
and hardware.

UDI

SPEC IF ICATION

APPLICATION PROGRAM OBJECT CODE

:~R:'_L~ ___ 1_ NUMERICS
RUN-TIME
LIBRARIES:

UDI LIBRARIES BOB7.LlB OR
EBOB7.LlB -- CEL.LlB

O.S.
B7ERH.LlB

BOB6-BASED TARGET SYSTEM EMULATOR OR
B087

Figure 1-5. 1/.0 and Numerics Run-Time Libraries in System 121570-12

1-3

Run-Time Interface

[-4

1.3 Logical Record Interface

For information on Logical Record Interface, see the Run-Time Support for iAPX
86,88,121776.

1.4 Run-Time Interrupt Processing

The discussion in this section does not apply to programs that run in an iRMX 86
environment. To implement run-time interrupt processing on an iRMX 86-based
system, your programs must invoke iRMX 86 system calls. Refer to the iRMX!M 86
Nucleus Reference Manual for more information.

There are two interrupt pins on the 8086 processor: the "non-maskable interrupt" pin
(NMI) and the "maskable interrupt" pin (INTR). The "non-maskable interrupt"
cannot be ignored by the processor, whereas the "maskable interrupt" can be enabled
or disabled.

Each "maskable interrupt" has an interrupt number that designates the type of inter
rupt. Interrupt numbers range from 0 to 255. Interrupt number 0 is reserved for
integer divide by zero errors. Interrupt numbers 1 through 3 are reserved for single
stepping, "non-maskable interrupts," and the INT instruction, respectively. Interrupt
number 4 is reserved for integer overflow, and integer number 5 is reserved for
compiler range checks. The run-time system uses interrupts 16 through 31. Interrupt
number 16 is reserved for emulated real arithmetic exceptions, and interrupt number
17 is reserved for other compiler checks. For interrupts reserved for the Series-III
system, see the Intellec@ Series III Microcomputer Development System Program
mer's Reference Manual.

You can use any other interrupt numbers for your own procedures. However, if you
are overriding the default procedures associated with a specific number, you must use
that number for you procedure.

An interrupt occurs when the CPU receives a signal on its "maskable interrupt" pin
from some peripheral device. The CPU only responds, however, if interrupts are
enabled. The "main program prologue" (code inserted by the compiler at the begin
ning of the main program) enables interrupts.

If interrupts are enabled, the following actions take place:

1. The CPU issues an "acknowledge interrupt" signal and waits for the interrupting
device to send an interrupt number.

2. The CPU flag registers are placed on the stack (occupying two bytes of stack
storage).

3. Interrupts are disabled by clearing the IF flag.

4. Single stepping is disabled by clearing the TF flag.

5. The CPU activates t.he interrupt procedure corresponding to the interrupt number
sent by the interrupting device.

You can specify Fortran-86 procedures as interrupt procedures using the INTER
RUPT control (11.4.10). You can assign an interrupt number to each interrupt
procedure using the SETINT built-in procedure (Chapter 6). These interrupt numbers
form an interrupt vector, that is, an absolutely-located array of entries beginning at
location O. Thus, the nth entry is at location 4 times n, and contains the address of
the interrupt procedure associated with interrupt number n. Each entry is a four-byte
value containing a segment address and an offset.

Fortran-86

Fortran-86 Run-Time Interface

The CPU uses the interrupt vector entry to make a long indirect call to activate the
appropriate procedure. At this point, the current code segment address (CS register
contents) and instruction offset (IP register contents) are saved on the stack.

If an interrupt procedure terminates normally, the interrupt mechanism and registers
are reset to the condition that existed prior to the activation of the procedure.

Figure 1-6 shows the stack layout at the point where the procedure is activated.

1.4.1 Interrupt Procedure Preface and Epilogue

At the beginning of each interrupt procedure, before the usual procedure prologue
inserted by the compiler, the compiler inserts an interrupt procedure preface that
performs the following actions:

1. Push the ES register contents onto the stack.

2. Push the DS register contents onto the stack.

3. Load the DS register with a new data segment address taken from the current
code segment (i.e., the segment containing the interrupt procedure).

4. Push the AX register contents onto the stack.

5. Push the CX register contents onto the stack.

6. Push the DX register contents onto the stack.

7. Push the BX register contents onto the stack.

S. Push the SI register contents onto the stack.

9. Push the DI register contents onto the stack.

Figure 1-7 shows the stack layout at the point where the procedure prologue starts.

10. Perform a call to transfer control to the normal procedure prologue.

Figure I-S shows the stack layout after the procedure prologue is executed and the
code compiled when the interrupt procedure body starts executing.

HIGHER
LOCATIONS

:.:::ffi I 01-
«z
I-=>
(1)0

U

LOWER
LOCATIONS

FLAG REG.CONTENTS

RETURN SEGMENT ADDRESS

RETURN OFFSET

-

}2B YTES

} PR RE
PR

ESENT
GARDLESSOF
OGRAM SIZE

STACK POINTER

Fif~ure 1-6. 8086 Stack Layout When Interrupt Procedure
Gains Control 121570-14

1-5

Run-Time InC:erf ace

[-6

HIGHER
LOCATIONS

a:
w
I
Z
:::l
o
U
~
U
<C
l
f/)

LOWER
LOCATIONS

FLAG REG. CONTENTS

RETURN SEGMENT ADDRESS

RETURN OFFSET

ES REG. CONTENTS
OS REG. CONTENTS
AX REG. CONTENTS
CX REG. CONTENTS
OX REG. CONTENTS
BX REG. CONTENTS
SI REG. CONTENTS
01 REG. CONTENTS

-.........

} 2 BY TES

REG
} PRE

PRO

SENT
ARDLESS OF
GRAM SIZE

~ CP
IN

U STATE
FORMATION

STACK POINTER

Figure 1-7. 8086 Stack Layout After Interrupt Procedure Preface
and Before Procedure Prologue 121570-15

When the interrupt procedure body finishes, a RET instruction returns execution to
the interrupt procedure epilogue, which continues with the following steps.

11. Pop the stack into the DI register.

12. Pop the stack into the SI register.

13. Pop the stack into the BX register.

14. Pop the stack into the DX register.

15. Pop the stack into the ex register.

16. Pop the stack into the AX register.

17. Pop the stack into the DS register.

18. Pop the stack into the ES register.

19. Execute an IRET instruction to return from the interrupt procedure. This restores
the IP, es, and flag register contents from the stack.

At this point the stack is restored to the state it was in before the interrupt occurred,
and processing continues normally.

The INTERRUPT compiler control allows you to associate an interrupt number with
an interrupt procedure during compile-time. However, you can declare procedures as
interrupt procedures without associating them to interrupt numbers creating the
interrupt vector at a later time.

Similarly, you can have a library of interrupt procedures that are not yet associated
with an interrupt vector. You can then link any program to these procedures with a
separately created interrupt vector.

Fortran-86

Fortran-86 Run-Time Interface

FL.AG REG. CONTENTS

RETURN SEGMENT ADDRESS

--
RETURN OFFSET

OLD ES REG. CONTENTS

--
OLIO OS REG. CONTENTS

--
OLiD AX REG. CONTENTS

--
OLD CX REG. CONTENTS

--
OLD OX REG. CONTENTS

OLD BX REG. CONTENTS

OLD SI REG. CONTENTS

--
OLD 01 REG. CONTENTS

--
OLD STACK MARKER (BP REG.)

DISPLAY (1)

LOCAL VARIABLES · · ·
THIS SPACE MAY BE USED

DURING PROCEDURE EXECUTION

· · · I

"------~--*'~

}2B YTES

} CUR

SP AT ENTRY

SP WILL CHANGE
DURING PROCEDURE
EXECUTION

BP

RENT BP VALUE

SP AFTER INTERRUPT
PROCEDURE
PROLOGUE

Figure 1-8. 8086 Stack Layout During Execution of Interrupt
Procedure Body

NOTE

121570-16

An interrupt procedure that uses any of the intrinsic functions EXP, ALOG,
SIN, COS, TAN, ARCSIN, ARCCOS, or ARCTAN (functions in the
CEL.LIB run-time library) must allocate 50 bytes of 8086 stack space for
each level of recursion.

1.4.2 Interrupt Handling for Real Al'ithmetic Errors

The run-time system (8087 emulator or 8087 processor interface libraries) use inter
rupt 16 for real arithmetic error handling. If you are using the emulator, you must
reserve interrupt 16 for that purpose. If you are using the 8087 processor, you must
connect either (1) the 8087 processor to the 8086 interrupt 16, or (2) the 8087
processor to some other interrupt, then link in an assembly language routine to redirect
the interrupts from the 8087.

1--7

Run-Time Interface

[-8

If you are connecting the 8087 processor to an interrupt other than 16, assemble an
8086/8087/8088 assembly language routine like the one given in Figure 1-9, and link
it in with your program and the interface libraries. The routine in Figure 1-9 may be
used if the 8087 processor is wired to interrupt 7.

You may modify the routine in Figure 1-9 for interrupt n (n must be greater than or
equal to 4) simply by changing the SEGMENT and ORG directives. Calculate the
operands for ORG and SEGMENT by first calculating the location of the
CONVERT_PROC procedure (4*nH), and then using the rightmost hexadecimal
digit for the ORG operand and the rest of the hexadecimal digits for the SEGMENT
operand.

