L.C.T. ATLAS 1 COMPUTER

PROGRAMMING MANUAL
_ FOR

ATLAS BASIC LANGUAGE
(ABL)

LIST CS 348A
(© JANUARY 1965

International Computers and Tabulators Limited
1L.C.T. House Putney London, S.W.15

INTRODUCTION

This edition of the Atlas Basic Language Programming
Manual is a reprint of the versiocn issued in January 1965,
A few minor corrections have been made to the text; a full
set of amendments is included as an appendix to this volume.,
With the amendments, this edition covers all the facilities
available to the ABL programmer up to June, 1967,

Chapter 10 has been issued as a separate document,
"Preparing a Complete Program for Atlas 1", (list no., CS 460/
TL1254), and this should be consulted for the latest informa-
tion on job preparation; Supervisor logging at the end of a
program (sec 11,1;3) is described more fully in Part One of
the Atlas Operators! Manual (CS 411),

D.E.C,
June, 1967,

PREFACE

This manual supersedes the mamual CS 348, "The Atlas Provisional
Programming Manual®, January 1963, It provides informetion for the
programming of the Atlas 1 computer in the language known as Atlas Basio
Language (ABL). It is a self-contained document, providing sufficient in-
formation about the Atlas 1 computer to enable programmers to vrite and
develop programs in ABL without recourse to any other documents about Atlas 1.

The Atlas 1 Computer is the latest result of a long-standing col-
laboration between Manchester University and Ferranti Ltd. A later version
of the computer, known as Atlas 2, has been developed jointly by Cambridge
University and Ferranti Ltds In September 1963 the Computer Department of
Ferranti Ltd., was acquired by I.C.,T. Ltd., who now manufacture and market
the Atlas computers,

Atlas Basic Language (ABL) is a symbolic input language close to
"machine language®. Lach ABL instruction corresponds to one machine in-
struction, and each part of an ABL instruction to each part of a machine
instruction, In its simplest form an ABL instruction consists of four
numbers corresponding exactly to the internal machine representation, but
extensive facilities are also provided in ABL for the use of a variety of
parameters and symbolic expressions which are evaluated by the ABL compiler.
ABL also provides a comprehensive system of directives to control the
assembly of a complete program. Finally APL provides facilities for the
input, conversion and storage of fixed~point numbers, floating~-point num-
bers and character strings for use by the program.

In this mznugl no attenpt is normally made to differentiate between
those facilities which are a basic part of the machine {e.ge the instruction
repertoire) and those which are a part of the particular language ABL
(eegs the formats for writing instructions)e This is partly because it is
impossible to separate them completely = any feature of the machine itself
needs a language in which to describe it, and in this case that language is
ABL - and partly because it is not normally necessary or helpful for a pro-
grammer to be conscious of the distinction. However, inasmuch as certain
facilities of the machine itself are described here, parts of this manual
are relevant and interesting to users of other Atlas programming languages.
In particular, Chapter 10 "Preparing a Complete Program" applies to all
Atlas languages.

A word must be saild about the enumeration of binary digits: through-
out this manual the convention adopted is to number bits as 0y 1, 2 sees,
starting always with bit number O at the more significant end. This con-
vention differs from that used in documents on the Supervisor and in engi-
neering documents, in which only the accumulator 1s numbered as here, and
in all other cases bit O is the least-significant bit.

CORRECTIONS TO CS 3484
Issue June 1967

Page Line Correction
1. 5/3 2 of 1.5.2, For 1is! read 'are!
2, 1/1 9 of 2.1.3, For '2000' read '1000!
: 10 of 2.1.3. For '30000' read '15000!
2, 1/2 1 of 2.1.5. For 'are! read 'is!
2, 2/1 1 of 2nd paragraph For 'wherever! read 'whenever!'
4. 2/1 -4 For 'a' read 'n!
de 5/1 2 of 4th paragraph For fare’ read 'is’
5, 12/1 11 For 'of a' read 'a of!
T. 4/6 -1 For 'ca:! read 'ca'!
8. 15/1 =10 For 'when' read !then!
8. 15/3 8 : For 'Ba' read'ba' '
12 For '3! read 'b3!
9. 1/1 -2 For '99' read '126'
9. 4/9 1 . Por tindictated' read 'indicated!
10, 6/2 1 For '10.,6.2'read '10.6,1'
10. 7/2 3 For 'is this case' read 'in this case!
11, 11 1 of 11.1.1 For 'outselves' read 'ourselves'
11. 1/2 -7 For 'SPARE' read 'IEM tape fail, IRM TAPE FAIL,
E, 3.4'
11. 1/5 -6 before 1ll.l.2 For 'tape' read 'trap!
) -3 before 11,1.2 For 'Band Not Defined' read 'Band Noit Resexrved!
12, 8/3 =10 ~ For 'pointing' read 'printing!
F/2 5 For '300 a' = am + S QRE' read

|300a| =am+SQEl
12, 9/3 A Delete references to extracodes 1150, 1151

CHAPTER 1

1.
1.

N —

- d
v o o
Ut £

1.6

CHAPTER 2

2.1

CHAPTZER 3

* a8 ®

* ® e
NVO® ~FTAWMmFLUN -

WW LVWwwLLwWwWw

CHAPTER 4

FEEEEREEEEEE
® 3 & © & o & * o o =

- =2\0 OIOWMEFEUN =

-0

(1)

CONTENTS

AUTOMATIC DIGITAL CGMPUTERS

Introduction

Electronic Computers
12,1 Digital Computers
Addresses

Instruction Code

Jump Instructions

1¢5.1 Looping

1.5.2 Modification
Binary Numbers

1.6,1 Negative Numbers

THE ATLAS 1 CCMFUTER

A General Description of Atlas 1
2.1.1 The Control Unit

2,1.2 The Arithmetic Units

2,1.3 The Supervisor

2,1.4 Storage

2.1,5 Input and Output

The Main Store

Storage of information in Atlas 1
Instructions in the machine

The written form of Instructions
The full range of Atlas 1 addresses

THE ACCUMULATOR

Floating-point numbers
The Accumulator
Standardised numbers
Fixed~point numbers
Rounding _ ,
Floating~point operations

Standardising and Rounding accumulator

instructions
The timing of instructions

-Some fixed-point instructions

THE B~REGISTERS

General Purpose B~registers
Arithmetic Operations

Logical Operations -

Test Instructions

Special Purpose B-registers
Modification/Counting Instructions
The B~test register

The Shifting Instructions

The 0dd/Even Test Instructions
Restrictions on the use of B81-B119
The B~carry digit

(1.65)

Date of Issue

1,65

1.65
1,65
1.65
1,65
1465
1465
1.65
1.65
1.65
1,65

1,65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1,65
1.65
1.65

1.65
1.65
1.65
1.65
1465
1.65

1,65
1,65
1.65

1.65

1.65
1.65
1 .65)
1.65
1.65
1 .65
1465
1.65
1.65
1.65
1,65

(11)

Date of Issue
CHAPTER 5 ROUTINES AND DIRECTIVES

5¢1 Routines, Subroutines and Symbolic
Addresses 1.65
542 Parameters 1.65
5.3 Preset Parameters 1.65
5.4 Global Parameters 1.65
5.5 Optional Parameter Setting 1.65%
5.6 Expressions 1.65
5.7 Separators 1.65
5¢8 The Special Parameter * 1.65
5.9 The Ba and Bm Parts of an Instruction 1.65
5.10 Half-Words, Six=-Bit Words and Characters 1.65
5.11 Floating-Point Numbers 1,65
5.12 Library Routines 1.65
5413 Directives 1,65
CHAPTZIR 6 THE REMAINING ACCUMULATOR INSTRUCTIONS 1.65
6.1 Standardised Unrounded Operations 1.65
6.2 Unstandardised Instructions ' 1.65
6.2.1 Storing and Loading the Accumulator 1.65
6,2,2 Unstandardised Multiplication 1.65
6.,2.3 Division with Remainder 1.65
6.2.4 Miscellaneous 1.65
6.3 Test Instructions 1.65

CHAPTER 7 EXTRACODE INSTRUCTIONS

7ol Introduction : 1.65
7.1.1 Uses of the Extracode Instructions 1.65
7.1.2 A-type and B~type Extracodes 1.65
7.2 The Logical Interpretation of Extracode
Instructions 1.65
73 Allocation of Functions 1.65
7.h The Accumulator Extracodes
7.4.1 The Most Used Arithmetic Functions 1.65
7.4.2 Other Floating-Point Arithmetic
Functions 1.65
7.4.3 Accumulator functions suitable for
Fixed-Point Working 1,65
7h b Double=-Length Arithmetic 1.65
7.4.5 Aritometic Using the Address as an
Operand 1465
7.4.6 Comnlex Arithmetic 1.65
74,7 Vector Arithmetic 1.65
7.4.8 EHalf-Word Packing 1.65
75 B-register Arithmetic
7.5.1 General B~register Cperations 1.65
7.5.2 Character Data Processing 1.65
7.5.3 Logical Accumulator Instructions 1.65
7.6 Test Instructions
7.6,1 Accumulator Test Instructions 1.65
7.6.2 Beregister Test Instructions 1.65
7.7 Subroutine Entry 1.65
78 Miscellaneous Operations 1,65

(1.65)

(111)

Date of Issue

CHAPTER 8 INPUT AND OUTPUT 1,65
8,1 Introduction
8.1.1 Peripheral Devices 1,65
8.,1.,2 The System Input and Output Tapes 1,65
8.1.3 Internal Code Input and Output 1,65
8.1.4 Binary Input and Output 1.65
8,2 The Internal Code
8.2,1 Abbreviations 1.65
8,2,2 The Internal Code Table 1,65
8.2.3 Shifts and Case Changes 1,65
8.3 Carriage Control Characters and Records 1,65
8,4 Selecting Input and Output 1465
8.5 Input using L100 1,65
8.5.1 Line reconstruction 1.65
8.5.2 Entries to L100 1.65
845.3 Data Preparation for L100 1.65
8.5.4 Punching Errors 1.65
8,6 The Entries to L10Q in Detail 1465
8.6.1 A1/L100 (am' = floating point
number) 1465
8.6.2 A2/L100 (b81' = 21-bit integer
without octal fraction) 1.65
8.6.3 A3/L100 (b81' = character) 1.65
8.6,4 AL/L100 (lose current line) 1.65
8.,6.5 A5/L100 (input text 1.65
8.6,6 A6/L100 (input text 1.65
8,6,7 A7/L100 (b81! = 24-bit integer) 1.65
8.6.8 A8/L100 (b81' = 21-bit integer with
octal fraction) 1.65
8.6.9 A9/L100 (print reconstructed line) 1465
8.7 Optional Parameters of L100 1465
8.7.1 A20/L100 (private use of
reconstructed line) 1.65
8.7.2 A21/L100 (spurious character in
place of a number) 1.65
8.7+3 A22/L100 (spurious character within
a number) 1.65

8.7.4 A23/L100 (number of inputs handled

at one time) e 1,65
8,7.5 A24/1100 (line length) 1.65
8,7.,6 A25/L100 (tab settings 1.65
8.7.7 A26/L100 (tab settings 1.65
8,8 Fault Printing by L100 1,65
8.9 Output using L1 1.65
849.1 Entry Points to L1 1,65
8,10 The Entries to L1 in Detail 1,65
8.10.1 A1/L1 (print a floating point
number) 1,65
8.,10,2 A2/L1 2print an integer) 1.65
8.10,3 A3/L1 (print a character) 1,65
8,10,4 A4L/L1 (new line or card 1.65
8,10,5 A5/L1 (carriage control 1.65
8,10,6 A6/L1 (output text 1.65
8,10,7 A7/L1 (output text 1,65

(1.65)

(iv)

Date of Issue

8,11 Optional Parameters of L1 1,65
8.11.,1 A21/L1, A22/L1 (controlling
places allowed before and after the

decimal point on output) 1,65

8.11.2 A25/L1 (optional sign for

floating point output) 1,65

8.11.3 A26/L1 (optional sign for

integer output) 1,65

8.11.4 A27/L1 (printed width of

exponents) 1.65

8.1145 A28/L1 and A29/L1 (printed form

of exponents) 1.65
8,12 Input and Output by Extracode 1.65
8.13 Binary Input and Output 1.65
8.14 The Input Extracodes 1.65
8.15 The Output Extracodes 1.65
8,16 Further Information on Binary Input/Output 1.65

CHAPTER 9 MAGNETIC TAPE

9.1 Introduction 1.65
9.2 Atlas One Inch Tape 1.65
9.3 Block Transfers on One Inch Tape 1.65
9.3.1 Block Transfer Instructions 1.65
9.3.2 TUse of Block Transfers 1.65
9,4 Variable Length working on One Inch Tape 1.65
9.4.1 Variable Length Instructions 1.65
9.4,2 Start and Select Instructions 1.65
9.4,3 Transfer and Organisational
Instructions 1.65
9.4k.4 Efficiency of Variable Length
Working 1.65
9.5 Organisational Instructions for One
Inch Tape 1.65
9.5.1 Mount Instructions 1,65
9,5.2 Other organisational Extracodes 1.65
9.6 Specification of the Atlas One Inch
Tape System
9,6.1 Control 1.65
9.6.2 The Tape Layout 1,65
9.6,3 Performance 1.65
9.6.4 Safeguards 1.65
9.7 Orion Tapes 1.65
CHAPTER 10 PREPARING A COMPLETE PROGRAM 1,65
10,1 Atlas Jobs 1.65
10,2 Documents 1.65
10.3 Document Headings and Titles 1,65
10,3,1 Headings 1.65
10.3.2 Titles 1.65
10.3.3 Rules for title preparation 1.65
10,4 The Input and Output Sections of the Job
Description 1.65
10.4,1 The Input Section 1,65
10,4.2 The Output Section ' 1,65
10.4,3 Output: General Notes 1.65

(1.65)

10.10

10,11

10,12

10,13

(v)

A Complete Job Description

The Magnetic Tape Section of the Job
Description

10,6.,1 Single Tapes

10,6.,2 PFiles

10.6,3 Deck Allotment

Time Estimates for a Job

10.7.1 Computing Time

10,7.2 Execution Time

Store Allocation

Job Description Format

10.9,1 Order of Sections

10.9.2 Case Changes

10,9.3 Backspace

Composite Documents

10.10,1 Job Description combined with
Program

10.10.2 Job Descriptior combined with Da
Document

10.10,3 Data Files

Tape and Card Markers

Date of Issue
1,65

1.65
1,65
1.65
1,65

1.65
1.65
1.65

1.65
1.65
1.65

1.65
ta

1,65

1.65

1.65

10,11.1 The Tape Markers ***Z, C, T and A 1.65

10,11.2 The Binary Tape Markers ¥***B,
E and F

10.11.,3 The Tape Marker **x*Pp

10,11.4 Card Markers

Input ard Output using Frivate lagnetic
Tapes

10,12,1 Extensive Input

10,12,2 Job Description Reference
10.12.3 Re-~use of Documents on System
Tapes

10.12.4 Extensive Output

Job Description Farameter

CHAPTZR 11 MONITCRING AND FAULT DETECTION

11.1

11.2
11.3
11.4

11.5
6

Supervisor Monitoring

11.1,1 Types of Program Faults
11.1.2 Standard Post Mortem

11.1,3 Ending a Program

The Trapping Vector

Private Monitoring

Restarting and Re-entering a Program
11.4,1 Preventing a Restart

11.4,2 Re-~entering a Program
Monitor Extracodes

Faults Detected by the Compiler
11.6,1 B~lines in ABL

11,6,2 Indeterminate Items

11.6.3 Diagnostic Printing

11.6,4 Fault Location

11,6,5 Diagnostic Printing Character Set
11,6.,6 Explanatory Texts

(1.65)

1,65
1,65
1,65

1.65
1.65
1.65

1.65
1.65
1.65

1.65
1,65
1.65

(vi)

Date of Issue

CHAPTER 12 FURTHER FACILITIES AND TECHNIQUES 1.65
12.1 Programmed Drum Transfers 1,65
12.2 Optimization of Frogram Loops 1,65

12,2.,1 Store Access 1.65

12.,2.2 The Overlapping of Instructions 1.65
12.3 Branching 1.65

12,3.1 Existing Parallel Operations 1,65

12,3.2 The Branch Instructions 1,65

12.3.3 The Use of Branching 1.65

12.3.4 Store Requirements 1.65
12.4 Instruction Counters 1,65
12,5 Re-entering the Compiler 1.65
12,6 Special Preset Parameters 1.65
12,7 Private Library Routines

12,7.1 Library Routine Titles 1465

12,7.2 Undefined Library Routines 1.65

12,73 Preparing a Private Library

Routine 1.65

12.7.4 Incorporating a new Library

Routine into the Public Library 1.65

12.7.5 Conventions 1.65

12,7,6 Referring to the master program

from within a library routine 1.65
12.8 Correction of Programs, and System

Peculiarities

12,8.1 Program Alterations 1.65

12.6,2 Further Peculiarities 1.65
12.9 Compiler and Supervisor Extracodes 1.65

APPENDIX A References 1.65

APPENDIX B Notation 1.65

APPENDIX C V-Store addresses of Peripherals 1.65

APPENDIX D Character Codes 1.65

APPENDIX E Summary of Extracodes 1.65

APFENDIX F Surmary of Basic Instructions by Function 1.65

APPENDIX G Summary of Basic Instructions by Number 1.65

(1.65)

1,4/
gbagter 1

AUTOMATIC DIGITAL COMPUTERS

1.1 Introduction

4tlas 1 is a very fast, automatic digital computer with built-in
tine-sharing facilities enabling a considereble number of problems to be
processed simultaneously. This manual is intended for those who will pre~
pare prograns giving the machine detailed instructicns for the step~by-
step solution of individual problems. It is likely that they will have
soue previous knowledge of couputers: should the ideas outlined in this
chapter be unfaemiliar, the reader is advised to consult an introductory
text for further clerification.

1.2 Electronic Conputers

The application of electronics has led to the development of the
nodern high~speed computer; we nust distinguish two types of eleotronic com-
puters:-

Analogue computers represent quantities by some analogous physical
quantity and solve problems by working with an actual physical nodel
obeying the desired theoreticel equations. Since the quantities involved
can be evaluated only by neasurement, the attainable precision is neces-
sarily limited. The slide-rule is a familiar exemple of an analogue con-
puter, using lengths to represent the logeritims of numbers.

Digital computers operate upon nunbers in some coded-digit form
and make use of standard computational techniques to obtain direct nu-
merical solutions to problems. By increasing the number of digits with
which numbers ere represented in the machine, the precision ney be ex-
tended without limit. desk calculator is a simple form of digitel
computer. :

l.2.,1 Digital Computers.

As a more ccuplete form of digital computer, we nay consider the
combination of a desk celculator end its operator as a single computing
unit; this will enable us to introduce the essential features of a typical
digital computer:-

(2) Input and Output. This is one of the roles performed by the operator
of a desk cnlculator, who must set up numbers in the machine before they
can be operated uvn and also read results fron the machine, recording thenm
elsewhere, TIor an electronic conputer, information is transferred tac and
from the nechine by automatic equipuent.

(b) Controls Here again, it is the operator who nust control the se-
quence of operations on a desk cnlculator, /n automatic conputer is con-
trolled by a progran consisting of a sequence of detailed instructions in
coded foru, In the inportant cise of a stored-progran computer, the whole

(1.65)

1.2/2

program is stored within the machine before any of it is obeyed; the speed
of the conputation is then not restricted to that of the input devices.,

(c) Arithmetic Unite The mechanism of a desk calculator carries out the
individual operaticns in accordance with the key depressed., Sinilarly,
the arithmetic unit of an electronic computer performs the functions
called for by thc successive instructicns in the program., There will
usually be included an accumulator in which the result of each step first
appears, similar to the long register on the carriage of a desk nachine.

(d) Storage. The keyboard and certain other registers of a desk cal-
culator constitute a working storc, insofar as the mechenism cf the
arithnetic unit is able to operate directly upon numbers contained in these
registers. An electronic conputer conmonly has a working store capable

of holding several thousand numbers. At any time each of these numbers

is irmediately available to the arithnetic unit, and so one speeks of a
"randon access" or "fast" store.

This type of storage is relatively expensive and so if still
larger amounts of storege ere requirced this is normelly provided by sone
cheaper form of "backing" store. This will inevitably involve a longer
access tice, but, when required for computation, data can be transferred
in blocks of several hundred numbers at once fron the backing store to the
working store.

1.3 iddresses

Bach of the locctions in the backing store and in the conputing
store 1s essigned an eddress. The address is a number, and it is in-
portant to distinguish the number which is the address of a location from
the number which is contained in that loccotion. As & neans of distinction,
we shall denote addresses by capital letters and contents by small letters
and will assune, for exonple, thet the nunber s is the content of the
location whose address is S. In certain contexts we shell find it neces-—
sary to use the notation C(S) as an alicrnative to s. (Note that (S +1)
is not the sane as s + 1; the nctation S* is soretincs used to denote
S +1, so that s* = C(S +1))e The contents of S after an operaticn will
be written s’, so that, for example, the equution

s’ =585 +b
denctes the operation of adding the number b to the contents of S.

1.4 Instruction Code

vie have so far spoken of the contents of store locations as nunbers,
but they may also be instructions in coded form. Both numbers and coded
instructions nay be referred to as "words"; it is for the prograner to
ensure that no atteupt is made to interpret one type of word as the other.
An instruction word will usually contain cne or nore addresses to spucify
the data to be operated on; there will also be a coded number specifying .
the operation to be perforned. The correspondence between the elenentery
operi.tions which nay be direoctly carried out in the arithnetic unit and
the code nunbers which control then constitutes the "order-code" or
"instruction-code" of the computer.

((1.65)

1.5/3

1.5 Junp Instructions

Instructions will generally be obeyed in the ssme sequential order
as their addresses ocour in the store, However, it is possible to specify
by an instruction the address of the next instruction to be obeyed, and
hence one may arrange to "junp" out of scquence to an instruction at any
desired address. Instructions are provided to meke such a junp conditional
upon the sign of certain nunbers in the machine; these conditional jumps
provide the ability to take elementary decisions,

1.5.1 LOOEinéE.

By repeatedly jumping back to the sane instruction, the computer can
be made to obey a "loop" of instructions over and over again; this is a
vital feature of high-speed computing, naking it possible for a progranm of
reasonable length to control the machine for relatively long periods of
tine,

1.5.2 Modification.

The utility of conputing loops is greatly enhanced by the facility
known as "modificction", whereby different data is precessed in each iter-
ation of the loop. The store address of the number to be operated on is
nodified before use by the addition of an index stered in one of several
special registers., Thus, if the index is increased by unity before each
successive iteration, one nay operate upon o list of numbers held in the
store, and so, for example, form their sun or average.

1.6 Binary Nunbers

The storage wechanisms used in electronic digitel computers are
normally made up of devices having two possible states, just as a switch
nay be either OFT or ON. If we associate with these two states the
syubols O and 41 respectively, we are led to adopt the binary number systen:
the string of 0's and 4's stored on a row of two-state devices is inter-
pretcd as a succession of coefficients of powers of two in a polynonial.
This is exactly analogous to the conventional decingl notation tased on
powers of ten., The binary digits O and 1 are commonly referred to as "bits".

le6el Negative Numbers.

If a desk calculator is used to subtract some small numbers from
zero, the result is characterised by a string of 9's at the nore-significant
end; the same operation with binary numbers produces a string of 1's. Ve
have here a naturally occurring representotion of negative numbers, which is
nade unambiguous by restricting the range of positive nunbers to those having
0 as their most-significent digit. This then becomes a sign digit, and the
presence of a 4 in this position will indicate a negative number whose actual
vaelue is obtainable by subtracting 2F, r teing the nunber of bits in the
nuuber,

(1465)

2.1/1
Chagter 2

THE ATLAS 1 COMPUTIR

2.1 A General Description of Atlas 1

The main parts of ftlas 1 consist of:i=

a) The control unit

b) Two arithmetic units

¢) The Supervisor

(¢) The storage systen

(e) Input and output devices.

2¢1.1 The control unit produces in correct sequence the control signels
necessary to call for an instruction, to decode it, to modify the address,
to obtain the opsrand from storc and tc perform the arithmetic operation.
The address of the current instruction is held in one of three special
index registers, called control registers. Before the current instruction
is decoded the contents of the control register in use are increased by
one in anticipation of the next instruction.

2.1.2 Arithmetic is meinly done in the accunulator, which is a double-
length floating~point register. The accuiulator arithnetic unit can obey
49 different instructions, including different types of addition, sub-
traction, multiplication and division, transfers, tests, shifts etc.

For snall integer arithmetic, modification and counting, there are
also 128 index registers. These are known as Beregisters and have their
own arithmetic unit. The Beregister erithnetic unit can obey 51 different
instructions, including addition, subtraction, logical operations, shifts,
tests, counts etc,

2.1+3 Any peripheral transfer on Atlas 1 has only to be initiated, after
which it proceeds independently, leaving the central computer free to con-
tinue obeying instructions. Suppose there to be only one progran in the
conputer, which night be reading characters fron the tape recder and sor-
ting then on nagnetic tape, one per word in units of 512 words. The tape
reader operates at 300 characters per second and so reads a character

once every 3,335 microseconds (us); a nagnetic tape transfer of 512 words
tekes 46 milliseconds (ns). Between reading characters it would be pos-
sible for the central computer to obey about 2,00C instructions, and while
executing a magnetic tape transfer, about 30,000 arithmetic instructions
could be obeyed, If the couputer were to be idle during tronsfers because
the information was wonted immediately (in thc next instruction) obviously
its utilisaticn would be very inefficient, Note that if the slow peri-
pheral equipnents could always transfer infornation at the rate required by
the centrel conputer for any problem no difficulty would arise. As they
cannot, special operating methods have to be used, The method on Atlas 1
is to have a special progran called the Supervisor which controls the flow
of prograns thrcugh the computer. The Supervisor is simply o progrem which
atterpts to run Atlas in an efficient weay, that is, it tries to keep all

(1.65)

2.1/2

the parts of Atlas busy. To achieve this, it shares computing time between
programs, ond manages all peripherel transfers, including input and output
as well as drun and magnetic tape transfers, The Supervisor is described
in nore detail later; at this stage it must be remarked that although it is
not part of the "hardware" in the sense that the core store is, it is the
most important single feature of Atlas and quite indispensable,

2.1.4 The main store on Atlas 1 consists of core store in units of 8192
words and magnetic drum store in units of 24,576 words. A total of about

one nillion words are directly addressable. Up to 32 magnetic tapes can also
te used as a backing store. The main store can consist of core store and
drums in any proportion. The programmer treats the storc as if it were all
core store; he will in feact not know what parts of his progrom are in the
core store at any one time. The Supervisor manages drum transfers behind the
scenes as required, and attempts to keep the most used blocks of program al-
ways in the core store, by means of a "drum learning" program. This idea of
a fast and a slow store appearing as a single fast store is called the “one-
level-store" concept.

The Supervisor occupies most of a special store called the fixed store,
and some blocks of the main store. The fixed store is a "read only" store in
multiples of 4096 words where binary ones and zeros are represented by ferrite
and copper slugs in a wire mesh. It is used to represent permanent programs
which will not be changed, and besides the Supervisor it holds the "extre~
codes®, These are extensions to the basic instructions, described later.

For working space the Supervisor has a subsidiary core store of 1024 words, in
which it keeps parameters associated with programs in the machine, peripherals,
etce The Supervisor also uses three magnetioc tape units, called "system
tapes" as part of its input/output organisation. All the stores used by the
Supervisor are known as private store, and it is not possible for ordinary
programs to interfere with them,

2.1.5 4 large variety of imput and output devices are allowed on Atlas 1.
Zach type of device is connected to the central computer via the peripheral
co=-ordinator, which contains buffer registers and information registers con-
cerned with the transfer of data. These registers, which are at different
places in the computer, and also some registers connected with the arith-
metic units, are collectively referred to as the V-store. They are only
accessible to the Supervisor, and form part of the private store. The peri-
rherel co-ordinator allows the following types of input/output equipments to
be attached,

ICT TR5 paper tape readers 300 ch/seo

ICT TR7 paper tape readers 1000 ch/sec
Teletype paper tape punches 110 ch/seo
Creed 3000 paper tape punches 300 ch/seo
Creed 75 teleprinters 10 oh/sec

ICT card readers 600 cards/min
ICT 582 card punches 100 cards/min
Anelex line printers 1000 lines/min
Graphiocal outputs

Clock

(1.65)

2,1/3

The following dingranm shows the ocomponent parts of Atlas 1:-

INPUT
[v-srorz L PIYED k__J SUPERVISOR b systaw |
e STORE [1 [1 waGNETIC| PRIVATE
SUPERVISOR STORES
WORKING
SP.CE
B-REGISTERS], | ACCUMULATOR,
B~REGISTERS| ACCUMULATOR
ARTTHHETTC | ARITHNETIC
SN NI
)72 . -
NAGNZTIC DRUMS jemmmyCORE STORE 3 MAGNETTC TAPE GENERAL
STORES

(1.65)

2.2/

2.2 The Main Store

Within the programmers store, registers are numbered consecutively
from O upwards. Registers are arranged in blocks of 512 words called pages,
and transfers between the core store and d rums or magnetic tape take place
in units of 512-word blocks. To increase the computing speed, the core
store is divided into stacks, each with its own read/write circuitry. These
are known as the cven and odd stacks. Xach is of 4096 words and they are
arranged so that words 0, 2, 4, 6 <. are in the even stack, words 1, 3,

S eese in the odd. Instructions are always called for by the control unit
in pairs consisting of an even and the next odd instruction, although some-
times only one of these instructions may be wanted.

Wherever it is safe to do so, as soon as the control unit has de-
coded the odd address instruetion it sends for the next pair. Thus, there
is overlap vetween the execution of instructions end it is in fact possible
Tor the computer to be in different stages of execution of up to five in-
structions. As a consequence, the first instruction in a pair must not
alter the second, end the second must not alter either of the next pair of
Instructions., Aimost always, if this were done, the unaltered versions
would be obeyed, but because of "interrupts™ which occur at frequent inter-
vals and which effectively insert instructions between progrem instructions
sonetines the altered versions would be obeyed.

(1,65)

2.3/1

263 Storage of information in Atlas 1

An Atlas 1 register, or word, contains 48 binary digits. These are
conventionally numbered from O (most-significant) to 47 (least-significant)e

A single word can be used to represent any of the following:-

(a) A 48-bit floating or fixed point number, with the 8 most-significant bits
representing the exponent and the other 40 the mantissa.

EXPONENT MANTTSSA]
0 7 8 a7

(b) Two 24-bit half-word numbers. These are taken usually as 21-bit signed
integers in digits 0-20, with an octal fraction in digits 21-23.

L] L_|

0 20, 21-23 24 44, 45~47

(o) Eight 6~bit characters.

0 1 “ql 2 [—_ 3 ! 4 J 5 ; 6_] 7]

c 5 6 14 12 17 418 25 24 29 80 35 36 41 4z 47

(d) An instruction, specifying a function F (most-significant 10 bits),
two index registers Ba and Bm (7 bits each) and an address N (least-sig-
nificant 24 bits).

P || Ba Bm 0 N 23
0 9 10 16 17 23 24 a7

Throughout this manual the binary digits of a word are numbered
from the most-signifiocant end, starting with bit 0. The engineers’
numbering system is the reverse of this, and is used in some documents
describing basic programs such as the Supervisor and -Engineers’ programs:
in these documents bit O is the least~significant bit,

(1.65)

2.4/1

2.4 Instructions in the machine

N oan be taken as an operand directly in some instructions, in which

case it is known as n. VWhen N is used as an address, bits 1-20 specify a
word in the main store, bit 21 specifies a half-word addrcss and bits 22
and 23 specify a character eddress within a half-word (for the moment re~
nurbering the bits of N as 0-23). Instructions ignore irrelevant digits

in the address. Thus an instruction involving half-words ignores digits

22 and 23 in the address. Digits 12-20 specify the word address within &
tlock, and digits 1-11 specify the block.

Thus a main store address consists of

Block pumber‘ Word number in block Half-word address Character address

1 1 12 20 e 22 25

For the moment we shall writc N as a decimal number and an octal
fraction, separated by a point. Then 16,0 is the first half-word in word
16 (i.e. digits 0-23) and 16.4 is the less-significant half-word (digits
24~47), in an instruction which uses a half-word. In instructions for
handling characters, the characters in word 16 are 18.0, 16.1, 16.2,
eees 16,7; where 16,0 is digits 0-5, 16.1 is 6-11 etc., with 16.7 being
4'2- 47 L]

The 10-bit function F is written as a single binary digit (f0) fol-
lowed by three octal digits. For all basic functions f£C is zero, and may
be oaitted in the written form. The basic functions fall into three
categories, depending on the first octel digit (f1 to £3); if this digit
is 1, the function is a B-register instruction (B-code), if it is 2, the
function is a Test instruoction, and if it is 3, the functicn is an Accum-
ulator instruction (A-code). These instructions are described in detail
in later chapters.

The basic order-code is extended by the provision of "extracodes".
These are routincs, written in basic instructions, which are positioned
in the fixed store and which carry out many operations ususlly managed
by a subroutine library. Extracodes are recognised by having f0 = 1.
Vhen this is encountered, main control is halted and the progrem continues
under a special "extracode" control at an address in the fixed store.
The final instruction in this routine (which is recognised by 1 =£f3=1
end obeyed as if f1 = 0) has the effect of rcturning to main control at
the program’s next instruction. Thus extracvdes are subroutines with
zutomatic entry and exit; to the programmer they appear as one instruction.

For example,

Function 113 1s a B-code used to store a B-register

234 is a test-code, transferring n to Ba if the
contents of the acoumulator are zero

374 1is an A-code, dividing the accumulator by the
contents of a store address

1250 1is an extracode, to unpack a 6-bit charactcr
from store and place it in Ba.

(4465)

2.4/3

The B-registers are used in different ways depending on the type of
instruction, There are 128 B-registers, BO to B127, most of them of 24
bitss B120-127 are special purpose B-registers, the rest are general pur-
poses In A-codes, the contents of Ba and the contents of Bm are added
to N to give a modified address. That is, the address S used in the in~
struction is N4basbme In most B-codes, ba is used as an operand, so only
bm is used to modify N, and then S = Nsbme (There are two exceptions, in
which bn is also an operand, so no modification tekes place.,) For most
test codes, bm is used as a further operand; where it is not it is used to
modify N. In extracode instructions, Ba and Bm are treated in a special
waye For the present we shall write Ba and Bm as decimal numbers in the
range O to 127, B-register arithmetic is described in Chapter 4.

(1.65)

2.5 The written form of Instructions

2.5/1

Instructions are written on one line, with the component parts

separated:

F Ba
Thus 113 1

If b2 = 1.4 say, then
113 1

Bm
0

2

If 1 = 3.0 say, then with b2 = 1.4,

374 1

2

16.4

16,4

16.4

stores b1 in the half word
at address 16,4 (BO is
always zero)

stores b1 at 18.0

divides the accunulator
by the number at 21.0

Instructions are read into Atlas through the media of punched paper
tape, either of 5-track or 7-track width, and 80-column punched cards.
7-track paper tape (the most common input medium) is prepared on a Flex-
owriter, S5-track peper tape on a Creed teleprinter end cards on a cerd
punch., These three equipments have slightly different sets of characters.
In the punched form, the parts of an instruction arc punched as written

and separated by "multiple spaces" or commas.

Multiple space is two or

more spaces on the teleprinter, or a tebulate (TAB) on the Flexowriter.

(1.85)

2.6/

2.6 The Full Range of Atlas 1 Addresses

As explained in 2.4, address bits 1 to 11 represent the number of
512 word main store block to which that address refers, so that an Atlas 1
main store address refers to one of 2048 blockss In octal (for the J no-
tation see 443) these block addresses are J0000, JUOO1, J0002,sses, J3777
and in their decimel representation (see 5,6) 0:, 1:, 2:,00s, 2047:. The
ABL compiler and the program it is compiling share the same range of block
nunbers, with ABL occupying blocks in the range J3 to J34. Consequently
to avold over-writing itself ABL will refuse to compile program into any
of the 256 blocks 1536: to 1791: Once the program is compiled and ABL
has withdrawn from the store these blocks become available again and can
be used as working space by the progran.

The remainder of the main store block nunbers J34 to J¢ are illegal,
ABL will not store program in block J3 or above and the Supervisor will
fault the program if the gompiled program attempts to refer to block J&4 or
above, .

In fixed store and private store addresses bit O is a 1. There are
therefore enother 2048 blocks that can be addressed and they have octal
addresses J4000 to J7777. The first 16 of these (J4 to J4017) are the
block numbers of the fixed store and may be referred to by the programmer
if he wishes, although there is generally no reason why he should do so.
The block numbers J4020 to J4777 are also quite legals In effect these
block numbers refer to 31 consecutively stored copies of the fixed store.
For example either of the instructions

101 3 0 J4017777
101 3 0 -1J5

would place the sane half-word in B3, namely the left half of the last word
of the fixed store. In other words addresses in the pange J4 to J5 are in
effect masked with J40177777 before execution (for a definition of masking,
or what is the same thing collating, see 4.3)

The private store block addresses J5 through J7777 are completely
forbidden to the ordinary programmer., These addresses can be referred to
on extrecode control. However it is impossible for the programmer to force
an extracode to refer to the private store. He is prevented by faulting an
extracode instruction in which the modified address is in the private store
but the umodified address is not. Thus for exanple a program oontaining
the instructicn

1730 0 0 J6 an’ = sin (J6)
would be thrown off because the first instruction of the extracode routine
8 3¢ 0 419 0 an’ = (b149)
(B119 will contain the address J6 upon entry to the extracode. See 7.2.)

(1.66)

3.1/4

Chagter 3

THE ACCWMULLTOR

3e1 Floating=point numbers

7 When a 48-bit word is used to represent a number it is divided into
40 bits for a signed mantisse x and 8 bits for a signed exponent 1

D ‘ EXPONENT D ! MLNTISSA
0 1 7 8 9 a7

Digit O is the exponent sign, digit 8 the mantissa sign.
The exponent is an ootal one, so the number represented has the
value
e 8Y
The exponent is an integer and lies in the range
-128 g y 5127

The mantissa is a& fraction, with the binary point taken to be after
the sign digit, so it lies in the range

1 <cgpct-2®°

With this system it is possible to represent positive or negative
mmbers whose magnitudes are approximately in the range 10°%%% to 10'2%,

Example: One way of representing the number 8 is by a mantissa of

-F% and an exponent of 42, i.e. as % x 8%, Thus:-

Ixponent Mantissa
0 0000010 0,001000000cssssessesees 000
For clarity, when this is written in binary digits the exponent '
is spaced out away from the mantissa, the sign digits are slightly separa-

ted from the numbers, and the mantissa binary point is shown. This con-
vention will be used in future without more explanation,

(1,65)

3.2/1

362 The Accumulator

Floating-point arithmetic is all done in the full accumulator (A)
and in order to describe the arithmetic it is first necessary to introduce
the accumulator,

The accumulator has an 8-bit signed exponent ay and a double-~length
mantissa agx, of 78-bits and a sign bit., The mantissa Az is regarded as
being divided into M and L, M being the sign digit with the 39 more-signif-
icant digits, and L being the 39 less-significant digits. Associated with
L is a sign digit called Ls. Ls is situated between li and L, and it is
usually irrelevant; that is, arithmetic in the accumulator proceeds as if
Ls is not present.

The accumulator is sometimes regarded as holding two single-length
floating-point numbers., These are called Am and Al,

Am consists of.Ay and M
Al consists of Ay and L with Ls

There are a Turther two digits to the left of the sign of Am. These
are the guard digits and their function is explained later. It is not pos~
sible to transfer numbers into or out of the guard digits, and before an
accunulatcr operation they arc normaelly copies of the mantissa sign digit.

The exponent ay is held in the special B-register B124, which con-
sists only of nine digits at its most—significant end, the other digits 9-25
teing zero. The exponent is held in digits 1-8. Digit 0 is used as a guard
digit, to detect if the number departs from the range -128 < ay < 127, Digit
1 1s the sign digit and normally digit O is the same as digit 1. If the two
digits are diff'erent, then the exponent has gone outside its pernitted range.
If 41 =1 and 40 = 0, then ay » 127; if ay > 127 at the end of an accumulator
operation, then Exponent Overflow is said %o have occurred and in some cases
the program is monitored (see section 11.1.1)s If @1 = 0 and d0 =1, then
ay < =128; if ay <« =128 at the end of an accumulator operation, then Exponent
Underflow is saild to have occurred and nommally the contents of the accumu-
lator are autometically replaced by "standard floating-point zero" (see
section 3.3).

(1,65)

Guard
digits

Ls

store.

these will now be described.

3.%/2

Diagrar: of' the whole acoumulator

‘*

Ay

> & - iz

\D

UL

e 3])
Py P

13 L)
Voo ‘ea —

Diagram showing component parts of the socumulator

......

Note that because of the guard digit, the position of the exponent
es held in B124, (digits 1-8) is different from the position of the ex-
ponent for a number held in the store, which would be in digits 0-7.

Acounulator instructions usually involve arithmetic on two nun-
bers, one of these being in the accumulator and the other taken f rom the
Most accunulator instructions deal with standardised numbers, so

(1.65)

5.3/4

Jed Standardised nurbers

The™ representation of a floating-Point nunber is not unique., For
exanple % ==% x & ordy x 8 or 7= 7 8 ete. 50 any of the forns below
represent %.

Expanent Mantissa Value = &
0 0000000 000,400000000. 44, +x &

0 0000004 000,0001000004 44+ +x ¢

0 0000040 00040000001004 4+ 4 & x &

(Note that the two guard digits are shown to the left of the mantissa
Sign d.igit .

It will be noticed that the value of a number is unchanged if unity
is added to or subtracted from the exponent every time the mantissa is
shifted ‘octelly’ (by 3 bits) down or up, respectively.

The optinun form of storage of a number in a binery floating-point
systsm is that in which there are the ninimum number of 0's (assuning a
pesitive nunber) between the binary point and the most significant 4 of

the fractional port of the number. This enables the meximum nuibter o>f
fractional digits to contribute to the accuracy of the representation.

As Atlas has on octal exponent, shifts of the mantisss nay only be
by 3 bits et a time, so it is not possible to specify that there should
te no 0's irnedistely after the point. It is possitle to specify a
maxinum of' two, end this is known as the standardised condition. A cor-
cesponding convention for a mininum nurber of 1’s holds for negative nun-
bers.

An Atlas stendardised number is thercfore such that the mantissa
iies in the rangs:-

o

csxzx<{or-1 <« -%

end it vy be necesssry to shift the nantissa of the mmber resulting from
an operation up or down, adjusting the exponent accordingly, to achieve
thiz,

If & nupber is not standerd it is either ‘substandard’ or ‘super-
standard’., 4 substandard number is one such thet —% < @ < g+ The three
mest significent digits of ax will be the sene as the sign digit (and
guerd digits), so the nunber can be stendrrdised by octal shifts up and
adjustrent of the oxponent., A superstandard number is one in which the
nantisse has overflowed into the sign and guerd digit positions, i.e. it
is > 4 or ¢ =1 ard it is detected by the guerd digits not being the sane
us the sign digit. To stundardise such a mumber, a single octal shift
down is required, with the addition of unity to aye

(1.65)

3.3/2

Example: Lt 42w ising i ;
Exsmple: the addition of =+ with a standardising instruction

glves the correct result of 4+ 1 standardised; though
immediately after the addition the number is super=

Standard.
.Z:.—_-g x &° 0 0000000 0004101000, .
+ % ==§ x & 0 0000000 0000110004«
=1=1x8& (superstandard) 0 000C000 001,0000004, o
1 51.; x 8 (standardised) 0 0000001 000.00100C4 o

The number zero is a special case. Floating~point zero is repre-
sented by a mantissa of 0 and an exponent of -128, and this is regerded as a
standardised number, Zero is specially looked for when a number is to be
standardised, and, if found, no shifting tokes place and the exponent is
imnedisately set to to -128,

(1465)

3.4/1

Sed Fixed-point numbers

For somec purposes it is inconvenient to deel with floating-point
nunbers, and accumulator instructions are provided which do not stan=-
dardise the results of uperations. Using these instructions it is pos-
sible to regard the binary point as being anywhere it is desired; for
exanple, at the least significant end of M (which meens regarding numbers
in An as integers between the range of -2°° and 2°° - 1), In this type of
arithmetic, the exponents of the numbers nust all be the sane, and are
commonly zero. If they are the same but non-zero, adjustnents are re-
quired when multiplicetions and divisions are performed.

Superstandard nunbers cannot be automatically corrected in fixed-
point working, so if they oceur, a special Accunulator Cverflow digit (.0)
is set, and this digit can be inspected by the progrem.,

For exanmple, if the point is taken at the least significant end
of M, then the numbers in the last example, g and %, now have the values
(2°°% +2°°%) and (2°7 4+ 2°%), Adding them gives a superstandard answer

and sets AQ.

(1.65)

% 5/1

3e8 Rcunding

Most ascunulator instructions opernte on the two nunbers cm and s,
leaving the answer in A, This answer moy be an operand in the next instruc-
tion with only am used, the digits in I being cleared before the cperation.,
The process of cutting off these less-significont 39 digits of the answer is
called truncation, and this introduces an error each time which could quickly
becone significant, Rounding is the name given to the process of compensating
the answer so as to wminimise the effect of truncotion.

One nethod of rounding is to force a 4 {i.es the logical ¥OR" op-
eration) in the least significant digit of M if 1 is non~zero,” If 1 is zero,
no foroing tokes place. In a sequence of accumulator instructions, the a-
verage error introduced by this method is zero, so no bias is introduced.

Further, single-length integer arithnetic in Am can be carried out
exactly without any unwented rounding, as long as numbers never extend into
L. The abbreviation R is used in describing some instruction to signify
rounding in this woy. Notice that L is not changed by the process of roun-~
ding, :

An instruction is also provided to give rounding by adding a one to
the least-significant digit of M if the most-significant digit of L is one.
Again, the digits of L are left unchangzeds This type of rounding is referred
to as R+ Rounding. It is sometines preferred to the method just described
as less accuracy is lost, but is slightly hiased in that the rounding is al-
ways upwards in the halfwoay case of L being a binary one followed by a string
of’ zeros,.

(1.65)

3.6/1

Se6 Floating-point operations

Before twc numbers in floating-point forn can be added the nunbers
nust be shifted relative to each other so that digits which have the same
signifioance can be added together, i.e. one number is shifted octally until
the two exponents are equal,

In Atlas, the number which has the smaller exponent is the one that
is shifted, and it is shifted down into L, irrespective of whether it is the
number in A or the number in S. There are four eddition instructions, and
of these, three clear L before this shifting takes place, so the addition is
between an and s.

Ay is then set equal to the larger of the two exponents and the ar-
guments are added together. The addition takes place over the 42 digits of
An with its guard digits. L remains unchanged during this stage.

After the addition, the accumulator nay be standardised and rcunded,
standardised but not rounded, or left unstendordised and unrounded, depending
on the instruction. The instructions which standardise check that exponent
overflow has not occurred, the instructions which do not standerdise look
for accunulator overflow,

The eddition instruction which does not clear L first is used nzinly
in double-length arithmetic. To work correctly, the exponent of s nust be
equal to or greater than ay, so that the contents of the accunulator are
shifted down. If sy < ay, then s would be shifted down into L. overwriting
the original contents of L.

(1465)

3.71

3.7 Standardisins e.ng._. roun‘gj_igcaccumulator instructions

We are now in a position to introduce some acoumulator instructionse

Function Description Notation

320 Clear L; add the c ontents of S
to the ocontents of Am; stondardise
the result, round by forcing a 1
into the least-significant bit of
M if 1 is non-zero and check for

exponent overflow. an’ = am +s QRE
321 As 320 but subtract s an’ = an - s QRE
322 As 320 but first negate the

contents of A an’ = -an + s QRE
324 Transfer the floating point

nunber in S to Am and

stondardise it on' = s Q
525 As 324 but transfer negotively :

and check for exponent overflow om’ = ~s QE
356 Store am at S, leaving the

contents of A unchanged s’ =an
362 Clear L, multiply am by s,

standardise, round and cheock

for exponent overflow an' = an.s QRE
363 As 362 but multiply negatively an’ = -am.s QRE
374 Divide am by s, leaving the quotient

standardised and rounded in An,

with 1’ = 0, Cheok for exponent

overflow and division overflow.

Both am and s must be standardised

numbers an’' =an / 8

1! =0
QRE

The above are the most commonly used accunulator instructions, all
but the 356 instruction leaving a standardised rounded number in Am.
Example: given four standerdised floating-point mumbers a, b, c,
d in the first four locations of store, replace a by

(a~b0)/a®

324 0 0 & putd into Am

362 0 0 3 form 4®

356 0 0 4 store in location 4
324 0 0 O @& into Mm

321 0 0 1 subtract b

320 0 0 2 addo

374 0 0 4 divide by a*

356 0 0 O store answer in word O

Note that register 4 is used as working space, and that Ba and Bm
are gero in every instruction.

(1,65)

5o 8/

3.8 The tining of instructions

In generel, it is not possible to state exactly how nuch time any
instruction will take, beczuse this partly depends on the instructions bew
fore and after it., However, in a sequence of additions, subtractions or
transfers each umiodified instruction teles about 1.6 ps., If nodified by
bm, the tine is 2.0 us, ond if modified by bm and ba the time is 2.5 ps,
The times for nmultiplication and division are 6.0 us and about 20 ps res-
pectively. The division time depends on the nunbers involved. However,
another limitation on the speed is the time needed after reading a number
from a stack o core store before another number can be read from it. This
is known as the cycle time of the store and is 2 ps. As alternate addresses
are in the cven and odd stacks, (see section 2.2) if operands are used in
sequence then the cycle time is not a limitation. In the exanple just
quoted, the sixth instruction would take 2 ps because the next instruction
cannot read its operand until this tine is up. In the fifth and sixth
instructions the operands are in different stacks so the subtraction would
teke 1.6 puse B-register instructions, as they use a different aritinetic
unit, can centinue while the accunulator is busy. During a division in-
struction, for exanple, three or four B~instructions rmight be completed,
effectively teking no tine at all.

(1.8)

3.9/1

3¢9 Sonie fixed-point Instructions

Fixed-point working has been introduced in section 3.4

Function Desoription Notation

330 Clear L, add s to am, leaving the
result in A, Do not standardise or
round but check for accuaulator

overflow a' = an 48 AO
331 Ls 330 but subtract s 2’ =an =8 AC
332 As 330 but negate am before the

addition 8’ = -an ¢85 A0

In these instructions, if the exponents are the sane, no shifting
down of either of the numbers into L takes place, so the answer will be in
An.

334 Transfer s into Am without
standardising an’ = s
335 Transfer the nusber in S

negatively into Am without
standardising, and check for
accunulator overflow en' = =5 40

In 335 AO would be set if s is just a one in the sign position
(which we will call -1.0) as negating this sets the sign digit different
from the guard digits.

364 Shif't the mantissa up one octal
place, leaving the exponent unchanged.
Accunulator overflow can occur, but

. no check is nade ax’ = 8oz
L
au = ay
365 Shift az down onc octal place, ,
leaving ay unchonged oz’ =?5 az
a.y == ay

The above twe instructions are of course also useful in floating=
point arithnetic, to multiply or divide by 8. Extracodes are provided to
shift any specified number of places up or down. :

(1.85)

4.,1/1

ChaEter 4

THE B-REGISTIRS

The index registers, or short accunulators, are known as B-registers
on Atlas. There are 128 B-registers., 9420 of these are constructed from a
very fast core store and are used for general purposes, The remaining 8

are "flip-rlop" registers, used for special purposes. The B~registers have
addresses from zero to 127, and are referred to by prefixing the address
with the letter B or bs Thus 361 is B-register with address 61 and b61 is
the contents of this B-register.

4,1 General Purpose B-registers

These are the first 120 registers BO to B119., Each consists of 24
bits of which the most significant (digit 0) is taken to be the sign digit,
For purposes of modification and counting, integers are held one octal
place up from the least-significant end of a word, so the binary point is
assumed to lie between digits 20 and 21, Thus a B~register can hold a 21-
bit signed integer with an octal fraction,

The contents of a B-register are usually written as a signed de-~
cimel number and en octal fraction, the two parts separated by a point,
Thus 15.3, =2.7, 6,0 etc. When the octal froction is zero it is usually
omitted, the point of course also being omitted. The number in a B-register
can take any value in the range -2°° to 42°° -0.1 inclusive. An exception
is B0, whose contents are always zero.
i
' Programmers are warned to refer to scction 4.0 before using B8~
119, whose contents are liable to be overwritten.

The basic instructions which operate on B-registers have already

been mentioned. They are known as B-codes and B-Test codes, end will now
be described in details

(1.65)

4.2

4.2/

Arithmetic Operations

In the following instructions, arithmetic takes place between a

24-bit number in the store and a number in the Ba E~register.

The address

1s modified by the contents of Bm, the other B-register, to give the half-

word store address S of the operand.

Function
101
103
104
102
100
111
M3
M4
2

110
Exemple:

101

113
102
114
114

The contents of this are known as s.

Description Notation
Transfer s to Ba ba' = s
Transfer s negatively into Ba ba’ = -8

Add s to the contents of Ba ba’ =ba + s

Subtract s from ba ba’' =ba - s
Negate ba and add s to it ba’ = ~ba + s
Store ba negatively at S s’ = -ba
Store ba at S | s’ = ba

Add ba into the contents of S - s'=3s +ba
Negate the contents of S

and add ba s' = ~s 3+ ba

Subtract ba from the contents of S s’ = s - ba

n is held at aadress 9.4 and n at 6.4, place % - 2n
6, using B1 as working space.

0 S.4 transfer m to Bl

0 6 store m in half-word 6.0

0 6.4 m - n in Bl

0 6 2m -« n in 6

0 6 m ~ 2n in 6

There are instructions provided which use the address as an

operand.

That is, N + bm, instead of giving the address of the operand,

is used directly as & number n,

Function
121
123
124
122
120

Description Notation
Plece n in Ba ba’ = n
Place a negatively in Ba ba’' = -n

A3 n to the contents of Ba

Subtract n from ba
Negate ba and add n

(1.65)

ba’ =ba +n
ba’ =ba - n

ba’ = -ba +1n

49/2

Examgles H

1e

26

Replace the nuiber m in 17.4 by the nmuber 64 ~ n

121 1 0 64 put 64 into Bd

112 1 0 17.4 -0 + 64 in 17.4

Copy the nunber in B2 into B3

124 3 2 0 b3 =0 412

This has the effect of placing 0, nodified by the contents

of B2, into B3 i.e. places b2 into B3.

B

Similarly, the number in B4, for example, can be doubled by

the instruction

124 4 4 0 b4’ =14t +b4 40

(1.65)

4, 5/1

4,3 Logical Operations

Three types of logical operations can be carried out in B-register
erithmetic. These are collating, non-equivalencing end "OR" ing. They
operate on pairs of numbers simply as strings of binary digits, and form
& third number from the pair,

The collate operation, which is denoted by &, gives a 1 in the
result in every position where both numbers have a 1, and 0’s elsewhere.
For example, the result of collating

00010110
with 01110100
is 00010100
The non-equivalence operation, denoted by # gives a 1 in the posim

tions in which the corresponding digits of the two numbers differ, and
0's elsewhere.

The result of non-equivalencing

00010140
with 01110100
is 01100010

The OR operation, denoted by v, gives 1 in those positions in which
either (or both) of the corresponding digits of the two numbers is a 1, and
0's elsewhere.

The result of ORing

00010110
with 01110100
is 01110140

Function . Description Notation

107 Collate the digits of Ba with

the digits of s placing the - ‘

result in Ba ba' =be & s
106 Non~-equivalence ba with s, -

placing the result in Ba ba' =ba £ s
147 OR ba with s, placing the -

result in Ba ba' =ba v s
117 As 107, but placing the -

result in S s' =35 & ba
1186 As 106, but placing the -

result in § s' = s #ba
127 Collate ba with n, placing o

the result in Ba ba’' =ba & n

(1.65)

4.5/3

Function Desoription Notation
126 an-cquivalence ba with n, placing -
the result in Ba ba’ =ba #n
4167 OR ba with n, placing the result -
in Ba ba’' =ba v n
Exarples:

D T T N

1. Clear the most-significant 17 bits of B99 and leave the other

1mahanm e,

0ivs u.uvuq.usﬁd .

127 99 0 15.7 Cellate b99 with a nurber consisting
of ones in the 7 required positions.

When n is used in this way it is called & "“pask™. It is
often inconvenient to have to work out masks es decimal nunbers
with an octal rraction, so other ways of writing the address arc
allowed.,

Por exauple, if' it is required to leave the most-significant 7
bits unchanged and to clear the rest of BYY, then the mask required
consists of ones in the 7 nost-significant positions (0 - 6).

The two letters K and J introduce nu:bers written in octal
notation.

K, Tollowed by up to seven octal digits, positions the nw.ber
froz digit 20 upwards. Thus K 3642 places the number 00036420 in
the address position. Octal zero’s at the uost~significant end
nay be onitted, and the least-significant octal fraction if present
has to be separated fron the nwhber by & point. e.g. K5252525.2
fills the address digits with slterncte ones and zeros.

J followed by up to eight octal digits, has the effect of com=
piling these digits from the mostesiznificant end, That is, the
flrst octal dlglt goes into bits 0 - 2 the next to 3 - 5 etc.
Less-significant zeros may be omitted. Thus J442 places the numn~

ber 14200000 in the address digits.

2. To leave the most-signmificant 7 bits of B9Q unchanged and to
clear the other digits

127 99 0 Jd774 collate b99 with a nask consisting
of ones in the top 7 positions.

3+ Replace the nunber in B62 with & nunber such that where there
were ones there are now zeros and where there were zeros there are
now onese This 1s known as the 1’s complement

128 62 0 J77777777 non-equivalence with a rask con-
sisting of all ones. The nask
could alsc be written K7?777777.7
or - 0.1

(1.65)

“4e 0/ O

Forming the 1’'s complement of a nmbcr 1s often not so simple
as in this example, so the operator ‘(prime) has been provided.
Any number followed by ’ is interpreted as the 1’s complement of
that number. Thus the instruction could have been written

128 . 62 0 o’

There are two other logical instructions on Atlas, and these use
bn as a further opersand.

Function Description ' Notation

165 Collate bm with n and place
the result in Ba, leaving
bm unchanged ba’' =bm & n

164 Collate bm with n end add
the result into Ba, leaving :
bm unchanged ba’ =ba + (bm & n)

Note: If Bm is B0 in the 164 and 165 1nstruct10ns then bm & n
gives n rather than O,

Ixample: Add the 6-bit character in digits 6 - 41 of B1 into B2.
164 2 1 JG077

(1.65)

4.4/

44 Test Instructions

The following test instructions test bm, and transfer n into Ba
if the test sucocedss n connot be modificd as bm is used, If the test
fails, ba is unchanged..

Function Descripticn Notation
214 If bm is zero, place n in Ba If bm=0, ba’=n
215 If bm is not zero, place n in Ba Ifm#o,ba’"=n
216 I bm is greater than or equal to

zero, place n in Ba If om >0, ba’' =n
217 If bm is less than zero, place
n in Ba If bm < O, ba’ =n

These tests can be used with any B-registers but are most often
used to cause a change of control if a certain condition is satisfied,
so the control registers will now be described.

There are three control registers, only one of which is in operation
at any given time. These are called main control, extracode control and
interrupt control, and are the three special B-registers B127, B126 and
B125 respectively. When a program is being obeyed, the address of the cur-
rent ingtruction is held in the relevant control register. The control
register is increased by one just before the instruction is obeyed in an-
ticipation of the next instruction. Ordinary programs can use only B127,

Unoonditional jumps to some address S are effected by plecing this
address in the control register

121 127 0 5 causes the following instructions
to be taken from location § onwards.

Example: Two numbers a and b are in locations 14 and 14.4. A
T program whichr equires these numbers is in locations

from 100,
If a < C, b 3 0 enter this program at register 100
a8 < O’ ‘b < O 1" " 1] L f 101
az0,bzx0 * M b " "o 102 .
a > O, b ¢ 0 n " 1 " [105

The program is 7 instructions long; let it occupy the first 7
registers of store,

Register Contents

0 101 1 0 14 place a in B1

1 101 2 0 14,4 plaoce b in B2

2 r216 127 1 5 if a > 0, jump to register 5

3 217 127 2 101 if b ¢ 0, jump to 101

4 121 127 0 100 if not, a < 0, b > 0 so jump
to 100

5 216 127 2 102 4if a>0,Db >0, jump to 102

6 124 127 0 103 if not, a >0, b < 0, so jump
to 103,

When writing a program it is helpful to show the possible routes of
Jumps with arrows. Unconditional jumps are often underlined, to indicate
a definite break in control.

(1.65)

4eS Special Purpose B-registers B120-B127

Although it is not necessary for the ordinary programner to know
- about many of these special-purpose B-registers, details of them are glven
here for the sake of completeness.

It has been mentioned that there are three comtrol registers, B125,
B126 and B127, which are called interrupt control (I), extracode control
(E) and nain ocontrol (M) respectively. Ordinary prograns use B127, and are
prevented fron having access to the subsidiary store and V-store.

Interrupt control is used in short routines within the Supervisor,
which mainly deal with peripheral equipnents. These routines are entered
autonatically whenever any peripheral equipment needs attention, e.g. when
a tape reader has read a characters Occasionally the Supervisor will need
to enter relatively longer routines to deal with the cause of interruption,
€.g8s on conpletion of the input of a paper tape. Whilst in interrupt con-
trol, further interrupts are not possible, so control is switched to extra=
code whenever the Supervisor enters e more lengthy routine. Both I and E
control allow the Supervisor access to all the machine, but extracode con=-
trol programs can also be interrupted and restarted in the sane way as

ordinary prograns.

Extracode control is also used when any of the 300 or so subroutines
in the fixed store are being obeyed. These subroutines have wmutomatic entry
and exit and are known as extracodes. When an extraccde instruction is en-
countered, the relevant subroutine entry is placed in B126 and control
switched to E. After the final subroutine instruction control is reswitched
to M which holds the address of the next program instruction, (The current

control register is always increased by one before the instruction is obeyed),

B124 has been introduced as the accuaulator exponent ay It consists
of only the 9 most significant digits (0-8) the remaining 15 being always
zero. Exponent arithmetic can be carried out by using B-code instructions.
When this is done care nust be taken to position exponents correctly in the
digit positions 1-8 and to set the guard digit (bit 0) correctly.

Exanple:
121 124 0 J00& sets the exponent to #4

B123 is a B-register with the special property that a number read
from it, instead of being the number last written to it, is the character-
istic of the logarithm to base two of the eight least-significant digits of
that number.

(1.65)

4,5/2

Input to B123 Output from B123
Digits 0~15 16 17 18 19 20 21 22 23 0~16 17 18 19 20 21-23
z 6 0 0 0 0 0 0 1 o 0 0o 0 0 0
o 0 0 0 0 0 0 41 g 0O 0 0 0 1 0
z 0 0 0 0 0 1 z o 0o 0 0 41 0 0
2 o 0 o0 0 1 T x x 0 0 0 1 1 0
= 8 0 0 4 2 % =z = o ¢ 41 o ¢ 0
& 0 0 1 T X 2 = = 0 o 1 0 1 o]
2 0 1 2 2 2z 2 o 0o 0 41 1 o 0
x 1 ¢ 2 2 2 2 = = 0 o 1 1 A 0
x 000 0 0 0 0 0 O 0 1 0 o0 O 0

Using B123, the Supervisor caen identify the exact cause of an in-
terrupt as a result of obeying from two to six instructions.

The programmer cannot use B123 directly because of the danger of an
intervening interrupt which would alter the contents before they could be
read out. A similar warning applies to B125, B126 and to all the B-registers

B100-B118,

B122 and B121 are again D-registers provided with specisl circuitry.
Their function is to allow indirect addressing and modification of the Ba
operand in an instruction,

B121 behaves as & normal B-register except that it consists of only
seven digits (15-21), the remaining bits being always zero. These seven
bits allow B121 to hold any of the numbers 0, Os4, 1, 1¢4, sese Up to 63.4.
When B121 is used in conjunction with B122 its contents are interpreted as
the address of a B-register in the range 0-127. That is, 0.4 =B, 1 =B2,
eessse Up 10 63.4 =B127, the B-register address starting from digit 15.

B122 is called the B=-substitution register, which gives an indi-
cation of its function. When B122 is encountered as Ba in an instruction:
(&) the contents of B121 are taken as a B-register address, By saye
(b) the instruction is then obeyed as 4f the B-register specified in the
Ba position was Bao

A few examples will make this clearer.
Example 1
124 121 0 8,4 sets b121 =3B17 address
121 122 0 1 will place the number 1 in Bi7

(1465)

e U, v

Example 2
It is required to copy the contents of B87 into B80, B76, B72

end so on (every fourth B-register) leaving the other B-registers
unchanged.

This could be done by the sequence of instructions

121 80 87 0 copy B87 into B8O
121 76 87 0
121 72 87 0
121 68 87 0

€t0e eveccevccocconssece for 19 instructions in all but by usm
B121 and B122 we can write a short loop of instructions.

6 121 121 0 40 set address of B80 in B121
7 42 122 87 0 copy b87; into B8O first time
B76 second time etc.
122 121 0 2 subtract 4 fror:: the B-address
9 215 127 121 7 if v121 # 0, jump to the in-

struction in location 7

When b121 = 0 the jump does not take place, and the program
proceeds to the next instruction.

3121 and B122 play an inmportant pert in the extracodes. When an
extracode instruction is met, just before control is switched to extracode,
the Ba digits in the instruction are copied into B121. This allows the
extracode routine to operate on Ba by using B122. B-register 119 is also
set up in a special way when an extracode instruction is met, to enable
the extracode routine to obtain the store operand involved., This is des-
cribed later.

In between a progran’s extracode instructions the programmer is able
to use B121, B122 as he likes, but caution must be excrcised to avoid inad-
vertent over-writing of their contents when en extracode instruction is
called for.

B122 only operates as the B-su’bstitution register when it is in the
Ba digits of an instruction. In the two other circumstances possible, its
value is zero. These are:
(a) Bu specified as B122
121 1 122 0 always puts zero in B

(b) Using B122 as Ba when the contents of B121 are 61, i.e. B121 is poin-
ting at B122

121 124 0 61 set b121 =B122

113 122 0 100 writes the number zero into store
location 4100

(1.65)

4,5/4

Any number written into B120 is displayed as 24 digits on neon
lamps on the engineers console, Thus:-

121 120 0 J52525252 displays alternate ones
and zeros

The engineers console is not normally available for use by the
programmer,

.
Whenever i

always zero,

ot
=
o
o
ot
g
5}
ct
[0
fu
et
&)
H
m
)
u
y

s Y - FE
1S numper regd out 1S

(1.65)

4.6/1

4,6 Modification/Counting Instructions

The technique of modification has already been introduced.

In Atlas instructions, the contents of any of the B-registers not
directly concerned in the operation may be used %o modif’y the address.
Thus, the instruction

324 0 3 100
copies the contents of location (100 +b3) into the accumulator (and stan-
dardises the result).

Suppose we have 20 unstandardised floating-point numbers stored in
locations 100-119, and it is required to standardise these numbere and re-
store them in the same locations. A program to do this might be as follows:-

10 121 3 0 19 set 19 in B3

11 324 0 3 100 en' = s, standardised

12 356 0 3 100 s'=an _

13 122 3 0 1 subtract 1 from b3

14 216 127 3 14 Jjump to location 14 if b3 > 0
B3 is used as the modifier and to ensure that the loop is cycled 20

times. This latter process, counting, is of such frequent occurrence that
eight basic counting instructions have been provided.

The most important of these are:-

Function Description Notation
200 If the contents of Bm are non~zero, If bm £ O,
add 0.4 into Bn and place n in Ba. bn’ =bm 4 0.4
If bm = 0, bn and ba arc unchanged. and ba’ =n
201 As 200 but increase bm by 1 If bm 5L 0,
bn' =bm +1 and
ba' =mn
202 If b is non-zero, subtract 0.4 If bm £ O,
fron it and place n in Ba ba' =bm - 0.4,
ba' = 1
203 As 202 but subtract 1 fronm bm If bm# 0
bu’ =bn - 1.
ba.' =n

Note: About instructions 200, 201, 202, 203 : If Ba and Bn are
the seme B-line and the test succeeds, its final contents
are n. If Bn is B127 (and Ba is not), these instructions
give an unpredictable result.

(1.65)

4.6/3

The last two instructions in the example above would be replaced by

205 127 3 M If b3#£ 0, b3’ =13 = 1 end b127 = 11,
iece jump back with b3 reduced by one.

Examples:

1. At the addresses 50-99.4 inclusive there are 100 half-words.
Find how many of these numbers are gero ani leave the answer in B7

o dd -

0 121 7 0 0 start count of numbers = 0
1 124 2 0 49,4 set count/modifier in B2
2 101 3 2 50 nurber to BJ

3 215 427 3 5 jump %o 5 if b3 £ 0

4 12¢ 7 0 if 3 =0, add 1 to b7

5 202 127 2 count

2. To clear the B-registers B1 to B100

0 121 121 0 50 set count/modifier in B122
1 121 122 0 0 clear B100 first time, then B99 etc,
2 202 127 124 1 count reducing b121 by C.4 each

time and jump back

(1.65)

4.7/

4. 7. The B-test Reglster

The B-test register Bt oonsists of two digits only.

When a number is writien to Bt, one of these digits is set to show
whether the number is = 0 or # 0, and the other to show whether it is > 0
or ¢ O. :

Instructioris are provided to write numbers to Bt, to test the above
mentioned conditions, and to count. These ares-

Function Description Notation
1562 Set the B-test register by writing
to it the contents of Ba minus the
contents of S, ba and s are
unchanged., bt! =ba - s
150 Set Bt by writing s minus ba to it.
s and ba are unchanged. bt’ =3 ~ ba
172 Set Bt by writing ba minus n to it, bt’ =ba -n
170 Set Bt by writing n minus ba to it. bt' =n - ba
224 If Bt is set equal to zero place .
n in Ba If bt = 0, ba’ =
225 If Bt is set not equal to zero
place n in Ba If bt £ 0, ba' =
226 If Bt is set greater than or equal
to zero, place n in Ba If bt > 0, ba' =
227 If Bt is set less than zero, place
n in Ba If bt < 0, ba' =
220 If Bt is set non-gero, place n If bt £ 0,
in Ba and add 0.4 to bm, If Bt o' = bn + 0.4
is set- zero, do nothing and ba’l ==
221 If bt £ 0, plece n in Ba and add If vt £ 0,
1 %o bm bm’ =bm +1
and ba..' =1
222 As 220 but subtract 0.4 If vt #£ 0,
from bm bm’ = bm - 0.4
and ba’' =n
223 is 221 but subtract 1 If bt #£ 0,
bm’ = bm =1
and ba' =n
Note: In instructions 220, 221, 222, 223 , 4f Ba and Bm

are the same B-line and the test succeeds, its final contents

are n,

give en unpredicteble result.

(1.65)

If Bm is B127 (but Ba is not), these instructions

4.7/2

Bt is not directly addressed; Bt instructions are recognised by
the function digits. The instruotisns to set Bt are useful for comparing
numbers, as the operands are not altered.

The conditional transfer instructions, 224=227 are used to cause
a conditional jump, end as bm does not take part in the instructions it
can be used to modify n, giving a modified address for the conditional
Jump.

In 100 4o 199.4 inclusive there are 200 half-words., Find the
lowest address of this range which contains the number -3 and store this
in 99.4, If no such number exists, set 99,4 = =041

0 121 1 0 -3 set required number in Bf
1 12 2 0 100 first address in B2
2 152 1 2 0 bt' =ba = s
3 226 127 0 7 Jump.if bt = 0, iece 5 = =3
4 1700 2 0 199.4 Dbt’ =1499.4 - ba
5 220 127 2 2 if bt £ 0,
b2’ =1b2 + 0.4, jump back
6 121 2 0 ~0.1 if search fails, set -0.1

7 143 2 0 99.4 store result

(1465)

4.8/

4.8 The Shifting Instructions

Four instructions are provided which shift the number in Ba. These
shifts are either of six places up or of one place down, and are clrcular
shifts. That is, digits which are shifted out of the register at one end
re-gppear at the other end,

The main purpose of these instructions is to assist in the manipu~
lation of 6~-bit characters and to provide ways of shifting ba any specified
number of placess

Function Description Notation

105 Shift ba up 6 places, copying
the initial 6 most-siznificant
bits into the lesst-significant

6 bits, then add s into ba ba’ = 2°ba + s,
(cireular shift)
125 Shift ba as in 105, then add n ba’ = 2%°ba 4 n,

(circular shift)

143 Shif't be down one place, copying
the initial least-significant
digit inte the new most-siynifi-

cant position, then subtract s ba' = Z*ba - s,
(circular shif't)

163 Shift ba as in 143, then -
subtract n ' ba' = Z7%ba ~ n,
(circular shift)

These basic instructicns are intended to be used by extracodes
which provide more useful shift flunctions,

(1465)

4.9/1

449 The 0dd/Even Test Instructions

Two further test instructions ean be used to test the least-
significant bit of Bm. These instructions can be used,; for example, to
identify a character address.

Function Description Notation.

210 If the least-significant bit in If Bm is odd,
Bm is a one, place n in Ba el —n

211 If the least-significant bit in If bm is even,
Bm is a zero, place n in Ba ba' =n

Note particularly that it is the very least-significant bit that
is tested, and that if Bm contains an address these instructions do not
detect whether the address refers to an even or odd numbered word in the
store, but rather whether it refers to an even or odd numbered character
within the word,

Exauples
Bl contains a character address, A.k say. Place this char-

acter in digits 18 to 23 (character position 3) of B2 and clear the
rest of B2 (digits 0 to 17)

0 101 2 1 0 Read the half-word into B2

1 210 127 1 3 Jump if k is W+l or .3 in the half-word

2 125 2 0 0 shift up and round six places

3 163 1 1 0 shift b4 down and round one place,
then subtract the original contents
of Bl fron this. This makes b1 even,
if k is +0.0r W3

4 211 127 1 Jump if k = .0 or .3 in half-word

5 125 2 0 07 shift up 12 bits, circularly. The

3 rcquired character is now in ¢3
125 2 o o of32
7 127 2 C 7.7 clear the unwanted digits

& similar program to this is obeyed, under extracode control, when
the prosrammer specifies extracode 1250,

1250 Ba Bm S

places character s in Be, clearing the other digits of Ba, So the ex-
ample above would be simply achieved by

1250 2 1 0

((1.65)

4,10/4

4,10 Restrictions on the Use of B-registers

Although B81-~B119 were included in section 4.1 as general purpose
B-registers, they are of limited utility for the ordinary programmer, sinoce
they are each used by one or more of the system routines which may assume
control during the running of the object program. Before using any of these
B-registers, the B-test register, the substitution register, or the B-oarry
digit, the programmer must check to see that there is no danger of their
contents being overwritten before he has finished with them.

The routines whioh use these B-registers are as follows:-

B81-89 Library routines

BQO Return link from library routines

Bo1-97 Extracodes

B98~-99 The logical Accumulator and some less common
extracodes

B100-110 Supervisor

B111-118 Interrupt routines

B119 Extracode operand address

B121, 122 Extracodes, library routines

Bt, Bo Extracodes, library routines

It should be noted that the library routines may use extracodes.
This means that when library programs are in use, no B-line above B80 ‘
should be used (except for BS0)s Provided no reference is made to library
routines, B81 - B90 may be freely used. Similarly B81 to B99, B119, B121,
B122, Bt ard Bo are safe to use when neither extracodes nor library rou-
tines are in use., It is never safe for an ordinary program to use B100 -
B118, since an interrupt can occur at any time and cause control to be
transferred to the Supervisor.

(1.65)

414/

St The B-carry digit

When any one of the four addition codes

104 ba’ =ba + 8
114 s'"=ba +3
124 ba’ =ba +n A
164 ba’ =ba 4+ (bm & n)

is used to add two 24-bit quantities, bit 23 of line 6 of the V-store is
set to 1 if there is a "carry’ from the addition.

Thus for example the gddition of any two 24-bit numbers whose left-
most bit is a 1 sets the 'B-carry digit’ to ome. If there is no ’‘carry’,
the B-carry digzit is set to 0. iWhen an ABL program is entered the B-carry
digit is clear. ‘

The singly-modifed extracode 1223 loads Ba with n if the B~carry
digit is set to 1 and does nothing if it is not set. (The extracode does
not affect the state of the B-carry digit.) The following example uses
1223 to add B1 to B2 and then add the ‘carry’, if any, to the bottom of B3,
Thus the contents of Bl and B2 are here regarded as 24-bit positive integers
whose double lengzth sum is placed in B3 and B2 with the most significant
half in B3,

Lxample,
124 2 1 0
1223 o] 3 1

Similarly each of the ten instructions

100 ba’ =s - ba 102 ba' =ba - s
110 s’ =5 - ba 112 s'" =ba -~ s
120 ba’ =n ~ ba 122 ba’ =ba - n
150 bt’ = s - ba 152 bt’ =ba - s
170 bt’ =n - ba 172 bt’ =ba - n

set the B-carry digit to 1 when, regarded as 24-bit positive integers, a
larger number is subtracted from a smaller, Otherwise these codes set B-
carry to zero. For example, the B-carry digit is set to 1 by the instruc-
tion 172, 0, 0, 1.

Zxanple:

In the previous exampie bi was added to b2 and the double
length sum held in B3 and B2. The following two instructions
would subtract b1 off again from the double length sum.

122 2 1 0
1223 3 3 -1

(1.65)

B4/

ChaEter 5

ROUTINES AND DIRECTIVES

5.1 Routines, Subroutines and Symbolic /ddresses

For convenience in writing a large progran it is broken down into
parts, called routines. Bach routine usually perforns sone particular step
in the calculation, and the routines onoce decided on, nay be written in any
order and then assembled together to forn a progran.

Many routines, for example one which finds the oube-root of a nunmber,
are useful in assisting other routines. Such routines are called subroutines,
The prograuner may well write his subroutines before the najor routines and
have his own systen of entry and exit frou then so that nore than one routine
can call on a particular subroutine., Generally useful subroutines which have
been written for use in any program form a "Library" of routines.

In general subroutines may be "open" or "closed™. An open subroutine
is sinply a group of instructions which nay be inserted anywhere in a progranm.
When they are required to be executed, control passes to the first instruc-
tion; after the subroutine the next instruction after the group is obeyed,
This has the disadventage that the group of instructions has to be copied
into the program wherever it is to be used.

A closed subroutine is one which is entered by Junping into an entry
point, often the first instruction, and which ends by returning control to an
address set by the progran before entry. This exit address, called the "link",
is normally by convention set in B90 for the Library routines; these then end
with the instruction

121 127 90 0 Copy the return address set by the program
in BS0 into control,

Particular examples of closed subroutines are the "extracodes® in
Atlas. These are called automatic subroutines as entry to then is autonmatic
on an extracode instruction being met. Exit from then is nornally to the
next progran instruction, with no link needed. e

Within any routine there may be many junp instructions. It is in—
convenient to have to work out where each routine would be in the store so
that the addresses for these instructions can be specified. Also, insertion
of an extra instruction into a progran written with actusl addresses night
nean that many addresses had to be altered. Addresses are therefore allowed
to be defined by means of paraneters. Using these, any address oan be re~
ferred to in a "floating" forn. Each tine the progran is read into the com-
puter, the input routine assembles the true wmachine addresses and inserts
these in place of the paremeters. '

Besides the instructions thenselves, certain additional information
has to be provided with the progran. This information is:

(1.65)

5.1/2

(a) Where the program is to be located in the store,
(b) Which library routines are required.
(¢) The identification of routines, program titles, etec.

(d) Where control has to pass to in order to start obeying the
progra.m.

This information is provided by means of directives. Except for (b)
these do not produce any actual program within the computer.

In generel, directives are simply identifying letters (followed some-
times by numbers) or equations which define the values of pararmeters.

Instructions, floating-point numbers, half-word numbers, six~bit
characters and directives will be collectively referred to as "items"™. A
complete program can then be regarded as a list of items.

Items are terminated by multiple~space, comma or New line, Depending
on the input medisa, which may be 7-track or 5-track paper tape or punched
cards, the programmer will use whichever terminator is most convenient.

For simplicity we shall assume that the input medium ia 7-track paper
~ tape punched on & Flexowriter, and then state the alternatives for the other
media. Multiple-space 1s defined as two or more consecutive spaces, which
can also be achieved by using the character Tabulate on the Flexowriter,

Routines are introduced by the letter R followed by a routine number
in the range 1 to 3999, They are terminated either by the directive Z, or
by R followed by a new routine number, or by one of the directives which
cause the program to be entered. Any program material not introduced by a
routine number is automatically assigned to routine O,

A complete line of ABL input is read, and an image of the print-out
is formed, taking correct account of the characters SPACE, BACKSPACE, and
TAB, TAB is interpreted assuming 9 fixed TAB positions, at 8, 16, 24, 32,
and then every 16 up to 112, character positions from the left-hand margin;
TAB always moves the current ’‘carrisge position’ along at least two char-
acter positions. A maximum of 128 character positions along the line is
alloved for; any characters beyond position 127 are ignored. A backspace
beyond the left-hand margin is ignored. :

In interpreting a line, ERASE, or a composite character including
ERASE, is everywhere ignored (exocept in circumstances where a direct copy of
a string of characters is called for -see section 5,10 - C and CT directives
- and section 5,13 ~ T directives, or with the ZL record in library routines
- see section 12.7),

The character small 1 is an illegal characoter., Otherwise ABL treats

upper and lower case letters as being identical., The letters O and I are
treated as alternatives to zero and one,

(1,85)

5.3/1

Se2 Routine Parameters

Within any routine ,'up to four thousand parameters may be used,
numbered from O to 3999, Parameters 1-3999 can be set up by directive
equations or by labelling items (other than directives).

When e parameter is set by an equation, or referred to generally,
it is preceded by the letter A,

A1 = 1004 sets parameter 1 of the owrrent routine to the
value '10004

When a parameter is set by labelling an item it is written before
the item and separated from it by a right-hand bracket.

1) 121 2 o 0

The parameter then has a value equal to the address at which the item so
labelled is finally placed. Hence, other instructions which refer to 41 are
not affected by the insertion or removal of instructions in between theme
selves and the labelled instruction.

We have up to now always written the address part of an instruction
as a number, either as a decinal mumber with an octal fraction or as a string
of octal digits. In fact, the writing of an address may be done in a great
many ways. In particular, parameters may be used to set up addresses, or
parts of addresses. Thus

124 127 0 A1l causes a jump to the location whose
address is defined by A1.

Examgle :

Routine 1 of & program is to clear store locations 512-1535
to floating-point zero for working space and then exit to some as
yet unknown address

4
324 0 0 o set an’ =0
121 7 0 1025 set b7 = 1535-512
2)36 0. 7 512 store, modified -
203 127 7 A2 count, jump to A2
121 127 0 A3 exit to A3, not yet set
1) 40
Be;gore the program could be run on the computer, A3 would have to be
set.

AQ in each routine cannot be set by the programmer ; it is auto-
matically set equal to the eddress of the first stored itcm of the routine
(usually an instruction). AO can be abbreviated to A.

(1,65)

5.2/2

To permit cross references between routines, parameters are more
generally referred to as Am/n, meaning parameter m of routine n. If the
/n is omitted the parameter 1s taken to belonz to the current routine.

Examples :

l. A3/15 = J77 Sets parameter 3 of routine
15 to J77

2, RS

101 10 0 A uxtract half-word at i1 of RS
24 127 10 A2 If 10 = zero, jump to A2 of RS

1/ 6) 217 127 10 AS This instruction is labelled A1
of R6, so that R6 may refer to
it.

4in item may be labelled more than once, Thus
1/6) 2/7) 8) 121 137 1 A4 sets 41 of R6, A2 of R7, and

A3 of the current routine to
the address of this instruction.

(1.65)

5, 5/4

5..’5 .~ Preset Parameters

These are identified by the letter P followed by the parameter
number. One hundred preset parameters PO to P99 are availsgble for normel
use, although certain parameters with numbers greater than this exist, and
bave special effects. (see section 12.5)

Unlike routine parameters,preset parameters are not associated
with any particular routine, but are meant for use by the program as a whole,
They can only be set directly by equation, and not by labelling; they may
not be referred to before they have been set. Preset parameters are set
immediately they are encountered, and hence everything on the right hand

side of the equation must itself already have a value,

Preset parameters may be reset by further equations, and may also
be unset, using the symbol U, followed by the parameter number,

Ua will unset Pa
Ua~b will unset Pa to Pb inclusive.

Preset parameters may also be set =nd unset by program, using some
of the special parameters listed in section 12.5.

(1.65)

5.4/1

Sed Global Parameters

These are identified by the letter G followed by the parameter
number (0 to 3999).

Like routine parameters, global parameters mey be referred to be-
fore they are set and cannot be unset, But, like preset parameters, they
must always be set explicitly by means of an equation and not merely by
labelling an item.

Global parameters are not associated with any particular routine,

and they therefore supplement preset parameters as universal parameters for
use by all routines,

(1.65)

5.5/4

5.5 Optional Parameter Setting

This facility can hest be described by means of an example:=

The library routine IA00 uses a parameter, 524, to specify the max-
imum number of characters permissible on a line of input, which determines
the amount of working space needed to hold one line at a time, The pro-
grammer may arrange to set A24/I100 outside this library routine, but if he
neglects to do so then 1100 will itself set .24 to the value 160,

Such an optional setting is obtained by using the symbol ? before
the = sign in a paremeter setting directive within the subroutine, This
has the following effects:=

(a) For preset parameters. The directive is ignored if the para-
meter is already set, otherwise it is immediately implemented.,

- (b) For routine parameters and global parameters. The directive is
ignored if the parareter has been set by the time the next
enter directive is encountered, otherwise it will be implemented
at that time,

The library routine I100 contains the directive
£24? = 160

and if the programmer wishes for a different setting he must set AzéfLﬁOO
in his program. (see section 5,12,)

(1465)

5.8/1

Se8 EEEressions

It is now necessary to explein the many ways in which addresses ocan
be built up,

The general form of an address is an "expression®, and the Ba and Bm
parts of an instruction, 6-bit characters and half-word numbers can also be
formed from expressions.

Basically an expression consists of a mixture of parameters and con-
~ stants which are combined together according to some relatively simple
rules.,

We have written most constants as a decimal number with or without
an octal fraction, that is as b or be.c, where b is the decimal number andi o
is the fraction. b goes into digits 0-20, ¢ into 21=-25. More generally,
one can write aib.c where b and ¢ are as before and a is a decimal number
which is added into digits 0-11. The main use of a is to set up multiples
of 512 in the address digits. :

Alternative forms are:-

atb.c

Bxamples;
1:35,6 is, in octel, 00010436

2: is 0006200C0

The symbol / may be used instead of :, as : does not occur in the S5~track
paper tape or cerd codes.

The letter ¥ followed by a decimal mumber has the effect of posi-
tioning the number from the least sigznificant end of the register instead
of' one octal place up. Thus

Y19 is OGOOGG2E
as opposed to 19 which is 00000230.

We have also written numbers in octal, preceded by J or K,

J followed by & string of up to eight octal digits assembles these
from the most~significent octal position and right-hand zeros may be
omitted,

K followed by a string of up %o seven octal digits assembles these
from the right, starting at bit 20, and more~significant zeros can be o-

mitted. Vriting .c after these numbers, where ¢ is again an octal digit,
places ¢ in digits 21-23.

(1465)

5.6/2

zxamples:

1. JO4G3 is 04403000

2. K37 is 00000370

3« K3.5 is 0000035

It is also possible to forw a number by writing a constant or pera-
meter which is followed irmediately by one or more of five foperators®,
These operators allow numbers to be shifted up or down logically, allow

the extraction of the ‘block address’ digits or 'address within & block’
digits, or forn the logical binary complement of a number.

We shall use the tern "element” to mean either a constant or a
parameter, or one of these followed by one or more operators.

The operators are as follows:-

(a) Dn where n is a decimal integer. This causes the previous element to
be shifted down logically by n places s le€e, shifted down without dupli-
cation of the sign digit. ee.ge :

121 120 o {ooM
is an alternative to writing
121 121 C 60

and sets b121 pointing at B100, for use in conjunction with b122.
(b) Un causes the previous e%ement to be shifted up logically by n binary
places (i.e. multiplied by 2"). e.g.

121 124 0 1312
sets the exponent digits 0-8 as 13, (This is more oconvenient than having
to work out the number in octal in the appropriate place.)

() B gives the block address, i.c. bits 0-11, of the previous element,
with bits 12+25 uade were,

(d) W sives the address within a block, i.es bits 12-23, of the previous
element, with bits 0-11 made zero.

(e) ' (prime) gives the logical binary complement of the preceding
element., e.g. '

121 2 0 J1!
sets b2 = JE7VTT7TT7

The use of ' is not encouraged, beocause it is a symbol so easily
overlooked in a prosram print-out,

(1.65)

5.7/1

5.7 Sep_arators

Zlements can be combined together in many different ways to form
a final expression,

(1) FElements may be added or subtracted,

Thus 3 + A1, A1 - 3, A1 4+ A2 - A3 4 6D1 for example, are all
allowed, Where the next element is to be edded, the + may be omitted if
there is nc possible ambiguity, Thus, equivalent forms of the three ex-
amples above are 3A1, -3A1, A1A2 - A3 4+ 6D1. In the last case, the final
+ cannot be lef't out as this would form -A36D1,

Exampless
324 0 0 3a1 Sets am’ = contents of the third
location after the address given
121 127 0 -2016/3 Causes a jump to the instruction
two before the address given
by A16/3.

(ii) The logical operations AND, non—equivalence, and CR can be
performed between two elements. The symbols for these are &, N and V
recpectively, M is an alternative to &.

Example:

K77.78A2 Extracts the least-significant 9 bits of A2 and
sets the other digits to zero.

(iii) Elements may be multiplied and divided. The symbols used
are X and Q.

Examples:
A1 X 30 Multiplies A1 by 30

A1 Q 30 Divides a1 by 30

For these two operstions, elements are regarded as 21-bit integers with
octel fractions. After multiplicetion, the answer is made a 21-bit in-
teger with an octal fraction; the result is taken modulo 23° and the
octal fraction is rounded away from zero. After division the result is
an integer in digits 0-20, rounded towards zero, and is always exact if
an exact result should be obtained,

Examples:
2e4 X 204 = 6.2 Exact
2¢1 X 1,2 = 2.6 Result rounds away from zero
J001 X Joo1 = 0 2%¢ = 0, modulo 2°°
T XY = 01 Result rounds away from zero

(1.65)

5.7/3

17 § 3= 5 Result rounds down
14 Q 3,4 =4 Exact

The symbols 4y =, &, M, N, V, X, Q are termed ®separators",

An expression oonsists of a string of clements and separators, and
the elements are evaluated and compounded together from left to right.

Elements and separators are allowed to be enclosed in round bra-
~kete, and sets of brackets within brackets are permitted. The contents
o7 trackets, beginning at the deepest level, are evaluated first and re-
placed by single elements before the general left to right evaluation is

carried out.

+and - signs may also precede any element, inoluding the first
of an expression, or follow any separator other than themselvess

(1.65)

5.8/

5.8 The Special Parameter *

When * is set by an equation such as * = expression, it is inter-

preted as a direotive determining where succeeding items are to be placed
in the store.

For example

* =100

121 1 .G 6
324 0 1 A2

arranges thet the first instruction is placed in looation 100, the next in
101, and so on until a further setting of * is made., If * is not set at
the head of an ABL program, * = 4: is assumed.

The right-hand side of the * directive must not contain any pare-
meters which have not been previously setb.

Optional setting of ¥, that is *? = expression, is not allowed.

When * ocours in an expression on the right-hand side of a direotive,
then * is equal to the address of the next available character position, ex-
cept when it is set to the address of the next full-word or half-word by the
directives F or H respectively. (See sections 5.10 and 5.11)

When * appears in any item other than a direotive, it has the value
of the store address of the item.

The instruction 129 127 o0 * is a loop stop as * equals
the address where this instruction is held.
121 127 0 & causes a jump round the next 2
instructions.

* may be used in expressions as an ordinary parameter. Insertion
of extra instructions into a program is more liable to lead to errors if *
has been widely useds In the example above » inserting another instruction
to be jumped round would also involve altering the Jump instructions to

121 127 0 4¥

There are no applications in expressions for * ithat connot be achieved by
the use of ordinary paramcters.

(1465)

5.9/4

5e9 The Ba and Bm Parts of an Instruction

_ 4n instruotion is regarded as an item, slthough the four parts of
an instruction have to be separated by multiple spaces or commas, and no
other items may ooccur on the same line,

The Ba and Bm parts of an instruction have been written so far as
integers in the range 0-127. In fact they can be written s expressions
like the address part, Bits 14-20 only of the expression are extracted
and placed in the Ba or Bm position.

One use of this is in relativisation of B-register addresses, For
example, a routine might require the use of some B-registers without it
being known at the time of writing which would be most convenient. By
writing the B~-addresses relotive to a parameter the ronge can be decided
later and the parcmeter then set.

Examgle :
R93
165 A7 147 0.7
165 247 1A7 J4
214 127 A7 A

101 347 1A7 0
If it is decided that B62 onwards can be used for this routine .

then the directive A7/93 = 62 will set thc B-registers referred to as A7 »
1A7, 2A7,-oo-oc to the values 62, 65, 64,...0.

{ 1.65)

5,10/

5.10 Half-Words, Six-Bit Werds snd Charecters

The directive H introduces 24-bit numbers, These numbers are
written as expressions in exaotly the same way as in the address parts of
an instruction.

After H, sucoessive expressions on one line are regarded as 24~bit
items and placed in the next available half-words. The letter H, which nead:
no terminator, need only appear before the first expression on each linc.

Examgles:
H 2 3 4
HA5/2 A8/2 5.6 A7/2 & K77

Any of the items can be lasbelled in the normal manner, If the item to be
laebelled is one with the directive H, the label can occur before or after
the H,

Examples:)
3)H 1.4 2.4 4)3.4

H 5)al
Other directives may ocour mixed with half-words,

Exemgle H
H6 7 AF 8 9 A2-57

The directive H also increases “, if necessery, tc the address of
a ha]f'woz‘d.

The directive S introduces 6-bit words. Its action is elmost

identical with that of H, except that only bits 15~20 of expressions are
used and these are assembled into successive character positions.

Example: »
1 22 3 1)4

On one line it is possible to write some half-words, and some six~
bit words, Thus '

H 3715 2064 s3 15 A H96 97

is permitted, for example, each directive stating the interpretation to be
given to succeeding numbers up to a new directive or new-line.

The numbers would appear in three sucoessive words of the store as:-—

000000 000000 000000 001000 000000 000000 000001 111000"!

J \

[

H W5

{1465)

5.10/2

000000 000100 000010 000000 000014 001111 | scoooe|

L I QY J 1

H2064 S3 515 SAt

000000 000000 001400 00C0Q0 000CCO 000000 0014100 001000[

1 1 H 1

HS0 H97

However, for clarity,,the mixing of numbers in this way is not to be en~
couraged.,

Several directives are provided to read in characters from the in-
put media and to store them in internal code ready for output. The string
of characters is introduced by cne of the following C directives, All sube-
sequent characters af'ter the directive, up to end including newline, are
ignored, and all the following characters in the next record except the
carriage control character are stored, The line is not reconstructed,
characters being stored as they are punched, spart from shift changes. This
reans that redundant shifts (e.g. run-out on 5 and 7 track tape) are stored.

C The characters are stored in the next availatle character locations.
P 123 gives the number of characters stored plus Jé.

Ca As for C, except a is placed in the next character location after the
string, to be used as a carriage control character (where a is an
octal number less than 77; a point between the digits will be ignored).
P 123 gives the number of characters stored (imcluding a).

The first character may be lasbelled by writing a label before the C or Ca.

CT The next available halfword is set to the number of characters plus
J4 and the characters are stored in the following character locations.

CTa As for CT except that a is placed in the next character location after
the string, to be used as a carriage control character, and the first
half-word is set to the number of characters.

The helf-word containing the character count may be labelled by
writing a label before the CT or CTa.

An additional C added to the directives C and CT making CC and CCT
(orCTC) respectively, has the effect of ensuring that the string of charao-
ters ends in immer set, adding a ‘shift to immer set’ character if necessary.
This extra character, if required, is included in the count of characters,
An additional ¢ added to the directives Ca and CTa will be ignored., The use
of the additional C is intended for continuation of the record with further
output which will start in inner set.

In every case, the character count is positioned from the least
significant end of the register,

((1.65)

8,10/ 3

CT is intended for a list of texts any of which can be output by'
the instructions "

101 2 1 0

1066 2 1 Y4
where B1 contains the address of the label attached to the CT directive,
A description of the output procedures is given in Chapter 8,
For example

1)C
No solution ‘
= =0,1% A = (&1 - A2)U3 41

assembles the comment ‘No Solution’ as internal code characters, sets At

equal to the address of the first character, A2 to that of the last and A4
to the number of characters. '

(1.65)

5.41/1

Ue i1 Floatinz~7oint lumiere

48~bit floating-point numbers may be written in various wayse. Each
nuzter is assembled into the next full-word location. The ways in which

3,

such numbers may be written are listed below.
The following notation is used:=

a is a signed decimal number, which may include a decimal point

=il ey

Wwith any number of dizits before or after it,
b, ¢, d are decimal integers which may be preceded by a sign

(opticnal if 4.

In the following cases the exact or nesrest Possible value is
assembled as & standsrdised floating-point number,

(i) a

Examgles:
4
-16354,778625
e 1518

"

<

aal X ¥

1234

(1) a(t) The velue of the number is g x 1db

~ The value of the mmber is a x 8°

> N - . . ; -b)
(iv) alt:c) «ho 7alae of the number is a x 10" x 8

siter aiy of the Juuwr ways listed avcve :d way be written, Tuer,
ofter the standardised muber has been formed it will have its exponent
ivsved equal to @ with the mentissa shifted aocordingly. Thus a:d, a(b):d,
a(.0):d and a{bic):d are the four ways of writing floating-point numbers
with forced exponents,

It is also possible to write eny of a, b, ¢ or 4 as octal numbers.

(1.65)

5.11/3

& oan be written as a string to any length of octal digits which
may include an octal point, and these must be preceded by 4 or =, and the
letter K.

eege K363,174
=K. 265
~K777777
KO0, 4

b3 ¢ or d canb e written as an occtal 1nte5er preceded by K. The K
may be preceded by a sign.

Cege K14 -K276
The character / can be used es an alternative to :.

Note: If the program contains a floating-point number that
is too large to be stored in Atlas standardised form the
program will be monitored during compilation and thef ault
indicated by the monitor printing EXPONENT OVERFLOW. If a
floating-point number is too smell to be represented in
standardised form ABL will store f loating-point zero in
its place and continue compiling the program.

If the exponent of a floating-point number is foroed
to a value that is too small to allow the number to be
represented in standardised form, the progran is monitored
and AO on fixing is printed to identify the fault. For
exanple, +1:0 requests that 1 be stored in floating-point
form with exponent zero, which cennot be done (-1:0 would
be acceptable).

Any floating-point number can be lebelled, and more than one may
appear on a line. Floating-point numbers can also be nixed with half-
words and six-bit words on a linc, provided that thc first of a group on a
line is preceded by the directive F,

This directive, which does not need a terminator, introduces floa~
ting-point numbers. It has also the effect of increasing the value of “
if necessary, to the address of a full-word, end it can be used, for example,
irmediately before H to ensure that the next half=-word is stored as the more-
significant half of a full-word.

Euamgle:
H24 F H25 s6 12 F S4 H st P27

would appear in four consecutive words of the store as

000000 000000 000014 000000
T itn Minaece

H 24

(165)

5.41/3

000000 000000 000014 001000

000140 {0014100

T

T

J 1

H25 sS6 12
000100 1111014
Z et S ——
sS4 sét:

OOOQESJ

re27

0 0000041]0'001 141441 000000 000000 00000C 000000

The practice of mixing the different types of number on one line is not

encouraged.

(1.65)

8,12 Library Routines

A copy of the standard library routines is held on a system magnetds
tape,

To avoid confusion with programmer’s routines, library routines are
referred to by the letter L followed by a deoimal number in the range
1 - 1999,

Parameters in library routines are referred to by elements of the form
As/Lo lebel a of library routine o.

Some library routines may have more than one routine. In such cases,
the routine number is written before L.

As/bLo label of a routine b of library routine c.

In some progrems, it is oocasionally convenient to have more than
one copy of a particular library routine. To allow references to any
particular copy, it is identified as Lo.dy copy d of Lo. Copies 1 - 1999
are permitted. ’

As/bLced label a of routine b of library routine ¢, copy d.

It is possible to refer to library routines in the address parts of
instructions or in expressions for half-words etc., without calling for them
explicitly by an L directive, If this is done, when the directive E or ER
is reached, any such library routines are found and read into the following
storage locations.

If it is desired to insert a librury routine at a particular address,
this may be done by setting the address with & * directive, if necessary,
and then writing an L directive, for example:=-

* = A2

read L10 into addresses from A2 onwards.
110

If a1l library routines mentioned earlier in the program are to be
inserted, then no number follows L, for example:-
L read all library routines previously mentioned into the current
address onwards.

In this case, the aotion is just the same as when an E or ER direc-
tive is encountered, except that the L directive may be placed anywhere in
the program after the library routines have been mentioned.

Private library routines may be insorporated into a program; this
is described in Section 12.7.

(4.65)

5.1%1

5.13 Directives

Most of the directives have been introduced in this ohapter. "Tis
section gives a complete list of the directives and describes those not =o
far introduced.

Equation directives are used for setting the values of routine
parameters (1-5999 per routine), of *, of global parameters (0-3999), and
of preset parensters (0-59). They are of the form

Parameter = Expression
Optional peremeter setting (except for *) is of the form

Parameter ? = Expression.

Any optional parameter settings to be made for a library routine should occur
before the L directive that calls that routine,

'Ignore’ directives

(1) vertical line | which does not need s terminator has the effect
that all subsequent characters up to the next new-line are ignored, This
allows comments and notes to be inserted into a program for the convenienoce
of anyone reading the program print-out. The characters s and £ are alter—
natives to lv.

(i1) Square brackets [] which again do not need terminators
Lhave the effect that anything contained within them is ignored; the sections
to be ignored may stretch over any number of lines and part lines. This
facility is intended for lengthy comments or the temporary ignoring of whole
sections of program, for example during the development stage of a progream,

< and > are alternatives to [], but < and > can be used with
their meanings of "less then" and "greeter than" within square brackets, If
< is encountered first then [and] can be freely used within the comments

Both [: J and ¢ > can be "nested¥ When [is encountered what fol-
lows is scanmed with only {and T being recognised, A count starts at 1 on
the first f_, is increased by 1 for each further [and reduced by 1 for each J.
The comment is considered to have terminated only when this count becomes
z2ero. < and » arc trcated in exactly the same way.

(1ii) Query ? followed by an cxpression and a terminator, has the
effect of ignoring the rest of the line or not, depending on the value of
the expression, If this is zero, the remainder of the line is ignored as
with |; otherwise, thcre is no offect. The expression must already have
been assigned a valuc,

Boonploy
[2 >]

[a 5[- oJ>d]

<t +afl+v A 40 [foee >

(1.65)

5,13/23

50 [
XXXe 00

ceexx |]

This last causes the following lines up to | to be ignored
if P50 is non-zero, but to be taken account of P50 is zero.
The | before]| ensures that the | is never ummatched.

Note: | w& [< and ? are directives and not terminators. They must not
ocour other than af'ter correctly terminated items.

C and CT directives

The directives C and CT on one line introduce 6-bit characters on
the following line. (see section 5.10)

E directives

The enter directive, E followed by an expression. The expression
gives the address at which the program is to be storted when it comes to be
executed, - The directive has the following effects:-

a) It terminates the current routine.

Ebg All parameters and expressions which have been used are evalu-
ated and inserted into the program.

(¢) Library routines are found and inserted at the required places
or at the end of the program, deperding on whether they were
called for by L directives or simply referred to.

Library routines that have been referred to in the program

(but not explicitly celled by I~directives) will be inserted

in store locations immediately af"ter the last item before the

E directive, Note that if * directives have been used this

is not necessarily the highest address used by the program,

and care is required to ensure that library routines do not
overwrite any part of the program., The library routines may

be stored in, for example, locetions A3 + 9 onwards by preceding
the E directive by * = A3 + 9,

(d) Fault indications are printed out for parameters which are
used but not set, and for any other faults encountered., If
there are any faults, the program is normally suspended and not
entered. (see section 12.6 for exceptions to this.)

(e) The compiler, which has occupied store locations above 2 x 2°°
(that is, J3) is deleted from the store so that storage location
nurbers up to 2 x 2%° (that is, J34) may now be used. (Note:
the Supervisor uses store locations from J34 upwards).

There are also two other enter directives which may be used. These are:-

(a) ER followed by an expression., The effect of iR is the same as
E exoept for part (e). That is, the compiler and parameter
lists are retained in the store. The program can then only

- use storage locations up to J3,

(b) EX followed by an expression. This is the enter interlude
directive. All parameters which have been set and all expre-
ssions which oan be evaluated are inserted into the program.
The program is then entered at the specified location irres-
pective of unset parameters, and without the insertion of

(1.65)

5.,13/3

library routines other than those called for by an L direotive,
The EX directive does not terminate a routine,

Bi to B88 are cleared before a program is entered by E, ER or EX,
B89, however, contains the ourrent value of *, After an E directive B9O
contains J3; after ER and EX BY0 is clear.

Any enter directive may be labelled, and the specified parameter,
which is.taken to belong to the routine terminated by the enter directive ’
is set to the ourrent value of *. In the case of E and ER this setting is
made af'ter any necessery library routines have been inserted, so the label
always refers to the address of the first available character looation after
the program,

F directive

F introduces a group of floating~point numbers (on the same line)
and can also be used to increase the value of *, if neoessary, to a full-
-word address.

H directive

H introduces half-word numbers (interpreted as 21~bit integers plus
a single digit octal fraction) and also has the effect of increasing the
value of *, where necessary, to a half-word address.

Les Library directives

Le.d, where o and d are decimal numbers in the range 1-1999, calls

for copy d of library routine c¢ to be inserted at the program location in-
dicateda

L, when followed by a terminator but no number, oalls for a oopy of
all library routines mentioned earlier in the program,tc be inzerted at the
program location indicated,

Re Routine directives

Rn, where n is a decimal integer in the range 1-3999, defines the
start of a new routine,

S direotive

The ddrective S precedes a group of 6-bit integers which will be
stored in successive charaoter positions. .

Te Title direotive

After reading T followed by new-line, the next line of charaoters
is copied to the program output channel 0, The title directive can also be
written as Te or Ta~b where a and b are deoimal integers. In the first
case the next line will be oopied to the program output channel a, in the
second to channels a o b inclusive,

If desired the 1, Ta or Ta~b may be terminated by comma or multiple
space: the remainder of that line will then be ignored and again the next
line will be treated as the title and copied to the output.

((1e65

5.13/4

4is with C directives, there is no line reconstruction of the text,

U. Unset Parameters directive

Un, where n is a decimal integer, causes the preset parameter Pn
30 be unsete Further, Un-m unsets from Pn to Pm inclusive.

7. End routine directive

7 indicates the end of a routine. Usuelly this is not necessary,
since a new R directive implies the end of the preceding routine; any
progran material between 7 and the next R will be assigned to routine O.

(165)

6.1/1

Chagter 6

THE RMAINING ACCUMULATOR INSTRUCTIONS

In Chapter 3 we desoribed the accumulator end some of the basic
o, N

All the accunulator instructions operagte on floating-point numbers.,
The;” may be divided into groups as follows:=-

(8) Standardised rounded operaticns
(v) Standardised unrounded operations
(c) Unstandardised operations
(d) Test instructions.
The only standardised rounded instruction not so far introduced is
360 Standardise a, round am an’ =a QRE
and check for exponent
overflow

6ol Standardised Unrounded Operations

In these instructions, L is cleared before the operation, and after
the operation the result is standardised as a double~-length number in A,
An interrupt occurs if the exponent overflows.

300 Add am and s a'=am 4+s QE
301 Subtract s from am a’'=am - s QF
302 Negate am and add s a' =-am 4+ 8 QE

The instructions are thus similar to 320-322 except that rounding does not
QCCUTe

kThe following instructions are like 300 and 301 except that L and
Ls are not cleared initially.

They provide a limited form of double=length working; limited because
the answer is only correct if ay < sy (1.6, the exponent of s must not be
less than the accumulator exponent)

A0 Add s to a a'=a +s QO
(pseudo double-length) (if ay < sy)
311 Subtract s from a ' =a-3s QO

(psevdo double-length) (if ay < sy)
Before two numbers are added or subtracted in the accumulator, the

one with the smaller exponent is shifted down into L and its exponent in~ -
creased accordingly until the two exponents are the same,

(1.65)

6.1/2

In the 510 and 311 instructions, if ay s sy then ag is shifted down
correctlys If sy < ay then sz will be shifted down into L, and the origi-
nal contents of L will be spoiled. In this case the definitions of 310 and
31 will be

0 an’ =em 48, 1 spoileds QF
51 an’ =am - 5, 1 spoileds QE

Extracodes are provided for correct double-length working in all
cases and these are described later,

Two store locations are needed to hold g double~length number and
it is conventional to store both numbers as standerdised numbers with the
less-significant half always positive and with an exponent which is st
least 13 less than that of the more-significant number.

The contents of the accumulator are
am +al.8*%2
as the floating point number al has an exponent ay which is 13 more than
its true value.
The 355 instruction is provided to position al correctiy.
L4

355 Copy the special sign bit of L a'=aL8%® @
(1s) into all bits of I, then a!

lordd =e - an Q
stan se when Js =0
Example :

To store the accumulator contents for double-length working in
locations 100 and 101

356 C 0 100 store am
%5 ¢ 0 J4 position a1 *
36 0 0 101 store al.8*% (Q)

* Note: All accumulator instructions nake a reference to the store
and obtain a store operand, even if the f unotion does not
use it. Any store address within the program is of course
allowed, but as operands are read from the fixed-store very
much faster than from the oore~-store it is conventional to
specify the first address in the fixed-store, J4, in such
instructions.

ExamEle:

Locations 100 and 101 contain two numbers to be regarded as a
double-length number, Add this number into the acounulator, using
locations 98 and ©9 as working space.

356 0 0 98 atore am
365 0 0 J4 position a}l
0

320 0 101 add less-significant halves,

QRE, in am.

(1,65)

6.1/3

356 0 0 29 store partial answer
324 0 0 98 replace original am

300 0 0 100 add mostesignificant halves,
result is standardised but
not rounded in a

356 0 0 98 store most-significant part
of this

355 0 0 J4 position the rest
300 0 0 99 add in less=significant sum
10 0 0 98 final answer in a

(This program is extracode 1500)

The following instructions complete the standardised unrounded
operations

340 Stendardise a, check for a'=a (QE
exponent overflow ‘

342 iultiply am by s, leaving the a' = am.s QE
double~length product
standardised in a

243 As 342 but multiply negatively & == ~asm.s QE

366 Clear L, complement am if a’ = |an| QE
negative, and standardise

367 Clear L, copy the mecdulus of a' = |a] QB
s to Am, and standardise

(1,85)

6.2

64241

6,242

6.2/

Unstandardised Instructions

The unstandardised instructions can be divided into four groups
(a) Those concerned with storing and loading the accumulatore
(b) Multiplications.

(¢) Divisions,

(a) Miscellaneous,

The unstandardised instruction which store and load a are described

below:-

356 Copy am into S

857 Copy al (that is 1, 1s and ay)
into S

346 Transfer am to S and clear A
(a’ = floating-point zero)

347 Transfer al to S and clear L
and Ls

344 Copy the 2 mment end sign from
S mto L and Ls, leaving Am
including t.2» exponent,
unchanged

345 Copy the argument from S into L
and the sign bit from S into Ls
and all bits of M, Leave the
exponents unchanged.

314 Copy s into Am leav:.ng L and Ls
unchanged

315 Copy s negatively into Am

leaving L and Ls unchanged
(A0 will be set for s = =1.0)

Unstandardised Multiplication Instructions.

372

373

352

353

Multiply am by s and leave the
double-length product unstand-
ardised in A. Clear the sign
bit of L. Check for exponent
overflow and acoumulator over-
flow

As 372 but multiply negatively

Multiply am by s, leaving the

double~-length product unstand-
erdised in A, and set the sign
bit of L equal to the sign of

the product. Check for E and

A0

As 352 but multiply negatively

(1465)

'=s;c,m = sign

8’ = anes

JS’

=0 EA0

== w8y S
= 0 EA0

== 8lle¢S

fl

sign of m EAQ

=S e flNe8
= gign of m EAO

642/2

352 and 353 are identical to 372 and 373 except that they set Ls
instead of clearing it. These instructions (552 and 353) are intended to
form the single~length product of two unstandardised integers and leave the
mentissa in L with the correct sign in Ls; they can therefore be redefined
as

352 1" =m.,sx E
353 1" = -m.sy E
Note, however, that the yexponent ay' will be applicable to the double~length

product in A, and that the accumulator overflow will not be set when the pro-
duct overflows into ii, but only when the dcouble~-length product overflows.

6.2,3 The Division with Remainder Instructions.

“here are three division instructions which give the quotient in L
and the remainder in M, However, these insitructions only operate correctly
for numbers which obey certain conditions.

There is a large range of division and remainder extracodes provided,
which use these instructions and ensure the required conditions are fulfilled.
For most purposes, it is easier to use these extracodes rather than the basic
instructions. The only exception to this rule is the use of the 375 insiruce
tion for division of positive fixed-pcint integers » and this special case
will therefore be described first:-

A fixed-point integer ¢ can be represented in a 48~bit word by a
fractional mantissa sm=c¢ x €, where n is normally 412 or 13, and an ex-
ponent sy, usually + 0 or +n. Provided that they are positive and that the
divisor has sz < -;-, which even with n = 12 allows integers up to 30,000
million, the 375 instruction can be used to divide one such number into
another, The dividend should first be placed in L, with ki clear: this places
the dividend in Az with an additional scale factor of &*% and ensures
ax < {s:r;[provided that sz # O. The simplest case of the 375 instruction may
now be defined as follows:~

375 Fixed-Point Integer Division

Divide & by the modulus of s, 1" =2ef|s| E
placing the quotient in L and n’ = remainder
the remainder in M. a and s (0 cam< |sx| < &
must satisfy 0 < az < |sx| < %3 0 cn’ ¢ |sz

the remainder will then lie ay' = ay = Sy

in the range 0 <m’ < |sz|.

After obeying the 375 instruction the remainder m’ will be scaled by
the seme factor as the dividend, and it should therefore be assigned the same
exponent, The quotient 1’ will be an integer scaled down by 8%% and 1t must
be shifted u'f one octal place if' it is required to store it with a scale
factor of §%%2,

(165)

6.2/%

Example:

Given two fixed-point integers o and d in A5 and 1A5,
each stored with one octel da.gn.t af'ter the point; e.ge 0 13
stored with mantissa 82 ¢ in A 5, Form the quotient and
remainder of ¢/d, in the same form and with exponent 12, and
store them in locations 7 and 8.

345 0 0 A5 az' = &% (8% ¢ :
(ieee m' =0 and 2' = 842 o)

35 0 0 145 1 =8%% ¢/a
n' = 8% x repainder

121 124 0 1212 &y’ =12

%6 0 0 8 Remginder am to location 8
364 0 0 J4 =8 1% o/a

357 0 o 7 Quotient al to location 7

The full definition of the 375 instruction is as follows:

376 Pseudo Fixed~Point Division

~

Divide & by the modulus of s, al = E
placing the quotient in Al m’ = "rena:i.mier"

erd e form of "remainder", (0 <cazx < |sx| < 1)
m’, in M, If m’ >Othe True remainder
true remeinder m" =m’, but 2 =mn’ if m’ >0
if m' <O,whlchn.llon1y an’ 4£1,0if p’ <0
occur when m" > %, then 0 gu” ¢ |sx]

n'=n’ +1,0

: a crd s need not be standardised but they must satisfy the resw
triction 0 < ax < |sx| < 140¢ The true remainder m"will then satisfy the
constraint 0 < n® ¢ ls:c[. 9'1! is the exponent of the quotient. The ex~
ponent of the remainder is ay = 13, i.ee 13 less than that of the double-
length dividend a before the operation.

If sx <cax< 8 lsx or if sy = ~1,0 the 375 instruction provides a
quotient and remezinder n® which are correot if regarded as floating~point
numbers but which break the rules of fixed-point division. The remainder
may be larger or smaller than with true fixed~point division, its exponent
being as follows:

Condition Exponent of Remainder
|sz| <axz< 8 |sa ay - 12
0<.aa:<|8x|<10 ay - 13
1
sr=-1.0 and ax > % ay~ 13
sz= 1,0 and ez < % ay - 14

When [s:gl < ag the adjusted remainder m" may not be exact, because the last
octal digit of the correot remainder will have been lost,

(165)

6.2/4

If ax < O then am will be negated before the division takes place

but 1 will not be adjusted.

If a » 1.0 then ag will be shifted down and its exponent increased

by one before the operation.

If sg=0 or axx 8 |sx|, the 375 instruction will not give a correct

quotient or remainder.

376 Divide a by the modulus of s, a1’ =a/|s|

piacing the qu.tient in Al end (a = 0). EDO

the "remaind=»" in M. The Remainder

dividend a must not be negative m"=mn'if m’ >0

and the divisor s must be =n’ +£1.0if n’ ¢ 0

standardised before the 376
instructed is obsyed. The
"remainder" is such that:
mantissa of true remainder —=m if m > O
m+1.0 if'm ¢ O
exponent of true remainder

il

e
ay =12 if laz| = |sx)

The quotient al’ is not normally en integer; it is merely the un~
rounded representation of a/s to such accuracy as is possible in the 39
binary digits of L, The true remainder has no special significance other

than that it represents a - s.al’ and is always positive or zero.

When

|ax| > |sz| the true remainder m" may not be exact, because the last octal

digit of a - s.al’ will have been lost,

Exponent overflow is checked for, and division overflow occurs if s
is unstandardised or zero. If a is in standardised form before the division,
al’ will be a standardised quotient, but m’ and n" may not be standardised.

377 Divide the modulus of am by the ai’ = |am| / |s| EDO
modulus of s, placing the quotient Remainder
in Al and the "remainder®, as m* =np’ if o’ >0
defined for 376, in M, Check for =n' +1.0if n’ ¢ 0

E and DO, The divisor s must be
standerdised, I am is in
standardised form before the
division, al’ will be a stand-
ardised quotient, but m’ and m"
may not be standardised.

G424 Miscellaneous Unstandardised Instructions

354 Round by adding. Add one to the am’ = a.R+

least-gsignificant digit of m if
the most-significant digit of 1 is
& one., Accurnulator overflow can
occur, The contents of L are

unchanged.

341 Check for exponent overflow. a' =a
a is unchanged.

361 Round am and check for exponent an’ = a
overflow,

(1.65)

A0

6.3/4

65 Test Instructions

The following four instructions are tests on the accumulator mane
tissa, and comparable to the tests on bt or bm. Note that bm canbe used
t92 modify the address.

234 Place n in Ba if the accumulator ba’ =n if ag=0
contains zero,.

235 Place n in Ba if the accumulator ba' =n if azx#£ 0
does not contain zero,.

236 Place n in Ba if the accumulator ba' =n if ap >0

contents are greater than or
equal to zero.

237 Place n in Ba if the accumulator ba' =n if ax < 0
contents are less than zero.

A1l these test ignore the sign bit of L.

Tor the accumulator to contain zero, both guard bits must be zero;
the most-significant guard bit, rather than the sign bit, determines whether
the accumulator is greater or less zero. With standardised numbers this is
immaterial, as the guerd digits will be copies if the sign bit, and with
fixed point working the correct result might still be obtained even if
accunulator overflow had occured.

Examgles :

1. Increase b3 by 0, 1 or 2 depending on whether am is 5, = or ¢
the contents of store location 16. Let A10 be the address of a
register available for working spaoe.

356 0 0 Ao store am

321 0 0 16 an -.s

234 3 3 1 b3" =13 +1 if am = s
237 3 3 2 b3’ =b3 4+ 2if am < 8

334 0 0 A0 restore am

2. B1 and B2 contain positive integers n1 and n2, Form n1 x n2
in store location 5§ as a fixed-point integer, rzpresented by
mantissa n1 x n2 x 8*2 and zero exponent. Replace b1 by the
integer quotient n1/n2, and place the remainder from this
division in B2. Let locations 6 and 7 be available for working

space,

13 1 C 6.4 set b1, b2 in the store
.13 2 0 7.4 as floating-point numbers

113 0 0 6 with zero exponents

113 0 0 7

3¢ 0 0 6 an' =nl x &2

32 0 0 7 a’ =nl x n2 x 824

%5 0 0 J4 &' =nl x n2 x 832°

ieee 1’ =n1 x n2 x 843
357 0 0 5 store 1 =nl1 x n2 x 8%%2

(1.65)

375

356
364

357
101
101

1

6.3/2

6
J4

7
6.4
7ed

set nT"in L with n’ = sign
of n1 = 0. ax’ =nl x8 2%

1" = (n/n2) x 83, n' =
remainder x 832

store remainder an

shift up quotient to integer
positions 1= (nl1/n2) x g2

store quotient 1 = (n1/n2) x %2
set b2’ = remainder
set b1’ = quotient

Note that in this example it is not necessary to set the exponent
zero after division because ay is made zoro during the nultiplication
and both division operands have zero exponents.

(1.65)

7AM

Chapter 7

EXTRACODE INSTRUCTIONS

7e1 Introduqtion

The basic instructions consist in just those simple operations which
the computer has been designed to execute directly. In the Atlas order-code,
however, there are many complicated operations which the computer deals w1th
in a special way; these are known as extracodes and are distinguished from
the basic instructions by having a 1 in £ _, the most-significant bit of the
10-bit function number. Upon encountering an instruction with £ =1, there
occurs an auvouatic entry to one of many built-in subroutines, the cho:Lce
being determined by the rema::.n:mg three octal digits of the function mmber,
The exit from the subroutine is again automatic, and the program proceeds in
the usual way with the instruction next after the extracode, unless the extra-
code subroutine has initiated a jump.

Tede1 Uses of the Extrecode Instructions.

As their name implies, the extracodes provide an extension of the
basic order-code, including both those complicated operations which are ex~
cluded from the basic instructions, and many of the facilities which on pre-
vious machines have been obtained by the use of library subroutines.

Amongst the arithmetic instructions provided by extracodes we may
instance those in which the address, interpreted as a floating-point number,
is used as an operand; double-length operations; and a full range of ele-
mentary functions such as logarithm, square-root, sine etc.

An important group of extraccdes deals with the special requirements
of input and output and also of magnetic tape transfers; the uses of these
will be discussed at some length in Chapters 8 and 9.

The organisational extracodes comprise extensive facilities designed
to assist the programmer in making efficient use of the opersting system of
Atlas. The various aspects of this are described in later Chapters (par-
ticularly Chapters 14 and 12),

7¢142 To the programmer, extracode instructions appear as basic instruc-
tions. The two types of instruction canbe freely intermixed, and after
each instruction control passes sequentially to the next (except for jump
instructions). It is therefore not strictly necessary to know how the
computer deals with extracode instructions, although this is given for com~-
pleteness in the next sectione.

There are 512 function numbers available for extracodes, 1000-1777.
Of these, 1000-1477 are singly-modified instructions (B-type) and 1500-~1777
are doubly-modified instructions (A~type)s In some of the B-type instruc-
tions, bm is used as an operand so no modification takes place.

(1.65)

7.9/4

7.2 The logical Interpretation of Extracode Instructions

When an extracode instruction is encountered the following action
takes place:~ :

(a) The content of Main control, b127, is increased by one to the
address of the next program instruction,

(b) The address is modified according to the type (i.e« N 4bm
for B-type, N 4 ba +bm for A~type) and the result stored in Bi19,

(¢) The seven Ba digits are placed in bits 15-21 of B121, unless Ba
is B122 in which case B121 is left unchanged; this enables B122
to be used to specify a B-register in extracode functions
exastly as in basic functions.

(d) The function digits £1 ~ £9 are placed in extracode control,
B126, as shown below.

Bit 0 1-9 10 14 12 13 14 15 16 17 18 19 20 24-23
Value 41 000000000 £1 f2 £3 0 0 f4 f5 f6 £7 £8 £9 000

(e) Control is switched from Main (B127) to extracode (B126).

The next instruction to be obeyed is now in the fixed store, under
extracode control; at a location determined by the function dizits, It isin
one of 64 registers (‘given by f4-£9) in one of 8 tables at intervals of 256
words (given by f1-£3). The tables of 64 registers are called " jump tables®.
In general this instruction will be an unconditional Jjump into a routine
which performs the required function. These routines are permanently stored
in the fixed-store and written in normal basic instructions. Xach routine
terminates with an instriotion in which f1 = £3 = 1 in the function number.
This is obeyed as if 1 = O and then control is switched back to main control
(eege 521 is equivalent to 121 followed by Mextracode exit")e The next ine

- struction to be obeyed is then the one whose address is in B 27; if no jump
has been initiated by the extracode this instruction will be the one immed-
iately following the extracode instruction.