Since the routine in Figure 1-9 does not call any external modules, its position in the
LINK86 argument list does not matter. Assuming that your compiled
Fortran-86 program is called MYMODl.OBJ, and the assembled routine to redirect
interrupts is called INT7.0BJ, you could use the following LINK86 invocation on a
Series III development system:

Since the 8087 processor activates the real arithmetic interrupt number when a real
arithmetic exception occurs, you can override the default exception handler by
providing your own interrupt procedure for the real arithmetic interrupt number. The
8087 exception conditions are described in Chapter 15.

NOTE
The 8087 processor and emulator handle exceptions in the same manner.
However, an 8086/8087 implementation may include some external inter
rupt masking device such as an 8259A. In this case, the emulator cannot
simulate the function of the 8259A. When using the 8087 emulator, if an
exception that is not masked on the emulated 8087 occurs, and the 8086
interrupt is enabled, a real arithmetic interrupt (interrupt 16) will occur after
the emulation of any 8087 instruction. In other words, the 8087 emulator
assumes that the 8259A interrupts are enabled.

INT_7_SEG SEGMENT AT 1 H
ORG o C H
DO CONVERT __ PROC

INT_7_SEG ENDS

CONVERt_PROC_S SEGMENT
CONVERT_PROC PROC FAR

I NT 16
IRE T

CONVERT PROC ENDDP
CONVERT_PROC_S ENDS

Figure 1-9. Routine to Redirect Interrupts

Fortran-86

• (R)

~
APPENDIX J

ADDITIONAL INFORMATION FOR SERIES III
AND SERIES IV OPERATING SYSTEM USERS

n

This appendix contains information that is specific to the Intellec Series III and
Series IV Microcomputer Deyelopment Systems. It covers the following areas:

• Program devdopment environment

• Compiler invocation and file usage

• Sample link, locate, and execute operations

• Examples of Fortran-86 compiler invocation

• Interrupt handling

• Related publications

This appendix assumes that you have Series III or Series IV system up and running,
and that you have a suitable copy of the Fortran-86 compiler. Chapter 1 of this manual
leads you through a complete program development sequence using a sample Fortran
program supplied with the compiler. Details on the operating system environment are
provided in the Intellec® Series III Microcomputer Development System Console
Operating Instructions (121609), and the Intellec® Series IV Operating and
Programming Guide (121 753).

J. 1 Program Development Environment

To run the Fortran-86 Compiler. in the Series III system, you must have the following
hardware and software:

• Intellec Series III development system

• Intellec Series III operating system (RUN command)

• 192K of RAM memory (standard with the Series III system)

• At least one storage device. (The product is delivered on a flexible disk; therefore
the installation of the compiler always requires a single- or double-density disk
drive.)

A system with a printer is recommended for producing hard-copy output listings.
This system may be separate from the system used to compile programs.

To run the Fortran-86 compiler in the Series IV system, you must have the following
hardware and software:

• Intellec Series IV development system

• Intellec Series IV operating system

• 192K of RA1\1 memory (standard with the Series IV system)

• At least one storage device. (The product is delivered on a flexible disk; therefore
installation of the compiler always requires a single- or double-density disk drive.)

J.2 Compiler Installation

Compiler installation is d(~scribed in Chapter 1 of this book.

J-1

Additional Information for Series III and Series IV Operating System Users

J-2

J.3 Program Disk Contents

The Series III and Series IV Fortran-S6 software packages include one double density
and one single density disk. Each of these disks contains the following files:

FORTS6.S6
FS6RNO.LIB
FS6RNl.LIB
FS6RN2.LIB
FS6RN3.LIB
FS6RN4.LIB

RTNULL.LIB
CELS7.LIB
EHS7.LIB
SOS7.LIB
S7NULL.LIB
ESOS7.LIB

ESOS7
DCONS7.LIB
PROGIA.FTN
PROGIB.FTN
PROGIC.FTN
PROG2.FTN

PROG3.FTN
PROG4.FTN
PROG5.FTN

The file named FORTS6 contains the Fortran-S6 compiler. The files FS6RNO.LIB,
FS6RN1.LIB, FS6RN2.LIB, FS6RN3.LIB, FS6RN4.LIB, RTNULL.LIB, SOS7.LIB,
CELS7.LIB, EHS7.LIB, and S7NULL.LIB contain the run-time support libraries
and modules. DCONS7.LIB provides functions that convert floating-point values from
binary to ASCII representation, and vice versa. The remaining programs with the
extension .FTN are example programs described in Chapter 10 of this manual and
Section 1.S of this appendix.

J.4 Compiler Operation

The Fortran-S6 compiler is a program that translates your Fortran instructions into
object code modules that can be linked and located for execution.

You create a Fortran program by typing instructions into a file using the CREDIT
text editor, and submitting the file to the Fortran-S6 compiler. The file you submit is
called a source file, and the file containing the compiled program is called an object
file. (The content of the object file is also known as object code.) In Fortran-S6 you
can compile parts of a program, and each separate compilation is known as an object
module.

The following discussions assume that you have a Series III or Series IV system up
and running, and that you have a suitable copy of the Fortran-S6 compiler. Chapter
1 of this manual leads you through a complete program development sequence using
a sample Fortran program supplied with the compiler. Details on the operating system
environment are provided in the Intellec® Series III Microcomputer Development
System Console Operating Instructions and the Intellec® Series IV Operating and
Programming Guide.

J.4.1 Series III Invocation

Invoke the Fortran-S6 compiler with the RUN command. The RUN command loads
and executes any program specifically in the SOS6 environment for the Series III
system. The following is a sample compiler invocation:

RUN FORT86 PROG1.SRC XREF(cr>

The name FOR TS6 is the name of the compiler as supplied, without the extension
(i.e., the full name is FOR TS6.S6, but you don't supply the .S6 extension in the
invocation line). PROG l.SRC is the name of the source file that contains the Fortran
instructions. XREF is a primary control that tells the compiler to generate a cross
reference listing of source program identifiers (XREF is described in Chapter 11).
The XREF control, like all other compiler controls, is optional for the invocation line.

Fortran-86

Fortran-86 Additional Information for Series III and Series IV Operating System Users

The above example assumes that the compiler and the source program PROGl.SRC
reside on drive 0 (:FO:). If FROG l.SRC is on drive 1, the invocation line is:

RUN FOR T 8 6 : F 1 : PRO G 1 . S R C X RI E F < c r)

The invocation line takes this general form:

R U H [:Fd:] FOR,. 8 6 [:Fc:t:] source TO [controls]

where

RUN

:Fd:

FORT86

source

controls

< cr)

is the name of the command to execute the compiler in the
Series III environment.

spe:cifies which directory FORT86.86 and/or source resides
in, if not in directory :FO:. The source file does not have to
be in the same directQiry as the compiler.

is the name you use for the compiler FOR T86.86.

is the name of the source file containing the Fortran program.

are optional primary or general compiler controls described
in Chapter 11. You can have many controls in the invocation
line with a space between each control, and you can extend
the: invocation line by using the ampersand (&) as a contin
uation character to replace a space.

stands for the RETURN key on the keyboard.

The following are some examples:

RUN :F1:FORT86 :F1:MVPROG PRINT(:LP:) TITLE(:TEST24:)<cr)

In this example, both FORT86.86 and MYPROG are on drive 1. PRINT and TITLE
are compiler controls.

RUN FORT86 :F1 :kLUDGE.SRC KOPRINT<cr>

In this example, FORT86.86 is on drive 0, but KLUDGE.SRC, the source program,
is on drive 1. NOPRINT is a compiler control that prevents all printed output (except
error messages) usually generated by the compiler.

NOTE
The RUN command assigns the extension 86 to the filename it executes, if
it is specified without an extension. You must specify the filename's exten
sion if it is not 86. If you specify a filename that has no extension, specify a
period (.) aftc!r the name in the RUN invocation line. For example, if you
rename FORT86.86 tQi COMPIL, include a period after the name COMPIL
(i.e., COMPIL.) when you invoke it using RUN. If you choose a new name
with a new extension, specify both the new name and the new extension on
the RUN invocation line.

J.4.2 Series IV Invocation

The following is a sample compiler invocation in the Series IV environment:

FORT86 PROG1.SRC XREF<cr>

J-3

Additional Information for Series III and Series IV Operating System Users

J-4

The name FOR T86 is the name of the compiler as supplied, without the extension
(i.e., the full name is FORT86.86, but you don't supply the .86 extension in the
invocation line). PROG l.SRC is the name of the source file that contains the Fortran
instructions. XREF is a primary control that tells the compiler to generate a cross
reference listing of source program identifiers (XREF is described in Chapter 11).
The XREF control, like all other compiler controls, is optional for the invocation line.

The above example assumes that the compiler and the source program PROG I.SRC
reside on drive 0 (:FO:). If PROG l.SRC is on drive 1, the invocation line is:

FORT86 :F1:PRDG1.SRC XREF<cr>

The invocation line takes this general form:

[:Fd:] FORT 86 [:FD:] SOURCE TO [CONTROLS]

where

:Fd:

FORT86

source

controls

< cr >

specifies which directory FORT86.86 and/or source resides
in, if not in directory :FO:. The source file does not have to
be in the same directory as the compiler.

is the name you use for the compiler FORT86.86.

is the name of the source file containing the Fortran program.

are optional primary or general compiler controls described
in Chapter 11. You can have many controls in the invocation
line with a space between each control, and you can extend
the invocation line by using the ampersand (&) as a contin
uation character to replace a space.

stands for the RETURN key on the keyboard.

The following are some examples:

:F1:FORT86 :F1:MVPROG PRINT(:LP:) TITLE(:TEST24:)<cr>

In this example, both FOR T86.86 and MYPROG are on drive 1. PRINT and TITLE
are compiler controls.

FORT86 :F1:KLUDGE.SRC NOPRINT<cr>

In this example, FORT86.86 is on drive 0, but KLUDGE.SRC, the source program,
is on drive 1. NOPRINT is a compiler control that prevents all printed output (except
error messages) usually generated by the compiler.

J.4.3 Files Used by the Compiler

J . 4 .3 . 1 Input Files

You supply the Fortran source program name for source in the invocation line (see
the previous section). You can also include other source files by using the INCLUDE
control, as described in Chapter 11. These files must be standard ISIS files contain
ing text of Fortran instructions.

J .4 .3 . 2 Output Files

By default, the compiler produces two output files, unless you use specific controls to
suppress or redirect them: the listing file and the object file. Also by default, error
messages appear in the listing file.

Fortran-86

Fortran-86 Additional Information for Series III and Series IV Operating System Users

The listing file (sometim{~s called the PRINT file) contains a listing of the source
program, plus any other printed output generated by the compiler as specified by the
listing selection controls described in Chapter 11. The object file (sometimes called
the object code file or object module) contains the actual code in object module format,
which can eventually be I~xecuted (after you use the linking and locating facilities
described in Chapter 14. These files are described in more detail in Chapter 13.

The listing file and the object file have the same name as the source file, except that
the listing file has the extension LST, and the object file has the extension OBJ. The
files are created if they do not exist, or overwritten if they do exist, and they appear
in the same directory as the source file. You can optionally change the names and/
or directories for the listing and object fiks by using the PRINT and OBJECT
controls, respectively (described in Chapter I 1).

For example, if you invoke the compiler on a Series III using the line-

RUN FORT86 :F1:,MYPROG<cr>

or on a Series IV using the line-

FORT86 :F1:MYPROG<cr>

the compiler creates (or overwrites) the file MYPROG.LST in directory 1 to contain
the listing, and the file MYPROG.OBJ in directory 1 to contain the object module.

You can optionally direct certain sections of printed output to files other than the
default listing file described above. In addition to using the PRINT control to specify
another file as the listing file, you can specify a different file to receive error messages
by using the ERRORPRINT control. Chapter 11 gives details on the use of these
controls.

J . 4 . 3 .3 Work Files

When operating under the Series III operating system, the compiler creates and uses
work files during its operation, and deletes them at the completion of compilation.
These files are designated :WORK: files and they cannot conflict with your files.

The Series III operating system provides a mechanism to select the directory where
work files can b(! temporarily stored. The default directory is directory 1 (:Fl:), but
you can select another din!ctory using the RUN WORK command, as in this example:

RUN WORK :FO:<cr>

This example selects directory :FO: as the directory to hold work files.

J.4.4 CompUer Messages

When you invoke the compiler, it displays the sign-on message:

S E R I E S - I I I FOR T lR A N - 8 6 COM P I L E R I V x.y

where

x is the version number of the compiler.

y is the change number within the version.

J-5

Additional Information for Series III and Series IV Operating System Users

When a compilation is finished, the compiler terminates with the message:

m TOTAL ERRORS DETECTED
n TOTAL WARNINGS DETECTED

where

m is the total number of errors detected.

n is the total number of warnings detected.

J .4.4. 1 Insufficient Memory Error Messages

The compiler issues a warning message when the compiler dictionary overflows onto
external memory. Along with this warning, the compiler indicates the point where
the overflow occurred:

Fortran-86

DICTIONARY OVERFLOW ONTO WORK FILE WHILE PROCESSING SYMBOL symbol

J-6

Additional information will appear in the PRINT file.

J.S Linking, Locating, and Executing

The linker (LINKS6) links object modules and outputs a file. The locator (LOCS6)
assigns absolute addresses to modules to locate them in actual memory. The loader
(RUN) loads and executes the final program. Additionally, the LIBS6 utility enables
you to create and maintain your own library file of compiled (or translated) object
modules for use with other programs.

The following is a list of the software provided for building executable
Fortran-S6 programs with a Series III development system:

FORTS6.S6---the Fortran-S6 compiler

FS6RNO.LIB, FS6RNl.LIB, FS6RN2.LIB, FS6RN3.LIB, FS6RN4.LIB, and
RTNULL.LIB--the run-time support libraries

LARGE. LIB-the Series III operating system interface library

CELS7.LIB-the floating-point intrinsic function library

EHS7.LIB---the floating-·point exception handler library

SOS7.LIB--the SOS7 numeric processor extension (NPX) interface library

ESOS7, and the ESOS7.LIB - the SOS7 Emulator and interface library

S7NULL.LIB - the support library that resolves floating-point references if no
floating point arithmetic is used

LINKS6, CREFS6.S6, LOCS6, LIBS6, and OHS6.S6 - the SOS6-based utilities

Fortran-86 Additional Information for Series III and Series IV Operating System Users

J.S.1 Series III Sample Link Operations

The following link operation takes two object modules, MYMODl.OBJ and
MYMOD2.0BJ, links them together, then links in the Fortran run-time libraries to
form the output module l\.fYPROG.86. To extend the LINKS6 command to the next
line without transmitting the command, type the ampersand (&) character before
the RETURN key, and continue typing the command on the next line (do not type
the ampersand character between letters of at filename). The continued line will start
with an angle bracket ()).

The linker first reads MYMOD1.0BJ and MYMOD2.0BJ for external references
and resolves those references. Then, the linkc!r attempts to resolve any more external
references in the modules by looking at the public symbols in the libraries
F86RNO.LIB, FS6RNl.LIB, F86RN2.,LIB, F86RN3.LIB, FS6RN4.LIB,
S7NULL.LIB, and LARGE. LIB. Use the 87NULL.LIB when the modules do not
perform real arithmetic. The final output module is MYPROG.S6. This module can
be loaded and executed on the Series III.

When the modules MYMODl.OBJ and MYMOD2.0BJ do perform real arithmetic,
link them with the 80S7 Numeric Data Processor or the SOS7 Emulator. The LINKS6
command when using the emulator is:

To support real arithmetic when using the 80S7, replace ES087 and ES087.LIB with
SOS7.LIB. EHS7.LIB provides exceptions handling support for the SOS7 Numeric
Data Processor or its emulator. This is the link sequence that should be used in a
full-featured operating system. The BIND option used with LINKS6 provides an
output file that is ready to be executed (if the operating system has an L TL loader).

J.S.2 Series IV Sample Link Operations

The following link operation takes two object modules, MYMODl.OBJ and
MYMOD2.0BJ, links them together, then links in the Fortran run-time libraries to
form the output module MYPROG.S6. To extend the LINKS6 command to the next
line without transmitting the command, type the ampersand (&) character before
the RETURN key, and continue typing the command on the next line (do not type
the ampersand character between letters of a filename). The continued line will start
with an angle bracket ()).

The linker first reads MYMODl.OBJ and MYMOD2.0BJ for external references
and resolves those references. Then, the linker attempts to resolve any more external
references in the modules by looking at the public symbols in the libraries
F86RNO.LIB, FS6RN l.LIB, F86RN2.LIB, FS6RN3.LIB, FS6RN4.LIB,
S7NULL.LIB, and LARGE.LIB. Use the 87NULL.LIB when the modules do not
perform real arithmetic. The final output module is MYPROG.86. This module can
be loaded and executed on the Series III.

J-7

Additional Information for Series III and Series IV Operating System Users

J-8

When the modules MYMOD1.0BJ and MYMOD2.0BJ do perform real arithmetic,
link them with the SOS7 Numeric Data Processor or the SOS7 Emulator. The LINKS6
command when using the emulator is:

To support real arithmetic when using the SOS7, replace ESOS7 and ESOS7.LIB with
SOS7.LIB. EHS7.LIB provides exceptions handling support for the SOS7 Numeric
Data Processor or its emulator. This is the link sequence that should be used in a
full-featured operating system. The BIND option used with LINKS6 provides an
output file that is ready to be executed (if the operating system has an L TL loader).

J.S.3 Examples

The following examples show how to execute Fortran-S6 programs in different
environments.

1. To execute a Fortran-S6 program in a bare machine (or minimal operating
system) environment link in the run-time libraries FS6RNO.LIB, FS6RN1.LIB,
and FS6RN2.LIB. [f the program requires numerics support and you are using
the SOS7 microprocessor, the link command is

In this example, string and 32-bit integer operations are fully supported. Fortran
input/output is not supported; if used, LINKS6 will generate an UNRESOLVED
EXTERNALS warning.

When an SOS7 exception occurs during program execution, R TNULL.LIB halts
execution without an error message. Since there are no external references
between RTNULL.LIB and EHS7.LIB, the SOS7 exception handler will never
be invoked. Consequently, do not use R TNULL.LIB when SOS7 exceptions are
expected.

Note that the BIND option was not used. In this environment the programs will
usually be located using LOCS6 and burned into ROM, or loaded with a simple
absolute loader.

2. This example links a program using only internal I/O.

Series III:

Series IV:

3. This example links a program that does internal I/O and floating-point arith
metic with SOS7 emulator support.

Series III:

)

)

Fortran-86

Fortran-86 Additional Information for Series III and Series IV Operating System Users

Series IV:

., .
, ESOS?, ESOS?LIB

J.S.4 Sample Locate Operations

The following is a sample locate operation using the default settings for controls.