The routines that perform extracodes can use B-registers 91 to 99
inclusive and always use B119, B126, and B121 (unless Ba = 122),

Examples:

1. Extracode 1714 is defined as am’ = 1/s
Replace the numbers in locations 100 to 105 by their reciprooals.

121 1 0o 5 set modifier/count
21714 0 1 100 amn’'=1/s
356 0 1 100 store
203 127 1 A2 count

Faoh time the extracode instruction is encountered b427° = b127 + 1 ’
121’ = 0, 1119’ = 100 + ¥ + b0, b126' = J40034140 = 4180474 and
control is switched to B126. The instruotion in the jump table is

121 126 0 A4

(1465)

7.2/2

The instructions at A14 are
14)83¢ 0 0 A96 set am = 4

774 0 119 0 374 division 1/s, then reswitoh to
main control.

96)+

2. ZExtracode 1541 is defined as ba’ = ba.2” (arithmetio shift up)
Shift 116 up by 2 more than the integer in B17
1344 16 17 2
This instruction sets b121’ = 16D1, b149" = 2 4+ ®17, eto. (Note
that 16 is not added to 1119 beocause 1341 is a singly-modified
(B~type) extracode).

3 Shif't the oontents of B20 to B47 inclusive up by 5 places.

20 121 o0 2001 set B121 pointing at B20.

131 122 0 5 shif't. As Ba = B122, b121 is left
unchanged when the extracode is
entered.

172 121 0 470 bt' =b121 ~ 47D1

220 127 124 M If bt £ 0, b121" = Y21 & Ghd
and 127’ = A1

Example 3 illustrates the use that can be made of B121 and B122 in

extracodes; this is the same as their use in basic instructions except that
extracodes with Ba #£ 122 will overwrite Bi21.

(1.65)

7.3

7.3/

Allocation of Functions

The extracodes are divided into sections as shown below, though

there are a few functions which do not fit intc this pattern.

are given for those subjects desoribed in this chapter.

Functions
4000-1077

1100-1177
1200-1277

13001377
14001477

1500-1577

1600-1677

1700-1777

Subjeots
Magnetic tape routines, and Input and
Output routines,
Organisationsl routines.

Test instructions and 6-bit character
operations

B-register operations.

Complex arithmetic, vector arithmetio
and miscellaneous B-type accumulator
routines.

Double-length arithmetic and accumulator
operations using the address as an
operand.

Logical accumulator operations and half-
word packings

Arithmetic functions (logy exp, sd.rt.,
sin, cos, tan, etc.) and miscellaneous
A-type accumulator operations.

References

Ref'erence

746 & 74542
7e5e1

7.4.6 & 7.4‘7

Toded & Taked

7 rz o
’ 1 o

1eN

8 T o
ee O [et)

7.4.1’ 7.4'2 &
Te4ded

Not all of the 512 extracode functions have been alloocated énd,
where convenient, constants and extracode programs have been packed into
the vacant jump-table locations.

This means that the use of an unallocated extracode function
may result in an ‘unassigned function’ interrupt or may csuse some extro-

code to be entered incorrectly.

wrong results.

The latter case would give the programmer

In particular, the first location in the fixed store, J4, contains
the flogting-point number %; This causes an unassigned function interrupt
if extracode 1000 is encountered, since J4 is the first register of the
Note that floating-point zero is equivalent to the in-

first jump-table.
struction

1000 0

There follows a description of mony of the extracodes.

50 O'

Vhere

possible, the actual number of basic instructions obeyed in each extracode
routine is given inthe right hand column.

Appendix E gives an ordered summary of all the extracodes, for

easy references,

(1465)

7.4

Tedel

7.4/1

The Acoumulator Extracodes

The Most Used Arithmetic Functions

The following routines each have two extracode mmbers. The first

operates on s, which is standardised on entry. The second operates on a,
which is standardised, rounded and truncated to a single-length number on

entry.

For this number we use the notation aqe The results are always

standardised rourded numbers in Am.

-r<ean’ < 4T
2

1700 Place the logerithm to base e of s in Am. am’ = log s
1701 Place the logarithm 4o base e of ag in Am. am’ = log ag

1702 Place the exponential of s in Am, anm’ = exp s 43
1703 Place the exponential of aq in Am, " an’ —exp ag 42
1710 Place the square root of s in Am, an' = + [8 A2
1711 Place the square root of ag in Am, o am' =+ Jag A
1712 Form the square root of (ag® + 8°)and

place this in Am, an’ = 4| ag° +8

Following the two arc sine extracodes, am’ is in radians, with

2

1720 Place the arc sine of s in Am. an’ = are sin s

1721 Place the arc sine of aq in Ja. an’ = arc sin aq

Following the two arc cosine ex tracodes, am’ is in radians, with
‘e w

1722 Place the arc cosine of s in Am. am’ = arc cos s

4723 Place the arc cosine of aq in Am. am’ = aro cos aq

Following the two aro tangent extracodes, am’ is in radians, with

~r<am’ <7 ‘
2 T

1724 Place the arc tangent of s in Am am' = aro tan s
1725 . Place the arc tangent of aq in Am. anm’ = arc tan g

1726 Divide aq by s ond place the arc
tongent of this number in Am. em’ is
in rodians and such that

~r<en' < m an' = arc tan (8q/s
1730 *Place the sine of s in Am, am’ = sin s 4
1731 ®Place the sine of aq in Am, an’ = sinaq 40
1732 *Place the cosine of s in Am, am’ = cos 8 42
1733 *Plooe the cosine of aq in Am, om’ = cos ag 41
1734 *Place the tangent of s in Am. an’ = tan s 34
2

1735 *Place the tangent of ag in Am. am’ = tan ag 33

* In 1730 ~1735, s and aq must be in radians.

(1465)

50

)

7.4/2

7«4¢2 Other Floating-Point Arithmetic Functions

1704
1706

1706
1707
1713
1714
1715
1754
1756
1757
1760

1774

1775

1774 and 1775, besides providing a division insiruction
unstandardised numbers, store information which enables

Place the integer part of s in A.
Place the integer part of a in A.
See also 1300 ard 1301.

Set &’ =41, O or -1 as 5 », =,
or ¢ zero.

Set a’ =41, Oor =1 as a 3,
or < zero.

=

Raise aq to the power s and place
the result in am, provided that
ag > 0, TFault if aq < O,

Place the reciprocal of s in Am.
Place the reciprocal of am in Am,.

Round am by R+, clear L and stan=
dardise,

Interchange the contents
of S end Am (with no standard:.s:mg)

Place the result of dividing s by
am in Am.

Square the contents of Am '

Divide am by s and place the result

in Am. The original numbers need
not be standardised.

Divide aq by s and place the result
in Am, The original numbers need not
be standardised.

4407 to calculate a quotient and remainder.,

1776

1407

When used after division extracodes
1774, 1775, 1574 or 1675, with no
other extracodes in between and am
unaltered, the definition of 1776
is as follows:

Place the quotient of the previous
division in s and the remainder in
Am, where the remainder has the sign
of the divisor.

As 1776 except that the quotient is
integral and is adjusted according
to the sign of the remainder, which
is specifiied by Ba as follows:

Ba Sign of remainder

‘0 Same as the denominator

(1,65)

am

=intpts QE
=intpta QE 4

= sign S Q 5-6

sign a Q 45

i

== ,l—-O QR+6

=S,

= am

= s/am QREDO 4
am® QRE 3

= am/s QREDO 10

’ = ag/s QREDO 9

which operates on
extracodes 1776 ard

= quotient QREDQ 13
= remainder

= adjusted
integral quotient
QEDO

= remainder

1466

1415

7.4/3

1 Opposite to the denomfnator
2 Same as the numerator
3 Opposite to the numerator
4 Sane as the quotient
5 Opposite to the quotient
6 Positive
7 Negghbive .
S ba r
Bvaluate the polynomial b an’ = § s_.en
3 . a r
So + 54 e8I + Sgeand 4+ ese Sb ‘e 810 =0

where sg is the number at

S, m at S +1, etc. and the order
of the polynomial is given as an
integer in Ba.

where Sr—.z S +4r QRE 643ba

¥ultiply the two numbers at a’ =a 4 C(Nsbn)

addresses (N +ba +bn) and x C(N4ba+ bm)

(N +bm) and add the double~ QE 18
length result into the full

accunulator,

Rounding takes place near the
least-significant end of L,

(In detail, when the double-
length product has been formed,
its least~-significant half is
first added in M to the least-
significant half of the originsl
contents of A, This addition is
roundeds The rest of the product
and the original contents of li are
then added into A without rounding)e

Generate pseudo-random numbers (PRN's) in A and S (or %)
from numbers in S and S¥, This extracode may be used in
several ways.

1. With digit 21 of S equal to 0, the PRN is placed in S
an_d A,
(a) If s*y=10, sz > 0 and sz > 0, then s’ will be a FRN
in the range 0 to 8°Y, rcctangularly distributed and
fixed-point (i.e. sz’ is a fixed-point PRN and sy’ = sy).
a' will be a PRN in the range O t0 s*28°Y (with al’ = s').

(v) I S'J"y= 0, sx <SO and s¥gp > 0, thgn as (&) except that
ranzes beoome ~8°Y to 0 and ~-5" 10 8 Y2 4o 0 respectively.

(¢) If s*y= 0 and s*p < 0, then as (a) except that the
PRN’s alternate in sign.

2, With digit 21 of S =1, the PRN's are genersted in §* and

A instead of S and A. The cases are as for 1, interchanging
S and S¥ throughout.

(1.65)

7.4/4

3¢ Two successive uses of the extracode, with digit 21 of S
first = 0 and then =1, and with sy= s®y= 0, will set
PRN’s in S and S¥, both rectangularly distributed in the
range 0 to 1, A will contain the product of two PRN’s and
so will be distributed in the range 0 to 1 with the proba-
bility ~log xwdx of being in the neighbourhood dg of x.

In all cases the generation process must be started with Sgp
and S*z containing numbers with a random mixture of binary
digits, but with their least-significant bits set to 1.

70443 Accunulator functions suitable for Fixed-Point Working

1752

1753

1755

1765

1766

1767

1772

1775

1452

1473

Shift ax up 12 ooctal places and sub-
tract 12 from aps

Shif't m down 12 octal piaoes in ax
and increase ay by 12.

Force ay to the number ny
given in bits 0-8 of n, shifting ag
up or down accordingly.

Shift ax up 12 octal places leaving
ay unchanged.

Shift m down 12 places in amp, leaving
ay unchanged.

Shif't ax up n ootal places, leaving

ay unchanged. If n is negative,
shif't az in the opposite direction.

Shift ax down n octal places, leaving
ay unchanged. If n is negative shift
ax in the opposite direction.

Place the modulus of s in Am, without
standardising., Accumulator overflow
will occur if s is -1.0.

Place the modulus of am in Am without
standardising, AO will occur if am
iS ".1 .O.

Multiply m by smy shifting the result
up by 12 octal places to be in k, and
subtracting 12 from aype

Divide a by s, and force ay equal to

12, shifting the result, which is in M,ay’ =

if' necessary.

Multiply am by s, forming the answer
in Age Force ay to the number given
in digits 0-8 of ba, and shift ax
accordingly.

Divide axm by sz, forming the answer
in Ap» Force ay to the mumber given
in digits 0-8 of ba, and shift ax
accordingly.

(1.65)

n' = axy.8*?

ay’ =ay- 12 A0 1o
a{D' = M 8.13

ay' =ay +12 A0 6
am’ —] am.say-ny
ay’ =ny A0 17

m' = a:ﬁ;Big AO 9.
sy =eay

ax’ = m.,8*2 A0 5
ay' = ay

ax = agd A0 17
ay’ = ey

? n

ar = a.:z:.8' AO 12
ay' = ey
am' = ISI AD 4
an’ = |an]| A0 3

n’ = (mesz)8* A0 14
ay + sy ~12

i

n’ = gaa/scc). gysy-13
12 A0 27

a«'L" = M, Sﬁnsay"sy-bay

ay' = bay A0 19-23

ax’ = (ax/ sm)‘.BaU'sy'bay
ay' = bay A0 24-28

7.4/5

Fixed-Point Divisions with Remainder

The three extracodes 1474, 1475 and 1476 each divide some part of
the accumulator by the contents of store locetion S, placing an unstander-
dised quotient g in the location whose address is ba and leaving an unstan-~
dardised remainder r in Am. In all oases, r retains the original sign of am
and has a mantissa in the range 0 < |rz| < |sz|e The quotient is rounded
towards zero. Division overflow is set if sgx= 0 or =1.0 or if
|sz| < | mantissa of dividend |. Both DO and A0 are set when the mantissa

of the dividend is equal 4o -1.0,

If only the remainder is required, one can avoid the need to set ba
by putting Ba = B126 in the extracode instruction.

1474 Divide am by s. The exponents of C(ba)’ = DO 20-29
q and r are given by qy= ay ~ sy quotient (am/s) A0
and ry= ay= 43, am'= remainder (am/s) E
1475 Divide a by s. The exponents of C(ba)’ = . DO 19-28
q and r are given by qy= ay - sy quotient (a/s) AC
and ry=ay - 13 an’ = remainder (a/s) Z
1476 Divide the integral part of am C(ba)’ = (g int pt am A0
by s. The exponents of q and r s
are forced to qy= 24 - sy and ; DO
ry=12. The condition an’ = rf int pt am\ E 28-37
lam| < 8% |sx| must be observed, s }
otherwise division overflow will /

ocour and the results will be
meaningless., The least-signif-
icant octal digit of q is always
zero, end it is intended that
usually sy= 12 so that qy=12
also and one is working with in—~
tegers. (In the case ay < =6
and am.¢ 0, this extracode must
be preceded by 217, 124, 124, 0
to ensure the t rue integral part
is used).

7+4s4 Double-Length Arithmetic

The double~length number s: is stored in two consecutive locations
s and s +1 as two standardised floating-point numbers, where sy - 13 > s*ye
s¥ and al are assumed to be always positive, A1l arithmetic is standar-
dised, rounded and checked for exponent overflow.

1500 Add s: to a a2’ =48 ¢ s 10
1501 Subtract s: from a a'=8-3 10
1502 Negate a and add s: a' = ~-a 4 8t 14
1504 Copy s: into a a’' = s: 4
1505 Copy s: negatively into e a' = -g3: 3

(165)

7.4/6

1542 Multiply a by ss a' = oSt 15
1543 Multiply a negatively by st a’' = ~gess 19
1556 Store a at S: s:f=a 5
1565 Negate a a’' =-a 5
1566 Form the modulus of a a' = la| 4-6
1567 Copy the modulus of s: into A, a’' = |si| 5
1576 Divide a by s: a' = a/s: 19

7e4e5 Arithmetic Using the Address as an Operand

The modified address is taken' as a 21-bit integer with an octal
fraction, Fixed-point operations imply an exponent of 12,

1441 Store ba in S as a fixed-point sz’ =Dba, sy’ =12 &

number

1520 Add n to am am’ =am +n QRE 10
1521 Subtract n from am am’ = am -~ n QRE 9
1524 Place n into a a'=n Q 8
1525 Place n negatively into a a8’ = ~n Q 7
41534 Place n into a, without standardising.

a’'=n 10
1535 Place n negatively into &, without
. standardising I —— 9
1562 hultiply am by n an’ = arm.n Qrz 8
1574 Divide am by n am’ = am/n QRE 16
1575 Divide ag by n an’ = ag/n QRE 15

After 1574 and 1575, the extracodes 1776 and 1407 can be used to give a
remainder and asdjusted integral quotient. See section 7.4.2e

74446 Complex Arithmetic

The "complex accumulator® Ca is taken as a palr of consecutive re-
gisters, the address of the first one given by the contents of Ba in the
instruction, If Ba is BO, Ca will be locations 0 and 1, As with the double-
length arithmetic, s: is & number pair consisting of the two numbers at
addresses S and S 4+1s For Ca and S:, the real part of the number is in the
first loocation, the imaginary part in the second. Ca may coincide with S:
if desired, but the two must not partielly overlap, i.es the diff'erence be-
tween ba and S must not equal 1., The accunulator is used for the arithmetic
so its original contents on entry are spoiled., All arithmetic is standar-
dised, rounded and checked for exponent overflow,

1400 Place the logarithm of s: in Ca oa’ = log s:
1402 Place the exponential of s: in Ca ca’ = exp s: 140
1403 Place the conjugate of s: in Ca ca’ = conj s: 5

1410 Place the square root of s: in Ca ca: = + s: 47

(1.65)

7.4/7

1411 Place the argument of s: an’ = arg s:
(redians) in Am.
1412 Place the modulus of s: in Am. an’ = nod s: 53

1413 Form the numbers s cos s*, s sin ,
s* and place these in Ca’ (s* iz ca’ = s.,00s s*, 95

in redians). sesin s*
1414 Place the reciprocal of 8: in Ca. oa’ = 1/s: 15
1420 244 s: to ca ca' =ca $8: 8
1421 Subtract s: from oca ca’ = oa - s 8
1424 Copy s: into Ca oa’ = 83 6
1425 Copy s: negatively into Ca ca’ = ~3: 6
1456 Copy ca into S: s:¥ = oa 5
1462 }-"Iultiply oa by s: ca’ = oa.s: 18

Note: 1400 - the imaginary part of the complex logarithm will lie
in the range - # (not inclusive) to # (inclusive).

1410 ~ of the two possible values of the complex square root,
the one computed here has a non-negative real part; the re-
naining ambiguity about the square roots of negative real
nupbers is removed by computing the one whose imaginary part
is positive,

7e4e7 Vector Arithmetic

The following instructions operate on two vectors sy and s« Both
veotors consist of lists of floating-point numbers stored in successive
locations. In each instruction the singly-modified address n gives the
number of terms in the vectors (i.e. the order) and Ba gives the starting
address of s4+ The next B-register after Ba, Ba® » gives the starting
address of sze Address n must be a positive integers.

Besides their uses in vector and matrix arithmetic, these instruotions
can be used to manipulate lists of numbers in the store.

The accumulator is used in the arithmetic so its original contents
on entry are lost. All operztlons are standardised rounded and checked for
exponent overflow, :

1430 idd the vector sz, which consists s ' =8 + 82 9 +4n
of n successiye numbers starting
at C(Ba”) into the veotor s,
which conslsts of n successive
nuubers starting at C(Ba).

1431 Subtract sg from 85 B =8 ~ 8 9 +4n

1432 iiultiply each term of s; Dy am 5 ' = am.s; 10 4 4n
and store the resultant veotor
at 51

1433 iiultiply sa by‘am and add this to &’ =8 * am.ss 10 4 5n
Si'e

(1465)

Ted/8

434 © '

1434 Copy S, to 8, s,. =8

1436 Form in Am the soelar product: , n=~4
S :.s eese .] ’ am == 8 .2.8
10" 20 * * sz(n-q) *“a(n-)’ ::0 1i ai

where s 8 8 oole
10? 112? T13’ ’

] are the numbers in S , and
1(n-) 1
8 5, 8 , sese are the numbers in s .
230 1 2 n-4
1437 As 1436 but forming the scalar i/ =25 o8,
product to double-length =0 1%+ 2

accuracy in a.

7¢4+8 Half-Word Packing

13 + 30

10 4+ 13n

Half-word floating~point numbers consisting of 8-bit exponents and
16~bit mantissae are sometimes useful for low-accuracy caloculations where

it is necessary to reduce store usage.

1624 Transfer the floating-point number a’'=3s
at S into the accumulator, without
standardising.

1626 Copy ay and the 16 most-significant s’ = an R

digits of agx into S after rounding
this number in Am by forcing a
one in its lowest bit if the rest
of axp is non-~zero,

(1.65)

[o5]

7,5/

745 B-Register Arithmetic

7+5¢1 General B-Register Operations

1300

-1301

Place in Ba the integral part of ba’ = int pt of e
the floating-point number s, an’ = frac pt of s
Place the fractional part in Am,

Place in Ba the integral part of ba’ = int pt of am
ame Place the fractional part an’ = frac pt of am,

in Am.

The following six instructions provide integer multiplication and
division of ba by n.

For 1302 - 1304, ba and n are interpreted in the normal way as
21-bit integers with a least-significant octal fraction. In the multipli-
ction instructions octal fractions are rounded away from zero, and over-
flow of the answer is not detected. The accunulator is used in the calcu~
lation, but am is preserved.

1302

1303

1304

iiultiply ba by n and place the ba’ =ba xn 25-24
result in Ba.

Multiply ba negatively by n and ba’ = -ba xn 22-23
place the result in Ba.

Divide ba by n. Place the in- ba' = int pt (ba/n)
teger quotient in Ba and the 25-28
remainder, which has the sign of 197’ = remainder

the dividend, in B97,

For 1312 - 1314, ba and n are interpreted as 24-bit integers, and
the result is again a 24-bit integer.

1312

1313

1314

Multiply ba by n and place the ba’ =ba xn 2324
result in Ba, .
Nultiply ba negatively by n ba' = <ba x n 22-23

and place the result in Ba.

Divide ba by n. Place the integer ba' = int pt (ba/n)
quotient at the least-sigmificant 197’ = remainder
end of Ba and the remainder, which

has the sign of the dividend, as a

24~-bit integer in B97.

The following six instructions provide general n-place shifts of
numbers in B-registers.

In arithmetic shifts, the sign digit is propagated at the most-
significant end of the register for shifts to the right (i.e. down).

In logical shif'ts the sign diglt is not propagated.

(1.65)

7.8/2

For both arithmetic and logical shifts the result is unrounded on
_ In circuler shifts, digits shifted off the most~significant
end of the register reappear at the lcast-significent end and vioe-versa.

shif'ts down.

n is an integer in bits 0-20 as usual, with no octal fraction.

(If n hes

an octal fraction the answer may be wrong by & shift of one place)s In
each case, if n is negative a shift of n places in the opposiile directiom

occurs.

1540

Shift ba arithmeticelly to
the right by n places.

Shift ba arithmetically to
to the left by n places.

Shift ba circulerly to the
right by n places.

Snift ba circularly to the
lef™t by n places.

Shift ba logically to the
right by n places.

Shif't ba logically to the
left by n places.

ba' = ba., TP 10-22

ba’ = ba.2" 921

ba’ = ba. T ", 10-19
circular shif't

ba’' = ba. 2", 9-18
circular shif't

10~21

9-20

The following are mlscellaneous arithmetic instructions on half-
words and index registers.

1356

1367

1376

1377

1364

1371

Perforn the logioal "OR"
cperation on be and s and
plece the result in S.

Set B128 by writing n tc it,
and reed the result to Da.
This sets ba equel to the
position of the most~signi-
ficant 1 it in bits 16-23
of n. (B123 is described in
Chapter 4.)

Set the B-test register as

the result of non-equivalen-
cing ba and s.

Set Bt as the result of none-
equivalencing ba and n.

Set £t as the result of col-
lating ba and s.

Set Bt as the result of col-
lating ba and n,

Preserve the digits of Ba where
there ere geros in n and copy
digits from Bu into Ba where
there are ones in n,

Dummy extracode to set up
b121 and b1419.

(1.65)

s’ =bavs 5

v125" = n,
then ba' = b123

bt' =ba Es 7
bt =ba fn 5
bt =ba & s 5
b‘t'::'ba.&n

ba’ = (ba & B) v (bn & n)
4

[r1s0 p119’ =
(ba &bn) & 1]

b121" = Ba,

119’ = N 4 b,

7.5/3

1771 Dummy extracode to set up b121’ = Ba,
b121 and b119, b119’ = N 4 ba 4 bm,

74542 Character Data Prooessing

1131 Search for s in table starting
at C(Ba)s If s can be found, ba’
will record its address, otherwise
the sign bit of ba’ will be set to 1,
Main control is re-entered at ¢’ =
o +2, and C(o +1) is used to specify
paraneters k, 1, m as shown below, Up
to 1 41 half-words are scamned, starw
ting with C(Ba) and continuing at in-
tervals of k half-words, each being
masked with m before c omparison with s. .

bits 0-9 10-20 21-23 0~23
k 1 spare m
interval count -mask

In the following two instructions S is taken as & charsoter address,
the octal fraction giving the address of the 6-bit character within the word.

1250 Place the character s in the ba’ = char s 7-10
least-significant 6 bits of
Ba and olear the other digits
of Bae

1251 Copy the character from the s’ = char ba 11-18
least~significant 6-bits of
Ba into the character position
at S, leaving the other charac-
ters in the word unaltered.,

In the following two instructions ba is interpreted as a character
address, and the content of the next B-register, ba®, is interpreted as a
half-word address. n is uscd as a count and its ootal frection must be
ZETO,

1252 Unpack n characters. The n 16 4 int pt (6%n)
characters,. packed in successive , B ;
character positions starting at
C(Ba), are placed in the least=- -
signifiocant 6~bits of n succes-
sive ‘half-words starting at
C(Ba*)e The other digits in
each half-word are set to zero,

1253 Pack n characters. Take the n 18 4 6n
characters stored in the least-
signifioant 6-bits of n succes-
sive ‘half-words starting at
C(Ba™) and pack these into n
suoccessive character positions
starting at C(Ba).

(1465)

7.5/4

7.5.3 Logicel Accumulator Instructions.

BO8 and B99 are used in these instructions as a double-length
B-register. This is called the logical accumulator and denoted by G.

1204 Sterting at the mostesignifa . 10-31
icant end, count the number
of 6-bit characters which are
identical in g and s, con-
tinuing only until the first
dissimiler characters are
found, Place the result in

Ba.
1265 Shift g up by 6 places, ba’ = m.s. character
writing overspill to Ba, and of ge
' 8
add. ne g =2"g 14
1601 Copy s into G. g =s)
1604 Add s into G. ’ g =g +8 7
1605 Add s into G, adding any g' =g +s with 12
overflow carry in again end-ground carry
at the least~significant
end.
1606 Non-cquivalence s with g g =g#ks 4
1607 Collate s with g g'=gé&s 3
1611 Replace g by its logical g =% 3
binary complement.
1613 Copy g into S s' =g 3
1615 Copy g into Am, without an’ =g 4
standardising.
1630 Form the logicel binary g =zg&73 5

complenent of s and collate
this with g.

1635 Copy em into G. g' = am 4
1646 M"OR" s with g g'=mgvs 3
41652 Set Bt by the result of bt'’ =g ~ s 7-9

subtracting s from g.

(1,65)

7.6/4

7.6 Test Instructions

74641 Accunulator Test Instruotions

1200 Place n in Bg if the Accumulator ba' = n if AD]
overflow (A0) is set, Clear AO, is set,

1201 Place n in Ba if A0 is not set. ba' =n if A0 7
Clear AO, is not set.

1254 Increase main control by 2 : o' =c¢c 4+ 21if 11
(instead of by 1) if am is am~ s
approximately equal to s.

1235 Increase main control by 2 if am =c¢ 4+23if M

is not approximately equal to s, am?_bs
For 1234 and 1235, approximate equality is defined as

an - 8

< C(ba)

am must be standardised on entry. By definition, if am = O then am is not
approximately equal to s.

1236 Place n in Ba if am is greater ba’ = n if 4.6
than zero, am » 0
1237 Place n in Ba if am is less than an <0 =5
or equal to zero.
1255 Place n in Ba if m is neither ba’ = n if
zero noxr all ones. m;éall'lsorallOs
1727 Depending on whether am is o' =0 41, 7
greater than, equal to, or 2, 3 as am »,
less than s, increase main = & S
control by 1, 2 or 3.
1736 Inorease main control by 2 if o' =0 4+21if
the modulus of am is greater]aml > 8
than or equal to s.
1737 Increase main comtrol by 2 if ¢/ =0 4+2.14f
the modulus of am is less than s. la.m' <s

In 1234, 1235, 1727, 1736 and 1737 am is preserved but 1 is not.

74662 B-register Test Imstructions

1206 Place n in Ba if the most 4
significant 6=bit character
in G is zero,

(1465)

7.6/2

1216 Place n in Ba if tn is. ba’ = n if
greater than zero. bm 5 0
1217 Place n in Ba if bm is less ba’ =n if
than or equal to zero, bn <0
1226 Place n in Ba if bt is ba’ =n if 46
greater than zero, bt » 0 _ .
1227 Place n in Ba if bt is less ba' =n if 35
than or equal to zero, bt <0
1223 Place n in Ba if the B-carry ba' = n if
digit is set. bo =1 4

The B-carry digit (Bc) is set to a 0 or a 1 in the following basic
instructions,

100" 102 104
110 112 114
120 122 124
150 182 164
170 172

Bo records the finel carry or borrow generated after the addition or sub- -

traotion of the most significant digits of the operanis.

When the most-significant digit is taken as a sign bit, which is
usually the case, Bc is not a true overflow digit. For example, adding
-1 or 41 gives O and also sets Bo =1 as there is a final carry.

(Sec Chapter 4).

(1.65)

7.7/

7.7 Subroutine Entry

4100 Set link in Ba and enter ba'=0c +1, 6
subroutine at se ¢’ =8

1101 Set link in Ba and enter ba' =0 +1, 5
subroutine at n. ¢’ =n

1902 Set link .n Ba and enter ba' =c 41, 6
subroutine at bm. o! =1m

1362 Set link in B90 and enter 2907 = ¢ 4 1 3
subroutine at n. On oom= c'l=n

pletion of this extracodse,
b121’ = Ba, so that Ba or ba
may be used to carry infor-
mation into the subroutine,

The link set in Ba can be picked up as an exit from the subroutine
by the instruction

121 127 By O

where Bl is the address of the B-register (Ba) in which the link was set.
Tt is conventional to use B90 for this purpose, and 1362 was provided fcr
that reason.

(1.65)

7.8

7.8/1

Miscellaneous Operations

1147

1120

121

1124

1125

End program. This extracode

is used to end a program un~
less it is monitored by the
Supervisor, Certain infor-
mation about the program is
output, and the program cleared
from the oomputer. (see Chapter
.)

Record the time in Ba, with
hours, minutes and seconds each
given by two deoimal digits
specified in four bits apieoce,
as follows:~ '

bits 0=3 4~ 8-11 12-15
tens units tens units
HOURS MINUT:S

Reoord the date in Ba, with
the day, month and year each
given by two deocimal digits
specified in four bits apieoce,
as follows:=

bits 0-3 4-7 8-11 12-15
tens units tens .undts
DAY MONTH

Set the central computer
V~store line 6 to ne The
least-significant six bits
of V-line 6 are used as
followss~

bit Set to O Set to 1

ba' = clock

16-19 20-23

tens units
SECONDS
ba’ = date

16-19 20-23

tens units
YEAR
76' =1

18 13 shift 12 shift on division;
needed to
ad just remainder
for 376, 377

instruotions
19 Qs >0 Qs ¢ O Sign of quotient
in basic division
orders
20 AQ clear AQ set
21 bt >0 bt ¢ O
22 bt=0 bt£0
23 Boc clear Bo set
Collate the contents of the ba' =v6 & n

centrel oomputer V-store
line 6 with n, placing the
result in Ba. Any digits
of v6 may thus be read,

(1.65)

8.1/

Chapter 8

INPUT AND OUTPUT

This chapter explains the use of library routines Il and 1100 and
the input and output extracodes, It also shows the form in which input
data must be prepared and explains the internmal code used by Atlas as well
as the handling of ‘pure’ binary information.

8,1 Introduction

8s1.1 Peripheral devices,

Atlas car control a large number of input and output mechanisms and
these peripheral devices are of various formss Five- and seven~hole paper
tape and punched card readers are used for input, while output may be pro-
duced on paper tape, cards or a line printers

The working rate for such peripherals is of the order of 410® char-
acters per second. This is very slow compared with ‘bhe processing rate of
the central computer, which is of the order of 2 x 10° characters per seg=-
ond. Clearly, conventional methods of input and output, in which each
character is read from a peripheral as required or written away as soon as
it is produced would lead to oconsiderable inefficiency in Atlas. For this
reason, a 'buffering’ system is adopted.

£e1e2 The System Inmput and Cutput Tapes.

A1l the information required for a program 1s fed through the slow
peripherals and is automatiocally stored in a standard form on a magnetio
tape. This tape is called the System Input Tape. Work on the program will
not begin until all the requlred information is stored in this way. Simi=-
larly the output from a program is stored on magnetic tape (the System Out-
put Tape) and transferred to the peripheral only after the program is com-
pleted. In this way the central computer can be ocoupied with other work

while the actual transfer to and from the peripheral takes place.

"8s1.3 Internal Code Input and Outputb.

Normally during the transfer from peripheral to the System Input
Tape each character (i.e. a paper tape character or card ocolumn) is auto-
metically translated into & six~bit character in Atlas Internal Code. Simi-
larly each character for output is represented in this code on the System
Output Tape. The six-bit characters are packed 8 to & word and stored in
‘records’ (see 8,3 below).

Seven-track input is cheoked for odd parity and rejected on parity
failure. Rejection is prevented by preceding the seven track information
by *¥*P, in which oase an even parity character is replaced by the fault
character K7.7 (six binary ones) and reading continues. There is no parity
check when reading 5-track tape. If the first column of a oard is a non~

(1.65)

8.1/2

standard punching the ocard is stored in binary (see 8.1 3); if the first col~
unn is standard but subsequent columns are non-standard they are represented
by the fault character K7.7,

Equivelent characters on punched cards, five- or seven-hole tape and
the line printer, are repres:snted by the seme character in intermal code.
In this way one input routine can deal with input from any peripheral and
one output routine ocan build up output for any output mechanism,

Thus, for example, the character ‘ii’, whether it has been read from
five- or seven-hole tape or from cards, will be represented on the System
Input Tape as

K5.5 or, in binary 1014101,

Similarly if M! is to be output it will be stored on the System
Output Tape in the same way, regardless of the output peripheral for which
it is intended. Further details of the internal code are given in 8,2,

Input and output in internal code may be carried out by either the
input and output library routines L100 and L1 or by input and output extra-
codes, Both forms are described in detail below.

8s1e4 Binary Input and Output.

The progrommer can, if he wishes cause a direct binary representation
of the holes on the paper tape or cards to be stored on the System Input Tape,
instead of the internal code representation, This is known as binary input
and must be read by extracode and not the library routine L100. Bach char-
acter so stored will oocupy 12 bits end characters will be packed four to a
word.

For example, ‘M’ is represented on seven-hole paper tape by the
character
10144101

where ones represent holes and the full stop represents a sprocket hole,
As binary input this would be stored on the System Input Tape as

000 001 011 101

On the other hand the character ‘li’ is represented on a punched oard
by holes in the ‘41’ and ‘4’ positions. As binary input this is stored as
the 12 bit character

010 000 100 000
(see 8.13 and 8.16)

In a similar fashion, by the use of extracodes, a twelve bit char-
acter may be output in binary form. It will be stored on the System Out-
put tape in this form and, when sent to the peripheral, holes will be
punched in positions corresponding to the one bits.

Binary input and output are particularly useful when dealing with
non~standard paper tape or card codes, More details are given in 8.13 and
8.16,

(1.65)

8.2/1

8.2 The Internal Code.

Each character is represented in imternel code by six bitse When
e single gix~bit character is held in a 24=bit index register it is- usually
stored in the least significant six bits, It is thus represented by two
octal integers separated by a point, and this notation will be used through-
out this chapter,

The use of six bits imposes an upper limit of 2° or 64 distinct
characterss To extend this mumber, two sets of characters are introduced,
the immer set and the outer set. Most of the commonly used characters are
contained in the inner set. A character in the outer set will have the same
six-bit representation as an inner set character but they will be distine
guished in the following way.

: Every line, whether input or output, begins in inner set and all
characters are teken to be imner set until a ‘shift to outer set’ charaoter
is encountered. All characters will then be interpreted as outer set mem=
bers until a ‘shift to inner set’ character or the end of the line is
reached,

On output, an internal code character which can not be represented
by a character on the required peripherel will be replaced by a full stop
on the Anelex printer or the card punch, and by erase on 5 or 7 track tape.
Thus an attempt to print > on an Anelex printer would result in a full stop
being printed. This also applies to non~printing characters such as back
space and tabulate which are only available on seven=hole tape.

8.2.,1 ibbreviations.

In the Internal Code Table of 8.2,2 the following abbreviations are
used:~

BS = Back Spaoce SI = Shift to Inner set
IR == ERase S0 = Shift to Outer set
FS = Figure Shift SP == SPace

FT = Fault TB = TaBulate

LG = Lower Case UC = Upper Case

LS = Letter Shift UL = UnderLine

The availabillity of ocharacters on the different peripheral devices
is indicated as follows:-
£11 peripheral devioes
Anelex Line Printer
Seven-hole paper tape
Punched oards

5 TIive=hole paper tape

0O 3 o <

Characters in parentheses are alternatives available on commercial
seven-hole or five-hole paper tape codes, as used on Orion and Fegasus.

(1,65)

8.2/2

8¢2.2 The Internal Code Table

Internal Character Internal Charaoter
Code Inner Set Outer Set Code Inner Set Outer Set
0.0 1 4.0 '(n) wu
0.1 SE u 4,1 A u a 7
0.2 U 7 4e2 B u b 7
0e3 BS 7 | £ a 4,3 c u c 7
O & SO 4e4 D u a 7
005 SI 4305 E u (] 7
0.6 LC/LS 7/5 4,6 | F u £ 7
0.7 UC/FS 75 Y 4.7 ¢ u g 7
1.0 : u 5,0 H T u h 7
1.1 u 5.1 I u i 7
1.2 y - U 5.2 J u J 7
1.3 m(£) u 5.3 K u k 7
1 o4 ? u Stop 7 5.4 L u 1 7
1.5 & a7c {Punch On 7 545 M u m 7
1.6 » u }Punch O°f 7 5.6 "N u n 7
1.7 / u : a7o 5.7 0 u o 7
2,0 0 u (X) 5 6,0 P u P 7
2.1 1 u a7o 6.1 Q u q 7
242 2 u] a7c 642 R u r 7
2.5 5 u e) 5 6. 5 S u S 7
2.4 4 uw » 5 Be4 T u § ot 7
2.5 5 u (£ 5 645 U u u 7
2.6 6 u UL a7c 6.6 v u 3 v 7
2.7 7 u | a7c 6,7 W u w 7
3.0 8 u 2 a? 7.0 X u x 7
3e1 9 u k- ?; 5 71 Y u Yy 7
e 2 < e7c o (10) a7 72 Z u Z 7
3.8 > u E 14 3 a7 Ted
304 = u z 8." 7.4
3e5 + u 10 a 75
3e 6 - u 11 . a 7. 6
3‘7 ‘o u 7.7 FT 70 ER 75

8¢2.3 Shifts and Case Changes

Uc, LC, FS, and LS are not stored on input when they are used to

change from one case or shift to another.

Each of these characters merely

alters the meaning of the characters which follow on the paper tape and
this alteration will be allowed for when these characters are translated
into internal codee

(1.65)

8,2/3

Thus the sequence
Tape (f)
on seven~hole paper tape would be punched as
T IC a p e SP (UC 7 IC ')
but it would be stored on the system input tape as
T 8C a p e & SI (7 A)

Redundent shif't characters, such as FS when already in figure shif't
are stored, however, since they may indicate a fault,

Similarly UC, LC, FS and LS need not be used when preparing output.
The internal code representation of the character is specified and shift
and case changes will be automatically inserted where necessary.
For example outputting the internal code characters
w2
to five-hole paper tape will cause the characters

LS W FS 2

to be punched,

(1465)

8.3/1

83 Carriage Control Characters and Records

As nentioned in 8,1.3 input is stored on the System Input Tape in
records. These records correspond to one line of printing on paper tape
or one card if the input is on cards., The last character of a record is
called a carriage control character and is not represented in internal code,
Carriage control characters have a special code of their own. Input from
paper tape or punched cards can give rise to only the following carriage
control characters:-

Code Character

2.1 Newline (7-hole tape) or End-of~-card
4.0 Paper Throw (7-hole tape)

2.0 Carriage Return (5~hole tape)

0.1 Line Feod (5-hole tape)

These are abbreviated to NL, PT, CR and LF respeotively.

On output, rccords are built up on the System Cutput Tape., The
last character of cach record is interpreted aos a carriage control character
as follows:~

Codes < Effect
0.0 to 147 0 to 15 line feeds without carriage return
2,0 to 3,7 0 to 15 line feeds with carriage return
4,0 to 4.7 Paper throw on chammels 0 to 7 without CR
5.0 to 5.7 Paper throw on channels O to 7 with CR

Carriage control facilities, and hence the interpretation of carriage
control characters, vary from one outpubt device to another.

The number of line feeds is always performed correctly but the fol-
lowing restrictions apply to other facilities,

On the Anelex Lipf Printer

Line feed and Paper Throw are always accompanied by carrisge return.

Channel 0 is the 'top of form’ channel., Thus 4,0 and 5.0 mean
carriage return to the top of the next form, Channels 1 to 7
provide verticel spacing (always with carriage return) as determined
by a loop of paper tape which is fitted to the paper throwing nech-
anlsn of the lnelex printer.

The width of a line printed on the Anelex is 120 charzcters. If
more than 120 characters are output to a line a new line is auto~
maticelly begun and the exoess characters are printed on it.

On the Card Punch

Line feed means 'next card’,
Paper throw is replaced by one ’‘next oard’ (i.e. 2.1)

(1465)

8.3/2

Carriage return is ignored.

If more than 80 characters are output to & card a new card is auto-
matically begun and the excess characters punched on it, beginning
at the first column,

On _Seven-hole Tave

Line feed is always accompanied by carriage return, Carriage return
without line feed (i.e. 2.0) is ignored, Paper throw is never
accompenied by oarriage return. The paper throw character on tape will
only take effeot if the flexowriter on which it is printed has a

paper throw facility,

On Five~hole Tape

Paper throw is replaced by one line feed.

The charmel number for paper throw will be takem modulo m, where m is the
nunber of homing channels available on the printer., -

The carriage control character 0e0 is ignored by each of the four
types of equipment, The character 2,0 (carriage return without line feed)
is ignored on 7-hole and pard output and oorrectly done on the line printer
and S5-hole tape. Compound characters oan therefore be printed on the Ane-
lex and the teleprinter by overprinting,

(1.65)

8.4/1

8e4 Selecting Input and Output

The data required by a program may arise from several different
sources and each such batch of deta may be prepared as a separate unit
oalled a document., Each dooument will be on a separate paper tape or deck
of cards and each will be allotted an input number as described in Chapter
10, Similarly if several distinct sectivms of output are to be produced by
the program each mey be given an output number.

When the program requires input from a given document it first selects
the number of that document by extracode, Similarly to send information to
a given output streem, the output number must first be selected, The extra-
codes for these purposes are given below; each one is singly modified.

1050 Select Input n

211 succeeding input operations, until the next 1050 instruc-

tion, refer to Input n.

If no input document with number n has been defined there will
be en exit to the monitor routine. '

If input instructions are obeyed without previously selecting

an input, Input zero is used (see Chapter 10).

1051 TFind Selected Input

ba’ = number of currently selected input.
This instruction is particularly useful in subroutines. The
current input may be stored at the beginning of the routine by

1051 6 ¢ 0 b6’ = select inpute

Another input may then be selected and the original one re-
stored at the end of the subroutine by the instruction

1050 0 6 0 Seleot input b6

1060 Select Output n

All succeeding cutput instructions, until the next 1060 order,
refer to output n.

For internal code output n is written without an octal fraction
(or with en even octel fraction which will be disregarded).

If binary output is required n should have an odd octal frac~
tion (usually «1)s Thus

1060 ¢ 0 3.1

will select output 3 for binary output.

If output n has not been defined there will be an exit to the
monitor routine. If output instructions are obeyed without
previously seleoting sn output, output zero is used (see
Chapter 10).

1061 Find. Selected Output

ba’ = number of currently selected output plus octal fraction
25 in 1060.
This extracode is used in a similar fashion to 1051.

(1.65)

8.5/1

[¢)]

Input using L100

Since input and output require fairly complicated prograns it dis
usually convenient to use library subroutines for these purposes, L7100

is the Input Library Routine. It will reconstruct a record and present the
programmer with a number or a cheractern, It will also read texts.

8¢ 541 Line Reconstruction

L100 itself ocalls in I4199 to reconstruct records fronm the systen in-
put tape., The record or ‘line’ is reconstructed as follows:

&) Bach character is stored at the least significant end of a half
word, '

b) Shifts to inner and outer sets will not be stored. Instead ench
simple character will be allotted seven bits. The most-signifi-
cant bit will be zero if the character is a member of the inner
set and & one if it belongs to the outer set. Thus ‘M’ is stored
as K5.5 and 'm’ as K15.5. .

6) The character backspace (BS) will be correctly interpreted but
‘not stored, That is, characters before and after a BS will be
combined to form a compound character (see 8.6.3).

d) The character tabulate (TB) is not stored, Instead the correct
number of spaces will be inserted (see 847.6).

e) The last character of & line will be the ocarriage control cher-
acter. .

f) The following characters have special representations instead of
their normal internal code values:-

Space - SP is stored as 0.0

Brase = ER is stored as J4

Fault - FT is stored as J3

Underline - UL is stored as J2

Figure Shift - FS is stored as J4 (two or more successive

figure shifts in the sime record are stored as. a-single - -
a1 '

These special representations occur only when reading a reconstructed
line; in all other oases » the normal internsl code value is read. For exe

ample, SP, when read as a single character, or as & terminator to a number,
will be represented by 0O.d.

Normally only two lines mey be reconstructed in this wajr at one time,
Thus only two inputs mey be active at the same t ime (but see 8e744)

Texts are read for output using If; they are not line reconstructed,
805.2 Entries to L4100

Several entries are provided to 1400 to ensble the programmer to resd

(1.65)

8.5/2

mumbers or characters from the reconstructed line, If numbers are read they
will be properly translated into forms acoeptable by the accumulator or a
B-line,

For nuncriegl. input the character erase (ER), or any compound char-
acter containing ER, will be ignored. For character and text input ER is
read.

For all entries to L100, the link must be stored in B9O.

A list of entries is given here; further details are to be found in
8s 64
A1/1100 an’ next number QR
A2/1100 81’ = next integer
A3/1100 181’ = next character
A4/1100 Lose the rest of the line
A5/1100 Read text to store line b89 onwards
A8/1100 Read text, following T newline or T/newline to store
line b89 onward ‘
A7/I100 b81' = next integer as & 24 bit integer
A8/I100 181’ = next integer plus 3 bit octal fraction
A9/1A00 Print reconstructed line

(|

8.5.5 Data Preparation for 1400

The following rules must be obeyed when punching date for L100.
Throughout this section

a and ¢ are decimal integers
b is a decimal fraction
_and k is a one digit octal fraction.

a) A maxinum line length of 160 characters plus a carriage control
character is allowed (but see 8.,7.5).

b) All numbers must be punched in the form:=-
< Layout characterss<Numbers<Terminators
The layout character may consist of any combination of

spaces,
tabs,
new lines,
paper throws,
upper and lower case shifts,
carriage returns,
line feeds,
figure shif'ts
or back spaces.

No layout character is really necessary.
The terminator may be a

space,
tab,

(1,65)

or

a)

)

8.5/3

new line (or end of card)

carriage return followed by line feed,
comma,

paper throw,

line feed.

Numbers to be read by entries to A1/I100 will normally take the
form

;P_aob

where the ‘4’ may be omitted if desired.
If either a or b is zero it may be omitted; if b is omitted the
decimal point is optional.

Examgle: .
1 0 +7 -4 51. +1 67 "8.
.17 +05 —.761 54.61 +O¢557 "2604'

Numbers in floating point form will also be accepted by I1G0 with
this entry. These must be in the form

iaob(iC)
where o is a decimal exponent, a and b are as before; o must

be preceded by a ‘4’ or ‘=", No spaces may occur between b and

the character ‘o’ or within the brackets.

For example
5‘1 4‘1 <+7)

will be accepted. It has value 3.141 x 107

For entry at A2/I100 or A7/IA00, numbers must take the form
18

where the ‘4’ is optional and a < 2°* ~1 for A2/I100 and

a < 22% A for A7/1A00

Ixample:

64 + 731 -2

For entry at A8/I100, numbers must take the form
+8sk

where ‘4 is optional and a < 2°* <1, If either a or k is gzero
they may be omitted; if k is omitted the octal point is optional,

Examgles:
14 42 =51 12, +21. =741,

.7 +u2 "'05 61;.1 +7.0 "'0.4.'

Texts for input by entry at A5/I100 will noymally be punched
as one record ending with a carriage control character. If a
text takes up more than one record (i.e. more than one line of
paper tape or more than one card) the characters ((must be
punched at the end of each record except the last.

(165)

845.4

8.5/4

g) Texts for input by entry at A6/I100 must be preceded by

h)

T newline or T/newline (a warning character other than T may
be used by the programmer).

No texts are line reconstructed.

Punching Errors.

a

b)

) If the routine meets an unacceptable character when searching

for the beginning of a number, control is switched to 421/1100,
For example thls would happen on meeting Z in the list of integers

121 516 -7 Z

A21/1100 is normally a fault routine within I100 but oan be &
private fault routine set by the progremmer (see 8.7.2).
The disallowed character will be in B82,

If the routine meets an unacceptable character in the middle of
a number, control is switched to address A22/1100. Again, the
prograumer mey set A22/1100 for private action and the disallowed
character is in B82 as before. Susch an entry will be caused for
example, by attempts to read a nmumber with a fractional part by
entry A2/I100. (See 8.7.3) ~

(1,65)

8.6/

8.6 The Entries to L100 in Detail

All entries apply to the currently selected input,

8:6.1 A1/1100.

A number is assembled from the line reconstruction and is stored as
a floating point number in Am, Tt is rounded in the normal Atlas fashion
and standardised, and L is cleared, -

The terminator is given in B82, If the terminator is also a carriage
oontrol character the most significant bit of B82 is set a8 one., Thus, when
the last number of a line has been read, B82 will be negative, .

For example if the number is terminated by a space, b82 will equal
Oe1e If the terminator is new line, however, B82 will contain J4K2.1.

Example s
Read ten numbers from input 2 and store them in floeting
point form in loocations 40 to 49,

11 3 0 -9 b3’ = count

- 1050 0 0 2 select input 2

51101 90 0 A1/I100 Enter L4100 to read to Am
356 0 3 49 Store number
201 127 3 Ab Count and return.

84642 A2/1100.

A 21-bit integer is formed from the reconstructed line and stored
in bits 0 to 20 of B81; bits 21 to 23 are cleared. The terminator is given
in B82 in the same way as with entry A1/I100,

Exanple:
Reed to the end of the line of integers on input 1 and store
them in half-words from 12.4 onwards.

121 1 0 0 b1’ = count
1050 0 0 1 Seleot input 1
- 121 90 0 3* Set link
1124 1 o] Os4 Increase cownt hy onme half-
word :
121 127 0 A2/1100 Read next integer to B&1
113 81 1 12.0 Store integer
216 127 82 A Test for ocarriage control
charaocter

86,3 1400.

A single character or a compound oharacter is taken from the line
reconstruotion and stored in B81, A single (seven-bit) oharacter goes
into bits 17 to 23, The charactars ER, FT, UL and FS will have the values
given in 8,5.1 (but SP = 0.1).

(1.65)

846/2

A oompound character arises from seven-hole tape input whenever two
or three characters are punched, separated by backspaces. In the case of
two characters, during line reconstruction, the numerically smeller charao-
ter is stored in bits 17 to 23 of the half-word; the other character in bits
410 to 16, In the case of three characters the third will be stored in bits
3 to 9 regardless of numcrical value. A punching sequence such as ABS A
will be interpreted as A. Such a compound character will be read to B81 by
the use of entry A3/1400,

A Compound character may also include the underline character. In
this case bit one will be a 1 (i.e. J2 will be added)s If a compound char-
acter consisting of more than three simple characters; apart from underline
or erase, is detected during line reconstruction then a fault is registered
and the program suspended, Details are printed on output zero.

For example, if the characters
0 B / BS UL

are punched on seven-hole tape, the compound character 2 will be printed by
the flexowriter. This will be reconstructed as followsi~

010 0 000 000 0 010 000 0 001 111
UL No 3rd character 0 is inner 2.0 / is imner 1.7
The instruction
1101 90 0 A3/W
to read this character would produce
B8’ = J2K401.7

After the last character of a line has been read, the next entry to
A3/IA00 causes B81 to be cleared. The carriage oontrol character will be
given in B82:

Be6e4 A4£ 1100

The routine will set up the conditions neccssary for line reconstruc-
tion on the next entry to 1100, In this way the remainder of the currently
reconstructed line is lost.

8.6,5 45/1100

Read the next record(s) from the current input and store it beginning
at the half word whose address is given in B89, The number of characters
stored will appear in bits 1 to 23 of the half word whose address was speoi-
fied in B89. The count includes the carriage control character. The final
contents of B89 is the address of the half word which immediately follows
the stored test. (For texts of several lines see seotion 8,6.6)e

Any amount of carriage oontrol information preceding the text will be
treated as part of the text and stored ready for output by A6/L‘|. In detail,
upon emtry to A5/IA00 all one-character records are read and stored, each
preceded by its oharacter count plus J4, until a record containing more than
one character is encountered. The latter is stored as desoribed in the pre-
ceding paragraph.

(1,65)

8,6/3

846,6 A6/I100

This entry is to be made to read a text which appears amidst numer-
icel data at a point not necessarily known in advance to the programmer.
The text must be preceded by T Newline or T/Newline aocording as it is de-
sired later to output the text on a new line or on the current line. (In
fact any non-numerical warning character can be used in place of T)s The
text is then read in by entering A6/I100 via the ’'illegal-character-in-place=
of-a~number’ entry A21/1100 (see 8+7.2)s The latter label must therefore be
set by the programmer. For example if the following data are being reed by

A2/1400

-t

» 25 B T

i

» 9, 6

then the instruotions .
21/1400) 121 89 o0 3
1362 0 0 A6/1100

will store two records when the T is mets The first stored will consist
of a single new line character and the second will be the entire record
which follows the T on input. Each record is stored with its character
count as described in 8.6.5, The count for the first record has bit 0
equal to 1 as required by the entry A6/I1 to print the text,

Upon exit from A6/I100 B89 is set to the address of the next avail-
able half word following the stored text.

On entry to A5/I100 or A6/I100 for a text consisting of one record,
the next record from the system input tape will be taken and placed in the
store beginning at the address specifiied in B89, This must be a full word
or half word eddress and the first half word will be used to hold a count of
the characters in the record including the carriage control character. The
count will be in the cheracter position of the half-word, so for a text of 14
characters the count will be 1,6,

If the continuation mark ((has been used all of the records of the
text will be read to store, beginning at location b89, Bach record will be
preceded by a half word containing a count of the characters and each of
these half words except the last will also have bit zero set to one, The
text will consist of &1l characters up to but not including the ohareoters -
((, and these characters must be followed immediately by new line,

Example:
Suppose a text on seven-hole tape consisted of the two lines
TAPE 12 ((
BLOCK 3

The instructions

124 89 0 400
1362 0 0 A68/1400

(1.65)

8.6/4

would set the contents of helf word 100 onwards as follows:-

(100) = J4&K1.1 9 characters including 2 SP and one NL plus
a coatinuation nark

(100,4) = K6441604,5 TAPE

(101) =EK0121220.4 Sp 12 Sp

(101.4) = J21 NL

(102) =K1.0 8 characters including one SP and one NI,
(102.4) = K4254574,5 BLOC

(103) =K5301232,1 K sp 3 ML

806.7 A7/1400

An integer is formed from the line reconstruction and stored in B8&1
with its least significent digit as bit 23, The terminator is given in B82,

8.6.8 A8/I100

A 21-bit integer with one octal digit after the point is formed from
the line reconstruction and stored in B81, The least significant digit of

the integer occupies bit 20 and the octal digit occupies bit 27 - 23,

The terminator is given in B32,
8.6.9 A9/1700

The reconstructed line containing the last information read with I100
is printed on the current output. For this entry, the line is taken to con-

sist of the characters on the printed line, together with the ecarriage control
character following it,

(1.65)

87/

8.7 _C_)Ptional Parameters of L100

Library routine I100 contains seven parameters which are optionally
sets, These may be given alternative values by the programmer if he wishes.
If 1100 is called for expliocitly by an I directive these parameters must be
set first. This for example allows ABL to leave the right amount of space in
the compiled program to contain I100. If 1100 is called for implioitly the
parameters may be set at any point in the program. In this case L1100 is
stored somewhere after the compiled program and the exact space it will occupy
is irrelevant at the time of the implicit setting,

The parameters are:=-

A20/I100 - beginning of line reconstruction storage
A21/I100 - Routine for fault at beginning of number
A22/1100 -~ Routine for fault in the middle of a number
A23/1100 =~ ilaximum number of active input streems
A24/I100 ~ iiaximum line length in choracters

A25/1100 ~ Tab settings

A26/I100 - Tab routine

These are dealt with individually below.

8.7.1 A20/1100

The progremmer may allocate specifio storage for the beginning of
line reconstruction by setting A20/I100, e,g. A20/I100 = 1000, If A20/I100
is not set by the programmer A20 will follow L199

8.7.2 A2'1£L100

If during numerical input a spurious character is encountered in-
stead of a mumber, control is switched to A21/I100 with the character in
B82. The programmer can write his own fault routine to deal with such a sit~
vation. This is particularly useful in dealing with a number list of unknown
1ength.

Example:

Suppose the list is punched out and the terminator of the last
number is followed by the character '’ (internal code 4.6). The
following piece of program would read the numbers from input 2 and
form their sum in A5, If a spurious character other than * is met
{owing to mispunching) control is transferred to store line A6,

1050 0 0 2 Select input 2
46 0 0 J4 Clear am
4y1101 90 0 A1/1100 an’ = next number
320 0 0 A5 an’- = partial sum
356 0 0 A5 (45)! = partial sum
o b1 127 0 Ad Go to read next number
5)40
21/L1oog172 82 0 1.6 bt’ =bg2 - "' .
225 127 0 A6 Go to fault routine
- = = = Rext Instruction if not *® 3

If A21/1400 is not set by the progremmer a stendard fault routine
will be entered.

(1.85)

8.7/2

8.73 A22/1400.

If during numericel input a spurious character is encountered within
& mumber, control is transferred to 422/I100 with the character in B82. The
programmer may write his own fault routine to take care of this situation but
he will have a partially assembled number to deal with.

If A22/1100 is not set by the programmer, a standard fault routins
will be entered.

8,74 AR3/L1C0.

The maxinum number of inputs active at one time (i.e. those with a
line reconstrunted part of which remains to be read) is normally two. The
programmer can, if he wishes, alter this by setting A25/1n00 to the rnumber
he requireg. Thus the directive

A23/1400 = 4

would permit four streams to be active at once. This would cbviously involve
more store being used by the line reconstruction routine to accommodate the
reconstructed lines,

8.7.5 A24/1400.

The maximum line length accepted by L100 from any peripheral is 160
characters (excluding carriage control information). If the programmer wishes
4o use a different line length he must set 24/I1100 to the number of charace
ters he reguires.

8.7.6 125/1400.

This parameter is optionally set within the library routine to 15
which zives the standard tab settings of

8, B, 8, 8, 16, 16, 16, 16 « « « « + »

By setting A25/L100 to =1 or 999 the programner can arrange for tabs of 16,
164 16, eeses Or 8, B, 8, esses respectively.

8.7.7 426/I400.

During line reconstruction a standard routine for replacing 'tab’
by the correct number of spaces begins at location £26/1100. If the pro-
grammer wishes to use a private routine to deal with tab, A26/I100 must be
set to the starting address of this routine. Exit from the private routine
nust be to 1A28/I499.

(1.65)

8.8/1

8,8 Pault Printing by L100

If a fault is encountered while using 1100 » then control is trans-
Terred to a fault routine, unless the programmer has set the appropriate
optional parameter, The fault routine will print out an indication of the .
fault, usually in the form

< explanatory text »
a, b, ¢ '
< reconstructed line »
where a is the input stream number
b is the position of the faulty character on the line
and o is the number of characters on the line.
It mey not always be possible to completely reconstruct the line.

The routine then ends the run of the program.
The explanatory texts are listed below.

IMP. CH. DURING NWMBER < character »
The character is impernmissible within a number.

IMP, CH. BETWEEN NUMBERS ¢ character >
The character is not allowed to separate mumbers

INTEGER TOO L/RGE
The integer can not be held in the B-~line.

IMP, COMFOUND GCH.
Impermissible compound character.

IMP. CH, AFTER T :
only /, erase, or newline are allowed after T when using the text input
entry A6/100.

UNASSIGNED C, C. CHe.
The carriage control character is represented in the computer by a number
greater than 5,7.

The line length is set by A24/1400

UNASSIGNED CH.
SPARE CH.

These last two texts refer.to the characters indioconted in Appendix D,

TOO MANY ACTIVE STREAMS :
I100 has beon asked to deal with mdre then the number of .input streams

set by A23/I100, No cheraoter position or line recomstruction is printed
oube .

(1,65)

8.9/1

8.9 Qutput using I

I4 is the Output Library Routine and will output a number from the
accunulator, an integer fron a B-line, a single simple or compound character,
or a group of characters forming a text. In actual fact this routine trans-
fers the output informetion to the System Output Tape whence it is automati-
cally sent to the required peripheral when output is completed. For this

reason the single output routine can be used regardless of the output peri-
pheral.

8.2,1 Intry points to I1.

Different entry points are provided for each type of output required
and the way in which numbers are to be output is specified by a style number
in a B~line before entry to L1.

Tor all entries the link is stored in B20.
The entry points are as follows:-

A/I1 Output am in style b89

A2/IA Cutput b81 in style 138

A3/I4 Output one charecter from b8l

A4/11 End line (or card)

A5/I1 End record by carriage control character in B87

46/I1 Cutput a text from b89 cmwards

A7/11 Output a text froz b89 onwards, with terminating carriage
control character from B87

Further details of each entry are given below.

(1.5)

8.10/1

8¢10 The Entries to L1 in Detail

All entries apply to the ourrently seleoted output and length is limited
only by the output peripheral.

8+1Q.1 A1/Id.