Series III:

RUN L 0 C S 6 SAM PL. 11. L N K (c r)

Series IV:

LOCS6 SAMPL. 1 .LN~(cr)

This sample locate operation binds the logical segments of SAMPLl.LNK to addresses
beginning at 00200H (H is for hexadecimal), the default. The output module is called
SAMPLI (the root namt! of the input module without the LNK extension). Unless
you specify a TO clause, the output module (the absolutely located program) will
always have the same root name as the input module.

The following is a sample locate operation using the ORDER and ADDRESSES
controls.

Series III:

Series IV:

In the invocation line, you can use the ampersand character (&) to continue a long
line without executing it.

This sample locate operation collected together the logical segments by class names
in the order specified in the ORDER controL The locater then assigned addresses as
specified in the ADDRESSES control to the logical segments collected into the CODE
and STACK classes. The DATA class received its address assignment from the default
algorithm.

J.S.S Executing Programs on a Ser'ies III

The output module from the locater can be loaded and executed in the 8086 environ
ment by using the Serij~s III RUN command. Position-independent (PIC) and
loadtime locatable (LTL) modules produced by LINK86 with the BIND option can
also be loaded and executed by the RUN command. These modules could also be
used as input to the DEBUG-86 debugger or a similar debugging tool.

J-9

Additional Information for Series III and Series IV Operating System Users

J-lO

To run correctly, a program must be complete; i.e., it must contain all modules neces
sary to run. For example, in order to run in the Series III 8086 environment with
run-time support, a program must contain modules from the run-time support librar
ies. To run in a foreign environment, you must supply your own run-time support and
follow the guidelines in Chapter 14 and Appendixes Hand K.

To run a complete program in the Series III 8087 environment, simply use the RUN
command. In the example below, both the RUN program and the SAMPLI program
are in directory :FO:. To refer to any program in a different directory, specify the
directory in the format :Fd:.

RUN SAMPL1.<cr>

Note that in the example, SAMPL 1 appears with a period at the end. This period
tells the RUN command not to look for an .86 extension. If the program were named
"SAMPL1.86", you would not put a period at the end:

RUN SAMPL1<cr>

If your program's name has an extension other than .86, you must specify the exten
sion with the name. If its name has an .86 extension, you need not specify it. If its
name has no extension, you must specify the final period.

NOTE
If you use the BIND option with LINK86 on a module that is ready to be
processed by the RUN loader, and you do not specify its name in a TO
clause, the linker will use the root name (and device) of the first file specified
as input, but will not append the LNK extension.

J.S.6 Executing Programs on a Series IV

Output modules from the locater as well as position-independent code (PIC) and
loadtime locatable (L TL) modules produced by LINK86 with the BIND option can
be loaded and executed in the Series IV environment.

To run correctly, a program must be complete, i.e., it must contain all modules neces
sary to run. For example, to run in the Series IV 8080 environment with run-time
support, a program must contain modules from the run-time support libraries.

To run in a foreign environment, you must supply your own run-time support by
following the instructions in Chapter 14 and Appendixes Hand K.

To run a complete program in a Series IV 8087 environment, enter the name of the
program on the command line as shown:

SAMPL1.<cr>

The period at the end of the program name indicates that the program does not have
an 86 extension.

If the program has an extension other than .86, specify the extension by name.

NOTE
When the BIND option is used with LINK86 on a module that is ready to
be processed, and the name of the program is not specified in a TO clause,
the linker uses the root name (and device) of the first file specified as input,
but does not append the LNK extension.

Fortran-86

Fortran-86 Additional Information for Series III and Series IV Operating System Users

J.7 Specific Compiler Controls

This appendix includes a fold-out page for system-specific examples of most of the
Fortran-86 compiler controls. This page is designed to be opened out and used in
conjunction with the corresponding text in Chapter 10.

J.8 Interrupt Handling on the Series III and Series IV

The Intellec Series III maps the eight Multibus interrupt lines (INTO through INT7)
onto interrupt vector entries numbered 56 through 63; therefore, your application
may not use these for software interrupts. Interrupt vector entries available for user
software include 64 through 183. Refer to the Intellec® Series III Microcomputer
Development System Programmer's Reference Manual or the Intellec® Series IV
Operating and Programming Guide for details.

J.9 Related Publications

Below is a list of other Intel publications you are likely to need to use
Fortran-86. Most of them describe related Intel products. The manual order number
for each publication is given immediately following the title.

For a list of non-Intel publications that may be useful to you, see the Bibliography at
the end of this manual.

• Fortran-86 Pocket Reference, 121571

A companion to this manual, providing summary information for quick reference.

• A Guide to the Intellec® Series III Microcomputer Development System, 121632

A guide to the use of the Series III and associated tools as a total development
solution for your iAPX 86 and iAPX 88 microcomputer applications. This tutorial
manual takes you through hands-on sessions with the Series III operating system,
the CREDIT text editor, the Fortran-86 compiler, the iAPX 86, 88 Family Utili
ties, the DEBUG-86 applications debugger, and the ICE-86A In-Circuit
Emulator.

• Intellec® Series III Microcomputer Development System Product Overview,
121575

A summary description of the set of manuals that describe the Intellec Series III
development system and its supporting hardware and software. This brief manual
includes a description of each manual related to the Series III, plus a glossary of
terms used in the manuals.

• Intellec® Series III Microcomputer Development System Console Operating
Instructions, 121609
Intellec® Series III .Microcomputer Development System Pocket Reference,
121610

Instructions for using the console features of the Series III, including the
DEBUG-86 applications debugger. The Console Operating Instructions provides
complete instructions, and the Pocket Reference gives a summary of this
information.

• Intellec® Series III Microcomputer Development System Programmer's
Reference Manual, 121618

Instructions for calling system routines from user programs for both micropro
cessor environments, MCS-80/85 and iAPX 86, in the Series III.

• Intellec® Series IV Microcomputer Development System Overview, 121752

J-ll

Additional Information for Series III and Series IV Operating System Users

J-12

• Intellec® Series IV Operating and Programming Guide, 121753

• ISIS-II CREDIT™ CRT-Based Text Editor User's Guide, 9800902
CREDIT™ CRT-Based Text Editor Pocket Reference, 9800903

Instructions for using CREDIT, the CRT-based text editor supplied with the
Series III. The User's Guide provides complete operating instructions, and the
Pocket Reference summarizes this information for quick reference.

AEDIT-80 Text Editor User's Guide, 121756 Instructions for using AEDIT-80.

• iAPX 86,88 Family Utilities User's Guide, 121616
iAPX 86,88 Family Utilities Pocket Reference, 121669

Instructions for using the 8087-based utility programs LINK86, LIB86, LOC86,
CREF86, and OH86 in 8086-based development environments to prepare
compiled or assembled programs for execution. The User's Guide provides
complete operating instructions, and the Pocket Reference summarizes this
information for quick reference.

• ASM86 Language Reference Manual, 121703
ASM86 Macro Assembler Operating Instructions, 121628
ASM86 Macro Assembler Pocket Reference, 121674

Instructions for using the ASM86 in 8086-based development environments. The
Language Reference Manual gives a complete description of the assembly
language; the Operating Instructions gives complete instructions for operating
the assembler; and the Pocket Reference provides summary information for quick
reference. You need these publications if you are coding some of your routines
in assembly language:

PL/M-86 User's Guide, 121636
PL/M-86 Pocket Reference, 121662
Pascal-86 User's Guide, 121540
Pascal-86 Pocket Reference, 121541

Instructions for using the PL/M and Pascal-86 languages and compilers in iAPX
86-based development environments. The User's Guide gives a complete descrip
tion of the language and compiler (or translator), and the Pocket Reference
provides summary information for quick reference. You need these publications
if you are coding some of your programs in PL/M-86 or Pascal-86:

PSCOPE High-Level Program Debugger User's Guide, 121790

Instructions for using PSCOPE, the symbolic debugger for high-level language
programs. The User's Guide provides complete operating instructions.

ICETM-86A In-Circuit Emulator Operating Instructions for ISIS-II Users,
9800714
ICETM-86A Pocket Reference, 9800838
ICE™-88 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800949
ICE™-88 Pocket Reference, 9800950

Instructions for using the ICE-86A and ICE-88 In-Circuit Emulators for
hardware and software development. The Operating Instructions manuals give
complete user descriptions of the In-Circuit Emulators, and the Pocket Refer
ence guides provide summary information for quick reference. You need the
corresponding publications if you are using the ICE-86A or ICE-88 emulator.

• The iAPX 86,88 User's Manual, 210201-001

This manual contains general reference information, application notes, and data
sheets describing the 8086, 8087, 8088, and 8089 microprocessors and their use.

Extensive discussions of hardware and development software (including PL/M-
86, assembly language, LINK86, and LOC86), plus numerous examples of system
designs and programs, are included.

Fortran-86

Fortran-86 Additional Information for Series III and Series IV Operating System Users

• 8087 Support Library Reference Manual., 121725

This manual <:ontains specific information on the 8087 support libraries that are
available. It includes full descriptions of the DCON87.LIB, CEL87.LIB, and
EH87.LIB, as well as a discussion of the IEEE math standard.

• Run-Time Support Manual for iAPX 86,88 Applications, 121776

This manual describes in detail the run-time interface needed to run programs
on the iAPX 86,88 family of microprocessors. It includes a description of the
run-time libraries required by high-level language compilers, the concepts behind
Intel's various operating system environments, the specifications for Intel's
Universal Development: Interface (UDI), and the definition of the Logical Record
Interface (LRI).