Entry to I1 at this point causes L to be cleared and the oontents of
the acoumulator to be output as a fixed or floating point number. The style
of output is determined by the oontents of B89, which must be set before en-
try to L1 by an order of the form

124 89 0 Pid.k

Here p is the number of decimal digits required before the point
(0 <p <127)

q is the number of decimal digits required after the point
(0 <q<515)

and k (the octal digit) indicates the form in which the number is to be
printed as follows:=-

k = 0 Accunulator printed fixed point, signed, on same line
1 Accunulator printed floating point, signed, on same line
2 Accunulator printed fixed point, signed, on new line
3 Accunulator printed floating point, signed, on new line
4 Acounulator printed fixed point, unsigned, on same line
5 Accumulator printed floating point s unsigned on same line
6 Accumulator printed fixed point » unsigned, on new line
7 Accumulator printed floating point, unsigned, on new line

If k is zero, .k may be omitted.
Further details are as follows:=

a) All numbers will be correctly rounded to the last digit printed.
The rounding is decimal and of the 'add 5° variety.

b) The contents of the accumulator will be spoiled, but the con-
tents of . B8O, B88, -B8Y -are- preserved. - On the -other hand, B6t to
B86 are destroyed.

@) ‘hen k takes the value 2, 3, 6 or 7, the current line is ter-
minated by a single new line character before the output of the
number., Otherwise the number follows the last character of the
ourrent line,

1) For k=0 to 3 the number is printed signed, that is preceded by -
SP for positive numbers or - for negative numbers (but see 8,11 «2)e
With k = 4 to 7 the Sp or - are ouitted altogether; for example
both 42.5 and ~2.5 would be printed 2,5.

e) If k is odd the number is output in floating point decimal form,
The mantissa is printed with one non-goro decimal digit before

(1,65)

8.10/2

the point and q digits after (i.e. 1mantissac 10) and is fol-
lowed by the exponent. Zero in floating point form will have
mantissa of 0., followed by 9 zeros and an exponent of 4 0. The
nunber of character spaces t0 precede the deeimal point is

p+l for signed numbers or p for unsigned numbers.

The floating point number appears in the form
mantissa (exponent)

with a two decimal digit exponent preceded by + or - and enclosed
in brackets (but see 8.,11.4 and 8.11.5.)

A non-significant left hand zero of the exponent will be omitted
and a space will be output after the finel character (i.es the
')'). If the exponent is more than two digits it will be printed
in full but layout will be spoiled (but see 8,11.4).

f) If k=0, 2 the number is printed in fixed point form with pl
character positions before the point and q after; if k = 4, 6
there ere p charecter positions before the point and q after.
Left hand zeros of the integral part are replaced by spaces;
right hand zeros of the fractional part are always printed.
Positive numbers are printed without a sign.

If' the number has rore than p places before the decimal point
(say P places) it will be printed either as a fixed point number
with P places before and q after, or as a floating point number
with (p4q) significant figures in the nantissa, whichever form
has fewer characters. In either case jout will be spoiled.

g) The input routine I100 uses index registers B88 and B89. Care
must therefore be taken not to spoil the style set for an I
entry by first entering 1100,

h) The gpecial cases of p= 0 and q= 0 are dealt with as follows:=
=0

T v———

The integral part of the number in fixed point and of the man~
tissa in floating point will appear as O. Thus Oe25 output
in style C:2 would appear as

sp 0e25 ‘
while -1.25 output in style C:3.71 would be printed as
-0.125 () sp
=0

Q

In integer with no decimal point will te printed.

The number is printed as sp0 or -0 with a decimel exponent if
necessary.

Exanples:
Te Print the numbers stored in locations 60 to 79 on output 3.

(1.

&

8.10/3

The numbers should be printed signed in floating point form, each
on a new line, with four decimal places after the point.

1060 0 0 3 Select output 3
121 1 0 -19 b1’ = modifier

<121 89 0 1:4,3 Style in B89

1)324 0 1 79 Reed next no. to Am
1362 0 0 A1/I1 Print a
201 127 1 Al Count and return

« = = = Next Instruction

2 Read the next number from input 2 and print it on output 1 on the
ocurrent line. The number should be fixed point, unsigned with four
places before and two places after the decimal point.

1050 0 0 2 Seleot input 2
121 90 0 2% ‘Set link

121 127 0 A1/I100 Read one number
1060 0 0 1 Select output 1
121 90 0 3 Set link

121 89 0 4:d.4 Set style

121 127 0 AM/IA Print number

= = = = Next Instruction

8.10.2 A2/Id.

Entry to A2/I1 causes a 21 or 24 bit integer from B81 tobe printed.
The style of output is determined by the contents of B88 which must be set
before entry to L1 by an order of the form

129 88 0 pig.k

Signed integers are printed with p+l character positions before the
point, if any (see b) below), and unsigned integers with p character posi-
tions before the point, if any. Left hand zeros of the integer are replaced
ivg spaces. Positive signed integers are preceded by a space rather than a
plus sign (to print something other than a space, see 8.41.2).

k is interpreted as for accumulator outpu‘t except that the distinc-
tion between fixed and floating point numbers is replaced by that between
21-and 24-bit integers. Thus the mterpretatloq of k 1s as follows'-

k=0 b8l is printed as a 21-bit integer, signed, on same ln.m
b81 is printed as 24~bit integer, signed, on same line

b8! is printed as a 21-bit integer, signed, on new line
b81 is printed as a 24-bit integer, signed, on new line

a
b8! is printed as a 21-bit integer, unsigned, on same line
b81 is printed as a 24~bit integer, unsigned, on seme line
a
a

!

=
]
Noue v

b8! is printed as a 21~bit integer, unsigned, on new line
b81 is printed as a 24~bit integer, unsigned, on new line

Further details are:
a) The oontents of the sccunulator and of B81 are spoiled, but the

contents of B87, B88 and B89 are preserveds B8O is not used
but B82~-86 are overvmit‘ben.

(1.65)

8.10/4

b) If k is even b81 is treated as a 21-bit integer., If ¢ = 0, bits
0 to 20 are taken as a pure integer and bits 21 to 23 are ig-
noreds, If q takes any non-zero value the integer is followed
by a point and one ootal digit taken from bits 21 to 23,

¢) If k is odd b8t is printed as a 24 bit integer. The velue of q
is irrelevant.

d) If the integer has more than p digits it will be printed cor-
rectly but layout will be spoiled.

Exanple:

rint the number 97 on a new line on output 1 followed by the
contenvs of store half-word 97 as a 21-bit integer with octal frac-
tion. Allow for six characters before the octel point of the ine

teger.
1060 0 o 1 Call
121 88 0 2:0,6 Style in B88
121 88 0 97 b81! = 97
1362 0 0 A2/14 Print 97’
124 88 0 5:1,0 Style in BSS
101 e o0 97 b8l’ = (97)
1362 0 0 A3/I1 Print (97)

[z/ra

Oed A3/Ld.

8l
try at this point will cause one character, which may be simple
or compound, to be printed from B81. Simple characters must be placed in

the least significant six bits of B81 with bit 17 indicating whether the
character is inner or outer set as 8.6.3.

An alternative way of printdng an outer set character is by output
of the 'shift to Outer Set’ character, K0.4., All succeeding characters are
then specified by six bits only and will be printed as outer set characters
until the ’shift to Inner Set’ character, K0.5 is encountered or the end of
the record is reached. Thus to print outer set characters from the next
record a further ‘shift to Outer Set’ character must be output.

Compound characters may also be built up in B81 as described in
84643, ZEntry at A3/IA will unpack each character and output them separated
by backspacess (This facility cenbe employed only if output is to 7-hole
paper tape since this is the enly eutput medium with a BS character)s Under-
line characters are allowed in the same way as shown in B.6.3.

The characters ER, FT, UL and FS may teke either the f orms adopted
by 1100 (i.es J4, I3, J2 and-J1) or their internal code numbers (¥K17.7, K7.7,
K12.,6 and K0.7)s The fault character, which normally arises only from in-
put via L10C, is output as erase underlined., The actual printing of the
fault character on the different peripherals is as follows (see 8.2).

7=track ER
5-track ER ER ER
Anelex o, -
Calds oe ==

(165)

8.10/5

411 oompound characters containing J4 (i.ce with bit zero set to
one) will be output as erases. If an attempt is made to print an impossible
character (e.g. %on 5-hole) & full stop will be printed instead,

Example s »
~ Print, on the current line of output 6, which is a seven hole
peper tape punch, the characters

og

2 7 . . ee

131 &t C e p&1° = “A"
1562 0 0 A3/14 Purch A

121 31 0 K14,2 b8’ = ‘b’
1362 0 0 A3/14 Punch b

121 81 0 k0.1 b81’ = 'sp’
1362 0 0 A3/14 Punch SP
124 & 0 J2K401.7 b8’ =

Punch S 0 BS UL

While entry 13/1 is useful for the output of compound characters, it is more
efficient to use the extracode 1064 to output single characters (see 8415).

8.10.4 A4/IA

With this entry, the current line of cutput is terminated by a single
new line (or end-of-card) character. The extracode 1065 0 O 2.1 has
exactly the same eficet and should normally be used.

8.10.,5 A5/11

If nore than one new line character, or some other carriage control
output is required, entry may be made to 125/];1. B87 must contain the ear-
riege control information as detailed in 8.3,

Example s
Por six new lines the necessary instructions are
121 87 0 K2.6

1562 O 0 A5/14

The extracode 1065 0 87 0 has the same effect, and should normally
be used. : S ‘

Be10e6 A46/IN

Entry to A6/IA will output a text from store locations beginning at
b82, The text must be stored in the form in which texts are read by L100,
(see 846.6). That is

a) each record of the text must be preceded by a half word con-
taining a count of the number of characters in the record in-
cluding the carriage control character.

b) for each record except the last this half word must also have
bit zero set to one (i.e. for n characters, the half word must
contain Tnd4)e

(1.65)

8.10/6

o) characters must be six-bit, internal code, and must be packed
' eight to the word.

Example s . '
The text stored by L100 in the example at the end of para-
graph 8.6.6 could be printed on output 4 by the instructions:-

1060 0 0 4 Seleot output 4
121 89 0 100 89’ = 100
1362 0 0 46/I1 Print text.

81047 A7/IA

Entry to A7/IA will ceuse the output of & text in the same way as
entry to A6/I1 except that the carriage comtrol character terminating the

(last) record of the text is replaced by a carriage control character spec—
ified before entry in B87.

In particular, if further information is to follow on the same line

as the last line of the text, entry should be to A7/IA with B87 zero. The
last line of text will not then be terminated.

(1.65)

8.11/1

8¢11 Optional Parameters of Li

As with 1100, several optionally set parameters are contained within
11 which may be reset by the programmer if he wishes. They are:-

A21/I1 mask for p

A22/11 mask for g

A25/11 ’sign’ for positive number from accumulator
A26/I1 "sign’ for positive number from B8l

A27/I1 - number of oharacters of floating point exponent
A28/ 3 characters before and after flcating peint

429/11) exponent,
Details are given below,

8,1141 A24/11, A22/14

p and g are normally teken modulo 128 and 16 respectively, and this
is sufficient for most users. However, it is possible to change these values
(which must be powers of 2) by setting suitable masks in A21 and A22. Thus
directives ’
A21/11 = 255
422/11 = 63

would cause p to be taken modulo 256, and g modulo 64, The maximum values
of p and q are 2048 and 512 respectivelye.
8e11.2 A25/14

As steted in 8,10.71 and 6.10.2 positive signed numbers are normally
preceded by a space in place of a sign. If it is required to output some
other character instead, usually & '+ character, A25/I1 should be set to
the internal code value of the character required.

Thus,

495/14 = K3.5
will produce plus signs before positive numbers, including integers.

8,118 A26/IA

In a similer fashion, parameters may be set to the internal value
of a character to be printed before positive signed numbers from B&1. It 1s
optionally set to KO0,1 (SP) within the library routine.

Sel11.4 A27ZL1

The standard form of the exponent of a floating point number, out-
put by entry Al /I1 has five characters consisting of brackets, a sign and
two decimel digits. This may be altered by the programmer to the total
nusber of charecters required, say

A27/IA =7

If the exponent has less than A27/14-3 decimel digits, enough spaces
will be output after the final bracket to make up the difference, For example

(1465)

8.11/2

with seven characters, an exponent of 3 would be printed
(+3) SP &P sP.

84.11.5 A28/L1 and A29/14

These paramcters are set to the internal values of the characters
before and af'ter the exponent for floating point output. If not set by the
programm?r'they will heve the values K1.0 and K1.1 respectively to produce
] !

(and) .

Should the programmer wish for other characters in these positions
he may reset A25/I1 and A29/IA.
Thus with

A27/14 = 5 :
A28/I4 = K1.2 comme
and A29/I4 = K0.1 space

The floating point number 3.16 x 1017

SP 5.16,417 SP

will be output as

instead of the normal '
SP 3,16(A7)

If the last character is to be omitted completely, A29/I1 may be
set to zero.

(1.65)

8.12/1

8e12 Input and Output by Extracode

Although suffiocient for most purposes, I100 and L1 do not cope with
the input requirements of all programs. In particular they cannot deal with
paper tapes or oards punched in a non-standard code {i.e. binary input or
output)s To deal with such cases the input and output extracodes are pro-
vided.

These extracodes read six-bit choracters from the records of the
System Input Tepe and write characters to the System Output Tape in pre-
paration for punching or printing, Since information on the Input Tape is
in records, provision is made for reacding either single characters, groups
of characters, or complete records, Output may be formed in similar units.

It is important to note that when L100 is used to read input it
takes o complete record from the System Input Tape and reconstructs it be-
fere presenting the programmer with a character, a number or a text. For
this reason the library routine and the input extracodes can not be used to
work on the same input record. Output records may, however, be built partly
by L1 and partly by extracodes. , :

The lack of line reconstruction clso makes oompound characters im-
possible with extracode input. Thus a seven-hole tape character may be al-
tered or erased by another character, later in the record. For example,
suppose & data tape contained the sequence of characters:

b BS ER a

By reading with L100, the first three characters would be combined to form
a compound character and, since it contained erase, this choracter would be
ignored. An entry at A3/I100 to ‘read next character’ would thus produce
the character ‘a’s Using an extracode to ‘read next character’ instead
would produce ‘b‘. Such effects as this nmust be taken into account by the
programmers

(1.65)

8.13/1

8,13 Binary Input and Output

Input and output extrecodes may work with either the 12-bit binary
characters described in 8,1.4 or 6-bit internal code characters.

On input from punched tope, data documents are read and stored im
internal code until one of the markers ***B, ***F or ***E is encountered.
These markers are stered, Subsequently o direct binary representation
of the input characters is stored as 12-bit characters on the System Input
Tape, Any card with a non-standard code punched in its first column will
also be stored as binary input., Definitions of the binary markers are given
in the chepter on Job Documents.

Seven track input is checked for odd parity when reading binary in-
put and the 'tage is rejeoted if an even parity character is encounterei.
However, if ***P precedes the binary markers *¥*B, etc., then even parity
characters will be accepted and stored as for odd parity characters.

Binary information for five or seven track tape is stored with the
three hole side of the punching in the least significant position. Thus the
letter M if read in binary from seven track tepe would be stored as

000 001 011 ' 401
or if read from five track tape, as

n n nNan AAN
\.’00 UOO VIV ¢ 111V

The o indicates the position of the sprocket hole on the t ape,

On binary input o punched caord is represented by 80 twelve bit char=
acters followed by one six bit zero carriage control character. Each column
is stored as a 12-bit binary character with the top bit of the column stored
as the most significent bit and the bottom bit as the least significant.
Thus one colunn of o standard ICT punched card is stored as

10110 123 456 789

—— S - e — o w— - oo am

For output, as described in section 8.4 the least significant bit of
the 1060 extracode determines whether output is in internal code or binary.

A1l binary information, whether input or output is stored as one re-
cord with a 0.0 carriage control character. A carriage control character
encountered within a section of binary input will be treated as a normal
binary character. Thus NL, represented on seven-hole tape by

0000, 010
will be stored on the System Input Tape as the 12-bit character
000 €00 000 010
Binery input may be used to read tapes or oerds punched in non-stan-
dard code, since the programmer can provide his own translation routine for

the binary representation. Similarly he can couse his results to be punched
in a non=-standard form by these means,

(1.65)

8.14/1

814 The Input Extracodes

The Select Extroacodes have been desoribed in gection 8,4, The remain-
ing input extrocodes are defined below., Each is singly modified and refers
to the currently selected input.

1052

1053

1054

1055

1056

Find Input Device Number

ba' = V-store address of the peripher:l equipment used for the
currently selected input.

If tais input originated as output from another program,

ba' = 0.

For input from S5-track tape the least significent bit of ba’
(ieee bit 23) is 1; otherwise it is O. The V-store addresses
are described in gppendix C.

Test Binary / Internal Code

If the next character to be reed from the currently selected
input stream is a binary character, ba’ = n.

If the next character is in internal code, bz is unaltered.

If there are no characters remaining on the currently selected
input stream, on exit is made to the monitor routine.

Read next character to Ba / Jump to n at end of Record

This extracode reads the next 6-<bit character from the currently
scleoted input, and places it at the least significont end of
ba. VWith interngl code input this will transfer one internal
code character. With binary input, where the information is
stored in 12-bit characters, the first use of the extracode will
read the six most significant bits of the binary character.

The next use of the extracode will read the six least signifi-
cont bits. Normally control will then pass to the next instruc-
tion (i.e. b127' =b1274) but if the last character, apart
from the carriage control charactsr, has previously been read,
b127’ = n and Ba contains the carriage control charecter in
bits 18 to 23.

If all charaoters of the currently selected input stream have
been read, this extracode causes an exit to the moniter routine.

ba’ = Number of Blccks Read

This sets in Ba the number of 512 word blocks read from the
selected inpute In internsl code each block holds 4,096 char-
acters, but sune of these are carriage wuntrol characters and
record counts used on the System Input Tape. In binary code,
one block holds 2,048 twelve~bit characters.

Read ba characters to S

Before using this extracode the nuuber of 6-bit characters re-
quired must be set in the character position of ba. For exnm~
ple, for 18 characters ba nust be set to 18D3 or 2.2, The ex~

(1.65)

8.14/2

tracode will then read the next ba characters from the current
record of the selected input and place them in Store looations
beginning at the half-word address S. Four six-bit characters
are packed in each half-word. Bits 22 and 23 of S and bit 0 of
ba are igncred.

If the end of the record is net reached, ba is unaltered on
exit except for bit O which is set equal to one.

If the end of the record is reached no further characters are
read and Ba contains the number of characters read in bits 1 to
23. Bit 0 is set to zero, The last character read will be the
carriage control character.

If 211 the characters in the currently selected input strean
have already been read, this extracode causes an exit to the
monitor routine.

1057 Read next record to S

This extracode reads the next record and places it in the store
starting at the half-word address specified in S. Charscters
will be packed, four six-bit characters to the half-word and bits
22 and 23 of S will be ignored. The last character will be the
carriage control character.

On exit Ba contains in bits 1 to 23 the number of 6-bit charace
ters read and bit 0 is zeroc.

If the record has been partly read, by use of 1054 or 1056, the
renaining part of the record is read.

If all records of the currently selected input have been read,
this extracode will cause exit to the monitor routine.

Extracodes 1056 and 1057 will run very much faster if no characters
have previously been read from the record, or if the number which has been
previcusly read is a nultiple of four. Both these extracodes uss fhr fewer
instru.ctions per character than does 1054, and are therefore much superior
for large umounts of input.

Exanples:

T. Input stream 3 consists of one record in internal code followed
by a binary merker. Neglect this record and read all the binery infor-
metion af'ter the marker to store locations 100C.4 onwards, packing the
12-bit characters four to a word. Place the number of 12-bit charac-
ters in half-word 1000.

1050 0 0 3 Select input 3

1057 1 0 41000, 4 Read internal code record
1087 1 0 100044 Read binary record

124 1 1 0 Convert character count
124 1 1 0 To binary charccter count
113 4 0 1000 Store character count

2.0) Rezd the six-bit characters from input strean five and store
them at the bottom of separate half-words beginning at location A5
until a binary record is encountered. £ll carriage control characters
are to be ignored and the address of the last stored character is to
be left in B1.

(1.65)

8.14/5

b) Store the first 12-bit binary character at the least signifi-
cant end of the half-word A6 (assume that at least one such 12-bit
character exists).

124 1 0 0.4 nodifier = 0.4
41050 8] 0 5] Select imput &
1)1053 127 0 A2 Go to A2 if next character is
- binary
1054 60 0 ~1% ‘JRead next ch. to B6O
gCheck next record if carriage
-~ e nlm
143 60 1 ~0,4A5 Store character
200 127 4 A1 Go to A1 and add 0.4 to b1
2124 14 0 -1A5 b1’ = last address
1054 60 0 0 Read mese half of binary
character (n is not used)
125 60 o] 0 Shift b60 up 6 binary
places
113 60 0 A6 Store m.s. half
1054 60 0 0 Read lsss half
114 60 0 AB Store le.se. half

- = = = Next Instrucfion

3e Read the remainder of the current record of input 2 into
locations beginning at 105.4 and place after it, beginning at the
next available helf word, the same nunber of characters from the

succeeding record. Assume that the succeeding record oonmtelns at
least as many characters as the current one.

1050 0 0 2
1057 20 0 108, 4
1056 20 20 105,.7

(1.65)

8.15/4

€.,15 The Output Extracodes

The necessary extracodes for selecting output streams have beon
described in section 8.,4. As with input crders each output extraooode listed
below is singly modified and each rcfers to the currently selected output.

1062

1064

1065

1066

1067

Find Output Device Type

ba' = V-store address of the peripheral equipment used for
the currently selected output.

If this oulput is to any peripheral (see Job Descriptions,
Chopter 10)

then ba’ =0

Tne V-store addresses are given in appendix C.

Write Character n

This extracode writes the character occupying the six least
significant bits of the address to the currently selected out-
put. If the internsl code node has been selected one internal
code character will be written. If output is in binary rmode,
the extracode nust be used twice to write the m.s. and L.se
halves of each 12-bit. character respectively.

End this Output Record

This writes the carriage comtrol character occupying the six
least significant address bits to the currently selected out-
put, and terminates the record, In binary output it is usual
to write a zero carriage contrcl character, but in fact the
carriage control character is nezlected at time of printing
or punching and any charsacter would do.

Write ba characters from S

Before entry to this extracode ba nust be set as follows:

in bits 1 to 23:= & character count as with 1056
in bit 0O:- 0 if the record is to be ended
1 if' the reccrd is not to be ended

If the record is to be ended the last character is taken as a
carriage control character.

The extracode will when write the ba charscters beginning at
store address S to the currently selected output. The charac-
ters uust be packed, four six~bit characters to the half-word.
The least significant two bits of S are ignored (iees S nmust
be & half-word or fullwword address)

Write a Record of ba characters from S

The effect of this extracode is exactly the same as using
1066 with bit O of ba equal to zero.

Before entry Ba must contain the character count in bits 1 to
23, Bit O of ba will be ignored as will bits 22 to 23 of S.

(165)

8.15/2

The extracode will write a record of ba 6-bit characters from
store locations beginning at S. _

The charaoters nust be packed four to the half-word and the
last will be taken as a carriage control character.

Extracodes 1066 and 1067 run very nuch faster if no characters have
previously been sent to the record or if the number of characters previously
sent is a multiple of four. Both these extracodes use far fewer instructions
per character than 1064 and are to be preferred for large amounts of output.

Exemples:
1. Read an internal code record from input one and send it to

output three,

24

1050 0 0 1 Select input 1
1060 0 0 3 Select output 3
1057 1 0 4100 Read record to locations
100 onward
b1? = count of characters
1067 1 0 100 Output the record

Write the character stored in B2 to output two and follow

it by the six characters in store locations 10,4 to 11.1. End the
record with the carriage control character in 171.2.

3

41060 0 0 2 Select output 2

1064 0 2 0 Output che. in B2

129 21 0 0.7 Count of characters in B21
1066 21 0 10.4 Output record :

Output the following items on stream t hree, which is a

seven-hqleAtape punch.

a)

&) The characters BI.

b Three new lines.

cg The 39 twelve bit characters which are stored in packed
form, from location A12 onwards.

d) The binary character 0011.010

Then end the binary record.

1060 0 0 3 Select output 3 for internsl
characters

1064 0 0 4.2 Output B

1064 0 0 5.1 Output I

1065 0 0 2.3 End record with 3N.L’s

1060 0 0 | Select 3 for binary

121 80 0 39D2 Set count for 78 six-bit
characters

1066 60 0 A2 Output binary ch’s

1064 0 0 0 Output wess. half

8.15/3

1064 0 0 K3,.2 Output l.s half
1065 0 0 0 End binary record

The following extracodes do not apply to the currently selected outpub,
10653 Delete Output n

1070

1074

1072

This deletes any information previously sent to Output n, and
prevents it being printed, provided it has not been printed
already by use of a 107 extracode (see below).

Rename Output n as Input Be

This enables informetion sent to Output n to be read back by
the same program as input. TFor example

1070 3 0 2
will rename output 2 as input 3,

Break Output n

Normally, as described in chapter 10, all output is stored
until the running of the program is completed. Then each
output stream is put out separately preceded by the heading

OUTPUT n

and the title of the job,

This extracode indicates that the information so far recorded
on Output n may, if convenient to the Supervisor, be treated
as separate from any subsequent information sent to that out-
put. The Supervisor will then arrange to send all information
before the Break to the peripheral and output it with a heading
and job title. Subsequent output will be stored in the usual
way and output after the job is complete.

Def'ine Output n

Normally output documents should be defined in the job des~
cription in the manner given in Chapter 10, They may alter-
natively be defined by using this extracode. Before obeying
this instruction, ba must be set equal to the maximum number
of blocks of 4,096 six~bit characters to be allowed on Output
n and ba* must define the output device to be used in the code
described in appendix C,

Ixamples

To define a card punch output with number six to
which & maximum of 2 blocks will be sent, the following
instructions are required:-

124 25 0 2 Set B25 for 2 blocks
121 26 0 J600422 Set B26 for cards
1072 25 0 6 Define output 6

(1.65)

8.16/1

8.16 Further Information on binary input/output

When using Atlas Internal Code an 80-column punched card is rep~ -
resented by 80 six=~bit characters and a next-card carriage control char-
acter, i.e. K2.,1, Thus, to punch all 80 columns using extracodes 1066 or
1067 it is necessary to specify 81 characters in Ba by an instruction of the
type

121 Ba 0 81D3

QimaTanlrr 4~ =mand
Cailiaiglaey o ITal

least 81 characters.

- ~
& RseRllL

In binary a punched card is represented by 80 twelve-bit characters,
one for each column, and one six-bit character with the value 0,0.

If more than 80 (internal code or binary) characters are output to
a card, the first 80 of them will be punched on one card and the remainder
on the next card starting again with column one. A continuous stream of
characters output to cards with no carriage control informetion would accor-
dingly be printed 'punched tape fashion’ on successive cards.

The punching *¥* is not recognized cn cards. Instead a card is in-
serted whose first column is punched 7, 8 and whose last column is punched
Z, T, B, etc. The intervening 78 columns can contain anything whatsoever,

When a binary tape (but not a deck of cards) is read to its physiocal
end (B or F) the final half word of the stored input is overwritten with
J07070707. "This means that the last one or two tape characters are stored
as 000111000111, The zero carriage control character is unaffected.

On tape following ***E the warning characters “*¥C or ***Z are them~
selves stored in binary. They are not subsequently overwritten and each is
followed immediately by the zero carriage control character. On cards fol-
lowing 7,8E the terminating card bearing 7,8C or Z is also stored. On tape
and cards the new document which follows a C marker is automatically read in
Atlas Internal Code; furthermore, if on seven-track tape, the document will
be parity checked, even if ***P headed the previous document.

(1465)

9.,1/1

Chagter 9

MAGNETIC TAPE

9.1 Introduction

Eognetic tope provides an awdliary store of very large copacibye
Por many purposes, o magnetioc tapc can be regarded as a larger but slower
form of main storc, but it is subject to the restriction that it must be
scanned sequentially, It can perhaps best be likened to a notebook whose
pages must be turned slowly one at a time: it is possible to ignore a page
but it is still neccssary to turn it over, and this taokes as long as reading
ite WVhen using magnetic tape, it is thereforc necessary to ensure that the

information on the tape is arranged in the order in which it will be required.

~ - .
- e A Nar ol N e Yer s e Yo R rata

Atlas uses two types of magnetic tape, of one and of half inch widthse.
The system tapes, and most tapes for private use, are one inch wide, pre-
addressed tapes, which may be used for fixcd or varisble length transfers.
Reading from the tope is possible in both forward and backward directions.
The half inch tape is not preaddressed, and can only be read forwards: trans-
fers are all variable lengthe One inch tapes prepared on the I,C.T. Orion
computer may also be read.

To make efficient use of magnetic tape, it is neocessary to overlep
mognetic tape transfers and computing as far as possible., This requires
care in the timing of transfers and the allocution of storage space when
direct transfers to tape are employeds The progrommer is, however, relieved
of this responsibility when using the extracodes for variable length tape
transfers, because these interpose a buffer store between the program and
the tape.

Within a program, each magnetic tape is identified by a mmber. This
number, B, is normally written in the Ba digits of an instruction and lies in
the range 0 < B < 99¢ The tape number, B, is normally allocated to the ap-
propriate tape by the Job Description, which will be described in Chapter 10,

(1.65)

9.2/1

9.2 Atlas One Inch Tape

Information on each magnetic tape is split up into sections of 512
words. There are 5000 sections on each full-length magnetic tepe, and these
are numbered from O at the beginning of the tape to 4999 at the end. Section
0 is reserved for special purposes, and when a tape is first mounted it is
positioned ready to move forwards and use section 1. Normally a program will
first use the tape starting at section 1., Later it may require to return to
section 1 or go on to some other section, and it must then obey a search in-
struction, The instruction

1001 Ba 0 n

will search for the beginning of section n on tape number Ba prior to fixed
length transfers. Thus, to search for section { en tape 4, we would write

1001 4 0 8

The 1044 extracode must be used for a search before variable length
transfers (see below).

Searching tape is a relatively slow process compared with the compu-
ting speed of Atlas, and the time taken is proportional to the number of
sections traversed. Therefore the informetion on tape should normally be
stored in consecutive sections starting at section 1, and any search in-
structions should be given as early es possible in the prograu.

In this chapter it will sometimes be necessary to refer to "blocks"
of store. On Atlas, a block is & unit comprising 512 words of main store;
block number P contains the 512 words whose addresses are 512P to 512P 4+ 511.
The store structure will be explained in chapter 12 but this simple definition
should suffice for the present,

A1]1 megnetic tape instructions are singly modified, and throughout
this chapter references to the address of an instruction apply to the modi-
fied address N 4 bme The tape nunber is normally written in the Ba digits,
but if Ba = 122 the tape number is specified by b121,

(165)

9. 3/1

9.3 Block Transfers on One Inch Tape

Block transfer instructions allow a program to transfer 512-word
blocks of information between a magnetic tape and a specified block of store.
To obtain maximun efficiency in using magnetic tape, a program should use
these block transfer instructions and make its own provision for the overlap
of tape transfers and computing.

9:3.1 Block-Transfer Inst

The section search instruction, 1001, described in section 9.2, may
be used to position the tape before block transfer operations., An instruction
of the form

1002 Ba 0 P:
would then read the next 512-word section from tape Ba into block P.

In the block transfer instructions, the octal fraction of the address
is used as a parameter K, 0 <K < 7, where K % 1 specifies the mmber of

blocks involved in the transfer. Thus, to read the next two sections from
tape 4 into blocks 5 and 6, we would vrite

1002 4 0 5:0.1
The block transfer instructions are as follows:~
1001 Search for the beginning of section n on tape number Ba.

1002 Read the next K + 1 sections fron tape Ba into store blocks
P’P+1’ ...’P-"K.

1003 Read the previous K + 1 sections from tape Ba into store
blocks P + Ky eeey P 41, Pu

1004 Write store blocks P, P + 1, wses, P 4+ K on to the next X 41
sections of tape Bae

1005 Yove tape Ba forwards K + 1 sections.
1006 liove tape Ba backwards K + 1 scctions.

ilhen reading either forward or backverd, information will be held in
store in the same order as on tape, with the first word in the lowest num-
bered tepe section transferred 4o the start of the store block with the
smallest address. This order of words is also mgintsined when writing to
tape.

Ixenples:
1. Read section 19 of tape 3 to nein store block 6.
(a) 1001 3 0 19 Search for section 19
1002 3 0 63 Read forward to block &
(v) 1001 3 0 20 Search for section 20
1003 3 0 63 Read backward to block 6

The information in block 6 will be the same in either case.

(1.65)

9.3/2

2 Read sections 1, 3, 5, 7 and 9 of tape 66 into main store blocks
20 to 24 inclusive. The previous operation on tape 66 was to
write to section 13.

1006 66 0 0.2 Position tape after section 11
. 121 1 0 43 Set block modifier
1) 1006 66 0 0 ¥ove t ape back 1 section

1003 66 1 20s Read previous section

123 1 0 1: Reduce block modifier

216 127 1 A Return if non-negative

A considersable saving is obtained in this example by reading
backwards, To have searched for section 1 and read forwards would
have meant traversing nine sections twice and would have taken al-
nost twice as longe.

The instructions have been arranged so that the 1006 instruction
comes before the 1003 instruction in the loop. If the 1003 instruc-
tion had been put first, the progranm would have traversed one extra
section after the last reead instruction; in this particular progran
the extra section would have been section O and the program would

h O
have been monitored because the use of section 0 is prohibited.

Oe 3 2 Use of Block Transfers.

The way in which a progrem uses magnetic tape will depend very much
on the requirements of the process it is performing. Sometimes it is neces-
sary to read a large amount of information, such as a complete matriz, before
computing can commence. In this case, shortage of store mey prevent the over-
lap of computing with further tape reading, but at least the next required
tape address can be searched for; afterwards it mey be possible to overlap
the writing of the results to one tape with the reading of the ncxt set of
data fron another, The technique of branching, to be described in chapter
12, may also help in this situation.

When it is possible to work sequentially through the information on
tape, operatlng on one word or one small group of words et a time, consider-
able savings cen be made by overlapping tape transfers with computing. This
is done automatically by the variable length transfers (see below), With
block transfers, overlap canbe obtained by transferring eslternately to two
different blocks, computing on one whilst transferring to the other,

The same process can be used when operating on two or more magnetic
tapes. When processing longer items, special care is needed if' an item over-
laps two tape sections.

Sxample:

To read sections 1 to 2000 of tape 4, presenting each word
to a processing routine R3, a control program of the following form
would suffices

(4,65)

9.3/3

| RO ASSUMED

1001 4 0 1 Search for section 1
1002 4 0 0:0e1 Read to blocks 5 and 6
121 71 0 5N Set word count
121 72 0 1999 Set section count
121 127 0 Al Junp to label 4

2) 124 2 0 1 Step up address
203 127 7 M/3 Count words in block
121 71 e 511 Reset word count
203 127 72 #9 Count tape section
121 127 0 Ab Exit
1002 4 2 -1 Read to refill block just emptied
203 127 753 M/3 Count blocks

4) 121 73 0 1 Set block count
121 2 0 bH Set first block address
R3

1) 34 0 2 0 Read word
E E E E Process word
121 127 0 42/0 Return to RO for next word

In the preceding example, because it is reading two sections in ad~

- vance, the program reads one section more than it requires, but does not
attempt to process the extra section., This extra read operation could be
avoided by an extra test in the exanple, but it would be unavoidablec irf the
end of the process were detected by the processing routine on receipt of the
last word. There is normally no harnm in reading extra sections provided that
they do not lie outside the range 1 to 4999 inclusive, and provided that these
extra sections have been written to since the tape was last addresseds Ih is
therefore advisable to write a few extrs sections after the information when
a tape Is written to. A magnetic tape feult (512-word fault) will show up if
an attempt is made to read from a section not previously written to.

(1465)

9.4/1

S.4 Varisble Length Working on One Inch Tape

To simplify the writing of some magnetic tape programs, extracodes
are provided which execute the transfer of variable length records between
magnetic tape and the main store. Varisble length operations must imitially
be preceded by the varisble length word search. The instruction

1044 Ba 0 S

will search tape number Bz for the section and word contained in the full
word with address S. The section muber is contained in the more signifi-
cart, and the word number in the less significant half word, both being held
as 21 bit integers. Thus, to search for the eighth word of section 10 on
tape 4, we would write

1) H0 8
1044 4 0 M

The 1001 search may not be used with varisble length working.

The extracodes for variable length operations reguire an area of
store to be used as a "buffer", to hold information in transit between the
tape and the store. This buffer must be set up, and the mode of operation
specified, by obeying a “"start" extracode for each tape involved in variable
length operations. Thereafter, a "transfer" extracode is used to transfer
information between the buffer and the program as required. When writing to
tape each such transfer forms one "record" on the tape.

Before writing variable length records to magnetic tape, it is neces-
sary to obey a 1032 instruction. This "start writing" instruction normally
takes the form:

1032 Ba 0 P:0.K

This prepares for writing forwards starting at the next word on tape Ba,

and selects it for variable length operations, It also sets up a buffer -
store in blocks P to P + K inclusive; normally K = 1, allowing a two block
buffer. Thus, to start writing variable length records to tape 5, using

main store blocks 10 and 11 (locations 5120 to 6143) as buffer, we would write

1032 5 0 10:0.1

Thereaf'ter, information may be transferred to tepe 5 by 1040 instruc-
tions. Before obeying a 1040 instruction, when writing to tape, the number
of words to be transferred and the end-of-record marker must be set in an
index register: the number in the integral part and the marker in the ootal
fraction. This index register must then be specified in the Ba digits of the
1040 instruction. Normally, the end of an ordinary record should have a
marker of value 1. Thus, using B6 to specify a transfer of 25 words, we
would write

121 6 0 2541

To transfer 25 words (as specified in B6) starting at address 2000, we would
then write

1040 6 0 2000

(1.65)

9.4/2

Example:

Given a 30 x 100 matrix stored by rows in location 8000 onwards,
Write the 30 rows, of 100 numbers each, as 30 separate records star-
ting at the beginning of section 8 on tape 4,

1)H 8 0

1044 4 0 A Search for section 8

1032 4 0 10:0¢1 Start Writing to tape 4

121 1 0 29 Set row count

124 2 0 0 Cleer modifier

121 3 0 100.1 Prepare to transfer 100 words
5) 1040 3 2 8000 Transfer

124 2 0 100 Increase modifier

203 127 1 A5 Count rows

Before reading variable length records from té@e, it is necessary to
obey a "start reading® instruction. To start reading forwards, a 1030 in=
struction must be used, and this normally tekes the form

1030 3a 0 P:0.K

This starts reading forwards from the next word on tape Ba and selects it

for succeeding variable length operations. It also sets up a buffer in
blocks P to P 4 K inclusive; normally K =1, giving a two block buffer. Thus,
to start reading variable length records from tape 5, using main store blocks
10 and 11 as buffer, we would write

1030 b 0 10:0,1

Thereafter, information may be transferred from tape 5, reading
forwards, by using 1040 instructions., The Ba digits of the 1040 instruction
indicete which index register has been used +to specify the amount of infor-
mation to be transferred, When reading from tape, this index register nor-
mally specifies the maximum number of words to be transferred. It may also
specify an end-of-record marker whose purpose will be explained later. The
number is specified by the integral part, and the narker, if required, by
the octal fraction.

To read one record at a time, the maximum length of record should be
specified and the marker should be zero (or one). After the transfer, the
same index register records in its integral part the mmber of words actually
read, and in its octal fraction the value of the marker at the end of the
record, Thus, to read a record of not more than 200 words to location 1500
omwards, we would write

121 10 0 200
1040 10 0 1500

If the actual record were of 100 words terminsted by a marker 1, then B10
would contain 100,1 after the transfer.

(1.65)

9.4/3

Thus, to read to location 200 the first row of the matrix recorded
on section 8 in our previous example, we would write:

8)H 8 0
1044 0 A8 Search for section 8

4
1030 4 0 10:0,1 Start reading f rom tape 4
3

121 0 100 Prepare to read up to 100 words
of next record

1040 3 0 200 Transfer

When reading, it is possible to ignore end-of-record markers of less
than & given value by specifying that value in the octal fraction of Ba be-
fore the trensfer. Thus, for eXanple, by setting 300,2 in B3 before the
1040 instruction above, we could read the first 300 elements of the matrix;
the marker 1 written at the end of each row is less than the octal frection
2 set in B3 and would therefore be ignored.

The instructions to start reading or writing assume the tape %o be
positioned at a marker, either by previous variable length operations or
word search,

So far we have only considered working on one magnetic tape at a
time, and in this oase the start instruction selects that tape for all suc-
ceeding tape operations. When working on two or more tapes, it is still
necessary to use start instructions to initiate variable length working, but
subsequently 1033 instructions nust be obeyed to select whichever tape is re-
quired. This "select" instruction chooses tepe number Ba for succeeding
variable length transfers until the next select or start instruction.

Example:

Tape number 2 contains a filc of variable-length records star-
ting at section 1. BEach record is terminsted by a marker 1, except
the last record which is terminated by & marker 2. The maximum
length of record is 50 words, Copy the file to tape 3, section 1

omwards.

2)H 1 0
1044 + 2 0 A2 Search for section 1, tape 2
1044 3 0 A2 Search for section 1, tape 3
1030 2 0 10:0.1 Stert reading, tape 2
1032) 0 12:0.1 Start writing, tepe 3

1) 1033 2 0 Select tape 2
121 4 0 50) Read next record to location
1040 4 0 A6 ; A6 omwards
1035 d 0 0 Select tape 3
1040 4 0 46 Write record
210 127 4 M Jump if marker odd, End if

marker even.

(1.65)

Se4/4

O+4+1 Varisble Length Instructions

In the previous section, a selection of the most important veriable
length magnetic tape instructions have becn described and illustrated in
order to explain how they are used, In this section, the full range of
variasble length tape instructions will by defined, and there will be some
repetition of information from the previous section.

TN 1radrns wracad ol Toamncmdh 4+arna Fnanafara +h i o] 3
WAEN UB1WE Varlialat aengin Tepl CIeNSICIS , 1415 ..'_.a.-.fcama.tlcn 38 S

on tape in groups of words known as "records", with a 21-bit count and a
3=bit marker on each side to denote the ends of the record. Thus the space
on tape occupicd by a record is one word more than the number of words of
information. Each writing transfer forms one rccord on tape. A reading
transfer may either read a specified number of words or reed up to the end
of a record; in both cases markers are omitted from the transfere Instruc-
tions to start reading or writing must only be given when the tape is posi-
tioned at a marker,

+Arad
coTel

A number of consecutive records often form a larger unit, such as a
complete matrix or a couplete file, and it is often desirable to mark this
in some way. Ior this reason eight orders of narker, numbered 0 to 7, are
provided. Ordinary records may be terminated by a marker of order 1, groups
of records by a marker of order 2, and so on up to 7, which normally denotes
the beginning or end of a file. Reading transfers may then read up to a
narker of a specified order, and the progran may tcst the value of the mar-
ker read. Use of the O marker is not recommended.

Veriable length working nust eslweys be initiated by a start instruc-
tion. This sets up a buffer store, seleots the tape to be operated upon, and
specifies the mode of operations, whether write, read forwerds or read back-
wards., A seperate start instruction must be given for each tape on which
variable length transfers are required, but thereafter a select instruction
may be used to choose the tape to be used. The transfer instruction operates
on the tape which was last selected by a start or select instruction, and
transfers informetion in the mode selectcd for that tape. To change the mode
it is necessary to obey another start instruction. Unless the tape is alreedy
in variable length nmode, the instruction to start writing begins by writing
a marker of order 7. To start writing without commencing with a 7 marker,
the sequence Word Search, Start Reading Forwards, Start Writing, Transfer
should be used. [lternstively, the 1042 ‘mark’ instruction may be used after
the instruction to start writinge.

A start instruction elways initiates varisble length transfers to or
from the next word on itape or the previous word in the case of reading back-
wards. To begin working at a particular =ddress on tape, the start instruc~
tion must be preceded by the word search instruction, 1044; when starting to
read variasble length records, this starting address must be the address of a
marker at one end of a records

The varieble length writing operations do not provide a means of
overwriting selected words on a magnetic tape: complete new blocks are
forned in the buffer and the previous contents of the tape are not preserved.
If it is required %o preserve the beginning of the first section, this may
be done by preceding the start writing instruction by a start reading for—
wards instruction with K= O.

(1.65)

9.4/5

It is important to note that, when using a buffer of K+1 blocks, the
attempt to read variable length records backwards from any of the first K
seotions, or forwards from any of the last K sections, will lead to an end~
of-tape interrupt. K sections should therefore be left unused at both ends
of the tapee. :

9442 Start end Select Instructions

In the following specifications, P is a block address, and X an octal
fraction, as above.

1030 Start Reading Forwards

Start reading forwards from the next word on tape Ba and select
it for variable length operations. Set up a buffer in blocks
P’ P-}d,'oioo, P'QK.

If this instruction is given when the tape is already in read
forwards mode, then the tape will be wrongly positioned.

1031 Start Reading Backwards

Start reading backwards from the previous word on tape Ba and
select it for varisble length operations. Set up a buffer in
blocks, P, P +1, eea, P + Ko

1032 Start Writing Forwards

Prepare to write forwards starting at the next word on tape
Ba, and select it for variable length operations. Set up a
bulfer in blocks P, P +1, «.., P +K.

Also, write a marker 7 before the first word of information,
provided that the given tape is not already in use for variable
length working., If the tape is already in use for variable
length working, the marker written will be equal to the marker
at the end of the previous record.

The three ’start’ instructions 1030, 1031 and 1032 must be preceded
by a 1044 word search, even when the desired word is the first in the sec-
tion. To give predictable results, the tape must be positioned at a wmarker
whenever a 'start’ instruction is usede The K41 block buffer must have been
allowed for in the job description (see Chapter 10)s If one of these blocks
is already in use by the program, the information in it will be lost.
Strings of information with markers at either end are transferred to and
fronm these blocks by the 1040 instruction. When a buffer block has been
filled in the writing mode, it is transforred to tape; when completely read
in the reading node, the next section is read from tape. The buffer blocks
are not protected from the program, but should not be referred to directly.

It may be desirable to read variable length records from a tape for
a while, and then begin writing to the very next record. 1032 will switch
modes in this way; the first record written will begin with the same marker
as that terminating the previous record.

1033 Select

Select tape Ba for succeeding variable length operations, in
the mode specified by the preceding start instruction for thet
tapce All succeeding 1040, 1041 and 1042 instructions apply

(1.65)

9.4/6

to tape Ba until another tape is selected. If a write buffer
had previously been set up for tape Ba, its contents will be
written to tape, and a new buffer set up, Records will be
written as if tape Ba were selected throughout.

Extracodes 1030 end 1031 above assune thet the tepe to be read from
has been previously written by variable length oper.tions. If this is not
the case, the extracodes.1054 and 1035 should be used instead.

“OR_‘% Stnvnd- 'DAAA-:’..: ﬂrm,_-is F_ i LTy -

LRNLe

As 1030, but operating on a tape which has not been written
in the form of variable length records.

10535 Start Reading Backwards From Fixed Blocks

As 1031, but operating on a tape which has not been written
in the form of varisble length records.

9¢4e5 Transfer and Organizational Instructions

Notation: b _ = Integral part of ba (bits 1 to 20)
To(0<b < 2®)
= w
bk = Octal fraction of ba.
(0 < bk <7)
1040 Transfer
Transfer up to bw words between store addresses starting at

S and the selected tape, in the node (reading forwards,
reading backwards, or writing) appropriate to that tape,

On writing, b, words from locations S, S5 +1, «es, S +b - 1
are writbten to the next bw locations on the seleoted tape. A
marker by is written on tepe ofter them. On Reading, provided
that b_ # 0, the transfer continues until b words of infor-

mation have been read or until a marker > bk is encountered,
whichever is the sooner.
bw' = the number of words of information actually read.
bk' = 0 if no marker > b, wes encountered.
=m if a narker m (> bk) %tcrminated the transfer or

immediately followed the last word transferred.
When reeding forwards, the next bw' words are read from tape

to store locations
‘S, S +1, sescesy S +bW’ -1

When reading backwards, the previous b ' words are read from
tape to store locations w

S’S-‘l,'..l“l, S"bw' +1
Ir bW = 0 when reading forwards, the transfer continues until
the first marker > bk is encountered. When reading backwards

(1.65)

1041

1042

1043

9.4/7

with bk and bw zero, the transfer continues until the end of

the first record, and the b_’ words of the record are read to
store locations v

S’ S - 1, eorscry S’bwl +1
It is not advisable to write with the octal fraction bk
because when the resulting string, which therefore ends with a

zero marker, is read back, the octel fraction bk will be zero

regardless of whether reading ended at the zero marker or some-
where short of the marker within the string itself.

Skip
Skip bW words, terminating on o marker b

=0,

k‘o

Skip operates in the same way as transfer, except that no
words are transferred to or from the program store.

When in a writing mode, bw addresses on tape are skipped and a

marker bk is written after them. Note, however, that the pre-

vious contents of these addresses, whether information or marker,
are not preserved on tepe, except when complete 512-word tape
sections are skipped.

When in a reading mode, the skip continues until bw words of
information have been passed or until a marker > bk is encoun-
tered, whichever is the sccner.

.bw' = the number of words of information actually skipped.

bk'== m if a marker m (2 b,) terminated the transfer or came

imnediately after word b.

Note that skip is less efficient than search for moving long
distances along the tepe, and should not be used for skipping
mere than a few sections,

Mark

Availeble only when in writing mode.

Writes a marker K (0 <X < 7) after the last word on the
selected tape. This marker replaces any marker which was
previously on the tape at this point.

Af'ter writing a string on tope, it may be discovered that the
end of a group has been reached. The mark instruction may
then be used to change the marker at the end of the string.
It may be used agein if it is later found that the end of an
even higher order group has been reached,

A mark instruction may- elso be used immediately after a start-
writing instruction, to write the specified marker before the
first record to be written.

Stop Variable Length

Stop variable length operations on tape Ba.

After variable length operations for a given tape have been
completed, & stop instruction may be given; it will releasc
the buffer blocks associated with those operations. After

(1465)

1044

1036

1037

9.4/8

writing operations, it will cause the last part-section to be
written from the buffer to magnetic tape. The following in-

structions also have the efflect of stopping previous veriable
length operations:

start, search, unload, release tape, end program.

Whenever variable length writing is terminated on a given tape
each buffer block that contains information transferred there
by a 1040 instruction is written to tape. A buffer block is
not written to tope unless it contains such information, This
means that the first few words of the last buffer block written
mgy contain the end of the final record, or even just the final
marker, and the rest of the block contain perhaps the remains of
some previously transferred records. This fact permits one to
overwrite individual records without disturbing the records on
either side. This is done by filling the buffer with the re-
cord that is to be overwritten along with the records, or part
of the records, on either side of ite One aligns on the marker
at the beginning of the record and starts reading forward (1030)
with a buffer large enough to contain the whole record at one
time. One then skips (1041) the record in question, starts
reading backward (1031, with the same buffer) and skips back
over the record to the beginning markere. One switches to write
mode (1032, same buffer again) and writes the new string in

its proper place. A ’stop’ instruction (1043) will then finish
the job by causing the buffer blocks, now ocontaining the new
string in place of the old, to be written back to the tape.

The two uses of the skip instruction are necessary to make the
merker at the beginning of the o0ld string available for the
construction of the marker at the beginning of the new string.

Word Search

Search tape Fa for the section and word specified in the full
word with address S. Stop varieble length operations on tape
Ba. The section and word are given as 21 bit integers in the
more and less signifiicant halfwords in full word s respectively.
The section number must be greater than 0, and less than 5000;
the word number is taken modulo 512, This instruction must be
used to align the tape on & marker before using a ’‘start’ in-
struction; after the word serrch, a 'start’ instruction is
necessary before further variable length operations on tape

Ba,

Set ba’ = number of selected tape

Place in bits 10-16 of Ba the program number of the tape cur-
rently selected for variable length operation. If there is no
tape currently seleoted, ba' will be negative. Bits 10-16
correspond to the Ba position in the more significant halfword
of an instruction. One application is to enable a sub=-routine
to select a different tape for varisble length transfers, and
then to re-select the original tape before the main program is
re-entered, '

Store 'mode of tape Ba' in S
The transfer mode at present selected for tape Ba will be ine-

(1.65)

9.4/9

dictated by placing in half-word S the appropriate integer from
the following table:-

0 Varisble length transfers, reading forwards
from veriable length records

1 Variaeble length transfers, reading backwards
froum variable length records

2 Variable length transfers, writing variable
length records.

3 Not currently scleeted for variable length
transfers.

4 Variable length transfers, reading forwards
from fixed length blocks.

5 Varisble length transfers, reading backwards
from fixed length blocks.

Examples:

1. Tape 1 contains a file of variable length records and tape

2 contains amendments to this file, The information on each tape
starts at section 1 and the records are not more than 40 words long.
Bach record is terminated by a marker 1, except the last record which
is terminated by & marker 2. Each record is identified by a key in
its first haif-word, and the records in sach file are sorted in as-
oending order of keys., It is required to form an updated file on
tape 3 by inserting the amendment records in place of the correspon-
ding records on the original file.

1)H 1 0
1044 1 0 Al ;
1030 1 0 20:0.1
1044 2 0 Al Initiate varieble length
. operations on tapes,
1030 2 0] 22:0.1 1, 2 and 3
1044 S 0 M
1032 o] 0 24:0.1)
4) 1033 2 o 0)
121 12 0 50 ; Read Amendment Record
1040 12 0 100)
5) 1033 1 o o
124 1 0 50 Read Main-File Record
1040 1 0 150
1033 3 0 0 Select Updated File

10 10 © 150 g Go to A7 if Amendment Key
102 10 0 100 ; equals Main-File Key

214 127 10 A7
(Program continues on next page)

(165)

9.4/10

1040 1 0 150 Write Main~File Record
210 127 11 A5 Go to read next record if
marker is odd
11417 0 0 0 End Program
7) 1040 12 0 100 Wirite Amendment
210 127 12 A4 Go to read next amendment if
amendment marker is odd
1042 0 0 Ce1 Write a marker one
210 127 11 A5 Go to read next Main-File
: record if' marker is odd
1042 0 0 0.2 Mark end of updated file
1417 0 0 0 End program
2 There is a 50 word record in section 10 of tape 33 which is

preceded by a ‘7’ marker in word 177. Replace that record with the
50 consecutive words beginning in the store at A3, leaving the ‘7’
marker undisturbed. '

3) H10,177 Section 10, word 177
‘ 1044 33 0 A3 Search for marker

1030 33 0 12 Fill the one block buffer
10441 0 0 0 Skip to the end of next record
103 33 0 1: Read backward
1041 0 0 0 Skip back to head of record
1032 33 0 1: Switch to write mode
121 75 0 50 _
1040 75 0 A3 Replace record in buffer
1043 33 0 0 Write block 1: to section 10

Although the length of the string was known in advance and BO men~-
tioned in both of the skip instructions, one could use one of the
skip instruotions to- pick up -the length of the siring.-in a B-lince

If the 1032 write instruction is replaced by a 1042 mark instruction,
the progrem will replace only the mark at the head of the string.

9s4e4 Efficiency of Variable Length Working

The basic magnetic tape operations on Atlas transfer information in
blocks of 512 words, but the variable length instructions disguise this fixed
block structure. Provided that the length of transfers is smoll compared
with the size of the buffer, thesec instructions also provide overlap of tape
transfers and computing. To achieve these effects, extra words are written
on the tape as markers and extra instructions are obeyed to transfer the in-
formation between the buffer and the program store. Provided that the vari-
eble length records are not too short, the loss of efficiency is not high.
With a two-block buffer and records of 50 to 150 words, the use of veriable
length instructions might be expected to increase the cost of a job by per—
haps 1% or 2% This efflciency will be maintained with longer transfers
also, but the automatic overlap of t ransfers with computing will be lost as
the transfer size approaches the buffer size.

(165)

9.5/1

9.5 Organizational Instructions for One Inch Tape

A number of organizational instructions are provided to cope with
special situetions which will arise in some magnetic tape programs. Many of
the operations which these instructions perform are usually required near
the beginning or end of the program, and they are then best left to the job
description or the 1117 (end program) instruction. One exception to this
rule is the instruction 1017 (Free Tape), which should be used before the
1117 instruction if the information on cny titled tope is not required again,

Programs frequently require to use magnetic tapes as working space,
without wanting to kcep them after the job has been run. Such nagnetic tapes
should be requested under a heading TAPE COMMON in the job description.

For a long job, it may be desired to restart the job after o machine
failure severe enough for common topes to be lost; in such o case tapes should
be requested under TAPE NEW. In exceptionsl circumstonces a title may be
written to a comuon tape, which is then kept by the user after the job has
endcd; the operator will be notificd, ond the Atlas installation may teoke
action to discourage a user from doing this at all often..

The title stored in section 0 of the tape is referrcd to by extra-
codes 1014 and 1015 (Write Title & Search for Block 1, and Read Title or
Tape Number)s These refer by its main storc address to a copy of the tape
title, stored as onc record; the 6-bit cheracters cre packed 8 to a word ant
the last character is binary zero..

9.5.,1 Mount Instructions

If a progran requires to use magnetic tape, its job description must
indicate the nunber of negnetic tape mechonisms required. Normally this is
dene by listing the magnetic teopes which sre requircd to be mounted on these
pechanisms initially: the Supervisor will then ensure that these tapes are
nmounted before the progren is entered, The details of how the job descrip-
tion is prepared arec given in Chapter 40,

If further nagnetic tapes are reguired after o progran has been en=
tered, they should be listed in the job description and may then be called
in by obeying "nount" instructions. Howcver, the total nunber of mechanisns
in use at any one tine must not exceed the number rcserved inthe job des~
cription. A nount instruction should, if possiblc, be obeyed at least 2
ninutes before the tape to which it refers is required; otherwise the tape
ey not be ready in time and the progron will have to wait. Note that the
progran will be nonitored if it calls for o now tape to be mounted at o time
when none of its reserved nechanisns has been nade free. If there is a spere
tape nechanism, the tape may be mounted on it by the operator beforc the pro-
gran colls for it.

The tope reference letter referrcd to in the mount extracodes is a
letter associated with the tape in the job descripticn (sec ohapter 10).

The mount instructions nre as follows:~

(1.65)

9.5/2

1010 Mount

Allooate the number Be to the tape whose tape reference letter is in
the 6 least signifiicant bits of n, in internal code, If this tape

is not already available, instruct the operator to mount it on any
available tape mechanisme. If the tape is in the TAPE category, oheok
its title; if in the TAPE NEW category, write into the section O the
title given in the job description: if in the TAPE COMMON category,
leave the tape untitled..

]

PPN ae PR
3T uounNT free
A —

<

Milocate the number Ba to a free tape, If no frec tape is available,
instruct the operator to mount one on any available tape mechanism,

This extracode should only be used in exceptional circumstances;
normally all tapes required should be listed in the job description.
The operstor will be informed whenever this extracode is used, and an
installation may take actiom if it is used overmuch.

10¢% Mount Next Reel of File

Allocate the number n to the next reel of file Ba. If this tape is
not mounted, instruct the operator to mount it on any available
mechanism,

The following mount instructions refer to logical channel number
(K= 0 to 3) of a given program. These logical channel numbers do not each
refer to a fixed magnetio tape channel: they are merely a device to enable
the program to separate on to different channels the magnetic tapes that it
requires to operate simultaneously. On an installation with only one tape
mechanism on each of the eight tape channels, there is no advantoge in spec-
ifying channel numbers, On larger installations, the tepe mechanisms are
grouped together on pairs of chamnels, and the logical channel numbers then
refer to thesc pairs.

A program’s referring to logiwnl charmel number K has the following
effect. If no channel has been previously designated logicel channel K of
the progrem, the new tape is mounted, if possible, on a channel different to
any which has been previously designated a logicoal chamnel of the program;
that chamnel is then designated logicsal chemnel K of the given program, If
a channel has been previously designeted logicol channel K of* the progrom,
then the new tape is mounted on the same ghamnel, if possible, A channel may
also be designated logical channel K of the program by the Job Description;
see chapter 10,

1012 Mount on Channel K

Mlocate the number Ba to the tape whose tape reference letter is in
the 6 least significant bits of n, in internal code. If this tape
is not already svailsgble, inmtrurt the operator to moumt it if pos-
sible, on channel K of this program, where K is the most significant
octal digit of m. If the Tape is in the TAPE category, check its
title; if in the TAPE NEW oategory, write into section 0 the title
given in the job description; if im the TAPE COMMON category, leave
the tape untitled..

1013

S.8e2
1014

1015

- 9,5/3

Mount Frce on Channel X

Allocate the number Ba to a frec tape. If no free tape is available,
instruct the operator to mount one, if possible, on channel K of this
program, where X is the most significant ootal digit of m.

Note that this extracode, as 1011, should be used only in very excep-
tional circumstances; normally all tapes required should be listed in
the job description. The operator will be informed whenever this
extracode is uscd and an installation may take action if it is used
overmuch.

Other organizational Extracodes
Write Title & Search for Block 1 L

Write to scotion O of tape Ba the title stored in location S onwards,
overwriting any titlc that may be there. Inform the operator that
this has been done. R

Read Title or Tape Number

If S is even (least significant bit.is 0), then store in locations
S onwards the title of tape Ba, i.c¢e that currently in section 0.

If S is odd (least significant bit is 1)s then store in location S
the tape serial number of tape Ba.

In 1014 and 1015 S is taken as a half word adiress. The tape serial

nunber stored by 1015 will be in internal code, left justified, 8 characters
in length. '

1016

1017

1020

1029

Unload and Store

Rewind tape Ba and disengage the tepe mechanism on which it is mounted.
Instruct the operator to remove the tape, ensure that the correct
title is written on the spool, and store it for later use., If n £ 0,
the number of tape mechanisms reserved for the program is reduced by
Onee

Free Tape

Overwrite the title on section O of tepe Ba and return the tape to
the Supervisor as a Free tape for general use. If n s O the number
of tape mechanisms reserved for the program is reduced by onc.

Release Tape ;
Delete tape Ba from the allocation of this program and make it avail-
able for another program, which must call for it by its corrcet title.

The tape is not freed and is not normally disengaged. If n# 0, the
number of tape mechanisms reserved for the program is reduced by one.

Free Mechanisms

Reduce by n the number of tape mechanisms reserved for use by the
program. o

(1.65)

9.5/4

1022 Re~-nunber

Allocate the number n to the tapc which was previously referred to

in this program as tape number ba.

This enables a tape to be given a different number during a subroubtine,
and then to have its original number restored at the end of the sub-
routine, DNote that in this instruction the tape number is ba and not
Ba.