J-13

Additional Information for Series III and Series IV Operating System Users

10. 1 Examples

Example 10. 1. 1 Progralm 1 A (PROG 1 A.FTN)

Link the program to the libraries 87NULL.LIB and LARGE. LIB.

Example 10.1.2 Program 1 B (PROG 1 B.FTN)

Link the program to the libraries 87NULL.LIB and LARGE. LIB.

Example 10. 1.3 Program 1 C (PROG 1 C.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

10.2 TEMPREAL Example

Example 10.2.1 Program 2 (PROG2.F1rN)

Link the program to the libraries CEL87.LIB, EH87.LIB, LARGE. LIB, and either
8087.LIB or E8087 and E8087.LIB.

10.3 $INTERIRUPT Example

Example 10.3. 1 Program 3 (PROG3.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

10.4 $REENTRANT' Example

Example 10.4. 1 Program 4 (PROG4.FTN)

Link the program to the libraries 87NULL.LIB and LARGE. LIB.

10.5 Function Subprogram Exarnple

Example 10.5.1 Program 5 (PROG5.FTN)

Link the program to the libraries CEL87.LIB, EH87.LIB, LARGE.LIB, and either
8087.LIB or E8087 and E8087.LIB.

J-15/J-16

Fortran-86

• R) C APPENDIX K
ADDITIONAL INFORMATION FOR

iRMX™ 86 OPIERATING SYSTEM USERS
n

This appendix contains information that is specific to the iRMX 86 Operating System.
I t covers the following areas:

• Program development environment

• Compiler invocation and file usage

• Sample link, locate, and execute operations

• Examples of Fortran-86 compiler invocation with an iRMX 86-based system

• Related publications

This appendix assumes that you have an iRMX 86-based system up and running, and
that you have a suitable copy of the Fortran-86 compiler. Chapter 1 of this manual
I'eads you through a complete program development sequence using a sample Fortran
program supplied with the compiler. Details on the operating system environment are
provided in the iRMX™ 86 Human Interface Reference Manual.

K. 1 Program Development Environment

To run the Fortran-86 compiler in the iRMX 86-based system, you must have the
following hardware and software:

• The iRMX 86 Human Interface (and other iRMX 86 layers necessary to support
the Human Interface)

• At least 153K of free space (RAM memory over the operating system
requirements)

• At least one mass storage device. (The product is delivered on a flexible disk;
therefore, the installation of the compiler always requires a single- or double
density disk drive.)

A system with a printer is recommended for producing hard-copy output listings.
This system may be separate from the system used to compile programs.

K.2 Compiler Installation

Compiler installation is described in Chapter 1 of this book.

K.3 Program Disk Contents

The iRMX 86 Fortran-86 software package includes one double density and one single
density disk. Each of these disks contains the following files:

FORT86
F86RNO.LIB
F86RNl.LIB
F86RN2.LIB
F86RN3.LIB
F86RN4.LIB

RTNULL.LIB
CEL87.LIB
EH87.LIB
8087.LIB
87NULL.LIB
E8087.LIB

E8087
DCON87.LIB
PROGIA.FTN
PROGIB.FTN
PROGIC.FTN
PROG2.FTN

PROG3.FTN
PROG4.FTN
PROG5.FTN

K-l

Additional Information for iRMXTM 86 Operating System Users

K-2

The file named FORT86 contains the Fortran-86 compiler. The files F86RNO.LIB,
F86RNl.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB, RTNULL.LIB, 8087.LIB,
CEL87.LIB, EH87.LIB, and 87NULL.LIB contain the run-time support libraries
and modules. DCON87.LIB provides functions that convert floating-point values from
binary to ASCII representation, and vice versa. The remaining programs with the
extension .FTN are example programs described in Chapter 10 of this manual and
Section K.8 of this appendix.

K.4 Compiler Operation

The Fortran-86 compiler is a program that translates your Fortran instructions into
object modules that can be linked and located for execution.

To create a Fortran program, type the instructions into a file using a text editor, and
submit the file to the Fortran-86 compiler. The original file is called a source file,
and the file containing the compiled program is called an object file. (The content of
the object file is also known as object code.) In Fortran-86 you can compile parts of
a program: each separate compilation is known as an object module.

K.4.1 Invoking the Compiler on an iRMX™ 86-Based System

The command line to invoke the Fortran-86 compiler on an iRMX 86-based system
is

- dir FOR T 8 6 sourcepath controls (c r)

where

dir

FORT86

sourcepath

controls

(&)

< cr)

is the prompt.

is the path name of the directory that contains the compiler.

is the name of the compiler as supplied by Intel.

is the pathname of the file containing the Fortran-86 source
module.

are optional primary or general compiler controls described
in Chapter 11. When using more than one control in the
invocation line, use a space between each control.

acts as a continuation character that replaces a space.

represents the RETURN key on the keyboard.

The following is a sample invocation:

FORT86 PROGRM.FTN SYMBOLS (cr)

where

PROGRM.FTN is the name of the source file that contains the Fortran source
program.

SYMBOLS is a compiler control that tells the compiler to generate a
symbol-table listing of source-program identifiers in addition
to the object module and listing file.

The preceding sample invocation line assumes that both the compiler and the source
program reside in the default directory (:$:). You can specify different devices and
different directories, however, by prefixing the compiler name and the source file
name with additional pathname components.

Fortran-86

Fortran-86 Addiltional Information for iRMXTM 86 Operating System Users

In the following example, the compiler resides on a device whose logical name is
:FDl:, and the source file n~sides on the default device in a subdirectory of the :PROG:
directory.

:FD1 :FORT86 :PROG:FTNPROGS/PROGRM.F86 SYMBOLS (cr)
I

Refer to the iRMxrM 86 l-Iuman Interface Reference Manual for more information
about the iRMX 86 file naming conventions.

K.4.2 Files Used by the Compiler

The compiler uses three kinds of files: input files, output files and work files.

K .4 .2 . 1 Input Files

You supply the Fortran source program name for the source in the invocation line
previously listed. To include other source files uses the INCLUDE control, as described
in Chapter 11. These files must be standard files containing the text of Fortran
instructions.

K . 4 . 2 . 2 Output Files

Unless specific controls are used to suppress th(~ files, the compiler produces two output
files: the object file and the listing file.

The object file contains the actual code in object module format. The system can
execute the object file after the linking and locating operations are completed (see
Chapter 14).

The listing file, or PRINT file, contains a listing of the source program and any other
printed output generated by the compiler. (The listing selection controls are described
in Chapter 11.)

The listing file and the obj(~ct file unless changed by the PRINT or OBJECT controls
have the same file name as the source file, but with a different extension. The listing
file has the extension LST and the object file has the extension OBJ.

If the files do not exist, th(~ compiler creates the files-flname.LST and flname.OBJ.
If files with these names do exist and they are in the same directory as the source
file, the compiler overwrite:s them.

For example, if you invoke the compiler on an iRMX 86-based system with the
command

FORT86 :P~OG:FT~PROGS/PROGR "MiM
the compiler places the listing in a file with the pathname :PROG:FTNPROGSj
PROGRM.LST. It places the object module in a file with pathname
:PROG:FTNPROGSjPROGRM.OBJ.

The compiler output files are described in greater detail in Chapter 13.

K.4.2.3 Work Files

The compiler creates and uses work files during its operation and deletes them upon
the completion of compilation.

K-3

Additional IlIlformation for iRMX™ 86 Operating System Users

K-4

During configuration of the iRMX 86 Operating System, you can select a location
for compiler work files. To do this, assign the logical name :WORK: to a device or to
a directory on a device. The compiler automatically creates its work files within the
: WORK: directory.

The :WORK: directory is the default in iRMX 86-based systems.

See Chapter 13, "Compiler Output," for more information.

K.4.3 Compiler Messages

The sign-on message for the Fortran-86 compiler is

iRMX 86 FORTRAM COMPILER, Vxy

where

x is the version number of the compiler.

y is the change number within the version.

When a compilation is finished, the compiler terminates with the message

m TOTAL ERRORS DETECTED

n TOTAL WARNINGS DETECTED

where

m

n

is the total number of errors detected.

is the total number of warnings detected.

Other iRMX 86 error messages can be found in the iRMX™ 86 Human Interface
Reference Manual.

K.S Linking, Locating, and Executing in an iRMX™
a6-Based Environment

The linker (LINK86) links object modules and outputs a file. The locator (LOC86)
assigns absolute addresses to modules to locate them in actual memory. The operat
ing system loads and executes the final program. Additionally, the LIB86 utility
enables you to create and maintain your own library file of compiled (or translated)
object modules for use with other programs.

A list of the software provided for building executable Fortran-86 programs follows:

FOR T86-the Fortran-86 compiler

F86RNO.LIB, F86RN1.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB, and
RTNULL.LIB-the run-time support libraries

CEL87.LIB-the floating-point intrinsic function library

EH87.LIB-the floating-point error handler

8087.LIB--the 8087 numeric processor extension (NPX) interface library

Fortran-86

Fortran-86 Additional Information for iRMXTM 86 Operating System Users

87NULL.LIB--the support library that resolves references if no 8087 processor is
used

LRG.LIB-the Universal Development Interface (UDI) library

LINK86, CREF86, LOC86, LIB86, and OH86-the 8086-based utilities

K.S.1 Sample Link Operations

The following link operation takes two object modules, MYMODl.OBJ and
MYMOD2.0BJ, links them together, then Rinks in the Fortran run-time libraries to
form the output module MYPROG.86. To extend the LINK86 command to the next
line without transmitting the command, type the ampersand (&) continuation
character before the RETURN key, and continue typing the command on the next
line. The continued line will start with two asterisks (**).