‘e T ~ansa
NOW JONEY

-
&}
]
R

s’ = Mumber of 512-word sections available on tape Ba (excluding sec-
tion 0)e The number of sections aveilable on a standard-length tape
is 4999, but this instruction may be of value if shorter tapes are
used, The tape will be rewound,

1024 Where am I?

s'=4; % =W (0 <W < 511),

This instruction places the address of the next section (going for-
wards) on tape Ba in the first half-word of the specified full-word
address, After variable length transfers, the second half-word con-
tains the position in the section of the next word to be used. After
block transfers, the second half-word is zeroes

(1,65)

9.6/1

9,6 Specification of the Atlas One Inch Tape System

9.6,1 Control

An Atles installation may have as few as 8 cne inch magnetic tape
mechanisms, or as many as 32, Each mechanism is connected via one of elght
channels which can operate simultaneously, each chamnel controlling one
read, write, or se~rch operation. Wind and rewind cperations are autonomous
and need the channel only to initiate and, if required, to terminate them.

The layout of the control system depends on the individual instal-
ation, Vhen there are only 8 mechanisms, each mechanism has its own control
channels When there are uore than 8 mechanisms, the 8 channels are grouped
into 4 pairs and some or all of these pairs are adapted to control up to 8
nmechanisms; any two of the mechanisms on one such pair of channels can then
operate simultaneously at any one time,

94642 The Tape Layout

The tape mechanism is the Ampex TN2, using one inch wide magnetic
tape. There are 16 tracks ascross the tape, used as follows:

12 information tracks
2 clock tracks
1 block=-marker track

1 reference-marker track (for Tape Addressing
only)

Information is stored on tape in blocks or sections of 512 48-bit
words, followed by a 24=-bit checksum, Each section is preceded by a leading
block marker and a section address, and terminated by a trailing block mar-
ker and a zero address, Tapes are tested and pre-addressed by a special
run on the machine before they are put into use, and the fixed position of
addresses permits selective overwriting of sections. Checksums are of 24
bits with end-around carry; they are used to check the accuracy of all reading
end writing operations.

A 48-bit word is represented by four lateral stripes of 12 infor-
mation bits, and a checksumby two stripes., Each 512-word section of infor—
mation contains 2050 stripes and has an average length of 5.46 inches, with
a gap of 2,3 inches between secticns. Tepes are 3600 feet long and hold
5000 sections, or 2% million 48-bit words.

9.6,3 Performance

The normal tape speed is about 120 inches per second and there are
375 binary digits per inch on each tracke This gives an instantaneous trans-
fer rate of 90,000 6-bit characters per second, or one 48-bit Atlas word
every 89 microseconds. Allowing for the gaps between sections, the effective
transfer rate is about 64,000 characters per second. This is equivalent to
one 512-word seotion every 64 milliseconds, or one word every 125 microseconds,
on average. There are also fast wind and rewind operastions at about 180
inches per second, and these are used for long searches along the tape,

(1.85)

9.6/2

There are independent write and read heads, separated by a gap of
about .39 inches. When not operating, the tape stops with the read head
roughly midway between sections, ready to reed the next section eddress,

It is possible to read when the tape is moving either in the forward or re-

verse direction, but writing is only possible when the tape is moving for-
wards,

4644 Safeguards

.,.
m
5
.
]
%
)

A nrogram is held un if it +an

a nte 0 mand fram et o
£ proglan 1S .l up 1% a&VLermpus piRacesiil

LPLO S A 7328 4 - WILTEC T0 & vallxK

of store which is involved in a magnetic tape transfer. The Superv or may
then enter another program until the transfer is completed. '

If a magnetic tape block transfer cannot be initiated when it is
requested, it is placed in a queue, If the queue is already full the program
is held up.

A write-permit ring must be fitted to a reel of tape before that reel
can be written on. Tapes containing permanent information will nct have such
a ring, A write-inhibit switch is also provided on each mechanism, which the
operator can use to isolate the tape. It is only possible to write on a tape
when the write-permit ring is on and the write current is switched on.

The addregss of the relevant section on tape is checked before all
reading and writing operations, to make sure that the correct section is
usede The information in each section is checked by means of a 24~bit check=—
sum at the end of the section: this checksum is used to detect faulty writing
or reading, which cause the operation to be repeated under the control of the
Supervisor,

When a magnetic tape has useful information on it, a descriptive
title of that information is atored in block 0 of +the tape. This is in
addition to the tape serial number, which is permanently associated with the
tape and is unalterable by the user., This tape title can be up to 80 char-
acters long, though the Supervisor prints out only the first 30 characters
in operator messages, It is stored on tape in Atlas Internal Code with tab,
ond nultiple spaces (including tab.) replaced by a single space; initial
spaces, tabs, full stops, and commas are ignored, Shifts are ignored through-
out the title. (see Chapter 10.)

(165)

9.7

9.7/

Orion Tapes

It is possible to read into Atlas tapes prepared on the I.C.T. Orion

computer. This is accomplished by the use of the following two extracodes.
P is a block address, and K an octal fraction, of the form P:0.X,

1046

1048

Read Orion tope Ba forwards

A check is first made that tepe Ba is in fact an Orion tape (if it
is, zero will have been read from the first bit of the first block
when the tepe was mounted), Then, reading forwards, the next sec-
tion is read into store blocks P onwards. K 4 1 blocks will be re-
served for the transfer - if this is not sufficient, the program will
be monitored. Up to 4096 words may be transferred, but there is no
automatic indication of the number of words sctually read,

Read Orion tape Ba backwards

This is very similar to 1048, the difference being that the first
word transferred is placed in the last word of block P 4 K and the
tape is read backwards.

Some of the organizational instructions listed in section 9.5 may be

used with Orion tepes. These are given below, .

1010 lount

1007 Mount Next Reel of File

1012 Mount on Channel X

10156 Read Title or Tape Number

1016 Unload and Store

102C Release Tape

1021 Tree liechanisns

1022 Renumber

1023 How Long?

1024 Vhere am 19 ‘
The section nunber only will be given; the second half word
will be zero.

The title read by the 1015 instruction will consist of up to ten

words separated by /, the words containing up to eight characters. The.
characters will be letters, digits or full stop.

In the Job description (chapter 10), Orion tapes must be listed

under TAPE headings, and the title must be given in the form described for
the 1015 extracodes

(165)

10,1/1

Chapter 10

PREPARING A COMPLETE PROGRAM

This chapter explains the way in which a program, and the input
information it uses are prepared for ruming on Atlas.

10,1 Atlas Jobs

Bach run of a program on Atlas is known as a Jjob; it may range from
a small job, for which there is no data outside the program itself, to a
large job requiring several batches of dats, possibly arriving on different
media, €.z, pwnched cerds and paper tape.

The various parts of a job may be submitted separately to the com-
puter each on one deck of cards or length of paper tape, or two or more parts
may be combined on a single deck or tapes. In any case each part must be pro-
perly identified for the computer and for this purpose the concept of a
'document’ has been introduced.

(1.65)

10.2/1

10.2 Documents

A document is a self-contained section of information presented ocon=
tinuously to the computer through one input channel (tut see also 10.10. 3).
Typical examples of a document are a collection of data on a length of paper
tepe or the program itself.

Each document carries at its head suitable identifying information
as detailed in 10,3.1., The end of a document is indicated.bg an 'end of
document marker’ which usually consists of the characters ***Z on a new line,
or a 7, 8 punching in the first column of a new card which follows the last
record of information of the document,

By means of the identifying information the Supervisor prepares a
list of documents as they are accepted in the store and it also keeps a 1list
of jobs for which further documents are awaited. A job may require several
documents and only when all these have been supplied can execution begin,

The Supervisor therefore checks the appearance of each document; when all
have been entered work on the job may commence, Documents for a Jjob may thus
be fed to the computer in any order.

(1.65)

1043/1

10,3 Document Headings and Titles

Every document is preccded by the identifying information mentioned
aboves, This consists of a heading and the title of the document.

410. 501 Headings

The heading indicates which type of document follows and must be
one of a standard lisie The wost common types of heading are as follows:~

a) COMPILER (which is followed on the same line or card, after
one or more spaces, by the name of a program language)e
The document following this heading is a program in the
stated language., Available languages include Atlas Basio
Language (ABL), Extended Meroury Autocode (EMA), ALGOL and
HARTRAN (for Fortran).

For an Atlas Basic Language Program the heading will be

‘ COMPTLER ABL
b) DATA

The document following consists of data required by a programe.
c) JOB

The following document is a request to the computer to execute
a Jjob and gives relevant facts about it.

The last type of document is called a ‘job description’. It gives,
for example, a list of all other doouments required for the job and a list
of output streams the program will produce, It is described in detail in
sections 10.4, 10,5 and 10.6 beloi.

10.3,2 Titles

The title of a document consists of one line (or one punched card)
immediately following the heading, It may be composed of any combination of
characters obeying the rules of section 10,3,3 below, The prime consideration
is, however, that it should be unique among all the documents stored in the
computer at the same time, This is obviously made essentisl by the time-
sharing facilities of Atlas, to avoid confusion between documents intended
for different jobse

A document will thus usually take one of three forms exemplified by
the following, the secornd line of each document being its title:-

J0oB COMPILER ABL DATA
F6479,SMITH;I.C.T.| |F1, SURVEY PROGRAM} | F6479 BEETLE SURVEY

- o - = e —— s o gus o

- o s v o . o ove . - o - ot o

(Jdob Desoription) | | (Program) (Data
_***L :’f#*z :::#fﬁz
Job Description Program Document Data Document

(165)

10,3/2

10,33 Rules for Title Preparation

Besides being unique document titles must obey the following rules:=-

a) The title must begin with an identification of the person or or-
ganization which originated the document: normally this will take
the form of an account number or name. For example, documents
prepared for the I.C.T. Atlas Computing Service are identified
by a letter F followed by an account number,

b) The number of characters must not exceed 80,

¢) 'Backspace’ must not be used.

d) A title must not contein three successive asterisks (**#),

e) Titles must not begin with the word END or the word TAPE,

Furthermore:

a) The characters of a title are read in and stored in Supervisor
records in Atlas internal code in the normel way, but the shift

characters, 04, 05, 06, 07 are subsequently removed. This means
for example that on the Flexowriter the titles

[Tape]

1 TAPE 3

and
are identical. For the same reason a length of run-out appearing
on tape in the midst of a title would not becone part cof the title.

b) 4ny number of consecutive spaces and tabs are stored as one spaoce.

¢) Erases do not become part of the title.

d) Initiel commas, spaces and full stops are ignored,

Documents used in the same Jjob need not have related titles.

The job title itself normally contains the name and abbreviated
address for the return of the results, but this iz not necessary in the titles
of data and program documents,

If necessary -the title of a data dooument or job description (but
not a program document) may be on the same line, or card, as the heading,
provided sufficient room remains to acconmodate all the title on that line or

cards In this case the heading and title must be separated by ‘comma’,
"space’ (one or more), or ‘tab’.

(1465)

10,4/1

10.4 The Input and Output Sections of the Job Desoription

After the heading and title a job description is divided into
various sections each one describing a particular aspect of the job, €ege in=
put documents, store used and so on. These sections may be assembled in any
order and are dealt with individually below in sections 10.4.1, 10.4.2, 10.6,
10.7 and 10.8,

10.4.1 The Input Section

This section begins with the word
INPUT

which is followed by the titles of the data documents used in the job, each
preceded by the number by which the program refers to theme These numbers
nust be in the range 0 to 15. The program document itself usually is given
nunber C, but is in fact always taken to be the lowest numbered data document.,
Thus, 1f a program operates on two data documents which it refers to as in-
puts one and two respectively, the job description would contain

INPUT

0 (Title of Program)
1 (Title of Data 1

2 (Title of Data Zg

To take a concrete example:~

INPUT
0 M, SURVEY FROGRAI

"64‘79/2 BEETLE SURVEY DaT4/62
2 F6479 BEETLE POFULATION 1961

The data document YF6479/2 BEETLS SURVEY DATA/62" could then be selected by
the programmer by the instruction

1050 0 0 1

Data may be placed on the same tape as the program, vhere it becomes
a part of the lowest numbered input streeam. With an ABL program such data
must come between the enter directive and the end of document marker that ter-
minated the program stream. If the 1050 extracode is not used to select a
given input stream, the lowest mmbered stresm is essumed and one obtains the
data which followed the program.

The input section may also contain a reference to a magnetio tape on
which an especially large document has previously been stored. This way of
handling large amounts of input is explained in section 10.12.1.

10.4.2 The Output Section

This seation of the job description specifies the type of perlpherals
to be used for output. Possible types of equipment are:=

LINE FRINTER
SEVIN HOLE PUNCH
CiRDS

FIVE HOLE PUNCH
ANY

TAPE

(1.65)

10,4/2

Here CARDS means the card punchs 3Zach Atlas installation will
specify which types of equipment may be used for output ANY e.g. ANY may pro-
"duoe output on LINE PRINTER or SZV.N HOLE PUNCHe TAPE is used when a private
magnetic tape is called for to hold an especially large amount of output
(see 10412.4).

The output section begins with the word
CUTPUT

which is followed by a list of output mechanisms, each preceded by a pro=
grammer's number in the range 0 to 15. For example one might have

oUTPUT

2 ANY

1 CARDS

0 LINE FRINIER

Inthis case, in order to send output to the card punch, the programmer would
first have to select this form of output by the instruction

1060 0 0 1

A request will be made to the operator to mount speoial stationery
for a given output stream if an asterisk is placed in front of the word LINE
PRINTER. Thus if output stream & is to be printed on special stationery,
the output section should contain

*LINE PRINTER m LINES

The type of equipment should normally be followed by a limit on the
amount of output, specified as so many lines. One line is the output pro-
duced by one use of the 1065 (end current record) or the 1067 (output one
record) extracodes. Thus one line means one printed or blank line on 5 or 7
track tape and on the line printer, or one punched cerd. One writes

CUTPUT
0O LINE PRINTZR m LINES

The maximum emount of output may also be specified as n BLOCKS. A
block contains 4096 characters. The number of characiers allowed for must
in general be larger than the number actually printed or punched. On the
average each line output to punched paper tape or line printer requires an
additional six characters (the meximum possible is 8) to be allowed for.
Bxactly 8 additional characters must be allowed for to punch one card (meking
88 all told)s Furthermore each use of 1065 (end this record) to produse a
blank line generates 8 characters %o be held in the output well.

If the number of blocks is omitted, one block only is allotted, and
if the whole output section is omitted

OUTPUT
0 ANY 41 BLOCK

is understood,

(1.65)

10.4/3

10e4¢3 Output : General Notes

a)

b)

Output 0 Output O is used by the Supervisor and some compilers,
Put 1is still available for normal output from the programs It 1s
on this output that such information as the number of instructions
done in compiling and executing the program, the number of store
blocks in use when the program ended, the number of blocks accum=
ulated for each stream and other such items are printed, It is

e . LY

a
a 50 used I (8} 4 ID! ‘5 lnrn al 'U” vc Lile

ur 18 oL

ez

!

YR OES WIONEZe

i
£

5

&1
&L

o

If no output O is mentioned in the output section of the job des=-
cription .
0 ANY 41 BLOCK

is assumed.

Similarly if no output stream is selected by the 1060 ’select out-
put n’ extracode, any subsequent output will go to output O.

Atlas can readily accept two or more streams of output from a
program for the same type of equipment, even though only one such
equipment may exist. The streams are accumulated independently
within the computer and eventually output one af'ter another.

In fact all output is accumulated and none will be printed until
all computing has ceased unless the extracode

1074 Break output n
is useds In this case all of the output stream n accumulated s0
far will be sent to the peripherals.

In either case the output information with programmer’s number n

will always be preceded by

output.

Supervisory Number / Date. Time
QUTPUT n
(Title of Job)

The last line output gives the number of blocks sent to that

(4.65)

10,5/4

10.5 A Complete Job Desoripticn

We are now in a position to give an example of a complete job desw
cription and for the sake of illustration we include the documents of the job.

J0B . ,

F64, J. Smith, I.C.T. London, METALS Job Title
INPUT

0 764, ANALYSIS PROGRAM Program Title

1 P'64/A, IRON CONTENT
2 F64/B, COPFER CONIZNT

OUTPUT
0 LINE PRINTTR
1 SEVEN HOLE PUNCH 3 BLOCKS

% oo
2

Data Tapes

output
streans
Ind~of~tape marker

Job Description

COMPILER ABL DATA ‘ DATA

F64, ANALYSIS PROGRAM

- - oo

F64/A, IRON CONTZNT

F64/B, COPPER CONTENT

(Program) (Data) (Data)
aw by] P ¥ g
Program Document Data 1 Data 2

(1.65)

10,6/1

10.6 The Megnetic Tape Section of the Job Description

Magnetic dapes are used with Atlas in two ways. Firstly, they
are used by the Supervisor for such purposes as storing input and output.
These are called System Tapes, and under normal circumstances need not con~
cern the programmer at all. Their operation is gquite automatic (see also
section 10,9123)

Secondly, the programmer may use magnetic tapes in his program
either:
a) For private input and output purposes
or -

b) by magnetic tape extracodes.

The use of magnetic tapes for private input and output purposes
will normally only be necessary if there is & very large amount of input
or output. Full deteils of the way in which such tapes are employed are
given in section 410.12.

The most common use of magnetic tapes is by extracodes w1th1n the
program. The tapes required may be mounted on a tape mechanism (a 'deck’)
before rumning the program or during the actual execution.

The tapes mounted before the job begins must be listed in the job
description. Normally the tupes that are to be mounted while the program
is running are also listed in the job description. However, in programs
which require a not-easily~predicted mumber of tapes it is possible to get
tepes mounted which are not listed in the job descripticn. (Sections 10.6.1.
and 10,642, show how to list tapes in the job desoriptions. The extracodes
for mounting tapes are described in Chatter 9.)

Full information on magnetic tapes oan be found in chapter 9, How-
ever, for the sake of completeness some of the relevant facts are repeated
here.

a) Information is stored on magnetic tapes in blocks of 512 48-bit
words.

b) The first block is known as block O, and is not available to
the programmer, Block O contains the serial mumber of the tape,
and the title if the tape has one. The title of the tape must
obey the rules of document titles given in 10, 3.2 but also, if
the tazpe serial number is not listed in the job description
along with the tape title, the first 30 characters of the title
nust identify the tape uniquely., Only those 30 characters are
printed by the Supervisor when calling for the tape, but up to
30 characters are stored and checked.

¢) In preparstion for use each tape is mountcd on a tape deck by
an operstor who receives instructions for the purpose from the
Supervisor, ‘hen mounted, each tape is positioned by the Super=
visor at the beginning of block 1, the first block available
for storing information,

(1465)

10.6/2

10,6,2 Single Tapes

Each tape required for a job is specified in the job description by
2 lines of printing:~ & heading, and a description. The heading is one of
three: =~ '

TAPE - & tape belonging to the user and
already having a title;

TAPE NEW ~ An untitled tape, not previously
belonging to the user, to be titled
and kept when the job is over;

TAPE COMHON ~ an untitled working tape to be retained
by the system when the job is over,

The description consists basically of the programmer’s number ﬁin
the range 0 to 99), the tape serial number (preceded by *) and the title of
the tape:

21 ®F3699 F1000, LONDON SAIES, 1963

This formal applies with headings TAPE and TAPE NEW. That for
TAPE COMMON is described later in this section.

The programmer’s number, 21 in the above example, is the number by
which the tape will be referred to in the program. If the tape is not re-
quired to be mounted before the job begins, but rather will te -called for in
the course of execution by a "mount" instruction (see Chapter 9), the pro-
grammer's number must be replaced by a "tape reference letter" consisting of
a single letter:

D *F3700 F1000, LIVERPOOL SALES, 1962

The mount instruction will then refer to the tape by its tape re-
ference letter and assign to it a programmer’s number, In the example Jjust
given the tape title will consist of the 28 characters starting with F1000
and ending with 1962 (i.e., the two double spaces will have been replaced by
single space).

The tape serial number, F3699 in the first example, is permanently
associated with the tape, If possible, the Supervisor will call for the tape
by 1ts serial number, under which the tapes are filed; the tape number should
therefore be included when possible even when its inclusion is not made oblig-
atory by e partioular Atlas installation. If it is omitted, the * is omitted
also,

Thus in the example
19 T9824, WOLVERHAMPTON SALES; 1962

the title is the sequence of 31 characters starting with T and ending with 2.
The title in the description is the complete title stored in bloek

C of the tapes Under a TAPE heading, this will be used to check that the cor-
rect tape has been mounted; under TAPE NEW, the title will be written to block

(1.65)

10,6/3

C when the tape is mounted. In either case if the fape serial number is ab-
sent the Supervisor refers to the tape by the first 30 characters of its title.

The description for TAPE COMMON consists of a programmer’s number or
tape reference letter only.
TAPE COHMON
36

A11 the programmer’s numbers and tape references in the job descrip=
tion must, of course, be different. A programmer ‘s number must lie in the
range O to 99 inclusive; a tape reference can be any letter.

The description may refer to logical chamnel K of the program; the
effect is the same as in extracodes 1012 and 1013, This is done by adding
K to the programmer’s number.

Thus:
21.3 *F3699 #0006 LONDON S:LES

would request that the tape be mounted on a ‘channel’ which can then be re-
ferred to in the program as chamnel 3. Tapes on different channels cen be
written to or read from simultaneously. The extracodes 1016 and 1012/1013
allow further tapes to be mounted on the seme channel. (see Chapter 9.)

If a tape in the TAPE category requires file protection, i.e. no
write permit ring a.nd/or no write current an asterisk should be written
immediately before the description:

TAPE
*4 *F3002 F1002 PARIS SALES
With file protection block O cannot be written tc, so it will not
be possible to change the title of such a tape. The progrem will be moni-

tored if the 1014 {change title) extracode is used on a tape with file pro-
tection.

10.6.2 Files

A collection of information may extend over several tapes although
the Programmer may wish to treat it as a single unite. Suci a collection of
tapes is called a file and only one of the tapes needs to be mounted at any
one time. Fach tape of & file is specified in the Job Description by a mod-
ified tape heading as follows:

TAPNm
n (tape serial number) (Title of tape)

where m is the number of the t ape vithin the file, counting from 1 upwardse
The progremmer’'s number n will be the same for 211 n of this file. The final
tape of the file is entsred as

TAPE/m TND
n (tape serial number) (Title of tape)

(1,65)

10.68/4

For example, suppose a file of informstion extends over three magnetio tapes
which have respectively as serial numbers end titles inblock O

Q1432 012 BIRKINGHAM SALES

Q1003 FMO012 LCNDON SALES

Q1100 ™MO012 MANCHESTER SALES

These would be referred to in the Job Description as

TAPE/4

3 *Q1432 M012 BIRIINGHAM SALES
TAPE/2

3 *Q1003 M012 LONDON SALES
TAPE/3 END

3 *Q1100 ¥012 MANCHESTER SALES

These tapes would then form file 3., The Birmingham tape alone would
be mounted and allotted programmer’s number 3y l.ee the same as the file num-
ber, before the job begins.

The remaining tapes are mounted as reguired by use of the extracode
1007 (mount next reel of file Ba and allocate number n to it)« The tape sec-
tions on the second and subsequent reels are not numbered consecutively from
the preceding reel, but start again at section 1,

10e6.3 Deck Allotment

As stated above the first tape of every file and each single tape
that is given a programmer’s nuwber in the job description, will be mounted
on separate decks before the start of the job. These decks will then be
available to the programmer throughout the ocourse of the job. He can by
extracodes cause any of the original tapes to be unloaded and new ones, given
a tape reference in the job description, to be wounted in their place.

If' however, at some stage in the program he requires more decks than
will be allocated to him in this fashion, he must mention the number he will
need in the job description. This is done by writing:~

DECES 4

where 4 is the maxirum number of mechanisms that willbe in use at any one

time. Thus a programmer requiring 3 tapes to be mounted at some stege in the
program but only 1 at the beginning, would give the single tape a programmer’s
number, give the other 2 tapes a tape reference and put in his Job Description:=

DECXS 3

(1.85)

10.7/1

10,7 Tine kstimates for s Job

106701 Computing Time

Since each program on Atlas will normally be time sharing with
others there can be no direct control of an individual program by an operator.
Thus, there is no means by which an operator may tell if a faulty program has
entered an infinite loop and is thereby wasting machine time,

To overcome this problem a time limit for a progran is placed in
the job description and if the program exceeds this limit it is stopped by
the computer,

The limit appears in the job description as:=
COMPUTING p.q SECCNDS (or MINUTES, or HOURS)

where p.q is a decimal number., This time is found by allowing two micro-
seconds to each instruction obeyed and adding to this the expected compiling
times The ABL compiler obeys 1500 to 1700 instructions per instruction com-
piled.

Alternatively the limit on couputing time mey be specified as
COMPUTING m INSTRUCTIONS

but one 'instruction’ in this context means one instruction interrupt, equal
to 2048 basic instructions obeyed. In fact the Supervisor actually times the
program in terms of these units of 2048 instructions. Conversion from esti~
mates given in terms of seconds, minutes or hours is made on the basis of 256
"interrupts’ per second. Furthermove each multviplication instruction is
counted as 2 instructions and each division instruction as 4.

For example a program requiring at most dhree million instructions,
and having a compiling time of one and a half seconds would have the entry

COMPULING 7.5 SECONDS
or
COMPUTING 1832 INSTRUCTIONS

If the computing time is less than 20 seconds this entry may be
omitted completely from the Jjob description. In this cage a standard 2llow-
ance of 20 seconds is made (5120 instruction interrupts).

10.7.2 Execution Time

If a progrem uses magnetic tapes it may be held up at some stage
while a block of information is brought from tape to store, a time of 64
milliseconds, This wait can be eliminated in many cases by calling for a
block 64 ma.s. before it is needed, or by using a sufficiently large variable
length transfer buffer or by resorting o branching., Some tape waiting
time, howsver, mey be inevitable and if it is likely to occur it must be
ghown in the Jjob description.

(1.65)

10.7/2

This is done by the heading:=-
EXECUTION p.q SECONDS (or MINUT:S or HOURS)
where the time estimete is this case is found by adding an upper limit for
the tape waiting time to the COMPUTING time.
For example, if the program quoted in 10.7.1 above was expected to
be held up at most 200 times the job desoription would include:-
COMPUTING 7.5 SECONDS
EXECUTION 20,3 SECUNDS

If the EXECUTION section is omitted for the job desoription the execution
time is taken to be the same as the computing time.

(1.65)

104 8/1

10,8 Store Allocation

An estimate of the amount of store needed by the program is also
required by Atlas to prevent a faulty program from monopolising the store
by producing a large amount of useless information. This is done by the
Jjob desoription entry

STORE s BLOCKS

. .
where s is the nmaximum number of 512 word blocks us

one time, No distinction is made between core and drum store., The word
"BLOCKS" may be omitted if desired.

by the n
R S 4

This seotion may be omitted, if the store requirement is less than
32 blocks, in which case 32 blocks will be allocated and charged for., If
the estimate for store is exoeeded at any time the program is stopped by
the computer., One extra block should be allowed for each input and output
stream. The blocks used by the compiler are not counted unless the oom=-
puter is retained in the main store after the program is entered.

(1465)

10.9/1

10.9 Job Description Format

410,91 Order of Sections

Separate seotions of the job desoription may be listed in any order.
For instanoce the OUIPUT section could precede the INPUT seotion, STORE
could be followed by COMPUTING, However, to make it easier to read it is
perhaps advisable to keep to a fixed order, for example the order in which
the sections have been introduced. That is:-

INFUT

OUTPUT

MAGNETIC TAPES (this is not an actual section heading
DECKS

COMPUTING

EXECUTION

STORE

10.,%.2 Case Changes

Throughout this chapter the sections of the job description have
been written in capital or upper case letters since these are common to
all forms of input. Changes of case are ignored however, and if the job
description is on seven-hole tape, lower case letters could be used welle

109, 3 Backspacs

Throughout the job description ‘backspace’ is an illegal character,

(1.65)

10.,10/1

10,10 Composite Documents

10,10.1 Job Description Combined with Program

A job description may be combined with a program to form one com-
posite document. In this case the last item of the job descriptior will ©te
followed, not by an end of tape merker (¥*¥Z) but by the program hending:-

COLPILER (Program Lanzuage)

and then by the program itself. No further title will pe necessary sicC
the composite document takes the titls of the job descriptions This wi_!l
be the usual form taken be small programs which are only run oncee

If this procedure is adopted, no input zero is mentioned in the INPUT
section of the job description and “hs conwuter will compile and execute
the program immediately follcwing the job description. If there are no
separate dcota documents the INPUL section may be omitted completely.

The examples given below illustrate these facilities.

Example 1

JoB DATA
P96, J. BLOGGS: NULBIR TFREQUENCY F196-TABULATED DATA

ey -
1 M96-TABULAT=D DaTA } | ===mee

CUTPUT ""—_':
0 LIN® PRINTR | |\

s

Job Description/?rogram Data Document

In this example the job required one other dota document so the
INPUT section must be included.

Examgle 2
JOB
F524/ﬂ, W, BROWN, FERRANTI: PRINE NUMBERS
OUTPUT

0 LING PRINTER

41 CARDS & BLOCKS
CCHPILER ABL

$$$Z

(1.65)

10.10/2

Here no further information is required and the INPUT section has
been omitted.

410,10.,2 Job Description Combined with Data Document

It is elso possible to combine the job description with a data
document. This is particularly useful when the same program is to be run
more than once, using different data each time, In this case the INPUT
section of the Jjob description must include:~

SELF = n

where n is the programmer’s number for the dota which follows on the some
document. The program itself is specified as the lowest numbered input
stream, in the same way as when the job description is o separate dvoument,
and the last item of the job description is followed by the heading

DATA

and then the data itself. No title is neceded to identify the data.

For example, consider a wage calculation carried out each month
using one fixed set of data, say o list of P.i.Y.l. codes and a second set
of data consisting of a list of hours worked by each member of the staff.
The second set of data would, of course, vary from month to month and could
be oombined with the job description while using the same program and P.A.Y.E.
code tapes,

The progrem and deta documents would be:-

pmee - reen

CO:PILIR ABL DATA

FO00, WAGI CALCULATION F900, P.A.Y.E. CODES
(Program) (Data)

Q.,.:;‘.Z - bty :::z ~ -

The job description could then be combined with the second datn document
thust~

I

0 F900, WAGE CALCULATION

1 Fo00, P.A,Y,%, CODES
SELF = 2

OUTPUT

0 LINE PRINTER 50000 LINES
41 CARDS 2000 LINES

JOB ;
F900, J. SHITH LTD: WAGES CCTOBZIR 1964 |

(1.85)

10,15/ 3

1Ce10,3 Date Files

"

It may be casler, for the purposes of some programs, to treat several
11l

istinet paper tanes or staeks of cards as o sincle dao '3Anpiment ! C
ot pap apes or staeks of cards as o a vmern uc

C

(€]

sing e
& combination is called a data file. IZach separatc document is given a modi-
fied data heading of the form

DATA/m
where m is the number of the document within the file. “ll docurpnts comn-
nAGTroe Ahha T3 Trnaras ia camea PP R B S P e - -
posing the I lle have the same title and cach is ended 0y a 4 euu.-O.L"bu‘tJb

marker, cr a 7, 8 cerd punching. The last member of such a series must
have the heada.ng -
D.T./m END
These documecnts may then be fed to the compuber in any order and on any peri-
pherals and the computer will combine them as required. In the IIFUT section

of the job description they will be referred to as one document with the
title which each of them bears.

For example, if the data czlled U2‘i IROIN CONTGNT is on two distinct
paper tepes these mey be headed as follows:

DATA/4 D.T/2 BID
U21, IRON CONTTNT U21, IRON CONTTNT
(First part (Second part
of data) of data)
:‘,:::::‘_:Z

If the programmer wishes to refer to the file as input 4wo the INPUT section
of the job description will contain:-

2 U241, IRCN CONTTNT

((1.65)

10.11/1

10,11 Tape and Card Markers

So far in this chapter only the marker **¥Z and the 7, 8 punching
have been considered as an end to a document. These are in fact the most
ocommon markers but there are others which are dealt with below.

On punched tape all the markers consist of *** followed by a single
letter. On cards *** is not acceptable, and is replaced by punching the
7 and 8 positions in the first column of the card and the letter in the last
oolumn, The other 78 columns can contain anything at all. If the last
colunn is blank, 7, 8C is assumed,

10.11.1 The Tape Markers ***7, C, T and A.

a) ***7 indicates not only the end of a document but effectively
also the physical end of the tape. The peripheral equipment
concerned is disengaged by the computer and when re-engaged by
the operator a new document will be read. :

b) **%C indicates that the end of the current document has been
reached but that another follows on the same paper tape. The
end of the document is noted by the computer and reading is con=
tinued for the next document without interruption.

c) **¥T indicates a temporary stop. When this marker is encountered
the peripheral equipment is disengaged by the computer and when
next engaged by the operator a continuation of the same document
is read. Thus, if a document consists of two tapes the first
part cen be ended with a **¥T. Vhen this has been fed to the oom-
puter the second part is rcad by the same peripheral with no doc~
ument heading and the computer will treat the two parts as one
document,

If the document is data it is better to use the data file system
given in 10,10.3 since the parts may then be fed to the computer
in any order, on any peripheral.

d) ¥**) is used only by a machine operator aend is an instruction
to the computer to abandon the previous incomplete document and
disengage the equipment. It is required if part of a document
is damaged before input is complete and the operator requires
the computer to disregard the information it has already re-
ceived,

10,11.2 The Binary Tape Markers ***B, E and F

Each of these markers indicates that a binary tape followse

a) ***B. Vhen this marker is encountered the computer reads the in-
formation following on the same document in binary, instead of
internal code, to the physical end of the tape. There is no test
for end of tape markers. The last 2 or 4 characters from a paper
tape read in this fashion will be overwritten in the stcre by the
12 bit character 0707 (octal), which replaces any spurious char=
aoters generated as the end of the tape passes through the rea-
der (this does not apply to punched cards).

(1465)

10.14/2

b) ***F causes the mechanism to be disengaged. When it is next
engaged by the operator the new paper tape is read to its phy-
31oal end in binary. Thus #HEF combines the effects of T

and “*“B,
o) ***E causes the input following on the same tape to be read in
binary but a check is made for *"*A, Z or C. Vhen one of these

is encountered, binary reading ceases and the appropriate action
is taken., If the end of a reel of tape is encountered after R
and before any of these R sequences, the last 2 or 4 characters
on the tape will be denoted by the 12 bit character 0707 (octal);
the next tape will then be read as a continuation of the same
binary document. When ***A, Z or C is encountered, it is itself
stored in binary. On cards following 7,8E a card bearing 7,84,

Z or C is also stored in binary,

Note that if it is required tq.régd to the ij;lcal end of a 7-track
tepe it is necessary to precede the ***B, E or F by “**P, as described be~
low. I this is not done the tape may be rejected bncause of a spurious tape

arity fault when the end of tape passes through the tape reader,

The marker “**B can also be used to read a fixed number of characters
in binary. This is done by prefixing the marker by *n thus:-
g nr:: 5 :;:B

where n i1s the numtsr of characters to be read. “hen the n tape cr card
characters have been read and stored, reading continues in intermal code.

When reading punched cards an alternative way of causing the card
to be read in binary is available, If the first column of a card is a stan-
dard code the contents of the card are converted to internal code. If the
first column is not a standard code the card is assumed to be in binary and
is stored as such. DNaturally, after a 7,8 B, E or F has been read all cards

are t aken as binary regardless of their first columne

10,1145 The Tape liarker **“p

When reading 7-track paper tape in internal code or in binary the
Supervisor normally checks the parity of each character (an odd number of
holes for correct parity) and rejects the document if a character with wrong
parity (blank tape for example) is encountered. This parity checking may
be suppressed by punching **“P, but it will be restored again at the end of
the given document. If the 1nput is binary and ““*P has been punched, wrong
parity characters will be recorded as punched, but if the input is internal
code they will be replaced by the fault character 7.7 (imner set).

Note that to suppress parlty ohecklng on binary 1nput it is neces-

sary for ***P to appear before “**B, E or F; "**P after “**B, E or F will
not be recognised.
10.11+4 Card liarkers

The same markers are available for use with cards, but with *** re-

placed by a 7,8 punching in the first column of the card and with the letter
in the last column,

(1.65)

10,12/1

10.12 Input and Output using Private Magnetic Tapes

All the documents fed to peripherals for input are stored by the
conputer on a magnetic tape known as the system input tape. They are then
brought into the core store as requireds If a program has a large amount of
input it may be in the programmer’s interest, and in the interest of the
efficiency of the computer, to transfer this input to a private tape before
starting his program, instead of using the system input tape.

Output is normally accumulated on the system output tape before
being sent to the required peripheralse If a program involves extensive
output this may be written to a private magnetic tape instead, and later
output upon requesting the Supervisor to do so by means of a special docu-
nent fed in through one of the peripherals after the Job is completes

Both these facilities are dealt with in this section.

1041241 Extensive Input

A document can be copied to a NEW magnetio tape by putting above
the document heading the directive:-
COPY TAPT NEW

*tape number tape title

The title specified will be written in seotion 0 of the new tape
and the document following will be copied into section 1 onwards.

If it is required to store the document on a previously used tape
(i.e. one which already has a title) the necessary heading is:-

COPY TAPE b
“tape number tape title

Here b is the nuuber of the tape block at which it is intended to
begin copying the input.

When the copying process is complete the following information will
be printed by the computers-

*tape serial number/seotion/word
title dooument.

The section and word indicate where the dooument is stored.

Examples:
To copy the first data document of the job given in 10,5 to
the NEW tape F1111 it would be fed to the peripheral in the formi:~

COPY TAPE NEW

*F111 DATA FOR F64, MLTALS
DATA

F64/A, IRON CONTVNT

(date)

PRt] 7

(1.65)

10.12/2

The information cutput by the computer would be:-

*™141/1/0
FG4/A, TRON CONTENT

The second data document could be sent to section 7 onward
of the same tape thus:-

COPY T4PE 7

#7444 DATA FOR P64, IITALS
DATA

F64/B, COPFIR CONTZNT

. e v em am e e mn me we e

This could produce the output:-

*F114/7/0
F64/B, COPPZR CONTENT

10412,2 Job Decscription References

In order to use documents copicd to private tape, the tape rust
appear in the tape section of the jcb descripiicn in <the usual wey. In the
INPUT section of the job description the sub~headingi-

i TAPE a/b/c

must appear before the title of the document. Here i is the input strean
number, a is the programmer’s number for the tape, b the block number, and
¢ the word number within block b at which the document starts. Thus the
job description to run the program of 10.5 could begin:

JOB
F64, STATISTICAL ANALYSIS OF METALS
INPUT
0 F64, ANALYSIS PROGRAM
1 TAPE 27/%/0
VF64/A, TRON CONTENT. i e
& TAPE 27/7/0
F64/B, COPPER CONTENT
OUTPUT
0 LINZ PRINTER
1 FIVE HOLE PUNCH 3 BLOCKS
TAPT
27 *F14114 DATA FOR F64, METALS

10.42.3 Re-use of .Documents on System Tapes

As already explained, under normal circumstances documents are
stored on system tapes bafore use. Among the information on output O will
be the locetion of each document on tape. This will take the form:-

Sa/b/c

(1.65)

10.12/3

where Sa is the system tape mmber, and b,c are the block and word numbers
of the first word of the document. Such tapes will be stored for a f ixed
period of time and if a document is required again within this time it may
be called for direct from system tape, avoiding the use of a slow peripheral.
This is done by including in the INPUT section

i TAPE Sa/t/c
Title of document

where i is the programmer’s number for the document.

For example, if o program celled 'F74 FACTORISATION' has been run
and is stored at 87/2/411 it cen be re-run with a data document called
'F74 LIST 34’ by & job description as follows:=

JOB

F74 FACTORISATICN RUN 2
INPUT

0 TPE S87/2/411

F74 FiCTORISATION

1 F74 LIST 34

OUTPUT

1 LINE PRINTER
Wiy

Only the job description and the data document would then need to
be fed to peripherals, Note that no further reference to the systen tape
is required.

10,12, 4. Extensive Output

Large quantities of output may be written to a Nil/ magnetic tape
by specifying in the OUTPUT section:-

ourPUT
i TiPE a/b/o
type of equipment m BLOCKS
Here, i is the output stream number, a the programmer's number for the tape,

b the block number, and ¢ the word number where the copying is to start.
The last line is as in section 10.4.2.

Thus if output 1 of the job in section 10.5 were 300 blocks instead
of 3 the OUTPUT scction could be writteni-

QUIPUT

0 LINE PRINTER

1 TAPE 27/4/0

SEVEN HOLE PUNCH 300 BLOCKS

The tape must be specified in the usual way in the tape section of the job
descriptions:~

TAPE NEW
27 *FM441 F64, OUTPUT METALS

This will sause the NEW tape F141 to be given the title 'F64, OUIPUT METALS®
and the output to be sent to this tape beginning at block 1.

(1.65)

10.12/4

If it is required to store the output on a previously used tape,
the necessary entry in the CUTPUT section is the same, but the tape nust
be specified under the hegading TAPE in the tape section.

The private tape can be printed by a steering tape consisting of:=-
FRINT TAPE
*tape serial nunber/tape title

:
f

ok
&

PR S - |
¢ priiced

¥

or

PRINT TAPE b/c ,
*tape serial number/tape title

one document is to be printed, from block b word ¢ onwards.

(1.65)

10,13/1

10,13 Job Description Parameter

In a job where different parts of a standard program are required
to process different types of data, it may be more convenient if the data
type is indicated in the job description rather than in the data or Drogram,

The parameter section in the job description provides for this, and is
written in the form

PARAMETER
* ¢numbers

The number consists of up to eight cotal digits, and is left justified.

PARAETER and the number may be on the same line, separated oy one or more
spaces, '

Exampless

PARAVMETER *00061247

PARALETER) .
*1080 ﬁ alternative

forms
PARAVETER *1060000)

When the nerameatoer sandtism g wrddile Al

3 PR PR . R
FaCl LLC PRIGHCLCr SCLOTL0N appéars wivta Ovuner s wne oraer

ctions,
of sections is immaterial; if omitted, the parameter is taken to be zero.

The value of the parameter may te read by program using the in-
struction

1140 4 0 S
which will set the half-word s’ = paraaeter number (see seotion 12.9).

(1.65)

1.1/

Chapter 11

- -

MONITORING AND FAULT DETECTION

11,1 Supervisor lionitoring:

With the aid of specisl hardware, the Supervisor keeps a record of
the progress of a program during its rune This supervisor monitoring notes
amongst other things the store in use, the computing time teken, and the
occurrence of errors which may prevent the successful execution of' the pro-
grame

In Atlas, provisioh is made for the automatic detection of a
variety of clearly defined fault conditions, which may be due either to
nistakes in the program itself, or to errors occurring in the computer or
the peripheral eguipment. The faults result in entry to a part of the
Supervisor known as the "monitor’ prograom, with the particular fault res-
ponsible peing distinguished by a mark or count set in 3.

The monitor progrim consists of a set of routines, some in tle fixed
store and some in the main store, vhose primory purpose is to print oat osunt
informeticn as will enable the caucz of the fault to be diagreosed. I the
case of certain types of program fault, it wmay be possible for the progrommer
to decide beforehand whai action should be taken to enable the pro;ren o Le
resumed; he will then provide & number of fault routines and list thew in ths
trapping vector. The moritor program will enter the trop indicated in BY,
if such indicstion does in fact correspond with an entry in the tropping
vector; otherwise it will proceed to diagnostic printing, or will transfer
cortrol to a private monitor routine if' so requested. This private monitor
program may provide a special form of diagnostic printing - either instead
of or in addition to the standerd - and may, once and once only, cause the
program to be resumed. Any subscquent nonitoring will always be followed
by the End Progran sequence, except when the feult is trappeds

When entry to the private monitor follows expiry of the total time
allotted to the program, a further 4 scconds of computing time is allowed
for the completion of the private monitor routine, ~ Similarly; if-execution
time is exceeded, a further minute of execution time is allowed, end if Owt~
put is exceeded, a further block is allowed.

11.1.1 Types of Program Faults

We shall here concern outselves solely with program faults: there
is little that the ordinery programmer can do about machine faults, other
than to minimize their effect by providing adequate re-entry points and an
informative private monitor routine,

There are three distinguishable categories of fault detection
causing entry to the monitor program:-

(a)*Interrupt Faultad Some faults are detected by special equipment pro-
vided for the purpose: these include exponent overflow, division overflow,

(1465)

11.1/2

use of an unassigned function code, and ’sacred violation' (i.e. reference to a
part of the store reserved by the Supervisor). An interrupt occurs and will
set in B9 a digit corrcsponding to each such fault. Further analysis of the
fault is provided by a supervisor extracode routine (S.E.R.), the same rou~
tine being used for all faults. '

() ‘Supervisor Faultse A further class of faults are detected by SeE.Re’s,
being especially concerned with faulty use of the 8store and of peripheral
equipments, and with the over-running of time allowances. These faults lead
to the setting of an appropriate digit of B9, just as if they had been de-
teoted by hardware, as in (a) above; they include over-running of computing
time or of tape waiting time, and attempts to exceed the requested store
allocation. In the objeot program, extracode instructions dealing with the
store and peripherals will enter a S.E.R. to detect fauity usage. Only one
such fault can be detected at once, but it will be recorded as a count in
B! without interfering with any existing record of faults -of the interrupt
type. The same S,E.R. monitor sequence is entered as in (a) above.

(¢) Extragode Faultss lany faults are detected by the ordinary extracode
routines themselves; typioal of these are errors in the arguments of functions.
Only one such fault can be detected at once; the extracode will set a counter
in B91 and then jump directly to the common S.E.R. monitor sequence men-
tioned above.

The various faults which result in entry to the monitor program are
listed in the table below:~

FAULT TABLE
MARK OR TRAP
DETECTED COUNT NUMBER -
FAULT MONITOR PRINTING BY IN BI (IF ANY)
Locel time expired L TIME EZCEEDED S Bit § 0
Division Overflow DIV OVERFLOW I Bit 6 1
Exponent Overflow EXP OVERFLOW I Bit 14 2
Page locked down PAGE LOCKED DOWN S Bit 1 3
Number of blocks TXCESS BLOCKS S 2.0 4
expeeded .
Square root argu- v

A SQRT ~VE ARG E 2.4 5
Logar ithmsa’gg“ment 10G -VE ARG E 3.0 6
SPARE 7
Inverse trig. INVERSE TRIG OUT E 2.0 8

funotion OF RANGE *

Reading af'ter : .
Input Ended INPUT ENDED S 4,4 9
End of Magnetio END TAPE s 5.0 10

tape

(1.65)

11,1/3
HARK OR TRAP

DZTECTED COUNT NUMBER
FAULT {ONITOR PRINTING BY IN B3 (IF ANY)
Variable length
record error V TAPE ERROR E I 11
Magnetio Tape TAPE FAIL S 6.0 12
failures
Computer failures COMPUTER FAIL S 64 18
Unassigned Function ILLEGAL FUNCTION I Bit 4
Sacred Violatlon oy INSTRUCTION I Bit 8
Instruction
Sacred Violation .
Operand SV OPERAND I Bit 10
Tllegal block TLLEGAL BLOCK S 9.6
nunber
Band not reserved BAND NOT RESERVED S 10.2
Computing time ¢ TIME EXCEEDED S Bit 2
expired
Execution time E TIME EXCEEDED S Bit 3
expired
Input not defined INPUT NOT DEFINED S 11.6
OQutput not defined QUTPUT NOT DEFINED S 122
Qutput exceeded OUTPUT EXCEEDED S 12.6
Tape not defined TAPE NOT DEFINED S 15,2
Illegal search TLLEGAL SEARCH S 13.6
No selected tape NO TAPE SELECTED S 14.2
No mode defined or
attenpt to write WRONG TAFE MODE S 14,6
when not permitted
Number of decks EXCESS DECKS s 15,2
exceeded
No trap set 'TRAP UNSET S 15.6
Number of branches gyemss BRANCHES 5 16,2
exoeeded

(I = Interrupt; E = Extracode; S = SeBeRe)

Some of these faults are associated with information in the Job
description, and are listed belows

Excess Blocks »

Computing Time exceeded

Execution Time exceeded

Input not defined

Output not defined

OQutput exceceded

(1.65)

11.1/4

Tape not defined
Excess Decks

Division overflow occurs with certain division instructions, marked
DO, when the divisor is zero or substandard.

Exponent overflow occurs with certain instructions, marked E, when,
after completing all functions of the instruction, inoluding rounding and
standardisation, the accumulator exponent is greater than #127. The guard
and sign bits of b124 will be O and 1 respectively., If exponent overflow
is trapped, the fault indication will not be reset and may cause further
monitoring with a subsequent accumulator operation. This may be avoided by
first clearing B124, setting guard and sign bits to zero. If the accumulator
exponent becomes less than -128 during multiplication, division or standardi-
sation, then the guard and sign bits of 1124 are 1 and O respectively. This
is exponent underflows. The accumulator is set to floating point zero, but no
fault is indicated.

The arguments for square root, logarithmic and inverse trigonometric
functions are all tested to determine whether they are within range. They
may cause exponent overflow if very large arguments are used.

‘Programs that employ line reconstruction, such as the ABL compiler
and 1100, will attempt to read after the input stream is finished if the end
of document marker ***Z eto. occurs on the same line as the last information
for the program,

Sacred Violation Instruction refers to a transfer of control to
address J5 or aboves If control is transferred to the fixed store, between
J4 and J5, there is no immediate interrupt, but the result is unpredictable,

Sacred Violation Operand always meana an attempt to read or write
to the privete store (i.e. to J5 or above).

Tllegal block number indicates a reference to the Supervisor working
store, between J34 and J4.
Certain functions ere detected as being illegal., The instruction
1000] 6] 0

which is the same as floating point zero, causes entry to extracode control
to attempt to obey the instruction

0o 0 0 0
or the floating point number %. This function is recognised as being un-
assigned,

End of magnetic tape refers to an attempt to obey a transfer in-
struction involving section 0, or to use tape beyond the last addressed
section (section 4999 on a fully addressed 3600 ft. tape).

Illegal search refers to an attempt to search o magnetic tape for
section 0 or beyond the last addressed seotion.

(1.65)

11.1/5

No magnetic tape selected indicates that none of the ’select tape’
extracodes has been obeyed.

Variable length record error implies an attempt to transfer when not
aligned on & tape marker, or an encounter with an incorrectly made marker.

Should a magnetic tape failure occur, the program may not be moni-
tored immediately, and in this case an attempt will be made, by the Supervisor,
to produce a correct tronsfer. After a set number of failures, usually seven,

I S S UUN cmm an N . A s ia s
MoONIToring w then oacour n an Trom o csention +hat hoa
L0AL mOoniporing wili Then OCCUr. A oTLempt Ve reald ITCm & se0TLen That nas

not previously been written to will be recognised as a tape failure, and hence
it is advisable to write to all sections required when a new tape is used., A
decimal number may follow the TAPE FAIL text, and this i1s interpreted as

_ 81924 + &512B 4+ C
where C is the tape number on which the failure occurred
B is the fault number

and A is che fault type, 0 if E-type, 1 if F-type.

» :
n;—'rnxn’n';‘ ™0 ra

These fault types arc described in the Atlas 1 Computer System Operators’
Manual.

A monitor for ‘Trap Unset’ indicates an attempt to enter a trap using
extracode 1134 when no tape has been set by extracode 1132 (see section 11.2).

An attempt to exceed the number of active branches specified by ex-
tracode 1103 will be monitored (see Chapter 412).

'Page Locked Down’ and ‘Band Not Defined’ monitoring may occur when
a program is controlling transfers between the drum and core store (see
Chapter 12).

41.1.2 Standard Post Mortem

Following the detection of one or more of the faults listed above,
the appropriate text will normally be printed on Output O, followed by a
standard form of post mortem printing, similar to that shown below.

BAND NOT RESERVED

INSTR 73 121,127,0 , 549 B127 = 0
INSTR 74 1177,0 ,12 , 0 B2 = 4.6
INSTR 75 101,13 ,12 , 108.4 B13 = -~1048574.6 B12 = 4,6
Bl =—699050,6 B2 =~1031932 B3 = 42798,7 B4 =—42799
B5 =0,1 B6 ==258553 B10 =18 B12 = 4.6
B13 =1048574,6 B70 = 0.6 B8O = 0.1 BY0 = 36
Bl = 10.3 B92 = 0.1 B93 = 0.1 BY% = 7.1
B95 = 2631 BO6 ==0e3 BY7 = 917504.4

TAPE 1 AT 64

TAPE 2 AT 72/306

TAPE 3 AT A

Normally the current address in main control, B127, is printed, fol-
lowed by its full word contents in instruction form, and the contents of any

(1465)

11,1/6

B-lines in the rangc B1 to B99 referred to, unless zero. Irrespective of their
true value, the contents of any B-lines in the raonge B100-B127 referred to will
be printed os zero. The two previous words are similarly printed. If one of
the locations is in the private store or is undefined, then

INSTR UNALLOCATED

will be printed instead of the normal form. Following an EXCESS BLOCKS fault,
1127 will be reduccd by 1 before printing instructions. The instructions
printed may not be the last three obeyed, as a jump mey have occurred to either
the second or third instruction printed, as must have happened in the example.
Also, because of thc overlap in executing instruotions with each other, and
with other operations such as tape transfers, the printing may occasionally
bear little relaticon to the instruction originally causing the fault, although
many cxtracodes causing faults will appear as the second instruction; basic

functions ccusing faults may appear as any one of the three instructions, or
not at all.

ifter the three instructions, the contents of g1l B-lines B1-B99 are
printed, unless zcro.

If one inch mognetic tapes are being used, their current positions
are then printed out, indicating the next section number, and, for varisble
length working, the word number also.

Except for the function cod their usual form, and
octal fractions in addresses and B-lines, all numbers ere decimal,

1141.3 ZEnding a Program

If no fault is found during the execution of & progrum, then the run
will be finished by obcying the 1117 extracode. If a fault is found, then,
after post mortem printing, the Supervisor will normally end the run as if the
1447 instruction had been obeyed.

14417 Print monitoring information on output 0. End 21l program output
streams, indicating the amount of output in each stream. Instruct
the operators to disengage and rewind all magnetic tapes used.
Remove the job from the store; clear Supervisor directories relating
to this Jjob.

The form of the monitoring information on output 0 is given below,

<Job Title>

INSTRUCTION 8 7
STORE 32 / 4
2 DECKS 6 TAPE BLOCKS 1 HALT TLE
INPUT O < BLOCKS
OUTPUT C (3) ANY 40 R7CORDS

The meaning of this information is explained below,
INSTRUCTION 8 7
8 instruction interrupts were obeyed in all, of which 7 werc uscd

in compiling, An instruction interrupt occurs every 2048 instructions, basio
nultiplication and division orders being counted as 2 and 4 instructions res-

(1.65)

11.1/7

pectively. At some installations a third number on this line gives the number
of program blocks transferred between drum and core store,

STORE 32 / 4

The job desoription requested 32 blocks of store, of which 4 blocks
were in use when the program was terminated, including one block for each
input or output stream.

2 DECKS 6 TAPE BLOCKS 1 HALT TIME

Two magnetic tape decks were reserved, and six blocks were trans—
ferred between tape and main stores The program was suspended by the Super-
visor for one second awaiting the completion of tape transfers.

INPUT O , 1 BLOCKS

One block was neceded in the input well to hold the information on
input stream O. There will be similar printing for all other input streams
defined.

oUTPUT © (3) ANY 40 RZCCRDS

The job description requested that output stream O should be to
ANY type of peripheral. Forty records were output before the program was
terminated. If the actusl peripheral is a paper tspe punch, the output will
be measured in blocks; otherwise, in records. The output stream was broken
into three parts; this printing is suppressed if the stream was not broken.
There will be similar printing for all other output streams defined,

The amount of output, indicated at the end of each stream, is always
measured in blocks, in the form

END OUTPUT 1 BLOCKS

(1465)

11,2/1

1.2 The Trapping Veotor

Upon entry following a fault, the first action taken by the monitor
program is a check to see if the fault has been trapped by the programmer;
if so, the monitor sequence will at once exit to the trcp set.

The trapping vector occupies several successive words of the store,
and the address of the first word must be specified as S in the extracode 14132.
Each word holds the trapping information for a particular fault, word n being
assocleted with fault type n; the more-significant half-word contains the
address of the fault routine to which the trap will transfer control, and the
less~-significant half-word contains, in bits 15-21, the address of a B regis-
ter which is used to hold the value of main control when the fault was detected.
This may be but is not necessarily the point in the main program at which the
fault occurred,

Only sone of the faults listed in the table in section 11.1.1 have
trap numbers: these are the faults which the programmer might reasonably be
expected to deal with before resuming the program; certain traps may be use-
ful as a means of avoiding extra testing in the program. There are faults which
are not trappable; thesc include such faults as sacred violation, which the pro-
grammer can be expected to avoid, and deviations from the Jjob descripticn, in
exceeding the specificd time allowance, for instonce.

No trapping will ocour unless the program first obeys an 1132 in-
struction, specifying the address of a trap vector. Subsequently, trapping
cen be suspended by specifying a negeative address in extracode 1132. In order
to trap some faults but not others, the programmer should specify a negative
Jjump address in ecach unwanted trap. Normally the trap vector will be punched
as part of the program, and the unwanted entries may be punched as 40 or merely
omitted, since floating-point zero produces a negative first half-word, because
its exponent is ~128,

Two other cxtracodes associated with the trapping vector are given
below,

1133 Place the first address of the trapping vector, if any, in Baj; if
no trap has been set, make ba ncgative, This cnables a subroutine to
preserve the current trap when a private trapping vector is required.

1134 Obey the entry number Ba in the trapping vector, as though a fault
of type Ba had occurrcd. Ba may renge from 0 to 63 inclusive, and
may be used to enter standard traps, or as a subroutine entry at
addresses listed in the trapping vector for ‘fault’ numbers 14
onwards,

(1.65)

11.3/1

M3 Private Monitoring

When the monitor program encounters a fault which is not trapped,
it prepares to terminate the program and proceed to diagnostic printing, as
described earlier. If he so desires, the programmer may supply a private
monitor sequence, whose starting address must be specified by using extra=-
code 1112, The last octal digit of the starting address determines the time
of entry to the private monitor as follows:-

Octal Fraction Entry
1 Before printing the one line explanatory
text

After printing the text _
After the standard post mortem printing

Vhen the entry is before any printing, B9 contains the record of
faults, and B92 the value of main control when the fault was detected, with
the contents of B93 and B121 zltered. Otherwise B96 and B97 will also be
altered,

In the event of faults in the private monitor sequence itself, it is
necessary to avoid the possibility of endless loops of errors; this is accom-
plished by forbidding a second entry to the private monitor, Any subsequent
faults may be trapped, but if they are not trapped the standard monitor will
end the program.

Specifying a negative address with extracode 1112 cancels any
private monitor routine,

(1465)

11.4/1

11.4 Restarting and Re-entering a program

Following a failure in the computer or an on-line peripheral, jobs
completely in the machine will not be lost, although documents of incomplete
Jjobs, and documents only partially read must be input again. Programs par—
tially executed will normally be restarted from the beginning; there are no
facilities at present by which the Supervisor will dump program information to
allow re-entry to a point other than the start of a program.

11.4.1 Preventing a Restart

It may be useful to prevent a job using the ‘break output’ faocility
from being restarted once a point is reached where the job is substantially
complete; alternatively a restart may be impracticeble for a job using
magnetic tape, To this end, the instruction

1113 0 0 -1

will prevent the job being restarted if a breekdown occurs following the use
of the extracode, but before completion of execution,

11.4,2 Re-entering a Progrem

Af'ter e brealdown, for a program to be re-entered at some point other
than its start, it is normally necessary to dump information as the job pro=-
ceeds, specifying a re-entry point with each dump. though the Supervisor
does not yet provide such facilities, the progrommer may provide his own dump
routine.

Suck a routine, called Dumpling, is described in the I.C.T. Atlas
Computing Service Bulletin No. 7. Dumpling occupies one main store block,
dumping, on to magnetic tape, the information listed below:-

A11 defined store blocks, including Dumpling.

The tape numbers and positions of all cne inch magnetic tapes working
in fixed length mode,

The accumulator (double length)

The logical acocupulator

B-lines 1 to 90, and Bi21

The number of the currently selected input streamn.

The number of the currently selected output stream.

V-store line 6 containing A0, Bt, Be, etc.

The eddress of the trapping vector, if any.

Details of the dunp regior,

The dump number,

The re-entry point to the program in the event of a breakdown.

As each dump is made, its location is printed on output stream C.

After a breakdown, a very short steering program allows the infor-
mation stored at the last or the penultimate dump to be recovered, and the
program continues from the corresponding re-entry point.

(1.65)

1112

1113

1117

1132

1133

1134

1445/1

Konitor Extracodes

The monitor extracodes introduced earlier are listed again here.

Set the address of the private monitor routine to S. If the standard
monitor program is subsequently entered, following a fault which is
not trapped, control will be transferred to the private monitor,
possibly after some diagnostic printing. The amount of diagnostic
printing is determined by the octal fraction of S, as follows:

Cctal fraction Print-out
o] One line describing the fault,
No standard printing.

2 - One line describing the fault, followed
by standard post mortem print-out.

To subsequently suspend private monitoring, a negative address, S,
must be used with 1112,

0 0 -1 Do not restart.
If a breakdown occurs after obeying this instruction but before the
job is completed, it will not be restarted.

Znd program

Print monitoring information on output O; end all output streams.
Instruct the operators to disengage and rewind any magnetic tapes
used. Clear all Supervisor references to this jobe

Set the &ddress of the trapping vector to S.

This extracode must be obeyed before any trapping can take place; to
subsequently suspend trapping, 1132 must be used again, but this time
with S negative.

Find address of trapping vector.
Set ba’ to the first address of the trapping vector if one is defined,
otherwise set ba’ negative.

Enter trap Be. (0<Ba<b3)

Obey entry number Ba in the trapping veotor, as though a fault of
type Ba had occurred. - o

(1465)

11.6/1

1.6 Faults Detected by the Compiler

Apart from faults detected during the excoution of the program,
many types of error may be found earlier by the ABL compiler. An indicabion
of the type and location of ecch fault is vrinted out on the current output
stream, usually output 0, and, if necessary, arbitrary values are assigned
to expressions to allow compiling to continue, ‘

Therc are some special presct parameters which determine the exact
action taken by the compiler after a fault has bwen found., These parameters
are described in Chapter 12; the compiler action described in this section
assumes no progran setting of these parameters., In particular, P110 will
normally be zero.

1'1 l601 B-lines in ABL

It may be useful to know whether o run has ended during compiling
or execution. When ABL is in operation, B3 is in the range =127 to 0 in-
clusive. The most likely value is -127, unless the run hes been terminated
by INPUT ENDED. :

ABL uses most of the B-lines. It preserves its ovm B-lines when it
meets an enter directive, and then clears Bl - B68 before obeying the
directives B89 will contain the cwrrent velue of *. After an E-directive,
BY0 contains J3; after ER or EX, B9 is clear.