The linker first reads MYMOD1.0BJ and MYMOD2.0BJ for external references
and resolves those references. Then the linker attempts to resolve any other external
references in the modules by looking at the public symbols in the libraries
F86RNO.LIB, F86RNl.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB,
87NULL.LIB, and LRG.LIB. Use the 87NULL.LIB when the modules do not
perform real arithmetic. The final output module is MYPROG.86. This module can
be loaded and executed in the iRMX 86 environment.

When the modules MYMOD1.0BJ and MYMOD2.0BJ do perform real arithmetic,
link them with the 8087 Numeric Data Processor libraries. The LINK86 command
is

K.S.2 Examples

The following examples show how to execute Fortran-86 programs in different
environments:

1. To execute a Fortran...;86 program in a full-featured operating system environ
ment, link in all of the Fortran-86 run-time support libraries. If the application
also requires support for floating-point arithmetic, link in the appropriate numer
ics libraries. For example, the link sequence for the 8087 microprocessor is

By using the BIND option with LINK86, the output file is ready to be executed,
assuming that the operating system has an LTL loader.

K-5

Additional Information for iRMXTM 86 Operating System Users

K-6

2. To execute a Fortran-86 program and produce code for a bare machine (or
minimal operating system) environment link in the run-time libraries
F86RNO.LIB, F86RNl.LIB, and F86RN2.LIB. If the program requires numer
ics support and you are using the 8087 chip, the link command is

In this example, string and 32-bit integer operations are fully supported. Fortran
input/output is not supported; if used, LINK86 will generate an UNRESOLVED
EXTERNALS warning.

When linking in numerics support and an 8087 exception occurs, RTNULL.LIB
will simply execute a HL T instruction. Since there are no external references
between RTNULL.LIB and EH87.LIB, the exception handler will never be called.
Consequently, it should not be included in the link sequence.

3. This example links a program using internal I/O only.

4. This example does only internal I/O and floating point arithmetic.

K.6 Locating Object Modules

Chapter 14 discusses object module location. To locate, load, and execute a module
in an iRMX 86 environment, you must reserve memory during the iRMX 86 config
uration process. If the memory is not reserved, the operating system will assign the
memory to other tasks as dynamic memory.

The following is a sample locate operation using the default settings for controls:

LOC86 SAMPL1 .LNK<cr>

This sample locate operation binds the logical segments of SAMPL1.LNK to addresses
beginning at the default 00200H (hexadecimal). The output module is called
SAMPLI (the root name: of the input module without the LNK extension). Unless
specified with a TO clause, the output module (the absolutely located program) will
always have the same root name as the input module.

The following sample operation locates a program using the ORDER and
ADDRESSES control:

In the invocation line, use the ampersand character (&) to continue a long line without
executing it.

This sample locate operation collected the logical segments by class names in the
order specified in the ORDER control. The locator then assigned addresses specified
in the ADDRESSES control to the logical segments collected into the CODE and
STACK classes. The DATA class received its address assignment for the default
algorithm.

Fortran-86

Fortran-86 Additional Information for iRMXTM 86 Operating System Users

K.7 Preconnecting Files

When running a program on an iRMX 86-based system you can also use the UNIT
control to override the de:fault preconnections. The format of the UNIT control in an
iRMX 86-based system is

source (U MIT n = path)

where

source

n

path

is the pathname of your relocated object code.

is a number between 0 and 255.

is a logical name or pathname for a file or device.

Chapter 14 discusses preconnecting files in more detail.

K.8 Executing Programs in an iRMX™ 86 Environment

To execute a complete program in an iRMX 86 environment, enter the pathname of
the program fil(~. For example, the following command locates and executes a file
named PROG:

PROG.86<cr>

Since the iRMX 86 Operating System searches several directories for files to execute,
PROG could reside in the default directory (:$:), the program directory (:PROG:),
or some other directory. The directories searched and the order of search are iRMX
86 configuration parameters. However, if you are unsure, enter the complete
pathname. For example, the following command:

:PROG:PROGRM

loads and executes the file PROGRM residing in the :PROG: directory.

K.9 iRMX™ 86 Specific Examples

The last page of this appendix (the fold-out) lists the run-time libraries needed to
execute the examples found in Chapter 1 0 on an iRMX 86-based system.

K. 10 Related Publications

For information on the iRMX 86 operating system, see the following manuals:

iRMX™ 86 Human Interface Reference Manual, 9803202
iRMX™ 86 Nucleus Reference Manual, 9803122
EDIT Reference Manual, 143587

K-7

Additional Information for iRMXTM 86 Operating System Users

10. 1 I/O Examples

Example 10.1. 1 Program 1 A (PROG 1 J~.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

Example 10.1.2 Program 18 (PROG1B.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

Example 10.1.3. Program 1C (PROG1C.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

10.2 TEMPREAL Example

Example 10.2.1 Program 2 (PROG2.F'TN)

Link the program to the libraries CEL87.LIB, EH87.LIB, 8087.LIB, and LRG.LIB.

10.3 $INTERRUPT Example

Example 10.3.1 Program 3 (PROG3.FTN)

Do not execute this program on an iRMX 86 Operating System. The iRMX 86
Operating System implements its own form of interrupt processing. All programs
that run in an iRMX 86 e~nvironment must use iRMX 86 system calls to set up
interrupt processing routines.

10.4 $REEN'TRANlr Example

Example 10.4. 1 Program 4 (PROG4"FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

10.5 Function Subprogram Example

Example 10.5.1 Program 5 (PROG5.IFTN)

Link the program to the libraries CEL87.LIB, EH87.LIB, 8087.LIB, and LRG.LIB.

K-9/K-IO

Fortran-86

~, _________________________ IN_D_E_X~
% V AL function, 6-25, H-3 thru H·6
8087 control intrinsics, 6-20
8087 control word, 6-21
8087.LIB, 14-2, 14-3,1-1, K-l
8087 status word format, 6-21
87EH.LIB, 14-2, 14-3,1-1, K-l
87NULL.LIB, 14-2, 14-3,1-1, K-l

ABS, 6-10
absolute value, 6-10
access method specifier, 9-5
ACOS, 6-16
actual argument, 6-1, 6-3, 7-1, 8-7
actual array declarator, 5-10
addition, 7-1
A descriptor, 9-18
adjustable array declarator, 5-10
AINT,6-8
ALOG,6-15
ALOGI0, 6-15
alphanumeric editing, 9-18
alternate record termination descriptor, 9-20
AMAXO, 6-1, 6-12
AMAXIO, 6-1, 6-12
AMINO, 6-1,6-12
AMINI0, 6-1, 6-13
AMOD,6-9
.AND., 7-5
ANINT,6-9
ANSI Fortran 77, 1-1
ANS 1978 standard, A-I, A-2
apostrophe edit descriptor, 9-20
apostrophe editing, 9-20
arccosine, 6-16
arcsine, 6-16
arctangent, 6-16
argument, 6-1, H-2
arithmetic assignment statement, 2-1, 8-1
arithmetic expressions, 7-1 thru 7-3
arithmetic functions, 6-14
arithmetic IF statement, 2-1, 8-5
arithmetic operators, 7-1, D-15
arithmetic relational expressions, 7-4
array, 5-9 thru 5-12, H-5
array declarator, 5-10
array element, 5-9, 5-10
array element name, 5-10
array name, 5-9
array properties, 5-11
ASCII character set, 5-7
ASCII collating sequence, 6-8, 6-19, 7-4,13--2, E-l
ASIN,6-16
ASSIGN statement, 2-1, 8-7, 9-11, D-l
assigned GO TO statement, 2-1, 8,-8

assign.ment statements, 8-1, D-l
assumed-size array declarator, 5-10
ATAN,6-16
ATAN2,6-16
Aw descriptor, 9-18

BACKSPACE statement, 2-1, 9-9, D-l
base specifier, 5-2
B descriptor, 9-15
binary base specifier, 5-2
bitwise Boolean operations, 7-1, 7-6
blank common block, 5-13
blank descriptor, 9-18
blank specifier, 9-6, 9-18, 9-20, 9-22
BLOCK DATA statement, 2-1, 2-2, 4-2, D-l
BLOCK DATA subprogram, 2-1, 5-12, 6-23, 12-1
block IF, 8-3
block IF statement, 2-1, 8-3
BN editing, 9-22
Bw descriptor, 9-15
BZ editing, 9-20