11.6.2 Indeterminate Items

When ABL needs to evaluate an expression, and can not do so, the
expression is faulted as described keslow, and an arbitrary value assigned.
The value depends on the contexte

(i) ® = cxpression, When this is faultcd, * is given the value
or 654321.,1P110. This allows ABL %o try to oheck the
rest of the program, although it may not be a2ble to enter it,

(i1) 1In a1l other cases the expression is given the value J36, If the
expression is in an Enter directive, it will oause a monitor on
ILLEGAL BLOCK, since J36 is an address in the Supervisor Working
Storce A similar monitor is likely if the expression occurs in an
instruction which is subsequently obeyed.

When any other faulty item is found, nothing is compiled. As the
store is initially cleared to floating point zero, all or part of this bit
pattern will remein in the location reserved for the faulty item.

11.6.3 Diagnostic Printing

The first ABL diagnostic printing for a progrom is preceded by the
line of printing,

ABL MONITORING

Each fault oauses printing, on o new line, of the loocation of the
fault within the progrom, together with an explanatory text. The following
line will usually be a reconstruction of the line of program containing the
f a.u.lt.

(1.65)

11.6/2

If the error density is higher than 8 faults in 24 lines of print-
out, then

TOO MANY ERRORS
is printed, and the run ended (see also P101). Blank lines, and lines
containing only erases, are ignored.

Normally, when a fault is found, compiling continues until an E or
IR type of enter directive is encountered, so that any further faults may be
detected. When the enter directive is reached after one or more faults,

ZRRORS DO NOT ENTER
is printed, and thc run ended (sce also P102).

11.6,4 Fault Location

Each ABL monitor printing begins with a spe01flcatlon of ‘where’
in the program the offendlng item occurs., ‘'Where' means ‘in what line of
the printed program and in what part of that line”. ABL refers to lines
of print in exactly the same way as a progranmer does by counting from the
last label set, but with the exception that A0 is not used to mean the line
on which the flrst instruction or item of a roubine appears but the line in
which the R itself appears. Thus the very first line of print in a program
is 1 A0/0. Blank lines, and lines containing only erases, are ignored.

Vhen ABL prints 3,4 A1/20 it means that it has read 3 terminators
in line 4 after A1 of routine 20 when it has found an error. Thus, for
example, if an expression is incouplete (e«ges, no close bracket after an
open bracket), then the next terminator will have been encountered before
ABL can realise that there is an error, and the ’position slong the line’
will be printed accordingly; but, if a bogus character is found in an
expression, then this will be reoognlzed before the next terminator is
encountered.

(1.65)

11.6/3

11.6,5 Diagnostic Printing Character Set

In all diagnostic printing, ABL uses its own oharacter set. The
following is a list of all available extcrnal characters (7-track tape,
S-track tape, and cards) and their corresponding ABL characters. All the
ABL characters are contained in the 7-track tape and Anelex line~-printer
character sets, so that ABL diagnostic printing may always be completely
printed or punched on these media.

Externsal: 0122456789
ABL : 0123456789
External: ABCDIEPFGHIJELENOPQRSTUVWIXYZ
ABL : ABCDEFGHT1IJKLENOPQRSTUVWIYZ
External: abcdefghijklnnopgrstuvwxysz
ABL H ABCDEFGHY1 IJKXMNOFQRSTUVWIXYZ
BExternal: %ﬁwp.+—:' <>=_,()?237m&
8L+ pfexpes-i’ <>=acy () 70<| M
External: * 1011 £ £ wm> » xfn
ABRL : * o o £x | DoRreCor oK o o !

A1l other sincle characters are renlaced bvegs All comnosid

VowiaTd T Diila QU VLS Gl'T LT T LA A @] L ite

characters not :anludlnc Lrase are repluced by pe All composite characters
including Erase are ignored. All single spaces are ignored. Two consecu-
tive spaces are replaced by Comma. After a Terminator all spaces are ignored,
but not commas (see fault below).

1 (lover case L) is an illegal character, unlike the rest of the
lower case alphavet; i and o are treated as one and zero respectively, as
are capital I and O.

11.6.6 Explanatory Texts

The ABL texts are listed below, with Ifurther explanation where
necessary.

INSTRUCTION?
ABL thinks that a line contains an instruction, but something is
incorrect with the format, i.e, a line begins with a number (un-
signed), and does not have four parts.

OCTAL NO, CONTAINS 8/9

IRREGULAR FUNCTION
ABL thinks that a line contains an instruction, and its first part
has not been faulted by either of the two preceding monitors, but
contains either more than 4 digits, or four with the first equal
to 2 or more.

WRONG FORMAT

A line contains itoms whioh connot be identified; whatever kind
of items they arc meant to be, something is wrong.

(1.65)

11.6/4

NOT TURMINATED

A character which has no meaning in the current context is en~
countered within an item., Vhen this occurs, ABL sldips to the
next terminator,

ACCUMULATOR OVERFLOW

Fixed-Point Overflow is caused in the Accumulator as a result of
any arithmetic process required because of the form of any item.
In practice, this can only occur during the ‘de-standardising’
process required by ‘d’ in the Floating-Point Number forms a:d;

a(b):d, a(bic):d, and a(:c):d.

SHIFT »23 PLACES Requested by a U or a D operator,

TMPERMISSIBLE +

Z in RO

* OUT OF RANGE

An attempt is made to compile an item into store with the trans-
fer address (*~P110) greater than or equal to J3, or less than O.
Compiling will continue from * 6543211 4 P110 in an attempt to
detect any other faults.

PARAMETZR CR ROUTINE HO., TOO BIG

(1)
(31)
(1)
(av)

(v)
(vi)

A parameter, routine, or copy number is greater than the permitted
highest value, that is

if a reference is made to a routine number greater than 3999
if & routine parameter Aa is encountered with a >3999
il" a global parameter Ga is encountered with a }5999

if an attempt is made to set a preset parameter in the range P110 -~
P119, unless it is one of the Special Preset Parameters, to set a
preset parameter Pa with a »119, or to use a preset parameter Pa,
with a $129

if a reference is made tc a library routine number greater than
1999

if 8 reference -is made- to a copy number of .a library routine
greater than 1999 ‘

NOT IN LIBRARY

One of the forms L, La, La.b, &, ER, RLc appears within a library
routine. The monitoring occurs as the library routine is compiled,
but this monitor should only affect library routine writers or
private library routine users.

EXCESS COMMA

Two or more commas or a comme after tultiple Space appear between
items or parts of an instruction on a line. A comma at the
beginning of a line will give rise to a VRONG FORMAT monitor.

For the purpose of this fault, comma is not the ssme as multiple
space; thus, for example, seversl TABS are perfectly permissible
between itemse

(165)

LABEL NOT ALLOWED
For example, before an R or a T directive.

? This occurs whenever the Supervisor, as opposed to the ABL
compiler, monitors any aspect of the programe The most common
cases are:

Exponent Overflow - (in any arithmetic arising from the form
of any items)

Input Not Defined - (after a use of the 'P145=expression’
directive)

Output Not Defined - (after the use of the ‘Ta’ or ‘Ta=b’
directive)

Input Znded.

The normal Supervisor fault printing comes first followed
by an ABL '?’ monitor giving ‘where’ and the reconstructed line in
the usual form.

This kind of monitoring can only occur once, because
of the Supervisor's system of private monitoring. If a second
error is caught by the Supervisor, only the Supervisor printing
will appear and the job will be terminated.

If this is the first fault in the progrem, then the
line 'ABL MONITORING' will appear after the Supervisor monitor
printing but before the '?' monitor printing.

The monitor Input iinded may be due to a variety of
causes. The most common of these are:

(1) Unmatched [; In this case the compiler will scan through
the whole of the progrem locking for a matching | until
it hits Input Inded. This circumstance can be most easily
identified by the Line Count part of ‘where’ in the accom-
panying ABL monitoring. The compiler does not recognize
labels whilst within a [| sequence, but does count lines
in the normel manner, so the line count will be from the
last label before the [.

(ii) Un-terminated Enter Directives, This is triclky to spot
because the reconstructed line looks normal. Inm order to
avoid this monitor the **¥Z or other document terminator
must not be on the same line as the final inter directive,
since ABL inputs and reconstructs the whole record before
attempting to identify items.

(iii) Enter Directive omitted completelye

(iv) Un-terminated privete Library Routine (i.e. the 'ZL‘ record
omitted or punched incorrectly)s In this case the whole of
the remainder of the program is thought by ABL to be part
of the Library Routinc.

(1.65)

11,6/6

<Parameter > ALREADY SET AT <«wherey
An attempt is made to set a parameter (Global or Routine) which has
already been set. The monitor here consists of one line only; no
Treconstructed line’ is printed. An ‘RO’ directive will also cause
this fault. The parameter will retain its original value.

EXPRESSION INDETERMINATE
An expression, which has not been rejected for any of the above
reasons, cannot be fully evaluated when it should be. For example,
Sf it is the right-hand side of & ‘Reexpression’ or '*=expression’
directive or an Enter directive, then it needs to be evaluated
immediately, and if it cannot be (for example, because of unset
parameters), then this monitoring will occur when the item is en=-
countered - in the case of B or FR directives after any required
Library Routines have been compiled; or, if it is the address part
of an instruciion, or a Half-word or Six~bit word, then if it is
still not determinate when the next E or ER directive is encountered
- after any required library routines have been compiled - then this
monitoring will occur when the Enter Directive is encountered, after
any monitoring arising from any library routines. For the purpose
of counting errors, all parameters unset at the Enter directive are
treated as one fault.

The second line of this monitor printing consists not of the
complete reconstructed line in which the offending expression
ocourred, but only of thc expression itself, and this is not nor-
mally in its original form but has been partly evaluated, including
the replacement of all set parameters by their values.

Because of this system of printing the expression, with known
parameter values fully substituted, the fact that, for example, the
parameter A$/2 appears in the monitor printing indicates that it is
that parameter which is unset and is causing the expression to be
indeterminate.

A reference in an expression to a parameter of a non-existent
library routine will give rise to EZPRESSICN INDETZRMINATE monitor
printing when the next E or ER directive is encountered as well

as a monitor printing for 'Library Routine NONSXISTENT ' (sec Chapter
An attempt to divide by zero in an expression gives rise to
EXPRESSION INDITLRLINATE monitor printing rather than DIVISION
OVERFLOY Supervisor monitor printing, for example, if expressions
such as A5Q0 or AS5QA2 where A2=0 are encountered.

Exanple:

A program being compiled attempts to print & title on an
undefined output stream, causing fault printing by both Supervisor
end compiler., Compiling continues, and further faults are found
until the error density is too great.

(165)

11.6/7

OUTPUT NOT DEFINED

INSTR 787975 122,63 ,24 ,-1048576 B63 =~1048575 B24 = 791293
INSTR 787976 1060,0 ,61 , 16 B61 =6

INSTR 787977 300,0 ,0 , 788005 .

M = 512 B3 =127 B4 = 0.1 B7 = 787202
B8 = 7873724 B9 = 257.2 B0 = 2.4 B12 =126

Bl4 =0.1 B5 = 786432 B16 = 917573.4 BA7 = 917373,4
B18 = 917570.4 B20 = 911.4 B24 = 791295 B28 =—1048576
B45 = 2.1 B6 —6 B65 =~1048575 B0 = 787585
B = 9173M B72 =1 B75 = 152.4 B78 = 128.1
B79 = 917476.4 B81 = 917572.4 B88 = 917373.4 BYO = 787986
BY = 1242 BO2 = 786740,2 BOB = 786740.2 B =10

BY6 =~1044754 B97 =130580.1 198 = 26265645

ABL MONITCORING

1,2 A0/0 2
™0

1,9 A0/0 SHIFT »23 PLACES
HU24

0,10 AO/0 ®* OUT OF RANGE
121,2,0,A5680

4,40 A0/0 PARAMETZR OR ROUTINEZ NO. TCO BIG
121,2,0,45680

1,11 A0/0 EXPRESSION INDETTRY INATE
PiOM7

4,13 40/0 INSTRUCTION?
121,0,0,0,0

0,14 A0/0 IRREGULAR FUNCTION
12345601 UY

1,15 A0/0 WRONG FORMAT
FyK1, 4y 44(~1,-18,43:0

3,15 A0/0 WRONG FURMAT
FyK1y 4y 441,15, 4820

TOO MANY ERRORS

(1.65)

12.1/1

Chapter 12

FURTHER FACILITIES AND TECHNIQUES

For most purposes, the information given in the earlier chapters is
sufficient to 2llow adequate and efficient programs to be written. Occasion-

ally, however, it may be possible to increase the efficiency of program
writing or execution; the following sections describe how this may be effected.

12.1 Prograrmed Drum Transfers

In the great majority of programs, the user will wish to take advantage
of the one level store concept and will regard the core store and drums as a
single, large main store. Programs are written as if the entire store were
core store, and the Supervisor will automatically control the transfer of
512-word blocks between the drums and the core store as neceded.

However, circumstances can arise in which it is useful to exercise
somne degree of control over these block transfers, both to ensure that blocks
of information are already available in the core store when required, and to
clear space in the core store by releasing blocks to the drums as soon as
they are no longer nceded; the extracodes provided for these purposes are all
designed to assist towards greater economy of time by the avoidance of un=-
necessary Supervisor drum transfers. To understand just how the programmer
may assist the Supervisor, it is necessary to consider the means provided for
the regulation of automatic drum transfers.

In addition to any store locriion explicit in each instruction, there
is implicit a store reference to the locatiun containing the instruction
word itself; in either cese, the address is taken to specify both a block and
a word within thet block. The block address is invarisbly interpreted as a
store request, and the Supervisor will initiate a drum transfer if the block
is not already in the core store. Normally there will be only one copy of a
particular block, occupying either a page in the core store or a sector on
one of the drums. Vith each 512-word page of the core store there is asso-
ciated a Page Address Register (P.A.R.) containing the number of the block
occupying the page at any particular time; there is also a lock-out digit
which is set whenever the page is involved in a drum or peripheral transfer
and so is not available to the main program. At every store reguest, the
block address is aubomatically compered with the content of each P.AR.; if a
coincidence is found, the store reference is completed by the extraction of
the required word from the appropriste page. Otherwise a non-equivalénce
interrupt occurs and the Supervisor drum transfer progrom is cntered; this is
in two parts, ome to carry out the actual block transfers and the other to
decide which page of information should next be transferred to a drum to make
space avallable in the core store.

411 requests for information transfers between the core and the drum
stores, whether originated by the Supervisor or called for directly by an
object program, are placed in a drum queuc holding up to 64 entries which are
dealt with in the order of their occurrencc., The drum transfer routine is
re-entered repeatedly until the queue is cleared.

(1.65)

12.1/2

It is arranged that there shall always be at least one free
page in the core store, so that, whenever the drum transfer routine
is entered, the first ‘read’ request in the drum queue can be implemented.
Then, whilst this transfer is taking place, the drum transfer learning
program decides which page may next be freed by writing its contents
away to a drum. This decision is made on the basis of the frequency of
past references to each block of information, and with the intention of
choosing the core store page least likely to be referred to.

The drum learning program only attempts to predict future
store needs in the light of past requests; it anticipates neither the
termination of references to a particular block of information nor the
imminent requirement for a new block. Hence, there arise in the main
two ways of assisting the Supervisor by means of programmed drum transfers;
firstly by releasing core store pages no longer required, and secondly
by initiating the reading of a new block of information from a drum to
the core store before it is actually referred to. These are both of
marked advantage to the system as a whole: the first plainly helps towards
efficient utilisation of the available facilities, and the second can
often prove of even greater benefit and economy by reducing the time spent
in waiting for drum transfers to be completed - this is especially
significant in the inner loops of a program. It will be appreciated that
the time during which a program is held up waiting for a drum transfer
is still wasteful, notwithstanding time-sharing, since it may take
from 1.3 to 2.7 milliseconds, depending on the core store size, to switch

to another program and a similar length of time to switch back later.

Ideally, a 'read’ transfer should be timed to reach completion
only just before the first reference is made to the block; otherwise
the Supervisor may choose to write the block away to the drum again before
the program comes to use it. The actual transfer of a block of 512 words
tekes 2 milliseconds, but there is an initial delay of up to 12
milliseconds, the revolution-time of the drum.

The core store of Atlas is arranged in 4096 word stacks, with
16 pages of information sharing cach pair of stacks, and each stack
heving its own access equipment; to taeke advantage of this, and so to
attain meximum speed, operands and instructions should be arranged, as
far es is possible, in different pairs of stecks. .t Manchester, the
Supervisor endeavours to read down instructions to pages 0 to 15 and
operands to the remeining pages of the machine; in the event of a
non-equivalence interrupt the preference is automatic, being determined
by the non-availability in the core store of an operand or an instruction
as the case may be; in the case of & progrommed drum transfer, the
preference must be indicated by affixing a bit 1 before the address
of a block of instructions, and O before the address of 2 block of
operands. This preference bit will be the most significant bit of n
(singly modified) or of ba where appropriate. At the other installations,
where there is more store, instructions and operands are placed in
different pairs of stocks whenever possible. Pages 0-15 form one
stack pair, as do pages 15-31, 32-47, etc.

Txtracodes are availsble for the purposes we have discusse@
and these will now be described with the help of the following notation:

(1.65)

12.1/5

Block address, P = Pa. =bits 1 to 11 of n

Block address, P2 = bits 1 to 11 of ba
Number of blocks, K="Dhits 21 to 23 of n
Logical band number, D ="bits 13 to 20 of n
Band or page number, = bits 13 to 20 of ba
Section number, k=Dbits 21 to 23 of ba

In all but two of the extrucodes which follow, whenever.information
is transferred to a new block, the old block is mede free. The exceptions
are 1162 and 1163, where a block is +to be duplicated leaving the original
copy intact. .

Further, when a block is quoted as the destination of an information
transfer, either directly or as the result of renaning, any existing block
of the same name is lost., This will apply even if the name quoted as that
of the source is unallocated, and will in fact be the only action taken in
such a case. Also, in those instructions referring to two block addresses,
these addresses should not be the same. '

1135 bS1’ = ¢ and ¢’ = n if block number > ba newly defined.
Henceforth, each time a block with a number > ba is newly
defined by a non-equivalence, store current control in B9
and jump to n. The block number in ba occupies bits 1 to
141 and the remaining bits of ba are ignored. The contents
of Ba are undisturbed. The instruction causing the non-
equivalence is not executed. n is singly modified.

1155 ba’ = smallest block lsbel > n defined.
Place in bits 1 to 11 of ba the smallest block number > n
which is defined for this progr m. The remaining bits of bs
are left cleareds Only bits 1 tc 11 of n are used.s n is
singly modified. If all the program’s blocks are < n, then
bit O of ba’ is made 1 and the remaining bits are cleared.

1160 Read block P,
If P is not already in the core store, the transfer request
is inserted in the drum queue exactly as if a non-equivalence
interrupt hal occurred, but control is restored to the objeot
program immediately the drum queue entry has been made,
Should the queue be already full, the object program will be
halted until the entry can be inserted.

1161 Release block P from the core store.
This extracode adjusts the parameters used by the drum learning
program so as to cause it to choose block P next for writing
away to the drum store, if this has not already occurred. No
entry is made in the drum queue and the transfer will in
general take placc earlier than if extracode 1165 (below)
had been used.

1162 Duplicate block Py as P; in the core store.
fny existing block P; is always lost, and, if P; is allooated,

(1.65)

1163

1164

1165

1166

1167

1170

1174

12.1/4

a oopy of it will be formed as Pz in the oore storc, Unless
the drum store is full, block P1 will finally be located
there; otherwise P1 will be left in the core store. Py 5£ Pae

Duplicate block P, as Pp in the drum store..

Provided P; is allocated, the effect of this extracode 1s to
form a duplicate copy of it. It will be arranged that ome
copy shall always be left in the core store and named Py j
the second copy, named Pz, will be put in the drum store un-
less this is full, in which case it will be left in the core
store. Any previously existing block P, will be lost in all
casese Pi # Pa.

Reneame block P1 as Pge

If P, is allocated, the appropriate entry in the drum direo-
tory or the core store P.A.R. is altered to Pss Any Py pre-
viously existing will be loste There must be at least one
more block allowed for in the job description than is defincd
at that moment. Py ;é Pse

Write block P.

Provided P is allocated and is not already on a drum, it is
transferred to the next empty sector. Should the drum store
be full, block P is releascd, precisely as in 1161,

Read block P to absolute page de

This extracode makes possible full control of the store by
those exceptionsl programs for which this may be worthwhile.
Before using 1166, the program must set a trap in case page d
is locked down and reserved by the Supervisor,

d is in the inieger position of ba and defines the absolute
number of a page in the core store to which block P is to be
transferred. Before this transfer tekes place, ~ny existing
contents of 4 are copied to a frec page.

Lose block P.
If P is allocated, the page or sector occupied by it is made
free,

Clear new blocks/Do not clear new blocks.
When & program refers to a main store block for the first
time, the Supervisor allocetes a freec page of the core store;
floating-point zero will be written in all 512 words if the
clear blocks switch is set. Initially, this switoh is set
to olear all new blocks, but it may subsequently be set or
reset by means of extracode 1170 according to the sign bit of
n:-

n>0 Clear new blocks.

n<o0 Do not clear new blockse
Change store alloocation to n blockse
Each progrem has some number of main store blocks assigned

to ite This number may be altered during the exeoution of
the program by the use of extracode 1171. If there are less

(1.65)

1172

1173

1174

1475

1176

1177

12.1/5

than n blocks available in the store, then the program will
be faulted for ILLEGAL FUNCTION and DXCESS BLOCKS.,

Set ba’ = number of pages available.

This extracode provides an estimate of the number of core
store pages available tc the program at a particular moment.
It cannot be assumed that this number of pages will continue
to be available, since the core store allocations are always
fluctuating.

Set ba’ = number of blocks available.

At a particular moment, this extracode records the meximum
nunber of main store blocks available, consisting of all un—
allocated blocks together with those already allocated to the
progran itself,

Reserve band D.
A complete band of the drum store is reserved for the progran
and may subsequently be referred to as band D.

Read K 4+ 1 blocks from band d, starting at sector k.

d must already be defined by extracode 1174. The K +1
successive sectors k, k +1,..., k 4+ K are read to store
blocks P, P + t,eeey, P 4+ Ko If Kis 6 (or 7), sectors k
(or k and k +1) will be read twice, Thus if' K= 6, blocks
P and P + 6 will both ocontain sector k. If k is 6 or 7, it
is taken as 0 or 1 respectivelys All blocks involved are
locked dovmn until the entire transfer is complete.

Write X 4+ 1 blocks to drum band d starting at sector kK.

d must already be defined by extracode 1174. This extracode
writes store blocks P, P +4ess, P + K to drum sectors k,

kK + 71,000y k + K. Sectors 6 and 7 are the same as sectors
0 and 1, If K exceeds 5 some of the earlier blocks are
overwritten, Thus if K = 6, sector k will finally contain
block P + X rather than block P.

Lose band D.
The bard of the drum store previously reserved as logical

-band D is freed end mede available for general uses...

(1465)

12.2/1

12.2 Optimization of Program Loops

The following table gives the approximate times in microseconds
achieved on Atlas for various instructions. The figures are averages for
obeying long sequences of each instruction, with the instructions and oper-
ands in different stacks of the core store.

Number of Address

Type of Instruction Modificetions Time
am’ = am + 8 0 1.6

1 1e9

2 2.4

an' = em x s 0,1 or 2 5.9
an’ = an/s ‘ 0y, 1 or 2 22.5
ba’' =ba +s 0 1e7
1 2.0

It is not possible to time a single instruction because, in general,
this is dependent on

(a) the exact location of the instruction and operand in the store;

(b) the instructions preceding and following; for vhemever possible
one insitruction is overlapped in time with some part of three
other instructions,

io; whether the operand address has to be modified,

d) for floating-point instructions, the numbers themselves.

This is illustrated when evaluating a polynomial, using a central
loop involving a singly modified accumulator addition, an accumulator
multiplication, and a test, count and jump instruction. The average time
for this loop is €. usec, of which the accumulator operations would take
7.8 psec if their individual times arc simply added. This leaves only
0s5 psec for the test, count and jump, although the average figure for a
series of jump instructions on their own might be ten times as large.

We shall consider those factors which control the time taken to
obey instructions, to show what advantage can be taken of them in optimizing
a program loop which has to be exeouted many timese

124241 Store Access

The main core store consists of pairs of 4096-word stacks. Each
stack can be regarded as a physically independent store, and sequential
eddress positions occur in the two stacks of a pair alternately, the even
addresses in one stack, the odd in the othere. The cycle time of the core
store is 2 ps., that is, the time after reading or writing a number before
another number can be read from or written to the same stack is 2 ps.

To reduce the effective access time, instructions are always read
in pairs and held in two buffer registers called Present Instruction Even
(PIE) and Present Instruotion 0dd (PIO) whilst waiting %o be obeyeds In-
structions are executed from PIE, the odd instruction being copied from

(1.65)

12.2/2

PI0 into PIE as soon as the even instruction has been initiated.

Because of the 2us cycle time for each stack the programmer should
separate instructions which refer to operands in the game stacke

For example, the instructions
121 1 0 0
324 0 0 Ad
362 0 0 Ad
would be exeouted more quickly if written as
324 0 0 A4
121 1 0 0

362 0 0 A4
The maximum overlap is obtained when alternate operands come from alternate
staoks.

The Supervisor attempts to organise the store so that instructions
and operands are placed in different pairs of stackse On the Manchester
University Atlas, wherever possible, instruotions are kept in pages 0-15
and operands in pages 16-31. The progremmer can assist the Supervisor to
do this by using the extracodes described in 12,1, These are of most use
for jobs with a large amount of data. It is then useful to request drum
transfers in anticipation, and to release from the oore store blocks which
will not be wanted again for some time.

1242.2 The overlapping of Instructions

Instructions on Atlas are overlapped as far as possible.s For ex-
ample, in a sequence of singly-modified accumulator instructions, the
conputer is obeying four instructions for one quarter of the time, two in-
structions for one fifth of the time, and three instructions for the re-
nainder of the time,

This overlapping is possible beczuse the accumulator arithmetio,
the B-register arithmetic, the function decoding, the B-store, and the
mein core store are independent of each other to a large extent. A number
of rules which ensble the programmer to gain as much advantage as possible
from the overlapping are given below, It should be noted that these rules
cannot always be guaranteed to establish the best way of arranging any
particular loop, as in some cases this can only be done by actually running
the program; nevertheless the application of these rules, as far as pos-
sible, will normally lead to a time reasonably close to the optimum peing
obtained.

(a) Instructions writing to the main store (usually referred to as
store-write instructions) should normally be in odd-numbered
locationse.-

(b) In general, B-type instructions oan be cbeyed whilst accumulator
operations (other than store-write instructions) are going on.
Only one accumulator operation can be queued up whilst a pre~
vious one (e.gs & division) is proceeding. If a third accumu-

(1.65)

(o)

(8)

(e)

()

(8)
(b)

12.2/3

lator operation is encountered, nothing further can be done
until the first one is finished. This third accumulator oper-
ation should therefore be delayed until all B-instructions and
B=tests which can be obeyed before the first accumulator in-
struction is completed, have been initiated.

Following & store-write instruction, no further instructions or
operands can be extracted until the writing operation is com-
pleted. Many typicel program loops, however, include such an
instruction, It is usually possible to have this instruction
at the beginning of the loop, and this enables the B-type in-
struction and return jump to be obeyed and overlap any accumu-
lator arithmetic still going on. As mentioned in (a) above,
the store-write instruction should preferably be in an odd-
numbered address, From these two rules, two possible ways of
arranging a loop, depending on whether it has an odd or an even
munber of instructions, emerge.

Emmgles :

1. 0dd number of instructions

Even

0dd > |Store-write

Wven | [Acouwmuletor instruction
0dd | Accumulator instruction
Even | Step B~line

0dd | Return jump

2, Even number of instructions

Even (@ [Step B-line

0dd | Store-write

Even | [Accumulator instruction
0dda | Return jump

Instructions are extracted from the store in pelrs, and, subject
to the above rules, a loop with an even number of instructions
should begin at an even address, so as to minimise the number of
store references.

Test instructions cause more delsy when successful than when
unsuccessful, and it is usually best to arrange the uncommon
case (if it can be determined) to be the one which changes ba.

Jump instructions where the jump will frequently not take place,
should preferably be placed in an even-numbered address, Note
that this does not apply to return jumps in loops, as these
fail to jump only when control leaves the loop, '

Singly-modified A-type instructions should always be modified by ‘
bm, not ba,

A delay occurs if a B-register is operated on in the Ba position
and then used as a modifier in the next instruction. This should
therefore be avoided if possible €8s by inserting some other

(1.65)

12.2/4

instruction in between. Note, however, that
124 1 0 1
300 1 2 o
is prefersble to
124 1 0 1
300 2 1 0

(1) Given a pair of accumulator instructions, one modified and one
not, the unmodifiied one should occur in the even-address, and
the modified one in the odd-address, if possible.

(J) Given an accumulator operation and a B-register operation as
an even/odd pair, they should be in this order if possible.

Where the above rules conflict, the order in which they are given
should be taken as the order of importance.

(1.65)

12.3/1

12,3 Branching

Branching is a facility which enables differcnt parts of the same
program to operate in parallel, using the time-sharing process. Such
parallel operation is of velue if some parts of the program are liable
to be held up waiting for peripheral transfers whilst other parts are still
able to proceed. It is important to note that simple operation of peripheral
devices in parallel with computing is available without recourse to bran-
ching; normally, the program itself is only held up if it attempts to refer
to the locations involved in a transfer before the transfer has been com-
pleted. Branching is an additional facility which is intended to permit
parallel operation of two or more different processes which are ligble to
be held up by peripheral transfers, where each process involves some com-
putation or organization and does not consist merely of peripheral transferss

124 3.1 Bxisting Parallel Operations

When a block transfer to or from a drum or magnetioc tape has been
initiated, by means of a drum or tape block transfer extracode, the program
is allowed to procced as long as it does not refer to the main store block
involved in the transfer, If it does refer to that block, it is held up
until the transfer has been completed.

Varisble length tepe transfers operate by using part of the main store
as a buffer. It is usually possible to keep suffieient information in the
buffer to pernit the actual transfer, between the buffer and the specified
store address, to take place as soon as the trensfer instruction is encoun-
tereds Otherwise the program will be held up until the transfer is oomplete.

Other peripheral devices, apart from the drums and magnetic tapes,
are not normally controlled directly by the progrem. Instead, the input
documents are read and stored on a system magnetic tape before the program
is initiated, and output documents are stored on a system tape and printed
after the program has been completed.

4192,5%.2 The Branch Instructions

1403 Permit Ba Branches (2 < Ba < 32)

Before any branching can take place, the program must obey an 1103
instruction, which enables the Supervisor to prepare for branching.

This instruction normally takes the form
1103 Ba 0 p

After obeying it, the program is permitted to have up to Ba live
branches, including the main program, in progress at any one time; the main
program is defined as branch O. When the Supervisor switches from one
branch to another it will preserve certain standard ircormation end also
the contents of index registers Bp, B(p +1), B(P 4 2)jecvccesccsccse, B
Note that if the Neaddress is zero all index registers are preserved, and
if p = 91 only the extracode index-registers arc preserved (these are
usually essentiel.

(1.65)

12.3/2

1404 Start Branch Ba at n (0 < Ba < 63)
The current branch of the program continues at the next
instruction, but a new branch, with number and priority Ba,
is started at address n. The highest priority is given to
the highest-numbered branch: if other branches with the same
number Ba have been defined previously, they will take higher
priority than the new branch. The main program is initially
defined as branch number C.

4405 Xill Branch Ba or Current Branch
Kill all branches with the number Ba., If Ba = 64, kill the
current branch. This prevents any further instructions being
obeyed in the specified branches, but peripheral transfers al-
ready requested will be completed.

1106 Wait until Branch Ba is Dead.
Halt the current branch of the program if any branch numbered
Ba is still live., Proceed to the next instruction when all
branches numbered Ba are deade

4107 Jump if Branch Ba Live.

Pransfer control to address n if any branch nunbered Ba is
still live. Otherwise progeed to the next instruction.

12.3,3 The Use of Branching

A brench is usually started at some point in a progran where it is
required to carry out two different processes, at least one of which is
liable to be held up by peripheral transfers. Usually, the more severely
peripheral limited process is put in the new branch, and this is given
higher priority. When the program is obeyed, the higher priority braach
is allowed to proceed until it is held up waiting for a peripheral transfer;
control is then transferred to the other branch, which proceeds either until
it is held up, or until the higher priority branch is ready to resume.
Similarly, if there are several branches, the Supervisor ensures that oon-
trol always passes to the highest-priority branch able to proceed. Each
time control is switched from one branch to another, the Supervisor stores
and restores the contents of the following registers and indicators:

The Accumulator

B119, B121, B124, B126 and B127.

The Index Registers specified in the 1103 instruction.
The Selected :iagnetio Tape Number.

B-Test, B-Carry, Accumulator Overflow (V-store Line 6).
Extracode Working-~Space.

Thus, each branch ccn use these registers as though it were one single pro-
gram uninterrupted by other branches, It is, however, necessary to ensure.
that two branches which may operate simultaneously do not use the same

main store locations, or index registers which are not preserved. It should
be noted that the selected Input and Oubput are not preserved, and therefore
input and output can each take place in only one branch at a time.

(165)

12.3/3

Once & branch has been started it ocan be regarded as a ‘live’ branch,
and it remains live, even when it is held up, until its task has been com-
pleteds When a branch has completed its task, it must die, and this it
does by obeying an 1105 instruction, usually with Ba = 64.

When one branch of a program is ready to make use of the work done
by another, it must first ensure that the work has been completed. This
may be done by obeying an 1106 instruction, which causes the current branch
of the progrem to be held up until the specified branch is dead, having
completed its task.

A simple example of the need for branching arises when it is required
to scan a magnetic tape in order to process a selected semple of the in-
formation on it. The processing rcutine and the tape-scenning routine can
then be written as two separate branches, with the tape-scanning routine as
the higher-priority branch.

Example:

— It is required to scan sections 1 to 3000 of tape 4 and to
apply a lengthy processing rcutine R3 to the informetion in about
259 of these sections, The sections to be processed are to be
identified by having a number greater than 0.32 in the first word
of the seotion. The program to do this could be written as follows:

Branch 0
1103 2 0 8o Prepare to use 2 branches,
preserving b89 - b99,
1001 4 0 1 Search for section 1, tape 4
121 89 0 2999 Set ocount for 3000 sections
121 16 0 0 Clear marker in B16
1104 1 C A6 Start branch 1 at A6
8) 1406 1 G 0 Wait until branch 1 dead
215 127 16 A‘Ig Exit if last section processed
121 10 0 4:)
1164 10 0 3) Rename block 3 as block 4
1104 1 0 A7 Start branch 1 at A7
121 90 0 A5 Set Link for returm
121 127 0 A1/3 Enter R3 to process block &
Branch 1
6) 1002 4 0 3 Next section to block 3
324 0 C KH Pirst number in secotion
321 0 0 148 Subtract 0.52
236 127 0 A8 Txit if number > 0,32
7) 203 127 89 A6 Count tape sections
121 16 0 7 ierk b16 non-zero

(Program continues on following page)

(1.65)

12,3/4

8) 1105 64 0 0 Kill current branch

0. 32
R3 R3 (Part of Branch 0)
1) L] - * L
Routine to process the

*) information in block 4

s s s }

The ohart below shows how control would pass from one branch
to the other in a typiocal sequence of operations when the program
is obeyed. Interruptions from the Supervisor and higher-priority
prograns have been exoluded because they would oomplioate the chart
without altering the sequence significantly. The sequence of oper-
ations starts at the top with the beginning of the program, runs
through the first entry to branch 1, and then cycles round a loop
in which branches 0 and 1 operate in parallel., The chart shows
branch O completing its work before bhranch 1 has found the next
section to be processed, but branch 1 might equally well be finished
first, that is, a further required section may be found during pro-
oessings It should be remembered that each entry to branch 1 takes
orly a few microseconds, whereas 64 milliseconds must elapse between
successive entries to brench 1 to read one more tape section.

See Chart on following page.

(165)

LOWER
PRIORITY
PROGRAM

12.3/5

PROCESSING PROGRAM

BRANCH 0

I‘Enter Progran -

7 Start Branch 1

BRANCH 1

Initiate Tape
Transfer

[Wait for Branch 1

[Other Computing

MImseo.

Section not
required. Initiate
Tape Transfer

N

Other Computing

Notes:

— —— cedmars vmmmee . e—

Z —
[Other ComputingTi 64 nsec.
N Required section
found., Kill
current branch
4] Start Branch 1
o Initiate Tape
gl Transfer
'3: [Eroce§§ block 4 . msee
’ _g’ Section not
£ required. Initiate
] i Tape Transfer
) 4 — e e
'S: Continue Processing 6ﬂ msec,
‘%s Seotion not T
g required. Initiate
"o Tape Transfer
: End processing
" block 4. Wait
4 for Branch 1 msSec.

Ae This loop will be repeated until a required section is found.

B.

(185)

If a required section is found, then Branch 1 will be killed.
When the current block has been processed, Branch O will
start Branch 1 again, end then process the required seotion,

See
Note

12.3/6

12,3.4 Store Requirements

When an 1103 instruction is obeyed, the Supervisor assigns sufficient
storage space for the specified number of branches. This storage space is
taken out of the main store allocated to the program, either by the job des-
cription or by a subsequent use of the extracode 1171, and will be counted
in the estimates made by extracodes 1172 and 1173; it is therefore necessary
for the programmer to know how much store is required by the Supervisor for
branching purposes. Many cases should be covered by the following table,
showing the maximum number of branches that cen be accommodated in 1, 2 or
3 blocks, depending on the number of index registers preserved.

Index ' Storage Space Allocated

Registers 1 Block 2 Blocks 3 Blocks
Preservedv : llaximum Number of Branches Permitted -
BO to 99 3 10 18

B30 to 99 4 14 : 24

B50 to 99 5 17 29

B70 to 99 6 22 32

B80 to 99 8 27 32

B90 to 99 | 10 32 -

If it is necessary to estimate the store required in some case not
covered by the above table, it is probably easiest to do this by considering
the way in which the Supervisor allocates this store. It takes 300 words
at the beginning of the first block to store branching routines, and follows
these by 5 words for each branch requested 4in the 1103 instruction. Each
branch is then allocated a further (14 4-%m) words, where m is the number
of index registers in the range O to 99 that are to be preserved. The
(11 + %m) words for one branch must all be in the seme block, and if less
than (11 + 2m) words are left at the end of a block the (11 & #m) words
for the next branch will start =t the begimming of a new block. -

(1.65)

12,4/1

12,4 Instruction Counters

As each basic instruction is obeyed, an instruction oounter is
stepped on, normally by one, but by two for multiplication orders, and by
four for division. Each time the counter reaches 2048, an interrupt occurs,
and an instruction interrupt counter is stepped on by one. This latter
counter is used by the Supervisor in monitoring the program, but may also be
read by the program using extracode 1136,

1436 Read instruction count.
. Set am’ to the number of instructions obeyed from the start of
the progrem; this will be a fixed-point integer with exponent
16, and will be a multiple of 2048,

Besides this count, the program may also use a local instruction
counter. A treppable fault will be recognized when this count expires, which .
may provide a convenient way to end an iterative loop, since the counter may
be set as well as read by program.

1423 Set local timer.
Set the local instruction counter to local timer’= 2048n
n x 2048 instructions. The Supervisor
will override any attempt to set the
counter to & figure in excess of the
amount of allotted time remaining.

1422 Read local timer.
Read locel instruction counter into ba’ = local timer
Ba in units of 2048 instructions.

(1.65)

12,5/1

12,5 Re-entering the Compiler

Most programs are compiled completely before they are entered, and
therefore it is not normally necessary to retain the compiler in store during
the program’s execution. The E=-type of directive is the only enter directive
which deletes the compiler from the store before transferring control to the
object program, and so is the most commonly used.

In some ciroumstances, however, it is necessary to enter the program,
and then compile more program later, The first entry may be fo actually
execute part of the object program, or it may be enly to set certain para-
meters. The compiler must be retained in store for these purposes, and so
either an ER or DX type of enter directive must be used. The compiler uses
store locations J3 (3/4 x 2°°) and above which should not normally be altered
by the progrem, although no check is made except when actually compiling.

The EX-directive is intended for obeying ’interludes’ during compiling;
an interlude would normally consist of a few instructions only, or of none
at all. For example, if it were required to have any ABL fault printing on
some output stream other than Output O, then a one instruction interlude to
‘select output’ would suffice. If it is only required to set parameters,
then the address specified in the EX-direotive should cause immediate re-
entry 4o the compiler; such a directive in fact occurs near the beginning
of 1100, the genmeral input routine, to determine the various optional
parameter settings. The EX-directive does not call down any library rou-
tines; if these are required in the interlude, they must be called by one of
the I-directives before obeying the EX entry. No distinction is made by the
Supervisor between compiling proper and obeying an interlude, i.e. the
'Compile/Execute’ switch is not changed.

The ER-directive is designed to allow part of a program to be compiled
and executed before reading more program, and provides most of the facilities
of an E-directive, including the compilation of any library routines men-
tioned but not called earlier in the program. The routine current when the
BR-directive is obeyed will be terminated before more program is read. (The
EX-directive does not do this,) The Supervisor recognises that an object
program is being executed, and as with the B~type of directive, the 'Compilc/
Execute’ switch is set to ‘Execute’.

Two types of list within the compiler are used in connection with
parameters in a program. The parameter lists contain all those parameters
which are determinate, and if the program refers to a set parameter, these
lists are used to replace the parameter by its value. If a program refers
to a routine or global parameter before it has been set, then this is noted
on a forward reference list, from which it is deleted when the parameter is
determinate, and hence, so long as this list is not empty, there are sone
parameters still to be set. When the compiler is retained in store, these
lists also remain, in the same state as when the enter directive was obeyede
If more progran is to be read which uses parameters to refer back to the
program compiled previously, then it is essential that the lists remain
unaltered., If, however, the subsequent seotions of program are to be
compiled independently of the earlier part, or if the same parameters are to
be used again with different values, then the lists must be cleared on re-
entry to the compiler. Different re-entry points provide for both require-
ments, and are listed belows In every case, re-entry to the eompiler does

(1.65)

12,5/2

not alter the ’Compile/Execute’ switch, After compiling program, £1-BS8
will be cleared, and B89 will contein the final transfer address. The other
B-lines may be destroyed.

P120 Vhen the compiler is re-entered at address P120, all para-
meters, forward references after EX, and * (the transfer
address) are left unchanged, and more program is read from
the current input stream. If there is no ¥-directive
before the first items are read, these will be placed in
store sequentially in the usual way, after the last item
of progrem before the previous enter directive. After an
ER~directive, library routines may have been compiled into
locations beyond the end of the written program.

P120B Re-entry at this address causes the compiler to behave as
it does when first called by the Supervisor, but the con-
tents of the store below J3 are left undisturbed. Hence

* = 1:0, and the forward reference list and parameter lists
are cleared.

The compiler may also be used as a subroutine by a program, control
returning to the main program when no more items are to be read. Again
there are two modes of entry, depending on what is reguired of the ocom=-
piler lists.

If the transfer address is written to location Y4P121, and the link
to 120P121, then re-entry to the compiler at P120 will read more program,
retaining the compiler lists. Retwn to the link address in the main pro-
grar is effected by

EP129
ERP129
or EXP129

If the transfer address is written to B59, and the link to B9O,
when the compiler is re-entered at P420EY6, more program will be recd as if
the re-entry were to P120B, except thet an attenpt to compile into store at
an address less than b89 will be faulted, aund that the transfer address will
be taken as ® = b89 unless b89 = 0, when * = 1:0, Return to the main pro-
gram is again by “ZP129 etc,

P120, P121, w«nd P129 are examples of speciel preset parameters, which
are described in the next section.

(1465)

12.6/1

12,6 Speocial Preset Parameters

Although for normal purposes only Preset Parameters O to 99 may be
used, some above 100 do exist and these cre used in speciel ways for special
purposes. In some cases use of them causes special action by the compiler;
in other cases they are used to convey information between the compiler and
the program.

P100 to P109 are in many weys like ordinary Preset Parameters; they
can be reset by the programmer and no special action is taken by the com=
pller on encountering them, However, they are initially set by the compiler
at the start of compilation and they are referred to by the compiler during
the course of compilation.

P110 to P119, if defined, way be reset by the programmer but will
have initial values set for them by the compiler. Howewer, whenever an
Equation Directive for resetting them is enovuntered, special action is re-
quired by the compiler. An attempt to set one of these parameters not
listed below is faulted.

P120 to P129 are preset by the compiler, but may not be reset by
program. An attempt to do so is faulted. They are used to convey infor-
mation from the compiler to the program.

P100 - Optional Printing

At the start of compiling £BL sets P100 to zero., Non-zero settings
of P100 cause ABL to print various kinds of information during compiling.

P100 is treated by ABL as made up of 8 octal digits abedefgh. Each
octal digit controls the printing of one kind of information, as indicated,

If the least significant bit of an octal digit is 1 the information
controlled by this digit will be printed ~ on & new line if the middle bit
of the digit is 1 end on the same line if the middle bit is €. If the least
significant bit is 0, then the other two bits are ignored. If the most
significant bit of the second digit (b) is 1, then printing on a new line
will occur when a library routine is compiled, Otherwise the most signifi-
cent bits of the digits are ignored.

P100 is preserved and set to zero before compilation of each library
routine and restored afterwards, so that there will be no other optional
printing, unless the library routine contains a 'P100 =" directive.

The kind of printing controlled by each octal digit is as follows.
A1l printing is preceded by a space, except Re L is printed on a new line.

(1.65)

12.6/2

Octal ABL prints when it meets this
digit thig
& *=p * = expression
b Ra *—= ¢ Ra
Lasb N *=gq Library routine named N compiled
c Z¥=gq Z
d this digit is unassigned and ignored
e ? P 111 = expression (see P111)
£ Ep E expression
g ERp ER expression
h EXp EX expression

where p is the value of the expression met,

m
is the current value of asterisk

[%¢ |

a and b are integers,

Some examples of useful settings of P100 are

P100 = -y4 ABL prints on R, L, ¥, Z and all types of E,
each item on a new line

P16C = J03 ABL prints on R only
P100 = J031 ABL prints on R and Z

P101 ~ Permitted Number of Zrrors

At the start of compiling ABL sets P101 to 0.2, This is equivalent
to infinity since for each error met ABL reduces P101 by 1, and when it
reaches zero stops compiling and ends the run after printing

TOO MANY ERRCRS

The program may set P101 = n where n is any expression., Compiling will
stop when n 4 1 errors have been met. P101 = 0 causes ABL to stop on the
first error met, which may be useful for a developed program.

No matter how many labels remain unset when the E directive is met
ABL lumps them all together as one error Por the purpose of counting errors.

P102 ~ Entry Despite Faults

At the start of compiling ASL sets P02 = 0,2, If any errors have
been found, an EX directive will be obeyed, but an E or ER will not, and
ABL will print

ERRORS DO NOT ENTER

(1.65)

12.6/3

and end the run,
P102 =0 allows all 3 E directives 1o be obeyed despite errors
P102 = 0,3 forbids all 3 # directives after errors
P102 = 0,1 allows E and ER but forbids EX after errors

P104 ~ Setting Private Monitor

P104 is the address of a private monitor routine, which is set uwp
each time any Enter Directive is encountered. Thus if any monitors occur
af'ter the Enter Directive (including an immediate entry to an address holding
an Illegal Function due to a wrong Enter Directive address), these will give
rise to an entry to Private Monitor according to the rules of extracode
1112 (see section 11.3)s If P104 is negative any current setting is ter-
minated.

P110 ~ Change of Program Location

At the start of compiling, ABL sets P110 = 0. A non-zero setting of
P110 specifies the d ifference between * as evaluated in expressions (say *1)
and * indicating where items are to be stored (say *2)
ieee PO =7, - %
Setting P110£0 permits the compiling of program into one set of store
addresses = *2 - for later execution in another set of store addresses - *1

(eege after ‘Renaming’ or after storing on nagnetic tape)s Thus, for ex~
ample, a program which is to be executed starting at address J3 but com-
piled initially into store starting at J1 would have the directives

P10 = J2
*=J3 at its start

P111 - Expression printing

When ABL meets the equation
P111 = expression

it evaluates the expression and sets P111 in the usual way. If the
appropriate bit of P100 is set, the value of the expression -ix immedtately
printed out.

P112 - Unused

This parameter is used by ABL on Atlas 2. No fault will occur if
the program sets P112, the value being assigned in the usual way, but the
remainder of the line on which the setting occurs will be ignored. The
compiler initially sets P112 to J3, P112 should not normally be used
with ABL on Atlas 4.

P115 -~ Change oy Input Stream

The equation P15 = n(n is any expression) causes ABL to start
reading program from the programmer’s input stream n. The rest of the
line on which P115 occurs will be ignored.

(1.65)

12.6/4

P120 - Re~cntry to the Compiler

This is described in the previous section,

P121 -~ Preset Parameter List

P121 is the address of the start of the compiler’s Preset Parameter
liste Halfword P1244n contains the value of paramneter n if it has been
sete This list can of course only be referred to by a program entered by
an ER or an EX directive. This is a list of alternate halfwords, the other

halfwords of which are used for other purposes by the compiler and should
not be disturbed.

P122 - State of Preset Parameters

- P122 is the address of the start of the compiler’s list which in~
dioates whether the Preset Parameters are set or not, Bit 41 of halfword
P1224n is a 1 if parameter n is unset, O if set., This is a list of al-
ternate halfwords, and neither the other bits of the halfwords, nor the
other halfwords should be disturbed if subsequent use of the compiler is
intended,

Example: An ‘interlude’ to set PA7 = 0 if P35 = 0 and to
leave P17 unaltered otherwise

5) 121 1 0 P35
215 127 1 P120
113 0 0 P47
121 o Jg!
117 1 0 P122¢17
124 127 0 P120
EXA5

P123 -~ Characters Count with C directives

P123 indicates the number of characters read by means of the pre=-
vious C directive, described in section 5.10,.

P129 ~ Return from Compiler

P129 is the return address when the ABL compiler is used as a
subroutine (see previous section).

(1.65)

12.7/1

12.7 Private Library Routines

12.7.1 Library Routine Titles

Library routines are given numbers and names; the program refers to
them by number, but the name may be useful 4o indicste their purposes The
standard input and output routines, described in Chapter 8, have been given
nares as follows:

11 GENERAL OUTPUT

100 GENERAL INPUT
199 LINE RCONSTRUCTION

1199 is used by 1100, and hence, if the library routine is being com~
piled implicitly, (whether by en ‘L’ directive or by an Inter directive),
1199 will automaticelly be compiled with I100 because the latter refers +o
it, but, if it is required to compile the "input library’ explicitly into a
part of the programmer’s store area, then it is necessary to use both of
the directives. :

1100

1199

124742 Undefined Library Routines

All undefined library routines heve the name NCNEXISTENT and there is
a special device to make the optional printing as descrived for P100
(section 12.6) compulsory for non-existent routines. Ior example, output
such as
110 NONZXISIEIT * = 2:36.53

will result from either an attempt o call for I10 explicitly or when an
attempt is made to compile it by an L or Znter Directive when it has been
referred to implicitlye. The latter would slso result in monitor printing
about unset labels,

Any defining of a Private librery routine (see below) will cause
suspension of the NONUXISIENT monitoring for that routine.

12.7.3 Freparing a Private Library Routine

Private Library Routines may be incorporated in the normal program
input strean and may be referred to in the progr m in the same way as publio
librery routines.

whe routine is headed by two lines:

RLe
< Nane s

where ¢ is the number assigned to the library routine and ¢ Neme s is the
nane of the routine., If no name is required, this line must be left blank,
and then a blank title will appear in any optional printing, The Nenme must
not consist of the two-character record ZL,

The routine is verminated by the two-cheracter record ZL, This is

not line-reconstructed and may not contain any spaoes, erases, backspaces,
.avs etc,

(1.65)

12.7/2

The library routine may consist of a single routine (routine 0) or of
one or more routines headed by routine dircotives and optionelly terminated
by Z directives in the usual way. It may contain any of the normal ABL
forms except the directives :

L, La, La,b, ER expression, E expression, Rlo

A1l will be monitoreds No T or C directive within the library routine may
be followed by the two character. record ZL.

¥hen the RL directive is encountered, the library routine following is
simply copied character by character into the compiler’s store area. The
routine is not, at that time, compiled or placed in the programmer'’s store
area. This is achieved in the normal way, by an E, ER or 'L’ - type of di~-
rective.

If a private library routine is given the same number as a publio
library routine, it replaces the public one for the remainder of that pro-
gram. This is convenient for the development of new versions of existing
public routines, -

Private Library Routines must precede any calls for them in the body
of the program. The best place for them is at the beginning of the program
stream.

L private library of routines required by people working in some
linited field (e.g. properties of steam) may be formed by putting the rou-
tines on to a titled paper tape (as pseudo-data) and terminating them by
P115=0. The master programmer may then write, for example,

INpUT

15 STERAM LIBRARY
in his Job Description, and

P16 =15
ag the head of his program to incorporate these routines effectively as
ebove.

Each private library routine incorporated in the way described in
this section counts as one line from the point of view of line counting for
error monitoring of the subsequent program.

The directive
P15 = expression

within a library routine, will not cause monitoring, although it should
never normally be neceded or used. Its effect is in fact to cause switching
of the input stream after completing the compilation of the current library
routine or routines at the point where these are compiled (i.e. at an L or
Enter directive).

/. A oo N

12,73

12.7.4 Incorporating a new Library Routine into the Public Library

This is done by means of a special job, using a standard program of
the system. Essentially, the routine to be incorporated is put at the head
of the program stream in the normal way, as described above, and is followed
by the standard program. This program uses no labels as the non-empty para-
meter list would otherwise become part of the compiler,

If' the routine being incorporated is a new version of an elrsady ex-
isting routine, then this latter is not destroyed or overwritten on the com=
piler tape., The reference to it in the compiler’s library routine list is
simply changed and so it becomes ‘dead”s A separate special program (or
prelude to the above program) may be used from time to time to clear out all
‘dead” library routines, but this clears out all live ones as well, so that
after this clearing out operation all public library routines must be re-
incorporated,

12.7.5 Conventions

The f ollowing conventions are recormended for library routine writers
and users:-

(1) Communication of parameters and addresses for use at compile
time should be by routine paraneters of routine 0 of the libraxry
routine, since

(2) using routine, global or preset parameters of the master
program could easily lead tc clashes with other library
routines if' allowed, and

(b) the master programmer will not be interested in the
breakdown of the library routine into sub-routines.

(ii) If' preset parametsrs are used within the library routine, they
should be high numbered ones, say F80-99, and should be unset at
the end of the library routine., Their use should be mentioned in
the specifisation for the library routine,

(1id) Any special preset perameters used (except P100 and P123) should
be preserved and restored.

12.7.8 Referring to the master program from within a 1ibrary routine

A routine parameter of the master program can be referred to within
a library routine by treating the master program as if it were library rou-
tine O, e.g. A6/3L0 is A6/5 of the master progrem.

(165)

12.8/1

12.8 Correction of Programs, and System Peowliarities

12.8.1 Program Alterations

To corrcet a small program, it is usually simplust to re-punch the
tape or cards, meking alterations as nccessary, This is impracticable for
larger programs,but the facilities of ABL may be used to help make cor-
rections.

Very often it is possible to make corrections by overwriting certain
store locations, using a *-directive. The corrections, however, must be
compiled after the faulty items, or the faults will overwrite the alter-
ations. Henoe, the corrections are normally placed just before the enter
directive. An enter directive may cause library routines to be compiled
from the current transfer address, and so to prevent the program being
overwritten from the faulty item onwards it is necessary to insert the cor-
rection in one of the following wayse

a) 1) <lLast item of program propers
* = 6a10/4
<Corrections
R X
EA40
b) Last item of program propers
L
* = ea10/4
<Corrections
1) 2A40.

In case b), however, if data is read to Al onwards, this will also
overwrite program when the correction is inserted.

It may be convenient to end a program with

R10
1) <lLast item of program propers
P15 = 15
* — 141/10
RA40/3

so that corrections, if any, will be read from input stream 16, which ends
with P45 = 0,

When routine paraneters are mentioned in a correotion, without
specifying any routine, i,e. /n is omitted, the routine to which they refer
will be that current before the correction, rather than that at the location
to be corrected.

Difficulties may be encountered when using ‘*=' to overwrite an
item containing forward references. The result can be predicted from the

12.8/2

following notes on ABL’s handling of forward references.

Two lists are concerned, the forward reference list in which are
partly evaluated expressions containing forward references, and the para-
meter list in which are all parameters found in the progrem with their
values if set.

(1) The forward reference list is initially empty.

(i1) 'hen an expression is read it is added to the end of the for-
ward reference list, which is then condensed starting from
that expression. In the case of indeterminate parameters which
need to be evaluated before compiling continues, i.e. after EX,
?y *=, Pa=, and Pa%= when Pa has not been set earlies (a is an
integer), then the expression will be faulted as EXPRESSION INe-

DETERIIVATE (see section 11.6).

(1i1) Yhenever & routine or global parameter is set the forward re-
ference list is condensed from the beginning.

(iv) On reading an E or ER directive all necessary library routines
are read, any outstanding ‘A%=' or ‘G2’ directives are im-
plemented in the order in which they occur in the program
(this may lead to further settings of parameters and so further
condensations of the forward reference list), and if the for-
ward reference list is not empty its contents are output as
Indeterminate Expression errors.

(v) On reading EX, A% or G2= are implemented as in (iv).
Condensation of the forward reference liste

1. Por each expression in turn, each set routine or global parameter in it
is replaced by its value and the expression is partly eveluated. If no
paraneters remain unset the expression is completely evaluated; in that
case, if the expression is not the right-hand side of an 'A%’ or ‘e’
directive, it is planted in the program area or the parameter list ard
deleted from the forward reference list,. '

2. If, on reaching the end of the forward reference list, any parameters
have been set during 1, the process is repeated from the beginning.
'For example, suppose the program begins
*=0, HAD
A3=A4-1
*=0, HA3-1
Ad=4

On reaching the 4th line the forward reference list will contain the
cxpressions A3, 44-1, A3-1., When the 4th line is read the list becores

A3, Ad~1, AB-1, 4;

the ‘4’ is evaluated immediately and A4 becomes set; the 1list is then
completely re-condenseds

A3 is not yet set and so remains.
A4~1 is evaluated and A3 gets set.

((1.65)

12.8/3

A3-1 is evaluated and planted.

The list now consists of only A3 and since a paremeter was set in the
last condensation the list is re-condensed.

Ad gets evaluated and planted.

It is seen that in this case the half-word ends with the value of A3,
i.e. 5.

If a routine or global parameter is optionally set more than once,
but is not set otherwise, then the first optional setting will be imple-
mented. The subsequent opticnal settings will not be checked for faults.

A different mode of correction uses the library facilities of the
ABL compiler., A copy of the compiler would be dumped initially onto a pri-
vate magnetic tape, and subsequently used to compile routines as a library
on to the tape. As these routines are corrected, the new versions are in-

troduced, replacing the faulty library routines as desoribed in section
12704

1248, 2 Further Peculiarities

- Floating-point numbers may be represented in the form a(b:c):d or

Ka(b:c):d as described in section 5.11. Although the number may be within
g 2 I8

the range of the accumulator, compiling it may cause exponment overflow un-
less the following three limitations are observed.
(1) [|o4e] <100
(i) |p| < 1000
(iii) a consists of not more than 20 digits
When a parameter optionally set by a 2= directive is actually set

elsewhere, the right hand side of the equation for the optional setiings
ngy not be checked.

After the finsl ABL fault printing, no new line is output.

ABL will read program incorrectly after 8191 = 2% - 4 printcd lines
without the implicit setting of a routine parameter by lebelling.

In fault pointing, the line count will be taken modulo 23,

No check is made that function codes exist. One and two digit
functions are right justif'ied into the function bits.

When obeying program, the compiled value of * will be different from
the current value of control, as b127 is stepped on by 1 before starting
to obey an instruction. Thus

121 69 127 ¥
would, set ¥69' =1, For the same reason
121 127 427 -1

causes a loop stop.

(16)

12.8/4

When more than twelve digits in a number are printed by the general
output routine I, digits after the twelf'th may be wrong. I1 also nay give
exponent overflow attempting to print the following numbers:-

Non~zero Hantissa Exponent
- +127
+ xX(x £ ~1) -127
+ X ~128

(1,65)

12,9/1

12,9 Compiler amd Supervisor Extracodes

The cuxtracodes given below are used mainly by system programmers,
They complete the list of Atlas 1 extracodes.

1126 v7' =n
end hoot if' the least significant integer bit of n is 1. (bit 20)

1127 ba' =v7 & n
Mask the digits of the engineer’s handswitches with n, and rcad them
to bits 16-23 of Ba,

Line 7 of the eentral computer V-store consists of 8~bits, Only
bits 16-23 may be read, being set from the engineur’s handswitches., Other
bits are read as zero, Bit 20 controls the hooter ani may be set by pro-
gram; writing to the other bits is ignored.,

1140 Read 'parameter’ Ba of program to store starting at location S,

Ba Parameter
0 Job title (10 words)
1 Computing time estimate, in seconds, in digits
0-23 (One half-word)
2 Execution timc estimate, (One half~word)
3 Number of store blocks required, in digits

1-11 (One half-word)
'Pareneter’ in Job Description (Cne~-half-word)

5 Logical tape numbers defined (8 hal{-words).
The §°* digit (0 < j <15) of the ith
hglf-word is a 1 if tape number 16 i +J is
d.efinedo

6 Inputs defined (One half'-word).
The i'® digit (0 <i <15) is'1 if input
stream 1 is defined,

7 Outputs defined (One half'-word) As 6.

1141 Define Compiler

Da = Tape Number to which the compiler is to be written. If Ba = 127,
and if the compiler neme specified (see below) appears in the Super-
visor Directory, the compiler will be written to the current Super-
visor tape, In this case there will be two loop stops with J70707070
in B120 since this extracode will. use 1143, 0, 0, 0s1 and 1143, 0, 0, 0.2
(zee relow,
The five half-words S to S+2 contain the following parameters:

a) First four characters of name.

b) Second four cheracters of name,

c) liain store starting Address (of where the compiler is now)e

d) Main store finishing Address (of where the c ompiler is now)e

(1,65)

12,9/2

) Actual main store starting Address (of where the compiler
is te Pe placed when in use).