CALL statement, 2-1, 6-2, 8-6, D-2
calling conventions, H-l, H-2
calling sequence, H-2 thru H-6
carriage control specifier, 9-3, 9-7, 9-22
CEL.LIB, 14-2, 14-3,1-1, K-l
CHAR,6-7
character assignment statement, 2-1, 8-2
character constants, 5-7
character data, 5-7, H-5
CHARACTER data type, 4-1
character expressions, 7-1, 7-3
character relational expressions,7-4
character set, 3-1, E-l
CHARACTER statement, 2-2, 5-7, D-2
character storage unit, G-l
character substring, 5-13
check exceptions, 15-22
choosing largest or smallest value functions, 5-13, 6-12
CLOSE statement, 2-1, 9-18, D-3
CODE control, 11-3, 11-5, 13-2
comments, 4-1, 12-1, D-3
common block, 5-14,6-25
common logarithm, 6-15
COMMON statement, 2-2, 5-14, 6-1, 6-25, D-2
compilation summary, 13-5
compiler capacity, C-l
compiler controls, 1-1, 11-1, 11-2
compiler error messages, 15-1 thru 15-11
compiler failure error messages, 15-12
compiler installation, 1-3,1-1, K-l
compiler invocation, 1-2, 1-3, K-2, K-3
compiler messages, 12-2

lndex-l

Index

compiler output, 13-1
COMPLEX Data Type, 5-1, 5-6
COMPLEX Type Statement, 5-6, D-4
computed GO TO statement, 2-1, 8-7
concatenation, 7-3
connected unit, 9-2, 9-7, 9-8
console input device, 9-2
console output device, 9-2
constant array declarator, 5-10
constants, 3-1
continuation line, 3-2
CONTINUE statement, 2-1, 8-6, D-2
control abbreviations, 11-2
control status controls, 11-1
COS, 6-16
COSH,6-19
cosine, 6-16

DABS, 6-11
DACOS, 6-17
DASIN,6-17
data length, 5-1
DATA statement, 2-2, 5-15, 6-1, 6-25, D-4
data transfer statements, 9-25
data transfer I/O statements, 9-10
data types, 5-1, H-3 thru H-6
DATAN,6-17
DATAN2,6-17
DBLE,6-6
DCOS, 6-17
DCOSH,6-16
D descriptor editing, 9-15
DDIM,6-11
DEBUG control, 11-3, 11-6
decimal base specifier, 5-2
default data length, 11-22
default typing convention, 5-1, 5-8
denormalized numbers, 7-7
denormalized operand, 15-25
device drivers, 1-2, 1-3, 1-2
DEXP, 6-14
DIM,6-11
dimension declarator, 5-10
dimension declarator size, 5-11
DIMENSION statement, 2-2, 5-10, 6-23, D-3
DINT,6-9
direct access file, 9-1
disconnected unit, 9-2
division, 7-1
division by zero, 7-2
DLOG,6-15
DLOGIO,6-15
DMAXl, 6-1, 6-12
DMIN1, 6-1, 6-12
DMOD,6-9
DNINT,6-9
D066 control, 11-7
D077 control, 11-7
DO loop, 8-5, 11-7

Index-2

DO statement, 2-1, 8-5, D-3
dollar sign editing, 9-22
DOUBLE PRECISION data type, 4-1, 5-5
double-precision product, 6-12

Fortran-86

DOUBLE PRECISION statement, 2-2, 5-5, D-3
DPROD,6-11
DSQRT,6-14
DRINT,6-9
DRMD,6-9
DSIGN,6-10
DSIN,6-16
DSINH,6-19
DSQRT,6-14
DTAN,6-16
DTANH,6-19
dummy argument, 3-2, 4-1,5-9,6-1,6-23, 8-6
Dw.d descriptor, 9-15

E8087.LIB, 14-2
E descriptor editing, 9-17
edit descriptor, 9-5
ElECT control, 11-3, 11-8, 13-1
ELSE statement, 2-1, 8-4, D-3
ELSE IF statement, 2-1, 8-4, D-3
END IF statement, 2-1, 8-4, D-4
ENDFILE statement, 2-1, 9-10, D-7
end-of-file specifier, 9-12
END statement, 2-1, 4-2, D-4
.EQ., 7-3
EQUIVALENCE statement, 2-2, 5-8, 5-13, 6-1, 6-25, D-4
.EQV., 7-4
error format, 15-1
error message listing, 13-5
error specifier, 9-4
ERRORLIMIT control, 11-9
Ew.d descriptor, 9-15
Ew.dEe descriptor, 9-15
examples, 10-1
executable statements, 2-1, 8-1
EXP, 6-14
exponentiation, 7-1
expressions, 7-1
external files, 9-1
external procedure, 2-1
EXTERNAL statement, 2-2, 5-17, D-4
external unit specifier, 9-11

F86RNO.LIB, 14-2, 14-3,1-1, K-l
F86RNl.LIB, 14-2, 14-3,1-1, K-l
F86RN2.LIB, 14-2, 14-3,1-1, K-l
F86RN3.LIB, 14-2, 14-3,1-1, K-l
F86RN4.LIB, 14-2, 14-3,1-1, K-l
F descriptor editing, 9-16
file, 9-1
file handling statements, 9-2 thru 9-9
file disposition specifier, 9-8
file name specifier, 9-4
file pointer, 9-9
file preconnection, 14-6

Fortran-86

file status specifier, 9-4
FLOAT, 6-1, 6-5
floating-point 8087 exceptions, 15-22
floating-point constants, 5-4
floating-point data, 5-4, H-3
floating-point error handler, 1-5, K-5
floating-point exceptions, 7-3
floating-point exponent, 5-4
floating-point function exceptions, 15-20
floating-point value ranges, 5-4
format identifier, 9-15
format specifier, 9-11
FORMAT statement, 2-2, 9-15, 0-5
formatted data transfer, 9-14
formatted record, 9-1
formatting specifier, 9-5
FORT86.86, 14-2, 14-3,1-2, K-2
Fortran 77 extensions, A-I
Fortran-80, A-I
FREEFORM control, 3-3, 11-10, 12-1
freeform input, 9-21
freeform output, 9-22
function, 6-1, 6-2, 8-6, 11-21
FUNCTION statement, 2-1, 2-2, 4-1, 0-8
FUNCTION subprogram, 2-1, 5-16,6-3, 12-1
Fw.d descriptor, 9-15

G descriptor editing, 9-18
.GE., 7-4
general controls, 11-2, 11-11
generic name, 6-3
global data, 4-2
global symbolic name, 3-2
GOTO statements, 8-7, 0-5
.GT., 7-4
Gw.d descriptor, 9-15
Gw.d [Eel descriptor, 9-15

H descriptor editing, 9-20
hardware environment, 1-2
headings, 4-1
hexadecimal base specifier, 5-2
Hollerith constants, F-l
Hollerith data, 5-8
Hollerith data type, F-l
Hollerith edit descriptor, 9-18
Hollerith format specification, F-2
Hollerith string descriptor, 9-18
hyperbolic cosine, 6-19
hyperbolic functions, 6-18
hyperbolic sine, 6-19
hyperbolic tangent, 6-19

lABS, 6-10
ICHAR, 6-1, 6-7
101M, 6-11
IDINT,6-8
IDNINT,6-8
lORINT, 6-8

IF statements, 8-3, 0-5
IFIX, 6-1, 6-5
IGNORE control, 11-11
IMPLICIT statement, 2-2, 5-1, 5-8, 6-25, 0-6
implicit type conversions, 6-25
implied-DO, 5-16, 9-13
INDEX, 6-13
INCLUDE control, 11-3, 11-12, 13-2
index value of a DO loop, 8-6
inexact result, 7-3
infinity arithmetic, 7-9
initial line, 3-3
initial primary controls, 11-1
INPUT,6-2
input and output statements, 9-1
input files, 12-1
input format controls, 11-2
INT, 6-1, 6-4, 6-5
INTI, 6-1, 6-4, 6-5
INT2, 6-1, 6-4, 6-5
INT4, 6-1, 6-4, 6-5
integer constants, 5-2
integer data, 5-2
INTEGER data type, 4-1, H-3
INTEGER editing, 9-16
integer exceptions, 15-22
INTEGER overflow, 7-2
INTEGER statement, 2-2, 5-2, 0-10
integer value ranges, 5-2
INTERFACE Control, 11-3, 11-13
internal file, 9-2
INTERRUPT control, 6-21, 6-22, 11-3, 11-14
interrupt number, 6-22
interrupt procedure, 11-14

epilogue, 1-5
preface, 1-5

intrinsic function, 6-1, 6-3
intrinsic function library, 1-5, K-4
intrinsic function reference, 6-3
INTRINSIC statement, 2-2, 6-1, 0-10
intrinsic subroutine, 6-2
invalid operation, 15-23, 15-24
invocation line, 1-2, K-2
INW, 6-2
I/O exceptions, 15-1, 15-3
I/O run-time libraries, 1-3
I/O status specifier, 9-7 thru 9-9, 9-11, 9-12
IRINT, 6-8, 6-9
IRMD,6-1O
iRMX 86, K-l
ISIGN,6-11
Iw descriptor, 9-15, 9-16