Notes:

i) The compiler name should be right justified within each hglf-
word, but the first four characters should be put in the first
half-word,

€eSe ABL = J00414254, .0
HARTRAN == J5041 6264, J00624156

ii) If the first four characters are zero, tihe second four will be
used as the starting block address (digits 0 to 21) of the com=-
piler on tape, This facility cannot be used when Ba = 127,

iii) The starting address and the actual starting address should have
bits 12 to 23 zero, and the starting address must be greater
than zero, since the block before this is used to set up the
compiler title block,

iv) The following fault indications mey be printed:
COMPILER NAME NOT LISTED
COMPILER NOW U/S TAP: FAIL
COMPILER TOC BIG

WRITING TO SPECIFL.D BLOCXS ON SYSTEHM
TAPE IS PROHIBITD

The first and third can only occur if Ea = 427, The fourth
implies the facility described in Note (i1) has been used with

1142 End compiling

(1) If Ba s 0, set Conpile/Exeoute,switch to ixecute, and reduce
store allocation to that specified in Job Description. Lose
all store bl.cks with block labels greater than or equal to
digits 1-11 of ba, unless ba less than 0, in which case lose
no blocks. Transfer control to address n, unless n less
than 0, in which case ind Program,

(i1) If Ba = 0, do none of the above; the only effect of this
extracode is then to inform the Supervisor that the ocopy of
the compiler being used has been, or may have been, spoilt,
so that a new copy must be brought from magnetic tape for any
subsequent job. The Compile/Execute switoh is not changed.
This extracode is useful where g compiler may have been spoilt
by an intverlude,

1143 Reserve Supervisor Tape
Ba should be zero

n shouwld be 0.1, 0.2 or 0, with the following meanings:

n= 0.1 The Supervisor will come to & loop-stop with J70707070 in
B120 waiting for the Write Permit switoh to be switched on
on the Supervisor tazpe. When this has been done, the

(1.65)

12.9/3

progrem will be allowed to write to, or read from, the
Supervisor Tape (logioal number 127), and normel use of
the tape (e.g. reading compilers) will be halted,

n= 0.2 The Supervisor will come to & loop-stop with J70707070
in B120 waiting for the lrite Permit switch to be switched
off on the Supervisor tape, after which normal use of the
Supervisor Tape will be resuned,

n=20 The Supervisor Tape will be reserved as with N — Oe1e
but for reading purposes only, There will be no loop
stop, but 1143, 0, 0, 0.2 must be obeyed after reading,
in order to release the tape for normal purposess This
facility is used if it is necessary to print out part
of the Supervisor tape,

An operator request will be necessary before using this extrécode.

1147 Call Compiler

(1) If n is even (digit 23 = 0), then n will be interpreted as a
compiler number, and the compiler in question will be called
from the Supervisor Tape and entered at the address specified
by ba. The numbering of the standard oompilers is given in
Part 1 of the Operator’s ianual (CS 411), This facility is
used by the Supervisor, and by programs using oompilers as
subroutines.

'(ii) If nis odd (digit 23 = 1), the compiler willbe called from
block b of tape a, where & = digits 15 to 21 of n
b=4digits 2 to 14 of n

It will be entered at ba.
In both cases, if ba = 0, the standard entry point will be used,
With 1150 and 1151, be, P ard K are as defined in sedtion 12,1,
1150 Assign ba blocks, labels P to (P +ba =1) to overflow K.

This extracode ensables o program or compiler to temporarily hand
blocks to the Supervisor, which may write them to the system dump
tape. Subsequent use of these labels in the program causes new
blocks to be assigned, The block labels are retained in the ’over-
flow’ region and additions to this reglon must bear distinct labels,
If ba = 0, one block is transferred.

1151 Set up ba blocks, labels P onwards, from overflow K.

This extracode recalls blocks previously written to the overflow
region by use of 1450, Any existing blocks having these labels are
overwritten. If ba = 0, one block is recalled, If these blocks do
not exist in the overflow region, the program is monitored.

1156 Enter extracode control at n if the ‘In Supervisor’ switch is set.

This extracode is used by various Supervisor Extracode Routines
which are obeyed on main control, If the ‘In Supervisor’ switch
is not set, the program will be monitored.

1157 Enter extracode control at n if the ‘Process’ switch is set.

This may only be used by Supervisor routines such as the monitor
called in during the running of a main progranm,

(1465)

Appendix A

References

Cs
Cs

Cs
Cs
CSs
CSs
CSs
CS
Cs
Cs

CA

Cs

Cs
Cs
Cs

TL

TL

308B
318B

349B/TL 1314
377

378B/TL 1255
3794/5068
384

390

hox

4o2/5052

405/5055

Lhii

428
Ls2
4L60/TL 1254

812

1685

Punched Tape Codes (5~ and 7-track).

Making a Fortran II program suitable
for use with the Atlas Fortran Compiler,

Atlas « ABL Programming Exercises,
Algol 60 Report.

Atlas Algol Reference Manual;
Atlas

Summarised Programming Information,

Algol 60 Programming Primer,

Atlas Fortran Programming Primer;
The Analysis of Plane Structural Frames,

Extended Mercury Autocode for Atlas and
Orion, :

Traffic Assignment,

Atlas 1 Operators! Manual:
Part 1 -~ Central Machine and Supervisor,
Part 2 -~ Peripheral Equipments,

Description of the L.P. Input scheme,
A glossary of Atlas 1 terms;

Preparing a Complete Program for Atlas 1,

Features and Facilities of Atlas Basic
Language,

The Atlas 1 Supervisor, Operating System and
Scheduling System,

(7.67)

B/1

Appendix B
Notation

Most symbols are used with two completely different meanings.
The interpretation to be given to a symbol depends on its
context. A convenient division is whether it is used in
describing the arithmetic or the basic language, so the notation
is listed under these two headings,

1. ARITHMETIC

Lower-case letters are used for suffices and for the content of
a location, the location being in upper-case letters., The
result of an operation is denoted by a prime. Thus, s is the
content of address S, and am' = am + s means the content of

Am after the operation is equal to the content before plus the
content of S,

(a) sSuffices
x the argument of the prefixed location
v the‘exponent of the prefixed location

: two consecutive registers, starting with the
one suffixed

* the register following that suffixed
(b) Accumilator

A the full double-~length accurmulator, holding ax
79~bit mantissa az and 8-bit exponent ay

al the 48-bit floating-point number formed from 1,

1ls and ay
am the 48~bit floating-~point number formed from m and ay
ag the single-length number which is obtained by

standardising, rounding and truncating the contents
of the accurmmulator

L the less~significant half of Ax, of 39 bits with
no sign

Ls the sign bit associated with L

M the more-significant half of Az, of 40 bits, the
most-significant bit being the sign digit

AO accumulator overflow

Do division overflow

E or EO exponent overflow

Q standardised

R rounded, by forcing a 1 in the least-significant
digit of M if L is not clear

R+ rounded, by adding a 1 to the least~significant

digit of M if the most-significant bit of L is a 1

(1.65)

B/2

(c) General

B any B-register (index register)

Ba the B-register specified by the Ba digits of an
instruction

Be the B-carry digit

Bm the B-register specified by the Bm digits of an
instruction

Bt the B-~test register

C the main control register (B127)

c() the contents of the location specified within
the brackets

E the extracode control register (B126)

P the function digits of an instruction

G the logical accumulator (B98 and B99)

I the interrupt control register (B125)

N the unmodified address part of an instruction

(a 24~bit number with the point one octal place
from the least-significant end).,

n the modified address part of an instruction
regarded as a 24-bit number with the point one
octal place froum the least-~significant end

S the address of a store location., A full-word
address in accumulator instructions (digits
21-23 ignored), a half-word address in B-register
instructions (digits 22 and 23 ignored), or a 6-bit
character address (all digits relevant)

v the V-store

Va register a of the V~store.

X signifies extracodes suitable for fixed-point
working,

2. BASIC LANGUAGE

In practice no distinction is made between capital and small
letters, though capitals are used here. However, as an aid

to clarity, it is sometinmes advantageous to use lower case
letters for the separators m, n, v, x and q. Small Greek
letters a, B, are used for 21-bit decimal integers, k for

the octal number in the 3 least-significant digits of a 2hk-bit
address, and 0 for a general octal number of up to 8 octal
digits,

Aa Parameter o, (0 < 0 < 3999), of the current routine

B An operator in an expression, causing bits 12-23
of the previous element to be set to Zero
i.e. it gives a "Block Address"

c Introduces a string of characters on the next lime
which are translated into internal code and
placed in successive character positions

(1.65)

Dy

ER

Ga

Jo

Ko

Ko.lkt
La .k

T or
To=-8

va

Ua or
Uo=g

B/3

An operator, causing the previous element to be
logically shifted down a places

The enter directive, causes the compiler to
evaluate any used parameters etc., insert library
routines, delete the compiler and cnter the program

As E but the compiler is not deleted and may be
used again :

The enter interlude directive, to enter a short

rrogram for any reascn during the compiling process

Introduces one or more floating~point numbers on
a line, after some expressions otherwise
interpreted. Also, if necessary, increases ¥ to

the next full-word address

Global Parameter o (0 <« < 3999)

Subsequent expressions cn a line are interpreted
as 24-bit words and, if necessary, * is increased
to the next half-word address

0 is octally justified to the left, i,e, the most~

- significant digit goes into bits 0-~2, the next

into 3-~5 etc,
O is octally justified to the right, to bit 20,

i,e, the least-significant digit goes into bits

18-20, the next into 15-17 etc,
As Ko, with k going into bits 21-23

Library routine number @, copy k. (.k is omitted
if only one copy of the routine is wanted)
(e=1 %o 1999, k = 1 to 1999)

Alternative to &

A separator which non-equivalences the element
before it with the element after it in an
expression ‘

Preset parametera (0 <a < 99 normally)

A separator in an expression which divides the

element before it by the element after it,
placing the result in digits 0-20

A directive defining the beginning of routine

@ (0 <ax< 3999)

Expressions after the directive S are interpreted
as 6-bit characters, i,e. only bits 15-20 of the
expression are used

The title is copied to output channel a or
channels ¢ to B inclusive

An operator causing the previous element to be
logically shifted up @ places

Unset preset parameter a, or a to 8 inclusive

(1.65)

B/k

A% A separator in an expressicn. The element before
it is OR-ed with the element after it
W An operator in an expression, causing bits 0O=11

of the previous element to be set to Zero, i.e,
it gives an address within a block

X A separator. The element before it is multiplied
by the element after it

Ya ¢ is placed in bits 0-23 (instead of bits 0-20)

z A directive indicating the end of a routine

* The address :f the first character position in the

location where the item is placed. If used in an
expressiox onr the right-hand side of a directive,
then * is the address of the next character
position

l Afl subsequent characters up to NL are ignored
(I is not a2 terminator)

£,m Alternatives to |

[] All chezracters between square brackets are
ignored., Rracket nesting to any level is allowed

. Alternative to multiple space as a terminator

& A separator which logically ANDs the clement

before it with the element after

a special secparator used in
(a) an element o :2§. ¢ modulo 2'2 goes to bits
0-11 and 8 modulo 2 to bits C¢=-20, added to a

(b) a floesting-point number N (¢ ¢ 8) : v 8
where the value of the number is N x 10% x 8
and the exponent is forced to Y or standardised
if Y is omitted

/ (a) in a paraceter, / sepzrates the parameter
nuitber and routine number
(b) an altermative to :

'(prime) an operator which forms the logical binary
complement i,e. it replaces 1's by O's and O's
by 1's

? (a) in the context A & ? = expression, 4 a is
only set to the given expressioi: if no other
definite setting of A occurs before the program
is entered.

Similarly for G a ? = expression

(b) in the context Pa ? = expression, P a is

set equal to the given expression unless P o is
already set, in whic. case the directive is ignored
(¢) in the context ? expression, causes the
compiler to ignore the rernainder of the line if

the value of the expression is gero.

{1.65)

c/1

Appendix C
V-Store Addresses of Peripherals

Fach peripheral is allocated one or nore words in a part of
the V-store asscciated with its particular type of equipment,

A V-store address is identified by having 6 as its most-
significant octal digit; furthermore, since cnly the more
significant haif-words are used, the least-significant octal
digit of the address is always zero,

That part of the V-store asscclated with the peripherals is
the first 256 words of the block beginning with J600k4,

To each type of equipment there corres-onds 16 consecutive
words, so that peripheral p of type q is allocated the V-store
address

J600L + 16q + p.
The type number q is defined in the following table:~

q Equipment V~store address of
equipment 0 of each type
0 Card Readers J60040000
Spare (Lord-n only: J60040200
High Speed Data Link)
2 TR7 Paper Tape Readers J60040C400
and N.Z,P, Tape
3 Grapzical Outputs J60040600
4 Anelex Line~-printers J60041000
5 i.B.M, Hagnetic Tape J60041200
6 Fast Paper Tape Funches J60041400
7 TR5 Paper Tape Readers J60041600
8 Teletype Punches o J600L 2000
9 Card Punches (and, J60042200

Manchester only,
X-ray Diffractometer)

10 Svare (lManchester only: J60042400
A.T. & E. On-~Line Data
Links)

11 Teleprinters J60042600

The addresses above are all for equipment O of the type
indicated, Card Deader 1, for example, wou:ld be addrassed
by writing J60040010,

(1.65)

D/1

Appendix D

Character Codes

The following table lists all the available Atlas Internal
Code characters together with their external representations
in terms of punchings on 7~track tape, 5=-track tape, and
punched cards, using the standard Atlas character codes for
these media,

The 7~track tape code is the I.C.T./Ferranti Orion/Atlas code,
The 5-track code is the standard I.C.T./Ferranti code as used
on Fegasus, Mercury, Sirius, Atlas and Orion. The card code
is the Atlas Fortran card code.

Also in the table is an indication of which characters are
available on the Anelex Line-Printer,

Some characters are designated "Unassigned". This indicates
that no external printing characters have been assigned to
these Internal Code characters, Most conpilers and Input
Routines treat these as Illegal Characters, However, these
characters have had 7-track paper tape punchings assigned to
them., This serves two purposes: (i§ it means that, if at
some later date characters are assigned to these paper tape
punciings, then Internal Code characters are available and
assigned to correspond to them, and (ii) it means that, since
there is some internal representation for every 7-track paper
tape code with odd parity, it is possible to use Internal Code
representation for parity-checked "binary" information, rather
than use pure "3inary" mode. However, it should be noted that,
since the Supervisor treats the shift characters and the

New Line characters in a special manner, the internal
representation will not be an exact "image" of the external
punchings. It should also be noted that some of these
Internal Code characters are used by non-standard external
codes to represent non-standard characters., Thus in all cases
special care should be taken in using these characters.

One character (Outer Set 02) is designated "Spare". This
character has no external printing assigned to it nor any
7-track paper tape code., It may however be used by non~standard
external codes, and thus care should be taken over its use.

Internal Code character 00 (inner and Outer set) is designated
"Not Assigned". This character is reserved for special
purposes by the compilers and the Supervisor. It will never
have a character assigned to it, and should never be used by
normal programs,

Certain characters are not available as standard on any input
medium, and may be treated as "spare" by input routines (for
example, L100 treats them thus). They are

Guter Set 03 &
Outer Set 35 10
Outer Set 136 11

(1.65)

D/2

They have the meaning as shown when uscd as output characters
destined for the line-printer.

Certain other characters have alternatives given in
parentheses. This is because the characters are alternatives
in one or more of the relevant external codes. (For example,
Inner Set 13 is listed as 7 or £; these are alternatives on
7-track tape, 5-track tape and cards.) However, in the case
of the line-printer, cnly the first character so listed is
relevant, and, except for %, the other character aprears
elsewhere in the table for line-printer purposes,

Note that, in the column for 5=-track tape, the 5-track tape
code is given with the sprocket hole after two information
holes and not three., This is the reverse of the normal
convention and is done because the form as printed corresponds
to the internal binary representation of the character when
"Binary" mode for Input or Output is in use,

The Fault character (77 Inner Set) has no external
representation. It is used under certain circumstances on
Input by the Supervisor as a translation of any external
character which has no Internal Code representation,

late {02 Inner Set) is treated as a single space by the
Supervisor on output equipment where it does not otherwise

The external shift characters (06 and 07) are ignored by
the Supervisor for equipments where they have no relevance
(e.g. the line~printer),

The fifteen symbols

tot[] <>=_]?,2a580

are on the fourth quadrant of the line-~printer wheel. If none
of these symbols are used in a line, the time to print the line
is _! minute; otherwise it is Ll minute

iov0 s1e

Notation:

FS Figure Shift

LC Lower Case

LS Letter Shift

UC Upper Case

** A paper-~tape clharacter appearing in both shifts

+« The character concerned is not availa®ble on this
peripheral,

(1.65)

D/3

Internal Code -~ Inner Set

Internal 7-track code 5-track code Atlags Fortran Anelex
Character code (binary bits (binary bits card code Line-Printer
(octal) and case) and shift) (holes punched) (availability)
(Yot Assigned) 00 “ oo . .o
Space 01 ¥* 0010.000 #S 01,110 None Yes
Tabulate 02 ¥% 0000,100 .o - ve
Backspace 03 ** 0010.101 oo .o .o
Shift to outer set 04 oo oo .o .a
Shift to inner set 05 .o oo . .s
Shift to LG/IS 06 ¥% 010,110 ** 11,011 . .
Shift to UC/FS 07 ** 0000.111 ** 00,000 . "
(Oven brackets 10 IC 0111,000 FS 10,100 10,8,4 Tes
) Close brackets 11 IC 0101.001 FS 01,100 10,8,4 Yes
s Comma 12 LC 0101,111 FS 11.110 0,8,3 Yes
® (£) Pi (Pounds) 13 IC 0111.011 IS 01,111 11,8,3 Yes
? Query 14 LC 0101.100 IS 10.111 11,8,5 Yes
& Ampersand 15 IC 0111.101 oo 8,5 Yes
* Asterisk 16 LC 0111.110 FS 11,000 11,8,4 Yes
/ Oblique 17 UC 0011,111 FS 11.101 0,1 Tes
0 Zero 20 UC 0106,000 FS 00,001 o] Yes
1 21 UC 0110,001 FS 10.000 1 Yes
2 22 UC 0110,010 FS 01,000 2 Yes
3 23 UC 0100,011 TS 11,001 3 Yes
4 24 UC,0110,100 FS 00,100 4 - Yes
5 25 UC 0100,101, FS 10,101 5 Yes
6 26 UG 0100,110 FS 01,101 6 Yes
7 27 UC 0110,111 ¥S 11,100 7 Yes
8 30 UC 0111,000 FS 00,010 8 Yes
9 31 UC 0101,001 FS 10,011 2 Tes
< Less than 32 IC 0100,011 .o 0,8,5 Yes
> Greater than 33 LG 0110,100 FS 10,001 10,8,5 Yes -
= Equals 34 IC 0100,101 FS 01,010 8,3 Yes
+ Plus 35 UC 0111,101 FS 01,011 10 Yes
-~ Minus 36 0C 0111,110 FS 11,010 11 Yes

«+ Point 37 UC 0101.111 ** 00,111 10,8,3 Yes

(1.65)

D/4
Innor set (continued)

Internal 7-track code 5-track code Atlas Fortran Anelex
Character code (binary bits (binary bits card code Line~Printer
(octal) and case) and shift) (holes punched) (availability)

'Frime (alternative :

n (letter n) on /0 IC 0100,000 FS 10,111 8,4 Yes
5-track tape only)
A 41 UC 1010,001 LS 10,000 10,1 Yes
3 42 UC 1010,010 LS 01,000 10,2 Yes
¢ i3 UC 1000,011 LS 11,000 10,3 Yes
D L4, UC 1010,100 IS 00,100 10,4 Yes
) 45 UC 1000,101 LS 10,100 10,5 Yes
F 6 UC 1000,110 LS 01,100 10,6 Yes
G L7 UC 1010,111 LS 11,100 10,7 Yes
H 50 UC 1011,000 LS 00,010 10,8 Yes
I 51 UC 1001,001 IS 10,010 10,9 Yes
J 52 UG 1001,010 IS 01,010 11,1 Yes
K 53 UC 1011,011 IS 11,010 11,2 Yes
L 54, UC 1001,100 1S 00,110 11,3 Yes
M 55 UC 1011,101 1S 10,110 11,4 Yes
N 56 UC 1011,110 IS 01,110 11,5 Yes
0 57 UC 1001,111 IS 11,110 11,5 Yes
P 60 UC 1110,000 LS 00,001 11,7 Yes
¢ 61 UC 1100,001 IS 10,001 11,8 Yes
R 62 UC 1100,010 IS 01,001 11,9 Yes
S 43 UC 1110,011 LS 11,001 0,2 Yes
T 64, UC 1100,100 1S 00,101 0,3 Yes
U 65 UC 1110,101 IS 10,101 0,4 Yes
v 66 UG 1110,110 LS 01,101 0,5 Yes
W 47 UC 1100.111 IS 11,101 0,6 Yes
X 70 UG 1101,000 IS 00.011 0,7 Yes
4 71 UC 1111.001 LS 10,011 0,8 Yes
Z 72 UC 1111,010 IS 01,011 0,9 Yes
(Unassigned) 73 (Uc 1101.011) ., . .
(Unassigned) 74 (UC 1111,100) . oo .
(Unassigned) 75 (UC 1101,101) . .o oo
(Unassigned) 76 (UC 1101.110) . .o .
Fault 77 os .o oo ve

(1.65)

Internal 7-track code 5-track code Atlas Fortran
(binary bits (binary bits

Character

(Not Assigned)
Space

(Spare)

£ Pounds

Shift to outer set
Shift to inner set
Shift to LC/LS
Shift to UC/FS

(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
Stop

Punch On
Punch Off

¢ Colon

Z (x) Pni (letter x)

/5

Internal Code = Outer Set

,code .
{octal)
00
o1
02
03
04
05
06
c7

10
11
12
13
14
15
16
17

20

[Open square brackets?l

] Close square
brackets

* Arrov

2 Greater than or
equal. -

Not equal

— Underline

| Vertical bar

2 (®) Superseript 2

(Percent)

(v) Curly equal
(Letter v)

a (10) Alpha (Ten)
(11) Beta (Eleven)
%—Half

10 Ten

11 Eleven
(Unassigned)

1]

™

22

23
24

25
26
_7
30

31

32
33
34
35
36
37

card code

Anelex
Line~-Printer

and case) and shift) (holes punched) (availability)

33

*¥¥%
¥*3

(%
(%%
(%%
(**
#%
3t

*3%

& 8

&8 8

uc
uc
uc

(uc

0010,000
.

0010,110
000C,111

0001,000)
0011,001)
0011,010)
00Mn.,011)
0011,100
0001101
0001,110
0011.111

0110,001
0110.010

0100,110
0110,111
0101.010

0101,010
0111,011
01.02.,100

1006,000)

(1.65)

FS 01.110

¥* 11,011
¥% 00,000

*0
e
L]
LX)
LR]
e
L2)

FS 00,011

L

FS 00,101
FS 01,001

¥S$ 10,010

FS 00,110

.o
None
.e
ve
.o
20

.6,8

11,7,8

[X]
Yes
Yes

*e

Yes
Yes
Yeg

Yes
Yes
Tes
Yes
Yes

/6

Vuter set (continucd)

Internal 7-track code 5-tirack code Atlas Fortran Anelex
Character code (binary bits (binary hits cerc code Line-Printer

(octal) and case) and shift) (holes punched) (availability)

(Unassigned) 0 (LC 1000, 000)
a Al L0 1010,001L - . . .o
b 42 LT 1010,010 . . .
e 43 LC 1000,011 . . o
d A LC 1010,10C ‘e . .
e 45 1C 1000,101 . . .o
T L5 IC 1000,110 . e .
< 47 L¢ 1010,111 e .o ve
h 50 LC 1011,0CC . . .
i 51 I$ 1001,001 . e .e
j 52 LC 1001,010 .o . .
k 53 IC 1011.011 . . .
1 54, L3 1051,100 o . .o
T 55 LC 1011,101 . .o e
r 56 LC 1011.110 e . .
o 57 IC 1C91,111 . . .
5 60 IC 1110.000 . . .
9 61 LG 1100,001 . .o .
r 62 IC 1100,010 . . .
s 63 I 111C,011 .o .e .e
3 6., ¢ 1100,100 . - .o .
1 65 IC 1110.101. . . .e
s 65 10 1110.110 . . .

67 IC 1100,111 . . .o
P 70 I¢ 1101,000 . . .
7 71 LC 1111,001 . .o .
z 72 LC 1111.010
(73 (I 1101,011) . . .
(Unr,-,::f:ignefl) 77 {Lc 1111,1C0) .o .e "e
(Unassigned) 75 (LC 1101.101) .o .o .
{(Uracsisned) 7% (I¢ 1101.110) . . .
Ereoe 77 ** 1111.111 ** 171,111 . .

E/1

Appendix E

Sunmary of Extracodes

Allocation of Function Numbers

There are 512 function numbers available for extracodes,
1000~1777., Of these, 1000-1477 are singly-modified instructions
i.e, B-type, and 1500-~1777 are doubly-modified i,e. A-type.

The extracodes are divided into sections as shown below:

1000 -~ 1077 Peritheral routines,

1100 ~ 1177 Organisational routines

1200 - 1277 Test instiuctions and character
data-processing.

1300 -~ 1377 B~register operations,

1400 ~ 1477 Complex arithmetic, Vector

arithmetic, and other B-type
accumulator functions,

1500 ~ 1577 Double~length arithmetic and
accumulator operations using the
address as an operand,

1600 - 1677 Logical accumulator operations,
trigonometric routines and half-
word packing.

1700 - 1777 Logarithm, exponential, square root
etc,, and miscellaneous arithmetic
operations,

Wiere possible, the last two octal function digits correspond
to those of similar basic operations.

The extracode function is listed at the left of the page and
followed by a reference and a description, The number of
basic instructions obeyed is given at_ the right of the page.
This number includes the extracoce instruction and its entry
in the jump table; - where necessary a range or formula is
given,

The extracodes are listed in numerical order, and are also

classified by type; some extracodes are tlierefore given twice,
Extracode Ref, Description Instructions
Obeyed

Organisational and Peripheral Extracodes

E.1 Magnetic tape
Block Transfers

1001 9.3.1 Search for section n on tape By,
1002 9.3, 1 Read next K+1 sections from tape
Ba to store blocks, P, P+1...., P+
1003 9.3.1 Read previous K sections from Bgq to
P+I{, e e 0y P.
100k 9.3,1 Write P, P+1,,., P+X to next K+1
sections on Bg '

(1.65)

Extracode Ref,

1005
1006

Organisational

1007
1010
1011
1012
1013
1014
1015
1016
1017
1020
1021
1022
1023
1024

9.3.1
9.3.1

905’1
9.5.1

*
a
.

OO0 VOVVVOVOVO\OO
® e ® & & & & o 8 ¢ @
Uittt Uttt
DDV NVNNNNNNNNN - =

E/2

Doscription Instructions
Obeyed

r.ove tape Bg forwards K+1 sections
Move tape da backwards K+1 sections

Instructions

Mount next reel of file Ba
Mount

Mount frece

Mount on logical channel K
Mount free on logical channel K
Write title

Read title or number

Unload

Free tape

Release tape (pass to another program)
Release mechanisms

Re~ailocate

How long?

Yhere am I?

Variable Length Organisation

1030
1031
1032
1033
1034

1035

1036
1037

VW O \0WVWVO\O

Start reading forwards

Start reading backwards

Start writing forwards

Select tape Ba

Start reading forwards from fixed
blocks

Start reading backwards from
fixed blocks

ba' = selected magnetic tape

s' = mode of magnetic tape Ba

Variable Length Transfers

1040
1041
1042
1043
1044
1046
1047

Input
1050
1051
1052
1053

1054
1055

1056
1057

Wl

Transfer

Skip

Mark

Stop

Yord search

Read next block on Orion tape
Read previous block on Orion tape

Select input n

Find selected input

Find peripheral equipment number
Test whether binary or internal
code

fead next character to Ba, Jump to
n at end of record

ba' = number of blocks read

Read ba half-words to S

Read next record to S

E/3

Extracode Ref. Description Ingtructions
Obeyed
1060 8,4 Select output n .
1061 8.4 Find selected output
1062 8,15 Find peripheral equipment type
1063 8.15 Delete output n
1064 8,15 Write character n
1065 8,15 End this record
1066 8.15 Write ba half-words from S
1047 8,15 Write a record from S
1070 8.15 Rename output n as input ba
1071 8.15 Break output n
1072 8.15 Define output n
2.4 Subroutine Entry
1100 77 Enter subroutine at s, ba' = c+1 6
1101 77 Enter subroutine at S, ba' = c+1 5
1102 7.7 Enter subroutine at bm, ba' = c+1 6
1362 7.7 Enter subroutine at n, b90' = c+1
Ze> Branching
1103 12,3.2 Establish Ba branches
1104 12,3.2 Start branch Ba at S
1105 12,3.2 ¥ill Ba. If Ba = 64 kill current
branch
1i06 12.3.2 Halt current branch if Ba is
active
11587 12.3.2 Jump to n if Ba is active
.5 donitor
1112 11,3 Set Moanitor jump to n
1113 11.4,1 Do not restart
1117 11.1.3 End program
©.7 tiscellaneous Transfers
™MW 7.8 ba' = clock
1121 78 ba! = date
1122 12,4 ba! = local instruction counter
1123 12,4 set instruction counter = n 2048
1136 12,4 Read instructisn counter
1124 7.8 v6! = n 3
1125 7,8 ba'! = v6 & n 4
i126 12,9 v7! = n (hoot) 2
1127 12,9 ba' = v7 & n (read handswitches) 3
L.> Traps
1131 7¢5.2 See E,12 Character Data Processing
1132 11,2 Set trap/normal mode
1133 11.2 ba' = trap address
1134 11,2 Trap
1135 12,1 See E.10 Store
1136 12.1 See E.7 Miscellaneous Transfers

(1.65)

E/4

Extracode Ref, Description Instructions
Obeyed
E.9 Compiler and Supervisor

1140 12.9 Read parameter Ba to s

1141 12,9 Define Compiler

1142 12,9 Znd compiling

1143 12.9 Reserve Supervisor Tape

1147 12.9 Call compiler n

1150 12,9 Assign ba bloclis, labels P to
(P + ba-1), to overflow K

1151 12.9 Set up blocis P onwards from
overflow K

1155 12,1 See E,10 Store

1156 12,9 “nter extracode control at n if the
"In Supervisor switch" is set

1157 12,9 Inter extracode control at n if the
"Process switch" is set

E.10 Store

1135 12.1 Jump to n when block =2 ba defined

1155 12.1 Find smallest block label defined

1160 12,1 Read block P

1161 12.1 Release block P

1162 12.1 Duplicate read

1163 12.1 Duplicate write

1164 12,1 Rename

1165 12,1 YWrite block P

1166 12.1 Read to absoclute page

1167 12,1 Lose block P

1170 12,1 Clear blocks

1171 12.1 Store allocaticn = n blocks

1172 12,1 ba' = nuuber of pages available

1173 12,1 ba' = number of blocks available

174 1201 Reserve band n

1175 12,1 Read K + 1 blocks

1176 12,1 Write K + 1 blocks

1177 12,1 Lose band n

Arithmetic and Logical Extracodes

Accumulator operations are rounded floating-point unless marked
X, when they are suitable for fixed-point working.

E.11 Tests

1200 7.6.1 Dba! = n if AO set; clear AO 9
1201 7.6.1 ba' = n if A0 clear; clear AO 7
1204 7.5.3 See Z.19 Logical Operations
1206 7.6.2 ba' = n if most-significant

character in g = O ' 4
1216 7.6,2 ba! = n if bm > 0 5=6
1217 7.6.2 ba'! =n if bm <O Y5
1223 7.6.,2 ba' =n if Be = 1 L
1226 7e642 ba! = n if bt >0 L-6
1227 7.6,2 ba'! = n if bt =0 3-5
1234 7.6.1 ¢' = ¢ + 2 if am approximately = s 11-12
1235 7.6.1 ¢' = ¢ + 2 if am not approximately = s

11-12

(1.65)

E/5

Extracode Ref, Description Instructions

Obeyed
Approximate equality is defined by

' gggg l <C(ba), with am standardised
i

If am = 0, am is not approximately = s

’
1236 7.6.,1 ba' =n if ax > O L-6
1237 7.6.1 ba' =n if ax < O 3=5
1250 7¢5.2 See E,.12
to Character Data Processing

1253
1255 7641 ba' = n if m is neither zero nor

all ones 9
1265 7.5.3 See E.19 Logical Operations
1727 7.6.1 ¢' =c + 1, ¢c + 2, orc + 3 as

am >, = or < s 7
1736 7.6.1 ¢' =c + 2 if lam |2 s 8
1737 7.6.1 ¢' = ¢ + 2 if |am |< s 7

Character data processing

1131 7e5.2 Table search 8+6n
In 1250 and 1251, S is taken as a character address
1250 7.5.2 Dba' (digits 18-23) = s,

ba' (digits 0-17) = 0 7-10
1251 7.5.2 s' = ba (digits 18-23) 11=18
1252 7+5.2 Unpack n characters starting from

character address C(Ba), to half-
words from C(Ba¥) 16 +
‘ int.pt. (63n)
1253 7.5.2 Fack n characters starting from
half-word address Cgﬁa*), to
character address C(Ba) 18 + 5n

B=register onerations

1300 7¢541 ba!

integral part of s,

am' = fractional part of s 10
1301 Te5.1 ba' = integral part of am,

am'! = fractional part of am 9
1302 7.5.1 ba' = ba.n, rounded away from zero 23-24
1303 7.5.1 ba' = ~ba.n rounded away from zero 22-23
1304 7,5.1 ba' = integral part of (ba/n),

b97' = remainder 25-28
In 1302-1304, ba and n are 21-bit integers in digits 0-20
1312 7,5.1 ba' = ba.,n 23-24
1313 7651 ba! = =ba,n 22=273
1314 7.5.1 ba! = integral part of (ba/n)

b97!' = remainder 25~28

In 1312-1314, ba and n are 24-bit integers

(1.65)

E/6

" Extracode Ref, Description Instructions
Obeyed

1340 7e5.1 ba'! = ba. 2—n; unrounded

arithmetic shift right 10-22
1341 7e¢5.1 ba' = ba, 2% ; unrounded

arithmetic shift left 9-21
1342 7,5.1 ba! = ba circularly shifted

right n places 10-19
1343 7.5.1 Dba' = ba circularly shifted

left n places 9-18
1344 7.5.1 ba' = ba logically shifted

right n places ' 10~21
1345 7.5.1 ba'! = ba logically shifted

left n places 9~20
1347 7.5.1 s! =8 v ba 5
1353 7e5.1 ba' = position of most-significant

1 in bits 16~23 of n (as B123) 7
1356 7.5.1 Dbt' = ba# s 7
1357 7.5.1 bt!' = ba #n : 5
1362 7.7 See E,4 Subroutine Entry
1364 7.5,1 ba' = (ba & n) v (bm & n);

bii5' = (bas bm) & n L
1371 7e5e1 b121' = Ba, b119!' = N + bm 2
1376 7.5.1 btt = ba & s 5
1377 7e5e1 bt! = ba & n L

E.14 Complex arithmetic

The complex accumulator, Ca, is a pair of consecutive
registers, the first register having address ba,

If Ba = 0, Ca is locations 0,1. s8: is a number pair,
Ca nmay coincide with S: but not otherwise overlap
with it. A is spoiled.

1400 7.,4,6 ca!' = log s:

1402 7.,4.6 ca' = exp s: 140

1403 7.4.6 ca' = conj s: 5

1407 7.4.2 See E.16, Miscellaneous B-type
accumulator operations

1410 7.4,6 ca' =) s: Max,117

1411 7.4,6 am' = arg s: radians

1412 7.4,6 ca' = mod s: Max. 53

413 7.4,6 ca' = s cos s*, s sin s* 95

b4 7,4.6 ca' = 1/s: 15

1415 7.,4.2 See E.16. Xiscellaneous B-type
accumulator operations

1420 7.4,6 ca' = ca + s: 8

1421 7.4.6 ca' = ca =~ s: 8

1428 7,4,6 ca' = s: 6

1425 7.4.6 ca' = =s: 6

1456 7Tehe6 s:' = ca 5

1462 7,4,6 ca' = ca. s: : 18

(1.65)

E/7

Extracode Ref. Description Instructions
Obeyed
E.15 Vector Operations
The vectors are of order n, 81 is stored in consecutive
locations from ba, and s; from ba*. A is spoiled.
1430 7.h,7 g ' =8, + 8, 9 + 4n
1431 Tolt,7 5 !' =8, - 8, 9 + 4n
1432 7.4,7 s,' = am. s, 10 + bn
1433 7.4.7 st o= si + am., 8, 10 + 5n
143k 7.4.7 a,' = s;(forwards or backwards) 13 + In
ne4
t =
1436 7.4,7 am' = 3 Seq Szt 10 + 5n
i=0
N~
W37 7.4,7 a' = I Spje Sai 10 + 13n
i=
E.16 liscellaneous B-type accumulator operations
1407 7.4.2 Remainder and adjusted integral
quotient 14-31
1415 7.4.2 Generate pseudo-random number
1441 7.4.5 See £,18. Arithmetic using address
as Operand. siu-ba
1452 7.4,3 m' = m.sp 82VSUTPAY a4t = pay 19-23 (x)
ﬁégg 7.4.6 See E.14. Complex arithmetic '
1466 7.4.2 a' = C(N+bm+tba) xC(N+bm) + a 18
r i
1467 7.4.2 am' = g3 s;»” where z = am,
i=0
§; = S+i, r = ba 6 + 3n
1473 7.4.3 m' = (az/s2),83Y"SUPAY 40 pay oh28 (X)
478 7.4.3 C(ba)! = quotient (am/s
am' = remainder 20-29 (X)
1475 7.4.3 cC(ba)! = quotient (a/s), _
am' = remainder 19-28 (X)
1476 7.4,3 c(ba)' = quotient ({ integral .
part of am /s) am! = remainder 28~37
E.17 Double-length arithmetic

Tiae double-length
sy~ 13 > s*y, s*
numbers

nurber is s:
and al are assumed to be positive

= 5 + 8% where

1500 7.4.4, at = a + s: 10
1501 7.4k, a' = a - s: 10
1502 7.4,4. a' = a + s: 14
1504 7.4 .4 a' = s: L
1505 7.4.4 a' = ~s: 3
1520

to 74,5 See E,18, Arithmetic using address
1535 as Operand

1542 7.4 at = a,s: 15
1543 7.4.4 a' = —a,s: 19
1556 70“1"" a:! =.~a 5
1562 7.4.5 See E,18, Arithmetic using address

as Operand.

(1.65)

E/8

Extracode Ref Description Instructions
Obeyed

1565 7."".1“ a' = = 5

1566 7.4.4 a' =]|a| 4-6

1567 7.4.4 a' =|s: | 5

:g;gg 7.4.5 See E.18 Arithmetic using address as

Operand
1576 7.4.4 a' = a/s: 19

E.18 Arithmetic using address as Operand

The address is taken as a 21~bit integer'with one octal
fractional place, Fixed-point operations imply an
exponent of 12,

1441 7.4.5 sz' = ba, sy' = 12 5
1520 7.4.5 am' = am + n 10
1521 7.4.5 am! = am - n 9
1524 7.4.,5 am' =n, 1' = 0 8
1525 7.4.,5 am' = -n, 1' = O Vi
1534 7.4,5 am' =n, 1' =0 10 X
1535 7."".5 am! = -n, 1' = 0 9 X
1562 7.4.5 am' = am,n 8
1574 7.4,5 am' = am/n 16
1575 7.4.5 am' = aq/n 15
E.19 Logical accumulator operations

The logical accumulator G is B98 and B99
1204 753 ba' = number of 6-bit ckaracters

from most-significant end

identical in g and s 10~31
1265 7.5.3 g' = 2% + n, ba' = 6-bits

shifted out of g 11
1601 7.5¢3 g' = s 3
1604 7543 g' =g + 8 7
1605 7.5¢3 g' = g + s with end around carry 12
1606 753 g' = g ; s l‘,
1607 74543 g =g & s 3
1611 7¢5.3 g' = ¢ 3
1613 7+5¢3 s' = g 3
1615 7.5.,3 - am' = g 4
:ggg; 7.5.8 See E,20 Half-word Packing
1630 70503 g' = g & .5 5
1635 7543 g' = am i
1646 7e5:3 g' = gvs 3
1652 74563 bt' =g - s . 7=9

E,20 Half-word packing

8 has an 8-bit exponent and a 16=bit mantissa.
1624 7,4,8 am' = s 6
1626 74,8 s'= am, with s rounded 8

(1.65)

E/9

Extracodé Ref, Description Instructions
Obeyed
E.21 Functions and miscellaneous routines
1700 7.4,1 am' = log s
1701 7ol am' = log aq
1702 7.4,1 am' = exp s L3
1703 7.4.1 am' = exp aq Lo
1704 7,4,2 am' = integral part of s 5
1705 7.4,2 am' = integral part of am L
1706 7,2 am' = sign s 5=6
1707 7.4.2 am' = sign am 45
1710 7.4,1 am' = J§ Max 42
1711 7.4,1 am' = Jag Max 41
1712 74,1 am' = Jag¥ + s3 Max 50
1713 7.4,2 am' = aq®
1714 74,2 am' = 1/s 4
1715 74,2 am' = 1/am L
1720 7,41 am' = arc sin s (- 7/ 28<7/2)
1721 7ho1 am' = arc sin aq '
1722 7,4,1 am' = arc cos s (O<s<w)
1723 7.4.1 am' = arc cos aq
1724 7.4 .1 am' = arc tan s (" 9/2¢s<"/2)
1725 7.4.1 am' = arc tan aq
1726 7.4.1 am' = arc tan (ag/s) (-#<aq <)
1727 7.6.1 See E,11 Tost Instructions
1730 7.4,1 am' = sin s 41
1731 7olo am' = sin aq Lo
1732 7.4.1 am' = cos s 42
1733 7.4.1 am' = cos agq 41
1734 7.4,1 am' = tan s 34
1735 7.4.1 am' = tan aq 33
:ggg; 7.641 See E.11 Test Instructions
1752 7.4.3 m' = ax, 81f§ ay' = ay - 12 10 %X
1753 7.4.3 ax' =m, 8%, ay' = ay + 12 6 X
1754 7.4.2 Round am by_adding; standardise 6
1755 7.4.3 az = az, B5YTUY ayr = ny 17
1756 7.4.,2 s' = am, am' = s 8
1757 7.4.2 am' = s/am 4
1760 7.4.2 am' = am? 12 3
1762 7.4,3 m' = az, 8 12 9 (x)
1763 70’403 axy = m. 8- 5
1764 7.4.,3 ax' = ap 8" 17
1765 70403 ax' = ax 8_n 12
1766 7.4,3 am' = s} b (
1767 7.4.3 am' = |am]| 3 (
1771 7541 b121!' = Ba, bll9' = N + ba + bnm 2
1772 7.4.3 m' = (m.sx) 8°°; ay'. = ay + s y~=12 11 (
1773 7.4.3 m' = (az/sz) 82Y"SU 12, a0 = 32 27 (
1774 7.4,2 am' = am/s 10
1775 7.4,2 am' = aq/s 9
1776 74,2 Remainder 13

(1.65)

F/1

Appendix F

Summary of Basic Instructions by Function

B~Line Operavions

Loglo Cpcru'tlons Cyclic Shifts

o bt T S T T T T T e T T T T,
106 ba’ = ba s 147 ba” = ba v s ,107 ba = ba & s 145 ba’ =7.ba ~ 5 |
116 s’ =ba fs| 167 ba’' =bavn 117 s’ =ba é s . 163 ba’ = {h'ba - n '
126 ba’ =ba fen| e 427 ba’ —ba & B | i :

! i 105 ba’ = #64iba + s |

164 ba’ = ba +(bm & n) : 125 ba' =§£§ba +n

105 ba = bm & n ! - T

Index Arlthmetlc : Set B-Test
S SR e LT
120 ba' =n - ba; 100 ba’ =s - ba’ 110 s* =5 - ba' 150 bt':s - ba '
121 ba' =n ;101 ba' = s v M s’ = <ba 1152 bt’ =ba - s !
122 ba’ =ba - nj M02ba’ =ba - s 1125’ =Dba - s -Z !
1123 ba’ = -n © 103 ba’' = -s 118 s’ = ba ‘170 bt' =n - ba |
124 ba ~—ba. +n 104 'ba =ba + e 114 s' =Dba +s] L1‘7§_bt_’= ba -n
Test Instructions
— }____uormt e _
200 If boD, ‘thon ba'—n and bn' "n0.4 . 290 I bt;éO, “hon ba'—n and bn'm0.4
1201 If bm;éO, then ba’=n and bn'=bm+,0.| ‘221 If bt£0, then ba'=n and bn’=bm+1.0 ;
1202 If bm;é(), then ba’ = and bn'=bm-C.4 = '222 If 'b‘b;éO then ba’=n and bm’'=bm-0.4
1203_If buD, then ba'=n and bum "=bn~1,0 225 If b't;éo, then ba'=n and bm'=bm-1.0°
T R L

{254'5.5&;5;0 ba4:21xmbm4 ba,n.’ {240 If bm odd, ba_.n{../.ztllfht-_«() ba'n
1235 If am#{.\ ba .:n*2‘|5 I om;é@', ba'=n | 1211 If br even, ba'=n;225 If btL0, ba’ ‘
1236 If ax>0, ba'=n, ;216 If bu>0, ba'=n f) !226 If bt>0, ba'=n
25‘7I.fa.'n<0 ba“:n|217]'_'f'bm<0, ba‘=n , |22’7If‘bt<0 ba'=n !

e i e B L L et e it e ——— [

(1.65)

Accumulator Operations

Unstandardised Standardised Pseudo Double-Length
(Pseudo Fixed-Point) Floating~Point)
. o Rounded Unrounded l -
Addition 330 a'=amts AO | 320 am'=amts QRE |300 a'=am*s QRE| 310 a'=am*s NQEP
and 331 a'=am-s AO 1 321 am'=am-g QRE |30l a'=am~s QE | 311 a'=am~s NQEjJ
Subtraction {332 a'=s-am AO ! 322 am'=s-am QRE 302 a'=s-am QE
Transfers 334 a'=s 324 a'=s Q{314 am'=s N |
In 1335 a'=-s 40 ! 325 a'==s QE 315 am'=—s KAO:
{34, 1'=sz f
1345 1'=spym'=ss|
Transfers 346 s'=am,a!=0 347 s'=al,1'=0 |
Qut 355 s'=am 357 s'=al |
Multi- 352 1'=m.s FAO | 362 am'=am.s ORE (342 a'=am.s QB | 372 a'=am.s BAO
plication 53 1'=—m,sEAQ f363 am'=—am,sQRE 343 a'=—am,sQEF | 373 al=-am,sEAO
Division ‘379 e/lel 57 ezels T el o]
=rem B 1'=0 QRE DOi n'=rem e 0 |
"""""""" 377 al'—] an)/|s| i
. m'=rem "%0 i
Standerdi- ! '
sation |361 an'=g RE l360 an'=g ORE ?340 al=g QE ' 355 a'=al.8™>*Q!
and 354 am'=a RtAO ’ T T
Rounding
Octal P’&"&T:é’a;“ T (386 al=]an | QE
Shifts & 365 ax'=ex/8 | ’367 a'=[s|
Hoduli e e
Check
Exponent 1341 al=a E |
Overflow T T
A0 Accumuleator may overflow Q Accumulator standardised

N L not cleared
Rounded by adding

() Cyclic Shift

Accumulator rounded
E Exponent overflow may occur

DO Division overflow may oceur

Index

Instructions

Test
Instruoctions

Accumuleator
Instructions

0 1 2 3 4 5 6 7
10 | ba‘=s-ba Bo ba’ = s ba'—ba~s Bo ba'= ~s ba'=bass Bo | ba'=(64b 4s ba’' = bafs ba' =ba & s 10
11| s'=s-ba Bo s’ = -ba s'=ba~s Bo s’ =ba s'=bass Bo (s =baﬁg)}3° s’ = bags "=ba & s 11
o x>
12 | ba’=n-ba Bo - ba’ =n ba'=ba-n Bo ba’ = -n- |ba=basn Bo !ba'=Bdbra | ba =bhain | ba’' =ba & n 12 {18
13 | (NA n-type Bo)| (NA n-type) | (NA n-type Bc (NA n—-type) [(NA n-type BoY (NA n-type) | (WA n-type) | (NA p-t _Las¢
i 14 (As 10C) (As 101Y)" LAs 102) ba'=zba} -s! . (As _“1~04)M UKLM 105) (As 147) ba’ =ba v s 14 E:
i 15 | bt '=s~ba Bo (VA s-type) |bt’=ba-s Bo (A s=%ype) |(NA s s-—typej' (NA s-type) | (NA s-type) 15
' ,éw,__ (T4 s-typ: : o
16| (as 120) (As 121) (As 122) | ba'=(Fpa-n Ja*(bm‘, ba'=bm & n (A 167) | ba'=bavn | 16
17 | bt'=n~-ba _Bo | (MA n-type) |bt'sba-n Bo | (Na n-typ___) (NA n-type Bo) (NA n~type) | (NA n-type) | (NA n-type) | 17 Wg,
20 [If bmA0, ba'=n|If bmdD, be'-n|If trflpa’—n [If bufD,ba’=n] | ‘ B ' o ! 20 |2
(24) and bum'=bn 40,4 |and bn’=bm40| and bnlbn=0.4 pnd bm'abn-1.0 (48 200) (4s 201) (s 202) | (s 203) 1.5,
2T I bm odd, I om even, T o bm=0 If bm;éO, Ir bmx 0, | If bm < 0, 21
(25) ba'=n ba‘=n (As 210) (4s- 211) ba’=n ba'=n ba=n ba’=n _(2_.5){95
23 | If bA0,ba’=n I b340, ba'=n[If bt0,ba’=n {If bb,lb"ba If bt=0, I.f‘bt;éO, IFmz0, | IFpt<o, 22
(26) and bm'=bm 4044 |and bm'=bm1.0|and bm'=bn-0kpnd bm'=bm-10 ba” =n ba'=n ba’ Yy ba‘=n (26)@m
23 If axfD, If ax » 0, [If ax < O, 25%’
o7] (A5 258) | (A 25) (As 236) (4s 27) a0y, o i X (@l
30 | a'—em4s QE a’'=en~s QE a’'—em-s QB (As 302) | (As 524) | (4s 525) . (As 324) | (As 324) 30 &
kil a?:amm NOQE | a=en-s N QB | (s 502) (As 303) | am” = N am'=~s N AO (As_324) (As 324 A
52 | am =em4s QRE |am —em-s QRE |am =emis QRE (As 322) ! a :e Q a'=-s QE (As 324) (As 324 52 lor
35| a=amss A0 | a @gn:s A0 a'=-am 48 AO (As 332) | a'=s a'=rs AD (As 33¢4) | (As 334) 33
347 a=a QE a—a B e =am.s OF a;_?-am.s oOF 1 '=sx 1'—=sx,m"=ss! s =am,a =0 s =al, 1= 7 g
\ a':ﬂ;l._s A0 E ja'==am.8 AO ' : 13 z .
35 (As 340) (As 341) sen 1'—sem n’ ben 1'—sen n’ an'=a R+ A0 | 1l'=al.8"7Q s '=am s'=al — 35 8
36 | am'—a QRE am —e RE am '—em,s QRE T—mam.s8 QRE { ax =8ax 'ax':a;/g/TB a'= [am] QF = [s /I {36 |°
', ' am '=am/s =8/ |8| al:a]]a al’=[an a] T
37 (As 340) (as 341) a=emn.s A0 E |a'=-an.s3 A0 B QRE DO 1'—0 | m'eren nqon B DO*, n’—zen E DO | 37
Legend (Cirole denotes circular shift Q Accunulator standardised E Exponent overflow may occur
N L not cleared (includ:l.ng Ls) R Accumulator rounded by Foroing DO Division overflow may accur
ss sign diglt of sx R+ Rounded by adding A0 Acoumulator overflow may occur
Instruotions given in brackets are non~standard and should not norma.lly * These division instructions are not
be used. They are given here only for the sake of completeness, fully described by the summary.
— NA means that no registers are altered as a result of these operations, Ref'erence shouldb e made to Chapter 6
N However instructions designated "s-type" do make a store-reference before use.
:» and thus SVO or Non-equivalence may ococur Bo These instructions set B-carry
& The "n~type®™ instructions do not make any store-—reference, and gre thus
~ in effect dummy mstmctlons.

CORRECTION® AND ADDITIONS TO CS 3484

Issue June 1967,

The following list refers to a) facilities, described in
the manual, which are not available, or are available in a
different form; b) new facilities not mentioned in the manual.
All relevant information contained in Atlas 1 System Programs
Bulletins 1 to 41 is included.

Section.

8.3 Carriage Control Characters

The present ABL compiler expects to find only the following
carriage control characters in the input stream: 0.1, 2,0 and
2.1. The character is checked only for a 1 in bit 19, indicating
carriage return, and a 1 in bit 23, indicating line-feed.

This may affect programmers calling down ABL programs from
magnetic tape, where carriage control characters may be other
than those mentioned above. For example, control characters
2.2 and 2.4 will be treated like 2,0; 2,3 and 2.5 will be
treated like 2.1,

8.15 The Output Extracodes

1070 Rename Output n as Input ba

Only a limited form of this facility is available, using
the contents of Ba, not Ba itself. After using the extracode,
output stream n is deleted, and further reference to this stream
is faulted; if output n was the selected output, output O tecomes
the selected output. ILLEGAL FUNCTION will be caused in the
following circumstances:

(i) n =0
(ii) Input ba already defined

Output n must be defined in the Job description (see 10.4.2)
as destined for a private tape, or for any peripheral,

Use of 1052 for input ba will indicate peripheral type
J60041.,

If 1071, break output, has been used on output n, and a
private tape is not being used, only the last section will
be treated as input ba. Output n will not be listed in the
supervisor printing at the end of the program, but input ba
will., (See chapter 11)

(6.67)

8.6/5

8.6.10 Reading a fixed-point number to B81; A2/L100, A7/L100, A8/L100

The program enters a routine which first clears the
accumulator, a digit count, and markers signifying 'Negative number’',
'Decimal point read!, and 'Reading number's A negative number is
signified by & 1 in the 1l.s. bit of B90. Characters are read from the
reconstructed line; if the character is a digit, this is left at the
l.s. end of the m.s. half of a full-word. The adcumulator is
multiplied by 10 (or by 8 if a dec. pte has been read), and the
full-word, treated as a floating point number, added to it. Thus
the partially assembled number is held in the accumulator (always
as a positive number) sgitsreal value divided by a factor of 85,

When the complete number has been read, the required
part of the mantissa of the accumulator is picked out. If, in
the form required, the number will not fit into a B-line, the
program is monitored. The number is placed in B81, and negated
if a negative sign has been read; the negative marker in B90O
is cleared.

846411 Reading a floating point number to the accumulatorj A1/L100

The number is built up in the accumulator in a manner
similar to that described above; a digit is read, the accumulator
is multiplied by 10, and the digit added in. The correct exponent
is found by noting the number of digits following the decimal point,
and reading the exponent between the brackets, if any.

While the exponent between brackets is being read in to
the accumulator, the number so far assembled is stored in A99/3101 1100,
and the count of digits following the dec. pt. is stored in A51/3101 L100
(hELI:f—WOI'd) *

8.17/1

Specification of L199 .. LINE RECONSTRUCTION

L199 is used by library routine L100 (see 8,5:1
and 12.7;1) but can be used by itself if desired, exactly
like any other-library routine;

The following is a detailed specification of L199;

General Points

L1i99 is to reconstruct lines of
information, placing each character in the least signi-
ficant 7 bits of consecutive half words,

~ ~ L.
Y > + -
ine IuncevT

H
o

The beginning of line reconstruction storage is
A20/L199 and the layout of a reconstructed line is as
follows:sw)

(1) The first two full words are reserved for items
other than characters (space used by LlOO)

(2) The first character is placed in the first half
word after (1) and the line reconstruction occupies
consecutive half words, ’

(3) The carriage control information NL, LF or PT is
stored at the end of the reconstructed line, as a
6~bit character in the half word following the last
character (least significant 6 bits).

Entry to L199 is at A1/L199 with the link in B88;

1) Single Line Reconstruction

The space used to hold the reconstructed jine begins
at A20/L199 (See Section 151); Before entry to L199 the
programmer must set B83 and B84,

B83 is set to the address, relative to the start of
the line reconstruction space, of the half word preceding
that of the first character in the line¢ Thus B83 is set
equal to 1,4 for normal requirements, However, if the pro-
grammer requires, for instance, multiple space before the
first character, then B83 can be set accordingly, (Increase
B83 by 0.4 for each space required,)

B84 is set to the address of the line reconstruction

space relative to A20, thus for single line reconstruction B8.L

is zero,

1.1) Optional Parameters

There are four parameter settings:-

A20/L199 -~ Beginning of line reconstruction storage;

A24/1199 -~ Maximum line length in characters
(excluding carriage control)

(6.67)

8/17.2

A25/L199 - Parameter to facilitate various Tab.

settings.

A26/1L199 -~ Jump address in 'Look-up table! for

Tab. routine,

Parameter settings in detail:

A20/L199

A2L4 /1199

A25/1199

A26/1199

|

The programmer may allocate specific storage

o Py ' . . PR - i omam Taen
for tTie peginnin i Line reconstruction oy

setting e.g. A20/L199 = 100, If A20/L199 is
not set, A20 will follow after L199,

The maximum line length is assumed to be A24 =
160 characters (excluding the carriage control
information), The programmer may set A24/1199
to facilitate a different line length,

The usual setting for A25/L199 is 15 which will
give the Standard Tab. of 8, 8, 8, 8, 16, 16, 16....
However, by setting either A25/L199 = -1 or 999

the programmer can arrange for Tabs of 16, 16, 16,
or 8, 8, 8, «eee respectively, -

During line reconstruction a standard routine for
dealing with the character Tab, is labelled A26;
This routine gives the Tab, settings explained
above, Should the programmer wish to use a
private routine to deal with Tab, then A26/L199
must be set to the starting address of the private
routine,

Exis from the private routine must be to1A28/1199

All parameters are set on the first entry to L199,
(See Section 3 below,.,) For subseguent entries only B83, B84
and B88 need be set.

1.2) Layout of line reconstruction

For single line reconstruction the first two full words
A20 and 1A20 are used as follows:=

a) First half word - contains 0,1 if Line Feed or
(A20) Paper Throw has been encountered

by L199 other than at the beginning
of a 1ineo

b) Second half word - blank (may be used by programmer for
(0.4 A20) pointer storage when using a line),

c) Third half word - contains Line Feed or Paper Throw
(1A20) pointer for use on next entry to

L199. (Blank if Line Feed or Paper
Throw absent from the line),

(6.67)

8/17.3

d) Fourth half word - contains the maximum pointer for
(1.4 A20) the reconstructed line (half
word address) i.e. the address
of the carriage comtrol infor-

mation.

The address of the first character is 2A20 for single
line reconstruction, providing B83 is 1.4,

1.3) Character form

(1) The routine deals with Backspace and Tabulate,
and these characters do not appear in the
reconstructed line.

The usual form of single characters is as 7-bit
characters stored in the least significant ends
of half words (bits 17-23). The 7th bit denotes
either Inner Set (bit 17 zero) or Outer Set

(bit 17 ome).

(2) Compound . characters are built up as described in
section 8.5.1, :

(3) The following characters are assigned special
values by the line recomnstruction routine

Space, Sp marked 0,0
Erase, Er marked J4
Fault, . Ft marked J3
Underline, Ul marked J2
Figure Shift, FS marked J1

1.4) Paults

The program is monitored andterminated:
{1) If the maximum linme length A2%4 is exceeded

(2) If the carriage control information at the
end of a record is not in the range 0-5.7

(3) If an unassigned or spare character is
encountered
(h) If a compound character consisting of four

or more characters, with or without Underline,
is encountered.

2) Multiple line reconstruction

The programmer must set A20/L199 if more than two
active lines are required.

The details in Section 1 for single line reconstruction
apply here, with the following additions.

(6.67)

8/17.4

When the programmer wishes to use several reconstructed
lines during a program, all of them active, then storage must be
allocated for these lines, This can be achieved solely by
setting B83 and BS4,

As in the case of single line reconstruction, the first
entry to L199 will initiate the optional parameter settings.
These settings will now apply to all lines.

The first line reconstruction space starts at A20/Ll99,
with B83 set (usually 1.4) and B84 zero.

The second line reconstruction space will start at the
address (A20/L199 + B84) where b8.L (contents of B84) is given by:-

b84 = K = (A24Q2 + 3) M - 1 and

B83 is set as described in Section 1. Note A2k is the maximum
line length (excluding the carriage control information).

The third line reconstruction will start at the address
A20/L199 + 2K), the fourth at (A20/L199) + 3K etc. where 2K,
3K, are the contents of B8k,

For each new line reconstruction, B83 and B84 must be
set by the programmer. (Normally B83 is set as b84 + 1.50)
2,1) Faults

The faults described in Section 1.4) apply here.

3) Use of L100

Programmers should bear in mind that L100 (General
Input Routine) calls L199, causing the optional parameters
of L199 to be set,

In particular, note that

A20/L199 = A20/L100
A24/1199 = A24/L100
A25/L199 = A25/1100
A26/1199 = A26/L100

(6.67)

9.5.1 Mount Extracodes

1010 Mount

Allocate the number Ba to the tape whose title is stored
in locations S onwards. If this tape is not available, instruct
the operator to mount it on any available mechanism, n must be
even (bit 23=0) for calling 1" tapes to be mounted

1007 Mount Next Reel of File

Inoperative,

1012 Mount on Channel K

Inoperative as defined.

1012 now has exactly the.same effect as 1010 as defined
above.

9.5.2 Other Organizational Extracodes

1014 Write Title

Assign to tape Ba the title stored in locations S onwards.
This title will be written to section O of the tape when it is
dismounted,

1015 Read Title
Store in locations S onwards the title of tape Ba. This
title will be that read from section O when the tape was mounted,

unless a 1014 extracode has since been used, in which case the
newly assigned title will be stored.

10.6.1 Single Tapes

The following four optional features in the magnetic tape
section of the job description are not available:-

Tape serial number bPreceded by asterisk
Reference letters

Assignment of logical channel by .K

* indicating no write permit

If character * appears in the specification of a tape
title in a job description or object program, the following
characters on the line will be printed as usual but not checked
when comparing the title with that on tape. Hence comments can
follow the character*,

(6.67)

For example:

TAPE 1 SYSTEM TAPE 5% USE RBP/10

requires a tape of title SYSTEM TAPE 5.

TAPE 2 LONDON COMPILERS* WRITE PERMIT

requires a tape of title LONDON COMPILERS.

The following restrictions apply:

The character * must follow immediately after the title
broper - intervening spaces are not permitted.

If used with the facility TAPE NEW in order to title
a tape, the entire line including asterisk and comments
will be written to tape

If a tape called by such a sequence is pre-mounted it
will not be accepted as the required tape. The deck on
which it is mounted should be dlsengaged by the operator
and re-engaged.

No comment is permissible in the TAPE COMMON statement, since
this specifies no tape title. It must be assumed by the
operators that common and new tapes are to be mounted with
writing permitted.

A maximum of 31 characters (including the asterisk) will
be printed on the tape operators teleprinter.

Although not checked, the characters following * form
part of the title written by101l4, or read by 1015,

10.6.2 TFiles not available

10.10.3 Data Files - not available

10.11 Tape and Card Markers

(6.67)

10,11.5 The Marker T

After ***E an extended set of terminators is
recognised by the Supervisor, namely;

KEXA, ¥KKC, XXX, ¥X%P, X¥XT, **¥xZ

The new terminator ***I means "Switch back to
conversion to Internal Code"; the significance of
the others is unchanged,

S AT s~~~ - L L

A ssguence comsist
letter will be i
input stream.

o wwy o
ng of ¥¥% fg

Yy any other
d in the

i ved b
ored, and incorporate

gt

Note that the Supervisor overwrites the terminator
with a string of internal code 07 characters only
when code conversion is being applied. For example,
consider the following document:

DATA
F5025 EXAMPLE
FIRST LINE
X%X%E

SECOND LINE
*%*T
THIRD LINE
*XXER
FOURTH LINE
**%P

RUBBISH
*RRTZ

During input of this douument only the two ***Etg
are overwritten; the following parts are stored in
the machine in binary:

SECOND LINE
**%T
and
FOURTH LINE
*XXP

RUBBISH
*KKT,

Card terminators have 7 and 8 punched in column 1,
and a letter in column 80. Acceptable letters are:

A,B,C,E,F,I,P,T,Z.
If column 80 contains any other letter, or is blank,

while column 1 contains a 7, 8 punching the terminator
sy 8 veeeZ is assumed.

(6.67)

The significance of the letters is the same as
that for the corresponding tape markers.,. Note
that the P marker has no effect, and the use of

I when in internal code, or E when in binary, has no
effect.

Marker cards are stored in the input stream only
after B or F, when no terminators are recognised;
the reader proceeds until its input hopper is
empty.

(6.67)

10,12

10,12/1

Input and Output using Private Magnetic Tapes.

Input peripheral to tape

By means of suitable headings, information can be
passed through an input peripheral directly to a private
magnetic tape for subsequent input to a program or output
to another peripheral,

Permissible headings are:

COPY TAPE n or PRIVATE INPUT n eeessa(i)
Recording will start at block n (decimal) on magnetic
tape, and the ending of the input document will cause
the termination of the document on tape.

COPY TAPE FREE or PRIVATE INPUT FREE cessse(ii)
Recording will start at block 1 on magnetic tape, and the
ending of the input document will cause the termination of
the document on tape.

COPY TAPE n/m or PRIVATE INPUT n/m ceeeae(dii)
Recording will start at block n (decimal) on magnetic

tape, and the edding of the input document will cause the
last block of input to be linked to block m (decimal) on

the tape,
N.B. Heading (iii) is available only at London and
Chilton,

The heading is followed on the next line by the tape
title; in the case of heading (ii), the title given will be
written to a free tape.

The resulting document on magnetic tape will have the
heading and tape title erased, and will also have the next
record erased, In the case of card or 7-hole paper tape
input, this means that a spare card or new line should
follow the tape title, ~ In the case of five track input,
the tape title will be regarded as terminated by a carriage
return, for example, and the following line feed will be
deemed to be the next record, and will be overwritten,

Warning Characters and input faults

1) Warning Characters B, E, P are treated normally, implying
switch to binary decoding, and suppression of parity checking.

2) Card reader faults (check read, card wreck, and card levels
except after warning sequence B) are treated normallys; the
document continues when the reader is re—-engaged,

3) During the first block of input (before the request to
mount the magnetic tape has beem:made) tape reader faults

(6.67)

10,12/2

(parity and overdue) and warning character A cause the
document to be abandoned, and warning characters T, F
are treated normally; the document is continued when
the input device is re-engaged.,

4) After the first block on input, when the requested
magnetic tape is mounted, tape reader faults and warning
character A terminate the document on magnetic tape, as
for warning characters ¢, Z, Warning characters T, F
and end of tape following warning character E cause the
current block of information to be written to tape, even
though it will not generally be a full block, and the
address of the next block on tape is reported on the
central operators teleprinter as

(Tape Title)
COPYING COMPLETE TO BLOCK (n)

Where n is the block label of the next block of tape in
octal,

When input is continued, it will be recorded in block
n onwards and will constitute part of the same document,
the "break" being obscured from the user, Should it be
required to repeat input, due, for example, to machine
failure, a new document heading can be typed to cause
input to start at block n, and input resumed from the last
break point,

Note that the monitoring "COPYING COMPLETED TO BLOCK n"
gives the section n on the magnetic tape at which the next
input document can be recorded; the two documents will then
be combined as one. If it is di#sired to record the two
documents separately the second input document should be
recorded starting further along the tape (e.g. block n + 1)

Termination of magnetic tape document

Warning characters Z and C, and character A and tape
reader faults in any but the first block, cause the document
to be terminated on magnetic tape, and the input device to
be returned to normal system use, A document is terminated
on tape as follows:-—

The current input block is written to tape at block
label b, say, and is linked on tape to the mnext block b+l,
If heading (iii) has been used, the document will continue
at bipck n; on input to a program, the user will be unaware
of any break,

Should it be required to add to the document on tape,
input can be resumed to block b + 1, and this will then
constitule a continuation of the document from block b.

The writing of the terminator block at block b+l poses
some problems if partial overwriting of a section of an

(6.67)

10.12/3

input document is necessary, The following procedure
is recommended: -

a) If the original document has been separated by
by use of

COPY TAPE (n/m)

headings, then each section can be reyritten
with the same heading, alwmays assuming the

block gap m-n is sufficient to accommodate the
new section of input. If overwriting is
expected, this technique is stronly to be
recommended, unless its use is deemed to lengthen

the document on magnetic tape unduly,

b) If no gaps have been left and the new section is
known to be the same length as the original section,
the new section may be read in, terminated by
warning character T. When copying is completed up
to this warning character, the tape should be
disengaged manually or by operator- request, The
reader can then be returned to normal system use
by input of a terminating sequence with warning
character A; the tape will not be found and the
effect will be to abandon the copying operation,

c) If the new section may be longer than the old, it
should be recorded on a different position on tape
with a terminating link to the following section,
The previous section should then be linked to the
start of the new section by overwriting word O of
the last block of the previous section with the
address of the new section

€.8., To overwrite a section occupying
blocks 100-120 inclusive, input new section with
heading

e o COPY TAPE — 300/121 - e

and alter word O of block 99 to 300 (as a 24 bit
integer).

Reading a tape by program

A document recorded on tape by the above method may be
used subsequently in a program as an input stream by including
the following statements in the Jjob description

INPUT TAPE (a) / (b) / O
(n) (Any convenient title)

TAPE
(a) (Title of tape)

(a) is the logical tape number, quoted both in the input
statement and the tape statement.

(b) is the address of the section on tape where reading is
to commensca,

(6. A7)

10,12/4

(n) is the logical input stream number, It is followed by
any title the user may wish; this title is not checked on
tape, and is effectively ignored by the Supervisor. It
must, however, be present in the job description for the
sake of uniformity with direct input streams.

The input stream so defined may be read by means of
input extracodes. Reading will commence at the first
record on section (b); it is thus possible to start reading
part way through an input document, which may be useful in
the event of a long input stream. Note that any heading
is not decoded or spaced over; in particular no notice will
be taken of any compiler statement occurring in this input
document. A compiler statement must occur elsewhere in
the job, otherwise the ABL compiler will be called to start
the Jjob.

The private tape used in the above way may also be used
by the program as a conventional tapw using tape extracodes.
This would not normally be done until the input stream has
been completely read, for the input extracodes will
reposition the tape whenever a new block of input is required,

Reading will start at the first character in the block
specified in the job description, The type of input
(determined by use of extracode 1052) will be the input
device used to load the tape; if the tape has been privately
created (e.g. as an output stream of a program) the type
will read zero.

The stream will step from block to block using the
link in word O to indicate the next block. If the tape
is used privately as well, it will be repositioned whenever
the next block of input is required. |

The information in the block is checked for wvalidity
on reading from tape. The input stream will be terminated
at the end of the current block if

Word O is zero or negative or greater than 5000 (i.e.
linkage to our impermissible block) e

or Digit 7 of word O.4 is omne (indicating end of document).

The stream will be terminated at the beginning of the
current block if any record separator points outside the
block, Implicitly, therefore, the block must end with
a zero separator, and this is normally the end of information
in the block. Thus the stream is terminated if a block is
encountered which is not a permissible input stream.

OUtput to Tape from an Object Program

An output stream may be written to a magnetic tape
rather than output immediately by use of the output statement

OUTPUT (n) TAPE (b)/(Final destination) (amount)
(Title of tape)

or OUTPUT (n) TAPE FREE/(Final destination) (amount)
(Title of tape)

10.12/5

In the former case, output stream (n) will be written
to the named tape starting at section (b), In the latter
case, a new tape is used and the title specified is written
to the tape; output is recorded from block 1 onwards,

The final destination and amount of output are
specified as for normal output streams,

The tape used for output stream n may also be used
as private tape 110+m in the object program; normally
such use will precede use of the tape for output, The
output extracodes assume the tape to be positioned
correctly whenever a new block of ouput is generated, and
hence, if used privately, the tape must be repositioned by
the user before output. Only one output stream can be
directed to any one tape. The tape so generated may be
used as input data for a subsequent bprogram, using the
facility for using a tape as an input stream., In this
case, the first records on the tape will comprise

OUTPUT (n)
(Title of job which created this output)

and these will be the first records read by a program,

If an output stream destined for magnetic tape is
broken into sections by use of the break output extracode,
a new section on tape will be started after each break
output, Fach section of output will be printed subsequently
as a separate document.

Output from tape to peripheral

A private output tape can be output to any peripheral

by use of a standard prograii, The heading is supplied
by the user, Alternative sections at the end of the

bProgram select the particular output device to be used.
The heading consists of the following: -~

JOB (Any convenient title)
TAPE 1 (Title of magnetic tape)
USE IIC

n (b)/0

*XXT

where (b) is the starting block address on tape in decimal,
This job will halt until the output device is idle and will
then initiate output from the named tape. The device will
remain booked until the end of the current document, when
any other normal output which has been accumulated will be
output,

The output is terminated by the line

END AT BLOCK (B)
where B is the next block address on tape in octal. If the
output has been broken, each portion will be output independently.

The next portion may be output subsequently by printing another
document starting at section (B) from the same tape,

10.12/6

No record of this output is recorded in the restart
block, and hence, in the event of a machine breakdown, the
job should be read in again to restart printing, Brinting
may be resumed at any block label B,

A magnetic tape produced by direct input from a
peripheral may be output directly onto any desired equipment.
The format of input and output tapes are identical.

|1j

~ mman L
O I b

i L0

Input or output tapes can, if required, by created by
an object program using tape extracodes. The format of
each block of 512 words is as follows:—‘

Half-word O: digits 0923 next block addres on tape.
If zero, indicates end of
document (not necessarily
conversely)

Half-word O.4 digit 7 = 1 if last block of document,
0 otherwise,

Remaining digits irrelevant,

Half-words 1 to
7ol Irrelevant

Half-words 8 to
511,4: Records in internal code or binary,
Each record comprises a half-word
record separator followed by the
record.

The record separator contains:

Digit O: 1 if binary
O if internal code.

Digit tv- "1 if continuation of incomplete record
at start of block,
O otherwise

Digit 2: 1 if start of incomplete record at
end of block,
0 otherwise.

Digits 12923: Number of 6-bit characters in record
(including carriage control character);

The information comprises binary characters (2 per half-
word) or internal code characters (4 per half-word) terminated
by a 6-~bit internal code carriage control character, indicating
the following:-~

(6.67)

10.12/7

Digit O: 1 if paper throw,
O otherwise

Digit 1; 1 if carriage return,
O otherwise

Digits 2-5: Number of line feeds or channel for
paper throw,

At the end of a block, any incomplete record is ended
without any carriage control character but with digit 2 set
to 1 in the record separator. There follows at least one
zero half-word indicating end of information. The record
is resumed at word 8 or the next block; word 8 contains a
count of the remaining characters with digit 1 set to 1.

A record separator with digit 9 = 1 is a dummy, indicating
the peripheral equipment used for input, and is effectively
omitted when the stream is read.

Records and record separators follow sequentially until
a zero separator is reached. Internal code records always
start in inner set internal code.

11.2) The Trapping Vector

Re-entry to program after trapping

It is risky to continue the program using the value of
main control stored in the specified B-line. If the trap was
entered during an extracode, main control will already have been
advanced, and part of the extracode will be omitted.

11.4) Restarting and re-entering a program

Extracode 1113; Restart, set restart address to n

The restart extracode can be used to dump the main
store blocks, B-lines, etc, of a program, either on to the
system input tape or on to a private tape,

If the dump is to a private tape, the extracode must
be preceded by a 1115 extracode instruction. The last use
of the 1115 extracode before a dump specifies:

ba : the logical tape number of the private tape.

n : the tape section msed for the dump; the
dump will be to blocks n, n+l, etc. on
the tape. The number of tape blocks used
will equal the number of main store blocks
of the program below address J34. If n=0,
the next dump, if any, will be to the system
input tape.

If, in the 1113 instruction, n is negative, the program will
end on doing the next restart., The monitorigg "PROGRAM ENDS ON
RESTART" will appear on output stream 0, unless private input
tapes were specified in the Job Description, in which case the
program will end with "TAPE NOT DEFINED".

If the restart extracode is used to dump to the system
input tape, the instruction will succeed only if a certain time
has”elapsedwsinceutheqlast‘dumpyworvtheuarriva&wof~bhewjob on
the execute list. At present this time is 6 hours, so that
effectively the facility for dumping to the system input tape is
not yet available.

The programmer can check whether a dump has been success-
fully carried out by looking at B127 in the instruction following
the 1113 extracode; for a successful dump, bit 23 of B1l27 is set
to 1.

If the 1113 extracode is used to dump to a private tape,
the dump will always be successful, with the proviso that a
maximum of 255 dumps (including the case of negative n) is
allowed to any one program., This limit is necessary because
each dump, even if to a private tape, requires 2 fresh sections
of system input tape. It is understood that there must be
sufficient room on the tape onm which dumping takes place, and
that a private tape used for dumping is one specified in the
Job Description.

(6.67)

In the event of a restart, for example because of a
machine fault, the program will be started from the beginning
if the 1113 extracode has not been used. If the last success-—
ful use of 1113 was with non-negative n, the program will be
restarted at the address n, after restoring the following parts
of the job to their state when 1113 was last successfully used:

Main store blocks below J34

B-lines 1 to 90, 98, 99

Accumulator

Input streams

Currently selected input and output streams

Records of the use of main store blocks, tape
transfers, computing and execute time, monitor
and trap addresses, state of process switch.

A small amount is added to the computing time and
execute time before the program is actually re-entered, but
those tape transfers which are initiated by the dumping
process itself are not counted,

Those private magnetic tapes which were specified in
the job description and which have not yet been released ar
disengaged are recalled automatically, but not repositioned
except in the case of private input tapes. Other magnetic
tapes, if needed, have to be asked for again, after the
re—-entry at n.

On any successful use of the 1113 extracode where n
is non-negative, there is an automatic break output for each
output stream, so output will not be lost on a restart, If n
is negative, the programmer must do this himself if he wants
to be sure of getting his output up to that point.

A restarted job will have its compiler changed to
"RESTART" .

(6.67)

12,1) Programmed Drum Transfers

An extracode which reads block p from drums to core store
is not obeyed immediately? but is Yueued" by the Supervisor,
and the object program proceeds normally. By the time the
extracode comes to be obeyed, the object program may have
progressed far enough to have changed relevant registers in
the program. In order to avoid this, the extracode should be
followed immediately by an instruction which accesses block p;
this ensures that the program will not proceed until block p is
available or the "Page Locked Down" trap is entered.

N

n- .
(9

12.9 ompiler and Supervisor Extracodes

Overflow extracodes (1150, 1151) are not available.

Extracode 1147: Call Compiler

Call compiler n.

(i) If n is even (digit 23=0), then n will be interpreted
as a compiler number, and the compiler in question will be called
from the Supervisor Tape and entered at the address specified by
ba. The numbering of the standard compllers is given in Part 1
of the Operators! Manual (CS 411).

After execution of the extracode,
b91lt', digits O - 10 = compiler number
digits 11 - 23 block address of title
block of compiler on tape.

This entry to the extracode will read the compiler directly
into the object program rather than buffering it wvia supervisor
store, The store limit will be reset to that specified in the
job description or the standard for the first compiler used, or
to the execution store if this is greater, before the compiler
is read.

(ii) If n is odd (digit 23 = 1), the compiler will be
called from block b of tape a, where:

digits 15 to 21 of n
digits 2 to b of mw

a
The compiler will be entered at the address given by ba.

After execution of the extracode,
b91t, digits O - 10 0]
digits 11 - 23 block address of title block of
compiler on private tape.

This entry to the extracode will set the store 1limit to be
that stated for compile store in the job description, or, if none
is stated, the standard compile store of the compiler first used.
Thus when using Compiler Special, the store limit will be set up
as the job description limit or 80 blocks, or to the execution
store if this is greater. Note that formerly Call Private
Compiler allowed expansion in store to the limit of the machine.

12.1) Programmed Drum Transfers

An extracode which reads block p from drums to core store
is not obeyed immediately? but is Yueued" by the Supervisor,
and the object program proceeds normally, By the time the
extracode comes to be obeyed, the object program may have
progressed far enough to have changed relevant registers in
the program. In order to avoid this, the extracode should be
followed immediately by an instruction which accesses block p;
this ensures that the program will not proceed until block p is
available or the "Page Locked Down" trap is entered.

3

ST ama -~ [o PR,
SHipii€r &11a Superv

12 ixtracodes

[l
{
o

o

Overflow extracodes (1150, 1151) are not available.

Extracode 1147: Call Compiler

Call compiler n.

(i) If n is even (digit 23=0), then n will be interpreted
as a compiler number, and the compiler in question will be called
from the Supervisor Tape and entered at the address specified by
ba., The numbering of the standard compilers is given in Part 1
of the Operators! Manual (CS 411). :

After execution of the extracode,
b91t, digits O - 10 = compiler number
digits 11 - 23 = block address of title
block of compiler on tape.

This entry to the extracode will read the compiler directly
into the object program rather than buffering it via supervisor
store. The store limit will be reset to that specified in the
Jjob description or the standard for the first compiler used, or
to the execution store if this is greater, before the compiler
is read.

(ii) If n is odd (digit 23 = 1), the compiler will be
called from block b of tape a, where:

digits 15 to 21 of n
digits 2 to # of n

a
b
The compiler will be entered at the address given by ba,

After execution of the extracode,
bg91t*, digits O ~ 10 = O
digits 11 - 23 block address of title block of
compiler on private tape.

This entry to the extracode will set the store limit to be
that stated for compile store in the job description, or, if none
is stated, the standard compile store of the compiler first used.
Thus when using Compiler Special, the store limit will be set up
as the job description limit or 80 blocks, or to the execution
store if this is greater. Note that formerly Call Private
Compiler allowed expansion in store to the limit of the machine.

The Supervisor used 1147 at the start of all programs, so
the information is in b9l when a compiler is first entered.
For both entries to the extracode, if ba = O the compiler
will be entered at the standard entry point,

Extracode 1150: Read Working Store

Read contents of half-word n of working store into ba.,
n is treated modulo 1024

Useful quantities which can be read by use of this extra-

a9

code, and in no other way, are as follows:

n ba?t

15.4 Address of private monitor
If not set, reads JU

21.0 No. of drum transfers ordered by the
program (digits 0-21)

21.4 No. of tape transfers ordered by this
program (digits 0-23)

22.0 No. of magnetic tapes reserved for this
program (digits 0-21)

11.4 No. of records output on currently selected
output stream

This list may be extended in the future if further items -
are required to be read,

Note that since most of the working store is used for
supervisor working space, not immediately concerned with the
current object program, varying results may be obtained if
the extracode is used with values of n not listed above.

12.10/1

12,10 fonstants in Fixed Store

The following is a list of constants in fixed store
which programmers may find useful. It is possible, though
unlikely, that the comtents of the locations mentioned under
"Full-word Constants" may be changed at some future date.

Masks and half-word constants

Address

2701 Jh

2713 Jh4
2714 J4

2726 Jh
2727 J4

2739 Jh

(6.67)

Contents

in Octal

77777777
17777777
03777777
00777777
00177777
00037777
00007777
00001777
00000377
000000%7
00000017
00000003
00000000

25252525
57777777
73777777
76777777
77577777
77737777
77767777

77775777

77777377
77777677
77777757
77777773
77777776

40000000
10000000
02000000
00400000
00100000
00020000
00004000
00001000
00000200
00000040
00000010
00000002
40000000

37777777
07777777
01777777
00377777
00077777
00017777
00003777
00000777
00000177
00000037
00000007
00000001
63146314

37777777
67777777
15777777
77377777
77677777
77757777
77773777
77776777
77777577
77777737
77777767

77777775
00000000

20000000. .

04000000
01000000
00200000
00040000
00010000
00002000
00000400
00000100
00000020
00000004
00000001
60000000

Address

2740 J4

2751 Jh

2752 Jh

2763Th

Character Masks

Address

548 Jh

551 J4

Full-word Constants

_Address

0 J4
515 Ji4
1419 J4
1420 JhL
1421 J4
1422 J4
1480 Jk
1481 J4
1483 J4
1484 g4
1755 J4
1757 Jh
1830 J4
1831 J4

12.10/2

(6.67)

Constants

in Octal

30000000
06000000
01400000
00300000
00060000
00014000
00003000
00000600
00000140
00000030
00000006
00000000

TITTTTT
00000000

00000001
00000000
00000001
77777776
00000000
00000050
00000030
00000010
00000100

Contents

14000000
03000000
00600000
00140000
00030000
00006000
00001400
00000300
00000060
00000014
00000003
00000000

77777777
77777777
00000001

00000000
77777777

77777777
00000060

00000040
00000020
00000000
00000000

in Octal

77000000
00007700
00000000
00007777

~Yalue

+1/2
+0
1/(2
exp
+1/2
-1/4
log8
loge
+2
+1
/2

exp
-1

00770000
00000077
00000077
00777777

e [—

)

13 arg O

e

8

26 art O

12,11/1

12,11 Non-standard input/output codes
(i) Nonestandard input codes

The standard input codes on Atlas (5-track and
7-track paper tape and cards) have been extended to
cover I1.C.T. 1900 8-track codes as standard 8—-track
input. The standard input codes are now:

5-track tape: Sirius/Pegasus/Mercury code

7—-track tape: Atlas/Orion Flexowriter code
(odd parity)

8-track tape: I.C.T. 1900 8-track code
(even parity)

Cards : I.B.M. card code

Different codes are introduced by a warning marker
(XXX on paper tape; 7, 8 in first column on cards)
followed by an integer n in the range 2 to 8, The
special case n=9 indicates a return to standard code,
Markers with n=0 or n=1 are ignored. Switching to an
unavailable code causes reversion to the standard code.
for that medium. :

On paper tape, ***n causes the reader to be
disengaged; when it is re-~engaged, reading will continue
in code n for that medium. Further warning sequences
may follow in the new code nj for example ¥**T in the new
code will be correctly interpreted,

(N.B. -~ This does not apply to MUSE, where the ***
Sequence must always be in standard code, but the marker
letter must be in the code currently operative),

The code may be changed by further ¥X¥Xn combinations.

The code will revert to standard code on encountering
warning characters Z or A, and on faults such as Parity,
or Reader Overdue, and at end-of-tape following warning
sequences XXXB and XXXF, In binary, following XXXE,

XXX1 causes reversion to the current code conversion;
markerswappearingwinwawbinary'sequence“fallowihg“XXXE'
must be punched in the code operative before the xxxE
(except at MUSE, where the above comment applies).
XXXn will be ignored following XXXE.

A similar system applies for card input. The
warning character is punchings 7, 8 in the first column,
irrespective of the code currently operative. In the
marker card switching to code n, the code number is punched
in the last column of the card. In standard code, during
conversion to internal code, an impermissible punching in
the first column causes the card to be translated as binary,
This will continue to apply during conversion from other
codes,

(7.67)

12,11/2

The code numbers n are local to the particular
medium, i.e. there are up to 7 codes for cards, 7 for
5-holei paper tape, 7 for 7-hole tape and 7 for 8-hole
tape. Code numbering is standard for all Atlas 1
instailations, as far as the input facilities allow
(see section iii below),

The system does not include facilities for bPassing
details of the input code used to compilers or object
brograms, nor for allowing the user to speci
conversion tables,

g,
fy his own

l.J\

(ii) Non-standard output codes

Non-standard output codes are specified by means of
the 1060 extracode, The specification of this extracode
has been extended as follows.

The address field (after modification) is interpreted
as consisting of

i) bit o0 (the J4 bit)
ii; bits 1-11 (m)

iii) bits 12-20 (nd
iv) bits 21-23 (octal faction)

m specifies the output code required for the stream,

n specifies the output stream, as listed in the Job
Description,

The extracode always switches output to stream n,
The value of m is consulted only if bit O=1, otherwise it
is dignored. When bit 0=1, stream n is selected, and code m
is invoked for stream n; code m will be used for the whole of
stream n, including any output that may have been generated
before the !code-~change! 1060 for that stream. In this
context, the scope of code m is limited by a 'Break Output!
instruction; such as instruction has the effect of switching
to. standard code, but does not affect output generated up to
that point, A 1060 instruction with bit 0=0 may change the
output stream, but will not cause a change from the output
code currently operative on that stream.

If the first 1060 instruction referring to a given stream
has bit 0=0, standard code conversion is used, and will
continue unless a 1060 instruction with bit O=1 is
encountered for that stream.

If the octal faction is odd (i.e. bit 23=1), bits 0=11

are ignored, and subsequent output on stream n will be in
binary,

(7.67)

12.11/3

The value of m must lie in the range 0 to 63.
m=0 indicates output in the standard code for the medium
concerned, If code m is unassigned, or cannot be
implemented on the medium concerned, it will be treated
as m=0,

There is only one set of output code numbers; each
number refers to a specific code on a particular medium.
The numbers correspond to the input code marker numbers, and
are given in section iii below.

It is not possible to specify OUTPUT EIGHT HOLE in
the Job Description, Output streams destined for eight-
track paper tape must have been listed under SEVEN HOLE in
the Job Bescription, Eight tracks will be punched if the
correct width tape is loaded in the tape punch,

A facility is available to the operators for changing
temporarily the "standard" output code on a particular
peripheral,

Non-binary output is held on output magnetic tapes
in Atlas Internal Code, For Private Output, the output
code specified in the program will not be recorded on the
tape; facilities are available for allowing any output
code to be specified during off-line output from tape to
peripheral,

(iii) Code Numbers

Output Input

t
12 2 Elliott 803 5-track

13 3

14 L

15 5

16 6

17 7

18 8

19 9 - -Standard (Ferranti Sirius/Pegasus/

Mercyry)
7-track

22
23
23

24
24
25
26
27
28
29

I.C.T. 1900 standard without parity check

(London & Chilton) Creedomat I.C.T. 1500

(Manchester): Elliott 503 without parity
check

2London & Chilton)

Manchester): KDF9 without parity check

N O~ FEE WWN

Standard (Atlas/Orion)

(7.67)

Output

32
33
34
35
36
37

38
3

39

42
43
Ll
L5
46
57
48
49

12,11/4

Input

8~track (Input not available at Manchester)

Elliott 503
KDF9

Friden standard code

N OO~ Nt WD

Standard (based on I.C.T. 1900 code)
Cards
I.C.T. 1900

I.B.M./360 (EBCDIC)
ECMA code

R LN N T, B WP\

Standard (extended I'.B.M. 48 — character
BCDIC)

Note ~ Blank entries indicate that code has not yet

been assigned,

The I.C.T. 1900 8-track code is the same as the
ASCII even-parity code. Odd-parity ASCII code
can be read as code 2 in 7~-track.,

Programmers should always check the availability

of non-standard codes at the installation
concerned,

(7.67)

ADDENDUM TO CS 348A
HALF INCH TAPE OPERATIONS

Some Atlas installations are equipped with half inch
tape mechanisms as well as the standard one inch tape. The half
inch tape operations are described in the following sections.

At present there is an upper limit of 4096 characters in a
record, if no information is to be lost during a transfer,
and this is described herein; this limit may later be
extended to 32768 characters.

Section Date of Issue
9.8 Atlas Half Inch Tape 5.65
9.9 Half Inch Tape Instructions ,

9.9.1 The Selection Instructions 5.65

9.9.2 The Transfer Instructions 6.67

8.9.3 The Skip Instructions 5.65

9.9.4 Other Instructions 6.67

9.9.5 Summary of Half Inch Instructions 6.67
9.10 Specification of the Atlas Half Inch Tape

9.10.1 Control 5.65
9.10.2 The Tape Layout 5.65
9.10.3 Performance 5.695
9.10.4 Safeguards 5.65
9.11 Half Inch Tape Faults ; 6.67
9.12 Half Inch Tape Code Conversion 6.67

10.6.4 Half Inch Tapes
(Job Description) 6.67

9.841

g.8 Atlas Half Inch Tape

Information on each magnetic tape is split up into
sections or records, consisting of up to 4096 six bit characters
each. Croups of records may be formed into a file, separated
from other files by file marks - short, standard records recognised

by hardware. When the tape is

[N

irst mounted it is positicned
ready move forward and use the first record. As the records are
of variable length, and the tape is not pre-addressed, it is
very difficult to use particular records, unless these occur
sequentially on the tape. The file marks enable unwanted

files to be neglected without having to examine every record

within thenm.

Searching for file marks is a relatively slow process
compared with the computing speed of Atlas, and the time taken is
proportional to the length of tape traversed. Any search
instructions should be given as early as possible in the progranm.

The characters stored on the tape each have a parity
bit associated with them - the prograrmer can chose whether
this should give odd or even parity. The character themselves
nay be in one of two forms: Binary Coded Decimal, (BCD) usually
for input or output data, and normally with even parity, or rure
Binary, usually with odd parity, when the tapes are used as an
extension of the computer store. The characters may be packed
with one of up to three densities on the tape.

9,9/1

9.9 Half Inch Tape Instructions

9,%,1 The Selection Instructions

The tape which is required for processing is initially
selected by obeying a 1260 instruction, which also defines the

3 £ 11 . K
maximum record length, and the mode of transfer. All succeeding

half inch instructions apply to this tape, with the exception

of the 1262 instruction. The tape number is that appearing in the
job description, and is specified by the Ba digits of the
instruction (OgBagl26). The maximum record length is specified by
bits 12-20 of the singly-modified operand n; hence the longest
record allowable is 512 Atlas words, or 4096 characters. The
octal fraction of n determines the mode of transfer as follows:-

bit 21 = O for odd parity
= 1 for even parity _
bit 22 = 0 if no code conversion is required (binary)

= 1 if code conversion is required (BCD)
bit 23 must be zero

Thus, the instruction
1260 42 0 48

would select tape 42 to provide backing store, transfers being
unconverted with odd parity, with a maximum of 384 characters in
any record.

1260 2 0 4.6

would select tape 2 for B.C.D. even parity working, maximum record
length 32 characters.

It may often be necessary to find which tape is being
used, for instance on entering a subroutine. Extracode 1261 will
find the selected tape, mode, and record length. The contents of Ba
will be set t0 the tape selected, stored in the half word position,

bits 15-21. ba will be set to J4 if no half inch tapes are selected.

(5.65)

9.942

The record length and mode will be given in the same way as

for the 1260 instruction, and will appear in the B-line specified
in the half-word position (bits 15-21) of the singly modified -
operand n. Thus the instruction

1261 10 0 11D1
at the beginning of a routine, and

121 121 10 0
1260 122 11 0

at the end would preserve the half inch tape selected on entry,
together with the maximum record length and mode of transfer.

Before any transfers take place, the instruction
1256 must be obeyed to select the density of character packing
on the currently chosen tape, using operand n as follows:-

n=2~0 for low density, 200 characters per inch
n = 0.4 for medium density, 556 characters per inch
n=1 for high density, 800 characters per inch

This density applies to the selected channel and should
not be changed between tape transfers. If an attempt is made to
read a tape in a higher density than it has been written in,
the situation may be irretrievable. Hence if a tape’s
density is unknown, it should be read first and low density
selected. If the wrong density is selected, there will be a
read failure, which may be trapped (see sections 9.11 and 11.2).

(5.65)

9.9/3

9.9.2 The Transfer Instructions

Records are written to the selected tape using the 1270
extracode. The number of characters, specified by bits 12-23
of ba, must not exceed the number specified by the 1260 extracode.
The first character transferred is taken from the address 3.

The 1274 instruction will read the next record
from the tape. Ba must be 1; S specifies the character position
to which the first character will be transferred. Thus

1274 1 0 63.4

will transfer the next record from tape to store, starting at
address location 63.4,. If S< O there will be no storage of the
record, providing a means of skipping records. If the number of
words in the record is greater than the maximum specified by the
1260 instruction, the tape will continue to move to the end of
the record, but the excess words will be lost.

The 1276 instruction sets ba to the number of characters
transferred from the tape by the previous 1274 instruction reading
from the currently selected half inch tape. This may be greater
than the maximum length specified by the 1260 instructions,
in which case characters will have been lost.

9.9.3 ' The Skip Instructions

Besidssrreading and writing records, it is also possible
to move the tape along without either operation ocourring. Skipping
one record forward is achieved by 'reading’ to a negative store
address using 1274. The instruction

1275 1 0 S
where S is negative, will skip one record backwards.

The tape is moved more quickly when searching for a file
mark than when simply scanning each record, and so the 1257
instruction allows this faster search either backward or forward
along the tape; 1257 is also used to write a file mark at the
current position of the selected tape. The operation performed
depends on‘the value of Ba as follows:-

(6.67)

9.9/4

Ba = O, write a file mark

Ba =1, search forwards for a file mark, positioning
the tape to read the record following it

Ba = 2, search backwards for a file mark, positioning
the tape to read the file mark. The short
record forming the file mark must be skipped
before reading the first record of the file;
alternatively searching forward for a file
mark will have the same effect.

The tape may be rewound and positioned ready fo
read the first record by obeying the instruction

1267 0 0 0

9.9.4 Other Instructions

When a program deals with data that may be either on
one inch tape or on half inch tape it is naaessary‘to know
which is being used in a particular run. Obeying a 1262
instruction will set ba according to the type of device that
is listed as number n (singly modified operand) in the job
description., Thus

1262 10 0 6

will set blO’ = O if device 6 in the job description is a one inch
tape mechanism

= 0.4 if device 6 is a half inch tape mechanism

J4 if no device 6 is defined.

The following instructions have a similar use for both
one and half inch mechanisms.

1010 Mount tape. For half-inch tape, although it will be
called for by name, no check can be made that the
correct tape is mounted.

n must be even (bit 23=0) for 1* tape, odd (bit 23=1)
for %" tape.

If all %" tape mechanisms are in use, the program
will be monitored on Excess Decks.

(6.67)

9.9/5

1016 Unload and Store.
Applies to %” tape as to 1”7 tape (see sec. 9.5.2).
If used for 4” tape this extracode will deselect any
selected 4" tape.
If no 1” or £” tape Ba is allocated, the program will be
moritored on Tape Not Defined. If there are a 1”
and a %" tape both with the logical number Ba, the
1% tape will be unloaded.

1021 Release Mechanisms.

9.9.5 Summary of Half Inch Tape Instructions

1256 Select density n on selected mechanism
n=0 low density, 200 ch/in.
n=0.4 mnedium density, 556 ch/in.
n=1 high density, 800 ch/in.

Where high density is not available, n=1 gives
nedium density. .

Reading in a higher density than the tape is written
in has an unpredicatable effect. Once the correct
density is found, no further changes should be made.

1257 Write filemark/Skip to file mark, using selected
device. ’

Ba = 0 Write a file mark

Ba == 1 Position the tape to read the record
following the next file mark, moving
the tape forwards.

Ba = 2 Move the tape backwards to the previous file
mark, positioning the tape to read the file
mark.

Ba > 2 Program is monitored on Illegal Function

1260 Select deck Ba; define record length and mode of
transfer n.
Ba must lie in the range O¢Bagl26. If no deck Ba is
allocated, the program is monitored on Tape Not Defined.

Bits 12-20 of n define the maximum record length.

(6.67)

9.29/6

Bit 21 of n 0 for odd parity
= 1 otherwise
3it 22 of n O 1if no code conversion required
1 otherwise
Bit 23 of n O always
1261 Set ba to selected device; set b(n) to record length

and node defined.

pa’? == number of selected deck, in the half-word
position,
== J4 if no half-inch tape mechanism selected.

The B-register given in bits 15-21 of n is set to the
record length and mode as defined by the 1260 extracode.

1262 Set ba to type of device n (bits 0-20).
ba’ == 0 if device n is 1" tape
= 0.4 if device n is 4" tape
= J4 if no device n is defined
1267 Tewind,
Vritten as 1267 ¢ 0 O.
Rewind selected device. Position tape to read first
record.
1270 irite a record of ba characters from core store starting
at S to selected device.
If ba is zero, or exceeds the number of characters
defined by 1260, the program will be monitored on Illegal
Function.
The extracode is much more efficient if S is a half-word
address, and even more so if S is a block address.
1274 Read a record to core store starting at S / Skip forward

one record, using selected device.

Ba nust be 1.

If the record is longer than defined by 1260, the extra
characters will be lost. If S¢O, there will be no transfer,
only skipping.

The extracode is much more efficient if S is a half-word
address, and even more so if S is a block address.

(6.67)

9.9/7

Skip backward one record on selected device.
Ba must be 1, and S negative.

Set ba to length of previous record read from
selected device. If ba’ is greater than the record
length defined in 1260, characters have been lost.

[N T R, I 1 1 X) -) . = o o
e CCoraing te fiow the iast iransfer to core

o

store from the selected device was ended.
baf = 0 if end of record was not reached
- 0.1 if end of record was reached,

(6.67)

%.14d/1

($e]
-

1
o

Specification of the Atlas Half Inch Tape System

[{e)
-
@
bt

Contrel

an Atlas installation may have up to 6 half inch
magnetic tape mechanisms, all connected to the computer through
one channel, which may be used by one inch mechanisms
in the usual way. This channel controls & read, write or
backspace operation on one deck at any cne time. Rewind operations
are autonomous, and need the channel only to initiate then.
i search for a file mark is autonomous with any operations
involving one inch mechanisms connected to the same channel.

9.10.2 The Tape Layout

The tape mechanism is the IBM 729 Mark IV or the Potter
HTS 120X - 41306, using half inch wide magnetic tape. There
are seven tracks across the tape; six are used for data, and
one for parity. There is no clock track provided; characters
are recognised by the presence of a bit in at least one of
the tracks.

Information is stored on tape in blocks or records,
which can be of any length, and are unaddressed. Because
records are of variable length, selective overwriting is
virtually impossible. At the end of each record is one character
generated from the parities of each track in the record; these
parity characters are used to check the accuracy of all
reading and writing operations. Records maywﬁé gfbﬁpédwih{5 -
files separated by file marks - short records recognised by
the hardware.

Data is stored in two different character
representations.

a) Binary HMode

When it is required to use the tape as a backing store
to the computer, the data will be transferred to tape directly
from the main store without any code conversion, i.e. in binary
form. The parity track bits then ensure odd parity.

(5.65)

9.10/2

b) B.C.D. Mode

Vhen it is required to use the *ape as an input or
output device, then alrha-numeric information will be required.
The data is converted into Binary Coded Decimal (BCD) by
the hardware; the parity track bits ensure even parity.

Three densities of recording are possible: 200, 556 and
800 characters per inch. Each record is separated from its
neighbour by a 3/4” gap in which nothing is recorded. Tapes
are up to 2400 feet long.

¢,10.3 Performance

For the IBl{ deck, the normal tape speed is 112.5 inches
per second, allowing instantaneocus transfer rates of 22,500,
62,500 or 90,000 characters per second for the low, medium and
high densities respectively. There is a fast wind and rewind speed
of about 500 inches per second; this speed is also used on
long searches for file marks. For the Potter decks and normal
tape speed is 120 inches per second giving instantaneous transfer
rates of 24,00C, 0€,600 and 96,000 charecers ve- second. The fast
wind speed is 240 inches per second.

There are independent read and write heads, separated by a
gap of about C.3 inches. It is possible to read or write when
the tape is moving forwards only, although the tape may be
backspaced a record at a time.

9,10.4 Safeggards

£ progranm is held up if it attempts to read from or
write to a block of store which is involved in a magnetic tape
transfer. The Supervisor may then enter another program until
transfer is completed.

If a transfer cannot be initiated when it is requested,
it is placed in queue; if this is already full, the program is
held up.

£ write permit ring must be fitted to a reel of tape
before that reel can be written on. Tapes containing permanent
information will not have such a ring.

(5.65)

9.10/3

Because the tape’s title is not written on the tape
the operator must ensure that the correct tape is
the Supervisor will assume

i Fealf
o Tous,

;
mounted on the deck allocated;
that any tape so mounted will be the one requested.

(5.65)

9.11 Half Inch Tape Faults

9.11/1

Half Inch Tape Faults will give rise to the monitering

IBM TAPE ERROR n

on output O, where n gives the type of fault., n is also

stored in B119.

bl19
0.0

0.4
1.0
1.4

2.0

.4

[\

3.0

3.4
4.0

Reason for monitoring

Last record read by 1274 was

a filemark,

Reading parity failure.
End/beginning of tape detected
following a ’write’ or a

’skip backwards’ instruction.
Writing parity failure

Failure to detect a filemark.
(Occurs only with 1257 instruection)
No L.A.M. within 2 minutes on
1257, 1267 or 1016, or within

7 seconds on other instructions.
Attempt to read a record longer
than 4096 characters.

Mechanical failure on reading/writing.

The first four of these faults (n¢l.4) are trappable;

trap entry 7 is defined as

IBM TAPE ERROR.

If the fault is trapped, Bl19 contains the value of n as given

above.

The following extracodes give Tape Not Defined if no

tape has been selected:

1256, 1267, 1270, 1275, 1276, 1277.

(6.67)

9.12/1

9.12 Half Inch Magnetic Tape Code Conversion

Code conversion between Atlas Internal Code and
Binary Coded Decimal is provided for extracodes 1270 (Write)
and 1274 (Read) if selected by 1260 with bit 22 of n = 1.
The code conversion is as follows

AIC BCD AIC BCD AIC ECD AIC BCD

00 (00) 20 12 40 14 60 47
Cl 20 21 0l 41 61 61 50

2 16 22 02 42 62 62 Sl
03 17 23 03 43 63 63 22
04 32 24 04 44 64 64 23
05 52 25 0S 45 65 65 24
06 36 26 06 46 66 66 25
o7 37 27 07 47 67 67 26
10 34 30 10 50 70 70 27
11 74 31 11 Sl 71 71 30
12 33 32 35 o2 41 72 31
13 53 33 75 53 42 73 56
14 55 34 13 54 43 74 57
15 15 33 60 55 44 75 72
16 54 36 40 56 45 76 76
17 21 37 73 57 46 77 77

BCD AIC BCD AIC BCD &IC BCD AIC

(00) o0 20 0l 40 36 60 35
C1 21 21 17 41 2 61 41
02 22 22 63 42 53 62 42
03 23 23 64 43 o4 63 43
04 24 24 65 44 59 64 44
05 25 25 66 45 56 65 45
06 26 26 67 46 S7 66 46
o7 27 27 70 47 60 67 47
1C 30 30 71 30 61 70 S0
11 31 31 72 Sl 62 71 Sl
12 20 32 04 52 05 72 75

(6.67)

9.12/2

BCD AIC BCD AIC BCD AIC BCD AIC
13 34 33 12 33 13 73 37
14 40 34 10 54 16 74 11
15 15 33 32 59 14 75 33
16 02 36 06 56 73 76 76

~3
»)
1

i
(4]
[4

"~
(#)]
~3
-,
[1-N

~J
~]
~J
~J

Note: OC is unallocated in AIC and is an unallowed character
on tape, but is included in the above tables for completeness.

00 with even parity should never be written to tape,
as it cannot be read back.

(6.67)

10.6/5

-3

0.6.4 Half Inch Tapes

At those installations capable of handling half-inch
(IBll-compatible) magnetic tape, each tape required must be
listed in the Job Description by means of a TAPE IR heading,
followed on a new line by a description, consisting of the

+1 ~ 3 ~o) +
S 4t Me VR L4

ana tie titie

~d

~
VA

(03]
LN—

)

nrogramner?
Drogra

C
b
r.l.
fmnd
o
+
I}

ko)
(0]

~
o

Q
-

The deck allocation is treated in the same way as
for one-inch tapes. Each tape used should have a different
programmer’s number.

(6.67)

Section

Teod
75
7.6

[

8.6,10

8.6.11

801 k‘.2
1%.11.1
12,7

)
)
)
)

ADDEITA TO CS 348A

Issue July 1965

Zxtracode instruction ti—es

Reading a fixed noint number to
B81; A2/1100, A7/L10C, A8/1100
(new section)

Reading a floating point number
to the accumulator Al/1100
(new section)

A?/11, ancurulator exponent
The Tape markers **¥7,C,T,A

“ranching

NN

Date of Issue

7.65
7.65

7 LB

i eG

7465

7465
7465
7.65
7.65

The number of basic instructions obeyed by some extracodes
are given below, Special cases are normally excluded, but the
extracode instruction is included. (The extracodes are alsoc listed
in Appendix E)

Section

Tede Accumilator Extracodes:-
1700 47 1723 75~90
1701 46 1724 38-53
1702 44 or 53 1725 37-52
1703 43 or 52 1726 44-61
1710 36 1730 32-37
1711 35 1731 31-36
1712 41 1732 32-37
1720 76-91 1733 31-36
1721 75-90 1734 66-76
1722 76-91 1735 65-75

Tede2 Accumulator Extracodes:=-
1704 5 1754 6
1705 4 1756 8
1706 5-6 1757 5
1707 4-5 1760 3
1713 87-96 1774 11
1714 5 1775 10
1715 4
1776 14 1466 21
1407 15-30 1415 4
1467 6+43ba

Tede3 Accumulator Extracodess:-
1752 10 nr 13% 1767 3
1753 5 1772 11 or 14%
1755 18-26 1773 28-36
1762 9 or 12% 1452 21-28
1763 5 1473 26-33
1764 15-23 1474 22-33
1765 14-22 1475 21-32
1766 4 1476 30-41

*These figures assume A0 does not occur

Te4.4 Double-Length Arithmetic:~
1500 13 1543 22
1501 13 1556 5
1502 17 1565 6
1504 4 1566 4 or 7
1505 3 1567 5
1542 18 1576 21

(7.65)

Section

Te4e5 Address-Operand Arithmetics-
1520 10 1535 10
1521 11 1562 8
1524 8 1574 17
1525 8 1575 16
1534 9 1441 6
T.4.6 Complex Arithmetic:-
1400 132-149 1414 15
1402 109-128 1420 8
1403 5 1421 8
1410 90-93 1424 6
1411 45-62 1425 6
1412 43 1456 5
1413 T0=-80 1462 18
TedeT Vector Arithmetic:-
1430 4n+9 1434 3n+11§forwards) or
3n+13(backwards)
1431 4n+9 1436 5n+10
1432 41+9 1437 16n+10
1433 5n+10

n is the number of elements in the vector.

If n = 0 there are special exits:-

1430 7 1434 3
1431 6 1436 4
1432 5 1437 3
1433 4

T+4.8 Half-word Packing:~
1624 6 1626 7

Te5e1 B-Register Arithmetic:=~
1302 24=-27 1340 12-24
1303 23-26 1341 11=23
1304 26-31 1342 10-19
1312 23~26 1343 9-18
1313 22-25 1344 12-23
1314 2732 1345 11-22
1347 5 1377 4
1353 7 1364 6
1356 5 1371 2
1357 4 1771 2
1376 5

T+542 Character Data Processing:-
1250 7-10 1252 68n+(14 to 17)
1251 11-18 1253 3.75n+(19 to 28)

n is the number of characters, If n=0 there are
special exits:~

1252 4 1253 3
(7.65)

Section

7.5.3 Logical Accumlator:-
1204 9-25 1611 3
1265 11 1613 3
1601 3 1615 2
1604 7 1630 5
1605 12 1635 2
1606 4 1646 3
1607 3 1652 6 or 8
7.6.1 Accumulator Tests:~
1200 9 1237 3or5
1201 7 1727 7

1234 11 or 12 1736 7or9

1235 11 or 12 1737 T
1236 4 or 6

The higher figure occurs when the condition
is fulfilled.

T.6.2 B-Register Tests:-

1206 4 1226 4-6
1216 4 or 5 1227 3-5
1217 4 orb 1223 4

7.7 Subroutine Entry:-
1100 6 1102 6
1101 5 1362 3
8.10.2 A2/14.

This entry to L1 to print the integer in
B81 uses the accumulator without first elearing
the exponent.

10.11.1 The Tape Markers **%7,C,T,A

On re-engaging a tape reader after AT or Z,
the next character is lost. On S5-track tape
at least two figure shift characters should be
punched following the marker, and before the next
carriage return and line feed; on 7-track tape,
the marker should be terminated by either upper
case and newline, or two newlines,

12.3 Branching

Branching is terminated if only one branch
remaing active. If all branches are halted awaiting
other branches, the program is faulted for EXCESS
BRANCHES,

(7465)

ADDENDUM TO CS 348A

Version 6 of Atlas Basic Language

1. Compiler Identifier

The compiler prints an identifier at the head of output O.
This consists of the name and date of the current version of the
compiler, e.qg.

ABL6 1.8.66
The identifier is followed by 5 new-line characters. It will
be printed only when the compiler is first called from the
Supervisor tape, and will not be repeated on a ’clean’ re-entry
to the compiler (at P120B), or during batch compiling.

2. Input Routine

The input routine of the compiler reads one record
at a time from the input stream.

3. AO of Routines and Libraries

When R and L directives are encountered, the transfer
address of compilation is automatically stepped on (if necessary)
to the next full-word address. Thus AO of routines and AO/L
of libraries will always be a full-word address.

4. Source Program Listing: P10S

- It is possible to list the source program as it is read -
by the compiler. The program is listed with each line optionally
preceded by the current transfer address.

Listing is controlled by P105, which is set as

P105 = n:p.q
or P105 = E, where E is any ABL expression which can be fully
evaluated. The value of E is then interpreted as n:p.q.

n is the number of the output stream on which the listing
is required. This output stream must have been
specified in the Job Description (except possibly
for n = 0).

7.67

2.

If output O is chosen for source listing, the listing
will be mixed with, and layout will be spoiled by,
the optional printing controlled by P100 and the
compiler fault monitoring.

controls the form of printing of the current transfer
address, which precedes the listed line. This

address is the location in which the first item on the
current line of program will be planted {where

applicable). p is an octal digit; each bit specifies
whether a particular form of address is required:

1’ bit : octal number, preceded by J

r2" bit : Dblock:word.character (always positive)

’4" bit : integer.character (printed as negative above J4)

Any, all or none of these forms will be printed,
depending on whether the relevant bit is set to 1 (for
printing) or O. The printed address is enclosed in
square brackets.

The address printed is the transfer address of compilation
before the line has been compiled. This means that in
some cases this transfer address will be stepped on to an
appropriate value after printing but before the item

is planted. The listed address is the location in

which the item will sit during execution, and not
necessarily during compilation (as determined by the

value of P110).

During listing, every non-empty line of program is
listed preceded by an address; in the case of lines
containing only directives, comments, spaces or erases
the printed address will have no relevance.

controls the format of the listed line:

g =1 or g = 0 causes the line to be printed with all
tabs replaced by the correct number of spaces in
conformity with Atlas tab settings.

g = 2 causes the input record to be output as one
record. This form of output is much more economical on
computer time than character output (i.e. g = 1), and
should be used for paper-tape output, and any listing

7.67

3

of S-track input. On the lineprinter, tab will be
replaced by one space.

On all lineprinter output, erase and backspace appear
as full-stops. Erase is not edited out of listings. On five-track
input, corrections may have been made by terminating a record
with carriage-return only. and overwr

- A i V:!-i-uk'v,- - v -~

iting. The final result
will be interpreted correctly in the listing.
While library routines are read in, following an RL

directive, listing will be continued if previously requésted, but no
address precedes the listed line.

During compilation of library routines, no listing
will occur unless P105 is set within the library routine. The
scopes of Pl0S settings inside and outside library routines are
quite distinct; when compilation of the main program is resumed,
the previous value of Pl05 is restored.

S. Parameter Listing: P114

Preset parameter P114 controls the listing of all
parameters mentioned in the program. The listing can be obtained
in two ways:

(i) Immediate listing

If P114 is set with a 1 in the most significant bit, the
listing is provided when the directive is compiled.

The format is then
P114 == n:pJ4

n specifies the output stream on which the list is to
be printed.

P specifies the form in which the values of the parameters
are to be printed. It is interpreted in exactly the same
way as the ’p’ setting in P105, i.e.

'1* bit : octal number
72" bit : block:word.character (always positive)
‘4’ bit : integer.character (printed as negative above J4)

The general form of a line of the listing is
Aa/bLe.d = value 7.67

4.

Routine parameters are printed first, followed by those
preset parameters up to P99 which are currently set.
Global parameters will appear in the list immediately
before the parameters of Routine O of the main program.

(ii) Listing on an Enter directive
If P114 has a positive value when an Enter directive is
encountered, the parameter list will be printed immediately
before the program is entered.

The format is

Pll14 = n:p.g
and this may appear anywhere in the program.
n and p are interpreted as described above.

q specifies the occasions on which the listing is
required:

1? bit =1 : 1listing on EX

2 bit =1 : 1listing on ER
4% bit =1 : 1listing on E

Il

The listing will be appear if, for any reason, there
is no attempt to enter the program (e.g. errors in
program).

Note that if any library routines (including public
library routines) have been compiled before the parameter
list is printed, all the routine parameters of the libraries
will be included in the }ist,
Routine parameters may be listed as “UNSET* or “SEMISET”;
the following notes will help %o explain these terms.

AO of a routine is marked “semiset” as soon as an R
directive is encountered. AO of Routine O is

narked "semiset” when the compiler is entered. AO
will be marked ”set” when it can be given a value, i.e.
when the first item of that routine can be planted in
the program area.

7.67

If reference is made to A3/5, for example, and
Routine § has not been explicitly introduced

by an R directive, parameter AO/5 is added to the
parameter list and marked as "unset”. A subsequent
"R5" directive may then cause AO/5 to be set.

Parameters given optional values, e.g. AB? = 10,

are initially marked as "unset”. An attempt to

set them will be made only on an Enter directive.

On an EX directive, the parameters will be evaluated
and marked "set” if possible; otherwise they will
be marked ”semiset”. On E and ER directives, the
parameters will be “set”, either by evaluation or by
assigning them the value J36, (=1920:0).

Parameters set explicitly, e.g. A4 = A5, -are marked
as "semiset” until they can be evaluated. If A5
is still "unset” when an E or ER directive is
encountered, and A4 cannot be evaluated, A4 will

be marked ”set” and given the value J36.

6. "Replacement” Parameter: Pl16

P116 may be set in the normal way, i.e. P116 = E,
where E is any ABL expression which can be fully evaluated. During
the rest of the compilation, the value of P116 will be the contents of
location ’E’, and not ’E’ itself. The setting of P116 will give
rise to Supervisor monitoring if store location 'E? is in an
inaccessible area of store, or if the expression E cannot be fully
evaluated.

P116 may be reset during compilation,

7. Program Dump: "3" Directive

The contents of any area of store nay be listed during
compilation by means of the “4” directive.

The format is

2E1, E2

7.67

6.

where E1 and E2 are any ABL expressions which can be fully
evaluated, separated by comma or multiple space.

When this directive is encountered during compilation,
the compiler will list the contents of locations El1 4o E2
inclusive, ih the form

Address H Jx Jy

where the address is printed in block:word form, enclosed in
square brackets; x and y are the contents of the two half-words
at that address, printed as 8-bit octal numbers. A blank line
is output after every 8 lines of listing.

Supervisor monitoring will eventually occur if an
attempt is made to read from an inaccessible area of store, or if
El or E2 cannot be fully evaluated.

This listing will appear on the currently selected
output, normally output O during compilation.

Note that this directive is not available in programs
punched on 5-track tape or cards, as the ”#” character is not
represented in these media.

8. Compiler size

The size of the compiler itself is 4 blocks. The compiler
as called from the Supervisor tape includes the public library
routines, and its size varies among the installations.

D.E. Cronin
June 1967

7.67

Cs 348aA
C INTERNATIONAL COMPUTERS AND TABULATORS LIMITED

88, High Holborn, M.F. Cardinal,
London, W.C. 1, D.E, Cronin,
July, 1967.

	0001
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	01.01
	01.02
	01.05
	02.01.1
	02.01.2
	02.01.3
	02.02
	02.03
	02.04.1
	02.04.2
	02.05
	02.06
	03.01
	03.02.1
	03.02.2
	03.03.1
	03.03.2
	03.04
	03.05
	03.06
	03.07
	03.08
	03.09
	04.01
	04.02.1
	04.02.2
	04.03.1
	04.03.2
	04.03.3
	04.04
	04.05.1
	04.05.2
	04.05.3
	04.05.4
	04.06.1
	04.06.2
	04.07.1
	04.07.2
	04.08
	04.09
	04.10
	04.11
	05.01.1
	05.01.2
	05.02.1
	05.02.2
	05.03
	05.04
	05.05
	05.06.1
	05.06.2
	05.07.1
	05.07.2
	05.08.1
	05.09
	05.10.1
	05.10.2
	05.10.3
	05.11.1
	05.11.2
	05.11.3
	05.12.1
	05.13.1
	05.13.2
	05.13.3
	05.13.4
	06.01.1
	06.01.2
	06.01.3
	06.02.1
	06.02.2
	06.02.3
	06.02.4
	06.03.1
	06.03.2
	07.01
	07.02.1
	07.02.2
	07.03.1
	07.04.1
	07.04.2
	07.04.3
	07.04.4
	07.04.5
	07.04.6
	07.04.7
	07.04.8
	07.05.1
	07.05.2
	07.05.3
	07.05.4
	07.06.1
	07.06.2
	07.07
	07.08
	08.01.1
	08.01.2
	08.02.1
	08.02.2
	08.02.3
	08.03.1
	08.03.2
	08.04
	08.05.1
	08.05.2
	08.05.3
	08.05.4
	08.06.1
	08.06.2
	08.06.3
	08.06.4
	08.07.1
	08.07.2
	08.08
	08.09
	08.10.1
	08.10.2
	08.10.3
	08.10.4
	08.10.5
	08.10.6
	08.11.1
	08.11.2
	08.12
	08.13
	08.14.1
	08.14.2
	08.14.3
	08.15.1
	08.15.2
	08.15.3
	08.16
	09.01
	09.02
	09.03.1
	09.03.2
	09.03.3
	09.04.01
	09.04.02
	09.04.03
	09.04.04
	09.04.05
	09.04.06
	09.04.07
	09.04.08
	09.04.09
	09.04.10
	09.05.01
	09.05.02
	09.05.03
	09.05.04
	09.06.01
	09.06.02
	09.07
	10.01
	10.02
	10.03.1
	10.03.2
	10.04.1
	10.04.2
	10.04.3
	10.05
	10.06.1
	10.06.2
	10.06.3
	10.06.4
	10.07.1
	10.07.2
	10.08
	10.09
	10.10.1
	10.10.2
	10.10.3
	10.11.1
	10.11.2
	10.12.1
	10.12.2
	10.12.3
	10.12.4
	10.13
	11.01.1
	11.01.2
	11.01.3
	11.01.4
	11.01.5
	11.01.6
	11.01.7
	11.02
	11.03
	11.04
	11.05
	11.06.1
	11.06.2
	11.06.3
	11.06.4
	11.06.5
	11.06.6
	11.06.7
	12.01.1
	12.01.2
	12.01.3
	12.01.4
	12.01.5
	12.02.1
	12.02.2
	12.02.3
	12.02.4
	12.03.1
	12.03.2
	12.03.3
	12.03.4
	12.03.5
	12.03.6
	12.04
	12.05.1
	12.05.2
	12.06.1
	12.06.2
	12.06.3
	12.06.4
	12.07.1
	12.07.2
	12.07.3
	12.08.1
	12.08.2
	12.08.3
	12.08.4
	12.09.1
	12.09.2
	12.09.3
	A-01
	B-01
	B-02
	B-03
	B-04
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	F-01
	F-02
	G-01
	_6-67_corr_01
	_6-67_corr_02
	_6-67_corr_03
	_6-67_corr_04
	_6-67_corr_05
	_6-67_corr_06
	_6-67_corr_07
	_6-67_corr_08
	_6-67_corr_09
	_6-67_corr_10
	_6-67_corr_11
	_6-67_corr_12
	_6-67_corr_13
	_6-67_corr_14
	_6-67_corr_15
	_6-67_corr_16
	_6-67_corr_17
	_6-67_corr_18
	_6-67_corr_19
	_6-67_corr_20
	_6-67_corr_21
	_6-67_corr_22
	_6-67_corr_23
	_6-67_corr_24
	_6-67_corr_25
	_6-67_corr_26
	_6-67_corr_27
	_6-67_corr_28
	_6-67_tape_01
	_6-67_tape_02
	_6-67_tape_03
	_6-67_tape_04
	_6-67_tape_05
	_6-67_tape_06
	_6-67_tape_07
	_6-67_tape_08
	_6-67_tape_09
	_6-67_tape_10
	_6-67_tape_11
	_6-67_tape_12
	_6-67_tape_13
	_6-67_tape_14
	_6-67_tape_15
	_6-67_tape_16
	_7-65_01
	_7-65_02
	_7-65_03
	_7-65_04
	_7-67_01
	_7-67_02
	_7-67_03
	_7-67_04
	_7-67_05
	_7-67_06
	xBack