keyword, 3-2

language elements, 3-1
language summary, 0-1
LARGE. LIB, 14-3, 1-2
LDCW87,6-21

Index

Index-3

Index

.LE., 7-4
LEN,6-13
length specification, 5-3
lexical relationship functions, 6-17
lexically less, 6-19
lexically less or equal, 6-19
lexically greater, 6-19
lexically greater or equal, 6-19
LGE, 6-1, 6-19
LGT, 6-1, 6-19
LIB86, 1-2
libraries, 14-2
line, 3-3
line format, 3-3, 11-10, 12-2
LINK86, 1-1, 1-2, 14-1, 14-2
link invocation, 14-1
linking conventions, J-6, K-5
LIST control, 11-2, 11-15, 13-1
list directed formatting, 9-22
list directed input, 9-23
list directed output, 9-24
listing content controls, 11-3
listing file, 12-1
listing format controls, 11-3
listing preface, 13-1
literal string descriptor, 9-20
LLE, 6-1, 6-19, 6-20
LLT, 6-1, 6-19, 6-20
load 8087 control word, 6-20
local symbolic name, 3-2
LOC86,1-2
locate invocation, J-9, K-6
locating object modules, J-6, K-6
LOG,6-15
LOGIO, 6-15
logical assignment statement, 2-1, 8-2
logical conjunction, 7-5
logical data, 5-6
logical data types, H-4
LOGICAL data type, 4-1
logical data values, 5-6
LOGICAL editing, 9-18
logical equivalence, 7-4
logical IF statement, 8-5
logical expressions, 7-1, 7-5
logical IF statement, 2-1
logical inclusive disjunction, 7-5
logical negation, 7-5
logical nonequivalence, 7-5
logical operators, 7-5
logical record interface (LRI), 1-4
LOGICAL statement, 2-2, 5-6, 0-10
loop increment/decrement value, 8-6
loop termination value, 8-6
lower dimension bound, 5-10
.LT., 7-4
Lw descriptor, 9-15, 9-16

main program, 2-1, 4-1, 12-1
MAX, 6-1,6-12

Index-4

MAXO, 6-1, 6-12
MAXI, 6-1, 6-12
memory allocation, 14-1
memory definition, 5-13
MIN, 6-1, 6-12, 6-13
MINO, 6-1, 6-12, 6-13
MINI, 6-1, 6-12, 6-13
mixed-mode arithmetic, 7-1
multiplication, 7-1
MOD,6-9

named common block, 5-14
NaN, 7-9
natural logarithm, 6-13
.NE., 7-4
.NEQV.,7-6
nesting of DO, 8-6
nesting of IF, 8-3
nesting of INCLUDE, 11-12
NINT,6-8
NOCODE control, 11-3, 11-5, 13-1
NODEBUG control, 11-4, 11-6
NOERRORLIMIT control, 11-9
NOFREEFORM control, 11-10
nonexecutable statements, 2-1
NOLIST control, 11-3, 11-15, 13-1
nonrepeatable edit descriptor, 9-13, 9-18
NOOBJECT control, 11-1, 11-16
NOOVERLAP control, 11-17
NOPRINT control, 11-1, 11-2, 11-8, 13-1
normalized numbers, 7-8
NOSYMBOLS control, 11-24
.NOT., 7-5
not a number, 7-9
NOTYPE control, 11-26
NOXREF control, 11-3, 11-27
null value, 9-23, 9-24
number-base editing, 9-19
numeric storage unit, 5-1, 5-3 thru 5-5, G-l
numerics run-time libraries, 1-3
nX descriptor, 9-20

OBJECT control, 11-1 thru 11-4, 11-16, 12-2
object files, 12-2, 13-5
object file controls, 11-1
object module, 11-16, 13-5
octal base specifier, 5-2
OH86,1-2
OPEN statement, 2-1, 9-2, 0-10
operator precedence, 7-7
.0R.,7-5
OUTPUT,6-2
output files, 12-1
output listing, 1-1
OUTW, 6-2
overflow, 7-1, 15-25
OVERLAP control, 11-17, 15-8
overlay, 14-3

Fortran-86

Fortran-86

PAGELENGTH control, 11-18, 13-2
PAGEWIDTH control, 11-19, 13-2
PARAMETER statement, 2-2,5-9, D-11
pass by reference, H-2
pass by value, H-2
PAUSE statement, 2-1, 8-8, D-l1
P editing, 9-21
positive difference, 6-9
precedence of operators, 7-7
precision, 15-26
preconnected file, 9-2
primary controls, 11-1
PRINT control, 11-1, 11-4, 11-20, 12-2, 13-1
PRINT file, 12-2
PRINT statement, 2-1, 9-14, 9-24, D-l1
procedure, 2-1, H-6
processor dependent features, B-1
PROGIA.FTN, 10-1
PROGIB.FTN,10-2
PROGIC.FTN, 10-3
PROG2.FTN,IO-4
PROG3.FTN, 10-6
PROG4.FTN, 10-7
PROG5.FTN, 10-8
program development process, 1-3
program halt statements, 8-9
program listing, 13-1
PROGRAM statement, 2-1, 2-2, 4-.}, D-12
program structure, 2-1
program unit, 2-1, 12-2
pseudo-assembly language listing, 11-5, 13-2

range exceptions, 15-22
READ statement, 2-1, 9-10, 9-23, D-12
REAL data type, 4-1, 5-4
REAL function, 6-1, 6-7
REAL statement, 2-2, 5-4, D-12
record,9-1
record length specifier, 9-6
record number specifier, 9-10 thru 9-12
record position control descriptor, 9-21
record termination description, 9-18
REENTRANT control, 5-15,6-1, 11-21
referencing array elements, 5-12
register usage, H-6
relational expressions, 7-1, 7-3
relational operators, D-15
remainder functions, 6-9
repeat specifier, 5-15, 9-23
repeatable edit descriptor, 9-15
reserved word, 3-1
restore 8087 state, 6-22
RETURN statement, 2-1, 5-15, 8-7, 11-21, D-13
Revision history, iii
REWIND statement, 2-2, 9-9, D-13
RINT,6-9
RMD,6-9
RMX-86, K-l
rounding, 7-7

rounding functions, 6-8
RST87,6-22
RTNULL.LIB, 14-2, 14-3,1-1, K-l
RUN command, 1-2, K-2
run-time data representations, G-l
Run-Time Environment, 1-2
run-time exception handling, 1-4
run-time errors, 15-12
run-time initialization, H-6
run-time interface, 1-1
run-time interrupt processing, 1-4
Run-Time Support Libraries, 1-1, 14-2, 14-3
Run-Time System, 1-1

sample programs, 10-1
SAV87, 6-22
save 8087 state, 6-22
SAVE statement, 2-2, 5-15, 6-1, 6-25, D-13
scale factor, 9-18,9-21
scale factor descriptor, 9-18
scale factor editing, 9-21
scratch files, 9-8
sequential access file, 9-1
Series III, Appendix 1
Series IV, Appendix 1
SETINT,6-22, 11-14, 1-4
SIGN,6-10
sign-off message, 12-2, 13-1, 13-5
sign-on message, 12-2
sign-on preface, 13-1
sign transfer, 6-10
SIN,6-16
sine, 6-16
SINH,6-19
slash editing, 9-21
SNGL, 6-1, 6-5
software environment, 1-2
source listing, 13-1
specific name, 6-3
SQRT,6-14
square root, 6-14
stack usage, H-8
standard line format, 11-10
standards, deviation, A-I
statement elements, 3-1
statement-function statement, 2-2, 6-1, 6-23, D-14
statement label, 3-2
statement number, 13-2
statement order, 2-2
STC87,6-21
STOP statement, 2-1,8-9, D-14
STORAGE control, 11-22
storage unit, G-l
store 8087 control word, 6-21
store 8087 status word, 6-21
structures, H-5
STSW87,6-21
subprogram, 2-1, 4-1, 6-1
subroutine, 6-1, 6-2, 8-7, 11-21

Index

Index-5

Index

SUBROUTINE statement, 2-1, 2-2, 4-2, 6-2, D-14
SUBROUTINE subprogram, 2-1,5-15, 12-2
subscript, 5-12, 11-6
substring, characters, 5-13
SUBTITLE control, 11-2, 11-4, 11-23, 13-1
subtraction, 7-1
symbol listing, 1-1
symbolic debugging, 11-6
symbolic name, 3-2, 5-8, 8-7
symbol table listing, 11-4, 11-24, 11-27, 13-1, 13-2
SYMBOLS control, 11-3, 11-24, 13-1, 13-2
syntactic error messages, 13-1, 15-2

TAN,6-16
tangent, 6-16
TANH,6-19
TEMPREAL data type, 4-1, 5-5
TEMPREAL statement, 2-2, 5-5, D-15
TITLE control, 11-3, 11-4, 11-25, 13-2
trapping NaN, 7-10
TREAL, 6-1, 6-7
trigonometric functions, 6-15
truncation functions, 6-8
TYPE control, 11-26
type conversion functions, 6-4
type statement, 5-1, 6-23

Index-6

unconditional GOTO statement, 2-1, 8-8
underflow, 7-1, 15-25
unformatted data transfer, 9-25
unformatted record, 9-1
unit, 9-1, 9-2
unit specifier, 9-3, 9-7, 9-8, 9-11

Fortran-86

universal development system interface (UDI), 1-1
universal record interface (URI), 1-2
unnamed common block, 5-14
unnormalized numbers, 7-8
unordered relation, 7-9
upper dimension bound, 5-10

value separator, 9-24

warning mode, 7-8
work files, 12-2, 13-6
WRITE statement, 2-1, 9-13, 9-24, D-15

X descriptor editing, 9-20
XREF control, 11-3, 11-27

Z descriptor, 9-19
zero divide, 15-25
Zw,9-15

intJ
REQUEST FOR READER'S COMMENTS

Fortran-86 User's Guide
121570-003

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi
cation. If you have any comments on the product that this publication describes, please contact your Intel represen
tative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1 . Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 {f; being the best rating}. _____________ _

NAME ___________ . ____ _ DATE _________ _

TITLE _______ . ___ ,

COMPANY NAME/DEPARTMENT

ADDRESS __ _

CITY ____________________ _ STATE _________________ _ ZIP CODE ____ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS •.•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA. CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

II II I NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

infef
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

